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Preface

The wide-ranging debate brought about by the calculus reform movement has had a sig-

nificant impact on calculus textbooks. In response to many of the questions and concerns

surrounding this debate, we have written a modern calculus textbook, intended for students

majoring in mathematics, physics, chemistry, engineering and related fields.

Our intention is that students should be able to read our book, rather than merely use

it as an encyclopedia filled with the facts of calculus. We have written in a conversational

style that reviewers have compared to listening to a good lecture. Our sense of what works

well with students has been honed by teaching mathematics for more than a combined

50 years at a variety of colleges and universities, both public and private, ranging from a

small liberal arts college to large engineering schools.

In an effort to ensure that this textbook successfully addresses our concerns about the

effective teaching of calculus we have continually asked instructors around the world for

their opinions on the calculus curriculum, the strengths and weaknesses of current textbooks,

and the strengths and weaknesses of our own text. In preparing this third edition, as with the

previous editions, we enjoyed the benefit of countless insightful comments from a talented

panel of reviewers that was selected to help us with this project.

OUR PHILOSOPHY

We agree with many of the ideas that have come out of the calculus reform movement. In

particular, we believe in the Rule of Four: that concepts should be presented graphically,

numerically, algebraically and verbally,whenever these are appropriate. In fact, we would

add physically to this list, since the modeling of physical problems is an important skill

that students need to develop. We also believe that, while the calculus curriculum has

been in need of reform, we should not throw out those things that already work well. Our

book thus represents an updated approach to the traditional topics of calculus. We follow

a mainstream order of presentation, while integrating technology and thought-provoking

exercises throughout.

One of the thrusts of the calculus reform movement has been to place greater emphasis

on problem solving and to present students with more realistic applications as well as

open-ended problems. We have incorporated meaningful writing exercises and extended,

open-ended problems into every problem set. You will also find a much wider range of

applications than in most traditional texts. We make frequent use of applications from

students’ experience both to motivate the development of new topics and to illustrate

concepts we have already presented. In particular, we have included numerous examples

from a wide range of fields to give students a familiar context in which to think of various

concepts and their applications.

We believe that a conceptual development of the calculus must motivate the text.

Although we have integrated technology throughout,we have not allowed the technology

xv
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to drive the book. Our goal is to use the available technology to help students reach a

conceptual understanding of the calculus as it is used today.

MOTIVATION AND UNDERSTANDING

Perhaps the most important task when preparing a calculus text is the actual writing of it.

We have endeavored to write this text in a manner that combines an appropriate level of

informality with an honest discussion regarding the difficulties that students commonly face

in their study of calculus. In addition to the concepts and applications of calculus, we have

also included many frank discussions about what is practical and impractical, and what is

difficult and not so difficult to students in the course.

Our primary objectives are to find better ways to motivate students and facilitate their

understanding. To accomplish this, we go beyond the standard textbook presentation and

tell students why they are learning something, how they will use it, and why it is impor-

tant. As a result students master problem-solving skills while also learning how to think

mathematically, an important goal for most instructors teaching the calculus course.

This edition of our text provides a brief review of trigonometric functions in Chapter 0,

followed by a full discussion of exponential, logarithmic and other transcendental functions

in Chapter 6. Instructors who prefer an early introduction to these functions should refer to

our text Calculus: Early Transcendental Functions, 3/e.

In our view, techniques of integration remain of great importance. Our emphasis is on

helping students develop the ability to carefully distinguish among similar-looking integrals

and identify the appropriate technique of integration to apply to each integral. The attention

to detail and mathematical sophistication required by this process are invaluable skills. We

do not attempt to be encyclopedic about techniques of integration, especially given the

widespread use of computer algebra systems. Accordingly, in section 7.5, we include a

discussion of integration tables and the use of computer algebra systems for performing

symbolic integration.

In addition to a focus on the central concepts of calculus, we have included several

sections that are not typically found in other calculus texts, as well as expanded coverage

of specific topics. This provides instructors with the flexibility to tailor their courses to the

interests and abilities of each class.

r For instance, in section 1.7, we explore loss-of-significance errors. Here, we discuss

how computers and calculators perform arithmetic operations and how these can

cause errors, in the context of numerical approximation of limits.
r In section 3.8, we present a diverse group of applications of differentiation, including

chemical reaction rates and population dynamics.
r Separable differential equations and logistic growth are discussed in section 8.2,

followed by direction fields and Euler’s method for first-order ordinary differential

equations in section 8.3.
r In Chapter 9, we follow our discussion of power series and Taylor’s Theorem with a

section on Fourier series.
r In sections 10.1–10.3 we provide expanded coverage of parametric equations.
r In section 11.4 we include a discussion of Magnus force.

CALCULUS AND TECHNOLOGY

It is our conviction that graphing calculators and computer algebra systems must not

be used indiscriminately. The focus must always remain on the calculus. We have en-

sured that each of our exercise sets offers an extensive array of problems that should
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be worked by hand. We also believe, however, that calculus study supplemented with an

intelligent use of technology gives students an extremely powerful arsenal of problem-

solving skills. Many passages in the text provide guidance on how to judiciously

use—and not abuse—graphing calculators and computers. We also provide ample oppor-

tunity for students to practice using these tools. Exercises that are most easily solved with
the aid of a graphing calculator or a computer algebra system are easily identified with a

icon.

IMPROVEMENTS IN THE THIRD EDITION

Building upon the success of the Second Edition of Calculus (Early Transcendental Func-

tions), we have developed this new version of Calculus, Third Edition that now offers a late

approach to transcendental functions. Some key elements of the content development are

listed below.

Organization
r Exponential, logarithmic and other transcendental functions are now introduced in

Chapter 6.
r Differential equations receive substantially more coverage in Chapter 8 and in the

all-new Chapter 16.
r Unified coverage of L’Hopital’s Rule has been moved to section 7.6, just before it is

needed for improper integrals.
r Probability coverage has been moved to the end of Chapter 7.

Presentation
r A thorough rewrite of the book resulted in a more concise and direct presentation

of all concepts and techniques.
r The multivariable chapters were thoroughly revised in response to user feedback to

provide a more cogent and refined presentation of this material.
r The entire text was redesigned for a more open, clean appearance to aid students in

locating and focusing on essential information.

Exercises
r More challenging exercises appear throughout the book, and Exploratory Exercises

conclude every section to encourage students to synthesize what they’ve learned.
r Technology icons now appear next to all exercises requiring the use of a graphing

calculator or computer algebra system.

Aesthetics and Relevance of Mathematics
r NEW Beyond Formulas boxes appear in every chapter to encourage students to think

mathematically and go beyond routine answer calculation.
r NEW Today in Mathematics boxes appear in every chapter showing students that

mathematics is a dynamic discipline with many discoveries continually being made

by people inspired by the beauty of the subject.
r NEW The Index of Applications shows students of diverse majors the immediate

relevance of what they are studying.
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SUPPLEMENTS

INSTRUCTOR’S SOLUTIONS MANUAL (ISBN 978-0-07-326853-8)

(ISBN 0-07-326853-4)

An invaluable, timesaving resource, the Instructor’s Solutions Manual contains comprehen-

sive, worked-out solutions to the odd- and even-numbered exercises in the text.

STUDENT’S SOLUTIONS MANUAL (ISBN 978-0-07-326851-4)

(ISBN 0-07-326851-8)

The Student’s Solutions Manual is a helpful reference that contains comprehensive, worked-

out solutions to the odd-numbered exercises in the text.

INSTRUCTOR’S TESTING AND RESOURCE CD-ROM

(ISBN 978-0-07-330250-8) (ISBN 0-07-330250-3)

Brownstone Diploma® testing software, available on CD-ROM, offers instructors a quick

and easy way to create customized exams and view student results. Instructors may use

the software to sort questions by section, difficulty level and type; add questions and edit

existing questions; create multiple versions of questions using algorithmically randomized

variables; prepare multiple-choice quizzes; and construct a grade book.

CONNECT2CALCULUS VIDEO SERIES (ISBN 978-0-07-312476-6)

(ISBN 0-07-312476-1)

Available on DVD on the MathZone website, these innovative videos bring twenty-five

essential calculus concepts to life! The videos take the concepts and place them in a real

world setting so that students make the connection from what they learn in the classroom to

real world experiences outside the classroom. Making use of 3D animations and lectures,

Connect2Calculus video series answers the age old questions “Why is this important?” and

“When will I ever use it?” The videos cover topics from single and multivariable calculus,

mixing student-oriented themes and settings with basic theory.

McGRAW-HILL’S MATH TECHNOLOGY
Making math meaningful—and manageable—for instructors and students.

MathZoneTM

McGraw-Hill’s MathZone is an electronic homework and course management system that

is designed for greater flexibility, power, and ease of use than any other system. Whether you

are looking for a “ready-to-use, straight-out-of-the-box” system or one you can customize

to fit your specific course needs, MathZone is your smart solution for. . .

r Assigning and grading homework specific to this textbook or other McGraw-Hill

titles.
r Creating your study plan using the ALEKS® assessment results.
r Providing unlimited practice for students.

Students and instructors can go to www.mathzone.com to learn more and register!

ALEKS®

ALEKS (Assessment and Learning in Knowledge Spaces) is an inexpensive, customizable,

web-based system that utilizes artificial intelligence to assess your students’ current state

of mathematical knowledge and provide individualized assessment and learning. ALEKS

is a proven resource. Over the past seven years, more than 1,000 schools successfully
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implemented ALEKS in their classrooms to help over one million students reach their full

potential in mathematics.

For students, ALEKS can:
r Determine current math knowledge.
r Teach them what they are most ready to learn.
r Analyze answers to problems and respond with specific advice when mistakes are

made.
r Provide text-specific assets, such as videos, multimedia tutorials, and textbook PDF

pages.
r Provide value with no set-up or site license fees.

For instructors, ALEKS can:
r Save time by providing comprehensive reporting of individual student and class-wide

assessment.
r Make your job simpler by providing access utilizing a single sign-on to ALEKS®

accounts via recent versions of WebCT and Blackboard so that you may

automatically import results directly into your gradebook.
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C H A P T E R

0
Preliminaries

In this chapter you will find a collection of familiar topics. You need

not spend a great deal of time here. Rather, review the material as nec-

essary, until you are comfortable with all of the topics discussed. We

have primarily included material that we consider essential for the study

of calculus that you are about to begin. We must emphasize that un-

derstanding is always built upon a solid foundation. While we do not

intend this chapter to be a comprehensive review of precalculus math-

ematics, we have tried to hit the highlights and provide you with some

standard notation and language that we will use throughout the text.

As it grows, a chambered nautilus creates a spiral shell. Behind this

beautiful geometry is a surprising amount of mathematics. The nautilus

grows in such a way that the overall proportions of its shell remain

constant. That is, if you draw a rectangle to circumscribe the shell, the

ratio of height to width of the rectangle remains nearly constant.

There are several ways to represent this property mathematically. In

polar coordinates (which we present in Chapter 10), we study logarithmic spirals

that have the property that the angle of growth is constant, producing the constant

proportions of a nautilus shell. Using basic geometry, you can divide the circum-

scribing rectangle into a sequence of squares as in the figure. The relative sizes of

the squares form the famous Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . , where each

number in the sequence is the sum of the preceding two numbers.

21

13

8
5

32

A nautilus shell

The Fibonacci sequence has an amazing list of interesting properties. (Search

on the Internet to see what we mean!) Numbers in the sequence have a surprising

habit of showing up in nature, such as the number of petals on a lily (3), buttercup

(5), marigold (13), black-eyed Susan (21) and pyrethrum (34). Although we have

a very simple description of how to generate the Fibonacci sequence, think about

how you might describe it as an algebraic

function. A plot of the first several numbers

in the sequence (shown in Figure 0.1) should

give you the impression of a graph curv-

ing up, perhaps a parabola or an exponential

function.

In this chapter, we discuss methods for

deciding exactly which function provides the

best description of these numbers.

Two aspects of this problem are impor-

tant themes throughout the calculus. One of

1
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The Fibonacci sequence

these is the attempt to find patterns to help us better describe the world. The other theme is

the interplay between graphs and functions. By connecting the powerful equation-solving

techniques of algebra with the visual images provided by graphs, you will significantly

improve your ability tomake use of yourmathematical skills in solving real-world problems.

0.1 THE REAL NUMBERS AND THE CARTESIAN PLANE

The Real Number System and Inequalities

Although mathematics is far more than just a study of numbers, our journey into calculus

begins with the real number system. While this may seem to be a fairly mundane starting

place, we want to give you the opportunity to brush up on those properties that are of

particular interest for calculus.

Themost familiar set of numbers is the set of integers, consisting of the whole numbers

and their additive inverses: 0, ±1,±2,±3, . . . . A rational number is any number of the

form
p
q , where p and q are integers and q  = 0. For example, 2

3
,− 7

3
and 27

125
are all rational

numbers. Notice that every integer n is also a rational number, since we can write it as the

quotient of two integers: n = n

1
.

The irrational numbers are all those real numbers that cannot bewritten in the form
p
q ,

where p and q are integers. Recall that rational numbers have decimal expansions that either

terminate or repeat. For instance, 1
2

= 0.5, 1
3

= 0.33333̄, 1
8

= 0.125 and 1
6

= 0.166666̄ are

all rational numbers. By contrast, irrational numbers have decimal expansions that do

not repeat or terminate. For instance, three familiar irrational numbers and their decimal

expansions are
√
2 = 1.41421 35623 . . . ,

π = 3.14159 26535 . . .

and e = 2.71828 18284 . . . .

We picture the real numbers arranged along the number line displayed in Figure 0.2

(the real line). The set of real numbers is denoted by the symbol R.
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The real line

For real numbers a and b, where a < b, we define the closed interval [a, b] to be the

set of numbers between a and b, including a and b (the endpoints), that is,

[a, b] = {x ∈ R | a ≤ x ≤ b},

as illustrated in Figure 0.3, where the solid circles indicate that a and b are included in

[a, b].

a b

FIGURE 0.3

A closed interval

a b

FIGURE 0.4

An open interval

Similarly, the open interval (a, b) is the set of numbers between a and b, but not

including the endpoints a and b, that is,

(a, b) = {x ∈ R | a < x < b},

as illustrated in Figure 0.4, where the open circles indicate that a and b are not included in

(a, b).

You should already be very familiar with the following properties of real numbers.

THEOREM 1.1

If a and b are real numbers and a < b, then

(i) For any real number c, a + c < b + c.

(ii) For real numbers c and d , if c < d , then a + c < b + d.

(iii) For any real number c > 0, a · c < b · c.

(iv) For any real number c < 0, a · c > b · c.

REMARK 1.1

We need the properties given in Theorem 1.1 to solve inequalities. Notice that

(i) says that you can add the same quantity to both sides of an inequality. Part (iii)

says that you can multiply both sides of an inequality by a positive number. Finally,

(iv) says that if you multiply both sides of an inequality by a negative number, the

inequality is reversed.

We illustrate the use of Theorem 1.1 by solving a simple inequality.

EXAMPLE 1.1 Solving a Linear Inequality

Solve the linear inequality 2x + 5 < 13.

Solution We can use the properties in Theorem 1.1 to isolate the x . First, subtract 5

from both sides to obtain

(2x + 5) − 5 < 13 − 5
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or 2x < 8.

Finally, divide both sides by 2 (since 2 > 0, the inequality is not reversed) to obtain

x < 4.

We often write the solution of an inequality in interval notation. In this case, we get the

interval (−∞, 4). �

You can deal with more complicated inequalities in the same way.

EXAMPLE 1.2 Solving a Two-Sided Inequality

Solve the two-sided inequality 6 < 1 − 3x ≤ 10.

Solution First, recognize that this problem requires that we find values of x such that

6 < 1 − 3x and 1 − 3x ≤ 10.

Here, we can use the properties in Theorem 1.1 to isolate the x by working on both

inequalities simultaneously. First, subtract 1 from each term, to get

6 − 1 < (1 − 3x) − 1 ≤ 10 − 1

or 5 < −3x ≤ 9.

Now, divide by −3, but be careful. Since −3 < 0, the inequalities are reversed. We have

5

−3
>

−3x

−3
≥ 9

−3

or −5

3
> x ≥ −3.

We usually write this as −3 ≤ x < −5

3
,

or in interval notation as [−3,− 5
3
). �

y
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FIGURE 0.5

y = x − 1

x + 2

You will often need to solve inequalities involving fractions. We present a typical

example in the following.

EXAMPLE 1.3 Solving an Inequality Involving a Fraction

Solve the inequality
x − 1

x + 2
≥ 0.

Solution In Figure 0.5, we show a graph of the function, which appears to indicate

that the solution includes all x < −2 and x ≥ 1. Carefully read the inequality and

observe that there are only three ways to satisfy this: either both numerator and

denominator are positive, both are negative or the numerator is zero. To visualize this,

we draw number lines for each of the individual terms, indicating where each is positive,

negative or zero and use these to draw a third number line indicating the value of the

quotient, as shown in the margin. In the third number line, we have placed an “  ”
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above the −2 to indicate that the quotient is undefined at x = −2. From this last

number line, you can see that the quotient is nonnegative whenever x < −2 or x ≥ 1.

We write the solution in interval notation as (−∞,−2) ∪ [1,∞). �

For inequalities involving a polynomial of degree 2 or higher, factoring the polynomial

and determining where the individual factors are positive and negative, as in example 1.4,

will lead to a solution.

EXAMPLE 1.4 Solving a Quadratic Inequality

Solve the quadratic inequality

x2 + x − 6 > 0. (1.1)

Solution In Figure 0.6, we show a graph of the polynomial on the left side of the

inequality. Since this polynomial factors, (1.1) is equivalent to

(x + 3)(x − 2) > 0. (1.2)

This can happen in only two ways: when both factors are positive or when both factors

are negative. As in example 1.3, we draw number lines for both of the individual

factors, indicating where each is positive, negative or zero and use these to draw a

number line representing the product. We show these in the margin. Notice that the third

number line indicates that the product is positive whenever x < −3 or x > 2.We write

this in interval notation as (−∞,−3) ∪ (2,∞). �
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y = x2 + x − 6
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No doubt, you will recall the following standard definition.

DEFINITION 1.1

The absolute value of a real number x is |x| =
 

x, if x ≥ 0.
−x, if x < 0

Make certain that you read Definition 1.1 correctly. If x is negative, then−x is positive.

This says that |x| ≥ 0 for all real numbers x . For instance, using the definition,

|− 4 | = −(−4) = 4.

Notice that for any real numbers a and b,

|a · b| = |a| · |b|.

However, |a + b|  = |a| + |b|,
in general. (To verify this, simply take a = 5 and b = −2 and compute both quantities.)

However, it is always true that

|a + b| ≤ |a| + |b|.

NOTES

For any two real numbers a and b,

|a − b| gives the distance between

a and b. (See Figure 0.7.)

This is referred to as the triangle inequality.

The interpretation of |a − b| as the distance between a and b (see the note in themargin)

is particularly useful for solving inequalities involving absolute values. Wherever possible,

we suggest that you use this interpretation to read what the inequality means, rather than

merely following a procedure to produce a solution.

a b

 a   b 

FIGURE 0.7

The distance between a and b
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EXAMPLE 1.5 Solving an Inequality Containing an Absolute Value

Solve the inequality

|x − 2|< 5. (1.3)

Solution Before you start trying to solve this, take a few moments to read what it

says. Since |x − 2| gives the distance from x to 2, (1.3) says that the distance from x to

2 must be less than 5. So, find all numbers x whose distance from 2 is less than 5. We

indicate the set of all numbers within a distance 5 of 2 in Figure 0.8. You can now read

the solution directly from the figure: −3 < x < 7 or in interval notation: (−3, 7). �

2   5    3 2   5   72

5 5

FIGURE 0.8

| x − 2 |< 5

Many inequalities involving absolute values can be solved simply by reading the in-

equality correctly, as in example 1.6.

EXAMPLE 1.6 Solving an Inequality with a Sum Inside an Absolute Value

Solve the inequality

|x + 4| ≤ 7. (1.4)

Solution To use our distance interpretation, we must first rewrite (1.4) as

|x − (−4)| ≤ 7.

This now says that the distance from x to −4 is less than or equal to 7. We illustrate the

solution in Figure 0.9, from which it follows that the solution is −11 ≤ x ≤ 3 or

[−11, 3]. �

 4   7    11  4   7   3 4

7 7

FIGURE 0.9

| x + 4 |≤ 7

(1,2)
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FIGURE 0.10

The Cartesian plane

Recall that for any real number r > 0, |x |< r is equivalent to the following inequality

not involving absolute values:
−r < x < r.

In example 1.7, we use this to revisit the inequality from example 1.5.

EXAMPLE 1.7 An Alternative Method for Solving Inequalities

Solve the inequality |x − 2|< 5.

Solution This is equivalent to the two-sided inequality

−5 < x − 2 < 5.

Adding 2 to each term, we get the solution

−3 < x < 7,

or in interval notation (−3, 7), as before. �

The Cartesian Plane

A powerful tool for exploring the relationships between numbers is the Cartesian plane.

We take two real numbers x and y and form them into the ordered pair (x, y). We visualize

the ordered pair (1, 2) as a point in two dimensions. The Cartesian plane consists of two

real number lines drawn at right angles. The horizontal line is called the x-axis and the

vertical line is called the y-axis. The point where the axes cross is called the origin, which

represents the ordered pair (0, 0). To represent the ordered pair (1, 2), start at the origin,

move 1 unit to the right and 2 units up and mark the point (1, 2), as in Figure 0.10.

In example 1.8, we analyze a small set of experimental data by plotting some points in

the Cartesian plane. This simple type of graph is sometimes called a scatter plot.
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EXAMPLE 1.8 Using a Graph Obtained from a Table of Data

Suppose that you drop an object from the top of a building and record how far the object

has fallen at different times, as shown in the following table.

Time (sec) 0 0.5 1.0 1.5 2.0

Distance (ft) 0 4 16 36 64

Plot the points in the Cartesian plane and discuss any patterns you notice. In

particular, use the graph to predict how far the object will have fallen in 2.5 seconds.

Solution Taking the first coordinate (x) to represent time and the second coordinate

(y) to represent distance, we plot the points (0, 0), (0.5, 4), (1, 16), (1.5, 36) and (2, 64),

as seen in Figure 0.11.

y

x

1.0 2.00.5 1.5
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Time

D
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ta
n
ce

FIGURE 0.11

Scatter plot of data
Notice that the points appear to be curving upward (like a parabola). To predict the

y-value corresponding to x = 2.5 (i.e., the distance fallen at time 2.5 seconds), you

would assume that this pattern would continue, so that the y-value would be much

higher than 64. But, how much higher is reasonable? It helps now to refer back to the

data. Notice that the change in height from x = 1.5 to x = 2 is 64 − 36 = 28 feet.

Since Figure 0.11 suggests that the curve is bending upward, the change in height

between successive points should be getting larger and larger. You might reasonably

predict that the height will change by more than 28. If you look carefully at the data,

you might notice a pattern. Observe that the distances given at 0.5-second intervals are

02, 22, 42, 62 and 82. A reasonable guess for the distance at time 2.5 seconds might then

be 102 = 100. Further, notice that this corresponds to a change of 36 from the distance

at x = 2.0 seconds. At this stage, this is only an educated guess and other guesses (98 or

102, for example) might be equally reasonable. �

We urge that you think carefully about example 1.8. You should be comfortable with

the interplay between the graph and the numerical data. This interplay will be a recurring

theme in our study of calculus.

The distance between two points in the Cartesian plane is a simple consequence of the

Pythagorean Theorem, as follows.

THEOREM 1.2

The distance between the points (x1, y1) and (x2, y2) in the Cartesian plane is given by

d{(x1, y1), (x2, y2)} =
 
(x2 − x1)2 + (y2 − y1)2 (1.5)

PROOF

We have oriented the points in Figure 0.12 so that (x2, y2) is above and to the right of

(x1, y1).

y

x
x2x1

y2

y1

 y2   y1 

 x2   x1 

Distance

(x1, y1)

(x2, y2)

FIGURE 0.12

Distance

Referring to the right triangle shown in Figure 0.12, notice that regardless of the

orientation of the two points, the length of the horizontal side of the triangle is |x2 − x1|
and the length of the vertical side of the triangle is |y2 − y1|. The distance between the two
points is the length of the hypotenuse of the triangle, given by the Pythagorean Theorem as 

(x2 − x1)2 + (y2 − y1)2.

With the distance formula (1.5) in hand, you can now do some significant analysis.



8 CHAPTER 0 .. Preliminaries 0-8

EXAMPLE 1.9 Using the Distance Formula

Find the distances between each pair of points (1, 2), (3, 4) and (2, 6). Use the distances

to determine if the points form the vertices of a right triangle.

y

x

42 6

4

6

2

FIGURE 0.13

A right triangle?

Solution The distance between (1, 2) and (3, 4) is

d{(1, 2), (3, 4)} =
 
(3 − 1)2 + (4 − 2)2 =

√
4 + 4 =

√
8.

The distance between (1, 2) and (2, 6) is

d{(1, 2), (2, 6)} =
 
(2 − 1)2 + (6 − 2)2 =

√
1 + 16 =

√
17.

Finally, the distance between (3, 4) and (2, 6) is

d{(3, 4), (2, 6)} =
 
(2 − 3)2 + (6 − 4)2 =

√
1 + 4 =

√
5.

From a plot of the points (see Figure 0.13), it is unclear whether a right angle is formed

at (3, 4). However, the sides of a right triangle must satisfy the Pythagorean Theorem.

This would require that √
8
 2 +  √

5
 2 =  √

17
 2
. This is incorrect!

Since this statement is not true, the triangle is not a right triangle. �

Again, we want to draw your attention to the interplay between graphical and algebraic

techniques. If you master the relationship between graphs and equations, your study of

calculus will be a more rewarding and enjoyable learning experience.

EXERCISES 0.1

WRITING EXERCISES

1. To understand Definition 1.1, you must believe that |x | = −x

for negative x’s. Using x = −3 as an example, explain inwords

why multiplying x by −1 produces the same result as taking

the absolute value of x .

2. A common shortcut used to write inequalities is −4 < x < 4

in place of “−4 < x and x < 4.” Unfortunately, many people

mistakenly write 4 < x < −4 in place of “4 < x or x < −4.”

Explain why the string 4 < x < −4 could never be true. (Hint:

What does this inequality string imply about the numbers on the

far left and far right?Here, youmustwrite “4 < x or x < −4.”)

3. Explain the result of Theorem 1.1 (ii) in your own words, as-

suming that all constants involved are positive.

4. Suppose a friend has dug holes for the corner posts of a rect-

angular deck. Explain how to use the Pythagorean Theorem to

determine whether or not the holes truly form a rectangle (90◦

angles).

In exercises 1–28, solve the inequality.

1. 3x + 2 < 11 2. 4x + 1 < −5

3. 2x − 3 < −7 4. 3x − 1 < 9

5. 4 − 3x < 6 6. 5 − 2x < 9

7. 4 ≤ x + 1 < 7 8. −1 < 2 − x < 3

9. −2 < 2 − 2x < 3 10. 0 < 3 − x < 1

11. x2 + 3x − 4 > 0 12. x2 + 4x + 3 < 0

13. x2 − x − 6 < 0 14. x2 + 1 > 0

15. 3x2 + 4 > 0 16. x2 + 3x + 10 > 0

17. |x − 3| < 4 18. |2x + 1| < 1

19. |3 − x | < 1 20. |3 + x | > 1

21. |2x + 1| > 2 22. |3x − 1| < 4

23.
x + 2

x − 2
> 0 24.

x − 4

x + 1
< 1

25.
x2 − x − 2

(x + 4)2
> 0 26.

3 − 2x

(x + 1)2
< 0

27.
−8x

(x + 1)3
< 0 28.

x − 2

(x + 2)3
> 0



0-9 SECTION 0.1 .. The Real Numbers and the Cartesian Plane 9

In exercises 29–34, find the distance between the pair of points.

29. (2, 1), (4, 4) 30. (2, 1), (−1, 4)

31. (−1,−2), (3,−2) 32. (1, 2), (3, 6)

33. (0, 2), (−2, 6) 34. (4, 1), (2, 1)

In exercises 35–38, determine if the set of points forms the ver-

tices of a right triangle.

35. (1, 1), (3, 4), (0, 6) 36. (0, 2), (4, 8), (−2, 12)

37. (−2, 3), (2, 9), (−4, 13) 38. (−2, 3), (0, 6), (−3, 8)

In exercises 39–42, the data represent populations at various

times. Plot the points, discuss any patterns that are evident and

predict the population at the next step.

39. (0, 1250), (1, 1800), (2, 2450), (3, 3200)

40. (0, 3160), (1, 3250), (2, 3360), (3, 3490)

41. (0, 4000), (1, 3990), (2, 3960), (3, 3910)

42. (0, 2100), (1, 2200), (2, 2100), (3, 1700)

43. As discussed in the text, a number is rational if and only if its

decimal representation terminates or repeats. Calculators and

computers perform their calculations using a finite number of

digits. Explainwhy such calculations can only produce rational

numbers.

44. In example 1.8, we discussed how the tendency of the data

points to “curve up” corresponds to larger increases in consec-

utive y-values. Explain why this is true.

45. The ancient Greeks analyzed music mathematically. They

found that if pipes of length L and L

2
are struck, they make

tones that blend together nicely. We say that these tones are

one octave apart. In general, nice harmonies are produced by

pipes (or strings) with rational ratios of lengths. For example,

pipes of length L and 2

3
L form a fifth (i.e., middle C and the G

above middle C). On a piano keyboard, 12 fifths are equal to

7 octaves. A glitch in piano tuning, known as the Pythagorean

comma, results from the fact that 12 fifths with total length

ratio
 
2

3

 12
do not equal 7 octaves with length ratio

 
1

2

 7
. Show

that the difference is about 1.3%.

46. For the 12 keys of a piano octave to have exactly the same

length ratios (see exercise 45), the ratio of consecutive lengths

should be a number x such that x12 = 2. Briefly explain why.

This means that x = 12
√
2. There are two problems with this

equal-tempered tuning. First, 12
√
2 is irrational. Explain why

it would be difficult to get the pipe or string exactly the right

length. In any case, musicians say that equal-tempered pianos

sound “dull.”

47. The use of squares in the Pythagorean Theorem has found

a surprising use in the analysis of baseball statistics. In Bill

James’ Historical Abstract, a rule is stated that a team’s

winning percentage P is approximately equal to
R2

R2 + G2
,

where R is the number of runs scored by the team and G

is the number of runs scored against the team. For exam-

ple, in 1996 the Texas Rangers scored 928 runs and gave

up 799 runs. The formula predicts a winning percentage of

9282

9282 + 7992
≈ 0.574. In fact, Texaswon 90 games and lost 72

for a winning percentage of
90

162
≈ 0.556. Fill out the follow-

ing table (data from the 1996 season). What are possible ex-

planations for teams that win more (or fewer) games than the

formula predicts?

Team R G P wins losses win %

Yankees 871 787 92 70

Braves 773 648 96 66

Phillies 650 790 67 95

Dodgers 703 652 90 72

Indians 952 769 99 62

EXPLORATORY EXERCISES

1. It can be very difficult to prove that a given number is irrational.

According to legend, the following proof that
√
2 is irrational

so upset the ancient Greek mathematicians that they drowned

a mathematician who revealed the result to the general public.

The proof is by contradiction; that is, we imagine that
√
2

is rational and then show that this cannot be true. If
√
2 were

rational, we would have that
√
2 = p

q
for some integers p and

q. Assume that
p

q
is in simplified form (i.e., any common fac-

tors have been divided out). Square the equation
√
2= p

q
to

get 2 = p2

q2
. Explain why this can only be true if p is an even

integer. Write p = 2r and substitute to get 2= 4r 2

q2
. Then,

rearrange this expression to get q2 = 2r 2. Explain why this

can only be true if q is an even integer. Something has gone

wrong: explain why p and q can’t both be even integers. Since

this can’t be true, we conclude that
√
2 is irrational.

2. In the text, we stated that a number is rational if and only if its

decimal representation repeats or terminates. In this exercise,

we prove that the decimal representation of any rational num-

ber repeats or terminates. To start with a concrete example,

use long division to show that 1

7
= 0.142857142857. Note that

when you get a remainder of 1, it’s all over: you started with

a 1 to divide into, so the sequence of digits must repeat. For

a general rational number
p

q
, there are q possible remainders

(0, 1, 2, . . . , q − 1). Explainwhywhen doing long division you

must eventually get a remainder you have had before. Explain

why the digits will then either terminate or start repeating.
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3. The existence of irrational numbers may seem like a minor

technical footnote to the rational numbers we normally use.

This is far from true. Imagine that a number is to be chosen

at random. Believe it or not, the number would almost cer-

tainly be an irrational number! To see why this would happen,

suppose you are choosing a number between 0 and 1 bywriting

down its decimal representation one digit at a time. Pick the

first digit, then the second digit (e.g., if you choose 4 and then

6, your number starts out 0.46 . . .) and so on. If you continue

choosing the digits randomly, what is the likelihood that you

will repeat a pattern forever? If you don’t, you have chosen an

irrational number!

0.2 LINES AND FUNCTIONS

Equations of Lines

The federal government conducts a nationwide census every 10 years to determine the popu-

lation. Population data for the last several decades are shown in the accompanying table.

Year U.S. Population

1960 179,323,175

1970 203,302,031

1980 226,542,203

1990 248,709,873

x y

0 179

10 203

20 227

30 249

Transformed data

One difficulty with analyzing these data is that the numbers are so large. This problem

is remedied by transforming the data. We can simplify the year data by defining x to be

the number of years since 1960. Then, 1960 corresponds to x = 0, 1970 corresponds to

x = 10 and so on. The population data can be simplified by rounding the numbers to the

nearest million. The transformed data are shown in the accompanying table and a scatter

plot of these data points is shown in Figure 0.14.

Most people would say that the points in Figure 0.14 appear to form a straight line.

(Use a ruler and see if you agree.) To determine whether the points are, in fact, on the same

line (such points are called colinear), we might consider the population growth in each of

the indicated decades. From 1960 to 1970, the growth was 24 million. (That is, to move

from the first point to the second, you increase x by 10 and increase y by 24.) Likewise,

from 1970 to 1980, the growth was 24 million. However, from 1980 to 1990, the growth

was only 22 million. Since the rate of growth is not constant, the data points do not fall on

a line. Notice that to stay on the same line, y would have had to increase by 24 again. The

preceding argument involves the familiar concept of slope.
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FIGURE 0.14

Population data

DEFINITION 2.1

For x1  = x2, the slope of the straight line through the points (x1, y1) and (x2, y2) is

the number

m = y2 − y1

x2 − x1
. (2.1)

When x1 = x2, the line through (x1, y1) and (x2, y2) is vertical and the slope is

undefined.

We often describe slope as “the change in y divided by the change in x,” written
 y

 x
,

or more simply as
Rise

Run
. (See Figure 0.15a.)

The slope of a straight line is the same no matter which two points on the line you

select. Referring to Figure 0.15b (where the line has positive slope), notice that for any

four points A, B, D and E on the line, the two right triangles  ABC and  DEF are

similar. Recall that for similar triangles, the ratios of corresponding sides must be the same.
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FIGURE 0.15a

Slope

FIGURE 0.15b

Similar triangles and slope

In this case, this says that

 y

 x
=  y 

 x  

and so, the slope is the samenomatterwhich twopoints on the line are selected. Furthermore,

a line is the only curve with constant slope. Notice that a line is horizontal if and only if

its slope is zero.

EXAMPLE 2.1 Finding the Slope of a Line

Find the slope of the line through the points (4, 3) and (2, 5).

Solution From (2.1), we get

m = y2 − y1

x2 − x1
= 5 − 3

2 − 4
= 2

−2
= −1.

�

EXAMPLE 2.2 Using Slope to Determine if Points Are Colinear

Use slope to determine whether the points (1, 2), (3, 10) and (4, 14) are colinear.

Solution First, notice that the slope of the line joining (1, 2) and (3, 10) is

m1 = y2 − y1

x2 − x1
= 10 − 2

3 − 1
= 8

2
= 4.

Similarly, the slope through the line joining (3, 10) and (4, 14) is

m2 = y2 − y1

x2 − x1
= 14 − 10

4 − 3
= 4.

Since the slopes are the same, the points must be colinear. �

Recall that if you know the slope and a point throughwhich the linemust pass, you have

enough information to graph the line. The easiest way to graph a line is to plot two points

and then draw the line through them. In this case, you need only to find a second point.
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EXAMPLE 2.3 Graphing a Line

If a line passes through the point (2, 1) with slope 2
3
, find a second point on the line and

then graph the line.

Solution Since slope is given by m = y2 − y1

x2 − x1
, we take m = 2

3
, y1 = 1 and x1 = 2,

to obtain

2

3
= y2 − 1

x2 − 2
.

You are free to choose the x-coordinate of the second point. For instance, to find the

point at x2 = 5, substitute this in and solve. From

2

3
= y2 − 1

5 − 2
= y2 − 1

3
,

we get 2 = y2 − 1 or y2 = 3.A second point is then (5, 3). The graph of the line is shown

in Figure 0.16a. An alternative method for finding a second point is to use the slope

m = 2

3
=  y

 x
.

The slope of 2
3
says that if we move three units to the right, we must move two units up

to stay on the line, as illustrated in Figure 0.16b. �
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FIGURE 0.16a

Graph of straight line
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FIGURE 0.16b

Using slope to find a second point

In example 2.3, the choice of x = 5 was entirely arbitrary; you can choose any

x-value you want to find a second point. Further, since x can be any real number, you

can leave x as a variable and write out an equation satisfied by any point (x, y) on the line.

In the general case of the line through the point (x0, y0)with slopem,wehave from (2.1) that

m = y − y0

x − x0
. (2.2)

Multiplying both sides of (2.2) by (x − x0), we get

y − y0 = m(x − x0)

or

POINT-SLOPE FORM OF A LINE

y = m(x − x0) + y0. (2.3)

Equation (2.3) is called the point-slope form of the line.

EXAMPLE 2.4 Finding the Equation of a Line Given Two Points

Find an equation of the line through the points (3, 1) and (4, −1) and graph the line.

Solution From (2.1), the slope is m = −1 − 1

4 − 3
= −2

1
= −2. Using (2.3) with slope

m = −2, x-coordinate x0 = 3 and y-coordinate y0 = 1, we get the equation of the line:

y = −2(x − 3) + 1. (2.4)

To graph the line, plot the points (3, 1) and (4,−1), and you can easily draw the line

seen in Figure 0.17. �
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4
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6

7

1 2 3 4

FIGURE 0.17

y = −2(x − 3) + 1
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In example 2.4, you may be tempted to simplify the expression for y given in (2.4).

As it turns out, the point-slope form of the equation is often the most convenient to work

with. So, we will typically not ask you to rewrite this expression in other forms. At times,

a form of the equation called the slope-intercept form is more convenient. This has the

form

y = mx + b,

where m is the slope and b is the y-intercept (i.e., the place where the graph crosses the

y-axis). In example 2.4, you simply multiply out (2.4) to get y = −2x + 6 + 1 or

y = −2x + 7.

As you can see from Figure 0.17, the graph crosses the y-axis at y = 7.

Theorem 2.1 presents a familiar result on parallel and perpendicular lines.

y

x

 10

 20

10

20

42 2 4

FIGURE 0.18

Parallel lines

THEOREM 2.1

Two (nonvertical) lines are parallel if they have the same slope. Further, any two

vertical lines are parallel. Two (nonvertical) lines of slope m1 and m2 are

perpendicular whenever the product of their slopes is −1 (i.e., m1 · m2 = −1). Also,

any vertical line and any horizontal line are perpendicular.

Since we can read the slope from the equation of a line, it’s a simple matter to de-

termine when two lines are parallel or perpendicular. We illustrate this in examples 2.5

and 2.6.

EXAMPLE 2.5 Finding the Equation of a Parallel Line

Find an equation of the line parallel to y = 3x − 2 and through the point (−1, 3).

Solution It’s easy to read the slope of the line from the equation: m = 3. The

equation of the parallel line is then

y = 3[x − (−1)] + 3

or simply y = 3(x + 1) + 3.We show a graph of both lines in Figure 0.18. �

EXAMPLE 2.6 Finding the Equation of a Perpendicular Line

Find an equation of the line perpendicular to y = −2x + 4 and intersecting the line at

the point (1, 2).

Solution The slope of y = −2x + 4 is −2. The slope of the perpendicular line is

then −1/(−2) = 1
2
. Since the line must pass through the point (1, 2), the equation of

the perpendicular line is

y = 1

2
(x − 1) + 2.

We show a graph of the two lines in Figure 0.19. �

y

x

 4

 2

2

4

2 4 2

FIGURE 0.19

Perpendicular lines

We now return to this section’s introductory example and use the equation of a line to

estimate the population in the year 2000.
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EXAMPLE 2.7 Using a Line to Estimate Population

Given the population data for the census years 1960, 1970, 1980 and 1990, estimate the

population for the year 2000.

Solution We began this section by showing that the points in the corresponding table

are not colinear. Nonetheless, they are nearly colinear. So, why not use the straight line

connecting the last two points (20, 227) and (30, 249) (corresponding to the populations

in the years 1980 and 1990) to estimate the population in 2000? (This is a simple

example of a more general procedure called extrapolation.) The slope of the line

joining the two data points is

m = 249 − 227

30 − 20
= 22

10
= 11

5
.

The equation of the line is then

y = 11

5
(x − 30) + 249.

y

x
5040302010

100

200

300

FIGURE 0.20

Population

See Figure 0.20 for a graph of the line. If we follow this line to the point corresponding

to x = 40 (the year 2000), we have the estimated population

11

5
(40 − 30) + 249 = 271.

That is, the estimated population is 271 million people. The actual census figure for

2000 was 281 million, which indicates that the U.S. population has grown at a rate that

is faster than linear. �

f

x

BA

y

Functions

For any two subsets A and B of the real line, we make the following familiar definition.

DEFINITION 2.2

A function f is a rule that assigns exactly one element y in a set B to each element x

in a set A. In this case, we write y = f (x).

We call the set A the domain of f. The set of all values f (x) in B is called the

range of f . That is, the range of f is { f (x) | x ∈ A}. Unless explicitly stated

otherwise, the domain of a function f is the largest set of real numbers for which the

function is defined. We refer to x as the independent variable and to y as the

dependent variable.
REMARK 2.1

Functions can be defined by

simple formulas, such as

f (x) = 3x + 2, but in general,

any correspondence meeting the

requirement of matching

exactly one y to each x defines

a function.

By the graph of a function f, we mean the graph of the equation y = f (x). That

is, the graph consists of all points (x, y), where x is in the domain of f and where

y = f (x).

Notice that not every curve is the graph of a function, since for a function, only one

y-value corresponds to a given value of x . You can graphically determine whether a curve

is the graph of a function by using the vertical line test: if any vertical line intersects the

graph in more than one point, the curve is not the graph of a function.
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EXAMPLE 2.8 Using the Vertical Line Test

Determine which of the curves in Figures 0.21a and 0.21b correspond to functions.

y

x
1 1

y

x
0.5 21

 1

1

FIGURE 0.21a FIGURE 0.21b

Solution Notice that the circle in Figure 0.21a is not the graph of a function, since a

vertical line at x = 0.5 intersects the circle twice. (See Figure 0.22a.) The graph in

Figure 0.21b is the graph of a function, even though it swings up and down repeatedly.

Although horizontal lines intersect the graph repeatedly, vertical lines, such as the one

at x = 1.2, intersect only once. (See Figure 0.22b.) �

You are already familiar with a number of different types of functions and we will

only briefly review these here and in section 0.4. The functions that you are probably most

familiar with are polynomials. These are the simplest functions to work with because they

are defined entirely in terms of arithmetic.

y

x
10.5 1

FIGURE 0.22a

Curve fails vertical line test

y

x
0.5 21

 1

1

FIGURE 0.22b

Curve passes vertical line test

DEFINITION 2.3

A polynomial is any function that can be written in the form

f (x) = anxn + an−1x
n−1 + · · · + a1x + a0,

where a0, a1, a2, . . . , an are real numbers (the coefficients of the polynomial) with

an  = 0 and n ≥ 0 is an integer (the degree of the polynomial).

Note that the domain of every polynomial function is the entire real line. Further,

recognize that the graph of the linear (degree 1) polynomial f (x) = ax + b is a straight line.

EXAMPLE 2.9 Sample Polynomials

The following are all examples of polynomials:

f (x) = 2 (polynomial of degree 0 or constant),

f (x) = 3x + 2 (polynomial of degree 1 or linear polynomial),

f (x) = 5x2 − 2x + 1 (polynomial of degree 2 or quadratic polynomial),

f (x) = x3 − 2x + 1 (polynomial of degree 3 or cubic polynomial),

f (x) = −6x4 + 12x2 − 3x + 13 (polynomial of degree 4 or quartic polynomial)
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and

f (x) = 2x5 + 6x4 − 8x2 + x − 3 (polynomial of degree 5 or quintic polynomial).

We show graphs of these six functions in Figures 0.23a–0.23f.
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FIGURE 0.23a

f (x) = 2

FIGURE 0.23b

f (x) = 3x + 2

FIGURE 0.23c

f (x) = 5x2 − 2x + 1
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FIGURE 0.23d

f (x) = x3 − 2x + 1

FIGURE 0.23e

f (x) = −6x4 + 12x2 − 3x + 13

FIGURE 0.23f

f (x) = 2x5 + 6x4 − 8x2 + x − 3

�

DEFINITION 2.4

Any function that can be written in the form

f (x) = p(x)

q(x)
,

where p and q are polynomials, is called a rational function.

Notice that since p(x) and q(x) are polynomials, they are both defined for all x and so,

the rational function f (x) = p(x)

q(x)
is defined for all x for which q(x)  = 0.
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EXAMPLE 2.10 A Sample Rational Function

Find the domain of the function

f (x) = x2 + 7x − 11

x2 − 4
.

Solution Here, f is a rational function. We show a graph in Figure 0.24. Its domain

consists of those values of x for which the denominator is nonzero. Notice that

x2 − 4 = (x − 2)(x + 2)

and so, the denominator is zero if and only if x = ±2. This says that the domain of f is

{x ∈ R | x  = ±2} = (−∞,−2) ∪ (−2, 2) ∪ (2,∞). �

y

x
1 3 1 3

 10

 5

5

10

FIGURE 0.24

f (x) = x2 + 7x − 11

x2 − 4 The square root function is defined in the usual way. When we write y = √
x, we

mean that y is that number for which y2 = x and y ≥ 0. In particular,
√
4 = 2. Be careful

not to write erroneous statements such as
√
4 = ±2. In particular, be careful to write

√
x2 = |x |.

Since
√

x2 is asking for the nonnegative number whose square is x2, we are looking for

|x | and not x .We can say √
x2 = x, only for x ≥ 0.

Similarly, for any integer n ≥ 2, y = n
√

x whenever yn = x , where for n even, x ≥ 0 and

y ≥ 0.

EXAMPLE 2.11 Finding the Domain of a Function Involving
a Square Root or a Cube Root

Find the domains of f (x) =
√

x2 − 4 and g(x) = 3
√

x2 − 4.

Solution Since even roots are defined only for nonnegative values, f (x) is defined

only for x2 − 4 ≥ 0. Notice that this is equivalent to having x2 ≥ 4, which occurs when

x ≥ 2 or x ≤ −2. The domain of f is then (−∞,−2] ∪ [2,∞). On the other hand, odd

roots are defined for both positive and negative values. Consequently, the domain of g is

the entire real line, (−∞,∞). �

Weoften find it useful to label intercepts and other significant points on a graph. Finding

these points typically involves solving equations. A solution of the equation f (x) = 0 is

called a zero of the function f or a root of the equation f (x) = 0. Notice that a zero of the

function f corresponds to an x-intercept of the graph of y = f (x).

EXAMPLE 2.12 Finding Zeros by Factoring

Find all x- and y-intercepts of f (x) = x2 − 4x + 3.

Solution To find the y-intercept, set x = 0 to obtain

y = 0 − 0 + 3 = 3.

To find the x-intercepts, solve the equation f (x) = 0. In this case, we can factor to get

f (x) = x2 − 4x + 3 = (x − 1)(x − 3) = 0.

You can now read off the zeros: x = 1 and x = 3, as indicated in Figure 0.25. �
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FIGURE 0.25

y = x2 − 4x + 3
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Unfortunately, factoring is not always so easy. Of course, for the quadratic equation

ax2 + bx + c = 0

(for a  = 0), the solution(s) are given by the familiar quadratic formula:

x = −b ±
√

b2 − 4ac

2a
.

EXAMPLE 2.13 Finding Zeros Using the Quadratic Formula

Find the zeros of f (x) = x2 − 5x − 12.

Solution You probably won’t have much luck trying to factor this. However, from

the quadratic formula, we have

x = −(−5) ±
 
(−5)2 − 4 · 1 · (−12)

2 · 1 = 5 ± √
25 + 48

2
= 5 ±

√
73

2
.

So, the two solutions are given by x = 5
2

+
√
73
2

≈ 6.772 and x = 5
2

−
√
73
2

≈ −1.772.

(No wonder you couldn’t factor the polynomial!) �

Finding zeros of polynomials of degree higher than 2 and other functions is usually

trickier and is sometimes impossible. At the least, you can always find an approximation of

any zero(s) by using a graph to zoom in closer to the point(s) where the graph crosses the

x-axis, as we’ll illustrate shortly. A more basic question, though, is to determine how many

zeros a given function has. In general, there is no way to answer this question without the

use of calculus. For the case of polynomials, however, Theorem 2.2 (a consequence of the

Fundamental Theorem of Algebra) provides a clue.

THEOREM 2.2

A polynomial of degree n has at most n distinct zeros.

Notice that Theorem 2.2 does not say how many zeros a given polynomial has, but

rather, that the maximum number of distinct (i.e., different) zeros is the same as the degree.

A polynomial of degree n may have anywhere from 0 to n distinct real zeros. However,

polynomials of odd degree must have at least one real zero. For instance, for the case of a

cubic polynomial, we have one of the three possibilities illustrated in Figures 0.26a, 0.26b

and 0.26c.

REMARK 2.2

Polynomials may also have

complex zeros. For instance,

f (x) = x2 + 1 has only the

complex zeros x = ±i, where i

is the imaginary number defined

by i = √−1. In these three figures, we show the graphs of cubic polynomials with 1, 2 and 3 distinct,

real zeros, respectively. These are the graphs of the functions

f (x) = x3 − 2x2 + 3 = (x + 1)(x2 − 3x + 3),

g(x) = x3 − x2 − x + 1 = (x + 1)(x − 1)2

and h(x) = x3 − 3x2 − x + 3 = (x + 1)(x − 1)(x − 3),

respectively. Note that you can see from the factored form where the zeros are (and how

many there are).
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y

x
x1

y

x
x1 x2

y

x
x1 x2 x3

FIGURE 0.26a

One zero

FIGURE 0.26b

Two zeros

FIGURE 0.26c

Three zeros

Theorem 2.3 provides an important connection between factors and zeros of polyno-

mials.

THEOREM 2.3 (Factor Theorem)

For any polynomial f, f (a) = 0 if and only if (x − a) is a factor of f (x).
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x
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FIGURE 0.27a

y = x3 − x2 − 2x + 2

 1.41  1.39

 0.2

0.2

x

FIGURE 0.27b

Zoomed in on zero near

x = −1.4

1.40 1.42

 0.02

 0.04

0.02

x

FIGURE 0.27c

Zoomed in on zero near

x = 1.4

EXAMPLE 2.14 Finding the Zeros of a Cubic Polynomial

Find the zeros of f (x) = x3 − x2 − 2x + 2.

Solution By calculating f (1), you can see that one zero of this function is x = 1, but

how many other zeros are there? A graph of the function (see Figure 0.27a) shows that

there are two other zeros of f , one near x = −1.5 and one near x = 1.5. You can find

these zeros more precisely by using your graphing calculator or computer algebra

system to zoom in on the locations of these zeros (as shown in Figures 0.27b and 0.27c).

From these zoomed graphs it is clear that the two remaining zeros of f are near

x = 1.41 and x = −1.41. You can make these estimates more precise by zooming in

even more closely. Most graphing calculators and computer algebra systems can also

find approximate zeros, using a built-in “solve” program. In Chapter 3, we present a

versatile method (called Newton’s method) for obtaining accurate approximations to

zeros. The only way to find the exact solutions is to factor the expression (using either

long division or synthetic division). Here, we have

f (x) = x3 − x2 − 2x + 2 = (x − 1)(x2 − 2) = (x − 1)(x −
√
2)(x +

√
2),

from which you can see that the zeros are x = 1, x =
√
2 and x = −

√
2. �

Recall that to find the points of intersection of two curves defined by y = f (x) and

y = g(x), we set f (x) = g(x) to find the x-coordinates of any points of intersection.

EXAMPLE 2.15 Finding the Intersections of a Line and a Parabola

Find the points of intersection of the parabola y = x2 − x − 5 and the line y = x + 3.

Solution A sketch of the two curves (see Figure 0.28 on the following page) shows

that there are two intersections, one near x = −2 and the other near x = 4. To determine
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these precisely, we set the two functions equal and solve for x:

x2 − x − 5 = x + 3.

Subtracting (x + 3) from both sides leaves us with

0 = x2 − 2x − 8 = (x − 4)(x + 2).

This says that the solutions are exactly x = −2 and x = 4.We compute the

corresponding y-values from the equation of the line y = x + 3 (or the equation of

the parabola). The points of intersection are then (−2, 1) and (4, 7). Notice that these

are consistent with the intersections seen in Figure 0.28. �
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FIGURE 0.28

y = x + 3 and y = x2 − x − 5

Unfortunately, you won’t always be able to solve equations exactly, as we did in

examples 2.12–2.15. We explore some options for dealing with more difficult equations in

section 0.3.

EXERCISES 0.2

WRITING EXERCISES

1. If the slope of the line passing through points A and B equals

the slope of the line passing through points B and C, explain

why the points A, B and C are colinear.

2. If a graph fails the vertical line test, it is not the graph of a

function. Explain this result in terms of the definition of a

function.

3. You should not automatically write the equation of a line in

slope-intercept form. Compare the following forms of the same

line: y = 2.4(x − 1.8) + 0.4 and y = 2.4x − 3.92. Given

x = 1.8, which equation would you rather use to compute y?

How about if you are given x = 0? For x = 8, is there any ad-

vantage to one equation over the other? Can you quickly read

off the slope from either equation? Explain why neither form

of the equation is “better.”

4. Explain in terms of graphs (see Figures 0.26a–0.26c) why a

cubic polynomial must have at least one real zero.

In exercises 1–4, determine if the points are colinear.

1. (2, 1), (0, 2), (4, 0) 2. (3, 1), (4, 4), (5, 8)

3. (4, 1), (3, 2), (1, 3) 4. (1, 2), (2, 5), (4, 8)

In exercises 5–10, find the slope of the line through the given

points.

5. (1, 2), (3, 6) 6. (1, 2), (3, 3)

7. (3,−6), (1,−1) 8. (1,−2), (−1,−3)

9. (0.3,−1.4), (−1.1,−0.4) 10. (1.2, 2.1), (3.1, 2.4)

In exercises 11–16, find a second point on the line with slope

m and point P, graph the line and find an equation of the

line.

11. m = 2, P = (1, 3)

12. m = −2, P = (1, 4)

13. m = 0, P = (−1, 1)

14. m = 1

2
, P = (2, 1)

15. m = 1.2, P = (2.3, 1.1)

16. m = − 1

4
, P = (−2, 1)

In exercises 17–22, determine if the lines are parallel, perpen-

dicular, or neither.

17. y = 3(x − 1) + 2 and y = 3(x + 4) − 1

18. y = 2(x − 3) + 1 and y = 4(x − 3) + 1

19. y = −2(x + 1) − 1 and y = 1

2
(x − 2) + 3

20. y = 2x − 1 and y = −2x + 2

21. y = 3x + 1 and y = − 1

3
x + 2

22. x + 2y = 1 and 2x + 4y = 3

In exercises 23–26, find an equation of a line through the given

point and (a) parallel to and (b) perpendicular to the given line.

23. y = 2(x + 1) − 2 at (2, 1) 24. y = 3(x − 2) + 1 at (0, 3)

25. y = 2x + 1 at (3, 1) 26. y = 1 at (0,−1)
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In exercises 27–30, find an equation of the line through the given

points and compute the y-coordinate of the point on the line cor-

responding to x  4.

27. y

x
2 3 4 51

1

2

3

4

5

28. y

x
21 43 5 6

2

3

1

4

5

6

29. y

x
1.0 2.00.5 1.5

2

3

1

4

30. y

x
1 2  1

1.0

3.0

2.0

In exercises 31–34, use the vertical line test to determinewhether

the curve is the graph of a function.

31. y

x
2 3 2 3
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5
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32. y

x
42

 2 4

 10

 5

5

10

33. y

x
321 1 2 3

2

4

6

34. y

x
21.510.5

0.5

1
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In exercises 35–40, identify the given function as polynomial,

rational, both or neither.

35. f (x) = x3 − 4x + 1 36. f (x) = 3 − 2x + x4

37. f (x) = x2 + 2x − 1

x + 1
38. f (x) = x3 + 4x − 1

x4 − 1

39. f (x) =
√

x2 + 1 40. f (x) = 2x − x2/3 − 6

In exercises 41–46, find the domain of the function.

41. f (x) = √
x + 2 42. f (x) = √

2x + 1

43. f (x) = 3
√

x − 1 44. f (x) =
√

x2 − 9

45. f (x) = 4

x2 − 1
46. f (x) = 4x

x2 + 2x − 6

In exercises 47–50, find the indicated function values.

47. f (x) = x2 − x − 1; f (0), f (2), f (−3), f (1/2)

48. f (x) = x + 1

x − 1
; f (0), f (2), f (−2), f (1/2)

49. f (x) = √
x + 1; f (0), f (3), f (−1), f (1/2)

50. f (x) = 3

x
; f (1), f (10), f (100), f (1/3)

In exercises 51–54, a brief description is given of a physi-

cal situation. For the indicated variable, state a reasonable

domain.

51. A parking deck is to be built; x = width of deck (in feet).

52. A parking deck is to be built on a 200 -by-200 lot; x = width

of deck (in feet).

53. A new candy bar is to be sold; x = number of candy bars sold

in the first month.

54. A new candy bar is to be sold; x = cost of candy bar (in cents).

In exercises 55–58, discuss whether you think y would be a func-

tion of x.

55. y = grade you get on an exam, x = number of hours you study

56. y = probability of getting lung cancer, x = number of

cigarettes smoked per day

57. y = a person’s weight, x = number of minutes exercising

per day

58. y = speed at which an object falls, x = weight of object

59. Figure A shows the speed of a bicyclist as a function of time.

For the portions of this graph that are flat, what is happening

to the bicyclist’s speed? What is happening to the bicyclist’s

speed when the graph goes up? down? Identify the portions

of the graph that correspond to the bicyclist going uphill;

downhill.

Speed

Time

FIGURE A

Bicycle speed

60. Figure B shows the population of a small country as a function

of time.During the time period shown, the country experienced

two influxes of immigrants, a war and a plague. Identify these

important events.

Population

Time

FIGURE B

Population

In exercises 61–66, find all intercepts of the graph of y  f (x).

61. y = x2 − 2x − 8 62. y = x2 + 4x + 4

63. y = x3 − 8 64. y = x3 − 3x2 + 3x − 1

65. y = x2 − 4

x + 1
66. y = 2x − 1

x2 − 4

In exercises 67–74, factor and/or use the quadratic formula to

find all zeros of the given function.

67. f (x) = x2 − 5x + 6 68. f (x) = x2 + x − 12

69. f (x) = x2 − 4x + 2 70. f (x) = 2x2 + 4x − 1

71. f (x) = x3 − 3x2 + 2x 72. f (x) = x3 − 2x2 − x + 2

73. f (x) = x6 + x3 − 2 74. f (x) = x3 + x2 − 4x − 4

75. The boiling point of water (in degrees Fahrenheit) at ele-

vation h (in thousands of feet above sea level) is given by

B(h) = −1.8h + 212. Find h such that water boils at 98.6◦.
Why would this altitude be dangerous to humans?
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76. The spin rate of a golf ball hit with a 9 iron has been measured

at 9100 rpm for a 120-compression ball and at 10,000 rpm

for a 60-compression ball. Most golfers use 90-compression

balls. If the spin rate is a linear function of compression, find

the spin rate for a 90-compression ball. Professional golfers

often use 100-compression balls. Estimate the spin rate of a

100-compression ball.

77. The chirping rate of a cricket depends on the temperature. A

species of tree cricket chirps 160 times per minute at 79◦F and

100 times per minute at 64◦F. Find a linear function relating

temperature to chirping rate.

78. When describing how to measure temperature by counting

cricket chirps, most guides suggest that you count the number

of chirps in a 15-second time period. Use exercise 77 to explain

why this is a convenient period of time.

79. A person has played a computer game many times. The statis-

tics show that she has won 415 times and lost 120 times, and

the winning percentage is listed as 78%. How many times in a

row must she win to raise the reported winning percentage to

80%?

EXPLORATORY EXERCISES

1. Suppose you have a machine that will proportionally enlarge a

photograph. For example, it could enlarge a 4 × 6 photograph

to 8 × 12 by doubling the width and height. You could make

an 8 × 10 picture by cropping 1 inch off each side. Explain

how you would enlarge a 3 1

2
× 5 picture to an 8 × 10.A friend

returns from Scotland with a 3 1

2
× 5 picture showing the Loch

Nessmonster in the outer 1

4

  
on the right. If you use your proce-

dure tomake an8×10 enlargement, doesNessiemake the cut?

2. Solve the equation | x − 2 | + | x − 3 | = 1. (Hint: It’s

an unusual solution, in that it’s more than just

a couple of numbers.) Then, solve the equation 
x + 3 − 4

√
x − 1 +

 
x + 8 − 6

√
x − 1 = 1. (Hint: If you

make the correct substitution, you can use your solution to the

previous equation.)

0.3 GRAPHING CALCULATORS AND COMPUTER

ALGEBRA SYSTEMS

The relationships between functions and their graphs are central topics in calculus. Graphing

calculators and user-friendly computer software allow you to explore these relationships for

a much wider variety of functions than you could with pencil and paper alone. This section

presents a general framework for using technology to explore the graphs of functions.

Recall that the graphs of linear functions are straight lines and the graphs of quadratic

polynomials are parabolas. One of the goals of this section is for you to become more

familiar with the graphs of other functions. The best way to become familiar is through

experience, by working example after example.

EXAMPLE 3.1 Generating a Calculator Graph

Use your calculator or computer to sketch a graph of f (x) = 3x2 − 1.

y

x
42 4  2

20

40

60

FIGURE 0.29a

y = 3x2 − 1

y

x
21 1 2

4

8

FIGURE 0.29b

y = 3x2 − 1

Solution You should get an initial graph that looks something like that in

Figure 0.29a. This is simply a parabola opening upward. A graph is often used to search

for important points, such as x-intercepts, y-intercepts or peaks and troughs. In this

case, we could see these points better if we zoom in, that is, display a smaller range of x-

and y-values than the technology has initially chosen for us. The graph in Figure 0.29b

shows x-values from x = −2 to x = 2 and y-values from y = −2 to y = 10.

You can see more clearly in Figure 0.29b that the parabola bottoms out roughly at

the point (0,−1) and crosses the x-axis at approximately x = −0.5 and x = 0.5. You

can make this more precise by doing some algebra. Recall that an x-intercept is a point

where y = 0 or f (x) = 0. Solving 3x2 − 1 = 0 gives 3x2 = 1 or x2 = 1
3
, so that

x = ±
 

1
3

≈ ±0.57735. �
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Notice that in example 3.1, the graph suggested approximate values for the two

x-intercepts, but we needed the algebra to find the values exactly. This interplay between

graphing and equation solving is common.

Before investigating other graphs, we should say a few words about what a computer-

or calculator-generated graph really is. Although we call them graphs, what the computer

actually does is light up some tiny screen elements called pixels. If the pixels are small

enough, the image appears to be a continuous curve or graph.

By graphing window, we mean the rectangle defined by the range of x- and y-values

displayed. The graphing window can dramatically affect the look of a graph. For example,

suppose the x’s run from x = −2 to x = 2. If the computer or calculator screen is wide

enough for 400 columns of pixels from left to right, then points will be displayed for

x = −2, x = −1.99, x = −1.98, . . . . If there is an interesting feature of this function

located between x = −1.99 and x = −1.98, you will not see it unless you zoom in some.

In this case, zooming in would reduce the difference between adjacent x’s. Similarly, sup-

pose that the y’s run from y = 0 to y = 3 and that there are 600 rows of pixels from top to

bottom. Then, there will be pixels corresponding to y = 0, y = 0.005, y = 0.01, . . . . Now,

suppose that f (−2) = 0.0049 and f (−1.99) = 0.0051. Before points are plotted, function

values are rounded to the nearest y-value, in this case 0.005. You won’t be able to see any

difference in the y-values of these points. If the actual difference is important, you will need

to zoom in some to see it.

REMARK 3.1

Most calculators and computer drawing packages use one of the following two

schemes for defining the graphing window for a given function.

r Fixed graphing window: Most calculators follow this method. Graphs are plotted

in a preselected range of x- and y-values, unless you specify otherwise. For

example, the Texas Instruments graphing calculators’ default graphing window

plots points in the rectangle defined by −10 ≤ x ≤ 10 and −10 ≤ y ≤ 10.
r Automatic graphing window: Most computer drawing packages and some

calculators use this method. Graphs are plotted for a preselected range of x-values

and the computer calculates the range of y-values so that all of the calculated points

will fit in the window.

Get to know how your calculator or computer software operates and use it routinely

as you progress through this course. You should always be able to reproduce the

computer-generated graphs used in this text by adjusting your graphing window

appropriately.

Graphs are drawn to provide visual displays of the significant features of a function.

What qualifies as significant will vary from problem to problem, but often the x- and

y-intercepts and points known as extrema are of interest. The function value f (M) is

called a local maximum of the function f if f (M) ≥ f (x) for all x’s “nearby” x = M.
REMARK 3.2

To be precise, f (M) is a local

maximum of f if there exist

numbers a and b with

a < M < b such that

f (M) ≥ f (x) for all x

such that a < x < b.

Similarly, the function value f (m) is a localminimumof the function f if f (m) ≤ f (x)

for all x’s “nearby” x = m. A local extremum is a function value that is either a local

maximum or local minimum. Whenever possible, you should produce graphs that show all

intercepts and extrema.

EXAMPLE 3.2 Sketching a Graph

Sketch a graph of f (x) = x3 + 4x2 − 5x − 1 showing all intercepts and extrema.
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Solution Depending on your calculator or computer software, you may initially get a

graph that looks like one of those in Figure 0.30a or 0.30b.
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FIGURE 0.30a

y = x3 + 4x2 − 5x − 1

FIGURE 0.30b

y = x3 + 4x2 − 5x − 1

Neither graph is completely satisfactory, although both should give you the idea

of a graph that (reading left to right) rises to a local maximum near x = −3, drops to

a local minimum near x = 1 and then rises again. To get a better graph, notice the scales

on the x- and y-axes. The graphing window for Figure 0.30a is the rectangle defined by

−5 ≤ x ≤ 5 and−6 ≤ y ≤ 203. The graphing window for Figure 0.30b is defined by the

rectangle −10 ≤ x ≤ 10 and −10 ≤ y ≤ 10. From either graph, it appears that we need

to show y-values larger than 10, but not nearly as large as 203, to see the local maximum.

Since all of the significant features appear to lie between x = −6 and x = 6, one choice

for a better window is −5 ≤ x ≤ 5 and −6 ≤ y ≤ 30, as seen in Figure 0.31. There, you

can clearly see the three x-intercepts, the local maximum and the local minimum. �
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FIGURE 0.31

y = x3 + 4x2 − 5x − 1
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FIGURE 0.32a

Line, a1 < 0

y

x

y   a1x   a0

FIGURE 0.32b

Line, a1 > 0

The graph in example 3.2 was produced by a process of trial and error with thoughtful

corrections.You are unlikely to get a perfect picture on the first try.However, you can enlarge

the graphingwindow (i.e., zoom out) if you need to seemore, or shrink the graphingwindow

(i.e., zoom in) if the details are hard to see. You should get comfortable enough with your

technology that this revision process is routine (and even fun!).

In the exercises, you will be asked to graph a variety of functions and discuss the

shapes of the graphs of polynomials of different degrees. Having some knowledge of the

general shapes will help you decide whether you have found an acceptable graph. To get you

started, we now summarize the different shapes of linear, quadratic and cubic polynomials.

Of course, the graphs of linear functions [ f (x) = a1x + a0] are simply straight lines of

slope a1. Two possibilities are shown in Figures 0.32a and 0.32b.

The graphs of quadratic polynomials [ f (x) = a2x
2 + a1x + a0; a2  = 0] are parabolas.

The parabola opens upward if a2 > 0 and opens downward if a2 < 0. We show typical

parabolas in Figures 0.33a and 0.33b.
y

x

y   a2x2   a1x   a0

y

x

y   a2x2   a1x   a0

FIGURE 0.33a

Parabola, a2 > 0

FIGURE 0.33b

Parabola, a2 < 0
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The graphs of cubic functions [ f (x) = a3x
3 + a2x

2 + a1x + a0; a3  = 0] are somewhat

S-shaped. Reading from left to right, the function begins negative and ends positive

if a3 > 0, and begins positive and ends negative if a3 < 0, as indicated in Figures 0.34a

and 0.34b, respectively.
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  a2x2 
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y   a3x3 
  a2x2 

  a1x   a0

FIGURE 0.34a

Cubic: one max, min, a3 > 0

FIGURE 0.34b

Cubic: one max, min, a3 < 0

Some cubics have one local maximum and one local minimum, as do those in Fig-

ures 0.34a and 0.34b. Many curves (including all cubics) have what’s called an inflection

point,where the curve changes its shape (from being bent upward, to being bent downward,

or vice versa), as indicated in Figures 0.35a and 0.35b.
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Inflection

point

FIGURE 0.35a

Cubic: no max or min, a3 > 0

y

x
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  a2x2 

  a1x   a0

Inflection

point

FIGURE 0.35b

Cubic: no max or min, a3 < 0

You can already use your knowledge of the general shapes of certain functions to see

how to adjust the graphing window, as in example 3.3.

EXAMPLE 3.3 Sketching the Graph of a Cubic Polynomial

Sketch a graph of the cubic polynomial f (x) = x3 − 20x2 − x + 20.

Solution Your initial graph probably looks like Figure 0.36a or 0.36b.
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FIGURE 0.36a

f (x) = x3 − 20x2 − x + 20

FIGURE 0.36b

f (x) = x3 − 20x2 − x + 20

However, you should recognize that neither of these graphs looks like a cubic; they look

more like parabolas. To see the S-shape behavior in the graph, we need to consider a

larger range of x-values. To determine how much larger, we need some of the concepts
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of calculus. For the moment, we use trial and error, until the graph resembles the shape

of a cubic. You should recognize the characteristic shape of a cubic in Figure 0.36c.

Although we now see more of the big picture (often referred to as the global behavior

of the function), we have lost some of the details (such as the x-intercepts), which we

could clearly see in Figures 0.36a and 0.36b (often referred to as the local behavior of

the function). �

Rational functions have some properties not found in polynomials, as we see in

examples 3.4, 3.5 and 3.6.

EXAMPLE 3.4 Sketching the Graph of a Rational Function

Sketch a graph of f (x) = x − 1

x − 2
and describe the behavior of the graph near x = 2.

Solution Your initial graph should look something like Figure 0.37a or 0.37b. From

either graph, it should be clear that something unusual is happening near x = 2.

Zooming in closer to x = 2 should yield a graph like that in Figure 0.38.
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FIGURE 0.36c

f (x) = x3 − 20x2 − x + 20
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FIGURE 0.37a

y = x − 1

x − 2

FIGURE 0.37b

y = x − 1

x − 2
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FIGURE 0.38

y = x − 1

x − 2

In Figure 0.38, it appears that as x increases up to 2, the function values get more

and more negative, while as x decreases down to 2, the function values get more and

more positive. (Note that the notation used for the y-axis labels is the exponential form

used by many graphing utilities, where 5e + 07 corresponds to 5 × 107.) This is also

observed in the following table of function values.

x f(x)

1.8 −4

1.9 −9

1.99 −99

1.999 −999

1.9999 −9999

x f(x)

2.2 6

2.1 11

2.01 101

2.001 1001

2.0001 10,001

Note that at x = 2, f (x) is undefined. However, as x approaches 2 from the left, the

graph veers down sharply. In this case, we say that f (x) tends to −∞. Likewise, as x

approaches 2 from the right, the graph rises sharply. Here, we say that f (x) tends to

∞ and there is a vertical asymptote at x = 2. (We’ll define this more carefully in

Chapter 1.) It is common to draw a vertical dashed line at x = 2 to indicate this. (See

Figure 0.39.) Since f (2) is undefined, there is no point plotted at x = 2. �
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FIGURE 0.39

Vertical asymptote
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Many rational functions have vertical asymptotes. Notice that there is no point plotted

on the vertical asymptote since the function is undefined at such an x-value (due to the

division by zero when that value of x is substituted in). Given a rational function, you

can locate possible vertical asymptotes by finding where the denominator is zero. It turns

out that if the numerator is not zero at that point, there is a vertical asymptote at that

point.

EXAMPLE 3.5 A Graph with More Than One Vertical Asymptote

Find all vertical asymptotes for f (x) = x − 1

x2 − 5x + 6
.

Solution Note that the denominator factors as

x2 − 5x + 6 = (x − 2)(x − 3),

so that the only possible locations for vertical asymptotes are x = 2 and x = 3. Since

neither x-value makes the numerator (x − 1) equal to zero, there are vertical asymptotes

at both x = 2 and x = 3. A computer-generated graph gives little indication of how the

function behaves near the asymptotes. (See Figure 0.40a and note the scale on the

y-axis.)
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FIGURE 0.40a

y = x − 1

x2 − 5x + 6

FIGURE 0.40b

y = x − 1

x2 − 5x + 6

We can improve the graph by zooming in in both the x- and y-directions.

Figure 0.40b shows a graph of the same function using the graphing window defined by

the rectangle −1 ≤ x ≤ 5 and −13 ≤ y ≤ 7. This graph clearly shows the vertical

asymptotes at x = 2 and x = 3. �

As we see in example 3.6, not all rational functions have vertical asymptotes.

EXAMPLE 3.6 A Rational Function with No Vertical Asymptotes

Find all vertical asymptotes of f (x) = x − 1

x2 + 4
.

Solution Notice that x2 + 4 = 0 has no (real) solutions, since x2 + 4 > 0 for all

real numbers, x . So, there are no vertical asymptotes. The graph in Figure 0.41 is

consistent with this observation. �
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FIGURE 0.41

y = x − 1

x2 + 4
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Graphs are useful for finding approximate solutions of difficult equations, as we see in

examples 3.7 and 3.8.

EXAMPLE 3.7 Finding Zeros Approximately

Find approximate solutions of the equation x2 = √
x + 3.

Solution You could rewrite this equation as x2 − √
x + 3 = 0 and then look for zeros

in the graph of f (x) = x2 − √
x + 3, seen in Figure 0.42a. Note that two zeros are

clearly indicated: one near −1, the other near 1.5. However, since you know very little

of the nature of the function x2 − √
x + 3, you cannot say whether or not there are any

other zeros, ones that don’t show up in the window seen in Figure 0.42a. On the other

hand, if you graph the two functions on either side of the equation on the same set of

axes, as in Figure 0.42b, you can clearly see two points where the graphs intersect

(corresponding to the two zeros seen in Figure 0.42a). Further, since you know the

general shapes of both of the graphs, you can infer from Figure 0.42b that there are no

other intersections (i.e., there are no other zeros of f ). This is important information that

you cannot obtain from Figure 0.42a. Now that you know how many solutions there are,

you need to estimate their values. One method is to zoom in on the zeros graphically. We

leave it as an exercise to verify that the zeros are approximately x = 1.4 and x = −1.2.

If your calculator or computer algebra system has a solve command, you can use it to

quickly obtain an accurate approximation. In this case, we get x ≈ 1.452626878 and

x ≈ −1.164035140. �
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FIGURE 0.42a

y = x2 − √
x + 3
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FIGURE 0.42b

y = x2 and y = √
x + 3
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FIGURE 0.43

y = 2 cos x and y = 2 − x

When using the solve command on your calculator or computer algebra system, be sure

to check that the solutions make sense. If the results don’t match what you’ve seen in your

preliminary sketches and zooms, beware! Even high-tech equation solvers make mistakes

occasionally.

EXAMPLE 3.8 Finding Intersections by Calculator: An Oversight

Find all points of intersection of the graphs of y = 2 cos x and y = 2 − x .

Solution Notice that the intersections correspond to solutions of the equation

2 cos x = 2 − x . Using the solve command on the Tl-92 graphing calculator, we found

intersections at x ≈ 3.69815 and x = 0. So, what’s the problem? A sketch of the graphs

of y = 2 − x and y = 2 cos x (we discuss this function in the next section) clearly

shows three intersections. (See Figure 0.43.)

The middle solution, x ≈ 1.10914, was somehow passed over by the calculator’s

solve routine. The lesson here is to use graphical evidence to support your solutions,

especially when using software and/or functions with which you are less than

completely familiar. �

You need to look skeptically at the answers provided by your calculator’s solver pro-

gram. While such solvers provide a quick means of approximating solutions of equations,

these programs will sometimes return incorrect answers, as we illustrate with example 3.9.

So, how do you know if your solver is giving you an accurate answer or one that’s in-

correct? The only answer to this is that you must carefully test your calculator’s so-

lution, by separately calculating both sides of the equation (by hand) at the calculated

solution.



30 CHAPTER 0 .. Preliminaries 0-30

EXAMPLE 3.9 Solving an Equation by Calculator: An Erroneous Answer

Use your calculator’s solver program to solve the equation x + 1

x
= 1

x
.

Solution Certainly, you don’t need a calculator to solve this equation, but consider

what happens when you use one. Most calculators report a solution that is very close to

zero, while others report that the solution is x = 0. Not only are these answers

incorrect, but the given equation has no solution, as follows. First, notice that the

equation makes sense only when x  = 0. Subtracting
1

x
from both sides of the equation

leaves us with x = 0, which can’t possibly be a solution, since it does not satisfy the

original equation. Notice further that, if your calculator returns the approximate solution

x = 1 × 10−7 and you use your calculator to compute the values on both sides of the

equation, the calculator will compute

x + 1

x
= 1 × 10−7 + 1 × 107,

which it approximates as 1 × 107 = 1

x
, since calculators carry only a finite number of

digits. In other words, although

1 × 10−7 + 1 × 107  = 1 × 107,

your calculator treats these numbers as the same and so incorrectly reports that the

equation is satisfied. The moral of this story is to be an intelligent user of technology

and don’t blindly accept everything your calculator tells you. �

Wewant to emphasize again that graphing should be thefirst step in the equation-solving

process. A good graph will show you how many solutions to expect, as well as give their

approximate locations. Whenever possible, you should factor or use the quadratic formula

to get exact solutions. When this is impossible, approximate the solutions by zooming in

on them graphically or by using your calculator’s solve command. Always compare your

results to a graph to see if there’s anything you’ve missed.

EXERCISES 0.3

WRITING EXERCISES

1. Explain why there is a significant difference among Fig-

ures 0.36a, 0.36b and 0.36c.

2. In Figure 0.39, the graph approaches the lower portion of the

vertical asymptote from the left, whereas the graph approaches

the upper portion of the vertical asymptote from the right. Use

the table of function values found in example 3.4 to explain how

to determine whether a graph approaches a vertical asymptote

by dropping down or rising up.

3. In the text, we discussed the difference between graphing

with a fixed window versus an automatic window. Discuss the

advantages and disadvantages of each. (Hint: Consider the case

of a first graph of a function you know nothing about and the

case of hoping to see the important details of a graph for which

you know the general shape.)

4. Examine the graph of y = x3 + 1

x
with each of the following

graphing windows: (a)−10 ≤ x ≤ 10, (b)−1000 ≤ x ≤ 1000.

Explain why the graph in (b) doesn’t show the details that the

graph in (a) does.

In exercises 1–30, sketch a graph of the function showing all

extrema, intercepts and vertical asymptotes.

1. f (x) = x2 − 1 2. f (x) = 3 − x2

3. f (x) = x2 + 2x + 8 4. f (x) = x2 − 20x + 11

5. f (x) = x3 + 1 6. f (x) = 10 − x3

7. f (x) = x3 + 2x − 1 8. f (x) = x3 − 3x + 1
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9. f (x) = x4 − 1 10. f (x) = 2 − x4

11. f (x) = x4 + 2x − 1 12. f (x) = x4 − 6x2 + 3

13. f (x) = x5 + 2 14. f (x) = 12 − x5

15. f (x) = x5 −8x3 + 20x −1 16. f (x) = x5 +5x4 +2x3 +1

17. f (x) = 3

x − 1
18. f (x) = 4

x + 2

19. f (x) = 3x

x − 1
20. f (x) = 4x

x + 2

21. f (x) = 3x2

x − 1
22. f (x) = 4x2

x + 2

23. f (x) = 2

x2 − 4
24. f (x) = 6

x2 − 9

25. f (x) = 3

x2 + 4
26. f (x) = 6

x2 + 9

27. f (x) = x + 2

x2 + x − 6
28. f (x) = x − 1

x2 + 4x + 3

29. f (x) = 3x√
x2 + 4

30. f (x) = 2x√
x2 + 1

In exercises 31–38, find all vertical asymptotes.

31. f (x) = 3x

x2 − 4
32. f (x) = x + 4

x2 − 9

33. f (x) = 4x

x2 + 3x − 10
34. f (x) = x + 2

x2 − 2x − 15

35. f (x) = 4x

x2 + 4
36. f (x) = 3x√

x2 − 9

37. f (x) = x2 + 1

x3 + 3x2 + 2x
38. f (x) = 3x

x4 − 1

In exercises 39–42, a standard graphing window will not reveal

all of the important details of the graph. Adjust the graphing

window to find the missing details.

39. f (x) = 1

3
x3 − 1

400
x

40. f (x) = x4 − 11x3 + 5x − 2

41. f (x) = x
√
144 − x2

42. f (x) = 1

5
x5 − 7

8
x4 + 1

3
x3 + 7

2
x2 − 6x

In exercises 43–48, adjust the graphing window to identify all

vertical asympotes.

43. f (x) = 3

x − 1
44. f (x) = 4x

x2 − 1
45. f (x) = 3x2

x2 − 1

46. f (x) = 2x

x +4
47. f (x) = x2 − 1√

x4 + x
48. f (x) = 2x√

x2 + x

In exercises 49–56, determine the number of (real) solutions.

Solve for the intersection points exactly if possible and estimate

the points if necessary.

49.
√

x − 1 = x2 − 1 50.
√

x2 + 4 = x2 + 2

51. x3 − 3x2 = 1 − 3x 52. x3 + 1 = −3x2 − 3x

53. (x2 − 1)2/3 = 2x + 1 54. (x + 1)2/3 = 2 − x

55. cos x = x2 − 1 56. sin x = x2 + 1

In exercises 57–62, use a graphing calculator or computer

graphing utility to estimate all zeros.

57. f (x) = x3 − 3x + 1

58. f (x) = x3 − 4x2 + 2

59. f (x) = x4 − 3x3 − x + 1

60. f (x) = x4 − 2x + 1

61. f (x) = x4 − 7x3 − 15x2 − 10x − 1410

62. f (x) = x6 − 4x4 + 2x3 − 8x − 2

63. Graph y = x2 in the graphing window −10 ≤ x ≤ 10,

−10 ≤ y ≤ 10, without drawing the x- and y-axes. Adjust

the graphing window for y = 2(x − 1)2 + 3 so that (with-

out the axes showing) the graph looks identical to that of

y = x2.

64. Graph y = x2 in the graphing window −10 ≤ x ≤ 10,

−10 ≤ y ≤ 10. Separately graph y = x4 with the same graph-

ing window. Compare and contrast the graphs. Then graph the

two functions on the same axes and carefully examine the dif-

ferences in the intervals −1 < x < 1 and x > 1.

65. In this exercise, you will find an equation describing all points

equidistant from the x-axis and the point (0, 2). First, see if

you can sketch a picture of what this curve ought to look

like. For a point (x, y) that is on the curve, explain why 
y2 =

 
x2 + (y − 2)2. Square both sides of this equation and

solve for y. Identify the curve.

66. Find an equation describing all points equidistant from the

x-axis and (1, 4). (See exercise 65.)

EXPLORATORY EXERCISES

1. Suppose that a graphing calculator is set up with pixels cor-

responding to x = 0, 0.1, 0.2, 0.3, . . . , 2.0 and y = 0, 0.1, 0.2,

0.3, . . . , 4.0. For the function f (x) = x2, compute the indi-

cated function values and round off to give pixel coordinates

[e.g., the point (1.19, 1.4161) has pixel coordinates (1.2, 1.4)].
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(a) f (0.4), (b) f (0.39), (c) f (1.17), (d) f (1.20), (e) f (1.8),

(f) f (1.81). Repeat (c)–(d) if the graphingwindow is zoomed in

so that x = 1.00, 1.01, . . . , 1.20and y = 1.30, 1.31, . . . , 1.50.

Repeat (e)–(f ) if the graphing window is zoomed in so that

x = 1.800, 1.801, . . . , 1.820and y = 3.200, 3.205, . . . , 3.300.

2. Graph y = x2 − 1, y = x2 + x − 1, y = x2 + 2x − 1,

y = x2 − x − 1, y = x2 − 2x − 1 and other functions of the

form y = x2 + cx − 1.Describe the effect(s) a change in c has

on the graph.

3. Figures 0.34 and 0.35 provide a catalog of the possible shapes

of graphs of cubic polynomials. In this exercise, you will

compile a catalog of graphs of fourth-order polynomials

(i.e., y = ax4 + bx3 + cx2 + dx + e; a  = 0). Start by us-

ing your calculator or computer to sketch graphs with different

values of a, b, c, d and e. Try y = x4, y = 2x4, y = −2x4,

y = x4 + x3, y = x4 + 2x3, y = x4 − 2x3, y = x4 + x2,

y = x4 − x2, y = x4 − 2x2, y = x4 + x, y = x4 − x and so on.

Try to determine what effect each constant has.

0.4 TRIGONOMETRIC FUNCTIONS

Many phenomena encountered in your daily life involvewaves. For instance, music is trans-

mitted from radio stations in the form of electromagneticwaves. Your radio receiver decodes

these electromagnetic waves and causes a thin membrane inside the speakers to vibrate,

which, in turn, creates pressure waves in the air.When these waves reach your ears, you hear

themusic fromyour radio (seeFigure 0.44).Eachof thesewaves isperiodic,meaning that the

basic shapeof thewave is repeatedover andover again.Themathematical descriptionof such

phenomena involves periodic functions, the most familiar of which are the trigonometric

functions. First, we remind you of a basic definition.

FIGURE 0.44

Radio and sound waves

DEFINITION 4.1

A function f is periodic of period T if

f (x + T ) = f (x)

for all x such that x and x + T are in the domain of f. The smallest such number

T > 0 is called the fundamental period.

NOTES

When we discuss the period of a

function, we most often focus on

the fundamental period.

There are several equivalent ways of defining the sine and cosine functions. We want

to emphasize a simple definition from which you can easily reproduce many of the basic

properties of these functions. Referring to Figure 0.45, begin by drawing the unit circle
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x2 + y2 = 1. Let θ be the angle measured (counterclockwise) from the positive x-axis to

the line segment connecting the origin to the point (x, y) on the circle. Here, we measure θ

in radians, where the radian measure of the angle θ is the length of the arc indicated in the

figure. Again referring to Figure 0.45, we define sin θ to be the y-coordinate of the point

on the circle and cos θ to be the x-coordinate of the point. From this definition, it follows

that sin θ and cos θ are defined for all values of θ , so that each has domain −∞ < θ < ∞,

while the range for each of these functions is the interval [−1, 1].

y

x
u

u

(cos u, sin u )

sin u

cos u

1

FIGURE 0.45

Definition of sin θ and cos θ :

cos θ = x and sin θ = y

REMARK 4.1

Unless otherwise noted, we always measure angles in radians.

Note that since the circumference of a circle (C = 2πr ) of radius 1 is 2π , we have that

360◦ corresponds to 2π radians. Similarly, 180◦ corresponds to π radians, 90◦ corresponds
to π/2 radians and so on. In the accompanying table, we list some common angles as

measured in degrees, together with the corresponding radian measures.

Angle in degrees 0◦ 30◦ 45◦ 60◦ 90◦ 135◦ 180◦ 270◦ 360◦

Angle in radians 0
π

6

π

4

π

3

π

2

3π

4
π

3π

2
2π

THEOREM 4.1

The functions f (θ ) = sin θ and g(θ ) = cos θ are periodic, of period 2π .

PROOF

Referring to Figure 0.45, since a complete circle is 2π radians, adding 2π to any angle takes

you all the way around the circle and back to the same point (x, y). This says that

sin(θ + 2π ) = sin θ

and cos(θ + 2π ) = cos θ,

for all values of θ . Furthermore, 2π is the smallest angle for which this is true.

You are likely already familiar with the graphs of f (x) = sin x and g(x) = cos x shown

in Figures 0.46a and 0.46b, respectively.

y

 1

1

q w w r r  q
x

y

 1

1

p 2p 2p  p

x

FIGURE 0.46a

y = sin x

FIGURE 0.46b

y = cos x
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x sin x cos x

0 0 1

π

6

1

2

√
3

2

π

4

√
2

2

√
2

2

π

3

√
3

2

1

2

π

2
1 0

2π

3

√
3

2
− 1

2

3π

4

√
2

2
−

√
2

2

5π

6

1

2
−

√
3

2

π 0 −1

3π

2
−1 0

2π 0 1

Notice that you could slide the graph of y = sin x slightly to the left or right and get an

exact copy of the graph of y = cos x . Specifically, we have the relationship

sin
 

x + π

2

 
= cos x .

REMARK 4.2

Instead of writing (sin θ )2 or

(cos θ )2, we usually use the

notation sin2 θ and cos2 θ ,

respectively.

The accompanying table lists some common values of sine and cosine. Notice that

many of these can be read directly from Figure 0.45.

EXAMPLE 4.1 Solving Equations Involving Sines and Cosines

Find all solutions of the equations (a) 2 sin x − 1 = 0 and (b) cos2 x − 3 cos x + 2 = 0.

Solution For (a), notice that 2 sin x − 1 = 0 if 2 sin x = 1 or sin x = 1
2
. From the unit

circle, we find that sin x = 1
2
if x = π

6
or x = 5π

6
. Since sin x has period 2π , additional

solutions are π
6

+ 2π, 5π
6

+ 2π, π
6

+ 4π and so on. A convenient way of indicating that

any integer multiple of 2π can be added to either solution is to write x = π
6

+ 2nπ or

x = 5π
6

+ 2nπ , for any integer n. Part (b) may look rather difficult at first. However,

notice that it looks like a quadratic equation using cos x instead of x .With this clue, you

can factor the left-hand side to get

0 = cos2 x − 3 cos x + 2 = (cos x − 1)(cos x − 2),

from which it follows that either cos x = 1 or cos x = 2. Since −1 ≤ cos x ≤ 1 for all

x, the equation cos x = 2 has no solution. However, we get cos x = 1 if x = 0, 2π or

any integer multiple of 2π . We can summarize all the solutions by writing x = 2nπ , for

any integer n. �

We now give definitions of the remaining four trigonometric functions.

DEFINITION 4.2

The tangent function is defined by tan x = sin x

cos x
.

The cotangent function is defined by cot x = cos x

sin x
.

The secant function is defined by sec x = 1

cos x
.

The cosecant function is defined by csc x = 1

sin x
.

We show graphs of these functions in Figures 0.47a–0.47d. Notice in each graph the loca-

tions of the vertical asymptotes. For the “co” functions cot x and csc x , the division by sin x

causes vertical asymptotes at 0,±π , ±2π and so on (where sin x = 0). For tan x and sec x,

the division by cos x produces vertical asymptotes at ±π/2, ±3π/2,±5π/2 and so on

(where cos x = 0). Once you have determined the vertical asymptotes, the graphs are rela-

tively easy to draw.

REMARK 4.3

Most calculators have keys for

the functions sin x, cos x and

tan x, but not for the other three

trigonometric functions. This

reflects the central role that

sin x, cos x and tan x play in

applications. To calculate

function values for the other

three trigonometric functions,

you can simply use the identities

cot x = 1

tan x
, sec x = 1

cos x

and csc x = 1

sin x
. Notice that tan x and cot x are periodic, of period π , while sec x and csc x are periodic,

of period 2π .
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p 2p 2p  p w w q q

y

x

p 2p 2p  p w w q q

y

x

FIGURE 0.47a

y = tan x

FIGURE 0.47b

y = cot x

p

2p 2p

 p

w w q q

y

x
1

 1 p 2p 2p  p

w

 w q

 q

y

x
1

 1

FIGURE 0.47c

y = sec x

FIGURE 0.47d

y = csc x

It is important to learn the effect of slight modifications of these functions. We present

a few ideas here and in the exercises.

EXAMPLE 4.2 Altering Amplitude and Period

Graph y = 2 sin x and y = sin 2x, and describe how each differs from the graph of

y = sin x . (See Figure 0.48a.)

w

 w q

 q

y

x

 2

 1

1

2

w

 w q

 q

y

x

 2

 1

1

2

y

x

 2

 1

1

2

 p 2p p 2p

FIGURE 0.48a

y = sin x

FIGURE 0.48b

y = 2 sin x

FIGURE 0.48c

y = sin (2x)



36 CHAPTER 0 .. Preliminaries 0-36

Solution The graph of y = 2 sin x is given in Figure 0.48b. Notice that this graph is

similar to the graph of y = sin x, except that the y-values oscillate between −2 and 2,

instead of −1 and 1. Next, the graph of y = sin 2x is given in Figure 0.48c. In this case,

the graph is similar to the graph of y = sin x except that the period is π instead of 2π

(so that the oscillations occur twice as fast). �

The results in example 4.2 can be generalized. For A > 0, the graph of y = A sin x

oscillates between y = −A and y = A. In this case, we call A the amplitude of the sine

curve. Notice that for any positive constant c, the period of y = sin cx is 2π/c. Similarly,

for the function A cos cx, the amplitude is A and the period is 2π/c.

The sine and cosine functions can be used to model sound waves. A pure tone (think of

a single flute note) is a pressure wave described by the sinusoidal function A sin ct. (Here,

we are using the variable t, since the air pressure is a function of time.) The amplitude A

determines how loud the tone is perceived to be and the period determines the pitch of the

note. In this setting, it is convenient to talk about the frequency f = c/2π . The higher

the frequency is, the higher the pitch of the note will be. (Frequency is measured in hertz,

where 1 hertz equals 1 cycle per second.) Note that the frequency is simply the reciprocal

of the period.

EXAMPLE 4.3 Finding Amplitude, Period and Frequency

Find the amplitude, period and frequency of (a) f (x) = 4 cos 3x and

(b) g(x) = 2 sin(x/3).

Solution (a) For f (x), the amplitude is 4, the period is 2π/3 and the frequency

is 3/(2π ). (SeeFigure 0.49a.) (b) For g(x), the amplitude is 2, the period is 2π/(1/3) = 6π

and the frequency is 1/(6π ). (See Figure 0.49b.)

y

2p 2p

 4

4

i o i o
x

y

x
2p 3pp 2p 3p  p

 2

2

FIGURE 0.49a

y = 4 cos 3x

FIGURE 0.49b

y = 2 sin (x/3)

�

There are numerous formulas or identities that are helpful in manipulating the trigono-

metric functions. You should observe that, from the definition of sin θ and cos θ (see

Figure 0.45), the Pythagorean Theorem gives us the familiar identity

sin2 θ + cos2 θ = 1,

since the hypotenuse of the indicated triangle is 1. This is true for any angle θ . In addition,

sin(−θ ) = − sin θ and cos(−θ ) = cos θ.
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We list several important identities in Theorem 4.2.

THEOREM 4.2

For any real numbers α and β, the following identities hold:

sin (α + β) = sinα cosβ + sinβ cosα (4.1)

cos (α + β) = cosα cosβ − sinα sinβ (4.2)

sin2 α = 1
2
(1 − cos 2α) (4.3)

cos2 α = 1
2
(1 + cos 2α). (4.4)

From the basic identities summarized in Theorem 4.2, numerous other useful identities

can be derived. We derive two of these in example 4.4.

EXAMPLE 4.4 Deriving New Trigonometric Identities

Derive the identities sin 2θ = 2 sin θ cos θ and cos 2θ = cos2 θ − sin2 θ .

Solution These can be obtained from formulas (4.1) and (4.2), respectively, by

substituting α = θ and β = θ . Alternatively, the identity for cos 2θ can be obtained by

subtracting equation (4.3) from equation (4.4). �

Two kinds of combinations of sine and cosine functions are especially important in

applications. In the first type, a sine and cosine with the same period but different amplitudes

are added.

EXAMPLE 4.5 Combinations of Sines and Cosines

Graph f (x) = 3 cos x + 4 sin x and describe the resulting graph.

Solution You should get something like the graph in Figure 0.50. Notice that the graph

looks very much like a sine curve with period 2π and amplitude 5, but it has been shifted

about 0.75 unit to the left. Alternatively, you could say that it looks like a cosine curve,

shifted about 1 unit to the right. Using the appropriate identity, you can verify these

guesses.

y

4

x

3p⫺3p p 2p⫺2p ⫺p

⫺4

FIGURE 0.50

y = 3 cos x + 4 sin x

�
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EXAMPLE 4.6 Writing Combinations of Sines and Cosines as a Single
Sine Term

Prove that 4 sin x + 3 cos x = 5 sin(x + β) for some constant β and estimate the value

of β.

Solution Using equation (4.1), we have

4 sin x + 3 cos x = 5 sin(x + β)
= 5 sin x cosβ + 5 sinβ cos x,

if 5 cosβ = 4 and 5 sinβ = 3.

This will occur if we can choose a value of β so that cosβ = 4
5

and sinβ = 3
5
. By

the Pythagorean Theorem, this is possible only if sin2 β + cos2 β = 1. In this case, we

have

sin2 β + cos2 β =
 
3

5

 2

+
 
4

5

 2

= 9

25
+ 16

25
= 25

25
= 1,

as desired. For the moment, the only way to estimate β is by trial and error. Using your

calculator or computer, you should find that one solution is β ≈ 0.6435 radians (about

36.9 degrees). �

The second kind of combination of sines and cosines we explore is adding functions

of different periods. (This is one of the principles behind music synthesizers.)

EXAMPLE 4.7 Combinations of Sines and Cosines of Different Periods

Graph (a) f (x) = cos 3x + sin 4x and (b) g(x) = cosπx + sin 4x and describe each

graph. Determine the period if the function is periodic.

Solution (a) We give a graph of y = f (x) in Figure 0.51a. This is certainly more

complicated than the usual sine or cosine graph, but you should be able to identify a

repetition with a period of about 6. (Notice that this is close to 2π .) To determine the

actual period, note that the period of cos 3x is 2π
3
and the period of sin 4x is 2π

4
. This says

that cos 3x repeats at 2π
3
, 4π

3
, 6π

3
and so on. Similarly, sin 4x repeats at 2π

4
, 4π

4
, 6π

4
, 8π

4
and

so on. Note that both 6π
3

and 8π
4

equal 2π . Since both terms repeat every 2π units, the

function f (x) has a period of 2π .

(b) The graph of g(x) is even more complicated, as you can see in Figure 0.51b.

In the graphing window shown in Figure 0.51b (−10 ≤ x ≤ 10 and −2 ≤ y ≤ 2), this

does not appear to be a periodic function, although it’s not completely different from the

graph of f (x). To try to find a period, you should note that cosπx has a period of 2π
π

= 2

and so repeats at intervals of width 2, 4, 6 and so on. On the other hand, sin 4x repeats

at intervals of width 2π
4
, 4π

4
and so on. The function is periodic if and only if there are

numbers common to both lists. Since 2, 4, 6, . . . are all rational numbers and the numbers
2π
4
, 4π

4
, . . . are all irrational, there can’t be any numbers in both lists. We conclude that

the function is not periodic. �

y

⫺2

⫺1
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1

p 2p⫺2p ⫺p

x

FIGURE 0.51a

y = cos 3x + sin 4x

y

⫺2

⫺1

2

1

10⫺10

x

FIGURE 0.51b

y = cosπx + sin 4x

In many applications, we need to calculate the length of one side of a right triangle

using the length of another side and an acute angle (i.e., an angle between 0 and π
2
radians).

We can do this rather easily, as in example 4.8.
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EXAMPLE 4.8 Finding the Height of a Tower

A person 100 feet from the base of a radio tower measures an angle of 60◦ from the

ground to the top of the tower. (See Figure 0.52.) Find the height of the tower.

Solution First, we convert 60◦ to radians:

60◦ = 60
π

180
= π

3
radians.

We are given that the base of the triangle in Figure 0.52 is 100 feet.Wemust now compute

the height of the tower h. Using the similar triangles indicated in Figure 0.52, we have

that

sin θ

cos θ
= h

100
,

so that the height of the tower is

h = 100
sin θ

cos θ
= 100 tan θ = 100 tan

π

3
= 100

√
3 ≈ 173 feet.

�

h

sin u l

100 ft
cos u

u

FIGURE 0.52

Height of a tower

EXERCISES 0.4

WRITING EXERCISES

1. Many students are comfortable usingdegrees tomeasure angles

and don’t understand why they must learn radian measures. As

discussed in the text, radians directly measure distance along

the unit circle. Distance is an important aspect ofmany applica-

tions. In addition, wewill see later that many calculus formulas

are simpler in radians form than in degrees. Aside from famil-

iarity, discuss any and all advantages of degrees over radians.

On balance, which is better?

2. A student graphs f (x) = cos x on a graphing calculator and

gets what appears to be a straight line at height y = 1 in-

stead of the usual cosine curve. Upon investigation, you dis-

cover that the calculator has graphing window −10 ≤ x ≤ 10,

−10 ≤ y ≤ 10 and is in degrees mode. Explain what went

wrong and how to correct it.

3. In example 4.3, f (x) = 4 cos 3x has period 2π/3 and

g(x) = 2 sin (x/3) has period 6π . Explain why the sum

h(x) = 4 cos 3x + 2 sin (x/3) has period 6π .

4. The trigonometric functions can be defined in terms of the unit

circle (as done in the text) or in terms of right triangles for an-

gles between 0 and π

2
radians. In calculus and most scientific

applications, the trigonometric functions are used to model

periodic phenomena (quantities that repeat). Given that we

want to emphasize the periodic nature of the functions, explain

why we would prefer the circular definitions to the triangular

definitions.

In exercises 1 and 2, convert the given radians measure to

degrees.

1. (a) π
4

(b) π
3

(c) π
6

(d) 4π

3

2. (a) 3π

5
(b) π

7
(c) 2 (d) 3

In exercises 3 and 4, convert the given degrees measure to

radians.

3. (a) 180◦ (b) 270◦ (c) 120◦ (d) 30◦

4. (a) 40◦ (b) 80◦ (c) 450◦ (d) 390◦

In exercises 5–14, find all solutions of the given equation.

5. 2 cos x − 1 = 0 6. 2 sin x + 1 = 0

7.
√
2 cos x − 1 = 0 8. 2 sin x −

√
3 = 0

9. sin2 x − 4 sin x + 3 = 0 10. sin2 x − 2 sin x − 3 = 0

11. sin2 x + cos x − 1 = 0 12. sin 2x − cos x = 0

13. cos2 x + cos x = 0 14. sin2 x − sin x = 0

In exercises 15–24, sketch a graph of the function.

15. f (x) = sin 3x 16. f (x) = cos 3x

17. f (x) = tan 2x 18. f (x) = sec 3x

19. f (x) = 3 cos (x − π/2) 20. f (x) = 4 cos (x + π )
21. f (x) = sin 2x − 2 cos 2x 22. f (x) = cos 3x − sin 3x

23. f (x) = sin x sin 12x 24. f (x) = sin x cos 12x
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In exercises 25–32, identify the amplitude, periodand frequency.

25. f (x) = 3 sin 2x 26. f (x) = 2 cos 3x

27. f (x) = 5 cos 3x 28. f (x) = 3 sin 5x

29. f (x) = 3 cos (2x − π/2) 30. f (x) = 4 sin (3x + π )
31. f (x) = −4 sin x 32. f (x) = −2 cos 3x

In exercises 33–36, prove that the given trigonometric identity

is true.

33. sin (α − β) = sinα cosβ − sinβ cosα

34. cos (α − β) = cosα cosβ + sinα sinβ

35. (a) cos (2θ ) = 2 cos2 θ − 1 (b) cos (2θ ) = 1 − 2 sin2 θ

36. (a) sec2 θ = tan2 θ + 1 (b) csc2 θ = cot2 θ + 1

37. Prove that, for some constant β,

4 cos x − 3 sin x = 5 cos (x + β).
Then, estimate the value of β.

38. Prove that, for some constant β,

2 sin x + cos x =
√
5 sin (x + β).

Then, estimate the value of β.

In exercises 39–42, determine whether the function is periodic.

If it is periodic, find the smallest (fundamental) period.

39. f (x) = cos 2x + 3 sinπx

40. f (x) = sin x − cos
√
2x

41. f (x) = sin 2x − cos 5x

42. f (x) = cos 3x − sin 7x

In exercises 43–46, use the range forθ to determine the indicated

function value.

43. sin θ = 1

3
, 0 ≤ θ ≤ π

2
; find cos θ .

44. cos θ = 4

5
, 0 ≤ θ ≤ π

2
; find sin θ .

45. sin θ = 1

2
, π

2
≤ θ ≤ π ; find cos θ .

46. sin θ = 1

2
, π

2
≤ θ ≤ π ; find tan θ .

In exercises 47–50, use a graphing calculator or computer to

determine the number of solutions of each equation, and nu-

merically estimate the solutions (x is in radians).

47. 3 sin x = x − 1 48. 3 sin x = x

49. cos x = x2 − 2 50. sin x = x2

51. A person sitting 2 miles from a rocket launch site measures

20◦ up to the current location of the rocket. How high up is the

rocket?

52. A person who is 6 feet tall stands 4 feet from the base of a light

pole and casts a 2-foot-long shadow. How tall is the light pole?

53. A surveyor stands 80 feet from the base of a building and mea-

sures an angle of 50◦ to the top of the steeple on top of the

building. The surveyor figures that the center of the steeple lies

20 feet inside the front of the structure. Find the distance from

the ground to the top of the steeple.

54. Suppose that the surveyor of exercise 53 estimates that the cen-

ter of the steeple lies between 20 and 21 inside the front of the
structure. Determine how much the extra foot would change

the calculation of the height of the building.

55. In an AC circuit, the voltage is given by v(t) = vp sin(2π ft),

where vp is the peak voltage and f is the frequency in Hz. A

voltmeter actuallymeasures an average (called the root-mean-

square) voltage, equal to vp/
√
2. If the voltage has amplitude

170 and period π/30, find the frequency and meter voltage.

56. An old-style LP record player rotates records at 33 1

3
rpm (rev-

olutions per minute). What is the period (in minutes) of the

rotation? What is the period for a 45-rpm record?

57. Suppose that the ticket sales of an airline (in thousands of

dollars) is given by s(t) = 110 + 2t + 15 sin
 
1

6
π t

 
, where t

is measured in months. What real-world phenomenon might

cause the fluctuation in ticket sales modeled by the sine term?

Based on your answer, what month corresponds to t = 0?

Disregarding seasonal fluctuations, by what amount is the air-

line’s sales increasing annually?

58. Piano tuners sometimes start by striking a tuning fork and

then the corresponding piano key. If the tuning fork and piano

note each have frequency 8, then the resulting sound is

sin 8t + sin 8t . Graph this. If the piano is slightly out-of-tune

at frequency 8.1, the resulting sound is sin 8t + sin 8.1t . Graph

this and explain how the piano tuner can hear the small differ-

ence in frequency.

59. Many graphing calculators and computers will “graph” in-

equalities by shading in all points (x , y) for which the in-

equality is true. If you have access to this capability, graph the

inequality sin x < cos y.

60. Calculator and computer graphics can be inaccurate. Using

an initial graphing window of −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1,

graph f (x) = tan x − x

x3
. Describe the behavior of the graph

near x = 0. Zoom in closer and closer to x = 0, using a win-

dow with −0.001 ≤ x ≤ 0.001, then −0.0001 ≤ x ≤ 0.0001,

then −0.00001 ≤ x ≤ 0.00001 and so on, until the behavior

near x = 0 appears to be different. We don’t want to leave you

hanging: the initial graph gives you good information and the

tightly zoomed graphs are inaccurate due to the computer’s

inability to compute tan x exactly.

EXPLORATORY EXERCISES

1. In his book and video series The Ring of Truth, physicist Philip

Morrison performed an experiment to estimate the circumfer-

ence of the earth. In Nebraska, he measured the angle to a
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bright star in the sky, then drove 370 miles due south into

Kansas and measured the new angle to the star. Some geome-

try shows that the difference in angles, about 5.02◦, equals the
angle from the center of the earth to the two locations in Ne-

braska and Kansas. If the earth is perfectly spherical (it’s not)

and the circumference of the portion of the circle measured out

by 5.02◦ is 370 miles, estimate the circumference of the earth.

This experiment was based on a similar experiment by the an-

cient Greek scientist Eratosthenes. The ancient Greeks and the

Spaniards of Columbus’ day knew that the earth was round;

they just disagreed about the circumference. Columbus argued

for a figure about half of the actual value, since a ship couldn’t

survive on the water long enough to navigate the true distance.

2. Computer graphics can be misleading. This exercise works

best using a “disconnected” graph (individual dots, not con-

nected). Graph y = sin x2 using a graphing window for which

each pixel represents a step of 0.1 in the x- or y-direction.

You should get the impression of a sine wave that oscillates

more and more rapidly as you move to the left and right. Next,

change the graphing window so that the middle of the original

screen (probably x = 0) is at the far left of the new screen.

You will likely see what appears to be a random jumble of

dots. Continue to change the graphing window by increasing

the x-values. Describe the patterns or lack of patterns that you

see. You should find one pattern that looks like two rows of

dots across the top and bottom of the screen; another pattern

looks like the original sine wave. For each pattern that you

find, pick adjacent points with x-coordinates a and b. Then

change the graphing window so that a ≤ x ≤ b and find the

portion of the graph that is missing. Remember that, whether

the points are connected or not, computer graphs always leave

out part of the graph; it is part of your job to know whether or

not the missing part is important.

0.5 TRANSFORMATIONS OF FUNCTIONS

You are now familiar with a long list of functions: including polynomials, rational functions

and trigonometric functions. One important goal of this course is to more fully understand

the properties of these functions. To a large extent, you will build your understanding by

examining a few key properties of functions.

We expand on our list of functions by combining them. We begin in a straight-forward

fashion with Definition 5.1.

DEFINITION 5.1

Suppose that f and g are functions with domains D1 and D2, respectively. The

functions f + g, f − g and f · g are defined by

( f + g)(x) = f (x) + g(x),

( f − g)(x) = f (x) − g(x)

and ( f · g)(x) = f (x) · g(x),

for all x in D1 ∩ D2 (i.e., x ∈ D1, and x ∈ D2). The function
f

g
is defined by

 
f

g

 
(x) = f (x)

g(x)
,

for all x in D1 ∩ D2 such that g(x)  = 0.

In example 5.1, we examine various combinations of several simple functions.

EXAMPLE 5.1 Combinations of Functions

If f (x) = x − 3 and g(x) = √
x − 1, determine the functions f + g, 3 f − g and

f

g
,

stating the domains of each.
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Solution First, note that the domain of f is the entire real line and the domain of g is

the set of all x ≥ 1. Now,

( f + g)(x) = x − 3 +
√

x − 1

and (3 f − g)(x) = 3(x − 3) −
√

x − 1 = 3x − 9 −
√

x − 1.

Notice that the domain of both ( f + g) and (3 f − g) is {x |x ≥ 1}. For
 

f

g

 
(x) = f (x)

g(x)
= x − 3√

x − 1
,

the domain is {x |x > 1}, where we have added the restriction x  = 1 to avoid dividing

by 0. �

Definition 5.1 and example 5.1 show us how to do arithmetic with functions. An

operation on functions that does not directly correspond to arithmetic is the composition of

two functions.

f

g(x)

x

f (g(x))

g

( f ◦ g)(x) = f (g(x))

DEFINITION 5.2

The composition of functions f and g, written f ◦ g, is defined by

( f ◦ g)(x) = f (g(x)),

for all x such that x is in the domain of g and g(x) is in the domain of f .

The composition of two functions is a two-step process, as indicated in the margin

schematic. Be careful to notice what this definition is saying. In particular, for f (g(x)) to

be defined, you first need g(x) to be defined, so x must be in the domain of g. Next, f must

be defined at the point g(x), so that the number g(x) will need to be in the domain of f.

EXAMPLE 5.2 Finding the Composition of Two Functions

For f (x) = x2 + 1 and g(x) = √
x − 2, find the compositions f ◦ g and g ◦ f and

identify the domain of each.

Solution First, we have

( f ◦ g)(x) = f (g(x)) = f (
√

x − 2)

= (
√

x − 2)2 + 1 = x − 2 + 1 = x − 1.

It’s tempting to write that the domain of f ◦ g is the entire real line, but look more

carefully. Note that for x to be in the domain of g, we must have x ≥ 2. The domain of f

is the whole real line, so this places no further restrictions on the domain of f ◦ g. Even

though the final expression x − 1 is defined for all x , the domain of ( f ◦ g) is {x |x ≥ 2}.
For the second composition,

(g ◦ f )(x) = g( f (x)) = g(x2 + 1)

=
 
(x2 + 1) − 2 =

 
x2 − 1.

The resulting square root requires x2 − 1 ≥ 0 or |x | ≥ 1. Since the “inside” function f

is defined for all x , the domain of g ◦ f is {x ∈ R
  |x | ≥ 1}, which we write in interval

notation as (−∞,−1] ∪ [1,∞). �
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As you progress through the calculus, you will often find yourself needing to recognize

that a given function is a composition of simpler functions. For now, it is an important skill

to practice.

EXAMPLE 5.3 Identifying Compositions of Functions

Identify functions f and g such that the given function can be written as ( f ◦ g)(x) for

each of (a)
√

x2 + 1, (b) (
√

x + 1)2, (c) sin x2 and (d) cos2 x . Note that more than one

answer is possible for each function.

Solution (a) Notice that x2 + 1 is inside the square root. So, one choice is to have

g(x) = x2 + 1 and f (x) = √
x .

(b) Here,
√

x + 1 is inside the square. So, one choice is g(x)= √
x + 1 and f (x)= x2.

(c) The function can be rewritten as sin (x2), with x2 clearly inside the sine

function. Then, g(x) = x2 and f (x) = sin x is one choice.

(d) The function as written is shorthand for (cos x)2. So, one choice is g(x) = cos x

and f (x) = x2. �
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FIGURE 0.53a

y = x2
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FIGURE 0.53b

y = x2 + 3

In general, it is quite difficult to take the graphs of f (x) and g(x) and produce the graph

of f (g(x)). If one of the functions f and g is linear, however, there is a simple graphical

procedure for graphing the composition. Such linear transformations are explored in the

remainder of this section.

The first case is to take the graph of f (x) and produce the graph of f (x) + c for some

constant c. You should be able to deduce the general result from example 5.4.

EXAMPLE 5.4 Vertical Translation of a Graph

Graph y = x2 and y = x2 + 3; compare and contrast the graphs.

Solution You can probably sketch these by hand. You should get graphs like those in

Figures 0.53a and 0.53b. Both figures show parabolas opening upward. The main obvious

difference is that y = x2 has a y-intercept of 0 and y = x2 + 3 has a y-intercept of 3. In

fact, for any given value of x , the point on the graph of y = x2 + 3 will be plotted

exactly 3 units higher than the corresponding point on the graph of y = x2. This is

shown in Figure 0.54a.

In Figure 0.54b, the two graphs are shown on the same set of axes. To many people,

it does not look like the top graph is the same as the bottom graph moved up 3 units. This

x
42 2 4

5

10

15

20

25
Move graph

up 3 units

y
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y

FIGURE 0.54a

Translate graph up

FIGURE 0.54b

y = x2 and y = x2 + 3
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is an unfortunate optical illusion. Humans usually mentally judge distance between

curves as the shortest distance between the curves. For these parabolas, the shortest

distance is vertical at x = 0 but becomes increasingly horizontal as you move away

from the y-axis. The distance of 3 between the parabolas is measured vertically. �

In general, the graph of y = f (x) + c is the same as the graph of f (x) shifted up (if

c > 0) or down (if c < 0) by |c| units. We usually refer to f (x) + c as a vertical

translation (up or down, by |c| units).

In example 5.5, we explore what happens if a constant is added to x .

EXAMPLE 5.5 A Horizontal Translation

Compare and contrast the graphs of y = x2 and y = (x − 1)2.

Solution The graphs are shown in Figures 0.55a and 0.55b, respectively.
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FIGURE 0.55a

y = x2

FIGURE 0.55b

y = (x − 1)2

Notice that the graph of y = (x − 1)2 appears to be the same as the graph of y = x2,

except that it is shifted 1 unit to the right. This should make sense for the following

reason. Pick a value of x , say, x = 13. The value of (x − 1)2 at x = 13 is 122, the same as

the value of x2 at x = 12, 1 unit to the left. Observe that this same pattern holds for any

x you choose. A simultaneous plot of the two functions (see Figure 0.56) shows this. �

In general, for c > 0, the graph of y = f (x − c) is the same as the graph of

y = f (x) shifted c units to the right. Likewise (again, for c > 0), you get the graph of

f (x + c) by moving the graph of y = f (x) to the left c units. We usually refer to

f (x − c) and f (x + c) as horizontal translations (to the right and left, respectively,

by c units).

x
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y Move graph to

the right one unit

FIGURE 0.56

Translation to the right

To avoid confusion on which way to translate the graph of y = f (x), focus on what

makes the argument (the quantity inside the parentheses) zero. For f (x), this is x = 0, but

for f (x − c) you must have x = c to get f (0) [i.e., the same y-value as f (x) when x = 0].

This says that the point on the graph of y = f (x) at x = 0 corresponds to the point on the

graph of y = f (x − c) at x = c.
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EXAMPLE 5.6 Comparing Vertical and Horizontal Translations

Given the graph of y = f (x) shown in Figure 0.57a, sketch the graphs of y = f (x) − 2

and y = f (x − 2).

Solution To graph y = f (x) − 2, simply translate the original graph down 2 units,

as shown in Figure 0.57b. To graph y = f (x − 2), simply translate the original graph to

the right 2 units (so that the x-intercept at x = 0 in the original graph corresponds to

an x-intercept at x = 2 in the translated graph), as seen in Figure 0.57c.
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FIGURE 0.57a

y = f (x)

FIGURE 0.57b

y = f (x) − 2

FIGURE 0.57c

y = f (x − 2)
�

Example 5.7 explores the effect of multiplying or dividing x or y by a constant.

EXAMPLE 5.7 Comparing Some Related Graphs

Compare and contrast the graphs of y = x2 − 1, y = 4(x2 − 1) and y = (4x)2 − 1.

Solution The first two graphs are shown in Figures 0.58a and 0.58b, respectively.
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FIGURE 0.58a

y = x2 − 1

FIGURE 0.58b

y = 4(x2 − 1)

FIGURE 0.58c

y = x2 − 1 and y = 4(x2 − 1)

These graphs look identical until you compare the scales on the y-axes. The scale in

Figure 0.58b is four times as large, reflecting the multiplication of the original function

by 4. The effect looks different when the functions are plotted on the same scale, as in

Figure 0.58c. Here, the parabola y = 4(x2 − 1) looks thinner and has a different

y-intercept. Note that the x-intercepts remain the same. (Why would that be?)
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The graphs of y = x2 − 1 and y = (4x)2 − 1 are shown in Figures 0.59a and

0.59b, respectively.
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FIGURE 0.59a

y = x2 − 1

FIGURE 0.59b

y = (4x)2 − 1

FIGURE 0.59c

y = x2 − 1 and y = (4x)2 − 1

Can you spot the difference here? In this case, the x-scale has now changed, by the same

factor of 4 as in the function. To see this, note that substituting x = 1/4 into (4x)2 − 1

produces (1)2 − 1, exactly the same as substituting x = 1 into the original function.

When plotted on the same set of axes (as in Figure 0.59c), the parabola y = (4x)2 − 1

looks thinner. Here, the x-intercepts are different, but the y-intercepts are the

same. �

We can generalize the observations made in example 5.7. Before reading our explana-

tion, try to state a general rule for yourself. How are the graphs of the functions c f (x) and

f (cx) related to the graph of y = f (x)?

Based on example 5.7, notice that to obtain a graph of y = c f (x) for some constant

c > 0, you can take the graph of y = f (x) and multiply the scale on the y-axis by c. To

obtain a graph of y = f (cx) for some constant c > 0, you can take the graph of y = f (x)

and multiply the scale on the x-axis by 1/c.

These basic rules can be combined to understand more complicated graphs.
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y = x2
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FIGURE 0.60b

y = 2x2 − 3

EXAMPLE 5.8 A Translation and a Stretching

Describe how to get the graph of y = 2x2 − 3 from the graph of y = x2.

Solution You can get from x2 to 2x2 − 3 by multiplying by 2 and then subtracting 3.

In terms of the graph, this has the effect of multiplying the y-scale by 2 and then

shifting the graph down by 3 units. (See the graphs in Figures 0.60a and 0.60b.) �

EXAMPLE 5.9 A Translation in Both x - and y -Directions

Describe how to get the graph of y = x2 + 4x + 3 from the graph of y = x2.

Solution We can again relate this (and the graph of every quadratic function) to the

graph of y = x2. We must first complete the square. Recall that in this process, you

take the coefficient of x (4), divide by 2 (4/2 = 2) and square the result (22 = 4). Add

and subtract this number and then, rewrite the x-terms as a perfect square. We have

y = x2 + 4x + 3 = (x2 + 4x + 4) − 4 + 3 = (x + 2)2 − 1.



0-47 SECTION 0.5 .. Transformations of Functions 47

To graph this function, take the parabola y = x2 (see Figure 0.61a) and translate the

graph 2 units to the left and 1 unit down. (See Figure 0.61b.)
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FIGURE 0.61a

y = x2

FIGURE 0.61b

y = (x + 2)2 − 1

�

The following table summarizes our discoveries in this section.

Transformations of f (x)

Transformation Form Effect on Graph

Vertical translation f (x) + c |c| units up (c > 0) or down (c < 0)

Horizontal translation f (x + c) |c| units left (c > 0) or right (c < 0)

Vertical scale c f (x) (c > 0) multiply vertical scale by c

Horizontal scale f (cx) (c > 0) divide horizontal scale by c

You will explore additional transformations in the exercises.

EXERCISES 0.5

WRITING EXERCISES

1. The restricted domain of example 5.2 may be puzzling. Con-

sider the following analogy. Suppose you have an airplane

flight fromNewYork toLosAngeleswith a stop for refueling in

Minneapolis. If bad weather has closed the airport in Minnea-

polis, explain why your flight will be canceled (or at least re-

routed) even if theweather is great inNewYork andLosAngeles.

2. Explain why the graphs of y = 4(x2 − 1) and y = (4x)2 − 1

in Figures 0.58c and 0.59c appear “thinner” than the graph of

y = x2 − 1.

3. As illustrated in example 5.9, completing the square can

be used to rewrite any quadratic function in the form

a(x − d)2 + e. Using the transformation rules in this section,

explain why this means that all parabolas (with a > 0) will

look essentially the same.

4. Explain why the graph of y = f (x + 4) is obtained by moving

the graph of y = f (x) four units to the left, instead of to the

right.
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In exercises 1–6, find the compositions f ◦ g and g ◦ f , and

identify their respective domains.

1. f (x) = x + 1, g(x) = √
x − 3

2. f (x) = x − 2, g(x) = √
x + 1

3. f (x) = 1

x
, g(x) = x3 + 4

4. f (x) = √
1 − x, g(x) = tan x

5. f (x) = x2 + 1, g(x) = sin x

6. f (x) = 1

x2 − 1
, g(x) = x2 − 2

In exercises 7–14, identify functions f(x) and g(x) such that the

given function equals ( f ◦g)(x).

7.
√

x4 + 1

8. 3
√

x + 3

9.
1

x2 + 1

10.
1

x2
+ 1

11. (4x + 1)2 + 3

12. 4 (x + 1)2 + 3

13. sin3 x

14. sin x3

In exercises 15–20, identify functions f (x), g(x) and h(x) such

that the given function equals [ f ◦(g◦h)] (x).

15.
3√

sin x + 2

16.
√

x4 + 1

17. cos3(4x − 2)

18. tan
√

x2 + 1

19. 4 cos (x2) − 5

20. [tan (3x + 1)]2

In exercises 21–28, use the graph of y  f (x) given in the figure

to graph the indicated function.

21. f (x) − 3

22. f (x + 2)

23. f (x − 3)

24. f (x) + 2

25. f (2x)

26. 3 f (x)

27. 4 f (x) − 1

28. 3 f (x + 2)

x
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In exercises 29–36, use the graph of y  f (x) given in the figure

to graph the indicated function.

29. f (x − 4)

30. f (x + 3)

31. f (2x)

32. f (2x − 4)

33. f (3x + 3)

34. 3 f (x)

35. 2 f (x) − 4

36. 3 f (x) + 3

y

x
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In exercises 37–42, complete the square and explain how to

transform the graph of y  x2 into the graph of the given

function.

37. f (x) = x2 + 2x + 1

38. f (x) = x2 − 4x + 4

39. f (x) = x2 + 2x + 4

40. f (x) = x2 − 4x + 2

41. f (x) = 2x2 + 4x + 4

42. f (x) = 3x2 − 6x + 2
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In exercises 43–46, graph the given function and compare to the

graph of y  x2 – 1.

43. f (x) = −2(x2 − 1)

44. f (x) = −3(x2 − 1)

45. f (x) = −3(x2 − 1) + 2

46. f (x) = −2(x2 − 1) − 1

In exercises 47–50, graph the given function and compare to the

graph of y  (x − 1)2 − 1  x2 − 2x.

47. f (x) = (−x)2 − 2(−x)

48. f (x) = (−2x)2 − 2(−2x)

49. f (x) = (−x)2 − 2(−x) + 1

50. f (x) = (−3x)2 − 2(−3x) − 3

51. Based on exercises 43–46, state a rule for transforming the

graph of y = f (x) into the graph of y = c f (x) for c < 0.

52. Based on exercises 47–50, state a rule for transforming the

graph of y = f (x) into the graph of y = f (cx) for c < 0.

53. Sketch the graph of y = |x |3. Explain why the graph of

y = |x |3 is identical to that of y = x3 to the right of the

y-axis. For y = |x |3, describe how the graph to the left of

the y-axis compares to the graph to the right of the y-axis. In

general, describe how to draw the graph of y = f (|x |) given
the graph of y = f (x).

54. For y = x3, describe how the graph to the left of the y-axis

compares to the graph to the right of the y-axis. Show that

for f (x) = x3, we have f (−x) = − f (x). In general, if you

have the graph of y = f (x) to the right of the y-axis and

f (−x) = − f (x) for all x , describe how to graph y = f (x)

to the left of the y-axis.

55. Iterations of functions are important in a variety of ap-

plications. To iterate f (x), start with an initial value x0
and compute x1 = f (x0), x2 = f (x1), x3 = f (x2) and so

on. For example, with f (x) = cos x and x0 = 1, the iter-

ates are x1 = cos 1 ≈ 0.54, x2 = cos x1 ≈ cos 0.54 ≈ 0.86,

x3 ≈ cos 0.86 ≈ 0.65 and so on. Keep computing iterates and

show that they get closer and closer to 0.739085. Then pick

your own x0 (any number you like) and show that the iterates

with this new x0 also get closer and closer to 0.739085.

56. Referring to exercise 55, show that the iterates of a function can

be written as x1 = f (x0), x2 = f ( f (x0)), x3 = f ( f ( f (x0)))

and so on. Graph y = cos (cos x), y = cos (cos (cos x)) and

y = cos (cos (cos (cos x))). The graphs should look more and

more like a horizontal line. Use the result of exercise 55 to

identify the limiting line.

57. Compute several iterates of f (x) = sin x (see exercise 55)with

a variety of starting values. What happens to the iterates in the

long run?

58. Repeat exercise 57 for f (x) = x2.

59. In cases where the iterates of a function (see exercise 55)

repeat a single number, that number is called a fixed point.

Explain why any fixed point must be a solution of the equa-

tion f (x) = x . Find all fixed points of f (x) = cos x by solv-

ing the equation cos x = x . Compare your results to that of

exercise 55.

60. Find all fixed points of f (x) = sin x (see exercise 59). Com-

pare your results to those of exercise 57.

EXPLORATORY EXERCISES

1. You have explored how completing the square can transform

any quadratic function into the form y = a(x − d)2 + e. We

concluded that all parabolas with a > 0 look alike. To see that

the same statement is not true of cubic polynomials, graph

y = x3 and y = x3 − 3x . In this exercise, you will use com-

pleting the cube to determine howmany different cubic graphs

there are. To see what “completing the cube” would look like,

first show that (x + a)3 = x3 + 3ax2 + 3a2x + a3. Use this

result to transform the graph of y = x3 into the graphs of

(a) y = x3 − 3x2 + 3x − 1 and (b) y = x3 − 3x2 + 3x + 2.

Show that you can’t get a simple transformation to

y = x3−3x2+4x −2. However, show that y = x3−3x2+4x −2

can be obtained from y = x3 + x by basic transforma-

tions. Show that the following statement is true: any cubic

function (y = ax3 + bx2 + cx + d) can be obtained with ba-

sic transformations from y = ax3 + kx for some constant k.

2. In many applications, it is important to take a section of a

graph (e.g., some data) and extend it for predictions or other

analysis. For example, suppose you have an electronic signal

equal to f (x) = 2x for 0 ≤ x ≤ 2. To predict the value of the

signal at x = −1, you would want to know whether the signal

was periodic. If the signal is periodic, explain why f (−1) = 2

would be a good prediction. In some applications, you would

assume that the function is even. That is, f (x) = f (−x) for all

x . In this case, youwant f (x) = 2(−x) = −2x for−2≤ x ≤ 0.

Graph the even extension f (x) =
 −2x if − 2 ≤ x ≤ 0

2x if 0 ≤ x ≤ 2
.

Find the even extension for (a) f (x) = x2 + 2x + 1, 0 ≤ x ≤ 2

and (b) f (x) = sin x , 0 ≤ x ≤ 2.

3. Similar to the even extension discussed in exploratory ex-

ercise 2, applications sometimes require a function to be

odd; that is, f (−x) = − f (x). For f (x) = x2, 0 ≤ x ≤ 2,

the odd extension requires that for −2 ≤ x ≤ 0,

f (x) = − f (−x) = −(−x)2 = −x2, so that

f (x) =
 −x2 if − 2 ≤ x ≤ 0

x2 if 0 ≤ x ≤ 2
. Graph y = f (x) and dis-

cuss how to graphically rotate the right half of the graph

to get the left half of the graph. Find the odd extension for

(a) f (x) = x2 + 2x , 0 ≤ x ≤ 2 and (b) f (x) = 1 − cos x ,

0 ≤ x ≤ 2.
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Review Exercises

WRITING EXERCISES

The following list includes terms that are defined and theorems that

are stated in this chapter. For each term or theorem, (1) give a precise

definition or statement, (2) state in general terms what it means and

(3) describe the types of problems with which it is associated.

Slope of a line Parallel lines Perpendicular lines

Domain Rational function Zero of a function

Quadratic formula Intercepts Factor Theorem

Graphing window Vertical Asymptote Sine function

Cosine function Periodic function Composition

TRUE OR FALSE

State whether each statement is true or false and briefly explain

why. If the statement is false, try to “fix it” by modifying the given

statement to a new statement that is true.

1. For a graph, you can compute the slope using any two points

and get the same value.

2. All graphs must pass the vertical line test.

3. A cubic function has a graph with one local maximum and one

local minimum.

4. If f is a trigonometric function, then there is exactly one solu-

tion of the equation f (x) = 1.

5. The period of the function f (x) = sin(kx) is 2π

k
.

6. All quadratic functions have graphs that look like the parabola

y = x2.

In exercises 1 and 2, find the slope of the line through the given

points.

1. (2, 3), (0, 7)

2. (1, 4), (3, 1)

In exercises 3 and 4, determine whether the lines are parallel,

perpendicular or neither.

3. y = 3x + 1 and y = 3(x − 2) + 4

4. y = −2(x + 1) − 1 and y = 1

2
x + 2

5. Determine whether the points (1, 2), (2, 4) and (0, 6) form the

vertices of a right triangle.

6. The data represent populations at various times. Plot the points,

discuss any patterns and predict the population at the next time:

(0, 2100), (1, 3050), (2, 4100) and (3, 5050).

7. Find an equation of the line through the points indicated in the

graph that follows and compute the y-coordinate correspond-

ing to x = 4.

y

x
2 4 6

2

4

8. For f (x) = x2 − 3x − 4, compute f (0), f (2) and f (4).

In exercises 9 and 10, find an equation of the line with given

slope and point.

9. m = − 1

3
, (−1,−1) 10. m = 1

4
, (0, 2)

In exercises 11 and 12, use the vertical line test to determine

whether the curve is the graph of a function.

11. y

x

12. y

x

In exercises 13 and 14, find the domain of the given function.

13. f (x) =
√
4 − x2 14. f (x) = x − 2

x2 − 2
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Review Exercises

In exercises 15–26, sketch a graph of the function showing ex-

trema, intercepts and vertical asymptotes.

15. f (x) = x2 + 2x − 8 16. f (x) = x3 − 6x + 1

17. f (x) = x4 − 2x2 + 1 18. f (x) = x5 − 4x3 + x − 1

19. f (x) = 4x

x + 2
20. f (x) = x − 2

x2 − x − 2

21. f (x) = sin 3x 22. f (x) = tan 4x

23. f (x) = sin x + 2 cos x 24. f (x) = sin x + cos 2x

25. f (x) = sec 2x 26. f (x) = 3 tan 2x

27. Determine all intercepts of y = x2 + 2x − 8. (See exercise 15.)

28. Determine all intercepts of y = x4 − 2x2 + 1. (See exercise 17.)

29. Find all vertical asymptotes of y = 4x

x + 2
.

30. Find all vertical asymptotes of y = x − 2

x2 − x − 2
.

In exercises 31–34, find or estimate all zeros of the given

function.

31. f (x) = x2 − 3x − 10 32. f (x) = x3 + 4x2 + 3x

33. f (x) = x3 − 3x2 + 2 34. f (x) = x4 − 3x − 2

In exercises 35 and 36, determine the number of solutions.

35. sin x = x3

36.
√

x2 + 1 = x2 − 1

37. A surveyor stands 50 feet from a telephone pole and measures

an angle of 34◦ to the top. How tall is the pole?

38. Find sin θ , given that 0 < θ < π

2
and cos θ = 1

5
.

39. Convert to fractional or root form: (a) 5−1/2 (b) 3−2.

40. Convert to exponential form: (a)
2√
x
(b)

3

x2
.

In exercises 41 and 42, find f ◦g and g◦ f , and identify their

respective domains.

41. f (x) = x2, g(x) = √
x − 1

42. f (x) = x2, g(x) = 1

x2 − 1

In exercises 43 and 44, identify functions f (x) and g(x) such

that ( f ◦g)(x) equals the given function.

43. cos (3x2 + 2) 44.
√
sin x + 2

In exercises 45 and 46, complete the square and explain how

to transform the graph of y  x2 into the graph of the given

function.

45. f (x) = x2 − 4x + 1 46. f (x) = x2 + 4x + 6

In exercises 47 and 48, find all solutions of the equation.

47. sin 2x = 1 48. cos 3x = 1

2

EXPLORATORY EXERCISES

1. In this exercise you will explore polynomials of degree four.

Start by graphing y = x4, y = x4 + 1, y = x4 − 1 and other

graphs of the form y = x4 + C0. What effect does the co-

efficient C0 have on the graph? Continue with graphs of

y = x4 + x2, y = x4 − x2 and other graphs of the form

y = x4 + C2x
2. What effect does the coefficient C2 have

on the graph? Try other graphs to determine the ef-

fects of the coefficients C1 and C3 on the graph of

y = x4 + C3x
3 + C2x

2 + C1x + C0.

2. Baseball players often say that an unusually fast pitch rises or

even hops up as it reaches the plate. One explanation of this il-

lusion involves the players’ inability to track the ball all theway

to the plate. The player must compensate by predicting where

the ball will be when it reaches the plate. Suppose the height of

a pitch when it reaches home plate is h = −(240/v)2 + 6 feet,

for a pitch with velocity v ft/s. (This equation takes into con-

sideration gravity but not air resistance.) Halfway to the plate,

the height would be h = −(120/v)2 + 6 feet. Compare the

halfway heights for pitches with v = 132 and v = 139 (about

90 and 95 mph, respectively). Would a batter be able to tell

much difference between them? Now compare the heights

at the plate. Why might the batter think that the faster pitch

hopped up right at the plate? How many inches did the faster

pitch hop?





CHA P T E R

1
Limits and Continuity

When you enter a darkened room, your eyes adjust to the reduced level

of light by increasing the size of your pupils. Enlarging the pupils allows

more light to enter the eyes, which makes objects around you easier to

see. By contrast, when you enter a brightly lit room, your pupils contract,

reducing the amount of light entering the eyes. This is necessary since

too much light will overload your visual system.

This visual adjustment mech-

anism is present in many animals.

Researchers study this mechanism

by performing experiments and try-

ing to find a mathematical descrip-

tion of the results. In this case, you

might want to represent the size

of the pupils as a function of the

amount of light present. Two basic

characteristics of such a mathematical model

would be

Small pupils

Large pupils

1. As the amount of light (x) increases, the

pupil size (y) decreases down to some

minimum value p; and

2. As the amount of light (x) decreases, the

pupil size (y) increases up to some maxi-

mum value P.

Finding a function with these two prop-

erties can be a challenge. (Try it!) One pos-

sible graph of such a function is shown in

Figure 1.1. (See example 5.9 for more.) In

this chapter, we develop the concept of limit,

which can be used to describe functions with

specific properties such as those listed above.

The limit is the fundamental notion of cal-

culus. This underlying concept is the thread

that binds together virtually all of the calculus you are about to study.An investment

in carefully studying limits now will have very significant payoffs throughout the

remainder of your calculus experience and beyond.

p

P

P
u
p
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m
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Intensity of light

FIGURE 1.1
Size of pupils

53
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1.1 A BRIEF PREVIEW OF CALCULUS: TANGENT LINES
AND THE LENGTH OF A CURVE

In this section,we approach the boundary between precalculusmathematics and the calculus

by investigating several important problems requiring the use of calculus. Recall that the

slope of a straight line is the change in y divided by the change in x . This fraction is the

same regardless of which two points you use to compute the slope. For example, the points

(0, 1), (1, 4) and (3, 10) all lie on the line y = 3x + 1. The slope of 3 can be obtained from

any two of the points. For instance,

m = 4 − 1

1 − 0
= 3 or m = 10 − 1

3 − 0
= 3.

0.96 0.98 1.00 1.02 1.04

1.90

1.95

2.00

2.05

2.10

y

x

FIGURE 1.3
y = x2 + 1

In the calculus, we generalize this problem to find the slope of a curve at a point. For

instance, supposewewanted to find the slope of the curve y = x2 + 1 at the point (1, 2). You

might think of picking a second point on the parabola, say (2, 5). The slope of the line through

these two points (called a secant line; see Figure 1.2a) is easy enough to compute. We have

msec = 5 − 2

2 − 1
= 3.

However, using the points (0, 1) and (1, 2), we get a different slope (see Figure 1.2b):

msec = 2 − 1

1 − 0
= 1.

y

0.5 1 1.5 2 2.5 0.5

 2

2

4

6

x

y

0.5 1 1.5 2 2.5 0.5

 2

2

4

6

x

FIGURE 1.2a
Secant line, slope = 3

FIGURE 1.2b
Secant line, slope = 1

For curves other than straight lines, the slopes of secant lines joining different points are

generally not the same, as seen in Figures 1.2a and 1.2b.

If you get different slopes using different pairs of points, then what exactly does it mean

for a curve to have a slope at a point? The answer can be visualized by graphically zooming

in on the specified point. Take the graph of y = x2 + 1 and zoom in tight on the point

(1, 2). You should get a graph something like the one in Figure 1.3. The graph looks very

much like a straight line. In fact, the more you zoom in, the straighter the curve appears

to be and the less it matters which two points are used to compute a slope. So, here’s the

strategy: pick several points on the parabola, each closer to the point (1, 2) than the previous

one. Compute the slopes of the lines through (1, 2) and each of the points. The closer the

second point gets to (1, 2), the closer the computed slope is to the answer you seek.
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For example, the point (1.5, 3.25) is on the parabola fairly close to (1, 2). The slope of

the line joining these points is

msec = 3.25 − 2

1.5 − 1
= 2.5.

The point (1.1, 2.21) is even closer to (1, 2). The slope of the secant line joining these two

points is

msec = 2.21 − 2

1.1 − 1
= 2.1.

Continuing in this way, observe that the point (1.01, 2.0201) is closer yet to the point

(1, 2). The slope of the secant line through these points is

msec = 2.0201 − 2

1.01 − 1
= 2.01.

The slopes of the secant lines that we computed (2.5, 2.1 and 2.01) are getting closer and

closer to the slope of the parabola at the point (1, 2). Based on these calculations, it seems

reasonable to say that the slope of the curve is approximately 2.

Example 1.1 takes our introductory example just a bit further.

EXAMPLE 1.1 Estimating the Slope of a Curve

Estimate the slope of y = x2 + 1 at x = 1.

Solution We focus on the point whose coordinates are x = 1 and y = 12 + 1 = 2. To

estimate the slope, choose a sequence of points near (1, 2) and compute the slopes of

the secant lines joining those points with (1, 2). (We showed sample secant lines in

Figures 1.2a and 1.2b.) Choosing points with x > 1 (x-values of 2, 1.1 and 1.01) and

points with x < 1 (x-values of 0, 0.9 and 0.99), we compute the corresponding y-values

using y = x2 + 1 and get the slopes shown in the following table.

Second Point msec

(2, 5)
5 − 2

2 − 1
= 3

(1.1, 2.21)
2.21 − 2

1.1 − 1
= 2.1

(1.01, 2.0201)
2.0201 − 2

1.01 − 1
= 2.01

Second Point msec

(0, 1)
1 − 2

0 − 1
= 1

(0.9, 1.81)
1.81 − 2

0.9 − 1
= 1.9

(0.99, 1.9801)
1.9801 − 2

0.99 − 1
= 1.99

Observe that in both columns, as the second point gets closer to (1, 2), the slope of

the secant line gets closer to 2. A reasonable estimate of the slope of the curve at the

point (1, 2) is then 2. �

In Chapter 2, we develop a powerful technique for computing such slopes exactly

(and easily). Note what distinguishes the calculus problem from the corresponding algebra

problem. The calculus problem involves a process we call a limit. While we presently can
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only estimate the slope of a curve using a sequence of approximations, the limit allows us

to compute the slope exactly.

EXAMPLE 1.2 Estimating the Slope of a Curve

Estimate the slope of y = sin x at x = 0.

y

x

qq 

FIGURE 1.4
y = sin x

Solution This turns out to be a very important problem, one that we will return to

later. For now, choose a sequence of points on the graph of y = sin x near (0, 0) and

compute the slopes of the secant lines joining those points with (0, 0). The following

table shows one set of choices.

Second Point msec

(1, sin 1) 0.84147

(0.1, sin 0.1) 0.99833

(0.01, sin 0.01) 0.99998

Second Point msec

(−1, sin (−1)) 0.84147

(−0.1, sin (−0.1)) 0.99833

(−0.01, sin (−0.01)) 0.99998

Note that as the second point gets closer and closer to (0, 0), the slope of the secant line

(msec) appears to get closer and closer to 1. A good estimate of the slope of the curve at

the point (0, 0) would then appear to be 1. Although we presently have no way of

computing the slope exactly, this is consistent with the graph of y = sin x in Figure 1.4.

Note that near (0, 0), the graph resembles that of y = x , a straight line of slope 1. �

A second problem requiring the power of calculus is that of computing distance along

a curved path. While this problem is of less significance than our first example (both

historically and in the development of the calculus), it provides a good indication of the need

for mathematics beyond simple algebra. You should pay special attention to the similarities

between the development of this problem and our earlier work with slope.

Recall that the (straight-line) distance between two points (x1, y1) and (x2, y2) is

d{(x1, y1), (x2, y2)} =
 
(x2 − x1)2 + (y2 − y1)2.

For instance, the distance between the points (0, 1) and (3, 4) is

d{(0, 1), (3, 4)} =
 
(3 − 0)2 + (4 − 1)2 = 3

√
2 ≈ 4.24264.

However, this is not the only way we might want to compute the distance between these

two points. For example, suppose that you needed to drive a car from (0, 1) to (3, 4) along

a road that follows the curve y = (x − 1)2. (See Figure 1.5a.) In this case, you don’t care

about the straight-line distance connecting the two points, but only about how far you must

drive along the curve (the length of the curve or arc length).

y

x
1 2 3 4

1

2

3

4
(3, 4)

(0, 1)

FIGURE 1.5a
y = (x − 1)2

Notice that the distance along the curve must be greater than 3
√
2 (the straight-line

distance). Taking a cue from the slope problem, we can formulate a strategy for obtaining

a sequence of increasingly accurate approximations. Instead of using just one line segment

to get the approximation of 3
√
2, we could use two line segments, as in Figure 1.5b. Notice

that the sum of the lengths of the two line segments appears to be a much better ap-

proximation to the actual length of the curve than the straight-line distance used previously.
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y
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(3, 4)

(0, 1)
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FIGURE 1.5b
Two line segments

FIGURE 1.5c
Three line segments

This distance is

d2 = d{(0, 1), (1.5, 0.25)} + d{(1.5, 0.25), (3, 4)}
=

 
(1.5 − 0)2 + (0.25 − 1)2 +

 
(3 − 1.5)2 + (4 − 0.25)2 ≈ 5.71592.

You’re probably way ahead of us by now. If approximating the length of the curve

with two line segments gives an improved approximation, why not use three or four or

more? Using the three line segments indicated in Figure 1.5c, we get the further improved

approximation

d3 = d{(0, 1), (1, 0)} + d{(1, 0), (2, 1)} + d{(2, 1), (3, 4)}
=

 
(1 − 0)2 + (0 − 1)2 +

 
(2 − 1)2 + (1 − 0)2 +

 
(3 − 2)2 + (4 − 1)2

= 2
√
2 +

√
10 ≈ 5.99070.

No. of Segments Distance

1 4.24264

2 5.71592

3 5.99070

4 6.03562

5 6.06906

6 6.08713

7 6.09711

Note that the more line segments we use, the better the approximation appears to be.

This process will become much less tedious with the development of the definite integral in

Chapter 4. For now we list a number of these successively better approximations (produced

using points on the curve with evenly spaced x-coordinates) in the table found in the mar-

gin. The table suggests that the length of the curve is approximately 6.1 (quite far from the

straight-line distance of 4.2). If we continued this process using more and more line seg-

ments, the sum of their lengths would approach the actual length of the curve (about 6.126).

As in the problemof computing the slopeof a curve, the exact arc length is obtained as a limit.

EXAMPLE 1.3 Estimating the Arc Length of a Curve

Estimate the arc length of the curve y = sin x for 0 ≤ x ≤ π . (See Figure 1.6a.)

y

y = sin x

x

1

q p

FIGURE 1.6a
Approximating the curve with two

line segments

Solution The endpoints of the curve on this interval are (0, 0) and (π , 0). The distance

between these points is d1 = π . The point on the graph of y = sin x corresponding to

the midpoint of the interval [0, π ] is (π /2, 1). The distance from (0, 0) to (π/2, 1) plus

the distance from (π/2, 1) to (π , 0) (illustrated in Figure 1.6a) is

d2 =
  π

2

 2

+ 1 +
  π

2

 2

+ 1 ≈ 3.7242.
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Using the five points (0, 0), (π/4, 1/
√
2), (π/2, 1), (3π/4, 1/

√
2) and (π , 0) (i.e., four line

segments, as indicated in Figure 1.6b), the sum of the lengths of these line segments is

d4 = 2

  π

4

 2

+ 1

2
+ 2

  π

4

 2

+
 
1 − 1√

2

 2

≈ 3.7901.

Using nine points (i.e., eight line segments), you need a good calculator and some

patience to compute the distance of 3.8125. A table showing further approximations is

given in the margin. At this stage, it would be reasonable to estimate the length of the

sine curve on the interval [0, π ] as slightly more than 3.8. �

y

y = sin x

x
qd pw

FIGURE 1.6b
Approximating the curve with

four line segments

Number of Sum of

Line Segments Lengths

8 3.8125

16 3.8183

32 3.8197

64 3.8201

BEYOND FORMULAS

In the process of estimating both the slope of a curve and the length of a curve, we

make some reasonably obvious (straight-line) approximations and then systematically

improve on those approximations. In each case, the shorter the line segments are, the

closer the approximations are to the desired value. The essence of this is the concept of

limit, which separates precalculus mathematics from the calculus. At first glance, this

limit idea might seem of little practical importance, since in our examples we never

compute the exact solution. In the chapters to come, we will find remarkably simple

shortcuts to exact answers. Can you think ofways to find the exact slope in example 1.1?

EXERCISES 1.1

WRITING EXERCISES

1. Explain why each approximation of arc length in example 1.3

is less than the actual arc length.

2. To estimate the slope of f (x) = x2 + 1 at x = 1, you

would compute the slopes of various secant lines. Note that

y = x2 + 1 curves up. Explain why the secant line connecting

(1, 2) and (1.1, 2.21) will have slope greater than the slope of

the curve at (1, 2). Discuss how the slope of the secant line

between (1, 2) and (0.9, 1.81) compares to the slope of the

curve at (1, 2).

In exercises 1–12, estimate the slope (as in example 1.1) of

y  f (x) at x  a.

1. f (x) = x2 + 1, a = 1.5 2. f (x) = x2 + 1, a = 2

3. f (x) = cos x, a = 0 4. f (x) = cos x, a = π/2

5. f (x) = x3 + 2, a = 1 6. f (x) = x3 + 2, a = 2

7. f (x) = √
x + 1, a = 0 8. f (x) = √

x + 1, a = 3

9. f (x) = tan x, a = 0 10. f (x) = tan x, a = 1

11. Estimate the length of the curve y =
√
1 − x2 for 0 ≤ x ≤ 1

with (a) n = 4 and (b) n = 8 line segments. Explain why the

exact length is π/2. How accurate are your estimates?

12. Estimate the length of the curve y =
√
9 − x2 for 0 ≤ x ≤ 3

with (a) n = 4 and (b) n = 8 line segments. Explain why the

exact length is 3π/2. How would an estimate of π obtained

from part (b) of this exercise compare to an estimate of π

obtained from part (b) of exercise 11?

In exercises 13–20, estimate the length of the curve y  f (x) on

the given interval using (a) n  4 and (b) n  8 line segments.

(c) If you can program a calculator or computer, use larger n’s

and conjecture the actual length of the curve.

13. f (x) = x2 + 1, 0 ≤ x ≤ 2

14. f (x) = x3 + 2, 0 ≤ x ≤ 1

15. f (x) = cos x, 0 ≤ x ≤ π/2

16. f (x) = sin x, 0 ≤ x ≤ π/2

17. f (x) = √
x + 1, 0 ≤ x ≤ 3

18. f (x) = 1/x, 1 ≤ x ≤ 2
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19. f (x) = x2 + 1,−2 ≤ x ≤ 2

20. f (x) = x3 + 2,−1 ≤ x ≤ 1

21. An important problem in calculus is finding the area of a re-

gion. Sketch the parabola y = 1 − x2 and shade in the region

above the x-axis between x = −1 and x = 1. Then sketch in

the following rectangles: (1) height f (− 3
4
) andwidth 1

2
extend-

ing from x = −1 to x = − 1
2
, (2) height f (− 1

4
) and width 1

2

extending from x = − 1
2
to x = 0, (3) height f ( 1

4
) and width 1

2

extending from x = 0 to x = 1
2
and (4) height f ( 3

4
) and width

1
2
extending from x = 1

2
to x = 1. Compute the sum of the

areas of the rectangles. Based on your sketch, does this give

you a good approximation of the area under the parabola?

22. To improve the approximation of exercise 21, divide the inter-

val [−1, 1] into 8 pieces and construct a rectangle of the appro-

priate height on each subinterval. Compared to the approxima-

tion in exercise 21, explain why you would expect this to be a

better approximation of the actual area under the parabola.

23. Use a computer or calculator to compute an approximation of

the area in exercise 21 using (a) 16 rectangles, (b) 32 rectangles

and (c) 64 rectangles. Use these calculations to conjecture the

exact value of the area under the parabola.

24. Use the technique of exercises 21–23 to estimate the area below

y = sin x and above the x-axis between x = 0 and x = π .

25. Use the technique of exercises 21–23 to estimate the area

below y = x3 and above the x-axis between x = 0 and x = 1.

26. Use the technique of exercises 21–23 to estimate the area

below y = x3 and above the x-axis between x = 0 and x = 2.

EXPLORATORY EXERCISE

1. Several central concepts of calculus have been introduced in

this section. An important aspect of our future development of

calculus is to derive simple techniques for computing quantities

such as slope and arc length. In this exercise, youwill learn how

to directly compute the slope of a curve at a point. Suppose you

want the slope of y = x2 at x = 1. You could start by comput-

ing slopes of secant lines connecting the point (1, 1)with nearby

points on the graph. Suppose the nearby point has x-coordinate

1 + h, where h is a small (positive or negative) number. Ex-

plain why the corresponding y-coordinate is (1 + h)2. Show

that the slope of the secant line is
(1 + h)2 − 1

1 + h − 1
= 2 + h. As h

gets closer and closer to 0, this slope better approximates the

slope of the tangent line. Letting h approach 0, show that the

slope of the tangent line equals 2. In a similar way, show that

the slope of y = x2 at x = 2 is 4 and find the slope of y = x2

at x = 3. Based on your answers, conjecture a formula for the

slope of y = x2 at x = a, for any unspecified value of a.

1.2 THE CONCEPT OF LIMIT

In this section, we develop the notion of limit using some common language and illustrate

the idea with some simple examples. The notion turns out to be a rather subtle one, easy

to think of intuitively, but a bit harder to pin down in precise terms. We present the precise

definition of limit in section 1.6. There, we carefully define limits in considerable detail.

The more informal notion of limit that we introduce and work with here and in sections 1.3,

1.4 and 1.5 is adequate for most purposes.

y

x
2 2

2

xx

4

f (x)

f (x)

FIGURE 1.7a

y = x2 − 4

x − 2

As a start, consider the functions

f (x) = x2 − 4

x − 2
and g(x) = x2 − 5

x − 2
.

Notice that both functions are undefined at x = 2. So, what does this mean, beyond

saying that you cannot substitute 2 for x? We often find important clues about the behavior

of a function from a graph. (See Figures 1.7a and 1.7b.)

Notice that the graphs of these two functions look quite different in the vicinity of

x = 2. Although we can’t say anything about the value of these functions at x = 2 (since

this is outside the domain of both functions), we can examine their behavior in the vicinity of
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this point. We consider these functions one at a time. First, for f (x) = x2 − 4

x − 2
, we compute

some values of the function for x close to 2, as in the following tables.

x f (x)  
x2 − 4

x − 2

1.9 3.9

1.99 3.99

1.999 3.999

1.9999 3.9999

x f (x)  
x2 − 4

x − 2

2.1 4.1

2.01 4.01

2.001 4.001

2.0001 4.0001

y

x
105 10

 10

 5

5

10

FIGURE 1.7b

y = x2 − 5

x − 2

Notice that as you move down the first column of the table, the x-values get closer to 2,

but are all less than 2. We use the notation x → 2− to indicate that x approaches 2 from the

left side. Notice that the table and the graph both suggest that as x gets closer and closer to

2 (with x < 2), f (x) is getting closer and closer to 4. In view of this, we say that the limit

of f(x) as x approaches 2 from the left is 4, written

lim
x→2−

f (x) = 4.

Likewise, we need to consider what happens to the function values for x close to 2 but

larger than 2. Here, we use the notation x → 2+ to indicate that x approaches 2 from the

right side.We compute some of these values in the second table.

Again, the table and graph both suggest that as x gets closer and closer to 2 (with

x > 2), f (x) is getting closer and closer to 4. In view of this, we say that the limit of f(x)

as x approaches 2 from the right is 4, written

lim
x→2+

f (x) = 4.

We call lim
x→2−

f (x) and lim
x→2+

f (x) one-sided limits. Since the two one-sided limits of

f (x) are the same,we summarize our results by saying that the limit of f(x) as x approaches

2 is 4, written

lim
x→2

f (x) = 4.

The notion of limit aswe have described it here is intended to communicate the behavior

of a function near somepoint of interest, but not actually at that point.Wefinally observe that

we can also determine this limit algebraically, as follows. Notice that since the expression

in the numerator of f (x) = x2 − 4

x − 2
factors, we can write

lim
x→2

f (x) = lim
x→2

x2 − 4

x − 2

= lim
x→2

(x − 2)(x + 2)

x − 2
Cancel the factors of (x − 2).

= lim
x→2

(x + 2) = 4, As x approaches 2, (x + 2) approaches 4.

where we can cancel the factors of (x − 2) since in the limit as x → 2, x is close to 2, but

x  = 2, so that x − 2  = 0.
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x g(x)  
x2 − 5

x − 2

1.9 13.9

1.99 103.99

1.999 1003.999

1.9999 10,003.9999

x g(x)  
x2 − 5

x − 2

2.1 −5.9

2.01 −95.99

2.001 −995.999

2.0001 −9995.9999

Similarly, we consider one-sided limits for g(x) = x2 − 5

x − 2
, as x → 2. Based on the

graph in Figure 1.7b and the table of approximate function values shown in the margin,

observe that as x gets closer and closer to 2 (with x < 2), g(x) increaseswithout bound. Since

there is no number that g(x) is approaching, we say that the limit of g(x) as x approaches 2

from the left does not exist, written

lim
x→2−

g(x) does not exist.

Similarly, the graph and the table of function values for x > 2 (shown in the margin)

suggest that g(x) decreases without bound as x approaches 2 from the right. Since there is

no number that g(x) is approaching, we say that

lim
x→2+

g(x) does not exist.

Finally, since there is no common value for the one-sided limits of g(x) (in fact, neither

limit exists), we say that the limit of g(x) as x approaches 2 does not exist, written

lim
x→2

g(x) does not exist.

Before moving on, we should summarize what we have said about limits.

A limit exists if and only if both corresponding one-sided limits exist and are equal.

That is,

lim
x→a

f (x) = L , for some number L , if and only if lim
x→a−

f (x) = lim
x→a+

f (x) = L .

In other words, we say that lim
x→a

f (x) = L if we can make f (x) as close as we might like to

L , by making x sufficiently close to a (on either side of a), but not equal to a.

Note that we can think about limits from a purely graphical viewpoint, as in

example 2.1.

y

x
1 2

 2

 1

1

2

 2  1

FIGURE 1.8
y = f (x)

EXAMPLE 2.1 Determining Limits Graphically

Use the graph in Figure 1.8 to determine lim
x→1−

f (x), lim
x→1+

f (x), lim
x→1

f (x) and lim
x→−1

f (x).

Solution For lim
x→1−

f (x), we consider the y-values as x gets closer to 1, with x < 1.

That is, we follow the graph toward x = 1 from the left (x < 1). Observe that the graph

dead-ends into the open circle at the point (1, 2). Therefore, we say that lim
x→1−

f (x) = 2.

For lim
x→1+

f (x), we follow the graph toward x = 1 from the right (x > 1). In this case,

the graph dead-ends into the solid circle located at the point (1, −1). For this reason, we

say that lim
x→1+

f (x) = −1. Because lim
x→1−

f (x)  = lim
x→1+

f (x), we say that lim
x→1

f (x) does

not exist. Finally, we have that lim
x→−1

f (x) = 1, since the graph approaches a y-value of

1 as x approaches −1 both from the left and from the right. �
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y

x
2Q

 3 xx

 3

3

f (x)

f (x)

 

FIGURE 1.9

lim
x→−3

3x + 9

x2 − 9
= −1

2

x
3x  9

x2 − 9

−3.1 −0.491803

−3.01 −0.499168

−3.001 −0.499917

−3.0001 −0.499992

x
3x  9

x2 − 9

−2.9 −0.508475

−2.99 −0.500835

−2.999 −0.500083

−2.9999 −0.500008

EXAMPLE 2.2 A Limit Where Two Factors Cancel

Evaluate lim
x→−3

3x + 9

x2 − 9
.

Solution We examine a graph (see Figure 1.9) and compute some function values for

x near −3. Based on this numerical and graphical evidence, it’s reasonable to conjecture

that

lim
x→−3+

3x + 9

x2 − 9
= lim

x→−3−

3x + 9

x2 − 9
= −1

2
.

Further, note that

lim
x→−3−

3x + 9

x2 − 9
= lim

x→−3−

3(x + 3)

(x + 3)(x − 3)
Cancel factors of (x + 3).

= lim
x→−3−

3

x − 3
= −1

2
,

since (x − 3) → −6 as x → −3. Again, the cancellation of the factors of (x + 3) is

valid since in the limit as x → −3, x is close to −3, but x  = −3, so that x + 3  = 0.

Likewise,

lim
x→−3+

3x + 9

x2 − 9
= −1

2
.

Finally, since the function approaches the same value as x → −3 both from the

right and from the left (i.e., the one-sided limits are equal), we write

lim
x→−3

3x + 9

x2 − 9
= −1

2
.
�

In example 2.2, the limit exists because both one-sided limits exist and are equal. In

example 2.3, neither one-sided limit exists.

y

x
x

x

3

 30

30 f(x)

f(x)

FIGURE 1.10

y = 3x + 9

x2 − 9

x
3x  9

x2 − 9

3.1 30

3.01 300

3.001 3000

3.0001 30,000

EXAMPLE 2.3 A Limit That Does Not Exist

Determine whether lim
x→3

3x + 9

x2 − 9
exists.

Solution We first draw a graph (see Figure 1.10) and compute some function values

for x close to 3.

Based on this numerical and graphical evidence, it appears that, as x → 3+,
3x + 9

x2 − 9
is increasing without bound. Thus,

lim
x→3+

3x + 9

x2 − 9
does not exist.

Similarly, from the graph and the table of values for x < 3, we can say that

lim
x→3−

3x + 9

x2 − 9
does not exist.

Since neither one-sided limit exists, we say

lim
x→3

3x + 9

x2 − 9
does not exist.

Here, we considered both one-sided limits for the sake of completeness. Of course, you

should keep in mind that if either one-sided limit fails to exist, then the limit does not

exist. �
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Many limits cannot be resolved using algebraic methods. In these cases, we can ap-

proximate the limit using graphical and numerical evidence, as we see in example 2.4.x
3x  9

x2 − 9

2.9 −30

2.99 −300

2.999 −3000

2.9999 −30,000

EXAMPLE 2.4 Approximating the Value of a Limit

Evaluate lim
x→0

sin x

x
.

Solution Unlike some of the limits considered previously, there is no algebra that will

simplify this expression. However, we can still draw a graph (see Figure 1.11) and

compute some function values.

y

x
xx

42 4  2

1

f (x)

FIGURE 1.11

lim
x→0

sin x

x
= 1

x
sin x

x

0.1 0.998334

0.01 0.999983

0.001 0.99999983

0.0001 0.9999999983

0.00001 0.999999999983

x
sin x

x

−0.1 0.998334

−0.01 0.999983

−0.001 0.99999983

−0.0001 0.9999999983

−0.00001 0.999999999983

The graph and the tables of values lead us to the conjectures:

lim
x→0+

sin x

x
= 1 and lim

x→0−

sin x

x
= 1,

from which we conjecture that

lim
x→0

sin x

x
= 1.

In Chapter 2, we examine these limits with greater care (and prove that these

conjectures are correct). �

REMARK 2.1

Computer or calculator computation of limits is unreliable. We use graphs and tables

of values only as (strong) evidence pointing to what a plausible answer might be. To

be certain, we need to obtain careful verification of our conjectures. We see how to do

this in sections 1.3–1.7.

y

x
4 4

 1

1

FIGURE 1.12a

y = x

|x |

EXAMPLE 2.5 A Case Where One-Sided Limits Disagree

Evaluate lim
x→0

x

|x | .

Solution The computer-generated graph shown in Figure 1.12a is incomplete. Since
x

|x | is undefined at x = 0, there is no point at x = 0. The graph in Figure 1.12b

correctly shows open circles at the intersections of the two halves of the graph with the

y-axis. We also have

lim
x→0+

x

|x | = lim
x→0+

x

x
Since |x | = x , when x > 0.

= lim
x→0+

1

= 1
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y

x
2 2

 1

1

x

x

f (x)

f (x)

FIGURE 1.12b

lim
x→0

x

|x | does not exist.

and lim
x→0−

x

|x | = lim
x→0−

x

−x Since |x | = −x , when x < 0.

= lim
x→0−

−1

= −1.

It now follows that lim
x→0

x

|x | does not exist,

since the one-sided limits are not the same. You should also keep in mind that this

observation is entirely consistent with what we see in the graph. �

EXAMPLE 2.6 A Limit Describing the Movement of a Baseball Pitch

The knuckleball is one of the most exotic pitches in baseball. Batters describe the ball as

unpredictably moving left, right, up and down. For a typical knuckleball speed of

60 mph, the left/right position of the ball (in feet) as it crosses the plate is given by

f (ω) = 1.7

ω
− 5

8ω2
sin(2.72ω)

(derived from experimental data in Watts and Bahill’s book Keeping Your Eye on the

Ball), where ω is the rotational speed of the ball in radians per second and where

f (ω) = 0 corresponds to the middle of home plate. Folk wisdom among baseball

pitchers has it that the less spin on the ball, the better the pitch. To investigate this

theory, we consider the limit of f (ω) as ω → 0+. As always, we look at a graph (see
Figure 1.13) and generate a table of function values. The graphical and numerical

evidence suggests that lim
ω→0+

f (ω) = 0.

y

v

0.5

1.0

1.5

2 10864

FIGURE 1.13

y = 1.7

ω
− 5

8ω2
sin(2.72ω)

ω f (ω)

10 0.1645

1 1.4442

0.1 0.2088

0.01 0.021

0.001 0.0021

0.0001 0.0002

The limit indicates that a knuckleball with absolutely no spin doesn’t move at

all (and therefore would be easy to hit). According to Watts and Bahill, a very slow

rotation rate of about 1 to 3 radians per second produces the best pitch (i.e., the most

movement). Take another look at Figure 1.13 to convince yourself that this makes

sense. �
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EXERCISES 1.2

WRITING EXERCISES

1. Suppose your professor says, “You can think of the limit of

f (x) as x approaches a as what f (a) should be.” Critique

this statement. What does it mean? Does it provide important

insight? Is there anything misleading about it? Replace the

phrase in italics with your own best description of what the

limit is.

2. Your friend’s professor says, “The limit is a prediction of

what f (a) will be.” Compare and contrast this statement to

the one in exercise 1. Does the inclusion of the word pre-

diction make the limit idea seem more useful and impor-

tant?

3. We have observed that lim
x→a

f (x) does not depend on the actual

value of f (a), or even on whether f (a) exists. In principle,

functions such as f (x) =
 
x2 if x  = 2

13 if x = 2
are as “normal” as

functions such as g(x) = x2. With this in mind, explain why

it is important that the limit concept is independent of how (or

whether) f (a) is defined.

4. The most common limit encountered in everyday life is the

speed limit. Describe how this type of limit is very different

from the limits discussed in this section.

1. For the function graphed below, identify each limit or state that

it does not exist.

(a) lim
x→0−

f (x) (b) lim
x→0+

f (x)

(c) lim
x→0

f (x) (d) lim
x→1−

f (x)

(e) lim
x→−1

f (x) (f) lim
x→2−

f (x)

(g) lim
x→2+

f (x) (h) lim
x→2

f (x)

(i) lim
x→−2

f (x) (j) lim
x→3

f (x)

y

4

2

 2

 2 4 6 6

 4

x

2. For the function graphed below, identify each limit or state that

it does not exist.

(a) lim
x→0−

f (x) (b) lim
x→0+

f (x)

(c) lim
x→0

f (x) (d) lim
x→2−

f (x)

(e) lim
x→−2

f (x) (f) lim
x→1−

f (x)

(g) lim
x→1+

f (x) (h) lim
x→1

f (x)

(i) lim
x→−1

f (x) (j) lim
x→3

f (x)

y

x
2 4 6 2

 2

2

4

 4

 6

3. Sketch the graph of f (x) =
 
2x if x < 2

x2 if x ≥ 2
and identify

each limit.

(a) lim
x→2−

f (x) (b) lim
x→2+

f (x)

(c) lim
x→2

f (x) (d) lim
x→1

f (x)

4. Sketch the graph of f (x) =

⎧⎪⎨
⎪⎩
x3 − 1 if x < 0

0 if x = 0√
x + 1 − 2 if x > 0

and identify each limit.

(a) lim
x→0−

f (x) (b) lim
x→0+

f (x) (c) lim
x→0

f (x)

(d) lim
x→−1

f (x) (e) lim
x→3

f (x)

5. Sketch the graph of f (x) =
 
x2 + 1 if x < −1

3x + 1 if x ≥ −1
and iden-

tify each limit.

(a) lim
x→−1−

f (x) (b) lim
x→−1+

f (x)

(c) lim
x→−1

f (x) (d) lim
x→1

f (x)
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6. Sketch the graph of f (x) =

⎧⎨
⎩
2x + 1 if x < −1

3 if −1 ≤ x < 1

2x + 1 if x > 1

and

identify each limit.

(a) lim
x→−1−

f (x) (b) lim
x→−1+

f (x) (c) lim
x→−1

f (x)

(d) lim
x→1

f (x) (e) lim
x→0

f (x)

7. Evaluate f (1.5), f (1.1), f (1.01) and f (1.001), and conjec-

ture a value for lim
x→1+

f (x) for f (x) = x − 1√
x − 1

. Evaluate

f (0.5), f (0.9), f (0.99) and f (0.999), and conjecture a value

for lim
x→1−

f (x) for f (x) = x − 1√
x − 1

. Does lim
x→1

f (x) exist?

8. Evaluate f (−1.5), f (−1.1), f (−1.01) and f (−1.001), and

conjecture a value for lim
x→−1−

f (x) for f (x) = x + 1

x2 − 1
. Evaluate

f (−0.5), f (−0.9), f (−0.99) and f (−0.999), and conjecture

a value for lim
x→−1+

f (x) for f (x) = x + 1

x2 − 1
. Does lim

x→−1
f (x)

exist?

In exercises 9–14, use numerical and graphical evidence to

conjecture values for each limit.

9. lim
x→1

x2 − 1

x − 1
10. lim

x→−1

x2 + x

x2 − x − 2

11. lim
x→0

x2 + x

sin x
12. lim

x→π

sin x

x − π

13. lim
x→0

tan x

sin x
14. lim

x→0
x csc 2x

In exercises 15–22, use numerical and graphical evidence to

conjecture whether lim
x→ a

f (x) exists. If not, describe what is

happening at x  a graphically.

15. lim
x→1

x2 − 1

x2 − 2x + 1
16. lim

x→−1

x2 − 1

x + 1

17. lim
x→1

√
5 − x − 2√
10 − x − 3

18. lim
x→0

x2 + 4x√
x3 + x2

19. lim
x→0

sin

 
1

x

 
20. lim

x→0
x sin

 
1

x

 

21. lim
x→2

x − 2

|x − 2| 22. lim
x→−1

|x + 1|
x2 − 1

23. Compute lim
x→1

x2 + 1

x − 1
, lim
x→2

x + 1

x2 − 4
and similar limits to investi-

gate the following. Suppose that f (x) and g(x) are polynomials

with g(a) = 0 and f (a)  = 0. What can you conjecture about

lim
x→a

f (x)

g(x)
?

24. Compute lim
x→−1

x + 1

x2 + 1
, lim
x→π

sin x

x
and similar limits to inves-

tigate the following. Suppose that f (x) and g(x) are functions

with f (a) = 0 and g(a)  = 0. What can you conjecture about

lim
x→a

f (x)

g(x)
?

In exercises 25–28, sketch a graph of a function with the given

properties.

25. f (−1) = 2, f (0) = −1, f (1) = 3 and lim
x→1

f (x) does not exist.

26. f (x) = 1 for −2 ≤ x ≤ 1, lim
x→1+

f (x) = 3 and lim
x→−2

f (x) = 1.

27. f (0) = 1, lim
x→0−

f (x) = 2 and lim
x→0+

f (x) = 3.

28. lim
x→0

f (x) = −2, f (0) = 1, f (2) = 3 and lim
x→2

f (x) does not

exist.

29. As we see in Chapter 2, the slope of the tangent line to the

curve y = √
x at x = 1 is given by m = lim

h→0

√
1 + h − 1

h
.

Estimate the slope m. Graph y = √
x and the line with slope

m through the point (1, 1).

30. As we see in Chapter 2, the velocity of an object that has

traveled
√
x miles in x hours at the x = 1 hour mark is given

by v = lim
x→1

√
x − 1

x − 1
. Estimate this limit.

31. Consider the following arguments concerning lim
x→0+

sin
π

x
.

First, as x > 0 approaches 0,
π

x
increases without bound;

since sin t oscillates for increasing t , the limit does not ex-

ist. Second: taking x = 1, 0.1, 0.01 and so on, we compute

sinπ = sin 10π = sin 100π = · · · = 0; therefore the limit

equals 0. Which argument sounds better to you? Explain.

Explore the limit and determine which answer is correct.

32. Consider the following arguments concerning lim
x→0+

x−0.1 + 2

x−0.1 − 1
.

First, as x approaches 0, x−0.1 approaches 0 and the function

values approach−2. Second, as x approaches 0, x−0.1 increases

and becomes much larger than 2 or −1. The function values

approach
x−0.1

x−0.1
= 1. Explore the limit and determine which

argument is correct.

33. Give an example of a function f such that lim
x→0

f (x) exists but

f (0) does not exist. Give an example of a function g such that

g(0) exists but lim
x→0

g(x) does not exist.

34. Give an example of a function f such that lim
x→0

f (x) exists and

f (0) exists, but lim
x→0

f (x)  = f (0).

35. In the text, we described lim
x→a

f (x) = L as meaning “as x gets

closer and closer to a, f (x) is getting closer and closer to

L .” As x gets closer and closer to 0, it is true that x2 gets

closer and closer to −0.01, but it is certainly not true that

lim
x→0

x2 = −0.01. Try to modify the description of limit to
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make it clear that lim
x→0

x2  = −0.01. We explore a very precise

definition of limit in section 1.6.

36. In Figure 1.13, the final position of the knuckleball at time

t = 0.68 is shown as a function of the rotation rate ω. The

batter must decide at time t = 0.4 whether to swing at the

pitch. At t = 0.4, the left/right position of the ball is given

by h(ω) = 1

ω
− 5

8ω2
sin (1.6ω). Graph h(ω) and compare to

Figure 1.13. Conjecture the limit of h(ω) asω → 0. Forω = 0,

is there any difference in ball position between what the batter

sees at t = 0.4 and what he tries to hit at t = 0.68?

37. A parking lot charges $2 for each hour or portion of an hour,

with a maximum charge of $12 for all day. If f (t) equals the

total parking bill for t hours, sketch a graph of y = f (t) for

0 ≤ t ≤ 24. Determine the limits lim
t→3.5

f (t) and lim
t→4

f (t), if

they exist.

38. For the parking lot in exercise 37, determine all values of

a with 0 ≤ a ≤ 24 such that lim
t→a

f (t) does not exist. Briefly

discuss the effect this has on your parking strategy (e.g., are

there times where you would be in a hurry to move your car or

times where it doesn’t matter whether you move your car?).

EXPLORATORY EXERCISES

1. In a situation similar to that of example 2.6, the left/right

position of a knuckleball pitch in baseball can be modeled by

P = 5

8ω2
(1 − cos 4ωt), where t is time measured in seconds

(0 ≤ t ≤ 0.68) and ω is the rotation rate of the ball measured

in radians per second. In example 2.6, we chose a specific

t-value and evaluated the limit as ω → 0. While this gives us

some information about which rotation rates produce hard-

to-hit pitches, a clearer picture emerges if we look at P over

its entire domain. Set ω = 10 and graph the resulting func-

tion
1

160
(1 − cos 40t) for 0 ≤ t ≤ 0.68. Imagine looking at a

pitcher from above and try to visualize a baseball starting at

the pitcher’s hand at t = 0 and finally reaching the batter, at

t = 0.68. Repeat this with ω = 5, ω = 1, ω = 0.1 and what-

ever values of ω you think would be interesting. Which values

of ω produce hard-to-hit pitches?

2. In this exercise, the results you get will depend on the accu-

racy of your computer or calculator. Work this exercise and

compare your results with your classmates’ results. We will in-

vestigate lim
x→0

cos x − 1

x2
. Start with the calculations presented

in the table (your results may vary):

x f(x)

0.1 −0.499583. . .

0.01 −0.49999583. . .

0.001 −0.4999999583. . .

Describe as precisely as possible the pattern shown here. What

would you predict for f (0.0001)? f (0.00001)? Does your

computer or calculator give you this answer? If you continue

trying powers of 0.1 (0.000001, 0.0000001 etc.) you should

eventually be given a displayed result of −0.5. Do you think

this is exactly correct or has the answer just been rounded

off? Why is rounding off inescapable? It turns out that −0.5

is the exact value for the limit, so the round-off here is some-

what helpful. However, if you keep evaluating the function at

smaller and smaller values of x , you will eventually see a re-

ported function value of 0. This round-off error is not so benign;

we discuss this error in section 1.7. For now, evaluate cos x at

the current value of x and try to explain where the 0 came from.

1.3 COMPUTATION OF LIMITS

Now that you have an idea of what a limit is, we need to develop some means of calculating

limits of simple functions. In this section, we present some basic rules for dealing with

common limit problems. We begin with two simple limits.

For any constant c and any real number a,

lim
x→a

c = c. (3.1)

y

x

c

a

xx

y   c

FIGURE 1.14
lim
x→a

c = c

In other words, the limit of a constant is that constant. This certainly comes as no

surprise, since the function f (x) = c does not depend on x and so, stays the same as

x → a. (See Figure 1.14.) Another simple limit is the following.
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For any real number a,

lim
x→a

x = a. (3.2)

Again, this is not a surprise, since as x → a, x will approach a. (See Figure 1.15.) Be

sure that you are comfortable enough with the limit notation to recognize how obvious the

limits in (3.1) and (3.2) are. As simple as they are, we use them repeatedly in finding more

complex limits. We also need the basic rules contained in Theorem 3.1.

y

x

a

f (x)

xx

f (x)

a

y   x

FIGURE 1.15
lim
x→a

x = a
THEOREM 3.1

Suppose that lim
x→a

f (x) and lim
x→a

g(x) both exist and let c be any constant. The

following then apply:

(i) lim
x→a

[c · f (x)] = c · lim
x→a

f (x),

(ii) lim
x→a

[ f (x) ± g(x)] = lim
x→a

f (x) ± lim
x→a

g(x),

(iii) lim
x→a

[ f (x) · g(x)] =
 
lim
x→a

f (x)
  

lim
x→a

g(x)
 
and

(iv) lim
x→a

f (x)

g(x)
=

lim
x→a

f (x)

lim
x→a

g(x)

 
if lim

x→a
g(x)  = 0

 
.

The proof of Theorem 3.1 is found in Appendix A and requires the formal definition

of limit discussed in section 1.6. You should think of these rules as sensible results that

you would certainly expect to be true, given your intuitive understanding of what a limit

is. Read them in plain English. For instance, part (ii) says that the limit of a sum (or a

difference) equals the sum (or difference) of the limits, provided the limits exist. Think of

this as follows. If as x approaches a, f (x) approaches L and g(x) approaches M , then

f (x) + g(x) should approach L + M.

Observe that by applying part (iii) of Theorem 3.1 with g(x) = f (x), we get that,

whenever lim
x→a

f (x) exists,

lim
x→a

[ f (x)]2 = lim
x→a

[ f (x) · f (x)]

=
 
lim
x→a

f (x)
  

lim
x→a

f (x)
 

=
 
lim
x→a

f (x)
 2

.

Likewise, for any positive integer n, we can apply part (iii) of Theorem 3.1 repeatedly,

to yield

lim
x→a

[ f (x)]n =
 
lim
x→a

f (x)
 n

(3.3)

(see exercises 60 and 61).

Notice that taking f (x) = x in (3.3) gives us that for any integer n > 0 and any real

number a,

lim
x→a

xn = an. (3.4)

That is, to compute the limit of any positive power of x , you simply substitute in the value

of x being approached.



1-17 SECTION 1.3 .. Computation of Limits 69

EXAMPLE 3.1 Finding the Limit of a Polynomial

Apply the rules of limits to evaluate lim
x→2

(3x2 − 5x + 4).

Solution We have

lim
x→2

(3x2 − 5x + 4) = lim
x→2

(3x2) − lim
x→2

(5x) + lim
x→2

4 By Theorem 3.1 (ii).

= 3 lim
x→2

x2 − 5 lim
x→2

x + 4 By Theorem 3.1 (i).

= 3 · (2)2 − 5 · 2 + 4 = 6. By (3.4). �

EXAMPLE 3.2 Finding the Limit of a Rational Function

Apply the rules of limits to evaluate lim
x→3

x3 − 5x + 4

x2 − 2
.

Solution We get

lim
x→3

x3 − 5x + 4

x2 − 2
=

lim
x→3

(x3 − 5x + 4)

lim
x→3

(x2 − 2)
By Theorem 3.1 (iv).

=
lim
x→3

x3 − 5 lim
x→3

x + lim
x→3

4

lim
x→3

x2 − lim
x→3

2
By Theorem 3.1 (i) and (ii).

= 33 − 5 · 3 + 4

32 − 2
= 16

7
. By (3.4).

�

You may have noticed that in examples 3.1 and 3.2, we simply ended up substituting

the value for x , after taking many intermediate steps. In example 3.3, it’s not quite so

simple.

EXAMPLE 3.3 Finding a Limit by Factoring

Evaluate lim
x→1

x2 − 1

1 − x
.

Solution Notice right away that

lim
x→1

x2 − 1

1 − x
 =

lim
x→1

(x2 − 1)

lim
x→1

(1 − x)
,

since the limit in the denominator is zero. (Recall that the limit of a quotient is the

quotient of the limits only when both limits exist and the limit in the denominator is not

zero.) We can resolve this problem by observing that

lim
x→1

x2 − 1

1 − x
= lim

x→1

(x − 1)(x + 1)

−(x − 1)

Factoring the numerator and

factoring −1 from the denominator.

= lim
x→1

(x + 1)

−1
= −2,

Simplifying and

substituting x = 1.

where the cancellation of the factors of (x − 1) is valid because in the limit as x → 1,

x is close to 1, but x  = 1, so that x − 1  = 0. �
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In Theorem 3.2, we show that the limit of a polynomial at a point is simply the value of

the polynomial at that point; that is, to find the limit of a polynomial, we simply substitute

in the value that x is approaching.

THEOREM 3.2

For any polynomial p(x) and any real number a,

lim
x→a

p(x) = p(a).

PROOF

Suppose that p(x) is a polynomial of degree n ≥ 0,

p(x) = cnx
n + cn−1x

n−1 + · · · + c1x + c0.

Then, from Theorem 3.1 and (3.4),

lim
x→a

p(x) = lim
x→a

(cnx
n + cn−1x

n−1 + · · · + c1x + c0)

= cn lim
x→a

xn + cn−1 lim
x→a

xn−1 + · · · + c1 lim
x→a

x + lim
x→a

c0

= cna
n + cn−1a

n−1 + · · · + c1a + c0 = p(a).

Evaluating the limit of a polynomial is now easy. Many other limits are evaluated just

as easily.

THEOREM 3.3

Suppose that lim
x→a

f (x) = L and n is any positive integer. Then,

lim
x→a

n
 
f (x) = n

 
lim
x→a

f (x) = n
 
L ,

where for n even, we assume that L > 0.

The proof of Theorem 3.3 is given in Appendix A. Notice that this result says that we

may (under the conditions outlined in the hypotheses) bring limits “inside” nth roots. We

can then use our existing rules for computing the limit inside.

EXAMPLE 3.4 Evaluating the Limit of an nth Root of a Polynomial

Evaluate lim
x→2

5
√
3x2 − 2x .

Solution By Theorems 3.2 and 3.3, we have

lim
x→2

5
 
3x2 − 2x = 5

 
lim
x→2

(3x2 − 2x) = 5
√
8.
�



1-19 SECTION 1.3 .. Computation of Limits 71

REMARK 3.1

In general, in any case where

the limits of both the numerator

and the denominator are 0, you

should try to algebraically

simplify the expression, to get a

cancellation, as we do in

examples 3.3 and 3.5.

EXAMPLE 3.5 Finding a Limit by Rationalizing

Evaluate lim
x→0

√
x + 2 −

√
2

x
.

Solution First, notice that both the numerator (
√
x + 2 −

√
2) and the denominator

(x) approach 0 as x approaches 0. Unlike example 3.3, we can’t factor the numerator.

However, we can rationalize the numerator, as follows:

√
x + 2 −

√
2

x
= (

√
x + 2 −

√
2)(

√
x + 2 +

√
2)

x(
√
x + 2 +

√
2)

= x + 2 − 2

x(
√
x + 2 +

√
2)

= x

x(
√
x + 2 +

√
2)

= 1√
x + 2 +

√
2
,

where the last equality holds if x  = 0 (which is the case in the limit as x → 0). So, we

have

lim
x→0

√
x + 2 −

√
2

x
= lim

x→0

1√
x + 2 +

√
2

= 1√
2 +

√
2

= 1

2
√
2
.
�

So that we are not restricted to discussing only the algebraic functions (i.e., those that

can be constructed by using addition, subtraction, multiplication, division, exponentiation

and by taking nth roots), we state the following result now, without proof.

THEOREM 3.4

For any real number a, we have

(i) lim
x→a

sin x = sin a, (iii) if p is a polynomial and lim
x→p(a)

f (x) = L ,

(ii) lim
x→a

cos x = cos a and then lim
x→a

f (p(x)) = L .

Notice that Theorem 3.4 says that limits of the sine and cosine functions are found

simply by substitution. A more thorough discussion of functions with this property (called

continuity) is found in section 1.4.

EXAMPLE 3.6 Evaluating a Limit of a Trigonometric Function

Evaluate lim
x→0

sin

 
x3 + π

2

 
.

Solution By Theorem 3.4, we have

lim
x→0

sin

 
x3 + π

2

 
= sin

 π

2

 
= 1.

�

So much for limits that we can compute using elementary rules. Many limits can be

found only by using more careful analysis, often by an indirect approach. For instance,

consider the problem in example 3.7.
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EXAMPLE 3.7 A Limit of a Product That Is Not the Product of the Limits

Evaluate lim
x→0

(x cot x).

Solution Your first reaction might be to say that this is a limit of a product and so,

must be the product of the limits:

lim
x→0

(x cot x) =
 
lim
x→0

x

  
lim
x→0

cot x

 
This is incorrect!

= 0 · ? = 0, (3.5)

y

x

q q p p

FIGURE 1.16
y = cot x

x

0.97

0.98

0.99

1

0.3 0.3

y

FIGURE 1.17
y = x cot x

x x cot x

±0.1 0.9967

±0.01 0.999967

±0.001 0.99999967

±0.0001 0.9999999967

±0.00001 0.999999999967

where we’ve written a “?” since you probably don’t know what to do with lim
x→0

cot x .

Since the first limit is 0, do we really need to worry about the second limit? The

problem here is that we are attempting to apply the result of Theorem 3.1 in a case

where the hypotheses are not satisfied. Specifically, Theorem 3.1 says that the limit of a

product is the product of the respective limits when all of the limits exist. The graph in

Figure 1.16 suggests that lim
x→0

cot x does not exist. You should compute some function

values, as well, to convince yourself that this is in fact the case. So, equation (3.5) does

not hold and we’re back to square one. Since none of our rules seem to apply here, the

most reasonable step is to draw a graph (see Figure 1.17) and compute some function

values. Based on these, we conjecture that

lim
x→0

(x cot x) = 1,

which is definitely not 0, as you might have initially suspected. You can also think about

this limit as follows:

lim
x→0

(x cot x) = lim
x→0

 
x
cos x

sin x

 
= lim

x→0

 x

sin x
cos x

 
=

 
lim
x→0

x

sin x

  
lim
x→0

cos x

 

=
lim
x→0

cos x

lim
x→0

sin x

x

= 1

1
= 1,

since lim
x→0

cos x = 1 and where we have used the conjecture we made in example 2.4

that lim
x→0

sin x

x
= 1. (We verify this last conjecture in section 2.6, using the Squeeze

Theorem, which follows.) �

At this point, we introduce a tool that will help us determine a number of important limits.

THEOREM 3.5 (Squeeze Theorem)

Suppose that

f (x) ≤ g(x) ≤ h(x)

for all x in some interval (c, d), except possibly at the point a ∈ (c, d) and that

lim
x→a

f (x) = lim
x→a

h(x) = L ,

for some number L . Then, it follows that

lim
x→a

g(x) = L , also.
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The proof of Theorem 3.5 is given in Appendix A, since it depends on the precise

definition of limit found in section 1.6. However, if you refer to Figure 1.18, you should

clearly see that if g(x) lies between f (x) and h(x), except possibly at a itself and both f (x)

and h(x) have the same limit as x → a, then g(x) gets squeezed between f (x) and h(x)

and therefore should also have a limit of L . The challenge in using the Squeeze Theorem

is in finding appropriate functions f and h that bound a given function g from below and

above, respectively, and that have the same limit as x → a.

x
a

y

y   f (x)
y   g(x)
y   h(x)

FIGURE 1.18
The Squeeze Theorem

REMARK 3.2

The Squeeze Theorem also

applies to one-sided limits.

EXAMPLE 3.8 Using the Squeeze Theorem to Verify the Value of a Limit

Determine the value of lim
x→0

 
x2 cos

 
1

x

  
.

Solution Your first reaction might be to observe that this is a limit of a product and

so, might be the product of the limits:

lim
x→0

 
x2 cos

 
1

x

  
=?

 
lim
x→0

x2
  

lim
x→0

cos

 
1

x

  
. This is incorrect! (3.6)

However, the graph of y = cos
 
1
x

 
found in Figure 1.19 suggests that cos

 
1
x

 
oscillates back and forth between −1 and 1. Further, the closer x gets to 0, the more

rapid the oscillations become. You should compute some function values, as well, to

convince yourself that lim
x→0

cos
 
1
x

 
does not exist. Equation (3.6) then does not hold and

we’re back to square one. Since none of our rules seem to apply here, the most

reasonable step is to draw a graph and compute some function values in an effort to see

what is going on. The graph of y = x2 cos
 
1
x

 
appears in Figure 1.20 and a table of

function values is shown in the margin.

y

x
0.2 0.2

 1

1

y

x

 0.03

0.03

0.3 0.3

FIGURE 1.19

y = cos

 
1

x

 FIGURE 1.20

y = x2 cos

 
1

x

 

x x2 cos (1/x)

±0.1 −0.008

±0.01 8.6 × 10−5

±0.001 5.6 × 10−7

±0.0001 −9.5 × 10−9

±0.00001 −9.99 × 10−11

The graph and the table of function values suggest the conjecture

lim
x→0

 
x2 cos

 
1

x

  
= 0,

whichwe prove using the Squeeze Theorem. First, we need to find functions f and h such that

f (x) ≤ x2 cos

 
1

x

 
≤ h(x),
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for all x  = 0 and where lim
x→0

f (x) = lim
x→0

h(x) = 0. Recall that

−1 ≤ cos

 
1

x

 
≤ 1, (3.7)

for all x  = 0. If we multiply (3.7) through by x2 (notice that since x2 ≥ 0, this

multiplication preserves the inequalities), we get

−x2 ≤ x2 cos

 
1

x

 
≤ x2,

for all x  = 0. We illustrate this inequality in Figure 1.21. Further,

lim
x→0

(−x2) = 0 = lim
x→0

x2.

So, from the Squeeze Theorem, it now follows that

lim
x→0

x2 cos

 
1

x

 
= 0,

also, as we had conjectured. �

BEYOND FORMULAS

To resolve the limit in example 3.8, we could not apply the rules for limits contained

in Theorem 3.1. So, we resorted to an indirect method of finding the limit. This tour

de force of graphics plus calculation followed by analysis is sometimes referred to

as the Rule of Three. (The Rule of Three presents a general strategy for attacking

new problems. The basic idea is to look at problems graphically, numerically and

analytically.) In the case of example 3.8, the first two elements of this “rule” (the

graphics in Figure 1.20 and the accompanying table of function values) suggest a

plausible conjecture, while the third element provides us with a careful mathematical

verification of the conjecture. In what ways does this sound like the scientific method?

 0.3 0.3

0.03

 0.03
y    x2

y

x

y   x2

FIGURE 1.21

y = x2 cos
 
1
x

 
, y = x2 and

y = −x2

Functions are often defined by different expressions on different intervals. Such

piecewise-defined functions are important and we illustrate such a function in example 3.9.

TODAY IN
MATHEMATICS

Michael Freedman (1951– )

An American mathematician who

first solved one of the most

famous problems in mathematics,

the four-dimensional Poincaré

conjecture. A winner of the Fields

Medal, the mathematical

equivalent of the Nobel Prize,

Freedman says, “Much of the

power of mathematics comes

from combining insights from

seemingly different branches of

the discipline. Mathematics is not

so much a collection of different

subjects as a way of thinking. As

such, it may be applied to any

branch of knowledge.” Freedman

finds mathematics to be an open

field for research, saying that, “It

isn’t necessary to be an old hand in

an area to make a contribution.”

EXAMPLE 3.9 A Limit for a Piecewise-Defined Function

Evaluate lim
x→0

f (x), where f is defined by

f (x) =
 
x2 + 2 cos x + 1, for x < 0

sec x − 4, for x ≥ 0
.

Solution Since f is defined by different expressions for x < 0 and for x ≥ 0, we must

consider one-sided limits. We have

lim
x→0−

f (x) = lim
x→0−

(x2 + 2 cos x + 1) = 2 cos 0 + 1 = 3,

by Theorem 3.4. Also, we have

lim
x→0+

f (x) = lim
x→0+

(sec x − 4) = sec 0 − 4 = 1 − 4 = −3.

Since the one-sided limits are different, we have that lim
x→0

f (x) does not exist. �
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We end this section with an example of the use of limits in computing velocity. In

section 2.1, we see that for an object moving in a straight line, whose position at time t is

given by the function f (t), the instantaneous velocity of that object at time t = 1 (i.e., the

velocity at the instant t = 1, as opposed to the average velocity over some period of time)

is given by the limit

lim
h→0

f (1 + h) − f (1)

h
.

EXAMPLE 3.10 Evaluating a Limit Describing Velocity

Suppose that the position function for an object at time t (seconds) is given by

f (t) = t2 + 2 (feet).

Find the instantaneous velocity of the object at time t = 1.

Solution Given what we have just learned about limits, this is now an easy problem to

solve. We have

lim
h→0

f (1 + h) − f (1)

h
= lim

h→0

[(1 + h)2 + 2] − 3

h
.

While we can’t simply substitute h = 0 (why not?), we can write

lim
h→0

[(1 + h)2 + 2] − 3

h
= lim

h→0

(1 + 2h + h2) − 1

h
Expanding the squared term.

= lim
h→0

2h + h2

h
= lim

h→0

h(2 + h)

h

= lim
h→0

2 + h

1
= 2. Canceling factors of h.

So, the instantaneous velocity of this object at time t = 1 is 2 feet per second. �

EXERCISES 1.3

WRITING EXERCISES

1. Given your knowledge of the graphs of polynomials, explain

why equations (3.1) and (3.2) and Theorem 3.2 are obvious.

Name five non-polynomial functions for which limits can be

evaluated by substitution.

2. Suppose that you can draw the graph of y = f (x) with-

out lifting your pencil from your paper. Explain why

lim
x→a

f (x) = f (a), for every value of a.

3. In one or two sentences, explain the Squeeze Theorem. Use

a real-world analogy (e.g., having the functions represent the

locations of three people as theywalk) to indicate why it is true.

4. Given the graph in Figure 1.20 and the calculations in the

accompanying table, it may be unclear why we insist on using

the Squeeze Theorem before concluding that lim
x→0

[x2 cos (1/x)]

is indeed 0. Review section 1.2 to explain why we are being

so fussy.

In exercises 1–34, evaluate the indicated limit, if it exists.Assume

that lim
x→0

sin x

x
 1.

1. lim
x→0

(x2 − 3x + 1) 2. lim
x→2

3
√
2x + 1

3. lim
x→0

tan (x2) 4. lim
x→2

x − 5

x2 + 4

5. lim
x→3

x2 − x − 6

x − 3
6. lim

x→1

x2 + x − 2

x2 − 3x + 2

7. lim
x→2

x2 − x − 2

x2 − 4
8. lim

x→1

x3 − 1

x2 + 2x − 3

9. lim
x→0

sin x

tan x
10. lim

x→0

tan x

x

11. lim
x→0

x cos(−2x + 1)

x2 + x
12. lim

x→0+
x2 csc2x
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13. lim
x→0

√
x + 4 − 2

x
14. lim

x→0

2x

3 − √
x + 9

15. lim
x→1

x − 1√
x − 1

16. lim
x→4

√
x − 2

x − 4

17. lim
x→1

 
1

x − 1
− 2

x2 − 1

 
18. lim

x→0

 
2

x
− 2

|x |

 

19. lim
x→0

1 − cos2 x

1 − cos x
20. lim

x→0
sin

 
1

x2

 

21. lim
x→0

sin |x |
x

22. lim
x→0

sin2(x2)

x4

23. lim
x→2

f (x), where f (x) =
 
2x if x < 2

x2 if x ≥ 2

24. lim
x→−1

f (x), where f (x) =
 
x2 + 1 if x < −1

3x + 1 if x ≥ −1

25. lim
x→0

f (x), where f (x) =
 
x2 + 2 if x < −1

3x + 1 if x ≥ −1

26. lim
x→1

f (x), where f (x) =
 
2x if x < 2

x2 if x ≥ 2

27. lim
x→−1

f (x), where f (x) =

⎧⎨
⎩
2x + 1 if x < −1

3 if −1 < x < 1

2x + 1 if x > 1

28. lim
x→1

f (x), where f (x) =

⎧⎨
⎩
2x + 1 if x < −1

3 if −1 < x < 1

2x + 1 if x > 1

29. lim
h→0

(2 + h)2 − 4

h
30. lim

h→0

(1 + h)3 − 1

h

31. lim
h→0

h2√
h2 + h+ 3− √

h+ 3
32. lim

x→0

√
x2 + x + 4− 2

x2 + x

33. lim
t→−2

1
2

+ 1
t

2 + t
34. lim

x→0

tan 2x

5x

35. Use numerical and graphical evidence to conjecture the

value of lim
x→0

x2 sin (1/x). Use the Squeeze Theorem to

prove that you are correct: identify the functions f and h,

show graphically that f (x) ≤ x2 sin (1/x) ≤ h(x) and justify

lim
x→0

f (x) = lim
x→0

h(x).

36. Why can’t you use the Squeeze Theorem as in exercise 35 to

prove that lim
x→0

x2 sec (1/x) = 0? Explore this limit graphically.

37. Use theSqueezeTheorem toprove that lim
x→0+

[
√
x cos2(1/x)] = 0.

Identify the functions f and h, show graphically that

f (x) ≤ √
x cos2(1/x) ≤ h(x) for all x > 0 and justify

lim
x→0+

f (x) = 0 and lim
x→0+

h(x) = 0.

38. Suppose that f (x) is bounded: that is, there exists a constant

M such that | f (x)| ≤ M for all x . Use the Squeeze Theorem

to prove that lim
x→0

x2 f (x) = 0.

In exercises 39–42, either find the limit or explain why it does

not exist.

39. lim
x→4+

 
16 − x2 40. lim

x→4−

 
16 − x2

41. lim
x→−2−

 
x2 + 3x + 2 42. lim

x→−2+

 
x2 + 3x + 2

43. Given that lim
x→0+

1 − cos x

x2
= 1

2
, quickly evaluate

lim
x→0+

√
1 − cos x

x
.

44. Given that lim
x→0

sin x

x
= 1, quickly evaluate lim

x→0

1 − cos2 x

x2
.

45. Suppose f (x) =
 
g(x) if x < a

h(x) if x > a
for polynomials g(x) and

h(x). Explainwhy lim
x→a−

f (x) = g(a) anddetermine lim
x→a+

f (x).

46. Explain how to determine lim
x→a

f (x) if g and h are polynomials

and f (x) =

⎧⎨
⎩
g(x) if x < a

c if x = a

h(x) if x > a

.

47. Evaluate each limit and justify each step by citing the appro-

priate theorem or equation.

(a) lim
x→2

(x2 − 3x + 1) (b) lim
x→0

x − 2

x2 + 1

48. Evaluate each limit and justify each step by citing the appro-

priate theorem or equation.

(a) lim
x→−1

[(x + 1) sin x] (b) lim
x→1

x cos x

tan x

In exercises 49–52, use the given position function f (t) to find

the velocity at time t  a.

49. f (t) = t2 + 2, a = 2 50. f (t) = t2 + 2, a = 0

51. f (t) = t3, a = 0 52. f (t) = t3, a = 1

53. In Chapter 2, the slope of the tangent line to the curve y = √
x

at x = 1 is defined by m = lim
h→0

√
1 + h − 1

h
. Compute the

slope m. Graph y = √
x and the line with slope m through the

point (1, 1).

54. In Chapter 2, an alternative form for the limit in exercise 53 is

given by lim
x→1

√
x − 1

x − 1
. Compute this limit.

55. Use numerical evidence to conjecture the value of lim
x→0+

cot x

if it exists. Check your answer with your Computer Algebra

System (CAS). If you disagree, which one of you is correct?

In exercises 56–59, use lim
x→a

f (x)  2, lim
x→a

g(x)  −3 and

lim
x→a

h(x)  0 to determine the limit, if possible.

56. lim
x→a

[2 f (x) − 3g(x)] 57. lim
x→a

[3 f (x)g(x)]

58. lim
x→a

 
f (x) + g(x)

h(x)

 
59. lim

x→a

 
3 f (x) + 2g(x)

h(x)

 
60. Assume that lim

x→a
f (x) = L . Use Theorem 3.1 to prove that

lim
x→a

[ f (x)]3 = L3. Also, show that lim
x→a

[ f (x)]4 = L4.

61. How did you work exercise 60? You probably used Theo-

rem 3.1 to work from lim
x→a

[ f (x)]2 = L2 to lim
x→a

[ f (x)]3 = L3
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and then used lim
x→a

[ f (x)]3 = L3 to get lim
x→a

[ f (x)]4 = L4. Going

one step at a time, we should be able to reach lim
x→a

[ f (x)]n = Ln ,

for any positive integer n. This is the idea of mathematical

induction. Formally, we need to show the result is true for a

specific value of n = n0 [we show n0 = 2 in the text], then

assume the result is true for a general n = k ≥ n0. If we show

that we can get from the result being true for n = k to the

result being true for n = k + 1, we have proved that the result

is true for any positive integer n. In one sentence, explain why

this is true. Use this technique to prove that lim
x→a

[ f (x)]n = Ln ,

for any positive integer n.

62. Find all the errors in the following incorrect string of equalities:

lim
x→0

1

x
= lim

x→0

x

x2
= lim

x→0
x lim
x→0

1

x2
= 0 · ? = 0.

63. Find all the errors in the following incorrect string of equalities:

lim
x→0

sin 2x

x
= 0

0
= 1.

64. Give an example of functions f and g such that

lim
x→0

[ f (x)+g(x)] exists, but lim
x→0

f (x) and lim
x→0

g(x) do not exist.

65. Give an example of functions f and g such that

lim
x→0

[ f (x) · g(x)] exists, but at least one of lim
x→0

f (x) and

lim
x→0

g(x) does not exist.

66. If lim
x→a

f (x) exists and lim
x→a

g(x) does not exist, is it always true

that lim
x→a

[ f (x) + g(x)] does not exist? Explain.

67. Is the following true or false? If lim
x→0

f (x) does not exist, then

lim
x→0

1

f (x)
does not exist. Explain.

68. Suppose a state’s income tax code states the tax liability on x

dollars of taxable income is given by

T (x) =
 
0.14x if 0 ≤ x < 10,000

1500 + 0.21x if 10,000 ≤ x
.

Compute lim
x→0+

T (x); why is this good? Compute lim
x→10,000

T (x);

why is this bad?

69. Suppose a state’s income tax code states that tax liability is

12% on the first $20,000 of taxable earnings and 16% on

the remainder. Find constants a and b for the tax function

T (x) =
 
a + 0.12x if x ≤ 20,000

b + 0.16(x − 20,000) if x > 20,000
such that lim

x→0+
T (x) = 0 and lim

x→20,000
T (x) exists. Why is it

important for these limits to exist?

70. The greatest integer function is denoted by f (x) = [x] and

equals the greatest integer that is less than or equal to x . Thus,

[2.3] = 2, [−1.2] = −2 and [3] = 3. In spite of this last fact,

show that lim
x→3

[x] does not exist.

71. Investigate the existence of (a) lim
x→1

[x], (b) lim
x→1.5

[x],

(c) lim
x→1.5

[2x] and (d) lim
x→1

(x − [x]).

EXPLORATORY EXERCISES

1. The value x = 0 is called a zero of multiplicity n (n ≥ 1)

for the function f if lim
x→0

f (x)

xn
exists and is nonzero but

lim
x→0

f (x)

xn−1
= 0. Show that x = 0 is a zero of multiplicity 2

for x2, x = 0 is a zero of multiplicity 3 for x3 and x = 0 is

a zero of multiplicity 4 for x4. For polynomials, what does

multiplicity describe? The reason the definition is not as

straightforward as we might like is so that it can apply to non-

polynomial functions, as well. Find the multiplicity of x = 0

for f (x) = sin x ; f (x) = x sin x ; f (x) = sin x2. If you know

that x = 0 is a zero of multiplicity m for f (x) and multiplicity

n for g(x), what can you say about the multiplicity of x = 0

for f (x) + g(x)? f (x) · g(x)? f (g(x))?

2. We have conjectured that lim
x→0

sin x

x
= 1. Using graphical

and numerical evidence, conjecture the value of lim
x→0

sin 2x

x
,

lim
x→0

sin 3x

x
, lim
x→0

sinπx

x
and lim

x→0

sin x/2

x
. In general, conjec-

ture the value of lim
x→0

sin cx

x
for any constant c. Given that

lim
x→0

sin cx

cx
= 1, for any constant c  = 0, prove that your con-

jecture is correct.

1.4 CONTINUITY AND ITS CONSEQUENCES

When you describe something as continuous, just what do you have in mind? For example,

if told that a machine has been in continuous operation for the past 60 hours, most of us

would interpret this to mean that the machine has been in operation all of that time, without

any interruption at all, even for a moment. Mathematicians meanmuch the same thing when
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we say that a function is continuous. A function is said to be continuous on an interval if its

graph on that interval can be drawn without interruption, that is, without lifting your pencil

from the paper.

It is helpful for us to first try to see what it is about the functions whose graphs are

shown in Figures 1.22a–1.22d that makes them discontinuous (i.e., not continuous) at the

point x = a.

REMARK 4.1

The definition of continuity all

boils down to the one condition

in (iii), since conditions (i) and

(ii) must hold whenever (iii) is

met. Further, this says that a

function is continuous at a point

exactly when you can compute

its limit at that point by simply

substituting in.

y

x
a

y

x
a

FIGURE 1.22a
f (a) is not defined (the graph

has a hole at x = a).

FIGURE 1.22b
f (a) is defined, but lim

x→a
f (x) does

not exist (the graph has a jump at

x = a).

y

x
a

f (a)

y

x
a

FIGURE 1.22c
lim
x→a

f (x) exists and f (a) is defined,

but lim
x→a

f (x)  = f (a) (the graph has

a hole at x = a).

FIGURE 1.22d
lim
x→a

f (x) does not exist (the

function “blows up” at x = a).

This suggests the following definition of continuity at a point.

DEFINITION 4.1

A function f is continuous at x = a when
(i) f (a) is defined, (ii) lim

x→a
f (x) exists and (iii) lim

x→a
f (x) = f (a).

Otherwise, f is said to be discontinuous at x = a.

For most purposes, it is best for you to think of the intuitive notion of continuity

that we’ve outlined above. Definition 4.1 should then simply follow from your intuitive

understanding of the concept.
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EXAMPLE 4.1 Finding Where a Rational Function Is Continuous

Determine where f (x) = x2 + 2x − 3

x − 1
is continuous.

y

x

x2   2x   3

x   1
y  

4

1

FIGURE 1.23

y = x2 + 2x − 3

x − 1

Solution Note that

f (x) = x2 + 2x − 3

x − 1
= (x − 1)(x + 3)

x − 1
Factoring the numerator.

= x + 3, for x  = 1. Canceling common factors.

This says that the graph of f is a straight line, but with a hole in it at x = 1, as indicated

in Figure 1.23. So, f is discontinuous at x = 1, but continuous elsewhere. �

EXAMPLE 4.2 Removing a Discontinuity

Make the function from example 4.1 continuous everywhere by redefining it at a single

point.
REMARK 4.2

You should be careful not to

confuse the continuity of a

function at a point with its

simply being defined there. A

function can be defined at a

point without being continuous

there. (Look back at

Figures 1.22b and 1.22c.)

Solution In example 4.1, we saw that the function is discontinuous at x = 1, since it

is undefined there. So, suppose we just go ahead and define it, as follows. Let

g(x) =

⎧⎨
⎩
x2 + 2x − 3

x − 1
, if x  = 1

a, if x = 1,

for some real number a.

Notice that g(x) is defined for all x and equals f (x) for all x  = 1. Here, we have

lim
x→1

g(x) = lim
x→1

x2 + 2x − 3

x − 1

= lim
x→1

(x + 3) = 4.

Observe that if we choose a = 4, we now have that

lim
x→1

g(x) = 4 = g(1)

and so, g is continuous at x = 1.

y

x

y   g(x)
4

1

FIGURE 1.24
y = g(x)

Note that the graph of g is the same as the graph of f seen in Figure 1.23, except that

we now include the point (1, 4). (See Figure 1.24.) Also, note that there’s a very simple

way to write g(x). (Think about this.) �

When we can remove a discontinuity by redefining the function at that point, we

call the discontinuity removable.Not all discontinuities are removable, however. Carefully

examine Figures 1.22a–1.22d and convince yourself that the discontinuities in Figures 1.22a

and 1.22c are removable, while those in Figures 1.22b and 1.22d are nonremovable. Briefly,

a function f has a removable discontinuity at x = a if lim
x→a

f (x) exists and either f (a) is

undefined or lim
x→a

f (x)  = f (a).

EXAMPLE 4.3 Nonremovable Discontinuities

Find all discontinuities of f (x) = 1

x2
and g(x) = cos

 
1

x

 
.
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Solution You should observe from Figure 1.25a (also, construct a table of function

values) that

lim
x→0

1

x2
does not exist.

Hence, f is discontinuous at x = 0.

y

x

3 3

2

4

FIGURE 1.25a

y = 1

x2

y

x

0.2 0.2

 1

1

FIGURE 1.25b

y = cos (1/x)

Similarly, observe that lim
x→0

cos(1/x) does not exist, due to the endless oscillation of

cos(1/x) as x approaches 0. (See Figure 1.25b.)

In both cases, notice that since the limits do not exist, there is no way to redefine

either function at x = 0 to make it continuous there. �

From your experience with the graphs of some common functions, the following result

should come as no surprise.

THEOREM 4.1

All polynomials are continuous everywhere. Additionally, sin x and cos x are

continuous everywhere, n
√
x is continuous for all x , when n is odd and for x > 0,

when n is even.

PROOF

We have already established (in Theorem 3.2) that for any polynomial p(x) and any real

number a,

lim
x→a

p(x) = p(a),

from which it follows that p is continuous at x = a. The rest of the theorem follows from

Theorems 3.3 and 3.4 in a similar way.

From these very basic continuous functions, we can build a large collection of contin-

uous functions, using Theorem 4.2.

THEOREM 4.2

Suppose that f and g are continuous at x = a. Then all of the following are true:

(i) ( f ± g) is continuous at x = a,

(ii) ( f · g) is continuous at x = a and

(iii) ( f/g) is continuous at x = a if g(a)  = 0.

Simply put, Theorem 4.2 says that a sum, difference or product of continuous functions

is continuous, while the quotient of two continuous functions is continuous at any point at

which the denominator is nonzero.
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PROOF

(i) If f and g are continuous at x = a, then

lim
x→a

[ f (x) ± g(x)] = lim
x→a

f (x) ± lim
x→a

g(x) From Theorem 3.1.

= f (a) ± g(a) Since f and g are continuous at a.

= ( f ± g)(a),

by the usual rules of limits. Thus, ( f ± g) is also continuous at x = a.

Parts (ii) and (iii) are proved in a similar way and are left as exercises.

EXAMPLE 4.4 Continuity for a Rational Function

Determine where f is continuous, for f (x) = x4 − 3x2 + 2

x2 − 3x − 4
.

y

x
105 10  5

 150

 100

 50

50

100

150

FIGURE 1.26

y = x4 − 3x2 + 2

x2 − 3x − 4

Solution Here, f is a quotient of two polynomial (hence continuous) functions. The

graph of the function indicated in Figure 1.26 suggests a vertical asymptote at around

x = 4, but doesn’t indicate any other discontinuity. From Theorem 4.2, f will be

continuous at all x where the denominator is not zero, that is, where

x2 − 3x − 4 = (x + 1)(x − 4)  = 0.

Thus, f is continuous for x  = −1, 4. (Think about why you didn’t see anything peculiar

about the graph at x = −1.) �

With the addition of the result in Theorem 4.3, we will have all the basic tools needed

to establish the continuity of most elementary functions.

THEOREM 4.3

Suppose that lim
x→a

g(x) = L and f is continuous at L . Then,

lim
x→a

f (g(x)) = f
 
lim
x→a

g(x)
 

= f (L).

A proof of Theorem 4.3 is given in Appendix A.

Notice that this says that if f is continuous, then we can bring the limit “inside.”

This should make sense, since as x → a, g(x) → L and so, f (g(x)) → f (L), since f is

continuous at L .

COROLLARY 4.1

Suppose that g is continuous at a and f is continuous at g(a). Then, the composition

f ◦ g is continuous at a.
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PROOF

From Theorem 4.3, we have

lim
x→a

( f ◦ g)(x) = lim
x→a

f (g(x)) = f
 
lim
x→a

g(x)
 

= f (g(a)) = ( f ◦ g)(a). Since g is continuous at a.

EXAMPLE 4.5 Continuity for a Composite Function

Determine where h(x) = cos(x2 − 5x + 2) is continuous.

Solution Note that

h(x) = f (g(x)),

where g(x) = x2 − 5x + 2 and f (x) = cos x . Since both f and g are continuous for all

x , h is continuous for all x , by Corollary 4.1. �y

x
ba

FIGURE 1.27
f continuous on [a, b]

y

x
 2 2

2

FIGURE 1.28

y =
√
4 − x2

DEFINITION 4.2

If f is continuous at every point on an open interval (a, b), we say that f is

continuous on (a, b). Following Figure 1.27, we say that f is continuous on the

closed interval [a, b], if f is continuous on the open interval (a, b) and

lim
x→a+

f (x) = f (a) and lim
x→b−

f (x) = f (b).

Finally, if f is continuous on all of (−∞,∞), we simply say that f is continuous.

(That is, when we don’t specify an interval, we mean continuous everywhere.)

Formany functions, it’s a simplematter to determine the intervals onwhich the function

is continuous. We illustrate this in example 4.6.

EXAMPLE 4.6 Continuity on a Closed Interval

Determine the interval(s) where f is continuous, for f (x) =
√
4 − x2.

Solution First, observe that f is defined only for −2 ≤ x ≤ 2. Next, note that f is the

composition of two continuous functions and hence, is continuous for all x for which

4 − x2 > 0. We show a graph of the function in Figure 1.28. Since

4 − x2 > 0

for −2 < x < 2, we have that f is continuous for all x in the interval (−2, 2),

by Theorem 4.1 and Corollary 4.1. Finally, we test the endpoints to see that

lim
x→2−

√
4 − x2 = 0 = f (2) and lim

x→−2+

√
4 − x2 = 0 = f (−2), so that f is continuous

on the closed interval [−2, 2]. �

The Internal Revenue Service presides over some of the most despised functions in

existence. Look up the current Tax Rate Schedules. In 2002, the first few lines (for single

taxpayers) looked like:
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For taxable amount over but not over your tax liability is minus

$0 $6000 10% $0

$6000 $27,950 15% $300

$27,950 $67,700 27% $3654

Where do the numbers $300 and $3654 come from? If we write the tax liability T (x) as

a function of the taxable amount x (assuming that x can be any real value and not just a

whole dollar amount), we have

T (x) =

⎧⎨
⎩
0.10x if 0 < x ≤ 6000

0.15x − 300 if 6000 < x ≤ 27,950

0.27x − 3654 if 27,950 < x ≤ 67,700.

Be sure you understand our translation so far. Note that it is important that this be a contin-

uous function: think of the fairness issues that would arise if it were not!

EXAMPLE 4.7 Continuity of Federal Tax Tables

Verify that the federal tax rate function T (x) is continuous at the “joint” x = 27,950.

Then, find a to complete the table. (You will find b and c as exercises.)

For taxable amount over but not over your tax liability is minus

$67,700 $141,250 30% a

$141,250 $307,050 35% b

$307,050 — 38.6% c

Solution For T (x) to be continuous at x = 27,950, we must have

lim
x→27,950−

T (x) = lim
x→27,950+

T (x).

Since both functions 0.15x − 300 and 0.27x − 3654 are continuous, we can compute

the one-sided limits by substituting x = 27,950. Thus,

lim
x→27,950−

T (x) = 0.15(27,950) − 300 = 3892.50

and lim
x→27,950+

T (x) = 0.27(27,950) − 3654 = 3892.50.

Since the one-sided limits agree and equal the value of the function at that point, T (x)

is continuous at x = 27,950. We leave it as an exercise to establish that T (x) is also

continuous at x = 6000. (It’s worth noting that the function could be written with

equal signs on all of the inequalities; this would be incorrect if the function were

discontinuous.) To complete the table, we choose a to get the one-sided limits at

x = 67,700 to match. We have

lim
x→67,700−

T (x) = 0.27(67,700) − 3654 = 14,625,

while lim
x→67,700+

T (x) = 0.30(67,700) − a = 20,310 − a.
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So, we set the one-sided limits equal, to obtain

14,625 = 20,310 − a

or a = 20,310 − 14,625 = 5685. �

Theorem 4.4 should seem an obvious consequence of our intuitive definition of

continuity.

HISTORICAL NOTES

Karl Weierstrass (1815–1897)

A German mathematician who

proved the Intermediate Value

Theorem and several other

fundamental results of the

calculus, Weierstrass was known

as an excellent teacher whose

students circulated his lecture

notes throughout Europe,

because of their clarity and

originality. Also known as a

superb fencer, Weierstrass was

one of the founders of modern

mathematical analysis.

THEOREM 4.4 (Intermediate Value Theorem)

Suppose that f is continuous on the closed interval [a, b] and W is any number

between f (a) and f (b). Then, there is a number c ∈ [a, b] for which f (c) = W .

Theorem 4.4 says that if f is continuous on [a, b], then f must take on every value between

f (a) and f (b) at least once. That is, a continuous function cannot skip over any numbers

between its values at the two endpoints. To do so, the graph would need to leap across the

horizontal line y = W , something that continuous functions cannot do. (See Figure 1.29a.)

Of course, a function may take on a given valueW more than once. (See Figure 1.29b.) We

must point out that, although these graphs make this result seem reasonable, like any other

result, Theorem 4.4 requires proof. The proof is more complicated than you might imagine

and we must refer you to an advanced calculus text.

y

x
a

c b

f (a)

f (b)

W   f (c) y   W

a

c3c1 c2 b

f (b)

x

f (a)

y   W

y

FIGURE 1.29a
An illustration of the Intermediate

Value Theorem

FIGURE 1.29b
More than one value of c

In Corollary 4.2, we see an immediate and useful application of the Intermediate

Value Theorem.

COROLLARY 4.2

Suppose that f is continuous on [a, b] and f (a) and f (b) have opposite signs [i.e.,

f (a) · f (b) < 0]. Then, there is at least one number c ∈ (a, b) for which f (c) = 0.

(Recall that c is then a zero of f .)
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Notice that Corollary 4.2 is simply the special case of the Intermediate Value Theorem

where W = 0. (See Figure 1.30.) The Intermediate Value Theorem and Corollary 4.2 are

examples of existence theorems; they tell you that there exists a number c satisfying some

condition, but they do not tell you what c is.

b

y

f (b)

a

f (a)

y   f (x) 

x
c

FIGURE 1.30
Intermediate Value Theorem where

c is a zero of f

The Method of Bisections

In example 4.8, we see how Corollary 4.2 can help us locate the zeros of a function.

y

x

 20

 10

10

20

21 1 2

FIGURE 1.31
y = x5 + 4x2 − 9x + 3

EXAMPLE 4.8 Finding Zeros by the Method of Bisections

Find the zeros of f (x) = x5 + 4x2 − 9x + 3.

Solution If f were a quadratic polynomial, you could certainly find its zeros.

However, you don’t have any formulas for finding zeros of polynomials of degree 5.

The only alternative is to approximate the zeros. A good starting place would be to draw

a graph of y = f (x) like the one in Figure 1.31. There are three zeros visible on the

graph. Since f is a polynomial, it is continuous everywhere and so, Corollary 4.2 says

that there must be a zero on any interval on which the function changes sign. From the

graph, you can see that there must be zeros between −3 and −2, between 0 and 1 and

between 1 and 2. We could also conclude this by computing say, f (0) = 3 and

f (1) = −1. Although we’ve now found intervals that contain zeros, the question

remains as to how we can find the zeros themselves.

While a rootfinding program can provide an accurate approximation, the issue here

is not so much to get an answer as it is to understand how to find one. We suggest a

simple yet effective method, called the method of bisections.

For the zero between 0 and 1, a reasonable guess might be the midpoint, 0.5. Since

f (0.5) ≈ −0.469 < 0 and f (0) = 3 > 0, there must be a zero between 0 and 0.5. Next,

the midpoint of [0, 0.5] is 0.25 and f (0.25) ≈ 1.001 > 0, so that the zero is on the

interval (0.25, 0.5). We continue in this way to narrow the interval on which there’s a

zero until the interval is sufficiently small so that any point in the interval can serve as

an adequate approximation to the actual zero. We do this in the following table.

a b f(a) f(b) Midpoint f (midpoint)

0 1 3 −1 0.5 −0.469

0 0.5 3 −0.469 0.25 1.001

0.25 0.5 1.001 −0.469 0.375 0.195

0.375 0.5 0.195 −0.469 0.4375 −0.156

0.375 0.4375 0.195 −0.156 0.40625 0.015

0.40625 0.4375 0.015 −0.156 0.421875 −0.072

0.40625 0.421875 0.015 −0.072 0.4140625 −0.029

0.40625 0.4140625 0.015 −0.029 0.41015625 −0.007

0.40625 0.41015625 0.015 −0.007 0.408203125 0.004

If you continue this process through 20 more steps, you ultimately arrive at the

approximate zero x = 0.40892288, which is accurate to at least eight decimal places. �
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This method of bisections is a tedious process, if you’re working it with pencil and

paper. It is interesting because it’s reliable and it’s a simple, yet general method for finding

approximate zeros. Computer and calculator rootfinding utilities are very useful, but our

purpose here is to provide you with an understanding of how basic rootfinding works. We

discuss a more powerful method for finding roots in Chapter 3.

EXERCISES 1.4

WRITING EXERCISES

1. Think about the following “real-life” functions, each of which

is a function of the independent variable time: the height

of a falling object, the velocity of an object, the amount of

money in a bank account, the cholesterol level of a person,

the heart rate of a person, the amount of a certain chemical

present in a test tube and a machine’s most recent measure-

ment of the cholesterol level of a person. Which of these are

continuous functions? For each function you identify as dis-

continuous, what is the real-life meaning of the discontinu-

ities?

2. Whether a process is continuous or not is not always clear-cut.

When you watch television or a movie, the action seems to

be continuous. This is an optical illusion, since both movies

and television consist of individual “snapshots” that are played

back at many frames per second. Where does the illusion

of continuous motion come from? Given that the average

person blinks several times per minute, is our perception of

the world actually continuous? (In what cognitive psychol-

ogists call temporal binding, the human brain first decides

whether a stimulus is important enough to merit conscious

consideration. If so, the brain “predates” the stimulus so that

the person correctly identifies when the stimulus actually

occurred.)

3. When you sketch the graph of the parabola y = x2 with pen-

cil or pen, is your sketch (at the molecular level) actually the

graph of a continuous function? Is your calculator or com-

puter’s graph actually the graph of a continuous function? On

many calculators, you have the option of a connected or discon-

nected graph. At the pixel level, does a connected graph show

the graph of a function? Does a disconnected graph show the

graph of a continuous function? Do we ever have problems

correctly interpreting a graph due to these limitations? In ex-

ploratory exercise 2 in section 1.7, we examine one case where

our perception of a computer graph depends on which choice

is made.

4. For each of the graphs in Figures 1.22a–1.22d, describe (with

an example) what the formula for f (x) might look like to pro-

duce the given discontinuity.

In exercises 1–6, use the given graph to identify all discontinu-

ities of the functions.

1. y

x
5

5

2. y

x
5

5

3. y

x
6

5
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4. y

x
5

5

5. y

x
5

5

6. y

x
5

5

In exercises 7–12, explain why each function is discontinuous at

the given point by indicating which of the three conditions in

Definition 4.1 are not met.

7. f (x) = x

x − 1
at x = 1 8. f (x) = x2 − 1

x − 1
at x = 1

9. f (x) = sin
1

x
at x = 0 10. f (x) = 2x√

x3 + x2
at x = 0

11. f (x) =

⎧⎨
⎩
x2 if x < 2

3 if x = 2

3x − 2 if x > 2

at x = 2

12. f (x) =
 
x2 if x < 2

3x − 2 if x > 2
at x = 2

In exercises 13–24, find all discontinuities of f (x). For each dis-

continuity that is removable, define a new function that removes

the discontinuity.

13. f (x) = x − 1

x2 − 1
14. f (x) = 4x

x2 + x − 2

15. f (x) = 4x

x2 + 4
16. f (x) = 3x

x2 − 2x − 4

17. f (x) = x2 tan x 18. f (x) = x cot x

19. f (x) = 3x2√
x3 − x2

20. f (x) = 3 
1 + 4/x2

21. f (x) =
 
2x if x < 1

x2 if x ≥ 1
22. f (x) =

⎧⎨
⎩

sin x

x
if x  = 0

1 if x = 0

23. f (x) =

⎧⎨
⎩
3x − 1 if x ≤ −1

x2 + 5x if −1 < x < 1

3x3 if x ≥ 1

24. f (x) =

⎧⎨
⎩
2x if x < 0

sin x if 0 < x ≤ π

x − π if x > π

In exercises 25–30, determine the intervals on which f (x) is

continuous.

25. f (x) = √
x + 3 26. f (x) =

√
x2 − 4

27. f (x) = 6√
x + 1

28. f (x) = (x − 1)3/2

29. f (x) = sin(x2 + 2) 30. f (x) = cos

 
1

x

 
In exercises 31–33, determine values of a and b that make the

given function continuous.

31. f (x) =

⎧⎪⎨
⎪⎩

2 sin x

x
if x < 0

a if x = 0

b cos x if x > 0

32. f (x) =

⎧⎪⎨
⎪⎩
a cos x + 1 if x < 0

sin
 π

2
x
 

if 0 ≤ x ≤ 2

x2 − x + b if x > 2

33. f (x) =

⎧⎨
⎩
a

√
9 − x if x < 0

sin bx + 1 if 0 ≤ x ≤ 3√
x − 2 if x > 3

34. Prove Corollary 4.1.

35. Suppose that a state’s income tax code states that the tax lia-

bility on x dollars of taxable income is given by

T (x) =

⎧⎨
⎩
0 if x ≤ 0

0.14x if 0 < x < 10,000

c + 0.21x if 10,000 ≤ x .

Determine the constant c that makes this function continu-

ous for all x . Give a rationale why such a function should be

continuous.
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36. Suppose a state’s income tax code states that tax liability is

12% on the first $20,000 of taxable earnings and 16% on the

remainder. Find constants a and b for the tax function

T (x) =

⎧⎪⎨
⎪⎩
0 if x ≤ 0

a + 0.12x if 0 < x ≤ 20,000

b + 0.16(x − 20,000) if x > 20,000

such that T (x) is continuous for all x .

37. In example 4.7, find b and c to complete the table.

38. In example 4.7, show that T (x) is continuous for x = 6000.

In exercises 39–44, use the Intermediate Value Theorem to ver-

ify that f (x) has a zero in the given interval. Thenuse themethod

of bisections to find an interval of length 1/32 that contains the

zero.

39. f (x) = x2 − 7, [2, 3]

40. f (x) = x3 − 4x − 2, [2, 3]

41. f (x) = x3 − 4x − 2, [−1, 0]

42. f (x) = x3 − 4x − 2, [−2,−1]

43. f (x) = cos x − x, [0, 1]

44. f (x) = cos x + x, [−1, 0]

A function is continuous from the right at x  a if

lim
x→a 

f (x) f (a). In exercises 45–48, determine whether f (x)

is continuous from the right at x  2.

45. f (x) =
 
x2 if x < 2

3x − 1 if x ≥ 2

46. f (x) =

⎧⎪⎨
⎪⎩
x2 if x < 2

3 if x = 2

3x − 3 if x > 2

47. f (x) =
 
x2 if x ≤ 2

3x − 3 if x > 2

48. f (x) =
 
x2 if x < 2

3x − 2 if x > 2

49. Define what it means for a function to be continuous from

the left at x = a and determine which of the functions in ex-

ercises 45–48 are continuous from the left at x = 2.

50. Suppose that f (x) = g(x)

h(x)
and h(a) = 0. Determine whether

each of the following statements is always true, always false or

maybe true/maybe false. Explain. (a) lim
x→a

f (x) does not exist.

(b) f (x) is discontinuous at x = a.

51. The sex of newbornMississippi alligators is determined by the

temperature of the eggs in the nest. The eggs fail to develop

unless the temperature is between 26◦C and 36◦C. All eggs be-
tween 26◦C and 30◦C develop into females, and eggs between

34◦C and 36◦C develop into males. The percentage of females

decreases from 100% at 30◦C to 0% at 34◦C. If f (T ) is the
percentage of females developing from an egg at T ◦C, then

f (T ) =

⎧⎪⎨
⎪⎩
100 if 26 ≤ T ≤ 30

g(T ) if 30 < T < 34

0 if 34 ≤ T ≤ 36,

for some function g(T ). Explain why it is reasonable that

f (T ) be continuous. Determine a function g(T ) such that

0 ≤ g(T ) ≤ 100 for 30 ≤ T ≤ 34 and the resulting function

f (T ) is continuous. [Hint: It may help to draw a graph first

and make g(T ) linear.]

52. If f (x) =
 
x2, if x  = 0

4, if x = 0
and g(x) = 2x , show that

lim
x→0

f (g(x))  = f
 
lim
x→0

g(x)
 
.

53. If you push on a large box resting on the ground, at first noth-

ing will happen because of the static friction force that opposes

motion. If you push hard enough, the box will start sliding, al-

though there is again a friction force that opposes the motion.

Suppose you are given the following description of the fric-

tion force. Up to 100 pounds, friction matches the force you

apply to the box. Over 100 pounds, the box will move and

the friction force will equal 80 pounds. Sketch a graph of fric-

tion as a function of your applied force based on this descrip-

tion. Where is this graph discontinuous? What is significant

physically about this point? Do you think the friction force

actually ought to be continuous? Modify the graph to make

it continuous while still retaining most of the characteristics

described.

54. For f (x) = 2x − 400

x
, we have f (−1) > 0 and f (2) < 0.

Does the Intermediate Value Theorem guarantee a zero of

f (x) between x = −1 and x = 2? What happens if you try

the method of bisections?

55. On Monday morning, a saleswoman leaves on a business trip

at 7:13 A.M. and arrives at her destination at 2:03 P.M. The fol-

lowing morning, she leaves for home at 7:17 A.M. and arrives

at 1:59 P.M. The woman notices that at a particular stoplight

along the way, a nearby bank clock changes from 10:32 A.M. to

10:33 A.M. on both days. Therefore, she must have been at the

same location at the same time on both days. Her boss doesn’t

believe that such an unlikely coincidence could occur. Use the

Intermediate Value Theorem to argue that it must be true that

at some point on the trip, the saleswoman was at exactly the

same place at the same time on both Monday and Tuesday.

56. Suppose you ease your car up to a stop sign at the top of a hill.

Your car rolls back a couple of feet and then you drive through
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the intersection. A police officer pulls you over for not com-

ing to a complete stop. Use the Intermediate Value Theorem

to argue that there was an instant in time when your car was

stopped. (In fact, there were at least two.) What is the differ-

ence between this stopping and the stopping that the police

officer wanted to see?

57. Suppose a worker’s salary starts at $40,000 with $2000 raises

every 3months.Graph the salary function s(t);why is it discon-

tinuous? How does the function f (t) = 40,000 + 2000

3
t (t in

months) compare? Why might it be easier to do calculations

with f (t) than s(t)?

58. Prove the final two parts of Theorem 4.2.

59. Suppose that f (x) is a continuous function with consecutive

zeros at x = a and x = b; that is, f (a) = f (b) = 0 and

f (x)  = 0 for a < x < b. Further, suppose that f (c) > 0 for

some number c between a and b. Use the Intermediate Value

Theorem to argue that f (x) > 0 for all a < x < b.

60. Use the method of bisections to estimate the other two zeros

in example 4.8.

61. Suppose that f (x) is continuous at x = 0. Prove that

lim
x→0

x f (x) = 0.

62. The converse of exercise 61 is not true. That is, the fact

lim
x→0

x f (x) = 0 does not guarantee that f (x) is continuous at

x = 0. Find a counterexample; that is, find a function f such

that lim
x→0

x f (x) = 0 and f (x) is not continuous at x = 0.

63. If f (x) is continuous at x = a, prove that g(x) = | f (x)| is
continuous at x = a.

64. Determine whether the converse of exercise 63 is true. That is,

if | f (x)| is continuous at x = a, is it necessarily true that f (x)

must be continuous at x = a?

65. Let f (x) be a continuous function for x ≥ a and define

h(x) = max
a≤t≤x

f (t). Prove that h(x) is continuous for x ≥ a.

Would this still be true without the assumption that f (x) is

continuous?

66. Graph f (x) = sin |x3 − 3x2 + 2x |
x3 − 3x2 + 2x

and determine all

discontinuities.

EXPLORATORY EXERCISES

1. In the text, we discussed the use of the method of bisec-

tions to find an approximate solution of equations such as

f(x)= x3 +5x−1= 0.Wecan start bynoticing that f (0) = −1

and f (1) = 5. Since f (x) is continuous, the IntermediateValue

Theorem tells us that there is a solution between x = 0 and

x = 1. For the method of bisections, we guess the midpoint,

x = 0.5. Is there any reason to suspect that the solution is ac-

tually closer to x = 0 than to x = 1? Using the function values

f (0) = −1 and f (1) = 5, devise your ownmethod of guessing

the location of the solution. Generalize your method to using

f (a) and f (b), where one function value is positive and one

is negative. Compare your method to the method of bisections

on the problem x3 + 5x − 1 = 0; for both methods, stop when

you are within 0.001 of the solution, x ≈ 0.198437. Which

method performed better?Before you get overconfident in your

method, compare the twomethods again on x3 + 5x2 − 1 = 0.

Does your method get close on the first try? See if you can de-

termine graphically why your method works better on the first

problem.

2. You have probably seen the turntables on which luggage ro-

tates at the airport. Suppose that such a turntable has two long

straight parts with a semicircle on each end. (See the figure.)

We will model the left/right movement of the luggage. Sup-

pose the straight part is 40 ft long, extending from x = −20 to

x = 20. Assume that our luggage starts at time t = 0 at loca-

tion x = −20, and that it takes 60 s for the luggage to reach

x = 20. Suppose the radius of the circular portion is 5 ft and

it takes the luggage 30 s to complete the half-circle. We model

the straight-line motion with a linear function x(t) = at+ b.

Find constants a and b so that x(0) = −20 and x(60) = 20.

For the circular motion, we use a cosine (Why is this a good

choice?) x(t) = 20 + d · cos (et+ f ) for constants d, e and f .

The requirements are x(60) = 20 (since the motion is continu-

ous), x(75) = 25 and x(90) = 20. Find values of d, e and f to

make this work. Find equations for the position of the luggage

along the backstretch and the other semicircle.What would the

motion be from then on?

Luggage carousel

3. Determine all x’s for which each function is continuous.

f (x) =
 
0 if x is irrational

,
x if x is rational

g(x) =
 
x2 + 3 if x is irrational

4x if x is rational and

h(x) =
 
cos 4x if x is irrational

.
sin 4x if x is rational
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1.5 LIMITS INVOLVING INFINITY; ASYMPTOTES

In this section, we revisit some old limit problems to give more informative answers and

examine some related questions.

EXAMPLE 5.1 A Simple Limit Revisited

Examine lim
x→0

1

x
.

Solution Of course, we can draw a graph (see Figure 1.32) and compute a table of

function values easily, by hand. (See the tables in the margin.)

y

x

f (x)

x

x

f (x)

3 3

 10

10

FIGURE 1.32

lim
x→0+

1

x
= ∞ and lim

x→0−

1

x
= −∞

x
1

x

0.1 10

0.01 100

0.001 1000

0.0001 10,000

0.00001 100,000

x
1

x

−0.1 −10

−0.01 −100

−0.001 −1000

−0.0001 −10,000

−0.00001 −100,000

REMARK 5.1

It may at first seem

contradictory to say that lim
x→0+

1

x
does not exist and then to write

lim
x→0+

1

x
= ∞. Note that since

∞ is not a real number, there is

no contradiction here. (When

we say that a limit “does not

exist,” we are saying that

there is no real number L that

the function values are

approaching.) We say that

lim
x→0+

1

x
= ∞ to indicate that as

x → 0+, the function values are
increasing without bound.

While we say that the limits lim
x→0+

1

x
and lim

x→0−

1

x
do not exist, the behavior of the

function is clearly quite different for x > 0 than for x < 0. Specifically, as x → 0+,
1

x

increases without bound, while as x → 0−,
1

x
decreases without bound. To

communicate more about the behavior of the function near x = 0, we write

lim
x→0+

1

x
= ∞ (5.1)

and lim
x→0−

1

x
= −∞. (5.2)

Graphically, this says that the graph of y = 1

x
approaches the vertical line x = 0, as

x → 0, as seen in Figure 1.32. When this occurs, we say that the line x = 0 is a vertical

asymptote. It is important to note that while the limits (5.1) and (5.2) do not exist, we

say that they “equal” ∞ and −∞, respectively, only to be specific as to why they do not

exist. Finally, in view of the one-sided limits (5.1) and (5.2), we say that

lim
x→0

1

x
does not exist.

�

EXAMPLE 5.2 A Function Whose One-Sided Limits Are Both Infinite

Evaluate lim
x→0

1

x2
.

Solution The graph in Figure 1.33 (on the following page) seems to indicate a vertical

asymptote at x = 0.A table of values is easily constructedbyhand. (See the accompanying

tables.)

x
1

x2

0.1 100

0.01 10,000

0.001 1 × 106

0.0001 1 × 108

0.00001 1 × 1010

x
1

x2

−0.1 100

−0.01 10,000

−0.001 1 × 106

−0.0001 1 × 108

−0.00001 1 × 1010
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From this, we can see that

lim
x→0+

1

x2
= ∞

and lim
x→0−

1

x2
= ∞.

Since both one-sided limits agree (i.e., both tend to ∞), we say that

lim
x→0

1

x2
= ∞.

This one concise statement says that the limit does not exist, but also that f (x) has a

vertical asymptote at x = 0, where f (x) → ∞ as x → 0 from either side. �

y

x
xx

2

4

3 3

f (x)f (x)

FIGURE 1.33

lim
x→0

1

x2
= ∞ REMARK 5.2

Mathematicians try to convey as much information as possible with as few symbols as

possible. For instance, we prefer to say lim
x→0

1

x2
= ∞ rather than lim

x→0

1

x2
does not

exist, since the first statement not only says that the limit does not exist, but also says

that
1

x2
increases without bound as x approaches 0, with x > 0 or x < 0.

EXAMPLE 5.3 A Case Where Infinite One-Sided Limits Disagree

Evaluate lim
x→5

1

(x − 5)3
.

Solution In Figure 1.34, we show a graph of the function. From the graph, you should

get a pretty clear idea that there’s a vertical asymptote at x = 5 and just how the

function is blowing up there (to ∞ from the right side and to −∞ from the left). You

can verify this behavior algebraically, by noticing that as x → 5, the denominator

approaches 0, while the numerator approaches 1. This says that the fraction grows large

in absolute value, without bound as x → 5. Specifically,

as x → 5+, (x − 5)3 → 0 and (x − 5)3 > 0.

y

x

x

 10

 5

10

5

105

f (x)

f (x)

x

FIGURE 1.34

lim
x→5+

1

(x − 5)3
= ∞ and

lim
x→5−

1

(x − 5)3
= −∞

We indicate the sign of each factor by printing a small “+” or “−” sign above or below

each one. This enables you to see the signs of the various terms at a glance. In this case,

we have

lim
x→5+

+
1

(x − 5)3

+

= ∞. Since (x − 5)3 > 0, for x > 5.

Likewise, as x → 5−, (x − 5)3 → 0 and (x − 5)3 < 0.

In this case, we have

lim
x→5−

+
1

(x − 5)3

−

= −∞. Since (x − 5)3 < 0, for x < 5.

Finally, we say that lim
x→5

1

(x − 5)3
does not exist,

since the one-sided limits are different. �
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Learning from the lessons of examples 5.1, 5.2 and 5.3, you should recognize that if

the denominator tends to 0 and the numerator does not, then the limit in question does not

exist. In this event, we can determine whether the limit tends to ∞ or −∞ by carefully

examining the signs of the various factors.

EXAMPLE 5.4 Another Case Where Infinite One-Sided Limits Disagree

Evaluate lim
x→−2

x + 1

(x − 3)(x + 2)
.y

x

f (x)

x

x

f (x)

4 4

 10

 5

10

5

FIGURE 1.35

lim
x→−2

x + 1

(x − 3)(x + 2)
does not exist.

Solution First, notice from the graph of the function shown in Figure 1.35 that there

appears to be a vertical asymptote at x = −2.

Further, the function appears to tend to ∞ as x → −2+ and to −∞ as x → −2−.
You can verify this behavior, by observing that

lim
x→−2+

−
x + 1

(x − 3)
−

(x + 2)
+

= ∞ Since (x + 1) < 0, (x − 3) < 0 and

(x + 2) > 0, for −2 < x < −1.

and lim
x→−2−

−
x + 1

(x − 3)
−

(x + 2)
−

= −∞.
Since (x + 1) < 0, (x − 3) < 0

and (x + 2) < 0, for x < −2.

So, we can see that x = −2 is indeed a vertical asymptote and that

lim
x→−2

x + 1

(x − 3)(x + 2)
does not exist.

�

EXAMPLE 5.5 A Limit Involving a Trigonometric Function

Evaluate lim
x→ π

2

tan x .

wq pq 

y

x

FIGURE 1.36
y = tan x

Solution Notice from the graph of the function shown in Figure 1.36 that there appears

to be a vertical asymptote at x = π

2
.

You can verify this behavior by observing that

lim
x→ π

2
−
tan x = lim

x→ π
2

−

+
sin x

cos x
+

= ∞ Since sin x > 0 and cos x > 0

for 0 < x <
π

2
.

and lim
x→ π

2
+
tan x = lim

x→ π
2

+

+
sin x

cos x
−

= −∞.
Since sin x > 0 and cos x < 0

for
π

2
< x < π .

So, we can see that x = π

2
is indeed a vertical asymptote and that

lim
x→ π

2

tan x does not exist.
�

Limits at Infinity

We are also interested in examining the limiting behavior of functions as x increases

without bound (written x → ∞) or as x decreases without bound (written x → −∞).
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Returning to f (x) = 1

x
, we can see that as x → ∞,

1

x
→ 0. In view of this, we write

lim
x→∞

1

x
= 0.

Similarly, lim
x→−∞

1

x
= 0.

Notice that in Figure 1.37, the graph appears to approach the horizontal line y = 0, as

x → ∞ and as x → −∞. In this case, we call y = 0 a horizontal asymptote.

y

x

f (x)

f (x)

x

x

3 3

 10

10

FIGURE 1.37

lim
x→∞

1

x
= 0 and lim

x→−∞
1

x
= 0

EXAMPLE 5.6 Finding Horizontal Asymptotes

Look for any horizontal asymptotes of f (x) = 2 − 1

x
.

y

x

f (x)
x

x

f (x)
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2 2

FIGURE 1.38

lim
x→∞

 
2 − 1

x

 
= 2 and

lim
x→−∞

 
2 − 1

x

 
= 2

Solution We show a graph of y = f (x) in Figure 1.38. Since as x → ±∞,
1

x
→ 0,

we get that

lim
x→∞

 
2 − 1

x

 
= 2

and lim
x→−∞

 
2 − 1

x

 
= 2.

Thus, the line y = 2 is a horizontal asymptote. �

As you can see in Theorem 5.1, the behavior of
1

xt
, for any positive rational power t ,

as x → ±∞, is largely the same as we observed for f (x) = 1

x
.

THEOREM 5.1

For any rational number t > 0,

lim
x→±∞

1

xt
= 0,

where for the case where x → −∞, we assume that t = p

q
where q is odd.

REMARK 5.3

All of the usual rules for limits

stated in Theorem 3.1 also hold

for limits as x → ±∞.

A proof of Theorem 5.1 is given in Appendix A. Be sure that the following argument

makes sense to you: for t > 0, as x → ∞, we also have xt → ∞, so that
1

xt
→ 0.

In Theorem 5.2, we see that the behavior of a polynomial at infinity is easy to determine.

THEOREM 5.2

For a polynomial of degree n > 0, pn(x) = anx
n + an−1x

n−1 + · · · + a0, we have

lim
x→∞

pn(x) =
 ∞, if an > 0

−∞, if an < 0
.
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PROOF

We have lim
x→∞

pn(x) = lim
x→∞

(anx
n + an−1x

n−1 + · · · + a0)

= lim
x→∞

 
xn

 
an + an−1

x
+ · · · + a0

xn

  
= ∞,

if an > 0, since lim
x→∞

 
an + an−1

x
+ · · · + a0

xn

 
= an

and lim
x→∞

xn = ∞. The result is proved similarly for an < 0.

Observe that you can make similar statements regarding the value of lim
x→−∞

pn(x), but

be careful: the answer will change depending on whether n is even or odd. (We leave this

as an exercise.)

In example 5.7, we again see the need for caution when applying our basic rules for

limits (Theorem 3.1), which also apply to limits as x → ∞ or as x → −∞.
y

x
10 10

 4

4

f (x)

x

FIGURE 1.39

lim
x→∞

5x − 7

4x + 3
= 5

4

x
5x − 7

4x  3

10 1

100 1.223325

1000 1.247315

10,000 1.249731

100,000 1.249973

EXAMPLE 5.7 A Limit of a Quotient That Is Not the Quotient
of the Limits

Evaluate lim
x→∞

5x − 7

4x + 3
.

Solution You might be tempted to write

lim
x→∞

5x − 7

4x + 3
=

lim
x→∞

(5x − 7)

lim
x→∞

(4x + 3)

This is an incorrect use of Theorem 3.1 (iv),

since the limits in the numerator and the

denominator do not exist.

= ∞
∞ = 1. This is incorrect! (5.3)

The graph in Figure 1.39 and some function values (see the accompanying table)

suggest that the conjectured value of 1 is incorrect. Recall that the limit of a quotient is

the quotient of the limits only when both limits exist (and the limit in the denominator is

nonzero). Since both the limit in the denominator and that in the numerator tend to ∞,

the limits do not exist.

Further, when a limit looks like ∞
∞ , the actual value of the limit can be anything at

all. For this reason, we call ∞
∞ an indeterminate form, meaning that the value of the

expression cannot be determined solely by noticing that both numerator and

denominator tend to ∞.

Rule of Thumb: When faced with the indeterminate form ∞
∞ in calculating the

limit of a rational function, divide numerator and denominator by the highest power of x

appearing in the denominator.

Here, we have

lim
x→∞

5x − 7

4x + 3
= lim

x→∞

 
5x − 7

4x + 3
· (1/x)
(1/x)

 
Multiply numerator and

denominator by
1

x
.

= lim
x→∞

5 − 7/x

4 + 3/x
Multiply through by

1

x
.

=
lim
x→∞

(5 − 7/x)

lim
x→∞

(4 + 3/x)
By Theorem 3.1 (iv).

= 5

4
= 1.25,

which is consistent with what we observed both graphically and numerically earlier. �
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In example 5.8, we apply our rule of thumb to a common limit problem.

EXAMPLE 5.8 Finding Slant Asymptotes

Evaluate lim
x→∞

4x3 + 5

−6x2 − 7x
and find any slant asymptotes.

Solution As usual, we first examine a graph. (See Figure 1.40a.) Note that here, the

graph appears to tend to −∞ as x → ∞. Further, observe that outside of the interval

[−2, 2], the graph looks very much like a straight line. If we look at the graph in a

somewhat larger window, this linearity is even more apparent. (See Figure 1.40b.)

y

x
6 6

 6

6

y

x
20 20

 20

20

FIGURE 1.40a

y = 4x3 + 5

−6x2 − 7x

FIGURE 1.40b

y = 4x3 + 5

−6x2 − 7x

Using our rule of thumb, we have

lim
x→∞

4x3 + 5

−6x2 − 7x
= lim

x→∞

 
4x3 + 5

−6x2 − 7x
· (1/x

2)

(1/x2)

 
Multiply numerator and

denominator by
1

x2
.

= lim
x→∞

4x + 5/x2

−6 − 7/x
Multiply through by

1

x2
.

= −∞,

since as x → ∞, the numerator tends to ∞ and the denominator tends to −6.

To further explain the behavior seen in Figure 1.40b, we perform a long division.

We have

4x3 + 5

−6x2 − 7x
= −2

3
x + 7

9
+ 5 + 49/9x

−6x2 − 7x
.

Since the third term in this expansion tends to 0 as x → ∞, the function values

approach those of the linear function

−2

3
x + 7

9
,

as x → ∞. For this reason, we say that the function has a slant (or oblique)

asymptote. That is, instead of approaching a vertical or horizontal line, as happens with

vertical or horizontal asymptotes, the graph is approaching the slanted straight line

y = −2

3
x + 7

9
. (This is the behavior we’re seeing in Figure 1.40b.)

�
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In example 5.9, we consider a model of the size of an animal’s pupils. Recall that in

bright light, pupils shrink to reduce the amount of light entering the eye, while in dim light,

pupils dilate to allow in more light. (See the chapter introduction.)

EXAMPLE 5.9 Finding the Size of an Animal’s Pupils

Suppose that the diameter of an animal’s pupils is given by f (x) mm, where x is the

intensity of light on the pupils. If f (x) = 160x−0.4 + 90

4x−0.4 + 15
, find the diameter of the pupils

with (a) minimum light and (b) maximum light.

Solution For part (a), notice that f (0) is undefined, since 0−0.4 indicates a division by

0. We therefore consider the limit of f (x) as x approaches 0, but we compute a

one-sided limit, since x cannot be negative. A computer-generated graph of y = f (x)

with 0 ≤ x ≤ 10 is shown in Figure 1.41a. It appears that the y-values approach 20 as x

approaches 0. To compute the limit, we multiply numerator and denominator by x0.4 (to

eliminate the negative exponents). We then have

lim
x→0+

160x−0.4 + 90

4x−0.4 + 15
= lim

x→0+

160x−0.4 + 90

4x−0.4 + 15
· x

0.4

x0.4

= lim
x→0+

160 + 90x0.4

4 + 15x0.4
= 160

4
= 40 mm.

This limit does not seem to match our graph, but notice that Figure 1.41a shows a gap

near x = 0. In Figure 1.41b, we have zoomed in so that 0 ≤ x ≤ 0.1. Here, a limit of 40

looks more reasonable.

y

x
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10

15

20

102 4 6 8

FIGURE 1.41a
y = f (x)

y

x

10

20

30

40

0.02 0.10.080.060.04

FIGURE 1.41b
y = f (x)

For part (b), we consider the limit as x tends to ∞. From Figure 1.41a, it

appears that the graph has a horizontal asymptote at a value close to y = 10. We

compute the limit

lim
x→∞

160x−0.4 + 90

4x−0.4 + 15
= 90

15
= 6 mm.

So, the pupils have a limiting size of 6 mm, as the intensity of light tends to ∞. �

EXERCISES 1.5

WRITING EXERCISES

1. It may seem odd that we use ∞ in describing limits but do not

count ∞ as a real number. Discuss the existence of ∞: is it a

number or a concept?

2. In example 5.7, we dealt with the “indeterminate form”
∞
∞ . Thinking of a limit of ∞ as meaning “getting very

large” and a limit of 0 as meaning “getting very close to

0,” explain why the following are indeterminate forms: ∞
∞ ,

0
0
, ∞ − ∞, and ∞ · 0. Determine what the following non-

indeterminate forms represent: ∞ + ∞,−∞ − ∞,∞ + 0

and 0/∞.

3. On your computer or calculator, graph y = 1/(x − 2) and look

for the horizontal asymptote y = 0 and the vertical asymptote

x = 2. Most computers will draw a vertical line at x = 2 and

will show the graph completely flattening out at y = 0 for large

x’s. Is this accurate?misleading?Most computerswill compute

the locations of points for adjacent x’s and try to connect the

points with a line segment. Why might this result in a vertical

line at the location of a vertical asymptote?

4. Many students learn that asymptotes are lines that the graph

gets closer and closer to without ever reaching. This is true for

many asymptotes, but not all. Explain why vertical asymptotes

are never reached or crossed. Explain why horizontal or slant

asymptotes may, in fact, be crossed any number of times; draw

one example.
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In exercises 1–4, determine each limit (answer as appropriate,

with a number,∞ ,−∞ or does not exist).

1. (a) lim
x→1−

1 − 2x

x2 − 1
(b) lim

x→1+

1 − 2x

x2 − 1

(c) lim
x→1

1 − 2x

x2 − 1

2. (a) lim
x→−1−

1 − 2x

x2 − 1
(b) lim

x→−1+

1 − 2x

x2 − 1

(c) lim
x→−1

1 − 2x

x2 − 1

3. (a) lim
x→2−

x − 4

x2 − 4x + 4
(b) lim

x→2+

x − 4

x2 − 4x + 4

(c) lim
x→2

x − 4

x2 − 4x + 4

4. (a) lim
x→−1−

1 − x

(x + 1)2
(b) lim

x→−1+

1 − x

(x + 1)2

(c) lim
x→−1

1 − x

(x + 1)2

In exercises 5–20, determine each limit (answer as appropriate,

with a number,∞ ,−∞ or does not exist).

5. lim
x→2−

−x√
4 − x2

6. lim
x→−1−

(x2 − 2x − 3)
−2/3

7. lim
x→−∞

−x√
4 + x2

8. lim
x→∞

−x√
4 + x2

9. lim
x→∞

x3 − 2

3x2 + 4x − 1
10. lim

x→∞
2x2 − 1

4x3 − 5x − 1

11. lim
x→∞

2x2 − x + 1

4x2 − 3x − 1
12. lim

x→∞
2x − 1

x2 + 4x + 1

13. lim
x→∞

sin 2x 14. lim
x→0+

cot 2x

15. lim
x→0+

3 − 2/x

2 + 1/x
16. lim

x→∞
3 − 2/x

2 + 1/x

17. lim
x→∞

3x + sin x

4x − cos 2x
18. lim

x→∞
2x2 sin x

x2 + 4

19. lim
x→π/2+

tan x − x

tan2 x + 3
20. lim

x→∞
sin x − x

sin2 x + 3x

In exercises 21–30, determine all horizontal and vertical

asymptotes. For each vertical asymptote, determine whether

f (x)→∞ or f (x)→ −∞ on either side of the asymptote.

21. f (x) = x√
4 + x2

22. f (x) = x√
4 − x2

23. f (x) = x

4 − x2
24. f (x) = x2

4 − x2

25. f (x) = 3x2 + 1

x2 − 2x − 3
26. f (x) = 1 − x

x2 + x − 2

27. f (x) = cot(1 − cos x) 28. f (x) = tan x

1 − sin 2x

29. f (x) = 4 sin x

x
30. f (x) = sin

 
x2 + 4

x2 − 4

 

In exercises 31–34, determine all vertical and slant asymptotes.

31. y = x3

4 − x2
32. y = x2 + 1

x − 2

33. y = x3

x2 + x − 4
34. y = x4

x3 + 2

In exercises 35–38, use graphical and numerical evidence to con-

jecture a value for the indicated limit.

35. lim
x→∞

x cos(1/x)

x − 2
36. lim

x→∞
x sin(1/x)

x + 3

37. lim
x→−1

x − cos (πx)

x + 1
38. lim

x→0+

x

cos x − 1

In exercises 39–42, use graphical andnumerical evidence to con-

jecture the value of the limit. Then, verify your conjecture by

finding the limit exactly.

39. lim
x→∞

(
 
4x2 − 2x + 1 − 2x) (Hint: Multiply and divide by the

conjugate expression:
√
4x2 − 2x + 1 + 2x and simplify.)

40. lim
x→∞

(
 
x2 + 3 − x) (See the hint for exercise 39.)

41. lim
x→∞

(
 
5x2 + 4x + 7 −

 
5x2 + x + 3) (See the hint for

exercise 39.)

42. lim
x→−∞

 
x2 + 3x + 1 + x

43. Explainwhy it is reasonable that lim
x→∞

f (x) = lim
x→0+

f (1/x) and

lim
x→−∞

f (x) = lim
x→0−

f (1/x).

44. One of the reasons for saying that infinite limits do not exist is

that we would otherwise invalidate Theorem 3.1 in section 1.3.

Find examples of functions with infinite limits such that parts

(ii) and (iv) of Theorem 3.1 do not hold.

45. Suppose that the size of the pupil of a certain animal is given

by f (x) (mm), where x is the intensity of the light on the pupil.

If f (x) = 80x−0.3 + 60

2x−0.3 + 5
, find the size of the pupil with no light

and the size of the pupil with an infinite amount of light.

46. Repeat exercise 45 with f (x) = 80x−0.3 + 60

8x−0.3 + 15
.

47. Modify the functions in exercises 45 and 46 to find a function

f such that lim
x→0+

f (x) = 8 and lim
x→∞

f (x) = 2.

48. After an injection, the concentration of a drug in a muscle

varies according to a function of time f (t). Suppose that t is

measured in hours and f (t) = t√
t2+1

. Find the limit of f (t),

both as t → 0 and t → ∞, and interpret both limits in terms

of the concentration of the drug.

49. Suppose an object with initial velocity v0 = 0 ft/s and (con-

stant) mass m slugs is accelerated by a constant force F

pounds for t seconds. According to Newton’s laws of mo-

tion, the object’s speed will be vN = Ft/m. According to

Einstein’s theory of relativity, the object’s speed will be
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vE = Fct/
√
m2c2 + F2t2, where c is the speed of light. Com-

pute lim
t→∞

vN and lim
t→∞

vE .

50. According to Einstein’s theory of relativity, the mass of an

object traveling at speed v is given by m = m0/
 
1 − v2/c2,

where c is the speed of light (about 9.8 × 108 ft/s). Compute

lim
v→0

m and explain why m0 is called the “rest mass.” Compute

lim
v→c−

m and discuss the implications. (What would happen if

you were traveling in a spaceship approaching the speed of

light?) Howmuch does the mass of a 192-poundman (m0 = 6)

increase at the speed of 9000 ft/s (about 4 times the speed of

sound)?

51. Ignoring air resistance, the maximum height reached by a

rocket launchedwith initial velocity v0 is h = v2
0R

19.6R − v2
0

m/s,

where R is the radius of the earth. In this exercise, we interpret

this as a function of v0. Explainwhy the domain of this function

must be restricted to v0 ≥ 0. There is an additional restriction.

Find the (positive) value ve such that h is undefined. Sketch a

possible graph of h with 0 ≤ v0 < ve and discuss the signif-

icance of the vertical asymptote at ve. (Explain what would

happen to the rocket if it is launched with initial velocity ve.)

Explain why ve is called the escape velocity.

52. Suppose that f (x) is a rational function f (x) = p(x)

q(x)
with the

degree (largest exponent) of p(x) less than the degree of q(x).

Determine the horizontal asymptote of y = f (x).

53. Suppose that f (x) is a rational function f (x) = p(x)

q(x)
with

the degree of p(x) greater than the degree of q(x). Determine

whether y = f (x) has a horizontal asymptote.

54. Suppose that f (x) is a rational function f (x) = p(x)

q(x)
. If

y = f (x) has a horizontal asymptote y = 2, how does the de-

gree of p(x) compare to the degree of q(x)?

55. Suppose that f (x) is a rational function f (x) = p(x)

q(x)
. If

y = f (x) has a slant asymptote y = x + 2, how does the de-

gree of p(x) compare to the degree of q(x)?

56. Find a quadratic function q(x) such that f (x) = x2 − 4

q(x)
has

one horizontal asymptote y = 2 and two vertical asymptotes

x = ±3.

57. Find a quadratic function q(x) such that f (x) = x2 − 4

q(x)
has

one horizontal asymptote y = − 1
2
and exactly one vertical

asymptote x = 3.

58. Find a function g(x) such that f (x) = x − 4

g(x)
has two horizon-

tal asymptotes y = ±1 and no vertical asymptotes.

In exercises 59–64, label the statement as true or false (not al-

ways true) for real numbers a and b.

59. If lim
x→∞

f (x)= a and lim
x→∞

g(x) = b, then

lim
x→∞

[ f (x)+ g(x)] = a + b.

60. If lim
x→∞

f (x) = a and lim
x→∞

g(x) = b, then lim
x→∞

 
f (x)

g(x)

 
= a

b
.

61. If lim
x→∞

f (x) = ∞ and lim
x→∞

g(x) = ∞, then

lim
x→∞

[ f (x) − g(x)] = 0.

62. If lim
x→∞

f (x) = ∞ and lim
x→∞

g(x) = ∞, then

lim
x→∞

[ f (x) + g(x)] = ∞.

63. If lim
x→∞

f (x) = a and lim
x→∞

g(x) = ∞, then lim
x→∞

 
f (x)

g(x)

 
= 0.

64. If lim
x→∞

f (x)= ∞ and lim
x→∞

g(x)= ∞, then lim
x→∞

 
f (x)

g(x)

 
= 1.

In exercises 65 and 66, determine all vertical and horizontal

asymptotes.

65. f (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4x

x − 4
if x < 0

x2

x − 2
if 0 ≤ x < 4

cos x

x + 1
if x ≥ 4

66. f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x + 3

x2 − 4x
if x < 0

cos x + 1 if 0 ≤ x < 2

x2 − 1

x2 − 7x + 10
if x ≥ 2

67. Explain why lim
t→∞

1

t2 + 1
sin(at) = 0 for any positive constant

a. Although this is theoretically true, it is not necessarily useful

in practice. The function
1

t2 + 1
sin(at) is a simple model for a

spring-mass system, such as the suspension system on a car.

Suppose t ismeasured in seconds and the car passengers cannot

feel any vibrations less than 0.1 (inches). If suspension system

Ahas the vibration function
t

t2 + 1
sin t and suspension system

Bhas the vibration function
t

t4 + 1
sin t , determine graphically

how long it will take before the vibrations damp out, that is,

| f (t)| < 0.1. Is the result lim
t→∞

t

t2 + 1
sin t = 0 much consola-

tion to the owner of car A?

68. (a) State and prove a result analogous to Theorem 5.2 for

lim
x→−∞

pn(x), for n odd.

(b) State and prove a result analogous to Theorem 5.2 for

lim
x→−∞

pn(x), for n even.

69. It is very difficult to find simple statements in calculus that are

always true; this is one reason that a careful development of

the theory is so important. Youmay have heard the simple rule:

to find the vertical asymptotes of f (x) = g(x)

h(x)
, simply set the

denominator equal to 0 [i.e., solve h(x) = 0]. Give an example

where h(a) = 0 but there is not a vertical asymptote at x = a.

70. In exercise 69, you needed to find an example indicating that

the following statement is not (necessarily) true: if h(a) = 0,
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then f (x) = g(x)

h(x)
has a vertical asymptote at x = a. This is

not true, but perhaps its converse is true: if f (x) = g(x)

h(x)
has

a vertical asymptote at x = a, then h(a) = 0. Is this statement

true? What if g and h are polynomials?

EXPLORATORY EXERCISES

1. Suppose you are shooting a basketball from a (horizontal) dis-

tance of L feet, releasing the ball from a location h feet below

the basket. To get a perfect swish, it is necessary that the ini-

tial velocity v0 and initial release angle θ0 satisfy the equation

 u0
h

L

10

v0 = √
gL/

 
2 cos2 θ0(tan θ0 − h/L). For a free throw, take

L = 15, h = 2 and g = 32 and graph v0 as a function of θ0.

What is the significance of the two vertical asymptotes? Ex-

plain in physical terms what type of shot corresponds to each

vertical asymptote. Estimate the minimum value of v0 (call it

vmin). Explain why it is easier to shoot a ball with a small initial

velocity. There is another advantage to this initial velocity. As-

sume that the basket is 2 ft in diameter and the ball is 1 ft in

diameter. For a free throw, L = 15 ft is perfect. What is the

maximum horizontal distance the ball could travel and still go

in the basket (without bouncing off the backboard)? What is

the minimum horizontal distance? Call these numbers Lmax

and Lmin. Find the angle θ1 corresponding to vmin and Lmin and

the angle θ2 corresponding to vmin and Lmax. The difference

|θ2 − θ1| is the angular margin of error. Peter Brancazio has

shown that the angular margin of error for vmin is larger than

for any other initial velocity.

2. A different type of limit at infinity that will be very im-

portant to us is the limit of a sequence. Investigating the

area under a parabola in Chapter 4, we will compute the

following approximations:
2(3)

6(1)
= 1,

3(5)

6(4)
= 0.625,

4(7)

6(9)
≈

0.519,
5(9)

6(16)
≈ 0.469 and so on. Do you see a pattern? If

we name our approximations a1, a2, a3 and a4, verify that

an = (n + 1)(2n + 1)

6n2
. The area under the parabola is the limit

of these approximations as n gets larger and larger. Find the

area. In Chapter 8, we will need to find limits of the following

sequences. Estimate the limit of

(a) an = 2(n + 1)2 − 3(n + 1) + 4

n2 + 3n + 4
,

(b) an = (1 + 1/n)n and

(c) an = n3 + 2

n!
.

1.6 FORMAL DEFINITION OF THE LIMIT

We have now spent many pages discussing various aspects of the computation of limits.

This may seem a bit odd, when you realize that we have never actually defined what a limit

is. Oh, sure, we have given you an idea of what a limit is, but that’s about all. Once again,

we have said that

lim
x→a

f (x) = L ,

if f (x) gets closer and closer to L as x gets closer and closer to a.

So far, we have been quite happy with this somewhat vague, although intuitive, de-

scription. In this section, however, we will make this more precise and you will begin to

see how mathematical analysis (that branch of mathematics of which the calculus is the

most elementary study) works.

Studying more advanced mathematics without an understanding of the precise defi-

nition of limit is somewhat akin to studying brain surgery without bothering with all that

background work in chemistry and biology. In medicine, it has only been through a careful

examination of the microscopic world that a deeper understanding of our own macroscopic

world has developed, and good surgeons need to understand what they are doing and why

they are doing it. Likewise, in mathematical analysis, it is through an understanding of the
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microscopic behavior of functions (such as the precise definition of limit) that a deeper

understanding of the mathematics will come about.

HISTORICAL NOTES

Augustin Louis Cauchy

(1789–1857) A French

mathematician who developed

the ε-δ definitions of limit and

continuity, Cauchy was one of the

most prolific mathematicians in

history, making important

contributions to number theory,

linear algebra, differential

equations, astronomy, optics and

complex variables. A difficult man

to get along with, a colleague

wrote, “Cauchy is mad and there

is nothing that can be done about

him, although right now, he is the

only one who knows how

mathematics should be done.”

We begin with the careful examination of an elementary example. You should certainly

believe that

lim
x→2

(3x + 4) = 10.

Suppose that you were asked to explain the meaning of this particular limit to a fellow

student. You would probably repeat the intuitive explanation we have used so far: that as

x gets closer and closer to 2, (3x + 4) gets arbitrarily close to 10. But, exactly what do

we mean by close? One answer is that if lim
x→2

(3x + 4) = 10, we should be able to make

(3x + 4) as close as we like to 10, just by making x sufficiently close to 2. But can we

actually do this? For instance, can we force (3x + 4) to be within distance 1 of 10? To see

what values of x will guarantee this, we write an inequality that says that (3x + 4) is within

1 unit of 10:

|(3x + 4) − 10| < 1.

Eliminating the absolute values, we see that this is equivalent to

−1 < (3x + 4) − 10 < 1

or − 1 < 3x − 6 < 1.

Since we need to determine how close x must be to 2, we want to isolate x − 2, instead of

x . So, dividing by 3, we get

−1

3
< x − 2 <

1

3

or |x − 2| < 1

3
. (6.1)

Reversing the steps that lead to inequality (6.1), we see that if x iswithin distance 1
3
of 2, then

(3x + 4)will bewithin the specified distance (1) of 10. (See Figure 1.42 for a graphical inter-

pretation of this.) So, does this convince you that you canmake (3x + 4) as close as youwant

to 10? Probably not, but if you used a smaller distance, perhaps you’d be more convinced.

y

x

2   W 2   W2

9
10
11

y   3x   4

FIGURE 1.42

2 − 1

3
< x < 2 + 1

3
guarantees

that |(3x + 4) − 10| < 1.

EXAMPLE 6.1 Exploring a Simple Limit

Find the values of x for which (3x + 4) is within distance
1

100
of 10.

Solution We want

|(3x + 4) − 10| < 1

100
.

Eliminating the absolute values, we get

− 1

100
< (3x + 4) − 10 <

1

100

or − 1

100
< 3x − 6 <

1

100
.

Dividing by 3 yields − 1

300
< x − 2 <

1

300
,

which is equivalent to |x − 2| < 1

300
.
�
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So, based on example 6.1, are you now convinced that we can make (3x + 4) as close

as desired to 10? All we’ve been able to show is that we can make (3x + 4) pretty close to

10. So, how close do we need to be able to make it? The answer is arbitrarily close, as close

as anyone would ever demand.We can show that this is possible by repeating the arguments

in example 6.1, this time for an unspecified distance, call it ε (epsilon, where ε > 0).

EXAMPLE 6.2 Verifying a Limit

Show that we can make (3x + 4) within any specified distance ε of 10 (no matter how

small ε is), just by making x sufficiently close to 2.

y

x
2

10   ́

10

10   ́
y   3x   4

´

3
2  

´

3
2  

FIGURE 1.43
The range of x-values that keep

|(3x + 4) − 10| < ε

Solution The objective is to determine the range of x-values that will guarantee that

(3x + 4) stays within ε of 10. (See Figure 1.43 for a sketch of this range.) We have

|(3x + 4) − 10| < ε.

This is equivalent to − ε < (3x + 4) − 10 < ε

or − ε < 3x − 6 < ε.

Dividing by 3, we get − ε

3
< x − 2 <

ε

3

or |x − 2| < ε

3
.

Notice that each of the preceding steps is reversible, so that |x − 2| < ε

3
also implies

that |(3x + 4) − 10| < ε. This says that as long as x is within distance
ε

3
of 2, (3x + 4)

will be within the required distance ε of 10. That is,

|(3x + 4) − 10| < εwhenever |x − 2| < ε

3
.
�

Take a moment or two to recognize what we’ve done in example 6.2. By using an

unspecified distance, ε, we have verified that we can indeed make (3x + 4) as close to 10

as might be demanded (i.e., arbitrarily close; just name whatever ε > 0 you would like),

simply by making x sufficiently close to 2. Further, we have explicitly spelled out what

“sufficiently close to 2” means in the context of the present problem. Thus, no matter how

close we are asked to make (3x + 4) to 10, we can accomplish this simply by taking x to

be in the specified interval.

Next, we examine this more precise notion of limit in the case of a function that is not

defined at the point in question.

EXAMPLE 6.3 Proving That a Limit Is Correct

Prove that lim
x→1

2x2 + 2x − 4

x − 1
= 6.

Solution It is easy to use the usual rules of limits to establish this result. It is yet

another matter to verify that this is correct using our new and more precise notion of

limit. In this case, we want to know how close x must be to 1 to ensure that

f (x) = 2x2 + 2x − 4

x − 1

is within an unspecified distance ε > 0 of 6.
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First, notice that f is undefined at x = 1. So, we seek a distance δ (delta, δ > 0),

such that if x is within distance δ of 1, but x  = 1 (i.e., 0 < |x − 1| < δ), then this

guarantees that | f (x) − 6| < ε.

Notice that we have specified that 0 < |x − 1| to ensure that x  = 1. Further,

| f (x) − 6| < ε is equivalent to

−ε <
2x2 + 2x − 4

x − 1
− 6 < ε.

Finding a common denominator and subtracting in the middle term, we get

−ε <
2x2 + 2x − 4 − 6(x − 1)

x − 1
< ε or − ε <

2x2 − 4x + 2

x − 1
< ε.

Since the numerator factors, this is equivalent to

−ε <
2(x − 1)2

x − 1
< ε.

Since x  = 1, we can cancel two of the factors of (x − 1) to yield

−ε < 2(x − 1) < ε

or −ε

2
< x−1 <

ε

2
, Dividing by 2.

which is equivalent to |x − 1| < ε/2. So, taking δ = ε/2 and working backward, we see

that requiring x to satisfy

0 < |x − 1| < δ = ε

2

will guarantee that

    2x2 + 2x − 4

x − 1
− 6

    < ε.

We illustrate this graphically in Figure 1.44. �

y

x

y   f (x)

6

1
´

2
1  

´

2
1  

6   ́

6   ́

FIGURE 1.44

0 < |x − 1| < ε

2
guarantees that

6 − ε <
2x2 + 2x − 4

x − 1
< 6 + ε.

y

y   f (x)

x

L

L   ́

L   ́

a

a   d a   d

FIGURE 1.45
a − δ < x < a + δ guarantees that

L − ε < f (x) < L + ε.

What we have seen so far motivates us to make the following general definition, illus-

trated in Figure 1.45.

DEFINITION 6.1 (Precise Definition of Limit)

For a function f defined in some open interval containing a (but not necessarily at a

itself), we say

lim
x→a

f (x) = L ,

if given any number ε > 0, there is another number δ > 0, such that 0 < |x − a| < δ

guarantees that | f (x) − L| < ε.

Notice that example 6.2 amounts to an illustration of Definition 6.1 for lim
x→2

(3x + 4).

There, we found that δ = ε/3 satisfies the definition.
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REMARK 6.1

We want to emphasize that this formal definition of limit is not a new idea. Rather, it

is a more precise mathematical statement of the same intuitive notion of limit that we

have been using since the beginning of the chapter. Also, we must in all honesty point

out that it is rather difficult to explicitly find δ as a function of ε, for all but a few

simple examples. Despite this, learning how to work through the definition, even for a

small number of problems, will shed considerable light on a deep concept.

Example 6.4, although only slightly more complex than the last several problems,

provides an unexpected challenge.

TODAY IN
MATHEMATICS

Paul Halmos (1916– ) A

Hungarian-born mathematician

who earned a reputation as one

of the best mathematical writers

ever. For Halmos, calculus did not

come easily, with understanding

coming in a flash of inspiration

only after a long period of hard

work. “I remember standing at

the blackboard in Room 213 of

the mathematics building with

Warren Ambrose and suddenly I

understood epsilons. I understood

what limits were, and all of that

stuff that people had been drilling

into me became clear. . . . I could

prove the theorems. That

afternoon I became a

mathematician.’’

y

y   x2   1

x

5   ́

5

5   ́

2
2   d 2   d

FIGURE 1.46
0 < |x − 2| < δ guarantees that

|(x2 + 1) − 5| < ε.

EXAMPLE 6.4 Using the Precise Definition of Limit

Use Definiton 6.1 to prove that lim
x→2

(x2 + 1) = 5.

Solution If this limit is correct, then given any ε > 0, there must be a δ > 0 for which

0 < |x − 2| < δ guarantees that

|(x2 + 1) − 5| < ε.

Notice that

|(x2 + 1) − 5| = |x2 − 4| Factoring the difference

= |x + 2||x − 2|. of two squares. (6.2)

Our strategy is to isolate |x − 2| and so, we’ll need to do something with the term

|x + 2|. Since we’re interested only in what happens near x = 2, anyway, we will only

consider x’s within a distance of 1 from 2, that is, x’s that lie in the interval [1, 3]

(so that |x − 2| < 1). Notice that this will be true if we require δ ≤ 1 and |x − 2| < δ.

In this case, we have

|x + 2| ≤ 5, Since x ∈ [1, 3].

and so, from (6.2),

|(x2 + 1) − 5| = |x + 2||x − 2|
≤ 5|x − 2|. (6.3)

Finally, if we require that

5|x − 2| < ε, (6.4)

then we will also have from (6.3) that

|(x2 + 1) − 5| ≤ 5|x − 2| < ε.

Of course, (6.4) is equivalent to

|x − 2| < ε

5
.

So, in view of this, we now have two restrictions: that |x − 2| < 1 and that |x − 2| < ε

5
.

To ensure that both restrictions are met, we choose δ = min
 
1,

ε

5

  
i.e., the minimum

of 1 and
ε

5

 
. Working backward, we get that for this choice of δ,

0 < |x − 2| < δ

will guarantee that

|(x2 + 1) − 5| < ε,

as desired. We illustrate this in Figure 1.46. �
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Exploring the Definition of Limit Graphically

As you can see from example 6.4, this business of finding δ’s for a given ε is not easily

accomplished. There, we found that even for the comparatively simple case of a quadratic

polynomial, the job can be quite a challenge. Unfortunately, there is no procedure that will

work for all problems. However, we can explore the definition graphically in the case of

more complex functions. First, we reexamine example 6.4 graphically.

EXAMPLE 6.5 Exploring the Precise Definition of Limit Graphically

Explore the precise definition of limit graphically, for lim
x→2

(x2 + 1) = 5.

Solution In example 6.4, we discovered that for δ = min
 
1,

ε

5

 
,

0 < |x − 2| < δ implies that |(x2 + 1) − 5| < ε.

This says that (for ε ≤ 5 ) if we draw a graph of y = x2 + 1 and restrict the x-values to

lie in the interval
 
2 − ε

5
, 2 + ε

5

 
, then the y-values will lie in the interval (5 − ε, 5 + ε).

Take ε = 1

2
, for instance. If we draw the graph in the window defined by

2 − 1

10
≤ x ≤ 2 + 1

10
and 4.5 ≤ y ≤ 5.5, then the graph will not run off the top or

bottom of the screen. (See Figure 1.47.) Of course, we can draw virtually the same

picture for any given value of ε, since we have an explicit formula for finding δ given ε.

For most limit problems, we are not so fortunate. �

2.1

x

y

1.951.9 2 2.05

4.7

4.5

4.9

5.1

5.3

5.5

FIGURE 1.47

y = x2 + 1

y

x

 0.5

0.5

1 1.5 2 2.5 3

FIGURE 1.48a

y = sin
πx

2

EXAMPLE 6.6 Exploring the Definition of Limit for a
Trigonometric Function

Graphically find a δ > 0 corresponding to (a) ε = 1

2
and (b) ε = 0.1 for

lim
x→2

sin
πx

2
= 0.

Solution This limit seems plausible enough. After all, sin
2π

2
= 0 and f (x) = sin x

is a continuous function. However, the point is to verify this carefully. Given any ε > 0,

we want to find a δ > 0, for which

0 < |x − 2| < δ guarantees that
   sin πx

2
− 0

   < ε.

Note that since we have no algebra for simplifying sin
πx

2
, we cannot accomplish this

symbolically. Instead, we’ll try to graphically find δ’s corresponding to the specific ε’s

given. First, for ε = 1

2
, we would like to find a δ > 0 for which if 0 < |x − 2| < δ, then

−1

2
< sin

πx

2
− 0 <

1

2
.

Drawing the graph of y = sin
πx

2
with 1 ≤ x ≤ 3 and −1

2
≤ y ≤ 1

2
, we get

Figure 1.48a.

If you trace along a calculator or computer graph, you will notice that the graph

stays on the screen (i.e., the y-values stay in the interval [−0.5, 0.5]) for
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x ∈ [1.666667, 2.333333]. Thus, we have determined experimentally that for ε = 1

2
,

δ = 2.333333 − 2 = 2 − 1.666667 = 0.333333

will work. (Of course, any value of δ smaller than 0.333333 will also work.) To

illustrate this, we redraw the last graph, but restrict x to lie in the interval [1.67, 2.33].

(See Figure 1.48b.) In this case, the graph stays in the window over the entire range of

displayed x-values. Taking ε = 0.1, we look for an interval of x-values that will

guarantee that sin
πx

2
stays between −0.1 and 0.1. We redraw the graph from

Figure 1.48a, with the y-range restricted to the interval [−0.1, 0.1]. (See Figure 1.49a.)

Again, tracing along the graph tells us that the y-values will stay in the desired range for

x ∈ [1.936508, 2.063492]. Thus, we have experimentally determined that

δ = 2.063492 − 2 = 2 − 1.936508 = 0.063492

will work here. We redraw the graph using the new range of x-values (see Figure 1.49b),

since the graph remains in the window for all values of x in the indicated interval.

y

x
2 – δ 2 + δ2

 0.5

0.5

FIGURE 1.48b

y = sin
πx

2

y

x
1.7 2 2.3

 0.1

0.1

y

x
2 – δ 2 + δ2

 0.1

0.1

FIGURE 1.49a

y = sin
πx

2

FIGURE 1.49b

y = sin
πx

2

It is important to recognize that we are not proving that the above limit is correct.

To prove this requires us to symbolically find a δ for every ε > 0. The idea here is to use

these graphical illustrations to become more familiar with the definition and with what δ

and ε represent. �

x
x2  2x
√
x3  4x2

0.1 1.03711608

0.01 1.0037461

0.001 1.00037496

0.0001 1.0000375

EXAMPLE 6.7 Exploring the Definition of Limit
Where the Limit Does Not Exist

Determine whether or not lim
x→0

x2 + 2x√
x3 + 4x2

= 1.

Solution We first construct a table of function values. From the table alone, we might

be tempted to conjecture that the limit is 1. However, we would be making a huge error,

as we have not considered negative values of x or drawn a graph. This kind of

carelessness is dangerous. Figure 1.50a (on the following page) shows the default graph

drawn by our computer algebra system. In this graph, the function values do not quite

look like they are approaching 1 as x → 0 (at least as x → 0−). We now investigate

the limit graphically for ε = 1
2
. We need to find a δ > 0 for which 0 < |x | < δ

guarantees that

1 − 1

2
<

x2 + 2x√
x3 + 4x2

< 1 + 1

2
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FIGURE 1.50a

y = x2 + 2x√
x3 + 4x2

FIGURE 1.50b

y = x2 + 2x√
x3 + 4x2

or
1

2
<

x2 + 2x√
x3 + 4x2

<
3

2
.

We try δ = 0.1 to see if this is sufficiently small. So, we set the x-range to the interval

[−0.1, 0.1] and the y-range to the interval [0.5, 1.5] and redraw the graph in this

window. (See Figure 1.50b.) Notice that no points are plotted in the window for any

x < 0. According to the definition, the y-values must lie in the interval (0.5, 1.5) for all

x in the interval (−δ, δ), except possibly for x = 0. Further, you can see that δ = 0.1

clearly does not work since x = −0.05 lies in the interval (−δ, δ), but

f (−0.05) ≈ −0.981 is not in the interval (0.5, 1.5). You should convince yourself that

no matter how small you make δ, there is an x in the interval (−δ, δ) such that

f (x) /∈ (0.5, 1.5). (In fact, notice that for all x’s in the interval (−1, 0), f (x) < 0.) That

is, there is no choice of δ that makes the defining inequality true for ε = 1
2
. Thus, the

conjectured limit of 1 is incorrect.

You should note here that, while we’ve only shown that the limit is not 1, it’s

somewhat more complicated to show that the limit does not exist. �

Limits Involving Infinity

Recall that we had observed that lim
x→0

1

x2
does not exist, but to be more descriptive, we had

written

lim
x→0

1

x2
= ∞.

By this statement, wemean that the function increases without bound as x → 0. Just as with

our initial intuitive notion of lim
x→a

f (x) = L , this description is imprecise and needs to be

more carefully defined. When we say that
1

x2
increases without bound as x → 0, we mean

that we can make
1

x2
as large as we like, simply by making x sufficiently close to 0. So,

given any large positive number, M , we must be able to make
1

x2
> M , for x sufficiently

close to 0. We measure closeness here the same way as we did before and arrive at the

following definition.
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DEFINITION 6.2

For a function f defined in some open interval containing a (but not necessarily at a

itself), we say

lim
x→a

f (x) = ∞,

if given any number M > 0, there is another number δ > 0, such that 0 < |x − a| < δ

guarantees that f (x) > M . (See Figure 1.51 for a graphical interpretation of this.)

y

x
a

a   da   d

M

FIGURE 1.51
lim
x→a

f (x) = ∞

y

x
a

a   da   d

N

FIGURE 1.52
lim
x→a

f (x) = −∞

Similarly, we had said that if f decreases without bound as x → a, then

lim
x→a

f (x) = −∞. Think of how you would make this more precise and then consider the

following definition.

DEFINITION 6.3

For a function f defined in some open interval containing a (but not necessarily at a

itself), we say

lim
x→a

f (x) = −∞,

if given any number N < 0, there is another number δ > 0, such that 0 < |x − a| < δ

guarantees that f (x) < N . (See Figure 1.52 for a graphical interpretation of this.)

It’s easy to keep these definitions straight if you think of their meaning. Don’t simply

memorize them.

EXAMPLE 6.8 Using the Definition of Limit Where the Limit Is Infinite

Prove that lim
x→0

1

x2
= ∞.

Solution Given any (large) number M > 0, we need to find a distance δ > 0 such that

if x is within δ of 0 (but not equal to 0) then

1

x2
> M. (6.5)

Since both M and x2 are positive, (6.5) is equivalent to

x2 <
1

M
.

Taking the square root of both sides and recalling that
√
x2 = |x |, we get

|x | <
 

1

M
.

So, for anyM > 0, ifwe take δ =
 

1

M
andwork backward,we have that 0 < |x − 0| < δ

guarantees that

1

x2
> M,

as desired. Note that this says, for instance, that for M = 100,
1

x2
> 100, whenever

0 < |x | <
 

1

100
= 1

10
. (Verify that this works, as an exercise.)

�
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There are two remaining limits that we have yet to place on a careful footing. Before

reading on, try to figure out for yourself what appropriate definitions would look like.

If we write lim
x→∞

f (x) = L , we mean that as x increases without bound, f (x) gets

closer and closer to L . That is, we can make f (x) as close to L as we like, by choosing x

sufficiently large. More precisely, we have the following definition.

M

L   ´

y

x

L

L   ́

FIGURE 1.53
lim
x→∞

f (x) = L

DEFINITION 6.4

For a function f defined on an interval (a,∞), for some a > 0, we say

lim
x→∞

f (x) = L ,

if given any ε > 0, there is a number M > 0 such that x > M guarantees that

| f (x) − L| < ε.

(See Figure 1.53 for a graphical interpretation of this.)

Similarly, we have said that lim
x→−∞

f (x) = L means that as x decreases without bound,

f (x) gets closer and closer to L . So, we should be able tomake f (x) as close to L as desired,

just by making x sufficiently large in absolute value and negative. We have the following

definition.

N

y

x

L   ´
L

L   ́

FIGURE 1.54
lim

x→−∞
f (x) = L

DEFINITION 6.5

For a function f defined on an interval (−∞, a), for some a < 0, we say

lim
x→−∞

f (x) = L ,

if given any ε > 0, there is a number N < 0 such that x < N guarantees that

| f (x) − L| < ε.

(See Figure 1.54 for a graphical interpretation of this.)

We use Definitions 6.4 and 6.5 essentially the same as we do Definitions 6.1–6.3, as

we see in example 6.9.

EXAMPLE 6.9 Using the Definition of Limit
Where x Tends to −∞

Prove that lim
x→−∞

1

x
= 0.

Solution Here, we must show that given any ε > 0, we can make
1

x
within ε of 0,

simply by making x sufficiently large in absolute value and negative. So, we need to

determine those x’s for which     1x − 0

    < ε

or

    1x
    < ε. (6.6)
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Since x < 0, |x | = −x and so (6.6) becomes

1

−x < ε.

Dividing both sides by ε and multiplying by x (remember that x < 0 and ε > 0, so

that this will change the direction of the inequality), we get

−1

ε
> x .

So, if we take N = −1

ε
and work backward, we have satisfied the definition and thereby

proved that the limit is correct. �

REMARK 6.2

You should take care to note

the commonality among the

definitions of the five limits we

have given. All five deal with a

precise description of what it

means to be “close.” It is of

considerable benefit to work

through these definitions until

you can provide your own

words for each. Don’t just

memorize the formal definitions

as stated here. Rather, work

toward understanding what they

mean and come to appreciate

the exacting language

mathematicians use.

We don’t use the limit definitions to prove each and every limit that comes along.

Actually, we use them to prove only a few basic limits and to prove the limit theorems that

we’ve been using for some time without proof. Further use of these theorems then provides

solid justification of new limits. As an illustration, we now prove the rule for a limit of a sum.

THEOREM 6.1

Suppose that for a real number a, lim
x→a

f (x) = L1 and lim
x→a

g(x) = L2. Then,

lim
x→a

[ f (x) + g(x)] = lim
x→a

f (x) + lim
x→a

g(x) = L1 + L2.

PROOF

Since lim
x→a

f (x) = L1, we know that given any number ε1 > 0, there is a number δ1 > 0 for

which

0 < |x − a| < δ1 guarantees that | f (x) − L1| < ε1. (6.7)

Likewise, since lim
x→a

g(x) = L2, we know that given any number ε2 > 0, there is a number

δ2 > 0 for which

0 < |x − a| < δ2 guarantees that |g(x) − L2| < ε2. (6.8)

Now, in order to get

lim
x→a

[ f (x) + g(x)] = (L1 + L2),

we must show that, given any number ε > 0, there is a number δ > 0 such that

0 < |x − a| < δ guarantees that |[ f (x) + g(x)] − (L1 + L2)| < ε.

Notice that

|[ f (x) + g(x)] − (L1 + L2)| = |[ f (x) − L1] + [g(x) − L2]|
≤ | f (x) − L1| + |g(x) − L2|, (6.9)

by the triangle inequality. Of course, both terms on the right-hand side of (6.9) can be made

arbitrarily small, from (6.7) and (6.8). In particular, if we take ε1 = ε2 = ε

2
, then as long as

0 < |x − a| < δ1 and 0 < |x − a| < δ2,
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we get from (6.7), (6.8) and (6.9) that

|[ f (x) + g(x)] − (L1 + L2)| ≤ | f (x) − L1| + |g(x) − L2|
<

ε

2
+ ε

2
= ε,

as desired. Of course, this will happen if we take

0 < |x − a| < δ = min{δ1, δ2}.
The other rules for limits are proven similarly, using the definition of limit. We show

these in Appendix A.

EXERCISES 1.6

WRITING EXERCISES

1. In his 1687 masterpiece Mathematical Principles of Natu-

ral Philosophy, which introduces many of the fundamentals

of calculus, Sir Isaac Newton described the important limit

lim
h→0

f (a + h) − f (a)

h
(which we study at length in Chapter 2)

as “the limit towhich the ratios of quantities decreasingwithout

limit do always converge, and to which they approach nearer

than by any given difference, but never go beyond, nor ever

reach until the quantities vanish.” If you ever get weary of all

the notation that we use in calculus, think of what it would look

like in words! Critique Newton’s definition of limit, addressing

the following questions in the process.What restrictions do the

phrases “never go beyond” and “never reach” put on the limit

process? Give an example of a simple limit, not necessarily

of the form lim
h→0

f (a + h) − f (a)

h
, that violates these restric-

tions. Give your own (English language) description of the

limit, avoiding restrictions such as Newton’s. Why do mathe-

maticians consider the ε−δ definition simple and elegant?

2. You have computed numerous limits before seeing the def-

inition of limit. Explain how this definition changes and/or

improves your understanding of the limit process.

3. Each word in the ε−δ definition is carefully chosen and pre-

cisely placed. Describe what is wrong with each of the follow-

ing slightly incorrect “definitions” (use examples!):

(a) There exists ε > 0 such that there exists a δ > 0 such that

if 0 < |x − a| < δ, then | f (x) − L| < ε.

(b) For all ε > 0 and for all δ > 0, if 0 < |x − a| < δ, then

| f (x) − L| < ε.

(c) For all δ > 0 there exists ε > 0 such that 0 < |x − a| < δ

and | f (x) − L| < ε.

4. In order for the limit to exist, given every ε > 0, we must

be able to find a δ > 0 such that the if/then inequalities are

true. To prove that the limit does not exist, we must find a

particular ε > 0 such that the if/then inequalities are not true

for any choice of δ > 0. To understand the logic behind the

swapping of the “for every” and “there exists” roles, draw an

analogy with the following situation. Suppose the statement,

“Everybody loves somebody” is true. If you wanted to verify

the statement, why would you have to talk to every person on

earth? But, suppose that the statement is not true. What would

you have to do to disprove it?

In exercises 1–8, numerically and graphically determine a δ cor-
responding to (a) ε  0.1 and (b) ε  0.05.Graph the function

in the ε− δ window [x-range is (a − δ, a  δ) and y-range is

(L − ε, L ε)] to verify that your choice works.

1. lim
x→0

(x2 + 1) = 1 2. lim
x→1

(x2 + 1) = 2

3. lim
x→0

cos x = 1 4. lim
x→π/2

cos x = 0

5. lim
x→1

√
x + 3 = 2 6. lim

x→−2

√
x + 3 = 1

7. lim
x→1

x + 2

x2
= 3 8. lim

x→2

x + 2

x2
= 1

In exercises 9–20, symbolically find δ in terms of ε.

9. lim
x→0

3x = 0 10. lim
x→1

3x = 3

11. lim
x→2

(3x + 2) = 8 12. lim
x→1

(3x + 2) = 5

13. lim
x→1

(3 − 4x) = −1 14. lim
x→−1

(3 − 4x) = 7

15. lim
x→1

x2 + x − 2

x − 1
= 3 16. lim

x→−1

x2 − 1

x + 1
= −2

17. lim
x→1

(x2 − 1) = 0 18. lim
x→1

(x2 − x + 1) = 1

19. lim
x→2

(x2 − 1) = 3 20. lim
x→0

(x3 + 1) = 1

21. Determine a formula for δ in terms of ε for lim
x→a

(mx + b). (Hint:

Use exercises 9–14.) Does the formula depend on the value of

a? Try to explain this answer graphically.

22. Based on exercises 17 and 19, does the value of δ depend on

the value of a for lim
x→a

(x2 + b)? Try to explain this graphically.
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23. Modify the ε-δ definition to define the one-sided limits

lim
x→a−

f (x) and lim
x→a+

f (x).

24. Symbolically find the largest δ corresponding to ε = 0.1 in

the definition of lim
x→1−

1/x = 1. Symbolically find the largest

δ corresponding to ε = 0.1 in the definition of lim
x→1+

1/x = 1.

Which δ could be used in the definition of lim
x→1

1/x = 1?Briefly

explain. Then prove that lim
x→1

1/x = 1.

In exercises 25–30, find a δ corresponding to M  100 or

N  −100 (as appropriate) for each limit.

25. lim
x→1+

2

x − 1
= ∞ 26. lim

x→1−

2

x − 1
= −∞

27. lim
x→0+

cot x = ∞ 28. lim
x→π−

cot x = −∞

29. lim
x→2−

2√
4 − x2

= ∞ 30. lim
x→1−

x

x2 − 1
= −∞

In exercises 31–36, find an M or N corresponding to ε  0.1 for
each limit at infinity.

31. lim
x→∞

x2 − 2

x2 + x + 1
= 1 32. lim

x→∞
x − 2

x2 + x + 1
= 0

33. lim
x→−∞

x2 + 3

4x2 − 4
= 0.25 34. lim

x→−∞
3x2 − 2

x2 + 1
= 3

35. lim
x→∞

x√
x2 + 10

= 1 36. lim
x→∞

x2 + x

x2 + 2x + 1
= 1

In exercises 37–46, prove that the limit is correct using the ap-

propriate definition (assume that k is an integer).

37. lim
x→∞

2

x3
= 0 38. lim

x→−∞
3

x3
= 0

39. lim
x→∞

1

xk
= 0, for k > 0 40. lim

x→−∞
1

x2k
= 0, for k > 0

41. lim
x→∞

 
1

x2 + 2
− 3

 
= −3 42. lim

x→∞
1

(x − 7)2
= 0

43. lim
x→−3

−2

(x + 3)4
= −∞ 44. lim

x→7

3

(x − 7)2
= ∞

45. lim
x→5

4

(x − 5)2
= ∞ 46. lim

x→−4

−6

(x + 4)6
= −∞

In exercises 47–50, identify a specific ε > 0 for which no δ > 0

exists to satisfy the definition of limit.

47. f (x) =
 
2x if x < 1, lim

x→1
f (x)  = 2

x2 + 3 if x > 1

48. f (x) =
 
x2 − 1 if x < 0, lim

x→0
f (x)  = −2

−x − 2 if x > 0

49. f (x) =
 
2x if x < 1, lim

x→1
f (x)  = 2

5 − x2 if x > 1

50. f (x) =
 
x − 1 if x < 2, lim

x→2
f (x)  = 1

x2 if x > 2

51. A metal washer of (outer) radius r inches weighs 2r 2 ounces.

A company manufactures 2-inch washers for different cus-

tomers who have different error tolerances. If the customer

demands a washer of weight 8 ± ε ounces, what is the error

tolerance for the radius? That is, find δ such that a radius of

r within the interval (2 − δ, 2 + δ) guarantees a weight within

(8 − ε, 8 + ε).

52. A fiberglass company ships its glass as spherical marbles. If

the volume of each marble must be within ε of π/6, how close

does the radius need to be to 1/2?

53. Prove Theorem 3.1 (i).

54. Prove Theorem 3.1 (ii).

55. Prove the Squeeze Theorem, as stated in Theorem 3.5.

56. Given that lim
x→a−

f (x) = L and lim
x→a+

f (x) = L , prove that

lim
x→a

f (x) = L .

57. Prove: if lim
x→a

f (x) = L , then lim
x→a

[ f (x) − L] = 0.

58. Prove: if lim
x→a

[ f (x) − L] = 0, then lim
x→a

f (x) = L .

59. In this exercise, we explore the definition of lim
x→2

x2 = 4 with

ε = 0.1. Show that x2 − 4 < 0.1 if 2 < x <
√
4.1. This

indicates that δ1 = 0.02484 works for x > 2. Show that

x2 − 4 > −0.1 if
√
3.9 < x < 2. This indicates that

δ2 = 0.02515 works for x < 2. For the limit definition, is

δ = δ1 or δ = δ2 the correct choice? Briefly explain.

60. Generalize exercise 59 to find a δ of the form
√
4 + ε or√

4 − ε corresponding to any ε > 0.

EXPLORATORY EXERCISES

1. We hope that working through this section has provided you

with extra insight into the limit process. However, we have not

yet solved any problems we could not already solve in pre-

vious sections. We do so now, while investigating an unusual

function. Recall that rational numbers can be written as frac-

tions p/q, where p and q are integers. We will assume that

p/q has been simplified by dividing out common factors (e.g.,

1/2 and not 2/4). Define f (x) =
 
0 if x is irrational

1/q if x = p

q
is rational

.

We will try to show that lim
x→2/3

f (x) exists. Without graphics,
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we need a good definition to answer this question. We know

that f (2/3) = 1/3, but recall that the limit is independent of

the actual function value. We need to think about x’s close

to 2/3. If such an x is irrational, f (x) = 0. A simple hy-

pothesis would then be lim
x→2/3

f (x) = 0. We’ll try this out for

ε = 1/6. We would like to guarantee that | f (x)| < 1/6 when-

ever 0 < |x − 2/3| < δ. Well, how many x’s have a function

value greater than 1/6? The only possible function values are

1/5, 1/4, 1/3, 1/2 and 1. The x’s with function value 1/5 are

1/5, 2/5, 3/5, 4/5 and so on. The closest of these x’s to 2/3

is 3/5. Find the closest x (not counting x = 2/3) to 2/3 with

function value 1/4. Repeat for f (x) = 1/3, f (x) = 1/2 and

f (x) = 1. Out of all these closest x’s, how close is the ab-

solute closest? Choose δ to be this number, and argue that if

0 < |x − 2/3| < δ, we are guaranteed that | f (x)| < 1/6. Ar-

gue that a similar process can find a δ for any ε.

2. State a definition for “ f (x) is continuous at x = a” using Def-

inition 6.1. Use it to prove that the function in exploratory

exercise 1 is continuous at every irrational number and discon-

tinuous at every rational number.

1.7 LIMITS AND LOSS-OF-SIGNIFICANCE ERRORS

“Pay no attention to that man behind the curtain . . . .” (from The Wizard of Oz)

Things are not always what they appear to be. We spend much time learning to distinguish

reality from mere appearances. Along the way, we develop a healthy level of skepticism.

You may have already come to realize that mathematicians are a skeptical lot. This is of

necessity, for you simply can’t accept things at face value.

People tend to accept a computer’s answer as a fact not subject to debate. However,

when we use a computer (or calculator), we must always keep in mind that these devices

perform most computations only approximately. Most of the time, this will cause us no

difficulty whatsoever. Modern computational devices generally carry out calculations to a

very high degree of accuracy. Occasionally, however, the results of round-off errors in a

string of calculations are disastrous. In this section, we briefly investigate these errors and

learn how to recognize and avoid some of them.

We first consider a relatively tame-looking example.

EXAMPLE 7.1 A Limit with Unusual Graphical and
Numerical Behavior

Evaluate lim
x→∞

(x3 + 4)
2 − x6

x3
.

x
100,00060,00020,000

y

7

8

9

FIGURE 1.55a

y = (x3 + 4)
2 − x6

x3

Solution At first glance, the numerator looks like ∞ − ∞, which is indeterminate,

while the denominator tends to ∞. Algebraically, the only reasonable step to take is to

multiply out the first term in the numerator. Before we do that, let’s draw a graph and

compute some function values. (Different computers and different software will

produce somewhat different results, but for large values of x , you should see results

similar to those shown here.) In Figure 1.55a, the function appears nearly constant, until

it begins oscillating around x = 40,000. Notice that the accompanying table of function

values is inconsistent with Figure 1.55a.

The last two values in the table may have surprised you. Up until that point, the

function values seemed to be settling down to 8.0 very nicely. So, what happened here

and what is the correct value of the limit? Obviously, something unusual has occurred



1-61 SECTION 1.7 .. Limits and Loss-of-Significance Errors 113

between x = 1 × 104 and x = 1 × 105. We should look carefully at function values in

that interval. A more detailed table is shown below to the right.

Incorrect calculated values

x
(x3  4)2 − x6

x3

10 8.016

100 8.000016

1 × 103 8.0

1 × 104 8.0

1 × 105 0.0

1 × 106 0.0

x
(x3  4)2 − x6

x3

2 × 104 8.0

3 × 104 8.14815

4 × 104 7.8125

5 × 104 0

In Figure 1.55b, we have blown up the graph to enhance the oscillation observed

between x = 1 × 104 and x = 1 × 105. The picture that is emerging is even more

confusing. The deeper we look into this limit, the more erratically the function appears

to behave. We use the word appears because all of the oscillatory behavior we are

seeing is an illusion, created by the finite precision of the computer used to perform the

calculations or draw the graph. �

x
100,00060,00020,000

y

7.8

8

8.2

FIGURE 1.55b

y = (x3 + 4)
2 − x6

x3

Computer Representation of Real Numbers

The reason for the unusual behavior seen in example 7.1 boils down to theway inwhich com-

puters represent real numbers. Without getting into all of the intricacies of computer arith-

metic, it suffices to think of computers and calculators as storing real numbers internally in

scientific notation. For example, the number 1,234,567 would be stored as 1.234567 × 106.

The number preceding the power of 10 is called the mantissa and the power is called the

exponent. Thus, the mantissa here is 1.234567 and the exponent is 6.

All computing devices have finite memory and consequently have limitations on the

size mantissa and exponent that they can store. (This is called finite precision.) Many

calculators carry a 14-digit mantissa and a 3-digit exponent. On a 14-digit computer, this

would suggest that the computerwould retain only the first 14 digits in the decimal expansion

of any given number.

EXAMPLE 7.2 Computer Representation of a Rational Number

Determine how
1

3
is stored internally on a 10-digit computer and how

2

3
is stored internally

on a 14-digit computer.

Solution On a 10-digit computer,
1

3
is stored internally as 3.333333333    

10 digits

×10−1. On a

14-digit computer,
2

3
is stored internally as 6.6666666666667    

14 digits

× 10−1.

�

For most purposes, such finite precision presents no problem. However, we do oc-

casionally come across a disastrous error caused by finite precision. In example 7.3, we

subtract two relatively close numbers and examine the resulting catastrophic error.
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EXAMPLE 7.3 A Computer Subtraction of Two “Close” Numbers

Compare the exact value of

1. 0000000000000    
13 zeros

4 × 1018 − 1. 0000000000000    
13 zeros

1 × 1018

with the result obtained from a calculator or computer with a 14-digit mantissa.

Solution Notice that

1. 0000000000000    
13 zeros

4×1018 − 1. 0000000000000    
13 zeros

1×1018 = 0. 0000000000000    
13 zeros

3×1018

= 30,000. (7.1)

However, if this calculation is carried out on a computer or calculator with a 14-digit

(or smaller) mantissa, both numbers on the left-hand side of (7.1) are stored by the

computer as 1 × 1018 and hence, the difference is calculated as 0. Try this calculation

for yourself now. �

EXAMPLE 7.4 Another Subtraction of Two “Close” Numbers

Compare the exact value of

1. 0000000000000    
13 zeros

6 × 1020 − 1. 0000000000000    
13 zeros

4 × 1020

with the result obtained from a calculator or computer with a 14-digit mantissa.

Solution Notice that

1.0000000000000    
13 zeros

6×1020 − 1.0000000000000    
13 zeros

4×1020 = 0.0000000000000    
13 zeros

2×1020

= 2,000,000.

However, if this calculation is carried out on a calculator with a 14-digit mantissa, the

first number is represented as 1.0000000000001 × 1020, while the second number is

represented by 1.0 × 1020, due to the finite precision and rounding. The difference

between the two values is then computed as 0.0000000000001 × 1020 or 10,000,000,

which is, again, a very serious error. �

In examples 7.3 and 7.4, we witnessed a gross error caused by the subtraction of two

numbers whose significant digits are very close to one another. This type of error is called

a loss-of-significant-digits error or simply a loss-of-significance error. These are subtle,

often disastrous computational errors. Returning now to example 7.1, we will see that it

was this type of error that caused the unusual behavior noted.

EXAMPLE 7.5 A Loss-of-Significance Error

In example 7.1, we considered the function f (x) = (x3 + 4)
2 − x6

x3
.

Follow the calculation of f (5 × 104) one step at a time, as a 14-digit computerwould do it.
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Solution We have

f (5 × 104) = [(5 × 104)3 + 4]2 − (5 × 104)6

(5 × 104)3

= (1.25 × 1014 + 4)2 − 1.5625 × 1028

1.25 × 1014

= (125,000,000,000,000 + 4)2 − 1.5625 × 1028

1.25 × 1014

= (1.25 × 1014)2 − 1.5625 × 1028

1.25 × 1014
= 0,

since 125,000,000,000,004 is rounded off to 125,000,000,000,000.

Note that the real culprit here was not the rounding of 125,000,000,000,004, but the

fact that this was followed by a subtraction of a nearly equal value. Further, note that

this is not a problem unique to the numerical computation of limits, but one that occurs

in numerical computation, in general. �

REMARK 7.1

If at all possible, avoid

subtractions of nearly equal

values. Sometimes, this can be

accomplished by some algebraic

manipulation of the function.

In the case of the function from example 7.5, we can avoid the subtraction and hence,

the loss-of-significance error by rewriting the function as follows:

f (x) = (x3 + 4)
2 − x6

x3

= (x6 + 8x3 + 16) − x6

x3

= 8x3 + 16

x3
,

where we have eliminated the subtraction. Using this new (and equivalent) expression for

the function, we can compute a table of function values reliably. Notice, too, that if we

redraw the graph in Figure 1.55a using the new expression (see Figure 1.56), we no longer

see the oscillation present in Figures 1.55a and 1.55b.

From the rewritten expression, we easily obtain

lim
x→∞

(x3 + 4)
2 − x6

x3
= 8,

x
100,00060,00020,000

y

7

8

9

FIGURE 1.56

y = 8x3 + 16

x3

x
8x3  16

x3

10 8.016

100 8.000016

1 × 103 8.000000016

1 × 104 8.00000000002

1 × 105 8.0

1 × 106 8.0

1 × 107 8.0

which is consistent with Figure 1.56 and the corrected table of function values.

In example 7.6, we examine a loss-of-significance error that occurs for x close

to 0.

EXAMPLE 7.6 Loss-of-Significance Involving
a Trigonometric Function

Evaluate lim
x→0

1 − cos x2

x4
.
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Solution As usual, we look at a graph (see Figure 1.57) and some function values.y

x

0.5

2 4 2 4

FIGURE 1.57

y = 1 − cos x2

x4

x
1− cos x2

x4

0.1 0.499996

0.01 0.5

0.001 0.5

0.0001 0.0

0.00001 0.0

x
1− cos x2

x4

−0.1 0.499996

−0.01 0.5

−0.001 0.5

−0.0001 0.0

−0.00001 0.0

As in example 7.1, note that the function values seem to be approaching 0.5, but then

suddenly take a jump down to 0.0. Once again, we are seeing a loss-of-significance

error. In this particular case, this occurs because we are subtracting nearly equal values

(cos x2 and 1). We can again avoid the error by eliminating the subtraction. Note that

1 − cos x2

x4
= 1 − cos x2

x4
· 1 + cos x2

1 + cos x2
Multiply numerator and

denominator by (1 + cos x2).

= 1 − cos2
 
x2

 
x4

 
1 + cos x2

 1 − cos2(x2) = sin2(x2).

= sin2
 
x2

 
x4

 
1 + cos x2

 .
Since this last (equivalent) expression has no subtraction indicated, we should be able to

use it to reliably generate values without the worry of loss-of-significance error. Using

this to compute function values, we get the accompanying table.

Using the graph and the new table, we conjecture that

lim
x→0

1 − cos x2

x4
= 1

2
.
�

x
sin2(x2)

x4(1 cos x2)

±0.1 0.499996

±0.01 0.4999999996

±0.001 0.5

±0.0001 0.5

±0.00001 0.5

We offer one final example where a loss-of-significance error occurs, even though no

subtraction is explicitly indicated.

EXAMPLE 7.7 A Loss-of-Significance Error Involving a Sum

Evaluate lim
x→−∞

x[(x2 + 4)
1/2 + x].

Solution Initially, you might think that since there is no subtraction (explicitly)

indicated, there will be no loss-of-significance error. We first draw a graph (see

Figure 1.58) and compute a table of values.

y

x

 3

 2

 1

 2   107
 6   107

 1   108

FIGURE 1.58

y = x[(x2 + 4)
1/2 + x]

x x
 
(x2  4)

1/2
 x

 
−100 −1.9998

−1 × 103 −1.999998

−1 × 104 −2.0

−1 × 105 −2.0

−1 × 106 −2.0

−1 × 107 0.0

−1 × 108 0.0
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You should quickly notice the sudden jump in values in the table and the wild

oscillation visible in the graph. Although a subtraction is not explicitly indicated, there

is indeed a subtraction here, since we have x < 0 and (x2 + 4)
1/2

> 0. We can again

remedy this with some algebraic manipulation, as follows.

x
 
(x2 + 4)

1/2 + x
 = x

 
(x2 + 4)

1/2 + x
  (x2 + 4)

1/2 − x
 

 
(x2 + 4)

1/2 − x
 Multiply numerator and

denominator by the conjugate.

= x

 
(x2 + 4) − x2

 
 
(x2 + 4)

1/2 − x
 Simplify the numerator.

= 4x 
(x2 + 4)

1/2 − x
 .

We use this last expression to generate a graph in the same window as that used for

Figure 1.58 and to generate the accompanying table of values. In Figure 1.59, we can

see none of the wild oscillation observed in Figure 1.58 and the graph appears to be a

horizontal line.

y

x

 3

 2

 1

 2   107
 6   107

 1   108

FIGURE 1.59

y = 4x

[(x2 + 4)
1/2 − x]

x
4x 

(x2  4)
1/2 − x

 
−100 −1.9998

−1 × 103 −1.999998

−1 × 104 −1.99999998

−1 × 105 −1.9999999998

−1 × 106 −2.0

−1 × 107 −2.0

−1 × 108 −2.0

Further, the values displayed in the table no longer show the sudden jump indicative of a

loss-of-significance error. We can now confidently conjecture that

lim
x→−∞

x[(x2 + 4)
1/2 + x] = −2.

�

BEYOND FORMULAS

In examples 7.5–7.7, we demonstrated calculations that suffered from catastrophic loss-

of-significance errors. In each case, we showed how we could rewrite the expression

to avoid this error. We have by no means exhibited a general procedure for recognizing

and repairing such errors. Rather, we hope that by seeing a few of these subtle errors,

and by seeing how to fix even a limited number of them, you will become a more

skeptical and intelligent user of technology.
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EXERCISES 1.7

WRITING EXERCISES

1. It is probably clear that caution is important in using tech-

nology. Equally important is redundancy. This property is

sometimes thought to be a negative (wasteful, unnecessary),

but its positive role is one of the lessons of this section. By

redundancy, we mean investigating a problem using graphical,

numerical and symbolic tools. Why is it important to use mul-

tiple methods? Answer this from a practical perspective (think

of the problems in this section) and a theoretical perspective

(if you have learned multiple techniques, do you understand

the mathematics better?).

2. The drawback of caution and redundancy is that they take extra

time. In computing limits, when should you stop and take extra

time to make sure an answer is correct and when is it safe to

go on to the next problem? Should you always look at a graph?

compute function values? do symbolic work? an ε−δ proof?

Prioritize the techniques in this chapter.

3. The limit lim
h→0

f (a + h) − f (a)

h
will be very important in

Chapter 2. For a specific function and specific a, we could com-

pute a table of values of the fraction for smaller and smaller

values of h. Why should we be wary of loss-of-significance

errors?

4. Notice that we rationalized the numerator in example 7.7. The

old rule of rationalizing the denominator is another example

of rewriting an expression to try to minimize computational

errors. Before computers, square roots were very difficult to

compute. To see one reason why you might want the square

root in the numerator, suppose that you can get only one dec-

imal place of accuracy, so that
√
3 ≈ 1.7. Compare 6

1.7
to 6√

3

and then compare 2(1.7) to 6√
3
. Which of the approximations

could you do in your head?

In exercises 1–12, (a) use graphics and numerics to conjecture

a value of the limit. (b) Find a computer or calculator graph

showing a loss-of-significance error. (c) Rewrite the function to

avoid the loss-of-significance error.

1. lim
x→∞

x
 √

4x2 + 1 − 2x
 

2. lim
x→−∞

x
 √

4x2 + 1+ 2x
 

3. lim
x→∞

√
x
 √
x + 4 − √

x + 2
 

4. lim
x→∞

x2
 √
x4 + 8 − x2

 
5. lim

x→∞
x
 √
x2 + 4 −

√
x2 + 2

 
6. lim

x→∞
x
 √
x3 + 8− x3/2

 
7. lim

x→0

1 − cos 2x

12x2
8. lim

x→0

1 − cos x

x2

9. lim
x→0

1 − cos x3

x6
10. lim

x→0

1 − cos x4

x8

11. lim
x→∞

x4/3 (
3
 
x2 + 1 − 3

 
x2 − 1)

12. lim
x→∞

x2/3 (
3

√
x + 4 − 3

√
x − 3)

In exercises 13 and 14, compare the limits to show that small

errors can have disastrous effects.

13. lim
x→1

x2 + x − 2

x − 1
and lim

x→1

x2 + x − 2.01

x − 1

14. lim
x→2

x − 2

x2 − 4
and lim

x→2

x − 2

x2 − 4.01

15. Compare f (x) = sinπx and g(x) = sin 3.14x for x = 1

(radian), x = 10, x = 100 and x = 1000.

16. For exercise 1, follow the calculation of the function for

x = 105 as it would proceed for a machine computing with

a 10-digit mantissa. Identify where the round-off error occurs.

In exercises 17 and18, compare the exact answer to one obtained

by a computer with a six-digit mantissa.

17. (1.000003 − 1.000001) × 107

18. (1.000006 − 1.000001) × 107

19. If you have access to a CAS, test it on the limits of exam-

ples 7.1, 7.6 and 7.7. Based on these results, do you think that

your CAS does precise calculations or numerical estimates?

EXPLORATORY EXERCISES

1. In this exercise,we look at one aspect of themathematical study

of chaos. First, iterate the function f (x) = x2 − 2 starting at

x0 = 0.5. That is, compute x1 = f (0.5), then x2 = f (x1), then

x3 = f (x2) and so on. Although the sequence of numbers stays

bounded, the numbers never repeat (except by the accident of

round-off errors). An impressive property of chaotic functions

is the butterfly effect (more properly referred to as sensitive

dependence on initial conditions). The butterfly effect applies

to the chaotic nature of weather and states that the amount of

air stirred by a butterfly flapping its wings in Brazil can create

or disperse a tornado in Texas a few days later. Therefore, long-

range weather prediction is impossible. To illustrate the butter-

fly effect, iterate f (x) starting at x0 = 0.5 and x0 = 0.51. How

many iterations does it take before the iterations are more than

0.1 apart? Try this again with x0 = 0.5 and x0 = 0.501. Repeat

this exercise for the function g(x) = x2 − 1. Even though the

functions are almost identical, g(x) is not chaotic and behaves

very differently. This represents an important idea in modern

medical research called dynamical diseases: a small change in
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one of the constants in a function (e.g., the rate of an electrical

signal within the human heart) can produce a dramatic change

in the behavior of the system (e.g., the pumping of blood from

the ventricles).

2. Just as we are subject to round-off error in using calculations

from a computer, so are we subject to errors in a computer-

generated graph. After all, the computer has to compute func-

tion values before it can decide where to plot points. On

your computer or calculator, graph y = sin x2 (a disconnected

graph—or point plot—is preferable). You should see the os-

cillations you expect from the sine function, but with the os-

cillations getting faster as x gets larger. Shift your graphing

window to the right several times. At some point, the plot will

become verymessy and almost unreadable. Depending on your

technology, youmay see patterns in the plot. Are these patterns

real or an illusion? To explain what is going on, recall that a

computer graph is a finite set of pixels, with each pixel rep-

resenting one x and one y. Suppose the computer is plotting

points at x = 0, x = 0.1, x = 0.2 and so on. The y-values

would then be sin 02, sin 0.12, sin 0.22 and so on. Investigate

what will happen between x = 15 and x = 16. Compute all the

points (15, sin 152), (15.1, sin 15.12) and so on. If you were to

graph these points, what pattern would emerge? To explain this

pattern, argue that there is approximately half a period of the

sine curve missing between each point plotted. Also, investi-

gate what happens between x = 31 and x = 32.

Review Exercises

WRITING EXERCISES

The following list includes terms that are defined and theorems that

are stated in this chapter. For each term or theorem, (1) give a precise

definition or statement, (2) state in general terms what it means and

(3) describe the types of problems with which it is associated.

Secant line Limit Infinite limit

One-sided limit Continuous Loss-of-significance

Removable Horizontal asymptote error

discontinuity Squeeze Theorem Slant asymptote

Vertical asymptote Length of line Intermediate Value

Method of bisections segment Theorem

Slope of curve

TRUE OR FALSE

State whether each statement is true or false and briefly explain

why. If the statement is false, try to “fix it” by modifying the given

statement to make a new statement that is true.

1. In calculus, problems are often solved by first approximating

the solution and then improving the approximation.

2. If f (1.1) = 2.1, f (1.01) = 2.01 and so on, then lim
x→1

f (x) = 2.

3. lim
x→a

[ f (x) · g(x)] = [lim
x→a

f (x)][lim
x→a

g(x)]

4. lim
x→a

f (x)

g(x)
=

lim
x→a

f (x)

lim
x→a

g(x)

5. If f (2) = 1 and f (4) = 2, then there exists an x between 2 and

4 such that f (x) = 0.

6. For any polynomial p(x), lim
x→∞

p(x) = ∞.

7. If f (x) = p(x)

q(x)
for polynomials p and q with q(a) = 0, then

f has a vertical asymptote at x = a.

8. Small round-off errors typically have only small effects on a

calculation.

9. lim
x→a

f (x) = L if and only if lim
x→a

 
f (x) =

√
L.

In exercises 1 and 2, numerically estimate the slope of y  f (x)

at x  a.

1. f (x) = x2 − 2x, a = 2

2. f (x) = sin 2x, a = 0

In exercises 3 and 4, numerically estimate the length of the curve

using (a) n  4 and (b) n  8 line segments and evenly spaced

x-coordinates.

3. f (x) = sin x, 0 ≤ x ≤ π

4

4. f (x) = x2 − x, 0 ≤ x ≤ 2

In exercises 5–10, use numerical and graphical evidence to con-

jecture the value of the limit.

5. lim
x→0

tan (x3)

x2
6. lim

x→1

x2 − 1

cosπx + 1

7. lim
x→−2

x + 2

|x + 2| 8. lim
x→0

tan
1

x

9. lim
x→−∞

√
x2 + 4

3x + 1
10. lim

x→∞
4x2 + x − 1√

x4 + 6
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Review Exercises

In exercises 11 and 12, identify the limits from the graph of f .

11. (a) lim
x→−1−

f (x) (b) lim
x→−1+

f (x)

(c) lim
x→−1

f (x) (d) lim
x→0

f (x)

12. (a) lim
x→1−

f (x) (b) lim
x→1+

f (x)

(c) lim
x→1

f (x) (d) lim
x→2

f (x)

y

x

 3

3

3 3

13. Identify the discontinuities in the function graphed above.

14. Sketch a graph of a function f with f (−1) = 0,

f (0) = 0, lim
x→1−

f (x) = 1 and lim
x→1+

f (x) = −1.

In exercises 15–34, evaluate the limit. Answer with a number,

∞ , −∞ or does not exist.

15. lim
x→2

x2 − x − 2

x2 − 4
16. lim

x→1

x2 − 1

x2 + x − 2

17. lim
x→0

x2 + x√
x4 + 2x2

18. lim
x→0

x3 + 2x2√
x8 + 4x4

19. lim
x→0

(2 + x) sin(1/x) 20. lim
x→0

sin x2

x2

21. lim
x→2

f (x), where f (x) =
 
3x − 1 if x < 2

x2 + 1 if x ≥ 2

22. lim
x→1

f (x), where f (x) =
 
2x + 1 if x < 1

x2 + 1 if x ≥ 1

23. lim
x→0

3
√
1 + 2x − 1

x
24. lim

x→1

x − 1√
10 − x − 3

25. lim
x→0

cot (x2) 26. lim
x→1

tan

 
x

x2 − 2x + 1

 

27. lim
x→∞

x2 − 4

3x2 + x + 1
28. lim

x→∞
2x√
x2 + 4

29. lim
x→π/2

− tan2 x 30. lim
x→3

x2 − 2x − 3

x2 + 6x + 9

31. lim
x→−∞

2x

x2 + 3x − 5
32. lim

x→−2

2x

x2 + 3x + 2

33. lim
x→0

sin x

| sin x | 34. lim
x→0

2x − |x |
|3x | − 2x

35. Use the Squeeze Theorem to prove that lim
x→0

2x3

x2 + 1
= 0.

36. Use the Intermediate Value Theorem to verify that

f (x) = x3 − x − 1 has a zero in the interval [1, 2]. Use the

method of bisections to find an interval of length 1/32 that

contains a zero.

In exercises 37–40, find all discontinuities and determine which

are removable.

37. f (x) = x − 1

x2 + 2x − 3
38. f (x) = x + 1

x2 − 4

39. f (x) =

⎧⎨
⎩
sin x if x < 0

x2 if 0 ≤ x ≤ 2

4x − 3 if x > 2

40. f (x) = x cot x

In exercises 41–44, find all intervals of continuity.

41. f (x) = x + 2

x2 − x − 6
42. f (x) = 2x√

3x − 4

43. f (x) = sin (1 + cos x) 44. f (x) =
 
x2 − 4

In exercises 45–52, determine all vertical, horizontal and slant

asymptotes.

45. f (x) = x + 1

x2 − 3x + 2
46. f (x) = x + 2

x2 − 2x − 8

47. f (x) = x2

x2 − 1
48. f (x) = x3

x2 − x − 2

49. f (x) = x3

x2 + x + 1
50. f (x) = 2x2

x2 + 4

51. f (x) = 3

cos x − 1
52. f (x) = cos x − 1

x + 3

In exercises 53 and 54, (a) use graphical and numerical evidence

to conjecture a value for the indicated limit. (b) Find a com-

puter or calculator graph showing a loss-of-significance error.

(c) Rewrite the function to avoid the loss-of-significance error.

53. lim
x→0

1 − cos x

2x2
54. lim

x→∞
x
  

x2 + 1 − x
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Review Exercises

55. You’veheard the sports cliche “keepyour eyeon theball.” In the

diagram, x is the distance from the ball to home plate and θ is an

angle indicating the direction of the player’s gaze. We denote

the speed of the ball by x  and the rate of change of the player’s
gaze by θ  . For a 90-mph baseball pitch, x  = −132 ft/s. It

can be shown that θ  = 264

4 + x2
radians/second. From this

formula, explain why θ  increases as x decreases. Explain the

same result from physical principles. Finally, compute lim
x→0

θ  ,

the maximum rate of change of the player’s gaze. This is not an

infinite limit. However, given that human beings cannot main-

tain focus at a rate of more than about 3 radians/second, how

big is the maximum θ  ? Is it possible for a baseball player to
keep his or her eyes on the ball?

x

Player

Plate
Ball

2
u

EXPLORATORY EXERCISES

1. For f (x) = 2x2 − 2x − 4

x2 − 5x + 6
, do the following. (a) Find all val-

ues of x at which f is not continuous. (b) Determine which

value in (a) is a removable discontinuity. For this value, find

the limit of f as x approaches this value. Sketch a portion of

the graph of f near this x-value showing the behavior of the

function. (c) For the value in part (a) that is not removable,

find the two one-sided infinite limits and sketch the graph of f

near this x-value. (d) Find lim
x→∞

f (x) and lim
x→−∞

f (x) and sketch

the portion of the graph of f corresponding to these values.

(e) Connect the pieces of your graph as simply as possible. If

available, compare your graph to a computer-generated graph.

2. Let f (t) represent the price of an autograph of a famous per-

son at time t (years after 2000). Interpret each of the following

(independently) in financial terms: (a) horizontal asymptote

y= 1000, (b) vertical asymptote at t = 10, (c) lim
t→4−

f (t) = 500

and lim
t→4+

f (t) = 800 and (d) lim
t→8

f (t) = 950.

3. As discussed in this chapter, the limit of a function is the

single number, if one exists, that the function approaches

as x approaches its limiting value. The limit concept can

be generalized to limiting behavior more complicated than

a single number. The study of chaos (more properly called

nonlinear dynamics) makes use of this extended concept.

We will explore chaos theory at various times during our

calculus journey. For now, we look at some examples of

different limiting behaviors. We first iterate the function

f2(x) = x(2 − x). That means we start at some initial x-

value, say x0 = 0.5 and compute x1 = f2(x0), then com-

pute x2 = f2(x1), then x3 = f2(x2) and so on. Use a calcu-

lator or computer to verify that x1 = 0.5(2 − 0.5) = 0.75,

x2 = 0.9375, x3 = 0.99609375, x4 = 0.9999847412 and so

on. You should conclude that the limit of this sequence

of calculations is 1. Now, try iterating f3.2(x) = x(3.2 − x)

starting at x0 = 0.5. Verify that x1 = 1.35, x2 = 2.4975,

x3 = 1.75449375, x4 = 2.536131681 and so on. If you con-

tinue this process, you will see a different type of limiting

behavior: alternation between the values of (approximately)

1.641742431 and 2.558257569. In what way might you com-

pare this limiting behavior to a periodic function? To find

other periodic limits, try the functions f3.48(x) = x(3.48 − x),

f3.555(x), f3.565(x) and f3.569(x).What is the pattern of the size

of the periods? Note that the parameter (subscript) of this fam-

ily of functions is being changed less and less to produce the

higher periods. The limit of these subscripts is also of interest.

We explore this in exercise 5.

4. In exercise 3, we looked at some examples from the family of

functions fc(x) = x(c − x) for various values of the parame-

ter c. In particular, as we gradually increased c from c = 2 to

c = 3.57, we saw the limiting behavior (called the attractor)

change from convergence to a single number (called a one-

cycle) to alternation between two numbers (a two-cycle) to

alternation among four numbers (a four-cycle) to, eventually,

chaos (bounded but aperiodic). The transitions from one type

of limiting behavior to another occur at special values of c

called bifurcation points. By trial and error, find the first bi-

furcation point; that is, find the number b such that fc(x) has

an attracting one-cycle if c < b and an attracting two-cycle if

c > b.

5. In this exercise, we look at another aspect of the mathemat-

ical study of chaos. In the language of exercises 3 and 4,

we start by iterating the function f (x) = x(4 − x) starting at

x0 = 0.5. That is, compute x1 = f (0.5), then x2 = f (x1), then

x3 = f (x2) and so on. Although the sequence of numbers stays

bounded, the numbers never repeat (except by the accident of

round-off errors). This is calledmathematical chaos: bounded

but not periodic. The weather is one example of a natural pro-

cess that is thought to be chaotic. In what sense is the weather

(take, for example, the local temperature) bounded but not peri-

odic? Explain why it is inherently impossible to have accurate

long-range weather forecasts.





C H A P T E R

2
Differentiation

The marathon is one of the most famous running events, covering 26

miles and 385 yards. The race was invented for the 1896 Olympics in

Greece to commemorate a famous Greek legend. Following a decisive

victory over the Persian army at the Battle of Marathon, an army runner

was dispatched to carry the news from Marathon to Athens. According

to the legend, the runner reached Athens, shouted, “Rejoice! We con-

quer!” and then died.

The historic route from Marathon to Athens was used for the 2004

Olympic marathon, won by Stefano Baldini of Italy in a time of 2:10:55.

It is interesting to compute his running speed. Using the physics for-

mula “rate equals distance divided by time,” we can compute Baldini’s

average speed of

26 + 385

1760

2 + 10

60
+ 55

3600

≈ 12.0 mph.

This says that Baldini averaged less than 5 minutes per mile for over 26 miles!

However, the 100-meter sprint was won by Justin Gatlin of the United States in

9.85 seconds, and the 200-meter sprint was won by Shawn Crawford of the United

States in 19.79 seconds. Average speeds for these runners were

100

1610

9.85

3600

≈ 22.7 mph and

200

1610

19.79

3600

≈ 22.6 mph.

Since these speeds are much faster than that of the marathon runner, the winners

of these events are often called the “World’s Fastest Human.”

An interesting connection can be made with a thought experiment. If the same

person ran 200 meters in 19.79 seconds with the first 100 meters covered in 9.85

seconds, compare the average speeds for the first and second 100 meters. In the

second 100 meters, the distance run is 200 − 100 = 100 meters and the time is

19.79 − 9.85 = 9.94 seconds. The average speed is then

200 − 100

19.79 − 9.85
= 100

9.94
≈ 10.06 m/s ≈ 22.5 mph.

123
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Notice that the speed calculation in m/s is the same calculation we would use for the slope

between the points (9.85, 100) and (19.79, 200). The connection between slope and speed

(and other quantities of interest) is explored in this chapter.

P

Point

of

release

FIGURE 2.1
Path of rock

2.1 TANGENT LINES AND VELOCITY

A traditional slingshot is essentially a rock on the end of a string, which you rotate around in

a circular motion and then release. When you release the string, in which direction will the

rock travel? An overhead view of this is illustrated in Figure 2.1. Many people mistakenly

believe that the rock will follow a curved path, but Newton’s first law of motion tells us that

the path in the horizontal plane is straight. In fact, the rock follows a path along the tangent

line to the circle at the point of release. Our aim in this section is to extend the notion of

tangent line to more general curves.

To make our discussion more concrete, suppose that we want to find the tangent line to

the curve y = x2 + 1 at the point (1, 2). (See Figure 2.2.) How could we define this? The

tangent line hugs the curve near the point of tangency. In other words, like the tangent line

to a circle, this tangent line has the same direction as the curve at the point of tangency. So,

if you were standing on the curve at the point of tangency, took a small step and tried to

stay on the curve, you would step in the direction of the tangent line. Another way to think

of this is to observe that if we zoom in sufficiently far, the graph appears to approximate

that of a straight line. In Figure 2.3, we show the graph of y = x2 + 1 zoomed in on the

small rectangular box indicated in Figure 2.2. (Be aware that the “axes” indicated in Fig-

ure 2.3 do not intersect at the origin. We provide them only as a guide as to the scale used

to produce the figure.) We now choose two points from the curve—for example, (1, 2) and

(3, 10)—and compute the slope of the line joining these two points. Such a line is called a

secant line and we denote its slope by msec:

msec = 10 − 2

3 − 1
= 4.

An equation of the secant line is then determined by

y − 2

x − 1
= 4,

y

x

 4

(1, 2)

4

8

12

42 2 4

y

x

1.8

1.9

2.0

2.1

2.2

0.92 0.96 1.00 1.04 1.08

FIGURE 2.2
y = x2 + 1

FIGURE 2.3
y = x2 + 1
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so that y = 4(x − 1) + 2.

As can be seen in Figure 2.4a, the secant line doesn’t look very much like a tangent

line.

y

x

 4

4

8

12

42 2 4

FIGURE 2.4a
Secant line joining (1, 2) and

(3, 10)

y

x

 4

4

8

12

42 2 4

FIGURE 2.4b
Secant line joining (1, 2) and (2, 5)

Taking the second point a little closer to the point of tangency, say (2, 5), gives the

slope of the secant line as

msec = 5 − 2

2 − 1
= 3

and an equation of the secant line as y = 3(x − 1) + 2. As seen in Figure 2.4b, this looks

much more like a tangent line, but it’s still not quite there. Choosing our second point

much closer to the point of tangency, say (1.05, 2.1025), should give us an even better

approximation to the tangent line. In this case, we have

msec = 2.1025 − 2

1.05 − 1
= 2.05

and an equation of the secant line is y = 2.05(x − 1) + 2. As can be seen in Figure 2.4c,

the secant line looks very much like a tangent line, even when zoomed in quite far, as in

Figure 2.4d. We continue this process by computing the slope of the secant line joining

(1, 2) and the unspecified point (1 + h, f (1 + h)), for some value of h close to 0. The slope

of this secant line is

msec = f (1 + h) − 2

(1 + h) − 1
= [(1 + h)2 + 1] − 2

h

= (1 + 2h + h2) − 1

h
= 2h + h2

h
Multiply out and cancel.

= h(2 + h)

h
= 2 + h. Factor out common h and cancel.
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x

 4

4

8

12

42 2 4

y

x

1

2

3

0.6 1.0 1.4

FIGURE 2.4c
Secant line joining (1, 2) and

(1.05, 2.1025)

FIGURE 2.4d
Close-up of secant line
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Notice that as h approaches 0, the slope of the secant line approaches 2, which we define

to be the slope of the tangent line.

REMARK 1.1

We should make one more observation before moving on to the general case of

tangent lines. Unlike the case for a circle, tangent lines may intersect a curve at more

than one point, as indicated in Figure 2.5.

y

x

y   f (x)

FIGURE 2.5
Tangent line intersecting a curve

at more than one point
The General Case

To find the slope of the tangent line to y = f (x) at x = a, first pick two points on the curve.

One point is the point of tangency, (a, f (a)). Call the x-coordinate of the second point

x = a + h, for some small number h; the corresponding y-coordinate is then f (a + h). It

is natural to think of h as being positive, as shown in Figure 2.6a, although h can also be

negative, as shown in Figure 2.6b.

y

x
a a   h

y

x
a   h a

FIGURE 2.6a
Secant line (h > 0)

FIGURE 2.6b
Secant line (h < 0)

The slope of the secant line through the points (a, f (a)) and (a + h, f (a + h)) is

given by

msec = f (a + h) − f (a)

(a + h) − a
= f (a + h) − f (a)

h
. (1.1)

Notice that the expression in (1.1) (called a difference quotient) gives the slope of the

secant line for any second point we might choose (i.e., for any h  = 0). Recall that in

order to obtain an improved approximation to the tangent line, we zoom in closer and

closer toward the point of tangency. This makes the two points closer together, which

in turn makes h closer to 0. Just how far should we zoom in? The farther, the bet-

ter; this means that we want h to approach 0. We illustrate this process in Figure 2.7,

where we have plotted a number of secant lines for h > 0. Notice that as the point

Q approaches the point P (i.e., as h → 0), the secant line approaches the tangent line

at P.

y

x

P

Q

FIGURE 2.7
Secant lines approaching the

tangent line at the point P

We define the slope of the tangent line to be the limit of the slopes of the secant lines

in (1.1) as h tends to 0, whenever this limit exists.
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DEFINITION 1.1

The slope m tan of the tangent line to y = f (x) at x = a is given by

mtan = lim
h→0

f (a + h) − f (a)

h
, (1.2)

provided the limit exists.

The tangent line is then the line passing through the point (a, f (a)) with slopem tan and

so, the point-slope form of the equation of the tangent line is

y = m tan(x − a) + f (a).Equation of tangent line

EXAMPLE 1.1 Finding the Equation of a Tangent Line

Find an equation of the tangent line to y = x2 + 1 at x = 1.

y

x

 4

4

8

12

42 2 4

FIGURE 2.8
y = x2 + 1 and the tangent line

at x = 1

Solution We compute the slope using (1.2):

m tan = lim
h→0

f (1 + h) − f (1)

h

= lim
h→0

[(1 + h)2 + 1] − (12 + 1)

h

= lim
h→0

1 + 2h + h2 + 1 − 2

h
Multiply out and cancel.

= lim
h→0

2h + h2

h
= lim

h→0

h(2 + h)

h
Factor out common h and cancel.

= lim
h→0

(2 + h) = 2.

Notice that the point corresponding to x = 1 is (1, 2) and the line with slope 2 through

the point (1, 2) has equation

y = 2(x − 1) + 2 or y = 2x .

Note how closely this corresponds to the secant lines computed earlier. We show a graph

of the function and this tangent line in Figure 2.8. �

EXAMPLE 1.2 Tangent Line to the Graph of a Rational Function

Find an equation of the tangent line to y = 2

x
at x = 2.

Solution From (1.2), we have

m tan = lim
h→0

f (2 + h) − f (2)

h
= lim

h→0

2

2 + h
− 1

h
Since f (2 + h) = 2

2 + h
.

= lim
h→0

 
2 − (2 + h)

(2 + h)

 
h

= lim
h→0

 
2 − 2 − h

(2 + h)

 
h

Add fractions and multiply out.

= lim
h→0

−h
(2 + h)h

= lim
h→0

−1

2 + h
= −1

2
. Cancel h’s.
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The point corresponding to x = 2 is (2, 1), since f (2) = 1. An equation of the tangent

line is then

y = −1

2
(x − 2) + 1.

We show a graph of the function and this tangent line in Figure 2.9. �

In cases where we cannot (or cannot easily) evaluate the limit for the slope of the

tangent line, we can approximate the limit numerically. We illustrate this in example 1.3.
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FIGURE 2.9

y = 2

x
and tangent line at (2, 1)
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FIGURE 2.10a

y = x − 1

x + 1

x
21 2  1

y
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2

1

3

FIGURE 2.10b
Tangent line

EXAMPLE 1.3 Graphical and Numerical Approximation
of Tangent Lines

Graphically and numerically approximate the slope of the tangent line to y = x − 1

x + 1
at

x = 0.

Solution A graph of y = x − 1

x + 1
is shown in Figure 2.10a. We are interested in the

tangent line at the point (0, −1). We sketch a tangent line in Figure 2.10b, where we

have zoomed in to provide better detail. To approximate the slope, we estimate the

coordinates of one point on the tangent line other than (0, −1). In Figure 2.10b, it

appears that the tangent line passes through the point (1, 1). An estimate of the slope is

then m tan ≈ 1 − (−1)

1 − 0
= 2. To approximate the slope numerically, we choose several

points near (0, −1) and compute the slopes of the secant lines. For example, rounding

the y-values to four decimal places, we have

Second Point msec Second Point msec

(1, 0)
0 − (−1)

1 − 0
= 1 (−0.5, −3)

−3 − (−1)

−0.5 − 0
= 4

(0.1, −0.8182)
−0.8182 − (−1)

0.1 − 0
= 1.818 (−0.1, −1.2222)

−1.2222 − (−1)

−0.1 − 0
= 2.22

(0.01, −0.9802)
−0.9802 − (−1)

0.01 − 0
= 1.98 (−0.01, −1.0202)

−1.0202 − (−1)

−0.01 − 0
= 2.02

In both columns, as the second point gets closer to (0, −1), the slope of the secant

line gets closer to 2. A reasonable estimate of the slope of the curve at the point (0, −1)

is then 2. �

Velocity

The slopes of tangent lines have many important applications, of which one of the most

important is in computing velocity. The term velocity is certainly familiar to you, but can

you say precisely what it is? We often describe velocity as a quantity determining the speed

and direction of an object, but what exactly is speed? If your car did not have a speedometer,

you might determine your speed using the familiar formula

distance = rate × time. (1.3)

Using (1.3), you can find the rate (speed) by simply dividing the distance by the time.

However, the rate in (1.3) refers to average speed over a period of time. We are interested

in the speed at a specific instant. The following story should indicate the difference.

During traffic stops, police officers frequently ask drivers if they know how fast

they were going. An overzealous student might answer that during the past, say, 3 years,
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2 months, 7 days, 5 hours and 45 minutes, they’ve driven exactly 45,259.7 miles, so that

their speed was

rate = distance

time
= 45,259.7 miles

27,917.75 hours
≈ 1.62118 mph.

Of course, most police officers would not be impressed with this analysis, but, why is

it wrong? Certainly there’s nothing wrong with formula (1.3) or the arithmetic. However,

it’s reasonable to argue that unless the student was in his or her car during this entire 3-year

period, the results are invalid.

Suppose that the driver substitutes the following argument instead: “I left home at

6:17 P.M. and by the time you pulled me over at 6:43 P.M., I had driven exactly 17 miles.

Therefore, my speed was

rate = 17 miles

26 minutes
· 60 minutes

1 hour
= 39.2 mph,

well under the posted 45-mph speed limit.”

While this is a much better estimate of the velocity than the 1.6 mph computed previ-

ously, it’s still an average velocity using too long of a time period.

More generally, suppose that the function f (t) gives the position at time t of an object

moving along a straight line. That is, f (t) gives the displacement (signed distance) from a

fixed reference point, so that f (t) < 0 means that the object is located | f (t)| away from the

reference point, but in the negative direction. Then, for two times a and b (where a < b),

f (b) − f (a) gives the signed distance between positions f (a) and f (b). The average

velocity vavg is then given by

vavg = signed distance

time
= f (b) − f (a)

b − a
. (1.4)

EXAMPLE 1.4 Finding Average Velocity

The position of a car after t minutes driving in a straight line is given by

s(t) = 1

2
t2 − 1

12
t3, 0 ≤ t ≤ 4.

Approximate the velocity at time t = 2.

Solution Averaging over the 2 minutes from t = 2 to t = 4, we get from (1.4) that

vavg = s(4) − s(2)

4 − 2
≈ 2.666666667 − 1.333333333

2

≈ 0.666666667 mile/minute

≈ 40 mph.

Of course, a 2-minute-long interval is rather long, given that cars can speed up and slow

down a great deal in 2 minutes. We get an improved approximation by averaging over

just one minute:

vavg = s(3) − s(2)

3 − 2
≈ 2.25 − 1.333333333

1

≈ 0.9166666667 mile/minute

≈ 55 mph.
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While this latest estimate is certainly better than the first one, we can do better. As we

make the time interval shorter and shorter, the average velocity should be getting closer

and closer to the velocity at the instant t = 2. It stands to reason that, if we compute the

average velocity over the time interval [2, 2 + h] and then let h → 0, the resulting

average velocities should be getting closer and closer to the velocity at the instant

t = 2.

h
s(2 h) − s(2)

h

1.0 0.9166666667

0.1 0.9991666667

0.01 0.9999916667

0.001 0.999999917

0.0001 1.0

0.00001 1.0

We have vavg = s(2 + h) − s(2)

(2 + h) − 2
= s(2 + h) − s(2)

h
.

A sequence of these average velocities is displayed in the accompanying table, for

h > 0, with similar results if we allow h to be negative. It appears that the average

velocity is approaching 1 mile/minute (60 mph), as h → 0. We refer to this limiting

value as the instantaneous velocity. �

This leads us to make the following definition.

DEFINITION 1.2

If f (t) represents the position of an object relative to some fixed location at time t

as it moves along a straight line, then the instantaneous velocity at time t = a is

given by

v(a) = lim
h→0

f (a + h) − f (a)

(a + h) − a
= lim

h→0

f (a + h) − f (a)

h
, (1.5)

provided the limit exists.

NOTE

Notice that if (for example) t is

measured in seconds and f (t) is

measured in feet, then velocity

(average or instantaneous) is

measured in feet per second (ft/s).

The term velocity is always used

to refer to instantaneous velocity.

EXAMPLE 1.5 Finding Average and Instantaneous Velocity

Suppose that the height of a falling object t seconds after being dropped from a height

of 64 feet is given by f (t) = 64 − 16t2 feet. Find the average velocity between times

t = 1 and t = 2; the average velocity between times t = 1.5 and t = 2; the average

velocity between times t = 1.9 and t = 2 and the instantaneous velocity at

time t = 2.

Solution The average velocity between times t = 1 and t = 2 is

vavg = f (2) − f (1)

2 − 1
= 64 − 16(2)2 − [64 − 16(1)2]

1
= −48 ft/s.

The average velocity between times t = 1.5 and t = 2 is

vavg = f (2) − f (1.5)

2 − 1.5
= 64 − 16(2)2 − [64 − 16(1.5)2]

0.5
= −56 ft/s.

The average velocity between times t = 1.9 and t = 2 is

vavg = f (2) − f (1.9)

2 − 1.9
= 64 − 16(2)2 − [64 − 16(1.9)2]

0.1
= −62.4 ft/s.
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The instantaneous velocity is the limit of such average velocities. From (1.5),

we have

v(2) = lim
h→0

f (2 + h) − f (2)

(2 + h) − 2

= lim
h→0

[64 − 16(2 + h)2] − [64 − 16(2)2]

h

= lim
h→0

[64 − 16(4 + 4h + h2)] − [64 − 16(2)2]

h
Multiply out and cancel.

= lim
h→0

−64h − 16h2

h
= lim

h→0

−16h(h + 4)

h
Factor out common h and cancel.

= lim
h→0

[−16(h + 4)] = −64 ft/s.

Recall that velocity indicates both speed and direction. In this problem, f (t) measures

the height above the ground. So, the negative velocity indicates that the object is

moving in the negative (or downward) direction. The speed of the object at the 2-second

mark is then 64 ft/s. (Speed is simply the absolute value of velocity.) �

Observe that the formulas for instantaneous velocity (1.5) and for the slope of a tangent

line (1.2) are identical. We want to make this connection as strong as possible, by illustrating

example 1.5 graphically. We graph the position function f (t) = 64 − 16t2 for 0 ≤ t ≤ 3.

The average velocity between t = 1 and t = 2 corresponds to the slope of the secant line

between the points at t = 1 and t = 2. (See Figure 2.11a.) Similarly, the average velocity be-

tween t = 1.5 and t = 2 gives the slope of the corresponding secant line. (See Figure 2.11b.)

Finally, the instantaneous velocity at time t = 2 corresponds to the slope of the tangent line

at t = 2. (See Figure 2.11c.)
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FIGURE 2.11a
Secant line between t = 1 and

t = 2

FIGURE 2.11b
Secant line between t = 1.5

and t = 2

FIGURE 2.11c
Tangent line at t = 2

Velocity is a rate (more precisely, the instantaneous rate of change of position with

respect to time). We now generalize this notion of instantaneous rate of change. In general,
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the average rate of change of a function f (x) between x = a and x = b (a  = b) is

given by

f (b) − f (a)

b − a
.

The instantaneous rate of change of f (x) at x = a is given by

lim
h→0

f (a + h) − f (a)

h
,

provided the limit exists. The units of the instantaneous rate of change are the units of f

divided by (or “per”) the units of x .

EXAMPLE 1.6 Interpreting Rates of Change

If the function f (t) gives the population of a city in millions of people t years after

January 1, 2000, interpret each of the following quantities, assuming that they

equal the given numbers. (a)
f (2) − f (0)

2
= 0.34, (b) f (2) − f (1) = 0.31 and

(c) lim
h→0

f (2 + h) − f (2)

h
= 0.3.

Solution From the preceding,
f (b) − f (a)

b − a
is the average rate of change of the

function f between a and b. Expression (a) tells us that the average rate of change of f

between a = 0 and b = 2 is 0.34. Stated in more common language, the city’s

population grew at an average rate of 0.34 million people per year between 2000 and

2002. Similarly, expression (b) is the average rate of change between a = 1 and b = 2.

That is, the city’s population grew at an average rate of 0.31 million people per year in

2001. Finally, expression (c) gives the instantaneous rate of change of the population at

time t = 2. As of January 1, 2002, the city’s population was growing at a rate of 0.3

million people per year. �

Additional applications of the slope of a tangent line are innumerable. These include the

rate of a chemical reaction, the inflation rate in economics and learning growth rates in psy-

chology. Rates of change in nearly any discipline you can name can be thought of as slopes

of tangent lines. We explore many of these applications as we progress through the text.

You hopefully noticed that we tacked the phrase “provided the limit exists” onto the

end of the definitions of the slope of a tangent line, the instantaneous velocity and the

instantaneous rate of change. This was important, since these defining limits do not always

exist, as we see in example 1.7.
y

x

y    x 

Slope   1Slope    1

FIGURE 2.12

y = |x |

EXAMPLE 1.7 A Graph with No Tangent Line at a Point

Determine whether there is a tangent line to y = |x | at x = 0.

Solution We can look at this problem graphically, numerically and symbolically. The

graph is shown in Figure 2.12. Our graphical technique is to zoom in on the point of

tangency until the graph appears straight. However, no matter how far we zoom in on

(0, 0), the graph continues to look like Figure 2.12. (This is one reason why we left off

the scale on Figure 2.12.) From this evidence alone, we would conjecture that the

tangent line does not exist. Numerically, the slope of the tangent line is the limit of the
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slope of a secant line, as the second point approaches the point of tangency. Observe

that the secant line through (0, 0) and (1, 1) has slope 1, as does the secant line through

(0, 0) and (0.1, 0.1). In fact, if h is any positive number, the slope of the secant line

through (0, 0) and (h, |h|) is 1. However, the secant line through (0, 0) and (−1, 1) has

slope −1, as does the secant line through (0, 0) and (h, |h|) for any negative number h.

We therefore conjecture that the one-sided limits are different, so that the limit (and also

the tangent line) does not exist. To prove this conjecture, we take our cue from the

numerical work and look at one-sided limits: if h > 0, then |h| = h, so that

lim
h→0+

f (0 + h) − f (0)

h
= lim

h→0+

|h| − 0

h
= lim

h→0+

h

h
= 1.

On the other hand, if h < 0, then |h| = −h (remember that if h < 0, −h > 0), so that

lim
h→0−

f (0 + h) − f (0)

h
= lim

h→0−

|h| − 0

h
= lim

h→0−

−h
h

= −1.

Since the one-sided limits are different, we conclude that

lim
h→0

f (0 + h) − f (0)

h
does not exist

and hence, the tangent line does not exist. �

EXERCISES 2.1

WRITING EXERCISES

1. What does the phrase “off on a tangent” mean? Relate the com-

mon meaning of the phrase to the image of a tangent to a circle.

(Use the slingshot example, if that helps.) In what way does

the zoomed image of the tangent promote the opposite view of

the relationship between a curve and its tangent?

2. In general, the instantaneous velocity of an object cannot be

computed directly; the limit process is the only way to compute

velocity at an instant. Given this, how does a car’s speedometer

compute velocity? (Hint: Look this up in a reference book or

on the Internet. An important aspect of the car’s ability to do

this seemingly difficult task is that it performs analog calcula-

tions. For example, the pitch of a fly’s buzz gives us an analog

device for computing the speed of a fly’s wings, since pitch is

proportional to speed.)

3. Look in the news media (TV, newspaper, Internet) and find ref-

erences to at least five different rates. We have defined a rate of

change as the limit of the difference quotient of a function. For

your five examples, state as precisely as possible what the orig-

inal function is. Is the rate given quantitatively or qualitatively?

If it is given quantitatively, is the rate given as a percentage or a

number? In calculus, we usually compute rates (quantitatively)

as numbers; is this in line with the standard usage?

4. Sketch the graph of a function that is discontinuous at x = 1.

Explain why there is no tangent line at x = 1.

In exercises 1–4, sketch in a plausible tangent line at the given

point. (Hint: Mentally zoom in on the point and use the zoomed

image of the tangent.)

1. y

x    at x = π
p

2. y

x    at x = 0

3. y

x    at x = 0
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4. y

1
x    at x = 1

In exercises 5 and 6, estimate the slope of the tangent line to the

curve at x  1.

5. y

x

0.5

1.0

1.5

0.5 1.0 1.5

6. y

x
1 2 3

 4

 2

2

In exercises 7 and 8, list the points A, B, C and D in order of

increasing slope of the tangent line.

7. y

x

A
B

C
D

8.
y

x
A

B C

D

In exercises 9–12, compute the slope of the secant line be-

tween the points at (a) x  1 and x  2, (b) x  2 and x  3,

(c) x  1.5 and x  2, (d) x  2 and x  2.5, (e) x  1.9 and

x  2, (f) x  2 and x  2.1, and (g) use parts (a)–(f) and other

calculations as needed to estimate the slope of the tangent line

at x  2.

9. f (x) = x3 − x 10. f (x) =
√
x2 + 1

11. f (x) = cos x2 12. f (x) = tan (x/4)

In exercises 13–16, use a CAS or graphing calculator.

13. On one graph, sketch the secant lines in exercise 9, parts

(a)–(d) and the tangent line in part (g).

14. On one graph, sketch the secant lines in exercise 10, parts

(a)–(d) and the tangent line in part (g).

15. Animate the secant lines in exercise 9, parts (a), (c) and (e),

converging to the tangent line in part (g).

16. Animate the secant lines in exercise 9, parts (b), (d) and (f),

converging to the tangent line in part (g).

In exercises 17–24, find the equation of the tangent line to

y  f (x) at x  a. Graph y  f (x) and the tangent line to

verify that you have the correct equation.

17. f (x) = x2 − 2, a = 1 18. f (x) = x2 − 2, a = 0

19. f (x) = x2 − 3x , a = −2 20. f (x) = x3 + x , a = 1

21. f (x) = 2

x + 1
, a = 1 22. f (x) = x

x − 1
, a = 0

23. f (x) = √
x + 3, a = −2 24. f (x) =

√
x2 + 1, a = 1

In exercises 25–30, use graphical and numerical evidence to de-

termine whether the tangent line to y  f (x) exists at x  a. If

it does, estimate the slope of the tangent; if not, explain why not.

25. f (x) = |x − 1| at a = 1

26. f (x) = 4x

x − 1
at a = 1

27. f (x) =
 

−2x2 if x < 0

x3 if x ≥ 0
at a = 0
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28. f (x) =
 −2x if x < 1

x − 3 if x ≥ 1
at a = 1

29. f (x) =
 
x2 − 1 if x < 0

x3 + 1 if x ≥ 0
at a = 0

30. f (x) =
 −2x if x < 0

x2 − 2x if x > 0
at a = 0

In exercises 31–34, the function represents the position in feet of

an object at time t seconds. Find the average velocity between

(a) t  0 and t  2, (b) t  1 and t  2, (c) t  1.9 and t  2,

(d) t  1.99 and t  2, and (e) estimate the instantaneous

velocity at t  2.

31. f (t) = 16t2 + 10 32. f (t) = 3t3 + t

33. f (t) =
√
t2 + 8t 34. f (t) = 100 sin(t/4)

In exercises 35 and 36, use the position function f (t) meters to

find the velocity at time t  a seconds.

35. f (t) = −16t2 + 5, (a) a = 1; (b) a = 2

36. f (t) = √
t + 16, (a) a = 0; (b) a = 2

37. The table shows the freezing temperature of water in degrees

Celsius at various pressures. Estimate the slope of the tangent

line at p = 1 and interpret the result. Estimate the slope of the

tangent line at p = 3 and interpret the result.

p (atm) 0 1 2 3 4
◦C 0 −7 −20 −16 −11

38. The table shows the range of a soccer kick launched at 30◦

above the horizontal at various initial speeds. Estimate the slope

of the tangent line at v = 50 and interpret the result.

Distance (yd) 19 28 37 47 58

Speed (mph) 30 40 50 60 70

39. The graph shows the elevation of a person on a hike up a moun-

tain as a function of time. When did the hiker reach the top?

When was the hiker going the fastest on the way up? When

was the hiker going the fastest on the way down? What do you

think occurred at places where the graph is level?

E
le

v
at

io
n

Time
4 hours

40. The graph shows the amount of water in a city water tank as a

function of time. When was the tank the fullest? the emptiest?

When was the tank filling up at the fastest rate? When was the

tank emptying at the fastest rate? What time of day do you

think the level portion represents?

W
at

er
 l

ev
el

Time
24 hours

41. Suppose a hot cup of coffee is left in a room for 2 hours. Sketch

a reasonable graph of what the temperature would look like as

a function of time. Then sketch a graph of what the rate of

change of the temperature would look like.

42. Sketch a graph representing the height of a bungee-jumper.

Sketch the graph of the person’s velocity (use + for upward

velocity and − for downward velocity).

43. Suppose that f (t) represents the balance in dollars of a bank

account t years after January 1, 2000. Interpret each of the fol-

lowing. (a)
f (4) − f (2)

2
= 21,034, (b) 2[ f (4) − f (3.5)] =

25,036 and (c) lim
h→0

f (4 + h) − f (4)

h
= 30,000.

44. Suppose that f (m) represents the value of a car that has been

driven m thousand miles. Interpret each of the following.

(a)
f (40) − f (38)

2
= −2103, (b) f (40) − f (39) = −2040

and (c) lim
h→0

f (40 + h) − f (40)

h
= −2000.

45. In using a slingshot, it is important to generate a large angular

velocity.Angular velocity is defined by lim
h→0

θ (a + h) − θ (a)

h
,

where θ (t) is the angle of rotation at time t . If the angle of

a slingshot is θ (t) = 0.4t2, what is the angular velocity after

three rotations? [Hint: Which value of t (seconds) corresponds

to three rotations?]

46. Find the angular velocity of the slingshot in exercise

45 after two rotations. Explain why the third rotation is

helpful.

47. Sometimes an incorrect method accidentally produces a cor-

rect answer. For quadratic functions (but definitely not most

other functions), the average velocity between t = r and t = s

equals the average of the velocities at t = r and t = s. To

show this, assume that f (t) = at2 + bt + c is the distance

function. Show that the average velocity between t = r and

t = s equals a(s + r ) + b. Show that the velocity at t = r is

2ar + b and the velocity at t = s is 2as + b. Finally, show that

a(s + r ) + b = (2ar + b) + (2as + b)

2
.

48. Find a cubic function [try f (t) = t3 + · · ·] and numbers r

and s such that the average velocity between t = r and t = s

is different from the average of the velocities at t = r and

t = s.
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49. Show that lim
h→0

f (a + h) − f (a)

h
= lim

x→a

f (x) − f (a)

x − a
. (Hint:

Let h = x − a.)

50. Use the second limit in exercise 49 to recompute the slope in

exercises 17 and 19. Which limit do you prefer?

51. A car speeding around a curve in the shape of y = x2 (moving

from left to right) skids off at the point
 

1
2
, 1

4

 
. If the car contin-

ues in a straight path, will it hit a tree located at the point
 
1, 3

4

 
?

52. For the car in exercise 51, show graphically that there is only

one skid point on the curve y = x2 such that the tangent line

passes through the point
 
1, 3

4

 
.

EXPLORATORY EXERCISES

1. Many optical illusions are caused by our brain’s (unconscious)

use of the tangent line in determining the positions of objects.

Suppose you are in the desert 100 feet from a palm tree. You

see a particular spot 10 feet up on the palm tree due to light

reflecting from that spot to your eyes. Normally, it is a good

approximation to say that the light follows a straight line (top

path in the figure).

Two paths of light from tree to person.

However, when there is a large temperature difference in the

air, light may follow nonlinear paths. If, as in the desert, the

air near the ground is much hotter than the air higher up, light

will bend as indicated by the bottom path in the figure. Our

brains always interpret light coming in straight paths, so you

would think the spot on the tree is at y = 10 because of the top

path and also at some other y because of the bottom path. If

the bottom curve is y = 0.002x2 − 0.24x + 10, find an equa-

tion of the tangent line at x = 100 and show that it crosses the

y-axis at y = −10. That is, you would “see” the spot at y = 10

and also at y = −10, a perfect reflection.

Two perceived locations of tree.

How do reflections normally occur in nature? From water! You

would perceive a tree and its reflection in a pool of water. This

is the desert mirage!

2. You can use a VCR to estimate speed. Most VCRs play at

30 frames per second. So, with a frame-by-frame advance, you

can estimate time as the number of frames divided by 30. If

you know the distance covered, you can compute the average

velocity by dividing distance by time. Try this to estimate

how fast you can throw a ball, run 50 yards, hit a tennis ball

or whatever speed you find interesting. Some of the possible

inaccuracies are explored in exercise 3.

3. What is the peak speed for a human being? It has been esti-

mated that Carl Lewis reached a peak speed of 28 mph while

winning a gold medal in the 1992 Olympics. Suppose that we

have the following data for a sprinter.

Meters Seconds

30 3.2

40 4.2

50 5.16666

56 5.76666

58 5.93333

60 6.1

Meters Seconds

62 6.26666

64 6.46666

70 7.06666

80 8.0

90 9.0

100 10.0

We want to estimate peak speed. We could start by computing
distance

time
= 100 m

10 s
= 10 m/s, but this is the average speed

over the entire race, not the peak speed. Argue that we want

to compute average speeds only using adjacent measurements

(e.g., 40 and 50 meters, or 50 and 56 meters). Do this for all

11 adjacent pairs and find the largest speed (if you want to

convert to mph, divide by 0.447). We will then explore how

accurate this estimate might be.

Notice that all times are essentially multiples of 1/30,

since the data were obtained using the VCR technique in

exercise 2. Given this, why is it suspicious that all the dis-

tances are whole numbers? To get an idea of how much this

might affect your calculations, change some of the distances.

For instance, if you change 60 (meters) to 59.8, how much

do your average velocity calculations change? One possible

way to identify where mistakes have been made is to look

at the pattern of average velocities: does it seem reasonable?

Would a sprinter speed up and slow down in such a pattern?

In places where the pattern seems suspicious, try adjusting

the distances and see if you can produce a more realistic

pattern. Taking all this into account, try to quantify your

error analysis: what is the highest (lowest) the peak speed

could be?
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2.2 THE DERIVATIVE

In section 2.1, we investigated two seemingly unrelated concepts: slopes of tangent lines

and velocity, both of which are expressed in terms of the same limit. This is an indication

of the power of mathematics, that otherwise unrelated notions are described by the same

mathematical expression. This particular limit turns out to be so useful that we give it a

special name.

DEFINITION 2.1

The derivative of the function f (x) at x = a is defined as

f  (a) = lim
h→0

f (a + h) − f (a)

h
, (2.1)

provided the limit exists. If the limit exists, we say that f is differentiable at x = a.

An alternative form of (2.1) is

f  (a) = lim
b→a

f (b) − f (a)

b − a
. (2.2)

(See exercise 49 in section 2.1.)

EXAMPLE 2.1 Finding the Derivative at a Point

Compute the derivative of f (x) = 3x3 + 2x − 1 at x = 1.

Solution From (2.1), we have

f  (1) = lim
h→0

f (1 + h) − f (1)

h

= lim
h→0

 
3(1 + h)3 + 2(1 + h) − 1

 − (3 + 2 − 1)

h

= lim
h→0

3(1 + 3h + 3h2 + h3) + (2 + 2h) − 1 − 4

h
Multiply out and cancel.

= lim
h→0

11h + 9h2 + 3h3

h
Factor out common h and cancel.

= lim
h→0

(11 + 9h + 3h2) = 11.
�

Suppose that in example 2.1 we had also needed to find f  (2) and f  (3).Must we now

repeat the same long limit calculation to find each of f  (2) and f  (3)? Instead, we compute

the derivative without specifying a value for x , leaving us with a function from which we

can calculate f  (a) for any a, simply by substituting a for x .

EXAMPLE 2.2 Finding the Derivative at an Unspecified Point

Find the derivative of f (x) = 3x3 + 2x − 1 at an unspecified value of x . Then, evaluate

the derivative at x = 1, x = 2 and x = 3.
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Solution Replacing a with x in the definition of the derivative (2.1), we have

f  (x) = lim
h→0

f (x + h) − f (x)

h

= lim
h→0

 
3(x + h)3 + 2(x + h) − 1

 − (3x3 + 2x − 1)

h

= lim
h→0

3(x3 + 3x2h + 3xh2 + h3) + (2x + 2h) − 1 − 3x3 − 2x + 1

h

Multiply out

and cancel.

= lim
h→0

9x2h + 9xh2 + 3h3 + 2h

h

Factor out

common h

and cancel.

= lim
h→0

(9x2 + 9xh + 3h2 + 2)

= 9x2 + 0 + 0 + 2 = 9x2 + 2.

Notice that in this case, we have derived a new function, f  (x) = 9x2 + 2. Simply

substituting in for x , we get f  (1) = 9 + 2 = 11 (the same as we got in example 2.1!),

f  (2) = 9(4) + 2 = 38 and f  (3) = 9(9) + 2 = 83. �

Example 2.2 leads us to the following definition.

DEFINITION 2.2

The derivative of f (x) is the function f  (x) given by

f  (x) = lim
h→0

f (x + h) − f (x)

h
, (2.3)

provided the limit exists. The process of computing a derivative is called

differentiation.

Further, f is differentiable on an interval I if it is differentiable at every point in I .

In examples 2.3 and 2.4, observe that the name of the game is to write down the defining

limit and then to find some way of evaluating that limit (which initially has the indeterminate

form 0
0
).

EXAMPLE 2.3 Finding the Derivative of a Simple Rational Function

If f (x) = 1

x
(x  = 0), find f  (x).

Solution We have

f  (x) = lim
h→0

f (x + h) − f (x)

h

= lim
h→0

 
1

x + h
− 1

x

 
h

Since f (x + h) = 1

x + h
.

= lim
h→0

 
x − (x + h)

x(x + h)

 
h

Add fractions and cancel.

= lim
h→0

−h
hx(x + h)

Cancel h’s.

= lim
h→0

−1

x(x + h)
= − 1

x2
,

or f  (x) = −x−2. �
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EXAMPLE 2.4 The Derivative of the Square Root Function

If f (x) = √
x (for x ≥ 0), find f  (x).

Solution We have

f  (x) = lim
h→0

f (x + h) − f (x)

h

= lim
h→0

√
x + h − √

x

h

= lim
h→0

√
x + h − √

x

h

 √
x + h + √

x√
x + h + √

x

 
Multiply numerator and denominator by

the conjugate:
√
x + h + √

x .

= lim
h→0

(x + h) − x

h
 √
x + h + √

x
 Multiply out and cancel.

= lim
h→0

h

h
 √
x + h + √

x
 Cancel common h’s.

= lim
h→0

1√
x + h + √

x

= 1

2
√
x

= 1

2
x−1/2.

Notice that f  (x) is defined only for x > 0. �

The benefits of having a derivative function go well beyond simplifying the computation

of a derivative at multiple points. As we’ll see, the derivative function tells us a great deal

about the original function.

Keep in mind that the value of a derivative at a point is the slope of the tangent line at

that point. In Figures 2.13a–2.13c, we have graphed a function along with its tangent lines at

three different points. The slope of the tangent line in Figure 2.13a is negative; the slope of

the tangent line in Figure 2.13c is positive and the slope of the tangent line in Figure 2.13b

is zero. These three tangent lines give us three points on the graph of the derivative function

(see Figure 2.13d), by estimating the value of f  (x) at the three points. Thus, as x changes,

the slope of the tangent line changes and hence f  (x) changes.

y

x

5

10

15

42 4  2

FIGURE 2.13a
m tan < 0

y

x

5

10

15

42 4  2

y

x

5

10

15

42 4  2

y

x
21 2  1

 4

 2

2

4

FIGURE 2.13b
m tan = 0

FIGURE 2.13c
m tan > 0

FIGURE 2.13d
y = f  (x) (three points)
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EXAMPLE 2.5 Sketching the Graph of f  (x ) Given the Graph of f (x )

Given the graph of f (x) in Figure 2.14, sketch a plausible graph of f  (x).

Solution Rather than worrying about exact values of the slope, we only wish to get

the general shape right. As in Figures 2.13a–2.13d, pick a few important points to

analyze carefully. You should focus on any discontinuities and any places where the

graph of f turns around.

y

x
42 2 4

 60

 40

 20

20

40

60

FIGURE 2.14
y = f (x)

The graph levels out at approximately x = −2 and x = 2. At these points, the

derivative is 0. As we move from left to right, the graph rises for x < −2, drops for

−2 < x < 2 and rises again for x > 2. This means that f  (x) > 0 for x < −2,

f  (x) < 0 for −2 < x < 2 and finally, f  (x) > 0 for x > 2. We can say even more. As

x approaches −2 from the left, observe that the tangent lines get less steep. Therefore,

f  (x) becomes less positive as x approaches −2 from the left. Moving to the right from

x = −2, the graph gets steeper until about x = 0, then gets less steep until it levels out

at x = 2. Thus, f  (x) gets more negative until x = 0, then less negative until x = 2.

Finally, the graph gets steeper as we move to the right from x = 2. Putting this all

together, we have the possible graph of f  (x) shown in red in Figure 2.15,

superimposed on the graph of f (x). �

42 2 4

 60

 40

 20

20

40

60

f ' (x)

f (x)

y

x

FIGURE 2.15
y = f (x) and y = f  (x)

The opposite question to that asked in example 2.5 is even more interesting. That is,

given the graph of a derivative, what might the graph of the original function look like? We

explore this in example 2.6.

EXAMPLE 2.6 Sketching the Graph of f (x ) Given the Graph of f  (x )

Given the graph of f  (x) in Figure 2.16, sketch a plausible graph of f (x).

Solution Again, do not worry about getting exact values of the function, but rather

only the general shape of the graph. Notice from the graph of y = f  (x) that f  (x) < 0

for x < −2, so that on this interval, the slopes of the tangent lines to y = f (x) are

negative and the function is decreasing. On the interval (−2, 1), f  (x) > 0, indicating

that the tangent lines to the graph of y = f (x) have positive slope and the function is

increasing. Further, this says that the graph turns around (i.e., goes from decreasing to

increasing) at x = −2. We have drawn a graph exhibiting this behavior in Figure 2.17

y

x
42 4

 20

 10

10

20

y

x
42 4

 20

 10

10

20

f (x)

f '(x)

FIGURE 2.16
y = f  (x)

FIGURE 2.17
y = f  (x) and a plausible graph

of y = f (x)
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superimposed on the graph of y = f  (x). Further, f  (x) < 0 on the interval (1, 3), so

that the function decreases here. Finally, for x > 3, we have that f  (x) > 0, so that

the function is increasing here. We show a graph exhibiting all of this behavior in

Figure 2.17. We drew the graph of f so that the small “valley” on the right side of the

y-axis was not as deep as the one on the left side of the y-axis for a reason. Look

carefully at the graph of f  (x) and notice that | f  (x)| gets much larger on (−2, 1) than

on (1, 3). This says that the tangent lines and hence, the graph will be much steeper on

the interval (−2, 1) than on (1, 3). �

Alternative Derivative Notations

We have denoted the derivative function by f  (x). There are other commonly used notations,

each with advantages and disadvantages. One of the coinventors of the calculus, Gottfried

Leibniz, used the notation
d f

dx
(Leibniz notation) for the derivative. If we write y = f (x),

the following are all alternatives for denoting the derivative:

f  (x) = y = dy

dx
= d f

dx
= d

dx
f (x).

The expression
d

dx
is called a differential operator and tells you to take the derivative of

whatever expression follows.

HISTORICAL
NOTES

Gottfried Leibniz (1646–1716)

A German mathematician and

philosopher who introduced

much of the notation and

terminology in calculus and who is

credited (together with Sir Isaac

Newton) with inventing the

calculus. Leibniz was a prodigy

who had already received his law

degree and published papers on

logic and jurisprudence by age 20.

A true Renaissance man, Leibniz

made important contributions to

politics, philosophy, theology,

engineering, linguistics, geology,

architecture and physics, while

earning a reputation as the

greatest librarian of his time.

Mathematically, he derived many

fundamental rules for computing

derivatives and helped promote

the development of calculus

through his extensive

communications. The simple and

logical notation he invented made

calculus accessible to a wide

audience and has only been

marginally improved upon in the

intervening 300 years. He wrote,

“In symbols one observes an

advantage in discovery which is

greatest when they express the

exact nature of a thing briefly . . .

then indeed the labor of thought

is wonderfully diminished.”

In section 2.1, we observed that f (x) = |x | does not have a tangent line at x = 0

(i.e., it is not differentiable at x = 0), although it is continuous everywhere. Thus, there are

continuous functions that are not differentiable. You might have already wondered whether

the reverse is true. That is, are there differentiable functions that are not continuous? The

answer (no) is provided by Theorem 2.1.

THEOREM 2.1

If f (x) is differentiable at x = a, then f (x) is continuous at x = a.

PROOF

For f to be continuous at x = a, we need only show that lim
x→a

f (x) = f (a). We consider

lim
x→a

[ f (x) − f (a)] = lim
x→a

 
f (x) − f (a)

x − a
(x − a)

 
Multiply and divide by (x − a).

= lim
x→a

 
f (x) − f (a)

x − a

 
lim
x→a

(x − a)
By Theorem 3.1 (iii)

from section 1.3.

= f  (a)(0) = 0, Since f is differentiable at x = a.

where we have used the alternative definition of derivative (2.2) discussed earlier. By

Theorem 3.1 in section 1.3, it now follows that

0 = lim
x→a

[ f (x) − f (a)] = lim
x→a

f (x) − lim
x→a

f (a)

= lim
x→a

f (x) − f (a),

which gives us the result.

Note that Theorem 2.1 says that if a function is not continuous at a point then it cannot

have a derivative at that point. It also turns out that functions are not differentiable at any

point where their graph has a “sharp” corner, as is the case for f (x) = |x | at x = 0. (See

example 1.7.)
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EXAMPLE 2.7 Showing That a Function Is Not Differentiable
at a Point

Show that f (x) =
 

4 if x < 2

2x if x ≥ 2
is not differentiable at x = 2.

Solution The graph (see Figure 2.18) indicates a sharp corner at x = 2, so you

might expect that the derivative does not exist. To verify this, we investigate the

derivative by evaluating one-sided limits. For h > 0, note that (2 + h) > 2 and so,

f (2 + h) = 2(2 + h). This gives us

lim
h→0+

f (2 + h) − f (2)

h
= lim

h→0+

2(2 + h) − 4

h

= lim
h→0+

4 + 2h − 4

h
Multiply out and cancel.

= lim
h→0+

2h

h
= 2. Cancel common h’s.

y

x
2

f  (x)   2

f  (x)   0

y   f (x)

4

FIGURE 2.18
A sharp corner

Likewise, if h < 0, (2 + h) < 2 and so, f (2 + h) = 4. Thus, we have

lim
h→0−

f (2 + h) − f (2)

h
= lim

h→0−

4 − 4

h
= 0.

Since the one-sided limits do not agree (0  = 2), f  (2) does not exist (i.e., f is not

differentiable at x = 2). �

Figures 2.19a–2.19d show a variety of functions for which f  (a) does not exist. In each

case, convince yourself that the derivative does not exist.

y

x
a

FIGURE 2.19a
A jump discontinuity

a

y

x

a

y

x

a

y

x

FIGURE 2.19b
A vertical asymptote

FIGURE 2.19c
A cusp

FIGURE 2.19d
A vertical tangent line

Numerical Differentiation

There are many times in applications when it is not possible or practical to compute

derivatives symbolically. This is frequently the case in applications where we have only

some data (i.e., a table of values) representing an otherwise unknown function. You will

need an understanding of the limit definition to compute reasonable estimates of the

derivative.
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EXAMPLE 2.8 Approximating a Derivative Numerically

Numerically estimate the derivative of f (x) = x2
√
x3 + 2 at x = 1.

Solution We are not anxious to struggle through the limit definition for this function.

The definition tells us, however, that the derivative at x = 1 is the limit of slopes of

secant lines. We compute some of these below:

h
f (1 h) − f (1)

h

0.1 4.7632

0.01 4.3715

0.001 4.3342

h
f (1 h) − f (1)

h

−0.1 3.9396

−0.01 4.2892

−0.001 4.3260

Notice that the slopes seem to be converging to approximately 4.33 as h approaches 0.

Thus, we make the approximation f  (1) ≈ 4.33. �

EXAMPLE 2.9 Estimating Velocity Numerically

Suppose that a sprinter reaches the following distances in the given times. Estimate the

velocity of the sprinter at the 6-second mark.

t (sec) 5.0 5.5 5.8 5.9 6.0 6.1 6.2 6.5 7.0

f (t) (ft) 123.7 141.01 151.41 154.90 158.40 161.92 165.42 175.85 193.1

Solution The instantaneous velocity is the limit of the average velocity as the time

interval shrinks. We first compute the average velocities over the shortest intervals

given, from 5.9 to 6.0 and from 6.0 to 6.1.

Time Average

Interval Velocity

(5.9, 6.0) 35.0 ft/s

(6.0, 6.1) 35.2 ft/s

Time Average

Interval Velocity

(5.5, 6.0) 34.78 ft/s

(5.8, 6.0) 34.95 ft/s

(5.9, 6.0) 35.00 ft/s

(6.0, 6.1) 35.20 ft/s

(6.0, 6.2) 35.10 ft/s

(6.0, 6.5) 34.90 ft/s

Since these are the best individual estimates available from the data, we could just

split the difference and estimate a velocity of 35.1 ft/s. However, there is useful

information in the rest of the data. Based on the accompanying table, we can conjecture

that the sprinter was reaching a peak speed at about the 6-second mark. Thus, we might

accept the higher estimate of 35.2 ft/s. We should emphasize that there is not a single

correct answer to this question, since the data are incomplete (i.e., we know the distance

only at fixed times, rather than over a continuum of times). �
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BEYOND FORMULAS

In sections 2.3–2.7, we derive numerous formulas for computing derivatives. As you

learn these formulas, keep in mind the reasons that we are interested in the derivative.

Careful studies of the slope of the tangent line to a curve and the velocity of a moving

object led us to the same limit, which we named the derivative. In general, the derivative

represents the rate of change or the ratio of the change of one quantity to the change

in another quantity. The study of change in a quantifiable way led directly to modern

science and engineering. If we were limited to studying phenomena with only constant

change, how much of the science that you have learned would still exist?

EXERCISES 2.2

WRITING EXERCISES

1. The derivative is important because of its many different uses

and interpretations. Describe four aspects of the derivative:

graphical (think of tangent lines), symbolic (the derivative

function), numerical (approximations) and applications (ve-

locity and others).

2. Mathematicians often use the word “smooth” to describe func-

tions with certain (desirable) properties. Graphically, how

are differentiable functions smoother than functions that are

continuous but not differentiable, or functions that are not

continuous?

3. Briefly describe what the derivative tells you about the orig-

inal function. In particular, if the derivative is positive at a

point, what do you know about the trend of the function at

that point? What is different if the derivative is negative at the

point?

4. Show that the derivative of f (x) = 3x − 5 is f  (x) = 3. Ex-

plain in terms of slope why this is true.

In exercises 1–4, compute f  (a) using the limits (2.1) and (2.2).

1. f (x) = 3x + 1, a = 1 2. f (x) = 3x2 + 1, a = 1

3. f (x) = √
3x + 1, a = 1 4. f (x) = 3

x + 1
, a = 2

In exercises 5–12, compute the derivative function f  (x) using

(2.1) or (2.2).

5. f (x) = 3x2 + 1 6. f (x) = x2 − 2x + 1

7. f (x) = 3

x + 1
8. f (x) = 2

2x − 1

9. f (x) = √
3x + 1 10. f (x) = 2x + 3

11. f (x) = x3 + 2x − 1 12. f (x) = x4 − 2x2 + 1

In exercises 13–18, match the graphs of the functions on the left

with the graphs of their derivatives on the right.

13. y

x

(a) y

x

14. y

x

(b) y

x

15. y

x

(c) y

x

16. y

x

(d) y

x
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17. y

x

(e) y

x

18. y

x

(f)
y

x

In exercises 19–22, use the given graph of f (x) to sketch a graph

of f  (x).

19. y

x

20. y

x

21. y

x

22. y

x

In exercises 23 and 24, use the given graph of f  (x) to sketch a

plausible graph of a continuous function f (x).

23. y

x

24. y

x

25. Graph f (x) = |x | + |x − 2| and identify all x-values at which

f (x) is not differentiable.

26. Graph f (x) = 3
√
x3 − x and identify all x-values at which

f (x) is not differentiable.

27. Find all real numbers p such that f  (0) exists, for f (x) = x p .

28. Prove that if f (x) is differentiable at x = a, then

lim
h→0

f (a + ch) − f (a)

h
= c f  (a).

29. If f (x) is differentiable at x = a  = 0, evaluate

lim
x→a

f (x2) − f (a2)

x2 − a2
.

30. Prove that if f (x) is differentiable at x = 0, f (x) ≤ 0 for all

x and f (0) = 0, then f  (0) = 0.

31. The table shows the margin of error in degrees for tennis serves

hit at 100 mph with various amounts of topspin (in units of

revolutions per second). Estimate the derivative at x = 60 and

interpret it in terms of the benefit of extra spin. (Data adapted

from The Physics and Technology of Tennis by Brody, Cross

and Lindsey.)

Topspin (rps) 20 40 60 80 100

Margin of error 1.8 2.4 3.1 3.9 4.6
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32. The table shows the margin of error in degrees for tennis serves

hit at 120 mph from various heights. Estimate the derivative

at x = 8.5 and interpret it in terms of hitting a serve from a

higher point. (Data adapted from The Physics and Technology

of Tennis by Brody, Cross and Lindsey.)

Height (ft) 7.5 8.0 8.5 9.0 9.5

Margin of error 0.3 0.58 0.80 1.04 1.32

In exercises 33 and 34, use the distances f (t) to estimate the

velocity at t  2.

33. t 1.7 1.8 1.9 2.0 2.1 2.2 2.3

f (t) 3.1 3.9 4.8 5.8 6.8 7.7 8.5

34. t 1.7 1.8 1.9 2.0 2.1 2.2 2.3

f (t) 4.6 5.3 6.1 7.0 7.8 8.6 9.3

35. The Environmental Protection Agency uses the measurement

of ton-MPG to evaluate the power-train efficiency of vehicles.

The ton-MPG rating of a vehicle is given by the weight of the

vehicle (in tons) multiplied by a rating of the vehicle’s fuel ef-

ficiency in miles per gallon. Several years of data for new cars

are given in the table. Estimate the rate of change of ton-MPG

in (a) 1994 and (b) 2000. Do your estimates imply that cars are

becoming more or less efficient? Is the rate of change constant

or changing?

Year 1992 1994 1996 1998 2000

Ton-MPG 44.9 45.7 46.5 47.3 47.7

36. The fuel efficiencies in miles per gallon of cars from 1992

to 2000 are shown in the following table. Estimate the rate

of change in MPG in (a) 1994 and (b) 2000. Do your esti-

mates imply that cars are becoming more or less fuel effi-

cient? Comparing your answers to exercise 35, what must be

happening to the average weight of cars? If weight had re-

mained constant, what do you expect would have happened

to MPG?

Year 1992 1994 1996 1998 2000

MPG 28.0 28.1 28.3 28.5 28.1

In exercises 37 and 38, compute the right-hand derivative

D f (0)  lim
h→0 

f (h) − f (0)

h
and the left-hand derivative

D− f (0)  lim
h→0−

f (h) − f (0)

h
.

37. f (x) =
 

2x + 1 if x < 0

3x + 1 if x ≥ 0

38. f (x) =
 
x2 if x < 0

x3 if x ≥ 0

39. Assume that f (x) =
 
g(x) if x < 0

k(x) if x ≥ 0
. If f is continuous at

x = 0 and g and k are differentiable at x = 0, prove that

D+ f (0) = k  (0) and D− f (0) = g (0). Which statement is not

true if f has a jump discontinuity at x = 0?

40. Explain why the derivative f  (0) exists if and only if the one-

sided derivatives exist and are equal.

41. If f  (x) > 0 for all x , use the tangent line interpretation to ar-

gue that f is an increasing function; that is, if a < b, then

f (a) < f (b).

42. If f  (x) < 0 for all x , use the tangent line interpretation to

argue that f is a decreasing function; that is, if a < b, then

f (a) > f (b).

43. If f (x) = x2/3, show graphically and numerically that f is

continuous at x = 0, but f  (0) does not exist.

44. If f (x) =
 

0 if x < 0

2x if x ≥ 0
, show graphically and numerically

that f is continuous at x = 0, but f  (0) does not exist.

45. Give an example showing that the following is not true for all

functions f : if f (x) ≤ x , then f  (x) ≤ 1.

46. Determine whether the following is true for all functions

f : if f (0) = 0, f  (x) exists for all x and f (x) ≤ x , then

f  (x) ≤ 1.

In exercises 47 and 48, give the units for the derivative func-

tion.

47. (a) f (t) represents position, measured in meters, at time t

seconds.

(b) f (x) represents the demand, in number of items, of a

product when the price is x dollars.

48. (a) c(t) represents the amount of a chemical present, in grams,

at time t minutes.

(b) p(x) represents the mass, in kg, of the first x meters of a

pipe.

49. Let f (t) represent the trading value of a stock at time t days.

If f  (t) < 0, what does that mean about the stock? If you held

some shares of this stock, should you sell what you have or

buy more?

50. Suppose that there are two stocks with trading values f (t) and

g(t), where f (t) > g(t) and 0 < f  (t) < g (t). Based on this

information, which stock should you buy? Briefly explain.

51. One model for the spread of a disease assumes that at first

the disease spreads very slowly, gradually the infection rate
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increases to a maximum and then the infection rate decreases

back to zero, marking the end of the epidemic. If I (t) repre-

sents the number of people infected at time t , sketch a graph of

both I (t) and I  (t), assuming that those who get infected do not

recover.

52. One model for urban population growth assumes that at first,

the population is growing very rapidly, then the growth rate

decreases until the population starts decreasing. If P(t) is

the population at time t , sketch a graph of both P(t) and

P  (t).

53. Use the graph to list the following in increasing order: f (1),

f (2) − f (1),
f (1.5) − f (1)

0.5
, f  (1).

y

x

2

6

4

8

10

321 2  1 3

Exercises 53 and 54

54. Use the graph to list the following in increasing order: f (0),

f (0) − f (−1),
f (0) − f (−0.5)

0.5
, f  (0).

In exercises 55–58, the limit equals f  (a) for some function f (x)

and some constant a. Determine f (x) and a.

55. lim
h→0

(1 + h)2 − (1 + h)

h

56. lim
h→0

√
4 + h − 2

h

57. lim
h→0

1

2 + h
− 1

2

h

58. lim
h→0

(h − 1)2 − 1

h

59. Sketch the graph of a function with the following prop-

erties: f (0) = 1, f (1) = 0, f (3) = 6, f  (0) = 0, f  (1) = −1

and f  (3) = 4.

60. Sketch the graph of a function with the following properties:

f (−2) = 4, f (0) = −2, f (2) = 1, f  (−2) = −2, f  (0) = 2

and f  (2) = 1.

61. A phone company charges one dollar for the first 20 minutes of

a call, then 10 cents per minute for the next 60 minutes and 8

cents per minute for each additional minute (or partial minute).

Let f (t) be the price in cents of a t-minute phone call, t > 0.

Determine f  (t) as completely as possible.

62. The table shows the percentage of English Premier League soc-

cer players by birth month, where x = 0 represents November,

x = 1 represents December and so on. (The data are adapted

from John Wesson’s The Science of Soccer.) If these data come

from a differentiable function f (x), estimate f  (1). Interpret

the derivative in terms of the effect of being a month older but

in the same grade of school.

Month 0 1 2 3 4

Percent 13 11 9 7 7

EXPLORATORY EXERCISES

1. Compute the derivative function for x2, x3 and x4. Based on

your results, identify the pattern and conjecture a general for-

mula for the derivative of xn . Test your conjecture on the func-

tions
√
x = x1/2 and 1/x = x−1.

2. In Theorem 2.1, it is stated that a differentiable function

is guaranteed to be continuous. The converse is not true:

continuous functions are not necessarily differentiable. (See

example 2.7.) This fact is carried to an extreme in Weier-

strass’ function, to be explored here. First, graph the function

f4(x) = cos x + 1
2

cos 3x + 1
4

cos 9x + 1
8

cos 27x + 1
16

cos 81x

in the graphing window 0 ≤ x ≤ 2π and −2 ≤ y ≤ 2.

Note that the graph appears to have several sharp corners,

where a derivative would not exist. Next, graph the function

f6(x) = f4(x) + 1
32

cos 243x + 1
64

cos 729x . Note that there

are even more places where the graph appears to have sharp

corners. Explore graphs of f10(x), f14(x) and so on, with more

terms added. Try to give graphical support to the fact that

the Weierstrass function f∞(x) is continuous for all x but is

not differentiable for any x . More graphical evidence comes

from the fractal nature of the Weierstrass function: compare

the graphs of f4(x) with 0 ≤ x ≤ 2π and −2 ≤ y ≤ 2 and

f6(x) − cos x − 1
2

cos 3x with 0 ≤ x ≤ 2π
9

and − 1
2

≤ y ≤ 1
2
.

Explain why the graphs are identical. Then explain why this

indicates that no matter how much you zoom in on a graph of

the Weierstrass function, you will continue to see wiggles and

corners. That is, you cannot zoom in to find a tangent line.

3. Suppose there is a continuous function F(x) such that F(1) = 1

and F(0) = f0, where 0 < f0 < 1. If F  (1) > 1, show graph-

ically that the equation F(x) = x has a solution q where

0 < q < 1. (Hint: Graph y = x and a plausible F(x) and look

for intersections.) Sketch a graph where F  (1) < 1 and there



148 CHAPTER 2 .. Differentiation 2-26

are no solutions to the equation F(x) = x between 0 and 1

(although x = 1 is a solution). Solutions have a connection

with the probability of the extinction of animals or family

names. Suppose you and your descendants have children ac-

cording to the following probabilities: f0 = 0.2 is the prob-

ability of having no children, f1 = 0.3 is the probability of

having exactly one child, and f2 = 0.5 is the probability of

having two children. Define F(x) = 0.2 + 0.3x + 0.5x2 and

show that F  (1) > 1. Find the solution of F(x) = x between

x = 0 and x = 1; this number is the probability that your “line”

will go extinct some time into the future. Find nonzero values

of f0, f1 and f2 such that the corresponding F(x) satisfies

F  (1) < 1 and hence the probability of your line going extinct

is 1.

4. The symmetric differencequotient of a function f centered at

x = a has the form
f (a + h) − f (a − h)

2h
. If f (x) = x2 + 1

and a = 1, illustrate the symmetric difference quotient as a

slope of a secant line for h = 1 and h = 0.5. Based on your pic-

ture, conjecture the limit of the symmetric difference quotient

as h approaches 0. Then compute the limit and compare to the

derivative f  (1) found in example 1.1. For h = 1, h = 0.5 and

h = 0.1, compare the actual values of the symmetric difference

quotient and the usual difference quotient
f (a + h) − f (a)

h
.

In general, which difference quotient provides a better esti-

mate of the derivative? Next, compare the values of the dif-

ference quotients with h = 0.5 and h = −0.5 to the deriva-

tive f  (1). Explain graphically why one is smaller and one is

larger. Compare the average of these two difference quotients

to the symmetric difference quotient with h = 0.5. Use this

result to explain why the symmetric difference quotient might

provide a better estimate of the derivative. Next, compute sev-

eral symmetric difference quotients of f (x) =
 

4 if x < 2

2x if x ≥ 2

centered at a = 2. Recall that in example 2.7 we showed that

the derivative f  (2) does not exist. Given this, discuss one

major problem with using the symmetric difference quotient

to approximate derivatives. Finally, show that if f  (a) exists,

then lim
h→0

f (a + h) − f (a − h)

2h
= f  (a).

2.3 COMPUTATION OF DERIVATIVES: THE POWER RULE

You have now computed numerous derivatives using the limit definition. In fact, you may

have computed enough that you have started taking some shortcuts. In exploratory exercise 1

in section 2.2, we asked you to compile a list of derivatives of basic functions and to

generalize. We continue that process in this section.

The Power Rule

We first revisit the limit definition of derivative to compute two very simple derivatives.

For any constant c,
d

dx
c = 0. (3.1)

y

x
a

c

y   c

FIGURE 2.20
A horizontal line

Notice that (3.1) says that for any constant c, the horizontal line y = c has a tangent

line with zero slope. That is, the tangent line to a horizontal line is the same horizontal line.

(See Figure 2.20.)

Let f (x) = c, for all x . From the definition in equation (2.3), we have

d

dx
c = f  (x) = lim

h→0

f (x + h) − f (x)

h

= lim
h→0

c − c

h
= lim

h→0
0 = 0.
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Similarly, we have

d

dx
x = 1. (3.2)

y

x
a

y   x

FIGURE 2.21
Tangent line to y = x

Notice that (3.2) says that the tangent line to the line y = x is a line of slope one (i.e.,

y = x ; see Figure 2.21). This is unsurprising, since intuitively, it should be clear that the

tangent line to any line is that same line. We verify this result as follows.

Let f (x) = x . From equation (2.3), we have

d

dx
x = f  (x) = lim

h→0

f (x + h) − f (x)

h

= lim
h→0

(x + h) − x

h

= lim
h→0

h

h
= lim

h→0
1 = 1.

The table shown in the margin presents a short list of derivatives calculated previously

either as examples or in the exercises using the limit definition. Can you identify any

pattern to the derivatives shown in the table? There are two features to note. First, the

power of x in the derivative is always one less than the power of x in the original function.

Second, the coefficient of x in the derivative is the same as the power of x in the original

function. Putting these ideas into symbolic form, we make and then prove a reasonable

conjecture.

f (x) f  (x)

1 0

x 1

x2 2x

x3 3x2

x4 4x3

THEOREM 3.1 (Power Rule)

For any integer n > 0,
d

dx
xn = nxn−1.

PROOF

From the limit definition of derivative given in equation (2.3), if f (x) = xn , then

d

dx
xn = f  (x) = lim

h→0

f (x + h) − f (x)

h
= lim

h→0

(x + h)n − xn

h
. (3.3)

To evaluate the limit, we will need to simplify the expression in the numerator. If n is a

positive integer, we can multiply out (x + h)n . Recall that (x + h)2 = x2 + 2xh + h2 and

(x + h)3 = x3 + 3x2h + 3xh2 + h3. More generally, you may recall from the binomial

theorem that

(x + h)n = xn + nxn−1h + n(n − 1)

2
xn−2h2 + · · · + nxhn−1 + hn. (3.4)



150 CHAPTER 2 .. Differentiation 2-28

Substituting (3.4) into (3.3), we get

f  (x) = lim
h→0

xn + nxn−1h + n(n − 1)

2
xn−2h2 + · · · + nxhn−1 + hn − xn

h

Cancel

xn terms.

= lim
h→0

nxn−1h + n(n − 1)

2
xn−2h2 + · · · + nxhn−1 + hn

h

= lim
h→0

h

 
nxn−1 + n(n − 1)

2
xn−2h1 + · · · + nxhn−2 + hn−1

 
h

Factor out

common h

and cancel.

= lim
h→0

 
nxn−1 + n(n − 1)

2
xn−2h1 + · · · + nxhn−2 + hn−1

 
= nxn−1,

since every term but the first has a factor of h.

The power rule is very easy to apply, as we see in example 3.1.

EXAMPLE 3.1 Using the Power Rule

Find the derivative of f (x) = x8 and g(t) = t107.

Solution We have

f  (x) = d

dx
x8 = 8x8−1 = 8x7.

Similarly, g (t) = d

dt
t107 = 107t107−1 = 107t106.

�

Recall that in section 2.2, we showed that

d

dx

 
1

x

 
= − 1

x2
. (3.5)

Notice that we can rewrite (3.5) as

d

dx
x−1 = (−1)x−2.

That is, the derivative of x−1 follows the same pattern as the power rule that we just stated

and proved for positive integer exponents.

Likewise, in section 2.2, we used the limit definition to show that

d

dx

√
x = 1

2
√
x
. (3.6)

We can also rewrite (3.6) as
d

dx
x1/2 = 1

2
x−1/2.

Here, notice that the derivative of a rational power of x also follows the same pattern as the

power rule that we proved for positive integer exponents.

REMARK 3.1

As we will see, the power rule

holds for any power of x . We

will not be able to prove this

fact for some time now, as the

proof of Theorem 3.1 does not

generalize, since the expansion

in equation (3.4) holds only for

positive integer exponents. Even

so, we will use the rule freely

for any power of x . We state this

in Theorem 3.2.
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THEOREM 3.2 (General Power Rule)

For any real number r ,
d

dx
xr = r xr−1. (3.7)

CAUTION

Be careful here to avoid a

common error:

d

dx
x−19  = −19x−18.

The power rule says to

subtract 1 from the exponent

(even if the exponent is

negative).

The power rule is simple to use, as we see in example 3.2.

EXAMPLE 3.2 Using the General Power Rule

Find the derivative of
1

x19
,

3
√
x2 and xπ .

Solution From (3.7), we have

d

dx

 
1

x19

 
= d

dx
x−19 = −19x−19−1 = −19x−20.

If we rewrite
3

√
x2 as a fractional power of x , we can use (3.7) to compute the

derivative, as follows.

d

dx

3
√
x2 = d

dx
x2/3 = 2

3
x2/3−1 = 2

3
x−1/3.

Finally, we have
d

dx
xπ = πxπ−1.

�

Notice that there is the additional conceptual problem in example 3.2 (which we resolve in

Chapter 6) of deciding what xπ means. Since the exponent isn’t rational, what exactly do

we mean when we raise a number to the irrational power π?

General Derivative Rules

The power rule gives us a large class of functions whose derivatives we can quickly

compute without using the limit definition. The following rules for combining deriva-

tives further expand the number of derivatives we can compute without resorting to the

definition. Keep in mind that a derivative is a limit; the differentiation rules in Theorem 3.3

then follow immediately from the corresponding rules for limits (found in Theorem 3.1 in

Chapter 1).

THEOREM 3.3

If f (x) and g(x) are differentiable at x and c is any constant, then

(i)
d

dx
[ f (x) + g(x)] = f  (x) + g (x),

(ii)
d

dx
[ f (x) − g(x)] = f  (x) − g (x) and

(iii)
d

dx
[c f (x)] = c f  (x).
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PROOF

We prove only part (i). The proofs of parts (ii) and (iii) are left as exercises. Let

k(x) = f (x) + g(x). Then, from the limit definition of the derivative (2.3), we get

d

dx
[ f (x) + g(x)] = k  (x) = lim

h→0

k(x + h) − k(x)

h

= lim
h→0

[ f (x + h) + g(x + h)] − [ f (x) + g(x)]

h
By definition of k(x).

= lim
h→0

[ f (x + h) − f (x)] + [g(x + h) − g(x)]

h

Grouping the f terms

together and the g terms

together.

= lim
h→0

f (x + h) − f (x)

h
+ lim

h→0

g(x + h) − g(x)

h

By Theorem 3.1

in Chapter 1.

= f  (x) + g (x).
Recognizing the

derivatives of f and

of g.

We illustrate Theorem 3.3 by working through the calculation of a derivative step by

step, showing all of the details.

EXAMPLE 3.3 Finding the Derivative of a Sum

Find the derivative of f (x) = 2x6 + 3
√
x .

Solution We have

f  (x) = d

dx
(2x6) + d

dx

 
3
√
x
 

By Theorem 3.3 (i).

= 2
d

dx
(x6) + 3

d

dx
(x1/2) By Theorem 3.3 (iii).

= 2(6x5) + 3

 
1

2
x−1/2

 
By the power rule.

= 12x5 + 3

2
√
x
. Simplifying.

�

EXAMPLE 3.4 Rewriting a Function before Computing the Derivative

Find the derivative of f (x) = 4x2 − 3x + 2
√
x

x
.

Solution Note that we don’t yet have any rule for computing the derivative of a quotient.

So, we must first rewrite f (x) by dividing out the x in the denominator. We have

f (x) = 4x2

x
− 3x

x
+ 2

√
x

x
= 4x − 3 + 2x−1/2.

From Theorem 3.3 and the power rule (3.7), we get

f  (x) = 4
d

dx
(x) − 3

d

dx
(1) + 2

d

dx
(x−1/2) = 4 − 0 + 2

 
−1

2
x−3/2

 
= 4 − x−3/2.

�
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EXAMPLE 3.5 Finding the Equation of the Tangent Line

Find an equation of the tangent line to f (x) = 4 − 4x + 2

x
at x = 1.

y

x
1 32

 10

 5

5

10

FIGURE 2.22
y = f (x) and the tangent line

at x = 1

Solution First, notice that f (x) = 4 − 4x + 2x−1. From Theorem 3.3 and the power

rule, we have

f  (x) = 0 − 4 − 2x−2 = −4 − 2x−2.

At x = 1, the slope of the tangent line is then f  (1) = −4 − 2 = −6. The line with slope

−6 through the point (1, 2) has equation

y − 2 = −6 (x − 1).

We show a graph of y = f (x) and the tangent line at x = 1 in Figure 2.22. �

Higher Order Derivatives

One consequence of having the derivative function is that we can compute the derivative of

a derivative. It turns out that such higher order derivatives have important applications.

Suppose we start with a function f (x) and compute its derivative f  (x). We can then

compute the derivative of f  (x), called the second derivative of f and written f   (x). We

can then compute the derivative of f   (x), called the third derivative of f , written f    (x).

We can continue to take derivatives indefinitely. Below, we show common notations for the

first five derivatives of f [where we assume that y = f (x)].

Order Prime Notation Leibniz Notation

1 y = f  (x)
d f

dx

2 y  = f   (x)
d2 f

dx2

3 y   = f    (x)
d3 f

dx3

4 y(4) = f (4)(x)
d4 f

dx4

5 y(5) = f (5)(x)
d5 f

dx5

Computing higher order derivatives is done by simply computing several first derivatives,

as we see in example 3.6.

EXAMPLE 3.6 Computing Higher Order Derivatives

If f (x) = 3x4 − 2x2 + 1, compute as many derivatives as possible.

Solution We have

f  (x) = d f

dx
= d

dx
(3x4 − 2x2 + 1) = 12x3 − 4x .
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Then, f   (x) = d2 f

dx2
= d

dx
(12x3 − 4x) = 36x2 − 4,

f    (x) = d3 f

dx3
= d

dx
(36x2 − 4) = 72x,

f (4)(x) = d4 f

dx4
= d

dx
(72x) = 72,

f (5)(x) = d5 f

dx5
= d

dx
(72) = 0

and so on. It follows that

f (n)(x) = dn f

dxn
= 0, for n ≥ 5.

�

Acceleration

What information does the second derivative of a function give us? Graphically, we get a

property called concavity,which we develop in Chapter 3. One important application of the

second derivative is acceleration, which we briefly discuss now.

You are probably familiar with the term acceleration,which is the instantaneous rate

of change of velocity. Consequently, if the velocity of an object at time t is given by v(t),

then the acceleration is

a(t) = v (t) = dv

dt
.

EXAMPLE 3.7 Computing the Acceleration of a Skydiver

Suppose that the height of a skydiver t seconds after jumping from an airplane is given

by f (t) = 640 − 20t − 16t2 feet. Find the person’s acceleration at time t .

Solution Since acceleration is the derivative of velocity, we first compute velocity:

v(t) = f  (t) = 0 − 20 − 32t = −20 − 32t ft/s.

Computing the derivative of this function gives us

a(t) = v (t) = −32.

To finish the problem, we need to determine the units of acceleration. Since the distance

here is measured in feet and time is measured in seconds, the units of the velocity are

feet per second, so that the units of acceleration are feet per second per second, written

ft/s/s, or more commonly ft/s2 (feet per second squared). Our answer says that the

velocity changes by −32 ft/s every second. In this case, the speed in the downward

(negative) direction increases by 32 ft/s every second due to gravity. �

BEYOND FORMULAS

The power rule gives us a much-needed shortcut for computing many derivatives.

Mathematicians always seek the shortest, most efficient computations. By skip-

ping unnecessary lengthy steps and saving brain power, mathematicians free them-

selves to tackle complex problems with creativity. It’s important to remember,
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however, that shortcuts such as the power rule must always be carefully proved.

What shortcuts do you use when solving an equation such as 3x2 − 4 = 5 and what

are the intermediate steps that you are skipping?

EXERCISES 2.3

WRITING EXERCISES

1. Explain to a non-calculus-speaking friend how to (mechani-

cally) use the power rule. Decide whether it is better to give

separate explanations for positive and negative exponents; in-

teger and noninteger exponents; other special cases.

2. In the 1700s, mathematical “proofs” were, by modern stan-

dards, a bit fuzzy and lacked rigor. In 1734, the Irish metaphysi-

cian Bishop Berkeley wrote The Analyst to an “infidel math-

ematician” (thought to be Edmund Halley of Halley’s comet

fame). The accepted proof at the time of the power rule may

be described as follows.

If x is incremented to x + h, then xn is

incremented to (x + h)n . It follows that
(x + h)n − xn

(x + h) − x
= nxn−1 + n2 − n

2
hxn−2 + · · · . Now, let the

increment h vanish, and the derivative is nxn−1.

Bishop Berkeley objected to this argument.

“But it should seem that the reasoning is not fair or conclusive.

For when it is said, ‘let the increments vanish,’ the former

supposition that the increments were something, or that there

were increments, is destroyed, and yet a consequence of that

supposition is retained. Which . . . is a false way of reasoning.

Certainly, when we suppose the increments to vanish, we must

suppose . . . everything derived from the supposition of their

existence to vanish with them.”

Do you think Berkeley’s objection is fair? Is it logically accept-

able to assume that something exists to draw one conclusion,

and then assume that the same thing does not exist to avoid hav-

ing to accept other consequences? Mathematically speaking,

how does the limit avoid Berkeley’s objection of the increment

h both existing and not existing?

3. The historical episode in exercise 2 is just one part of an on-

going conflict between people who blindly use mathematical

techniques without proof and those who insist on a full proof

before permitting anyone to use the technique. To which side

are you sympathetic? Defend your position in an essay. Try to

anticipate and rebut the other side’s arguments.

4. Explain the first two terms in the expansion

(x + h)n = xn + nhxn−1 + · · ·, where n is a positive integer.

Think of multiplying out (x + h)(x + h)(x + h) · · · (x + h);

how many terms would include xn? xn−1?

In exercises 1–16, find the derivative of each function.

1. f (x) = x3 − 2x + 1 2. f (x) = x9 − 3x5 + 4x2 − 4x

3. f (t) = 3t3 − 2
√
t 4. f (s) = 5

√
s − 4s2 + 3

5. f (x) = 3

x
− 8x + 1 6. f (x) = 2

x4
− x3 + 2

7. h(x) = 10√
x

− 2x 8. h(x) = 12x − x2 − 3√
x

9. f (s) = 2s3/2 − 3s−1/3 10. f (t) = 3tπ − 2t1.3

11. f (x) = 2 3
√
x + 3 12. f (x) = 4x − 3

3
√
x2

13. f (x) = x
 
3x2 − √

x
 

14. f (x) = (x + 1)(3x2 − 4)

15. f (x) = 3x2 − 3x + 1

2x
16. f (x) = 4x2 − x + 3√

x

In exercises 17–24, compute the indicated derivative.

17. f   (x) for f (x) = x4 + 3x2 − 2

18.
d2 f

dx2
for f (x) = x6 − √

x

19.
d2 f

dx2
for f (x) = 2x4 − 3√

x

20. f    (t) for f (t) = 4t2 − 12 + 4

t2

21. f (4)(x) for f (x) = x4 + 3x2 − 2

22. f (5)(x) for f (x) = x10 − 3x4 + 2x − 1

23. f    (x) for f (x) = x2 − x + 1√
x

24. f (4)(t) for f (t) = (t2 − 1)(
√
t + t)

In exercises 25–28, use the given position function to find the

velocity and acceleration functions.

25. s(t) = −16t2 + 40t + 10

26. s(t) = 12t3 − 6t − 1

27. s(t) = √
t + 2t2

28. s(t) = 10 − 10

t
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In exercises 29–32, the given function represents the height of an

object. Compute the velocity and acceleration at time t  t0. Is

the object goingupordown? Is the speed of the object increasing

or decreasing?

29. h(t) = −16t2 + 40t + 5, t0 = 1

30. h(t) = −16t2 + 40t + 5, t0 = 2

31. h(t) = 10t2 − 24t, t0 = 2

32. h(t) = 10t2 − 24t, t0 = 1

In exercises 33–36, find an equation of the tangent line to

y  f (x) at x  a.

33. f (x) = 4
√
x − 2x, a= 4 34. f (x) = x2 − 2x + 1, a= 2

35. f (x) = x2 − 2, a = 2 36. f (x) = 3x + 4, a = 2

In exercises 37 and 38, determine the value(s) of x for which the

tangent line to y  f (x) is horizontal. Graph the function and

determine the graphical significance of each point.

37. f (x) = x3 − 3x + 1 38. f (x) = x4 − 2x2 + 2

In exercises 39 and 40, determine the value(s) of x for which the

slope of the tangent line to y  f (x) does not exist. Graph the

function and determine the graphical significance of each point.

39. f (x) = x2/3 40. f (x) = x1/3

In exercises 41 and 42, one curve represents a function f (x) and

the other two represent f  (x) and f   (x). Determine which is

which.

41. (a) y

x

(b) y

x

(c) y

x

42. (a)

21 2  1 3

y

x
3

 10

 5

5

10

(b) y

x
21 3 2  1 3

 10

 5

5

10

(c)

x
321−2 −1

−10

−3

y

5

10
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In exercises 43 and 44, find a general formula for the nth deriva-

tive f (n)(x).

43. f (x) = √
x 44. f (x) = 2

x

45. Find a second-degree polynomial (of the form

f (x) = ax2 + bx + c) such that f (0) = −2, f  (0) = 2 and

f   (0) = 3.

46. Find a second-degree polynomial (of the form

f (x) = ax2 + bx + c) such that f (0) = 0, f  (0) = 5 and

f   (0) = 1.

47. Find the area of the triangle bounded by x = 0, y = 0 and

the tangent line to y = 1
x

at x = 1. Repeat with the triangle

bounded by x = 0, y = 0 and the tangent line to y = 1
x

at

x = 2. Show that you get the same area using the tangent line

to y = 1
x

at any x = a > 0.

48. Show that the result of exercise 47 does not hold for y = 1

x2 .

That is, the area of the triangle bounded by x = 0, y = 0 and

the tangent line to y = 1

x2 at x = a > 0 does depend on the

value of a.

49. Assume that a is a real number, f (x) is differentiable for all

x ≥ a and g(x) = max
a≤t≤x

f (t) for x ≥ a. Find g (x) in the cases

(a) f  (x) > 0 and (b) f  (x) < 0.

50. Assume that a is a real number, f (x) is differentiable for all

x ≥ a and g(x) = min
a≤t≤x

f (t) for x ≥ a. Find g (x) in the cases

(a) f  (x) > 0 and (b) f  (x) < 0.

51. A public official solemnly proclaims, “We have achieved a re-

duction in the rate at which the national debt is increasing.” If

d(t) represents the national debt at time t years, which deriva-

tive of d(t) is being reduced? What can you conclude about the

size of d(t) itself?

52. A rod made of an inhomogeneous material extends from x = 0

to x = 4 meters. The mass of the portion of the rod from x = 0

to x = t is given bym(t) = 3t2 kg. Computem  (t) and explain

why it represents the density of the rod.

53. For most land animals, the relationship between leg width w

and body lengthb follows an equation of the formw = cb3/2 for

some constant c > 0. Show that if b is large enough,w (b) > 1.

Conclude that for larger animals, leg width (necessary for sup-

port) increases faster than body length. Why does this put a

limitation on the size of land animals?

54. Suppose the function v(d) represents the average speed in

m/s of the world record running time for d meters. For ex-

ample, if the fastest 200-meter time ever is 19.32 s, then

v(200) = 200/19.32 ≈ 10.35. Compare the function

f (d) = 26.7d−0.177 to the values of v(d), which you will have

to research and compute, for distances ranging from d = 400

to d = 2000. Explain what v (d) would represent.

55. Let f (t) equal the gross domestic product (GDP) in billions of

dollars for the United States in year t . Several values are given

in the table. Estimate and interpret f  (2000) and f   (2000).

[Hint: To estimate the second derivative, estimate f  (1998)

and f  (1999) and look for a trend.]

t 1996 1997 1998 1999 2000 2001

f (t) 7664.8 8004.5 8347.3 8690.7 9016.8 9039.5

56. Let f (t) equal the average weight of a domestic SUV in year t .

Several values are given in the table below. Estimate and inter-

pret f  (2000) and f   (2000).

t 1985 1990 1995 2000

f (t) 4055 4189 4353 4619

57. If the position of an object is at time t given by f (t), then f  (t)
represents velocity and f   (t) gives acceleration. By Newton’s

second law, acceleration is proportional to the net force on the

object (causing it to accelerate). Interpret the third derivative

f    (t) in terms of force. The term jerk is sometimes applied to

f    (t). Explain why this is an appropriate term.

58. Suppose that the daily output of a manufacturing plant is mod-

eled by Q = 1000K 1/2L1/3, where K is the capital investment

in thousands of dollars and L is the size of the labor force in

worker-hours. Assume that L stays constant and think of out-

put as a function of capital investment, Q(x) = 1000L1/3x1/2.

Find and interpret Q  (40).

In exercises 59–62, find a function with the given derivative.

59. f  (x) = 4x3 60. f  (x) = 5x4

61. f  (x) = √
x 62. f  (x) = 1

x2

63. Assume that a is a real number and f   (a) exists. Then

lim
h→0

f (a + h) − 2 f (a) + f (a − h)

h2
also exists. Find its value.

64. For f (x) = x |x |, show that lim
h→0

f (h) − 2 f (0) + f (−h)

h2
exists

but f   (0) does not exist. (That is, the converse of exercise 63

is not true.)

EXPLORATORY EXERCISES

1. A plane is cruising at an altitude of 2 miles at a distance of

10 miles from an airport. Choosing the airport to be at the

point (0, 0), the plane starts its descent at the point (10, 2)

and lands at the airport. Sketch a graph of a reasonable flight

path y = f (x), where y represents altitude and x gives the

ground distance from the airport. (Think about it as you draw!)

Explain what the derivative f  (x) represents. (Hint: It’s not ve-

locity.) Explain why it is important and/or necessary to have

f (0) = 0, f (10) = 2, f  (0) = 0 and f  (10) = 0. The simplest

polynomial that can meet these requirements is a cubic poly-

nomial f (x) = ax3 + bx2 + cx + d (Note: four requirements,

four constants). Find values of the constants a, b, c and d to

fit the flight path. [Hint: Start by setting f (0) = 0 and then
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set f  (0) = 0. You may want to use your CAS to solve the

equations.] Graph the resulting function; does it look right?

Suppose that airline regulations prohibit a derivative of 2
10

or

larger. Why might such a regulation exist? Show that the flight

path you found is illegal. Argue that in fact all flight paths

meeting the four requirements are illegal. Therefore, the de-

scent needs to start farther away than 10 miles. Find a flight

path with descent starting at 20 miles away that meets all re-

quirements.

2. We discuss a graphical interpretation of the second derivative in

Chapter 3. You can discover the most important aspects of that

here. For f (x) = x4 − 2x2 − 1, solve the equations f  (x) = 0

and f   (x) = 0. What do the solutions of the equation f  (x) = 0

represent graphically? The solutions of the equation f   (x) = 0

are a little harder to interpret. Looking at the graph of f (x) near

x = 0, would you say that the graph is curving up or curving

down? Compute f   (0). Looking at the graph near x = 2 and

x = −2, is the graph curving up or down? Compute f   (2)

and f   (−2). Where does the graph change from curving up

to curving down and vice versa? Hypothesize a relationship

between f   (x) and the curving of the graph of y = f (x). Test

your hypothesis on a variety of functions. (Try y = x4 − 4x3.)

3. In the enjoyable book Surely You’re Joking Mr. Feynman,

physicist Richard Feynman tells the story of a contest he

had pitting his brain against the technology of the day (an

abacus). The contest was to compute the cube root of 1729.03.

Feynman came up with 12.002 before the abacus expert gave

up. Feynman admits to some luck in the choice of the number

1729.03: he knew that a cubic foot contains 1728 cubic inches.

Explain why this told Feynman that the answer is slightly

greater than 12. How did he get three digits of accuracy? “I

had learned in calculus that for small fractions, the cube root’s

excess is one-third of the number’s excess. The excess, 1.03, is

only one part in nearly 2000. So all I had to do is find the frac-

tion 1/1728, divide by 3 and multiply by 12.” To see what he

did, find an equation of the tangent line to y = x1/3 at x = 1728

and find the y-coordinate of the tangent line at x = 1729.03.

4. Suppose that you want to find solutions of the equation

x3 − 4x2 + 2 = 0. Show graphically that there is a solution

between x = 0 and x = 1. We will approximate this solu-

tion in stages. First, find an equation of the tangent line

to y = x3 − 4x2 + 2 at x = 1. Then, determine where this

tangent line crosses the x-axis. Show graphically that the

x-intercept is considerably closer to the solution than is x = 1.

Now, repeat the process: for the new x-value, find the equation

of the tangent line, determine where it crosses the x-axis and

show that this is closer still to the desired solution. This process

of using tangent lines to produce continually improved approx-

imations is referred to as Newton’s method. We discuss this

in some detail in section 3.1.

2.4 THE PRODUCT AND QUOTIENT RULES

We have now developed rules for computing the derivatives of a variety of functions,

including general formulas for the derivative of a sum or difference of two functions. Given

this, you might wonder whether the derivative of a product of two functions is the same as

the product of the derivatives. We test this conjecture with a simple example.

Product Rule

Consider
d

dx
[(x2)(x5)]. We can compute this derivative by first combining the two factors:

d

dx
[(x2)(x5)] = d

dx
x7 = 7x6.

Is this derivative the same as the product of the two individual derivatives? Notice that 
d

dx
x2

  
d

dx
x5

 
= (2x)(5x4)

= 10x5  = 7x6 = d

dx
[(x2)(x5)]. (4.1)



2-37 SECTION 2.4 .. The Product and Quotient Rules 159

You can now plainly see from (4.1) that the derivative of a product isnotgenerally the product

of the corresponding derivatives. In Theorem 4.1, we state a general rule for computing the

derivative of a product of two differentiable functions.

THEOREM 4.1 (Product Rule)

Suppose that f and g are differentiable at x . Then

d

dx
[ f (x)g(x)] = f  (x)g(x) + f (x)g (x). (4.2)

PROOF

Since we are proving a general rule, we have only the limit definition of derivative to use.

For p(x) = f (x)g(x), we have

d

dx
[ f (x)g(x)] = p (x) = lim

h→0

p(x + h) − p(x)

h

= lim
h→0

f (x + h)g(x + h) − f (x)g(x)

h
. (4.3)

Notice that the elements of the derivatives of f and g are present [limit, f (x + h), f (x) etc.],

but we need to get them into the right form. The trick is to add and subtract f (x)g(x + h)

in the numerator.

From (4.3), we have

p (x) = lim
h→0

f (x + h)g(x + h) − f (x)g(x + h) + f (x)g(x + h) − f (x)g(x)

h
Subtract and add f (x)g(x + h).

= lim
h→0

f (x + h)g(x + h) − f (x)g(x + h)

h
+ lim
h→0

f (x)g(x + h) − f (x)g(x)

h
Break into two pieces.

= lim
h→0

 
f (x + h) − f (x)

h
g(x + h)

 
+ lim
h→0

 
f (x)

g(x + h) − g(x)

h

 

=
 

lim
h→0

f (x + h) − f (x)

h

  
lim
h→0

g(x + h)

 
+ f (x) lim

h→0

g(x + h) − g(x)

h

= f  (x)g(x) + f (x)g (x). Recognize the derivative of f and the derivative of g.

Here, we identified the limits of the difference quotients as derivatives. There is also a

subtle technical detail in the last step: since g is differentiable at x , recall that it must also

be continuous at x , so that g(x + h) → g(x) as h → 0.

In example 4.1, notice that the product rule saves us from multiplying out a messy product.

EXAMPLE 4.1 Using the Product Rule

Find f  (x) if f (x) = (2x4 − 3x + 5)

 
x2 − √

x + 2

x

 
.
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Solution Although we could first multiply out the expression, the product rule

will simplify our work:

f  (x) =
 
d

dx
(2x4 − 3x + 5)

  
x2 − √

x + 2

x

 
+ (2x4 − 3x + 5)

d

dx

 
x2 − √

x + 2

x

 

= (8x3 − 3)

 
x2 − √

x + 2

x

 
+ (2x4 − 3x + 5)

 
2x − 1

2
√
x

− 2

x2

 
.
�

The product rule usually leaves derivatives in an “unsimplified” form as in exam-

ple 4.1. Unless you have some particular reason to simplify (or some particularly obvious

simplification to make), just leave the results of the product rule alone.

EXAMPLE 4.2 Finding the Equation of the Tangent Line

Find an equation of the tangent line to

y = (x4 − 3x2 + 2x)(x3 − 2x + 3)

at x = 0.

Solution From the product rule, we have

y = (4x3 − 6x + 2)(x3 − 2x + 3) + (x4 − 3x2 + 2x)(3x2 − 2).

Evaluating at x = 0, we have y (0) = (2)(3) + (0)(−2) = 6. The line with slope 6 and

passing through the point (0, 0) [why (0, 0)?] has equation y = 6x . �

Quotient Rule

Given our experience with the product rule, you probably have no expectation that the

derivative of a quotient will turn out to be the quotient of the derivatives. Just to be sure,

let’s try a simple experiment. Note that

d

dx

 
x5

x2

 
= d

dx
(x3) = 3x2,

while

d

dx
(x5)

d

dx
(x2)

= 5x4

2x1
= 5

2
x3  = 3x2 = d

dx

 
x5

x2

 
.

Since these are obviously not the same, we know that the derivative of a quotient is generally

not the quotient of the corresponding derivatives.

Theorem 4.2 provides us with a general rule for computing the derivative of a quotient

of two differentiable functions.

THEOREM 4.2 (Quotient Rule)

Suppose that f and g are differentiable at x and g(x)  = 0. Then

d

dx

 
f (x)

g(x)

 
= f  (x)g(x) − f (x)g (x)

[g(x)]2
. (4.4)
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PROOF

You should be able to guess the structure of the proof. For Q(x) = f (x)

g(x)
, we have from the

limit definition of derivative that

d

dx

 
f (x)

g(x)

 
= Q (x) = lim

h→0

Q(x + h) − Q(x)

h

= lim
h→0

f (x + h)

g(x + h)
− f (x)

g(x)

h

= lim
h→0

 
f (x + h)g(x) − f (x)g(x + h)

g(x + h)g(x)

 
h

Add the fractions.

= lim
h→0

f (x + h)g(x) − f (x)g(x + h)

hg(x + h)g(x)
. Simplify.

As in the proof of the product rule, we look for the right term to add and subtract in the

numerator, so that we can isolate the limit definitions of f  (x) and g (x). In this case, we

add and subtract f (x)g(x), to get

Q (x) = lim
h→0

f (x + h)g(x) − f (x)g(x + h)

hg(x + h)g(x)

= lim
h→0

f (x + h)g(x) − f (x)g(x) + f (x)g(x) − f (x)g(x + h)

hg(x + h)g(x)

Subtract and

add f (x)g(x).

= lim
h→0

f (x + h) − f (x)

h
g(x) − f (x)

g(x + h) − g(x)

h

g(x + h)g(x)

Group first two and last

two terms together

and factor out common

terms.

=
lim
h→0

 
f (x + h) − f (x)

h

 
g(x) − f (x) lim

h→0

 
g(x + h) − g(x)

h

 
lim
h→0

g(x + h)g(x)

= f  (x)g(x) − f (x)g (x)

[g(x)]2
,

where we have again recognized the derivatives of f and g and used the fact that g is

differentiable to imply that g is continuous, so that

lim
h→0

g(x + h) = g(x).

Notice that the numerator in the quotient rule looks very much like the product rule,

but with a minus sign between the two terms. For this reason, you need to be very careful

with the order.

EXAMPLE 4.3 Using the Quotient Rule

Compute the derivative of f (x) = x2 − 2

x2 + 1
.
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Solution Using the quotient rule, we have

f  (x) =

 
d

dx
(x2 − 2)

 
(x2 + 1) − (x2 − 2)

d

dx
(x2 + 1)

(x2 + 1)2

= 2x(x2 + 1) − (x2 − 2)(2x)

(x2 + 1)2

= 6x

(x2 + 1)2
.

In this case, we rewrote the numerator because it simplified significantly. This often

occurs with the quotient rule. �

Now that we have the quotient rule, we can justify the use of the power rule for negative

integer exponents. (Recall that we have been using this rule without proof since section 2.3.)

THEOREM 4.3 (Power Rule)

For any integer exponent n,
d

dx
xn = nxn−1.

PROOF

We have already proved this for positive integer exponents. So, suppose that n < 0 and let

M = −n > 0. Then, using the quotient rule, we get

d

dx
xn = d

dx
x−M = d

dx

 
1

xM

 
Since x−M = 1

xM
.

=

 
d

dx
(1)

 
xM − (1)

d

dx
(xM )

(xM )2
By the quotient rule.

= (0)xM − (1)MxM−1

x2M
By the power rule, since M > 0.

= −MxM−1

x2M
= −MxM−1−2M

By the usual rules of exponents.

= (−M)x−M−1 = nxn−1, Since n = −M .

where we have used the fact that
d

dx
xM = MxM−1, since M > 0.

As we see in example 4.4, it is sometimes preferable to rewrite a function, instead of

automatically using the product or quotient rule.

EXAMPLE 4.4 A Case Where the Product and Quotient Rules
Are Not Needed

Compute the derivative of f (x) = x
√
x + 2

x2
.
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Solution Although it may be tempting to use the product rule for the first term and

the quotient rule for the second term, notice that we can rewrite the function and

considerably simplify our work. We can combine the two powers of x in the first term

and since the second term is a fraction with a constant numerator, we can more simply

write it using a negative exponent. We have

f (x) = x
√
x + 2

x2
= x3/2 + 2x−2.

Using the power rule, we have simply

f  (x) = 3

2
x1/2 − 4x−3.

�

Applications

You will see important uses of the product and quotient rules throughout your mathematical

and scientific studies. We start you off with a couple of simple applications now.

EXAMPLE 4.5 Investigating the Rate of Change of Revenue

Suppose that a product currently sells for $25, with the price increasing at the rate of

$2 per year. At the current price, consumers will buy 150 thousand items, but the

number sold is decreasing at the rate of 8 thousand per year. At what rate is the total

revenue changing? Is the total revenue increasing or decreasing?

Solution To answer these questions, we need the basic relationship

revenue = quantity × price

(e.g., if you sell 10 items at $4 each, you earn $40). Since these quantities are changing

in time, we write R(t) = Q(t)P(t), where R(t) is revenue, Q(t) is quantity sold and

P(t) is the price, all at time t . We don’t have formulas for any of these functions, but

from the product rule, we have

R (t) = Q (t)P(t) + Q(t)P  (t).

We have information about each of these terms: the initial price, P(0), is 25 (dollars);

the rate of change of the price is P  (0) = 2 (dollars per year); the initial quantity, Q(0),

is 150 (thousand items) and the rate of change of quantity is Q (0) = −8 (thousand

items per year). Note that the negative sign of Q (0) denotes a decrease in Q. Thus,

R (0) = (−8)(25) + (150)(2) = 100 thousand dollars per year.

Since the rate of change is positive, the revenue is increasing. This may be a surprise

since one of the two factors in the equation is decreasing and the rate of decrease of the

quantity is more than the rate of increase in the price. �

EXAMPLE 4.6 Using the Derivative to Analyze Sports

A golf ball of mass 0.05 kg struck by a golf club of mass m kg with speed 50 m/s will

have an initial speed of u(m) = 83m

m + 0.05
m/s. Show that u (m) > 0 and interpret this

result in golf terms. Compare u (0.15) and u (0.20).
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Solution From the quotient rule, we have

u (m) = 83(m + 0.05) − 83m

(m + 0.05)2
= 4.15

(m + 0.05)2
.

Both the numerator and denominator are positive, so u (m) > 0. A positive slope for

all tangent lines indicates that the graph of u(m) should rise from left to right (see

Figure 2.23). Said a different way, u(m) increases as m increases. In golf terms, this

says that (all other things being equal) the greater the mass of the club, the greater the

velocity of the ball will be. Finally, we compute u (0.15) = 103.75 and u (0.20) = 66.4.

This says that the rate of increase in ball speed is much less for the heavier club than

for the lighter one. Since heavier clubs can be harder to control, the relatively small

increase in ball speed obtained by making the heavy club even heavier may not

compensate for the decrease in control. �

y

m

20

40

60

0.1 0.2 0.3

FIGURE 2.23

u(m) = 83m

m + 0.05

EXERCISES 2.4

WRITING EXERCISES

1. The product and quotient rules give you the ability to symboli-

cally calculate the derivative of a wide range of functions. How-

ever, many calculators and almost every computer algebra sys-

tem (CAS) can do this work for you. Discuss why you should

learn these basic rules anyway. (Keep example 4.5 in mind.)

2. Gottfried Leibniz is recognized (along with Sir Isaac Newton)

as a coinventor of calculus. Many of the fundamental meth-

ods and (perhaps more importantly) much of the notation of

calculus are due to Leibniz. The product rule was worked out

by Leibniz in 1675, in the form d(xy) = (dx)y + x(dy). His

“proof,” as given in a letter written in 1699, follows. “If we are

to differentiate xy we write:

(x + dx)(y + dy) − xy = x dy + y dx + dx dy.

But here dx dy is to be rejected as incomparably less than

x dy + y dx . Thus, in any particular case the error is less than

any finite quantity.” Answer Leibniz’ letter with one describ-

ing your own “discovery” of the product rule for d(xyz). Use

Leibniz’ notation.

3. In example 4.1, we cautioned you against always multiplying

out the terms of the derivative. To see one reason for this warn-

ing, suppose that you want to find solutions of the equation

f  (x) = 0. (In fact, we do this routinely in Chapter 3.) Explain

why having a factored form of f  (x) is very helpful. Discuss

the extent to which the product rule gives you a factored form.

4. Many students prefer the product rule to the quotient rule.

Many computer algebra systems actually use the product rule

to compute the derivative of f (x)[g(x)]−1 instead of using

the quotient rule on
f (x)

g(x)
. (See exercise 18 on the next page.)

Given the simplifications in problems like example 4.3, explain

why the quotient rule can be preferable.

In exercises 1–16, find the derivative of each function.

1. f (x) = (x2 + 3)(x3 − 3x + 1)

2. f (x) = (x3 − 2x2 + 5)(x4 − 3x2 + 2)

3. f (x) = (
√
x + 3x)

 
5x2 − 3

x

 

4. f (x) = (x3/2 − 4x)

 
x4 − 3

x2
+ 2

 

5. f (x) = 3x − 2

5x + 1
6. f (x) = x2 + 2x + 5

x2 − 5x + 1

7. f (x) = 3x − 6
√
x

5x2 − 2
8. f (x) = 6x − 2/x

x2 + √
x

9. f (x) = (x + 1)(x − 2)

x2 − 5x + 1
10. f (x) = x2 − 2x

x2 + 5x

11. f (x) = x2 + 3x − 2√
x

12. f (x) = 2x

x2 + 1

13. f (x) = x( 3
√
x + 3) 14. f (x) = x2

3
+ 5

x2

15. f (x) = (x2 − 1)
x3 + 3x2

x2 + 2
16. f (x) = (x + 2)

x2 − 1

x2 + x

17. Write out the product rule for the function f (x)g(x)h(x).

(Hint: Group the first two terms together.) Describe the gen-

eral product rule: for n functions, what is the derivative of

the product f1(x) f2(x) f3(x) · · · fn(x)? How many terms are

there? What does each term look like?
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18. Use the quotient rule to show that the derivative of [g(x)]−1

is −g (x)[g(x)]−2. Then use the product rule to compute the

derivative of f (x)[g(x)]−1.

In exercises 19 and 20, find the derivative of each function using

the general product rule developed in exercise 17.

19. f (x) = x2/3(x2 − 2)(x3 − x + 1)

20. f (x) = (x + 4)(x3 − 2x2 + 1)(3 − 2/x)

In exercises 21–24, assume that f and g are differentiable

with f (0)  −1, f (1)  −2, f  (0)  −1, f  (1)  3, g(0)  3,

g(1)  1, g (0)  −1 and g (1)  −2.

21. Find an equation of the tangent line to h(x) = f (x)g(x) at

(a) x = 1, (b) x = 0.

22. Find an equation of the tangent line to h(x) = f (x)

g(x)
at

(a) x = 1, (b) x = 0.

23. Find an equation of the tangent line to h(x) = x2 f (x) at

(a) x = 1, (b) x = 0.

24. Find an equation of the tangent line to h(x) = x2

g(x)
at

(a) x = 1, (b) x = 0.

25. Suppose that for some toy, the quantity sold Q(t) at time t

years decreases at a rate of 4%; explain why this translates to

Q (t) = −0.04Q(t). Suppose also that the price increases at

a rate of 3%; write out a similar equation for P  (t) in terms

of P(t). The revenue for the toy is R(t) = Q(t)P(t). Sub-

stituting the expressions for Q  (t) and P  (t) into the product

rule R (t) = Q  (t)P(t) + Q(t)P  (t), show that the revenue

decreases at a rate of 1%. Explain why this is “obvious.”

26. As in exercise 25, suppose that the quantity sold decreases at

a rate of 4%. By what rate must the price be increased to keep

the revenue constant?

27. Suppose the price of an object is $20 and 20,000 units are

sold. If the price increases at a rate of $1.25 per year and the

quantity sold increases at a rate of 2000 per year, at what rate

will revenue increase?

28. Suppose the price of an object is $14 and 12,000 units are sold.

The company wants to increase the quantity sold by 1200 units

per year, while increasing the revenue by $20,000 per year. At

what rate would the price have to be increased to reach these

goals?

29. A baseball with mass 0.15 kg and speed 45 m/s is struck by

a baseball bat of mass m and speed 40 m/s (in the opposite

direction of the ball’s motion). After the collision, the ball has

initial speed u(m) = 82.5m − 6.75

m + 0.15
m/s. Show that u (m) > 0

and interpret this in baseball terms. Compare u (1) and u (1.2).

30. In exercise 29, if the baseball has mass M kg at speed 45 m/s

and the bat has mass 1.05 kg at speed 40 m/s, the ball’s initial

speed is u(M) = 86.625 − 45M

M + 1.05
m/s. Compute u (M) and

interpret its sign (positive or negative) in baseball terms.

31. In example 4.6, it is reasonable to assume that the speed of

the golf club at impact decreases as the mass of the club

increases. If, for example, the speed of a club of mass m is

v = 8.5/m m/s at impact, then the initial speed of the golf ball

is u(m) = 14.11

m + 0.05
m/s. Show that u (m) < 0 and interpret

this in golf terms.

32. In example 4.6, if the golf club has mass 0.17 kg and strikes

the ball with speed v m/s, the ball has initial speed

u(v) = 0.2822v

0.217
m/s. Compute and interpret the derivative

u (v).

33. Assume that g(x) is continuous at x = 0 and define

f (x) = xg(x). Show that f (x) is differentiable at x = 0.

Illustrate the result with g(x) = |x |.
34. Determine whether the result of exercise 33 still holds if x = 0

is replaced with x = a  = 0.

In exercises 35–40, use the symbolic differentiation feature on

your CAS or calculator.

35. Repeat example 4.4 with your CAS. If its answer is not in the

same form as ours in the text, explain how the CAS computed

its answer.

36. Repeat exercise 15 with your CAS. If its answer is not in the

same form as ours in the back of the book, explain how the

CAS computed its answer.

37. Use your CAS to sketch the derivative of sin x . What function

does this look like? Repeat with sin 2x and sin 3x . Generalize

to conjecture the derivative of sin kx for any constant k.

38. Repeat exercise 37 with sin x2. To identify the derivative,

sketch a curve outlining the tops of the curves of the derivative

graph and try to identify the amplitude of the derivative.

39. Find the derivative of f (x) =
√

3x3 + x2

x
on your CAS. Com-

pare its answer to
3

2
√

3x + 1
for x > 0 and

−3

2
√

3x + 1
for

x < 0. Explain how to get this answer and your CAS’s answer,

if it differs.

40. Find the derivative of f (x) = x2 − x − 2

x − 2

 
2x − 2x2

x + 1

 
on

your CAS. Compare its answer to 2. Explain how to get this

answer and your CAS’s answer, if it differs.

41. Suppose that F(x) = f (x)g(x) for infinitely differentiable fun-

ctions f (x) and g(x) (that is, f  (x), f   (x), etc. exist for all x).

Show that F   (x) = f   (x)g(x) + 2 f  (x)g (x) + f (x)g  (x).

Compute F    (x). Compare F   (x) to the binomial for-

mula for (a + b)2 and compare F    (x) to the formula for

(a + b)3.
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42. Given that (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4, write

out a formula for F (4)(x). (See exercise 41.)

43. Use the product rule to show that if g(x) = [ f (x)]2 and f (x)

is differentiable, then g (x) = 2 f (x) f  (x). This is an example

of the chain rule, to be discussed in section 2.5.

44. Use the result from exercise 43 and the product rule to

show that if g(x) = [ f (x)]3 and f (x) is differentiable, then

g (x) = 3[ f (x)]2 f  (x). Hypothesize the correct chain rule for

the derivative of [ f (x)]n .

45. The relationship among the pressure P , volume V and temper-

ature T of a gas or liquid is given by van derWaals’ equation 
P + n2a

V 2

 
(V − nb) = nRT for positive constants a, b, n

and R. Solve the equation for P . Treating T as a constant

and V as the variable, find the critical point (Tc, Pc, Vc)

such that P  (V ) = P   (V ) = 0. (Hint: Don’t solve either equa-

tion separately, but substitute the result from one equation into

the other.) For temperatures above Tc, the substance can exist

only in its gaseous form; below Tc, the substance is a gas or

liquid (depending on the pressure and volume). For water,

take R = 0.08206 l-atm/mo-K, a = 5.464 12-atm/mo2 and

b = 0.03049 l/mo. Find the highest temperature at whichn = 1

mo of water may exist as a liquid. (Note: Your answer will be

in degrees Kelvin; subtract 273.15 to get degrees Celsius.)

46. The amount of an allosteric enzyme is affected by the pres-

ence of an activator. If x is the amount of activator and f is

the amount of enzyme, then one model of an allosteric ac-

tivation is f (x) = x2.7

1 + x2.7
. Find and interpret lim

x→0
f (x) and

lim
x→∞

f (x).

47. For the allosteric enzyme of exercise 46, compute and interpret

f  (x).

48. Enzyme production can also be inhibited. In this situation, the

amount of enzyme as a function of the amount of inhibitor

is modeled by f (x) = 1

1 + x2.7
. Find and interpret lim

x→0
f (x),

lim
x→∞

f (x) and f  (x).

In exercises 49–52, find the derivative of the expression for an

unspecified differentiable function f .

49. x3 f (x) 50.
f (x)

x2
51.

√
x

f (x)
52.

√
x f (x)

EXPLORATORY EXERCISES

1. Most cars are rated for fuel efficiency by estimating miles

per gallon in city driving (c) and miles per gallon in highway

driving (h). The Environmental Protection Agency uses the

formula r = 1

0.55/c + 0.45/h
as its overall rating of gas us-

age (this is called the 55/45 combined mpg). You may want

to rewrite the function (find a common denominator in the

denominator and simplify) to work this exercise.

(a) Think of c as the variable and h as a constant, and show

that
dr

dc
> 0. Interpret this result in terms of gas mileage.

(b) Think of h as the variable and c as a constant, and show

that
dr

dh
> 0.

(c) Show that if c = h, then r = c.

(d) Show that if c < h, then c < r < h. To do this, assume

that c is a constant and c < h. Explain why the results

of parts (b) and (c) imply that r > c. Next, show that
dr

dh
< 0.45. Explain why this result along with the result

of part (b) implies that r < h.

Explain why the results of parts (a)–(d) must be true if the EPA’s

combined formula is a reasonable way to average the ratings c

and h. To get some sense of how the formula works, take c = 20

and graph r as a function of h. Comment on why the EPA might

want to use a function whose graph flattens out as this one does.

2. In many sports, the collision between a ball and a striking

implement is central to the game. Suppose the ball has weight

w and velocity v before the collision and the striker (bat, tennis

racket, golf club, etc.) has weight W and velocity −V before

the collision (the negative indicates the striker is moving in the

opposite direction from the ball). The velocity of the ball after

the collision will be u = WV (1 + c) + v(cW − w)

W + w , where

the parameter c, called the coefficient of restitution, repre-

sents the “bounciness” of the ball in the collision. Treating

W as the independent variable (like x) and the other pa-

rameters as constants, compute the derivative and verify that
du

dW
= V (1 + c)w + cvw + vw

(W + w)2
≥ 0, since all parameters

are nonnegative. Explain why this implies that if the athlete

uses a bigger striker (bigger W ) with all other things equal,

the speed of the ball increases. Does this match your intuition?

What is doubtful about the assumption of all other things being

equal? Similarly compute and interpret
du

dw
,
du

dv
,
du

dV
and

du

dc
.

(Hint: c is between 0 and 1 with 0 representing a dead ball and

1 the liveliest ball possible.)

3. Suppose that a soccer player strikes the ball with enough en-

ergy that a stationary ball would have initial speed 80 mph.

Show that the same energy kick on a ball moving directly to

the player at 40 mph will launch the ball at approximately

100 mph. (Use the general collision formula in exploratory

exercise 2 with c = 0.5 and assume that the ball’s weight is

much less than the soccer player’s weight.) In general, what

proportion of the ball’s incoming speed is converted by the

kick into extra speed in the opposite direction?
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2.5 THE CHAIN RULE

Suppose that the function P(t) = √
100 + 8t models the population of a city after t

years. Then the rate of growth of that population after 2 years is given by P  (2). At

present, we need the limit definition to compute this derivative. However, observe that

P(t) is the composition of the two functions f (t) = √
t and g(t) = 100 + 8t , so that

P(t) = f (g(t)). Also, notice that both f  (t) and g (t) are easily computed using existing

derivative rules. We now develop a general rule for the derivative of a composition of two

functions.

The following simple examples will help us to identify the form of the chain rule.

Notice that from the product rule

d

dx
[(x2 + 1)2] = d

dx
[(x2 + 1)(x2 + 1)]

= 2x(x2 + 1) + (x2 + 1)2x

= 2(x2 + 1)2x .

Of course, we can write this as 4x(x2 + 1), but the unsimplified form helps us to understand

the form of the chain rule. Using this result and the product rule, notice that

d

dx
[(x2 + 1)3] = d

dx
[(x2 + 1)(x2 + 1)2]

= 2x(x2 + 1)2 + (x2 + 1)2(x2 + 1)2x

= 3(x2 + 1)22x .

We leave it as a straightforward exercise to extend this result to

d

dx
[(x2 + 1)4] = 4(x2 + 1)32x .

You should observe that, in each case, we have brought the exponent down, lowered

the power by one and then multiplied by 2x , the derivative of x2 + 1. Notice that we can

write (x2 + 1)4 as the composite function f (g(x)) = (x2 + 1)4, where g(x) = x2 + 1 and

f (x) = x4. Finally, observe that the derivative of the composite function is

d

dx
[ f (g(x))] = d

dx
[(x2 + 1)4] = 4(x2 + 1)32x = f  (g(x))g (x).

This is an example of the chain rule, which has the following general form.

THEOREM 5.1 (Chain Rule)

If g is differentiable at x and f is differentiable at g(x), then

d

dx
[ f (g(x))] = f  (g(x)) g (x).



168 CHAPTER 2 .. Differentiation 2-46

PROOF

At this point, we can prove only the special case where g (x)  = 0. Let F(x) = f (g(x)).

Then,

d

dx
[ f (g(x))] = F  (x) = lim

h→0

F(x + h) − F(x)

h

= lim
h→0

f (g(x + h)) − f (g(x))

h
Since F(x) = f (g(x)).

= lim
h→0

f (g(x + h)) − f (g(x))

h

g(x + h) − g(x)

g(x + h) − g(x)

Multiply numerator

and denominator by

g(x + h) − g(x).

= lim
h→0

f (g(x + h)) − f (g(x))

g(x + h) − g(x)
lim
h→0

g(x + h) − g(x)

h
Regroup terms.

= lim
g(x+h)→g(x)

f (g(x + h)) − f (g(x))

g(x + h) − g(x)
lim
h→0

g(x + h) − g(x)

h

= f  (g(x))g (x),

where the next to the last line is valid since as h → 0, g(x + h) → g(x), by the continuity

of g. (Recall that since g is differentiable, it is also continuous.) You will be asked in the

exercises to fill in some of the gaps in this argument. In particular, you should identify why

we need g (x)  = 0 in this proof.

It is often helpful to think of the chain rule in Leibniz notation. If y = f (u) and

u = g(x), then y = f (g(x)) and the chain rule says that

dy

dx
= dy

du

du

dx
. (5.1)REMARK 5.1

The chain rule should make

sense intuitively as follows.

We think of
dy

dx
as the

(instantaneous) rate of change

of y with respect to x ,
dy

du
as the

(instantaneous) rate of change

of y with respect to u and
du

dx
as

the (instantaneous) rate of

change of u with respect to x .

So, if
dy

du
= 2 (i.e., y is

changing at twice the rate of u)

and
du

dx
= 5 (i.e., u is changing

at five times the rate of x), it

should make sense that y is

changing at 2 × 5 = 10 times

the rate of x . That is,
dy

dx
= 10,

which is precisely what

equation (5.1) says.

EXAMPLE 5.1 Using the Chain Rule

Differentiate y = (x3 + x − 1)5.

Solution For u = x3 + x − 1, note that y = u5. From (5.1), we have

dy

dx
= dy

du

du

dx
= d

du
(u5)

du

dx
Since y = u5.

= 5u4 d

dx
(x3 + x − 1)

= 5(x3 + x − 1)4(3x2 + 1). �

It is helpful to think of the chain rule in terms of inside functions and outside

functions. For the composition f (g(x)), f is referred to as the outside function and g

is referred to as the inside function. The chain rule derivative f  (g(x))g (x) can then

be viewed as the derivative of the outside function times the derivative of the inside

function. In example 5.1, the inside function is x3 + x − 1 (the expression inside the

parentheses) and the outside function is u5. In example 5.2, we think of
√

100 + 8t as

composed of the inside function 100 + 8t and the outside function
√
u. Some careful

thought about the pieces of a composition of functions will help you use the chain rule

effectively.
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EXAMPLE 5.2 Using the Chain Rule on a Radical Function

Find
d

dt
(
√

100 + 8t).

Solution Let u = 100 + 8t and note that
√

100 + 8t = u1/2. Then, from (5.1),

d

dt
(
√

100 + 8t) = d

dt
(u1/2) = 1

2
u−1/2 du

dt

= 1

2
√

100 + 8t

d

dt
(100 + 8t) = 4√

100 + 8t
.

Notice that here, the derivative of the inside is the derivative of the expression under the

square root sign. �

You are now in a position to calculate the derivative of a very large number of functions,

by using the chain rule in combination with other differentiation rules.

TODAY IN
MATHEMATICS

Fan Chung (1949– )

A Taiwanese mathematician with

a highly successful career in

American industry. She says, “As

an undergraduate in Taiwan, I was

surrounded by good friends and

many women mathematicians. . . .

A large part of education is

learning from your peers, not just

the professors.” Collaboration has

been a hallmark of her career.

“Finding the right problem is

often the main part of the work in

establishing the connection.

Frequently a good problem from

someone else will give you a push

in the right direction and the next

thing you know, you have another

good problem.”

EXAMPLE 5.3 Derivatives Involving Chain Rules and Other Rules

Compute the derivative of f (x) = x3
√

4x + 1, g(x) = 8x

(x3 + 1)2
and h(x) = 8

(x3 + 1)2
.

Solution Notice the differences in these three functions. The first function f (x) is

a product of two functions, g(x) is a quotient of two functions and h(x) is a constant

divided by a function. This tells us to use the product rule for f (x), the quotient rule

for g(x) and simply the chain rule for h(x). For the first function, we have

f  (x) = d

dx

 
x3

√
4x + 1

 
= 3x2

√
4x + 1 + x3 d

dx

√
4x + 1 By the product rule.

= 3x2
√

4x + 1 + x3 1

2
(4x + 1)−1/2 d

dx
(4x + 1)    

derivative of the inside

By the chain rule.

= 3x2
√

4x + 1 + 2x3(4x + 1)−1/2. Simplifying.

Next, we have

g (x) = d

dx

 
8x

(x3 + 1)2

 
=

8(x3 + 1)2 − 8x
d

dx
[(x3 + 1)2]

(x3 + 1)4
By the quotient rule.

=

8(x3 + 1)2 − 8x

 
2(x3 + 1)

d

dx
(x3 + 1)    

derivative of the inside

 

(x3 + 1)4
By the chain rule.

= 8(x3 + 1)2 − 16x(x3 + 1)3x2

(x3 + 1)4

= 8(x3 + 1) − 48x3

(x3 + 1)3
= 8 − 40x3

(x3 + 1)3
. Simplification.
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For h(x), notice that instead of using the quotient rule, it is simpler to rewrite the function

as h(x) = 8(x3 + 1)−2. Then

h (x) = d

dx
[8(x3 + 1)−2] = −16(x3 + 1)−3 d

dx
(x3 + 1)    

derivative of the inside

= −16(x3 + 1)−3(3x2)

= −48x2(x3 + 1)−3. �

In example 5.4, we apply the chain rule to a composition of a function with a compo-

sition of functions.

EXAMPLE 5.4 A Derivative Involving Multiple Chain Rules

Find the derivative of f (x) = (
√
x2 + 4 − 3x2)3/2.

Solution We have

f  (x) = 3

2

  
x2 + 4 − 3x2

 1/2 d

dx

  
x2 + 4 − 3x2

 
By the chain rule.

= 3

2

  
x2 + 4 − 3x2

 1/2
 

1

2
(x2 + 4)−1/2 d

dx
(x2 + 4) − 6x

 
By the chain rule.

= 3

2

  
x2 + 4 − 3x2

 1/2
 

1

2
(x2 + 4)−1/2(2x) − 6x

 

= 3

2

  
x2 + 4 − 3x2

 1/2  
x(x2 + 4)−1/2 − 6x

 
. Simplification.

�

EXERCISES 2.5

WRITING EXERCISES

1. If Fred can run 10 mph and Greg can run twice as fast as Fred,

how fast can Greg run? The answer is obvious for most people.

Formulate this simple problem as a chain rule calculation and

conclude that the chain rule (in this context) is obvious.

2. The biggest challenge in computing the derivatives

of
 

(x2 + 4)(x3 − x + 1), (x2 + 4)
√
x3 − x + 1 and

x2 + 4
√
x3 − x + 1 is knowing which rule (product, chain

etc.) to use when. Discuss how you know which rule to use

when. (Hint: Think of the order in which you would perform

operations to compute the value of each function for a specific

choice of x .)

3. One simple implication of the chain rule is: if g(x) = f (x − a),

then g (x) = f  (x − a). Explain this derivative graphically:

how does g(x) compare to f (x) graphically and why do the

slopes of the tangent lines relate as the formula indicates?

4. Another simple implication of the chain rule is: if

h(x) = f (2x), then h (x) = 2 f  (2x). Explain this derivative

graphically: how does h(x) compare to f (x) graphically and

why do the slopes of the tangent lines relate as the formula

indicates?

In exercises 1–4, find the derivative with and without using the

chain rule.

1. f (x) = (x3 − 1)2 2. f (x) = (x2 + 2x + 1)2

3. f (x) = (x2 + 1)3 4. f (x) = (2x + 1)4

In exercises 5–22, find the derivative of each function.

5. f (x) =
√
x2 + 4 6. f (x) = (x3 + x − 1)3

7. f (x) = x5
√
x3 + 2 8. f (x) = (x3 + 2)

√
x5

9. f (x) = x3

(x2 + 4)2
10. f (x) = x2 + 4

(x3)
2

11. f (x) = 6√
x2 + 4

12. f (x) = (x3 + 4)
5

8



2-49 SECTION 2.5 .. The Chain Rule 171

13. f (x) = (
√
x + 3)4/3 14. f (x) = √

x(x4/3 + 3)

15. f (x) = (
√
x3 + 2 + 2x)−2 16. f (x) =

 
4x2 + (8 − x2)2

17. f (x) = x√
x2 + 1

18. f (x) = (x2 − 1)2

x2 + 1

19. f (x) =
 

x

x2 + 1
20. f (x) =

 
(x2 + 1)(

√
x + 1)3

21. f (x) = 3

    
x

 
x4 + 2x 4

 
8

x + 2

22. f (x) = 3x2 + 2
 
x3 + 4/x4

(x3 − 4)
√
x2 + 2

In exercises 23 and 24, find an equation of the tangent line to

y  f (x) at x  a.

23. f (x) =
√
x2 + 16, a = 3

24. f (x) = 6

x2 + 4
, a = −2

In exercises 25 and 26, use the position function to find the

velocity at time t  2. (Assume units of meters and seconds.)

25. s(t) =
√
t2 + 8 26. s(t) = 60t√

t2 + 1

In exercises 27 and 28, compute f   (x), f    (x) and f (4)(x), and

identify a pattern for the nth derivative f (n)(x).

27. f (x) = √
2x + 1 28. f (x) = 2

x + 1

In exercises 29–32, use the table of values to estimate the deriva-

tive of h(x)  f (g(x)) or k(x)  g( f (x)).

x −3 −2 −1 0 1 2 3 4 5

f (x) −2 −1 0 −1 −2 −3 −2 0 2

g(x) 6 4 2 2 4 6 4 2 1

29. h (1) 30. k  (1) 31. k  (3) 32. h (3)

In exercises 33 and 34, use the relevant information to compute

the derivative for h(x)  f (g(x)).

33. h (1), where f (1) = 3, g(1) = 2, f  (1) = 4, f  (2) = 3,

g (1) = −2 and g (3) = 5

34. h (2), where f (2) = 1, g(2) = 3, f  (2) = −1, f  (3) = −3,

g (1) = 2 and g (2) = 4

In exercises 35–38, find a function g(x) such that g (x)  f (x).

35. f (x) = (x2 + 3)2 (2x) 36. f (x) = x2(x3 + 4)2/3

37. f (x) = x√
x2 + 1

38. f (x) = x

(x2 + 1)2

39. A function f (x) is an even function if f (−x) = f (x) for all

x and is an odd function if f (−x) = − f (x) for all x . Prove

that the derivative of an even function is odd and the derivative

of an odd function is even.

In exercises 40–43, find the derivative of the expression for an

unspecified differentiable function f (x).

40. f (x2) 41. f (
√
x) 42.

 
4 f (x) + 1 43.

1

1 + [ f (x)]2

44. If the graph of a differentiable function f (x) is symmetric about

the line x = a, what can you say about the symmetry of the

graph of f  (x)?

In exercises 45–48, use the given graphs to estimate the

derivative.

x
42 4  2

y

10

8

6

4

2

 2

y = a(x)

x
42 4  2

y

 10

 5

5

10

y = b(x)

x
32 1

y

12

10

8

6

4

2

y = c(x)
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45. f  (2), where f (x) = b(a(x))

46. f  (0), where f (x) = a(b(x))

47. f  (−1), where f (x) = c(a(x))

48. f  (1), where f (x) = b(c(x))

49. Determine all values of x such that f (x) = 3
√
x3 − 3x2 + 2x

is not differentiable. Describe the graphical property that pre-

vents the derivative from existing.

50. Determine all values of x for which

f (x) = |2x | + |x − 4| + |x + 4| is not differentiable. De-

scribe the graphical property that prevents the derivative from

existing.

51. Which steps in our outline of the proof of the chain rule are

not well documented? Where do we use the assumption that

g (x)  = 0?

EXPLORATORY EXERCISES

1. A guitar string of length L, density p and tension Twill vibrate

at the frequency f = 1

2L

 
T

p
. Compute the derivative

d f

dT
,

where we think of T as the independent variable and treat p

and L as constants. Interpret this derivative in terms of a gui-

tarist tightening or loosening the string to “tune” it. Compute

the derivative
d f

dL
and interpret it in terms of a guitarist playing

notes by pressing the string against a fret.

2. Newton’s second law of motion is F = ma, where m is the

mass of the object that undergoes an acceleration a due to an

applied force F. This law is accurate at low speeds. At high

speeds, we use the corresponding formula from Einstein’s

theory of relativity, F = m
d

dt

 
v(t) 

1 − v2(t)/c2

 
, where v(t)

is the velocity function and c is the speed of light. Compute

d

dt

 
v(t) 

1 − v2(t)/c2

 
. What has to be “ignored” to simplify

this expression to the acceleration a = v (t) in Newton’s sec-

ond law?

2.6 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

Springs are essential components of many mechanical systems, including shock absorbing

systems for cars, stereo equipment and other sensitive devices. Imagine a weight hanging

from a spring suspended from the ceiling. (See Figure 2.24.) If we set the weight in motion

(e.g., by tapping down on it), the weight will bounce up and down in ever-shortening strokes

until it eventually is again at rest (equilibrium). For short periods of time, this motion is

nearly periodic. Suppose we measure the vertical displacement of the weight from its natural

resting (equilibrium) position. (See Figure 2.24.)

Displacement

  u(t)

Equilibrium

position

FIGURE 2.24
Spring-mass system

When we pull the weight down, its vertical displacement is negative. The weight then

swings up to where the displacement is positive, swings down to a negative displacement

and so on. The only functions we’ve experienced that exhibit this kind of behavior are the

sine and cosine functions. We calculate the derivatives of these and the other trigonometric

functions in this section.

We can learn a lot about the derivatives of sin x and cos x from their graphs.

From the graph of y = sin x in Figure 2.25, notice the horizontal tangents at

x = −3π/2,−π/2, π/2 and 3π/2.At these x-values, the derivative must equal 0. The tan-

gent lines have positive slope for−2π < x <−3π/2, negative slope for −3π/2< x <−π/2
and so on. For each interval on which the derivative is positive (or negative), the graph ap-

pears to be steepest in the middle of the interval: for example, from x = −π/2, the graph

gets steeper until about x = 0 and then gets less steep until leveling out at x = π/2.A sketch

of the derivative graph should then look like the graph in Figure 2.26, which looks like the

graph of y = cos x . We show here that this conjecture is, in fact, correct. In the exercises,

you are asked to perform a similar graphical analysis to conjecture that the derivative of

f (x) = cos x equals −sin x .
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y

x

1

w q q w

 1

y

x

 1

1

 2p 2pp p

FIGURE 2.25
y = sin x

FIGURE 2.26
The derivative of f (x) = sin x

Before we move to the calculation of the derivatives of the six trigonometric functions,

we first consider a few limits involving trigonometric functions. (We refer to these results as

lemmas—minor theorems that lead up to some more significant result.) You will see shortly

why we must consider these first.

LEMMA 6.1

lim
θ→0

sin θ = 0.

This result certainly seems reasonable, especially when we consider the graph of

y = sin x . In fact, we have been using this for some time now, having stated this (with-

out proof) as part of Theorem 3.4 in section 1.3. We now prove the result.

y

x

u

u

sin u
1

FIGURE 2.27
Definition of sin θ

PROOF

For 0 < θ <
π

2
, consider Figure 2.27. From the figure, observe that

0 ≤ sin θ ≤ θ. (6.1)

It is a simple matter to see that

lim
θ→0+

0 = 0 = lim
θ→0+

θ. (6.2)

From the Squeeze Theorem (see section 1.3), it now follows from (6.1) and (6.2) that

lim
θ→0+

sin θ = 0,

also. Similarly, you can show that

lim
θ→0−

sin θ = 0.

This is left as an exercise. Since both one-sided limits are the same, it follows that

lim
θ→0

sin θ = 0.

LEMMA 6.2

lim
θ→0

cos θ = 1.
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The proof of this result is straightforward and follows from Lemma 6.1 and the

Pythagorean Theorem. We leave this as an exercise.

The following result was conjectured to be true (based on a graph and some computa-

tions) when we first examined limits in section 1.2. We can now prove the result.

LEMMA 6.3

lim
θ→0

sin θ

θ
= 1.

y

x

(0, 1)

R(1, 0)

Q(1, tan u)

P(cos u, sin u)

u

O

FIGURE 2.28a

y

x

1

u

FIGURE 2.28b
A circular sector

PROOF

Assume 0 < θ <
π

2
.

Referring to Figure 2.28a, observe that the area of the circular sector OPR is larger

than the area of the triangle OPR, but smaller than the area of the triangle OQR. That is,

0 < Area  OPR < Area sector OPR < Area  OQR. (6.3)

You can see from Figure 2.28b that

Area sector OPR = π (radius)2 (fraction of circle included)

= π (12)
θ

2π
= θ

2
. (6.4)

Also, Area  OPR = 1

2
(base) (height) = 1

2
(1) sin θ (6.5)

and Area  OQR = 1

2
(1) tan θ. (6.6)

Thus, from (6.3), (6.4), (6.5) and (6.6), we have

0 <
1

2
sin θ <

θ

2
<

1

2
tan θ. (6.7)

If we divide (6.7) by 1
2

sin θ (note that this is positive, so that the inequalities are not

affected), we get

1 <
θ

sin θ
<

tan θ

sin θ
= 1

cos θ
.

Taking reciprocals (again, everything here is positive), we find

1 >
sin θ

θ
> cos θ. (6.8)

The inequality (6.8) also holds if −π
2
< θ < 0. (This is left as an exercise.) Finally, note

that

lim
θ→0

cos θ = 1 = lim
θ→0

1.

Thus, it follows from (6.8) and the Squeeze Theorem that

lim
θ→0

sin θ

θ
= 1

also.
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We need one additional limit result before we tackle the derivatives of the trigonometric

functions.

LEMMA 6.4

lim
θ→0

1 − cos θ

θ
= 0.

y

x

 0.8

0.4

0.8

42 4  2

FIGURE 2.29

y = 1 − cos x

x

Before we prove this, we want to make this conjecture seem reasonable. We draw a

graph of y = 1 − cos x

x
in Figure 2.29. The tables of function values that follow should

prove equally convincing.

x
1 − cos x

x

0.1 0.04996

0.01 0.00499996

0.001 0.0005

0.0001 0.00005

x
1 − cos x

x

−0.1 −0.04996

−0.01 −0.00499996

−0.001 −0.0005

−0.0001 −0.00005

Now that we have strong evidence for the conjecture, we prove the lemma.

PROOF

lim
θ→0

1 − cos θ

θ
= lim
θ→0

 
1 − cos θ

θ

  
1 + cos θ

1 + cos θ

 
Multiply numerator and denominator by 1 + cos θ .

= lim
θ→0

1 − cos2 θ

θ (1 + cos θ )
Multiply out numerator and denominator.

= lim
θ→0

sin2 θ

θ (1 + cos θ )
Since sin2 θ + cos2 θ = 1.

= lim
θ→0

  
sin θ

θ

  
sin θ

1 + cos θ

  

=
 

lim
θ→0

sin θ

θ

  
lim
θ→0

sin θ

1 + cos θ

 
Split up terms, since both limits exist.

= (1)

 
0

1 + 1

 
= 0,

as conjectured.

We are finally in a position to compute the derivatives of the sine and cosine functions.

The derivatives of the other trigonometric functions will then follow by the quotient rule.

THEOREM 6.1

d

dx
sin x = cos x .
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PROOF

From the limit definition of derivative, for f (x) = sin x , we have

d

dx
sin x = f  (x) = lim

h→0

sin (x + h) − sin (x)

h

= lim
h→0

sin x cos h + sin h cos x − sin x

h

Trig identity: sin (α + β) =
sinα cosβ + sinβ cosα.

= lim
h→0

sin x cos h − sin x

h
+ lim
h→0

sin h cos x

h

Grouping terms with sin x and terms

with sin h separately.

= (sin x) lim
h→0

cos h − 1

h
+ (cos x) lim

h→0

sin h

h

Factoring sin x from the first term

and cos x from the second term.

= (sin x)(0) + (cos x)(1) = cos x,

from Lemmas 6.3 and 6.4.

THEOREM 6.2

d

dx
cos x = − sin x .

The proof of Theorem 6.2 is left as an exercise.

For the remaining four trigonometric functions, we can use the quotient rule in con-

junction with the derivatives of sin x and cos x .

THEOREM 6.3

d

dx
tan x = sec2 x .

PROOF

We have from the quotient rule that

d

dx
tan x = d

dx

 
sin x

cos x

 

=

 
d

dx
(sin x)

 
(cos x) − (sin x)

d

dx
(cos x)

(cos x)2

= cos x(cos x) − sin x(−sin x)

(cos x)2

= cos2 x + sin2 x

(cos x)2
= 1

(cos x)2
= sec2 x,

where we have used the quotient rule and the preceding results on the derivatives of sin x

and cos x (Theorems 6.1 and 6.2).
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The derivatives of the remaining trigonometric functions are left as exercises. The

derivatives of all six trigonometric functions are summarized below.

d

dx
sin x = cos x

d

dx
cos x = −sin x

d

dx
tan x = sec2 x

d

dx
cot x = −csc2x

d

dx
sec x = sec x tan x

d

dx
csc x = −csc x cot x

Example 6.1 shows where the product rule is necessary.

EXAMPLE 6.1 A Derivative That Requires the Product Rule

Find the derivative of f (x) = x5 cos x .

Solution From the product rule, we have

d

dx
(x5 cos x) =

 
d

dx
(x5)

 
cos x + x5 d

dx
(cos x)

= 5x4 cos x − x5 sin x . �

EXAMPLE 6.2 Computing Some Routine Derivatives

Compute the derivatives of (a) f (x) = sin2 x and (b) g(x) = 4 tan x − 5 csc x .

Solution For (a), we first rewrite the function as f (x) = (sin x)2 and use the chain rule.

We have

f  (x) = (2 sin x)
d

dx
(sin x)    

derivative of the inside

= 2 sin x cos x .

For (b), we have g (x) = 4 sec2 x + 5 csc x cot x . �

You must be very careful to distinguish between similar notations with very different

meanings, as you see in example 6.3.

EXAMPLE 6.3 The Derivatives of Some Similar
Trigonometric Functions

Compute the derivative of (a) f (x) = cos x3, (b) g(x) = cos3 x and (c) h(x) = cos 3x .

Solution Note the differences in these three functions. Using the implied parentheses

we normally do not bother to include, we have f (x) = cos(x3), g(x) = (cos x)3 and

h(x) = cos (3x). For (a), we have

f  (x) = d

dx
cos (x3) = −sin(x3)

d

dx
(x3)    

derivative of the inside

= −sin(x3)(3x2) = −3x2 sin x3.
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Next, for (b) we have

g (x) = d

dx
(cos x)3 = 3(cos x)2 d

dx
(cos x)    

derivative of the inside

= 3(cos x)2(−sin x) = −3 sin x cos2 x .

Finally, for (c) we have

h (x) = d

dx
(cos 3x) = −sin (3x)

d

dx
(3x)    

derivative of the inside

= −sin (3x)(3) = −3 sin 3x .

�

By combining our trigonometric rules with the product, quotient and chain rules, we

can now differentiate many complicated functions.

EXAMPLE 6.4 A Derivative Involving the Chain Rule and the
Quotient Rule

Find the derivative of f (x) = sin

 
2x

x + 1

 
.

Solution We have

f  (x) = cos

 
2x

x + 1

 
d

dx

 
2x

x + 1

 
    

derivative of the inside

By the chain rule.

= cos

 
2x

x + 1

 
2(x + 1) − 2x(1)

(x + 1)2
By the quotient rule.

= cos

 
2x

x + 1

 
2

(x + 1)2
.
�

Displacement

  u(t)

Equilibrium

position

FIGURE 2.30
Spring-mass system

Applications

The trigonometric functions arise quite naturally in the solution of numerous physical

problems of interest. For instance, it can be shown that the vertical displacement of a

weight suspended from a spring, in the absence of damping (i.e., when resistance to the

motion, such as air resistance, is negligible), is given by

u(t) = a cos (ωt) + b sin (ωt),

whereω is the frequency, t is time and a and b are constants. (See Figure 2.30 for a depiction

of such a spring-mass system.)

EXAMPLE 6.5 Analysis of a Spring-Mass System

Suppose that u(t) measures the displacement (measured in inches) of a weight suspended

from a spring t seconds after it is released and that

u(t) = 4 cos t.

Find the velocity at any time t and determine the maximum velocity.

Solution Since u(t) represents position (displacement), the velocity is given by u (t).
We have

u (t) = 4(−sin t) = −4 sin t,
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where u (t) is measured in inches per second. Of course, sin t oscillates between −1 and 1

and hence, the largest that u (t) can be is −4(−1) = 4 inches per second. This occurs when

sin t = −1, that is, at t = 3π/2, t = 7π/2 and so on. Notice that at these times u(t) = 0,

so that the weight is moving fastest when it is passing through its resting position. �

~

1 farad

2t2 volts

1 henry

FIGURE 2.31
A simple circuit

EXAMPLE 6.6 Analysis of a Simple Electrical Circuit

The diagram in Figure 2.31 shows a simple electrical circuit. If the capacitance is 1 (farad),

the inductance is 1 (henry) and the impressed voltage is 2t2 (volts) at time t , then a model

for the total charge Q(t) in the circuit at time t is

Q(t) = 2 sin t + 2t2 − 4 (coulombs).

The current is defined to be the rate of change of the charge with respect to time and so

is given by

I (t) = dQ

dt
(amperes).

Compare the current at times t = 0 and t = 1.

Solution In general, the current is given by

I (t) = dQ

dt
= 2 cos t + 4t (amperes).

Notice that at time t = 0, I (0) = 2 (amperes). At time t = 1,

I (1) = 2 cos 1 + 4 ≈ 5.08 (amperes).

This represents an increase of

I (1) − I (0)

I (0)
(100)% ≈ 3.08

2
(100)% = 154%.

�

EXAMPLE 6.7 Finding the Equation of the Tangent Line

Find an equation of the tangent line to

y = 3 tan x − 2 csc x

at x = π

3
.

Solution The derivative is

y = 3 sec2 x − 2(−csc x cot x) = 3 sec2 x + 2 csc x cot x .

At x = π

3
, we have

y 
 
π

3

 
= 3(2)2 + 2

 
2√
3

  
1√
3

 
= 12 + 4

3
= 40

3
≈ 13.33333.

The tangent line with slope
40

3
and point of tangency

 
π

3
, 3

√
3 − 4√

3

 
has equation

y = 40

3

 
x − π

3

 
+ 3

√
3 − 4√

3
.

We show a graph of the function and the tangent line in Figure 2.32. �

y

x

 5

 10

5

10

0.4 1.20.8

FIGURE 2.32
y = 3 tan x − 2 csc x and the

tangent line at x = π

3
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EXERCISES 2.6

WRITING EXERCISES

1. Most people draw sine curves that are very steep and rounded.

Given the results of this section, discuss the actual shape of the

sine curve. Starting at (0, 0), how steep should the graph be

drawn? What is the steepest the graph should be drawn any-

where? In which regions is the graph almost straight and where

does it curve a lot?

2. In many common physics and engineering applications, the

term sin x makes calculations difficult. A common simplifica-

tion is to replace sin x with x , accompanied by the justification

“sin x approximately equals x for small angles.” Discuss this

approximation in terms of the tangent line to y = sin x at x = 0.

How small is the “small angle” for which the approximation is

good? The tangent line to y = cos x at x = 0 is simply y = 1,

but the simplification “cos x approximately equals 1 for small

angles” is almost never used. Why would this approximation be

less useful than sin x ≈ x?

1. Use a graphical analysis as in the text to argue that the deriva-

tive of cos x is −sin x .

2. In the proof of
d

dx
(sin x) = cos x , where do we use the as-

sumption that x is in radians? If you have access to a CAS, find

out what the derivative of sin x◦ is; explain where the π/180

came from.

In exercises 3–20, find the derivative of each function.

3. f (x) = 4 sin x − x 4. f (x) = x2 + 2 cos2 x

5. f (x) = tan3 x − csc4 x 6. f (x) = 4 sec x2 − 3 cot x

7. f (x) = x cos 5x2 8. f (x) = 4x2 − 3 tan x

9. f (x) = sin(tan x2) 10. f (x) =
 

sin2 x + 2

11. f (x) = sin x2

x2
12. f (x) = x2

csc4 x

13. f (t) = sin t sec t 14. f (t) = √
cos t sec t

15. f (x) = 1

sin 4x
16. f (x) = x2 sec2 3x

17. f (x) = 2 sin x cos x 18. f (x) = 4 sin2 x + 4 cos2 x

19. f (x) = tan
√
x2 + 1 20. f (x) = 4x2 sin x sec 3x

In exercises 21–24, use your CAS or graphing calculator.

21. Repeat exercise 17 with your CAS. If its answer is not in the

same form as ours in the back of the book, explain how the

CAS computed its answer.

22. Repeat exercise 18 with your CAS. If its answer is not 0, ex-

plain how the CAS computed its answer.

23. Find the derivative of f (x) = 2 sin2 x + cos 2x on your CAS.

Compare its answer to 0. Explain how to get this answer and

your CAS’s answer, if it differs.

24. Find the derivative of f (x) = tan x

sin x
on your CAS. Compare its

answer to sec x tan x . Explain how to get this answer and your

CAS’s answer, if it differs.

In exercises 25–28, find an equation of the tangent line to

y  f (x) at x  a.

25. f (x) = sin 4x, a = π

8

26. f (x) = tan 3x, a = 0

27. f (x) = cos x, a = π

2

28. f (x) = x sin x, a = π

2

In exercises 29–32, use the position function to find the velocity

at time t  t0. Assume units of feet and seconds.

29. s(t) = t2 − sin 2t, t0 = 0

30. s(t) = t cos(t2 + π ), t0 = 0

31. s(t) = cos t

t
, t0 = π

32. s(t) = 4 + 3 sin t, t0 = π
33. A spring hanging from the ceiling vibrates up and down. Its

vertical position at time t is given by f (t) = 4 sin 3t . Find the

velocity of the spring at time t . What is the spring’s maxi-

mum speed? What is its location when it reaches its maximum

speed?

34. In exercise 33, for what time values is the velocity 0? What is

the location of the spring when its velocity is 0? When does

the spring change directions?

In exercises 35 and 36, refer to example 6.6.

35. If the total charge in an electrical circuit at time t is given

by Q(t) = 3 sin 2t + t + 4 coulombs, compare the current at

times t = 0 and t = 1.

36. If the total charge in an electrical circuit at time t is given

by Q(t) = 4 cos 4t − 3t + 1 coulombs, compare the current at

times t = 0 and t = 1.
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37. For f (x) = sin x , find f (75)(x) and f (150)(x).

38. For f (x) = cos x , find f (77)(x) and f (120)(x).

39. For Lemma 6.1, show that lim
θ→0−

sin θ = 0.

40. Use Lemma 6.1 and the identity cos2 θ + sin2 θ = 1 to prove

Lemma 6.2.

41. Use the identity cos (x + h) = cos x cos h − sin x sin h to

prove Theorem 6.2.

42. Use the quotient rule to derive formulas for the derivatives of

cot x, sec x and csc x .

43. Use the basic limits lim
x→0

sin x

x
= 1 and lim

x→0

cos x − 1

x
= 0 to

find the following limits:

(a) lim
x→0

sin 3x

x
(b) lim

t→0

sin t

4t

(c) lim
x→0

cos x − 1

5x
(d) lim

x→0

sin x2

x2

44. Use the basic limits lim
x→0

sin x

x
= 1 and lim

x→0

cos x − 1

x
= 0 to

find the following limits:

(a) lim
t→0

2t

sin t
(b) lim

x→0

cos x2 − 1

x2

(c) lim
x→0

sin 6x

sin 5x
(d) lim

x→0

tan 2x

x

45. For f (x) =

⎧⎨
⎩

sin x

x
if x  = 0

1 if x = 0

show numerically that f is

continuous and differentiable for all x . (Hint: Focus on x = 0.)

46. For the function of exercise 45, show numerically that the

derivative f  (x) is continuous. (In this case, we say that the

function f is C1.)

47. Show numerically that the function of exercise 45 is C2. (That

is, f   (x) exists and is continuous for all x .)

48. As in exercise 46, show that

f (x) =
 
x3 sin

 
1
x

 
if x  = 0

0 if x = 0
is C1.

49. Sketch a graph of y = sin x and its tangent line at x = 0. Try

to determine how many times they intersect by zooming in on

the graph (but don’t spend too much time on this). Show that

for f (x) = sin x, f  (x) < 1 for 0 < x < 1. Explain why this

implies that sin x < x for 0 < x < 1. Use a similar argument

to show that sin x > x for −1 < x < 0. Explain why y = sin x

intersects y = x at only one point.

50. For different positive values of k, determine how many times

y = sin kx intersects y = x . In particular, what is the largest

value of k for which there is only one intersection? Try to

determine the largest value of k for which there are three

intersections.

51. On a graphing calculator, graph y = sin x using the following

range of x-values: [−50, 50], [−60, 60] and so on. You should

find graphs similar to the following.

x

y

x

y

x

y

Briefly explain why the graph seems to change so much. In par-

ticular, is the calculator showing all of the graph or are there

large portions missing?

EXPLORATORY EXERCISES

1. The function f (x) =
 
x2 sin

 
1
x

 
if x  = 0

0 if x = 0
has several un-

usual properties. Show that f is continuous and differentiable

at x = 0. However, f  (x) is discontinuous at x = 0. To see this,

show that f  (x) = −1 for x = 1

2π
, x = 1

4π
and so on. Then

show that f  (x) = 1 for x = 1

π
, x = 1

3π
and so on. Explain

why this proves that f  (x) cannot be continuous at x = 0.
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2. We have seen that the approximation sin x ≈ x for small x de-

rives from the tangent line to y = sin x at x = 0. We can also

think of it as arising from the result lim
x→0

sin x

x
= 1. Explain

why the limit implies sin x ≈ x for small x . How can we get

a better approximation? Instead of using the tangent line, we

can try a quadratic function. To see what to multiply x2 by, nu-

merically compute a = lim
x→0

sin x − x

x2
. Then sin x − x ≈ ax2

or sin x ≈ x + ax2 for small x . How about a cubic

approximation? Compute b = lim
x→0

sin x − (x + ax2)

x3
. Then

sin x − (x + ax2) ≈ bx3 or sin x ≈ x + ax2 + bx3 for small x .

Starting with lim
x→0

cos x − 1

x
= 0, find a cubic approximation

of the cosine function. If you have a CAS, take the approxima-

tions for sine and cosine out to a seventh-order polynomial and

identify the pattern. (Hint: Write the coefficients— a, b, etc.—

in the form 1/n! for some integer n.) We will take a longer

look at these approximations, called Taylor polynomials, in

Chapter 9.

3. When a ball bounces, we often think of the bounce occurring

instantaneously, as in the accompanying figure. The sharp

corner in the graph at the point of impact does not take into ac-

count that the ball actually compresses and maintains contact

with the ground for a brief period of time. As shown in John

Wesson’s The Science of Soccer, the amount s that the ball is

compressed satisfies the equation s   (t) = − cp

m
s(t), where c is

the circumference of the ball, p is the pressure of air in the

ball and m is the mass of the ball. Assume that the ball hits the

ground at time 0 with vertical speed v m/s. Then s(0) = 0 and

s  (0) = v. Show that s(t) = v

k
sin kt satisfies the three condi-

tions s   (t) = − cp

m
s(t), s(0) = 0 and s  (0) = v with k =

 
cp

m
.

Use the properties of the sine function to show that the duration

of the bounce is π

k
seconds and find the maximum compres-

sion. For a soccer ball with c = 0.7 m, p = 0.86 × 105 N/m2,

v = 15 m/s, radius R = 0.112 m and m = 0.43 kg,

compute the duration of the bounce and the maximum

compression.

1 2 3 40
0

12.5

25

37.5

50

62.5

x

y

An idealized bounce

y

x

A ball being compressed

Putting together the physics for before, during and after

the bounce, we obtain the height of the center of mass of

a ball of radius R:

h(t) =

⎧⎨
⎩

−4.9t2 − vt + R if t < 0

R − v

k
sin kt if 0 ≤ t ≤ π

k

−4.9(t − π

k
)2 + v(t − π

k
) + R if t > π

k
.

Determine whether h(t) is continuous for all t and sketch a

reasonable graph of this function to replace the figure shown

here.

2.7 IMPLICIT DIFFERENTIATION

Compare the following two equations describing familiar curves:

y = x2 + 3 (parabola)

and x2 + y2 = 4 (circle).

The first equation defines y as a function of x explicitly, since for each x , the equation

gives an explicit formula y = f (x) for finding the corresponding value of y. On the other

hand, the second equation does not define a function, since the circle in Figure 2.33 doesn’t
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pass the vertical line test. However, you can solve for y and find at least two functions 
y =

√
4 − x2 and y = −

√
4 − x2

 
that are defined implicitlyby the equation x2 + y2 = 4.

Suppose that we want to find the slope of the tangent line to the circle x2 + y2 = 4 at the

point
 
1,−

√
3
 
. (See Figure 2.33.) We can think of the circle as the graph of two semicir-

cles, y =
√

4 − x2 and y = −
√

4 − x2. Since we are interested in the point (1,−
√

3),

we use the equation describing the bottom semicircle, y = −
√

4 − x2 to compute the

derivative

y (x) = − 1

2
√

4 − x2
(−2x) = x√

4 − x2
.

So, the slope of the tangent line at the point
 
1,−

√
3
 

is then y (1) = 1√
3

.

This calculation was not especially challenging, although we will soon see an easier

way to do it. However, it’s not always possible to explicitly solve for a function defined

implicitly by a given equation. For example, van der Waals’ equation relating the pressure

P , volume V and temperature T of a gas has the form

 
P + an2

V 2

 
(V − nb) = nRT, (7.1)

where a, n, b and R are constants. Notice the difficulty in solving this for V as a function

of P . If we want the derivative dV
dP

, we will need a method for computing the derivative

directly from the implicit representation given in (7.1).

y

x
2 2

 2

2

FIGURE 2.33
The tangent line at the point

(1,−
√

3)

Consider each of the following calculations:

d

dx
(x3 + 4)2 = 2(x3 + 4)(3x2),

d

dx
(sin x − 3x)2 = 2(sin x − 3x)(cos x − 3)

and d

dx
(tan x + 2)2 = 2(tan x + 2) sec2 x .

Notice that each of these calculations has the form

d

dx
[y(x)]2 = 2[y(x)]y (x),

for some choice of the function y(x). This last equation is simply an expression of the

chain rule. We can use this notion to find the derivatives of functions defined implicitly by

equations.

We first return to the simple case of the circle x2 + y2 = 4. Assuming this equation

defines one or more differentiable functions of x : y = y(x), the equation is

x2 + [y(x)]2 = 4. (7.2)

Differentiating both sides of equation (7.2) with respect to x , we obtain

d

dx

 
x2 + [y(x)]2

 = d

dx
(4).
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From the chain rule,
d

dx
[y(x)]2 = 2y(x)y (x), as above and so, we have

2x + 2y(x)y (x) = 0. (7.3)

Subtracting 2x from both sides of (7.3) gives us

2y(x)y (x) = −2x

and dividing by 2y(x) (assuming this is not zero), we have solved for y (x):

y (x) = −2x

2y(x)
= −x
y(x)

.

Notice that here y (x) is expressed in terms of both x and y. To get the slope at the point

(1,−
√

3), substitute x = 1 and y = −
√

3. We have

y (1) = −x
y(x)

!!!!
x=1

= −1

−
√

3
= 1√

3
.

Notice that this is the same as we had found earlier by first solving for y explicitly and then

differentiating. This process of differentiating both sides of an equation with respect to x

and then solving for y (x) is called implicit differentiation.

When faced with an equation implicitly defining one or more differentiable functions

y = y(x), differentiate both sides with respect to x , being careful to recognize that differ-

entiating any function of y will require the chain rule:

d

dx
g(y) = g (y)y (x).

Then, gather any terms with a factor of y (x) on one side of the equation, with the remaining

terms on the other side of the equation and solve for y (x). We illustrate this process in the

examples that follow.

EXAMPLE 7.1 Finding a Slope Implicitly

Find y (x) for x2 + y3 − 2y = 3. Then, find the slope of the tangent line at the point (2, 1).

Solution Since we can’t (easily) solve for y in terms of x explicitly, we compute the

derivative implicitly. Differentiating both sides with respect to x , we get

d

dx
(x2 + y3 − 2y) = d

dx
(3)

and so, 2x + 3y2y (x) − 2y (x) = 0.

To solve for y (x), simply write all terms involving y (x) on one side of the equation and

all other terms on the other side. We have

3y2y (x) − 2y (x) = −2x Subtracting 2x from both sides.

and hence, after factoring, we have

(3y2 − 2)y (x) = −2x . Factoring y (x) from both terms on the left side.
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Solving for y (x), we get

y (x) = −2x

3y2 − 2
. Dividing by (3y2 − 2).

Substituting x = 2 and y = 1, we find that the slope of the tangent line at the point

(2, 1) is

y (2) = −4

3 − 2
= −4.

The equation of the tangent line is then

y − 1 = −4(x − 2).

We have plotted a graph of the equation and the tangent line in Figure 2.34 using the

implicit plot mode of our computer algebra system. �

y

x
2 4 2 4

 3

 2

 1

1

2

3

(2, 1)

FIGURE 2.34
Tangent line at (2, 1)

EXAMPLE 7.2 Finding a Tangent Line by Implicit Differentiation

Find y (x) for x2y2 − 2x = 4 − 4y. Then, find an equation of the tangent line at the

point (2,−2).

Solution Differentiating both sides with respect to x , we get

d

dx
(x2y2 − 2x) = d

dx
(4 − 4y).

Since the first term is the product of x2 and y2, we must use the product rule. We get

2xy2 + x2(2y)y (x) − 2 = 0 − 4y (x).

Grouping the terms with y (x) on one side, we get

(2x2y + 4)y (x) = 2 − 2xy2,

so that y (x) = 2 − 2xy2

2x2y + 4
.

Substituting x = 2 and y = −2, we get the slope of the tangent line,

y (2) = 2 − 16

−16 + 4
= 7

6
.

Finally, an equation of the tangent line is given by

y + 2 = 7

6
(x − 2).

We have plotted the curve and the tangent line at (2,−2) in Figure 2.35 using the implicit

plot mode of our computer algebra system. �

y

x
2 4

2

 2

 4

 3

FIGURE 2.35
Tangent line at (2,−2)

You can use implicit differentiation to find a needed derivative from virtually any

equation you can write down. We illustrate this next for an application.
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EXAMPLE 7.3 Rate of Change of Volume with Respect to Pressure

Suppose that van der Waals’ equation for a specific gas is 
P + 5

V 2

 
(V − 0.03) = 9.7. (7.4)

Thinking of the volume V as a function of pressure P , use implicit differentiation to find

the derivative
dV

dP
at the point (5, 1).

Solution Differentiating both sides of (7.4) with respect to P , we have

d

dP
[(P + 5V−2)(V − 0.03)] = d

dP
(9.7).

From the product rule and the chain rule, we get 
1 − 10V−3 dV

dP

 
(V − 0.03) + (P + 5V−2)

dV

dP
= 0.

Grouping the terms containing
dV

dP
, we get

[−10V−3(V − 0.03) + P + 5V−2]
dV

dP
= 0.03 − V,

so that
dV

dP
= 0.03 − V

−10V−3(V − 0.03) + P + 5V−2
.

We now have

V  (5) = 0.03 − 1

−10(1)(0.97) + 5 + 5(1)
= −0.97

0.3
= −97

30
.

(The units are in terms of volume per unit pressure.) We show a graph of van der Waals’

equation, along with the tangent line to the graph at the point (5, 1) in Figure 2.36. �

V

P
2 4 6

2

4

6

FIGURE 2.36
Graph of van der Waals’ equation

and the tangent line at the point

(5, 1)

Of course, since we can find one derivative implicitly, we can also find second and

higher order derivatives implicitly. In example 7.4, notice that you can choose which

equation to use for the second derivative. A smart choice can save you time and effort.

EXAMPLE 7.4 Finding a Second Derivative Implicitly

Find y  (x) implicitly for y2 + sin y + x2 = 4. Then find the value of y  at the point

(−2, 0).

Solution As always, start by differentiating both sides of the equation with respect

to x . We have
d

dx
(y2 + sin y + x2) = d

dx
(4).

By the chain rule, we have

2y[y (x)] + cos y[y (x)] + 2x = 0. (7.5)

Notice that we don’t need to solve this for y (x). By differentiating again we get

[2y (x)][y (x)] + [2y][y  (x)] + [− sin y][y (x)][y (x)]

+ [cos y][y  (x)] + 2 = 0.
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Grouping all the terms involving y  (x) on one side of the equation gives us

2y[y  (x)] + cos y[y  (x)] = −2[y (x)]2 + sin y[y (x)]2 − 2.

Factoring out the y  (x) on the left, we get

(2y + cos y)y  (x) = −2[y (x)]2 + sin y[y (x)]2 − 2,

so that y  (x) = −2[y (x)]2 + sin y[y (x)]2 − 2

2y + cos y
. (7.6)

Notice that (7.6) gives us a (rather messy) formula for y  (x) in terms of x, y and y (x).

If we need to have y  (x) in terms of x and y only, we can solve (7.5) for y (x) and

substitute into (7.6). However, we don’t need to do this to find y  (−2). Instead, first

substitute x = −2 and y = 0 into (7.5) to get

2(0)[y (−2)] + cos 0[y (−2)] + 2(−2) = 0,

from which we conclude

y (−2) = 4

2(0) + cos 0
= 4.

Then substitute x = −2, y = 0 and y (−2) = 4 into (7.6) to get

y  (−2) = −2(4)2 + sin 0(4)2 − 2

2(0) + cos 0
= −34.

See Figure 2.37 for a graph of y2 + sin y + x2 = 4 near the point (−2, 0).
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FIGURE 2.37
y2 + sin y + x2 = 4
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Recall that, up to this point, we have proved the power rule

d

dx
xr = r xr−1

only for integer exponents (see Theorems 3.1 and 4.3), although we have been freely using

this result for any real exponent, r . Now that we have developed implicit differentiation,

however, we have the tools we need to prove the power rule for the case of any rational

exponent.

THEOREM 7.1

For any rational exponent, r,
d

dx
xr = r xr−1.

PROOF

Suppose that r is any rational number. Then r = p

q
, for some integers p and q. Let

y = xr = x p/q . (7.7)

Then, raising both sides of equation (7.7) to the qth power, we get

yq = x p. (7.8)

Differentiating both sides of equation (7.8) with respect to x , we get

d

dx
(yq ) = d

dx
(x p).

From the chain rule, we have qyq−1 dy

dx
= px p−1.

Solving for
dy

dx
, we have

dy

dx
= px p−1

qyq−1
= px p−1

q(x p/q )q−1
Since y = x p/q .

= px p−1

qx p−p/q = p

q
x p−1−p+p/q

Using the usual rules of exponents.

= p

q
x p/q−1 = r xr−1, Since

p

q
= r .

as desired.

TODAY IN
MATHEMATICS

Dusa McDuff (1945– )

A British mathematician who has

won prestigious awards for her

research in multidimensional

geometry. McDuff was inspired

by Russian mathematician Israel

Gelfand. “Gelfand amazed me by

talking of mathematics as if it

were poetry. . . . I had always

thought of mathematics as being

much more straightforward: a

formula is a formula, and an

algebra is an algebra, but Gelfand

found hedgehogs lurking in the

rows of his spectral sequences!’’

McDuff has made important

contributions to undergraduate

teaching and Women in Science

and Engineering, lectures around

the world and has coauthored

several research monographs.

BEYOND FORMULAS

Implicit differentiation allows us to find the derivative of functions even when we don’t

have a formula for the function. This remarkable result means that if we have any

equation for the relationship between two quantities, we can find the rate of change

of one with respect to the other. Here is a case where mathematics requires creative

thinking beyond formula memorization. In what other situations have you seen the

need for creativity in mathematics?



2-67 SECTION 2.7 .. Implicit Differentiation 189

EXERCISES 2.7

WRITING EXERCISES

1. For implicit differentiation, we assume that y is a function of

x : we write y(x) to remind ourselves of this. However, for the

circle x2 + y2 = 1, it is not true that y is a function of x . Since

y = ±
√

1 − x2, there are actually (at least) two functions of x

defined implicitly. Explain why this is not really a contradic-

tion; that is, explain exactly what we are assuming when we

do implicit differentiation.

2. To perform implicit differentiation on an equation such as

x2y2 + 3 = x, we start by differentiating all terms. We get

2xy2 + x2(2y)y = 1. Many students learn the rules this way:

take “regular” derivatives of all terms, and tack on a y every

time you take a y-derivative. Explain why this works, and

rephrase the rule in a more accurate and understandable

form.

3. In implicit differentiation, the derivative is typically a function

of both x and y; for example, on the circle x2 + y2 = r 2, we

have y = −x/y. If we take the derivative −x/y and plug in

any x and y, will it always be the slope of a tangent line? That is,

are there any requirements on which x’s and y’s we can plug in?

4. In each example in this section, after we differentiated the

given equation, we were able to rewrite the resulting equation

in the form f (x, y)y (x) = g(x, y) for some functions f (x, y)

and g(x, y). Explain why this can always be done; that is,

why doesn’t the chain rule ever produce a term like [y (x)]2

or
1

y (x)
?

In exercises 1–4, compute the slope of the tangent line at the

given point both explicitly (first solve for y as a function of x)

and implicitly.

1. x2 + 4y2 = 8 at (2, 1) 2. x3y − 4
√
x = x2y at (2,

√
2)

3. y − 3x2y = cos x at (0, 1) 4. y2 + 2xy + 4 = 0 at (−2, 2)

In exercises 5–16, find the derivative y (x) implicitly.

5. x2y2 + 3y = 4x 6. 3xy3 − 4x = 10y2

7.
√
xy − 4y2 = 12 8. sin xy = x2 − 3

9.
x + 3

y
= 4x + y2 10. 3x + y3 − 4y = 10x2

11. cos(x2y) − sin y = x 12. x sec y − 3y sin x = 1

13.
√
x + y − 4x2 = y 14. cos y − y2 = 8

15. tan 4y − xy2 = 2x 16. y cos x2 − 3y = x2 + 1

In exercises 17–22, find an equation of the tangent line at the

given point. If you have a CAS that will graph implicit curves,

sketch the curve and the tangent line.

17. x2 − 4y3 = 0 at (2, 1) 18. x2y2 = 4x at (1, 2)

19. x2y2 = 4y at (2, 1) 20. x3y2 = −3xy at (−1,−3)

21. x4 = 4(x2 − y2) at (1,
√

3
2

) 22. x4 = 8(x2 − y2) at (2,−
√

2)

In exercises 23 and 24, find the locations of all horizontal and

vertical tangents.

23. x2 + y3 − 3y = 4 24. xy2 − 2y = 2

In exercises 25–28, find the second derivative y  (x).

25. x2y2 + 3x − 4y = 5 26. x2/3 + y2/3 = 4

27. y2 = x3 − 6x + 4 cos y 28. 3xy + 2y − 3x = sin y

29. In example 7.1, it is easy to find a y-value for x = 2, but other

y-values are not so easy to find. Try solving for y if x = 1.9.

Use the tangent line found in example 7.1 to estimate a y-value.

Repeat for x = 2.1.

30. Use the tangent line found in example 7.2 to estimate a y-value

corresponding to x = 1.9; x = 2.1.

31. For elliptic curves, there are nice ways of finding points

with rational coordinates. (See Ezra Brown’s article “Three

Fermat Trails to Elliptic Curves” in the May 2000 College

Mathematics Journal for more information.) If you have ac-

cess to an implicit plotter, graph the elliptic curve defined by

y2 = x3 − 6x + 9. Show that the points (−3, 0) and (0, 3) are

on the curve. Find the line through these two points and show

that the line intersects the curve in another point with rational

(in this case, integer) coordinates.

32. For the elliptic curve y2 = x3 − 6x + 4, show that the point

(−1, 3) is on the curve. Find the tangent line to the curve at

this point and show that it intersects the curve at another point

with rational coordinates.

33. Use implicit differentiation to find y (x) for x2y − 2y = 4.

Based on this equation, why would you expect to find vertical

tangents at x = ±
√

2 and a horizontal tangent at y = 0? Show

that there are no points for these values. To see what’s going

on, solve the original equation for y and sketch the graph.

Describe what’s happening at x = ±
√

2 and y = 0.

34. Show that any curve of the form xy = c for some constant c

intersects any curve of the form x2 − y2 = k for some constant

k at right angles (that is, the tangent lines to the curves at the

intersection points are perpendicular). In this case, we say that

the families of curves are orthogonal.
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In exercises 35–38, show that the families of curves are orthog-

onal. (See exercise 34.)

35. y = c

x
and y2 = x2 + k

36. x2 + y2 = cx and x2 + y2 = ky

37. y = cx3 and x2 + 3y2 = k

38. y = cx4 and x2 + 4y2 = k

39. Based on exercises 37 and 38, make a conjecture for a family of

functions that is orthogonal to y = cxn . Show that your conjec-

ture is correct. Are there any values of n that must be excluded?

40. Suppose that a circle of radius r and center (0, c) is inscribed

in the parabola y = x2. At the point of tangency, the slopes

must be the same. Find the slope of the circle implicitly and

show that at the point of tangency, y = c − 1
2
. Then use the

equations of the circle and parabola to show that c = r 2 + 1
4
.

y

x

EXPLORATORY EXERCISES

1. Suppose a slingshot (see section 2.1) rotates counterclock-

wise along the circle x2 + y2 = 9 and the rock is released

at the point (2.9, 0.77). If the rock travels 300 feet, where

does it land? [Hint: Find the tangent line at (2.9, 0.77), and

find the point (x, y) on that line such that the distance is 
(x − 2.9)2 + (y − 0.77)2 = 300.]

2. A landowner’s property line runs along the path y = 6 − x .

The landowner wants to run an irrigation ditch from a reser-

voir bounded by the ellipse 4x2 + 9y2 = 36. The landowner

wants to build the shortest ditch possible from the reservoir

to the closest point on the property line. We explore how to

find the best path. Sketch the line and ellipse, and draw in a

tangent line to the ellipse that is parallel to the property line.

Argue that the ditch should start at the point of tangency and

run perpendicular to the two lines. We start by identifying the

point on the right side of the ellipse with tangent line parallel

to y = 6 − x . Find the slope of the tangent line to the ellipse at

(x, y) and set it equal to −1. Solve for x and substitute into the

equation of the ellipse. Solve for y and you have the point on

the ellipse at which to start the ditch. Find an equation of the

(normal) line through this point perpendicular to y = 6 − x

and find the intersection of the normal line and y = 6 − x .

This point is where the ditch ends.

3. Use a CAS to plot the set of points for which

(cos x)2 + (sin y)2 = 1. Determine whether the segments

plotted are straight or not.

2.8 THE MEAN VALUE THEOREM

In this section, we present the Mean Value Theorem, which is so significant that we will be

deriving new ideas from it for many chapters to come. Before considering the main result,

we look at a special case, called Rolle’s Theorem.

The idea behind Rolle’s Theorem is really quite simple. For any function f that is

continuous on the closed interval [a, b] and differentiable on the open interval (a, b) and

where f (a) = f (b), there must be at least one point between x = a and x = b where the

tangent line to y = f (x) is horizontal. In Figures 2.38a–2.38c, we draw a number of graphs

satisfying the above criteria. Notice that each one has at least one point where there is

a horizontal tangent line. Draw your own graphs, to convince yourself that, under these

circumstances, it’s not possible to connect the two points (a, f (a)) and (b, f (b)) without

having at least one horizontal tangent line.

HISTORICAL NOTES

Michel Rolle (1652–1719)

A French mathematician who

proved Rolle’s Theorem for

polynomials. Rolle came from a

poor background, being largely

self-taught and struggling through

a variety of jobs including assistant

attorney, scribe and elementary

school teacher. He was a vigorous

member of the French Academy

of Sciences, arguing against such

luminaries as Descartes that if

a < b then −b < −a (so, for

instance, −2 < −1). Oddly, Rolle

was known as an opponent of the

newly developed calculus, calling

it a “collection of ingenious

fallacies.”

Note that since f  (x) = 0 at a horizontal tangent, this says that there is at least one

point c in (a, b), for which f  (c) = 0. (See Figures 2.38a–2.38c.)

THEOREM 8.1 (Rolle’s Theorem)

Suppose that f is continuous on the interval [a, b], differentiable on the interval

(a, b) and f (a) = f (b). Then there is a number c ∈ (a, b) such that f  (c) = 0.
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y

x
ba c

y

x
ba c

y

x
a bc1

c2

FIGURE 2.38a
Graph initially rising

FIGURE 2.38b
Graph initially falling

FIGURE 2.38c
Graph with two horizontal

tangents

SKETCH OF PROOF

We present the main ideas of the proof from a graphical perspective. First, note that if f (x)

is constant on [a, b], then f  (x) = 0 for all x’s between a and b. On the other hand, if

f (x) is not constant on [a, b], then, as you look from left to right, the graph must at some

point start to either rise or fall. (See Figures 2.39a and 2.39b.) For the case where the graph

starts to rise, notice that in order to return to the level at which it started, it will need to turn

around at some point and start to fall. (Think about it this way: if you start to climb up a

mountain—so that your altitude rises—if you are to get back down to where you started,

you will need to turn around at some point—where your altitude starts to fall.)

y

x
c

(a, f (a)) (b, f (b))

f  (c)   0

FIGURE 2.39a
Graph rises and turns around to fall

back to where it started.

y

x
c

(a, f (a)) (b, f (b))

f  (c)   0

FIGURE 2.39b
Graph falls and then turns around to

rise back to where it started.

So, there is at least one point where the graph turns around, changing from rising

to falling. (See Figure 2.39a.) Likewise, in the case where the graph first starts to fall, the

graph must turn around from falling to rising. (See Figure 2.39b.) We name this point x = c.

Since we know that f  (c) exists, we have that either f  (c) > 0, f  (c) < 0 or f  (c) = 0. We

want to argue that f  (c) = 0, as Figures 2.39a and 2.39b suggest. To establish this, it is

easier to show that it is not true that f  (c) > 0 or f  (c) < 0. If it were true that f  (c) > 0,

then from the alternative definition of the derivative given in equation (2.2) in section 2.2,

we have

f  (c) = lim
x→c

f (x) − f (c)

x − c
> 0.

This says that for every x sufficiently close to c,

f (x) − f (c)

x − c
> 0. (8.1)

In particular, for the case where the graph first rises, if x − c > 0 (i.e., x > c), this says that

f (x) − f (c) > 0 or f (x) > f (c), which can’t happen for every x > c (with x sufficiently

close to c) if the graph has turned around at c and started to fall. From this, we conclude

that it can’t be true that f  (c) > 0. Similarly, we can show that it is not true that f  (c) < 0.

Therefore, f  (c) = 0, as desired. The proof for the case where the graph first falls is nearly

identical and is left to the reader.

We now give an illustration of the conclusion of Rolle’s Theorem.
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EXAMPLE 8.1 An Illustration of Rolle’s Theorem

Find a value of c satisfying the conclusion of Rolle’s Theorem for

f (x) = x3 − 3x2 + 2x + 2

on the interval [0, 1].

Solution First, we verify that the hypotheses of the theorem are satisfied: f is differ-

entiable and continuous for all x [since f (x) is a polynomial and all polynomials are

continuous and differentiable everywhere]. Also, f (0) = f (1) = 2. We have

f  (x) = 3x2 − 6x + 2.

We now look for values of c such that

f  (c) = 3c2 − 6c + 2 = 0.

By the quadratic formula, we get c = 1 + 1
3

√
3 ≈ 1.5774 [not in the interval (0, 1)] and

c = 1 − 1
3

√
3 ≈ 0.42265 ∈ (0, 1). �

REMARK 8.1

We want to emphasize that example 8.1 is merely an illustration of Rolle’s Theorem.

Finding the number(s) c satisfying the conclusion of Rolle’s Theorem is not the point

of our discussion. Rather, Rolle’s Theorem is of interest to us primarily because we

use it to prove one of the fundamental results of elementary calculus, the Mean Value

Theorem.

Although Rolle’s Theorem is a simple result, we can use it to derive numerous properties

of functions. For example, we are often interested in finding the zeros of a function f (that

is, solutions of the equation f (x) = 0). In practice, it is often difficult to determine how

many zeros a given function has. Rolle’s Theorem can be of help here.

THEOREM 8.2

If f is continuous on the interval [a, b], differentiable on the interval (a, b) and

f (x) = 0 has two solutions in [a, b], then f  (x) = 0 has at least one solution in (a, b).

PROOF

This is just a special case of Rolle’s Theorem. Identify the two zeros of f (x) as x = s and

x = t , where s < t . Since f (s) = f (t), Rolle’s Theorem guarantees that there is a number

c such that s < c < t (and hence a < c < b) where f  (c) = 0.

We can easily generalize the result of Theorem 8.2, as in the following theorem.

THEOREM 8.3

For any integer n > 0, if f is continuous on the interval [a, b] and differentiable on

the interval (a, b) and f (x) = 0 has n solutions in [a, b], then f  (x) = 0 has at least

(n − 1) solutions in (a, b).
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PROOF

From Theorem 8.2, between every pair of solutions of f (x) = 0 is at least one solution of

f  (x) = 0. In this case, there are (n − 1) consecutive pairs of solutions of f (x) = 0 and so,

the result follows.

We can use Theorems 8.2 and 8.3 to investigate the number of zeros a given function

has. (Here, we consider only real zeros of a function and not complex zeros.)

EXAMPLE 8.2 Determining the Number of Zeros of a Function

Prove that x3 + 4x + 1 = 0 has exactly one solution.

Solution The graph shown in Figure 2.40 makes the result seem reasonable: we can

see one solution, but how can we be sure there are no others outside of the displayed

window? Notice that if f (x) = x3 + 4x + 1, then

f  (x) = 3x2 + 4 > 0

y

x

 10

 5

5

10

21 1 2

FIGURE 2.40
y = x3 + 4x + 1

for all x . By Theorem 8.2, if f (x) = 0 had two solutions, then f  (x) = 0 would have at

least one solution. However, since f  (x)  = 0 for all x , it can’t be true that f (x) = 0 has

two (or more) solutions. Therefore, f (x) = 0 has exactly one solution. �

We now generalize Rolle’s Theorem to one of the most significant results of elementary

calculus.

THEOREM 8.4 (Mean Value Theorem)

Suppose that f is continuous on the interval [a, b] and differentiable on the interval

(a, b). Then there exists a number c ∈ (a, b) such that

f  (c) = f (b) − f (a)

b − a
. (8.2)

PROOF

Note that the hypotheses are identical to those of Rolle’s Theorem, except that there is no

assumption about the values of f at the endpoints. The expression
f (b) − f (a)

b − a
is the slope

of the secant line connecting the endpoints, (a, f (a)) and (b, f (b)).

NOTE

Note that in the special case

where f (a) = f (b), (8.2)

simplifies to the conclusion of

Rolle’s Theorem, that f  (c) = 0.

The theorem states that there is a line tangent to the curve at some point x = c in

(a, b) that has the same slope as (and hence, is parallel to) the secant line. (See Figures 2.41

and 2.42 on the following page.) If you tilt your head so that the line segment looks

horizontal, Figure 2.42 will look like a figure for Rolle’s Theorem (Figures 2.39a and

2.39b). The proof is to “tilt” the function and then apply Rolle’s Theorem.

The equation of the secant line through the endpoints is

y − f (a) = m(x − a),

where m = f (b) − f (a)

b − a
.
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FIGURE 2.41
Secant line

FIGURE 2.42
Mean Value Theorem

Define the “tilted” function g to be the difference between f and the function whose graph

is the secant line:

g(x) = f (x) − [m(x − a) + f (a)]. (8.3)

Note that g is continuous on [a, b] and differentiable on (a, b), since f is. Further,

g(a) = f (a) − [0 + f (a)] = 0

and g(b) = f (b) − [m(b − a) + f (a)]

= f (b) − [ f (b) − f (a) + f (a)] = 0. Since m = f (b) − f (a)

b − a
.

Since g(a) = g(b), we have by Rolle’s Theorem that there exists a number c in the interval

(a, b) such that g (c) = 0. Differentiating (8.3), we get

0 = g (c) = f  (c) − m. (8.4)

Finally, solving (8.4) for f  (c) gives us

f  (c) = m = f (b) − f (a)

b − a
,

as desired.

Before we demonstrate some of the power of the Mean Value Theorem, we first briefly

illustrate its conclusion.

EXAMPLE 8.3 An Illustration of the Mean Value Theorem

Find a value of c satisfying the conclusion of the Mean Value Theorem for

f (x) = x3 − x2 − x + 1

on the interval [0, 2].

Solution Notice that f is continuous on [0, 2] and differentiable on (0, 2). The Mean

Value Theorem then says that there is a number c in (0, 2) for which

f  (c) = f (2) − f (0)

2 − 0
= 3 − 1

2 − 0
= 1.

To find this number c, we set

f  (c) = 3c2 − 2c − 1 = 1

or 3c2 − 2c − 2 = 0.
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From the quadratic formula, we get c = 1 ±
√

7

3
. In this case, only one of these,

c = 1 +
√

7

3
, is in the interval (0, 2). In Figure 2.43, we show the graphs of y = f (x),

the secant line joining the endpoints of the portion of the curve on the interval [0, 2] and

the tangent line at x = 1 +
√

7

3
.
�

y

x

 2

 1

1

2

3

21

FIGURE 2.43
Mean Value Theorem

The illustration in example 8.3, where we found the number c whose existence is

guaranteed by the Mean Value Theorem, is not the point of the theorem. In fact, these c’s

usually remain unknown. The significance of the Mean Value Theorem is that it relates a

difference of function values to the difference of the corresponding x-values, as in equation

(8.5) below.

Note that if we take the conclusion of the Mean Value Theorem (8.2) and multiply both

sides by the quantity (b − a), we get

f (b) − f (a) = f  (c)(b − a). (8.5)

As it turns out, many of the most important results in the calculus (including one known

as the Fundamental Theorem of Calculus) follow from the Mean Value Theorem. For now,

we derive a result essential to our work in Chapter 4. The question concerns how many

functions share the same derivative.

Recall that for any constant c,

d

dx
(c) = 0.

A question that you probably haven’t thought to ask is: Are there any other functions whose

derivative is zero? The answer is no, as we see in Theorem 8.5.

THEOREM 8.5

Suppose that f  (x) = 0 for all x in some open interval I . Then, f (x) is constant on I .

PROOF

Pick any two numbers, say a and b, in I , with a < b. Since f is differentiable in I and

(a, b) ⊂ I , f is continuous on [a, b] and differentiable on (a, b). By the Mean Value The-

orem, we know that

f (b) − f (a)

b − a
= f  (c), (8.6)

for some number c ∈ (a, b) ⊂ I . Since, f  (x) = 0 for all x ∈ I , f  (c) = 0 and it follows

from (8.6) that

f (b) − f (a) = 0 or f (b) = f (a).

Since a and b were arbitrary points in I , this says that f is constant on I , as desired.

A question closely related to Theorem 8.5 is the following. We know, for example, that

d

dx
(x2 + 2) = 2x,
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but are there any other functions with the same derivative? You should quickly come up

with several. For instance, x2 + 3 and x2 − 4 also have the derivative 2x . In fact,

d

dx
(x2 + c) = 2x,

for any constant c. Are there any other functions, though, with the derivative 2x? Corollary

8.1 says that there are no such functions.

COROLLARY 8.1

Suppose that g (x) = f  (x) for all x in some open interval I . Then, for some

constant c,

g(x) = f (x) + c, for all x ∈ I.

PROOF

Define h(x) = g(x) − f (x). Then

h (x) = g (x) − f  (x) = 0

for all x in I . From Theorem 8.5, h(x) = c, for some constant c. The result then follows

immediately from the definition of h(x).

We see in Chapter 4 that Corollary 8.1 has significant implications when we try to

reverse the process of differentiation (called antidifferentiation). We take a look ahead to

this in example 8.4.

EXAMPLE 8.4 Finding Every Function with a Given Derivative

Find all functions that have a derivative equal to 3x2 + 1.

Solution We first write down (from our experience with derivatives) one function

with the correct derivative: x3 + x . Then, Corollary 8.1 tells us that any other function

with the same derivative differs by at most a constant. So, every function whose

derivative equals 3x2 + 1 has the form x3 + x + c, for some constant c. �

As our final example, we demonstrate how the Mean Value Theorem can be used to

establish a useful inequality.

EXAMPLE 8.5 Proving an Inequality for sin x

Prove that |sin a| ≤ |a| for all a.

Solution First, note that f (x) = sin x is continuous and differentiable on any interval

and that for any a,

|sin a| = |sin a − sin 0|,
since sin 0 = 0. From the Mean Value Theorem, we have that (for a  = 0)

sin a − sin 0

a − 0
= f  (c) = cos c, (8.7)
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for some number c between a and 0. Notice that if we multiply both sides of (8.7) by a

and take absolute values, we get

|sin a| = |sin a − sin 0| = |cos c| |a − 0| = |cos c| |a|. (8.8)

But, |cos c| ≤ 1, for all real numbers c and so, from (8.8), we have

|sin a| = |cos c| |a| ≤ (1) |a| = |a|,
as desired. �

BEYOND FORMULAS

The Mean Value Theorem is subtle, but its implications are far-reaching. Although

the illustration in Figure 2.42 makes the result seem obvious, the consequences of the

Mean Value Theorem, such as example 8.4, are powerful and not at all obvious. For

example, most of the rest of the calculus developed in this book depends on the Mean

Value Theorem either directly or indirectly. A thorough understanding of the theory

of calculus can lead you to important conclusions, particularly when the problems are

beyond what your intuition alone can handle. What other theorems have you learned

that continue to provide insight beyond their original context?

EXERCISES 2.8

WRITING EXERCISES

1. Notice that for both Rolle’s Theorem and the Mean Value The-

orem, we have assumed that the function is continuous on the

closed interval [a, b] and differentiable on the open interval

(a, b). Recall that if a function is differentiable at x = a, then

it is also continuous at x = a. Therefore, if we had assumed that

the function was differentiable on the closed interval, we would

not have had to mention continuity. We do not do so because

the assumption of being differentiable at the endpoints is not

necessary. The “ethics” of the statement of a theorem is to in-

clude only assumptions that are absolutely necessary. Discuss

the virtues of this tradition. Is this common practice in our so-

cial dealings, such as financial obligations or personal gossip?

2. One of the results in this section is that if f  (x) = g (x),

then g(x) = f (x) + c for some constant c. Explain this result

graphically.

3. Explain the result of Corollary 8.1 in terms of position and ve-

locity functions. That is, if two objects have the same velocity

functions, what can you say about the relative positions of the

two objects?

4. As we mentioned, you can derive Rolle’s Theorem from the

Mean Value Theorem simply by setting f (a) = f (b). Given

this, it may seem odd that Rolle’s Theorem rates its own name

and portion of the book. To explain why we do this, discuss

ways in which Rolle’s Theorem is easier to understand than

the Mean Value Theorem.

In exercises 1–6, check the hypotheses of Rolle’s Theorem and

the Mean Value Theorem and find a value of c that makes the

appropriate conclusion true. Illustrate the conclusion with a

graph.

1. f (x) = x2 + 1, [−2, 2] 2. f (x) = x2 + 1, [0, 2]

3. f (x) = x3 + x2, [0, 1] 4. f (x) = x3 + x2, [−1, 1]

5. f (x) = sin x, [0, π/2] 6. f (x) = sin x, [−π, 0]

7. If f  (x) > 0 for all x , prove that f (x) is an increasing function:

that is, if a < b, then f (a) < f (b).

8. If f  (x) < 0 for all x , prove that f (x) is a decreasing function:

that is, if a < b, then f (a) > f (b).

In exercises 9–16, determine whether the function is increasing,

decreasing or neither.

9. f (x) = x3 + 5x + 1 10. f (x) = x5 + 3x3 − 1

11. f (x) = −x3 − 3x + 1 12. f (x) = x4 + 2x2 + 1

13. f (x) = 1/x 14. f (x) = x

x + 1

15. f (x) = √
x + 1 16. f (x) = x√

x2 + 1

17. Prove that x3 + 5x + 1 = 0 has exactly one solution.

18. Prove that x3 + 4x − 3 = 0 has exactly one solution.
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19. Prove that x4 + 3x2 − 2 = 0 has exactly two solutions.

20. Prove that x4 + 6x2 − 1 = 0 has exactly two solutions.

21. Prove that x3 + ax + b = 0 has exactly one solution fora > 0.

22. Prove that x4 + ax2 − b = 0 (a > 0, b > 0) has exactly two

solutions.

23. Prove that x5 + ax3 + bx + c = 0 has exactly one solution

for a > 0, b > 0.

24. Prove that a third-degree (cubic) polynomial has at most three

zeros. (You may use the quadratic formula.)

25. Suppose that s(t) gives the position of an object at time t . If s

is differentiable on the interval [a, b], prove that at some time

t = c, the instantaneous velocity at t = c equals the average

velocity between times t = a and t = b.

26. Two runners start a race at time 0. At some time t = a, one

runner has pulled ahead, but the other runner has taken the lead

by time t = b. Prove that at some time t = c > 0, the runners

were going exactly the same speed.

27. If f and g are differentiable functions on the interval [a, b]

with f (a) = g(a) and f (b) = g(b), prove that at some point

in the interval [a, b], f and g have parallel tangent lines.

28. Prove that the result of exercise 27 still holds if the assump-

tions f (a) = g(a) and f (b) = g(b) are relaxed to requiring

f (b) − f (a) = g(b) − g(a).

In exercises 29–34, find all functions g such that g (x)  f (x).

29. f (x) = x2 30. f (x) = 9x4

31. f (x) = 1/x2 32. f (x) = √
x

33. f (x) = sin x 34. f (x) = cos x

In exercises 35–38, explain why it is not valid to use the Mean

Value Theorem.When the hypotheses are not true, the theorem

does not tell you anything about the truth of the conclusion.

In three of the four cases, show that there is no value of c that

makes the conclusion of the theorem true. In the fourth case,

find the value of c.

35. f (x) = 1

x
, [−1, 1] 36. f (x) = 1

x2
, [−1, 2]

37. f (x) = tan x, [0, π ] 38. f (x) = x1/3, [−1, 1]

39. Assume that f is a differentiable function such that

f (0) = f  (0) = 0 and f   (0) > 0. Argue that there exists a pos-

itive constant a > 0 such that f (x) > 0 for all x in the interval

(0, a). Can anything be concluded about f (x) for negative x’s?

40. Show that for any real numbers u and v,

| cos u − cos v| ≤ |u − v|. (Hint: Use the Mean Value

Theorem.)

41. Prove that | sin a| < |a| for all a  = 0 and use the result to show

that the only solution to the equation sin x = x is x = 0. What

happens if you try to find all intersections with a graphing

calculator?

42. Prove that |x | ≤ |tan x | for |x | < π
2

.

43. For f (x) =
 

2x if x ≤ 0

2x − 4 if x > 0
show that f is continuous on

the interval (0, 2), differentiable on the interval (0, 2) and has

f (0) = f (2). Show that there does not exist a value of c such

that f  (c) = 0. Which hypothesis of Rolle’s Theorem is not

satisfied?

44. Assume that f is a differentiable function such that

f (0) = f  (0) = 0. Show by example that it is not necessarily

true that f (x) = 0 for all x . Find the flaw in the following

bogus “proof.” Using the Mean Value Theorem with a = x

and b = 0, we have f  (c) = f (x) − f (0)

x − 0
. Since f (0) = 0

and f  (c) = 0, we have 0 = f (x)

x
so that f (x) = 0.

EXPLORATORY EXERCISES

1. In section 2.1, we gave an example of computing the velocity of

a moving car. The point of the story was that computing instan-

taneous velocity requires us to compute a limit. However, we

left an interesting question unanswered. If you have an average

velocity of 60 mph over 1 hour and the speed limit is 65 mph,

you are unable to prove that you never exceeded the speed limit.

What is the longest time interval over which you can average

60 mph and still guarantee no speeding? We can use the Mean

Value Theorem to answer the question after clearing up a cou-

ple of preliminary questions. First, argue that we need to know

the maximum acceleration of a car and the maximum positive

acceleration may differ from the maximum negative acceler-

ation. Based on your experience, what is the fastest your car

could accelerate (speed up)? What is the fastest your car could

decelerate (slow down)? Back up your estimates with some

real data (e.g., my car goes from 0 to 60 in 15 seconds). Call

the larger number A (use units of mph per second). Next, argue

that if acceleration (the derivative of velocity) is constant, then

the velocity function is linear. Therefore, if the velocity varies

from 55 mph to 65 mph at constant acceleration, the average

velocity will be 60 mph. Now, apply the Mean Value Theorem

to the velocity function v(t) on a time interval [0, T ], where

the velocity changes from 55 mph to 65 mph at constant accel-

eration A: v (c) = v(T ) − v(0)

T − 0
becomes A = 65 − 55

T − 0
and so

T = 10/A. For how long is the guarantee good?

2. Suppose that a pollutant is dumped into a lake at the rate

of p (t) = t2 − t + 4 tons per month. The amount of pol-

lutant dumped into the lake in the first two months is

A = p(2) − p(0). Using c = 1 (the midpoint of the inter-

val), estimate A by applying the Mean Value Theorem to p(t)
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on the interval [0, 2]. To get a better estimate, apply the Mean

Value Theorem to the intervals [0, 1/2], [1/2, 1], [1, 3/2]

and [3/2, 2]. [Hint: A = p(1/2) − p(0) + p(1) − p(1/2) +
p(3/2) − p(1) + p(2) − p(3/2).] If you have access to a CAS,

get better estimates by dividing the interval [0, 2] into more

and more pieces and try to conjecture the limit of the estimates.

You will be well on your way to understanding Chapter 4 on

integration.

3. A result known as the Cauchy Mean Value Theorem states

that if f and g are differentiable on the interval (a, b) and

continuous on [a, b], then there exists a number c with

a < c < b and [ f (b) − f (a)]g (c) = [g(b) − g(a)] f  (c). Find

all flaws in the following invalid attempt to prove the result,

and then find a correct proof. Invalid attempt: The hypo-

theses of the Mean Value Theorem are satisfied by both

functions, so there exists a number c with a < c < b

and f  (c) = f (b) − f (a)

b − a
and g (c) = g(b) − g(a)

b − a
. Then

b − a = f (b) − f (a)

f  (c)
= g(b) − g(a)

g (c)
and thus

[ f (b) − f (a)]g (c) = [g(b) − g(a)] f  (c).

Review Exercises

WRITING EXERCISES

The following list includes terms that are defined and theorems that

are stated in this chapter. For each term or theorem, (1) give a precise

definition or statement, (2) state in general terms what it means and

(3) describe the types of problems with which it is associated.

Tangent line Velocity Average velocity

Derivative Power rule Acceleration

Product rule Quotient rule Chain rule

Implicit differentiation Mean Value Theorem Rolle’s Theorem

State the derivative of each function:

sin x, cos x, tan x, cot x, sec x, csc x

TRUE OR FALSE

State whether each statement is true or false and briefly explain

why. If the statement is false, try to “fix it” by modifying the given

statement to make a new statement that is true.

1. If a function is continuous at x = a, then it has a tangent line

at x = a.

2. The average velocity between t = a and t = b is the average

of the velocities at t = a and t = b.

3. The derivative of a function gives its slope.

4. Given the graph of f  (x), you can construct the graph of

f (x).

5. The power rule gives the rule for computing the derivative of

any polynomial.

6. If a function is written as a quotient, use the quotient rule to

find its derivative.

7. The chain rule gives the derivative of the composition of two

functions. The order does not matter.

8. The slope of f (x) = sin 4x is never larger than 1.

9. In implicit differentiation, you do not have to solve for y as a

function of x to find y (x).

10. The Mean Value Theorem and Rolle’s Theorem are special

cases of each other.

11. The Mean Value Theorem can be used to show that for a fifth-

degree polynomial, f  (x) = 0 for at most four values of x .

1. Estimate the value of f  (1) from the given data.

x 0 0.5 1 1.5 2

f (x) 2.0 2.6 3.0 3.4 4.0

2. List the points A, B,C and D in order of increasing slope of

the tangent line.

y

x

A
B

C

D

In exercises 3–8, use the limit definition to find the indicated

derivative.

3. f  (2) for f (x) = x2 − 2x

4. f  (1) for f (x) = 1 + 1

x
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5. f  (1) for f (x) = √
x 6. f  (0) for f (x) = x3 − 2x

7. f  (x) for f (x) = x3 + x 8. f  (x) for f (x) = 3

x
In exercises 9–14, find an equation of the tangent line.

9. y = x4 − 2x + 1 at x = 1 10. y = sin 2x at x = 0

11. y = 3 sin 2x at x = 0 12. y =
√
x2 + 1 at x = 0

13. y − x2y2 = x − 1 at (1, 1) 14. y2 + x cos y= 4 − x at (2, 0)

In exercises 15–18, use the givenposition function tofindvelocity

and acceleration.

15. s(t) = −16t2 + 40t + 10 16. s(t) = −9.8t2 − 22t + 6

17. s(t) = 10 sin 4t 18. s(t) = √
4t + 16 − 4

19. In exercise 15, s(t) gives the height of a ball at time t . Find the

ball’s velocity at t = 1; is the ball going up or down? Find the

ball’s velocity at t = 2; is the ball going up or down?

20. In exercise 17, s(t) gives the position of a spring at time t .

Compare the velocities at t = 0 and t = π . Is the spring mov-

ing in the same direction or opposite directions? At which time

is the spring moving faster?

In exercises 21 and 22, compute the slopes of the secant lines

between (a) x  1 and x  2, (b) x  1 and x  1.5, (c) x  1

and x  1.1 and (d) estimate the slope of the tangent line at

x  1.

21. f (x) = √
x + 1 22. f (x) = cos(x/6)

In exercises 23–50, find the derivative of the given function.

23. f (x) = x4 − 3x3 + 2x − 1 24. f (x) = x2/3 − 4x2 + 5

25. f (x) = 3√
x

+ 5

x2
26. f (x) = 2 − 3x + x2

√
x

27. f (t) = t2(t + 2)3

28. f (t) = (t2 + 1)(t3 − 3t + 2)

29. g(x) = x

3x2 − 1
30. g(x) = 3x2 − 1

x

31. f (x) = x2 sin x 32. f (x) = sin x2

33. f (x) = tan
√
x 34. f (x) = √

tan x

35. f (t) = t csc t 36. f (t) = sin 3t cos 4t

37. u(x) = 2√
x2 + 2

38. u(x) =
 √
x5

 3

39. f (x) = 3 cos
√

4 − x2 40. f (x) = sec2 x + 1

41. f (x) =
√

sin 4x 42. f (x) = cos2 3x

43. f (x) =
 
x + 1

x − 1

 2

44. f (x) = 6x

(x − 1)2

45. u(x) = 4 sin2(4 − √
x) 46. f (x) = x sin 2x√

x2 + 1

In exercises 47 and 48, use the graph of y  f (x) to sketch the

graph of y  f  (x).

47. y

x

 1

1

2

3

21 1

48. y

x

 2

2

4 4  2

In exercises 49–56, find the indicated derivative.

49. f   (x) for f (x) = x4 − 3x3 + 2x2 − x − 1

50. f    (x) for f (x) = √
x + 1

51. f    (x) for f (x) = x cos(2x)

52. f   (x) for f (x) = 4

x + 1

53. f   (x) for f (x) = tan x

54. f (4)(x) for f (x) = x6 − 3x4 + 2x3 − 7x + 1

55. f (26)(x) for f (x) = sin 3x

56. f (31)(x) for f (x) = 1

x
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57. The position at time t of a spring moving vertically is given

by f (t) = 4 cos 2t . Find the position of the spring when it

has (a) zero velocity, (b) maximum velocity and (c) minimum

velocity.

58. The position at time t of a spring moving vertically is given

by f (t) = cos 7t sin 3t . Find the velocity of the spring at any

time t .

In exercises 59–62, find the derivative y (x).

59. x2y − 3y3 = x2 + 1

60. sin (xy) + x2 = x − y

61.
y

x + 1
− 3y = tan x

62. x − 2y2 = 3 cos(x/y)

63. If you have access to a CAS, sketch the graph in exercise 59.

Find the y-value corresponding to x = 0. Find the slope of the

tangent line to the curve at this point. Also, find y  (0).

64. If you have access to a CAS, sketch the graph in exercise 61.

Find the y-value corresponding to x = 0. Find the slope of the

tangent line to the curve at this point. Also, find y  (0).

In exercises 65–68, find all points at which the tangent line to

the curve is (a) horizontal and (b) vertical.

65. y = x3 − 6x2 + 1

66. y = x2/3

67. x2y − 4y = x2

68. y = x4 − 2x2 + 3

69. Prove that the equation x3 + 7x − 1 = 0 has exactly one

solution.

70. Prove that the equation x4 + 2x2 − 3 = 0 has exactly two

solutions.

71. Prove that |cos x − 1| ≤ |x | for all x .

72. Prove that x + x3/3 + 2x5/15 < tan x < x + x3/3 + 2x5/5

for 0 < x < 1.

73. If f (x) is differentiable at x = a, show that g(x) is continuous

at x = a where g(x) =

⎧⎨
⎩
f (x) − f (a)

x − a
if x  = a

f  (a) if x = a

.

74. If f is differentiable at x = a and T (x) = f (a) + f  (a)(x − a)

is the tangent line to f (x) at x = a, prove that

f (x) − T (x) = e(x)(x − a) for some error function e(x) with

lim
x→a

e(x) = 0.

In exercises 75 and 76, find a value of c as guaranteed by the

Mean Value Theorem.

75. f (x) = x2 − 2x on the interval [0, 2]

76. f (x) = x3 − x on the interval [0, 2]

In exercises 77 and 78, find all functions g such that

g (x)  f (x).

77. f (x) = 3x2 − cos x 78. f (x) = x3 − sin 2x

79. A polynomial f (x) has a double root at x = a if (x − a)2

is a factor of f (x) but (x − a)3 is not. The line through the

point (1, 2) with slopem has equation y = m(x − 1) + 2. Find

m such that f (x) = x3 + 1 − [m(x − 1) + 2] has a double root

at x = 1. Show that y = m(x − 1) + 2 is the tangent line to

y = x3 + 1 at the point (1, 2).

80. Repeat exercise 79 for f (x) = x3 + 2x and the point (2, 12).

EXPLORATORY EXERCISES

1. Knowing where to aim a ball is an important skill in many

sports. If the ball doesn’t follow a straight path (because of

gravity or other factors), aiming can be a difficult task. When

throwing a baseball, for example, the player must take gravity

into account and aim higher than the target. Ignoring air resis-

tance and any lateral movement, the motion of a thrown ball

may be approximated by y = − 16

v2 cos2 θ
x2 + (tan θ )x . Here,

the ball is thrown from the position (0, 0) with initial speed

v ft/s at angle θ from the horizontal.

y

x
105

10

20

30

u

Given such a curve, we can compute the slope of the tangent

line at x = 0, but how can we compute the proper angle θ?

Show that if m is the slope of the tangent line at x = 0, then

tan θ = m. (Hint: Draw a triangle using the tangent line and
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x-axis and recall that slope is rise over run.) Tangent is a good

name, isn’t it? Now, for some baseball problems. We will look

at how high players need to aim to make throws that are easy

to catch. Throwing height is also a good catching height. If L

(ft) is the length of the throw and we want the ball to arrive at

the same height as it is released (as shown in the figure), the

parabola can be determined from the following relationship be-

tween angle and velocity: sin 2θ = 32L/v2. A third baseman

throwing at 130 ft/s (about 90 mph) must throw 120 ft to reach

first base. Find the angle of release (substitute L and v and, by

trial and error, find a value of θ that works), the slope of the

tangent line and the height at which the third baseman must

aim (that is, the height at which the ball would arrive if there

were no gravity). How much does this change for a soft throw

at 100 ft/s? How about for an outfielder’s throw of 300 feet at

130 ft/s? Most baseball players would deny that they are aim-

ing this high; what in their experience would make it difficult

for them to believe the calculations?

2. We continue our explorations in the theory of mathematical

chaos here. (Related exploratory exercises can be found in the

review exercises of Chapter 1.) We have seen how to iterate

functions and that such iterations may result in attractors con-

sisting of a single number, two numbers alternating (a two-

cycle), a four-cycle, other size cycles or chaos (bounded but

not repeating). We now have the tools to determine which cy-

cles attract and which do not. First, try iterating cos x : start

at any x0 and compute x1 = cos x0, x2 = cos x1 and so on.

Without knowing what your choice of x0 is, we can predict that

the iterations will converge to the mysterious-looking number

0.739085133215. From our previous work, you should be able

to explain where this number comes from: it is the only in-

tersection of y = cos x and y = x . Similarly, iterates of sin x

will converge to 0, the only solution of the equation sin x = x .

You might hypothesize that iterates of f (x) always converge

to a solution of the equation f (x) = x . However, iterates for

most starting points of f (x) = x(3.2 − x) converge to a two-

cycle (approximately 2.5582 and 1.6417) and not to either

solution of the equation x(3.2 − x) = x . Those fixed points,

as they’re called, are x = 0 and x = 2.2. They are called re-

pelling fixed points: pick x0 very close to one of them and

the iterates will get “repelled” away from the fixed points.

For example, if x0 = 2.22, then x1 = 2.1756, x2 = 2.22868,

x3 = 2.1648, x4 = 2.24105 and so on, with succeeding iterates

getting farther and farther from 2.2 (and closer to the two-cycle

2.5582 and 1.6417). A simple rule tells whether a fixed point

will be attracting or repelling. If a is a fixed point of f (x) (that

is, a is a solution of the equation f (x) = x) and | f  (a)| < 1,

then a is attracting. If | f  (a)| > 1, then a is repelling. Verify

that 0.739085133215 is an attracting fixed point of cos x , that

0 is an attracting fixed point of sin x , that 0 is a repelling fixed

point of x(3.2 − x) and that 2.2 is a repelling fixed point of

x(3.2 − x).

3. Based on exercise 2, we can find a bifurcation point for the

family of functions fc(x) = x(c − x). Show that x = 0 and

x = c − 1 are the fixed points of fc(x). If −1 < c < 1, show

that 0 attracts and c − 1 repels. Illustrate this by computing

iterates of f0(x) and f1/2(x) starting at x0 = 0.2. If 1 < c < 3,

show that 0 repels and c − 1 attracts. Illustrate this by comput-

ing iterates of f2(x) and f2.8(x) starting at x0 = 0.5. If c > 3,

show that both 0 and c − 1 repel. Illustrate this by computing

iterates of f3.1(x) and f3.2(x) starting at x0 = 0.5. We call c = 3

a bifurcation point because of the abrupt change of attractor

from a one-cycle for c < 3 to a two-cycle for c > 3. Many

diseases, such as some forms of heart disease, epilepsy and

Parkinson’s disease, are now viewed by some researchers as

bifurcations from healthy behavior to unhealthy behavior.

4. In exercise 2, we learned a simple rule for determining whether

a fixed point is attracting or repelling. If there are no attract-

ing fixed points, the iterates may converge to a two-cycle (two

numbers alternating) or some other pattern. We can do analy-

sis on the two-cycles similar to our work on the fixed points.

Numbers a and b are a two-cycle if f (a) = b and f (b) = a;

both numbers are solutions of the equation f ( f (x)) = x . For

f (x) = x2 − 1, set up and find all four solutions of the equation

f ( f (x)) = x . Show that 0 and −1 form a two-cycle; what do

the other two solutions represent? Compute iterates starting

at x0 = 0.2. Does it appear that the two-cycle attracts or re-

pels? The test for attracting or repelling two-cycles is simi-

lar to the test for fixed points, except applied to the function

g(x) = f ( f (x)). If a is part of a two-cycle and |g (a)| < 1,

then the two-cycle is attracting; if |g (a)| > 1, the two-cycle

is repelling. Show that if a and b are a two-cycle, then

g (a) = f  ( f (a)) f  (a) = f  (b) f  (a). Using this rule, show

that 0 and −1 form an attracting two-cycle. Explore the two-

cycle for x2 − 3.
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3
Applications of Differentiation

The Solar and Heliospheric Observatory (SOHO) is an interna-

tional project for the observation and exploration of the Sun. The

NationalAeronautics andSpaceAdministration (NASA) is respon-

sible for operations of the SOHO spacecraft, including periodic

adjustments to the spacecraft’s location to maintain its position di-

rectly between the Earth and the Sun. With an uninterrupted view

of the sun, SOHO can collect data to study the internal structure

of the Sun, its outer atmosphere and the solar wind. SOHO has

produced numerous unique and important images of the Sun,

including the discovery of acoustic solar waves moving through

the interior and false color images showing the velocity patterns

on the surface of the Sun.

SOHO is in orbit around the Sun, located at a relative position

called the L1 Lagrange point for the Sun-Earth system. This is one of five points

at which the gravitational pulls of the Sun and the Earth combine to maintain a

satellite’s relative position to the Sun and Earth. In the case of the L1 point, that

position is on a line between the Sun and the Earth, giving the SOHO spacecraft

(see above) a direct view of the Sun and a direct line of communication back to

the Earth. Because gravity causes the L1 point to rotate in step with the Sun and

Earth, little fuel is needed to keep the SOHO spacecraft in the proper location.

Lagrange points are solutions of “three-body” problems, in which there are

three objects with vastly different masses. The Sun, the Earth and a spacecraft

comprise one example, but other systems also have significance for space explo-

ration. The Earth, the Moon and a space lab is another system of interest; the Sun,

Wave inside the Sun L1 orbit

203
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Jupiter and an asteroid is a third system. The clusters of asteroids at the L4 and L5 Lagrange

points of the Sun-Jupiter system are called Trojan asteroids.

For a given system, the locations of the five Lagrange points can be determined by

solving equations. As you will see in the section 3.1 exercises, the equation for the loca-

tion of SOHO is a difficult fifth-order polynomial equation. For a fifth-order equation, we

usually are forced to gather graphical and numerical evidence to approximate solutions.

The graphing and analysis of complicated functions and the solution of equations involving

these functions are the emphases of this chapter.

3.1 LINEAR APPROXIMATIONS AND NEWTON’S METHOD

There are two distinctly different tasks for which you use scientific calculators. First, they

perform basic arithmetic operations much faster than any of us could. We all know how to

multiply 1024 by 1673, but it is time-consuming to carry out this calculation with pencil and

paper. For such problems, calculators are a tremendous convenience. More significantly,

we also use calculators to compute values of transcendental functions such as sine, cosine,

tangent, exponentials and logarithms. In this case, the calculator is much more than a mere

convenience.

How would you calculate sin(1.2345678) without a calculator? Don’t worry if you

don’t know how to do this. The problem is that the sine function is not algebraic. That is,

there is no formula for sin x involving only the arithmetic operations. So, how does your

calculator “know” that sin(1.2345678) ≈ 0.9440056953? In short, it doesn’t know this at

all. Rather, the calculator has a built-in program that generates approximate values of the

sine and other transcendental functions.

In this section, we develop a simple approximation method. Although somewhat crude,

it points the way toward more sophisticated approximation techniques to follow later in

the text.

Linear Approximations

Suppose we wanted to find an approximation for f (x1),where f (x1) is unknown, but where

f (x0) is known for some x0 “close” to x1. For instance, the value of cos(1) is unknown, but

we do know that cos(π/3) = 1
2
(exactly) and π/3 ≈ 1.047 is “close” to 1. While we could

use 1
2
as an approximation to cos(1), we can do better.

Referring to Figure 3.1, notice that if x1 is “close” to x0 and we follow the tangent

line at x = x0 to the point corresponding to x = x1, then the y-coordinate of that point

(y1) should be “close” to the y-coordinate of the point on the curve y = f (x) [i.e.,

f (x1)].

Since the slope of the tangent line to y = f (x) at x = x0 is f
 (x0), the equation of the

tangent line to y = f (x) at x = x0 is found from

m tan = f  (x0) = y − f (x0)

x − x0
. (1.1)

Solving equation (1.1) for y gives us

y = f (x0) + f  (x0)(x − x0). (1.2)
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y   f (x0)   f  (x0)(x   x0)

y   f (x)

f (x1)

y1

f (x0)

x0 x1

x

y

FIGURE 3.1
Linear approximation of f (x1)

Notice that (1.2) is the equation of the tangent line to the graph of y = f (x) at x = x0.We

give the linear function defined by this equation a name, as follows.

DEFINITION 1.1

The linear (or tangent line) approximation of f (x) at x = x0 is the function

L(x) = f (x0) + f  (x0)(x − x0).

Observe that the y-coordinate y1 of the point on the tangent line corresponding to

x = x1 is simply found by substituting x = x1 in equation (1.2). This gives us

y1 = f (x0) + f  (x0)(x1 − x0). (1.3)

We define the increments  x and  y by

 x = x1 − x0

and  y = f (x1) − f (x0).

Using this notation, equation (1.3) gives us the approximation

f (x1) ≈ y1 = f (x0) + f  (x0) x . (1.4)

We illustrate this in Figure 3.2 (on the following page). We sometimes rewrite (1.4) by

subtracting f (x0) from both sides, to yield

 y = f (x1) − f (x0) ≈ f  (x0) x = dy, (1.5)

where dy = f  (x0) x is called the differential of y. When using this notation, we also

define dx, the differential of x, by dx =  x, so that by (1.5),

dy = f  (x0) dx .
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 x

f (x1)

y1

f (x0)

x0 x1

x

y

 y

dy

y   f (x0)   f  (x0)(x   x0)

y   f (x)

FIGURE 3.2
Increments and differentials

We can use linear approximations to produce approximate values of transcendental

functions, as in example 1.1.

y

u
x

p

FIGURE 3.3
y = cos x and its linear

approximation at x0 = π/3

EXAMPLE 1.1 Finding a Linear Approximation

Find the linear approximation to f (x) = cos x at x0 = π/3 and use it to approximate

cos(1).

Solution From Definition 1.1, the linear approximation is defined as

L(x) = f (x0) + f  (x0)(x − x0). Here, x0 = π/3, f (x) = cos x and f  (x) = − sin x .

So, we have

L(x) = cos
 π
3

 
− sin

 π
3

  
x − π

3

 
= 1

2
−

√
3

2

 
x − π

3

 
.

In Figure 3.3, we show a graph of y = cos x and the linear approximation to cos x for

x0 = π/3. Notice that the linear approximation (i.e., the tangent line at x0 = π/3) stays
close to the graph of y = cos x only for x close to π/3. In fact, for x < 0 or x > π , the

linear approximation is obviously quite poor. It is typical of linear approximations

(tangent lines) to stay close to the curve only nearby the point of tangency.

Observe that we chose x0 = π
3
since π

3
is the value closest to 1 at which we know

the value of the cosine exactly. Finally, an estimate of cos(1) is

L(1) = 1

2
−

√
3

2

 
1 − π

3

 
≈ 0.5409.

Your calculator gives you cos(1) ≈ 0.5403 and so, we have found a fairly good

approximation to the desired value. �

In example 1.2, we derive a useful approximation to sin x , valid for x close to 0. This

approximation is often used in applications in physics and engineering to simplify equations

involving sin x .

EXAMPLE 1.2 Linear Approximation of sin x

Find the linear approximation of f (x) = sin x , for x close to 0.
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Solution Here, f  (x) = cos x, so that from Definition 1.1, we have

sin x ≈ L(x) = f (0) + f  (0) (x − 0) = sin 0 + cos 0 (x) = x .

This says that for x close to 0, sin x ≈ x .We illustrate this in Figure 3.4, where we show

graphs of both y = sin x and y = x . �

y

x

 1

1

1 1

FIGURE 3.4
y = sin x and y = x

Observe from Figure 3.4 that the graph of y = x stays close to the graph of y = sin x

only in the vicinity of x = 0.Thus, the approximation sin x ≈ x is valid only for x close to 0.

Also note that the farther x gets from0, theworse the approximation becomes. This becomes

even more apparent in example 1.3, where we also illustrate the use of the increments  x

and  y.

EXAMPLE 1.3 Linear Approximation to Some Cube Roots

Use a linear approximation to approximate
3
√
8.02,

3
√
8.07,

3
√
8.15 and

3
√
25.2.

Solution Here we are approximating values of the function f (x) = 3
√
x = x1/3. So,

f  (x) = 1
3
x−2/3. The closest number to any of 8.02, 8.07 or 8.15 whose cube root we

know exactly is 8. So, we write

f (8.02) = f (8) + [ f (8.02) − f (8)] Add and subtract f (8).

= f (8) + y. (1.6)

From (1.5), we have

 y ≈ dy = f  (8) x

=
 
1

3

 
8−2/3(8.02 − 8) = 1

600
. Since  x = 8.02 − 8. (1.7)

Using (1.6) and (1.7), we get

f (8.02) ≈ f (8) + dy = 2 + 1

600
≈ 2.0016667,

while your calculator accurately returns
3
√
8.02 ≈ 2.0016653. Similarly, we get

f (8.07) ≈ f (8) + 1

3
8−2/3(8.07 − 8) ≈ 2.0058333

and f (8.15) ≈ f (8) + 1

3
8−2/3(8.15 − 8) ≈ 2.0125,

while your calculator returns
3
√
8.07 ≈ 2.005816 and

3
√
8.15 ≈ 2.012423, respectively.

To approximate
3
√
25.2, observe that 8 is not the closest number to 25.2 whose cube

root we know exactly. Since 25.2 is much closer to 27 than to 8, we write

f (25.2) = f (27) + y ≈ f (27) + dy = 3 + dy.

In this case,

dy = f  (27) x = 1

3
27−2/3(25.2 − 27) = 1

3

 
1

9

 
(−1.8) = − 1

15

and we have f (25.2) ≈ 3 + dy = 3 − 1

15
≈ 2.9333333,
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compared to the value of 2.931794, produced by your calculator. It is important to

recognize here that the farther the value of x gets from the point of tangency, the worse

the approximation tends to be. You can see this clearly in Figure 3.5. �

x
8

2

y

FIGURE 3.5
y = 3

√
x and the linear

approximation at x0 = 8

Our first three examples were intended to familiarize you with the technique and to

give you a feel for how good (or bad) linear approximations tend to be. In example 1.4, there

is no exact answer to compare with the approximation. Our use of the linear approximation

here is referred to as linear interpolation.

EXAMPLE 1.4 Using a Linear Approximation to Perform
Linear Interpolation

The price of an item affects consumer demand for that item. Suppose that based on

market research, a company estimates that f (x) thousand small cameras can be sold at

the price of $x , as given in the accompanying table. Estimate the number of cameras

that can be sold at $7.

Solution The closest x-value to x = 7 in the table is x = 6. [In other words, this is

the closest value of x at which we know the value of f (x).] The linear approximation of

f (x) at x = 6 would look like

L(x) = f (6) + f  (6)(x − 6).

From the table, we know that f (6) = 84, but we do not know f  (6). Further, we can’t
compute f  (x), since we don’t have a formula for f (x). The best we can do with the

given data is to approximate the derivative by

f  (6) ≈ f (10) − f (6)

10 − 6
= 60 − 84

4
= −6.

The linear approximation is then

L(x) ≈ 84 − 6(x − 6).

x 6 10 14

f (x) 84 60 32

Using this, we estimate that the number of cameras sold at x = 7 would be

L(7) ≈ 84 − 6 = 78 thousand. That is, we would expect to sell approximately

78 thousand cameras at a price of $7. We show a graphical interpretation of this in

Figure 3.6, where the straight line is the linear approximation (in this case, the secant

line joining the first two data points). �
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FIGURE 3.6
Linear interpolation

Newton’sMethod

We now return to the question of finding zeros of a function. In section 1.4, we introduced

the method of bisections as one procedure for finding zeros of a continuous function. Here,

we explore a method that is usually much more efficient than bisections. We are again

looking for values of x such that f (x) = 0. These values are called roots of the equation

f (x) = 0 or zeros of the function f . It’s easy to find the zeros of

f (x) = ax2 + bx + c,

but how would you find zeros of

f (x) = tan x − x?
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y

x
 3 3

5
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y   f (x)

y

x2x1x0

x

FIGURE 3.7
y = tan x − x

FIGURE 3.8
Newton’s method

This function is not algebraic and there are no formulas available for finding the zeros. Even

so, we can clearly see zeros in Figure 3.7. (In fact, there are infinitely many of them.) The

question is, how are we to find them?

HISTORICAL NOTES

Sir Isaac Newton (1642–1727)

An English mathematician and

scientist known as the co-inventor

of calculus. In a 2-year period

from 1665 to 1667, Newton

made major discoveries in several

areas of calculus, as well as optics

and the law of gravitation.

Newton’smathematical results

were not published in a timely

fashion. Instead, techniques such

as Newton’smethod were quietly

introduced as useful tools in his

scientific papers. Newton’s

Mathematical Principles of Natural

Philosophy is widely regarded as

one of the greatest achievements

of the human mind.

In general, to find approximate solutions to f (x) = 0, we first make an initial guess,

denoted x0, of the location of a solution. Since the tangent line to y = f (x) at x = x0 tends

to hug the curve, we follow the tangent line to where it intersects the x-axis. (See Fig-

ure 3.8.)

This appears to provide an improved approximation to the zero. The equation of

the tangent line to y = f (x) at x = x0 is given by the linear approximation at x0 [see

equation (1.2)],

y = f (x0) + f  (x0)(x − x0). (1.8)

We denote the x-intercept of the tangent line by x1 [found by setting y = 0 in (1.8)]. We

then have

0 = f (x0) + f  (x0)(x1 − x0)

and, solving this for x1, we get

x1 = x0 − f (x0)

f  (x0)
.

If we repeat this process, using x1 as our new guess, we should produce a further improved

approximation,

x2 = x1 − f (x1)

f  (x1)

and so on. (See Figure 3.8.) In this way, we generate a sequence of successive approxima-

tions determined by

xn+1 = xn − f (xn)

f  (xn)
, for n = 0, 1, 2, 3, . . . . (1.9)
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This procedure is called the Newton-Raphson method, or simply Newton’s method. If

Figure 3.8 is any indication, xn should get closer and closer to a zero as n increases.

Newton’s method is generally a very fast, accurate method for approximating the zeros

of a function, as we illustrate with example 1.5.

x

y

 3

3

1 1 2

FIGURE 3.9
y = x5 − x + 1

EXAMPLE 1.5 Using Newton’s Method to Approximate a Zero

Find a zero of f (x) = x5 − x + 1.

Solution From Figure 3.9, it appears as if the only zero of f is located between

x = −2 and x = −1. We further observe that f (−1) = 1 > 0 and f (−2) = −29 < 0.

Since f is continuous, the Intermediate Value Theorem (Theorem 4.4 in section 1.4)

says that f must have a zero on the interval (−2,−1). Because the zero appears to be

closer to x = −1, we make the initial guess x0 = −1. Finally, f  (x) = 5x4 − 1 and so,

Newton’s method gives us

xn+1 = xn − f (xn)

f  (xn)

= xn − x5n − xn + 1

5x4n − 1
, n = 0, 1, 2, . . . .

Using the initial guess x0 = −1, we get

x1 = −1 − (−1)5 − (−1) + 1

5(−1)4 − 1

= −1 − 1

4
= −5

4
.

Likewise, from x1 = −5

4
, we get the improved approximation

x2 = −5

4
−

 
−5

4

 5

−
 
−5

4

 
+ 1

5

 
−5

4

 4

− 1

≈ −1.178459394

and so on. We find that x3 ≈ −1.167537389,

x4 ≈ −1.167304083

and x5 ≈ −1.167303978 ≈ x6.

Since x5 ≈ x6, we will make no further progress by calculating additional steps. As a

final check on the accuracy of our approximation, we compute

f (x6) ≈ 1 × 10−13.

Since this is very close to zero, we say that x6 ≈ −1.167303978 is an approximate

zero of f . �

You can bring Newton’s method to bear on a variety of approximation problems. As

we illustrate in example 1.6, you may first need to rephrase the problem as a rootfinding

problem.
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EXAMPLE 1.6 Using Newton’s Method to Approximate a Cube Root

Use Newton’s method to approximate
3
√
7.

Solution Recall that we can use a linear approximation to do this. On the other hand,

Newton’s method is used to solve equations of the form f (x) = 0. We can rewrite the

current problem in this form, as follows. Suppose x = 3
√
7. Then, x3 = 7, which can be

rewritten as

f (x) = x3 − 7 = 0.

Here, f  (x) = 3x2 and we obtain an initial guess from a graph of y = f (x). (See

Figure 3.10.) Notice that there is a zero near x = 2 and so we take x0 = 2. Newton’s

method then yields

x1 = 2 − 23 − 7

3(22)
= 23

12
≈ 1.916666667.

Continuing this process, we have

x2 ≈ 1.912938458

and x3 ≈ 1.912931183 ≈ x4.

Further, f (x4) ≈ 1 × 10−13

and so, x4 is an approximate zero of f . This also says that

3
√
7 ≈ 1.912931183,

which compares very favorably with the value of
3
√
7 produced by your calculator. �

x

y
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2

FIGURE 3.10
y = x3 − 7

y

x

 8
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FIGURE 3.11
y = x3 − 3x2 + x − 1

REMARK 1.1

Although it seemed to be very efficient in examples 1.5 and 1.6, Newton’s method

does not always work. We urge you to make sure that the values coming from the

method are getting progressively closer and closer together (zeroing in, we hope, on

the desired solution). Don’t stop until you’ve reached the limits of accuracy of your

computing device. Also, be sure to compute the value of the function at the suspected

approximate zero. If the function value is not close to zero, do not accept the value as

an approximate zero.

As we illustrate in example 1.7, Newton’s method needs a good initial guess to find an

accurate approximation.

EXAMPLE 1.7 The Effect of a Bad Guess on Newton’s Method

Use Newton’s method to find an approximate zero of f (x) = x3 − 3x2 + x − 1.

Solution From the graph in Figure 3.11, there appears to be a zero on the interval

(2, 3). Using the (not particularly good) initial guess x0 = 1, we get x1 = 0, x2 = 1,

x3 = 0 and so on. Try this for yourself. Newton’s method is sensitive to the initial guess

and x0 = 1 is just a bad initial guess. If we had instead started with the improved initial

guess x0 = 2, Newton’s method would have quickly converged to the approximate zero

2.769292354. (Again, try this for yourself.) �
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As we see in example 1.7, making a good initial guess is essential with Newton’s

method. However, this alone will not guarantee rapid convergence. By rapid convergence,

we mean that it takes only a few iterations to obtain an accurate approximation.

n xn

1 −9.5

2 −65.9

3 −2302

4 −2,654,301

5 −3.5 × 1012

6 −6.2 × 1024

Newton’s method iterations

for x0 = −2

EXAMPLE 1.8 Unusually Slow Convergence for Newton’s Method

Use Newton’s method with (a) x0 = −2, (b) x0 = −1 and (c) x0 = 0 to try to locate the

zero of f (x) = (x − 1)2

x2 + 1
.

x

y

 2

1

FIGURE 3.12

y = (x − 1)2

x2 + 1
and the tangent line

at x = −2

y

x
 1

1

FIGURE 3.13

y = (x − 1)2

x2 + 1
and the tangent line

at x = −1

Solution Of course, there’s no mystery here: f has only one zero, located at x = 1.

However, watch what happens when we use Newton’s method with the specified

guesses.

(a) If we take x0 = −2 and apply Newton’s method, we obtain the values in the

table found in the margin. Obviously, the successive iterations are blowing up with this

initial guess. To see why, look at Figure 3.12, which shows the graphs of both y = f (x)

and the tangent line at x = −2. If you follow the tangent line to where it intersects the

x-axis, you will be going away from the zero (far away). Since all of the tangent lines

for x ≤ −2 have positive slope [compute f  (x) to see why this is true], each subsequent
step takes you farther from the zero.

(b) If we use the improved initial guess x0 = −1, we cannot even compute x1. In

this case, f  (x0) = 0 and so, Newton’s method fails. Graphically, this means that the

tangent line to y = f (x) at x = −1 is horizontal (see Figure 3.13), so that the tangent

line never intersects the x-axis.

(c) With the even better initial guess x0 = 0, we obtain the successive

approximations in the following table.

n xn

1 0.5

2 0.70833

3 0.83653

4 0.912179

5 0.95425

6 0.976614

n xn

7 0.9881719

8 0.9940512

9 0.9970168

10 0.9985062

11 0.9992525

12 0.9996261

Newton’s method iterations for x0 = 0

Finally, we happened upon an initial guess for which Newton’s method converges to

the root x = 1.What is unusual here is that the successive approximations shown in the

table are converging to 1 much more slowly than in previous examples. By comparison,

note that in example 1.5, the iterations stop changing at x5. Here, x5 is not particularly

close to the desired zero of f (x). In fact, in this example, x12 is not as close to the zero

as x5 is in example 1.5. We look further into this type of behavior in the exercises. �

Despite the minor problems experienced in examples 1.7 and 1.8, you should view

Newton’s method as a generally reliable and efficient method of locating zeros approxi-

mately. Just use a bit of caution and common sense. If the successive approximations are

converging to some value that does not appear consistent with the graph, then you need to

scrutinize your results more carefully and perhaps try some other initial guesses.
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BEYOND FORMULAS

Approximations are at the heart of calculus. To find the slope of a tangent line, for

example, we start by approximating the tangent line with secant lines. The fact that

there are numerous simple derivative formulas to help us compute exact slopes is an

unexpected bonus. In this section, the tangent line is thought of as an approximation

of a curve and is used to approximate solutions of equations for which algebra fails.

Although this doesn’t provide us the luxury of simply computing an exact answer, we

canmake the approximation as accurate as we like and so, for most practical purposes,

we can “solve” the equation. Think about a situation where you need the time of day.

How often do you need the exact time?

EXERCISES 3.1

WRITING EXERCISES

1. Briefly explain in terms of tangent lineswhy the approximation

in example 1.3 gets worse as x gets farther from 8.

2. We constructed a variety of linear approximations in this sec-

tion. Approximations can be “good” approximations or “bad”

approximations. Explain why it can be said that y = x is a

good approximation to y = sin x near x = 0 but y = 1 is not

a good approximation to y = cos x near x = 0. (Hint: Look at

the graphs of y = sin x and y = x on the same axes, then do

the same with y = cos x and y = 1.)

3. In example 1.6, we mentioned that you might think of using

a linear approximation instead of Newton’s method. Discuss

the relationship between a linear approximation to
3
√
7 and a

Newton’s method approximation to
3
√
7. (Hint: Compare the

first step of Newton’s method to a linear approximation.)

4. Explain why Newton’s method fails computationally if

f  (x0) = 0. In terms of tangent lines intersecting the x-axis,

explain why having f  (x0) = 0 is a problem.

In exercises 1–6, find the linear approximation to f (x) at x  x0.

Graph the function and its linear approximation.

1. f (x) = √
x, x0 = 1 2. f (x) = (x + 1)1/3, x0 = 0

3. f (x) = √
2x + 9, x0 = 0 4. f (x) = 2/x, x0 = 1

5. f (x) = sin 3x, x0 = 0 6. f (x) = sin x, x0 = π
7. (a) Find the linear approximation at x = 0 to each of

f (x)= (x+1)2, g(x)= 1+sin(2x) and h(x)= 2
√
x+1/4.

Compare your results.

(b) Graph each function in part (a) together with its linear ap-

proximation derived in part (a). Which function has the

closest fit with its linear approximation?

8. (a) Find the linear approximation at x = 0 to each of

f (x) = sin x, g(x) = x3 + x and h(x) = x4 + x . Com-

pare your results.

(b) Graph each function in part (a) together with its linear ap-

proximation derived in part (a). Which function has the

closest fit with its linear approximation?

In exercises 9 and 10, use linear approximations to estimate the

quantity.

9. (a)
4
√
16.04 (b)

4
√
16.08 (c)

4
√
16.16

10. (a) sin (0.1) (b) sin (1.0) (c) sin
 
9
4

 
11. For exercise 9, compute the errors (the absolute value of

the difference between the exact values and the linear

approximations).

12. Thinking of exercises 9a–9c as numbers of the form
4
√
16 + x, denote the errors as e( x) (where  x = 0.04,

 x = 0.08 and  x = 0.16). Based on these three computa-

tions, determine a constant c such that e( x) ≈ c( x)2.

In exercises 13–16, use linear interpolation to estimate the de-

sired quantity.

13. A company estimates that f (x) thousand software games can

be sold at the price of $x as given in the table.

x 20 30 40

f (x) 18 14 12

Estimate the number of games that can be sold at (a) $24 and

(b) $36.
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14. A vending company estimates that f (x) cans of soft drink

can be sold in a day if the temperature is x◦F as given in the

table.

x 60 80 100

f (x) 84 120 168

Estimate the number of cans that can be sold at (a) 72◦ and

(b) 94◦.

15. An animation director enters the position f (t) of a character’s

head after t frames of the movie as given in the table.

t 200 220 240

f (t) 128 142 136

If the computer software uses interpolation to determine the

intermediate positions, determine the position of the head at

frame numbers (a) 208 and (b) 232.

16. A sensor measures the position f (t) of a particle t microsec-

onds after a collision as given in the table.

t 5 10 15

f (t) 8 14 18

Estimate the position of the particle at times (a) t = 8 and

(b) t = 12.

17. Given the graph of y= f (x), draw in the tangent lines used

in Newton’s method to determine x1 and x2 after starting

at x0 = 2. Which of the zeros will Newton’s method con-

verge to?

y

x
2 2

2

18. Repeat exercise 17 with x0 = −2 and x0 = 0.4.

19. What would happen to Newton’s method in exercise 17 if you

had a starting value of x0 = 0?

20. Consider the use of Newton’s method in exercise 17 with

x0 = 0.2 and x0 = 10. Obviously, x0 = 0.2 is much closer to a

zero of the function, but which initial guess would work better

in Newton’s method? Explain.

In exercises 21–24, use Newton’s method with the given x0 to

(a) compute x1 and x2 by hand and (b) use a computer or calcu-

lator to find the root to at least five decimal places of accuracy.

21. x3 + 3x2 − 1 = 0, x0 = 1

22. x3 + 4x2 − x − 1 = 0, x0 = −1

23. x4 − 3x2 + 1 = 0, x0 = 1

24. x4 − 3x2 + 1 = 0, x0 = −1

In exercises 25–30, use Newton’smethod to find an approximate

root (accurate to six decimal places). Sketch the graph and ex-

plain how you determined your initial guess.

25. x3 + 4x2 − 3x + 1 = 0 26. x4 − 4x3 + x2 − 1 = 0

27. x5 + 3x3 + x − 1 = 0 28. cos x − x = 0

29. sin x = x2 − 1 30. cos x2 = x

31. Show that Newton’s method applied to x2 − c = 0 (where

c > 0 is some constant) produces the iterative scheme

xn+1 = 1
2
(xn + c/xn) for approximating

√
c. This scheme has

been known for over 2000 years. To understand why it works,

suppose that your initial guess (x0) for
√
c is a little too small.

How would c/x0 compare to
√
c? Explain why the average of

x0 and c/x0 would give a better approximation to
√
c.

32. Show that Newton’s method applied to xn − c = 0 (where n

and c are positive constants) produces the iterative scheme

xn+1 = 1
n
[(n − 1)xn + cx1−nn ] for approximating n

√
c.

In exercises 33–38, useNewton’smethod [state the function f (x)

you use] to estimate the given number. (Hint: See exercises 31

and 32.)

33.
√
11 34.

√
23 35.

3
√
11 36.

3
√
23

37.
4.4
√
24 38.

4.6
√
24

In exercises 39–44, Newton’s method fails for the given initial

guess. Explain why the method fails and, if possible, find a root

by correcting the problem.

39. 4x3 − 7x2 + 1 = 0, x0 = 0

40. 4x3 − 7x2 + 1 = 0, x0 = 1

41. x2 + 1 = 0, x0 = 0

42. x2 + 1 = 0, x0 = 1

43.
4x2 − 8x + 1

4x2 − 3x − 7
= 0, x0 = −1

44.

 
x + 1

x − 2

 1/3

= 0, x0 = 0.5

45. Use Newton’s method with (a) x0 = 1.2 and (b) x0 = 2.2 to

find a zero of f (x) = x3 − 5x2 + 8x − 4. Discuss the differ-

ence in the rates of convergence in each case.

46. Use Newton’s method with (a) x0 = 0.2 and (b) x0 = 3.0 to

find a zero of f (x) = x sin x . Discuss the difference in the

rates of convergence in each case.

47. Use Newton’s method with (a) x0 = −1.1 and (b) x0 = 2.1 to

find a zero of f (x) = x3 − 3x − 2. Discuss the difference in

the rates of convergence in each case.
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48. Factor the polynomials in exercises 45 and 47. Find a relation-

ship between the factored polynomial and the rate at which

Newton’s method converges to a zero. Explain how the func-

tion in exercise 46, which does not factor, fits into this rela-

tionship. (Note: The relationship will be explored further in

exploratory exercise 2.)

In exercises 49–52, find the linear approximation at x  0 to

show that the following commonly used approximations are

valid for “small” x. Compare the approximate and exact val-

ues for x  0.01, x  0.1 and x  1.

49. tan x ≈ x 50.
√
1 + x ≈ 1 + 1

2
x

51.
√
4 + x ≈ 2 + 1

4
x 52.

1

1 − x
≈ 1 + x

53. Use a computer algebra system (CAS) to determine the range

of x’s in exercise 49 for which the approximation is accurate

to within 0.01. That is, find x such that | tan x − x | < 0.01.

54. Use a CAS to determine the range of x’s in exercise 52 for

which the approximation is accurate to within 0.01. That is,

find x such that

    1

1 − x
− (1 + x)

    < 0.01.

55. Suppose that a species reproduces as follows: with probabil-

ity p0, an organism has no offspring; with probability p1, an

organism has one offspring; with probability p2, an organ-

ism has two offspring and so on. The probability that the

species goes extinct is given by the smallest nonnega-

tive solution of the equation p0 + p1x + p2x
2 + · · · = x .

(See Sigmund’s Games of Life.) Find the positive solu-

tions of the equations 0.1 + 0.2x + 0.3x2 + 0.4x3 = x and

0.4 + 0.3x + 0.2x2 + 0.1x3 = x . Explain in terms of species

going extinct why the first equation has a smaller solution than

the second.

56. For the extinction problem in exercise 55, show algebraically

that if p0 = 0, the probability of extinction is 0. Explain this

result in terms of species reproduction. Show that a species

with p0 = 0.35, p1 = 0.4 and p2 = 0.25 (all other pn’s are 0)

goes extinct with certainty (probability 1).

57. The spruce budworm is an enemy of the balsam fir tree. In

one model of the interaction between these organisms, pos-

sible long-term populations of the budworm are solutions

of the equation r (1 − x/k) = x/(1 + x2), for positive con-

stants r and k. (See Murray’s Mathematical Biology.) Find

all positive solutions of the equation with r = 0.5 and k = 7.

58. Repeat exercise 57 with r = 0.5 and k = 7.5. For a small

change in the environmental constant k (from 7 to 7.5), how

did the solution change from exercise 57 to exercise 58? The

largest solution corresponds to an “infestation” of the spruce

budworm.

59. Newton’s theory of gravitation states that theweight of a person

at elevation x feet above sea level is W (x) = PR2/(R + x)2,

where P is the person’s weight at sea level and R is the radius

of the earth (approximately 20,900,000 feet). Find the linear

approximation of W (x) at x = 0. Use the linear approxima-

tion to estimate the elevation required to reduce the weight of

a 120-pound person by 1%.

60. One important aspect of Einstein’s theory of relativity is that

mass is not constant. For a person with mass m0 at rest, the

mass will equal m = m0/
 
1 − v2/c2 at velocity v (where c

is the speed of light). Thinking of m as a function of v, find

the linear approximation of m(v) at v = 0. Use the linear ap-

proximation to show that mass is essentially constant for small

velocities.

In exercises 61 and 62, we explore the convergence of Newton’s

method for f (x)  x3 − 3x2
 2x.

61. The zeros of f are x = 0, x = 1 and x = 2. Determine which

of the three zeros Newton’s method iterates converge to for

(a) x0 = 0.1, (b) x0 = 1.1 and (c) x0 = 2.1.

62. Determine which of the three zeros Newton’s method iterates

converge to for (a) x0 = 0.54, (b) x0 = 0.55 and (c) x0 = 0.56.

EXPLORATORY EXERCISES

1. In this exercise, you will extend the work of exercises

61 and 62. First, a definition: The basin of attraction of a

zero is the set of starting values x0 for which Newton’s method

iterates converge to the zero. As exercises 61 and 62 indicate,

the basin boundaries are more complicated than you might ex-

pect. For example, you have seen that the interval [0.54, 0.56]

contains points in all three basins of attraction. Show that the

same is true of the interval [0.552, 0.553]. The picture gets

even more interesting when you use complex numbers. These

are numbers of the form a + bi where i = √−1. The re-

mainder of the exercise requires a CAS or calculator that is

programmable and performs calculations with complex num-

bers. First, tryNewton’smethodwith starting point x0 = 1 + i .

The formula is exactly the same! Use your computer to show

that x1 = x0 − x30 − 3x20 + 2x0

3x20 − 6x0 + 2
= 1 + 1

2
i . Then verify that

x2 = 1 + 1
7
i and x3 = 1 + 1

182
i . It certainly appears that the

iterates are converging to the zero x = 1. Now, for some pro-

gramming: set up a double loop with the parameter a run-

ning from 0 to 2 in steps of 0.02 and b running from −1 to

1 in steps of 0.02. Within the double loop, set x0 = a + bi

and compute 10 Newton’s method iterates. If x10 is close

to 0, say |x10 − 0| < 0.1, then we can conjecture that

the iterates converge to 0. (Note: For complex numbers,

|a + bi | =
√
a2 + b2.) Color the pixel at the point (a, b) black

if the iterates converge to 0 and white if not. You can change

the ranges of a and b and the step size to “zoom in” on inter-

esting regions. The accompanying pictures show the basin of

attraction (in black) for x = 1. In the first figure, we display

the region with−1.5 ≤ x ≤ 3.5. In the second figure, we have
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zoomed in to the portion for 0.26 ≤ x ≤ 0.56. The third shows

an even tighter zoom: 0.5 ≤ x ≤ 0.555.

2. Another important question involvingNewton’smethod is how

fast it converges to a given zero. Intuitively, we can distin-

guish between the rate of convergence for f (x) = x2 − 1 (with

x0 = 1.1) and that for g(x) = x2 − 2x + 1 (with x0 = 1.1).

But how can we measure this? One method is to take succes-

sive approximations xn−1 and xn and compute the difference

 n = xn − xn−1. To discover the importance of this quantity,

run Newton’s method with x0 = 1.5 and then compute the ra-

tios 3/ 2, 4/ 3, 5/ 4 and so on, for each of the follow-

ing functions:

F1(x) = (x − 1)(x + 2)3 = x4 + 5x3 + 6x2 − 4x − 8,

F2(x) = (x − 1)2(x + 2)2 = x4 + 2x3 − 3x2 − 4x + 4,

F3(x) = (x − 1)3(x + 2) = x4 − x3 − 3x2 + 5x − 2 and

F4(x) = (x − 1)4 = x4 − 4x3 + 6x2 − 4x + 1.

In each case, conjecture a value for the limit r = lim
n→∞

 n+1

 n

.

If the limit exists and is nonzero, we say that Newton’s

method converges linearly.How does r relate to your intuitive

sense of how fast the method converges? For f (x) = (x − 1)4,

we say that the zero x = 1 has multiplicity 4. For

f (x) = (x − 1)3(x + 2), x = 1 has multiplicity 3 and so on.

How does r relate to the multiplicity of the zero? Based on

this analysis, why did Newton’s method converge faster for

f (x) = x2 − 1 than for g(x) = x2 − 2x + 1? Finally, use

Newton’s method to compute the rate r and hypothesize

the multiplicity of the zero x = 0 for f (x) = x sin x and

g(x) = x sin x2.

3. This exercise looks at a special case of the three-body prob-

lem, in which there is a large object A of mass mA, a much

smaller object B of mass mB  mA and an object C of negli-

gible mass. (Here, mB  mA means that mB is much smaller

than mA.) Assume that object B orbits in a circular path around

the common center of mass. There are five circular orbits for

object C that maintain constant relative positions of the three

objects. These are called Lagrange points L1, L2, L3, L4 and

L5, as shown in the figure.

L2L1

L5

L3

L4

A B

To derive equations for the Lagrange points, set up a coordinate

system with object A at the origin and object B at the point

(1, 0). Then L1 is at the point (x1, 0), where x1 is the solution of

(1 + k)x5 − (3k + 2)x4 + (3k + 1)x3 − x2 + 2x − 1 = 0;

L2 is at the point (x2, 0), where x2 is the solution of

(1+ k)x5− (3k+ 2)x4 + (3k+ 1)x3 − (2k+ 1)x2 + 2x − 1= 0

and L3 is at the point (−x3, 0), where x3 is the solution of

(1 + k)x5 + (3k + 2)x4 + (3k + 1)x3 − x2 − 2x − 1 = 0,

where k = mB

mA

. Use Newton’s method to find approximate

solutions of the following.

(a) Find L1 for the Earth-Sun systemwith k = 0.000002. This

point has an uninterrupted view of the sun and is the loca-

tion of the solar observatory SOHO.

(b) Find L2 for the Earth-Sun systemwith k = 0.000002. This

is the future location of NASA’s Microwave Anistropy

Probe.

(c) Find L3 for the Earth-Sun systemwith k = 0.000002. This

point is invisible from theEarth and is the location of Planet

X in many science fiction stories.

(d) Find L1 for theMoon-Earth systemwith k = 0.01229. This

point has been suggested as a good location for a space sta-

tion to help colonize the moon.

(e) Thepoints L4 and L5 formequilateral triangleswith objects

A and B. Explain why this means that polar coordinates

for L4 are (r, θ ) =  1, π
6

 
. Find (x, y)-coordinates for L4

and L5. In the Jupiter-Sun system, these are locations of

numerous Trojan asteroids.
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3.2 MAXIMUM AND MINIMUM VALUES

To remain competitive in today’s global economy, businesses need to minimize waste and

maximize the return on their investment. In the extremely competitive personal computer

industry, companiesmust continually evaluate how low they can afford to set their prices and

still earn a profit.With this backdrop, it should be apparent that it is increasingly important to

use mathematical methods to maximize and minimize various quantities of interest. In this

section, we investigate the notion of maximum and minimum from a purely mathematical

standpoint. In section 3.6, we examine how to apply these notions to problems of an applied

nature.

We begin by giving careful mathematical definitions of some familiar terms.

DEFINITION 2.1

For a function f defined on a set S of real numbers and a number c ∈ S,

(i) f (c) is the absolute maximum of f on S if f (c) ≥ f (x) for all x ∈ S and

(ii) f (c) is the absolute minimum of f on S if f (c) ≤ f (x) for all x ∈ S.

An absolute maximum or an absolute minimum is referred to as an absolute

extremum. If a function has more than one extremum, we refer to these as extrema

(the plural form of extremum).

The first question you might ask is whether every function has an absolute maximum

and an absolute minimum. The answer is no, as we can see from Figures 3.14a and 3.14b.

Has no

absolute

maximum

x

y

f (c)

c

Absolute

minimum

Has no

absolute

minimum

x

y

f (c)

c

Absolute

maximum

FIGURE 3.14a FIGURE 3.14b

EXAMPLE 2.1 Absolute Maximum and Minimum Values

(a) Locate any absolute extrema of f (x) = x2 − 9 on the interval (−∞,∞). (b) Locate

any absolute extrema of f (x) = x2 − 9 on the interval (−3, 3). (c) Locate any absolute

extrema of f (x) = x2 − 9 on the interval [−3, 3].

Solution (a) In Figure 3.15 (on the following page), notice that f has an absolute

minimum value of f (0) = −9, but has no absolute maximum value.

(b) In Figure 3.16a, we see that f has an absolute minimum value of f (0) = −9,

but still has no absolute maximum value. Your initial reaction might be to say that f has

an absolute maximum of 0, but f (x)  = 0 for any x ∈ (−3, 3), since this is an open

interval and hence, does not include the endpoints −3 and 3.
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y

 3 3

f (0)    9

(Absolute minimum)

No absolute 

maximum

x

y

 3 3

f (0)    9

(Absolute minimum)

Absolute maximum

f ( 3)   f (3)   0

x

FIGURE 3.16a FIGURE 3.16b
y = x2 − 9 on (−3, 3) y = x2 − 9 on [−3, 3]

 3 3

y

x

f (0)    9

(Absolute minimum)

No absolute

maximum

FIGURE 3.15
y = x2 − 9 on (−∞,∞) (c) In this case, the endpoints 3 and −3 are in the interval [−3, 3]. Here, f assumes

its absolute maximum at two points: f (3) = f (−3) = 0. (See Figure 3.16b.) �

We have seen that a function may or may not have absolute extrema, depending on the

interval on which we’re looking. In example 2.1, the function failed to have an absolute

maximum, except on the closed, bounded interval [−3, 3]. This provides some clues and

example 2.2 provides another piece of the puzzle.

EXAMPLE 2.2 A Function with No Absolute Maximum or Minimum

Locate any absolute extrema of f (x) = 1/x, on the interval [−3, 3].
y

x
3

 3

2

FIGURE 3.17
y = 1/x

Solution From the graph in Figure 3.17, f clearly fails to have either an absolute

maximum or an absolute minimum on [−3, 3]. The following table of values for f (x)

for x close to 0 suggests the same conclusion.

x 1/x

1 1

0.1 10

0.01 100

0.001 1000

0.0001 10,000

0.00001 100,000

0.000001 1,000,000

x 1/x

−1 −1

−0.1 −10

−0.01 −100

−0.001 −1000

−0.0001 −10,000

−0.00001 −100,000

−0.000001 −1,000,000

�

The most obvious difference between the functions in examples 2.1 and 2.2 is that

f (x) = 1/x is discontinuous at a point in the interval [−3, 3]. We offer the following

theorem without proof.

THEOREM 2.1 (Extreme Value Theorem)

A continuous function f defined on a closed, bounded interval [a, b] attains both an

absolute maximum and an absolute minimum on that interval.
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While you do not need to have a continuous function or a closed interval to have an

absolute extremum, Theorem 2.1 says that continuous functions are guaranteed to have an

absolute maximum and an absolute minimum on a closed, bounded interval.

In example 2.3,we revisit the function fromexample 2.2, but look on a different interval.

x

y

1

31

FIGURE 3.18
y = 1/x on [1, 3]

EXAMPLE 2.3 Finding Absolute Extrema of a Continuous Function

Find the absolute extrema of f (x) = 1/x on the interval [1, 3].

Solution Notice that on the interval [1, 3], f is continuous. Consequently, the Extreme

Value Theorem guarantees that f has both an absolute maximum and an absolute

minimum on [1, 3]. Judging from the graph in Figure 3.18, it appears that f (x) reaches

its maximum value of 1 at x = 1 and its minimum value of 1/3 at x = 3. �

Our objective is to determine how to locate the absolute extrema of a given function.

Before we do this, we need to consider an additional type of extremum.

DEFINITION 2.2

(i) f (c) is a local maximum of f if f (c) ≥ f (x) for all x in some open interval

containing c.

(ii) f (c) is a local minimum of f if f (c) ≤ f (x) for all x in some open interval

containing c.

In either case, we call f (c) a local extremum of f .

Local maxima and minima (the plural forms of maximum and minimum, respectively)

are sometimes referred to as relative maxima and minima, respectively.

Notice from Figure 3.19 that each local extremum seems to occur either at a point

where the tangent line is horizontal [i.e., where f  (x) = 0], at a point where the tangent

line is vertical [where f  (x) is undefined] or at a corner [again, where f  (x) is undefined].
We can see this behavior quite clearly in examples 2.4 and 2.5.

x

y

db

ca

Local minimum

[ f  (a)   0]

Local minimum

[ f  (c) is undefined]

Local maximum

[ f  (b)   0]

Local maximum

[ f  (d) is undefined]

FIGURE 3.19
Local extrema
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EXAMPLE 2.4 A Function with a Zero Derivative at a
Local Maximum

Locate any local extrema for f (x) = 9 − x2 and describe the behavior of the derivative

at the local extremum.

x

 10

5

2 2

y

FIGURE 3.20
y = 9 − x2 and the tangent line

at x = 0

Solution We can see from Figure 3.20 that there is a local maximum at x = 0.

Further, note that f  (x) = −2x and so, f  (0) = 0. Note that this says that the tangent

line to y = f (x) at x = 0 is horizontal, as indicated in Figure 3.20. �

EXAMPLE 2.5 A Function with an Undefined Derivative
at a Local Minimum

Locate any local extrema for f (x) = |x | and describe the behavior of the derivative at

the local extremum.
y

x

3

2

FIGURE 3.21
y = |x |

Solution We can see from Figure 3.21 that there is a local minimum at x = 0. As we

have noted in section 2.1, the graph has a corner at x = 0 and hence, f  (0) is undefined.
[See example 1.7 in Chapter 2.] �

The graphs shown in Figures 3.19–3.21 are not unusual. Here is a small challenge:

spend a little time now drawing graphs of functions with local extrema. It should not take

long to convince yourself that local extrema occur only at points where the derivative is

either zero or undefined. Because of this, we give these points a special name.

DEFINITION 2.3

A number c in the domain of a function f is called a critical number of f if

f  (c) = 0 or f  (c) is undefined.

HISTORICAL NOTES

Pierre de Fermat (1601–1665)

A French mathematician who

discovered many important results,

including the theorem named for

him. Fermat was a lawyer and

member of the Toulouse supreme

court, with mathematics as a

hobby. The “Prince of Amateurs”

left an unusual legacy by writing in

the margin of a book that he had

discovered a wonderful proof of a

clever result, but that the margin

of the book was too small to hold

the proof. Fermat’s Last Theorem

confounded many of the world’s

best mathematicians for more

than 300 years before being

proved by Andrew Wiles in 1995.

It turns out that our earlier observation regarding the location of extrema is correct.

That is, local extrema occur only at points where the derivative is zero or undefined. We

state this formally in Theorem 2.2.

THEOREM 2.2 (Fermat’s Theorem)

Suppose that f (c) is a local extremum (local maximum or local minimum). Then c

must be a critical number of f .

PROOF

Suppose that f is differentiable at x = c. (If not, c is a critical number of f and we are

done.) Suppose further that f  (c)  = 0. Then, either f  (c) > 0 or f  (c) < 0.

If f  (c) > 0, we have by the definition of derivative that

f  (c) = lim
h→0

f (c + h) − f (c)

h
> 0.

So, for all h sufficiently small,

f (c + h) − f (c)

h
> 0. (2.1)
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For h > 0, (2.1) says that f (c + h) − f (c) > 0

and so, f (c + h) > f (c).

Thus, f (c) is not a local maximum.

For h < 0, (2.1) says that

f (c + h) − f (c) < 0

and so, f (c + h) < f (c).

Thus, f (c) is not a local minimum.

Since we had assumed that f (c) was a local extremum, this is a contradiction. This

rules out the possibility that f  (c) > 0.

Similarly, if f  (c) < 0, we obtain the same contradiction. This is left as an exercise.

The only remaining possibility is to have f  (c) = 0 and this proves the theorem.

TODAY IN
MATHEMATICS

Andrew Wiles (1953– )

A British mathematician who

in 1995 published a proof of

Fermat’s Last Theorem, the most

famous unsolved problem of the

20th century. Fermat’s Last

Theorem states that there is no

integer solution x , y and z of the

equation xn + yn = zn for

integers n > 2.Wiles had wanted

to prove the theorem since

reading about it as a 10-year-old.

After more than ten years

as a successful research

mathematician, Wiles isolated

himself from colleagues for seven

years as he developed the

mathematics needed for his

proof. “I realised that talking to

people casually about Fermat was

impossible because it generated

too much interest. You cannot

focus yourself for years unless you

have this kind of undivided

concentration which too many

spectators would destroy.” The

last step of his proof came, after

a year of intense work on this

one step, as “this incredible

revelation” that was “so

indescribably beautiful, it was

so simple and elegant.”

We can use Fermat’s Theorem and calculator- or computer-generated graphs to find

local extrema, as in examples 2.6 and 2.7.

EXAMPLE 2.6 Finding Local Extrema of a Polynomial

Find the critical numbers and local extrema of f (x) = 2x3 − 3x2 − 12x + 5.

y

x

 20

20

2 1

FIGURE 3.22
y = 2x3 − 3x2 − 12x + 5

Solution Here, f  (x) = 6x2 − 6x − 12 = 6(x2 − x − 2)

= 6(x − 2)(x + 1).

Thus, f has two critical numbers, x = −1 and x = 2. Notice from the graph in

Figure 3.22 that these correspond to the locations of a local maximum and a local

minimum, respectively. �
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EXAMPLE 2.7 An Extremum at a Point Where the
Derivative Is Undefined

Find the critical numbers and local extrema of f (x) = (3x + 1)2/3.

y

x

4

2 2

FIGURE 3.23
y = (3x + 1)2/3

Solution Here, we have

f  (x) = 2

3
(3x + 1)−1/3(3) = 2

(3x + 1)1/3
.

Of course, f  (x)  = 0 for all x , but f  (x) is undefined at x = − 1
3
. Be sure to note that

− 1
3
is in the domain of f . Thus, x = − 1

3
is the only critical number of f . From the

graph in Figure 3.23, we see that this corresponds to the location of a local minimum

(also the absolute minimum). If you use your graphing utility to try to produce a graph

of y = f (x), you may get only half of the graph displayed in Figure 3.23. The reason is

that the algorithms used by most calculators and many computers will return a complex

number (or an error) when asked to compute certain fractional powers of negative

numbers. While this annoying shortcoming presents only occasional difficulties, we

mention this here only so that you are aware that technology has limitations. �

REMARK 2.1

Fermat’s Theorem says that

local extrema can occur only at

critical numbers. This does not

say that there is a local

extremum at every critical

number. In fact, this is false, as

we illustrate in examples 2.8

and 2.9.

EXAMPLE 2.8 A Horizontal Tangent at a Point That Is Not
a Local Extremum

Find the critical numbers and local extrema of f (x) = x3.

x

y

 2

2

2 2

FIGURE 3.24
y = x3

Solution It should be clear from Figure 3.24 that f has no local extrema. However,

f  (x) = 3x2 = 0 for x = 0 (the only critical number of f ). In this case, f has a

horizontal tangent line at x = 0, but does not have a local extremum there. �

 2

y

x

2

2 2

FIGURE 3.25
y = x1/3

EXAMPLE 2.9 A Vertical Tangent at a Point That Is Not
a Local Extremum

Find the critical numbers and local extrema of f (x) = x1/3.

Solution As in example 2.8, f has no local extrema. (See Figure 3.25.) Here,

f  (x) = 1
3
x−2/3 and so, f has a critical number at x = 0. (In this case the derivative is

undefined at x = 0.) However, f does not have a local extremum at x = 0. �

You should always check that a given value is in the domain of the function before

declaring it a critical number, as in example 2.10.

EXAMPLE 2.10 Finding Critical Numbers of a Rational Function

Find all the critical numbers of f (x) = 2x2

x + 2
.

Solution You should note that the domain of f consists of all real numbers other than

x = −2. Here, we have

f  (x) = 4x(x + 2) − 2x2(1)

(x + 2)2
From the quotient rule.

= 2x(x + 4)

(x + 2)2
.
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Notice that f  (x) = 0 for x = 0,−4 and f  (x) is undefined for x = −2. However, −2 is

not in the domain of f and consequently, the only critical numbers are x = 0

and x = −4. �

REMARK 2.2

When we use the terms

maximum, minimum or

extremum without specifying

absolute or local, we will

always be referring to absolute

extrema.

We have observed that local extrema occur only at critical numbers and that continuous

functions must have an absolute maximum and an absolute minimum on a closed, bounded

interval. However, we haven’t yet really been able to say how to find these extrema. Theo-

rem 2.3 is particularly useful.

THEOREM 2.3

Suppose that f is continuous on the closed interval [a, b]. Then, the absolute extrema

of f must occur at an endpoint (a or b) or at a critical number.

PROOF

First, recall that by the Extreme Value Theorem, f will attain its maximum and minimum

values on [a, b], since f is continuous. Let f (c) be an absolute extremum. If c is not an

endpoint (i.e., c  = a and c  = b), then cmust be in the open interval (a, b). Thus, f (c) must

be a local extremum, also. Finally, by Fermat’s Theorem, c must be a critical number, since

local extrema occur only at critical numbers.

REMARK 2.3

Theorem 2.3 gives us a simple procedure for finding the absolute extrema of a

continuous function on a closed, bounded interval:

1. Find all critical numbers in the interval and compute function values at these points.

2. Compute function values at the endpoints.

3. The largest function value is the absolute maximum and the smallest function

value is the absolute minimum.

We illustrate Theorem 2.3 for the case of a polynomial function in example 2.11.

EXAMPLE 2.11 Finding Absolute Extrema on a Closed Interval

Find the absolute extrema of f (x) = 2x3 − 3x2 − 12x + 5 on the interval [−2, 4].

Solution From the graph in Figure 3.26, the maximum appears to be at the endpoint

x = 4, while the minimum appears to be at a local minimum near x = 2. In

example 2.6, we found that the critical numbers of f are x = −1 and x = 2. Further,

both of these are in the interval [−2, 4]. So, we compare the values at the endpoints:

f (−2) = 1 and f (4) = 37,

and the values at the critical numbers:

f (−1) = 12 and f (2) = −15.

20

40

 20

y

x
42 2

FIGURE 3.26
y = 2x3 − 3x2 − 12x + 5

Since f is continuous on [−2, 4], Theorem 2.3 says that the absolute extrema must be

among these four values. Thus, f (4) = 37 is the absolute maximum and f (2) = −15 is

the absolute minimum. Note that these values are consistent with what we see in the

graph in Figure 3.26. �
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Of course, most real problems of interest are unlikely to result in derivatives with

integer zeros. Consider the following somewhat less user-friendly example.

EXAMPLE 2.12 Finding Extrema for a Function
with Fractional Exponents

Find the absolute extrema of f (x) = 4x5/4 − 8x1/4 on the interval [0, 4].

Solution First, we draw a graph of the function to get an idea of where the extrema

are located. (See Figure 3.27.) From the graph, it appears that the maximum occurs at

the endpoint x = 4 and the minimum near x = 1
2
. Next, observe that

f  (x) = 5x1/4 − 2x−3/4 = 5x − 2

x3/4
.

Thus, the critical numbers are x = 2
5

 
since f   2

5

 = 0
 
and x = 0 (since f  (0) is

undefined and 0 is in the domain of f ). We now need only compare

f (0) = 0, f (4) ≈ 11.3137 and f
 
2
5

 ≈ −5.0897.

10

 5

y

x
2 4

FIGURE 3.27
y = 4x5/4 − 8x1/4

So, the absolute maximum is f (4) ≈ 11.3137 and the absolute minimum is

f
 
2
5

 ≈ −5.0897, which is consistent with what we expected from Figure 3.27. �

In practice, the critical numbers are not always as easy to find as they were in examples

2.11 and 2.12. In example 2.13, it is not even known how many critical numbers there are.

We can, however, estimate the number and locations of these from a careful analysis of

computer-generated graphs.

EXAMPLE 2.13 Finding Absolute Extrema Approximately

Find the absolute extrema of f (x) = x3 − 5x + 3 sin x2 on the interval [−2, 2.5].

Solution We first draw a graph to get an idea of where the extrema will be located.

(See Figure 3.28.) From the graph, we can see that the maximum seems to occur near

x = −1, while the minimum seems to occur near x = 2. Next, we compute

f  (x) = 3x2 − 5 + 6x cos x2.

8

 4

y

x
3 2

FIGURE 3.28
y = f (x) = x3 − 5x + 3 sin x2

Unlike examples 2.11 and 2.12, there is no algebra we can use to find the zeros of f  .

20

 10

y

x
3 2

FIGURE 3.29
y = f  (x) = 3x2 − 5 + 6x cos x2

Our only alternative is to find the zeros approximately. You can do this by using

Newton’s method to solve f  (x) = 0. (You can also use any other rootfinding method

built into your calculator or computer.) First, we’ll need adequate initial guesses. We

obtain these from the graph of y = f  (x) found in Figure 3.29. From the graph, it

appears that there are four zeros of f  (x) on the interval in question, located near

x = −1.3, 0.7, 1.2 and 2.0. Further, referring back to Figure 3.28, these four zeros

correspond with the four local extrema seen in the graph of y = f (x). We now apply

Newton’s method to solve f  (x) = 0, using the preceding four values as our initial

guesses. This leads us to four approximate critical numbers of f on the interval

[−2, 2.5]. We have

a ≈ −1.26410884789, b ≈ 0.674471354085,

c ≈ 1.2266828947 and d ≈ 2.01830371473.
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We now need only compare the values of f at the endpoints and the approximate

critical numbers:

f (a) ≈ 7.3, f (b) ≈ −1.7, f (c) ≈ −1.3

f (d) ≈ −4.3, f (−2) ≈ −0.3 and f (2.5) ≈ 3.0.

Thus, the absolute maximum is approximately f (−1.26410884789) ≈ 7.3 and the

absolute minimum is approximately f (2.01830371473) ≈ −4.3.

It is important (especially in light of how much of our work here was approximate

and graphical) to verify that the approximate extrema correspond with what we expect

from the graph of y = f (x). Since these correspond closely, we have great confidence

in their accuracy. �

We have now seen how to locate the absolute extrema of a continuous function on a

closed interval. In section 3.3, we see how to find local extrema.

BEYOND FORMULAS

The Extreme Value Theorem is an important but subtle result. Think of it this way. If

the hypotheses of the theorem are met, you will never waste your time looking for the

maximum of a function that does not have a maximum. That is, the problem is always

solvable. The technique described in Remark 2.3 always works. If you are asked to find

a novel with a certain plot, does it help to know that there actually is such a novel?

EXERCISES 3.2

WRITING EXERCISES

1. Using one or more graphs, explain why the Extreme Value

Theorem is true. Is the conclusion true if we drop the hypoth-

esis that f is a continuous function? Is the conclusion true if

we drop the hypothesis that the interval is closed?

2. Using one ormore graphs, argue that Fermat’s Theorem is true.

Discuss how Fermat’s Theorem is used. Restate the theorem

in your own words to make its use clearer.

3. Suppose that f (t) represents your elevation after t hours on

a mountain hike. If you stop to rest, explain why f  (t) = 0.

Discuss the circumstances under which you would be at a lo-

cal maximum, local minimum or neither.

4. Mathematically, an if/then statement is usually strictly one-

directional. When we say “If A, then B” it is generally not the

case that “If B, then A” is also true: when both are true, we

say “A if and only if B,” which is abbreviated to “A iff B.” Un-

fortunately, common English usage is not always this precise.

This occasionally causes a problem interpreting a mathemati-

cal theorem. To get this straight, consider the statement, “If you

wrote a best-selling book, then you made a lot of money.” Is

this true? How does this differ from its converse, “If you made

a lot of money, then you wrote a best-selling book.” Is the

converse always true? Sometimes true?Apply this logic to both

the Extreme Value Theorem and Fermat’s Theorem: state the

converse anddecidewhether it is sometimes true or always true.

In exercises 1–4, use the graph to locate the absolute extrema

(if they exist) of the function on the given interval.

1. f (x) = 1

x2 − 1
on (a) (−∞,∞), (b) [−1, 1] and (c) (0, 1)

x
42 4  2

y

 10

 5

5

10



226 CHAPTER 3 .. Applications of Differentiation 3-24

2. f (x) = x2

(x − 1)2
on (a) (−∞,∞), (b) [−1, 1] and (c) (0, 1)

x
42 4  2

y

8

6

4

2

10

3. f (x) = sin x on (a) (−∞,∞), (b)
 
0, π

4

 
and (c)

 
π

4
, 3π

4

 

x
105 10  5

 1

 0.5

0.5

1

y

4. f (x) = x3 − 3x + 1 on (a) (−∞,∞), (b) [−2, 2] and

(c) (0, 2)

x
42 4  2

 10

 5

5

10

y

In exercises 5–10, find all critical numbers by hand. Use your

knowledge of the type of graph (i.e., parabola or cubic) to deter-

mine whether the critical number represents a local maximum,

local minimum or neither.

5. f (x) = x2 + 5x − 1 6. f (x) = −x2 + 4x + 2

7. f (x) = x3 − 3x + 1 8. f (x) = −x3 + 6x2 + 2

9. f (x) = x3 − 3x2 + 6x 10. f (x) = x3 − 3x2 + 3x

In exercises 11–28, find all critical numbers by hand. If avail-

able, use graphing technology to determine whether the crit-

ical number represents a local maximum, local minimum or

neither.

11. f (x) = x4 − 3x3 + 2 12. f (x) = x4 + 6x2 − 2

13. f (x) = x3/4 − 4x1/4 14. f (x) = (x2/5 − 3x1/5)2

15. f (x) = sin x cos x, [0, 2π ] 16. f (x)=
√
3 sin x + cos x

17. f (x) = x2 − 2

x + 2
18. f (x) = x2 − x + 4

x − 1

19. f (x) = x

x2 + 1
20. f (x) = 3x

x2 − 1

21. f (x) = x4/3 + 4x1/3 + 4x−2/3 22. f (x) = x7/3 − 28x1/3

23. f (x) = 2x
√
x + 1 24. f (x) = x/

√
x2 + 1

25. f (x) = |x2 − 1|

26. f (x) = 3
√
x3 − 3x2 + 2x

27. f (x) =
 
x2 + 2x − 1 if x < 0

x2 − 4x + 3 if x ≥ 0

28. f (x) =
 
sin x if −π < x < π

− tan x if |x | ≥ π

In exercises 29–34, find the absolute extrema of the given func-

tion on each indicated interval.

29. f (x) = x3 − 3x + 1 on (a) [0, 2] and (b) [−3, 2]

30. f (x) = x4 − 8x2 + 2 on (a) [−3, 1] and (b) [−1, 3]

31. f (x) = x2/3 on (a) [−4,−2] and (b) [−1, 3]

32. f (x) = sin x + cos x on (a) [0, 2π ] and (b) [π/2, π ]

33. f (x) = 3x2

x − 3
on (a) [−2, 2] and (b) [2, 8]

34. f (x) = |2x | − |x − 2| on (a) [0, 1] and (b) [−3, 4]

In exercises 35–38, numerically estimate the absolute extrema

of the given function on the indicated intervals.

35. f (x) = x4 − 3x2 + 2x + 1 on (a) [−1, 1] and (b) [−3, 2]

36. f (x) = x6 − 3x4 − 2x + 1 on (a) [−1, 1] and (b) [−2, 2]

37. f (x) = x2 − 3x cos x on (a) [−2, 1] and (b) [−5, 0]

38. f (x) = x sin x + 3 on (a)
 −π

2
, π

2

 
and (b) [0, 2π ]
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39. Repeat exercises 29–34, except instead of finding extrema on

the closed interval, find the extrema on the open interval, if

they exist.

40. Briefly outline a procedure for finding extrema on an open

interval (a, b), a procedure for the half-open interval (a, b]

and a procedure for the half-open interval [a, b).

41. Sketch a graph of a function f such that the absolute maxi-

mum of f (x) on the interval [−2, 2] equals 3 and the absolute

minimum does not exist.

42. Sketch a graph of a continuous function f such that the abso-

lute maximum of f (x) on the interval (−2, 2) does not exist

and the absolute minimum equals 2.

43. Sketch a graph of a continuous function f such that the abso-

lute maximum of f (x) on the interval (−2, 2) equals 4 and the

absolute minimum equals 2.

44. Sketch a graph of a function f such that the absolute maximum

of f (x) on the interval [−2, 2] does not exist and the absolute

minimum does not exist.

45. Give an example showing that the following statement is false

(not always true): between any two local minima of f (x) there

is a local maximum.

46. Is the statement in exercise 45 true if f (x) is continuous?

47. In this exercise, we will explore the family of functions

f (x) = x3 + cx + 1, where c is constant. How many and

what types of local extrema are there? (Your answer will de-

pend on the value of c.) Assuming that this family is indicative

of all cubic functions, list all types of cubic functions.

48. Prove that any fourth-order polynomial must have at least

one local extremum and can have a maximum of three local

extrema. Based on this information, sketch several possible

graphs of fourth-order polynomials.

49. Show that f (x) = x3 + bx2 + cx + d has both a local maxi-

mum and a local minimum if c < 0.

50. In exercise 49, show that the sum of the critical numbers

is − 2b
3
.

51. For the family of functions f (x) = x4 + cx2 + 1, find all

local extrema. (Your answer will depend on the value of the

constant c.)

52. For the family of functions f (x) = x4 + cx3 + 1, find all

local extrema. (Your answer will depend on the value of the

constant c.)

53. If f is differentiable on the interval [a, b] and

f  (a) < 0 < f  (b), prove that there is a c with a < c < b

for which f  (c) = 0. (Hint: Use the Extreme Value Theorem

and Fermat’s Theorem.)

54. Sketch a graph showing that y = f (x) = x2 + 1 and

y = g(x) = sin x do not intersect. Estimate x to minimize

f (x) − g(x). At this value of x , show that the tangent lines to

y = f (x) and y = g(x) are parallel. Explain graphically why

it makes sense that the tangent lines are parallel.

55. Sketch a graph of f (x) = x2

x2 + 1
for x > 0 and determine

where the graph is steepest. (That is, find where the slope is a

maximum.)

56. If you have won three out of four matches against someone,

does that mean that the probability that you will win the next

one is 3
4
? In general, if you have a probability p of winning

each match, the probability of winning m out of n matches

is f (p) = n!

(n − m)!m!
pm(1 − p)n−m . Find p to maximize f .

This value of p is called the maximum likelihood estimator

of the probability. Briefly explain why your answer makes

sense.

57. A section of roller coaster is in the shape of

y = x5 − 4x3 − x + 10, where x is between−2 and 2. Find all

local extrema and explain what portions of the roller coaster

they represent. Find the location of the steepest part of the

roller coaster.

58. The rate R of an enzymatic reaction as a function of the sub-

strate concentration [S] is given by R = [S]Rm

Km + [S]
, where Rm

and Km are constants. Km is called the Michaelis constant and

Rm is referred to as the maximum reaction rate. Show that Rm
is not a proper maximum in that the reaction rate can never be

equal to Rm .

EXPLORATORY EXERCISES

1. Explore the graphs of
x

x2 + 1
,

x

x2 + 4
,

x

x2 + 9
and

x

x2 + 16
.

Find all local extrema and determine the behavior as x → ∞.

You can think of the graph of
x

x2 + c2
as showing the results

of a tug-of-war: both x and x2 + c2 tend to ∞ as x → ∞, but

at different rates. Explain why the local extrema spread out as

c increases.

2. Johannes Kepler (1571–1630) is best known as an astronomer,

especially for his three laws of planetary motion. However, his

discoveries were primarily due to his brilliance as amathemati-

cian. While serving in Austrian Emperor Matthew I’s court,

Kepler observed the ability of Austrian vintners to quickly

and mysteriously compute the capacities of a variety of wine

casks. Each cask (barrel) had a hole in the middle of its side.

(See Figure a.) The vintner would insert a rod in the hole until
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it hit the far corner and then announce the volume. Kepler first

analyzed the problem for a cylindrical barrel. (See Figure b.)

The volume of a cylinder is V = πr 2h. In Figure b, r = y

and h = 2x , so V = 2πy2x . Call the rod measurement z. By

the Pythagorean Theorem, x2 + (2y)2 = z2. Kepler’s mystery

was how to compute V given only z. The key observation

made by Kepler was that Austrian wine casks were made with

the same height-to-diameter ratio (for us, x/y). Let t = x/y

and show that z2/y2 = t2 + 4. Use this to replace y2 in the

volume formula. Then replace x with
 
z2 + 4y2. Show that

V = 2π z3t

(4 + t2)3/2
. In this formula, t is a constant, so the vint-

ner could measure z and quickly estimate the volume. We

haven’t told you yet what t equals. Kepler assumed that the

vintners would have made a smart choice for this ratio. Find

the value of t that maximizes the volume for a given z. This

is, in fact, the ratio used in the construction of Austrian wine

casks!

z

FIGURE a

z 2y

2x

FIGURE b

3.3 INCREASING AND DECREASING FUNCTIONS

In section 3.2, we determined that local extrema occur only at critical numbers. However,

not all critical numbers correspond to local extrema. In this section, we see how to determine

which critical numbers correspond to local extrema. At the same time, we’ll learn more

about the connection between the derivative and graphing.

We are all familiar with the terms increasing and decreasing. If your employer informs

you that your salary will be increasing steadily over the term of your employment, you have

in mind that as time goes on, your salary will rise something like Figure 3.30. If you take

out a loan to purchase a car, once you start paying back the loan, your indebtedness will

decrease over time. If you plotted your debt against time, the graph might look something

like Figure 3.31.

We now carefully define these notions. Notice that Definition 3.1 is merely a formal

statement of something you already understand.

Time

Salary

FIGURE 3.30
Increasing salary

Time

Debt

FIGURE 3.31
Decreasing debt

DEFINITION 3.1

A function f is (strictly) increasing on an interval I if for every x1, x2 ∈ I with

x1 < x2, f (x1) < f (x2) [i.e., f (x) gets larger as x gets larger].

A function f is (strictly) decreasing on the interval I if for every x1, x2 ∈ I

with x1 < x2, f (x1) > f (x2) [i.e., f (x) gets smaller as x gets larger].

Why do we bother with such an obvious definition? Of course, anyone can look at a

graph of a function and immediately see where that function is increasing and decreasing.

The real challenge is to determine where a function is increasing and decreasing, given

only a mathematical formula for the function. For example, can you determine where
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f (x) = x2 sin x is increasing and decreasing, without looking at a graph? Look carefully

at Figure 3.32 to see if you can notice what happens at every point at which the function

is increasing or decreasing.

f increasing

(tangent lines have

positive slope)

f decreasing

(tangent lines have

negative slope)

x

y

y   f (x)

FIGURE 3.32
Increasing and decreasing

Observe that on intervals where the tangent lines have positive slope, f is increasing,

while on intervals where the tangent lines have negative slope, f is decreasing. Of course,

the slope of the tangent line at a point is given by the value of the derivative at that point. So,

whether a function is increasing or decreasing on an interval seems to be connected to the

sign of its derivative on that interval. This conjecture, although it’s based on only a single

picture, sounds like a theorem and it is.

THEOREM 3.1

Suppose that f is differentiable on an interval I .

(i) If f  (x) > 0 for all x ∈ I , then f is increasing on I .

(ii) If f  (x) < 0 for all x ∈ I , then f is decreasing on I .

PROOF

(i) Pick any two points x1, x2 ∈ I , with x1 < x2. Applying the Mean Value Theorem

(Theorem 8.4 in section 2.8) to f on the interval (x1, x2), we get

f (x2) − f (x1)

x2 − x1
= f  (c), (3.1)

for some number c ∈ (x1, x2). (Why can we apply the Mean Value Theorem here?) By

hypothesis, f  (c) > 0 and since x1 < x2 (so that x2 − x1 > 0), we have from (3.1) that

0 < f (x2) − f (x1)

or f (x1) < f (x2). (3.2)

Since (3.2) holds for all x1 < x2, f is increasing on I .

The proof of (ii) is nearly identical and is left as an exercise.
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What You See May Not Be What You Get

One aim here and in sections 3.4 and 3.5 is to learn how to draw representative graphs

of functions (i.e., graphs that display all of the significant features of a function: where

it is increasing or decreasing, any extrema, asymptotes and two features we’ll introduce

in section 3.4, concavity and inflection points). When we draw a graph, we are drawing

in a particular viewing window (i.e., a particular range of x- and y-values). In the case of

computer- or calculator-generated graphs, the window is often chosen by the machine. So,

how do we know when significant features are hidden outside of a given window? Further,

how do we determine the precise locations of features that we can see in a given window?

As we’ll discover, the only way we can resolve these questions is with some calculus.

EXAMPLE 3.1 Drawing a Graph

Draw a graph of f (x) = 2x3 + 9x2 − 24x − 10 showing all local extrema.
10

 10

y

x
10 10

FIGURE 3.33
y = 2x3 + 9x2 − 24x − 10

Solution Many graphing calculators use the default window defined by

−10 ≤ x ≤ 10 and −10 ≤ y ≤ 10. Using this window, the graph of y = f (x) looks

like that displayed in Figure 3.33, although the three segments shown are not

particularly revealing. Instead of blindly manipulating the window in the hope that a

reasonable graph will magically appear, we stop briefly to determine where the function

is increasing and decreasing. First, observe that

f  (x) = 6x2 + 18x − 24 = 6(x2 + 3x − 4)

= 6(x − 1)(x + 4).

Note that the critical numbers (1 and −4) are the only possible locations for local

extrema. We can see where the two factors and consequently the derivative are positive

and negative from the number lines displayed in the margin. From this, note that

f  (x) > 0 on (−∞,−4) ∪ (1,∞) f increasing.

and f  (x) < 0 on (−4, 1). f decreasing.

For convenience, we have placed arrows indicating where the function is increasing and

decreasing beneath the last number line. In Figure 3.34a, we redraw the graph in the

window defined by −8 ≤ x ≤ 4 and −50 ≤ y ≤ 125. Here, we have selected the

y-range so that the critical points (−4, 102) and (1,−23) are displayed. Since f is

increasing on all of (−∞,−4), we know that the function is still increasing to the left of

the portion displayed in Figure 3.34a. Likewise, since f is increasing on all of (1,∞),

we know that the function continues to increase to the right of the displayed portion. In

Figure 3.34b, we have plotted both y = f (x) (shown in blue) and y = f  (x) (shown in

6(x   1)(x   4)
1

0

 4

0   

6(x   1)
1

(x   4)
 4

0   

0   

100

 50

y

x
4 8

100
f(x)

f '(x)
 50

y

x
4 8

FIGURE 3.34a FIGURE 3.34b
y = 2x3 + 9x2 − 24x − 10 y = f (x) and y = f  (x)
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red). Notice the connection between the two graphs. When f  (x) > 0, f is increasing;

when f  (x) < 0, f is decreasing and also notice what happens to f  (x) at the local
extrema of f . (We’ll say more about this shortly.) �

You may be tempted to think that you can draw graphs by machine and with a little

fiddling with the graphing window, get a reasonable looking graph. Unfortunately, this

frequently isn’t enough. For instance, while it’s clear that the graph in Figure 3.33 is in-

complete, the initial graph in example 3.2 has a familiar shape and may look reasonable,

but it is incorrect. The calculus tells you what features you should expect to see in a graph.

Without it, you’re simply taking a shot in the dark.

EXAMPLE 3.2 Uncovering Hidden Behavior in a Graph

Graph f (x) = 3x4 + 40x3 − 0.06x2 − 1.2x showing all local extrema.

 0.1 0.1

0

 10

0   0 

 10

0 

 

 

 

 0.1

0

0.1

 0 

f'(x)

(x   10)

(x   0.1)

12(x   0.1)

Solution We first show the default graph drawn by our computer algebra system. (See

Figure 3.35a.) We show a common default graphing calculator graph in Figure 3.35b.

You can certainly make Figure 3.35b look more like Figure 3.35a by adjusting the

window some. But with some calculus, you can discover features of the graph that are

hidden in both graphs.

6000

3000

 3000

y

x
4 4

10

 10

y

x
10 10

FIGURE 3.35a FIGURE 3.35b
Default CAS graph of Default calculator graph of

y = 3x4 + 40x3 − 0.06x2 − 1.2x y = 3x4 + 40x3 − 0.06x2 − 1.2x

First, notice that

f  (x) = 12x3 + 120x2 − 0.12x − 1.2

= 12(x2 − 0.01)(x + 10)

= 12(x − 0.1)(x + 0.1)(x + 10).

We show number lines for the three factors in the margin. Observe that

f  (x)
 
> 0 on (−10,−0.1) ∪ (0.1,∞) f increasing.

< 0 on (−∞,−10) ∪ (−0.1, 0.1). f decreasing.

This says that neither of the machine-generated graphs seen in Figure 3.35a or 3.35b is

adequate, as the behavior on (−∞,−10) ∪ (−0.1, 0.1) cannot be seen in either graph.

As it turns out, no single graph captures all of the behavior of this function. However, by
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increasing the range of x-values to the interval [−15, 5], we get the graph seen in

Figure 3.36a. This shows the big picture, what we refer to as the global behavior of the

function. Here, you can see the local minimum at x = −10, which was missing in our

earlier graphs, but the behavior for values of x close to zero is not clear. To see this, we

need a separate graph, restricted to a smaller range of x-values, as seen in Figure 3.36b.

10,000

 10,000

y

x
5 15

0.4

 0.4

y

x
0.3 0.3

FIGURE 3.36a FIGURE 3.36b
The global behavior of Local behavior of

f (x) = 3x4 + 40x3 − 0.06x2 − 1.2x f (x) = 3x4 + 40x3 − 0.06x2 − 1.2x

Notice that here, we can see the behavior of the function for x close to zero quite

clearly. In particular, the local maximum at x = −0.1 and the local minimum at x = 0.1

are clearly visible. We often say that a graph such as Figure 3.36b shows the local

behavior of the function. In Figures 3.37a and 3.37b, we show graphs indicating the

global and local behavior of f (x) (in blue) and f  (x) (in red) on the same set of axes.

Pay particular attention to the behavior of f  (x) in the vicinity of local extrema

of f (x).

10,000
f (x)

f '(x)

 10,000

y

x
5 15

0.4

 1.2

y

x
0.3 0.3

f (x)

f '(x)

FIGURE 3.37a FIGURE 3.37b
y = f (x) and y = f  (x) y = f (x) and y = f  (x)

(global behavior) (local behavior)

�

You may have already noticed a connection between local extrema and the intervals on

which a function is increasing and decreasing. We state this in Theorem 3.2.
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THEOREM 3.2 (First Derivative Test)

Suppose that f is continuous on the interval [a, b] and c ∈ (a, b) is a critical number.

(i) If f  (x) > 0 for all x ∈ (a, c) and f  (x) < 0 for all x ∈ (c, b) (i.e., f changes

from increasing to decreasing at c), then f (c) is a local maximum.

(ii) If f  (x) < 0 for all x ∈ (a, c) and f  (x) > 0 for all x ∈ (c, b) (i.e., f changes

from decreasing to increasing at c), then f (c) is a local minimum.

(iii) If f  (x) has the same sign on (a, c) and (c, b), then f (c) is not a local extremum.

f  (x)   0

f decreasing

f  (x)   0

f increasing

x

y

c

Local

maximum

FIGURE 3.38a
Local maximum

f  (x)   0

f increasing

f  (x)   0

f decreasing

x

y

c

Local

minimum

FIGURE 3.38b
Local minimum

It’s easiest to think of this result graphically. If f is increasing to the left of a critical

number and decreasing to the right, then there must be a local maximum at the critical

number. (See Figure 3.38a.) Likewise, if f is decreasing to the left of a critical number

and increasing to the right, then there must be a local minimum at the critical number. (See

Figure 3.38b.) This suggests a proof of the theorem; the job of writing out all of the details

is left as an exercise.

EXAMPLE 3.3 Finding Local Extrema Using the First
Derivative Test

Find the local extrema of the function from example 3.1, f (x) = 2x3 + 9x2 − 24x − 10.

Solution We had found in example 3.1 that

f  (x)
 
> 0,on (−∞,−4) ∪ (1,∞) f increasing.

< 0,on (−4, 1). f decreasing.

It now follows from the First Derivative Test that f has a local maximum located at

x = −4 and a local minimum located at x = 1. �

Theorem 3.2 works equally well for a function with critical points where the derivative

is undefined.

EXAMPLE 3.4 Finding Local Extrema of a Function
with Fractional Exponents

Find the local extrema of f (x) = x5/3 − 3x2/3.

f  (x)
 

6/5

0

0

   

3x1/3

(5x   6)

0

0   

0  

6/5

 

Solution We have f  (x) = 5

3
x2/3 − 3

 
2

3

 
x−1/3

= 5x − 6

3x1/3
,

so that the critical numbers are 6
5
[ f   6

5

 = 0] and 0 [ f  (0) is undefined]. Again drawing
number lines for the factors, we determine where f is increasing and decreasing. Here,

we have placed an � above the 0 on the number line for f  (x) to indicate that f  (x) is
not defined at x = 0. From this, we can see at a glance where f  is positive and negative:

f  (x)
 
> 0,on (−∞, 0) ∪  6

5
,∞ f increasing.

< 0,on
 
0, 6

5

 
. f decreasing.
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Consequently, f has a local maximum at x = 0 and a local minimum at x = 6
5
. These

local extrema are both clearly visible in the graph in Figure 3.39. �

EXAMPLE 3.5 Finding Local Extrema Approximately

Find the local extrema of f (x) = x4 + 4x3 − 5x2 − 31x + 29 and draw a graph.

1

y

x
2

FIGURE 3.39
y = x5/3 − 3x2/3

Solution A graph of y = f (x) using the most common graphing calculator default

window appears in Figure 3.40. Without further analysis, we do not know whether

this graph shows all of the significant behavior of the function. [Note that some

fourth-degree polynomials (e.g., f (x) = x4) have graphs that look very much like the

one in Figure 3.40.] First, we compute

f  (x) = 4x3 + 12x2 − 10x − 31.

However, this derivative does not easily factor. A graph of y = f  (x) (see Figure 3.41)
reveals three zeros, one near each of x = −3,−1.5 and 1.5. Since a cubic polynomial

has at most three zeros, there are no others. Using Newton’s method or some other

rootfinding method [applied to f  (x)], we can find approximations to the three zeros of

f  . We get a ≈ −2.96008, b ≈ −1.63816 and c ≈ 1.59824. From Figure 3.41, we can

see that

f  (x) > 0 on (a, b) ∪ (c,∞) f increasing.

10

 10

y

x
10 10

FIGURE 3.40
f (x) = x4 + 4x3 − 5x2 − 31x + 29

and f  (x) < 0 on (−∞, a) ∪ (b, c). f decreasing.

You can quickly read off the local extrema: a local minimum at a ≈ −2.96008, a local

maximum at b ≈ −1.63816 and a local minimum at c ≈ 1.59824. Since only the local

minimum at x = c is visible in the graph in Figure 3.40, this graph is clearly not

representative of the behavior of the function. By narrowing the range of displayed

x-values and widening the range of displayed y-values, we obtain the far more useful

graph seen in Figure 3.42. You should convince yourself, using the preceding analysis,

that the local minimum at x = c ≈ 1.59824 is also the absolute minimum.

100

50

 50

y

x
4 4

a b c

100

 50

y

x
4 4 a b

c

FIGURE 3.41
f  (x) = 4x3 + 12x2 − 10x − 31

FIGURE 3.42
f (x) = x4 + 4x3 − 5x2 − 31x + 29

�
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EXERCISES 3.3

WRITING EXERCISES

1. Suppose that f (0) = 2 and f is an increasing function. To

sketch the graph of y = f (x), you could start by plotting the

point (0, 2). Filling in the graph to the left, would you move

your pencil up or down? How does this fit with the definition

of increasing?

2. Suppose you travel east on an east-west interstate highway.

You reach your destination, stay a while and then return home.

Explain the First Derivative Test in terms of your velocities

(positive and negative) on this trip.

3. Suppose that you have a differentiable function f with two

critical numbers. Your computer has shown you a graph that

looks like the one in the figure.

10

 10

y

x
4 4

Discuss the possibility that this is a representative graph: that

is, is it possible that there are any important points not shown

in this window?

4. Suppose that the function in exercise 3 has three critical num-

bers. Explain why the graph is not a representative graph. Ex-

plain how you would change the graphing window to show the

rest of the graph.

In exercises 1–8, find (by hand) the intervals where the function

is increasing and decreasing. Use this information to sketch a

graph.

1. y = x3 − 3x + 2 2. y = x3 + 2x2 + 1

3. y = x4 − 8x2 + 1 4. y = x3 − 3x2 − 9x + 1

5. y = (x + 1)2/3 6. y = (x − 1)1/3

7. y = sin x + cos x 8. y = sin2 x

In exercises 9–16, find (by hand) all critical numbers and use

the First Derivative Test to classify each as the location of a local

maximum, local minimum or neither.

9. y = x4 + 4x3 − 2 10. y = x5 − 5x2 + 1

11. y = x2 − 2x2/3 + 2 12. y = x2 − 2
√
x + 2

13. y = x

1 + x3
14. y = x

1 + x4

15. y =
√
x3 + 3x2 16. y = x4/3 + 4x1/3

In exercises 17–22, find (by hand) all asymptotes and extrema,

and sketch a graph.

17. y = x

x2 − 1
18. y = x2

x2 − 1

19. y = x2

x2 − 4x + 3
20. y = x

1 − x4

21. y = x√
x2 + 1

22. y = x2 + 2

(x + 1)2

In exercises 23–28, find the x-coordinates of all extrema

and sketch graphs showing global and local behavior of the

function.

23. y = x3 − 13x2 − 10x + 1

24. y = x3 + 15x2 − 70x + 2

25. y = x4 − 15x3 − 2x2 + 40x − 2

26. y = x4 − 16x3 − 0.1x2 + 0.5x − 1

27. y = x5 − 200x3 + 605x − 2

28. y = x4 − 0.5x3 − 0.02x2 + 0.02x + 1

In exercises 29–32, sketch a graph of a function with the given

properties.

29. f (0) = 1, f (2) = 5, f  (x) < 0 for x < 0 and x > 2,

f  (x) > 0 for 0 < x < 2.

30. f (−1) = 1, f (2) = 5, f  (x) < 0 for x < −1 and x > 2,

f  (x) > 0 for −1 < x < 2, f  (−1) = 0, f  (2) does not exist.

31. f (3) = 0, f  (x) < 0 for x < 0 and x > 3, f  (x) > 0 for

0 < x < 3, f  (3) = 0, f (0) and f  (0) do not exist.

32. f (1) = 0, lim
x→∞

f (x) = 2, f  (x) < 0 for x < 1, f  (x) > 0 for

x > 1, f  (1) = 0.
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In exercises 33–36, estimate critical numbers and sketch graphs

showing both global and local behavior.

33. y = x − 30

x4 − 1
34. y = x2 − 8

x4 − 1

35. y = x + 60

x2 + 1
36. y = x − 60

x2 − 1

37. For f (x)=

 
x + 2x2 sin(1/x) if x  = 0

0 if x = 0, show that f  (0)> 0,

but that f is not increasing in any interval around 0. Explain

why this does not contradict Theorem 3.1.

38. For f (x) = x3, show that f is increasing in any interval

around 0, but f  (0) = 0. Explain why this does not contradict

Theorem 3.1.

39. Prove Theorem 3.2 (the First Derivative Test).

40. Give a graphical argument that if f (a) = g(a) and

f  (x) > g (x) for all x > a, then f (x) > g(x) for all x > a.

Use the Mean Value Theorem to prove it.

In exercises 41–44, use the result of exercise 40 to verify the

inequality.

41. 2
√
x > 3 − 1

x
for x > 1

42. x > sin x for x > 0

43. tan x > x for 0 < x < π/2

44.
√
1 + x2 < 1 + x2/2 for x > 0

45. If f and g are both increasing functions, is it true that f (g(x))

is also increasing? Either prove that it is true or give an example

that proves it false.

46. If f and g are both increasing functions with f (5) = 0, find the

maximum and minimum of the following values: g(1), g(4),

g( f (1)), g( f (4)).

47. Suppose that the total sales of a product after t months is

given by s(t) = √
t + 4 thousand dollars. Compute and inter-

pret s  (t).

48. In exercise 47, show that s  (t) > 0 for all t > 0. Explain in

business terms why it is impossible to have s  (t) < 0.

49. In this exercise, you will play the role of professor and con-

struct a tricky graphing exercise. The first goal is to find a

function with local extrema so close together that they’re dif-

ficult to see. For instance, suppose you want local extrema

at x = −0.1 and x = 0.1. Explain why you could start with

f  (x) = (x − 0.1)(x + 0.1) = x2 − 0.01. Look for a function

whose derivative is as given. Graph your function to see if the

extrema are “hidden.” Next, construct a polynomial of degree

4 with two extrema very near x = 1 and another near x = 0.

50. Suppose that f and g are differentiable functions and x = c is

a critical number of both functions. Either prove (if it is true)

or disprove (with a counterexample) that the composition f ◦ g
also has a critical number at x = c.

51. Show that f (x) = x3 + bx2 + cx + d is an increasing function

if b2 ≤ 3c.

52. Find a condition on the coefficients b and c similar to exer-

cise 51 that guarantees that f (x) = x5 + bx3 + cx + d is an

increasing function.

53. The table shows the coefficient of frictionμ of ice as a function

of temperature. The lower μ is, the more “slippery” the ice is.

Estimate μ (C) at (a) C = −10 and (b) C = −6. If skating

warms the ice, does it get easier or harder to skate? Briefly

explain.

◦C −12 −10 −8 −6 −4 −2

μ 0.0048 0.0045 0.0043 0.0045 0.0048 0.0055

EXPLORATORY EXERCISES

1. In this exercise, we look at the ability of fireflies to syn-

chronize their flashes. (To see a remarkable demonstration

of this ability, see David Attenborough’s video series Trials

of Life.) Let the function f represent an individual firefly’s

rhythm, so that the firefly flashes whenever f (t) equals an

integer. Let e(t) represent the rhythm of a neighboring firefly,

where again e(t) = n, for some integer n, whenever the neigh-

bor flashes. One model of the interaction between fireflies is

f  (t) = ω + A sin [e(t) − f (t)] for constants ω and A. If the

fireflies are synchronized [e(t) = f (t)], then f  (t) = ω, so the
fireflies flash every 1/ω time units. Assume that the difference

between e(t) and f (t) is less than π . Show that if f (t) < e(t),

then f  (t) > ω. Explain why this means that the individual

firefly is speeding up its flash to match its neighbor. Similarly,

discuss what happens if f (t) > e(t).

2. The HIV virus attacks specialized T-cells that trigger the hu-

man immune system response to a foreign substance. If T (t)

is the population of uninfected T-cells at time t (days) and

V (t) is the population of infectious HIV in the bloodstream, a

model that has been used to study AIDS is given by the fol-

lowing differential equation that describes the rate at which

the population of T-cells changes.

T  (t) = 10

 
1 + 1

1 + V (t)

 
− 0.02T (t) + 0.01

T (t)V (t)

100 + V (t)

− 0.000024 T (t)V (t).

If there is no HIV present [that is, V (t) = 0] and T (t) = 1000,

show that T  (t) = 0. Explain why this means that the T-cell

count will remain constant at 1000 (cells per cubic mm). Now,

suppose that V (t) = 100. Show that if T (t) is small enough,

then T  (t) > 0 and the T-cell population will increase. On the

other hand, if T (t) is large enough, then T  (t) < 0 and theT-cell

population will decrease. For what value of T (t) is T  (t) = 0?



3-35 SECTION 3.4 .. Concavity and the Second Derivative Test 237

Even though this population would remain stable, explain why

this would be bad news for the infected human.

3. In a sport like soccer or hockey where ties are possible, the

probability that the stronger team wins depends in an in-

teresting way on the number of goals scored. Suppose that

at any point, the probability that team A scores the next

goal is p, where 0 < p < 1. If 2 goals are scored, a 1-1 tie

could result from team A scoring first (probability p) and then

team B tieing the score (probability 1 − p), or vice versa.

The probability of a tie in a 2-goal game is then 2p(1 − p).

Similarly, the probability of a 2-2 tie in a 4-goal game is
4 · 3
2 · 1 p

2(1 − p)2, the probability of a 3-3 tie in a 6-goal game

is 6 · 5 · 4
3 · 2 · 1 p

3(1 − p)3 and so on. As the number of goals in-

creases, does the probability of a tie increase or decrease?

To find out, first show that (2x+2)(2x+1)

(x+1)2
< 4 for x > 0 and

x(1 − x) ≤ 1
4
for 0 ≤ x ≤ 1. Use these inequalities to show

that the probability of a tie decreases as the (even) number of

goals increases. In a 1-goal game, the probability that team A

wins is p. In a 2-goal game, the probability that team A wins

is p2. In a 3-goal game, the probability that team A wins is

p3 + 3p2(1 − p). In a 4-goal game, the probability that teamA

wins is p4 + 4p3(1 − p). In a 5-goal game, the probability that

teamAwins is p5 + 5p4(1 − p) + 5 · 4
2 · 1 p

3(1 − p)2. Explore the

extent to which the probability that team A wins increases as

the number of goals increases.

3.4 CONCAVITY AND THE SECOND DERIVATIVE TEST

In section 3.3, we saw how to determine where a function is increasing and decreasing and

how this relates to drawing a graph of the function. First, recognize that simply knowing

where a function increases and decreases is not sufficient to draw a good graph. In Fig-

ures 3.43a and 3.43b, we show two very different shapes of increasing functions joining the

same two points.

ba
x

y

ba
x

y

FIGURE 3.43a
Increasing function

FIGURE 3.43b
Increasing function

Given that a curve joins two particular points and is increasing, we need further infor-

mation to determine which of the two shapes shown (if either) we should draw. Realize that

this is an important distinction to make. For example, suppose that Figure 3.43a or 3.43b

depicts the balance in your bank account. Both indicate a balance that is growing. How-

ever, the rate of growth in Figure 3.43a is increasing, while the rate of growth depicted in

Figure 3.43b is decreasing. Which would you want to have describe your bank balance?

Why?

Figures 3.44a and 3.44b (on the following page) are the same as Figures 3.43a and

3.43b, respectively, but with a few tangent lines drawn in.

Although all of the tangent lines have positive slope [since f  (x) > 0], the slopes of

the tangent lines in Figure 3.44a are increasing, while those in Figure 3.44b are decreasing.

We call the graph in Figure 3.44a concave up and the graph in Figure 3.44b concave down.

The situation is similar for decreasing functions. In Figures 3.45a and 3.45b, we show two
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ba
x

y

ba
x

y

FIGURE 3.44a
Concave up, increasing

FIGURE 3.44b
Concave down, increasing

different shapes of decreasing functions. The one shown in Figure 3.45a is concave up

(slopes of tangent lines increasing) and the one shown in Figure 3.45b is concave down

(slopes of tangent lines decreasing). We summarize this in Definition 4.1.

ba
x

y

ba
x

y

FIGURE 3.45a
Concave up, decreasing

FIGURE 3.45b
Concave down, decreasing

DEFINITION 4.1

For a function f that is differentiable on an interval I , the graph of f is

(i) concave up on I if f  is increasing on I or
(ii) concave down on I if f  is decreasing on I .

Note that you can tell when f  is increasing or decreasing from the derivative of f  

(i.e., f   ). Theorem 4.1 connects concavity with what we already know about increasing

and decreasing functions. The proof is a straightforward application of Theorem 3.1 to

Definition 4.1.

THEOREM 4.1

Suppose that f   exists on an interval I .

(i) If f   (x) > 0 on I , then the graph of f is concave up on I .

(ii) If f   (x) < 0 on I , then the graph of f is concave down on I .
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EXAMPLE 4.1 Determining Concavity

Determine where the graph of f (x) = 2x3 + 9x2 − 24x − 10 is concave up and

concave down, and draw a graph showing all significant features of the function.

y

x

 50

100

4 4

Inflection

point

FIGURE 3.46
y = 2x3 + 9x2 − 24x − 10

Solution Here, we have f  (x) = 6x2 + 18x − 24

and from our work in example 3.3, we have

f  (x)
 
> 0 on (−∞,−4) ∪ (1,∞) f increasing.

< 0 on (−4, 1). f decreasing.

Further, we have f   (x) = 12x + 18

 
> 0, for x > − 3

2
Concave up.

< 0, for x < − 3
2
. Concave down.

Using all of this information, we are able to draw the graph shown in Figure 3.46.

Notice that at the point
 − 3

2
, f
 − 3

2

  
, the graph changes from concave down to concave

up. Such points are called inflection points, which we define more precisely in

Definition 4.2. �

DEFINITION 4.2

Suppose that f is continuous on the interval (a, b) and that the graph changes

concavity at a point c ∈ (a, b) (i.e., the graph is concave down on one side of c and

concave up on the other). Then, the point (c, f (c)) is called an inflection point of f .

NOTES

If (c, f (c)) is an inflection point,

then either f   (c) = 0 or f   (c) is
undefined. So, finding all points

where f   (x) is zero or is

undefined gives you all possible

candidates for inflection points.

But beware: not all points where

f   (x) is zero or undefined

correspond to inflection points.

EXAMPLE 4.2 Determining Concavity and Locating Inflection Points

Determine where the graph of f (x) = x4 − 6x2 + 1 is concave up and concave down,

find any inflection points and draw a graph showing all significant features.

f  (x)
0

0    0

 3

0

 3 

  
 3x  

0

 3 

  
 3x  ( )

( )

0

 3

0

0   
4x

Solution Here, we have

f  (x) = 4x3 − 12x = 4x(x2 − 3)

= 4x(x −
√
3)(x +

√
3).

f   (x)
 

(x   1)

 

 

12(x   1)

1

0

 

1

0

 1

0

 1

0

 

 

 

We have drawn number lines for the factors of f  (x) in the margin. From this, we can

see that

f  (x)
 
> 0, on (−

√
3, 0) ∪ (

√
3,∞) f increasing.

< 0, on (−∞,−
√
3) ∪ (0,

√
3). f decreasing.

Next, we have f   (x) = 12x2 − 12 = 12(x − 1)(x + 1).

We have drawn number lines for the two factors in the margin. From this, we can see that

f   (x)
 
> 0, on (−∞,−1) ∪ (1,∞) Concave up.

< 0, on (−1, 1). Concave down.

For convenience, we have indicated the concavity below the bottom number line, with

small concave up and concave down segments. Finally, observe that since the graph

changes concavity at x = −1 and x = 1, there are inflection points located at (−1,−4)

and (1,−4). Using all of this information, we are able to draw the graph shown in
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y

x

 10

 5

10

5

3 3

FIGURE 3.47
y = x4 − 6x2 + 1

Figure 3.47. For your convenience, we have reproduced the number lines for f  (x) and
f   (x) in the margin beside the figure. �

Aswe see in example 4.3, having f   (x) = 0does not imply the existence of an inflection

point.

f ''(x)

f '(x)

1

0

 1

0   

 

0 0 0    

 3  30

EXAMPLE 4.3 A Graph with No Inflection Points

Determine the concavity of f (x) = x4 and locate any inflection points.y

x

2

4

21 1 2

FIGURE 3.48
y = x4

Solution There’s nothing tricky about this function. We have f  (x) = 4x3 and

f   (x) = 12x2. Since f  (x) > 0 for x > 0 and f  (x) < 0 for x < 0, we know that f is

increasing for x > 0 and decreasing for x < 0. Further, f   (x) > 0 for all x  = 0, while

f   (0) = 0. So, the graph is concave up for x  = 0. Further, even though f   (0) = 0, there

is no inflection point at x = 0. We show a graph of the function in Figure 3.48. �

We now explore a connection between second derivatives and extrema. Suppose that

f  (c) = 0 and that the graph of f is concave down in some open interval containing c. Then,

near x = c, the graph looks like that in Figure 3.49a and hence, f (c) is a local maximum.

Likewise, if f  (c) = 0 and the graph of f is concave up in some open interval containing

c, then near x = c, the graph looks like that in Figure 3.49b and hence, f (c) is a local

minimum.

f  (c)   0

f   (c)   0

x

y

c

f  (c)   0

f   (c)   0

x

y

c

FIGURE 3.49a
Local maximum

FIGURE 3.49b
Local minimum
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We state this more precisely in Theorem 4.2.

THEOREM 4.2 (Second Derivative Test)

Suppose that f is continuous on the interval (a, b) and f  (c) = 0, for some number

c ∈ (a, b).

(i) If f   (c) < 0, then f (c) is a local maximum.

(ii) If f   (c) > 0, then f (c) is a local minimum.

We leave a formal proof of this theorem as an exercise. When applying the theorem,

simply think about Figures 3.49a and 3.49b.

EXAMPLE 4.4 Using the Second Derivative Test to Find Extrema

Use the Second Derivative Test to find the local extrema of f (x) = x4 − 8x2 + 10.

Solution Here,

f  (x) = 4x3 − 16x = 4x(x2 − 4)

= 4x(x − 2)(x + 2).

Thus, the critical numbers are x = 0, 2 and −2. We also have

f   (x) = 12x2 − 16

and so, f   (0) = −16 < 0,

f   (−2) = 32 > 0

and f   (2) = 32 > 0.

So, by the Second Derivative Test, f (0) is a local maximum and f (−2) and f (2) are

local minima. We show a graph of y = f (x) in Figure 3.50. �

y

x

 10

20

42 2 4

FIGURE 3.50
y = x4 − 8x2 + 10

y

x

 30

30

2 4 2 4

FIGURE 3.51a
y = x3

REMARK 4.1

If f   (c) = 0 or f   (c) is undefined, the Second Derivative Test yields no conclusion.
That is, f (c) may be a local maximum, a local minimum or neither. In this event, we

must rely solely on first derivative information (i.e., the First Derivative Test) to

determine whether f (c) is a local extremum. We illustrate this with example 4.5.

EXAMPLE 4.5 Functions for Which the Second Derivative
Test Is Inconclusive

Use the Second Derivative Test to try to classify any local extrema for (a) f (x) = x3,

(b) g(x) = x4 and (c) h(x) = −x4.
Solution (a) Note that f  (x) = 3x2 and f   (x) = 6x . So, the only critical number is

x = 0 and f   (0) = 0, also. We leave it as an exercise to show that the point (0, 0) is not

a local extremum. (See Figure 3.51a.)
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y

x

2

4

21 1 2

y

x
21 1 2

 2

 4

FIGURE 3.51b
y = x4

FIGURE 3.51c
y = −x4

(b) We have g (x) = 4x3 and g  (x) = 12x2. Again, the only critical number is

x = 0 and g  (0) = 0. In this case, though, g (x) < 0 for x < 0 and g (x) > 0 for x > 0.

So, by the First Derivative Test, (0, 0) is a local minimum. (See Figure 3.51b.)

(c) Finally, we have h (x) = −4x3 and h  (x) = −12x2. Once again, the only

critical number is x = 0, h  (0) = 0 and we leave it as an exercise to show that (0, 0) is a

local maximum for h. (See Figure 3.51c.) �

f  (x)
 

0

 

0
x2

(x   5)

 5

0

 

 5

0

(x   5)

5

0

 

5

0  

 

 

 

 

 

 

0

We can use first and second derivative information to help produce a meaningful graph

of a function, as in example 4.6.

EXAMPLE 4.6 Drawing a Graph of a Rational Function

Draw a graph of f (x) = x + 25

x
, showing all significant features.

Solution The domain of f consists of all real numbers other than x = 0. Then,

f  (x) = 1 − 25

x2
= x2 − 25

x2
Add the fractions.

= (x − 5)(x + 5)

x2
.

So, the only two critical numbers are x = −5 and x = 5. (Why is x = 0 not a critical

number?)

Looking at the three factors in f  (x), we get the number lines shown in the margin.

Thus,

f  (x)
 
> 0, on (−∞,−5) ∪ (5,∞) f increasing.

< 0, on (−5, 0) ∪ (0, 5). f decreasing.

Further, f   (x) = 50

x3

 
> 0, on (0,∞) Concave up.

< 0, on (−∞, 0). Concave down.

Be careful here. There is no inflection point on the graph, even though the graph is

concave up on one side of x = 0 and concave down on the other. (Why not?) We can

now use either the First Derivative Test or the Second Derivative Test to determine the
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local extrema. Since f   (5) = 50

125
> 0

and f   (−5) = − 50

125
< 0,

there is a local minimum at x = 5 and a local maximum at x = −5, by the Second

Derivative Test. Finally, before we can draw a representative graph, we need to know

what happens to the graph near x = 0, since 0 is not in the domain of f.We have

lim
x→0+

f (x) = lim
x→0+

 
x + 25

x

 
= ∞

and lim
x→0−

f (x) = lim
x→0−

 
x + 25

x

 
= −∞,

so that there is a vertical asymptote at x = 0. Putting together all of this information, we

get the graph shown in Figure 3.52. �
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FIGURE 3.52

y = x + 25

x

y
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FIGURE 3.53
y = (x + 2)1/5 + 4

In example 4.6, we computed lim
x→0+

f (x) and lim
x→0−

f (x) to uncover the behavior of the

function near x = 0, since x = 0 was not in the domain of f. In example 4.7, we’ll see

that since x = −2 is not in the domain of f  (although it is in the domain of f ), we must

compute lim
x→−2+

f  (x) and lim
x→−2−

f  (x) to uncover the behavior of the tangent lines near

x = −2.

EXAMPLE 4.7 A Function with a Vertical Tangent Line
at an Inflection Point

Draw a graph of f (x) = (x + 2)1/5 + 4, showing all significant features.

Solution First, notice that the domain of f is the entire real line. We also have

f  (x) = 1

5
(x + 2)−4/5 > 0, for x  = −2.

So, f is increasing everywhere, except at x = −2 [the only critical number, where

f  (−2) is undefined]. This also says that f has no local extrema. Further,

f   (x) = − 4

25
(x + 2)−9/5

 
> 0, on (−∞,−2) Concave up.

< 0, on (−2,∞). Concave down.

So, there is an inflection point at x = −2. In this case, f  (x) is undefined at x = −2.

Since −2 is in the domain of f , but not in the domain of f  , we consider

lim
x→−2−

f  (x) = lim
x→−2−

1

5
(x + 2)−4/5 = ∞

and lim
x→−2+

f  (x) = lim
x→−2+

1

5
(x + 2)−4/5 = ∞.

This says that the graph has a vertical tangent line at x = −2. Putting all of this

information together, we get the graph shown in Figure 3.53. �
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EXERCISES 3.4

WRITING EXERCISES

1. It is often said that a graph is concave up if it “holds water.”

This is certainly true for parabolas like y = x2, but is it true

for graphs like y = 1/x2? It is always helpful to put a difficult

concept into everyday language, but the danger is in oversim-

plification. Do you think that “holds water” is helpful or can it

be confusing? Give your own description of concave up, using

everyday language. (Hint: One popular image involves smiles

and frowns.)

2. Find a reference book with the population of the United States

since 1800. From 1800 to 1900, the numerical increase by

decade increased. Argue that this means that the population

curve is concave up. From 1960 to 1990, the numerical in-

crease by decade has been approximately constant. Argue that

this means that the population curve is near a point where the

curve is neither concave up nor concave down. Why does this

not necessarily mean that we are at an inflection point? Argue

that we should hope, in order to avoid overpopulation, that it

is indeed an inflection point.

3. The goal of investing in the stock market is to buy low and

sell high. But, how can you tell whether a price has peaked or

not? Once a stock price goes down, you can see that it was at

a peak, but then it’s too late to do anything about it! Concav-

ity can help. Suppose a stock price is increasing and the price

curve is concave up. Why would you suspect that it will con-

tinue to rise? Is this a good time to buy? Now, suppose the price

is increasing but the curve is concave down. Why should you

be preparing to sell? Finally, suppose the price is decreasing.

If the curve is concave up, should you buy or sell? What if the

curve is concave down?

4. Suppose that f (t) is the amount ofmoney in your bank account

at time t . Explain in terms of spending and saving what would

cause f (t) to be decreasing and concave down; increasing and

concave up; decreasing and concave up.

In exercises 1–8, determine the intervals where the graph of the

given function is concave up and concave down.

1. f (x) = x3 − 3x2 + 4x − 1 2. f (x) = x4 − 6x2 + 2x + 3

3. f (x) = x + 1/x 4. f (x) = x + 3(1 − x)1/3

5. f (x) = sin x − cos x 6. f (x) = x2 − 16/x

7. f (x) = x4/3 + 4x1/3 8. f (x) = x2 − 1

x

In exercises 9–12, find all critical numbers and use the Second

Derivative Test to determine all local extrema.

9. f (x) = x4 + 4x3 − 1 10. f (x) = x4 + 4x2 + 1

11. f (x) = x2 − 5x + 4

x
12. f (x) = x2 − 1

x

In exercises 13–22, determine all significant features by hand

and sketch a graph.

13. f (x) = (x2 + 1)2/3 14. f (x) = sin x + cos x

15. f (x) = x2

x2 − 9
16. f (x) = x

x + 2

17. f (x) = x3/4 − 4x1/4 18. f (x) = x2/3 − 4x1/3

19. f (x) = x |x | 20. f (x) = x2|x |

21. f (x) = x1/5(x + 1) 22. f (x) =
√
x

1 + √
x

In exercises 23–30, determine all significant features (approxi-

mately if necessary) and sketch a graph.

23. f (x) = x4 − 26x3 + x

24. f (x) = 2x4 − 11x3 + 17x2

25. f (x) = 3
√
2x2 − 1

26. f (x) =
√
x3 + 1

27. f (x) = x4 − 16x3 + 42x2 − 39.6x + 14

28. f (x) = x4 + 32x3 − 0.02x2 − 0.8x

29. f (x) = x
√
x2 − 4

30. f (x) = 2x√
x2 + 4

In exercises 31–34, estimate the intervals where the function is

concave up and concave down. (Hint: Estimate where the slope

is increasing and decreasing.)

31. y

x

10

20

32−2−3
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32. y

x

1

42− 4 −2

−1

33. y

x

10

5

10

5

22 4−

−

−

34. y

x
31−1−3

−10

−5

5

10

2

In exercises 35–38, sketch a graph with the given properties.

35. f (0) = 0, f  (x) > 0 for x < −1 and −1 < x < 1, f  (x)< 0

for x > 1, f   (x) > 0 for x < −1, 0 < x < 1 and x > 1,

f   (x) < 0 for −1 < x < 0

36. f (0) = 2, f  (x) > 0 for all x, f  (0) = 1, f   (x) > 0 for x < 0,

f   (x) < 0 for x > 0

37. f (0) = 0, f (−1) = −1, f (1) = 1, f  (x) > 0 for x < −1 and

0 < x < 1, f  (x) < 0 for −1 < x < 0 and x > 1, f   (x) < 0

for x < 0 and x > 0

38. f (1) = 0, f  (x) < 0 for x < 1, f  (x) > 0 for x > 1,

f   (x) < 0 for x < 1 and x > 1

39. Show that any cubic f (x) = ax3 + bx2 + cx + d has one in-

flection point. Find conditions on the coefficients a−e that

guarantee that the quartic f (x) = ax4 + bx3 + cx2 + dx + e

has two inflection points.

40. If f and g are functions with two derivatives for all x,

f (0) = g(0) = f  (0) = g (0) = 0, f   (0) > 0 and g  (0) < 0,

state as completely as possible what can be said about whether

f (x) > g(x) or f (x) < g(x).

In exercises 41 and 42, estimate the intervals of increase and

decrease, the locations of local extrema, intervals of concavity

and locations of inflection points.

41. y

x
321−1−2−3

−2

2

4

6

8

42. y

x
1 2−1

−4

4

3

43. Repeat exercises 41 and 42 if the given graph is of f  (x) instead
of f (x).

44. Repeat exercises 41 and 42 if the given graph is of f   (x) instead
of f (x).

45. Suppose that w(t) is the depth of water in a city’s water reser-

voir at time t . Which would be better news at time t = 0,

w  (0) = 0.05 or w  (0) = −0.05, or would you need to know

the value of w (0) to determine which is better?

46. Suppose that T (t) is a sick person’s temperature at time

t . Which would be better news at time t , T   (0) = 2 or

T   (0) = −2, or would you need to know the value of T  (0)
and T (0) to determine which is better?



246 CHAPTER 3 .. Applications of Differentiation 3-44

47. Suppose that a company that spends $x thousand

on advertising sells $s(x) of merchandise, where

s(x) = −3x3 + 270x2 − 3600x + 18,000. Find the value of

x that maximizes the rate of change of sales. (Hint: Read

the question carefully!) Find the inflection point and explain

why in advertising terms this is the “point of diminishing

returns.”

48. The number of units Q that a worker has produced in a day

is related to the number of hours t since the work day began.

Suppose that Q(t) = −t3 + 6t2 + 12t. Explain why Q  (t) is
a measure of the efficiency of the worker at time t . Find the

time at which the worker’s efficiency is a maximum. Explain

why it is reasonable to call the inflection point the “point of

diminishing returns.”

49. Suppose that it costs a companyC(x) = 0.01x2 + 40x + 3600

dollars to manufacture x units of a product. For this cost func-

tion, the average cost function is C(x) = C(x)

x
. Find the

value of x that minimizes the average cost. The cost function

can be related to the efficiency of the production process. Ex-

plain why a cost function that is concave down indicates better

efficiency than a cost function that is concave up.

50. The plot shows the relationship between the specific partial

pressure of oxygen (pO2, measured in mm Hg) and the satu-

ration level of hemoglobin (y = 1 would mean that no more

oxygen can bind).
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Determine whether f1(x) = x

27 + x
or f2(x) = x3

273 + x3
is

a better model for these data by finding extrema, inflection

points and asymptotes (for x ≥ 0) for each function and com-

paring to the graph. Each of these functions is called a Hill

function.

51. Show that there is an inflection point at (0, 0) for any function

of the form f (x) = x4 + cx3, where c is a nonzero constant.

What role(s) does c play in the graph of y = f (x)?

52. The following examples show that there is not a perfect match

between inflection points and places where f   (x) = 0. First,

for f (x) = x6, show that f   (0) = 0, but there is no inflection

point at x = 0. Then, for g(x) = x |x |, show that there is an

inflection point at x = 0, but that g  (0) does not exist.

53. Give an example of a function showing that the following state-

ment is false. If the graph of y = f (x) is concave down for all

x, the equation f (x) = 0 has at least one solution.

54. Determine whether the following statement is true or false. If

f (0) = 1, f   (x) exists for all x and the graph of y = f (x) is

concave down for all x, the equation f (x) = 0 has at least one

solution.

55. A basic principle of physics is that light follows the path of

minimum time. Assuming that the speed of light in the earth’s

atmosphere decreases as altitude decreases, argue that the path

that light follows is concave down. Explain why this means

that the setting sun appears higher in the sky than it really is.

56. Prove Theorem 4.2 (the Second Derivative Test). (Hint: Think

about what the definition of f   (c) says when f   (c) > 0 or

f   (c) < 0.)

EXPLORATORY EXERCISES

1. The linear approximation that we defined in section 3.1 is the

line having the same location and the same slope as the func-

tion being approximated. Since two points determine a line,

two requirements (point, slope) are all that a linear function can

satisfy. However, a quadratic function can satisfy three require-

ments, since three points determine a parabola (and there are

three constants in a general quadratic function ax2 + bx + c).

Suppose we want to define a quadratic approximation to

f (x) at x = a. Building on the linear approximation, the gen-

eral form is g(x) = f (a) + f  (a)(x − a) + c(x − a)2 for some

constant c to be determined. In this way, show that g(a) = f (a)

and g (a) = f  (a). That is, g(x) has the right position and slope
at x = a. The third requirement is that g(x) have the right

concavity at x = a, so that g  (a) = f   (a). Find the con-

stant c that makes this true. Then, find such a quadratic

approximation for each of the functions sin x, cos x and√
1 + x at x = 0. In each case, graph the original func-

tion, linear approximation and quadratic approximation, and
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describe how close the approximations are to the original

functions.

2. In this exercise, we explore a basic problem in genetics.

Suppose that a species reproduces according to the follow-

ing probabilities: p0 is the probability of having no chil-

dren, p1 is the probability of having one offspring, p2 is the

probability of having two offspring, . . . , pn is the probabil-

ity of having n offspring and n is the largest number of off-

spring possible. Explain why for each i , we have 0 ≤ pi ≤ 1

and p0 + p1 + p2 + · · · + pn = 1. We define the function

F(x) = p0 + p1x + p2x
2 + · · · + pnx

n . The smallest non-

negative solution of the equation F(x) = x for 0 ≤ x ≤ 1 rep-

resents the probability that the species becomes extinct. Show

graphically that if p0 > 0 and F  (1) > 1, then there is a solution

of F(x) = x with 0 < x < 1. Thus, there is a positive proba-

bility of survival. However, if p0 > 0 and F  (1) < 1, show that

there are no solutions of F(x) = x with 0 < x < 1. (Hint: First

show that F is increasing and concave up.)

3. Give as complete a description of the graph of f (x) = x + c

x2 − 1
as possible. In particular, find the values of c for which there

are two critical points (or one critical point or no critical points)

and identify any extrema. Similarly, determine how the exis-

tence or not of inflection points depends on the value of c.

3.5 OVERVIEW OF CURVE SKETCHING

Graphing calculators and computer algebra systems are powerful tools in the study or

application of mathematics. However, they do not actually draw graphs. What they do is

plot points (albeit lots of them) and then connect the points as smoothly as possible. While

this is very helpful, it often leaves something to be desired. The problem boils down to

knowing the window in which you should draw a given graph and how many points you

plot in that window. The only way to know how to choose this is to use the calculus to

determine the properties of the graph that you are interested in seeing. We have already

made this point a number of times.

We begin this section by summarizing the various tests that you should perform on a

function when trying to draw a graph of y = f (x).

r Domain: You should always determine the domain of f first.
r Vertical Asymptotes: For any isolated point not in the domain of f, check the

limiting value of the function as x approaches that point, to see if there is a vertical

asymptote or a jump or removable discontinuity at that point.
r First Derivative Information: Determine where f is increasing and decreasing, and

find any local extrema.
r Vertical Tangent Lines: At any isolated point not in the domain of f  , but in the
domain of f , check the limiting values of f  (x), to determine whether there is a

vertical tangent line at that point.
r Second Derivative Information: Determine where the graph is concave up and

concave down, and locate any inflection points.
r Horizontal Asymptotes: Check the limit of f (x) as x → ∞ and as x → −∞.
r Intercepts: Locate x- and y-intercepts, if any. If this can’t be done exactly, then do so

approximately (e.g., using Newton’s method).

We start with a very straightforward example.

EXAMPLE 5.1 Drawing a Graph of a Polynomial

Draw a graph of f (x) = x4 + 6x3 + 12x2 + 8x + 1, showing all significant features.
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FIGURE 3.54a
y = x4 + 6x3 + 12x2 + 8x + 1

(one view)

FIGURE 3.54b
y = x4 + 6x3 + 12x2 + 8x + 1

(standard calculator view)
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Solution Computer algebra systems and graphing calculators usually do one of two

things to determine the window in which they will display a graph. One method is to

compute a set number of function values over a given standard range of x-values. The

y-range is then chosen so that all of the calculated points can be displayed. This might

result in a graph that looks like the one in Figure 3.54a. Another method is to draw a

graph in a fixed, default window. For instance, most graphing calculators use the default

window defined by

−10 ≤ x ≤ 10 and −10 ≤ y ≤ 10.

Using this window, we get the graph shown in Figure 3.54b. Of course, these two

graphs are very different. Without the calculus, it’s difficult to tell which, if either, of

these is truly representative of the behavior of f . Some analysis will clear up the

situation. First, note that the domain of f is the entire real line. Further, since f (x) is a

polynomial, it doesn’t have any vertical or horizontal asymptotes. Next, note that

f  (x) = 4x3 + 18x2 + 24x + 8 = 2(2x + 1)(x + 2)2.

Drawing number lines for the individual factors of f  (x), we have that

f  (x)
 
> 0, on

 − 1
2
,∞ f increasing.

< 0, on (−∞,−2) ∪  −2,− 1
2

 
. f decreasing.

This also tells us that there is a local minimum at x = − 1
2
and that there are no local

maxima. Next, we have

f   (x) = 12x2 + 36x + 24 = 12(x + 2)(x + 1).

Drawing number lines for the factors of f   (x), we have

f   (x)
 
> 0, on (−∞,−2) ∪ (−1,∞) Concave up.

< 0, on (−2,−1). Concave down.

From this, we see that there are inflection points at x = −2 and at x = −1. Finally, to

find the x-intercepts, we need to solve f (x) = 0 approximately. Doing this (we leave

the details as an exercise: use Newton’s method or your calculator’s solver), we find that

there are two x-intercepts: x = −1 (exactly) and x ≈ −0.160713. Notice that the

significant x-values that we have identified are x = −2, x = −1 and x = − 1
2
.

Computing the corresponding y-values from y = f (x), we get the points

(−2, 1), (−1, 0) and
 − 1

2
,− 11

16

 
. We summarize the first and second derivative
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information in the number lines in the margin. In Figure 3.55, we include all of these

important points by setting the x-range to be −4 ≤ x ≤ 1 and the y-range to be

−2 ≤ y ≤ 8. �
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FIGURE 3.55
y = x4 + 6x3 + 12x2 + 8x + 1

In example 5.2, we examine a function that has local extrema, inflection points and

both vertical and horizontal asymptotes.

EXAMPLE 5.2 Drawing a Graph of a Rational Function

Draw a graph of f (x) = x2 − 3

x3
, showing all significant features.

Solution The default graph drawn by our computer algebra system appears in

Figure 3.56a. Notice that this doesn’t seem to be a particularly useful graph, since very

little is visible (or at least distinguishable from the axes). The graph drawn using the

most common graphing calculator default window is seen in Figure 3.56b. This is

arguably an improvement over Figure 3.56a, but does this graph convey all that it could

about the function (e.g., about local extrema, inflection points, etc.)? We can answer this

question only after we do some calculus. We follow the outline given at the beginning

of the section.

First, observe that the domain of f includes all real numbers x  = 0. Since x = 0 is

an isolated point not in the domain of f, we scrutinize the limiting behavior of f as x

approaches 0. We have

lim
x→0+

f (x) = lim
x→0+

−
x2 − 3

x3

+

= −∞ (5.1)
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y = x2 − 3
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y = x2 − 3

x3
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+
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and lim
x→0−

f (x) = lim
x→0−

−
x2 − 3

x3

−

= ∞. (5.2)

From (5.1) and (5.2), we see that the graph has a vertical asymptote at x = 0.

Next, we look for whatever information the first derivative will yield. We have

f  (x) = 2x(x3) − (x2 − 3)(3x2)

(x3)2
Quotient rule.

= x2[2x2 − 3(x2 − 3)]

x6
Factor out x2.

= 9 − x2

x4
Combine terms.

= (3 − x)(3 + x)

x4
. Factor difference of two squares.

Looking at the individual factors in f  (x), we have the number lines shown in the

margin. Thus,

f  (x)
 
> 0, on (−3, 0) ∪ (0, 3) f increasing.

< 0, on (−∞,−3) ∪ (3,∞). f decreasing.
(5.3)

Note that this says that f has a local minimum at x = −3 and a local maximum at

x = 3.
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Next, we look at

f   (x) = −2x(x4) − (9 − x2)(4x3)

(x4)2
Quotient rule.

= −2x3[x2 + (9 − x2)(2)]

x8
Factor out −2x3.

= −2(18 − x2)

x5
Combine terms.

= 2(x −
√
18)(x +

√
18)

x5
. Factor difference of two squares.

Looking at the individual factors in f   (x), we obtain the number lines shown in the

margin. Thus, we have

f   (x)
 
> 0, on (−

√
18, 0) ∪ (

√
18,∞) Concave up.

< 0, on (−∞,−
√
18) ∪ (0,

√
18). Concave down.

(5.4)

This says that there are inflection points at x = ±
√
18. (Why is there no inflection point

at x = 0?)

To determine the limiting behavior as x → ±∞, we consider

lim
x→∞

f (x) = lim
x→∞

x2 − 3

x3

= lim
x→∞

 
1

x
− 3

x3

 
= 0. (5.5)

Likewise, we have lim
x→−∞

f (x) = 0. (5.6)

So, the line y = 0 is a horizontal asymptote both as x → ∞ and as x → −∞. Finally,

the x-intercepts are where

0 = f (x) = x2 − 3

x3
,

that is, at x = ±
√
3. Notice that there are no y-intercepts, since x = 0 is not in the

domain of the function. We now have all of the information that we need to draw a

representative graph. With some experimentation, you can set the x- and y-ranges so

that most of the significant features of the graph (i.e., vertical and horizontal

asymptotes, local extrema, inflection points, etc.) are displayed, as in Figure 3.57,

which is consistent with all of the information that we accumulated about the function

in (5.1)–(5.6). Although the existence of the inflection points is clearly indicated by the

change in concavity, their precise location is as yet a bit fuzzy in this graph. Notice,

however, that both vertical and horizontal asymptotes and the local extrema are clearly

indicated, something that cannot be said about either Figure 3.56a or 3.56b. �
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FIGURE 3.57

y = x2 − 3

x3

In example 5.3, there are multiple vertical asymptotes, only one extremum and no

inflection points.
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EXAMPLE 5.3 A Graph with Two Vertical Asymptotes

Draw a graph of f (x) = x2

x2 − 4
showing all significant features.
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Solution The default graph produced by our computer algebra system is seen in

Figure 3.58a, while the default graph drawn by most graphing calculators looks like the

graph seen in Figure 3.58b. Notice that the domain of f includes all x except x = ±2

(since the denominator is zero at x = ±2). Figure 3.58b suggests that there are vertical

asymptotes at x = ±2, but let’s establish this carefully. We have

lim
x→2+

x2

x2 − 4
= lim

x→2+

+
x2

(x − 2)
+

(x + 2)
+

= ∞. (5.7)

Similarly, we get

lim
x→2−

x2

x2 − 4
= −∞, lim

x→−2+

x2

x2 − 4
= −∞ (5.8)

and lim
x→−2−

x2

x2 − 4
= ∞. (5.9)

Thus, there are vertical asymptotes at x = ±2. Next, we have

f  (x) = 2x(x2 − 4) − x2(2x)

(x2 − 4)
2

= −8x

(x2 − 4)
2
.

Since the denominator is positive for x  = ±2, it is a simple matter to see that

f  (x)
 
> 0, on (−∞,−2) ∪ (−2, 0) f increasing.

< 0, on (0, 2) ∪ (2,∞). f decreasing.
(5.10)

In particular, notice that the only critical number is x = 0 (since x = −2, 2 are not in

the domain of f ). Thus, the only local extremum is the local maximum located at

x = 0. Next, we have

f   (x) = −8(x2 − 4)2 + (8x)2(x2 − 4)1(2x)

(x2 − 4)4
Quotient rule.

= 8(x2 − 4)[−(x2 − 4) + 4x2]

(x2 − 4)4
Factor out 8(x2 − 4).

= 8(3x2 + 4)

(x2 − 4)3
Combine terms.

= 8(3x2 + 4)

(x − 2)3(x + 2)3
. Factor difference of two squares.

Since the numerator is positive for all x , we need only consider the factors in the

denominator, as seen in the margin. We then have

f   (x)
 
> 0, on (−∞,−2) ∪ (2,∞) Concave up.

< 0, on (−2, 2). Concave down.
(5.11)
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However, since x = 2,−2 are not in the domain of f , there are no inflection points. It is

an easy exercise to verify that

lim
x→∞

x2

x2 − 4
= 1 (5.12)

and lim
x→−∞

x2

x2 − 4
= 1. (5.13)

From (5.12) and (5.13), we have that y = 1 is a horizontal asymptote, both as x → ∞
and as x → −∞. Finally, we observe that the only x-intercept is at x = 0. We

summarize the information in (5.7)–(5.13) in the graph seen in Figure 3.59. �
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FIGURE 3.59

y = x2

x2 − 4
In example 5.4, we need to use computer-generated graphs, as well as a rootfinding

method to determine the behavior of the function.
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y = 1

x3 + 3x2 + 3x + 3
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FIGURE 3.61

y = x3 + 3x2 + 3x + 3

EXAMPLE 5.4 Graphing Where the Domain and Extrema
Must Be Approximated

Draw a graph of f (x) = 1

x3 + 3x2 + 3x + 3
showing all significant features.

Solution The default graph drawn by most graphing calculators and computer algebra

systems looks something like the one shown in Figure 3.60. As we have already seen,

we can only determine all the significant features by doing some calculus.

Since f is a rational function, it is defined for all x , except for where the

denominator is zero, that is, where

x3 + 3x2 + 3x + 3 = 0.

If you don’t see how to factor the expression to find the zeros exactly, you must rely on

approximate methods. First, to get an idea of where the zero(s) might be, draw a graph

of the cubic. (See Figure 3.61.) The graph does not need to be elaborate, merely detailed

enough to get an idea of where and how many zeros there are. In the present case, we see

that there is only one zero, around x = −2. We can verify that this is the only zero, since

d

dx
(x3 + 3x2 + 3x + 3) = 3x2 + 6x + 3 = 3(x + 1)2 ≥ 0.

Since the derivative is never negative, observe that the function cannot decrease to cross

the x-axis a second time. You can get the approximate zero x = a ≈ −2.25992 using

Newton’s method or your calculator’s solver. We can use the graph in Figure 3.61 to

help us compute the limits

lim
x→a+

f (x) = lim
x→a+

+
1

x3 + 3x2 + 3x + 3
+

= ∞ (5.14)

and lim
x→a−

f (x) = lim
x→a−

+
1

x3 + 3x2 + 3x + 3
−

= −∞. (5.15)
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From (5.14) and (5.15), f has a vertical asymptote at x = a. Turning to the derivative

information, we have

f  (x) = −(x3 + 3x2 + 3x + 3)−2(3x2 + 6x + 3)

= −3

 
(x + 1)2

(x3 + 3x2 + 3x + 3)2

 

= −3

 
x + 1

x3 + 3x2 + 3x + 3

 2

< 0, for x  = a or −1 (5.16)

and f  (−1) = 0. Thus, f is decreasing for x < a and x > a. Also, notice that the only

critical number is x = −1, but since f is decreasing everywhere except at x = a, there

are no local extrema. Turning to the second derivative, we get

f   (x) = −6

 
x + 1

x3 + 3x2 + 3x + 3

 
1(x3 + 3x2 + 3x + 3) − (x + 1)(3x2 + 6x + 3)

(x3 + 3x2 + 3x + 3)2

= −6(x + 1)

(x3 + 3x2 + 3x + 3)3
(−2x3 − 6x2 − 6x)

= 12x(x + 1)(x2 + 3x + 3)

(x3 + 3x2 + 3x + 3)3
.

Since (x2 + 3x + 3) > 0 for all x (why is that?), we need not consider this factor.

Considering the remaining factors, we have the number lines shown here.

f   (x)
    

a

 

0

0

 1

0

0
(x3   3x2   3x   3)3

  

a    2.2599…

(x   1)
  

 1

0

12x
  

0

0

Thus, we have that

f   (x)
 
> 0, on (a,−1) ∪ (0,∞) Concave up.

< 0, on (−∞, a) ∪ (−1, 0) Concave down.
(5.17)

It now follows that there are inflection points at x = 0 and at x = −1. Notice that in

Figure 3.60, the concavity information is not very clear and the inflection points are

difficult to discern.
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FIGURE 3.62

y = 1

x3 + 3x2 + 3x + 3

We note the obvious fact that the function is never zero and hence, there are no

x-intercepts. Finally, we consider the limits

lim
x→∞

1

x3 + 3x2 + 3x + 3
= 0 (5.18)

and lim
x→−∞

1

x3 + 3x2 + 3x + 3
= 0. (5.19)

Using all of the information in (5.14)–(5.19), we draw the graph seen in Figure 3.62.

Here, we can clearly see the vertical and horizontal asymptotes, the inflection points and

the fact that the function is decreasing across its entire domain. �
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In example 5.5, we see a function that has a vertical asymptote on only one side of

x = 0.

EXAMPLE 5.5 Graphing Where Some Features Are Difficult to See

Draw a graph of f (x) = 1

x
+
 

1

x2
+ 4 and show all significant features.

Solution The default graph produced by our computer algebra system is not

particularly helpful. (See Figure 3.63.) The default graph produced by most graphing

calculators (see Figure 3.64) appears to be better, but we can’t be certain of its adequacy

without further analysis.
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FIGURE 3.64

y = 1

x
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1
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First, you should notice that the domain of f is (−∞, 0) ∪ (0,∞). For this reason,

we consider the behavior of f as x approaches 0, by examining the limits:

lim
x→0+

 
1

x
+
 

1

x2
+ 4

 
= ∞, (5.20)

since 1/x → ∞, as x → 0+. For the limit as x → 0−, we must be more careful. First,

observe that

lim
x→0−

 
1

x
+
 

1

x2
+ 4

 

has the indeterminate form ∞ − ∞. We can resolve this by multiplying and dividing by

the conjugate of the expression:

lim
x→0−

 
1

x
+
 

1

x2
+ 4

 
= lim

x→0−

 
1

x
+
 

1

x2
+ 4

 1
x
−
 

1
x2

+ 4

1
x
−
 

1
x2

+ 4

= lim
x→0−

1
x2

−  1
x2

+ 4
 

1
x
−
 

1
x2

+ 4
= lim

x→0−

−4

1
x
−
 

1
x2

+ 4
= 0, (5.21)

since the denominator tends to −∞, as x → 0−. From (5.20) and (5.21), there is a

vertical asymptote at x = 0, but an unusual one, since f (x) → ∞ from one side of

x = 0, but tends to 0 from the other side. Observe that this is consistent with the

behavior seen in Figure 3.64. Next, we have

f  (x) = − 1

x2
+ 1

2

 
1

x2
+ 4

 −1/2
d

dx

 
1

x2

 

= − 1

x2
+ 1

2

 
1

x2
+ 4

 −1/2  
− 2

x3

 

= − 1

x2

 
1 + 1

x
 
1
x2

+ 4
 1/2
 
.
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While it’s fairly easy to see that f  (x) < 0, for x > 0, the situation for x < 0 is less

clear. (Why is that?) To shed some light on this, we first rewrite f  (x) as follows:

f  (x) = − 1

x2

 
1 + 1

x
 
1
x2

+ 4
 1/2
 

= − 1

x2

x
 
1
x2

+ 4
 1/2 + 1

x
 
1
x2

+ 4
 1/2

= − 1

x2

x
 
1
x2

+ 4
 1/2 + 1

x
 
1
x2

+ 4
 1/2 x

 
1
x2

+ 4
 1/2 − 1

x
 
1
x2

+ 4
 1/2 − 1

= − 1

x2

x2
 
1
x2

+ 4
 −1

x
 
1
x2

+ 4
 1/2  

x
 
1
x2

+ 4
 1/2 − 1

 
= −4

x
 
1
x2

+ 4
 1/2  

x
 
1
x2

+ 4
 1/2 − 1

 < 0,

for x < 0. We can conclude that f is decreasing on its entire domain. We leave it to the

reader to show that for x > 0.

f   (x) = 2

x3
+ 2(x2 + 2)

x2(x2 + 4)3/2
> 0, (5.22)

so that the graph is concave up for x > 0. Similarly, for x < 0, we can show that

f   (x) = 2

x3
− 2(x2 + 2)

x2(x2 + 4)3/2
< 0, (5.23)

so that the graph is concave down for x < 0. [In order to get the expressions for f   (x)
in (5.22) and (5.23), you will need to use the fact that

√
x2 = |x |.] Notice that since

x = 0 is not in the domain of the function, there is no inflection point. Next, note that

lim
x→∞

 
1

x
+
 

1

x2
+ 4

 
= 2, (5.24)

since 1/x → 0, as x → ∞. Likewise, we have

lim
x→−∞

 
1

x
+
 

1

x2
+ 4

 
= 2. (5.25)

From (5.24) and (5.25), observe that y = 2 is a horizontal asymptote, both as x → ∞
and as x → −∞. Finally, observe that f (x) > 0, for x > 0 and for x < 0,

f (x) = 1

x
+
 

1

x2
+ 4 =

1 + x

 
1
x2

+ 4

x

= 1 −
√
1 + 4x2

x
> 0,

since for x < 0,
√
x2 = |x | and since the numerator of the last expression is always

negative. Consequently, there are no x-intercepts. Putting together all of this

information, we see that the graph in Figure 3.64 is reasonably representative of the

behavior of the function. We refine this slightly in Figure 3.65. �

y

x

4

8

42 2 4

FIGURE 3.65

y = 1

x
+
 

1

x2
+ 4
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In our final example, we consider the graph of a function that is the sum of a trigono-

metric function and a polynomial.

EXAMPLE 5.6 Graphing the Sum of a Polynomial
and a Trigonometric Function

Draw a graph of f (x) = cos x − x , showing all significant features.

y

x

 4

 2

2

4

42 4  2

y

x

 10

 5

5

10

105 5 10

FIGURE 3.66a

y = cos x − x

FIGURE 3.66b

y = cos x − x

Solution The default graph provided by our computer algebra system can be seen in

Figure 3.66a. The graph produced by most graphing calculators looks like that in

Figure 3.66b. As always, we will use the calculus to determine the behavior of the

function more precisely. First, notice that the domain of f is the entire real line.

Consequently, there are no vertical asymptotes. Next, we have

f  (x) = − sin x − 1 ≤ 0, for all x . (5.26)

Further, f  (x) = 0 if and only if sin x = −1. So, there are critical numbers (here, these

are all locations of horizontal tangent lines), but since f  (x) does not change sign, there

are no local extrema. Even so, it is still of interest to find the locations of the horizontal

tangent lines. Recall that

sin x = −1 for x =
3π

2

and more generally, for x =
3π

2
+ 2nπ,

for any integer n. Next, we see that

f   (x) = − cos x
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and on the interval [0, 2π ], we have

cos x

⎧⎪⎪⎨
⎪⎪⎩
> 0, on

 
0,
π

2

 
∪
 
3π

2
, 2π

 

< 0, on

 
π

2
,
3π

2

 
.

So, f   (x) = − cos x

⎧⎪⎪⎨
⎪⎪⎩
< 0, on

 
0,
π

2

 
∪
 
3π

2
, 2π

 
Concave down.

> 0, on

 
π

2
,
3π

2

 
. Concave up.

(5.27)

Outside of [0, 2π ], f   (x) simply repeats this pattern. In particular, this says that the

graph has infinitely many inflection points, located at odd multiples of π/2.

To determine the behavior as x → ±∞, we examine the limits

lim
x→∞

(cos x − x) = −∞ (5.28)

and lim
x→−∞

(cos x − x) = ∞, (5.29)

since −1 ≤ cos x ≤ 1, for all x , while lim
x→∞

x = ∞.

Finally, to determine the x-intercept(s), we need to solve

f (x) = cos x − x = 0.

This can’t be solved exactly, however. Since f  (x) ≤ 0 for all x and Figures 3.66a and

3.66b show a zero around x = 1, there is only one zero and we must approximate this.

(Use Newton’s method or your calculator’s solver.) We get x ≈ 0.739085 as an

approximation to the only x-intercept. Assembling all of the information in

(5.26)–(5.29), we can draw the graph seen in Figure 3.67. Notice that Figure 3.66b

shows the behavior just as clearly as Figure 3.67, but for a smaller range of x- and

y-values. Which of these is more “representative” is open to discussion. �
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x
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 15
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10

15

FIGURE 3.67
y = cos x − x

BEYOND FORMULAS

The main characteristic of the examples in sections 3.3–3.5 is the interplay between

graphing and equation solving. To analyze the graph of a function, you will go back

and forth several times between solving equations (for critical numbers and inflection

points and so on) and identifying graphical features of interest. Even if you have access

to graphing technology, the equation solving may lead you to uncover hidden features

of the graph. What types of graphical features can sometimes be hidden?
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EXERCISES 3.5

WRITING EXERCISES

1. We have talked about sketching representative graphs, but it is

often impossible to draw a graph correctly to scale that shows

all of the properties we might be interested in. For example, try

to generate a computer or calculator graph that shows all three

local extrema of x4 − 25x3 − 2x2 + 80x − 3. When two ex-

tremahave y-coordinates of approximately−60 and50, it takes

a very large graph to also show a point with y = −40,000! If an

accurate graph cannot show all the points of interest, perhaps

a freehand sketch like the one shown below is needed.

x

y

There is no scale shown on the graph becausewe have distorted

different portions of the graph in an attempt to show all of the

interesting points. Discuss the relative merits of an “honest”

graph with a consistent scale but not showing all the points

of interest versus a caricature graph that distorts the scale but

does show all the points of interest.

2. While studying for a test, a friend of yours says that a graph is

not allowed to intersect an asymptote.While it is often the case

that graphs don’t intersect asymptotes, there is definitely not

any rule against it. Explain why graphs can intersect a horizon-

tal asymptote any number of times (Hint: Look at the graph of
1
x
sin x), but can’t pass through a vertical asymptote.

3. Explain why polynomials never have vertical or horizontal

asymptotes.

4. Explain how the graph of f (x) = cos x − x in example 5.6

relates to the graphs of y = cos x and y = −x . Based on this

discussion, explain how to sketch the graph of y = x + sin x .

In exercises 1–16, graph the function and completely discuss the

graph as in example 5.2.

1. f (x) = x3 − 3x2 + 3x 2. f (x) = x4 − 3x2 + 2x

3. f (x) = x5 − 2x3 + 1 4. f (x) = sin x − cos x

5. f (x) = x + 4

x
6. f (x) = x2 − 1

x

7. f (x) =
√
x2 + 1 8. f (x) = √

2x − 1

9. f (x) = 4x

x2 − x + 1
10. f (x) = 4x2

x2 − x + 1

11. f (x) = 3
√
x3 − 3x2 + 2x 12. f (x) =

√
x3 − 3x2 + 2x

13. f (x) = x5 − 5x 14. f (x) = x3 − 3

400
x

15. f (x) = 2

x
+
 

1

x2
+ 9 16. f (x) = 1

x
−
 

1

x2
+ 1

In exercises 17–28, determine all significant features (approxi-

mately if necessary) and sketch a graph.

17. f (x) = (x3 − 3x2 + 2x)2/3

18. f (x) = x6 − 10x5 − 7x4 + 80x3 + 12x2 − 192x

19. f (x) = x2 + 1

3x2 − 1
20. f (x) = 2x2

x3 + 1

21. f (x) = 5x

x3 − x + 1
22. f (x) = 4x

x2 + x + 1

23. f (x) = x2
 
x2 − 9 24. f (x) = 3

 
2x2 − 1

25. f (x) = 25 − 50
√
x2 + 0.25

x
26. f (x) = sin x − 1

2
sin 2x

27. f (x) = x4 − 16x3 + 42x2 − 39.6x + 14

28. f (x) = x4 + 32x3 − 0.02x2 − 0.8x

In exercises 29–34, the “family of functions” contains a param-

eter c. The value of c affects the properties of the functions.

Determine what differences, if any, there are for c being zero,

positive or negative. Then determine what the graphwould look

like for very large positive c’s and for very large negative c’s.

29. f (x) = x4 + cx2 30. f (x) = x4 + cx2 + x

31. f (x) = x2

x2 + c2
32. f (x) = x2√

x2 + c2

33. f (x) = sin(cx) 34. f (x) = x2
√
c2 − x2

35. In a variety of applications, researchers model a phenomenon

whose graph starts at the origin, rises to a single maximum

and then drops off to a horizontal asymptote of y = 0. For ex-

ample, the probability density function of events such as the

time from conception to birth of an animal and the amount
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of time surviving after contracting a fatal disease might have

these properties. Show that the family of functions
x

x2 + b
has

these properties for all positive constants b.What effect does

b have on the location of the maximum? In the case of the

time since conception, what would b represent? In the case of

survival time, what would b represent?

36. The “FM” in FM radio stands for frequency modulation, a

method of transmitting information encoded in a radio wave

by modulating (or varying) the frequency. A basic example

of such a modulated wave is f (x) = cos (10x + 2 cos x). Use

computer-generated graphs of f (x), f  (x) and f   (x) to try to

locate all local extrema of f (x).

37. A rational function is a function of the form
p(x)

q(x)
, where p(x)

and q(x) are polynomials. Is it true that all rational functions

have vertical asymptotes? Is it true that all rational functions

have horizontal asymptotes?

38. It can be useful to identify asymptotes other than vertical and

horizontal. For example, the parabola y = x2 is an asymptote

of f (x) if lim
x→∞

[ f (x) − x2] = 0 and/or lim
x→−∞

[ f (x) − x2] = 0.

Show that x2 is an asymptote of f (x) = x4 − x2 + 1

x2 − 1
. Graph

y = f (x) and zoom out until the graph looks like a parabola.

(Note: The effect of zooming out is to emphasize large values

of x .)

A function f has a slant asymptote y  mx  b (m   0) if

lim
x→∞

[ f (x)− (mx b)] 0 and/or lim
x→−∞

[ f (x)− (mx b)] 0.

In exercises 39–44, find the slant asymptote. (Use long division to

rewrite the function.) Then, graph the function and its asymp-

tote on the same axes.

39. f (x) = 3x2 − 1

x
40. f (x) = 3x2 − 1

x − 1

41. f (x) = x3 − 2x2 + 1

x2
42. f (x) = x3 − 1

x2 − 1

43. f (x) = x4

x3 + 1
44. f (x) = x4 − 1

x3 + x

In exercises 45–48, find a function whose graph has the given

asymptotes.

45. x = 1, x = 2 and y = 3

46. x = −1, x = 1 and y = 0

47. x = −1, x = 1, y = −2 and y = 2

48. x = 1, y = 2 and x = 3

EXPLORATORY EXERCISES

1. For each function, find a polynomial p(x) such that

lim
x→∞

[ f (x) − p(x)] = 0.

(a)
x4

x + 1
(b)

x5 − 1

x + 1
(c)

x6 − 2

x + 1

Show by zooming out that f (x) and p(x) look similar for large

x . The first term of a polynomial is the term with the highest

power (e.g., x3 is the first term of x3 − 3x + 1).Can you zoom

out enough to make the graph of f (x) look like the first term

of its polynomial asymptote? State a very quick rule enabling

you to look at a rational function and determine the first term

of its polynomial asymptote (if one exists).

2. One of the natural enemies of the balsam fir tree is the spruce

budworm, which attacks the leaves of the fir tree in devastat-

ing outbreaks. Define N (t) to be the number of worms on a

particular tree at time t . A mathematical model of the popula-

tion dynamics of the worm must include a term to indicate the

worm’s death rate due to its predators (e.g., birds). The form

of this term is often taken to be
B[N (t)]2

A2 + [N (t)]2
for positive con-

stants A and B. Graph the functions
x2

4 + x2
,

2x2

1 + x2
,

x2

9 + x2

and
3x2

1 + x2
for x > 0. Based on these graphs, discuss why

B[N (t)]2

A2 + [N (t)]2
is a plausible model for the death rate by preda-

tion. What role do the constants A and B play? The possible

stable population levels for the spruce budworms are deter-

mined by intersections of the graphs of y = r (1 − x/k) and

y = x

1 + x2
. Here, x = N/A, r is proportional to the birthrate

of the budworms and k is determined by the amount of food

available to the budworms. Note that y = r (1 − x/k) is a line

with y-intercept r and x-intercept k. How many solutions are

there to the equation r (1 − x/k) = x

1 + x2
? (Hint: The answer

depends on the values of r and k.) One current theory is that

outbreaks are caused in situations where there are three so-

lutions and the population of budworms jumps from a small

population to a large population.

3. Suppose that f (x) is a function with two derivatives and

that f (a) = f  (a) = 0 but f   (a)  = 0 for some number a.

Show that f (x) has a local extremum at x = a. Next, sup-

pose that f (x) is a function with three derivatives and that

f (a) = f  (a) = f   (a) = 0 but f    (a)  = 0 for some number

a. Show that f (x) does not have a local extremum at x = a.

Generalize your work to the case where f (k)(a) = 0 for

k = 0, 1, . . . , n − 1, but f (n)(a)  = 0, keeping in mind that

there are different conclusions depending on whether n is odd

or even. Use this result to determine whether f (x) = x sin x2

or g(x) = x2 sin(x2) has a local extremum at x = 0.
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3.6 OPTIMIZATION

Everywhere in business and industry today, we see people struggling to minimize waste and

maximize productivity. We are now in a position to bring the power of the calculus to bear

on problems involving finding a maximum or a minimum. This section contains a number

of illustrations of such problems. Pay close attention to how we solve the problems. We

start by giving a few general guidelines. (Notice that we said guidelines and not rules.) Do

not memorize them, but rather keep these in mind as you work through the section.

r If there’s a picture to draw, draw it! Don’t try to visualize how things look in your

head. Put a picture down on paper and label it.
r Determine what the variables are and how they are related.
r Decide what quantity needs to be maximized or minimized.
r Write an expression for the quantity to be maximized or minimized in terms of only

one variable. To do this, you may need to solve for any other variables in terms of this

one variable.
r Determine the minimum and maximum allowable values (if any) of the variable

you’re using.
r Solve the problem. (Be sure to answer the question that is asked.)

We begin with a simple example where the goal is to accomplish what businesses face

every day: getting the most from limited resources.

EXAMPLE 6.1 Constructing a Rectangular Garden
of Maximum Area

You have 40 (linear) feet of fencing with which to enclose a rectangular space for a

garden. Find the largest area that can be enclosed with this much fencing and the

dimensions of the corresponding garden.
OR

FIGURE 3.68
Possible plots

x

y

FIGURE 3.69
Rectangular plot

Solution First, note that there are lots of possibilities. We could enclose a plot that is

very long but narrow, or one that is very wide but not very long. (See Figure 3.68.) How

are we to decide which configuration is optimal? We first draw a picture and label it

appropriately. (See Figure 3.69.) The variables for a rectangular plot are length and

width, which we name x and y, respectively.

We want to find the dimensions of the largest possible area, that is, maximize

A = xy.

Notice immediately that this function has two variables and so, cannot be dealt with via

the means we have available. However, there is another piece of information that we can

use here. If we want the maximum area, then all of the fencing must be used. This says

that the perimeter of the resulting fence must be 40 and hence,

40 = perimeter = 2x + 2y. (6.1)

Notice that we can use (6.1) to solve for one variable (either one) in terms of the other.

We have

2y = 40 − 2x
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and hence, y = 20 − x .

Substituting for y, we get that

A = xy = x(20 − x).

So, our job is to find the maximum value of the function

A(x) = x(20 − x).

Hold it! You may want to multiply out this expression. Unless you have a clear picture

of how it will affect your later work, leave the function alone!

Before we maximize A(x), we need to determine the interval in which x must lie.

Since x is a distance, we must have 0 ≤ x . Further, since the perimeter is 40 , we must

have x ≤ 20. (Why don’t we have x ≤ 40?) So, we want to find the maximum value of

A(x) on the closed interval [0, 20]. This is now a simple problem. As a check on what a

reasonable answer should be, we draw a graph of y = A(x) (see Figure 3.70) on the

interval [0, 20]. The maximum value appears to occur around x = 10. Now, let’s

analyze the problem carefully. We have

A (x) = 1(20 − x) + x(−1)

= 20 − 2x

= 2(10 − x).

y

x

20

40

60

80

100

2015105

FIGURE 3.70
y = x(20 − x)

So, the only critical number is x = 10 and this is in the interval under consideration.

Recall that the maximum and minimum values of a continuous function on a closed and

bounded interval must occur at either the endpoints or a critical number. This says that

we need only compare the function values

A(0) = 0, A(20) = 0 and A(10) = 100.

Thus, the maximum area that can be enclosed with 40 of fencing is 100 ft2. We also

want the dimensions of the plot. (This result is only of theoretical value if we don’t

know how to construct the rectangle with the maximum area.) We have that x = 10

and

y = 20 − x = 10.

That is, the rectangle of perimeter 40 with maximum area is a square 10 on a side. �

Amore general problem that you can now solve is to show that (given a fixed perimeter)

the rectangle of maximum area is a square. This is virtually identical to example 6.1 and is

left as an exercise. It’s worth noting here that this more general problem is one that cannot

be solved by simply using a calculator to draw a graph. You’ll need to use some calculus

here.

Manufacturing companies routinely make countless decisions that affect the efficiency

of their production processes. One decision that is surprisingly important is how to eco-

nomically package products for shipping. Example 6.2 provides a simple illustration of this

problem.
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EXAMPLE 6.2 Constructing a Box of Maximum Volume

A square sheet of cardboard 18  on a side is made into an open box (i.e., there’s no top),

by cutting squares of equal size out of each corner (see Figure 3.71a) and folding up the

sides along the dotted lines. (See Figure 3.71b.) Find the dimensions of the box with the

maximum volume.

x

x

18 18   2x

18

18   2x

FIGURE 3.71a
A sheet of cardboard

18   2x

18   2x

x

FIGURE 3.71b
Rectangular box

Solution Recall that the volume of a rectangular parallelepiped (a box) is given by

V = l × w × h.

From Figure 3.71b, we can see that the height is h = x , while the length and width are

l = w = 18 − 2x . Thus, we can write the volume in terms of the one variable x as

V = V (x) = (18 − 2x)2(x) = 4x(9 − x)2.

Once again, don’t multiply this out, just out of habit. Notice that since x is a distance,

we have x ≥ 0. Further, we have x ≤ 9, since cutting squares of side 9 out of each

corner will cut up the entire sheet of cardboard. Thus, we are faced with finding the

absolute maximum of the continuous function

V (x) = 4x(9 − x)2

on the closed interval 0 ≤ x ≤ 9.

This should be a simple matter. The graph of y = V (x) on the interval [0, 9] is

seen in Figure 3.72. From the graph, the maximum volume seems to be somewhat

over 400 and seems to occur around x = 3. Now, we solve the problem precisely.

We have

V  (x) = 4(9 − x)2 + 4x(2)(9 − x)(−1) Product rule and chain rule.

= 4(9 − x)[(9 − x) − 2x] Factor out 4(9 − x).

= 4(9 − x)(9 − 3x).

y

x

100

200

300

400

500

2 864

FIGURE 3.72
y = 4x(9 − x)2

So, V has two critical numbers, 3 and 9, and these are both in the interval under

consideration. We now need only compare the value of the function at the endpoints and

the critical numbers. We have

V (0) = 0, V (9) = 0 and V (3) = 432.

Obviously, the maximum possible volume is 432 cubic inches. We can achieve this

volume if we cut squares of side 3  out of each corner. You should note that this

corresponds with what we expected from the graph of y = V (x) in Figure 3.72.

Finally, observe that the dimensions of this optimal box are 12  long by 12  wide by
3  deep. �

When a new building is built, it must be connected to existing telephone and power

cables, water and sewer lines and paved roads. If the cables, water or sewer lines or road

are curved, then it may not be obvious how to make the shortest (i.e., least expensive)

connection possible. In examples 6.3 and 6.4, we consider the general problem of finding

the shortest distance from a point to a curve.
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EXAMPLE 6.3 Finding the Closest Point on a Parabola

Find the point on the parabola y = 9 − x2 closest to the point (3, 9). (See Figure 3.73.)

y

x

9

y   9   x2

(3, 9)

4 4

(x, y)

FIGURE 3.73
y = 9 − x2

y

x

20

40

60

80

1 32

FIGURE 3.74
y = (x − 3)2 + x4

Solution Using the usual distance formula, we find that the distance between the

point (3, 9) and any point (x, y) is

d =
 
(x − 3)2 + (y − 9)2.

If the point (x, y) is on the parabola, note that its coordinates satisfy the equation

y = 9 − x2 and so, we can write the distance in terms of the single variable x as follows

d(x) =
 
(x − 3)2 + [(9 − x2) − 9]2

=
 
(x − 3)2 + (−x2)2

=
 
(x − 3)2 + x4.

Although we can certainly solve the problem in its present form, we can simplify our

work by observing that d(x) is minimized if and only if the quantity under the square

root is minimized. (We leave it as an exercise to show why this is true.) So, instead of

minimizing d(x) directly, we minimize the square of d(x):

f (x) = [d(x)]2 = (x − 3)2 + x4

instead. Notice from Figure 3.73 that any point on the parabola to the left of the y-axis

is farther away from (3, 9) than is the point (0, 9). Likewise, any point on the parabola

below the x-axis is farther from (3, 9) than is the point (3, 0). So, it suffices to look for

the closest point with

0 ≤ x ≤ 3.

See Figure 3.74 for a graph of y = f (x) over the interval of interest. Observe that the

minimum value of f (the square of the distance) seems to be around 5 and seems to

occur near x = 1.We have

f  (x) = 2(x − 3)1 + 4x3 = 4x3 + 2x − 6.

Notice that f  (x) factors. [One way to see this is to recognize that x = 1 is a zero of

f  (x), which makes (x − 1) a factor.] We have

f  (x) = 2(x − 1)(2x2 + 2x + 3).

So, x = 1 is a critical number. In fact, it’s the only critical number, since (2x2 + 2x + 3)

has no zeros. (Why not?) We now need only compare the value of f at the endpoints

and the critical number. We have

f (0) = 9, f (3) = 81 and f (1) = 5.

Thus, the minimum value of f (x) is 5. This says that the minimum distance from the

point (3, 9) to the parabola is
√
5 and the closest point on the parabola is (1, 8). Again,

notice that this corresponds with what we expected from the graph of y = f (x). �
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Example 6.4 is very similar to example 6.3, except that we need to use approximate

methods to find the critical number.

y

x

9

y   9   x2

4 4

(5, 11)

(x, y)

FIGURE 3.75
y = 9 − x2

EXAMPLE 6.4 Finding Minimum Distance Approximately

Find the point on the parabola y = 9 − x2 closest to the point (5, 11). (See Figure 3.75.)

y

x
1 2 3 4 5
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FIGURE 3.76
y = f (x) = [d(x)]2

Solution As in example 6.3, we want to minimize the distance from a fixed point [in

this case, the point (5, 11)] to a point (x, y) on the parabola. Using the distance formula,

the distance from any point (x, y) on the parabola to the point (5, 11) is

d =
 
(x − 5)2 + (y − 11)2

=
 
(x − 5)2 + [(9 − x2) − 11]2

=
 
(x − 5)2 + (x2 + 2)2.

Again, it is equivalent (and simpler) to minimize the quantity under the square root:

f (x) = [d(x)]2 = (x − 5)2 + (x2 + 2)2.

As in example 6.3, we can see from Figure 3.75 that any point on the parabola to the left

of the y-axis is farther from (5, 11) than is (0, 9). Likewise, any point on the parabola to

the right of x = 5 is farther from (5, 11) than is (5, −16). Thus, we minimize f (x) for

0 ≤ x ≤ 5. In Figure 3.76 we see a graph of y = f (x) on the interval of interest. The

minimum value of f seems to occur around x = 1. We can make this more precise as

follows:

f  (x) = 2(x − 5) + 2(x2 + 2)(2x)

= 4x3 + 10x − 10.
y
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FIGURE 3.77
y = f  (x)

Unlike in example 6.3, the expression for f  (x) has no obvious factorization. Our only
choice then is to find zeros of f  (x) approximately. First, we draw a graph of y = f  (x)
on the interval of interest. (See Figure 3.77.) The only zero appears to be slightly less

than 1. Using x0 = 1 as an initial guess in Newton’s method (applied to f  (x) = 0) or

using your calculator’s solver, you should get the approximate root xc ≈ 0.79728. We

now compare function values:

f (0) = 29, f (5) = 729 and f (xc) ≈ 24.6.

Thus, the minimum distance from (5, 11) to the parabola is approximately√
24.6 ≈ 4.96 and the closest point on the parabola is located at approximately

(0.79728, 8.364). �

Notice that in both Figures 3.73 and 3.75, the shortest path appears to be perpendicular

to the tangent line to the curve at the point where the path intersects the curve. We leave it as

an exercise to prove that this is always the case. This observation is an important geometric

principle that applies to many problems of this type.
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REMARK 6.1

At this point you might be tempted to forgo the comparison of function values at the

endpoints and at the critical numbers. After all, in all of the examples we have seen so

far, the desired maximizer or minimizer (i.e., the point at which the maximum or

minimum occurred) was the only critical number in the interval under consideration.

You might just suspect that if there is only one critical number, it will correspond to

the maximizer or minimizer for which you are searching. Unfortunately, this is not

always the case. In 1945, two prominent aeronautical engineers derived a function to

model the range of an aircraft. Their intention was to use this function to discover

how to maximize the range. They found a critical number of this function

(corresponding to distributing virtually all of the plane’s weight in the wings) and

reasoned that it gave the maximum range. The result was the famous “Flying Wing”

aircraft. Some years later, it was argued that the critical number they found

corresponded to a local minimum of the range function. In the engineers’ defense,

they did not have easy, accurate computational power at their fingertips, as we do

today. Remarkably, this design strongly resembles the modern B-2 Stealth bomber.

This story came out as controversy brewed over the production of the B-2 (see

Science, 244, pp. 650–651, May 12, 1989; also see the Monthly of the Mathematical

Association of America, October, 1993, pp. 737–738). The moral should be crystal

clear: check the function values at the critical numbers and at the endpoints. Do not

simply assume (even by virtue of having only one critical number) that a given critical

number corresponds to the extremum you are seeking.

Next, we consider an optimization problem that cannot be restricted to a closed interval.

We will use the fact that for a continuous function, a single local extremum must be an

absolute extremum. (Think about why this is true.)

EXAMPLE 6.5 Designing a Soda Can That Uses a Minimum
Amount of Material

A soda can is to hold 12 fluid ounces. Find the dimensions that will minimize the

amount of material used in its construction, assuming that the thickness of the material

is uniform (i.e., the thickness of the aluminum is the same everywhere in the can).

Solution First, we draw and label a picture of a typical soda can. (See Figure 3.78.)

Here we have drawn a right circular cylinder of height h and radius r . Assuming

uniform thickness of the aluminum, notice that we minimize the amount of material by

minimizing the surface area of the can. We have

area = area of top + area of bottom + curved surface area

= 2πr2 + 2πrh. (6.2)

h

r

FIGURE 3.78
Soda can

We can eliminate one of the variables by using the fact that the volume (using 1 fluid

ounce ≈ 1.80469 in.3) must be

12 fluid ounces ≈ 12 fl oz × 1.80469
in.3

fl oz
= 21.65628 in.3.
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Further, the volume of a right circular cylinder is

vol = πr2h

and so, h = vol

πr2
≈ 21.65628

πr2
. (6.3)

Thus, from (6.2) and (6.3), the surface area is approximately

A(r ) = 2πr2 + 2πr
21.65628

πr2

= 2π

 
r2 + 21.65628

πr

 
.

So, our job is to minimize A(r ), but here, there is no closed and bounded interval of

allowable values. In fact, all we can say is that r > 0. We can have r as large or small as

you can imagine, simply by taking h to be correspondingly small or large, respectively.

That is, we must find the absolute minimum of A(r ) on the open and unbounded

interval (0,∞). To get an idea of what a plausible answer might be, we graph y = A(r ).

(See Figure 3.79.) There appears to be a local minimum (slightly less than 50) located

between r = 1 and r = 2. Next, we compute

A (r ) = d

dr

 
2π

 
r2 + 21.65628

πr

  

= 2π

 
2r − 21.65628

πr2

 

= 2π

 
2πr3 − 21.65628

πr2

 
.
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FIGURE 3.79
y = A(r )

Notice that the only critical numbers are those for which the numerator of the fraction is

zero:

0 = 2πr3 − 21.65628.

This occurs if and only if r3 = 21.65628

2π

and hence, the only critical number is

r = rc = 3

 
21.65628

2π
≈ 1.510548.

Further, notice that for 0 < r < rc, A
 (r ) < 0 and for rc < r, A (r ) > 0. That is, A(r ) is

decreasing on the interval (0, rc) and increasing on the interval (rc,∞). Thus, A(r )

has not only a local minimum, but also an absolute minimum at r = rc. Notice, too,

that this corresponds with what we expected from the graph of y = A(r ) in Figure 3.79.

This says that the can that uses a minimum of material has radius rc ≈ 1.510548 and

height

h = 21.65628

πr2c
≈ 3.0211.

�
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Note that the optimal can from example 6.5 is “square,” in the sense that the height

(h) equals the diameter (2r ). Also, we should observe that example 6.5 is not completely

realistic. A standard 12-ounce soda can has a radius of about 1.156  . You should review

example 6.5 to find any unrealistic assumptionswemade.We study the problemof designing

a soda can further in the exercises.

In our final example, we consider a problem where most of the work must be done

numerically and graphically.

EXAMPLE 6.6 Minimizing the Cost of Highway Construction

The state wants to build a new stretch of highway to link an existing bridge with a

turnpike interchange, located 8 miles to the east and 8 miles to the south of the bridge.

There is a 5-mile-wide stretch of marshland adjacent to the bridge that must be crossed.

(See Figure 3.80.) Given that the highway costs $10 million per mile to build over the

marsh and only $7 million per mile to build over dry land, how far to the east of the

bridge should the highway be when it crosses out of the marsh?

Bridge

Marsh

Interchange

8   x

5

3

x

FIGURE 3.80
A new highway

Solution You might guess that the highway should cut directly across the marsh, so as

to minimize the amount built over marshland. We will use the calculus to decide this

question. We let x represent the distance in question. (See Figure 3.80.) Then, the

interchange lies (8 − x) miles to the east of the point where the highway leaves the

marsh. Thus, the total cost (in millions of dollars) is

cost = 10(distance across marsh) + 7(distance across dry land ).

Using the Pythagorean Theorem on the two right triangles seen in Figure 3.80, we get

the cost function

C(x) = 10
 
x2 + 25 + 7

 
(8 − x)2 + 9.

x
2 4 6 8

100

110

120

y

FIGURE 3.81
y = C(x)

Observe from Figure 3.80 that we must have 0 ≤ x ≤ 8. So, we have the routine

problem of minimizing a continuous function C(x) over the closed and bounded

interval [0, 8]. Or is it really that routine? First, we draw a graph of y = C(x) on the

interval in question to get an idea of a plausible answer. (See Figure 3.81.) From the

graph, the minimum appears to be slightly less than 100 and occurs around x = 4.
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We now compute

C  (x) = d

dx

 
10
 
x2 + 25 + 7

 
(8 − x)2 + 9

 
= 5(x2 + 25)−1/2(2x) + 7

2
[(8 − x)2 + 9]−1/2(2)(8 − x)1(−1)

= 10x√
x2 + 25

− 7(8 − x) 
(8 − x)2 + 9

.

y

x
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10
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42 6 8

FIGURE 3.82
y = C  (x)

First, note that the only critical numbers are where C  (x) = 0. (Why?) The only way to

find these is to approximate them. From the graph of y = C  (x) seen in Figure 3.82, the

only zero of C  (x) on the interval [0, 8] appears to be between x = 3 and x = 4. We

approximate this zero numerically (e.g., with bisections or your calculator’s solver), to

obtain the approximate critical number

xc ≈ 3.560052.

Now, we need only compare the value of C(x) at the endpoints and at this one critical

number:

C(0) ≈ $109.8 million,

C(8) ≈ $115.3 million

and C(xc) ≈ $98.9 million.

So, by using a little calculus, we can save the taxpayers more than $10 million over

cutting directly across the marsh and more than $16 million over cutting diagonally

across the marsh (not a bad reward for a few minutes of work). �

The examples that we’ve presented in this section together with the exercises should

give you the basis for solving a wide range of applied optimization problems.When solving

these problems, be careful to draw good pictures, as well as graphs of the functions involved.

Make sure that the answer you obtain computationally is consistent with what you expect

from the graphs. If not, further analysis is required to see what you have missed. Also, make

sure that the solution makes physical sense, when appropriate. All of these multiple checks

on your work will reduce the likelihood of error.

EXERCISES 3.6

WRITING EXERCISES

1. Suppose some friends complain to you that they can’t work any

of the problems in this section.When you ask to see their work,

they say that they couldn’t even get started. In the text, we have

emphasized sketching a picture and defining variables. Part of

the benefit of this is to help you get started writing something

(anything) down. Do you think this advice helps?What do you

think is the most difficult aspect of these problems? Give your

friends the best advice you can.

2. We have neglected one important aspect of optimization prob-

lems, an aspect that might be called “common sense.” For ex-

ample, suppose you are finding the optimal dimensions for a

fence and the mathematical solution is to build a square fence

of length 10
√
5 feet on each side. At the meeting with the car-

penterwho is going to build the fence,what length fence do you

order? Why is 10
√
5 probably not the best way to express the

length? We can approximate 10
√
5 ≈ 22.36.What would you
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tell the carpenter?Suppose the carpenter acceptsmeasurements

down to the inch.Assuming that thebuilding constraintwas that

the perimeter of the fence could not exceed a certain figure,why

should you truncate to 22 4  instead of rounding up to 22 5  ?

3. In example 6.3, we stated that d(x) = √
f (x) is minimized by

exactly the same x-value(s) as f (x). Use the fact that
√
x is

an increasing function to explain why this is true.

4. Suppose that f (x) is a continuous function with a single crit-

ical number and f (x) has a local minimum at that critical

number. Explain why f (x) also has an absolute minimum at

the critical number.

1. Give an example showing that f (x) and sin ( f (x)) need not be

minimized by the same x-values.

2. True or false: [ f (x)]3 + 3 f (x) is minimized by exactly the

same x-value(s) as f (x).

3. A three-sided fence is to be built next to a straight section of

river, which forms the fourth side of a rectangular region. The

enclosed area is to equal 1800 ft2. Find the minimum perimeter

and the dimensions of the corresponding enclosure.

4. A three-sided fence is to be built next to a straight section of

river, which forms the fourth side of a rectangular region. There

is 96 feet of fencing available. Find the maximum enclosed

area and the dimensions of the corresponding enclosure.

5. A two-pen corral is to be built. The outline of the corral forms

two identical adjoining rectangles. If there is 120 ft of fencing

available, what dimensions of the corral will maximize the

enclosed area?

6. A showroom for a department store is to be rectangular with

walls on three sides, 6-ft door openings on the two facing

sides and a 10-ft door opening on the remaining wall. The

showroom is to have 800 ft2 of floor space. What dimensions

will minimize the length of wall used?

7. Show that the rectangle of maximum area for a given perimeter

P is always a square.

8. Show that the rectangle of minimum perimeter for a given area

A is always a square.

9. Find the point on the curve y = x2 closest to the point (0, 1).

10. Find the point on the curve y = x2 closest to the point (3, 4).

11. Find the point on the curve y = cos x closest to the point (0, 0).

12. Find the point on the curve y = cos x closest to the

point (1, 1).

13. In exercises 9 and 10, find the slope of the line through the

given point and the closest point on the given curve. Show that

in each case, this line is perpendicular to the tangent line to

the curve at the given point.

14. Sketch the graph of some function y = f (x) and mark a

point not on the curve. Explain why the result of exercise 13

is true. (Hint: Pick a point for which the joining line is not

perpendicular and explain why you can get closer.)

15. A box with no top is to be built by taking a 6  -by-10  sheet
of cardboard and cutting x-in. squares out of each corner and

folding up the sides. Find the value of x that maximizes the

volume of the box.

16. A box with no top is to be built by taking a 12  -by-16  sheet
of cardboard and cutting x-in. squares out of each corner and

folding up the sides. Find the value of x that maximizes the

volume of the box.

17. A water line runs east-west. A town wants to connect two

new housing developments to the line by running lines from a

single point on the existing line to the two developments. One

development is 3 miles south of the existing line; the other de-

velopment is 4 miles south of the existing line and 5 miles east

of the first development. Find the place on the existing line to

make the connection to minimize the total length of new line.

18. A company needs to run an oil pipeline from an oil rig 25miles

out to sea to a storage tank that is 5 miles inland. The shoreline

runs east-west and the tank is 8 miles east of the rig. Assume it

costs $50 thousand per mile to construct the pipeline under

water and $20 thousand per mile to construct the pipeline on

land. The pipeline will be built in a straight line from the rig to

a selected point on the shoreline, then in a straight line to the

storage tank. What point on the shoreline should be selected

to minimize the total cost of the pipeline?

19. A city wants to build a new section of highway to link an

existing bridge with an existing highway interchange, which

lies 8 miles to the east and 10 miles to the south of the bridge.

The first 4 miles south of the bridge is marshland. Assume

that the highway costs $5 million per mile over marsh and

$2 million per mile over dry land. The highway will be built

in a straight line from the bridge to the edge of the marsh,

then in a straight line to the existing interchange. At what

point should the highway emerge from the marsh in order to

minimize the total cost of the new highway? How much is

saved over building the new highway in a straight line from the

bridge to the interchange? (Hint: Use similar triangles to find

the point on the boundary corresponding to a straight path and

evaluate your cost function at that point.)

20. After construction has begun on the highway in exercise 19, the

cost per mile over marshland is reestimated at $6 million. Find

the point on the marsh/dry land boundary that would minimize

the total cost of the highway with the new cost function. If the

construction is too far along to change paths, how much extra

cost is there in using the path from exercise 19?

21. After construction has begun on the highway in exercise 19, the

cost per mile over dry land is reestimated at $3 million. Find

the point on the marsh/dry land boundary that would minimize

the total cost of the highway with the new cost function. If the

construction is too far along to change paths, how much extra

cost is there in using the path from exercise 19?
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22. In an endurance contest, contestants 2 miles at sea need to

reach a location 2 miles inland and 3 miles east (the shoreline

runs east-west). Assume a contestant can swim 4 mph and

run 10 mph. To what point on the shoreline should the person

swim to minimize the total time? Compare the amount of time

spent in the water and the amount of time spent on land.

23. Suppose that light travels from point A to point B as shown

in the figure. (Recall that light always follows the path that

minimizes time.) Assume that the velocity of light above the

boundary line is v1 and the velocity of light below the boundary

is v2. Show that the total time to get from point A to point B is

T (x) =
√
1 + x2

v1
+
 
1 + (2 − x)2

v2
.

Write out the equation T  (x) = 0, replace the square roots

using the sines of the angles in the figure and derive Snell’s

Law
sin θ1

sin θ2
= v1

v2
.

u1

u 2

A

x

2   x

B

1

1

Exercise 23

24. Suppose that light reflects off a mirror to get from point A

to point B as indicated in the figure. Assuming a constant

velocity of light, we can minimize time by minimizing the

distance traveled. Find the point on the mirror that minimizes

the distance traveled. Show that the angles in the figure are

equal (the angle of incidence equals the angle of reflection).

A

B
2

1

x 4   x

u1 u 2

Exercise 24

25. A soda can is to hold 12 fluid ounces. Suppose that the bottom

and top are twice as thick as the sides. Find the dimensions

of the can that minimize the amount of material used. (Hint:

Instead of minimizing surface area, minimize the cost, which

is proportional to the product of the thickness and the area.)

26. Following example 6.5, we mentioned that real soda cans have

a radius of about 1.156  . Show that this radius minimizes the

cost if the top and bottom are 2.23 times as thick as the sides.

27. The human cough is intended to increase the flow of air to the

lungs, by dislodging any particles blocking the windpipe and

changing the radius of the pipe. Suppose a windpipe under no

pressure has radius r0. The velocity of air through the wind-

pipe at radius r is approximately V (r ) = cr 2(r0 − r ) for some

constant c. Find the radius that maximizes the velocity of air

through the windpipe. Does this mean the windpipe expands

or contracts?

28. To supply blood to all parts of the body, the human artery

system must branch repeatedly. Suppose an artery of radius r

branches off from an artery of radius R (R > r ) at an angle θ .

The energy lost due to friction is approximately

E(θ ) = csc θ

r 4
+ 1 − cot θ

R4
.

Find the value of θ that minimizes the energy loss.

29. In an electronic device, individual circuits may serve many

purposes. In some cases, the flow of electricity must be con-

trolled by reducing the power instead of amplifying it. In the

circuit shown here, a voltage V volts and resistance R ohms

are given. We want to determine the size of the remaining

resistor (x ohms). The power absorbed by the circuit is

p(x) = V 2x

(R + x)2
.

Find the value of x that maximizes the power absorbed.

R

V

 

 
x

30. In an AC circuit with voltage V (t) = v sin(2π ft), a voltmeter

actually shows the average (root-mean-square) voltage of

v/
√
2. If the frequency is f = 60 (Hz) and the meter registers

115 volts, find the maximum voltage reached. [Hint: This is

“obvious” if you determine v and think about the graph

of V (t).]

31. A Norman window has the outline of a semicircle on top of a

rectangle, as shown in the figure. Suppose there is 8 + π feet

of wood trim available. Discuss why a window designer might

want to maximize the area of the window. Find the dimensions
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of the rectangle (and, hence, the semicircle) that will maximize

the area of the window.

32. Suppose a wire 2 ft long is to be cut into two pieces, each of

which will be formed into a square. Find the size of each piece

to maximize the total area of the two squares.

33. An advertisement consists of a rectangular printed region plus

1-in. margins on the sides and 2-in. margins at top and bottom.

If the area of the printed region is to be 92 in.2, find the di-

mensions of the printed region and overall advertisement that

minimize the total area.

34. An advertisement consists of a rectangular printed region plus

1-in. margins on the sides and 1.5-in. margins at top and bot-

tom. If the total area of the advertisement is to be 120 in.2,

what dimensions should the advertisement be to maximize the

area of the printed region?

35. A hallway of width a = 5 ft meets a hallway of width

b = 4 ft at a right angle. Find the length of the longest ladder

that could be carried around the corner. (Hint: Express the

length of the ladder as a function of the angle θ in the figure.)

u

a

b

36. In exercise 35, show that the maximum ladder length for

general a and b equals (a2/3 + b2/3)3/2.

37. In exercise 35, suppose that a = 5 and the ladder is 8 ft long.

Find the minimum value of b such that the ladder can turn the

corner.

38. Solve exercise 37 for a general a and ladder length L .

39. A company’s revenue for selling x (thousand) items is given

by R(x) = 35x − x2

x2 + 35
. Find the value of x that maximizes the

revenue and find the maximum revenue.

40. The function in exercise 39 has a special form. For any positive

constant c, find x to maximize R(x) = cx − x2

x2 + c
.

41. In t hours, a worker makes Q(t) = −t3 + 12t2 + 60t items.

Graph Q  (t) and explain why it can be interpreted as the

efficiency of the worker. Find the time at which the worker’s

efficiency is a maximum.

42. Suppose that Q(t) represents the output of a worker, as in exer-

cise 41. If T is the length of a workday, then the graph of Q(t)

should be increasing for 0 ≤ t ≤ T . Suppose that the graph

of Q(t) has a single inflection point for 0 ≤ t ≤ T , called

the point of diminishing returns. Show that the worker’s

efficiency is maximized at the point of diminishing returns.

43. Suppose that group tickets to a concert are priced at $40 per

ticket if 20 tickets are ordered, but cost $1 per ticket less for

each extra ticket ordered, up to a maximum of 50 tickets. (For

example, if 22 tickets are ordered, the price is $38 per ticket.)

Find the number of tickets that maximizes the total cost of the

tickets.

44. In exercise 43, if management wanted the solution to be 50

(that is, ordering the maximum number of tickets produces the

maximum cost), how much should the price be discounted for

extra tickets ordered?

45. In sports where balls are thrown or hit, the ball often finishes

at a different height than it starts. Examples include a downhill

golf shot and a basketball shot. In the diagram, a ball is released

at an angle θ and finishes at an angle β above the horizontal

(for downhill trajectories, β would be negative). Neglecting

air resistance and spin, the horizontal range is given by

R = 2v2 cos2 θ

g
(tan θ − tanβ)

if the initial velocity is v and g is the gravitational constant.

In the following cases, find θ to maximize R (treat v and g as

constants): (a) β = 10◦, (b) β = 0◦ and (c) β = −10◦. Verify
that θ = 45◦ + β◦/2 maximizes the range.

u b

46. For your favorite sport in which it is important to throw or

hit a ball a long way, explain the result of exercise 45 in the

language of your sport.

47. A running track is to be built around a rectangular field, with

two straightaways and two semicircular curves at the ends, as

indicated in the figure. The length of the track is to be 400

meters. Find the dimensions that will maximize the area of the

enclosed rectangle. Show that equal lengths are used on the

straightaways and on the curves.
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48. Suppose that the goal in the construction of the running track

in exercise 47 is to maximize the total enclosed area. Which

portions of the problem change? Compare the solution in this

case to the solution in exercise 47.

49. The equation
x2

a2
+ y2

b2
= 1 defines an ellipse with

−a ≤ x ≤ a and−b ≤ y ≤ b. The area enclosed by the ellipse

equals πab. Find the maximum area of a rectangle inscribed in

the ellipse (that is, a rectangle with sides parallel to the x-axis

and y-axis and vertices on the ellipse). Show that the ratio of

the maximum inscribed area to the area of the ellipse to the

area of the circumscribed rectangle is 1 : π
2
: 2.

50. Show that the maximum volume enclosed by a right circular

cylinder inscribed in a sphere equals 1√
3
times the volume of

the sphere.

51. Find the maximum area of an isosceles triangle of given

perimeter p. [Hint: Use Heron’s formula for the area of a

triangle of sides a, b and c : A = √
s(s − a)(s − b)(s − c),

where s = 1
2
(a + b + c).]

EXPLORATORY EXERCISES

1. In exploratory exercise 2 in section 3.2, you did a preliminary

investigation of Kepler’s wine cask problem. You showed that

a height-to-diameter ratio (x/y) of
√
2 for a cylindrical barrel

will maximize the volume. (See Figure a.) However, real wine

casks are bowed out (like beer kegs). Kepler continued his

investigation of wine cask construction by approximating a

cask with the straight-sided barrel in Figure b. It can be shown

(we told you Kepler was good!) that the volume of this barrel

is V = 2
3
π [y2 + (w − y)2 + y(w − y)]

√
z2 − w2. Treatingw

and z as constants, show that V  (y) = 0 if y = w/2. Recall
that such a critical point can correspond to a maximum or

minimum of V (y), but it also could correspond to something

else (e.g., an inflection point). To discover which one we have

here, redraw Figure b to scale (show the correct relationship

between 2y and w). In physical terms (think about increasing

and decreasing y), argue that this critical point is neither amax-

imum nor minimum. Interestingly enough, such a nonextreme

critical point would have a definite advantage to the Austrian

vintners. Recall that their goal was to convert the measurement

z into an estimate of the volume. The vintners would hope that

small imperfections in the dimensions of the cask would have

little effect on the volume. Explain why V  (y) = 0 means

that small variations in y would convert to small errors in the

volume V .

z 2y

2x

FIGURE a

z w 2y

FIGURE b

2. The following problem is fictitious, but involves the kind of

ambiguity that can make technical jobs challenging. The Band

Candy Company decides to liquidate one of its candies. The

company has 600,000 bags in inventory that it wants to sell.

The candy had cost 35 cents per bag to manufacture and orig-

inally sold for 90 cents per bag. A marketing study indicates

that if the candy is priced at p cents per bag, approximately

Q(p) = −p2 + 40p + 250 thousand bags will be sold. Your

task as consultant is to recommend the best selling price for

the candy. As such, you should do the following: (a) find p to

maximize Q(p); (b) find p to maximize 10p Q(p), which is

the actual revenue brought in by selling the candy. Then form

your opinion, based on your evaluation of the relative impor-

tance of getting rid of as much candy as possible and making

the most money possible.

3. A wonderful article by Timothy J. Pennings in the May 2003

issue of The College Mathematics Journal asks the question,

“Do Dogs Know Calculus?” A slightly simplified version of

exercises 17–22 can be solved in a very general form. Suppose

that a ball is thrown from point A on the edge of the water and

lands at point B, which is x meters into the water and z meters

downshore from point A. (See the diagram.) At what point C

should a dog enter the water to minimize the time to reach the

ball?Assume that the dog’s running speed is r m/s and the dog’s

swimming speed is s m/s. Find y as a function of x to minimize

the time to reach the ball. Show that the answer is independent

of z! Explain why your solution is invalid if r ≤ s and explain

what the dog should do in this case. Dr. Pennings’ dog Elvis

was clocked at r = 6.4 m/s and s = 0.9 m/s. Show that Elvis

should follow the rule y = 0.144x . In fact, Elvis’ actual entry

points are very close to these values for a variety of throws!

y

z

A C

B

x
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3.7 RELATED RATES

In this section, we present a group of problems known as related rates problems. The

common thread in each problem is an equation relating two or more quantities that are all

changing with time. In each case, we will use the chain rule to find derivatives of all terms in

the equation (much as we did in section 2.7 with implicit differentiation). The differentiated

equation allows us to determine how different derivatives (rates) are related.

EXAMPLE 7.1 A Related Rates Problem

An oil tanker has an accident and oil pours out at the rate of 150 gallons per minute.

Suppose that the oil spreads onto the water in a circle at a thickness of 1
10

  
. (See

Figure 3.83.) Given that 1 ft3 equals 7.5 gallons, determine the rate at which the radius

of the spill is increasing when the radius reaches 500 feet.

FIGURE 3.83
Oil spill

Solution Since the area of a circle of radius r is πr2, the volume of oil is given by

V = (depth)(area) = 1

120
πr2,

since the depth is 1
10

  = 1
120

ft. Both volume and radius are functions of time, so

V (t) = π

120
[r (t)]2.

Differentiating both sides of the equation with respect to t , we get

V  (t) = π

120
2r (t)r  (t).

We are given a radius of 500 feet. The volume increases at a rate of 150 gallons per

minute, or 150
7.5

= 20 ft3/min. Substituting in V  (t) = 20 and r = 500, we have

20 = π

120
2(500)r  (t).

Finally, solving for r  (t), we find that the radius is increasing at the rate of
2.4
π

≈ 0.76394 feet per minute. �

Although the details change from problem to problem, the general pattern of solution

is the same for all related rates problems. Looking back, you should be able to identify each

of the following steps in example 7.1.

1. Make a simple sketch, if appropriate.

2. Set up an equation relating all of the relevant quantities.

3. Differentiate (implicitly) both sides of the equation with respect to time (t).

4. Substitute in values for all known quantities and derivatives.

5. Solve for the remaining rate.

EXAMPLE 7.2 A Sliding Ladder

A 10-foot ladder leans against the side of a building. If the top of the ladder begins to

slide down the wall at the rate of 2 ft/sec, how fast is the bottom of the ladder sliding

away from the wall when the top of the ladder is 8 feet off the ground?
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Solution First, we make a sketch of the problem, as seen in Figure 3.84. We have

denoted the height of the top of the ladder as y and the distance from the wall to the

bottom of the ladder as x . Since the ladder is sliding down the wall at the rate of 2 ft/sec,

we must have that
dy

dt
= −2. (Note the minus sign here.) Observe that both x and y are

functions of time, t . We can relate the variables by observing that, since the ladder is

10 feet long, the Pythagorean Theorem gives us

[x(t)]2 + [y(t)]2 = 100.

Differentiating both sides of this equation with respect to time gives us

0 = d

dt
(100) = d

dt

 
[x(t)]2 + [y(t)]2

 
= 2x(t)x  (t) + 2y(t)y (t).

We can solve for x  (t), to obtain

x  (t) = − y(t)

x(t)
y (t).

To make use of this, we need values for x(t), y(t) and y (t) at the point in question.
Since we know that the height above ground of the top of the ladder is 8 feet, we have

y = 8 and from the Pythagorean Theorem, we get

100 = x2 + 82,

so that x = 6.We now have that at the point in question,

x  (t) = − y(t)

x(t)
y (t) = −8

6
(−2) = 8

3
.

So, the bottom of the ladder is sliding away from the building at the rate of 8
3
ft/sec. �

y

x

10

FIGURE 3.84
Sliding ladder

EXAMPLE 7.3 Another Related Rates Problem

A car is traveling at 50 mph due south at a point 1
2
mile north of an intersection. A

police car is traveling at 40 mph due west at a point 1
4
mile east of the same intersection.

At that instant, the radar in the police car measures the rate at which the distance

between the two cars is changing. What does the radar gun register?
x

y 50

40

FIGURE 3.85
Cars approaching an

intersection

Solution First, we sketch a picture and denote the vertical distance of the first car

from the center of the intersection y and the horizontal distance of the police car x .

(See Figure 3.85.) Notice that this says that
dx

dt
= −40, since the police car is moving

in the direction of the negative x-axis and
dy

dt
= −50, since the other car is moving in

the direction of the negative y-axis. From the Pythagorean Theorem, the distance

between the two cars is d =
 
x2 + y2. Since all quantities are changing with time,

our equation is

d(t) =
 
[x(t)]2 + [y(t)]2 = {[x(t)]2 + [y(t)]2}1/2.
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Differentiating both sides with respect to t , we have by the chain rule that

d  (t) = 1

2
{[x(t)]2 + [y(t)]2}−1/2 2[x(t)x  (t) + y(t)y (t)]

= x(t)x  (t) + y(t)y (t) 
[x(t)]2 + [y(t)]2

.

Substituting in x(t) = 1
4
, x  (t) = −40, y(t) = 1

2
and y (t) = −50, we have

d  (t) =
1
4
(−40) + 1

2
(−50) 

1
4
+ 1

16

= −140√
5

≈ −62.6,

so that the radar gun registers 62.6 mph. Note that this is a poor estimate of the car’s

actual speed. For this reason, police nearly always take radar measurements from a

stationary position. �

In some problems, the variables are not related by a geometric formula, in which case

you will not need to follow the first two steps of our outline. In example 7.4, the third step

is complicated by the lack of a given value for one of the rates of change.

EXAMPLE 7.4 Estimating a Rate of Change in Economics

A small company estimates that when it spends x thousand dollars for advertising in a

year, its annual sales will be described by s = 60 − 120√
9+ x

thousand dollars. The four

most recent annual advertising totals are given in the following table.

Year 1 2 3 4

Dollars 14,500 16,000 18,000 20,000

Estimate the current (year 4) value of x  (t) and the current rate of change of sales.

Solution From the table, we see that the recent trend is for advertising to increase by

$2000 per year. A good estimate is then x  (4) ≈ 2. Starting with the sales equation

s(t) = 60 − 120√
9 + x(t)

we use the chain rule to obtain

s  (t) = 60[9 + x(t)]−3/2x  (t).

Using our estimate that x  (4) ≈ 2 and since x(4) = 20, we get s  (4) ≈ 120(29)−3/2 ≈
0.768. Thus, sales are increasing at the rate of approximately $768 per year. �

In Example 7.5, we examine the ability of the human visual system to track a fast-

moving object.

EXAMPLE 7.5 Tracking a Fast Jet

A spectator at an air show is trying to follow the flight of a jet. The jet follows a straight

path in front of the observer at 540 mph. At its closest approach, the jet passes 600 feet

in front of the person. Find the maximum rate of change of the angle between the

spectator’s line of sight and a line perpendicular to the flight path, as the jet flies by.
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Solution Place the spectator at the origin (0, 0) and the jet’s path left to right on the

line y = 600, and call the angle between the positive y-axis and the line of sight θ . (See

Figure 3.86.) If we measure distance in feet and time in seconds, we first need to

convert the jet’s speed to feet per second. We have

540mi
h

=  540mi
h

  
5280 ft

mi

  
1

3600
h
s

 = 792 ft
s
.

From triangle trigonometry (see Figure 3.86), an equation relating the angle θ with x

and y is tan θ = x

y
. Be careful with this; since we are measuring θ from the vertical, this

equation may not be what you expect. Since all quantities are changing with time, we

have

tan θ (t) = x(t)

y(t)
.

Differentiating both sides with respect to time, we have

[sec2 θ (t)] θ  (t) = x  (t)y(t) − x(t)y (t)
[y(t)]2

.

With the jet moving left to right along the line y = 600, we have x  (t) = 792,

y(t) = 600 and y (t) = 0. Substituting these quantities, we have

[sec2 θ (t)] θ  (t) = 792(600)

6002
= 1.32.

Solving for the rate of change θ  (t), we get

θ  (t) = 1.32

sec2 θ (t)
= 1.32 cos2 θ (t).

Observe that the rate of change is a maximum when cos2 θ (t) is a maximum. Since

the maximum of the cosine function is 1, the maximum value of cos2 θ (t) is 1,

occurring when θ = 0. We conclude that the maximum rate of angle change is

1.32 radians/second. This occurs when θ = 0, that is, when the jet reaches its closest

point to the observer. (Think about this; it should match your intuition!) Since humans

can track objects at up to about 3 radians/second, this means that we can visually

follow even a fast jet at a very small distance. �

x

y

Path of plane

Observer

θ

600

FIGURE 3.86
Path of jet

EXERCISES 3.7

WRITING EXERCISES

1. As you read examples 7.1–7.3, to what extent do you find the

pictures helpful? In particular, would it be clear what x and

y represent in example 7.3 without a sketch? Also, in exam-

ple 7.3 explain why the derivatives x  (t), y (t) and d  (t) are all
negative. Does the sketch help in this explanation?

2. In example 7.4, the increase in advertising dollars from year 1

to year 2 was $1500. Explain why this amount is not especially

relevant to the approximation of s  (4).

1. Oil spills out of a tanker at the rate of 120 gallons per minute.

The oil spreads in a circle with a thickness of 1
4

  
. Given that

1 ft3 equals 7.5 gallons, determine the rate at which the radius

of the spill is increasing when the radius reaches (a) 100 ft

and (b) 200 ft. Explain why the rate decreases as the radius

increases.

2. Oil spills out of a tanker at the rate of 90 gallons per minute.

The oil spreads in a circle with a thickness of 1
8

  
. Determine

the rate at which the radius of the spill is increasing when the

radius reaches 100 feet.

3. Oil spills out of a tanker at the rate of g gallons per

minute. The oil spreads in a circle with a thickness of 1
4

  
.

Given that the radius of the spill is increasing at a rate of
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0.6 ft/min when the radius equals 100 feet, determine the value

of g.

4. In exercises 1–3 and example 7.1, if the thickness of the oil is

doubled, how does the rate of increase of the radius change?

5. Assume that the infected area of an injury is circular. If the

radius of the infected area is 3 mm and growing at a rate of

1 mm/hr, at what rate is the infected area increasing?

6. For the injury of exercise 5, find the rate of increase of the

infected area when the radius reaches 6 mm. Explain in com-

monsense terms why this rate is larger than that of exercise 5.

7. Suppose that a raindrop evaporates in such a way that it main-

tains a spherical shape. Given that the volume of a sphere of

radius r is V = 4
3
πr 3 and its surface area is A = 4πr 2, if the

radius changes in time, show that V  = Ar  . If the rate of evap-
oration (V  ) is proportional to the surface area, show that the

radius changes at a constant rate.

8. Suppose a forest fire spreads in a circle with radius chang-

ing at a rate of 5 feet per minute. When the radius reaches

200 feet, at what rate is the area of the burning region

increasing?

9. A 10-foot ladder leans against the side of a building as in ex-

ample 7.2. If the bottom of the ladder is pulled away from the

wall at the rate of 3 ft/s and the ladder remains in contact with

the wall, find the rate at which the top of the ladder is dropping

when the bottom is 6 feet from the wall.

10. In exercise 9, find the rate at which the angle between the ladder

and the horizontal is changing when the bottom of the ladder

is 6 feet from the wall.

11. Two buildings of height 20 feet and 40 feet, respectively, are 60

feet apart. Suppose that the intensity of light at a point between

the buildings is proportional to the angle θ in the figure. If a

person is moving from right to left at 4 ft/s, at what rate is θ

changing when the person is exactly halfway between the two

buildings?

20'

60'

40'
θ

12. Find the location in exercise 11 where the angle θ is maximum.

13. A plane is located x = 40 miles (horizontally) away from an

airport at an altitude of h miles. Radar at the airport detects

that the distance s(t) between the plane and airport is changing

at the rate of s  (t) = −240 mph. If the plane flies toward the

airport at the constant altitude h = 4, what is the speed |x  (t)|
of the airplane?

14. Repeat exercise 13 with a height of 6 miles. Based on your

answers, how important is it to know the actual height of the

airplane?

15. Rework example 7.3 if the police car is not moving. Does this

make the radar gun’s measurement more accurate?

16. Show that the radar gun of example 7.3 gives the correct speed

if the police car is located at the origin.

17. Show that the radar gun of example 7.3 gives the correct

speed if the police car is at x = 1
2
moving at a speed of

(
√
2 − 1) 50 mph.

18. Find a position and speed for which the radar gun of exam-

ple 7.3 has a slower reading than the actual speed.

19. Suppose that the average yearly cost per item for producing

x items of a business product is C(x) = 10 + 100
x
. If the cur-

rent production is x = 10 and production is increasing at a

rate of 2 items per year, find the rate of change of the average

cost.

20. Suppose that the average yearly cost per item for producing x

items of a business product is C(x) = 12 + 94
x
. The three most

recent yearly production figures are given in the table.

Year 0 1 2

Prod. (x) 8.2 8.8 9.4

Estimate the value of x  (2) and the current (year 2) rate of

change of the average cost.

21. For a small company spending $x thousand per year in adver-

tising, suppose that annual sales in thousands of dollars equal

s = 60 − 120√
9+ x

. The three most recent yearly advertising fig-

ures are given in the table.

Year 0 1 2

Adver. 16,000 20,000 24,000

Estimate the value of x  (2) and the current (year 2) rate of

change of sales.

22. For a small company spending $x thousand per year in adver-

tising, suppose that annual sales in thousands of dollars equal

s = 80 − 40√
4+ x

. If the current advertising budget is x = 40

and the budget is increasing at a rate of $1500 per year, find

the rate of change of sales.

23. A baseball player stands 2 feet from home plate and watches

a pitch fly by. In the diagram, x is the distance from the ball

to home plate and θ is the angle indicating the direction of the

player’s gaze. Find the rate θ  at which his eyes must move to

watch a fastball with x  (t) = −130 ft/s as it crosses home plate

at x = 0.

Plate

2

x

Player

u
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24. In the situation of exercise 23, humans canmaintain focus only

when θ  ≤ 3 (see Watts and Bahill’s book Keep Your Eye on

the Ball). Find the fastest pitch that you could actually watch

cross home plate.

25. Acamera tracks the launch of a vertically ascending spacecraft.

The camera is located at ground level 2 miles from the launch-

pad. If the spacecraft is 3 miles up and traveling at 0.2 mile per

second, at what rate is the camera angle (measured from the

horizontal) changing?

26. Repeat exercise 25 for the spacecraft at 1 mile up (assume the

same velocity).Which rate is higher? Explain in commonsense

terms why it is larger.

27. Suppose a 6-ft-tall person is 12 ft away from an 18-ft-tall lamp-

post. (See the figure.) If the person is moving away from the

lamppost at a rate of 2 ft/s, at what rate is the length of the

shadow changing?

 
Hint: Show that

x + s

18
= s

6
.

 

18 ft

6 ft

x s

Exercise 27

28. Rework exercise 27 if the person is 6 ft away from the lamppost

and is walking toward the lamppost at a rate of 3 ft/s.

29. Boyle’s law for a gas at constant temperature is PV = c,

where P is pressure, V is volume and c is a constant. As-

sume that both P and V are functions of time. Show that

P  (t)/V  (t) = −c/V 2.

30. In exercise 29, solve for P as a function of V . Treating V as

an independent variable, compute P  (V ). Compare P  (V ) and
P  (t)/V  (t) from exercise 29.

31. A dock is 6 feet above water. Suppose you stand on the edge

of the dock and pull a rope attached to a boat at the constant

rate of 2 ft/s. Assume that the boat remains at water level. At

what speed is the boat approaching the dock when it is 20 feet

from the dock? 10 feet from the dock? Isn’t it surprising that

the boat’s speed is not constant?

32. Sand is poured into a conical pile with the height of the pile

equalling the diameter of the pile. If the sand is poured at a

constant rate of 5 m3/s, at what rate is the height of the pile

increasing when the height is 2 meters?

33. The frequency at which a guitar string vibrates (which de-

termines the pitch of the note we hear) is related to the ten-

sion T to which the string is tightened, the density ρ of the

string and the effective length L of the string by the equation

f = 1

2L

 
T

ρ
. By running his finger along a string, a guitarist

can change L by changing the distance between the bridge

and his finger. Suppose that L = 1
2
ft and

 
T

ρ
= 220 ft/s so

that the units of f are Hertz (cycles per second). If the gui-

tarist’s hand slides so that L  (t) = −4, find f  (t). At this rate,
how long will it take to raise the pitch one octave (that is,

double f )?

34. Suppose that you are blowing up a balloon by adding air at

the rate of 1 ft3/s. If the balloon maintains a spherical shape,

the volume and radius are related by V = 4
3
πr 3. Compare the

rate at which the radius is changing when r = 0.01 ft versus

when r = 0.1 ft. Discuss how this matches the experience of a

person blowing up a balloon.

35. Water is being pumped into a spherical tank of radius 60 feet

at the constant rate of 10 ft3/s. Find the rate at which the radius

of the top level of water in the tank changes when the tank is

half full.

36. For the water tank in exercise 35, find the height at which the

height of the water in the tank changes at the same rate as the

radius.

37. Sand is dumped such that the shape of the sandpile re-

mains a cone with height equal to twice the radius. If the

sand is dumped at the constant rate of 20 ft3/s, find the rate

at which the radius is increasing when the height reaches

6 feet.

38. Repeat exercise 37 for a sandpile for which the edge of the

sandpile forms an angle of 45◦ with the horizontal.
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EXPLORATORY EXERCISES

1. Vision has proved to be the biggest challenge for building func-

tional robots. Robot vision can either be designed to mimic hu-

man vision or follow a different design. Two possibilities are

analyzed here. In the diagram to the right, a camera follows an

object directly from left to right. If the camera is at the origin,

the object moves with speed 1 m/s and the line of motion is at

y = c, find an expression for θ  as a function of the position

of the object. In the diagram to the right, the camera looks

down into a parabolic mirror and indirectly views the object.

If the mirror has polar coordinates (in this case, the angle θ

is measured from the horizontal) equation r = 1 − sin θ

2 cos2 θ

and x = r cos θ , find an expression for θ  as a function of the

position of the object. Compare values of θ  at x = 0 and other

x-values. If a large value of θ  causes the image to blur, which

camera system is better? Does the distance y = c affect your

preference?

θ

(x, y)

θ

(x, y)

2. A particle moves down a ramp subject only to the force of

gravity. Let y0 be the maximum height of the particle. Then

conservation of energy gives

1

2
mv2 + mgy = mgy0.

(a) From the definition v(t) =
 
[x  (t)]2 + [y (t)]2, conclude

that |y (t)| ≤ |v(t)|.
(b) Show that |v (t)| ≤ g.

(c) What shape must the ramp have to get equality in part (b)?

Briefly explain in physical terms why g is the maximum

value of |v (t)|.

3.8 RATES OF CHANGE IN ECONOMICS AND THE SCIENCES

It has often been said that mathematics is the language of nature. Today, the concepts of

calculus are being applied in virtually every field of human endeavor. The applications in

this section represent but a small sampling of some elementary uses of the derivative. These

are not all of the uses of the derivative nor are they necessarily the most important uses, but

rather, represent some interesting applications in a variety of fields.

Recall that the derivative of a function gives the instantaneous rate of change of that

function. So, when you see the word rate, you should be thinking derivative. You can hardly

pick up a newspaper without finding reference to some rates (e.g., inflation rate, interest

rate, unemployment rate, etc.). These can be thought of as derivatives. There are also many

quantities with which you are familiar, but that you might not recognize as rates of change.

Our first example, which comes from economics, is of this type.

In economics, the term marginal is used to indicate a rate. Thus, marginal cost is the

derivative of the cost function, marginal profit is the derivative of the profit function and

so on. We introduce marginal cost in some detail here, with further applications given in

the exercises.

Suppose that you are manufacturing an item, where your start-up costs are $4000

and productions costs are $2 per item. The total cost of producing x items would then be

4000 + 2x . Of course, the assumption that the cost per item is constant is unrealistic. Effi-

cient mass-production techniques could reduce the cost per item, but machine maintenance,

labor, plant expansion and other factors could drive costs up as production (x) increases.

In example 8.1, a quadratic cost function is used to take into account some of these extra

factors. In practice, you would find a cost function by making some observations of the

cost of producing a number of different quantities and then fitting the data to the graph of

a known function. (This is one way in which the calculus is brought to bear on real-world

problems.)
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When the cost per item is not constant, an important question for managers to answer

is how much it will cost to increase production. This is the idea behind marginal cost.

EXAMPLE 8.1 Analyzing the Marginal Cost of Producing a
Commercial Product

Suppose that

C(x) = 0.02x2 + 2x + 4000

is the total cost (in dollars) for a company to produce x units of a certain product.

Compute the marginal cost at x = 100 and compare this to the actual cost of producing

the 100th unit.

Solution The marginal cost function is the derivative of the cost function:

C  (x) = 0.04x + 2

and so, the marginal cost at x = 100 is C  (100) = 4 + 2 = 6 dollars per unit. On the

other hand, the actual cost of producing item number 100 would be C(100) − C(99).

(Why?) We have

C(100) − C(99) = 200 + 200 + 4000 − (196.02 + 198 + 4000)

= 4400 − 4394.02 = 5.98 dollars.

Note that this is very close to the marginal cost of $6. Also notice that the marginal cost

is easier to compute. �

Another quantity that businesses use to analyze production is average cost. You can

easily remember the formula for average cost by thinking of an example. If it costs a

total of $120 to produce 12 items, then the average cost would be $10
 
$120

12

 
per item. In

general, the total cost is given by C(x) and the number of items by x , so average cost is

defined by

C(x) = C(x)

x
.

A business manager would want to know the level of production that minimizes average

cost.

EXAMPLE 8.2 Minimizing the Average Cost of Producing a
Commercial Product

Suppose that
C(x) = 0.02x2 + 2x + 4000

is the total cost (in dollars) for a company to produce x units of a certain product. Find

the production level x that minimizes the average cost.

Solution The average cost function is given by

C(x) = 0.02x2 + 2x + 4000

x
= 0.02x + 2 + 4000x−1.
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To minimize C(x), we start by finding critical numbers in the domain x > 0. We have
y

x
200100 300 400 600500 700
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FIGURE 3.87
Average cost function

C
 
(x) = 0.02 − 4000x−2 = 0 if

4000x−2 = 0.02 or

4000

0.02
= x2.

Then x2 = 200,000 or x = ±√
200,000 ≈ ±447. Since x > 0, the only relevant

critical number is at approximately x = 447. Further, C
 
(x) < 0 if x < 447 and

C
 
(x) > 0 if x > 447, so this critical number is the location of the absolute minimum

on the domain x > 0. A graph of the average cost function (see Figure 3.87) shows

the minimum. �

Our third example also comes from economics. This time, we will explore the rela-

tionship between price and demand. Clearly, in most cases, a higher price will lower the

demand for a product. However, if sales do not decrease significantly, a company may ac-

tually increase revenue despite a price increase. As we will see, an analysis of the elasticity

of demand can give us important information about revenue.

Suppose that the demand x for an item is a function of its price p. That is, x = f (p).

If the price changes by a small amount  p, then the relative change in price equals
 p

p
.

However, the change in price would create a change in demand x , with a relative change

in demand of
 x

x
. Economists define the elasticity of demand at price p to be the relative

change in demand divided by the relative change in price for very small changes in price.

As calculus students, you can define the elasticity E as a limit:

E = lim
 p→0

 x
x
 p

p

.

In the case where x is a function of p, we write  p = (p + h) − p = h for some small h

and then  x = f (p + h) − f (p). We then have

E = lim
h→0

f (p+ h)− f (p)
f (p)

h
p

= p

f (p)
lim
h→0

f (p + h) − f (p)

h
= p

f (p)
f  (p),

assuming that f is differentiable. In example 8.3, we analyze elasticity of demand and

revenue. Recall that if x = f (p) items are sold at price p, then the revenue equals

p f (p).

EXAMPLE 8.3 Computing Elasticity of Demand and
Changes in Revenue

Suppose that f (p) = 400(20 − p)

is the demand for an item at price p (in dollars) with p < 20. (a) Find the elasticity of

demand. (b) Find the range of prices for which E < −1. Compare this to the range of

prices for which revenue is a decreasing function of p.
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Solution The elasticity of demand is given by

E = p

f (p)
f  (p) = p

400(20 − p)
(−400) = p

p − 20
.

We show a graph of E = p

p − 20
in Figure 3.88. Observe that E < −1 if

p

p − 20
< −1

or p > −(p − 20). Since p − 20 < 0.

Solving this gives us 2p > 20

or p > 10.

To analyze revenue, we compute R = p f (p) = p(8000 − 400p) = 8000p − 400p2.

Revenue decreases if R (p) < 0. From R (p) = 8000 − 800p, we see that R (p) = 0 if

p = 10 and R (p) < 0 if p > 10. Of course, this says that the revenue decreases if the

price exceeds 10. �

p

E

 1

1

10 20

FIGURE 3.88

E = p

p − 20

Notice in example 8.3 that the prices for which E < −1 (in this case, we say that

the demand is elastic) correspond exactly to the prices for which an increase in price will

decrease revenue. In the exercises, we will find that this is not a coincidence.

The next example we offer comes from chemistry. It is very important for chemists to

have a handle on the rate at which a given reaction proceeds. Reaction rates give chemists

information about the nature of the chemical bonds being formed and broken, as well as

information about the type and quantity of product to expect. A simple situation is depicted

in the schematic

A + B −→ C,

which indicates that chemicals A and B (the reactants) combine to form chemical C (the

product). Let [C](t) denote the concentration (in moles per liter) of the product. The average

reaction rate between times t1 and t2 is

[C](t2) − [C](t1)

t2 − t1
.

The instantaneous reaction rate at any given time t1 is then given by

lim
t→t1

[C](t) − [C](t1)

t − t1
= d[C]

dt
(t1).

Depending on the details of the reaction, it is often possible to write down an equation

relating the reaction rate
d[C]

dt
to the concentrations of the reactants, [A] and [B].
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EXAMPLE 8.4 Modeling the Rate of a Chemical Reaction

In an autocatalytic chemical reaction, the reactant and the product are the same. The

reaction continues until some saturation level is reached. From experimental evidence,

chemists know that the reaction rate is jointly proportional to the amount of the product

present and the difference between the saturation level and the amount of the product.

If the initial concentration of the chemical is 0 and the saturation level is 1

(corresponding to 100%), this means that the concentration x(t) of the chemical

satisfies the equation

x  (t) = r x(t)[1 − x(t)],

where r > 0 is a constant.

Find the concentration of chemical for which the reaction rate x  (t) is a maximum.

y

x
1

2
1

r/4

FIGURE 3.89
y = r x(1 − x)

Solution To clarify the problem, we write the reaction rate as

f (x) = r x(1 − x).

Our aim is then to find x ≥ 0 that maximizes f (x). From the graph of y = f (x) shown

in Figure 3.89, the maximum appears to occur at about x = 1
2
. We have

f  (x) = r (1)(1 − x) + r x(−1)

= r (1 − 2x)

and so, the only critical number is x = 1
2
. Notice that the graph of y = f (x) is a

parabola opening downward and hence, the critical number must correspond to the

absolute maximum. Although the mathematical problem here was easy to solve, the

result gives a chemist some precise information. At the time the reaction rate reaches a

maximum, the concentration of chemical equals exactly half of the saturation level. �

Calculus and elementary physics are quite closely connected historically. It should

come as no surprise, then, that physics provides us with such a large number of important

applications of the calculus. We have already explored the concepts of velocity and accel-

eration. Another important application in physics where the derivative plays a role involves

density. There are many different kinds of densities that we could consider. For example,

we could study population density (number of people per unit area) or color density (depth

of color per unit area) used in the study of radiographs. However, the most familiar type of

density is mass density (mass per unit volume). You probably already have some idea of

what we mean by this, but how would you define it? If an object of interest is made of some

homogeneous material (i.e., the mass of any portion of the object of a given volume is the

same), then the mass density is simply

mass density = mass

volume

and this quantity is constant throughout the object. However, if the mass of a given volume

varies in different parts of the object, then this formula only calculates the average density

of the object. In example 8.5 we find a means of computing the mass density at a specific

point in a nonhomogeneous object.

Suppose that the function f (x) gives us the mass (in kilograms) of the first x meters

of a thin rod. (See Figure 3.90.)
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x1

x

FIGURE 3.90
A thin rod

The total mass between marks x and x1 (x > x1) is given by [ f (x) − f (x1)] kg. The

average linear density (i.e., mass per unit length) between x and x1 is then defined as

f (x) − f (x1)

x − x1
.

Finally, the linear density at x = x1 is defined as

ρ(x1) = lim
x→x1

f (x) − f (x1)

x − x1
= f  (x1), (8.1)

where we have recognized the alternative definition of derivative discussed in section 2.2.

EXAMPLE 8.5 Density of a Thin Rod

Suppose that the mass of the first x meters of a thin rod is given by f (x) =
√
2x .

Compute the linear density at x = 2 and at x = 8, and compare the densities at the two

points.

Solution From (8.1), we have

ρ(x) = f  (x) = 1

2
√
2x

(2) = 1√
2x
.

Thus, ρ(2) = 1/
√
4 = 1/2 and ρ(8) = 1/

√
16 = 1/4. Notice that this says that the rod

is nonhomogeneous (i.e., the mass density in the rod is not constant). Specifically, we

have that the rod is less dense at x = 8 than at x = 2. �

In section 2.1, we briefly explored the rate of growth of a population. Population

dynamics is an area of biology that makes extensive use of calculus.We examine population

models in some detail in sections 8.1 and 8.2. For now, we explore one aspect of a basic

model of population growth called the logistic equation. This states that if p(t) represents

population (measured as a fraction of the maximum sustainable population), then the rate

of change of the population satisfies the equation

p (t) = rp(t)[1 − p(t)],

for some constant r . A typical solution [for r = 1 and p(0) = 0.05] is shown in Figure 3.91.

Although we won’t learn how to compute a solution until sections 8.1 and 8.2, we can

determine some of the mathematical properties that all solutions must possess.

p

t
2 4 6 8

0.2

0.4

0.6

0.8

1

FIGURE 3.91
Logistic growth

EXAMPLE 8.6 Finding the Maximum Rate of Population Growth

Suppose that a population grows according to the equation p (t) = 2p(t)[1 − p(t)] (the

logistic equation with r = 2). Find the population for which the growth rate is a

maximum. Interpret this point graphically.
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Solution To clarify the problem, we write the population growth rate as

f (p) = 2p(1 − p).

Our aim is then to find the population p ≥ 0 that maximizes f (p). We have

f  (p) = 2(1)(1 − p) + 2p(−1)

= 2(1 − 2p)

and so, the only critical number is p = 1
2
. Notice that the graph of y = f (p) is a

parabola opening downward and hence, the critical number must correspond to the

absolute maximum. In Figure 3.91, observe that the height p = 1
2
corresponds to the

portion of the graph with maximum slope. Also, notice that this point is an inflection

point on the graph. We can verify this by noting that we solved the equation f  (p) = 0,

where f (p) equals p (t). Therefore, p = 1
2
is the p-value corresponding to the solution

of p  (t) = 0. This fact can be of value to population biologists. If they are tracking a

population that reaches an inflection point, then (assuming that the logistic equation

gives an accurate model) the population will eventually double in size. �

Notice the similarities between examples 8.4 and 8.6. One reason that mathematics

has such great value is that seemingly unrelated physical processes often have the same

mathematical description. Comparing examples 8.4 and 8.6, we learn that the underlying

mechanisms for autocatalytic reactions and population growth are identical.

We have now discussed examples of six rates of change drawn from economics and

the sciences. Add these to the applications that we have seen in previous sections and we

have an impressive list of applications of the derivative. Even so, we have barely begun to

scratch the surface. In any field where it is possible to quantify and analyze the properties

of a function, calculus and the derivative are powerful tools. This list includes at least some

aspect of nearly every major field of study. The continued study of calculus will give you

the ability to read (and understand) technical studies in a wide variety of fields and to see

(as we have in this section) the underlying unity that mathematics brings to a broad range

of human endeavors.

EXERCISES 3.8

WRITING EXERCISES

1. The logistic equation x  (t) = x(t)[1 − x(t)] is used to model

many important phenomena (see examples 8.4 and 8.6). The

equation has two competing contributions to the rate of change

x  (t). The term x(t) by itself would mean that the larger x(t) is,

the faster the population (or concentration of chemical) grows.

This is balanced by the term 1 − x(t), which indicates that the

closer x(t) gets to 1, the slower the population growth is. With

these two terms together, the model has the property that for

small x(t), slightly larger x(t) means greater growth, but as

x(t) approaches 1, the growth tails off. Explain in terms of

population growth and the concentration of a chemical why

the model is reasonable.

2. Corporate deficits and debt are frequently in the news, but the

terms are often confused with each other. To take an example,

suppose a company finishes a fiscal year owing $5000. That

is their debt. Suppose that in the following year the company

has revenues of $106,000 and expenses of $109,000. The com-

pany’s deficit for the year is $3000, and the company’s debt has

increased to $8000. Briefly explain why deficit can be thought

of as the derivative of debt.

1. If the cost of manufacturing x items is

C(x) = x3 + 20x2 + 90x + 15, find the marginal cost func-

tion and compare the marginal cost at x = 50 with the actual

cost of manufacturing the 50th item.

2. If the cost of manufacturing x items is

C(x) = x4 + 14x2 + 60x + 35, find the marginal cost func-

tion and compare the marginal cost at x = 50 with the actual

cost of manufacturing the 50th item.
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3. If the cost of manufacturing x items is

C(x) = x3 + 21x2 + 110x + 20, find the marginal cost func-

tion and compare the marginal cost at x = 100 with the actual

cost of manufacturing the 100th item.

4. If the cost of manufacturing x items is

C(x) = x3 + 11x2 + 40x + 10, find the marginal cost func-

tion and compare the marginal cost at x = 100 with the actual

cost of manufacturing the 100th item.

5. Suppose the cost of manufacturing x items is

C(x) = x3 − 30x2 + 300x + 100 dollars. Find the inflection

point and discuss the significance of this value in terms of the

cost of manufacturing.

6. A baseball team owner has determined that if tickets are priced

at $10, the average attendance at a game will be 27,000 and if

tickets are priced at $8, the average attendance will be 33,000.

Using a linearmodel,wewould then estimate that tickets priced

at $9 would produce an average attendance of 30,000. Discuss

whether you think the use of a linear model here is reasonable.

Then, using the linear model, determine the price at which the

revenue is maximized.

In exercises 7–10, find the production level that minimizes the

average cost.

7. C(x) = 0.1x2 + 3x + 2000

8. C(x) = 0.2x3 + 4x + 4000

9. C(x) =
√
x3 + 9

10. C(x) =
√
x3 + 800

11. Let C(x) be the cost function and C(x) be the average cost

function. Suppose that C(x) = 0.01x2 + 40x + 3600. Show

that C  (100) < C(100) and show that increasing the produc-

tion (x) by 1 will decrease the average cost.

12. For the cost function in exercise 11, show that

C  (1000) > C(1000) and show that increasing the production

(x) by 1 will increase the average cost.

13. For the cost function in exercise 11, prove that average cost is

minimized at the x-value where C  (x) = C (x).

14. If the cost function is linear, C(x) = a + bx with a and b pos-

itive, show that there is no minimum average cost and that

C  (x)  = C(x) for all x .

15. Let R(x) be the revenue andC(x) be the cost frommanufactur-

ing x items. Profit is defined as P(x) = R(x) − C(x). Show

that at the value of x that maximizes profit, marginal revenue

equals marginal cost.

16. Find themaximum profit if R(x) = 10x − 0.001x2 dollars and

C(x) = 2x + 5000 dollars.

In exercises 17–20, find (a) the elasticity of demand and (b) the

range of prices for which the demand is elastic (E < −1).

17. f (p) = 200(30 − p) 18. f (p) = 200(20 − p)

19. f (p) = 100p(20 − p) 20. f (p) = 60p(10 − p)

21. Suppose that at price p = 15 dollars the demand for a product

is elastic. If the price is raised, what will happen to revenue?

22. Suppose that at price p = 10 dollars the demand for a prod-

uct is inelastic. If the price is raised, what will happen to the

revenue?

23. If the demand function f is differentiable, prove that

[p f (p)] < 0 if and only if
p

f (p)
f  (p) < −1. (That is, rev-

enue decreases if and only if demand is elastic.)

24. The term income elasticity of demand is defined as the per-

centage change in quantity purchased divided by the percent-

age change in real income. If I represents income and Q(I )

is demand as a function of income, derive a formula for the

income elasticity of demand.

25. If the concentration of a chemical changes according to the

equation x  (t) = 2x(t)[4 − x(t)], find the concentration x(t)

for which the reaction rate is a maximum.

26. If the concentration of a chemical changes according to the

equation x  (t) = 0.5x(t)[5 − x(t)], find the concentration x(t)

for which the reaction rate is a maximum.

27. Show that in exercise 25, the limiting concentration is 4 as

t → ∞. Find the limiting concentration in exercise 26.

28. Find the equation for an autocatalytic reaction in which the

maximum concentration is x(t) = 16 and the reaction rate

equals 12 when x(t) = 8.

29. Mathematicians often study equations of the form

x  (t) = r x(t)[1 − x(t)], instead of the more complicated

x  (t) = cx(t)[K − x(t)], justifying the simplification with

the statement that the second equation “reduces to” the first

equation. Starting with y (t) = cy(t)[K − y(t)], substitute

y(t) = Kx(t) and show that the equation reduces to the form

x  (t) = r x(t)[1 − x(t)]. How does the constant r relate to the

constants c and K ?

30. Suppose a chemical reaction follows the equation

x  (t) = cx(t)[K − x(t)]. Suppose that at time t = 4 the con-

centration is x(4) = 2 and the reaction rate is x  (4) = 3. At

time t = 6, suppose that the concentration is x(6) = 4 and the

reaction rate is x  (6) = 4. Find the values of c and K for this

chemical reaction.

31. In a general second-order chemical reaction, chemicals A and

B (the reactants) combine to form chemical C (the product).

If the initial concentrations of the reactants A and B are a

and b, respectively, then the concentration x(t) of the product

satisfies the equation x  (t) = [a − x(t)][b − x(t)].What is the

rate of change of the product when x(t) = a? At this value,
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is the concentration of the product increasing, decreasing or

staying the same? Assuming that a < b and there is no prod-

uct present when the reaction starts, explain why themaximum

concentration of product is x(t) = a.

32. For the second-order reaction defined in exercise 31, find the

(mathematical) value of x(t) that minimizes the reaction rate.

Show that the reaction rate for this value of x(t) is negative. Ex-

plain why the concentration x(t) would never get this large, so

that this mathematical solution is not physically relevant. Ex-

plain why x(t) must be between 0 and a and find the maximum

and minimum reaction rates on this closed interval.

33. The rate R of an enzymatic reaction is given by R = r x

k + x
,

where k is the Michaelis constant and x is the substrate con-

centration. Determine whether there is a maximum rate of the

reaction.

34. The relationship among the pressure P , volume V and temper-

ature T of a gas or liquid is given by van der Waals’ equation 
P + n2a

V 2

 
(V − nb) = nRT, for positive constants n, a, b and

R. For constant temperatures, find and interpret
dV

dP
.

35. In an adiabatic chemical process, there is no net change in

heat, so pressure and volume are related by an equation of the

formPV1.4 = c, for some positive constant c. Find and interpret
dV

dP
.

36. If the equation in exercise 35 holds and atmospheric pressure

decreases as altitude increases, what will happen to a rising

balloon?

In exercises 37–40, the mass of the first x meters of a thin rod

is given by the function m(x) on the indicated interval. Find

the linear density function for the rod. Based on what you find,

briefly describe the composition of the rod.

37. m(x) = 4x − sin x grams for 0 ≤ x ≤ 6

38. m(x) = (x − 1)3 + 6x grams for 0 ≤ x ≤ 2

39. m(x) = 4x grams for 0 ≤ x ≤ 2

40. m(x) = 4x2 grams for 0 ≤ x ≤ 2

41. Suppose that a population grows according to the logistic equa-

tion p (t) = 4p(t)[5 − p(t)]. Find the population at which the

population growth rate is a maximum.

42. Suppose that a population grows according to the logistic equa-

tion p (t) = 2p(t)[7 − 2p(t)].Find the population atwhich the

population growth rate is a maximum.

43. Suppose that the size of the pupil of an animal is given by f (x)

(mm), where x is the intensity of the light on the pupil. If

f (x) = 160x−0.4 + 90

4x−0.4 + 15
,

show that f (x) is a decreasing function. Interpret this result in

terms of the response of the pupil to light.

44. Suppose that the body temperature 1 hour after receiving

x mg of a drug is given by T (x) = 102 − 1
6
x2(1 − x/9) for

0 ≤ x ≤ 6. The absolute value of the derivative, |T  (x)|, is de-
fined as the sensitivity of the body to the drug dosage. Find

the dosage that maximizes sensitivity.

45. Referring to exercise 15, explain why a value of x for which

marginal revenue equals marginal cost does not necessarily

maximize profit.

46. Referring to exercise 15, explain why the conditions

R (x0) = C  (x0) and R  (x0) < C   (x0)will guarantee that profit
is maximized at x0.

47. A fish swims at velocity v upstream from point A to point B,

against a current of speed c. Explain why we must have v > c.

The energy consumed by the fish is given by E = kv2

v − c
, for

some constant k > 1. Show that E has one critical number.

Does it represent a maximum or a minimum?

48. The power required for a bird to fly at speed v is proportional to

P = 1

v
+ cv3, for some positive constant c. Find v tominimize

the power.

EXPLORATORY EXERCISES

1. Epidemiology is the study of the spread of infectious dis-

eases. A simple model for the spread of fatal diseases such

as AIDS divides people into the categories of susceptible (but

not exposed), exposed (but not infected) and infected. The

proportions of people in each category at time t are denoted

S(t), E(t) and I (t), respectively. The general equations for this

model are

S (t) = mI (t) − bS(t)I (t),

E  (t) = bS(t)I (t) − aE(t),

I  (t) = aE(t) − mI (t),

wherem, b and a are positive constants. Notice that each equa-

tion gives the rate of change of one of the categories. Each rate

of change has both a positive and negative term. Explain why

the positive term represents people who are entering the cate-

gory and the negative term represents people who are leaving

the category. In the first equation, the term mI (t) represents

people who have died from the disease (the constant m is the

reciprocal of the life expectancy of someone with the disease).

This term is slightly artificial: the assumption is that the popu-

lation is constant, so that when one person dies, a baby is born

who is not exposed or infected. The dynamics of the disease are

such that susceptible (healthy) people get infected by contact

with infected people. Explain why the number of contacts be-

tween susceptible people and infected people is proportional to

S(t) and I (t). The term bS(t)I (t), then, represents susceptible
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peoplewho have been exposed by contactwith infected people.

Explain why this same term shows up as a positive in the sec-

ond equation. Explain the rest of the remaining two equations

in this fashion. (Hint: The constant a represents the reciprocal

of the average latency period. In the case of AIDS, this would

be how long it takes an HIV-positive person to actually develop

AIDS.)

2. Without knowing how to solve differential equations (we

hope you will go far enough in your study of mathematics

to learn to do so!), we can nonetheless deduce some impor-

tant properties of the solutions of differential equations. For

example, consider the equation for an autocatalytic reaction

x  (t) = x(t)[1 − x(t)]. Suppose x(0) lies between 0 and 1.

Show that x  (0) is positive, by determining the possible values

of x(0)[1 − x(0)]. Explain why this indicates that the value of

x(t) will increase from x(0) and will continue to increase as

long as 0 < x(t) < 1. Explain why if x(0) < 1 and x(t) > 1

for some t > 0, then it must be true that x(t) = 1 for some

t > 0. However, if x(t) = 1, then x  (t) = 0 and the solution

x(t) stays constant (equal to 1). Therefore, we can conjecture

that lim
t→∞

x(t)= 1. Similarly, show that if x(0) > 1, then x(t)

decreases and we could again conjecture that lim
t→∞

x(t) = 1.

Changing equations, suppose that x  (t) = −0.05x(t) + 2. This

is a model of an experiment in which a radioactive sub-

stance is decaying at the rate of 5% but the substance is

being replenished at the constant rate of 2. Find the value

of x(t) for which x  (t) = 0. Pick various starting values of

x(0) less than and greater than the constant solution and

determine whether the solution x(t) will increase or de-

crease. Based on these conclusions, conjecture the value of

lim
t→∞

x(t), the limiting amount of radioactive substance in the

experiment.

Review Exercises

WRITING EXERCISES

The following list includes terms that are defined and theorems

that are stated in this chapter. For each term or theorem, (1) give

a precise definition or statement, (2) state in general terms what

it means and (3) describe the types of problems with which it is

associated.

Linear approximation Newton’s method Critical number

Absolute extremum Local extremum First Derivative Test

Inflection points Concavity Second Derivative

Marginal cost Extreme Value Test

Fermat’s Theorem Theorem Related rates

TRUE OR FALSE

State whether each statement is true or false and briefly explain

why. If the statement is false, try to “fix it” by modifying the given

statement to make a new statement that is true.

1. Linear approximations give good approximations of function

values for x’s close to the point of tangency.

2. The closer the initial guess is to the solution, the faster

Newton’s method converges.

3. If there is a maximum of f (x) at x = a, then f  (a) = 0.

4. An absolute extremum must occur at either a critical number

or an endpoint.

5. If f  (x) > 0 for x < a and f  (x) < 0 for x > a, then f (a) is

a local maximum.

6. If f   (a) = 0, then y = f (x) has an inflection point at x = a.

7. If there is a vertical asymptote at x = a, then either

lim
x→a+

f (x) = ∞ or lim
x→a+

f (x) = −∞.

8. In a maximization problem, if f has only one critical number,

then it is the maximum.

9. If the population p(t) has a maximum growth rate at t = a,

then p  (a) = 0.

10. If f  (a) = 2 and g (a) = 4, then
dg

d f
= 2 and g is increasing

twice as fast as f .

In exercises 1 and 2, find the linear approximation to f (x) at x0.

1. f (x) = cos 3x, x0 = 0 2. f (x) =
√
x2 + 3, x0 = 1

In exercises 3 and 4, use a linear approximation to estimate the

quantity.

3.
3
√
7.96 4. sin 3

In exercises 5 and 6, use Newton’s method to find an approxi-

mate root.

5. x3 + 5x − 1 = 0 6. x3 = cos x
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7. Explain why Newton’s method fails on x3 − 3x + 2 = 0 with

x0 = 1.

8. Show that the approximation
1

(1 − x)
≈ 1 + x is valid for

“small” x .

In exercises 9–16, do the following by hand. (a) Find all criti-

cal numbers, (b) identify all intervals of increase and decrease,

(c) determine whether each critical number represents a local

maximum, localminimumor neither, (d) determine all intervals

of concavity and (e) find all inflection points.

9. f (x) = x3 + 3x2 − 9x 10. f (x) = x4 − 4x + 1

11. f (x) = x4 − 4x3 + 2 12. f (x) = x3 − 3x2 − 24x

13. f (x) = x − 90

x2
14. f (x) = (x2 − 1)2/3

15. f (x) = x

x2 + 4
16. f (x) = x√

x2 + 2

In exercises 17–20, find the absolute extrema of the given func-

tion on the indicated interval.

17. f (x) = x3 + 3x2 − 9x on [0, 4]

18. f (x) =
√
x3 − 3x2 + 2x on [−1, 3]

19. f (x) = x4/5 on [−2, 3]

20. f (x) = x1/3 − x2/3 on [−1, 4]

In exercises 21–24, find the x-coordinates of all local extrema.

21. f (x) = x3 + 4x2 + 2x 22. f (x) = x4 − 3x2 + 2x

23. f (x) = x5 − 2x2 + x 24. f (x) = x5 + 4x2 − 4x

25. Sketch a graph of a function with f (−1) = 2, f (1) = −2,

f  (x) < 0 for −2 < x < 2 and f  (x) > 0 for x < −2 and

x > 2.

26. Sketch a graph of a function with f  (x) > 0 for x  = 0, f  (0)
undefined, f   (x) > 0 for x < 0 and f   (x) < 0 for x > 0.

In exercises 27–36, sketchagraphof the functionandcompletely

discuss the graph.

27. f (x) = x4 + 4x3 28. f (x) = x4 + 4x2

29. f (x) = x4 + 4x 30. f (x) = x4 − 4x2

31. f (x) = x

x2 + 1
32. f (x) = x

x2 − 1

33. f (x) = x2

x2 + 1
34. f (x) = x2

x2 − 1

35. f (x) = x3

x2 − 1
36. f (x) = 4

x2 − 1

37. Find the point on the graph of y = 2x2 that is closest to (2, 1).

38. Show that the line through the two points of exercise 37 is

perpendicular to the tangent line to y = 2x2 at (2, 1).

39. A city is building a highway from point A to point B, which

is 4 miles east and 6 miles south of point A. The first 4 miles

south of point A is swampland, where the cost of building the

highway is $6 million per mile. On dry land, the cost is $2 mil-

lion per mile. Find the point on the boundary of swampland

and dry land to which the highway should be built to minimize

the total cost.

40. In exercise 39, how much does the optimal point change if the

cost on dry land rises to $3 million per mile?

41. A soda can in the shape of a cylinder is to hold 16 fluid ounces.

Find the dimensions of the can that minimize the surface area

of the can.

42. Suppose thatC(x) = 0.02x2 + 4x + 1200 is the cost of manu-

facturing x items. Show thatC  (x) > 0 and explain in business

terms why this has to be true. Show thatC   (x) > 0 and explain

why this indicates that the manufacturing process is not very

efficient.

43. Suppose that the mass of the first x meters of a thin rod is given

by m(x) = 20 + x2 for 0 ≤ x ≤ 4. Find the density of the rod

and briefly describe the composition of the rod.

44. If the concentration x(t) of a chemical in a reaction changes

according to the equation x  (t) = 0.3x(t)[4 − x(t)], find the

concentration at which the reaction rate is a maximum.

45. The cost of manufacturing x items is given by

C(x) = 0.02x2 + 20x + 1800. Find the marginal cost func-

tion. Compare the marginal cost at x = 20 to the actual cost

of producing the 20th item.

46. For the cost function in exercise 45, find the value of x that

minimizes the average cost C(x) = C(x)/x .

EXPLORATORY EXERCISES

1. Let n(t) be the number of photons in a laser field. One model

of the laser action is n (t) = an(t) − b[n(t)]2, where a and

b are positive constants. If n(0) = a/b, what is n (0)? Based

on this calculation, would n(t) increase, decrease or neither?
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If n(0) > a/b, is n (0) positive or negative? Based on this

calculation, would n(t) increase, decrease or neither? If

n(0) < a/b, is n (0) positive or negative? Based on this cal-

culation, would n(t) increase, decrease or neither? Putting this

information together, conjecture the limit of n(t) as t → ∞.

Repeat this analysis under the assumption that a < 0. [Hint:

Because of its definition, n(t) is positive, so ignore any negative

values of n(t).]

2. One way of numerically approximating a derivative is

by computing the slope of a secant line. For example,

f  (a) ≈ f (b) − f (a)

b − a
, if b is close enough to a. In this ex-

ercise, we will develop an analogous approximation to the sec-

ond derivative. Graphically, we can think of the secant line as

an approximation of the tangent line. Similarly, we can match

the second derivative behavior (concavity) with a parabola. In-

stead of finding the secant line through two points on the curve,

we find the parabola through three points on the curve. The

second derivative of this approximating parabola will serve as

an approximation of the second derivative of the curve. Thefirst

step is messy, so we recommend using a CAS if one is avail-

able. Find a function of the form g(x) = ax2 + bx + c such

that g(x1) = y1, g(x2) = y2 and g(x3) = y3. Since g
  (x) = 2a,

you actually only need to find the constant a. The so-called

second difference approximation to f   (x) is the value of

g  (x) = 2a using the three points x1 = x − x [y1 = f (x1)],

x2 = x [y2 = f (x2)] and x3 = x + x [y3 = f (x3)]. Find the

second difference for f (x) = √
x + 4 at x = 0with x = 0.5,

 x = 0.1 and  x = 0.01. Compare to the exact value of the

second derivative, f   (0).

3. The technique of Picard iteration is very effective for es-

timating solutions of complicated equations. For equations

of the form f (x) = 0, start with an initial guess x0. For

g(x) = f (x) + x , compute the iterates x1 = g(x0), x2 = g(x1)

and so on. Show that this makes it so that if the iterates

repeat (i.e., g(xn+1) = g(xn)) at xn , then f (xn) = 0. Com-

pute iterates starting at x0 = −1 for (a) f (x) = x3 − x2 + 3,

(b) f (x) = −x3 + x2 − 3 and (c) f (x) = − x3

11
+ x2

11
− 3

11
.

To see what is going on, suppose that f (xc) = 0, x0 < xc and

f (x0) < 0. Show that x1 is farther from the solution xc than is

x0. Continue in this fashion and show that Picard iteration does

not converge to xc if f
 (xc) > 0 [this explains the failure in part

(a)]. Investigate the effect of f  (xc) on the behavior of Picard

iteration and explain why the function in part (c) is better than

the function in part (b).



C H A P T E R

4
Integration

In themodern businessworld, companiesmust find themost cost-efficient

method of handling their inventory. One method is just-in-time inven-

tory, where new inventory arrives just as existing stock is running out.

As a simplified example of this, suppose that a heating oil company’s ter-

minal receives shipments of 8000 gallons of oil at a time and orders are

shipped out to customers at a constant rate of 1000 gallons per day, where

each shipment of oil arrives just as the last gallon on hand is shipped out.

Inventory costs are determined based on the average number of gallons

held at the terminal. So, how would we calculate this average?

To translate this into a calculus problem, let f (t) represent the num-

ber of gallons of oil at the terminal at time t (days), where a shipment

arrives at time t = 0. In this case, f (0) = 8000. Further, for 0 < t < 8,

there is no oil coming in, but oil is leaving at the rate of 1000 gallons per

day. Since “rate” means derivative, we have f  (t) = −1000, for

0 < t < 8. This tells us that the graph of y = f (t) has slope −1000

until time t = 8, at which point another shipment arrives to refill the terminal, so

that f (8) = 8000. Continuing in this way, we generate the graph of f (t) shown

here at the left.

3020

y =  f(t)

10

10,000

8000
9000

6000
7000

5000

2000
3000
4000

1000
t

y

3020

y =  g(t)

10 25155

10,000

8000

6000

2000

4000

t

y

Since the inventory ranges from 0 gallons to 8000 gallons, you might guess

that the average inventory of oil is 4000 gallons. However, look at the graph at

the right, showing a different inventory function g(t), where the oil is not shipped

out at a constant rate. Although the inventory again ranges from 0 to 8000, the

drop in inventory is so rapid immediately following each delivery that the average

number of gallons on hand is well below 4000.

291
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As we will see in this chapter, our usual way of averaging a set of numbers is analogous

to an area problem. Specifically, the average value of a function is the height of the rectangle

that has the same area as the area between the graph of the function and the x-axis. For

our original f (t), notice that 4000 appears to work well, while for g(t), an average of 2000

appears to be better, as you can see in the graphs.

Actually, several problems were just introduced: finding a function from its derivative,

finding the average value of a function and finding the area under a curve. In this chapter,

you will explore the relationships among these problems and learn a variety of techniques

for solving them.

4.1 ANTIDERIVATIVES

Calculus provides us with a powerful set of tools for understanding the world around us.

When engineers originally designed the space shuttle for NASA, it was equipped with

aircraft engines to power its flight through the atmosphere after reentry. In order to cut

costs, the aircraft engines were scrapped and the space shuttle became a huge glider. As a

result, once the shuttle has begun its reentry, there is only one choice of landing site. NASA

engineers use the calculus to provide precise answers to flight control problems. While we

are not in a position to deal with the vast complexities of a space shuttle flight, we can

consider an idealized model.

NOTES

For a realistic model of a system

as complex as a space shuttle, we

must consider much more than the

simple concepts discussed here.

For a very interesting presentation

of this problem, see the article by

Long and Weiss in the February

1999 issue of The American

Mathematical Monthly.

Aswe often do with real-world problems, we begin with a physical principle(s) and use

this to produce amathematicalmodelof the physical system.We then solve themathematical

problem and interpret the solution in terms of the physical problem.

Space shuttle Endeavor

If we consider only the vertical motion of an object falling toward the ground, the

physical principle governing the motion is Newton’s second law of motion:

Force = mass × acceleration or F = ma.

This says that the sum of all the forces acting on an object equals the product of its mass and

acceleration. Two forces that you might identify here are gravity pulling downward and air

drag pushing in the direction opposite the motion. From experimental evidence, we know

that the force due to air drag, Fd , is proportional to the square of the speed of the object and

acts in the direction opposite the motion. So, for the case of a falling object,

Fd = kv2,

for some constant k > 0.

The force due to gravity is simply the weight of the object, W = −mg, where the

gravitational constant g is approximately 32 ft/s2. (The minus sign indicates that the force

of gravity acts downward.) Putting this together, Newton’s second law of motion gives us

F = ma = −mg + kv2.

Recognizing that a = v (t), we have

mv (t) = −mg + kv2(t). (1.1)

Notice that equation (1.1) involves both the unknown function v(t) and its derivative v (t).
Such an equation is called a differential equation. We discuss differential equations in
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detail in Chapter 8. To get started now, we simplify the problem by assuming that gravity

is the only force acting on the object. Taking k = 0 in (1.1) gives us

mv (t) = −mg or v (t) = −g.

Now, let y(t) be the position function, giving the altitude of the object in feet t seconds after

the start of reentry. Since v(t) = y (t) and a(t) = v (t), we have

y  (t) = −32.

From this, we’d like to determine y(t). More generally, we need to find a way to undo

differentiation. That is, given a function, f (x), we’d like to find another function F(x) such

that F  (x) = f (x). We call such a function F an antiderivative of f.

EXAMPLE 1.1 Finding Several Antiderivatives of a Given Function

Find an antiderivative of f (x) = x2.

Solution Notice that F(x) = 1
3
x3 is an antiderivative of f (x), since

F  (x) = d

dx

 
1

3
x3
 

= x2.

Further, observe that
d

dx

 
1

3
x3 + 5

 
= x2,

so that G(x) = 1
3
x3 + 5 is also an antiderivative of f. In fact, for any constant c, we have

d

dx

 
1

3
x3 + c

 
= x2.

Thus, H (x) = 1
3
x3 + c is also an antiderivative of f (x), for any choice of the constant c.

Graphically, this gives us a family of antiderivative curves, as illustrated in Figure 4.1.

Note that each curve is a vertical translation of every other curve in the family. �

x

y

−2

−4

−2

2

4

2 40−4

FIGURE 4.1
A family of antiderivative curves

In general, observe that if F is any antiderivative of f and c is any constant, then

d

dx
[F(x) + c] = F  (x) + 0 = f (x).

Thus, F(x) + c is also an antiderivative of f (x), for any constant c. On the other hand,

are there any other antiderivatives of f (x) besides F(x) + c? The answer, as provided in

Theorem 1.1, is no.

THEOREM 1.1

Suppose that F and G are both antiderivatives of f on an interval I . Then,

G(x) = F(x) + c,

for some constant c.

PROOF

Since F and G are both antiderivatives for f, we have that G  (x) = F  (x). It now follows,

from Corollary 8.1 in section 2.8, that G(x) = F(x)+ c, for some constant c, as desired.
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DEFINITION 1.1

Let F be any antiderivative of f . The indefinite integral of f (x) (with respect to x),

is defined by  
f (x) dx = F(x) + c,

where c is an arbitrary constant (the constant of integration).

The process of computing an integral is called integration. Here, f (x) is called the inte-

grand and the term dx identifies x as the variable of integration.

NOTES

Theorem 1.1 says that given any

antiderivative F of f, every

possible antiderivative of f can be

written in the form F(x) + c, for

some constant, c. We give this

most general antiderivative a

name in Definition 1.1.

EXAMPLE 1.2 An Indefinite Integral

Evaluate
 
3x2dx .

Solution You should recognize 3x2 as the derivative of x3 and so, 
3x2dx = x3 + c.

�

EXAMPLE 1.3 Determining the Coefficient in an Indefinite Integral

Evaluate
 

t5dt .

Solution We know that
d

dt
t6 = 6t5 and so,

d

dt

 
1

6
t6
 

= t5. Therefore, 
t5dt = 1

6
t6 + c.

�

We should point out that every differentiation rule gives rise to a corresponding inte-

gration rule. For instance, recall that for every rational power, r,
d

dx
xr = r xr−1. Likewise,

we have

d

dx
xr+1 = (r + 1)xr .

This proves the following result.

REMARK 1.1

Theorem 1.2 says that to

integrate a power of x (other

than x−1), you simply raise the

power by 1 and divide by the

new power. Notice that this rule

obviously doesn’t work for

r = −1, since this would

produce a division by 0. In

Chapter 6, we develop a rule to

cover this case.

THEOREM 1.2 (Power Rule)

For any rational power r  = −1, 
xrdx = xr+1

r + 1
+ c. (1.2)

EXAMPLE 1.4 Using the Power Rule

Evaluate
 

x17dx .

Solution From the power rule, we have 
x17dx = x17+1

17 + 1
+ c = x18

18
+ c.

�
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EXAMPLE 1.5 The Power Rule with a Negative Exponent

Evaluate

 
1

x3
dx .

Solution We can use the power rule if we first rewrite the integrand. We have 
1

x3
dx =

 
x−3dx = x−3+1

−3 + 1
+ c = −1

2
x−2 + c.

�

EXAMPLE 1.6 The Power Rule with a Fractional Exponent

Evaluate (a)

 √
x dx and (b)

 
1
3

√
x

dx .

Solution (a) As in example 1.5, we first rewrite the integrand and then apply the power

rule. We have √
x dx =

 
x1/2dx = x1/2+1

1/2 + 1
+ c = x3/2

3/2
+ c = 2

3
x3/2 + c.

Notice that the fraction 2
3
in the last expression is exactly what it takes to cancel the new

exponent 3/2. (This is what happens if you differentiate.)

(b) Similarly,  
1
3

√
x

dx =
 

x−1/3dx = x−1/3+1

−1/3 + 1
+ c

= x2/3

2/3
+ c = 3

2
x2/3 + c.

�

Notice that since
d

dx
sin x = cos x , we have

 
cos x dx = sin x + c.

Again, by reversing any derivative formula, we get a corresponding integration formula.

The following table contains a number of important formulas. The proofs of these are left

as straightforward, yet important, exercises. Notice that we do not yet have integration

formulas for several familiar functions: 1
x
, tan x, cot x and others.

 
xrdx = xr+1

r + 1
+ c, for r  = −1 (power rule)

 
csc2 x dx = − cot x + c 

sin x dx = − cos x + c

 
sec x tan x dx = sec x + c 

cos x dx = sin x + c

 
csc x cot x dx = − csc x + c 

sec2 x dx = tan x + c

At this point, we are simply reversing the most basic derivative rules we know. We will

develop more sophisticated techniques later. For now, we need a general rule to allow us to

combine our basic integration formulas.
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THEOREM 1.3

Suppose that f (x) and g(x) have antiderivatives. Then, for any constants, a and b, 
[a f (x) + bg(x)] dx = a

 
f (x) dx + b

 
g(x) dx . (1.3)

PROOF

We have that
d

dx

 
f (x) dx = f (x) and

d

dx

 
g(x) dx = g(x). It then follows that

d

dx

 
a

 
f (x) dx + b

 
g(x) dx

 
= a f (x) + bg(x),

as desired.

Note that Theorem 1.3 says that we can easily compute integrals of sums, differences

and constant multiples of functions. However, it turns out that the integral of a product (or

a quotient) is not generally the product (or quotient) of the integrals.

EXAMPLE 1.7 An Indefinite Integral of a Sum

Evaluate
 
(3 cos x + 4x8) dx .

Solution  
(3 cos x + 4x8) dx = 3

 
cos x dx + 4

 
x8 dx From (1.3).

= 3 sin x + 4
x9

9
+ c

= 3 sin x + 4

9
x9 + c.

�

EXAMPLE 1.8 An Indefinite Integral of a Difference

Evaluate

 
(3 − 4 sec2 x) dx .

Solution 
(3 − 4 sec2 x) dx = 3

 
1 dx − 4

 
sec2 x dx = 3x − 4 tan x + c.

�

Before concluding the section by examining another falling object, we should empha-

size that we have developed only a small number of integration rules. Further, unlike with

derivatives, we will never have rules to cover all of the functions with which we are familiar.

Thus, it is important to recognize when you cannot find an antiderivative.

EXAMPLE 1.9 Identifying Integrals That We Cannot Yet Evaluate

Which of the following integrals can you evaluate given the rules developed in

this section? (a)

 
1

3
√

x2
dx , (b)

 
sec x dx , (c)

 
2x

x2 + 1
dx , (d)

 
x3 + 1

x2
dx ,

(e)

 
(x + 1)(x − 1) dx and (f)

 
x sin 2x dx .
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Solution First, notice that we can rewrite problems (a), (d) and (e) into forms where

we can recognize an antiderivative, as follows. For (a),

 
1

3
√

x2
dx =

 
x−2/3 dx = x−2/3+1

− 2
3

+ 1
+ c = 3x1/3 + c.

In part (d), if we divide out the integrand, we find

 
x3 + 1

x2
dx =

 
(x + x−2) dx = x2

2
+ x−1

−1
+ c = x2

2
− 1

x
+ c.

Finally, in part (e), if we multiply out the integrand, we get

 
(x + 1)(x − 1) dx =

 
(x2 − 1) dx = x3

3
− x + c.

Parts (b), (c) and (f) require us to find functions whose derivatives equal sec x,
2x

x2 + 1
and x sin 2x . As yet, we cannot evaluate these integrals. �

Now that we know how to find antiderivatives for a number of functions, we return to

the problem of the falling object that opened the section.

EXAMPLE 1.10 Finding the Position of a Falling Object
Given Its Acceleration

If an object’s downward acceleration is given by y  (t) = −32 ft/s2, find the position

function y(t). Assume that the initial velocity is y (0) = −100 ft/s and the initial position

is y(0) = 100,000 feet.

Solution We have to undo two derivatives, so we compute two antiderivatives. First,

we have

y (t) =
 

y  (t) dt =
 
(−32) dt = −32t + c.

Recall that y (t) is the velocity of the object, given in units of feet per second. We can

evaluate the constant c using the given initial velocity. Since

v(t) = y (t) = −32t + c

and v(0) = y (0) = −100, we must have

−100 = v(0) = −32(0) + c = c,

so that c = −100. Thus, the velocity is y (t) = −32t − 100. Next, we have

y(t) =
 

y (t) dt =
 
(−32t − 100) dt = −16t2 − 100t + c.

Recall that y(t) gives the height of the object, measured in feet. Using the initial position,

we have

100,000 = y(0) = −16(0) − 100(0) + c = c.

Thus, c = 100,000 and y(t) = −16t2 − 100t + 100,000.

Keep in mind that this models the object’s height assuming that the only force acting on

the object is gravity (i.e., there is no air drag or lift). �
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EXERCISES 4.1

WRITING EXERCISES

1. In the text, we emphasized that the indefinite integral repre-

sents all antiderivatives of a given function. To understand

why this is important, consider a situation where you know

the net force, F(t), acting on an object. By Newton’s second

law, F = ma. For the position function s(t), this translates to

a(t) = s   (t) = F(t)/m. To compute s(t), you need to compute

an antiderivative of the force function F(t)/m followed by an

antiderivative of the first antiderivative. However, suppose you

were unable to find all antiderivatives. How would you know

whether you had computed the antiderivative that corresponds

to the position function? In physical terms, explain why it is

reasonable to expect that there is only one antiderivative cor-

responding to a given set of initial conditions.

2. In the text, we presented a one-dimensional model of the mo-

tion of a falling object. We ignored some of the forces on the

object so that the resulting mathematical equation would be

one that we could solve. You may wonder what the benefit of

doing this is. Weigh the relative worth of having an unsolvable

but realistic model versus having a solution of a model that is

only partially accurate. Keep in mind that when you toss trash

into a wastebasket you do not take the curvature of the earth

into account.

3. Verify that
 

x cos(x2) dx = 1
2
sin(x2) + c and 

x cos x dx = x sin x + cos x + c by computing derivatives

of the proposed antiderivatives. Which derivative rules did you

use? Why does this make it unlikely that we will find a general

product (antiderivative) rule for
 

f (x)g(x) dx?

4. We stated in the text that we do not yet have a formula

for the antiderivative of several elementary functions, includ-

ing 1
x
, tan x, sec x and csc x . Given a function f (x), explain

what determines whether or not we have a simple formula for 
f (x) dx . For example, why is there a simple formula for 
sec x tan x dx but not

 
sec x dx?

In exercises 1–4, sketch several members of the family of func-

tions defined by the antiderivative.

1.

 
x3 dx 2.

 
(x3 − x) dx

3.

 
(x − 2) dx 4.

 
cos x dx

In exercises 5–24, find the general antiderivative.

5.

 
(3x4 − 3x) dx 6.

 
(x3 − 2) dx

7.

  
3
√

x − 1

x4

 
dx 8.

  
2x−2 + 1√

x

 
dx

9.

 
x1/3 − 3

x2/3
dx 10.

 
x + 2x3/4

x5/4
dx

11.

 
(2 sin x + cos x) dx 12.

 
(3 cos x − sin x) dx

13.

 
2 sec x tan x dx 14.

 
(1 − x)2

4
dx

15.

 
5 sec2 x dx 16.

 
4
cos x

sin2 x
dx

17.

 
(3 cos x − 2) dx 18.

 
(4x − 2 sin x) dx

19.

  
5x − 3

x2

 
dx 20.

 
(2 cos x −

√
x3) dx

21.

 
x2 + 4

x2
dx 22.

 
1 − cos2 x

cos2 x
dx

23.

 
x1/4(x5/4 − 4) dx 24.

 
x2/3(x−4/3 − 3) dx

In exercises 25–28, one of the two antiderivatives can be deter-

mined using basic algebra and the derivative formulas we have

presented. Find the antiderivative of this one and label the other

“N/A.”

25. (a)

  
x3 + 4 dx (b)

  √
x3 + 4

 
dx

26. (a)

 
3x2 − 4

x2
dx (b)

 
x2

3x2 − 4
dx

27. (a)

 
2 sec x dx (b)

 
sec2 x dx

28. (a)

  
1

x2
− 1

 
dx (b)

 
1

x2 − 1
dx

29. In example 1.9, use your CAS to evaluate the antiderivative

in part (f). Verify that this is correct by computing the deri-

vative.

30. For each of the problems in exercises 25–28 that you labeled

N/A, try to find an antiderivative on your CAS. Where possi-

ble, verify that the antiderivative is correct by computing the

derivatives.

31. Use a CAS to find an antiderivative, then verify the answer by

computing a derivative, where possible.

(a)

 
x2 sin x dx (b)

 
cos x

sin3 x
dx (c)

 
sin

√
x√

x
dx

32. Use a CAS to find an antiderivative, then verify the answer by

computing a derivative.

(a)

 
x cos(x2) dx (b)

 
3x sin 2x dx (c)

  √
x + 4

 4
√

x
dx
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In exercises 33–36, find the function f (x) satisfying the given

conditions.

33. f  (x) = x2 + x, f (0) = 4

34. f  (x) = 4 cos x, f (0) = 3

35. f   (x) = 12, f  (0) = 2, f (0) = 3

36. f   (x) = 2x, f  (0) = −3, f (0) = 2

In exercises 37–40, find all functions satisfying the given

conditions.

37. f   (x) = 3 sin x + 4x2 38. f   (x) = √
x − 2 cos x

39. f    (x) = 4 − 2

x4
40. f    (x) = sin x − 2

41. Determine the position function if the velocity function is

v(t) = 3 − 12t and the initial position is s(0) = 3.

42. Determine the position function if the velocity function is

v(t) = 3 cos t − 2 and the initial position is s(0) = 0.

43. Determine the position function if the acceleration function is

a(t) = 3 sin t + 1, the initial velocity is v(0) = 0 and the initial

position is s(0) = 4.

44. Determine the position function if the acceleration function

is a(t) = t2 + 1, the initial velocity is v(0) = 4 and the initial

position is s(0) = 0.

45. Suppose that a car can accelerate from 30 mph to 50 mph

in 4 seconds. Assuming a constant acceleration, find the

acceleration (in miles per second squared) of the car and find

the distance traveled by the car during the 4 seconds.

46. Suppose that a car can come to rest from 60 mph in 3 sec-

onds. Assuming a constant (negative) acceleration, find the

acceleration (in miles per second squared) of the car and find

the distance traveled by the car during the 3 seconds (i.e., the

stopping distance).

In exercises 47 and 48, sketch the graph of a function f (x) cor-

responding to the given graph of y  f  (x).

47.

2

4

6

8

x

y

321−1−2−3

48. y

x

8

4

−4

321−3 −2 −1

49. Sketch the graphs of three functions, each of which has the

derivative sketched in exercise 47.

50. Repeat exercise 47 if the given graph is of f   (x).

51. The following table shows the velocity of a falling object at

different times. For each time interval, estimate the distance

fallen and the acceleration.

t (s) 0 0.5 1.0 1.5 2.0

v(t) (ft/s) −4.0 −19.8 −31.9 −37.7 −39.5

52. The following table shows the velocity of a falling object at

different times. For each time interval, estimate the distance

fallen and the acceleration.

t (s) 0 1.0 2.0 3.0 4.0

v(t) (m/s) 0.0 −9.8 −18.6 −24.9 −28.5

53. The following table shows the acceleration of a car moving

in a straight line. If the car is traveling 70 ft/s at time t = 0,

estimate the speed and distance traveled at each time.

t (s) 0 0.5 1.0 1.5 2.0

a(t) (ft/s2) −4.2 2.4 0.6 −0.4 1.6

54. The following table shows the acceleration of a car moving

in a straight line. If the car is traveling 20 m/s at time t = 0,

estimate the speed and distance traveled at each time.

t (s) 0 0.5 1.0 1.5 2.0

a(t) (m/s2) 0.6 −2.2 −4.5 −1.2 −0.3

55. Find a function f (x) such that the point (1, 2) is on the graph

of y = f (x), the slope of the tangent line at (1, 2) is 3 and

f   (x) = x − 1.

56. Find a function f (x) such that the point (−1, 1) is on the graph

of y = f (x), the slope of the tangent line at (−1, 1) is 2 and

f   (x) = 6x + 4.

In exercises 57–62, find an antiderivative by reversing the chain

rule, product rule or quotient rule.

57.

 
2x cos x2dx 58.

 
x2
 

x3 + 2 dx
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59.

 
(x sin 2x + x2 cos 2x) dx 60.

 
2x(x2 + 1) − x2(2x)

(x2 + 1)2
dx

61.

 
x cos x2

√
sin x2

dx

62.

   
x2 + 1 cos x + x√

x2 + 1
sin x

 
dx

63. Derive the formulas
 
sec2 x dx = tan x + c and 

sec x tan x dx = sec x + c.

EXPLORATORY EXERCISES

1. Compute the derivatives of cos(x2) and cos(sin x). Given these

derivatives, evaluate the indefinite integrals
 −2x sin(x2) dx

and
 − cos x sin(sin x) dx . Next, evaluate

 
x2 sin(x3) dx .

[Hint:
 

x2 sin(x3) dx = − 1
3

 −3x2 sin(x3) dx .] Similarly,

evaluate
 

x3 sin(x4) dx . In general, evaluate 
f  (x) sin( f (x)) dx .

Next, evaluate
 
2x cos(x2) dx,

 
3x2 cos(x3) dx and themore

general  
f  (x) cos ( f (x)) dx .

Aswe have stated, there is no general rule for the antiderivative

of a product,
 

f (x)g(x) dx . Instead, there are many special

cases that you evaluate case by case.

2. A differential equation is an equation involving an unknown

function and one or more of its derivatives, for instance,

v (t) = 2t + 3. To solve this differential equation, you sim-

ply find the antiderivative v(t) =  (2t + 3) dt = t2 + 3t + c.

Notice that solutions of a differential equation are func-

tions. In general, differential equations can be challenging to

solve. For example, we introduced the differential equation

mv (t) = −mg + kv2(t) for the vertical motion of an object

subject to gravity and air drag. Taking specific values of m

and k gives the equation v (t) = −32 + 0.0003v2(t). To solve

this, we would need to find a function whose derivative equals

−32 plus 0.0003 times the square of the function. It is dif-

ficult to find a function whose derivative is written in terms

of [v(t)]2 when v(t) is precisely what is unknown. We can

nonetheless construct a graphical representation of the solu-

tion using what is called a direction field. Suppose we want

to construct a solution passing through the point (0, −100),

corresponding to an initial velocity of v(0) = −100 ft/s. At

t = 0, with v = −100, we know that the slope of the solution is

v = −32 + 0.0003(−100)2 = −29. Starting at (0,−100),

sketch in a short line segment with slope −29. Such a line seg-

ment would connect to the point (1,−129) if you extended it

that far (butmakeyoursmuch shorter).At t = 1 andv = −129,

the slope of the solution is v = −32+ 0.0003(−129)2 ≈ −27.

Sketch in a short line segment with slope −27 starting at the

point (1,−129). This line segment points to (2,−156). At this

point, v = −32 + 0.0003(−156)2 ≈ −24.7. Sketch in a short

line segment with slope −24.7 at (2,−156). Do you see a

graphical solution starting to emerge? Is the solution increas-

ing or decreasing? Concave up or concave down? If your CAS

has a direction field capability, sketch the direction field and

try to visualize the solutions starting at point (0,−100), (0, 0)

and (0,−300).

4.2 SUMS AND SIGMA NOTATION

In section 4.1, we discussed how to calculate backward from the velocity function for

an object to arrive at the position function for the object. We next investigate the same

process graphically. In this section, we develop an important skill necessary for this new

interpretation.

Driving at a constant 60 mph, in 2 hours, you travel 120 miles; in 4 hours, you travel

240miles. There’s no surprise here, but notice that you can see this graphically by looking at

several graphs of the (constant) velocity functionv(t) = 60. InFigure 4.2a, the area under the

graph from t = 0 to t = 2 (shaded) equals 120, the distance traveled in this time interval.

In Figure 4.2b, the shaded region from t = 0 to t = 4 has area equal to the distance of

240 miles.

So, it appears that the distance traveled over a particular time interval equals the area

of the region bounded by y = v(t) and the t-axis on that interval. For the case of constant

velocity, this is no surprise, as we have that

d = r × t = velocity × time.

We would also like to compute the area under the curve (equal to the distance traveled) for

a nonconstant velocity function, such as the one shown in Figure 4.3 for the time interval
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Velocity

54321
Time

60

40

20

Velocity

54321
Time

60

40

20

FIGURE 4.2a
y = v(t) on [0, 2]

FIGURE 4.2b
y = v(t) on [0, 4]

[0, 5]. Our work in this section provides the first step toward a powerful technique for

computing such areas. To indicate the direction we will take, suppose that the velocity

curve in Figure 4.3 is replaced by the approximation in Figure 4.4, where the velocity is

assumed to be constant over each of five 1-hour time intervals.

The area on the interval from t = 0 to t = 5 is then approximately the sum of the areas

of the five rectangles:

A ≈ 60 + 45 + 50 + 55 + 50 = 260miles.

Of course, this is a fairly crude estimate of the area in Figure 4.3 (see Figure 4.5 to see how

good this approximation is), but you should observe that we could get a better estimate by

approximating the area using more (and smaller) rectangles. Certainly, we had no problem

adding up the areas of five rectangles, but for 5000 rectangles, youwill want somemeans for

simplifying and automating the process. Dealing with such sums is the topic of this section.

54321

60

40

20

x

y

FIGURE 4.3
Nonconstant velocity

Velocity

54321

60

Time

40

20

FIGURE 4.4
Approximate area

Velocity

54321

60

Time

40

20

FIGURE 4.5
Approximate area

We begin by introducing some notation. Suppose that you want to sum the squares of

the first 20 positive integers. Notice that

1 + 4 + 9 + · · · + 400 = 12 + 22 + 32 + · · · + 202.

The pattern is obvious; each term in the sum has the form i2, for i = 1, 2, 3, . . . , 20. To

reduce the amount of writing, we use the Greek capital letter sigma,
 

, as a symbol for

sum and write the sum in summation notation as
20 
i=1

i2 = 12 + 22 + 32 + · · · + 202,

to indicate that we add together terms of the form i2, starting with i = 1 and ending with

i = 20. The variable i is called the index of summation.

In general, for any real numbers a1, a2, . . . , an , we have
n 

i=1

ai = a1 + a2 + · · · + an.

EXAMPLE 2.1 Using Summation Notation

Write in summation notation:
√
1 +

√
2 +

√
3 + · · · +

√
10 and

33 + 43 + 53 + · · · + 453.

Solution We have the sum of the square roots of the integers from 1 to 10:

√
1 +

√
2 +

√
3 + · · · +

√
10 =

10 
i=1

√
i

and the sum of the cubes of the integers from 3 to 45:

33 + 43 + 53 + · · · + 453 =
45 
i=3

i3.
�
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EXAMPLE 2.2 Summation Notation for a Sum Involving Odd Integers

Write in summation notation: the sum of the first 200 odd positive integers.

Solution First, notice that (2i) is even for every integer i and hence, both (2i − 1) and

(2i + 1) are odd. So, we have

1 + 3 + 5 + · · · + 399 =
200 
i=1

(2i − 1).

Alternatively, we can write this as the equivalent expression
199 
i=0

(2i + 1). (Write out the

terms to see why these are equivalent.) �

REMARK 2.1

The index of summation is a

dummy variable, since it is

used only as a counter to keep

track of terms. The value of the

summation does not depend on

the letter used as the index. For

this reason, you may use any

letter you like as an index. By

tradition, we most frequently

use i, j, k,m and n, but any

index will do. For instance,

n 
i=1

ai =
n 

j=1

a j =
n 

k=1

ak .

EXAMPLE 2.3 Computing Sums Given in Summation Notation

Write out all terms and compute the sums
8 

i=1

(2i + 1),
6 

i=2

sin(2π i) and
10 
i=4

5.

Solution We have

8 
i=1

(2i + 1) = 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 = 80

and
6 

i=2

sin(2π i) = sin 4π + sin 6π + sin 8π + sin 10π + sin 12π = 0.

(Note that the sum started at i = 2.) Finally,

10 
i=4

5 = 5 + 5 + 5 + 5 + 5 + 5 + 5 = 35.

�

As example 2.3 suggests, there are sometimes shortcuts for computing sums. For in-

stance, the easy way of evaluating the third sum above is to notice that 5 appears 7 times,

and 7 times 5 is 35. We now state this and two other useful formulas.

THEOREM 2.1

If n is any positive integer and c is any constant, then

(i)
n 

i=1

c = cn (sum of constants),

(ii)
n 

i=1

i = n(n + 1)

2
(sum of the first n positive integers) and

(iii)
n 

i=1

i2 = n(n + 1)(2n + 1)

6
(sum of the squares of the first n positive integers).
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PROOF

(i)
n 

i=1

c indicates to add the same constant c to itself n times and hence, the sum is simply

c times n.

(ii) The following clever proof has been credited to then 10-year-old Karl Friedrich Gauss.

(For more on Gauss, see the historical note in the margin.) First notice that
n 

i=1

i = 1 + 2 + 3 + · · · + (n − 2) + (n − 1) + n    
n terms

. (2.1)

Since the order in which we add the terms does not matter, we add the terms in (2.1) in

reverse order, to get

n 
i=1

i = n + (n − 1) + (n − 2) + · · · + 3 + 2 + 1    
same n terms (backward)

. (2.2)

Adding equations (2.1) and (2.2) term by term, we get

2
n 

i=1

i = (1 + n) + (2 + n − 1) + (3 + n − 2) + · · · + (n − 1 + 2) + (n + 1)

= (n + 1) + (n + 1) + (n + 1) + · · · + (n + 1) + (n + 1) + (n + 1)    
n terms

= n(n + 1), Adding each term in parentheses.

since (n + 1) appears n times in the sum. Dividing both sides by 2 gives us

n 
i=1

i = n(n + 1)

2
,

as desired. The proof of (iii) requires a more sophisticated proof using mathematical induc-

tion and we defer it to the end of this section.

HISTORICAL NOTES

Karl Friedrich Gauss

(1777–1855)

A German mathematician widely

considered to be the greatest

mathematician of all time. A

prodigy who had proved

important theorems by age 14,

Gauss was the acknowledged

master of almost all areas of

mathematics. He proved the

Fundamental Theorem of Algebra

and numerous results in number

theory and mathematical physics.

Gauss was instrumental in starting

new fields of research including

the analysis of complex variables,

statistics, vector calculus and

non-Euclidean geometry. Gauss

was truly the “Prince of

Mathematicians.’’

We also have the following general rule for expanding sums. The proof is straight-

forward and is left as an exercise.

THEOREM 2.2

For any constants c and d ,
n 

i=1

(cai + dbi ) = c

n 
i=1

ai + d

n 
i=1

bi .

Using Theorems 2.1 and 2.2, we can now compute several simple sums with ease. Note

that we have no more difficulty summing 800 terms than we do summing 8.

EXAMPLE 2.4 Computing Sums Using Theorems 2.1 and 2.2

Compute
8 

i=1

(2i + 1) and
800 
i=1

(2i + 1).

Solution From Theorems 2.1 and 2.2, we have

8 
i=1

(2i + 1) = 2
8 

i=1

i +
8 

i=1

1 = 2
8(9)

2
+ (1)(8) = 72 + 8 = 80.
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Similarly,
800 
i=1

(2i + 1) = 2
800 
i=1

i +
800 
i=1

1 = 2
800(801)

2
+ (1)(800)

= 640,800 + 800 = 641,600. �

EXAMPLE 2.5 Computing Sums Using Theorems 2.1 and 2.2

Compute
20 
i=1

i2 and
20 
i=1

 
i

20

 2

.

Solution From Theorems 2.1 and 2.2, we have

20 
i=1

i2 = 20(21)(41)

6
= 2870

and
20 
i=1

 
i

20

 2

= 1

202

20 
i=1

i2 = 1

400

20(21)(41)

6
= 1

400
2870 = 7.175.

�

We return to the study of general sums in Chapter 9. Recall that our initial moti-

vation for studying sums was to calculate distance from velocity. In the beginning of

this section, we approximated distance by summing several values of the velocity func-

tion. In section 4.3, we will further develop these sums to allow us to compute areas

exactly.

EXAMPLE 2.6 Computing a Sum of Function Values

Sum the values of f (x) = x2 + 3 evaluated at x = 0.1, x = 0.2, . . . , x = 1.0.

Solution We first formulate this in summation notation, so that we can

use the rules we have developed in this section. The terms to be summed are

a1 = f (0.1) = 0.12 + 3, a2 = f (0.2) = 0.22 + 3 and so on. Note that since each of the

x-values is a multiple of 0.1, we can write the x’s in the form 0.1i, for i = 1, 2, . . . , 10.

In general, we have

ai = f (0.1i) = (0.1i)2 + 3, for i = 1, 2, . . . , 10.

From Theorem 2.1 (i) and (iii), we then have

10 
i=1

ai =
10 
i=1

f (0.1i) =
10 
i=1

[(0.1i)2 + 3] = 0.12
10 
i=1

i2 +
10 
i=1

3

= 0.01
10(11)(21)

6
+ (3)(10) = 3.85 + 30 = 33.85.

�

EXAMPLE 2.7 A Sum of Function Values at Equally Spaced x ’s

Sum the values of f (x) = 3x2 − 4x + 2 evaluated at x = 1.05, x = 1.15,

x = 1.25, . . . , x = 2.95.
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Solution You will need to think carefully about the x’s. The distance between

successive x-values is 0.1 and there are 20 such values. (Be sure to count these for

yourself.) Notice that we can write the x’s in the form 0.95 + 0.1i , for i = 1, 2, . . . ,

20.

We now have

20 
i=1

f (0.95 + 0.1i) =
20 
i=1

[3(0.95 + 0.1i)2 − 4(0.95 + 0.1i) + 2]

=
20 
i=1

(0.03i2 + 0.17i + 0.9075) Multiply out terms.

= 0.03
20 
i=1

i2 + 0.17
20 
i=1

i +
20 
i=1

0.9075 From Theorem 2.2.

= 0.03
20(21)(41)

6
+ 0.17

20(21)

2
+ 0.9075(20) From Theorem 2.1

(i), (ii) and (iii).

= 139.95. �

Over the next several sections, we will see how sums such as those found in examples

2.6 and 2.7 play a very significant role. We end this section by looking at a powerful

mathematical principle.

Principle of Mathematical Induction
For any proposition that depends on a positive integer, n, we first show that the result is

true for a specific value n = n0. We then assume that the result is true for an unspecified

n = k ≥ n0. (This is called the induction assumption.) If we can show that it follows

that the proposition is true for n = k + 1, we have proved that the result is true for any

positive integer n ≥ n0. Think about why this must be true. (Hint: If P1 is true and Pk true

implies Pk+1 is true, then P1 true implies P2 is true, which in turn implies P3 is true and

so on.)

We can now use mathematical induction to prove the last part of Theorem 2.1, which

states that for any positive integer n,
n 

i=1

i2 = n(n + 1)(2n + 1)

6
.

PROOF OF THEOREM 2.1 (iii)

For n = 1, we have

1 =
1 

i=1

i2 = 1(2)(3)

6
,

as desired. So, the proposition is true for n = 1. Next, assume that

k 
i=1

i2 = k(k + 1)(2k + 1)

6
, Induction assumption. (2.3)

for some integer k ≥ 1.
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In this case, we have by the induction assumption that for n = k + 1,

n 
i=1

i2 =
k+1 
i=1

i2 =
k 

i=1

i2 +
k+1 

i=k+1

i2 Split off the last term.

= k(k + 1)(2k + 1)

6
+ (k + 1)2 From (2.3).

= k(k + 1)(2k + 1) + 6(k + 1)2

6
Add the fractions.

= (k + 1)[k(2k + 1) + 6(k + 1)]

6
Factor out (k + 1).

= (k + 1)[2k2 + 7k + 6]

6
Combine terms.

= (k + 1)(k + 2)(2k + 3)

6
Factor the quadratic.

= (k + 1)[(k + 1) + 1][2(k + 1) + 1]

6
Rewrite the terms.

= n(n + 1)(2n + 1)

6
, Since n = k + 1.

as desired.

EXERCISES 4.2

WRITING EXERCISES

1. In the text, we mentioned that one of the benefits of using

the summation notation is the simplification of calculations.

To help understand this, write out in words what is meant by
40 
i=1

(2i2 − 4i + 11).

2. Following up on exercise 1, calculate the sum
40 
i=1

(2i2 − 4i + 11) and then describe in words how you did so.

Be sure to describe any formulas andyour use of them inwords.

In exercises 1–4, a calculation is described in words. Translate

each into summation notation and then compute the sum.

1. The sum of the squares of the first 50 positive integers.

2. The square of the sum of the first 50 positive integers.

3. The sum of the square roots of the first 10 positive integers.

4. The square root of the sum of the first 10 positive integers.

In exercises 5–8, write out all terms and compute the sums.

5.

6 
i=1

3i2 6.

7 
i=3

(i2 + i)

7.

10 
i=6

(4i + 2) 8.

8 
i=6

(i2 + 2)

In exercises 9–18, use summation rules to compute the sum.

9.

70 
i=1

(3i − 1) 10.

45 
i=1

(3i − 4)

11.

40 
i=1

 
4 − i2

 
12.

50 
i=1

(8 − i)

13.

100 
i=1

 
i2 − 3i + 2

 
14.

140 
i=1

 
i2 + 2i − 4

 

15.

200 
i=1

(4 − 3i − i2) 16.

250 
i=1

(i2 + 8)

17.

n 
i=3

(i2 − 3) 18.

n 
i=0

(i2 + 5)

In exercises 19–22, compute the sum and the limit of the sum as

n→∞ .

19.

n 
i=1

1

n

  
i

n

 2

+ 2

 
i

n

  
20.

n 
i=1

1

n

  
i

n

 2

− 5

 
i

n
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21.

n 
i=1

1

n

 
4

 
2i

n

 2

−
 
2i

n

  
22.

n 
i=1

1

n

  
2i

n

 2

+ 4

 
i

n

  

In exercises 23–26, compute sums of the form
n 

i 1

f (xi )Δx for

the given values.

23. f (x) = x2 + 4x ; x = 0.2, 0.4, 0.6, 0.8, 1.0; x = 0.2; n = 5

24. f (x) = 3x + 5; x = 0.4, 0.8, 1.2, 1.6, 2.0; x = 0.4; n = 5

25. f (x) = 4x2 − 2; x = 2.1, 2.2, 2.3, 2.4, . . . , 3.0;

 x = 0.1; n = 10

26. f (x) = x3 + 4; x = 2.05, 2.15, 2.25, 2.35, . . . , 2.95;

 x = 0.1; n = 10

27. Suppose that a car has velocity 50 mph for 2 hours, velocity

60mph for 1 hour, velocity 70mph for 30minutes and velocity

60 mph for 3 hours. Find the distance traveled.

28. Suppose that a car has velocity 50 mph for 1 hour, velocity

40 mph for 1 hour, velocity 60 mph for 30 minutes and veloc-

ity 55 mph for 3 hours. Find the distance traveled.

29. Suppose that a runner has velocity 15 mph for 20 minutes, ve-

locity 18 mph for 30 minutes, velocity 16 mph for 10 minutes

and velocity 12 mph for 40 minutes. Find the distance run.

30. Suppose that a runner has velocity 12 mph for 20 minutes, ve-

locity 14 mph for 30 minutes, velocity 18 mph for 10 minutes

and velocity 15 mph for 40 minutes. Find the distance run.

31. The table shows the velocity of a projectile at various times.

Estimate the distance traveled.

time (s) 0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

velocity (ft/s) 120 116 113 110 108 106 104 103 102

32. The table shows the (downward) velocity of a falling object.

Estimate the distance fallen.

time (s) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

velocity (m/s) 10 14.9 19.8 24.7 29.6 34.5 39.4 44.3 49.2

33. Use mathematical induction to prove that
n 

i=1

i3 = n2(n + 1)2

4
for all integers n ≥ 1.

34. Use mathematical induction to prove that
n 

i=1

i5 = n2(n + 1)2(2n2 + 2n − 1)

12
for all integers n ≥ 1.

In exercises 35–38, use the formulas in exercises 33 and 34 to

compute the sums.

35.

10 
i=1

(i3 − 3i + 1) 36.

20 
i=1

(i3 + 2i)

37.

100 
i=1

(i5 − 2i2) 38.

100 
i=1

(2i5 + 2i + 1)

39. Prove Theorem 2.2.

40. Use induction to derive the geometric series formula

a + ar + ar 2 + · · · + arn = a − arn+1

1 − r
for constants a and

r  = 1.

In exercises 41 and 42, use the result of exercise 40 to evaluate

the sum and the limit of the sum as n→∞ .

41.

n 
i=1

3

 
1

4

 i

42.

n 
i=1

2

 −1

3

 i

EXPLORATORY EXERCISES

1. Suppose that the velocity of a car is given by

v(t) = 3
√

t + 30 mph at time t hours (0 ≤ t ≤ 4). We

will try to determine the distance traveled in the 4 hours.

To start, we can note that the velocity at t = 0 is

v(0) = 3
√
0 + 30 = 30 mph and the velocity at time t = 1

is v(1) = 3
√
1 + 30 = 33 mph. Since the average of these

velocities is 31.5 mph, we could estimate that the car traveled

31.5 miles in the first hour. Carefully explain why this is not

necessarily correct. Even so, it will serve as a first approxima-

tion. Since v(1) = 33 mph and v(2) = 3
√
2 + 30 ≈ 34 mph,

we can estimate that the car traveled 33.5 miles in the second

hour. Using v(3) ≈ 35 mph and v(4) = 36 mph, find simi-

lar estimates for the distance traveled in the third and fourth

hours and then estimate the total distance. To improve this

estimate, we can find an estimate for the distance covered each

half hour. The first estimate would take v(0) = 30 mph and

v(0.5) ≈ 32.1 mph and estimate an average velocity of 31.05

mph and a distance of 15.525 miles. Estimate the average

velocity and then the distance for the remaining 7 half hours

and estimate the total distance. We can improve this estimate,

too. By estimating the average velocity every quarter hour,

find a third estimate of the total distance. Based on these three

estimates, conjecture the limit of these approximations as the

time interval considered goes to zero.

2. In this exercise, we investigate a generalization of a finite sum

called an infinite series. Suppose a bouncing ball has coeffi-

cient of restitution equal to 0.6. This means that if the ball hits

the ground with velocity v ft/s, it rebounds with velocity 0.6v.

Ignoring air resistance, a ball launched with velocity v ft/s will

stay in the air v/16 seconds before hitting the ground. Suppose

a ball with coefficient of restitution 0.6 is launched with initial

velocity 60 ft/s. Explain why the total time in the air is given

by 60/16 + (0.6)(60)/16 + (0.6)(0.6)(60)/16 + · · ·. It might

seem like the ball would continue to bounce forever. To see

otherwise, use the result of exercise 40 to find the limit that

these sums approach. The limit is the number of seconds that

the ball continues to bounce.

3. The following statement is obviously false: Given any set of

n numbers, the numbers are all equal. Find the flaw in the at-

tempteduse ofmathematical induction.Letn = 1.Onenumber
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is equal to itself. Assume that for n = k, any k numbers are

equal. Let S be any set of k + 1 numbers a1, a2, . . . , ak+1.

By the induction hypothesis, the first k numbers are equal:

a1 = a2 = · · · = ak and the last k numbers are equal:

a2 = a3 = · · · = ak+1. Combining these results, all k + 1 num-

bers are equal: a1 = a2 = · · · = ak = ak+1, as desired.

4.3 AREA

Several times now, we have considered how to compute the distance traveled from a given

velocity function. We examined this in terms of antiderivatives in section 4.1 and reworked

this as an area problem in section 4.2. In this section, we will develop the general problem

of calculation of areas in some detail.

You are familiar with the formulas for computing the area of a rectangle, a circle and

a triangle. From endless use of these formulas over the years, you should have a clear idea

of what area is: one measure of the size of a two-dimensional region. However, how would

you compute the area of a region that’s not a rectangle, circle or triangle?

We need a more general description of area, one that can be used to find the area

of almost any two-dimensional region imaginable. In this section, we develop a general

process for computing area. It turns out that this process (which we generalize to the notion

of the definite integral in section 4.4) has significance far beyond the calculation of area. In

fact, this powerful and flexible tool is one of the central ideas of calculus, with applications

in a wide variety of fields.

2.0

y

1.5

1.0

0.5

x
ba

FIGURE 4.6
Area under y = f (x)

The general problem is to estimate the area below the graph of y = f (x) and above the

x-axis for a ≤ x ≤ b. For now, we assume that f (x) ≥ 0 and f is continuous on the interval

[a, b], as in Figure 4.6.

We start by dividing the interval [a, b] into n equal pieces. This is called a regular

partition of [a, b]. The width of each subinterval in the partition is then
b − a

n
, which we

denote by  x (meaning a small change in x). The points in the partition are denoted by

x0 = a, x1 = x0 + x, x2 = x1 + x and so on. In general,

xi = x0 + i x, for i = 1, 2, . . . , n.

See Figure 4.7 for an illustration of a regular partition for the case where n = 6. On each

subinterval [xi−1, xi ] (for i = 1, 2, . . . , n), construct a rectangle of height f (xi ) (the value

 x  x  x  x  x  x

a   x0 x1 x2 x3 x4 x5 b   x6

FIGURE 4.7
Regular partition of [a, b]

2.0

y

1.5

1.0

0.5

x
x4x3x2x1x0

FIGURE 4.8
A ≈ A4

of the function at the right endpoint of the subinterval), as illustrated in Figure 4.8 for the

case where n = 4. It should be clear from Figure 4.8 that the area under the curve A is

roughly the same as the sum of the areas of the four rectangles,

A ≈ f (x1) x + f (x2) x + f (x3) x + f (x4) x = A4.

In particular, notice that although two of these rectangles enclose more area than that under

the curve and two enclose less area, on the whole, the sum of the areas of the four rectangles
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provides an approximation to the total area under the curve. More generally, if we construct

n rectangles of equal width on the interval [a, b], we have

A ≈ f (x1) x + f (x2) x + · · · + f (xn) x

=
n 

i=1

f (xi ) x = An. (3.1)

EXAMPLE 3.1 Approximating an Area with Rectangles

Approximate the area under the curve y = f (x) = 2x − 2x2 on the interval [0, 1],

using 10 rectangles.

y

x

0.5

0.4

0.3

0.2

0.1

0.2 0.4 0.6 0.8 1.0

FIGURE 4.9
A ≈ A10

Solution The partition divides the interval into 10 subintervals, each of length

 x = 0.1, namely [0, 0.1], [0.1, 0.2], . . . , [0.9, 1.0]. In Figure 4.9, we have drawn in

rectangles of height f (xi ) on each subinterval [xi−1, xi ] for i = 1, 2, . . . , 10. Notice

that the sum of the areas of the 10 rectangles indicated provides an approximation to the

area under the curve. That is,

A ≈ A10 =
10 
i=1

f (xi ) x

= [ f (0.1) + f (0.2) + · · · + f (1.0)](0.1)

= (0.18 + 0.32 + 0.42 + 0.48 + 0.5 + 0.48 + 0.42 + 0.32 + 0.18 + 0)(0.1)

= 0.33. �

EXAMPLE 3.2 A Better Approximation Using More Rectangles

Repeat example 3.1, with n = 20.

Solution Here, we partition the interval [0, 1] into 20 subintervals, each of width

 x = 1 − 0

20
= 1

20
= 0.05.

We then have x0 = 0, x1 = 0 + x = 0.05, x2 = x1 + x = 2(0.05) and so on, so that

xi = (0.05)i , for i = 0, 1, 2, . . . , 20. From (3.1), the area is then approximately

A ≈ A20 =
20 
i=1

f (xi ) x =
20 
i=1

 
2xi − 2x2i

 
 x

=
20 
i=1

2[0.05i − (0.05i)2](0.05) = 0.3325,

where the details of the calculation are left for the reader. Figure 4.10 shows an

approximation using 20 rectangles and in Figure 4.11, we see 40 rectangles.

y

x

0.5

0.4

0.3

0.2

0.1

0.2 0.4 0.6 0.8 1.0

FIGURE 4.10
A ≈ A20

y

0.5

0.4

0.3

0.2

0.1

x
0.2 0.4 0.6 0.8 1.0

FIGURE 4.11
A ≈ A40

n An

10 0.33

20 0.3325

30 0.332963

40 0.333125

50 0.3332

60 0.333241

70 0.333265

80 0.333281

90 0.333292

100 0.3333

Based on Figures 4.9–4.11, you should expect that the larger we make n, the better

An will approximate the actual area, A. The obvious drawback to this idea is the length

of time it would take to compute An , for n large. However, your CAS or programmable

calculator can compute these sums for you, with ease. The table shown in the margin

indicates approximate values of An for various values of n.

Notice that as n gets larger and larger, An seems to be approaching 1
3
.
�

Examples 3.1 and 3.2 give strong evidence that the larger the number of rectangles we

use, the better our approximation of the area becomes. Thinking this through, we arrive at

the following definition of the area under a curve.



310 CHAPTER 4 .. Integration 4-20

DEFINITION 3.1

For a function f defined on the interval [a, b], if f is continuous on [a, b] and

f (x) ≥ 0 on [a, b], the area A under the curve y = f (x) on [a, b] is given by

A = lim
n→∞

An = lim
n→∞

n 
i=1

f (xi ) x . (3.2)

In example 3.3, we use the limit defined in (3.2) to find the exact area under the curve

from examples 3.1 and 3.2.

EXAMPLE 3.3 Computing the Area Exactly

Find the area under the curve y = f (x) = 2x − 2x2 on the interval [0, 1].

Solution Here, using n subintervals, we have

 x = 1 − 0

n
= 1

n

and so, x0 = 0, x1 = 1

n
, x2 = x1 + x = 2

n
and so on. Then, xi = i

n
, for i = 0, 1, 2, . . . ,

n. From (3.1), the area is approximately

A ≈ An =
n 

i=1

f

 
i

n

  
1

n

 
=

n 
i=1

 
2
i

n
− 2

 
i

n

 2
  

1

n

 

=
n 

i=1

 
2

 
i

n

  
1

n

  
−

n 
i=1

 
2

 
i2

n2

  
1

n

  

= 2

n2

n 
i=1

i − 2

n3

n 
i=1

i2

= 2

n2

n(n + 1)

2
− 2

n3

n(n + 1)(2n + 1)

6
From Theorem 2.1 (ii) and (iii).

= n + 1

n
− (n + 1)(2n + 1)

3n2

= (n + 1)(n − 1)

3n2
.

Since we have a formula for An , for any n, we can compute various values with ease. We

have

A200 = (201)(199)

3(40,000)
= 0.333325,

A500 = (501)(499)

3(250,000)
= 0.333332

and so on. Finally, we can compute the limiting value of An explicitly. We have

lim
n→∞

An = lim
n→∞

n2 − 1

3n2
= lim

n→∞
1 − 1/n2

3
= 1

3
.

Therefore, the exact area in Figure 4.9 is 1/3, as we had suspected. �
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EXAMPLE 3.4 Estimating the Area Under a Curve

Estimate the area under the curve y = f (x) = √
x + 1 on the interval [1, 3].

Solution Here, we have

 x = 3 − 1

n
= 2

n

and x0 = 1, so that x1 = x0 + x = 1 + 2

n
,

x2 = 1 + 2

 
2

n

 

and so on, so that xi = 1 + 2i

n
, for i = 0, 1, 2, . . . , n.

Thus, we have from (3.1) that

A ≈ An =
n 

i=1

f (xi ) x =
n 

i=1

 
xi + 1  x

=
n 

i=1

  
1 + 2i

n

 
+ 1

 
2

n

 

= 2

n

n 
i=1

 
2 + 2i

n
.

n An

10 3.50595

50 3.45942

100 3.45357

500 3.44889

1000 3.44830

5000 3.44783

We have no formulas like those in Theorem 2.1 for simplifying this last sum (unlike the

sum in example 3.3). Our only choice, then, is to compute An for a number of values of

n using a CAS or programmable calculator. The accompanying table lists approximate

values of An . Although we can’t compute the area exactly (as yet), you should get the

sense that the area is approximately 3.4478. �

We pause now to define some of the mathematical objects we have been examining.

HISTORICAL NOTES

Bernhard Riemann

(1826–1866)

A German mathematician who

made important generalizations

to the definition of the integral.

Riemann died at a young age

without publishing many papers,

but each of his papers was highly

influential. His work on

integration was a small portion

of a paper on Fourier series.

Pressured by Gauss to deliver a

talk on geometry, Riemann

developed his own geometry,

which provided a generalization of

both Euclidean and non-Euclidean

geometry. Riemann’s work often

formed unexpected and insightful

connections between analysis and

geometry.

DEFINITION 3.2

Let {x0, x1, . . . , xn} be a regular partition of the interval [a, b], with
xi − xi−1 =  x = b − a

n
, for all i . Pick points c1, c2, . . . , cn , where ci is any point in

the subinterval [xi−1, xi ], for i = 1, 2, . . . , n. (These are called evaluation points.)

The Riemann sum for this partition and set of evaluation points is

n 
i=1

f (ci ) x .

So far, we have shown that for a continuous, nonnegative function f, the area under the curve

y = f (x) is the limit of the Riemann sums:

A = lim
n→∞

n 
i=1

f (ci ) x, (3.3)
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where ci = xi , for i = 1, 2, . . . , n. Surprisingly, for any continuous function f, the limit

in (3.3) is the same for any choice of the evaluation points ci ∈ [xi−1, xi ] (although the

proof is beyond the level of this course). In examples 3.3 and 3.4, we used the evaluation

points ci = xi , for each i (the right endpoint of each subinterval). This is usually the most

convenient choice when working by hand, but does not generally produce the most accurate

approximation for a given value of n.

REMARK 3.1

Most often, we cannot compute the limit of Riemann sums indicated in (3.3) exactly

(at least not directly). However, we can always obtain an approximation to the area by

calculating Riemann sums for some large values of n. The most common (and

obvious) choices for the evaluation points ci are xi (the right endpoint), xi−1 (the left

endpoint) and 1
2
(xi−1 + xi ) (the midpoint). As it turns out, the midpoint usually

provides the best approximation, for a given n. See Figures 4.12a, 4.12b and 4.12c for

the right endpoint, left endpoint and midpoint approximations, respectively, for

f (x) = 9x2 + 2, on the interval [0, 1], using n = 10. You should note that in this case

(as with any increasing function), the rectangles corresponding to the right endpoint

evaluation (Figure 4.12a) give too much area on each subinterval, while the rectangles

corresponding to left endpoint evaluation (Figure 4.12b) give too little area. We leave

it to you to observe that the reverse is true for a decreasing function.

y

x

8

0.2 0.4 0.6 0.8 1.0

10

12

6

4

2

x

8

0.2 0.4 0.6 0.8 1.0

10

12

6

4

2

y

x

8

0.2 0.4 0.6 0.8 1.0

10

6

4

2

12

y

FIGURE 4.12a
ci = xi

FIGURE 4.12b
ci = xi−1

FIGURE 4.12c
ci = 1

2
(xi−1 + xi )

EXAMPLE 3.5 Computing Riemann Sums with Different
Evaluation Points

Compute Riemann sums for f (x) = √
x + 1 on the interval [1, 3], for n = 10, 50,

100, 500, 1000 and 5000, using the left endpoint, right endpoint and midpoint of each

subinterval as the evaluation points.

Solution The numbers given in the following table are from a program written for a

programmable calculator. We suggest that you test your own program or one built into

your CAS against these values (rounded off to six digits).
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n Left Endpoint Midpoint Right Endpoint

10 3.38879 3.44789 3.50595

50 3.43599 3.44772 3.45942

100 3.44185 3.44772 3.45357

500 3.44654 3.44772 3.44889

1000 3.44713 3.44772 3.44830

5000 3.44760 3.44772 3.44783

TODAY IN
MATHEMATICS

Louis de Branges (1932– )

A French mathematician who

proved the Bieberbach conjecture

in 1985. To solve this famous

70-year-old problem, de Branges

actually proved a related but

much stronger result. In 2004, de

Branges posted on the Internet

what he believes is a proof of

another famous problem, the

Riemann hypothesis. To qualify

for the $1 million prize offered for

the first proof of the Riemann

hypothesis, the result will have

to be verified by expert

mathematicians. However, de

Branges has said, “I am enjoying

the happiness of having a theory

which is in my own hands and not

in that of eventual readers. I

would not want to end that

situation for a million dollars.”

There are several conclusions to be drawn from these numbers. First, there is good

evidence that all three sets of numbers are converging to a common limit of

approximately 3.4477. You should notice that the limit is independent of the particular

evaluation point used. Second, even though the limits are the same, the different rules

approach the limit at different rates. You should try computing left and right endpoint

sums for larger values of n, to see that these eventually approach 3.44772, also. �

Riemann sums using midpoint evaluation usually approach the limit far faster than left

or right endpoint rules. If you think about the rectangles being drawn, you may be able to

explain why. Finally, notice that the left and right endpoint sums in example 3.5 approach

the limit from opposite directions and at about the same rate. We take advantage of this in

an approximation technique called the Trapezoidal Rule, to be discussed in section 4.7. If

your CAS or graphics calculator does not have a command for calculating Riemann sums,

we suggest that you write a program for computing them yourself.

BEYOND FORMULAS

We have now developed a technique for using limits to compute certain areas exactly.

This parallels the derivation of the slope of the tangent line as the limit of the slopes

of secant lines. Recall that this limit became known as the derivative and turned out to

have applications far beyond the slope of a tangent line. Similarly, Riemann sums lead

us to a second major area of calculus, called integration. Based on your experience

with the derivative, do you expect this new limit to solve problems beyond the area of a

region? Do you expect that there will be rules developed to simplify the calculations?

EXERCISES 4.3

WRITING EXERCISES

1. For many functions, the limit of the Riemann sums is indepen-

dent of the choice of evaluation points. Discuss why this is a

somewhat surprising result. To make the result more believ-

able, consider a continuous function f (x). As the number of

partition points gets larger, the distance between the endpoints

gets smaller. For a continuous function f (x), explain why the

difference between the function values at any two points in a

given subinterval will have to get smaller.

2. Rectangles are not the only basic geometric shapes for which

we have an area formula. Discuss how you might approximate

the area under a parabola using circles or triangles. Which

geometric shape do you think is the easiest to use?

In exercises 1–4, list the evaluation points corresponding to the

midpoint of each subinterval, sketch the function and approxi-

mating rectangles and evaluate the Riemann sum.

1. f (x) = x2 + 1, (a) [0, 1], n = 4; (b) [0, 2], n = 4

2. f (x) = x3 − 1, (a) [1, 2], n = 4; (b) [1, 3], n = 4
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3. f (x) = sin x, (a) [0, π ], n = 4; (b) [0, π ], n = 8

4. f (x) = 4 − x2, (a) [−1, 1], n = 4; (b) [−3,−1], n = 4

In exercises 5–10, approximate the area under the curve on the

given interval using n rectangles and the evaluation rules (a) left

endpoint, (b) midpoint and (c) right endpoint.

5. y = x2 + 1 on [0, 1], n = 16

6. y = x2 + 1 on [0, 2], n = 16

7. y = √
x + 2 on [1, 4], n = 16

8. y = 1

x + 2
on [−1, 1], n = 16

9. y = cos x on [0, π/2], n = 50

10. y = x3 − 1 on [−1, 1], n = 100

In exercises 11–14, construct a table of Riemann sums as in

example 3.5, to show that sums with right-endpoint, midpoint

and left-endpoint evaluation all converge to the same value as

n→∞ .

11. f (x) = 4 − x2, [−2, 2] 12. f (x) = sin x, [0, π/2]

13. f (x) = x3 − 1, [1, 3] 14. f (x) = x3 − 1, [−1, 1]

In exercises 15–18, use Riemann sums and a limit to compute

the exact area under the curve.

15. y = x2 + 1 on [0, 1] 16. y = x2 + 3x on [0, 1]

17. y = 2x2 + 1 on [1, 3] 18. y = 4x + 2 on [1, 3]

In exercises 19–22, use the given function values to estimate

the area under the curve using left-endpoint and right-endpoint

evaluation.

19.

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

f (x) 2.0 2.4 2.6 2.7 2.6 2.4 2.0 1.4 0.6

20.

x 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

f (x) 2.0 2.2 1.6 1.4 1.6 2.0 2.2 2.4 2.0

21.

x 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

f (x) 1.8 1.4 1.1 0.7 1.2 1.4 1.8 2.4 2.6

22.

x 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

f (x) 0.0 0.4 0.6 0.8 1.2 1.4 1.2 1.4 1.0

In exercises 23–26, graphically determine whether a Riemann

sum with (a) left-endpoint, (b) midpoint and (c) right-endpoint

evaluation points will be greater than or less than the area under

the curve y  f (x) on [a, b].

23. f (x) is increasing and concave up on [a, b].

24. f (x) is increasing and concave down on [a, b].

25. f (x) is decreasing and concave up on [a, b].

26. f (x) is decreasing and concave down on [a, b].

27. For the function f (x) = x2 on the interval [0, 1], by trial and

errror find evaluation points for n = 2 such that the Riemann

sum equals the exact area of 1/3.

28. For the function f (x) = √
x on the interval [0, 1], by trial and

error find evaluation points for n = 2 such that the Riemann

sum equals the exact area of 2/3.

29. Show that for right-endpoint evaluation on the interval [a, b]

with each subinterval of length  x = (b − a)/n, the evalua-

tion points are ci = a + i x , for i = 1, 2, . . . , n.

30. Show that for left-endpoint evaluation on the interval [a, b]

with each subinterval of length  x = (b − a)/n, the evalua-

tion points are ci = a + (i − 1) x , for i = 1, 2, . . . , n.

31. As in exercises 29 and 30, find a formula for the evaluation

points for midpoint evaluation.

32. As in exercises 29 and 30, find a formula for evaluation points

that are one-third of the way from the left endpoint to the right

endpoint.

33. Economists use a graph called the Lorentz curve to describe

how equally a given quantity is distributed in a given popula-

tion. For example, the gross domestic product (GDP) varies

considerably from country to country. The accompanying data

from the Energy InformationAdministration showpercentages

for the 100 top-GDP countries in the world in 2001, arranged

in order of increasing GDP. The data indicate that the first 10

(lowest 10%) countries account for only 0.2% of the world’s

total GDP; the first 20 countries account for 0.4% and so on.

The first 99 countries account for 73.6% of the total GDP.What

percentage does country #100 (theUnited States) produce?The

Lorentz curve is a plot of y versus x. Graph the Lorentz curve

for these data. Estimate the area between the curve and the

x-axis. (Hint: Notice that the x-values are not equally spaced.

You will need to decide how to handle this. Depending on your

choice, your answer may not exactly match the back of the

book; this is OK!)

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7

y 0.002 0.004 0.008 0.014 0.026 0.048 0.085

x 0.8 0.9 0.95 0.98 0.99 1.0

y 0.144 0.265 0.398 0.568 0.736 1.0

34. The Lorentz curve (see exercise 33) can be used to compute the

Gini index, a numerical measure of how inequitable a given

distribution is. Let A1 equal the area between the Lorentz curve

and the x-axis. Construct the Lorentz curve for the situation of

all countries being exactly equal in GDP and let A2 be the area
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between this new Lorentz curve and the x-axis. The Gini index

G equals A1 divided by A2. Explain why 0 ≤ G ≤ 1 and show

that G = 2A1. Estimate G for the data in exercise 33.

In exercises 35–40, use the following definitions. The upper sum

of f on P is given byU (P, f )  
n 

i 1

f (ci )Δx, where f (ci ) is the

maximum of f on the subinterval [xi−1, xi ]. Similarly, the lower

sum of f on P is given by L(P, f )  
n 

i 1

f (di )Δx, where f (di )

is the minimum of f on the subinterval [xi−1, xi ].

35. Compute the upper sum and lower sum of f (x) = x2 on [0, 2]

for the regular partition with n = 4.

36. Compute the upper sumand lower sumof f (x) = x2 on [−2, 2]

for the regular partition with n = 8.

37. Find (a) the general upper sum and (b) the general lower sum

for f (x) = x2 on [0, 2] and show that both sums approach the

same number as n → ∞.

38. Repeat exercise 37 for f (x) = x2 on the interval [−1, 0].

39. Repeat exercise 37 for f (x) = x3 + 1 on the interval [0, 2].

40. Repeat exercise 37 for f (x) = x2 − 2x on the interval [0, 1].

EXPLORATORY EXERCISES

1. Riemann sums can also be defined on irregular partitions,

for which subintervals are not of equal size. An example

of an irregular partition of the interval [0, 1] is x0 = 0,

x1 = 0.2, x2 = 0.6, x3 = 0.9, x4 = 1. Explain why the corre-

sponding Riemann sum would be

f (c1)(0.2) + f (c2)(0.4) + f (c3)(0.3) + f (c4)(0.1),

for evaluation points c1, c2, c3 and c4. Identify the interval from

which each ci must be chosen and give examples of evaluation

points. To see why irregular partitions might be useful, con-

sider the function f (x) =
 
2x if x < 1

x2 + 1 if x ≥ 1
on the interval

[0, 2]. One way to approximate the area under the graph of this

function is to compute Riemann sums using midpoint evalua-

tion for n = 10, n = 50, n = 100 and so on. Show graphically

and numerically that with midpoint evaluation, the Riemann

sum with n = 2 gives the correct area on the subinterval [0, 1].

Then explain why it would be wasteful to compute Riemann

sums on this subinterval for larger and larger values of n. A

more efficient strategy would be to compute the areas on [0, 1]

and [1, 2] separately and add them together. The area on [0, 1]

can be computed exactly using a small value of n, while the

area on [1, 2] must be approximated using larger and larger

values of n. Use this technique to estimate the area for f (x)

on the interval [0, 2]. Try to determine the area to within an

error of 0.01 and discuss why you believe your answer is this

accurate.

2. Graph the function f (x)= 1/x for x > 0. We define the area

function g(t) to be the area between this graph and the x-

axis between x = 1 and x = t (for now, assume that t > 1).

Sketch the area that defines g(2) and g(3) and argue that

g(3) > g(2). Explain why the function g(x) is increasing and

hence g (x) > 0 for x > 1. Further, argue that g (3) < g (2).
Explain why g (x) is a decreasing function. Thus, g (x) has
the same general properties (positive, decreasing) that f (x)

does. In fact, we will discover in section 4.5 that g (x) = f (x).

To collect some evidence for this result, use Riemann sums

to estimate g(3), g(2.1), g(2.01) and g(2). Use these values to

estimate g (2) and compare to f (2).

3. The following result has been credited to Archimedes. (See

the historical note on page 374.) For the general parabola

y = a2 − x2 with −a ≤ x ≤ a, show that the area under the

parabola is 2
3
of the base times the height [that is, 2

3
(2a)(a2)].

Generalize the result to any parabola and its circumscribing

rectangle.

4.4 THE DEFINITE INTEGRAL

A sky diver who steps out of an airplane (starting with zero downward velocity) gradually

picks up speed until reaching terminal velocity, the speed at which the force due to air

resistance cancels out the force due to gravity. A function that models the velocity x seconds

into the jump is f (x) = 30
 
1 − 1√

x+1

 
. (See Figure 4.13 on the following page.)

We saw in section 4.2 that the area A under this curve on the interval 0 ≤ x ≤ t corre-

sponds to the distance fallen in the first t seconds. For any given value of t, we approximate

A by partitioning the interval into n subintervals of equal width,  x . On each subinter-

val, [xi−1, xi ], i = 1, 2, . . . , n, we construct a rectangle of height f (ci ), for any choice of
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FIGURE 4.13
y = f (x)

FIGURE 4.14
Approximate area

ci ∈ [xi−1, xi ]. (See Figure 4.14.) Finally, summing the areas of the rectangles gives us the

approximation

A ≈
n 

i=1

f (ci ) x .

The exact area is then given by the limit of these Riemann sums,

A = lim
n→∞

n 
i=1

f (ci ) x . (4.1)

Notice that the sum in (4.1) makes sense even when some (or all) of the function values

f (ci ) are negative. The general definition follows.

DEFINITION 4.1

For any function f defined on [a, b], the definite integral of f from a to b is b

a

f (x) dx = lim
n→∞

n 
i=1

f (ci ) x,

whenever the limit exists and is the same for any choice of evaluation points,

c1, c2, . . . , cn . When the limit exists, we say that f is integrable on [a, b].

REMARK 4.1

Definition 4.1 is adequate for

most functions (those that are

continuous except for at

most a finite number of

discontinuities). For more

general functions, we broaden

the definition to include

partitions with subintervals of

different lengths. You can find a

suitably generalized definition

in Chapter 14. We should observe that in the Riemann sum, theGreek letter
 

indicates a sum; so does

the elongated “S”,
 
used as the integral sign. The lower and upper limits of integration, a

and b, respectively, indicate the endpoints of the interval over which you are integrating. The

dx in the integral corresponds to the increment  x in the Riemann sum and also indicates

the variable of integration. The letter used for the variable of integration (called a dummy

variable) is irrelevant since the value of the integral is a constant and not a function of x.

Here, f (x) is called the integrand.
NOTES

If f is continuous on [a, b] and

f (x) ≥ 0 on [a, b], then b

a

f (x) dx = Area under the

curve ≥ 0.

To calculate a definite integral, we have two options: if the function is simple enough

(say, a polynomial of degree 2 or less), we can symbolically compute the limit of the

Riemann sums. Otherwise, we can numerically compute a number of Riemann sums and

approximate the value of the limit. We frequently use the Midpoint Rule, which uses the

midpoints as the evaluation points for the Riemann sum.
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EXAMPLE 4.1 A Midpoint Rule Approximation of a Definite Integral

Use the Midpoint Rule to estimate
 15

0
30
 
1 − 1√

x+1

 
dx .

Solution The integral gives the area under the curve indicated in Figure 4.15. (Note

that this corresponds to the distance fallen by the sky diver in this section’s

introduction.) From the Midpoint Rule we have 15

0

30

 
1 − 1√

x + 1

 
dx ≈

n 
i=1

f (ci ) x = 30
n 

i=1

 
1 − 1√

ci + 1

  
15 − 0

n

 
,

where ci = xi + xi−1

2
. Using a CAS or a calculator program, you can get the sequence

of approximations found in the accompanying table.

One remaining question is when to stop increasing n. In this case, we continued to

increase n until it seemed clear that 270 feet was a reasonable approximation. �

Now, think carefully about the limit in Definition 4.1. How can we interpret this limit

when f is both positive and negative on the interval [a, b]? Notice that if f (ci ) < 0, for

some i, then the height of the rectangle shown in Figure 4.16 is − f (ci ) and so,

f (ci ) x = −Area of the ith rectangle.

To see the effect this has on the sum, consider example 4.2.

y

x

10

20

30

161412108642

10

20

42

FIGURE 4.15

y = 30

 
1 − 1√

x + 1

 

n Rn

10 271.17

20 270.33

50 270.05

y

x
ci

(ci,  f(ci))

y f(x)=

FIGURE 4.16
f (ci ) < 0

EXAMPLE 4.2 A Riemann Sum for a Function with Positive
and Negative Values

For f (x) = sin x on [0, 2π ], give an area interpretation of lim
n→∞

n 
i=1

f (ci ) x .

Solution For this illustration, we take ci to be the midpoint of [xi−1, xi ], for

i = 1, 2, . . . , n. In Figure 4.17a, we see 10 rectangles constructed between the x-axis

and the curve y = f (x).

y

x

 1.0

 0.5

0.5

1.0

1 2 3

4 5 6

FIGURE 4.17a
Ten rectangles

The first five rectangles [where f (ci ) > 0] lie above the x-axis and have height

f (ci ). The remaining five rectangles [where f (ci ) < 0] lie below the x-axis and have

height − f (ci ). So, here

10 
i=1

f (ci ) x = (Area of rectangles above the x-axis)

− (Area of rectangles below the x-axis).
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In Figures 4.17b and 4.17c, we show 20 and 40 rectangles, respectively, constructed in

the same way. From this, observe that

lim
n→∞

n 
i=1

f (ci ) x = (Area above the x-axis) − (Area below the x-axis),

which turns out to be zero.

x

−1.0

−0.5

0.5

1.0

1 2 3

4 5 6

y

1.0

1 2 3

4 5 6
x

y

 1.0

 0.5

0.5

FIGURE 4.17b
Twenty rectangles

FIGURE 4.17c
Forty rectangles

�

We illustrate the area interpretation of the integral in example 4.3.

EXAMPLE 4.3 Using Riemann Sums to Compute a Definite Integral

Compute

 2

0

(x2 − 2x) dx exactly.

Solution The definite integral is the limit of a sequence of Riemann sums, where we

can choose any evaluation points we wish. It is usually easiest to write out the formula

using right endpoints, as we do here. In this case,

 x = 2 − 0

n
= 2

n
.

We then have x0 = 0, x1 = x0 + x = 2

n
,

x2 = x1 + x = 2

n
+ 2

n
= 2(2)

n

and so on. We then have ci = xi = 2i

n
. The nth Riemann sum Rn is then

Rn =
n 

i=1

f (xi ) x =
n 

i=1

 
x2i − 2xi

 
 x

=
n 

i=1

  
2i

n

 2

− 2

 
2i

n

   
2

n

 
=

n 
i=1

 
4i2

n2
− 4i

n

  
2

n

 

= 8

n3

n 
i=1

i2 − 8

n2

n 
i=1

i

=
 

8

n3

 
n(n + 1)(2n + 1)

6
−
 

8

n2

 
n(n + 1)

2
From Theorem 2.1 (ii) and (iii).

= 4(n + 1)(2n + 1)

3n2
− 4(n + 1)

n
= 8n2 + 12n + 4

3n2
− 4n + 4

n
.
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Taking the limit of Rn as n → ∞ gives us the exact value of the integral: 2

0

(x2 − 2x) dx = lim
n→∞

 
8n2 + 12n + 4

3n2
− 4n + 4

n

 
= 8

3
− 4 = −4

3
.

To interpret the negative value of the integral in terms of area, look at a graph of

y = x2 − 2x . (See Figure 4.18.) On the interval [0, 2], the integrand is always negative.

Notice that the absolute value of the integral, 4
3
, corresponds to the area between the

curve and the x-axis. The negative value of the integral indicates that the area lies below

the x-axis. We refer to this as signed area, which we now define. �

y

x

 0.2

 0.4

 0.6

 0.8

 1.0

1.5 2.01.00.5

FIGURE 4.18
y = x2 − 2x on [0, 2]

b

A1

A2

a c

y

x

FIGURE 4.19
Signed area

DEFINITION 4.2

Suppose that f (x) ≥ 0 on the interval [a, b] and A1 is the area bounded between the

curve y = f (x) and the x-axis for a ≤ x ≤ b. Further, suppose that f (x) ≤ 0 on the

interval [b, c] and A2 is the area bounded between the curve y = f (x) and the x-axis

for b ≤ x ≤ c. The signed area between y = f (x) and the x-axis for a ≤ x ≤ c is

A1 − A2, and the total area between y = f (x) and the x-axis for a ≤ x ≤ c is

A1 + A2. (See Figure 4.19.)

Definition 4.2 says that signed area is the difference between any areas lying above the

x-axis and any areas lying below the x-axis, while the total area is the sum total of the area

bounded between the curve y = f (x) and the x-axis.

Example 4.4 examines the general case where the integrand may be both positive and

negative on the interval of integration.

EXAMPLE 4.4 Relating Definite Integrals to Signed Area

Compute three related integrals:
 2

0
(x2 − 2x) dx,

 3

2
(x2 − 2x) dx and

 3

0
(x2 − 2x) dx ,

and interpret each in terms of area.

Solution From example 4.3, we already know that
 2

0
(x2 − 2x) dx = − 4

3
. (See

Figure 4.18 to interpret this result graphically.)

On the interval [2, 3], we have  x = 1
n
, x0 = 2, x1 = x0 + x = 2 + 1

n
,

x2 = x1 + x =
 
2 + 1

n

 
+ 1

n
= 2 + 2

n

and so on. Using right-endpoint evaluation, we have ci = xi = 2 + i
n
. This gives us the

Riemann sum

Rn =
n 

i=1

f (xi ) x =
n 

i=1

 
x2i − 2xi

 
 x

=
n 

i=1

  
2 + i

n

 2

− 2

 
2 + i

n

   
1

n

 

=
n 

i=1

 
4 + 4

i

n
+ i2

n2
− 4 − 2i

n

  
1

n

 

= 1

n3

n 
i=1

i2 + 2

n2

n 
i=1

i

=
 

1

n3

 
n(n + 1)(2n + 1)

6
+
 

2

n2

 
n(n + 1)

2
From Theorem 2.1 (ii) and (iii).

= (n + 1)(2n + 1)

6n2
+ n + 1

n
.
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Taking the limit of this Riemann sum as n → ∞, we have 3

2

(x2 − 2x) dx = lim
n→∞

 
(n + 1)(2n + 1)

6n2
+ n + 1

n

 
= 2

6
+ 1 = 4

3
.

A graph of y = x2 − 2x on the interval [2, 3] is shown in Figure 4.20a. Notice that

since the function is always positive on the interval [2, 3], the integral corresponds to

the area under the curve.

Finally, on the interval [0, 3], we have  x = 3
n
and x0 = 0, x1 = x0 + x = 3

n
,

x2 = x1 + x = 3

n
+ 3

n
= 3(2)

n

and so on. Using right-endpoint evaluation, we have ci = xi = 3i
n
. This gives us the

Riemann sum

Rn =
n 

i=1

  
3i

n

 2

− 2

 
3i

n

   
3

n

 
=

n 
i=1

 
9i2

n2
− 6i

n

  
3

n

 

= 27

n3

n 
i=1

i2 − 18

n2

n 
i=1

i

=
 
27

n3

 
n(n + 1)(2n + 1)

6
−
 
18

n2

 
n(n + 1)

2
From Theorem 2.1 (ii) and (iii).

= 9(n + 1)(2n + 1)

2n2
− 9(n + 1)

n
.

Taking the limit as n → ∞ gives us 3

0

(x2 − 2x) dx = lim
n→∞

 
9(n + 1)(2n + 1)

2n2
− 9(n + 1)

n

 
= 18

2
− 9 = 0.

On the interval [0, 2], notice that the curve y = x2 − 2x lies below the x-axis and the

area bounded between the curve and the x-axis is 4
3
. On the interval [2, 3], the curve lies

above the x-axis and the area bounded between the curve and the x-axis is also 4
3
. Notice

that the integral of 0 on the interval [0, 3] indicates that the signed areas have canceled

out one another. (See Figure 4.20b for a graph of y = x2 − 2x on the interval [0, 3].)

You should also observe that the total area A bounded between y = x2 − 2x and the

x-axis is the sum of the two areas indicated above, A = 4
3

+ 4
3

= 8
3
.
�
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FIGURE 4.20a
y = x2 − 2x on [2, 3]
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FIGURE 4.20b
y = x2 − 2x on [0, 3]

We can also interpret signed area in terms of velocity and position. Suppose that v(t) is

the velocity function for an objectmoving back and forth along a straight line. Notice that the

velocity may be both positive and negative. If the velocity is positive on the interval [t1, t2],

then
 t2
t1
v(t) dt gives the distance traveled (here, in the positive direction). If the velocity

is negative on the interval [t3, t4], then the object is moving in the negative direction and

the distance traveled (here, in the negative direction) is given by −  t4
t3
v(t) dt . Notice that

if the object starts moving at time 0 and stops at time T, then
 T

0
v(t) dt gives the distance

traveled in the positive direction minus the distance traveled in the negative direction. That

is,
 T

0
v(t) dt corresponds to the overall change in position from start to finish.

EXAMPLE 4.5 Estimating Overall Change in Position

An object moving along a straight line has velocity function v(t) = sin t . If the object

starts at position 0, determine the total distance traveled and the object’s position at time

t = 3π/2.
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Solution From the graph (see Figure 4.21), notice that sin t ≥ 0 for 0 ≤ t ≤ π and

sin t ≤ 0 for π ≤ t ≤ 3π/2. The total distance traveled corresponds to the area of the

shaded regions in Figure 4.21, given by

A =
 π

0

sin t dt −
 3π/2

π

sin t dt.

You can use the Midpoint Rule to get the following Riemann sums:

y

t

 0.5

0.5

1.0

 1.0

3 /2

  /2

FIGURE 4.21
y = sin t on

 
0, 3π

2

 

n Rn ≈

� π

0
sin t dt

10 2.0082

20 2.0020

50 2.0003

100 2.0001

n Rn ≈

� 3π/2

π
sin t dt

10 −1.0010

20 −1.0003

50 −1.0000

100 −1.0000

Observe that the sums appear to be converging to 2 and −1, respectively, which we will

soon be able to show are indeed correct. The total area bounded between y = sin t and

the t-axis on
 
0, 3π

2

 
is then π

0

sin t dt −
 3π/2

π

sin t dt = 2 + 1 = 3,

so that the total distance traveled is 3 units. The overall change in position of the object

is given by  3π/2

0

sin t dt =
 π

0

sin t dt +
 3π/2

π

sin t dt = 2 + (−1) = 1.

So, if the object starts at position 0, it ends up at position 0 + 1 = 1. �

We have defined the definite integral of a function in terms of a limit, but we have not

yet discussed the circumstances under which the limit actually exists. Theorem 4.1 indicates

that many of the functions with which you are familiar are indeed integrable.

THEOREM 4.1

If f is continuous on the closed interval [a, b], then f is integrable on [a, b].

The proof of Theorem 4.1 is too technical to include here. However, if you think about

the area interpretation of the definite integral, the result should seem plausible.

Next, we give some general rules for integrals.

THEOREM 4.2

If f and g are integrable on [a, b], then the following are true.

(i) For any constants c and d,
 b

a
[c f (x) + dg(x)] dx = c

 b

a
f (x) dx + d

 b

a
g(x) dx

and

(ii) For any c in [a, b],
 b

a
f (x) dx =  c

a
f (x) dx +  b

c
f (x) dx .
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PROOF

By definition, for any constants c and d, we have b

a

[c f (x) + dg(x)] dx = lim
n→∞

n 
i=1

[c f (ci ) + dg(ci )] x

= lim
n→∞

 
c

n 
i=1

f (ci ) x + d

n 
i=1

g(ci ) x

 
From Theorem 2.2.

= c lim
n→∞

n 
i=1

f (ci ) x + d lim
n→∞

n 
i=1

g(ci ) x

= c

 b

a

f (x) dx + d

 b

a

g(x) dx,

where we have used our usual rules for summations plus the fact that f and g are integrable.

We leave the proof of part (ii) to the exercises, but note that we have already illustrated the

idea in example 4.5.

We now make a pair of reasonable definitions. First, for any integrable function f, if

a < b, we define  a

b

f (x) dx = −
 b

a

f (x) dx . (4.2)

y

x

FIGURE 4.22
Piecewise continuous function

This should appear reasonable in that if we integrate “backward” along an interval, the

width of the rectangles corresponding to a Riemann sum ( x) would seem to be negative.

Second, if f (a) is defined, we define a

a

f (x) dx = 0.

If you think of the definite integral as area, this says that the area from a up to a is zero.

It turns out that a function is integrable even when it has a finite number of jump dis-

continuities, but is otherwise continuous. (Such a function is called piecewise continuous;

see Figure 4.22 for the graph of such a function.)

In example 4.6, we evaluate the integral of a discontinuous function.

EXAMPLE 4.6 An Integral with a Discontinuous Integrand

Evaluate
 3

0
f (x) dx , where f (x) is defined by

f (x) =
 
2x, if x ≤ 2

1, if x > 2
.

y

x

4

3

2

1

1 2 3 4

FIGURE 4.23a
y = f (x)

y

x

4

3

2

1

1 2 3 4

FIGURE 4.23b
The area under the curve y = f (x)

on [0, 3]

Solution We start by looking at a graph of y = f (x) in Figure 4.23a. Notice that

although f is discontinuous at x = 2, it has only a single jump discontinuity and so, is

piecewise continuous on [0, 3]. By Theorem 4.2 (ii), we have that 3

0

f (x) dx =
 2

0

f (x) dx +
 3

2

f (x) dx .

Referring to Figure 4.23b, observe that
 2

0
f (x) dx corresponds to the area of the

triangle of base 2 and altitude 4 shaded in the figure, so that 2

0

f (x) dx = 1

2
(base) (height) = 1

2
(2)(4) = 4.
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Next, also notice from Figure 4.23b that
 3

2
f (x) dx corresponds to the area of the

square of side 1, so that  3

2

f (x) dx = 1.

We now have that 3

0

f (x) dx =
 2

0

f (x) dx +
 3

2

f (x) dx = 4 + 1 = 5.

Notice that in this case, the areas corresponding to the two integrals could be computed

using simple geometric formulas and so, there was no need to compute Riemann sums

here. �

Another simple property of definite integrals is the following.

THEOREM 4.3

Suppose that g(x) ≤ f (x) for all x ∈ [a, b] and that f and g are integrable on [a, b].

Then,  b

a

g(x) dx ≤
 b

a

f (x) dx .

PROOF

Since g(x) ≤ f (x), we must also have that 0 ≤ [ f (x) − g(x)] on [a, b] and in view of this, b

a
[ f (x) − g(x)] dx represents the area under the curve y = f (x) − g(x), which can’t be

negative. Using Theorem 4.2 (i), we now have

0 ≤
 b

a

[ f (x) − g(x)] dx =
 b

a

f (x) dx −
 b

a

g(x) dx,

from which the result follows.

y = g(x) 

y = ƒ(x)  

x

y

ba

FIGURE 4.24
Larger functions have larger

integrals

Notice that Theorem 4.3 simply says that larger functions have larger integrals. We

illustrate this for the case of two positive functions in Figure 4.24.

x0 x1 x2 xn

f (x0) f (xn)

. . .

FIGURE 4.25
Average depth of a cross section

of a lake

Average Value of a Function
To compute the average age of the students in your calculus class, note that you need only

add up each student’s age and divide the total by the number of students in your class. By

contrast, how would you find the average depth of a cross section of a lake? In this case,

there are an infinite number of depths to average. You would get a reasonable idea of the

average depth by sampling the depth of the lake at a number of points spread out along the

length of the lake and then averaging these depths, as indicated in Figure 4.25.

More generally, we often want to calculate the average value of a function f on some

interval [a, b]. To do this, we form a partition of [a, b]:

a = x0 < x1 < · · · < xn = b,
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where the difference between successive points is x = b − a

n
. The average value, fave, is

then given approximately by the average of the function values at x1, x2, . . . , xn:

fave ≈ 1

n
[ f (x1) + f (x2) + · · · + f (xn)]

= 1

n

n 
i=1

f (xi )

= 1

b − a

n 
i=1

f (xi )

 
b − a

n

 
Multiply and divide by (b − a).

= 1

b − a

n 
i=1

f (xi ) x . Since  x = b − a

n
.

Notice that the last summation is a Riemann sum. Further, observe that the more points we

sample, the better our approximation should be. So, letting n → ∞, we arrive at an integral

representing average value:

fave = lim
n→∞

 
1

b − a

n 
i=1

f (xi ) x

 
= 1

b − a

 b

a

f (x) dx . (4.3)

EXAMPLE 4.7 Computing the Average Value of a Function

Compute the average value of f (x) = sin x on the interval [0, π ].

Solution From (4.3), we have

fave = 1

π − 0

 π

0

sin x dx .

We can approximate the value of this integral by calculating some Riemann sums, to

obtain the approximate average, fave ≈ 0.6366198. (See example 4.5.) In Figure 4.26,

we show a graph of y = sin x and its average value on the interval [0, π ]. You should

note that the two shaded areas are the same. �

y

x

0.5

1.0

pq

fave

FIGURE 4.26
y = sin x and its average

FIGURE 4.27
A lake and its average depth

Returning to the problem of finding the average depth of a lake, imagine the dirt at the

bottom of the lake settling out to form a flat bottom. The depth of the lake would then be

constant and equal to the averagevalue of the depth of the original lake. In the settlingout pro-

cess, the depth at one (and possibly more) points would not change. (See Figure 4.27.) That

is, the average depth of the lake exactly equals the depth of the lake at one or more points. A

precise statement of this result is given on the next page as the IntegralMeanValue Theorem.

Notice that for any constant, c, b

a

c dx = lim
n→∞

n 
i=1

c  x = c lim
n→∞

n 
i=1

 x = c(b − a),

since
n 

i=1

 x is simply the sum of the lengths of the subintervals in the partition.

Let f be any continuous function defined on [a, b]. Recall that by the Extreme Value

Theorem, since f is continuous, it has a minimum, m, and a maximum, M, on [a, b]. It

follows that

m ≤ f (x) ≤ M, for all x ∈ [a, b]
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and consequently, from Theorem 4.3, b

a

m dx ≤
 b

a

f (x) dx ≤
 b

a

M dx .

Since m and M are constants, we get

m(b − a) ≤
 b

a

f (x) dx ≤ M(b − a). (4.4)

Finally, dividing by (b − a) > 0, we obtain

m ≤ 1

b − a

 b

a

f (x) dx ≤ M.

That is,
1

b − a

 b

a

f (x) dx (the average value of f on [a, b]) lies between the minimum

and the maximum values of f on [a, b]. Since f is a continuous function, we have by the

Intermediate Value Theorem that there must be some c ∈ (a, b) for which

f (c) = 1

b − a

 b

a

f (x) dx .

We have just proved a theorem:

THEOREM 4.4 (Integral Mean Value Theorem)

If f is continuous on [a, b], then there is a number c ∈ (a, b) for which

f (c) = 1

b − a

 b

a

f (x) dx .

The Integral Mean Value Theorem is a fairly simple idea (that a continuous function

will take on its average value at some point), but it has some significant applications. The

first of these will be found in section 4.5, in the proof of one of the most significant results

in the calculus, the Fundamental Theorem of Calculus.

Referring back to our derivation of the IntegralMeanValueTheorem, observe that along

the way we proved that for any integrable function f, if m ≤ f (x) ≤ M , for all x ∈ [a, b],

then inequality (4.4) holds:

m(b − a) ≤
 b

a

f (x) dx ≤ M(b − a).

This enables us to estimate the value of a definite integral. Although the estimate is generally

only a rough one, it still has importance in that it gives us an interval in which the value

must lie. We illustrate this in example 4.8.

EXAMPLE 4.8 Estimating the Value of an Integral

Use inequality (4.4) to estimate the value of

 1

0

 
x2 + 1 dx .

Solution First, notice that it’s beyond your present abilities to compute the value of

this integral exactly. However, notice that

1 ≤
 

x2 + 1 ≤
√
2, for all x ∈ [0, 1].
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From inequality (4.4), we now have

1 ≤
 1

0

 
x2 + 1 dx ≤

√
2 ≈ 1.414214.

In other words, although we still do not know the exact value of the integral, we know

that it must be between 1 and
√
2 ≈ 1.414214. �

EXERCISES 4.4

WRITING EXERCISES

1. Sketch a graph of a function f that is both positive and nega-

tive on an interval [a, b]. Explain in terms of areawhat it means

to have
 b

a
f (x) dx = 0. Also, explain what it means to have b

a
f (x) dx > 0 and

 b

a
f (x) dx < 0.

2. To get a physical interpretation of the result in Theorem 4.3,

suppose that f (x) and g(x) are velocity functions for two dif-

ferent objects starting at the same position. If f (x) ≥ g(x) ≥ 0,

explain why it follows that
 b

a
f (x) dx ≥  b

a
g(x) dx .

3. The Integral Mean Value Theorem says that if f (x) is continu-

ous on the interval [a, b], then there exists a number c between

a and b such that f (c)(b − a) =  b

a
f (x) dx . By thinking of

the left-hand side of this equation as the area of a rectangle,

sketch a picture that illustrates this result, and explain why the

result follows.

4. Write out the Integral Mean Value Theorem as applied to the

derivative f  (x). Then write out the Mean Value Theorem for

derivatives. (See section 2.8.) If the c-values identified by each

theorem are the same, what does
 b

a
f  (x) dx have to equal?

Explain why, at this point, we don’t know whether or not the

c-values are the same.

In exercises 1–4, use the Midpoint Rule to estimate the value of

the integral (obtain two digits of accuracy).

1.

 3

0

(x3 + x) dx 2.

 3

0

 
x2 + 1 dx

3.

 π

0

sin x2 dx 4.

 2

−2

 
4 − x2 dx

In exercises 5–10, evaluate the integral by computing the limit

of Riemann sums.

5.

 1

0

2x dx 6.

 2

1

2x dx

7.

 2

0

x2 dx 8.

 3

0

(x2 + 1) dx

9.

 3

1

(x2 − 3) dx 10.

 2

−2

(x2 − 1) dx

In exercises 11–18, write the given (total) area as an integral or

sum of integrals.

11. The area above the x-axis and below y = 4 − x2

12. The area above the x-axis and below y = 4x − x2

13. The area below the x-axis and above y = x2 − 4

14. The area below the x-axis and above y = x2 − 4x

15. The area between y = sin x and the x-axis for 0 ≤ x ≤ π
16. The area between y = sin x and the x-axis for

−π/2 ≤ x ≤ π/4
17. The area between y = x3 − 3x2 + 2x and the x-axis for

0 ≤ x ≤ 2

18. The area between y = x3 − 4x and the x-axis for −2 ≤ x ≤ 3

In exercises 19–20, use the given velocity function and initial

position to estimate the final position s(b).

19. v(t) = 1√
t2 + 1

, s(0) = 0, b = 4

20. v(t) = 30√
t + 1

, s(0) = −1, b = 4

In exercises 21–24, use Theorem 4.2 to write the expression as a

single integral.

21.

 2

0

f (x) dx +
 3

2

f (x) dx 22.

 3

0

f (x) dx −
 3

2

f (x) dx

23.

 2

0

f (x) dx +
 1

2

f (x) dx 24.

 2

−1

f (x) dx +
 3

2

f (x) dx

In exercises 25–28, sketch the area corresponding to the integral.

25.

 2

1

(x2 − x) dx 26.

 4

2

(x2 − x) dx

27.

 π/2

0

cos x dx 28.

 2

−2

 
4 − x2 dx
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In exercises 29–32, use the Integral Mean Value Theorem to

estimate the value of the integral.

29.

 π/2

π/3

3 cos x2 dx 30.

 1/2

0

1√
1 − x2

dx

31.

 2

0

 
2x2 + 1 dx 32.

 1

−1

3

x3 + 2
dx

In exercises 33 and 34, find a value of c that satisfies the conclu-

sion of the Integral Mean Value Theorem.

33.

 2

0

3x2dx (= 8) 34.

 1

−1

(x2 − 2x) dx (= 2
3
)

In exercises 35–38, compute the average value of the function

on the given interval.

35. f (x) = 2x + 1, [0, 4] 36. f (x) = x2 + 2x, [0, 1]

37. f (x) = x2 − 1, [1, 3] 38. f (x) = 2x − 2x2, [0, 1]

39. Prove that if f is continuous on the interval [a, b], then there

exists a number c in (a, b) such that f (c) equals the average

value of f on the interval [a, b].

40. Prove part (ii) of Theorem 4.2 for the special case where

c = 1
2
(a + b).

In exercises 41–44, use the graph to determine whether
� 2

0
f (x) dx is positive or negative.

41.

x

y

21

3

2

1

 1

42.

x

y

2.01.51.00.5

1.0

0.8

0.6

0.4

0.2

 0.2

 0.4

43.

x

y

2.01.51.00.5

1.0

0.5

 0.5

 1.0

44.

x

y

2.01.51.00.5

2

1

 1

 2

45. For the functions f (x) =
 
2x if x < 1

x2 + 2 if x ≥ 1
and

g(x) =
 
2x if x ≤ 1

x2 + 2 if x > 1
, assume that

 2

0
f (x) dx and 2

0
g(x) dx exist. Explain why the approximating Riemann

sums with midpoint evaluations are equal for any even value

of n. Argue that this result implies that the two integrals are

both equal to the sum
 1

0
2x dx +  2

1
(x2 + 2) dx .

46. Prove that
    b

a
f (x) dx

   ≤  b

a
| f (x)| dx . (Hint: Use Theorem

4.3.)

In exercises 47 and 48, compute
� 4

0
f (x) dx.

47. f (x) =
 
2x if x < 1

4 if x ≥ 1

48. f (x) =
 
2 if x ≤ 2

3x if x > 2

49. Suppose that, for a particular population of organisms, the birth

rate is given by b(t) = 410 − 0.3t organisms permonth and the

death rate is given by a(t) = 390 + 0.2t organisms per month.

Explain why
 12

0
[b(t) − a(t)] dt represents the net change in

population in the first 12 months. Determine for which values

of t it is true that b(t) > a(t). At which times is the popula-

tion increasing? Decreasing? Determine the time at which the

population reaches a maximum.

50. Suppose that, for a particular population of organisms, the

birth rate is given by b(t) = 400 − 3 sin t organisms per month

and the death rate is given by a(t) = 390 + t organisms per

month. Explain why
 12

0
[b(t) − a(t)] dt represents the net
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change in population in the first 12 months. Graphically deter-

mine for which values of t it is true that b(t) > a(t). At which

times is the population increasing? Decreasing? Estimate the

time at which the population reaches a maximum.

51. For a particular ideal gas at constant temperature, pressure P

and volume V are related by PV = 10. The work required

to increase the volume from V = 2 to V = 4 is given by the

integral
 4

2
P(V ) dV . Estimate the value of this integral.

52. Suppose that the temperature tmonths into the year is given by

T (t) = 64 − 24 cos π
6
t (degrees Fahrenheit). Estimate the av-

erage temperature over an entire year. Explain why this answer

is obvious from the graph of T (t).

53. Suppose that the average value of a function f (x) over the in-

terval [0, 2] is 5 and the average value of f (x) over the interval

[2, 6] is 11. Find the average value of f (x) over the interval

[0, 6].

54. Suppose that the average value of a function f (x) over an inter-

val [a, b] is v and the average value of f (x) over the interval

[b, c] is w. Find the average value of f (x) over the interval

[a, c].

In exercises 55–58, use a geometric formula to compute the

integral.

55.

 2

0

3x dx 56.

 4

1

2x dx

57.

 2

0

 
4 − x2 dx 58.

 0

−3

 
9 − x2 dx

59. The table shows the temperature at different times of the day.

Estimate the average temperature using (a) right-endpoint eval-

uation and (b) left-endpoint evaluation. Explain why the esti-

mates are different.

time 12:00 3:00 6:00 9:00 12:00 3:00 6:00 9:00 12:00

temperature 46 44 52 70 82 86 80 72 56

60. In exercise 59, describe the average of the estimates in parts

(a) and (b) in terms of the “usual” way of averaging, that is,

adding up some numbers and dividing by how many numbers

were added.

Exercises 61–64 involve the just-in-time inventory discussed in

the chapter introduction.

61. For a business using just-in-time inventory, a delivery of Q

items arrives just as the last item is shipped out. Suppose that

items are shipped out at the constant rate of r items per day. If

a delivery arrives at time 0, show that f (t) = Q − r t gives the

number of items in inventory for 0 ≤ t ≤ Q

r
. Find the average

value of f on the interval
 
0, Q

r

 
.

62. The Economic Order Quantity (EOQ) model uses the as-

sumptions in exercise 61 to determine the optimal quantity Q

to order at any given time. Assume that D items are ordered

annually, so that the number of shipments equals D

Q
. If Co is

the cost of placing an order and Cc is the annual cost for stor-

ing an item in inventory, then the total annual cost is given

by f (Q) = Co
D

Q
+ Cc

Q

2
. Find the value of Q that minimizes

the total cost. For the optimal order size, show that the total

ordering cost Co
D

Q
equals the total carrying cost (for storage)

Cc
Q

2
.

63. The EOQ model of exercise 62 can be modified to take into

account noninstantaneous receipt. In this case, instead of a

full delivery arriving at one instant, the delivery arrives at

a rate of p items per day. Assume that a delivery of size Q

starts at time 0, with shipments out continuing at the rate of

r items per day (assume that p > r ). Show that when the de-

livery is completed, the inventory equals Q(1 − r/p). From

there, inventory drops at a steady rate of r items per day un-

til no items are left. Show that the average inventory equals
1
2
Q(1 − r/p) and find the order sizeQ that minimizes the total

cost.

64. A further refinement we can make to the EOQ model of ex-

ercises 62–63 is to allow discounts for ordering large quan-

tities. To make the calculations easier, take specific values of

D = 4000,Co = $50,000 and Cc = $3800. If 1–99 items are

ordered, the price is $2800 per item. If 100–179 items are or-

dered, the price is $2200 per item. If 180 or more items are

ordered, the price is $1800 per item. The total cost is now

Co
D

Q
+ Cc

Q

2
+ PD, where P is the price per item. Find the

order size Q that minimizes the total cost.

65. The impulse-momentum equation states the relationship be-

tween a force F(t) applied to an object of mass m and the

resulting change in velocity  v of the object. The equa-

tion is m v =  b

a
F(t) dt , where v = v(b) − v(a). Suppose

that the force of a baseball bat on a ball is approximately

F(t) = 9 − 108(t − 0.0003)2 thousand pounds, for t between

0 and 0.0006 second. What is the maximum force on the ball?

Usingm = 0.01 for themass of a baseball, estimate the change

in velocity  v (in ft/s).

66. Measurements taken of the feet of badminton players lung-

ing for a shot indicate a vertical force of approximately

F(t) = 1000 − 25,000(t − 0.2)2 Newtons, for t between 0

and 0.4 second. (See The Science of Racquet Sports.) For a

player of massm = 5, use the impulse-momentum equation in

exercise 65 to estimate the change in vertical velocity of the

player.

67. Use a graph to explainwhy
 1

−1
x3dx = 0. Use your knowledge

of
√

x + 1 to determine whether
 1

−1
x3

√
x + 1 dx is positive

or negative.

68. Use the Integral Mean Value Theorem to prove the following

fact for a continuous function. For any positive integer n, there

exists a set of evaluation points for which the Riemann sum

approximation of
 b

a
f (x) dx is exact.
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EXPLORATORY EXERCISES

1. Many of the basic quantities used by epidemiologists to study

the spread of disease are described by integrals. In the case

of AIDS, a person becomes infected with the HIV virus and,

after an incubation period, develops AIDS. Our goal is to

derive a formula for the number of AIDS cases given the HIV

infection rate g(t) and the incubation distribution F(t). To take

a simple case, suppose that the infection rate the first month is

20 people per month, the infection rate the second month is 30

people per month and the infection rate the third month is 25

people per month. Then g(1) = 20, g(2) = 30 and g(3) = 25.

Also, suppose that 20% of those infected develop AIDS after

1 month, 50% develop AIDS after 2 months and 30% develop

AIDS after 3 months. (Fortunately, these figures are not at all

realistic.) Then F(1) = 0.2, F(2) = 0.5 and F(3) = 0.3. Ex-

plain why the number of people developing AIDS in the fourth

month would be g(1)F(3) + g(2)F(2) + g(3)F(1). Compute

this number. Next, suppose that g(0.5) = 16, g(1) = 20,

g(1.5) = 26, g(2) = 30, g(2.5) = 28, g(3) = 25 and

g(3.5) = 22. Further, suppose that F(0.5) = 0.1, F(1) = 0.1,

F(1.5) = 0.2, F(2) = 0.3, F(2.5) = 0.1, F(3) = 0.1 and

F(3.5) = 0.1. Compute the number of people developing

AIDS in the fourth month. If we have g(t) and F(t) defined at

all real numbers t, explain why the number of people devel-

oping AIDS in the fourth month equals
 4

0
g(t)F(4 − t) dt .

2. Riemann’s condition states that
 b

a
f (x) dx exists if and

only if for every  > 0 there exists a partition P such

that the upper sum U and lower sum L (see exer-

cises 35–40 in section 4.3) satisfy |U − L| <  . Use

this condition to prove that f (x) =
 −1 if x is rational

1 if x is irrational

is not integrable on the interval [0, 1]. A function f

is called a Lipschitz function on the interval [a, b] if

| f (x) − f (y)| ≤ |x − y| for all x and y in [a, b]. Use Rie-

mann’s condition to prove that every Lipschitz function on

[a, b] is integrable on [a, b].

4.5 THE FUNDAMENTAL THEOREM OF CALCULUS

In this section, we present a pair of results known collectively as the Fundamental Theorem

of Calculus. On a practical level, the Fundamental Theorem provides uswith amuch-needed

shortcut for computing definite integrals without struggling to find limits of Riemann sums.

On a conceptual level, the Fundamental Theoremunifies the seemingly disconnected studies

of derivatives and definite integrals, showing us that differentiation and integration are, in

fact, inverse processes. In this sense, the theorem is truly fundamental to calculus as a

coherent discipline.

One hint as to the nature of the first part of the Fundamental Theorem is that we used

suspiciously similar notations for indefinite and definite integrals. We have also used both

antidifferentiation and area calculations to compute distance from velocity. However, the

Fundamental Theorem makes much stronger statements about the relationship between

differentiation and integration.

NOTES

The Fundamental Theorem,

Part 1, says that to compute a

definite integral, we need only

find an antiderivative and then

evaluate it at the two limits of

integration. Observe that this is a

vast improvement over computing

limits of Riemann sums, which

we could compute exactly for

only a few simple cases.

THEOREM 5.1 (Fundamental Theorem of Calculus, Part I)

If f is continuous on [a, b] and F(x) is any antiderivative of f (x), then b

a

f (x) dx = F(b) − F(a). (5.1)

PROOF

First, we partition [a, b]:

a = x0 < x1 < x2 < · · · < xn = b,
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where xi − xi−1 =  x = b − a

n
, for i = 1, 2, . . . , n.Working backward, note that by virtue

of all the cancellations, we can write

F(b) − F(a) = F(xn) − F(x0)

= [F(x1) − F(x0)] + [F(x2) − F(x1)] + · · · + [F(xn) − F(xn−1)]

=
n 

i=1

[F(xi ) − F(xi−1)]. (5.2)

Since F is an antiderivative of f, F is differentiable on (a, b) and continuous on [a, b]. By

the Mean Value Theorem, we then have for each i = 1, 2, . . . , n, that

F(xi ) − F(xi−1) = F  (ci )(xi − xi−1) = f (ci ) x, (5.3)

for some ci ∈ (xi−1, xi ). Thus, from (5.2) and (5.3), we have

F(b) − F(a) =
n 

i=1

[F(xi ) − F(xi−1)] =
n 

i=1

f (ci ) x . (5.4)

You should recognize this last expression as a Riemann sum for f on [a, b]. Taking the limit

of both sides of (5.4) as n → ∞, we find that b

a

f (x) dx = lim
n→∞

n 
i=1

f (ci ) x = lim
n→∞

[F(b) − F(a)]

= F(b) − F(a),

as desired, since this last quantity is a constant.

HISTORICAL NOTES

The Fundamental Theorem of

Calculus marks the beginning of

calculus as a unified discipline and

is credited to both Isaac Newton

and Gottfried Leibniz. Newton

developed his calculus in the late

1660s but did not publish his

results until 1687. Leibniz

rediscovered the same results in

the mid-1670s but published

before Newton in 1684 and 1686.

Leibniz’ original notation and

terminology, much of which is in

use today, is superior to

Newton’s (Newton referred to

derivatives and integrals as

fluxions and fluents), but Newton

developed the central ideas

earlier than Leibniz. A bitter

controversy, centering on some

letters from Newton to Leibniz in

the 1670s, developed over which

man would receive credit for

inventing the calculus. The

dispute evolved into a battle

between England and the rest of

the European mathematical

community. Communication

between the two groups ceased

for over 100 years and greatly

influenced the development of

mathematics in the 1700s.

REMARK 5.1

We will often use the notation

F(x)
  b
a

= F(b) − F(a).

This enables us to write down the antiderivative before evaluating it at the endpoints.

EXAMPLE 5.1 Using the Fundamental Theorem

Compute

 2

0

(x2 − 2x) dx .

Solution Notice that f (x) = x2 − 2x is continuous on the interval [0, 2] and so, we

can apply the Fundamental Theorem. We find an antiderivative from the power rule and

simply evaluate: 2

0

(x2 − 2x) dx =
 
1

3
x3 − x2

     2
0

=
 
8

3
− 4

 
− (0) = −4

3
.
�

Recall that we had already evaluated the integral in example 5.1 by computing the limit

of Riemann sums. (See example 4.3.) Given a choice, which method would you prefer?

While you had a choice in example 5.1, you cannot evaluate the integrals in

examples 5.2 and 5.3 by computing the limit of a Riemann sum directly, as we have no

formulas for the summations involved.
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EXAMPLE 5.2 Computing a Definite Integral Exactly

Compute

 4

1

 √
x − 1

x2

 
dx .

Solution Observe that since f (x) = x1/2 − x−2 is continuous on [1, 4], we can apply

the Fundamental Theorem. Since an antiderivative of f (x) is F(x) = 2
3
x3/2 + x−1, we

have 4

1

 √
x − 1

x2

 
dx = 2

3
x3/2 + x−1

    4
1

=
 
2

3
(4)3/2 + 4−1

 
−
 
2

3
+ 1

 
= 47

12
.
�

TODAY IN
MATHEMATICS

Benoit Mandelbrot (1924– )

A French mathematician who

invented and developed fractal

geometry. (See the Mandelbrot

set in the exercises for section

10.1.) Mandelbrot has always

been guided by a strong

geometric intuition. He explains,

“Faced with some complicated

integral, I instantly related it to a

familiar shape. . . . I knew an army

of shapes I’d encountered once in

some book and remembered

forever, with their properties and

their peculiarities.” The fractal

geometry that Mandelbrot

developed has greatly extended

our ability to accurately describe

the peculiarities of such

phenomena as the structure of

the lungs and heart, or mountains

and clouds, as well as the stock

market and weather.

EXAMPLE 5.3 Using the Fundamental Theorem to Compute Areas

Find the area under the curve f (x) = sin x on the interval [0, π ].

Solution Since sin x ≥ 0 and sin x is continuous on [0, π ], we have that

Area =
 π

0

sin x dx .

Notice that an antiderivative of sin x is F(x) = − cos x . By the Fundamental Theorem,

then, we have π

0

sin x dx = F(π ) − F(0) = (− cosπ ) − (− cos 0) = −(−1) − (−1) = 2.
�

EXAMPLE 5.4 A Definite Integral with a Variable Upper Limit

Evaluate
 x

1
12t5dt .

Solution Even though the upper limit of integration is a variable, we can use the

Fundamental Theorem to evaluate this, since f (t) = 12t5 is continuous on any interval.

We have  x

1

12t5dt = 12
t6

6

    x
1

= 2(x6 − 1).
�

It’s not surprising that the definite integral in example 5.4 is a function of x, since one

of the limits of integration involves x. The following observation may be surprising, though.

Note that

d

dx
[2(x6 − 1)] = 12x5,

which is the same as the original integrand, except that the (dummy) variable of integration,

t , has been replaced by the variable in the upper limit of integration, x.

The seemingly odd coincidence observed here is, in fact, not an isolated occurrence,

as we see in Theorem 5.2. First, you need to be clear about what a function such as

F(x) =  x

1
12t5dt means. Notice that the function value at x = 2 is found by replacing

x by 2:

F(2) =
 2

1

12t5dt,
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which corresponds to the area under the curve y = 12t5 from t = 1 to t = 2. (See

Figure 4.28a.) Similarly, the function value at x = 3 is

F(3) =
 3

1

12t5dt,

which is the area under the curve y = 12t5 from t = 1 to t = 3. (See Figure 4.28b.) More

generally, for any x > 1, F(x) gives the area under the curve y = 12t5 from t = 1 up to

t = x . (See Figure 4.28c.) For this reason, the function F is sometimes called an area

function.Notice that for x > 1, as x increases, F(x) gives more and more of the area under

the curve to the right of t = 1.

y

t

y = 12t5

321

y

t

y = 12t5

321

y

t

y = 12t5

1 x

FIGURE 4.28a FIGURE 4.28b FIGURE 4.28c
Area from t = 1 to t = 2 Area from t = 1 to t = 3 Area from t = 1 to t = x

THEOREM 5.2 (Fundamental Theorem of Calculus, Part II)

If f is continuous on [a, b] and F(x) =  x

a
f (t) dt , then F  (x) = f (x), on [a, b].

PROOF

Using the definition of derivative, we have

F  (x) = lim
h→0

F(x + h) − F(x)

h
= lim

h→0

1

h

  x+h

a

f (t) dt −
 x

a

f (t) dt

 

= lim
h→0

1

h

  x+h

a

f (t) dt +
 a

x

f (t) dt

 
= lim

h→0

1

h

 x+h

x

f (t) dt, (5.5)

where we switched the limits of integration according to equation (4.2) and combined the

integrals according to Theorem 4.2 (ii).

Look very carefully at the last term in (5.5). You may recognize it as the limit of the

average value of f (t) on the interval [x, x + h] (if h > 0). By the Integral Mean Value

Theorem (Theorem 4.4), we have

1

h

 x+h

x

f (t) dt = f (c), (5.6)

for some number c between x and x + h. Finally, since c is between x and x + h, we have

that c → x , as h → 0. Since f is continuous, it follows from (5.5) and (5.6) that

F  (x) = lim
h→0

1

h

 x+h

x

f (t) dt = lim
h→0

f (c) = f (x),

as desired.

REMARK 5.2

Part II of the Fundamental

Theorem says that every

continuous function f has an

antiderivative, namely, x

a
f (t) dt .
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EXAMPLE 5.5 Using the Fundamental Theorem, Part II

For F(x) =  x

1
(t2 − 2t + 3) dt , compute F  (x).

Solution Here, the integrand is f (t) = t2 − 2t + 3. By Theorem 5.2, the derivative is

F  (x) = f (x) = x2 − 2x + 3.

That is, F  (x) is the function in the integrand with t replaced by x. It really is that

easy! �

Before moving on to more complicated examples, let’s look at example 5.5 in more

detail, just to getmore comfortablewith themeaning of Part II of the Fundamental Theorem.

First, we can use Part I of the Fundamental Theorem to find

F(x) =
 x

1

(t2 − 2t + 3) dt = 1

3
t3 − t2 + 3t

    x
1

=
 
1

3
x3 − x2 + 3x

 
−
 
1

3
− 1 + 3

 
.

It’s easy to differentiate this directly, to get

F  (x) = 1

3
· 3x2 − 2x + 3 − 0 = x2 − 2x + 3.

Notice that the lower limit of integration (in this case, 1) has no effect on the value of F  (x).
In the definition of F(x), the lower limit of integration merely determines the value of the

constant that is subtracted at the end of the calculation of F(x). Since the derivative of any

constant is 0, this value does not affect F  (x).

EXAMPLE 5.6 Using the Chain Rule and the Fundamental Theorem,
Part II

If F(x) =  x2

2
cos t dt , compute F  (x).

Solution Let u(x) = x2, so that

F(x) =
 u(x)

2

cos t dt.

From the chain rule,

F  (x) = cos u(x)
du

dx
= cos u(x)(2x) = 2x cos x2.

�

REMARK 5.3

The general form of the chain

rule used in example 5.6 is:

if g (x) =  u(x)

a
f (t) dt , then

g (x) = f (u(x))u (x) or

d

dx

 u(x)

a

f (t) dt = f (u(x))u (x).

EXAMPLE 5.7 An Integral with Variable Upper and Lower Limits

If F(x) =  x2

2x

√
t2 + 1 dt , compute F  (x).

Solution The Fundamental Theorem applies only to definite integrals with variables in

the upper limit, so we will first rewrite the integral by Theorem 4.2 (ii) as

F(x) =
 0

2x

 
t2 + 1 dt +

 x2

0

 
t2 + 1 dt = −

 2x

0

 
t2 + 1 dt +

 x2

0

 
t2 + 1 dt,

where we have also used equation (4.2) to switch the limits of integration in the first

integral. Using the chain rule as in example 5.6, we get

F  (x) = −
 
(2x)2 + 1

d

dx
(2x) +

 
(x2)2 + 1

d

dx
(x2)

= −2
 
4x2 + 1 + 2x

 
x4 + 1. �
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Before discussing the theoretical significance of the two parts of the Fundamental

Theorem, we present two examples that remind you of why you might want to compute

integrals and derivatives.

EXAMPLE 5.8 Computing the Distance Fallen by an Object

Suppose the (downward) velocity of a sky diver is given by v(t) = 30
 
1 − 1√

t+1

 
ft/s for

the first 5 seconds of a jump. Compute the distance fallen.

Solution Recall that the distance d is given by the definite integral

d =
 5

0

 
30 − 30√

t + 1

 
dt = 30t − 60

√
t + 1

   5
0

where we have used the fact that d
dt

√
t + 1 = 1

2
√

t+1
. Continuing we have

d = 150 − 60
√
6 − (0 − 60) = 210 − 60

√
6 ≈ 63 feet. �

Recall that velocity is the instantaneous rate of change of the distance function with

respect to time. We see in example 5.8 that the definite integral of velocity gives the total

change of the distance function over the given time interval. A similar interpretation of

derivative and the definite integral holds for many quantities of interest. In example 5.9, we

look at the rate of change and total change of water in a tank.

EXAMPLE 5.9 Rate of Change and Total Change of Volume of a Tank

Suppose that water flows in and out of a storage tank. The net rate of change (that is, the

rate in minus the rate out) of water is f (t) = 20(t2 − 1) gallons per minute. (a) For

0 ≤ t ≤ 3, determine when the water level is increasing and when the water level is

decreasing. (b) If the tank has 200 gallons of water at time t = 0, determine how many

gallons are in the tank at time t = 3.

Solution Let w(t) be the number of gallons in the tank at time t. (a) Notice that the

water level decreases if w (t) = f (t) < 0. We have

f (t) = 20(t2 − 1) < 0, if 0 ≤ t < 1.

Alternatively, the water level increases if w (t) = f (t) > 0. In this case, we have

f (t) = 20(t2 − 1) > 0, if 1 < t ≤ 3.

(b) We start with w (t) = 20(t2 − 1). Integrating from t = 0 to t = 3, we have 3

0

w (t) dt =
 3

0

20(t2 − 1) dt.

Evaluating the integrals on both sides yields

w(3) − w(0) = 20

 
t3

3
− t

     t=3

t=0

.

Since w(0) = 200, we have

w(3) − 200 = 20(9 − 3) = 120

and hence, w(3) = 200 + 120 = 320,

so that the tank will have 320 gallons at time 3. �
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In example 5.10, we use Part II of the Fundamental Theorem to determine information

about a seemingly complicated function. Notice that although we don’t know how to evalu-

ate the integral, we can use the Fundamental Theorem to obtain some important information

about the function.

EXAMPLE 5.10 Finding a Tangent Line for a Function Defined
as an Integral

For the function F(x) =  x2

4
sin (t3 + 4) dt , find an equation of the tangent line at x = 2.

Solution Notice that there are almost no function values that we can compute exactly,

yet we can easily find an equation of a tangent line! From Part II of the Fundamental

Theorem and the chain rule, we get the derivative

F  (x) = sin [(x2)3 + 4]
d

dx
(x2) = sin [(x2)3 + 4](2x) = 2x sin (x6 + 4).

So, the slope at x = 2 is F  (2) = 4 sin (68) ≈ −3.59. The tangent passes through the

point with x = 2 and y = F(2) =  4

4
sin (t3 + 4) dt = 0 (since the upper limit equals

the lower limit). An equation of the tangent line is then

y = (4 sin 68)(x − 2). �

BEYOND FORMULAS

The two parts of the Fundamental Theorem are different sides of the same theoretical

coin. Recall the conclusions of Parts I and II of the Fundamental Theorem: b

a

F  (x) dx = F(b) − F(a) and
d

dx

 x

a

f (t) dt = f (x).

In both cases, we are saying that differentiation and integration are in some sense

inverse operations: their effects (with appropriate hypotheses) cancel each other out.

This fundamental connection iswhat unifies seeminglyunrelated calculation techniques

into the calculus. What are some results in algebra and trigonometry that similarly tie

together different areas of study and are thus fundamental results?

EXERCISES 4.5

WRITING EXERCISES

1. To explore Part I of the Fundamental Theorem graphically, first

suppose that F(x) is increasing on the interval [a, b]. Explain

why both of the expressions F(b) − F(a) and
 b

a
F  (x) dx will

be positive. Further, explain why the faster F(x) increases, the

larger each expression will be. Similarly, explain why if F(x)

is decreasing, both expressions will be negative.

2. You can think of Part I of the Fundamental Theorem in terms

of position s(t) and velocity v(t) = s  (t). Start by assuming

that v(t) ≥ 0. Explain why
 b

a
v(t) dt gives the total distance

traveled and explain why this equals s(b) − s(a). Discuss what

changes if v(t) < 0.

3. To explore Part II of the Fundamental Theorem graphically,

consider the function g(x) =  x

a
f (t) dt . If f (t) is positive on

the interval [a, b], explain why g (x) will also be positive. Fur-
ther, the larger f (t) is, the larger g (x) will be. Similarly, ex-

plain why if f (t) is negative then g (x) will also be nega-

tive.

4. In Part I of the Fundamental Theorem, F can be any an-

tiderivative of f. Recall that any two antiderivatives of f dif-

fer by a constant. Explain why F(b) − F(a) is well defined;

that is, if F1 and F2 are different antiderivatives, explain why

F1(b) − F1(a) = F2(b) − F2(a). When evaluating a definite
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integral, explain why you do not need to include “+ c” with

the antiderivative.

In exercises 1–16, use Part I of the Fundamental Theorem to

compute each integral exactly.

1.

 2

0

(2x − 3) dx 2.

 3

0

(x2 − 2) dx

3.

 1

−1

(x3 + 2x) dx 4.

 2

0

(x3 + 3x − 1) dx

5.

 4

0

(
√

x + 3x) dx 6.

 2

1

(4x − 2/x2) dx

7.

 1

0

(x
√

x + x1/3) dx 8.

 8

0

( 3
√

x − x2/3) dx

9.

 π/4

0

sec x tan x dx 10.

 π/4

0

sec2 x dx

11.

 π

π/2

(2 sin x − cos x) dx 12.

 π

0

(sin2 x + cos2 x) dx

13.

 4

1

x − 3√
x

dx 14.

 2

1

x2 − 3x + 4

x4
dx

15.

 4

0

x(x − 2) dx 16.

 π/3

0

3

cos2 x
dx

In exercises 17–22, use the Fundamental Theorem if possible or

estimate the integral using Riemann sums. (Hint: Three prob-

lems can be worked using antiderivative formulas we have cov-

ered so far.)

17.

 2

0

 
x2 + 1 dx 18.

 2

0

(
√

x + 1)2dx

19.

 4

1

x2

x2 + 4
dx 20.

 4

1

x2 + 4

x2
dx

21.

 π/4

0

sin x

cos2 x
dx 22.

 π/4

0

tan x

sec2 x
dx

In exercises 23–28, find the derivative f  (x).

23. f (x)= x

0
(t2 − 3t + 2) dt

24. f (x)= x

2
(t2 − 3t − 4) dt

25. f (x) =
 x2

0

(cos 3t + 1) dt 26. f (x) =
 x2+1

2

sin t dt

27. f (x) =
 −1

x

 
t2 + 1 dt 28. f (x) =

 2

x

sec t dt

In exercises 29–32, find an equation of the tangent line at the

given value of x.

29. y =
 x

0

sin
 

t2 + π 2 dt, x = 0

30. y =
 x

−1

 
t2 + 2t + 2 dt, x = −1

31. y =
 x

2

cos (π t3) dt, x = 2

32. y =
 x

0

cos (−t2 + 1) dt, x = 0

33. Identify all local extrema of f (x) =  x

0
(t2 − 3t + 2) dt .

34. Katie drives a car at speed f (t) = 55 + 10 cos t mph, and

Michael drives a car at speed g(t) = 50 + 2t mph at time t

minutes. Suppose that Katie and Michael are at the same loca-

tion at time t = 0. Compute
 x

0
[ f (t) − g(t)] dt , and interpret

the integral in terms of a race between Katie and Michael.

In exercises 35–40, find the given area.

35. The area above the x-axis and below y = 4 − x2

36. The area below the x-axis and above y = x2 − 4x

37. The area of the region bounded by y = x2, x = 2 and the x-axis

38. The area of the region bounded by y = x3, x = 3 and the x-axis

39. The area between y = sin x and the x-axis for 0 ≤ x ≤ π
40. The area between y = sin x and the x-axis for

−π/2 ≤ x ≤ π/4

In exercises 41 and 42, (a) explain how you know the proposed

integral value is wrong and (b) find all mistakes.

41.

 1

−1

1

x2
dx = − 1

x

    x=1

x=−1

= −1 − (1) = −2

42.

 π

0

sec2 x dx = tan x

    x=π

x=0

= tanπ − tan 0 = 0

In exercises 43–46, find the position function s(t) from the given

velocity or acceleration function and initial value(s). Assume

that units are feet and seconds.

43. v(t) = 40 − sin t, s(0) = 2

44. v(t) = 10 − t2, s(0) = 2

45. a(t) = 4 − t, v(0) = 8, s(0) = 0

46. a(t) = 16 − t2, v(0) = 0, s(0) = 30

47. If θ (t) is the angle between the path of a moving object and

a fixed ray (see the figure), the angular velocity of the object

is ω(t) = θ  (t) and the angular acceleration of the object is

α(t) = ω (t).

Position at

time t θ(t)
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Suppose a baseball batter swings with a constant angular ac-

celeration of α(t) = 10 rad/s2. If the batter hits the ball 0.8 s

later, what is the angular velocity? The (linear) speed of the

part of the bat located 3 feet from the pivot point (the batter’s

body) is v = 3ω. How fast is this part of the bat moving at the

moment of contact? Through what angle was the bat rotated

during the swing?

48. Suppose a golfer rotates a golf club through an angle of 3π/2

with a constant angular acceleration of α rad/s2. If the clubhead

is located 4 feet from the pivot point (the golfer’s body), the

(linear) speed of the clubhead is v = 4ω. Find the value of α

that will produce a clubhead speed of 100 mph at impact.

In exercises 49–54, find the average value of the function on the

given interval.

49. f (x) = x2 − 1, [1, 3]

50. f (x) = x2 + 2x, [0, 1]

51. f (x) = 2x − 2x2, [0, 1]

52. f (x) = x3 − 3x2 + 2x, [1, 2]

53. f (x) = cos x, [0, π/2]

54. f (x) = sin x, [0, π/2]

In exercises 55 and 56, use the graph to list
� 1

0
f (x) dx,� 2

0
f (x) dx and

� 3

0
f (x) dx in order, from smallest to largest.

55. y

x

 2

2

6

8

1 2 3 4

56. y

x

2

4

 2

1 2 3 4 1

57. Use the Fundamental Theorem of Calculus to find an anti-

derivative of sin
√

x2 + 1.

58. The number of items that consumers are willing to buy de-

pends on the price of the item. Let p = D(q) represent the

price (in dollars) at which q items can be sold. The inte-

gral
 Q

0
D(q) dq is interpreted as the total number of dollars

that consumers would be willing to spend on Q items. If the

price is fixed at P = D(Q) dollars, then the actual amount

of money spent is PQ. The consumer surplus is defined by

CS =  Q

0
D(q) dq − PQ. Compute the consumer surplus for

D(q) = 150 − 2q − 3q2 at Q = 4 and at Q = 6. What does

the difference in CS values tell you about how many items to

produce?

59. For a business using just-in-time inventory, a delivery of Q

items arrives just as the last item is shipped out. Suppose

that items are shipped out at a nonconstant rate such that

f (t) = Q − r
√

t gives the number of items in inventory. Find

the time T at which the next shipment must arrive. Find the

average value of f on the interval [0, T ].

60. The Economic Order Quantity (EOQ) model uses the assump-

tions in exercise 59 to determine the optimal quantity Q to

order at any given time. If Co is the cost of placing an order,

Cc is the annual cost for storing an item in inventory and A

is the average value from exercise 59, then the total annual

cost is given by f (Q) = C0
D

Q
+ Cc A. Find the value of Q that

minimizes the total cost. Show that for this order size, the total

ordering cost C0
D

Q
equals the total carrying cost (for storage)

Cc A.

61. Let f (x) =
 

x if x < 2

x + 1 if x ≥ 2
and define F(x) =  x

0
f (t) dt .

Show that F(x) is continuous but that it is not true that

F  (x) = f (x) for all x. Explain why this does not contradict

the Fundamental Theorem of Calculus.

62. Find the derivative of f (x) = 1
k

 x+k

x
g(t) dt , where g is a con-

tinuous function.

63. Find the first and second derivatives of

g(x) =  x

0

  u

0
f (t) dt

 
du, where f is a continuous function.

Identify the graphical feature of y = g(x) that corresponds to

a zero of f (x).

64. Let f be a continuous function on the interval [0, 1] and de-

fine gn(x) = f (xn) for n = 1, 2 and so on. For a given x with

0 ≤ x ≤ 1, find lim
n→∞

gn(x). Then, find lim
n→∞

 1

0
gn(x) dx .

In exercises 65 and 66, identify the integrals to which the Fun-

damental Theorem of Calculus applies; the other integrals are

called improper integrals.

65. (a)

 4

0

1

x − 4
dx (b)

 1

0

√
x dx (c)

 1

0

tan x dx
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66. (a)

 1

0

1√
x + 2

dx (b)

 4

0

1

(x − 3)2
dx (c)

 2

0

sec x dx

In exercises 67 and 68, identify each sum as a Riemann sum and

evaluate the limit.

67. (a) lim
n→∞

1

n

 
sin
π

n
+ sin

2π

n
+ · · · + sinπ

 

(b) lim
n→∞

2

n

 
1

(1 + 2/n)2
+ 1

(1 + 4/n)2
+ · · · + 1

32

 

68. (a) lim
n→∞

1

n
[cos(4/n) + cos(8/n) + · · · + cos 4]

(b) lim
n→∞

4

n

 
2√
n

+ 2
√
2√
n

+ · · · + 2

 

69. Derive Leibniz’ Rule:

d

dx

 b(x)

a(x)

f (t) dt = f (b(x)) b (x) − f (a(x)) a (x).

EXPLORATORY EXERCISES

1. Suppose that a communicable disease has an infection stage

and an incubation stage (like HIV and AIDS). Assume that the

infection rate is a constant f (t) = 100 people per month and

the incubation distribution is b(t) = 0.8x

x2+900
month−1. The rate

at which people develop the disease at time t = T is given by

r (T ) =  T

0
f (t)b(T − t) dt people per month. Use your CAS

to find expressions for both the rate r (T ) and the number of

people p(x) =  x

0
r (T ) dT who develop the disease between

times t = 0 and t = x . Explain why the graph y = r (T ) has

a horizontal asymptote. For small x’s, the graph of y = p(x)

is concave up; explain what happens for large x’s. Repeat this

for f (t) = 100 + 10 sin t , where the infection rate oscillates

up and down.

2. When solving differential equations of the form dy

dt
= f (y)

for the unknown function y(t), it is often convenient to make

use of a potential function V (y). This is a function such that

− dV

dy
= f (y). For the function f (y) = y − y3, find a potential

function V (y). Find the locations of the local minima of V (y)

and use a graph of V (y) to explain why this is called a “double-

well” potential. Explain each step in the calculation

dV

dt
= dV

dy

dy

dt
= − f (y) f (y) ≤ 0.

Since dV

dt
≤ 0, does the function V increase or decrease as

time goes on? Use your graph of V to predict the possible val-

ues of lim
t→∞

y(t). Thus, you can predict the limiting value of

the solution of the differential equation without ever solving

the equation itself. Use this technique to predict lim
t→∞

y(t) if

y = 2 − 2y.

3. Let fn(x) =

⎧⎪⎨
⎪⎩
2n + 4n2x − 1

2n
≤ x ≤ 0

2n − 4n2x 0 ≤ x ≤ 1
2n

0 otherwise

for n = 1, 2, 3, . . . . For an arbitrary n, sketch y = fn(x)

and show that
 1

−1
fn(x) dx = 1. Compute lim

n→∞

 1

−1
fn(x) dx .

For an arbitrary x  = 0 in [−2, 2], compute lim
n→∞

fn(x)

and compute
 1

−1
lim
n→∞

fn(x) dx . Is it always true that

lim
n→∞

 1

−1
fn(x) dx =  1

−1
lim
n→∞

fn(x) dx?

4.6 INTEGRATION BY SUBSTITUTION

In this section, we expand our ability to compute antiderivatives by developing a useful

technique called integration by substitution. This method gives us a process for helping

to recognize a whole range of new antiderivatives.

EXAMPLE 6.1 Finding an Antiderivative by Trial and Error

Evaluate
 
2x cos x2 dx .

Solution We need to find a function F(x) for which F  (x) = 2x cos x2. You might be

tempted to guess that since x2 is an antiderivative of 2x ,

F(x) = x2 cos(x2)
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is an antiderivative of 2x cos(x2). To see that this is incorrect, observe that, from the

product rule,

d

dx

 
x2 cos(x2)

 = 2x cos(x2) − x2 sin(x2)(2x)  = 2x cos(x2).

So much for our guess. Before making another guess, look closely at the integrand.

Notice that 2x is the derivative of x2 and x2 already appears in the integrand, as the

argument of cos(x2). Further, by the chain rule, for F(x) = sin(x2),

F  (x) = cos(x2)
d

dx
(x2) = 2x cos(x2),

which is the integrand. To finish this example, recall that we need to add an arbitrary

constant, to get  
2x cos(x2) dx = sin(x2) + c.

�

More generally, recognize that when one factor in an integrand is the derivative of

another part of the integrand, you may be looking at a chain rule derivative.

Note that, in general, if F is any antiderivative of f, then from the chain rule, we have

d

dx
[F(u)] = F  (u)

du

dx
= f (u)

du

dx
.

From this, we have that 
f (u)

du

dx
dx =

 
d

dx
[F(u)] dx = F(u) + c =

 
f (u) du, (6.1)

since F is an antiderivative of f. If you read the expressions on the far left and the far right

sides of (6.1), this suggests that

du = du

dx
dx .

So, if we cannot compute the integral
 

h(x) dx directly, we often look for a new variable

u and function f (u) for which 
h(x) dx =

 
f (u(x))

du

dx
dx =

 
f (u) du,

where the second integral is easier to evaluate than the first.

NOTES

In deciding how to choose a new

variable, there are several things

to look for:

r terms that are derivatives of

other terms (or pieces thereof )

and
r terms that are particularly

troublesome. (You can often

substitute your troubles away.)

EXAMPLE 6.2 Using Substitution to Evaluate an Integral

Evaluate

 
(x3 + 5)100(3x2) dx .

Solution You probably cannot evaluate this as it stands. However, observe that

d

dx
(x3 + 5) = 3x2,
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which is part of the integrand. This leads us to make the substitution u = x3 + 5, so that

du = d
dx
(x3 + 5) dx = 3x2 dx . This gives us

 
(x3 + 5)100    

u100

(3x2) dx    
du

=
 

u100 du = u101

101
+ c.

We are not done quite yet. Since we invented the new variable u, we need to convert back

to the original variable x, to obtain

 
(x3 + 5)100(3x2) dx = u101

101
+ c = (x3 + 5)101

101
+ c.

It’s always a good idea to perform a quick check on the antiderivative. (Remember that

integration and differentiation are inverse processes!) Here, we compute

d

dx

 
(x3 + 5)101

101

 
= 101(x3 + 5)100(3x2)

101
= (x3 + 5)100(3x2),

which is the original integrand. This confirms that we have indeed found an

antiderivative. �

INTEGRATION BY SUBSTITUTION

Integration by substitution consists of the following general steps, as illustrated in

example 6.2.

r Choose a new variable u: a common choice is the innermost expression or

“inside” term of a composition of functions. (In example 6.2, note that x3 + 5 is

the inside term of (x3 + 5)100.)

r Compute du = du

dx
dx .

r Replace all terms in the original integrand with expressions involving u and du.
r Evaluate the resulting (u) integral. If you still can’t evaluate the integral, you

may need to try a different choice of u.
r Replace each occurrence of u in the antiderivative with the corresponding

expression in x.

Always keep in mind that finding antiderivatives is the reverse process of finding

derivatives. In example 6.3, we are not so fortunate as to have the exact derivative we want

in the integrand.

EXAMPLE 6.3 Using Substitution: A Power Function Inside a Cosine

Evaluate
 

x cos x2 dx .

Solution Notice that

d

dx
x2 = 2x .
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Unfortunately, we don’t quite have a factor of 2x in the integrand. This does not present

a problem, though, as you can always push constants back and forth past an integral sign.

Notice that we can rewrite the integral as 
x cos x2dx = 1

2

 
2x cos x2dx .

We now substitute u = x2, so that du = 2x dx and we have 
x cos x2dx = 1

2

 
cos x2    
cos u

(2x) dx    
du

= 1

2

 
cos u du = 1

2
sin u + c = 1

2
sin x2 + c.

Again, as a check, observe that

d

dx

 
1

2
sin x2

 
= 1

2
cos x2(2x) = x cos x2,

which is the original integrand. �

EXAMPLE 6.4 Using Substitution: A Trigonometric Function
Inside a Power

Evaluate
 
(3 tan x + 4)5 sec2 x dx .

Solution As with most integrals, you probably can’t evaluate this one as it stands. So,

what do you notice about the integrand? Observe that there’s a tan x term and a factor of

sec2 x in the integrand and that d
dx

tan x = sec2 x . Thus, we let u = 3 tan x + 4, so that

du = 3 sec2 x dx . We then have 
(3 tan x + 4)5 sec2 x dx = 1

3

 
(3 tan x + 4)5    

u5

(3 sec2 x) dx    
du

= 1

3

 
u5du =

 
1

3

 
u6

6
+ c

= 1

18
(3 tan x + 4)6 + c.

�

Sometimes you will need to look a bit deeper into an integral to see terms that are

derivatives of other terms, as in example 6.5.

EXAMPLE 6.5 Using Substitution: A Root Function Inside a Sine

Evaluate

 
sin

√
x√

x
dx .

Solution This integral is not especially obvious. It never hurts to try something,

though. If you had to substitute for something, what would you choose? You might

notice that sin
√

x = sin x1/2 and letting u = √
x = x1/2 (the “inside”), we get

du = 1
2
x−1/2 dx = 1

2
√

x
dx . Since there is a factor of 1√

x
dx in the integrand, we can
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proceed. We have

 
sin

√
x√

x
dx = 2

 
sin

√
x    

sin u

 
1

2
√

x

 
dx    

du

= 2

 
sin u du = −2 cos u + c = −2 cos

√
x + c.

�

So far, every one of our examples has been solved by spotting a term in the integrand that

was the derivative of another term.We present an integral nowwhere this is not the case, but

where a substitution is made to deal with a particularly troublesome term in the integrand.

EXAMPLE 6.6 A Substitution That Lets You Expand the Integrand

Evaluate
 

x
√
2 − x dx .

Solution You certainly cannot evaluate this as it stands. If you look for terms that are

derivatives of other terms, you will come up empty-handed. The real problem here is

that there is a square root of a sum (or difference) in the integrand. A reasonable step

would be to substitute for the expression under the square root. We let u = 2 − x , so

that du = −dx . That doesn’t seem so bad, but what are we to do with the extra x in the

integrand? Well, since u = 2 − x , it follows that x = 2 − u. Making these substitutions

in the integral, we get 
x
√
2 − x dx = (−1)

 
x    

2 − u

√
2 − x    √

u

(−1) dx    
du

= −
 
(2 − u)

√
u du.

While we can’t evaluate this integral directly, if we multiply out the terms, we get 
x
√
2 − x dx = −

 
(2 − u)

√
u du

= −
 
(2u1/2 − u3/2) du

= −2
u3/2 
3
2

 + u5/2 
5
2

 + c

= −4

3
u3/2 + 2

5
u5/2 + c

= −4

3
(2 − x)3/2 + 2

5
(2 − x)5/2 + c.

You should check the validity of this antiderivative via differentiation. �

Substitution in Definite Integrals
There is only one slight difference in using substitution for evaluating a definite integral: you

must also change the limits of integration to correspond to the new variable. The procedure

here is then precisely the same as that used for examples 6.2 through 6.6, except that when
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you introduce the new variable u, the limits of integration change from x = a and x = b to

the corresponding limits for u : u = u(a) and u = u(b). We have b

a

f (u(x))u (x) dx =
 u(b)

u(a)

f (u) du.

EXAMPLE 6.7 Using Substitution in a Definite Integral

Evaluate
 2

1
x3

√
x4 + 5 dx .

Solution Of course, you probably can’t evaluate this as it stands. However, since
d
dx
(x4 + 5) = 4x3, we make the substitution u = x4 + 5, so that du = 4x3dx . For the

limits of integration, note that when x = 1,

u = x4 + 5 = 14 + 5 = 6

and when x = 2, u = x4 + 5 = 24 + 5 = 21.

We now have 2

1

x3
 

x4 + 5 dx = 1

4

 2

1

 
x4 + 5    √

u

(4x3) dx    
du

= 1

4

 21

6

√
u du

= 1

4

u3/2 
3
2

     21
6

=
 
1

4

  
2

3

 
(213/2 − 63/2).

Notice that because we changed the limits of integration to match the new variable,

we did not need to convert back to the original variable, as we do when we make a

substitution in an indefinite integral. (Note that, if we had switched the variables back,

we would also have needed to switch the limits of integration back to their original

values before evaluating!) �

CAUTION

You must change the limits of

integration as soon as you

change variables!

It may have occurred to you that you could use a substitution in a definite integral only

to find an antiderivative and then switch back to the original variable to do the evaluation.

Although this method will work for many problems, we recommend that you avoid it, for

several reasons. First, changing the limits of integration is not very difficult and results in

a much more readable mathematical expression. Second, in many applications requiring

substitution, you will need to change the limits of integration, so you might as well get used

to doing so now.

EXAMPLE 6.8 Substitution in a Definite Integral
Involving a Trigonometric Function

Compute
 15

0
t sin(−t2/2) dt .

Solution As always, we look for terms that are derivatives of other terms. Here, you

should notice that d
dt
(−t2

2
) = −t . So, we set u = − t2

2
and compute du = −t dt . For the

upper limit of integration, we have that t = 15 corresponds to u = − (15)2

2
= − 225

2
. For

the lower limit, we have that t = 0 corresponds to u = 0. This gives us 15

0

t sin(−t2/2) dt = −
 15

0

[sin(−t2/2)]    
sin u

(−t) dt    
du

= −
 −225/2

0

sin u du = cos u
   −112.5

0
= cos(−112.5) − 1.

�
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EXERCISES 4.6

WRITING EXERCISES

1. It is neverwrong tomake a substitution in an integral, but some-

times it is not very helpful. For example, using the substitution

u = x2, you can correctly conclude that 
x3
 

x2 + 1 dx =
 

1

2
u
√

u + 1 du,

but the new integral is no easier than the original integral.

In this case, a better substitution makes this workable. (Can

you find it?) However, the general problem remains of how

you can tell whether or not to give up on a substitution. Give

some guidelines for answering this question, using the integrals 
x sin x2dx and

 
x sin x3dx as illustrative examples.

2. It is not uncommon for students learning substitution to use in-

correct notation in the intermediate steps. Be aware of this—it

can be harmful to your grade! Carefully examine the following

string of equalities and find each mistake. Using u = x2,

 2

0

x sin x2dx =
 2

0

(sin u)x dx =
 2

0

(sin u)
1

2
du

= −1

2
cos u

    2
0

= −1

2
cos x2

    2
0

= −1

2
cos 4 + 1

2
.

The final answer is correct, but because of several errors, this

work would not earn full credit. Discuss each error and write

this in a way that would earn full credit.

3. Suppose that an integrand has a term of the form sin( f (x)). For

example, suppose you are trying to evaluate
 

x2 sin (x3) dx .

Discuss why you should immediately try the substitution

u = f (x).

4. Suppose that an integrand has a composite function of the form

f (g(x)). Explain why you should look to see if the integrand

also has the term g (x). Discuss possible substitutions.

In exercises 1–4, use the given substitution to evaluate the indi-

cated integral.

1.

 
x2
 

x3 + 2 dx, u = x3 + 2

2.

 
x3(x4 + 1)−2/3dx, u = x4 + 1

3.

 
(
√

x + 2)3√
x

dx, u = √
x + 2

4.

 
sin x cos x dx, u = sin x

In exercises 5–30, evaluate the indicated integral.

5.

 
x3
 

x4 + 3 dx 6.

 
sec2 x

√
tan x dx

7.

 
sin x√
cos x

dx 8.

 
sin3 x cos x dx

9.

 
x2 cos x3dx 10.

 
sin x(cos x + 3)3/4dx

11.

 
sec2 x cos(tan x) dx 12.

 
x csc x2 cot x2 dx

13.

 
cos

√
x√

x
dx 14.

 
x + 1

(x2 + 2x − 1)2
dx

15.

 
cos 3x

(sin 3x + 1)3
dx 16.

 
cos(1/x)

x2
dx

17.

 
1√

x (
√

x + 1)2
dx 18.

 
x√

x2 + 4
dx

19.

 
4

x2(2/x + 1)3
dx 20.

 
2x

(x + 1)3
dx

21.

 
9x2

(3 − x)4
dx 22.

 
x2 sec2 x3dx

23.

 √
4x5 − x4

x2
dx 24.

 
x3

√
1 − x4

dx

25.

 
2x + 3

(x + 7)3
dx 26.

 
x2

3
√

x + 3
dx

27.

 
1 

1 + √
x

dx 28.

 
1

(1 + √
x)3

dx

In exercises 29–36, evaluate the definite integral.

29.

 2

0

x
 

x2 + 1 dx 30.

 3

1

x sin(πx2) dx

31.

 1

−1

x

(x2 + 1)2
dx 32.

 π2

0

cos
√

x√
x

dx

33.

 1

0

x2 cos x3 dx 34.

 π/4

π/8

csc 2x cot 2x dx

35.

 4

1

x − 1√
x

dx 36.

 1

0

x√
x2 + 1

dx

In exercises 37–40, evaluate the integral exactly, if possible.

Otherwise, estimate it numerically.

37. (a)

 π

0

sin x2 dx (b)

 π

0

x sin x2 dx

38. (a)

 1

−1

x
 

x2 + 4 dx (b)

 1

−1

 
x2 + 4 dx

39. (a)

 2

0

4x2

(x2 + 1)2
dx (b)

 2

0

4x

(x2 + 1)2
dx

40. (a)

 π/4

0

sec x dx (b)

 π/4

0

sec2 x dx
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In exercises 41–44, make the indicated substitution for an un-

specified function f (x).

41. u = x2 for

 2

0

x f (x2) dx

42. u = x3 for

 2

1

x2 f (x3) dx

43. u = sin x for

 π/2

0

(cos x) f (sin x) dx

44. u = √
x for

 4

0

f (
√

x)√
x

dx

45. A function f is said to be even if f (−x) = f (x) for all x.

A function f is said to be odd if f (−x) = − f (x). Sup-

pose that f is continuous for all x. Show that if f is even,

then
 a

−a
f (x) dx = 2

 a

0
f (x) dx . Also, if f is odd, show that a

−a
f (x) dx = 0.

46. Assume that f is periodic with period T; that is,

f (x + T )= f (x) for all x . Show that
 T

0
f (x) dx = a+T

a
f (x) dx

for any real number a. (Hint: First, work with 0 ≤ a ≤ T .)

47. For the integral I =
 10

0

√
x√

x + √
10 − x

dx , use a substitu-

tion to show that I =
 10

0

√
10 − x√

x + √
10 − x

dx . Use these two

representations of I to evaluate I.

48. Generalize exercise 47 to I =
 a

0

f (x)

f (x) + f (a − x)
dx for

any positive, continuous function f and then quickly evaluate π/2

0

sin x

sin x + cos x
dx .

49. For I =
 4

2

sin2(9 − x)

sin2(9 − x) + sin2(x + 3)
dx , use the substitution

u = 6 − x to show that I =
 4

2

sin2(x + 3)

sin2(9 − x) + sin2(x + 3)
dx

and evaluate I.

50. Generalize the result of exercise 49 to

 4

2

f (9− x)

f (9−x)+ f (x+3)
dx ,

for any positive, continuous function f on [2, 4].

51. As in exercise 50, evaluate

 2

0

f (x + 4)

f (x + 4) + f (6 − x)
dx for

any positive, continuous function f on [0, 2].

52. For u = x1/6, show that

 
1

x5/6 + x2/3
dx = 6

 
u

u + 1
du.

53. For u = x1/6, show that

 
1√

x + 3
√

x
dx = 6

 
u3

u + 1
du.

54. Generalize exercises 52 and 53 to

 
1

x (p+1)/q + x p/q
dx for

positive integers p and q.

55. Find each mistake in the following calculations and then

show how to correctly do the substitution. Start with 1

−2
4x4dx =  1

−2
x(4x3) dx and then use the substitution

u = x4 with du = 4x3dx . Then

 1

−2

x(4x3) dx =
 1

16

u1/4du = 4

5
u5/4

    u=1

u=16

= 4

5
− 32

5
= −18

5

56. Find each mistake in the following calculations and then

show how to correctly do the substitution. Start with π
0
cos2 x dx =  π

0
cos x(cos x) dx and then use the substitu-

tion u = sin x with du = cos x dx . Then

 π

0

cos x(cos x) dx =
 0

0

 
1 − u2 du = 0

57. The voltage in an AC (alternating current) circuit is given by

V (t) = Vp sin(2π f t), where f is the frequency. A voltmeter

does not indicate the amplitude Vp . Instead, the voltmeter

reads the root-mean-square (rms), the square root of the aver-

age value of the square of the voltage over one cycle. That

is, rms =
 

f
 1/ f

0
V 2(t) dt . Use the trigonometric identity

sin2 x = 1
2

− 1
2
cos 2x to show that rms = Vp/

√
2.

58. Graph y = f (t) and find the root-mean-square of

f (t) =

⎧⎨
⎩

−1 if −2 ≤ t < −1

t if −1 ≤ t ≤ 1

1 if 1 < t ≤ 2

,

where rms =
 
1

4

 2

−2

f 2(t) dt .

EXPLORATORY EXERCISES

1. A predator-prey system is a set of differential equations mod-

eling the change in population of interacting species of organ-

isms. A simple model of this type is 
x  (t) = x(t)[a − by(t)]

y (t) = y(t)[dx(t) − c]

for positive constants a, b, c and d. Both equations include a

term of the form x(t)y(t), which is intended to represent the

result of confrontations between the species. Noting that the

contribution of this term is negative to x  (t) but positive to y (t),
explainwhy it must be that x(t) represents the population of the

prey and y(t) the population of the predator. If x(t) = y(t) = 0,

compute x  (t) and y (t). In this case, will x and y increase,

decrease or stay constant? Explain why this makes sense phys-

ically. Determine x  (t) and y (t) and the subsequent change in
x and y at the so-called equilibrium point x = c/d, y = a/b.

If the population is periodic, we can show that the equilibrium
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point gives the average population (even if the population does

not remain constant). To do so, note that
x  (t)

x(t)
= a − by(t).

Integrating both sides of this equation from t = 0

to t = T [the period of x(t) and y(t)], we get T

0

x  (t)

x(t)
dt =

 T

0

a dt −
 T

0

by(t) dt . Assuming that x(t)

has period T, we have x(T ) = x(0) and so, the integral on

the left hand side equals 0. Thus, 0 = aT −  T

0
by(t) dt . Fi-

nally, rearrange terms to show that 1/T
 T

0
y(t) dt = a/b;

that is, the average value of the population y(t) is the

equilibrium value y = a/b. Similarly, show that the aver-

age value of the population x(t) is the equilibrium value

x = c/d.

2. Physicists define something called the Dirac delta δ(x), for

which a defining property is that
 b

−a
δ(x) dx = 1 for any

a, b > 0. Assuming that δ(x) acts like a continuous func-

tion (this is a significant issue!), use this property to evaluate

(a)
 1

0
δ(x − 2) dx , (b)

 1

0
δ(2x − 1) dx and (c)

 1

−1
δ(2x) dx .

Assuming that it applies, use the Fundamental Theorem of

Calculus to prove that δ(x) = 0 for all x  = 0 and to prove

that δ(x) is unbounded in [−1, 1]. What do you find trouble-

some about this? Do you think that δ(x) is really a continuous

function, or even a function at all?

3. Suppose that f is a continuous function such that for

all x, f (2x) = 3 f (x) and f (x + 1
2
) = 1

3
+ f (x). Compute 1

0

f (x) dx .

4.7 NUMERICAL INTEGRATION

Thus far, our development of the integral has paralleled our development of the derivative.

In both cases, we began with a limit definition that was difficult to use for calculation and

then proceeded to develop simplified rules for calculation. At this point, you should be able

to find the derivative of nearly any function you can write down. You might expect that with

a few more rules you will be able to do the same for integrals. Unfortunately, this is not

the case. There are many functions for which no elementary antiderivative is available. (By

elementary antiderivative, we mean an antiderivative expressible in terms of the elementary

functions with which you are familiar: the algebraic and trigonometric functions, as well as

the exponential and logarithmic functions that we’ll introduce in Chapter 6.) For instance, 2

0

cos(x2) dx

cannot be calculated exactly, since cos(x2) does not have an elementary antiderivative. (Try

to find one, but don’t spend much time on it.)

In fact, most definite integrals cannot be calculated exactly. When we can’t compute

the value of an integral exactly, we do the next best thing: we approximate its value numer-

ically. In this section, we develop three methods of approximating definite integrals. None

will replace the built-in integration routine on your calculator or computer. However, by

exploring these methods, you will gain a basic understanding of some of the ideas behind

more sophisticated numerical integration routines.

Since a definite integral is the limit of a sequence of Riemann sums, any Riemann sum

serves as an approximation of the integral,

 b

a

f (x) dx ≈
n 

i=1

f (ci ) x,

where ci is any point chosen from the subinterval [xi−1, xi ], for i = 1, 2, . . . , n. Further,

the larger n is, the better the approximation tends to be. The most common choice of the

evaluation points c1, c2, . . . , cn leads to a method called theMidpoint Rule:
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 b

a

f (x) dx ≈
n 

i=1

f (ci ) x,

where ci is the midpoint of the subinterval [xi−1, xi ],

ci = 1

2
(xi−1 + xi ), for i = 1, 2, . . . , n.

We illustrate this approximation for the case where f (x) ≥ 0 on [a, b], in Figure 4.29.

x

y

c4c3c2c1a b

FIGURE 4.29
Midpoint Rule

EXAMPLE 7.1 Using the Midpoint Rule

Write out the Midpoint Rule approximation of
 1

0
3x2 dx with n = 4.

Solution For n = 4, the regular partition of the interval [0, 1] is x0 = 0, x1 = 1
4
,

x2 = 1
2
, x3 = 3

4
and x4 = 1. The midpoints are then c1 = 1

8
, c2 = 3

8
, c3 = 5

8
and c4 = 7

8
.

With  x = 1
4
, the Riemann sum is then 

f

 
1

8

 
+ f

 
3

8

 
+ f

 
5

8

 
+ f

 
7

8

   
1

4

 
=
 

3

64
+ 27

64
+ 75

64
+ 147

64

  
1

4

 

= 252

256
= 0.984375.

�

Of course, from the Fundamental Theorem, the exact value of the integral in

example 7.1 is

 1

0

3x2dx = 3x3

3

    1
0

= 1.

So, our approximation in example 7.1 is not especially accurate. To obtain greater accu-

racy, notice that you could always compute an approximation using more rectangles. You

can simplify this process by writing a simple program for your calculator or computer to

implement the Midpoint Rule. A suggested outline for such a program follows.

MIDPOINT RULE

1. Store f (x), a, b and n.

2. Compute  x = b − a

n
.

3. Compute c1 = a +  x

2
and start the sum with f (c1).

4. Compute the next ci = ci−1 + x and add f (ci ) to the sum.

5. Repeat step 4 until i = n [i.e., perform step 4 a total of (n − 1) times].

6. Multiply the sum by  x .

EXAMPLE 7.2 Using a Program for the Midpoint Rule

Repeat example 7.1 using a program to compute the Midpoint Rule approximations for

n = 8, 16, 32, 64 and 128.
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Solution You should confirm the values in the following table. We include a column

displaying the error in the approximation for each n (i.e., the difference between the

exact value of 1 and the approximate values).

n Midpoint Rule Error

4 0.984375 0.015625

8 0.99609375 0.00390625

16 0.99902344 0.00097656

32 0.99975586 0.00024414

64 0.99993896 0.00006104

128 0.99998474 0.00001526

You should note that each time the number of steps is doubled, the error is reduced

approximately by a factor of 4. Although this precise reduction in error will not occur

with all integrals, this rate of improvement in the accuracy of the approximation is

typical of the Midpoint Rule. �

Of course, we won’t know the error in a Midpoint Rule approximation, except where

we know the value of the integral exactly. We started with a simple integral, whose value

we knew exactly, so that you could get a sense of how accurate the Midpoint Rule approxi-

mation is.

Note that in example 7.3, we can’t compute an exact value of the integral, since we do

not know an antiderivative for the integrand.

EXAMPLE 7.3 Finding an Approximation with a Given Accuracy

Use the Midpoint Rule to approximate
 2

0

√
x2 + 1 dx accurate to three decimal places.

Solution Given the instructions, how do we know how large n should be? We

continue increasing n until it appears unlikely the third decimal will change further.

(The size of n will vary substantially from integral to integral.) You should test your

program against the numbers in the accompanying table.

From the table, we can make the reasonable approximation 2

0

 
x2 + 1 dx ≈ 2.958.

�

n Midpoint Rule

10 2.95639

20 2.95751

30 2.95772

40 2.95779

REMARK 7.1

Computer and calculator programs that estimate the values of integrals face the same

challenge we did in example 7.3—that is, knowing when a given approximation is

good enough. Such software generally includes sophisticated algorithms for

estimating the accuracy of its approximations. You can find an introduction to such

algorithms in most texts on numerical analysis.

Another important reason for pursuing numerical methods is for the case where we

don’t know the function that we’re trying to integrate. That’s right: we often know only

some values of a function at a collection of points, while a symbolic representation of a

function is unavailable. This is often the case in the physical and biological sciences and
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engineering, in situations where the only information available about a function comes from

measurements made at a finite number of points.

x f (x)

0.0 1.0

0.25 0.8

0.5 1.3

0.75 1.1

1.0 1.6

EXAMPLE 7.4 Estimating an Integral from a Table of Function Values

Estimate
 1

0
f (x) dx , where we have values of the unknown function f (x) as given in

the table shown in the margin.

Solution Approaching the problem graphically, we have five data points. (See

Figure 4.30.) How can we estimate the area under the curve from five points?

Conceptually, we have two tasks. First, we need a reasonable way to connect the given

points. Second, we need to compute the area of the resulting region. So, how should we

connect the dots? The most obvious way is the same way any child would: connect the

dots with straight-line segments as in Figure 4.31a.

x

0.4

0.8

1.2

1.6

1.000.750.500.25

y

x

0.4

0.8

1.2

1.6

1.000.750.500.25

y

x

0.4

0.8

1.2

1.6

1.000.750.500.25

y

FIGURE 4.30 FIGURE 4.31a FIGURE 4.31b
Data from an unknown function Connecting the dots Four trapezoids

Notice that the region bounded by the graph and the x-axis on the interval [0, 1]

consists of four trapezoids. (See Figure 4.31b.)

Recall that the area of a trapezoid with sides h1 and h2 and base b is given by 
h1 + h2

2

 
b. (It’s an easy exercise to verify this.) You can think of this as the average

of the areas of the rectangle whose height is the value of the function at the left endpoint

and the rectangle whose height is the value of the function at the right endpoint.

The total area of the four trapezoids is then

f (0) + f (0.25)

2
0.25 + f (0.25) + f (0.5)

2
0.25 + f (0.5) + f (0.75)

2
0.25

+ f (0.75) + f (1)

2
0.25

= [ f (0) + 2 f (0.25) + 2 f (0.5) + 2 f (0.75) + f (1)]
0.25

2
= 1.125.

�

More generally, for any continuous function f defined on the interval [a, b], we partition

[a, b] as follows:

a = x0 < x1 < x2 < · · · < xn = b,
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where the points in the partition are equally spaced, with spacing  x = b − a

n
. On each

subinterval [xi−1, xi ], approximate the area under the curve by the area of the trapezoid

whose sides have length f (xi−1) and f (xi ), as indicated in Figure 4.32. The area under the

curve on the interval [xi−1, xi ] is then approximately

Ai ≈ 1

2
[ f (xi−1) + f (xi )] x,

for each i = 1, 2, . . . , n. Adding together the approximations for the area under the curve

on each subinterval, we get that b

a

f (x) dx ≈
 

f (x0) + f (x1)

2
+ f (x1) + f (x2)

2
+ · · · + f (xn−1) + f (xn)

2

 
 x

= b − a

2n
[ f (x0) + 2 f (x1) + 2 f (x2) + · · · + 2 f (xn−1) + f (xn)].

We illustrate this in Figure 4.33. Notice that each of the middle terms is multiplied by 2,

since each one is used in two trapezoids, once as the height of the trapezoid at the right

endpoint and once as the height of the trapezoid at the left endpoint. We refer to this as the

(n + 1)-point Trapezoidal Rule, Tn( f ),

 b

a

f (x) dx ≈ Tn( f ) = b − a

2n
[ f (x0) + 2 f (x1) + 2 f (x2) + · · · + 2 f (xn−1) + f (xn)].

One way to write a program for the Trapezoidal Rule is to add together

Trapezoidal Rule

[ f (xi−1) + f (xi )] for i = 1, 2, . . . , n and then multiply by  x/2. As discussed in the

exercises, an alternative is to add together the Riemann sums using left- and right-endpoint

evaluations, and then divide by 2.

y

x
xi

y = f (x)

f (xi)

x i 1

f (x i 1)
−

−

FIGURE 4.32
Trapezoidal Rule

y

x
b

y =  f (x)

a

FIGURE 4.33
The (n + 1)-point

Trapezoidal Rule

EXAMPLE 7.5 Using the Trapezoidal Rule

Compute the Trapezoidal Rule approximations with n = 4 (by hand) and n = 8, 16,

32, 64 and 128 (use a program) for
 1

0
3x2dx .

Solution As we saw in examples 7.1 and 7.2, the exact value of this integral is 1. For

the Trapezoidal Rule with n = 4, we have

T4( f ) = 1 − 0

(2)(4)

 
f (0) + 2 f

 
1

4

 
+ 2 f

 
1

2

 
+ 2 f

 
3

4

 
+ f (1)

 

= 1

8

 
0 + 3

8
+ 12

8
+ 27

8
+ 3

 
= 66

64
= 1.03125.

Using a program, you can easily get the values in the accompanying table.

n Tn( f ) Error

4 1.03125 0.03125

8 1.0078125 0.0078125

16 1.00195313 0.00195313

32 1.00048828 0.00048828

64 1.00012207 0.00012207

128 1.00003052 0.00003052

NOTES

Since the Trapezoidal Rule

formula is an average of two

Riemann sums, we have b

a

f (x) dx = lim
n→∞

Tn( f ).
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We have included a column showing the error (the absolute value of the difference

between the exact value of 1 and the approximate value). Notice that (as with the

Midpoint Rule) as the number of steps doubles, the error is reduced by approximately a

factor of 4. �

x
x ix i −1x i −2

y

y =  f (x)

FIGURE 4.34
Simpson’s Rule

Simpson’s Rule
Consider the following alternative to theTrapezoidalRule. First, construct a regular partition

of the interval [a, b]:

a = x0 < x1 < x2 < · · · < xn = b,

where xi − xi−1 = b − a

n
=  x,

HISTORICAL
NOTES

Thomas Simpson (1710–1761)

An English mathematician who

popularized the numerical

method now known as Simpson’s

Rule. Trained as a weaver,

Simpson also earned a living as a

fortune-teller, as the editor of the

Ladies’ Diary and as a textbook

author. Simpson’s calculus

textbook (titled A New Treatise on

Fluxions, using Newton’s calculus

terminology) introduced many

mathematicians to Simpson’s

Rule, although the method had

been developed years earlier.

for each i = 1, 2, . . . , n and where n is an even number. Instead of connecting each pair

of points with a straight line segment (as we did with the Trapezoidal Rule), we connect

each set of three consecutive points, (xi−2, f (xi−2)), (xi−1, f (xi−1)) and (xi , f (xi )) for

i = 2, 4, . . . , n, with a parabola. (See Figure 4.34.) That is, we look for the quadratic

function p(x) whose graph passes through these three points, so that

p(xi−2) = f (xi−2), p(xi−1) = f (xi−1) and p(xi ) = f (xi ).

Using this to approximate the value of the integral of f on the interval [xi−2, xi ], we have xi

xi−2

f (x) dx ≈
 xi

xi−2

p(x) dx .

Notice why we want to approximate f by a polynomial: polynomials are easy to integrate.

A straightforward though tedious computation (try this; your CAS may help) gives

 xi

xi−2

f (x) dx ≈
 xi

xi−2

p(x) dx = xi − xi−2

6
[ f (xi−2) + 4 f (xi−1) + f (xi )]

= b − a

3n
[ f (xi−2) + 4 f (xi−1) + f (xi )].

Adding together the integrals over each subinterval [xi−2, xi ], for i = 2, 4, 6, . . . , n, we get

 b

a

f (x) dx

≈ b − a

3n
[ f (x0) + 4 f (x1) + f (x2)] + b − a

3n
[ f (x2) + 4 f (x3) + f (x4)] + · · ·

+ b − a

3n
[ f (xn−2) + 4 f (xn−1) + f (xn)]

= b − a

3n
[ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + · · · + 4 f (xn−1) + f (xn)].

Be sure to notice the pattern that the coefficients follow.We refer to this as the (n + 1)-point

Simpson’s Rule, Sn( f ),
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SIMPSON’S RULE b

a

f (x) dx ≈ Sn( f ) = b − a

3n
[ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3)

+ 2 f (x4) + · · · + 4 f (xn−1) + f (xn)].

Next, we illustrate the use of Simpson’s Rule for a simple integral.

EXAMPLE 7.6 Using Simpson’s Rule

Approximate the value of
 1

0
3x2dx using Simpson’s Rule with n = 4.

Solution We have

S4( f ) = 1 − 0

(3)(4)

 
f (0) + 4 f

 
1

4

 
+ 2 f

 
1

2

 
+ 4 f

 
3

4

 
+ f (1)

 
= 1,

which is in fact, the exact value. Notice that this is far more accurate than the Midpoint

and Trapezoidal Rules and yet requires no more effort. �

Recall that Simpson’s Rule computes the area beneath approximating parabolas. Given

this, it shouldn’t surprise you that Simpson’s Rule gives the exact area in example 7.6. As

you will discover in the exercises, Simpson’s Rule gives exact values of integrals for any

polynomial of degree 3 or less.

In example 7.7, we illustrate Simpson’s Rule for an integral that you do not know how

to compute exactly.

EXAMPLE 7.7 Using a Program for Simpson’s Rule

Compute Simpson’s Rule approximations with n = 4 (by hand), n = 8, 16, 32, 64 and

128 (use a program) for
 2

0

√
x2 + 1 dx .

Solution For n = 4, we have

S4( f ) = 2 − 0

(3)(4)

 
f (0) + 4 f

 
1

2

 
+ 2 f (1) + 4 f

 
3

2

 
+ f (2)

 

=
 
1

6

  
1 + 4

 
5

4
+ 2

√
2 + 4

 
13

4
+

√
5

 
≈ 2.95795560.

Using a program, you can easily obtain the values in the accompanying table. Based on

these calculations, we would expect 2.9578857 to be a very good approximation of 2

0

√
x2 + 1 dx . �

n Sn( f )

4 2.9579556

8 2.9578835

16 2.95788557

32 2.95788571

64 2.95788571

128 2.95788572

Since most graphs curve somewhat, you might expect the parabolas of Simpson’s Rule

to better track the curve than the line segments of the Trapezoidal Rule. As example 7.8

shows, Simpson’s Rule can be much more accurate than either the Midpoint Rule or the

Trapezoidal Rule.
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EXAMPLE 7.8 Comparing the Midpoint, Trapezoidal
and Simpson’s Rules

Compute the Midpoint, Trapezoidal and Simpson’s Rule approximations of 1

0

4

x2 + 1
dx with n = 10, n = 20, n = 50 and n = 100. Compare to the exact

value of π .

Solution

n Midpoint Rule Trapezoidal Rule Simpson’s Rule

10 3.142425985 3.139925989 3.141592614

20 3.141800987 3.141175987 3.141592653

50 3.141625987 3.141525987 3.141592654

100 3.141600987 3.141575987 3.141592654

Compare these values to the exact value of π ≈ 3.141592654. Note that the

Midpoint Rule tends to be slightly closer to π than the Trapezoidal Rule, but neither is

as close with n = 100 as Simpson’s Rule is with n = 10. �

REMARK 7.2

Notice that for a given value of n, the number of computations (and hence the effort)

required to produce the Midpoint, Trapezoidal and Simpson’s Rule approximations

are all roughly the same. So, example 7.8 gives an indication of how much more

efficient Simpson’s Rule is than the other two methods. This is particularly significant

when the function f (x) is difficult to evaluate. For instance, in the case of

experimental data, each function value f (x) could be the result of an expensive and

time-consuming experiment.

In example 7.9, we revise our estimate of the area in Figure 4.30, first examined in

example 7.4.

x f(x)

0.0 1.0

0.25 0.8

0.5 1.3

0.75 1.1

1.0 1.6

EXAMPLE 7.9 Using Simpson’s Rule with Data

Use Simpson’s Rule to estimate
 1

0
f (x) dx , where the only information known about f

is given in the table of values shown in the margin.

Solution From Simpson’s Rule with n = 4, we have 1

0

f (x) dx ≈ 1 − 0

(3)(4)
[ f (0) + 4 f (0.25) + 2 f (0.5) + 4 f (0.75) + f (1)]

=
 

1

12

 
[1 + 4(0.8) + 2(1.3) + 4(1.1) + 1.6] ≈ 1.066667.

Since Simpson’s Rule is generally much more accurate than the Trapezoidal Rule (for

the same number of points), we expect that this approximation is more accurate than the

approximation of 1.125 arrived at in example 7.4 via the Trapezoidal Rule. �
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REMARK 7.3

Most graphing calculators and computer algebra systems have very fast and accurate

programs for numerical approximation of definite integrals. Some ask you to specify

an error tolerance and then calculate a value accurate to within that tolerance. Most

calculators and CAS’s use adaptive quadrature routines, which automatically

calculate how many points are needed to obtain a desired accuracy. You should

feel comfortable using these programs. However, if the integral you are approximating

is a critical part of an important project, it’s a good idea to check your result. You can

do this by using Simpson’s Rule, Sn( f ), for a sequence of values of n. Of course, if all

you know about a function is its value at a fixed number of points, most calculator and

CAS programs will not help you, but the three methods discussed here will, as we

saw in examples 7.4 and 7.9. We will pursue this idea further in the exercises.

Error Bounds for Numerical Integration
We have used examples where we know the value of an integral exactly to compare the

accuracy of our three numerical integration methods. However, in practice, where the value

of an integral is not known exactly, how do we determine how accurate a given numerical

estimate is? In Theorems 7.1 and 7.2, we give bounds on the error in our three numerical

integration methods. First, we introduce some notation. Let ETn represent the error in using

the (n + 1)-point Trapezoidal Rule to approximate
 b

a
f (x) dx . That is,

ETn = exact − approximate =
 b

a

f (x) dx − Tn( f ).

Similarly, we denote the error in the Midpoint Rule and Simpson’s Rule by EMn and ESn ,

respectively. We now have:

THEOREM 7.1

Suppose that f   is continuous on [a, b] and that | f   (x)| ≤ K , for all x in [a, b].

Then,

|ETn| ≤ K
(b − a)3

12n2

and |EMn| ≤ K
(b − a)3

24n2
.

Notice that both of the estimates found in Theorem 7.1 say that the error in using the

indicated numerical method is no larger (in absolute value) than the given bound. This says

that if the bound is small, so too will be the error. In particular, observe that the error bound

for the Midpoint Rule is half that for the Trapezoidal Rule. This doesn’t say that the actual

error in the Midpoint Rule will be half that of the Trapezoidal Rule, but it does explain why

the Midpoint Rule tends to be somewhat more accurate than the Trapezoidal Rule for the

same value of n. Also notice that the constant K is determined by the concavity | f   (x)|
of the function f. The larger | f   (x)| is, the more the graph curves and consequently, the
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less accurate are the straight-line approximations of the Midpoint Rule and the Trapezoidal

Rule. We have a corresponding result for Simpson’s Rule.

THEOREM 7.2

Suppose that f (4) is continuous on [a, b] and that | f (4)(x)| ≤ L , for all x in [a, b].

Then,

|ESn| ≤ L
(b − a)5

180n4
.

The proofs of Theorems 7.1 and 7.2 are beyond the level of this course and we refer

the interested reader to a text on numerical analysis. In comparing Theorems 7.1 and 7.2,

notice that the denominators of the error bounds for both the Trapezoidal Rule and the

Midpoint Rule contain a factor of n2, while the error bound for Simpson’s Rule contains a

factor of n4. For n = 10, observe that n2 = 100 and n4 = 10,000. Since these powers of n

are in the denominators of the error bounds, this says that the error bound for Simpson’s

Rule tends to bemuch smaller than that of either the Trapezoidal Rule or the Midpoint Rule

for the same value of n. This accounts for the far greater accuracy we have seen with using

Simpson’sRule over the other twomethods.We illustrate the use of the error bounds in exam-

ple 7.10.

EXAMPLE 7.10 Finding a Bound on the Error in Numerical Integration

Find bounds on the error in using each of the Midpoint Rule, the Trapezoidal Rule and

Simpson’s Rule to approximate the value of the integral
 3

1
1
x
dx , using n = 10.

Solution At this point you can’t use the Fundamental Theorem of Calculus, since you

don’t have an antiderivative of 1
x
. However, you can approximate this integral using

Trapezoidal, Midpoint or Simpson’s Rules. Here, f (x) = 1/x = x−1, so that

f  (x) = −x−2, f   (x) = 2x−3, f    (x) = −6x−4 and f (4)(x) = 24x−5. This says that for

x ∈ [1, 3],

| f   (x)| = |2x−3| = 2

x3
≤ 2.

From Theorem 7.1, we now have

|EM10| ≤ K
(b − a)3

24n2
= 2

(3 − 1)3

24(102)
≈ 0.006667.

Similarly, we have

|ET10| ≤ K
(b − a)3

12n2
= 2

(3 − 1)3

12(102)
≈ 0.013333.

Turning to Simpson’s Rule, for x ∈ [1, 3], we have S10( f ) ≈ 1.09866 and

| f (4)(x)| = |24x−5| = 24

x5
≤ 24,

so that Theorem 7.2 now gives us

|ES10| ≤ L
(b − a)5

180n4
= 24

(3 − 1)5

180(104)
≈ 0.000427.

�
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From example 7.10, we now know that the Simpson’s Rule approximation

S10( f ) ≈ 1.09866 is off by no more than about 0.000427. This is certainly very useful

information, but a more interesting question is the following. In practice, we start out need-

ing a certain accuracy and then must produce an approximation with at least that accuracy.

We explore this in example 7.11.

EXAMPLE 7.11 Determining the Number of Steps That Guarantee
a Given Accuracy

Determine the number of steps that will guarantee an accuracy of at least 10−7 for using

each of Trapezoidal Rule and Simpson’s Rule to approximate
 3

1
1
x
dx .

Solution From example 7.10, we know that | f   (x)| ≤ 2 and | f (4)(x)| ≤ 24, for all

x ∈ [1, 3]. So, from Theorem 7.1, we now have that

|ETn| ≤ K
(b − a)3

12n2
= 2

(3 − 1)3

12n2
= 4

3n2
.

If we require the above bound on the error to be no larger than the required accuracy of

10−7, we have

|ETn| ≤ 4

3n2
≤ 10−7.

Solving this inequality for n2 gives us

4

3
107 ≤ n2

and taking the square root of both sides yields

n ≥
 
4

3
107 ≈ 3651.48.

So, any value of n ≥ 3652 will give the required accuracy. Similarly, for Simpson’s Rule,

we have

|ESn| ≤ L
(b − a)5

180n4
= 24

(3 − 1)5

180n4
.

Again, requiring that the error bound be no larger than 10−7 gives us

|ESn| ≤ 24
(3 − 1)5

180n4
≤ 10−7

and solving for n4, we have n4 ≥ 24
(3 − 1)5

180
107.

Upon taking fourth roots, we get

n ≥ 4

 
24

(3 − 1)5

180
107 ≈ 80.8,

so that taking any value of n ≥ 82 will guarantee the required accuracy. (If you expected

us to say that n ≥ 81, keep in mind that Simpson’s Rule requires n to be even.) �



4-67 SECTION 4.7 .. Numerical Integration 357

In example 7.11, compare the number of steps required to guarantee 10−7 accuracy

in Simpson’s Rule (82) to the number required to guarantee the same accuracy in the

Trapezoidal Rule (3652). Simpson’s Rule typically requires far fewer steps than either the

Trapezoidal Rule or theMidpoint Rule to get the same accuracy. Finally, from example 7.11,

observe that we now know that 3

1

1

x
dx ≈ S82 ≈ 1.0986123,

which is guaranteed (by Theorem 7.2) to be correct to within 10−7.

EXERCISES 4.7

WRITING EXERCISES

1. Ideally, approximation techniques should be both simple and

accurate. How do the numerical integration methods presented

in this section compare in terms of simplicity and accuracy?

Which criterion would be more important if you were working

entirely by hand? Which method would you use? Which cri-

terion would be more important if you were using a very fast

computer? Which method would you use?

2. Suppose you were going to construct your own rule for ap-

proximate integration. (Name it after yourself!) In the text, new

methods were obtained both by choosing evaluation points for

Riemann sums (Midpoint Rule) and by geometric construction

(Trapezoidal Rule and Simpson’s Rule). Without working out

the details, explain how you would develop a very accurate but

simple rule.

3. Test your calculator or computer on
 1

0
sin(1/x) dx . Discuss

what your options are when your technology does not imme-

diately return an accurate approximation. Based on a quick

sketch of y = sin (1/x), describe why a numerical integration

routine would have difficulty with this integral.

4. Explain why we did not use the Midpoint Rule in exam-

ple 7.4.

In exercises 1–4, computeMidpoint, Trapezoidal and Simpson’s

Rule approximations by hand (leave your answer as a fraction)

for n  4.

1.

 1

0

(x2 + 1) dx 2.

 2

0

(x2 + 1) dx

3.

 3

1

1

x
dx 4.

 1

−1

(2x − x2) dx

In exercises 5 and 6, use the graph to estimate (a) Riemann

sum with left-endpoint evaluation, (b) Midpoint Rule and

(c) Trapezoidal Rule approximations with n  4 of
� 2

0
f (x) dx.

5. y

x

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0

6.

x

y

0.2

0.4

0.6

0.8

1.0

2.01.51.00.5

In exercises 7–10, use a computer or calculator to compute

the Midpoint, Trapezoidal and Simpson’s Rule approximations

with n  10, n  20 and n  50. Compare these values to the

approximation given by your calculator or computer.

7.

 π

0

cos x2dx 8.

 π/4

0

sinπx2dx

9.

 10

0

 
x2 + 1 dx 10.

 1

0

3
 

x2 + 1 dx
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In exercises 11–14, compute the exact value and compute the

error (the difference between the approximation and the exact

value) in each of theMidpoint, Trapezoidal and Simpson’s Rule

approximations using n  10, n  20, n  40 and n  80.

11.

 1

0

5x4dx 12.

 2

1

1√
x

dx

13.

 π

0

cos x dx 14.

 π/4

0

cos x dx

15. Fill in the blanks with the most appropriate power of 2 (2, 4, 8

etc.). If you double n, the error in the Midpoint Rule is divided

by . If you double n, the error in the Trapezoidal Rule is

divided by . If you double n, the error in Simpson’s Rule

is divided by .

16. Fill in the blanks with the most appropriate power of 2 (2, 4,

8 etc.). If you halve the interval length b − a, the error in the

Midpoint Rule is divided by , the error in the Trapezoidal

Rule is divided by and the error in Simpson’s Rule is

divided by .

In exercises 17–20, approximate the given value using (a) Mid-

point Rule, (b) Trapezoidal Rule and (c) Simpson’s Rule with

n  4.

17. π =
 1

0

4

1 + x2
dx 18. π = 4

 1

0

 
1 − x2 dx

19. sin 1 =
 1

0

cos x dx 20. cos 2 =
 2

0

 
1

2
− sin x

 
dx

21. For exercise 17, find bounds on the errorsmade by (a)Midpoint

Rule and (b) Trapezoidal Rule.

22. For exercise 19, find bounds on the errors made by each

method.

23. For exercise 17, find the number of steps needed to guarantee

an accuracy of 10−7 for (a) Midpoint Rule and (b) Trapezoidal

Rule.

24. For exercise 19, find the number of steps needed to guarantee

an accuracy of 10−7.

25. For each rule in exercise 11, compute the error bound and

compare it to the actual error.

26. For each rule in exercise 13, compute the error bound and

compare it to the actual error.

In exercises 27–28, use (a) Trapezoidal Rule and (b) Simpson’s

Rule to estimate
� 2

0
f (x) dx from the given data.

27. x 0.0 0.25 0.5 0.75 1.0

f (x) 4.0 4.6 5.2 4.8 5.0

x 1.25 1.5 1.75 2.0

f (x) 4.6 4.4 3.8 4.0

28. x 0.0 0.25 0.5 0.75 1.0

f (x) 1.0 0.6 0.2 −0.2 −0.4

x 1.25 1.5 1.75 2.0

f (x) 0.4 0.8 1.2 2.0

In exercises 29 and 30, the table gives themeasurements (in feet)

of the width of a plot of land at 10-foot intervals. Estimate the

area of the plot.

29.
x 0 10 20 30 40 50 60

f (x) 56 54 58 62 58 58 62

x 70 80 90 100 110 120

f (x) 56 52 48 40 32 22

30.
x 0 10 20 30 40 50 60

f (x) 26 30 28 22 28 32 30

x 70 80 90 100 110 120

f (x) 33 31 28 30 32 22

In exercises 31 and 32, the velocity of an object at various times

is given. Use the data to estimate the distance traveled.

31. t (s) 0 1 2 3 4 5 6

v(t) (ft/s) 40 42 40 44 48 50 46

t (s) 7 8 9 10 11 12

v(t) (ft/s) 46 42 44 40 42 42

32.
t (s) 0 2 4 6 8 10 12

v(t) (ft/s) 26 30 28 30 28 32 30

t (s) 14 16 18 20 22 24

v(t) (ft/s) 33 31 28 30 32 32

In exercises 33 and 34, the data come from a pneumotacho-

graph, which measures air flow through the throat (in liters per

second). The integral of the air flow equals the volume of air

exhaled. Estimate this volume.

33.
t (s) 0 0.2 0.4 0.6 0.8 1.0 1.2

f (t) (l/s) 0 0.2 0.4 1.0 1.6 2.0 2.2

t (s) 1.4 1.6 1.8 2.0 2.2 2.4

f (t) (l/s) 2.0 1.6 1.2 0.6 0.2 0
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34. t (s) 0 0.2 0.4 0.6 0.8 1.0 1.2

f (t) (l/s) 0 0.1 0.4 0.8 1.4 1.8 2.0

t (s) 1.4 1.6 1.8 2.0 2.2 2.4

f (t) (l/s) 2.0 1.6 1.0 0.6 0.2 0

In exercises 35–40, use the given information about f (x) and its

derivatives to determine whether (a) the Midpoint Rule would

be exact, underestimate or overestimate the integral (or there’s

not enough information to tell). Repeat for (b) Trapezoidal Rule

and (c) Simpson’s Rule.

35. f   (x) > 0, f  (x) > 0 36. f   (x) > 0, f  (x) < 0

37. f   (x) < 0, f  (x) > 0 38. f   (x) < 0, f  (x) < 0

39. f   (x) = 4, f  (x) > 0 40. f   (x) = 0, f  (x) > 0

41. Suppose that RL and RR are the Riemann sum approxima-

tions of
 b

a
f (x) dx using left- and right-endpoint evaluation

rules, respectively, for some n > 0. Show that the trapezoidal

approximation Tn is equal to (RL + RR)/2.

42. Prove the following formula, which is basic to

Simpson’s Rule. If f (x) = Ax2 + Bx + C , then h

−h
f (x) dx = h

3
[ f (−h) + 4 f (0) + f (h)].

43. A commonly used type of numerical integration algorithm is

called Gaussian quadrature. For an integral on the inter-

val [−1, 1], a simple Gaussian quadrature approximation is 1

−1
f (x) dx ≈ f

 
−1√
3

 
+ f

 
1√
3

 
. Show that, like Simpson’s

Rule, this Gaussian quadrature gives the exact value of the

integrals of the power functions x, x2 and x3.

44. Referring to exercise 43, compare the Simpson’s Rule (n = 2)

and Gaussian quadrature approximations of
 1

−1
π cos

 
πx

2

 
dx

to the exact value.

45. Explain why Simpson’s Rule can’t be used to approxi-

mate

 π

0

sin x

x
dx . Find L = lim

x→0

sin x

x
and argue that if

f (x) =
 

sin x

x
if x  = 0

L if x = 0
then

 π

0

f (x) dx =
 π

0

sin x

x
dx .

Use an appropriate numerical method to conjecture that π

0

sin x

x
dx ≈ 1.18

 π
2

 
.

46. As in exercise 45, approximate

 π/2

−π/2

sin x

x
dx .

47. In most of the calculations that you have done, it is true that

the Trapezoidal Rule and Midpoint Rule are on opposite sides

of the exact integral (i.e., one is too large, the other too small).

Also, you may have noticed that the Trapezoidal Rule tends to

be about twice as far from the exact value as theMidpoint Rule.

Given this, explain why the linear combination 1
3
Tn + 2

3
Mn

should give a good estimate of the integral. (Here, Tn repre-

sents the Trapezoidal Rule approximation using n partitions

and Mn the corresponding Midpoint Rule approximation.)

48. Show that the approximation rule 1
3
Tn + 2

3
Mn in exercise 47 is

identical to Simpson’s Rule.

EXPLORATORY EXERCISES

1. Compute the Trapezoidal Rule approximations T4, T8 and T16

of
 1

0
3x2dx , and compute the error (the difference between the

approximation and the exact value of 1). Verify that when the

step size is cut in half, the error is divided by four. When such

patterns emerge, they can be taken advantage of using extrap-

olation. The idea is simple: if the approximations continually

get smaller, then the value of the integral is smaller and we

should be able to predict (extrapolate) how much smaller the

integral is. Given that (T4 − I ) = 4(T8 − I ), where I = 1 is the

exact integral, show that I = T8 + T8 − T4

3
. Also, show that

I = T16 + T16 − T8

3
. In general, we have the approximations

(T4 − I ) ≈ 4(T8 − I ) and I ≈ T8 + T8 − T4

3
. Then the extrap-

olation E2n = T2n + T2n − Tn

3
is closer to the exact integral

than either of the individual Trapezoidal Rule approximations

T2n and Tn . Show that, in fact, E2n equals the Simpson’s Rule

approximation for 2n.

2. The geometric construction of Simpson’s Rule makes it clear

that Simpson’s Rule will compute integrals such as
 1

0
3x2dx

exactly. Briefly explain why. Now, compute Simpson’s Rule

with n = 2 for
 1

0
4x3dx . It turns out that Simpson’s Rule

also computes integrals of cubics exactly. In this exercise, we

want to understand why amethod that uses parabolas can com-

pute integrals of cubics exactly. But first, sketch out the Mid-

point Rule approximation of
 1

0
2x dx with n = 1. On part

of the interval, the midpoint rectangle is above the straight

line and on part of the interval, the midpoint rectangle is be-

low the line. Explain why the Midpoint Rule computes the

area exactly. Now, back to Simpson’s Rule. To see how Simp-

son’s Rule works on
 1

0
4x3dx , we need to determine the ac-

tual parabola being used. The parabola must pass through the

points (0, 0), ( 1
2
, 1
2
) and (1, 4). Find the quadratic function

y = ax2 + bx + c that accomplishes this. (Hint: Explain why

0 = 0 + 0 + c,
1

2
= a

4
+ b

2
+ c and 4 = a + b + c, and then

solve for a, b and c.) Graph this parabola and y = 4x3 on the

same axes, carefully choosing the graphingwindow so that you

can see what is happening on the interval [0, 1]. Where is the

vertex of the parabola? How do the integrals of the parabola

and cubic compare on the subinterval [0, 1
2
]? [ 1

2
, 1]?Why does

Simpson’s Rule compute the integral exactly?
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Review Exercises

WRITING EXERCISES

The following list includes terms that are defined and theorems that

are stated in this chapter. For each term or theorem, (1) give a precise

definition or statement, (2) state in general terms what it means and

(3) describe the types of problems with which it is associated.

Area Average value Indefinite integral

Signed area Integration by substitution Simpson’s Rule

Midpoint Rule Trapezoidal Rule

Integral Mean Fundamental Theorem

Value Theorem of Calculus

Riemann sum Definite integral

TRUE OR FALSE

State whether each statement is true or false, and briefly explain

why. If the statement is false, try to “fix it” by modifying the given

statement to make a new statement that is true.

1. The Midpoint Rule always gives better approximations than

left-endpoint evaluation.

2. The larger n is, the better is the Riemann sum approximation.

3. All piecewise continuous functions are integrable.

4. The definite integral of velocity gives the total distance

traveled.

5. There are some elementary functions that do not have an

antiderivative.

6. To evaluate a definite integral, you can use any antiderivative.

7. A substitution is not correct unless the derivative term du is

present in the original integrand.

8. With Simpson’s Rule, if n is doubled, the error is reduced by a

factor of 16.

In exercises 1–20, find the antiderivative.

1.

 
(4x2 − 3) dx 2.

 
(x − 3x5) dx

3.

 
4√
x

dx 4.

 
4

x2
dx

5.

 
2 sin 4x dx 6.

 
3 sec2 x dx

7.

 
[x − cos(4x)] dx 8.

 
3
√

x dx

9.

 
x2 + 4x

x
dx 10.

 
x

(x2 + 4)2
dx

11.

 
x(1 − 1/x) dx 12.

 
(sin x + cos x)2 dx

13.

 
x
 

x2 + 4 dx 14.

 
x(x2 + 4) dx

15.

 
6x2 cos x3dx 16.

 
4x sec x2 tan x2dx

17.

 
sin(1/x)

x2
dx 18.

 
csc2

√
x√

x
dx

19.

 
tan x sec2 x dx 20.

 √
3x + 1 dx

21. Find a function f (x) satisfying f  (x) = 3x2 + 1 and f (0) = 2.

22. Find a function f (x) satisfying f  (x) =
√
2x and f (0) = 3.

23. Determine the position function if the velocity is

v(t) = −32t + 10 and the initial position is s(0) = 2.

24. Determine the position function if the acceleration is a(t) = 6

with initial velocity v(0) = 10 and initial position s(0) = 0.

25. Write out all terms and compute
6 

i=1

(i2 + 3i).

26. Translate into summation notation and compute: the sum of

the squares of the first 12 positive integers.

In exercises 27 and 28, use summation rules to compute the sum.

27.

100 
i=1

(i2 − 1) 28.

100 
i=1

(i2 + 2i)

29. Compute the sum
1

n3

n 
i=1

(i2 − i) and the limit of the sum as n

approaches ∞.

30. For f (x) = x2 − 2x on the interval [0, 2], list the evaluation

points for the Midpoint Rule with n = 4, sketch the func-

tion and approximating rectangles and evaluate the Riemann

sum.

In exercises 31–34, approximate the area under the curve using

n rectangles and the given evaluation rule.

31. y = x2 on [0, 2], n = 8, midpoint evaluation

32. y = x2 on [−1, 1], n = 8, right-endpoint evaluation
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33. y = √
x + 1 on [0, 3], n = 8, midpoint evaluation

34. y = 1

x + 1
on [0, 1], n = 8, left-endpoint evaluation

In exercises 35 and 36, use the given function values to esti-

mate the area under the curve using (a) left-endpoint evaluation,

(b) right-endpoint evaluation, (c) Trapezoidal Rule and

(d) Simpson’s Rule.

35.

x 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

f (x) 1.0 1.4 1.6 2.0 2.2 2.4 2.0 1.6 1.4

36.

x 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2

f (x) 4.0 3.4 3.6 3.0 2.6 2.4 3.0 3.6 3.4

37. In exercises 35 and 36, which of the four area estimates would

you expect to be the most accurate? Briefly explain.

38. If f (x) is positive and concave up, will the Midpoint Rule give

an overestimate or underestimate of the actual area? Will the

Trapezoidal Rule give an overestimate or underestimate of the

actual area?

In exercises 39 and 40, evaluate the integral by computing the

limit of Riemann sums.

39.

 1

0

2x2dx 40.

 2

0

(x2 + 1) dx

In exercises 41 and 42, write the total area as an integral or sum

of integrals and then evaluate it.

41. The area above the x-axis and below y = 3x − x2

42. The area between the x-axis and y = x3 − 3x2 + 2x,

0 ≤ x ≤ 2

In exercises 43 and 44, use the velocity function to compute the

distance traveled in the given time interval.

43. v(t) = 40 − 10t, [1, 2]

44. v(t) = 20√
1 + t

, [0, 3]

In exercises 45 and 46, compute the average value of the function

on the interval.

45. f (x) = cos x, [0, π/2] 46. f (x) = 4x − x2, [0, 4]

In exercises 47–58, evaluate the integral.

47.

 2

0

(x2 − 2) dx 48.

 1

−1

(x3 − 2x) dx

49.

 π/2

0

sin 2x dx 50.

 π/4

0

sec2 x dx

51.

 10

0

(1 −
√

t) dt 52.

 1

0

t sin t2 dt

53.

 2

0

x2(x3 − 1)3 dx 54.

 2

1

(
√

x + 1)3√
x

dx

55.

 2

0

x
 

x2 + 4 dx 56.

 2

0

x(x2 + 1) dx

57.

 2

1

(x + 1/x)2 dx 58.

 π

−π
cos(x/2) dx

In exercises 59 and 60, find the derivative.

59. f (x) =
 x

2

(sin t2 − 2) dt 60. f (x) =
 x2

0

 
t2 + 1 dt

In exercises 61and62, compute the (a)MidpointRule, (b)Trape-

zoidal Rule and (c) Simpson’s Rule approximations with n  4

by hand.

61.

 1

0

 
x2 + 4 dx 62.

 2

0

1

x + 1
dx

63. Repeat exercise 61 using a computer or calculator and n = 20;

n = 40.

64. Repeat exercise 62 using a computer or calculator and n = 20;

n = 40.

EXPLORATORY EXERCISES

1. Suppose that f (t) is the rate of occurrence of some event (e.g.,

the birth of an animal or the lighting of a firefly). Then the

average rate of occurrence R over a time interval [0, T ] is

R = 1
T

 T

0
f (t) dt . We will assume that the function f (t) is

periodic with period T. [That is, f (t + T ) = f (t) for all t.]

Perfect asynchrony means that the event is equally likely to

occur at all times. Argue that this corresponds to a constant rate

function f (t) = c and find the value of c (in terms of R and T).

Perfect synchrony means that the event occurs only once ev-

ery period (e.g., the fireflies all light at the same time, or all
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babies are born simultaneously). We will see what the rate

function f (t) looks like in this case. First, define the degree

of synchrony to be
area under f and above R

RT
. Show that if

f (t) is constant, then the degree of synchrony is 0. Then graph

and find the degree of synchrony for the following functions

(assuming T > 2):

f1(t) =

⎧⎪⎨
⎪⎩
(RT )(t − T

2
) + RT if T

2
− 1 ≤ t ≤ T

2

(−RT )(t − T

2
) + RT if T

2
≤ t ≤ T

2
+ 1

0 otherwise

f2(t) =

⎧⎪⎨
⎪⎩
(4RT )(t − T

2
) + 2RT if T

2
− 1

2
≤ t ≤ T

2

(−4RT )(t − T

2
) + 2RT if T

2
≤ t ≤ T

2
+ 1

2

0 otherwise

f3(t) =

⎧⎪⎨
⎪⎩
(9RT )(t − T

2
) + 3RT if T

2
− 1

3
≤ t ≤ T

2

(−9RT )(t − T

2
) + 3RT if T

2
≤ t ≤ T

2
+ 1

3

0 otherwise

What would you conjecture as the limit of the degrees of

synchrony of fn(t) as n → ∞? The “function” that fn(t) ap-

proaches as n → ∞ is called an impulse function of strength

RT . Discuss the appropriateness of this name.

2. The Omega function is used for risk/reward analysis of fi-

nancial investments. Suppose that f (x) is a function defined

on the interval (A, B) that gives the distribution of returns

on an investment. (This means that
 b

a
f (x) dx is the prob-

ability that the investment returns between $a and $b.) Let

F(x) =  x

A
f (t) dt be the cumulative distribution function

for returns.

Then  (r ) =

 B

r

[1 − F(x)] dx r

A

F(x) dx

is the Omega function for

the investment.

(a) For the distribution f1(x) shown, compute the cumulative

distribution function F1(x).

x

y

210 2  1

0.75

1

0.25

0.5

y = f1(x)

(b) Repeat part (a) for the distribution f2(x) shown.

x

y

1050 10  5

0.15

0.05

 0.05

 0.1

0.1

y = f2(x)

(c) Compute  1(r ) for the distribution f1(x). Note that  1(r )

will be undefined (∞) for r ≤ −1 and 1(r ) = 0 for r ≥ 1.

(d) Compute  2(r ) for the distribution f2(x). Note that  2(r )

will be undefined (∞) for r ≤ −10 and  2(r ) = 0 for

r ≥ 10.

(e) Even though the means (average values) are the same,

investments with distributions f1(x) and f2(x) are not

equivalent. Use the graphs of f1(x) and f2(x) to ex-

plain why f2(x) corresponds to a riskier investment than

f1(x).

(f) Show that  2(r ) >  1(r ) for r > 0 and  2(r ) <  1(r )

for r < 0. In general, the larger  (r ) is, the better

the investment is. Explain this in terms of this ex-

ample.



CHA P T E R

5
Applications of the
Definite Integral

Athletes who can jump high are said to have “good hops” or “springs

in their legs.” These phrases bring to mind images of kangaroos or

shoes with springs on the bottom, but there is actually a physiological

basis for the terms. Tendons and the arches in your feet act very much

like springs that store and release energy. For example, your Achilles

tendon stretches as you stride when walking and contracts as your foot

hits the ground. Much like a spring that is stretched and then released,

the tendon stores energy during the stretching phase and releases it

when contracting.

Physiologists measure the efficiency of the springlike action of

tendons by computing the percentage of energy released during contraction rel-

ative to the energy stored during the stretch. The stress-strain curve presented

here shows force as a function of stretch during stretch (top curve) and recoil

(bottom curve) for a human arch. (Figure reprinted with permission from Ex-

ploring Biomechanics by R. McNeill Alexander.) If no energy is lost, the two

curves are identical. The area between the curves is a measure of the energy

lost.
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The corresponding curve for a kangaroo

(see Alexander) shows almost no area be-

tween the curves. This is part of the secret of

the kangaroo’s phenomenal hopping ability.

The efficiency of the kangaroo’s legs means

that very little energy is required to hop. In

fact, biologist Terry Dawson found in tread-

mill tests that the faster kangaroos run, the

less energy they burn (up to the test limit of

20 mph). The same principle applies to human

athletes, in that the more the Achilles tendons

stretch, the more efficient the running pro-

cess becomes. For this reason, athletes spend

considerable time stretching and strengthening their Achilles tendons.

This chapter demonstrates the versatility of the integral by exploring numer-

ous applications. We start with calculations of the area between two curves. As

just discussed, this gives us important information about animal physiology. The

integral can be viewed from a variety of perspectives: graphical (areas), numeri-

cal (Riemann sum approximations) and symbolic (the Fundamental Theorem of

Calculus). As you study each new application, pay particular attention to the role

363
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that each of these plays in connecting the new problem to integration. By doing so, you

will see that the common thread running through so many diverse applications is the

integral.

y

x

1

2

3

1 2 3 4 5

FIGURE 5.1
Approximation of area

y   f (x)

y   g(x)

x

y

a b

FIGURE 5.2
Area between two curves

5.1 AREA BETWEEN CURVES

We initially developed the definite integral (in Chapter 4) to compute the area under a curve.

In particular, let f be a continuous function defined on [a, b], where f (x) ≥ 0 on [a, b]. To

find the area under the curve y = f (x) on the interval [a, b], we begin by dividing (par-

titioning) [a, b] into n subintervals of equal size,  x = b − a

n
. The points in the partition

are then x0 = a, x1 = x0 + x, x2 = x1 + x and so on. That is,

xi = a + i x, for i = 0, 1, 2, . . . , n.

On each subinterval [xi−1, xi ], we construct a rectangle of height f (ci ), for some

ci ∈ [xi−1, xi ], as indicated in Figure 5.1 and take the sum of the areas of the n rectan-

gles as an approximation of the area A under the curve:

A ≈
n 

i=1

f (ci ) x .

As we take more and more rectangles, this sum approaches the exact area, which is

A = lim
n→∞

n 
i=1

f (ci ) x =
 b

a

f (x) dx .

We now extend this notion to find the area bounded between the two curves y = f (x)

and y = g(x) on the interval [a, b] (see Figure 5.2), where f and g are continuous and

f (x) ≥ g(x) on [a, b]. We first use rectangles to approximate the area. In this case, on each

subinterval [xi−1, xi ], construct a rectangle, stretching from the lower curve y = g(x) to the

upper curve y = f (x), as shown in Figure 5.3a. Referring to Figure 5.3b, the ith rectangle

has height hi = f (ci ) − g(ci ), for some ci ∈ [xi−1, xi ].

So, the area of the ith rectangle is

Area = length × width = hi x = [ f (ci ) − g(ci )] x .

y   f (x)

y   g(x)

x

y

a b

y   f (x) hi   f (ci)   g(ci)

(ci,  f (ci))

(ci,  g(ci))

y   g(x)

x

y

a ci b

FIGURE 5.3a
Approximate area

FIGURE 5.3b
Area of ith rectangle
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The total area is then approximately equal to the sum of the areas of the n indicated rectangles,

A ≈
n 

i=1

[ f (ci ) − g(ci )] x .

Finally, observe that if the limit as n → ∞ exists, we will get the exact area, which we

recognize as a definite integral:

AREA BETWEEN TWO CURVES

A = lim
n→∞

n 
i=1

[ f (ci ) − g(ci )] x =
 b

a

[ f (x) − g(x)] dx . (1.1)

REMARK 1.1

Formula (1.1) is valid only

when f (x) ≥ g(x) on the

interval [a, b]. In general, the

area between y = f (x) and

y = g(x) for a ≤ x ≤ b is

given by
 b

a
| f (x) − g(x)| dx .

Notice that to evaluate this

integral, you must evaluate d

c
[ f (x) − g(x)] dx on

all subintervals where

f (x) ≥ g(x), then evaluate d

c
[g(x) − f (x)] dx on all

subintervals where g(x) ≥ f (x)

and finally, add the integrals

together.

EXAMPLE 1.1 Finding the Area between Two Curves

Find the area bounded by the graphs of y = 3 − x and y = x2 − 9. (See Figure 5.4.)

y   3   x

y   x2   9

y

x
3 4

FIGURE 5.4
y = 3 − x and y = x2 − 9

Solution The region in Figure 5.4 is determined by the intersection of the two curves.

The limits of integration will then correspond to the x-coordinates of the points of

intersection. To find the limits, we set the two functions equal and solve for x. We have

3 − x = x2 − 9 or 0 = x2 + x − 12 = (x − 3)(x + 4).

Thus, the curves intersect at x = −4 and x = 3. Be careful to notice from the graph

which curve forms the upper boundary of the region and which one forms the lower

boundary. In this case, the upper boundary is formed by y = 3 − x . So, for each fixed

value of x, the height of a rectangle (such as the one indicated in Figure 5.4) is

h(x) = (3 − x) − (x2 − 9).

From (1.1), the area between the curves is then

A =
 3

−4

[(3 − x) − (x2 − 9)] dx

=
 3

−4

(−x2 − x + 12) =
 

− x3

3
− x2

2
+ 12x

 3

−4

=
 

−33

3
− 32

2
+ 12(3)

 
−
 

− (−4)3

3
− (−4)2

2
+ 12(−4)

 
= 343

6
.
�
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Sometimes, a given upper or lower boundary is not defined by a single function, as in

the following case of intersecting graphs.

y

x

y   2   x2

y   x2

21

2

FIGURE 5.5
y = x2 and y = 2 − x2

EXAMPLE 1.2 Finding the Area between Two Curves That Cross

Find the area bounded by the graphs of y = x2 and y = 2 − x2 for 0 ≤ x ≤ 2.

Solution Notice from Figure 5.5 that since the two curves intersect in the middle

of the interval, we will need to compute two integrals, one on the interval where

2 − x2 ≥ x2 and one on the interval where x2 ≥ 2 − x2. To find the point of intersection,

we solve x2 = 2 − x2, so that 2x2 = 2 or x2 = 1 or x = ±1. Since x = −1 is outside

the interval of interest, the only intersection of note is at x = 1. From (1.1), the area is

A =
 1

0

[(2 − x2) − x2] dx +
 2

1

[x2 − (2 − x2)] dx

=
 1

0

(2 − 2x2) dx +
 2

1

(2x2 − 2) dx =
 

2x − 2x3

3

 1

0

+
 

2x3

3
− 2x

 2

1

=
 

2 − 2

3

 
− (0 − 0) +

 
16

3
− 4

 
−
 

2

3
− 2

 
= 4

3
+ 4

3
+ 4

3
= 4.

�

In example 1.2, the intersection point was easy to find. In example 1.3, the intersection

points must be approximated numerically.

y   x2

y   cos x

21

1

 1 2

y

x

FIGURE 5.6
y = cos x and y = x2

y

x
21

1

y   2   x

y   0

y   x2

FIGURE 5.7a
y = x2 and y = 2 − x

EXAMPLE 1.3 A Case Where the Intersection Points Are Known
Only Approximately

Find the area bounded by the graphs of y = cos x and y = x2.

Solution The graph of y = cos x and y = x2 in Figure 5.6 indicates intersections at

about x = −1 and x = 1, where cos x = x2. However, this equation cannot be solved

algebraically. Instead, we use a rootfinding method to find the approximate solutions

x = ±0.824132. [For instance, you can use Newton’s method to find values of x for

which f (x) = cos x − x2 = 0.] From the graph, we can see that between these two

x-values, cos x ≥ x2 and so, the desired area is given by

A ≈
 0.824132

−0.824132

(cos x − x2) dx =
 

sin x − 1

3
x3

 0.824132

−0.824132

= sin 0.824132 − 1

3
(0.824132)3 −

 
sin(−0.824132) − 1

3
(−0.824132)3

 
≈ 1.09475.

Note that we have approximated both the limits of integration and the final calculations. �

Finding the area of some regions may require breaking the region up into several pieces,

each having different upper and/or lower boundaries.

EXAMPLE 1.4 The Area of a Region Determined by Three Curves

Find the area bounded by the graphs of y = x2, y = 2 − x and y = 0.

Solution A sketch of the three defining curves is shown in Figure 5.7a. Notice that the

top boundary of the region is the curve y = x2 on the first portion of the interval and the
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line y = 2 − x on the second portion. To determine the point of intersection, we solve

2 − x = x2 or 0 = x2 + x − 2 = (x + 2)(x − 1).

Since x = −2 is to the left of the y-axis, the intersection we seek occurs at x = 1. We

then break the region into two pieces, as shown in Figure 5.7b and find the area of each

separately. The total area is then

A = A1 + A2 =
 1

0

(x2 − 0) dx +
 2

1

[(2 − x) − 0] dx

= x3

3

    1
0

+
 

2x − x2

2

 2

1

= 5

6
.
�

1

1

y

x
2

y   2   x
y   x2

A1 A2

FIGURE 5.7b
y = x2 and y = 2 − x

Although it was certainly not difficult to break up the region in example 1.4 into

two pieces, we want to suggest an alternative that will prove to be surprisingly useful.

Notice that if you turn the page sideways, Figure 5.7a will look like a region with a single

curve determining each of the upper and lower boundaries. Of course, by turning the page

sideways, you are essentially reversing the roles of x and y, which is the key to computing the

area of this type of region: treat the left and right boundaries of the region as functions of y.

More generally, for two continuous functions, f and g of y, where f (y) ≥ g(y) for all

y on the interval c ≤ y ≤ d, to find the area bounded between the two curves x = f (y)

and x = g(y), we first partition the interval [c, d] into n equal subintervals, each of

width  y = d − c

n
. (See Figure 5.8a.) We denote the points in the partition by y0 = c,

y1 = y0 + y, y2 = y1 + y and so on. That is,

yi = c + i y, for i = 0, 1, 2, . . . , n.

x   f (y)

x   g(y)

y

c

d

x

(g(ci),  ci) ( f(ci),  ci)

wi   f (ci)   g(ci)

x   f (y)

x   g(y)

y

c

d

x

ci

FIGURE 5.8a
Area between x = g(y) and x = f (y)

FIGURE 5.8b
Area of i th rectangle

On each subinterval [yi−1, yi ] (for i = 1, 2, . . . , n), we then construct a rectangle of width

wi = [ f (ci ) − g(ci )], for some ci ∈ [yi−1, yi ], as shown in Figure 5.8b. The area of the ith

rectangle is given by

Area = length × width = [ f (ci ) − g(ci )] y.

The total area between the two curves is then given approximately by

A ≈
n 

i=1

[ f (ci ) − g(ci )] y.
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We get the exact area by taking the limit as n → ∞ and recognizing the limit as a definite

integral. We have

A = lim
n→∞

n 
i=1

[ f (ci ) − g(ci )] y =
 d

c

[ f (y) − g(y)] dy. (1.2)Area between two curves

y

x

1

21

x    y x   2   y

FIGURE 5.9
y = x2 and y = 2 − x

y

x

x   2   y2

x   y2

 2

 1

 1

1

2

1 2

FIGURE 5.10
x = y2 and x = 2 − y2

EXAMPLE 1.5 An Area Computed by Integrating with Respect to y

Repeat example 1.4, but integrate with respect to y instead.

Solution The area bounded by the graphs of y = x2, y = 2 − x and y = 0 is shown

in Figure 5.9. Notice that the left-hand boundary of the region is formed by the graph of

y = x2 and the right-hand boundary of the region is formed by the line y = 2 − x and

so, a single integral with respect to y will suffice. To write these left- and right-hand

boundaries as functions of y, solve the equation y = x2 for x. We get x = √
y (since

only the right half of the parabola forms the left boundary). Likewise, y = 2 − x is

equivalent to x = 2 − y. Finally, these curves intersect where
√

y = 2 − y. Squaring

both sides gives us

y = (2 − y)2 = 4 − 4y + y2

or 0 = y2 − 5y + 4 = (y − 1)(y − 4).

So, the curves intersect at y = 1 and y = 4. From Figure 5.9, it is clear that y = 1 is the

solution we need. (What does the solution y = 4 correspond to?) From (1.2), the area is

given by

A =
 1

0

[(2 − y) − √
y] dy =

 
2y − 1

2
y2 − 2

3
y3/2

 1

0

= 2 − 1

2
− 2

3
= 5

6
.
�

EXAMPLE 1.6 The Area of a Region Bounded by Functions of y

Find the area bounded by the graphs of x = y2 and x = 2 − y2.

Solution Of course, the graphs are parabolas opening to the right and left,

respectively, as indicated in Figure 5.10. Notice that it’s easiest to compute this area by

integrating with respect to y, since integrating with respect to x would require us to

break the region into two pieces. We must first find the two intersections of the curves.

These occur where y2 = 2 − y2, or y2 = 1, so that y = ±1. On the interval [−1, 1],

notice that 2 − y2 ≥ y2 (since the curve x = 2 − y2 stays to the right of the curve

x = y2). So, from (1.2), the area is given by

A =
 1

−1

[(2 − y2) − y2] dy =
 1

−1

(2 − 2y2) dy

=
 

2y − 2

3
y3

 1

−1

=
 

2 − 2

3

 
−
 

−2 + 2

3

 
= 8

3
.
�

In collisions between a tennis racket and ball, the ball changes shape, first compressing

and then expanding. Let x represent how far the ball is compressed, where 0 ≤ x ≤ m and

let f (x) represent the force exerted on the ball by the racket. Then, the energy transferred

is proportional to the area under the curve y = f (x). Suppose that fc(x) is the force during
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compression of the ball and fe(x) is the force during expansion of the ball. Energy is

transferred to the ball during compression and transferred away from the ball during

expansion, so that the energy lost by the ball in the collision (due to friction) is proportional

to
 m

0
[ fc(x) − fe(x)] dx . The percentage of energy lost in the collision is then given by

100

 m

0
[ fc(x) − fe(x)] dx m

0
fc(x) dx

.

y

x

40

80

120

160

0.40.30.2

fe(x)

fc(x)

0.1

FIGURE 5.11
Force exerted on a tennis ball

EXAMPLE 1.7 Estimating the Energy Lost by a Tennis Ball

Suppose that test measurements provide the following data on the collision of a tennis

ball with a racket. Estimate the percentage of energy lost in the collision.

x (in.) 0.0 0.1 0.2 0.3 0.4

fc(x) (lb) 0 25 50 90 160

fe(x) (lb) 0 23 46 78 160

Solution The data are plotted in Figure 5.11, connected by line segments.

We need to estimate the area between the curves and the area under the top curve.

Since we don’t have a formula for either function, we must use a numerical method

such as Simpson’s Rule. For
 0.4

0
fc(x) dx , we get 0.4

0

fc(x) dx ≈ 0.1

3
[0 + 4(25) + 2(50) + 4(90) + 160] = 24.

To use Simpson’s Rule to approximate
 0.4

0
[ fc(x) − fe(x)] dx , we need a table of

function values for fc(x) − fe(x). Subtraction gives us

x 0.0 0.1 0.2 0.3 0.4

fc(x) − fe(x) 0 2 4 12 0

from which Simpson’s Rule gives us 0.4

0

[ fc(x) − fe(x)] dx ≈ 0.1

3
[0 + 4(2) + 2(4) + 4(12) + 0] = 6.4

3
.

The percentage of energy lost is then
100(6.4/3)

24
≈ 8.9%. With over 90% of its energy

retained in the collision, this is a lively tennis ball. �

BEYOND FORMULAS

In example 1.5, we viewed the given graphs as functions of y and set up the area as

an integral of y. This idea indicates the direction that much of the rest of the course

takes. The derivative and integral remain the two most important operations, but we

diversify our options for working with them, often by changing variables. The flexible

thinking that this promotes is key in calculus, as well as in other areas of mathematics

and science. We develop some general techniques and often the first task in solving an

application problem is to make the technique fit the problem at hand. In industry, do

you expect that all problems have been encountered before or that new problems arise

each day?
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EXERCISES 5.1

WRITING EXERCISES

1. Suppose the functions f and g satisfy f (x) ≥ g(x) ≥ 0 for

all x in the interval [a, b]. Explain in terms of the areas

A1 =  b

a
f (x) dx and A2 =  b

a
g(x) dx why the area be-

tween the curves y = f (x) and y = g(x) is given by b

a
| f (x) − g(x)| dx .

2. Suppose the functions f and g satisfy f (x) ≤ g(x) ≤ 0 for

all x in the interval [a, b]. Explain in terms of the areas

A1 =  b

a
f (x) dx and A2 =  b

a
g(x) dx why the area be-

tween the curves y = f (x) and y = g(x) is given by b

a
| f (x) − g(x)| dx .

3. Suppose that the speeds of racing cars A and B are vA(t)

and vB(t) mph, respectively. If vA(t) ≥ vB(t) for all t,

vA(0) = vB(0) and the race lasts from t = 0 to t = 2 hours, ex-

plain why car A will win the race by
 2

0
[vA(t) − vB(t)] dt miles.

4. Suppose that the speeds of racing cars A and B are vA(t)

and vB(t) mph, respectively. If vA(t) ≥ vB(t) for 0 ≤ t ≤ 0.5

and 1.1 ≤ t ≤ 1.6 and vB(t) ≥ vA(t) for 0.5 ≤ t ≤ 1.1 and

1.6 ≤ t ≤ 2, describe the difference between 2

0
|vA(t) − vB(t)| dt and

 2

0
[vA(t) − vB(t)] dt . Which inte-

gral will tell you which car wins the race?

In exercises 1–4, find the area between the curves on the given

interval.

1. y = x3, y = x2 − 1, 1 ≤ x ≤ 3

2. y = cos x, y = x2 + 2, 0 ≤ x ≤ 2

3. y = x4, y = x − 1,−2 ≤ x ≤ 0

4. y = sin x, y = x2, 1 ≤ x ≤ 4

In exercises 5–12, sketch and find the area of the region deter-

mined by the intersections of the curves.

5. y = x2 − 1, y = 7 − x2 6. y = x2 − 1, y = 1

2
x2

7. y = x3, y = 3x + 2 8. y = √
x, y = x2

9. y = 2 − x2, y = |x | 10. y = x2 − 2, y = |x |
11. y = x2 − 6, y = x

12. y = sin x (0 ≤ x ≤ 2π ), y = cos x

In exercises 13–16, sketch and estimate the area determined by

the intersections of the curves.

13. y = x4, y = 2 + x 14. y = x4, y = 1 − x

15. y = sin x, y = x2 16. y = cos x, y = x4

In exercises 17–22, sketch and find the area of the region

bounded by the given curves. Choose the variable of integra-

tion so that the area is written as a single integral.

17. y = x, y = 2 − x, y = 0

18. y = 2x (x > 0), y = 3 − x2, x = 0

19. x = y, x = −y, x = 1

20. x = 3y, x = 2 + y2

21. y = x, y = 2, y = 6 − x, y = 0

22. x = y2, x = 4

23. The average value of a function f (x) on the interval [a, b] is

A= 1

b −a

 b

a

f (x) dx . Compute the average value of f (x) = x2

on [0, 3] and show that the area above y = A and below

y = f (x) equals the area below y = A and above y = f (x).

24. Prove that the result of exercise 23 is always true by showing

that
 b

a
[ f (x) − A] dx = 0.

25. Suppose that a country’s oil consumption for the years 1970–

1974 was approximately equal to f (t) = 16.1 + 1.4t million

barrels per year, where t = 0 corresponds to 1970. Following

an oil shortage in 1974, the country’s consumption changed

and was better modeled by g(t) = 19.7 + 0.5t million barrels

per year, t ≥ 4. Show that f (4) = g(4) and explain what this

number represents. Compute the area between f (t) and g(t)

for 4 ≤ t ≤ 10. Use this number to estimate the number of bar-

rels of oil saved by the reduced oil consumption from 1974 to

1980.

y

t

y = f (t)

y  = g(t)

10

20

30

108642

(1970) (1980)

26. Suppose that a nation’s fuelwood consumption is given by

76 + 3.2t m3/yr and new tree growth is 50 − 2.4t m3/yr.
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Compute and interpret the area between the curves for

0 ≤ t ≤ 10.

27. Suppose that the birthrate for a certain population is

b(t) = 2 + 0.1t million people per year and the death rate for

the same population is d(t) = 2 + 0.06t million people per

year. Show that b(t) ≥ d(t) for t ≥ 0 and explain why the area

between the curves represents the increase in population. Com-

pute the increase in population for 0 ≤ t ≤ 10.

28. Suppose that the birthrate for a population is b(t) = 2 + 0.1t

million people per year and the death rate for the same

population is d(t) = 3 + 0.05t million people per year. Find

the intersection T of the curves. Interpret the area between

the curves for 0 ≤ t ≤ T and the area between the curves

for T ≤ t ≤ 30. Compute the net change in population for

0 ≤ t ≤ 30.

29. In collisions between a ball and a striking object (e.g., a baseball

bat or tennis racket), the ball changes shape, first compressing

and then expanding. If x represents the change in diameter

of the ball (e.g., in inches) for 0 ≤ x ≤ m and f (x) represents

the force between the ball and striking object (e.g., in pounds),

then the area under the curve y = f (x) is proportional to the

energy transferred. Suppose that fc(x) is the force during

compression and fe(x) is the force during expansion.

Explain why
 m

0
[ fc(x) − fe(x)] dx is proportional to the

energy lost by the ball (due to friction) and thus m

0
[ fc(x) − fe(x)] dx/

 m

0
fc(x) dx is the proportion of energy

lost in the collision. For a baseball and bat, reasonable values

are shown (see Adair’s book The Physics of Baseball):

x (in.) 0 0.1 0.2 0.3 0.4

fc(x) (lb) 0 250 600 1200 1750

fe(x) (lb) 0 10 100 270 1750

Use Simpson’s Rule to estimate the proportion of energy re-

tained by the baseball.

30. Using the same notation as in exercise 29, values for the force

fc(x) during compression and force fe(x) during expansion of

a golf ball are given by

x (in.) 0 0.045 0.09 0.135 0.18

fc(x) (lb) 0 200 500 1000 1800

fe(x) (lb) 0 125 350 700 1800

Use Simpson’s Rule to estimate the proportion of energy re-

tained by the golf ball.

31. Much like the compression and expansion of a ball discussed in

exercises 29 and 30, the force exerted by a tendon as a function

of its extension determines the loss of energy. (See the chapter

introduction.) Suppose that x is the extension of the tendon,

fs(x) is the force during stretching of the tendon and fr (x) is

the force during recoil of the tendon. The data given are for a

hind leg tendon of a wallaby (see Alexander’s book Exploring

Biomechanics):

x (mm) 0 0.75 1.5 2.25 3.0

fs(x) (N) 0 110 250 450 700

fr (x) (N) 0 100 230 410 700

Use Simpson’s Rule to estimate the proportion of energy re-

turned by the tendon.

32. The arch of a human foot acts like a spring during walking

and jumping, storing energy as the foot stretches (i.e., the arch

flattens) and returning energy as the foot recoils. In the data,

x is the vertical displacement of the arch, fs(x) is the force on

the foot during stretching and fr (x) is the force during recoil

(see Alexander’s book Exploring Biomechanics):

x (mm) 0 2.0 4.0 6.0 8.0

fs(x) (N) 0 300 1000 1800 3500

fr (x) (N) 0 150 700 1300 3500

Use Simpson’s Rule to estimate the proportion of energy re-

turned by the arch.

33. The velocities of two runners are given by f (t) = 10 mph

and g(t) = 10 − sin t mph. Find and interpret the integrals π
0

[ f (t) − g(t)] dt and
 2π

0
[ f (t) − g(t)] dt .

34. The velocities of two racing cars A and B are given by

f (t) = 40√
1 + t

mph and g(t) = 20t mph, respectively. The

cars start at the same place at time t = 0. Estimate (a) the

largest lead for car A and (b) the time at which car B

catches up.

In exercises 35 and 36, the graph shows the rate of flow of water

in gallons per hour into and out of a tank. Assuming that the

tank starts with 400 gallons, estimate the amount of water in the

tank at hours 1, 2, 3, 4 and 5 and sketch a graph of the amount

of water in the tank.

35.

t
1 2 3 4

y

20

5

40

60

80

100

120 In

Out
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36.

Out

In

t
1 2 3 4

y

20

5

40

60

80

100

120

37. The graph shows the supply and demand curves for a prod-

uct. The point of intersection (q∗, p∗) gives the equilibrium

quantity and equilibrium price for the product. The consumer

surplus is defined to be CS =  q∗
0

D(q) dq − p∗q∗. Shade in

the area of the graph that represents the consumer surplus,

and compute this in the case where D(q) = 10 − 1

40
q and

S(q) = 2 + 1

120
q + 1

1200
q2.

q250 50 75 100

p

2.5

5

7.5

10

0

D(q)

S(q)

38. Repeat exercise 37 for the producer surplus defined by

PS = p∗q∗ −  q∗
0

S(q) dq.

39. Let C  (x) be the marginal cost of producing x thousand copies

of an item and let R (x) be the marginal revenue from the sale

of that item, with graphs as shown. Assume that R (x) = C  (x)

at x = 2 and x = 5. Interpret the area between the curves for

each interval: (a) 0 ≤ x ≤ 2, (b) 2 ≤ x ≤ 5, (c) 0 ≤ x ≤ 5 and

(d) 5 ≤ x ≤ 6.

C'(x)

R'(x)

x
1 2 3 4 5 6 7

y

10

20

30

40

50

60

40. A basic principle of economics is that profit is maximized when

marginal cost equals marginal revenue. At which intersection is

profit maximized in exercise 39? Explain your answer. In terms

of profit, what does the other intersection point represent?

41. Suppose that the parabola y = ax2 + bx + c and the line

y = mx + n intersect at x = A and x = B with A < B. Show

that the area between the curves equals
|a|
6

(B − A)3. (Hint: Use

A and B to rewrite the integrand and then integrate.)

42. Suppose that the cubic y = ax3 + bx2 + cx + d and the

parabola y = kx2 + mx + n intersect at x = A and x = B with

B repeated (that is, the curves are tangent at B; see the figure).

Show that the area between the curves equals
|a|
12

(B − A)4.

x

y

4

BA

2

6
8

10
12
14

18
16

43. Consider two parabolas, each of which has its vertex at x = 0,

but with different concavities. Let h be the difference in

y-coordinates of the vertices and let w be the difference in

the x-coordinates of the intersection points. Show that the area

between the curves is 2

3
hw.

x

y

h

w

44. Show that for any constant m, the area between y = 2 − x2

and y = mx is 1

6
(m2 + 8)3/2. Find the minimum such area.

45. For y = x − x2 as shown, find the value of L such that A1 = A2.

x
0 0.25 0.5 0.75 1

y

0.05

0.1

0.15

0.2

0.25

A1

A2 y = L

46. For y = x − x2 and y = kx as shown, find k such that A1 = A2.

x
0 0.25 0.5 0.75 1

y

0.05

0.1

0.15

0.2

0.25

A1

A2

y = kx
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EXPLORATORY EXERCISES

1. At this stage, you can compute the area of any “simple” planar

region. For a general figure bounded on the left by a function

x = l(y), on the right by a function x = r (y), on top by a func-

tion y = t(x) and on the bottom by a function y = b(x), write

the area as a sum of integrals. (Hint: Divide the region into sub-

regions whose area can be written as the integral of r (y) − l(y)

or t(x) − b(x).)

2. Find the area between y = x2 and y = mx for any constant

m > 0. Without doing further calculations, use this area to

find the area between y = √
x and y = mx .

3. For x > 0, let f (x) be the area between y = 1 and y = sin2 t

for 0 ≤ t ≤ x . Without calculating f (x), find as many rela-

tionships as possible between the graphical features (zeros,

extrema, inflection points) of y = f (x) and the graphical fea-

tures of y = sin2 x .

5.2 VOLUME: SLICING, DISKS AND WASHERS

As we shall see throughout this chapter, the integral is an amazingly versatile tool. In

section 5.1, we used definite integrals to compute area. In this section, we use integrals to

compute the volume of a three-dimensional solid. We begin with a simple problem.

When designing a building, architects must perform numerous detailed calculations.

For instance, in order to analyze a building’s heating and cooling systems, engineers must

calculate the volume of air being processed.

FIGURE 5.12a FIGURE 5.12b

You already know how to compute some volumes. For instance, the building shown in

Figure 5.12a is essentially a rectangular box, whose volume is given by lwh, where l is the

length, w is the width and h is the height. The right circular cylinders seen in the buildings

in Figure 5.12b have volume given by πr2h, where h is the height and r is the radius of

the circular cross section. Notice in each case that the building has a familiar cross section

(a rectangle in Figure 5.12a and a circle in Figure 5.12b) that is extended vertically. We

call any such solid a cylinder (any solid whose cross sections perpendicular to some axis

running through the solid are all the same). Now, notice the connection between the volume
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formulas for these two cylinders. The volume of a right circular cylinder is

V = (πr2)    
cross-sectional area

× h    
height

.

Likewise, in the case of a box, we have

V = (length × width)    
cross-sectional area

× height.

In general, the volume of any cylinder is found by

V = (cross-sectional area) × (height).

HISTORICAL NOTES

Archimedes (ca. 287–212 B.C.)

A Greek mathematician and

scientist who was among

the first to derive formulas for

volumes and areas. Archimedes

is known for discovering the

basic laws of hydrostatics (he

reportedly leapt from his bathtub,

shouting “Eureka!’’and ran into

the streets to share his discovery)

and levers (“Give me a place to

stand on and I can move the

earth.’’). An ingenious engineer,

his catapults, grappling cranes

and reflecting mirrors terrorized

a massive Roman army that

eventually conquered his

hometown of Syracuse. On the

day the Romans’ 3-year siege

ended, Archimedes was studying

diagrams drawn in the dirt when a

soldier tried to arrest him.

Archimedes’ last words were

reportedly, “Do not disturb my

circles.’’

Volumes by Slicing

If either the cross-sectional area or width of a solid is not constant, we will need to modify

our approach somewhat. For instance, pyramids and domes do not have constant cross-

sectional area, as seen in Figures 5.13a and 5.13b. Since we don’t know how to find the

volume, we take the approach we’ve used a number of times now: first approximate the

volume and then improve the approximation.

For any solid that extends from x = a to x = b, we start by partitioning the interval

[a, b] on the x-axis into n subintervals, each of width  x = b − a

n
. As usual, we denote

x0 = a, x1 = a + x and so on, so that

xi = a + i x, for i = 0, 1, 2, . . . , n.

FIGURE 5.13a
Pyramid Arena in Memphis

FIGURE 5.13b
U.S. Capitol Building
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x

xi  1 xi

 x

i th slice of solid

x

xi 1 xi

Dx

i th approximating cylinder

FIGURE 5.14a
Sliced solid

FIGURE 5.14b
i th slice of solid

FIGURE 5.14c
i th approximating cylinder

We then slice the solid perpendicular to the x-axis at each of the (n − 1) points

x1, x2, . . . , xn−1. (See Figure 5.14a.) We next need to approximate the volume of each

of the n slices. First, notice that if n is large, then each slice of the solid will be thin and so,

the cross-sectional area is nearly constant throughout any given slice. Suppose that the area

of the cross section corresponding to any particular value of x is given by A(x). Observe

that the slice between x = xi−1 and x = xi is nearly a cylinder. (See Figure 5.14b.) So, for

any point ci in the interval [xi−1, xi ], the area of the cross sections on that interval are all

approximately A(ci ). The volume Vi of the ith slice is approximately the volume of the

cylinder lying along the interval [xi−1, xi ], with constant cross-sectional area A(ci ) (see

Figure 5.14c), so that

Vi ≈ A(ci )    
cross-sectional area

 x    
width

,

where  x is the width of the slice.

Repeating this process for each of the n slices, we find that the total volume V of the

solid is approximately

V ≈
n 

i=1

A(ci ) x .

Notice that as the number of slices increases, the volume approximation should improve

and we get the exact volume by computing

V = lim
n→∞

n 
i=1

A(ci ) x,

assuming the limit exists. You should recognize this limit as the definite integral

V =
 b

a

A(x) dx . (2.1)Volume of a solid with

cross-sectional area A(x)
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REMARK 2.1

We use the same process followed here to derive many important formulas. In each

case, we divide an object into n smaller pieces, approximate the quantity of interest

for each of the small pieces, sum the approximations and then take a limit, ultimately

recognizing that we have derived a definite integral. For this reason, it is essential that

you understand the concept behind formula (2.1). Memorization will not do this for

you. However, if you understand how the various pieces of this puzzle fit together,

then the rest of this chapter should fall into place for you nicely.

EXAMPLE 2.1 Computing Volume from Cross-Sectional Areas

The Pyramid Arena in Memphis (pictured in the margin) has a square base of side

approximately 600 feet and a height of approximately 320 feet. Find the volume of the

pyramid with these measurements.

600 feet

The Pyramid Arena in Memphis

Solution To use (2.1), we need to have a formula for the cross-sectional area. The

square horizontal cross sections of the pyramid make this easy, but we need a formula

for the size of the square at each height. Orient the x-axis upward through the point at the

top of the pyramid. At x = 0, the cross section is a square of side 600 feet. At x = 320,

the cross section can be thought of as a square of side 0 feet. If f (x) represents the side

length of the square cross section at height x, we know that f (0) = 600, f (320) = 0

and f (x) is a linear function. (Think about this; the sides of the pyramid do not curve.)

The slope of the line is m = 600 − 0

0 − 320
= −15

8
and we use the y-intercept of 600 to get

f (x) = −15

8
x + 600.

Since this is the length of a side of a square, the cross-sectional area is simply the square

of this quantity. Then from (2.1), we have

V =
 320

0

A(x) dx =
 320

0

 
−15

8
x + 600

 2

dx .

Observe that we can evaluate this integral by substitution, by taking u = − 15
8

x + 600,

so that du = − 15
8

dx . This gives us

V =
 320

0

 
−15

8
x + 600

 2

dx = − 8

15

 0

600

u2 du

= 8

15

 600

0

u2 du = 8

15

u3

3

    600

0

= 38,400,000 ft3.
�

In example 2.1, we knew how to compute the cross-sectional area exactly. In many

important applications, the cross-sectional area is not known exactly, but must be approx-

imated using measurements. In such cases, we can still find the volume (approximately),

but we’ll need to use numerical integration.

EXAMPLE 2.2 Estimating Volume from Cross-Sectional Data

In medical imaging, such as CT (computerized tomography) and MRI (magnetic

resonance imaging) processes, numerous measurements are taken and processed by a
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computer to construct a three-dimensional image of the tissue the physician wishes to

study. The process is similar to the slicing process we have used to find the volume of a

solid. In this case, however, mathematical representations of various slices of the tissue

are combined to produce a three-dimensional image that can be displayed and sliced

back apart for a physician to determine the health of the tissue. Suppose that an MRI

scan indicates that the cross-sectional areas of adjacent slices of a tumor are given by

the values in the table.

x (cm) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A(x) (cm2) 0.0 0.1 0.4 0.3 0.6 0.9 1.2 0.8 0.6 0.2 0.1

Estimate the volume of the tumor.

y

x

0.8

0.6

0.4

0.2

0.5 1 0.5 1

1

FIGURE 5.15a

y

x

0.5

 

1

 

0.5

1

0.2 0.4 0.6 0.8 1

FIGURE 5.15b

y

x
20 40 60 80

45

 45

FIGURE 5.15c

Solution To find the volume of the tumor, we would compute [following (2.1)]

V =
 1

0

A(x) dx,

except that we only know A(x) at a finite number of points. Does this ring any bells?

Notice that we can use Simpson’s Rule (see section 4.7) with  x = 0.1 to estimate the

value of this integral:

V =
 1

0

A(x) dx

≈ b − a

3n

 
A(0) + 4A(0.1) + 2A(0.2) + 4A(0.3) + 2A(0.4) + 4A(0.5)

+ 2A(0.6) + 4A(0.7) + 2A(0.8) + 4A(0.9) + A(1)

 

= 0.1

3
(0 + 0.4 + 0.8 + 1.2 + 1.2 + 3.6 + 2.4 + 3.2 + 1.2 + 0.8 + 0.1)

≈ 0.49667 cm3. �

We now turn to the problem of finding the volume of the dome in Figure 5.13b. Since

the horizontal cross sections are circles, we need only to determine the radius of each circle.

Starting with the vertical cross section of the dome in Figure 5.15a, we rotate the dome to

get Figure 5.15b. Here, observe that the radius equals the height of the function defining

the outline of the dome. We use this insight in example 2.3.

EXAMPLE 2.3 Computing the Volume of a Dome

Suppose that a dome has circular cross sections, with outline y = ±
 

45
2

(90 − x) for

0 ≤ x ≤ 90 (in units of feet, this gives dimensions similar to the Capitol dome in

Figure 5.13b. A graph of this sideways parabola is shown in Figure 5.15c). Find the

volume of the dome.

Solution Following our previous discussion, we know that the radius of a circular

cross section corresponds to the distance from the x-axis to the top half of the parabola

y =
 

45
2

(90 − x). That is, the radius is given by r (x) =
 

45
2

(90 − x). Each cross

section is a circle with this radius, so the cross-sectional areas are given by

A(x) = π
  

45

2
(90 − x)

 2

,
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for 0 ≤ x ≤ 90. The volume is then given by

V =
 90

0

A(x) dx =
 90

0

π

  
45

2
(90 − x)

 2

dx =
 90

0

π

 
2025 − 45

2
x

 
dx

= π

 
2025x − 45

4
x2

 90

0

= 91,125π ≈ 286,278 ft3.
�

Observe that an alternative way of stating the problem in example 2.3 is to say: Find

the volume formed by revolving the region bounded by the curve y =
 

45
2

(90 − x) and the

x-axis, for 0 ≤ x ≤ 90, about the x-axis.

Example 2.3 can be generalized to the method of disks used to compute the volume of

a solid formed by revolving a two-dimensional region about a vertical or horizontal line.

We consider this general method next.

The Method of Disks

Suppose that f (x) ≥ 0 and f is continuous on the interval [a, b]. Take the region bounded by

the curve y = f (x) and the x-axis, for a ≤ x ≤ b, and revolve it about the x-axis, generating

a solid. (See Figures 5.16a and 5.16b.) We can find the volume of this solid by slicing it

perpendicular to the x-axis and recognizing that each cross section is a circular disk of radius

r = f (x). (See Figure 5.16b.) From (2.1), we then have that the volume of the solid is

Volume of a solid of revolution

(Method of disks) V =
 b

a

π [ f (x)]2    
cross-sectional area = πr2

dx . (2.2)

x
ba

y

y   f (x)

y   f (x)

x

y

a

Circular cross

sections

b

FIGURE 5.16a
y = f (x) ≥ 0

FIGURE 5.16b
Solid of revolution

Since the cross sections of such a solid of revolution are all disks, we refer to this method

of finding volume as the method of disks.

EXAMPLE 2.4 Using the Method of Disks to Compute Volume

Revolve the region under the curve y = √
x on the interval [0, 4] about the x-axis and

find the volume of the resulting solid of revolution.
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y

x

1

2

4321

r    x 

y

x

r    x

FIGURE 5.17a
y = √

x

FIGURE 5.17b
Solid of revolution

Solution It’s critical to draw a picture of the region and the solid of revolution, so

that you get a clear idea of the radii of the circular cross sections. You can see from

Figures 5.17a and 5.17b that the radius of each cross section is given by r = √
x .

From (2.2), we then get the volume:

V =
 4

0

π
 √

x
 2    

cross-sectional area = πr2

dx = π
 4

0

x dx = π x2

2

    4
0

= 8π.

�

In a similar way, suppose that g(y) ≥ 0 and g is continuous on the interval [c, d].

Then, revolving the region bounded by the curve x = g(y) and the y-axis, for c ≤ y ≤ d,

about the y-axis generates a solid. (See Figures 5.18a and 5.18b.) Once again, notice from

Figure 5.18b that the cross sections of the resulting solid of revolution are circular disks

of radius r = g(y). All that has changed here is that we have interchanged the roles of the

variables x and y. The volume of the solid is then given by

V =
 d

c

π [g(y)]2    
cross-sectional area = πr2

dy. (2.3)Volume of a solid of revolution

(Method of disks)

y

x

d

c

x   g(y) x   g(y)

y

x

d

c

FIGURE 5.18a
Revolve about the y-axis

FIGURE 5.18b
Solid of revolution
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REMARK 2.2

When using the method of disks, the variable of integration depends solely on the axis

about which you revolve the two-dimensional region: revolving about the x-axis

requires integration with respect to x, while revolving about the y-axis requires

integration with respect to y. This is easily determined by looking at a sketch of the

solid. Don’t make the mistake of simply looking for what you can plug in where. This

is a recipe for disaster, for the rest of this chapter will require you to make similar

choices, each based on distinctive requirements of the problem at hand.

EXAMPLE 2.5 Using the Method of Disks with y as the
Independent Variable

Find the volume of the solid resulting from revolving the region bounded by the curves

y = 4 − x2 and y = 1 from x = 0 to x =
√

3 about the y-axis.

Solution You will find a graph of the curve in Figure 5.19a and of the solid in

Figure 5.19b.

y

x

2

1

4

1 2√3

x    4   y

x

y

y   4   x2

FIGURE 5.19a
y = 4 − x2

FIGURE 5.19b
Solid of revolution

Notice from Figures 5.19a and 5.19b that the radius of any of the circular cross

sections is given by x. So, we must solve the equation y = 4 − x2 for x, to get x = √
4 − y.

Since the surface extends from y = 1 to y = 4, the volume is given by (2.3) to be

V =
 4

1

π
  

4 − y
 2    

πr2

dy =
 4

1

π (4 − y) dy

= π

 
4y − y2

2

 4

1

= π
 

(16 − 8) −
 

4 − 1

2

  
= 9π

2
.
�

The Method of Washers

One complication that occurs in computing volumes is that the solid may have a cavity or

“hole” in it. Another occurs when a region is revolved about a line other than the x-axis
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or the y-axis. Neither case will present you with any significant difficulties, if you look

carefully at the figures. We illustrate these ideas in examples 2.6 and 2.7.

EXAMPLE 2.6 Computing Volumes of Solids with and without Cavities

Let R be the region bounded by the graphs of y = 1
4
x2, x = 0 and y = 1. Compute the

volume of the solid formed by revolving R about (a) the y-axis, (b) the x-axis and (c) the

line y = 2.

Solution (a) The region R is shown in Figure 5.20a and the solid formed by revolving

it about the y-axis is shown in Figure 5.20b. Notice that this part of the problem is

similar to example 2.5.

y

x

1

R

2

x    4y

y

x

x    4y

FIGURE 5.20a
x = √

4y

FIGURE 5.20b
Solid of revolution

Outer radius:

y   1 Inner radius:

y  

y

x

1

R

2

x2

4

FIGURE 5.21a

y = 1

4
x2

From (2.3), the volume is given by

V =
 1

0

π

  
4y
 2

    
πr2

dy = π 4

2
y2

    1
0

= 2π.

(b) Revolving the region R about the x-axis produces a cavity in the middle of the solid.

See Figure 5.21a for a graph of the region R and Figure 5.21b (on the following page)

for a picture of the solid. Our strategy is to compute the volume of the outside of the

object (as if it were filled in) and then subtract the volume of the cavity. Before diving

into a computation, be sure to visualize the geometry behind this. For the present

example, the outside surface of the solid is formed by revolving the line y = 1 about the

x-axis. The cavity is formed by revolving the curve y = 1
4
x2 about the x-axis. Look

carefully at Figures 5.21a and 5.21b and make certain that you see this. The outer

radius, rO , is the distance from the x-axis to the line y = 1, or rO = 1. The inner radius,

rI , is the distance from the x-axis to the curve y = 1
4
x2, or rI = 1

4
x2. Applying (2.2)

twice, we see that the volume is given by

V =
 2

0

π (1)2    
π (outer radius)2

dx −
 2

0

π

 
1

4
x2

 2

    
π (inner radius)2

dx

= π

 2

0

 
1 − x4

16

 
dx = π

 
x − 1

80
x5

     2
0

= π
 

2 − 32

80

 
= 8

5
π.
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The solid in part (c) is formed by revolving the region R about the line y = 2. This time,

the rotation produces a washer-like solid with a cylindrical hole in the middle. The

region R is shown in Figure 5.22a and the solid is shown in Figure 5.22b.

y

1

 1

2
x

Washer-shaped

cross sections

FIGURE 5.21b
Solid with cavity

Outer radius:

2   y   2  

Inner radius:

y   2   1   1

y

x

R

1

2

2

y   2

x2

4

y   2

y

x

1

2

2

FIGURE 5.22a
Revolve about y = 2

FIGURE 5.22b
Solid of revolution

The volume is computed in the same way as in part (b), by subtracting the volume

of the cavity from the volume of the outside solid. From Figures 5.22a and 5.22b, notice

that the radius of the outer surface is the distance from the line y = 2 to the curve

y = 1
4
x2. This outer radius is then rO = 2 − 1

4
x2. The radius of the inner hole is the

distance from the line y = 2 to the line y = 1. This inner radius is then rI = 2 − 1 = 1.

From (2.2), the volume is given by

V =
 2

0

π

 
2 − 1

4
x2

 2

    
π (outer radius)2

dx −
 2

0

π (2 − 1)2    
π (inner radius)2

dx

= π

 2

0

  
4 − x2 + x4

16

 
− 1

 
dx = π

 
3x − 1

3
x3 + 1

80
x5

 2

0

= π

 
6 − 8

3
+ 32

80

 
= 56

15
π.

�

In parts (b) and (c) of example 2.6, the volume was computed by subtracting an inner

volume from an outer volume in order to compensate for a cavity inside the solid. This

technique is a slight generalization of the method of disks and is referred to as the method

of washers, since the cross sections of the solids look like washers.
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EXAMPLE 2.7 Revolving a Region about Different Lines

Let R be the region bounded by y = 4 − x2 and y = 0. Find the volume of the solids

obtained by revolving R about each of the following: (a) the y-axis, (b) the line y = −3,

(c) the line y = 7 and (d) the line x = 3.

Solution For part (a), we draw the region R in Figure 5.23a and the solid of revolution

in Figure 5.23b.

y

x

4

2 2

Radius   x    4   y

R

y

x

4

 2 2

FIGURE 5.23a
Revolve about y-axis

FIGURE 5.23b
Solid of revolution

y

x

 3

2 2

R

rO

rI

y    3

FIGURE 5.24a
Revolve about y = −3

y

x

y    3

FIGURE 5.24b
Solid of revolution

From Figure 5.23b, notice that each cross section of the solid is a circular disk,

whose radius is simply x. Solving for x, we get x = √
4 − y, where we have selected x

to be positive, since in this context, x represents a distance. From (2.3), the volume of

the solid of revolution is given by

V =
 4

0

π

  
4 − y

 2

    
π (radius)2

dy = π
 4

0

(4 − y) dy = π
 

4y − y2

2

 4

0

= 8π.

For part (b), we have sketched the region R in Figure 5.24a and the solid of

revolution in Figure 5.24b. Notice from Figure 5.24b that the cross sections of the solid

are shaped like washers and the outer radius rO is the distance from the axis of

revolution y = −3 to the curve y = 4 − x2. That is,

rO = y − (−3) = (4 − x2) − (−3) = 7 − x2,

while the inner radius is the distance from the x-axis to the line y = −3. That is,

rI = 0 − (−3) = 3.

From (2.2), the volume is

V =
 2

−2

π (7 − x2)2    
π (outer radius)2

dx −
 2

−2

π (3)2    
π (inner radius)2

dx = 1472

15
π,

where we have left the details of the computation as an exercise.
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y   7

rO

rI

y

x
2 2

R

y   7

y

 2 2
x

FIGURE 5.25a
Revolve about y = 7

FIGURE 5.25b
Solid of revolution

Part (c) (revolving about the line y = 7) is very similar to part (b). You can see the

region R in Figure 5.25a and the solid in Figure 5.25b.

The cross sections of the solid are again shaped like washers, but this time, the

outer radius is the distance from the line y = 7 to the x-axis; that is, rO = 7. The inner

radius is the distance from the line y = 7 to the curve y = 4 − x2,

rI = 7 − (4 − x2) = 3 + x2.

From (2.2), the volume of the solid is then

V =
 2

−2

π (7)2    
π (outer radius)2

dx −
 2

−2

π (3 + x2)2    
π (inner radius)2

dx = 576

5
π,

where we again leave the details of the calculation as an exercise.

Finally, for part (d) (revolving about the line x = 3), we show the region R in

Figure 5.26a and the solid of revolution in Figure 5.26b. In this case, the cross sections

of the solid are washers, but the inner and outer radii are a bit trickier to determine than

in the previous parts. The outer radius is the distance between the line x = 3 and the left

half of the parabola, while the inner radius is the distance between the line x = 3 and the

right half of the parabola. The parabola is given by y = 4 − x2, so that x = ±
 

4 − y.

Notice that x =
 

4 − y corresponds to the right half of the parabola, while

x = −
 

4 − y describes the left half of the parabola. This gives us

rI = 3 −
 

4 − y and rO = 3 −  −
 

4 − y
 = 3 +

 
4 − y.
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2 4 83 2
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FIGURE 5.26a
Revolve about x = 3

FIGURE 5.26b
Solid of revolution

Consequently, we get the volume

V =
 4

0

π

 
3 +

 
4 − y

 2

    
π (outer radius)2

dy −
 4

0

π

 
3 −

 
4 − y

 2

    
π (inner radius)2

dy = 64π,

where we leave the details of this rather messy calculation to you. In section 5.3, we

present an alternative method for finding the volume of a solid of revolution that, for the

present problem, will produce much simpler integrals. �

REMARK 2.3

You will be most successful in finding volumes of solids of revolution if you draw

reasonable figures and label them carefully. Don’t simply look for what to plug in

where. You only need to keep in mind how to find the area of a cross section of the

solid. Integration does the rest.

EXERCISES 5.2

WRITING EXERCISES

1. Discuss the relationships (e.g., perpendicular or parallel) to the

x-axis and y-axis of the disks in examples 2.4 and 2.5. Explain

how this relationship enables you to correctly determine the

variable of integration.

2. The methods of disks and washers were developed sepa-

rately in the text, but each is a special case of the gen-

eral volume formula. Discuss the advantages of learning

separate formulas versus deriving each example separately

from the general formula. For example, would you prefer to

learn the extra formulas or have to work each problem from

basic principles? How many formulas is too many to learn?

3. To find the area of a triangle of the form  in section 5.1, ex-

plain why you would use y-integration. In this section, would

it be easier to compute the volume of the solid formed by re-

volving this triangle about the x-axis or y-axis? Explain your

preference.
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4. In part (a) of example 2.7, Figure 5.23a extends from

x = −√
4 − y to x = √

4 − y, but we used
√

4 − y as the ra-

dius. Explain why this is the correct radius and not 2
√

4 − y.

In exercises 1–4, find the volume of the solid with cross-sectional

area A(x).

1. A(x) = x + 2,−1 ≤ x ≤ 3

2. A(x) = 10 + 6x2, 0 ≤ x ≤ 10

3. A(x) = π (4 − x)2, 0 ≤ x ≤ 2

4. A(x) = 2(x + 1)2, 1 ≤ x ≤ 4

In exercises 5–12, set up an integral and compute the volume.

5. The outline of a dome is given by y = 60 − x2

60
for

−60 ≤ x ≤ 60 (units of feet), with circular cross-sections

perpendicular to the y-axis. Find its volume. (Hint: To

mimic example 2.3, turn the graph sideways, or treat it like

example 2.5.)

6. Find the volume of a pyramid of height 160 feet that has a

square base of side 300 feet. These dimensions are half those

of the pyramid in example 2.1. How does the volume compare?

7. The great pyramid at Gizeh is 500 feet high, rising from a square

base of side 750 feet. Compute its volume using integration.

Does your answer agree with the geometric formula?

750 feet

500 feet

8. Suppose that instead of completing a pyramid, the builders at

Gizeh had stopped at height 250 feet (with a square plateau

top of side 375 feet). Compute the volume of this structure.

Explain why the volume is greater than half the volume of the

pyramid in exercise 7.

9. A church steeple is 30 feet tall with square cross sections. The

square at the base has side 3 feet, the square at the top has side

6 inches and the side varies linearly in between. Compute the

volume.

10. A house attic has rectangular cross sections parallel to the

ground and triangular cross sections perpendicular to the

ground. The rectangle is 30 feet by 60 feet at the bottom of

the attic and the triangles have base 30 feet and height 10 feet.

Compute the volume of the attic.

11. A pottery jar has circular cross sections of radius

4 + sin x

2
inches for 0 ≤ x ≤ 2π . Sketch a picture of the jar

and compute its volume.

12. A pottery jar has circular cross sections of radius

4 − sin x

2
inches for 0 ≤ x ≤ 2π . Sketch a picture of the jar

and compute its volume.

13. Suppose an MRI scan indicates that cross-sectional areas of ad-

jacent slices of a tumor are as given in the table. Use Simpson’s

Rule to estimate the volume.

x (cm) 0.0 0.1 0.2 0.3 0.4 0.5

A(x) (cm2) 0.0 0.1 0.2 0.4 0.6 0.4

x (cm) 0.6 0.7 0.8 0.9 1.0

A(x) (cm2) 0.3 0.2 0.2 0.1 0.0

14. Suppose an MRI scan indicates that cross-sectional areas of ad-

jacent slices of a tumor are as given in the table. Use Simpson’s

Rule to estimate the volume.

x (cm) 0.0 0.2 0.4 0.6 0.8 1.0 1.2

A(x) (cm2) 0.0 0.2 0.3 0.2 0.4 0.2 0.0

15. Estimate the volume from the cross-sectional areas.

x (ft) 0.0 0.5 1.0 1.5 2.0

A(x) (ft2) 1.0 1.2 1.4 1.3 1.2

16. Estimate the volume from the cross-sectional areas.

x (m) 0.0 0.1 0.2 0.3 0.4

A(x) (m2) 2.0 1.8 1.7 1.6 1.8

x (m) 0.5 0.6 0.7 0.8

A(x) (m2) 2.0 2.1 2.2 2.4

In exercises 17–20, compute the volume of the solid formed by

revolving the given region about the given line.

17. Region bounded by y = 2 − x, y = 0 and x = 0 about (a) the

x-axis; (b) y = 3

18. Region bounded by y = x2, y = 0 and x = 2 about (a) the

x-axis; (b) y = 4

19. Region bounded by y = √
x, y = 2 and x = 0 about (a) the

y-axis; (b) x = 4

20. Region bounded by y = 2x, y = 2 and x = 0 about (a) the

y-axis; (b) x = 1

In exercises 21–24, a solid is formed by revolving the given re-

gion about the given line. Compute the volume exactly if possible

and estimate if necessary.

21. Region bounded by y = √
x + 4, x = 0, x = 2 and y = 0

about (a) the y-axis; (b) y = −2

22. Region bounded by y = sec x, y = 0, x = −π/4 and x = π/4
about (a) y = 1; (b) the x-axis
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23. Region bounded by y =
 

x

x2+2
, the x-axis and x = 1 about

(a) the x-axis; (b) y = 3

24. Region bounded by y = cos x and y = x2 about (a) the x-axis;

(b) y = −1

25. Let R be the region bounded by y = 3 − x , the x-axis and the

y-axis. Compute the volume of the solid formed by revolving

R about the given line.

(a) the y-axis (b) the x-axis (c) y = 3

(d) y = −3 (e) x = 3 (f) x = −3

y

x

1

2

3

1 2 3

R

26. Let R be the region bounded by y = x2 and y = 4. Compute

the volume of the solid formed by revolving R about the given

line.

(a) y = 4 (b) the y-axis (c) y = 6

(d) y = −2 (e) x = 2 (f ) x = −4

y

x

1

2

3

4

21 1 2 3 3

R

27. Let R be the region bounded by y = x2, y = 0 and x = 1.

Compute the volume of the solid formed by revolving R about

the given line.

(a) the y-axis (b) the x-axis (c) x = 1

(d) y = 1 (e) x = −1 (f ) y = −1

28. Let R be the region bounded by y = x, y = −x and x = 1.

Compute the volume of the solid formed by revolving R about

the given line.

(a) the x-axis (b) the y-axis

(c) y = 1 (d) y = −1

29. Let R be the region bounded by y = ax2, y = h and the y-axis

(where a and h are positive constants). Compute the volume

of the solid formed by revolving this region about the y-axis.

Show that your answer equals half the volume of a cylinder

of height h and radius
√

h/a. Sketch a picture to illustrate

this.

30. Use the result of exercise 29 to immediately write down the

volume of the solid formed by revolving the region bounded

by y = ax2, x = √
h/a and the x-axis about the y-axis.

31. Suppose that the square consisting of all points (x, y) with

−1 ≤ x ≤ 1 and −1 ≤ y ≤ 1 is revolved about the y-axis.

Show that the volume of the resulting solid is 2π .

32. Suppose that the circle x2 + y2 = 1 is revolved about the

y-axis. Show that the volume of the resulting solid is 4

3
π .

33. Suppose that the triangle with vertices (−1, −1), (0, 1) and

(1, −1) is revolved about the y-axis. Show that the volume of

the resulting solid is 2

3
π .

34. Sketch the square, circle and triangle of exercises 31–33 on

the same axes. Show that the relative volumes of the revolved

regions (cylinder, sphere and cone, respectively) are 3:2:1.

35. Verify the formula for the volume of a sphere by revolving the

circle x2 + y2 = r 2 about the y-axis.

36. Verify the formula for the volume of a cone by revolving the

line segment y = − h

r
x + h, 0 ≤ x ≤ r , about the y-axis.

37. Let A be a right circular cyclinder with radius 3 and height 5.

Let B be the tilted circular cylinder with radius 3 and height 5.

Determine whether A and B enclose the same volume.

5

3 3

38. Determine whether the two indicated parallelograms have the

same area. (Exercises 37 and 38 illustrate Cavalieri’s Theorem.)

5 5

2 2 2
1

39. The base of a solid V is the circle x2 + y2 = 1. Find the vol-

ume if V has (a) square cross sections and (b) semicircular

cross sections perpendicular to the x-axis.

40. The base of a solid V is the triangle with vertices (−1, 0), (0, 1)

and (1, 0). Find the volume if V has (a) square cross sections
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and (b) semicircular cross sections perpendicular to the

x-axis.

41. The base of a solid V is the region bounded by y = x2 and

y = 2 − x2. Find the volume if V has (a) square cross sections,

(b) semicircular cross sections and (c) equilateral triangle cross

sections perpendicular to the x-axis.

42. The base of a solid V is the region bounded by y = √
x − 1,

x = 2 and y = 0. Find the volume if V has (a) square cross

sections, (b) semicircular cross sections and (c) equilateral tri-

angle cross sections perpendicular to the x-axis.

43. Use the given table of values to estimate the volume of the

solid formed by revolving y = f (x), 0 ≤ x ≤ 3, about the

x-axis.

x 0 0.5 1.0 1.5 2.0 2.5 3.0

f (x) 2.0 1.2 0.9 0.4 1.0 1.4 1.6

44. Use the given table of values to estimate the volume of the

solid formed by revolving y = f (x), 0 ≤ x ≤ 2, about the

x-axis.

x 0 0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0

f (x) 4.0 3.6 3.4 3.2 3.5 3.8 4.2 4.6 5.0

45. Water is poured at a constant rate into the vase with outline as

shown and circular cross sections. Sketch a graph showing the

height of the water in the vase as a function of time.

1

2

3

4

5

x
42 4  2

y

46. Sketch a graph of the rate of flow versus time if you poured

water into the vase of exercise 45 in such a way that the height

of the water in the vase increased at a constant rate.

EXPLORATORY EXERCISES

1. Generalize the result of exercise 34 to any rectangle. That is,

sketch the rectangle with −a ≤ x ≤ a and −b ≤ y ≤ b, the

ellipse
x2

a2
+ y2

b2
= 1 and the triangle with vertices (−a,−b),

(0, b) and (a,−b). Show that the relative volumes of the solid

formed by revolving these regions about the y-axis are 3:2:1.

2. Take the circle (x − 2)2 + y2 = 1 and revolve it about the

y-axis. The resulting donut-shaped solid is called a torus.

Compute its volume. Show that the volume equals the area

of the circle times the distance travelled by the center of the

circle. This is an example of Pappus’ Theorem, dating from

the fourth century B.C. Verify that the result also holds for the

triangle in exercise 25, parts (c) and (d).

5.3 VOLUMES BY CYLINDRICAL SHELLS

In this section, we present an alternative to the method of washers discussed in section 5.2.

This method will help with solving some problems such as example 2.7, part (d), where the

method of washers led to a rather awkward integral. There, we let R be the region bounded

by the graphs of y = 4 − x2 and y = 0. (See Figure 5.27.) If R is revolved about the line

x = 3, as indicated in Figure 5.27, how would you compute the volume of the resulting

solid?
rI

y

x
2 2

4

x   3

rO

R

FIGURE 5.27
Revolve about x = 3

The geometry of the region R makes it awkward to integrate with respect to y, since

the left-hand and right-hand boundaries of R are the left and right halves of the parabola,

respectively. On the other hand, since R is nicely defined on top by y = 4 − x2 and on

bottom by y = 0, it might be easier to integrate with respect to x. Unfortunately, in this

case, the method of washers requires the y-integration. The solution lies in an alternative

method of computing volumes that uses the opposite variable of integration.

Before returning to this example, we consider the general case for a region revolved

about the y-axis. Let R denote the region bounded by the graph of y = f (x) and the x-axis
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on the interval [a, b], where 0 < a < b and f (x) ≥ 0 on [a, b]. (See Figure 5.28a.) If we

revolve this region about the y-axis, we get the solid shown in Figure 5.28b.

y

x
b

y   f (x)

R

a

y

x
ba

FIGURE 5.28a
Revolve about y-axis

FIGURE 5.28b
Solid of revolution

y

x
bci

y   f (x)

a

xix i  1

FIGURE 5.29a
ith rectangle

We first partition the interval [a, b] into n subintervals of equal width  x = b − a

n
.

On each subinterval [xi−1, xi ], pick a point ci and construct the rectangle of height f (ci ) as

indicated in Figure 5.29a. Revolving this rectangle about the y-axis forms a thin cylindrical

shell (i.e., a hollow cylinder, like a pipe), as in Figure 5.29b.

To find the volume of this thin cylindrical shell, imagine cutting the cylinder from top

to bottom and then flattening out the shell. After doing this, you should have essentially a

thin rectangular sheet, as seen in Figure 5.29c.

y

x
ba

Circumference of

cylindrical shell

Height

Thickness

FIGURE 5.29b
Cylindrical shell

FIGURE 5.29c
Flattened cylindrical shell

Notice that the length of such a thin sheet corresponds to the circumference of the

cylindrical shell, which is 2π · radius = 2πci . So, the volume Vi of the ith cylindrical shell

is approximately

Vi ≈ length × width × height

= (2π× radius) × thickness × height

= (2πci ) x f (ci ).



390 CHAPTER 5 .. Applications of the Definite Integral 5-28

The total volume V of the solid can then be approximated by the sum of the volumes of the

n cylindrical shells:

V ≈
n 

i=1

2π ci    
radius

f (ci )    
height

 x    
thickness

.

As we have done many times now, we can get the exact volume of the solid by taking the

limit as n → ∞ and recognizing the resulting definite integral. We have

V = lim
n→∞

n 
i=1

2πci f (ci ) x =
 b

a

2π x    
radius

f (x)    
height

dx    
thickness

. (3.1)
Volume of a solid of revolution

(cylindrical shells)

REMARK 3.1

Do not rely on simply

memorizing formula (3.1). You

must strive to understand the

meaning of the components. It’s

simple to do if you just think of

how they correspond to the

volume of a cylindrical shell:

2π (radius) (height) (thickness).

If you think of volumes in this

way, you will be able to solve

any problem you encounter.

EXAMPLE 3.1 Using the Method of Cylindrical Shells

Revolve the region bounded by the graphs of y = x and y = x2 in the first quadrant

about the y-axis.

Solution From Figure 5.30a, notice that the region has an upper boundary of y = x

and a lower boundary of y = x2 and runs from x = 0 to x = 1. Here, we have drawn a

sample rectangle that generates a cylindrical shell. The resulting solid of revolution

can be seen in Figure 5.30b. We can write down an integral for the volume by

analyzing the various components of the solid in Figures 5.30a and 5.30b. From (3.1),

we have

V =
 1

0

2π x    
radius

(x − x2)    
height

dx    
thickness

= 2π

 1

0

(x2 − x3) dx = 2π

 
x3

3
− x4

4

     1
0

= π

6
.

Radius   x

y

x
1

Height   x   x2

y

x
1

FIGURE 5.30a
Sample rectangle generating

a cylindrical shell

FIGURE 5.30b
Solid of revolution

�
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We can now generalize this method to solve the introductory example.

EXAMPLE 3.2 A Volume Where Shells Are Simpler Than Washers

Find the volume of the solid formed by revolving the region bounded by the graph of

y = 4 − x2 and the x-axis about the line x = 3.

Solution Look carefully at Figure 5.31a, where we have drawn a sample rectangle that

generates a cylindrical shell and at the solid shown in Figure 5.31b. Notice that the radius

of a cylindrical shell is the distance from the line x = 3 to the shell:

r = 3 − x .

This gives us the volume

V =
 2

−2

2π (3 − x)    
radius

(4 − x2)    
height

dx    
thickness

= 2π

 2

−2

(x3 − 3x2 − 4x + 12) dx = 64π,

where the routine details of the calculation of the integral are left to the reader.

Radius   3   x

Height   4   x2

y

4

x   3

x
2 2

 2

y

x
2 4 83

4

x   3

FIGURE 5.31a
Typical rectangle generating a cylindrical shell

FIGURE 5.31b
Solid of revolution

�

Your first step in a volume calculation should be to analyze the geometry of the solid

to decide whether it’s easier to integrate with respect to x or y. Note that for a given

solid, the variable of integration in the method of shells is exactly opposite that of the

method of washers. So, your choice of integration variable will determine which method

you use.
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EXAMPLE 3.3 Computing Volumes Using Shells and Washers

Let R be the region bounded by the graphs of y = x, y = 2 − x and y = 0. Compute

the volume of the solid formed by revolving R about the lines (a) y = 2, (b) y = −1 and

(c) x = 3.

Solution The region R is shown in Figure 5.32a. The geometry of the region suggests

that we should consider y as the variable of integration. Look carefully at the

differences among the following three volumes.

(a) Revolving R about the line y = 2, observe that the radius of a cylindrical shell is

the distance from the line y = 2 to the shell: 2 − y, for 0 ≤ y ≤ 1. (See Figure 5.32b.)

The height is the difference in the x-values on the two curves: solving for x, we have

x = y and x = 2 − y. Following (3.1), we get the volume

V =
 1

0

2π (2 − y)    
radius

[(2 − y) − y]    
height

dy    
thickness

= 10

3
π,

where we leave the routine details of the calculation to you.

y   x

y   2   x

y

x

2

1

21

R

FIGURE 5.32a
y = x and y = 2 − x

x   y

y   2

x   2   y

Radius   2   y

y

x

2

1

21

FIGURE 5.32b
Revolve about y = 2

(b) Revolving R about the line y = −1, notice that the height of the cylindrical

shells is the same as in part (a), but the radius r is the distance from the line y = −1 to

the shell: r = y − (−1) = y + 1. (See Figure 5.32c.) This gives us the volume

V =
 1

0

2π [y − (−1)]    
radius

[(2 − y) − y]    
height

dy    
thickness

= 8

3
π.

Radius   y   ( 1)

y

x

2

1

21

y    1 1

rI   3   (2   y)

rO   3   y

rO

rI

y

x

2

1

2 31

x   3

FIGURE 5.32c
Revolve about y = −1

FIGURE 5.32d
Revolve about x = 3

(c) Finally, revolving R about the line x = 3, notice that to find the volume using

cylindrical shells, we would need to break the calculation into two pieces, since the

height of the cylindrical shells would be different for x ∈ [0, 1] than for x ∈ [1, 2].

(Think about this some.) On the other hand, this is done easily by the method of

washers. Observe that the outer radius is the distance from the line x = 3 to the line

x = y: rO = 3 − y, while the inner radius is the distance from the line x = 3 to the line

x = 2 − y: rI = 3 − (2 − y). (See Figure 5.32d.) This gives us the volume

V =
 1

0

π

⎧⎪⎨
⎪⎩ (3 − y)2    

outer radius2

− [3 − (2 − y)]2    
inner radius2

⎫⎪⎬
⎪⎭ dy = 4π.

�
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Note the importance of sketching a picture and visualizing the solid. The most chal-

lenging aspect of these problems is to figure out how to set up the integral. Look carefully

at your picture and determine which variable you will use in the integration (i.e., determine

whether you will use washers or shells). Then, determine the components of the appro-

priate integral [i.e., the radius (or radii) and possibly the height], again by looking at the

picture. Finally, do whatever it takes to evaluate the integral. If you don’t know how to eval-

uate it, you can fall back on your CAS or approximate it numerically (e.g., by Simpson’s

Rule).

EXAMPLE 3.4 Approximating Volumes Using Shells and Washers

Let R be the region bounded by the graphs of y = cos x and y = x2. Compute the

volume of the solid formed by revolving R about the lines (a) x = 2 and (b) y = 2.

Solution First, we sketch the region R. (See Figure 5.33a.) Since the top and bottom

of R are each defined by a curve of the form y = f (x), we will want to integrate with

respect to x. We next look for the points of intersection of the two curves, by solving the

equation cos x = x2. Since we can’t solve this exactly, we must use an approximate

method (e.g., Newton’s method) to obtain the approximate intersections at

x = ±0.824132.

y

x

y   x2

y   cos x
R

2

21 1 2

1

y

x

y   x2 x   2

y   cos x
R

2

21 1 2

1

Radius   2   x

FIGURE 5.33a
y = cos x, y = x2

FIGURE 5.33b
Revolve about x = 2

(a) If we revolve the region about the line x = 2, we should use cylindrical shells.

(See Figure 5.33b.) In this case, observe that the radius r of a cylindrical shell is the

distance from the line x = 2 to the shell: r = 2 − x , while the height of a shell is

cos x − x2. We get the volume

V ≈
 0.824132

−0.824132

2π (2 − x)    
radius

(cos x − x2)    
height

dx ≈ 13.757,

where we have approximated the value of the integral numerically. (We will see how to

find an antiderivative for this integrand in Chapter 7.)

(b) If we revolve the region about the line y = 2 (see Figure 5.33c on the following

page), we use the method of washers. In this case, observe that the outer radius of a

washer is the distance from the line y = 2 to the curve y = x2: rO = 2 − x2, while the

inner radius is the distance from the line y = 2 to the curve y = cos x: rI = 2 − cos x .
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y

x

y   x2

y   2

y   cos xR

2

21 1 2

1

rI   2   cos x

rO   2   x2

FIGURE 5.33c
Revolve about y = 2

(Again, see Figure 5.33c.) This gives us the volume

V ≈
 0.824132

−0.824132

π

⎡
⎢⎣(2 − x2)2    

other radius2

− (2 − cos x)2    
inner radius2

⎤
⎥⎦ dx ≈ 10.08,

where we have approximated the value of the integral numerically. �

We close this section with a summary of strategies for computing volumes of solids of

revolution.

VOLUME OF A SOLID OF REVOLUTION

r Sketch the region to be revolved.
r Determine the variable of integration (x if the region has a well-defined top and

bottom, y if the region has well-defined left and right boundaries).
r Based on the axis of revolution and the variable of integration, determine

the method (disks or washers for x-integration about a horizontal axis or

y-integration about a vertical axis, shells for x-integration about a vertical axis or

y-integration about a horizontal axis).
r Label your picture with the inner and outer radii for disks or washers; label the

radius and height for cylindrical shells.
r Set up the integral(s) and evaluate.

EXERCISES 5.3

WRITING EXERCISES

1. Explain why the method of cylindrical shells produces an inte-

gral with x as the variable of integration when revolving about

a vertical axis. (Describe where the shells are and which direc-

tion to move in to go from shell to shell.)

2. Explain why the method of cylindrical shells has the same

form whether or not the solid has a hole or cavity. That is,

there is no need for separate methods analogous to disks and

washers.
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3. Suppose that the region bounded by y = x2 − 4 and

y = 4 − x2 is revolved about the line x = 2. Carefully explain

which method (disks, washers or shells) would be easiest to

use to compute the volume.

x   2

y

x

4. Suppose that the region bounded by y = x3 − 3x − 1 and

y = −4,−2 ≤ x ≤ 2, is revolved about x = 3. Explain what

would be necessary to compute the volume using the method

of washers and what would be necessary to use the method of

cylindrical shells. Which method would you prefer and why?

y

1 2 3 1 2

 3

 4

 2

 1

1

x

In exercises 1–8, sketch the region, draw in a typical shell, iden-

tify the radius and height of each shell and compute the volume.

1. The region bounded by y = x2 and the x-axis, −1 ≤ x ≤ 1,

revolved about x = 2

2. The region bounded by y = x2 and the x-axis, −1 ≤ x ≤ 1,

revolved about x = −2

3. The region bounded by y = x, y = −x and x = 1 revolved

about the y-axis

4. The region bounded by y = x, y = −x and x = 1 revolved

about x = 1

5. The region bounded by y = x, y = −x and y = 2 revolved

about y = 3

6. The region bounded by y = x, y = −x and y = 2 revolved

about y = −2

7. The right half of x2 + (y − 1)2 = 1 revolved about the x-axis

8. The right half of x2 + (y − 1)2 = 1 revolved about y = 2

In exercises 9–16, use cylindrical shells to compute the volume.

9. The region bounded by y = x2 and y = 2 − x2, revolved about

x = −2

10. The region bounded by y = x2 and y = 2 − x2, revolved about

x = 2

11. The region bounded by x = y2 and x = 4 revolved about

y = −2

12. The region bounded by x = y2 and x = 4 revolved about y = 2

13. The region bounded by y = x and y = x2 − 2 revolved about

x = 2

14. The region bounded by y = x and y = x2 − 2 revolved about

x = 3

15. The region bounded by x = (y − 1)2 and x = 9 revolved about

y = 5

16. The region bounded by x = (y − 1)2 and x = 9 revolved about

y = −3

In exercises 17–26, use the best method available to find each

volume.

17. The region bounded by y = 4 − x, y = 4 and y = x revolved

about

(a) the x-axis (b) the y-axis (c) x = 4 (d) y = 4

18. The region bounded by y = x + 2, y = −x − 2 and x = 0

revolved about

(a) y = −2 (b) x = −2 (c) the y-axis (d) the x-axis

19. The region bounded by y = x and y = x2 − 6 revolved about

(a) x = 3 (b) y = 3 (c) x = −3 (d) y = −6

20. The region bounded by x = y2 and x = 2 + y revolved about

(a) x = −1 (b) y = −1 (c) x = −2 (d) y = −2

21. The region bounded by y = cos x and y = x4 revolved about

(a) x = 2 (b) y = 2 (c) the x-axis (d) the y-axis

22. The region bounded by y = sin x and y = x2 revolved about

(a) y = 1 (b) x = 1 (c) the y-axis (d) the x-axis

23. The region bounded by y = x2 (x ≥ 0), y = 2 − x and x = 0

revolved about

(a) the x-axis (b) the y-axis (c) x = 1 (d) y = 2

24. The region bounded by y = 2 − x2, y = x (x > 0) and the

y-axis revolved about

(a) the x-axis (b) the y-axis (c) x = −1 (d) y = −1

25. The region to the right of x = y2 and to the left of y = 2 − x

and y = x − 2 revolved about

(a) the x-axis (b) the y-axis
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26. The region bounded by y = x2 + x, y = 2 − x and the x-axis

(in the first quadrant) revolved about

(a) the x-axis (b) the y-axis

In exercises 27–32, the integral represents the volume of a solid.

Sketch the region and axis of revolution that produce the solid.

27.

 2

0

π (2x − x2)2dx

28.

 2

−2

π [(4 − x2 + 4)2 − (x2 − 4 + 4)2] dx

29.

 1

0

π [(
√

y)2 − y2] dy 30.

 2

0

π (4 − y2)2dy

31.

 1

0

2πx(x − x2) dx 32.

 2

0

2π (4 − y)(y + y) dy

33. Use a method similar to our derivation of equation (3.1)

to derive the following fact about a circle of radius R.

Area = πR2 =  R

0
c(r ) dr , where c(r ) = 2πr is the circum-

ference of a circle of radius r.

34. You have probably noticed that the circumference of a circle

(2πr ) equals the derivative with respect to r of the area of

the circle (πr 2). Use exercise 33 to explain why this is not a

coincidence.

35. A jewelry bead is formed by drilling a 1

2
-cm radius hole from

the center of a 1-cm radius sphere. Explain why the volume is

given by
 1

1/2
4πx

√
1 − x2 dx . Evaluate this integral or com-

pute the volume in some easier way.

36. Find the size of the hole in exercise 35 such that exactly half

the volume is removed.

37. An anthill is in the shape formed by revolving the region

bounded by y = 1 − x2 and the x-axis about the y-axis. A re-

searcher removes a cylindrical core from the center of the hill.

What should the radius be to give the researcher 10% of the

dirt?

38. The outline of a rugby ball has the shape of x2

30
+ y2

16
= 1. The

ball itself is the revolution of this ellipse about the x-axis. Find

the volume of the ball.

EXPLORATORY EXERCISES

1. From a sphere of radius R, a hole of radius r is drilled out of

the center. Compute the volume removed in terms of R and r.

Compute the length L of the hole in terms of R and r. Rewrite

the volume in terms of L. Is it reasonable to say that the volume

removed depends on L and not on R?

2. In each case, sketch the solid and find the volume formed

by revolving the region about (i) the x-axis and (ii) the

y-axis. Compute the volume exactly if possible and es-

timate numerically if necessary. (a) Region bounded by

y = sec x
√

tan x + 1, y = 0, x = − π

4
and x = π

4
. (b) Region

bounded by x =
 

y2 + 1, x = 0, y = −1 and y = 1. (c) Re-

gion bounded by y = sin x

x
, y = 0, x = π and x = 0. (d) Re-

gion bounded by y = x3 − 3x2 + 2x and y = 0. (e) Region

bounded by y = cos(x2) and y = (x − 1)2.

5.4 ARC LENGTH AND SURFACE AREA

Length and area are quantities you already understand intuitively. But, as you have learned

with area, the calculation of these quantities can be surprisingly challenging for many

geometric shapes. In this section, we compute the length of a curve in two dimensions

and the area of a surface in three dimensions. As always, pay particular attention to the

derivations. As we have done a number of times now, we start with an approximation and

then proceed to the exact solution, using the notion of limit.

y

x

0.5

1

d q f p

FIGURE 5.34a
y = sin x

Arc Length

What could we mean by the length of the portion of the sine curve shown in Figure 5.34a?

(We call the length of a curve its arc length.) If the curve represented a road, you could

measure the length on your car’s odometer by driving along that section of road. If the

curve were actually a piece of string, you could straighten out the string and then measure

its length with a ruler. Both of these ideas are very helpful intuitively. They both involve

turning the problem of measuring length in two dimensions into the (much easier) problem

of measuring the length in one dimension.
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To accomplish this mathematically, we first approximate the curve with several line

segments joined together. In Figure 5.34b, the line segments connect the points (0, 0), 
π

4
,

1√
2

 
,

 π
2
, 1
 
,

 
3π

4
,

1√
2

 
and (π, 0) on the curve y = sin x . An approximation of

the arc length s of the curve is given by the sum of the lengths of these line segments:

n Length

8 3.8125

16 3.8183

32 3.8197

64 3.8201

128 3.8202

s ≈
' π

4

 2

+
 

1√
2

 2

+
' π

4

 2

+
 

1 − 1√
2

 2

+
' π

4

 2

+
 

1√
2

− 1

 2

+
' π

4

 2

+
 

1√
2

 2

≈ 3.79.

You might notice that this estimate is too small. (Why is that?) We will improve our

approximation by using more than four line segments. In the table at left, we show estimates

of the length of the curve using n line segments for larger values of n. As you would expect,

the approximation of length will get closer to the actual length of the curve, as the number

of line segments increases. This general idea should sound familiar.

We develop this notion further now for the more general problem of finding the arc

length of the curve y = f (x) on the interval [a, b]. Here, we’ll assume that f is con-

tinuous on [a, b] and differentiable on (a, b). (Where have you seen hypotheses like

these before?) As usual, we begin by partitioning the interval [a, b] into n equal pieces:

a = x0 < x1 < · · · < xn = b, where xi − xi−1 =  x = b − a

n
, for each i = 1, 2, . . . , n.

y

x

0.5

1

d q f p

FIGURE 5.34b
Four line segments approximating

y = sin x

y

x
xi 1 xi

si

f (xi 1)

f (xi)

FIGURE 5.35
Straight-line approximation

of arc length

Between each pair of adjacent points on the curve, (xi−1, f (xi−1)) and (xi , f (xi )), we

approximate the arc length si by the straight-line distance between the two points. (See Fig-

ure 5.35.) From the usual distance formula, we have

si ≈ d{(xi−1, f (xi−1)), (xi , f (xi ))} =
 

(xi − xi−1)2 + [ f (xi ) − f (xi−1)]2.

Since f is continuous on all of [a, b] and differentiable on (a, b), f is also continuous on

the subinterval [xi−1, xi ] and is differentiable on (xi−1, xi ). By the Mean Value Theorem,

we then have

f (xi ) − f (xi−1) = f  (ci )(xi − xi−1),

for some number ci ∈ (xi−1, xi ). This gives us the approximation

si ≈
 

(xi − xi−1)2 + [ f (xi ) − f (xi−1)]2

=
 

(xi − xi−1)2 + [ f  (ci )(xi − xi−1)]2

=
 

1 + [ f  (ci )]2 (xi − xi−1)    
 x

=
 

1 + [ f  (ci )]2 x .

Adding together the lengths of these n line segments, we get an approximation of the total

arc length,

s ≈
n 

i=1

 
1 + [ f  (ci )]2 x .

Notice that as n gets larger, this approximation should approach the exact arc length, that is,

s = lim
n→∞

n 
i=1

 
1 + [ f  (ci )]2 x .
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You should recognize this as the limit of a Riemann sum for
 

1 + [ f  (x)]2, so that the arc

length is given exactly by the definite integral:

s =
 b

a

 
1 + [ f  (x)]2 dx, (4.1)

Arc length of y = f (x)

on the interval [a, b]

whenever the limit exists.

REMARK 4.1

The formula for arc length is

very simple. Unfortunately,

very few functions produce arc

length integrals that can be

evaluated exactly. You should

expect to use a numerical

integration method on your

calculator or computer to

compute most arc lengths.

EXAMPLE 4.1 Using the Arc Length Formula

Find the arc length of the portion of the curve y = sin x with 0 ≤ x ≤ π . (We estimated

this as 3.79 in our introductory example.)

Solution From (4.1), the arc length is

s =
 π

0

 
1 + (cos x)2 dx .

Try to find an antiderivative of
√

1 + cos2 x , but don’t try for too long. (The best our

CAS can do is
√

2 EllipticE[x, 1
2
], which doesn’t seem especially helpful.) Using a

numerical integration method, the arc length is

s =
 π

0

 
1 + (cos x)2 dx ≈ 3.8202.

�

Even for very simple curves, evaluating the arc length integral exactly can be quite

challenging.

EXAMPLE 4.2 Estimating an Arc Length

Find the arc length of the portion of the curve y = x2 with 0 ≤ x ≤ 1.

Solution Using the arc length formula (4.1), we get

s =
 1

0

 
1 + (2x)2 dx =

 1

0

 
1 + 4x2 dx ≈ 1.4789,

where we have again evaluated the integral numerically. (In this case, you can find an

antiderivative using a clever substitution or a CAS.) �

The graphs of y = x2 and y = x4 look surprisingly similar on the interval [0, 1]. (See

Figure 5.36.) They both connect the points (0, 0) and (1, 1), are increasing and are concave

up. If you graph them simultaneously, you will note that y = x4 starts out flatter and then

becomes steeper from about x = 0.7 on. (Try proving that this is true!) Arc length gives us

one way to quantify the difference between the two graphs.0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

y

x

y   x2

y   x4

FIGURE 5.36
y = x2 and y = x4 EXAMPLE 4.3 A Comparison of Arc Lengths of Power Functions

Find the arc length of the portion of the curve y = x4 with 0 ≤ x ≤ 1 and compare to the

arc length of the portion of the curve y = x2 on the same interval.

Solution From (4.1), the arc length for y = x4 is given by 1

0

 
1 + (4x3)2 dx =

 1

0

 
1 + 16x6 dx ≈ 1.6002.

Notice that this arc length is about 8% larger than that of y = x2, as found in

example 4.2. �
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In the exercises, you will be asked to explore the trend in the lengths of the portion

of the curves y = x6, y = x8 and so on, on the interval [0, 1]. Can you guess now what

happens to the arc length of the portion of y = xn , on the interval [0, 1], as n → ∞?

As with many words, everyday usage of the word length can be ambiguous and

misleading. For instance, when somebody says that the length of a frisbee throw was

100 yards, the length refers to the horizontal distance covered, not to the arc length of the

frisbee’s flight path. In this case, reporting the horizontal distance is more meaningful than

the arc length (and is easier to measure). In many other cases, arc length is the quantity

of interest. For example, suppose you need to hang a banner between two poles that are

20 feet apart. If you have only 20 feet of rope to work with, you are going to be in trouble.

The length of rope required is determined by the arc length, rather than the horizontal dis-

tance.

EXAMPLE 4.4 Computing the Length of a Rope

Suppose that a banner is to be hung from a rope taped to a wall in the shape of

y = 1
20

x2 + 10, −10 ≤ x ≤ 10, as seen in Figure 5.37. How long is the rope?

Solution From (4.1), the arc length of the curve is given by

S =
 10

−10

'
1 +

 
1

10
x

 2

dx

=
 10

−10

 
1 + 1

100
x2 dx

= 1

10

 10

−10

 
x2 + 100 dx

≈ 22.956 feet,

which corresponds to the horizontal distance of 20 feet plus about 3 feet of slack. �
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FIGURE 5.37
y = 1

20
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x
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FIGURE 5.38
Surface of revolution

Surface Area

In sections 5.2 and 5.3, we saw how to compute the volume of a solid formed by revolving

a two-dimensional region about a fixed axis. In addition, we often want to determine the

area of the surface that is generated by the revolution. For instance, when revolving the line

y = x + 1, for 0 ≤ x ≤ 1, about the x-axis, the surface generated looks like a megaphone

with two open ends, as shown in Figure 5.38.

Notice that this is the bottom portion of a right circular cone that has had its top cut

off by a plane parallel to its base. Before we go any further, we pause to find the curved

surface area of a right circular cone. In Figure 5.39a (on the following page), we show a right

circular cone of base radius r and slant height l. (As you’ll see later, it is more convenient

in this context to specify the slant height than the altitude.) If we cut the cone along a seam

and flatten it out, we get the circular sector shown in Figure 5.39b. Notice that the curved

surface area of the cone is the same as the area A of the circular sector. This is the area of

a circle of radius l multiplied by the fraction of the circle included: θ out of a possible

2π radians, or

A = π(radius)2 θ

2π
= πl2 θ

2π
= θ

2
l2. (4.2)
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Cut along

a seam

r

l

l

u

FIGURE 5.39a
Right circular cone

FIGURE 5.39b
Flattened cone

The only problem with this is that we don’t know θ . However, notice that by the way we

constructed the sector (i.e., by flattening the cone), the circumference of the sector is the

same as the circumference of the base of the cone. That is,

2πr = 2πl
θ

2π
= lθ.

Dividing by l gives us θ = 2πr

l
.

From (4.2), the curved surface area of the cone is now

A = θ

2
l2 = πr

l
l2 = πrl.

L

r1

r2

FIGURE 5.40
Frustum of a cone

Recall that we were originally interested in finding the surface area of only a portion of

a right circular cone. (Look back at Figure 5.38.) For the frustum of a cone shown in

Figure 5.40, the curved surface area is given by

A = π (r1 + r2)L .

You can verify this by subtracting the curved surface area of two cones, where you must

use similar triangles to find the height of the larger cone from which the frustum is cut. We

leave the details of this as an exercise.

Returning to the original problem of revolving the line y = x + 1 on the interval [0, 1]

about the x-axis (seen in Figure 5.38), we have r1 = 1, r2 = 2 and L =
√

2 (from the

Pythagorean Theorem). The curved surface area is then

A = π (1 + 2)
√

2 = 3π
√

2 ≈ 13.329.

For the general problem of finding the curved surface area of a surface of revolution, consider

the case where f (x) ≥ 0 and where f is continuous on the interval [a, b] and differentiable

on (a, b). If we revolve the graph of y = f (x) about the x-axis on the interval [a, b] (see

Figure 5.41a), we get the surface of revolution seen in Figure 5.41b.

As we have done many times now, we first partition the interval [a, b] into n pieces

of equal size: a = x0 < x1 < · · · < xn = b, where xi − xi−1 =  x = b − a

n
, for each

i = 1, 2, . . . , n. On each subinterval [xi−1, xi ], we can approximate the curve by the straight

line segment joining the points (xi−1, f (xi−1)) and (xi , f (xi )), as in Figure 5.42. Notice that

revolving this line segment around the x-axis generates the frustum of a cone. The surface
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x
ba

y

y   f (x)

y   f (x)

x

y

a b

FIGURE 5.41a
Revolve about x-axis

FIGURE 5.41b
Surface of revolution

area of this frustum will give us an approximation to the actual surface area on the interval

[xi−1, xi ]. First, observe that the slant height of this frustum is

Li = d{(xi−1, f (xi−1)), (xi , f (xi ))} =
 

(xi − xi−1)2 + [ f (xi ) − f (xi−1)]2,

from the usual distance formula. Because of our assumptions on f, we can apply the Mean

Value Theorem, to obtain

f (xi ) − f (xi−1) = f  (ci )(xi − xi−1),

for some number ci ∈ (xi−1, xi ). This gives us

Li =
 

(xi − xi−1)2 + [ f (xi ) − f (xi−1)]2 =
 

1 + [ f  (ci )]2 (xi − xi−1)    
 x

.

f (xi)

f (xi 1)

x

y

Li

xixi 1

FIGURE 5.42
Revolve about x-axis

The surface area Si of that portion of the surface on the interval [xi−1, xi ] is approximately

the surface area of the frustum of the cone,

Si ≈ π [ f (xi ) + f (xi−1)]
 

1 + [ f  (ci )]2 x

≈ 2π f (ci )
 

1 + [ f  (ci )]2 x,

since if  x is small, f (xi ) + f (xi−1) ≈ 2 f (ci ).

Repeating this argument for each subinterval [xi−1, xi ], i = 1, 2, . . . , n, gives us an approx-

imation to the total surface area S,

S ≈
n 

i=1

2π f (ci )
 

1 + [ f  (ci )]2 x .

As n gets larger, this approximation approaches the actual surface area,

S = lim
n→∞

n 
i=1

2π f (ci )
 

1 + [ f  (ci )]2 x .
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Recognizing this as the limit of a Riemann sum gives us the integral

SURFACE AREA OF A SOLID OF REVOLUTION

S =
 b

a

2π f (x)
 

1 + [ f  (x)]2 dx, (4.3)

whenever the integral exists.

REMARK 4.2

There are exceptionally few

functions f for which the

integral in (4.3) can be

computed exactly. Don’t worry;

we have numerical integration

for just such occasions.

You should notice that the factor of
 

1 + [ f  (x)]2 dx in the integrand in (4.3) corre-

sponds to the arc length of a small section of the curve y = f (x), while the factor 2π f (x)

corresponds to the circumference of the solid of revolution. This should make sense to

you, as follows. For any small segment of the curve, if we approximate the surface area by

revolving a small segment of the curve of radius f (x) around the x-axis, the surface area

generated is simply the surface area of a cylinder,

S = 2πrh = 2π f (x)
 

1 + [ f  (x)]2 dx,

since the radius of such a small cylindrical segment is f (x) and the height of the cylinder

is h =
 

1 + [ f  (x)]2 dx . It is far better to think about the surface area formula in this way

than to simply memorize the formula.

EXAMPLE 4.5 Using the Surface Area Formula

Find the surface area of the surface generated by revolving y = x4, for 0 ≤ x ≤ 1, about

the x-axis.

Solution Using the surface area formula (4.3), we have

S =
 1

0

2πx4
 

1 + (4x3)2 dx =
 1

0

2πx4
 

1 + 16x6 dx ≈ 3.4365,

where we have used a numerical method to approximate the value of the integral. �

EXERCISES 5.4

WRITING EXERCISES

1. Explain in words how the arc length integral is derived from

the lengths of the approximating secant line segments.

2. Explain why the sum of the lengths of the line segments in

Figure 5.34b is less than the arc length of the curve in Fig-

ure 5.34a.

3. Discuss whether the arc length integral is more accurately

called a formula or a definition (i.e., can you precisely define

the length of a curve without using the integral?).

4. Suppose you graph the trapezoid bounded by y = x + 1, y =
−x − 1, x = 0 and x = 1, cut it out and roll it up. Explain

why you would not get Figure 5.38. (Hint: Compare areas and

carefully consider Figures 5.39a and 5.39b.)

In exercises 1–4, approximate the length of the curve using n

secant lines for n  2; n  4.

1. y = x2, 0 ≤ x ≤ 1 2. y = x4, 0 ≤ x ≤ 1

3. y = cos x, 0 ≤ x ≤ π 4. y = √
x + 3, 1 ≤ x ≤ 3

In exercises 5–10, compute the arc length exactly.

5. y = 2x + 1, 0 ≤ x ≤ 2

6. y =
√

1 − x2,−1 ≤ x ≤ 1

7. y = 4x3/2 + 1, 1 ≤ x ≤ 2

8. y = 1

8
x4 + 1

4x2 ,−2 ≤ x ≤ −1
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9. y = 1

3
x3/2 − x1/2, 1 ≤ x ≤ 4

10. y = 3

4

 
x4/3

2
− x2/3

 
, 1 ≤ x ≤ 8

In exercises 11–18, set up the integral for arc length and then

approximate the integral with a numerical method.

11. y = x3,−1 ≤ x ≤ 1 12. y = x3,−2 ≤ x ≤ 2

13. y = 2x − x2, 0 ≤ x ≤ 2 14. y = tan x, 0 ≤ x ≤ π/4

15. y = cos x, 0 ≤ x ≤ π 16. y = √
x + 3, 1 ≤ x ≤ 3

17. y =
 x

0

u sin u du, 0 ≤ x ≤ π

18. y =
 x

0

u2 sin u du, 0 ≤ x ≤ π

19. A banner is to be hung along an arch between two poles

20 feet apart. If the arch is in the shape of y = 1

10
x2 + 20,

−10 ≤ x ≤ 10, compute the length of the banner.

20. A banner is to be hung along an arch between two poles

60 feet apart. If the arch is in the shape of y = 1

90
x2 + 30,

−30 ≤ x ≤ 30, compute the length of the banner.

21. In example 4.4, compute the “sag” in the banner—that is, the

difference between the y-values in the middle (x = 0) and at

the poles (x = 10). Given this, is the arc length calculation

surprising?

22. Sketch and compute the length of the astroid defined by

x2/3 + y2/3 = 1.

23. A football punt follows the path y = 1

15
x(60 − x) yards. Sketch

a graph. How far did the punt go horizontally? How high did

it go? Compute the arc length. If the ball was in the air for

4 seconds, what was the ball’s average velocity?

24. A baseball outfielder’s throw follows the path

y = 1

300
x(100 − x) yards. Sketch a graph. How far did the ball

go horizontally? How high did it go? Compute the arc length.

Explain why the baseball player would want a small arc length,

while the football player in exercise 23 would want a large arc

length.

25. The elliptic integral of the second kind is defined by

EllipticE(φ,m) =  φ
0

 
1 − m sin2 u du. Referring to exam-

ple 4.1, many CASs report
√

2 EllipticE(x, 1

2
) as an antideriva-

tive of
√

1 + cos2 x . Verify that this is an antiderivative.

26. Many CASs report the antiderivative √
1 + 16x6 dx = 1

4
x
 

1 + 16x6 +
 

3/4√
1 + 16x6

dx .

Verify that this is an antiderivative.

27. For example 4.2, find an antiderivative with your CAS, evaluate

the antiderivative at the endpoints and compare the difference

in values to the value your CAS gives using numerical integra-

tion. Try to do this for example 4.3.

28. Briefly explain what it means when your CAS returns 
f (x) dx when asked to evaluate the indefinite integral 
f (x) dx .

In exercises 29–34, set up the integral for the surface area of

the surface of revolution and approximate the integral with a

numerical method.

29. y = x2, 0 ≤ x ≤ 1, revolved about the x-axis

30. y = sin x, 0 ≤ x ≤ π , revolved about the x-axis

31. y = 2x − x2, 0 ≤ x ≤ 2, revolved about the x-axis

32. y = x3 − 4x,−2 ≤ x ≤ 0, revolved about the x-axis

33. y = cos x, 0 ≤ x ≤ π/2, revolved about the x-axis

34. y = √
x, 1 ≤ x ≤ 2, revolved about the x-axis

In exercises 35–38, compute the arc length L1 of the curve and

the length L2 of the secant line connecting the endpoints of the

curve. Compute the ratio L2/L1; the closer this number is to 1,

the straighter the curve is.

35. y = sin x,− π

6
≤ x ≤ π

6
36. y = cos x,− π

6
≤ x ≤ π

6

37. y = x2, 3 ≤ x ≤ 5 38. y = x2,−5 ≤ x ≤ −3

39. For y = x6, y = x8 and y = x10, compute the arc length for

0 ≤ x ≤ 1. Using results from examples 4.2 and 4.3, identify

the pattern for the length of y = xn, 0 ≤ x ≤ 1, as n increases.

Conjecture the limit as n → ∞.

40. To help understand the result of exercise 39, determine lim
n→∞

xn

for each x such that 0 ≤ x < 1. Compute the length of this lim-

iting curve. Connecting this curve to the endpoint (1, 1), what

is the total length?

41. Prove that y = x4 is flatter than y = x2 for 0 < x <
 

1/2 and

steeper for x >
 

1/2. Compare the flatness and steepness of

y = x6 and y = x4.

42. Suppose that the square consisting of all (x, y) with −1 ≤ x ≤ 1

and −1 ≤ y ≤ 1 is revolved about the y-axis. Compute the sur-

face area.

43. Suppose that the circle x2 + y2 = 1 is revolved about the

y-axis. Compute the surface area.

44. Suppose that the triangle with vertices (−1, −1), (0, 1) and

(1, −1) is revolved about the y-axis. Compute the surface area.
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45. Sketch the square, circle and triangle of exercises 42–44

on the same axes. Show that the relative surface areas

of the solids of revolution (cylinder, sphere and cone, re-

spectively) are 3:2:τ , where τ is the golden mean defined

by τ = 1 +
√

5

2
.

EXPLORATORY EXERCISES

1. In exercises 39 and 40, you explored the length of y = xn on

the interval [0, 1]. In this exercise, you will look at more general

polynomials on the same interval. First, guess what the largest

possible arc length would be for a polynomial on a given inter-

val. Now, check the arc length for some selected parabolas. Ex-

plain why fc(x) = cx(1 − x) is a downward-opening parabola

(for c > 0) with x-intercepts 0 and 1 and vertex at x = 1/2.

What will happen to the arc length as c gets larger? Suppose

we limit ourselves to polynomials that have function values

lying between −1 and 1. Verify that on the interval [0, 1], the

functions g2(x ) = 4x(1 − x ), g3(x) = 20x(1/2 − x )(1 − x )

and g4(x) = 80x(1/3 − x)(2/3 − x)(1 − x) all have this prop-

erty. Compare the arc lengths of g2(x), g3(x) and g4(x). What

will be the limiting value of such arc lengths? Construct a

function g5(x) that continues this pattern.

2. In this exercise, you will explore a famous paradox (often

called Gabriel’s horn). Suppose that the curve y = 1/x , for

1 ≤ x ≤ R (where R is a large positive constant), is revolved

about the x-axis. Compute the enclosed volume and the sur-

face area of the resulting surface. (In both cases, antiderivatives

can be found, although you may need help from your CAS to

get the surface area.) Determine the limit of the volume and

surface area as R → ∞. Now for the paradox. Based on your

answers, you should have a solid with finite volume, but infi-

nite surface area. Thus, the three-dimensional solid could be

completely filled with a finite amount of paint but the outside

surface could never be completely painted.

3. Let C be the portion of the parabola y = ax2 − 1 inside the

circle x2 + y2 = 1.

10.5
x

y

 0.5

0.5

 1

1

 0.5

 1

Find the value of a > 0 that maximizes the arc length of C.

4. The figure shows an arc of a circle subtended by an angle θ ,

with a chord of length L and two chords of length s. Show that

2s = L

cos(θ/4)
.

s

s

Lθ

Start with a quarter-circle and use this formula repeatedly to

derive the infinite product

cos
π

4
cos

π

8
cos

π

16
cos

π

32
· · · = 2

π

where the left-hand side represents

lim
n→∞

(cos π

2n cos π

2n−1 . . . cos π
4

).

5.5 PROJECTILE MOTION

In sections 2.1, 2.3 and 4.1, we discussed aspects of the motion of an object moving in a

straight line path (rectilinear motion). We saw that if we know a function describing the

position of an object at any time t, then we can determine its velocity and acceleration

by differentiation. A much more important problem is to go backward, that is, to find the

position and velocity of an object, given its acceleration. Mathematically, this means that,

starting with the derivative of a function, we must find the original function. Now that we

have integration at our disposal, we can accomplish this with ease.
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You may already be familiar with Newton’s second law of motion, which says that

F = ma,

where F is the sum of the forces acting on an object, m is the mass of the object and a is

the acceleration of the object.

Start by imagining that you are diving. The primary force acting on you throughout

the dive is gravity. The force due to gravity is your own weight, which is related to mass by

W = mg, where g is the gravitational constant. (Common approximations of g, accurate

near sea level, are 32 ft/s2 and 9.8 m/s2.) To keep the problem simple mathematically, we

will ignore any other forces, such as air resistance.
Let h(t) represent your height above the water t seconds after starting your dive. Then

the force due to gravity is F = −mg, where the minus sign indicates that the force is acting

downward, in the negative direction. From our earlier work, we know that the acceleration

is a(t) = h  (t). Newton’s second law then gives us −mg = mh  (t) or

h  (t) = −g.

Notice that the position function of any object (regardless of its mass) subject to gravity

and no other forces will satisfy the same equation. The only differences from situation to

situation are the initial conditions (the initial velocity and initial position) and the questions

being asked.

EXAMPLE 5.1 Finding the Velocity of a Diver at Impact

If a diving board is 15 feet above the surface of the water and a diver starts with initial

velocity 8 ft/s (in the upward direction), what is the diver’s velocity at impact (assuming

no air resistance)?

Solution If the height (in feet) at time t is given by h(t), Newton’s second law gives

us h  (t) = −32. Since the diver starts 15 feet above the water with initial velocity of

8 ft/s, we have the initial conditions h(0) = 15 and h (0) = 8. Finding h(t) now takes

little more than elementary integration. We have

 
h  (t) dt =

 
−32 dt

or h (t) = −32t + c.

From the initial velocity, we have

8 = h (0) = −32(0) + c = c,

so that the velocity at any time t is given by

h (t) = −32t + 8.

To find the velocity at impact, you first need to find the time of impact. Notice that the

diver will hit the water when h(t) = 0 (i.e., when the height above the water is 0).
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Integrating the velocity function gives us the height function: 
h (t) dt =

 
(−32t + 8) dt

or h(t) = −16t2 + 8t + c.

From the initial height, we have

15 = h(0) = −16(0)2 + 8(0) + c = c,

so that the height above the water at any time t is given by

h(t) = −16t2 + 8t + 15.

Impact then occurs when

0 = h(t) = −16t2 + 8t + 15

= −(4t + 3)(4t − 5),

so that t = 5
4

is the time of impact. (Ignore the extraneous solution t = − 3
4
.) When

t = 5
4
, the velocity is h  5

4

 = −32
 

5
4

 + 8 = −32 ft/s (impact velocity). To put this in

more familiar units of velocity, multiply by 3600/5280 to convert to miles per hour. In

this case, the impact velocity is about 22 mph. (You probably don’t want to come down

in the wrong position at that speed!) �

In example 5.1, the negative sign of the velocity indicated that the diver was coming

down. In many situations, both upward and downward motions are important.

EXAMPLE 5.2 An Equation for the Vertical Motion of a Ball

A ball is propelled straight upward from the ground with initial velocity 64 ft/s.

Ignoring air resistance, find an equation for the height of the ball at any time t. Also,

determine the maximum height and the amount of time the ball spends in

the air.

Solution With gravity as the only force, the height h(t) satisfies h  (t) = −32. The

initial conditions are h (0) = 64 and h(0) = 0. We then have 
h  (t) dt =

 
−32 dt

or h (t) = −32t + c.

From the initial velocity, we have

64 = h (0) = −32(0) + c = c

and so, h (t) = 64 − 32t.

Integrating one more time gives us 
h (t) dt =

 
(64 − 32t) dt
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or h(t) = 64t − 16t2 + c.

From the initial height we have

0 = h(0) = 64(0) − 16(0)2 + c = c,

and so, h(t) = 64t − 16t2.

Since the height function is quadratic, its maximum occurs at the one time when

h (t) = 0. [You should also consider the physics of the situation: what happens

physically when h (t) = 0?] Solving 64 − 32t = 0 gives t = 2 (the time at the

maximum height) and the corresponding height is h(2) = 64(2) − 16(2)2 = 64 feet.

Again, the ball lands when h(t) = 0. Solving

0 = h(t) = 64t − 16t2 = 16t(4 − t)

gives t = 0 (launch time) and t = 4 (landing time). The time of flight is thus

4 seconds. �

TODAY
IN MATHEMATICS

Vladimir Arnold (1937– )

A Russian mathematician with

important contributions to

numerous areas of mathematics,

both in research and popular

exposition. The esteem in which

he is held by his colleagues can be

measured by the international

conference known as “Arnoldfest’’

held in Toronto in honor of his

60th birthday. Many of his books

are widely used today, including a

collection of challenges titled

Arnold’s Problems. A review of this

book states that “Arnold did not

consider mathematics a game

with deductive reasoning and

symbols, but a part of natural

science (especially of physics),

i.e., an experimental science.’’ You can observe an interesting property of projectile motion by graphing the height

function from example 5.2 along with the line y = 48. (See Figure 5.43.) Notice that the

graphs intersect at t = 1 and t = 3. Further, the time interval [1, 3] corresponds to exactly

half the time spent in the air. Notice that this says that the ball stays in the top one-fourth of

its height for half of its time in the air. You may have marveled at how some athletes jump

so high that they seem to “hang in the air.” As this calculation suggests, all objects tend to

hang in the air.

Height

t
1 2 3 4

20

40

60

FIGURE 5.43
Height of the ball at time t

EXAMPLE 5.3 Finding the Initial Velocity Required to Reach
a Certain Height

It has been reported that basketball star Michael Jordan has a vertical leap of

54  . Ignoring air resistance, what is the initial velocity required to jump this

high?

Solution Once again, Newton’s second law leads us to the equation h  (t) = −32 for

the height h(t). We call the initial velocity v0, so that h (0) = v0 and look for the value

of v0 that will give a maximum altitude of 54  . As before, we integrate to get

h (t) = −32t + c.

Using the initial velocity, we get

v0 = h (0) = −32(0) + c = c.

This gives us the velocity function

h (t) = v0 − 32t.
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Integrating once again and using the initial position h(0) = 0, we get

h(t) = v0t − 16t2.

The maximum height occurs when h (t) = 0. (Why?) Setting

0 = h (t) = v0 − 32t,

gives us t = v0

32
. The height at this time (i.e., the maximum altitude) is then

h
 v0

32

 
= v0

 v0

32

 
− 16

 v0

32

 2

= v2
0

32
− v2

0

64
= v2

0

64
.

So, a jump of 54  = 4.5 requires
v2

0

64
= 4.5 or v2

0 = 288, so that v0 =
√

288 ≈ 17 ft/s

(equivalent to roughly 11.6 mph). �

u

v0

FIGURE 5.44a
Path of projectile

v0 sin u

v0 cos u

v0

u

FIGURE 5.44b
Vertical and horizontal

components of velocity

So far, we have only considered projectiles moving vertically. In practice, we must also

consider movement in the horizontal direction. Ignoring air resistance, these calculations

are also relatively straightforward. The idea is to apply Newton’s second law separately

to the horizontal and vertical components of the motion. If y(t) represents the vertical

position, then we have y  (t) = −g, as before. Ignoring air resistance, there are no forces

acting horizontally on the projectile. So, if x(t) represents the horizontal position, Newton’s

second law gives us x   (t) = 0.

The initial conditions are slightly more complicated here. In general, we want to con-

sider projectiles that are launched with an initial speed v0 at an angle θ from the horizontal.

Figure 5.44a shows a projectile fired with θ > 0. Notice that an initial angle of θ < 0 would

mean a downward initial velocity.

As shown in Figure 5.44b, the initial velocity can be separated into horizontal and

vertical components. From elementary trigonometry, the horizontal component of the initial

velocity is vx = v0 cos θ and the vertical component is vy = v0 sin θ .

y

x
200 400 600 800

40

80

120

FIGURE 5.45
Path of ball

EXAMPLE 5.4 The Motion of a Projectile in Two Dimensions

An object is launched at angle θ = π/6 from the horizontal with initial speed

v0 = 98 m/s. Determine the time of flight and the (horizontal) range of the projectile.

Solution Starting with the vertical component of the motion (and again ignoring air

resistance), we have y  (t) = −9.8 (since the initial speed is given in terms of meters per

second). Referring to Figure 5.44b, notice that the vertical component of the initial

velocity is y (0) = 98 sinπ/6 = 49 and the initial altitude is y(0) = 0. A pair of simple

integrations gives us the velocity function y (t) = −9.8t + 49 and the position function

y(t) = −4.9t2 + 49t . The object hits the ground when y(t) = 0 (i.e., when its height

above the ground is 0). Solving

0 = y(t) = −4.9t2 + 49t = 49t(1 − 0.1t)

gives t = 0 (launch time) and t = 10 (landing time). The time of flight is then

10 seconds. The horizontal component of motion is determined from the equation

x   (t) = 0 with initial velocity x  (0) = 98 cosπ/6 = 49
√

3 and initial position

x(0) = 0. Integration gives us x  (t) = 49
√

3 and x(t) = (49
√

3)t . In Figure 5.45, we

plot the path of the ball. [You can do this using the parametric plot mode on your
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graphing calculator or CAS, by entering equations for x(t) and y(t) and setting the

range of t-values to be 0 ≤ t ≤ 10. Alternatively, you can easily solve for t, to get

t = 1

49
√

3
x , to see that the curve is simply a parabola.] The horizontal range is then the

value of x(t) at t = 10 (the landing time),

x(10) = (49
√

3)(10) = 490
√

3 ≈ 849 meters. �

REMARK 5.1

You should resist the temptation

to reduce this section to a few

memorized formulas. It is true

that if you ignore air resistance,

the vertical component of posi-

tion will always turn out to be

y(t) = − 1

2
gt2 + (v0 sin θ)t + y(0).

However, your understanding of

the process and your chances of

finding the correct answer will

improve dramatically if you

start each problem with

Newton’s second law and work

through the integrations (which

are not difficult).

EXAMPLE 5.5 The Motion of a Tennis Serve

Venus Williams has one of the fastest serves in women’s tennis. Suppose that she hits a

serve from a height of 10 feet at an initial speed of 120 mph and at an angle of 7◦ below

the horizontal. The serve is “in” if the ball clears a 3 -high net that is 39 away and hits

the ground in front of the service line 60 away. (We illustrate this situation in

Figure 5.46.) Determine whether the serve is in or out.

3 ft

7º

60 ft

39 ft

10 ft

FIGURE 5.46
Height of tennis serve

Solution As in example 5.4, we start with the vertical motion of the ball. Since

distance is given in feet, the equation of motion is y  (t) = −32. The initial speed must

be converted to feet per second: 120 mph = 120 5280
3600

ft/s = 176 ft/s. The vertical

component of the initial velocity is then y (0) = 176 sin(−7◦) ≈ −21.45 ft/s.

Integration then gives us

y (t) = −32t − 21.45.

The initial height is y(0) = 10 ft, so another integration gives us

y(t) = −16t2 − 21.45t + 10 ft.

The horizontal component of motion is determined from x   (t) = 0, with initial velocity

x  (0) = 176 cos(−7◦) ≈ 174.69 ft/s and initial position x(0) = 0. Integrations give us

x  (t) = 174.69 ft/s and x(t) = 174.69t ft. Summarizing, we have

x(t) = 174.69t,

y(t) = −16t2 − 21.45t + 10.

For the ball to clear the net, y must be at least 3 when x = 39. We have x(t) = 39 when

174.69t = 39 or t ≈ 0.2233. At this time, y(0.2233) ≈ 4.4, showing that the ball is

high enough to clear the net. The second requirement is that we need to have x ≤ 60

when the ball lands (y = 0). We have y(t) = 0 when −16t2 − 21.45t + 10 = 0. From

the quadratic formula, we get t ≈ −1.7 and t ≈ 0.3662. Ignoring the negative solution,

we compute x(0.3662) ≈ 63.97, so that the serve lands nearly four feet beyond the

service line. The serve is not in. �
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One reason you should start each problem with Newton’s second law is so that you

pause to consider the forces that are (and are not) being considered. For example, we have

thus far ignored air resistance, as a simplification of reality. Some calculations using such

simplified equations are reasonably accurate. Others, such as in example 5.6, are not.

EXAMPLE 5.6 An Example Where Air Resistance Can’t
Be Ignored

Suppose a raindrop falls from a cloud 3000 feet above the ground. Ignoring air

resistance, how fast would the raindrop be falling when it hits the ground?

Solution If the height of the raindrop at time t is given by y(t), Newton’s second law

of motion tells us that y  (t) = −32. Further, we have the initial velocity y (0) = 0

(since the drop falls—as opposed to being thrown down) and the initial altitude

y(0) = 3000. Integrating and using the initial conditions gives us y (t) = −32t and

y(t) = 3000 − 16t2. The raindrop hits the ground when y(t) = 0. Setting

0 = y(t) = 3000 − 16t2

gives us t =
 

3000/16 ≈ 13.693 seconds. The velocity at this time is then

y (
 

3000/16) = −32
 

3000/16 ≈ −438.18 ft/s.

This corresponds to nearly 300 mph! Fortunately, air resistance does play a significant

role in the fall of a raindrop, which has an actual landing speed of about 10 mph. �

FIGURE 5.47
Cross section of a wing

The obvious lesson from example 5.6 is that it is not always reasonable to ignore air

resistance. Some of the mathematical tools needed to more fully analyze projectile motion

with air resistance are developed in Chapter 8.

The air resistance (more precisely, air drag) that slows the raindrop down is only one

of the ways in which air can affect the motion of an object. The Magnus force, produced

by the spinning of an object or lack of symmetry in the shape of an object, can cause the

object to change directions and curve. Perhaps the most common example of a Magnus

force occurs on an airplane. One side of an airplane wing is curved and the other side is

comparatively flat. (See Figure 5.47.) The lack of symmetry causes the air to move over the

top of the wing faster than it moves over the bottom. This produces a Magnus force in the

upward direction (lift), lifting the airplane into the air.

A more down-to-earth example of a Magnus force occurs in an unusual baseball pitch

called the knuckleball. To throw this pitch, the pitcher grips the ball with his fingertips and

throws the ball with as little spin as possible. Baseball players claim that the knuckleball

“dances around” unpredictably and is exceptionally hard to hit or catch. There still is no

complete agreement on why the knuckleball moves so much, but we will present one current

theory due to physicists Robert Watts and Terry Bahill.

Regulation baseball,

showing stitching

The cover of the baseball is sewn on with stitches that are raised up slightly from the

rest of the ball. These curved stitches act much like an airplane wing, creating a Magnus

force that affects the ball. The direction of the Magnus force depends on the exact ori-

entation of the ball’s stitches. Measurements by Watts and Bahill indicate that the lateral

force (left/right from the pitcher’s perspective) is approximately Fm = −0.1 sin(4θ ) lb,

where θ is the angle (in radians) of the ball’s position rotated from a particular starting

position.

Since gravity does not affect the lateral motion of the ball, the only force acting on the

ball laterally is the Magnus force. Newton’s second law applied to the lateral motion of the
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knuckleball gives mx   (t) = −0.1 sin(4θ ). The mass of a baseball is about 0.01 slug. (Slugs

are the units of measurement of mass in the English system. To get the more familiar weight

in pounds, simply multiply the mass by g = 32.) We now have

x   (t) = −10 sin(4θ ).

If the ball is spinning at the rate of ω radians per second, then 4θ = 4ωt + θ0, where the

initial angle θ0 depends on where the pitcher grips the ball. We then have

x   (t) = −10 sin(4ωt + θ0), (5.1)

with initial conditions x  (0) = 0 and x(0) = 0. For a typical knuckleball speed of 60 mph,

it takes about 0.68 second for the pitch to reach home plate.

EXAMPLE 5.7 An Equation for the Motion of a Knuckleball

For a spin rate of ω = 2 radians per second and θ0 = 0, find an equation for the motion

of the knuckleball and graph it for 0 ≤ t ≤ 0.68. Repeat this for θ0 = π/2.

x

t
0.60.40.2

 1

 0.8

 0.6

 0.4

 0.2

FIGURE 5.48a
Lateral motion of a knuckleball

for θ0 = 0

Solution For θ0 = 0, Newton’s second law gives us x   (t) = −10 sin 8t , from (5.1).

Integrating this and using the initial condition x  (0) = 0 gives us

x  (t) = −10

8
[− cos 8t − (− cos 0)] = 1.25(cos 8t − 1).

Integrating once again and using the second initial condition x(0) = 0, we get

x(t) = 1.25

 
1

8

 
(sin 8t − 0) − 1.25t = 0.15625 sin 8t − 1.25t.

A graph of this function shows the lateral motion of the ball. (See Figure 5.48a.) The

graph shows the path of the pitch as it would look viewed from above. Notice that after

starting out straight, this pitch breaks nearly a foot away from the center of home plate!

For the case where θ0 = π/2, we have from (5.1) that

x   (t) = −10 sin
 

8t + π

2

 
.

Integrating this and using the first initial condition gives us

x  (t) = −10

8

(
− cos

 
8t + π

2

 
−
)
− cos

 
0 + π

2

 *+
= 1.25 cos

 
8t + π

2

 
.

x

t
0.60.40.2

 0.4

 0.3

 0.2

 0.1

FIGURE 5.48b
Lateral motion of a

knuckleball for θ0 = π

2

Integrating a second time yields

x(t) = 1.25

 
1

8

 )
sin

 
8t + π

2

 
− sin

 π
2

 *
= 0.15625

)
sin

 
8t + π

2

 
− 1

*
.

A graph of the lateral motion in this case is shown in Figure 5.48b. Notice that this pitch

breaks nearly 4 inches to the pitcher’s right and then curves back over the plate for a

strike! You can see that, in theory, the knuckleball is very sensitive to spin and initial

position and can be very difficult to hit when thrown properly. �
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EXERCISES 5.5

WRITING EXERCISES

1. In example 5.6, the assumption that air resistance can be ig-

nored is obviously invalid. Discuss the validity of this assump-

tion in examples 5.1 and 5.3.

2. In the discussion preceding example 5.3, we showed that

Michael Jordan (and any other human) spends half of his air-

time in the top one-fourth of the height. Compare his velocities

at various points in the jump to explain why relatively more

time is spent at the top than at the bottom.

3. In example 5.4, we derived separate equations for the hori-

zontal and vertical components of position. To discover one

consequence of this separation, consider the following situ-

ation. Two people are standing next to each other with arms

raised to the same height. One person fires a bullet horizontally

from a gun. At the same time, the other person drops a bullet.

Explain why the bullets will hit the ground at the same time.

4. For the falling raindrop in example 5.6, a more accurate model

would be y  (t) = −32 + f (t), where f (t) represents the force

due to air resistance (divided by the mass). If v(t) is the down-

ward velocity of the raindrop, explain why this equation is

equivalent to v (t) = 32 − f (t). Explain in physical terms why

the larger v(t) is, the larger f (t) is. Thus, a model such as

f (t) = v(t) or f (t) = [v(t)]2 would be reasonable. (In most

situations, it turns out that [v(t)]2 matches the experimental

data better.)

In exercises 1–4, identify the initial conditions y(0) and y�(0).

1. An object is dropped from a height of 80 feet.

2. An object is dropped from a height of 100 feet.

3. An object is released from a height of 60 feet with an upward

velocity of 10 ft/s.

4. An object is released from a height of 20 feet with a downward

velocity of 4 ft/s.

In exercises 5–54, ignore air resistance.

5. A diver drops from 30 feet above the water (about the height

of an Olympic platform dive). What is the diver’s velocity at

impact?

6. A diver drops from 120 feet above the water (about the height

of divers at the Acapulco Cliff Diving competition). What is

the diver’s velocity at impact?

7. Compare the impact velocities of objects falling from 30 feet

(exercise 5), 120 feet (exercise 6) and 3000 feet (example 5.6).

If height is increased by a factor of h, by what factor does the

impact velocity increase?

8. The Washington Monument is 555 feet, 5 1

8
inches high. In a

famous experiment, a baseball was dropped from the top of the

monument to see if a player could catch it. How fast would the

ball be going?

9. A certain not-so-wily coyote discovers that he just stepped off

the edge of a cliff. Four seconds later, he hits the ground in a

puff of dust. How high was the cliff?

10. A large boulder dislodged by the falling coyote in exercise 9

falls for 3 seconds before landing on the coyote. How far did the

boulder fall? What was its velocity when it flattened the coyote?

11. The coyote’s next scheme involves launching himself into the

air with an Acme catapult. If the coyote is propelled vertically

from the ground with initial velocity 64 ft/s, find an equation

for the height of the coyote at any time t. Find his maximum

height, the amount of time spent in the air and his velocity

when he smacks back into the catapult.

12. On the rebound, the coyote in exercise 11 is propelled to a

height of 256 feet. What is the initial velocity required to reach

this height?

13. One of the authors has a vertical “jump” of 20 inches. What is

the initial velocity required to jump this high? How does this

compare to Michael Jordan’s velocity, found in example 5.3?

14. If the author underwent an exercise program and increased his

initial velocity by 10%, by what percentage would he increase

his vertical jump?

15. Show that an object dropped from a height of H feet will hit

the ground at time T = 1

4

√
H seconds with impact velocity

V = −8
√

H ft/s.

16. Show that an object propelled from the ground with initial

velocity v0 ft/s will reach a maximum height of v2
0/64 ft.

17. You can measure your reaction time using a ruler. Hold your

thumb and forefinger on either side of a yardstick. Have a

friend drop the yardstick and grab it as fast as you can. Take

the distance d that the yardstick falls and compute how long the

ruler fell. Show that if d is measured in cm, your reaction time

is approximately t ≈ 0.045
√

d. For comparison purposes, a

top athlete has a reaction time of about 0.15 s.

18. The coefficient of restitution of a ball measures how “lively”

the bounce is. By definition, the coefficient equals
v2

v1

, where

v1 is the (downward) speed of the ball when it hits the ground
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and v2 is the (upward) launch speed after it hits the ground.

If a ball is dropped from a height of H feet and rebounds to a

height of cH for some constant c with 0 < c < 1, compute its

coefficient of restitution.

In exercises 19–28, sketch the parametric graphs as in exam-

ple 5.4 to indicate the flight path.

19. An object is launched at angle θ = π/3 radians from the hor-

izontal with an initial speed of 98 m/s. Determine the time of

flight and the horizontal range. Compare to example 5.4.

98 m
/s

u

20. Find the time of flight and horizontal range of an object

launched at angle 30◦ with initial speed 120 ft/s. Repeat with

an angle of 60◦.

21. Repeat example 5.5 with an initial angle of 6◦. By trial and

error, find the smallest and largest angles for which the serve

will be in.

22. Repeat example 5.5 with an initial speed of 170 ft/s. By trial

and error, find the smallest and largest initial speeds for which

the serve will be in.

23. A baseball pitcher releases the ball horizontally from a height

of 6 ft with an initial speed of 130 ft/s. Find the height of the

ball when it reaches home plate 60 feet away. (Hint: Determine

the time of flight from the x-equation, then use the y-equation

to determine the height.)

6 ft

130 ft /s

x   0 x   60

24. Repeat exercise 23 with an initial speed of 80 ft/s. (Hint:

Carefully interpret the negative answer.)

25. A baseball player throws a ball toward first base 120 feet away.

The ball is released from a height of 5 feet with an initial speed

of 120 ft/s at an angle of 5◦ above the horizontal. Find the

height of the ball when it reaches first base.

26. By trial and error, find the angle at which the ball in exercise

27 will reach first base at the catchable height of 5 feet. At

this angle, how far above the first baseman’s head would the

thrower be aiming?

27. A daredevil plans to jump over 25 cars. If the cars are all

compact cars with a width of 5 feet and the ramp angle is 30◦,

determine the initial velocity required to complete the jump

successfully. Repeat with a takeoff angle of 45◦. In spite of the

reduced initial velocity requirement, why might the daredevil

prefer an angle of 30◦ to 45◦?

28. A plane at an altitude of 256 feet wants to drop supplies to a

specific location on the ground. If the plane has a horizontal

velocity of 100 ft/s, how far away from the target should the

plane release the supplies in order to hit the target location?

(Hint: Use the y-equation to determine the time of flight, then

use the x-equation to determine how far the supplies will

drift.)

29. Consider a knuckleball (see example 5.7) with lateral motion

satisfying the initial value problem x   (t) = −25 sin(4ωt + θ0),

x  (0) = x(0) = 0. With ω = 1, find an equation for x(t) and

graph the solution for 0 ≤ t ≤ 0.68 with (a) θ0 = 0 and (b)

θ0 = π/2.

30. Repeat exercise 29 for θ0 = π/4 and (a) ω = 2 and (b) ω = 1.

31. For the Olympic diver in exercise 5, what would be the average

angular velocity (measured in radians per second) necessary

to complete 2 1

2
somersaults?

32. In the Flying Zucchini Circus’ human cannonball act, a per-

former is shot out of a cannon from a height of 10 feet at an

angle of 45◦ with an initial speed of 160 ft/s. If the safety net

stands 5 feet above the ground, how far should the safety net

be placed from the cannon? If the safety net can withstand an

impact velocity of only 160 ft/s, will the Flying Zucchini land

safely or come down squash?

33. In a basketball free throw, a ball is shot from a height of h

feet toward a basket 10 feet above the ground at a horizontal

distance of 15 feet. If h = 6, θ = 52◦ and v0 = 25 ft/s, show

that the free throw is good. Since the basket is larger than the

ball, a free throw has a margin of error of several inches. If any

shot that passes through height 10 ft with 14.65 ≤ x ≤ 15.35

is good, show that, for the given initial speed v0, the margin

of error is 48◦ ≤ θ ≤ 57◦. Sketch parametric graphs to show

several of these free throws.

v0

 u

15 ft 

10 ft 

h
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34. For the basketball shot in exercise 33, fix h = 6 and θ = 52◦.

Find the range of speeds v0 for which the free throw will be

good. Given that it requires a force of F = 0.01v2
0 pounds to

launch a free throw with speed v0, how much margin of error

is there in the applied force?

35. Soccer player Roberto Carlos of Brazil is known for his curv-

ing kicks. Suppose that he has a free kick from 30 yards out.

Orienting the x- and y-axes as shown in the figure, suppose

the kick has initial speed 100 ft/s at an angle of 5◦ from the

positive y-axis. Assume that the only force on the ball is a

Magnus force to the left caused by the spinning of the ball.

With x   (t) = −20 and y  (t) = 0, determine whether the ball

goes in the goal at y = 90 and −24 ≤ x ≤ 0.

x

u

y

36. In exercise 35, a wall of players is lined up 10 yards away,

extending from x = −10 to x = 1. Determine whether the

kick goes around the wall.

37. To train astronauts to operate in a weightless environment,

NASA sends them up in a special plane (nicknamed the Vomit

Comet). To allow the passengers to experience weightlessness,

the vertical acceleration of the plane must exactly match the

acceleration due to gravity. If y  (t) is the vertical acceleration

of the plane, then y  (t) = −g. Show that, for a constant hor-

izontal velocity, the plane follows a parabolic path. NASA’s

plane flies parabolic paths of approximately 2500 feet in height

(2500 feet up and 2500 down). The time to complete such a

path is the amount of weightless time for the passengers.

Compute this time.

38. In the 1992 Summer Olympics in Barcelona, Spain, an archer

lit the Olympic flame by shooting an arrow toward a cauldron

at a distance of about 70 meters horizontally and 30 meters

vertically. If the arrow reached the cauldron at the peak of its

trajectory, determine the initial speed and angle of the arrow.

(Hint: Show that y (t) = 0 if t = (v0 sin θ )/9.8. For this t,

show that
x(t)

y(t)
= 2 cot θ = 7

3
and solve for θ . Then solve

for v0.)

In exercises 39–44, we explore two aspects of juggling. More

information can be found in The Mathematics of Juggling by

Burkard Polster.

39. Professional jugglers generally agree that 10 is the maximum

number of balls that a human being can successfully maintain.

To get an idea why, suppose that it takes
1

2
second to catch and

toss a ball. (In other words, using both hands, the juggler can

process 4 balls per second.) To juggle 10 balls, each ball would

need to be in the air for 2.5 seconds. Neglecting air resistance,

how high would the ball have to be tossed to stay in the air this

long? How much higher would the balls need to be tossed to

juggle 11 balls?

40. Another aspect of juggling balls is accuracy. A ball juggled

from the right hand to the left hand must travel the correct

horizontal distance to be catchable. Suppose that a ball is

tossed with initial horizontal velocity v0x and initial vertical

velocity v0y . Assume that the ball is caught at the height from

which it is thrown. Show that the horizontal distance traveled

is w = v0xv0y

16
feet. (Hint: This is a basic projectile problem,

like example 5.4.)

41. Referring to exercise 40, suppose that a ball is tossed at an an-

gle of α from the vertical. Show that tanα = v0x

v0y

. Combining

this result with exercises 16 and 40, show that w = 4h tanα,

where h is the maximum height of the toss.

42. Find a linear approximation for tan x at x = 0. Use this ap-

proximation and exercise 41 to show that α ≈ w

4h
. If an

angle of α produces a distance of w and an angle of α + α
produces a distance of w + w, show that  α ≈  w

4h
.

43. Suppose that w is the difference between the ideal horizontal

distance for a toss and the actual horizontal distance of a toss.

For the average juggler, an error of  w = 1 foot is manage-

able. Let  α be the corresponding error in the angle of toss.

If h is the height needed to juggle 10 balls (see exercise 39),

find the maximum error in tossing angle.

44. Repeat exercise 43 using the height needed to juggle 11 balls.

How much more accurate does the juggler need to be to juggle

11 balls?

45. In a typical golf tee shot, the ball is launched at an angle of 9.3◦

at an initial speed of 220 ft/s. In the absence of air resistance,

how far (horizontally) would this shot carry? The actual carry

on such a shot is about 240 yards (720 feet). In this case, a

backspin of 4000 rpm gives the ball a huge upward Magnus

force, which offsets most of the air resistance and gravity.
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46. Suppose that a firefighter holds a water hose at slope m and

the water exits the hose with speed v ft/s. Show that the water

follows the path y = −16

 
1 + m2

v2

 
x2 − mx . If the fire-

fighter stands 20 feet from a wall, what is the maximum height

on the wall that the water can reach?

47. Astronaut Alan Shepard modified some of his lunar equipment

and became the only person to hit a golf ball on the Moon.

Assume that the ball was hit with speed 60 ft/s at an angle of

25◦ above the horizontal. Assuming no air resistance, find the

distance the ball would have traveled on Earth. Then find how

far it would travel on the Moon, where there really is no air

resistance (use g = 5.2 ft/s2).

48. The gravitational force of the Moon is about one-sixth that of

Earth. A simple guess might be that a golf ball would travel

six times as high and six times as far on the Moon compared

to on Earth. Determine whether this is correct.

49. Sprinters have been timed at speeds up to 28 mph. If this could

be converted to a vertical velocity, how high would the person

jump on Earth? Ignore air resistance.

50. One version of Murphy’s Law states that a piece of bread with

butter on it will always fall off the table and land butter-side

down. This is actually more a result of physics than of bad

luck. An object knocked off of a table will typically rotate with

an angular velocity ω rad/s. At a constant angular velocity ω,

the object will rotate ωt radians in t seconds. Let θ = 0 repre-

sent a flat piece of bread with butter-side up. If the bread hits

the floor with
π

2
< θ <

3π

2
, it has landed butter-side down.

Assume that the bread falls from a height of 3 feet and with an

initial tilt of θ = π

4
. Find the range of ω-values such that the

bread falls butter-side down. For a falling piece of bread, ω is

fairly small. Based on your calculation, if ω varies from
1

10
revolution per second to 1 revolution per second, how likely is

the bread to land butter-side down?

51. Suppose a target is dropped vertically at a horizontal distance

of 20 feet from you. If you fire a paint ball horizontally and

directly at the target when it’s dropped, show that you will hit

it (assuming no air resistance and assuming that the paint ball

reaches the target before either hits the ground).

52. An object is dropped from a height of 100 feet. Another object

directly below the first is launched vertically from the ground

with initial velocity 40 ft/s. Determine when and how high up

the objects collide.

53. How fast is a vert skateboarder like Tony Hawk going at the

bottom of a ramp? Ignoring friction and air resistance, the

answer comes from conservation of energy, which states that

the kinetic energy 1

2
mv2 plus the potential energy mgy remains

constant. Assume that the energy at the top of a trick at height

H is all potential energy and the energy at the bottom of the

ramp is all kinetic energy. (a) Find the speed at the bottom as a

function of H. (b) Compute the speed if H = 16 feet. (c) Find

the speed halfway down (y = 8). (d) If the ramp has the

shape y = x2 for −4 ≤ x ≤ 4, find the horizontal and vertical

components of speed halfway at y = 8.

30'

h'

10'

Exercise 53 Exercise 54

54. A science class builds a ramp to roll a bowling ball out of a

window that is 30 feet above the ground. Their goal is for the

ball to land on a watermelon that is 10 feet from the building.

Assuming no friction or air resistance, determine how high the

ramp should be to smash the watermelon.

EXPLORATORY EXERCISES

1. In the text and exercises 29 and 30, we discussed the dif-

ferential equation x   (t) = −25 sin(4ωt + θ0) for the lateral

motion of a knuckleball. Integrate and apply the initial con-

ditions x  (0) = 0 and x(0) = 0 to derive the general equation

x(t) = 25

16ω2
sin(4ωt + θ0) −

 
25

4ω
cos θ0

 
t − 25

16ω2
sin θ0.

If you have access to three-dimensional graphics, graph

x(t, ω) for θ0 = 0 with 0 ≤ t ≤ 0.68 and 0.01 ≤ ω ≤ 10.

(Note: Some plotters will have trouble with ω = 0.) Repeat

with θ0 = π/4, θ0 = π/2 and two choices of your own for θ0.

A pitcher wants the ball to move as much as possible back

and forth but end up near home plate (x = 0). Based on these

criteria, pick the combinations of θ0 and ω that produce the

four best pitches. Graph these pitches in two dimensions with

x = x(t) as in Figures 5.48a and 5.48b.

2. Although we have commented on some inadequacies of the

gravity-only model of projectile motion, we have not presented
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any alternatives. Such models tend to be somewhat more

mathematically complex. One way to explore these models is

introduced in exploratory exercise 2 in section 4.1. A different

method is presented in this exercise. For a falling object like a

raindrop, the two primary forces are gravity and air drag. Typi-

cally, air drag is proportional to the square of the velocity. Com-

bining this with Newton’s second law of motion (F = ma),

we have ma = cv2 − mg. The velocity v(t), in feet per sec-

ond, satisfies the equation v (t) = k[v(t)]2 − 32, for k = c/m.

Suppose that v(0) = 0. Explain why v(t) will decrease and

become negative, for t > 0. As v decreases, explain why v (t)
approaches 0. The value of v(t) for which v (t) = 0 is called the

terminal velocity, denoted vT . Explain why lim
t→∞

v(t) = vT .

Show that vT = √
32/k. For k = 2, find vT . As discussed

in example 5.6, the terminal velocity of a raindrop is about

10 mph, or about 14.6 ft/s. Find the value of k for a raindrop.

3. The goal in the old computer game called “Gorillas” is to

enter a speed and angle to launch an explosive banana to try

to hit a gorilla at some other location. Suppose that you are

located at the origin and the gorilla is at (40, 20). (a) Find two

speed/angle combinations that will hit the gorilla. (b) Estimate

the smallest speed that can be used to hit the target. (c) Repeat

parts (a) and (b) if there is a building in the way that occupies

20 ≤ x ≤ 30 and 0 ≤ y ≤ 30.

5.6 APPLICATIONS OF INTEGRATION TO PHYSICS
AND ENGINEERING

In this section, we explore several applications of integration in physics. In each case, we

will define a basic concept to help solve a specific problem. We’ll then use the definite

integral to generalize the concept to solve a much wider range of problems. This use of

integration is an excellent example of how the mathematical theory helps you find solutions

of practical problems.

Imagine that you are at the bottom of a snow-covered hill with a sled. To get a good

ride, you want to push the sled as far up the hill as you can. A physicist would say that the

higher up you are, the more potential energy you have. Sliding down the hill converts the

potential energy into kinetic energy. (This is the fun part!) But pushing the sled up the hill

requires you to do some work: you must exert a force over a long distance.

Our first task is to quantify work. If you push a sled up a hill, you’re doing work, but

can you give a measure of how much? Certainly, if you push twice the weight (i.e., exert

twice the force), you’re doing twice the work. Further, if you push the sled twice as far,

you’ve done twice the work. In view of these observations, for any constant force F applied

over a distance d, we define the work W done as

W = Fd.

Unfortunately, forces are generally not constant. We extend this notion of work to the case

of a nonconstant force F(x) applied on the interval [a, b] as follows. First, we divide the

interval [a, b] into n equal subintervals, each of width  x = b − a

n
and consider the work

done on each subinterval. If  x is small, then the force F(x) applied on the subinterval

[xi−1, xi ] can be approximated by the constant force F(ci ) for some point ci ∈ [xi−1, xi ].

The work done moving the object along the subinterval is then approximately F(ci ) x .
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The total work done W is then approximately

W ≈
n 

i=1

F(ci ) x .

You should recognize this as a Riemann sum, which, as n gets larger, approaches the actual work,

Work W = lim
n→∞

n 
i=1

F(ci ) x =
 b

a

F(x) dx . (6.1)

We take (6.1) as our definition of work.

You’ve probably noticed that the farther a spring is compressed (or stretched) from its

natural resting position, the more force is required to further compress (or stretch) the spring.

According to Hooke’s Law, the force required to maintain a spring in a given position is

proportional to the distance it’s compressed (or stretched). That is, if x is the distance a

spring is compressed (or stretched) from its natural length, the force F(x) exerted by the

spring is given by

F(x) = kx, (6.2)

for some constant k (the spring constant).

EXAMPLE 6.1 Computing the Work Done Stretching a Spring

A force of 3 pounds stretches a spring 1
4

foot from its natural length. (See Figure 5.49.)

Find the work done in stretching the spring 6 inches beyond its natural length.

Solution First, we determine the value of the spring constant. From Hooke’s Law

(6.2), we have that

3 = F

 
1

4

 
= k

 
1

4

 
,

so that k = 12 and F(x) = 12x . From (6.1), the work done in stretching the spring

6 inches (1/2 foot) is then

W =
 1/2

0

F(x) dx =
 1/2

0

12x dx = 3

2
foot-pounds.

In this case, notice that stretching the spring transfers potential energy to the spring. (If

the spring is later released, it springs back toward its resting position, converting the

potential energy to kinetic energy.)
FIGURE 5.49
Stretched spring �

EXAMPLE 6.2 Computing the Work Done by a Weightlifter

A weightlifter lifts a 200-pound barbell a distance of 3 feet. How much work was done?

Also, determine the work done by the weightlifter if the weight is raised 4 feet above

the ground and then lowered back into place.

Solution Since the force (the weight) is constant here, we simply have

W = Fd = 200 × 3 = 600 foot-pounds.

On the other hand, find the amount of work done if the weightlifter lifts the same weight

4 feet from the ground and then lowers it back into place. It may seem strange, but since

the barbell ends up in the same place as it started, the net distance covered is zero and

the work done is zero. Of course, it would feel like work to the weightlifter, but this is



418 CHAPTER 5 .. Applications of the Definite Integral 5-56

where the mathematical notion of work differs from the usual use of the word. As we

have defined it, work accounts for the energy change in the object. Since the barbell has

the same kinetic and potential energy that it started with, the total work done on it

is zero. �

In example 6.3, both the force and the distance are nonconstant. This presents some

unique challenges and we’ll need to first approximate the work and then recognize the

definite integral that this approximation process generates.

EXAMPLE 6.3 Computing the Work Required to Pump the Water
Out of a Tank

A spherical tank of radius 10 feet is filled with water. Find the work done in pumping all

of the water out through the top of the tank.

Solution The basic formula W = Fd does not directly apply here, for several reasons.

The most obvious of these is that the distance traveled by the water in each part of the

tank is different, as the water toward the bottom of the tank must be pumped all the way

to the top, while the water near the top of the tank must be pumped only a short distance.

Let x represent distance as measured from the bottom of the tank, as in Figure 5.50a.

The entire tank corresponds to the interval 0 ≤ x ≤ 20, which we partition into

0 = x0 < x1 < · · · < xn = 20,

where xi − xi−1 =  x = 20

n
, for each i = 1, 2, . . . , n. This partitions the tank into n

thin layers, each corresponding to an interval [xi−1, xi ]. (See Figure 5.50b.) You can

think of the water in the layer corresponding to [xi−1, xi ] as being approximately

cylindrical, of height  x . This layer must be pumped a distance of approximately

20 − ci , for some ci ∈ [xi−1, xi ]. Notice from Figure 5.50b that the radius of the i th

layer depends on the value of x. From Figure 5.50c (where we show a cross section of

the tank), the radius ri corresponding to a depth of x = ci is the base of a right triangle

with hypotenuse 10 and height |10 − ci |. From the Pythagorean Theorem, we now have

(10 − ci )
2 + r2

i = 102.

x   20

x   10

x   0

10

x

20   ci

x

ci

ri

 x

 10   ci  
10

x

ri ci

FIGURE 5.50a
Spherical tank

FIGURE 5.50b
The ith slice of water

FIGURE 5.50c
Cross section of tank
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Solving this for r2
i , we have

r2
i = 102 − (10 − ci )

2 = 100 −  
100 − 20ci + c2

i

 
= 20ci − c2

i .

The force Fi required to move the ith layer is then simply the force exerted on the water

by gravity (i.e., its weight). For this we will need to know the weight density of water:

62.4 lb/ft3. We now have

Fi ≈ (Volume of cylindrical slice) (weight of water per unit volume)

=  
πr2

i h
 

(62.4 lb/ft3)

= 62.4π
 
20ci − c2

i

 
 x .

The work required to pump out the ith slice is then given approximately by

Wi ≈ (Force) (distance)

= 62.4π
 
20ci − c2

i

 
 x(20 − ci )

= 62.4πci (20 − ci )
2 x .

The work required to pump out all of the water is then the sum of the work required for

each of the n slices:

W ≈
n 

i=1

62.4πci (20 − ci )
2 x .

Finally, taking the limit as n → ∞ gives the exact work, which you should recognize as

a definite integral:

W = lim
n→∞

n 
i=1

62.4πci (20 − ci )
2 x =

 20

0

62.4πx(20 − x)2 dx

= 62.4π

 20

0

(400x − 40x2 + x3) dx

= 62.4π

 
400

x2

2
− 40

x3

3
+ x4

4

 20

0

= 62.4π

 
40,000

3

 
≈ 2.61 × 106 foot-pounds.

�

Impulse is a physical quantity closely related to work. Instead of relating force and

distance to account for changes in energy, impulse relates force and time to account for

changes in velocity. First, suppose that a constant force F is applied to an object from time

t = 0 to time t = T . If the position of the object at time t is given by x(t), then Newton’s

second law says that F = ma = mx   (t). Integrating this equation once with respect to t

gives us  T

0

Fdt = m

 T

0

x   (t) dt,

or F(T − 0) = m[x  (T ) − x  (0)].

Recall that x  (t) is the velocity v(t), so that

FT = m[v(T ) − v(0)]
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or FT = m v, where  v = v(T ) − v(0) is the change in velocity. The quantity FT is

called the impulse, mv(t) is the momentum at time t and the equation relating the impulse

to the change in velocity is called the impulse-momentum equation.

Since we defined the impulse for a constant force, we must generalize the notion to

the case of a nonconstant force. Think about this and try to guess what the definition

should be.

We define the impulse J of a force F(t) applied over the time interval [a, b] to be

J =
 b

a

F(t) dt.Impulse

We leave the derivation of the impulse integral for the case of a nonconstant force as an

exercise. The impulse-momentum equation also generalizes to the case of a nonconstant

force:

J = m[v(b) − v(a)].
Impulse-momentum equation

EXAMPLE 6.4 Estimating the Impulse for a Baseball

Suppose that a baseball traveling at 130 ft/s (about 90 mph) collides with a bat. The

following data (adapted from The Physics of Baseball by Robert Adair) shows the force

exerted by the bat on the ball at 0.0001-second intervals.

t (s) 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007

F(t) (lb) 0 1250 4250 7500 9000 5500 1250 0

Estimate the impulse of the bat on the ball and (using m = 0.01 slug) the speed of the

ball after impact.

Solution In this case, the impulse J is given by
 0.0007

0
F(t) dt . Since we’re given only

a fixed number of measurements of F(t), the best we can do is approximate the integral

numerically (e.g., using Simpson’s Rule). Recall that Simpson’s Rule requires an even

number n of subintervals, which means that you need an odd number n + 1 of points in

the partition. Using n = 8 and adding a 0 function value at t = 0.0008 (why is it fair to

do this?), Simpson’s Rule gives us

J ≈ [0 + 4(1250) + 2(4250) + 4(7500) + 2(9000) + 4(5500)

+ 2(1250) + 4(0) + 0]
0.0001

3
≈ 2.867.

In this case, the impulse-momentum equation J = m v becomes 2.867 = 0.01 v or

 v = 286.7 ft/s. Since the ball started out with a speed of 130 ft/s in one direction and

it ended up moving in the opposite direction, the speed after impact is 156.7 ft/s. �

d1

m1
m2

d2

FIGURE 5.51a
Balancing two masses

The concept of the first moment, like work, involves force and distance. Moments are

used to solve problems of balance and rotation. Consider two children on a playground

seesaw (or teeter-totter). Suppose that the child on the left in Figure 5.51a is heavier (i.e.,

has larger mass) than the child on the right. If the children sit an equal distance from the

pivot point, you know what will happen: the left side will be pulled down. However, the
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children can balance each other if the heavier child moves closer to the pivot point. That is,

the balance is determined both by weight (force) and distance from the pivot point. If the

children have masses m1 and m2 and are sitting at distances d1 and d2, respectively, from

the pivot point, then they balance each other if and only if

m1d1 = m2d2. (6.3)

Let’s turn the problem around slightly. Suppose there are two objects, of mass m1 and

m2, located at x1 and x2, respectively, with x1 < x2. We consider the objects to be point-

masses. That is, each is treated as a single point, with all of the mass concentrated at that

point. (See Figure 5.51b.)

x

m1 m2

x1 x2

FIGURE 5.51b
Two point-masses

Suppose that you want to find the center of mass x̄ , that is, the location at which you

could place the pivot of a seesaw and have the objects balance. From the balance equation

(6.3), you’ll need m1(x̄ − x1) = m2(x2 − x̄). Solving this equation for x̄ gives us

x̄ = m1x1 + m2x2

m1 + m2

.

Notice that the denominator in this equation is the total mass of the “system” (i.e., the total

mass of the two objects). The numerator of this expression is called the first moment of

the system.

More generally, for a system of n masses m1,m2, . . . ,mn , located at x = x1,

x2, . . . , xn , respectively, the center of mass x̄ is given by the first moment divided by

the total mass, that is,

x̄ = m1x1 + m2x2 + · · · + mn xn

m1 + m2 + · · · + mn

.Center of mass

Now, suppose that we wish to find the mass and center of mass of an object of variable

density that extends from x = a to x = b. Here, we assume that the density function ρ(x)

(measured in units of mass per unit length) is known. Note that if the density is a constant

ρ, the mass of the object is simply given by m = ρL , where L = b − a is the length of the

object. On the other hand, if the density varies throughout the object, we can approximate

the mass by dividing the interval [a, b] into n pieces of equal width  x = b − a

n
. On

each subinterval [xi−1, xi ], the mass is approximately ρ(ci ) x , where ci is a point in the

subinterval. The total mass is then approximately

m ≈
n 

i=1

ρ(ci ) x .

You should recognize this as a Riemann sum, which approaches the total mass as n → ∞,

m = lim
n→∞

n 
i=1

ρ(ci ) x =
 b

a

ρ(x) dx . (6.4)Mass
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EXAMPLE 6.5 Computing the Mass of a Baseball Bat

A 30-inch baseball bat can be represented approximately by an object extending

from x = 0 to x = 30 inches, with density ρ(x) =  
1

46
+ x

690

 2
slugs per inch. The density

takes into account the fact that a baseball bat is similar to an elongated cone.

Find the mass of the object.

Solution From (6.4), the mass is given by

m =
 30

0

 
1

46
+ x

690

 2

dx

= 690

3

 
1

46
+ x

690

 3     30

0

= 690

3

, 
1

46
+ 30

690

 3

−
 

1

46

 3
-

≈ 6.144 × 10−2 slug.

To compute the weight (in ounces), multiply the mass by 32 · 16. The bat weighs roughly

31.5 ounces. �

To compute the first moment for an object of nonconstant density ρ(x) extending from

x = a to x = b, we again divide the interval into n equal pieces. From our earlier argument,

for each i = 1, 2, . . . , n, the mass of the ith slice of the object is approximately ρ(ci ) x ,

for any choice of ci ∈ [xi−1, xi ]. We then represent the ith slice of the object with a particle

of mass mi = ρ(ci ) x located at x = ci . We can now think of the original object as having

been approximated by n distinct point-masses, as indicated in Figure 5.52.

x

m1 m4

c1

m2

c2

m3

c3 c4

m5

c5

m6

c6

FIGURE 5.52
Six point-masses

Notice that the first moment Mn of this approximate system is

Mn = [ρ(c1) x]c1 + [ρ(c2) x]c2 + · · · + [ρ(cn) x]cn

= [c1ρ(c1) + c2ρ(c2) + · · · + cnρ(cn)] x =
n 

i=1

ciρ(ci ) x .

Taking the limit as n → ∞, the sum approaches the first moment

M = lim
n→∞

n 
i=1

ciρ(ci ) x =
 b

a

xρ(x) dx . (6.5)First moment

The center of mass of the object is then given by

x̄ = M

m
=

 b

a

xρ(x) dx b

a

ρ(x) dx

. (6.6)Center of mass
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EXAMPLE 6.6 Finding the Center of Mass (Sweet Spot)
of a Baseball Bat

Find the center of mass of the baseball bat from example 6.5.

Solution From (6.5), the first moment is given by

M =
 30

0

x

 
1

46
+ x

690

 2

dx =
 

x2

4232
+ x3

47,610
+ x4

1,904,400

 30

0

≈ 1.205.

Recall that we had already found the mass to be m ≈ 6.144 × 10−2 slug and so, from

(6.6), the center of mass of the bat is

x̄ = M

m
≈ 1.205

6.144 × 10−2
≈ 19.6 inches.

Note that for a baseball bat, the center of mass is one candidate for the so-called “sweet

spot” of the bat, the best place to hit the ball. �

For our final application of integration in this section, we consider hydrostatic force.

Imagine a dam holding back a lake full of water. What force must the dam withstand?

As usual, we solve a simpler problem first. If you have a flat rectangular plate oriented

horizontally underwater, notice that the force exerted on the plate by the water (the hydro-

static force) is simply the weight of the water lying above the plate. This is the product of

the volume of the water lying above the plate and the weight density of water (62.4 lb/ft3).

If the area of the plate is A ft2 and it lies d ft below the surface (see Figure 5.53), then the

force on the plate is

F = 62.4Ad.

Hoover Dam

Depth   d

A

FIGURE 5.53
A plate of area A submerged

to depth d

According to Pascal’s Principle, the pressure at a given depth d in a fluid is the same in all

directions. This says that if a flat plate is submerged in a fluid, then the pressure on one side

of the plate at any given point is ρ · d , where ρ is the weight density of the fluid and d is the

depth. In particular, this says that it’s irrelevant whether the plate is submerged vertically,

horizontally or otherwise. (See Figure 5.54.)

Consider now a vertically oriented wall (a dam) holding back a lake. It is convenient to

orient the x-axis vertically with x = 0 located at the surface of the water and the bottom of the

wall at x = a > 0. (See Figure 5.55.) In this way, x measures the depth of a section of the dam.

Suppose w(x) is the width of the wall at depth x (where all distances are measured in feet).

a

b c
Depth   d

FIGURE 5.54
Pressure at a given depth is the

same, regardless of the orientation

x

y

a

w (ci)

xi

 x

x i 1

FIGURE 5.55
Force acting on a dam
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Partition the interval [0, a] into n subintervals of equal width x = a
n

. This has the effect

of slicing the dam into n slices, each of width  x . For each i = 1, 2, . . . , n, observe that

the area of the ith slice is approximatelyw(ci ) x , where ci is some point in the subinterval

[xi−1, xi ]. Further, the depth at every point on this slice is approximately ci . We can then

approximate the force Fi acting on this slice of the dam by the weight of the water lying

above a plate the size of this portion but which is oriented horizontally:

Fi ≈ 62.4    
weight density

w(ci )    
length

 x    
width

ci    
depth

= 62.4 ciw(ci ) x .

Adding together the forces acting on each slice, the total force F on the dam is approximately

F ≈
n 

i=1

62.4ciw(ci ) x .

Recognizing this as a Riemann sum and taking the limit as n → ∞, we obtain the total

hydrostatic force on the dam,

F = lim
n→∞

n 
i=1

62.4ciw(ci ) x =
 a

0

62.4xw(x) dx . (6.7)

EXAMPLE 6.7 Finding the Hydrostatic Force on a Dam

A dam is shaped like a trapezoid with height 60 ft. The width at the top is 100 ft and the

width at the bottom is 40 ft. (See Figure 5.56.) Find the maximum hydrostatic force that

the dam will need to withstand. Find the hydrostatic force if a drought lowers the water

level by 10 ft.

x

100   x

60

y

FIGURE 5.56
Trapezoidal dam

Solution Notice that the width function is a linear function of depth with w(0) = 100

and w(60) = 40. The slope is then 60
−60

= −1 and so, w(x) = 100 − x . From (6.7), the

hydrostatic force is then

F =
 60

0

62.4    
weight density

x    
depth

(100 − x)    
width

dx

= 3120x2 − 62.4
x3

3

     
60

0

= 6,739,200 lb.
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If the water level dropped 10 ft, the width of the dam at the water level would be 90 ft.

Lowering the origin by 10 ft, the new width function satisfies w(0) = 90 and

w(50) = 40. The slope is still −1 and so, the width is given by w(x) = 90 − x . From

(6.7), the hydrostatic force is now

F =
 50

0

62.4    
weight density

x    
depth

(90 − x)    
width

dx

= 2808x2 − 62.4
x3

3

    50

0

= 4,420,000 lb.

Notice that this represents a reduction in force of over 34%. �

EXERCISES 5.6

WRITING EXERCISES

1. For each of work, impulse and the first moment: identify the

quantities in the definition (e.g., force and distance) and the

calculations for which it is used (e.g., change in velocity).

2. The center of mass is not always the location at which half the

mass is on one side and half the mass is on the other side. Give

an example where more than half the mass is on one side (see

examples 6.5 and 6.6) and explain why the object balances at

the center of mass.

3. People who play catch have a seemingly instinctive method

of pulling their hand back as they catch the ball. To catch a

ball, you must apply an impulse equal to the mass times ve-

locity of the ball. By pulling your hand back, you increase

the amount of time in which you decelerate the ball. Use the

impulse-momentum equation to explain why this reduces the

average force on your hand.

4. A tennis ball comes toward you at 100 mph. After you hit the

ball, it is moving away from you at 100 mph. Work measures

changes in energy. Explain why work has been done by the

tennis racket on the ball even though the ball has the same

speed before and after the hit.

1. A force of 5 pounds stretches a spring 4 inches. Find the work

done in stretching this spring 6 inches beyond its natural length.

2. A force of 10 pounds stretches a spring 2 inches. Find the work

done in stretching this spring 3 inches beyond its natural length.

3. A weightlifter lifts 250 pounds a distance of 20 inches. Find

the work done (as measured in foot-pounds).

4. A wrestler lifts his 300-pound opponent overhead, a height of

6 feet. Find the work done (as measured in foot-pounds).

5. A rocket full of fuel weighs 10,000 pounds at launch. After

launch, the rocket gains altitude and loses weight as the fuel

burns. Assume that the rocket loses 1 pound of fuel for

every 15 feet of altitude gained. Explain why the work

done raising the rocket to an altitude of 30,000 feet is 30,000

0
(10,000 − x/15) dx and compute the integral.

6. Referring to exercise 5, suppose that a rocket weighs

8000 pounds at launch and loses 1 pound of fuel for every

10 feet of altitude gained. Find the work needed to raise the

rocket to a height of 10,000 feet.

7. Suppose that a car engine exerts a force of 800x(1 − x) pounds

when the car is at position x miles, 0 ≤ x ≤ 1. Compute the

work done.

8. Horsepower measures the rate of work done as a function

of time. For the situation in exercise 7, explain why this

is not equal to 800x(1 − x). If the car in exercise 7 takes

80 seconds to travel the mile, compute the average horsepower

(1 hp = 550 ft-lb/s).

9. A water tower is spherical in shape with radius 50 feet, extend-

ing from 200 feet to 300 feet above ground. Compute the work

done in filling the tank from the ground.

10. Compute the work done in filling the tank of exercise 9 halfway.

11. Compute the work done in pumping half of the water out of

the top of the tank in example 6.3.

12. A water tank is in the shape of a right circular cone of altitude

10 feet and base radius 5 feet, with its vertex at the ground.

(Think of an ice cream cone with its point facing down.) If the

tank is full, find the work done in pumping all of the water out

the top of the tank.

13. Two laborers share the job of digging a rectangular hole 10 feet

deep. The dirt from the hole is cleared away by other laborers.

Assuming a constant density of dirt, how deep should the first

worker dig to do half the work? Explain why 5 feet is not the

answer.
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14. A trough is to be dug 6 feet deep. Cross sections have the

shape and are 2 feet wide at the bottom and 5 feet wide at

the top. Find the depth at which half the work has been done.

15. In example 6.4, suppose that the baseball was traveling at

100 ft/s. The force exerted by the bat on the ball would change

to the values in the table. Estimate the impulse and the speed

of the ball after impact.

t (s) 0 0.0001 0.0002 0.0003 0.0004

F (lb) 0 1000 2100 4000 5000

t (s) 0.0005 0.0006 0.0007 0.0008

F (lb) 5200 2500 1000 0

16. In exercise 15, suppose that the baseball was traveling at 85 ft/s.

The force exerted by the bat on the ball would change to the

values in the table. Estimate the impulse and the speed of the

ball after impact.

t (s) 0 0.0001 0.0002 0.0003 0.0004

F (lb) 0 600 1200 2000 2500

t (s) 0.0005 0.0006 0.0007 0.0008

F (lb) 3000 2500 1100 300

17. A crash test is performed on a vehicle. The force of the wall on

the front bumper is shown in the table. Estimate the impulse

and the speed of the vehicle (use m = 200 slugs).

t (s) 0 0.1 0.2 0.3 0.4 0.5 0.6

F (lb) 0 8000 16,000 24,000 15,000 9000 0

18. Two football players collide. The force of the defensive player

on the offensive player is given in the table. Estimate the im-

pulse. If the offensive player has mass m = 7 and velocity of

29 ft/s before the collision, does the defensive player stop the

offensive player?

t (s) 0 0.1 0.2 0.3 0.4 0.5

F (lb) 0 300 500 400 250 150

t (s) 0.6 0.7 0.8 0.9 1.0

F (lb) 100 100 80 40 0

19. A thrust-time curve f (t) = 66t

t2+9
for a model rocket is shown.

Compute the maximum thrust. Estimate the impulse.

t

y

5

60 1.25 2.5 3.75 5

10

20. A thrust-time curve for a model rocket is shown. Compute the

impulse. Comparing your answer to exercise 19, which rocket

would reach a higher altitude?

t

y

5

60 3

15

10

21. Compute the mass and center of mass of an object with density

ρ(x) = x

6
+ 2 kg/m, 0 ≤ x ≤ 6. Briefly explain in terms of the

density function why the center of mass is not at x = 3.

22. Compute the mass and center of mass of an object with density

ρ(x) = 3 − x

6
kg/m, 0 ≤ x ≤ 6. Briefly explain in terms of the

density function why the center of mass is not at x = 3.

23. Compute the weight in ounces of an object extending from

x = −3 to x = 27 with density ρ(x) =
 

1

46
+ x + 3

690

 2

slugs/in.

24. Compute the weight in ounces of an object extending from

x = 0 to x = 32 with density ρ(x) =
 

1

46
+ x + 3

690

 2

slugs/in.

25. Compute the center of mass of the object in exercise 23. This

object models the baseball bat of example 6.5 “choked up”

(held 3 inches up the handle). Compare the masses and centers

of mass of the two bats.

26. Compute the center of mass of the object in exercise 24. This

object models a baseball bat that is 2 inches longer than the

bat of example 6.5. Compare the masses and centers of mass

of the two bats.

27. Compute the mass and weight in ounces and center of mass

of an object extending from x = 0 to x = 30 with density

ρ(x) = 0.00468

 
3

16
+ x

60

 
slugs/in.

28. The object in exercise 27 models an aluminum baseball bat

(hollow and 1

4
inch thick). Compare the mass and center of

mass to the wooden bat of example 6.5. Baseball experts claim

that it is easier to hit an inside pitch (small x value) with an

aluminum bat. Explain why your calculations indicate that this

is true.

29. The accompanying figure shows the outline of a model rocket.

Assume that the vertical scale is 3 units high and the horizontal

scale is 6 units wide. Use basic geometry to compute the area

of each of the three regions of the rocket outline. Assuming a
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constant densityρ, locate the x-coordinate of the center of mass

of each region. (Hint: The first region can be thought of as ex-

tending from x = 0 to x = 1 with density ρ(3 − 2x). The third

region extends from x = 5 to x = 6 with density ρ(6 − x).)

30. For the model rocket in exercise 29, replace the rocket with

3 particles, one for each region. Assume that the mass of each

particle equals the area of the region and the location of the

particle on the x-axis equals the center of mass of the region.

Find the center of mass of the 3-particle system. [Rockets are

designed with bottom fins large enough that the center of mass

is shifted near the bottom (or, in the figure here, left) of the

rocket. This improves the flight stability of the rocket.]

In exercises 31–34, find the centroid of each region. The centroid

is the center of mass of a region with constant density. (Hint:

Modify (6.6) to find the y-coordinate y.)

31. The triangle with vertices (0, 0), (4, 0) and (4, 6)

32. The rhombus with vertices (0, 0), (3, 4), (8, 4) and (5, 0)

33. The region bounded by y = 4 − x2 and y = 0

34. The region bounded by y = x, y = −x and x = 4

35. A dam is in the shape of a trapezoid with height 60 feet. The

width at the top is 40 feet and the width at the bottom is 100 feet.

Find the maximum hydrostatic force the wall would need to

withstand. Explain why the force is so much greater than the

force in example 6.7.

36. Find the maximum hydrostatic force in exercise 35 if a drought

lowers the water level by 10 feet.

37. An underwater viewing window is installed at an aquarium.

The window is circular with radius 5 feet. The center of the

window is 40 feet below the surface of the water. Find the

hydrostatic force on the window.

38. An underwater viewing window is rectangular with width

40 feet. The window extends from the surface of the water

to a depth of 10 feet. Find the hydrostatic force on the window.

39. The camera’s window on a robotic submarine is circular with

radius 3 inches. How much hydrostatic force would the window

need to withstand to descend to a depth of 1000 feet?

40. A diver wears a watch to a depth of 60 feet. The face of the

watch is circular with a radius of 1 inch. How much hydrostatic

force will the face need to withstand if the watch is to keep on

ticking? Give answers using the following two assumptions:

(a) the watch is vertical with its top at 60 feet; (b) the watch is

horizontal at 60 feet.

41. In the text, we mentioned that work measures changes in

energy. For example, a 200-pound pole vaulter is propelled

by a pole to a height of 20 feet. The work done by the pole,

equal to 4000 ft-lb, gives the vaulter a large potential en-

ergy. To see what this means, compute the speed v of the

vaulter when he reaches the ground. Show that the kinetic

energy at impact, given by 1

2
mv2 (m = 200/32), also equals

4000 ft-lb. This illustrates the concept of conservation of

energy.

42. Compute the speed of the falling vaulter in exercise 41 at

the 10-foot mark. Show that the sum of the potential energy

(32mh) and the kinetic energy ( 1

2
mv2) equals 4000 ft-lb.

43. Given that power is the product of force and velocity, compute

the horsepower needed to lift a 100-ton object such as a blue

whale at 20 mph (1 hp = 550 ft-lb/s). (Note that blue whales

swim so efficiently that they can maintain this speed with an

output of 60–70 hp.)

44. For a constant force F exerted over a length of time t, impulse

is defined by F · t . For a variable force F(t), derive the impulse

formula J =  b

a
F(t) dt .

45. The first moment of a solid of density ρ(x) is
 b

a
xρ(x) dx . The

second moment about the y-axis, defined by
 b

a
x2ρ(x) dx ,

is also important in applications. The larger this number

is, the more difficult it is to rotate the solid about the

y-axis. Compute the second moments of the baseball bats

in example 6.5 and exercise 23. Choking up on a bat makes

it easier to swing (and control). Compute the percentage

by which the second moment is reduced by choking up

3 inches.

46. Occasionally, baseball players illegally “cork” their bats by

drilling out a portion of wood from the end of the bats and fill-

ing the hole with a light substance such as cork. The advantage

of this procedure is that the second moment is significantly

reduced. To model this, take the bat of example 6.5 and change

the density to

ρ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

 
1

46
+ x

690

 2

if 0 ≤ x ≤ 28 
1

92
+ x

690

 2

if 28 < x ≤ 30,

representing a hole of radius 1

4
  and length 2  . Compute the

mass and second moment of the corked bat and compare to

the original bat.

47. The second moment (see exercise 45) of a disk of den-

sity ρ in the shape of the ellipse x2

a2 + y2

b2 = 1 is given by a

−a
2ρbx2

 
1− x2

a2 dx . Use your CAS to evaluate this integral.

48. Use the result from exercise 47 to show that the second mo-

ment of the tennis racket head in the diagram (on the following

page) is M = ρ π
4

[ba3 − (b − w)(a − w)3].
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y

b

a x
a w

b w

49. For tennis rackets, a large second moment (see exercises 47

and 48) means less twisting of the racket on off-center shots.

Compare the second moment of a wooden racket (a = 9,

b = 12, w = 0.5), a midsize racket (a = 10, b = 13, w = 0.5)

and an oversized racket (a = 11, b = 14, w = 0.5).

50. Let M be the second moment found in exercise 48. Show that
d M

da
> 0 and conclude that larger rackets have larger second

moments. Also, show that
d M

dw
> 0 and interpret this result.

EXPLORATORY EXERCISES

1. As equipment has improved, heights cleared in the pole vault

have increased. A crude estimate of the maximum pole vault

possible can be derived from conservation of energy princi-

ples. Assume that the maximum speed a pole-vaulter could run

carrying a long pole is 25 mph. Convert this speed to ft/s. The

kinetic energy of this vaulter would be 1

2
mv2. (Leave m as an

unknown for the time being.) This initial kinetic energy would

equal the potential energy at the top of the vault minus what-

ever energy is absorbed by the pole (which we will ignore).

Set the potential energy, 32mh, equal to the kinetic energy and

solve for h. This represents the maximum amount the vaulter’s

center of mass could be raised. Add 3 feet for the height of

the vaulter’s center of mass and you have an estimate of the

maximum vault possible. Compare this to Sergei Bubka’s 1994

world record vault of 20 1 3

4

  
.

2. An object will remain on a table as long as the center of mass

of the object lies over the table. For example, a board of length

1 will balance if half the board hangs over the edge of the table.

Show that two homogeneous boards of length 1 will balance

if 1

4
of the first board hangs over the edge of the table and 1

2
of

the second board hangs over the edge of the first board. Show

that three boards of length 1 will balance if 1

6
of the first board

hangs over the edge of the table, 1

4
of the second board hangs

over the edge of the first board and 1

2
of the third board hangs

over the edge of the second board. Generalize this to a pro-

cedure for balancing n boards. How many boards are needed

so that the last board hangs completely over the edge of the

table?

L

2
L

4

. . .

Review Exercises

WRITING EXERCISES

The following list includes terms that are defined and theorems that

are stated in this chapter. For each term or theorem, (1) give a precise

definition or statement, (2) state in general terms what it means and

(3) describe the types of problems with which it is associated.

Volume by slicing Volume by disks Volume by washers

Volume by shells Arc length Surface area

Newton’s second law Work Impulse

Center of mass

TRUE OR FALSE

State whether each statement is true or false and briefly explain

why. If the statement is false, try to “fix it” by modifying the given

statement to a new statement that is true.

1. The area between f and g is given by
 b

a
[ f (x) − g(x)] dx .

2. The method of disks is a special case of volume by slicing.

3. For a given region, the methods of disks and shells will always

use different variables of integration.
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Review Exercises

4. A Riemann sum for arc length always gives an approximation

that is too large.

5. For most functions, the integral for arc length can be evaluated

exactly.

6. The only force on a projectile is gravity.

7. For two-dimensional projectile motion, you can always solve

for x(t) and y(t) independently.

8. The more you move an object, the more work you have done.

In exercises 1–8, find the indicated area exactly if possible (esti-

mate if necessary).

1. The area between y = x2 + 2 and y = sin x for 0 ≤ x ≤ π
2. The area between y = sin x and y = cos x for 0 ≤ x ≤ π/2
3. The area between y = x3 and y = 2x2 − x

4. The area between y = x2 − 3 and y = −x2 + 5

5. The area between y = x2 − 2 and y = 2 − x2

6. The area between x = y2 and y = 1 − x

7. The area of the region bounded by y = x2, y = 2 − x and

y = 0

8. The area of the region bounded by y = x2, y = 0 and x = 2

9. A town has a population of 10,000 with a birthrate of 10 + 2t

people per year and a death rate of 4 + t people per year. Com-

pute the town’s population after 6 years.

10. From the given data, estimate the area between the curves for

0 ≤ x ≤ 2.

x 0.0 0.2 0.4 0.6 0.8 1.0

f (x) 3.2 3.6 3.8 3.7 3.2 3.4

g(x) 1.2 1.5 1.6 2.2 2.0 2.4

x 1.2 1.4 1.6 1.8 2.0

f (x) 3.0 2.8 2.4 2.9 3.4

g(x) 2.2 2.1 2.3 2.8 2.4

11. Find the volume of the solid with cross-sectional area

A(x) = π (3 + x)2 for 0 ≤ x ≤ 2.

12. A swimming pool viewed from above has an outline given by

y = ±(5 + x) for 0 ≤ x ≤ 2. The depth is given by 4 + x (all

measurements in feet). Compute the volume.

13. The cross-sectional areas of an underwater object are given.

Estimate the volume.

x 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

A(x) 0.4 1.4 1.8 2.0 2.1 1.8 1.1 0.4 0

In exercises 14–18, find the volume of the indicated solid

of revolution.

14. The region bounded by y = x2, y = 0 and x = 1 revolved

about (a) the x-axis; (b) the y-axis; (c) x = 2; (d) y = −2

15. The region bounded by y = x2 and y = 4 revolved about (a) the

x-axis; (b) the y-axis; (c) x = 2; (d) y = −2

16. The region bounded by y = x, y = 2x and x = 2 revolved

about (a) the x-axis; (b) the y-axis; (c) x = −1; (d) y = 4

17. The region bounded by y = x, y = 2 − x and y = 0 revolved

about (a) the x-axis; (b) the y-axis; (c) x = −1; (d) y = 4

18. The region bounded by x = 4 − y2 and x = y2 − 4 revolved

about (a) the x-axis; (b) the y-axis; (c) x = 4; (d) y = 4

In exercises 19–22, set up an integral for the arc length and

numerically estimate the integral.

19. The portion of y = x4 for −1 ≤ x ≤ 1

20. The portion of y = x2 + x for −1 ≤ x ≤ 0

21. The portion of y = √
x + 1 for 0 ≤ x ≤ 3

22. The portion of y = sin 2x for 0 ≤ x ≤ π

In exercises 23 and 24, set up an integral for the surface area

and numerically estimate the integral.

23. The surface generated by revolving y = 1 − x2, 0 ≤ x ≤ 1,

about the x-axis

24. The surface generated by revolving y = x3, 0 ≤ x ≤ 1, about

the x-axis

In exercises 25–32, ignore air resistance.

25. A diver drops from a height of 64 feet. What is the velocity at

impact?

26. If the diver in exercise 25 has an initial upward velocity of

4 ft/s, what will be the impact velocity?

27. An object is launched from the ground at an angle of 20◦ with

an initial speed of 48 ft/s. Find the time of flight and the hori-

zontal range.

28. Repeat exercise 27 for an object launched from a height of

6 feet.
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Review Exercises

29. A football is thrown from a height of 6 feet with initial speed

80 ft/s at an angle of 8◦. A person stands 40 yards downfield

in the direction of the throw. Is it possible to catch the ball?

30. Repeat exercise 29 with a launch angle of 24◦. By trial and

error, find the range of angles (rounded to the nearest degree)

that produce a catchable throw.

31. Find the initial velocity needed to propel an object to a height

of 128 feet. Find the object’s velocity at impact.

32. A plane at an altitude of 120 ft drops supplies to a location on

the ground. If the plane has a horizontal velocity of 100 ft/s,

how far from the target should the supplies be released?

33. A force of 60 pounds stretches a spring 1 foot. Find the work

done to stretch the spring 8 inches beyond its natural length.

34. A car engine exerts a force of 800 + 2x pounds when the car is

at position x miles. Find the work done as the car moves from

x = 0 to x = 8.

35. Compute the mass and center of mass of an object with density

ρ(x) = x2 − 2x + 8 for 0 ≤ x ≤ 4. Explain why the center of

mass is not at x = 2.

36. Compute the mass and center of mass of an object with density

ρ(x) = x2 − 2x + 8 for 0 ≤ x ≤ 2. Explain why the center of

mass is at x = 1.

37. A dam has the shape of a trapezoid with height 80 feet. The

width at the top of the dam is 60 feet and the width at the

bottom of the dam is 140 feet. Find the maximum hydrostatic

force that the dam will need to withstand.

38. An underwater viewing window is a rectangle with width

20 feet extending from 5 feet below the surface to 10 feet

below the surface. Find the maximum hydrostatic force that

the window will need to withstand.

39. The force exerted by a bat on a ball over time is shown in the

table. Use the data to estimate the impulse. If the ball (mass

m = 0.01 slug) had speed 120 ft/s before the collision, estimate

its speed after the collision.

t (s) 0 0.0001 0.0002 0.0003 0.0004

F(t) (lb) 0 800 1600 2400 3000

t (s) 0.0005 0.0006 0.0007 0.0008

F(t) (lb) 3600 2200 1200 0

40. If a wall applies a force of f (t) = 3000t(2 − t) pounds to a car

for 0 ≤ t ≤ 2, find the impulse. If the car (mass m = 100 slugs)

is motionless after the collision, compute its speed before the

collision.

EXPLORATORY EXERCISES

1. As indicated in section 5.5, general formulas can be derived

for many important quantities in projectile motion. For an ob-

ject launched from the ground at angle θ0 with initial speed

v0 ft/s, find the horizontal range R ft and use the trig iden-

tity sin(2θ0) = 2 sin θ0 cos θ0 to show that R = v2
0 sin (2θ0)

32
.

Conclude that the maximum range is achieved with angle

θ0 = π/4 (45◦).

2. To follow up on exploratory exercise 1, suppose that the ground

makes an angle of A◦ with the horizontal. If A > 0 (i.e., the

projectile is being launched uphill), explain why the maximum

range would be achieved with an angle larger than 45◦. If A < 0

(launching downhill), explain why the maximum range would

be achieved with an angle less than 45◦. To determine the ex-

act value of the optimal angle, first argue that the ground can

be represented by the line y = (tan A)x . Show that the pro-

jectile reaches the ground at time t = v0

sin θ0 − tan A cos θ0

16
.

Compute x(t) for this value of t and use a trig identity to re-

place the quantity sin θ0 cos A − sin A cos θ0 with sin(θ0 − A).

Then use another trig identity to replace cos θ0 sin(θ0 − A) with

sin(2θ0 − A) − sin A. At this stage, the only term involving θ0

will be sin(2θ0 − A). To maximize the range, maximize this

term by taking θ0 = π

4
+ 1

2
A.
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Exponentials, Logarithms and
Other Transcendental Functions

The International Space Station is one of the most ambitious engineering

projects ever undertaken. A construction project in space offers a few ad-

vantages over construction on Earth. For instance, the weightlessness and

lack of atmospheric conditions reduce the need for structural strength. In

fact, the International Space Station could not support its own weight if

it were constructed on Earth! The light weight beams holding the sta-

tion’s solar panels are long, yet relatively thin and flexible. Unfor-

tunately, the great length and flexibility can allow a minor tremor to

magnify into a dangerous vibration, due to the phenomenon of reso-

nance. Consequently, this design requires a system to maintain the sta-

bility of the structure. This is one area where calculus plays a critical role

in the design of the space station.

You can think of this stability problem by

imagining yourself operating a joystick, where

moving the joystick applies a force at one of the

beam’s joints. The goal is to apply the appro-

priate forces to keep the beam from vibrating.

For instance, if the beam starts moving to the

left, you might move your joystick to the right,

applying an opposing force. Think of this as

a mathematical function; you supply the input

(the force) that determines the output (the mo-

tion of the beam). Your task is then to solve

an inverse problem. That is, given the desired

output (stability), you must determine the cor-

rect input (force) that produces it. We discuss inverse functions in section 6.2. In

the remainder of this chapter, we define several new functions that are essential to

engineers investigating the stability of structures.

International Space Station

6.1 THE NATURAL LOGARITHM

At some point or other prior to your study of calculus, you likely encountered the

natural logarithm. The standard precalculus definition is that the natural logarithm

431
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is the ordinary logarithm with base e. That is,

ln x = loge x,

where e is a (so far) mysterious transcendental number, whose approximate value is given as

e ≈ 2.71828. . . . So, why would a logarithm with a transcendental base be called natural?

Further, why would anyone be interested in such a seemingly unusual function? We will

resolve both of these questions in this section.

First, recall the power rule for integrals,

 
xn dx =

xn+1

n + 1
+ c, for n  = −1.

Of course, this rule doesn’t hold for n = −1, since this would result in division by zero.

Then, what can we say about
 

1

x
dx?

From Theorem 4.1 in Chapter 4, we know that since f (x) = 1
x

is continuous for x  = 0,

it must be integrable on any interval not including x = 0. (But, how do we find its an-

tiderivative?) Notice, that by Part II of the Fundamental Theorem of Calculus,

 x

1

1

t
dt

is an antiderivative of 1
x

for x > 0. We give this new (and naturally arising) function a name

in Definition 1.1.

DEFINITION 1.1

For x > 0, we define the natural logarithm function, denoted ln x , by

ln x =

 x

1

1

t
dt.

y

y ⫽ Q

t
1 2 x 3 4

2

1

3

4

t

A

FIGURE 6.1a

ln x (x > 1)

y

y ⫽ Q

t
1 2x 3 4

2

1

3

4

t

A

FIGURE 6.1b

ln x(0 < x < 1)

We’ll see later in this chapter that this definition is, in fact, consistent with your previous

understanding of ln x . First, let’s interpret this function graphically. Notice that for x > 1,

this definite integral corresponds to the area A under the curve y = 1
t

from 1 to x, as indicated

in Figure 6.1a. That is,

ln x =

 x

1

1

t
dt = A > 0.

Similarly, for 0 < x < 1, notice from Figure 6.1b that for the area A under the curve y = 1
t

from x to 1, we have

ln x =

 x

1

1

t
dt = −

 1

x

1

t
dt = −A < 0.

Using Definition 1.1, we get by Part II of the Fundamental Theorem of Calculus that

d

dx
ln x =

d

dx

 x

1

1

t
dt =

1

x
, for x > 0. (1.1)

We illustrate this new derivative formula in example 1.1.
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EXAMPLE 1.1 Differentiating a Logarithm

Find the derivative of ln(x3 + 7x2).

Solution Using the chain rule and (1.1), we have

d

dx
ln(x3 + 7x2) =

 
1

x3 + 7x2

 
d

dx
(x3 + 7x2)

=
 

1

x3 + 7x2

 
(3x2 + 14x).

�

Now, note that ln |x | is defined for x  = 0. For x > 0, ln |x | = ln x and hence,

d

dx
ln |x | = d

dx
ln x = 1

x
.

Similarly, for x < 0, ln |x | = ln(−x), and hence,

d

dx
ln |x | = d

dx
ln(−x)

= 1

−x

d

dx
(−x) By the chain rule.

= 1

−x
(−1) = 1

x
.

Notice that we got the same derivative in either case. This proves Theorem 1.1.

THEOREM 1.1

For x  = 0,
d

dx
ln |x | = 1

x
.

EXAMPLE 1.2 The Derivative of the Log of an Absolute Value

For any x for which tan x  = 0, evaluate
d

dx
ln | tan x |.

Solution From Theorem 1.1 and the chain rule, we have

d

dx
ln | tan x | = 1

tan x

d

dx
tan x

= 1

tan x
sec2 x .

�

Of course, with the new differentiation rule in Theorem 1.1, we get a new integration

rule.

COROLLARY 1.1

For x  = 0,  
1

x
dx = ln |x | + c.

Corollary 1.1 is a very common integration rule. We illustrate this in example 1.3.
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EXAMPLE 1.3 Two Integrals Involving Logarithms

Evaluate the integrals (a)

 
x2

x3 + 7
dx and (b)

 
tan x dx .

Solution For (a), notice that the numerator is nearly the derivative of the denominator:

d

dx
(x3 + 7) = 3x2.

This suggests the substitution u = x3 + 7, so that du = 3x2 dx . We now have 
x2

x3 + 7
dx = 1

3

 
3x2

x3 + 7
dx

= 1

3

 
1

u
du = 1

3
ln |u| + c

= 1

3
ln |x3 + 7| + c.

For (b), we must first rewrite the integrand in terms of sin x and cos x , to reveal 
tan x dx =

 
sin x

cos x
dx .

Here, you should quickly observe that setting u = cos x gives us du = − sin x dx , so that 
tan x dx = −

 − sin x

cos x
dx = −

 
1

u
du

= − ln |u| + c = − ln | cos x | + c. �

HISTORICAL
NOTE

John Napier (1550–1617)

A Scottish nobleman and inventor

who developed the concept of

the logarithm and constructed the

first table of logarithm values. He

invented a number of useful

techniques for working with large

numbers, including logarithms and

a calculation device sometimes

called “Napier’s bones” that can

be used for multiplication and the

estimation of square roots and

cube roots. Napier also

popularized the use of the decimal

point for representing fractions.

Notice that since ln x is defined by a definite integral, we can use Simpson’s Rule (or

any other convenient numerical integration method) to compute approximate values of the

function. For instance,

ln 2 =
 2

1

1

t
dt ≈ 0.693147

and ln 3 =
 3

1

1

t
dt ≈ 1.09861.

We leave these approximations as exercises. (You should also check the values with the ln

key on your calculator.)

We now briefly sketch a graph of y = ln x . As we’ve already observed, the domain of

f (x) = ln x is (0,∞). Further, recall that

ln x

⎧⎨
⎩
< 0 for 0 < x < 1

= 0 for x = 1

> 0 for x > 1

and that f  (x) = 1

x
> 0, for x > 0,

so that f is increasing throughout its domain. Next,

f   (x) = − 1

x2
< 0, for x > 0,



6-5 SECTION 6.1 .. The Natural Logarithm 435

and hence, the graph is concave down everywhere. You can easily use Simpson’s Rule or

the Trapezoidal Rule (this is left as an exercise) to make the conjectures

lim
x→∞

ln x = ∞ (1.2)

and lim
x→0+

ln x = −∞. (1.3)

We postpone the proof of (1.2) until after Theorem 1.2. The proof of (1.3) is left as an

exercise. We now obtain the graph shown in Figure 6.2.

y

x

1 2 3 4 5

2

1

⫺1

⫺2

⫺3

FIGURE 6.2
y = ln x

Now, it remains for us to explain why this function should be called a logarithm. The

answer is simple: it satisfies all of the properties satisfied by other logarithms. Since ln x

behaves like any other logarithm, we call it (what else?) a logarithm. We summarize this in

Theorem 1.2.

THEOREM 1.2

For any real numbers a, b > 0 and any rational number r,

(i) ln 1 = 0

(ii) ln(ab) = ln a + ln b

(iii) ln
 
a
b

 = ln a − ln b and

(iv) ln(ar ) = r ln a.

PROOF

(i) By definition,

ln 1 =
 1

1

1

t
dt = 0.

(ii) Also from the definition, we have

ln(ab) =
 ab

1

1

t
dt =

 a

1

1

t
dt +

 ab

a

1

t
dt,

from part (ii) of Theorem 4.2 in section 4.4. Make the substitution u = t
a

in the last integral

only. This gives us du = 1
a
dt . Finally, the limits of integration must be changed to reflect

the new variable (when t = a, we have u = a
a

= 1 and when t = ab, we have u = ab
a

= b),

to yield

ln(ab) =
 a

1

1

t
dt +

 ab

a

a

t    
1
u

1

a
dt    

du

=
 a

1

1

t
dt +

 b

1

1

u
du = ln a + ln b. From Definition 1.1.

(iv) Note that

d

dx
ln(xr ) = 1

xr
d

dx
xr From (1.1) and the chain rule.

= 1

xr
r xr−1 = r

x
. From the power rule.
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Likewise,

d

dx
[r ln x] = r

d

dx
(ln x) = r

x
.

Now, since ln(xr ) and r ln x have the same derivative, it follows from Corollary 8.1 in

section 2.8 that for all x > 0,

ln(xr ) = r ln x + k,

for some constant, k. In particular, taking x = 1, we find that

ln(1r ) = r ln 1 + k,

where since 1r = 1 and ln 1 = 0, we have

0 = r (0) + k.

So, k = 0 and ln(xr ) = r ln x , for all x > 0.

Part (iii) follows from (ii) and (iv) and is left as an exercise.

EXAMPLE 1.4 Rewriting a Logarithmic Expression

Simplify ln 1
n
√
a

, where n is a positive integer.

Solution For any integer n > 0,

ln
1
n

√
a

= ln(a−1/n) = − 1

n
ln a.

�

CAUTION

ln
1
n
√
a

 = (ln a)−1/n

(What is wrong with this?)
Using the properties of logarithms will often simplify the calculation of certain deriva-

tives. We illustrate this in example 1.5.

EXAMPLE 1.5 Using Properties of Logarithms to Simplify Differentiation

Find the derivative of ln

 
(x − 2)3

x2 + 5
.

Solution Rather than directly differentiating this expression by applying the chain

rule and the quotient rule, notice that we can considerably simplify our work by first

using the properties of logarithms. We have

d

dx
ln

 
(x − 2)3

x2 + 5
= d

dx
ln

 
(x − 2)3

x2 + 5

 1/2

= 1

2

d

dx
ln

 
(x − 2)3

x2 + 5

 
From Theorem 1.2 (iv).

= 1

2

d

dx
[ln(x − 2)3 − ln(x2 + 5)] From Theorem 1.2 (iii).

= 1

2

d

dx
[3 ln(x − 2) − ln(x2 + 5)] From Theorem 1. 2 (iv).

= 1

2

 
3

 
1

x − 2

 
d

dx
(x − 2) −

 
1

x2 + 5

 
d

dx
(x2 + 5)

 
From (1.1)
and the
chain rule.

= 1

2

 
3

x − 2
− 2x

x2 + 5

 
.
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Of course, you could simply compute the derivative directly using the original

expression. Try this for yourself. It’s not pretty (there are multiple chain rules and a

quotient rule; don’t say we didn’t warn you), but it’s entirely equivalent. The bottom

line is that the rules of logarithms can save you untold complication; so use them where

appropriate. �

EXAMPLE 1.6 Examining the Limiting Behavior of ln x

Use the properties of logarithms in Theorem 1.2 to prove that

lim
x→∞

ln x = ∞.

Solution We can verify this as follows. First, recall that ln 3 ≈ 1.0986 > 1. Taking

x = 3n , we have by the rules of logarithms that for any integer n

ln 3n = n ln 3.

Since x = 3n → ∞, as n → ∞, it now follows that

lim
x→∞

ln x = lim
n→∞

ln 3n = lim
n→∞

(n ln 3) = +∞,

where the first equality depends on the fact that ln x is a strictly increasing function. �

Logarithmic Differentiation

A clever technique called logarithmic differentiation uses the rules of logarithms to help

find derivatives of certain functions for which we don’t presently have derivative formulas.

For instance, note that the function f (x) = xx is not a power function because the exponent

is not a constant. In example 1.7, we show how to take advantage of the properties of

logarithms to find the derivative of such a function.

EXAMPLE 1.7 Logarithmic Differentiation

Find the derivative of f (x) = xx , for x > 0.

Solution As already noted, none of our existing derivative rules apply. We begin by

taking the natural logarithm of both sides of the equation f (x) = xx . We have

ln [ f (x)] = ln (xx )

= x ln x,

from the usual properties of logarithms. We now differentiate both sides of this last

equation. Using the chain rule on the left side and the product rule on the right side,

we get

1

f (x)
f  (x) = (1) ln x + x

1

x

or
f  (x)

f (x)
= ln x + 1.

Solving for f  (x), we get f  (x) = (ln x + 1) f (x).

Substituting f (x) = xx gives us f  (x) = (ln x + 1)xx . �
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BEYOND FORMULAS

In Definition 1.1, we defined a new function that fills a gap in our previously known

integration rules, namely, what to do with
 
xn dx when n = −1. Surprisingly, we

can then develop properties of this unusually defined function and discover that it is

in fact a logarithmic function. Logarithms, in turn, trace their history back to a need

for a practical method of computing by hand with large numbers. Such unexpected

connections are common in mathematics. However, these remarkable connections can

only be fully appreciated with a sound understanding of the underlying mathematical

theory, such as that developed in this section.

EXERCISES 6.1

WRITING EXERCISES

1. Explain why it is (mathematically) legal to define ln x as x

1

1

t
dt . For some, this type of definition is not very satis-

fying. Even though this is probably the first function you have

seen defined this way, try the following comparison. Clearly,

it is easier to compute function values for x2 than for ln x , and

therefore x2 is easier to understand. However, compare how

you would compute (without a calculator) function values for

sin x versus function values for ln x. Describe which is more

“natural” and easy to understand.

2. In this section, we gave two different “definitions” of ln x.

Explain why it is logically invalid to give different definitions

unless you can show that they define the same thing. If they

define the same object, either definition is equally valid and

you should use whichever definition is clearer for the task at

hand. Explain why, in this section, the integral definition is

more convenient than the base e logarithm.

3. Use the integral definition of ln x (interpreted as area) to explain

why it is reasonable that lim
x→0+

ln x = −∞ and lim
x→∞

ln x = ∞.

4. The graph of f (x) = ln x appears to get flatter as x gets larger.

Interpret the derivative f  (x) = 1
x

as the slopes of tangent

lines to determine whether this is correct or just an optical

illusion.

In exercises 1–4, express the number as an integral and sketch

the corresponding area.

1. ln 4 2. ln 5 3. ln 8.2 4. ln 24

5. Use Simpson’s Rule with (a) n = 32 and (b) n = 64 to estimate

ln 4.

6. Use Simpson’s Rule with (a) n = 32 and (b) n = 64 to estimate

ln 5.

In exercises 7–10, numerically estimate the given limit.

7. lim
x→0+

ln x

csc x
8. lim

x→1+

ln(ln x)

ln x

9. lim
x→0+

 
1

ln(x + 1)
− 1

x

 
10. lim

x→∞
1

x
ln x

In exercises 11–16, find the derivative of the function.

11. ln 4x2 12. ln(sec x) 13. ln(cos x)

14.
ln x

x
15. sin(ln(cos x3)) 16. ln(sec x + tan x)

In exercises 17–20, use the properties of logarithms to rewrite

the expression as a single logarithm.

17. ln
√

2 + 3 ln 2 18. ln 8 − 2 ln 2

19. 2 ln 3 − ln 9 + ln
√

3 20. 2 ln
 

1
3

 − ln 3 + ln
 

1
9

 
In exercises 21–30, evaluate the integral.

21.

 
2x

x2 + 1
dx 22.

 
3x3

x4 + 5
dx

23.

 
tan 2x dx 24.

 
x + 1

x2 + 2x − 1
dx

25.

 
1

x ln x
dx 26.

 
1√

x(
√
x + 1)

dx

27.

 
(ln x + 1)2

x
dx 28.

 
cos(ln x)

x
dx

29.

 2

1

√
ln x

x
dx 30.

 1

0

x2

x3 + 1
dx

In exercises 31–38, evaluate the limit or derivative using prop-

erties of logarithms where needed.

31.
d

dx

 
ln

 
x2 + 1

 
32.

d

dx
[ln(x5 sin x cos x)]

33.
d

dx

 
ln

x4

x5 + 1

 
34.

d

dx

⎛
⎝ln

 
x3

x5 + 1

⎞
⎠
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35. lim
x→1+

ln

 
1

x − 1

 
36. lim

x→0+
ln[(sin x)1/x ]

37. lim
x→∞

ln[(x + 1)4/ ln(x+1)] 38. lim
x→0

ln[(cos x)x ]

In exercises 39–42, use logarithmic differentiation to find the

derivative of the given function.

39. f (x) = x sin x 40. f (x) = x4−x2

41. f (x) = (sin x)x 42. f (x) = x ln x

In exercises 43–48, determine intervals on which the function is

increasing and decreasing, concave up and down and graph the

function.

43. f (x) = ln(x − 2) 44. f (x) = ln(3x + 5)

45. f (x) = ln(x2 + 1) 46. f (x) = ln(x3 + 1)

47. f (x) = x ln x 48. f (x) = x2 ln x

49. Use properties (ii) and (iv) of Theorem 1.2 to prove property

(iii) that ln
 
a

b

 = ln a − ln b.

50. Prove equation (1.3).

51. A telegraph cable is made of an outer winding around an

inner core. If x is defined as the core radius divided by

the outer radius, the transmission speed is proportional to

s(x) = x2 ln(1/x). Estimate the value of x that maximizes the

transmission speed.

52. Define the function π (x) to be the number of prime num-

bers less than x. For example, π (6) = 3 since 2, 3 and 5 are

prime. It has been shown that for large x, π (x) ≈ x

ln x
. Show

that for f (x) = x

ln x
and x > 10, f  (x) > 0 and f   (x) < 0.

Interpret these results in terms of the distribution of prime

numbers.

53. There are often multiple ways of computing an antiderivative.

For

 
1

x ln
√
x
dx , first use the substitution u = ln

√
x to find

the indefinite integral 2 ln | ln
√
x | + c. Then rewrite ln

√
x

and use the substitution u = ln x to find the indefinite integral

2 ln | ln x | + c. Show that these two answers are equivalent.

54. As in exercise 53, use different substitutions to find two equiv-

alent forms for

 
1

x ln x2
dx , for x > 0. Repeat this for x < 0.

55. A ball is thrown from s = b to s = a (where a < b) with ini-

tial speed v0. Assuming that air resistance is proportional to

speed, the time it takes the ball to reach s = a is

T = − 1

c
ln

 
1 − c

b − a

v0

 
,

where c is a constant of proportionality. A baseball player is

300 ft from home plate and throws a ball directly toward home

plate with an initial speed of 125 ft/s. Suppose that c = 0.1.

How long does it take the ball to reach home plate? Another

player standing x feet from home plate has the option of catch-

ing the ball and then, after a delay of 0.1 s, relaying the ball

toward home plate with an initial speed of 125 ft/s. Find x to

minimize the total time for the ball to reach home plate. Is the

straight throw or the relay faster? What, if anything, changes

if the delay is 0.2 s instead of 0.1 s?

56. For the situation in exercise 55, for what length delay is it

equally fast to have a relay and not have a relay? Do you think

that you could catch and throw a ball in such a short time? Why

do you think it is considered important to have a relay option

in baseball?

57. Repeat exercises 55 and 56 if the second player throws the ball

with initial speed 100 ft/s.

58. For a delay of 0.1 s in exercise 55, find the value of the initial

speed of the second player’s throw for which it is equally fast

to have a relay and not have a relay.

59. In the titration of a weak acid and strong base, the pH is given

by c + ln f

1− f
where c is a constant (closely related to the

acid dissociation constant) and f is the fraction (0 < f < 1)

of converted acid. (See Harris’ Quantitative Chemical Anal-

ysis for more details.) Find the value of f at which the rate

of change of pH is the smallest. What happens as f appro-

aches 1?

60. In exercise 59, you found the significance of one inflection

point of a titration curve. A second inflection point, called

the equivalence point, corresponds to f = 1. In the gener-

alized titration curve shown, identify on the graph both in-

flection points and briefly explain why chemists prefer to

measure the equivalence point and not the inflection point of

exercise 59. (Note: the horizontal axis of a titration curve in-

dicates the amount of base added to the mixture. This is di-

rectly proportional to the amount of converted acid in the region

where 0 < f < 1.)

ml of base added

pH

61. If n > 1 is an integer, sketch a graph of y = 1
x

for 1 ≤ x ≤ n

and shade in the area representing ln(n). Then construct a Rie-

mann sum with a regular partition of width x = 1 and right-

endpoint evaluation. On your graph, draw in the rectangles

for this Riemann sum and show that ln(n) > 1
2

+ 1
3

+ · · · + 1
n
.

Given that lim
n→∞

 
1
2

+ 1
3

+ · · · + 1
n

 = ∞, what can you con-

clude about lim
n→∞

ln(n)?
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62. As in exercise 61, use a Riemann sum to show that for an

integer n > 1, ln(n) < 1 + 1
2

+ 1
3

+ · · · + 1
n−1

.

EXPLORATORY EXERCISES

1. Verify that 
sec x dx = ln | sec x + tan x | + c.

(Hint: Differentiate the suspected antiderivative and show that

you get the integrand.) This integral appears in the construc-

tion of a special type of map called a Mercator map. On this

map, the latitude lines are not equally spaced. Instead, they

are placed so that straight lines on a Mercator map correspond

to paths of constant heading. (If you travel due northeast, your

path on a map with equally spaced latitude will appear to curve

due to the curvature of the Earth.) Let R be the (average) radius

of the Earth. Assuming the Earth is a sphere, the actual dis-

tance from the equator to a place at latitude b◦ is
π

180
Rb. On a

Mercator map, this distance is scaled to
π

180
R

 b

0

sec x dx .

Tampa, Florida, has latitude 28◦ north. Moscow, Russia, is

twice as far from the equator at 56◦ north. What is the relative

spacing for Tampa and Moscow on a Mercator map?

2. Define the log integral function Li(x) =
 x

0

1

ln t
dt for x > 1.

For x = 4 and n = 4, explain why Simpson’s Rule does not

give an estimate of Li(4). Sketch a picture of the area rep-

resented by Li(4). It turns out that Li(x) = 0 for x ≈ 1.45.

Explain why Li(4) ≈
 4

1.45

1

ln t
dt and estimate this with Simp-

son’s Rule using n = 4. This function is used to estimateπ (N ),

the number of prime numbers less than N. Another common

estimate of π (N ) is
N

ln N
. Estimate

N

ln N
, π (N ) and Li(N )

for (a) N = 20; (b) N = 40 and (c) N = 100, 000, 000, where

we’ll give you π (N ) = 5, 761, 455. Discuss any patterns that

you find. (See Prime Obsession by John Derbyshire for more

about this area of number theory.)

6.2 INVERSE FUNCTIONS

The notion of an inverse relationship is common in many areas of science. For instance, in an

electrocardiogram (EKG), technicians connect a series of electrodes to a patient’s chest and

use measurements of electrical activity on the surface of the body to infer something about

the electrical activity on the surface of the heart. This is considered an inverse problem,

since physicians are attempting to determine what inputs (i.e., the electrical activity on

the surface of the heart) cause an observed output (the measured electrical activity on the

surface of the chest).

f (x)

g(x)

x

Domain { f }

y

Range { f }

FIGURE 6.3
g(x) = f −1(x)

The mathematical notion of inverse is much the same as that just described. Given an

output (i.e., a value in the range of a given function), we wish to find the input (the value

in the domain) that produced the observed output. That is, given a y ∈ Range{ f }, find

the x ∈ Domain{ f } for which y = f (x). (See the illustration of the inverse function g(x)

shown in Figure 6.3.)

For instance, suppose that f (x) = x3 and y = 8. Can you find an x such that x3 = 8?

That is, can you find the x-value corresponding to y = 8? (See Figure 6.4.) Of course,

you know the solution of this particular equation: x = 3
√

8 = 2. In fact, in general, if

x3 = y, then x = 3
√
y. In light of this, we say that the cube root function is the inverse of

f (x) = x3.
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y

y 5 x
3

x

22

22

21

4

6

2

8

FIGURE 6.4
Finding the x-value corresponding

to y = 8

EXAMPLE 2.1 Two Functions That Reverse the Action of Each Other

If f (x) = x3 and g(x) = x1/3, show that

f (g(x)) = x and g( f (x)) = x,

for all x.

Solution For all real numbers x, we have

f (g(x)) = f (x1/3) = (x1/3)3 = x

and g( f (x)) = g(x3) = (x3)1/3 = x . �

Notice in example 2.1 that the action of f undoes the action of g and vice versa. We

take this as our definition of an inverse function in Definition 2.1.

CAUTION

Pay close attention to the

notation. Notice that f −1(x)

does not mean
1

f (x)
. We write

the reciprocal of f (x) as:

1

f (x)
= [ f (x)]−1.

DEFINITION 2.1

Assume that f and g have domains A and B, respectively, and that f (g(x)) is defined

for all x ∈ B and g( f (x)) is defined for all x ∈ A. If

f (g(x)) = x, for all x ∈ B and

g( f (x)) = x, for all x ∈ A,

we say that g is the inverse of f, written g = f −1. Equivalently, f is the inverse of

g, f = g−1.

Observe that many familiar functions have no inverse.

EXAMPLE 2.2 A Function with No Inverse

Show that f (x) = x2 has no inverse on the interval (−∞,∞).

Solution Notice that f (4) = 16 and f (−4) = 16. That is, there are two x-values that

produce the same y-value. So, if we were to try to define an inverse of f, how would we

define f −1(16)? Look at the graph of y = x2 (see Figure 6.5) to see what the problem

is. For each y > 0, there are two x-values for which y = x2. Such functions do not have

an inverse. �

REMARK 2.1

For f (x) = x2, it is tempting to jump to the conclusion that g(x) = √
x is the inverse

of f (x). Notice that although f (g(x)) = (
√
x)2 = x for all x ≥ 0 (i.e., for all x in the

domain of g(x)), it is not generally true that g( f (x)) =
√
x2 = x . In fact, this last

equality holds only for x ≥ 0. However, for f (x) = x2 restricted to the domain x ≥ 0,

we do have that f −1(x) = √
x .

y

x
 4  2 42

8

4

12

20

FIGURE 6.5
y = x2

DEFINITION 2.2

A function f is called one-to-one when for every y ∈ Range{ f }, there is exactly one

x ∈ Domain{ f } for which y = f (x).
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REMARK 2.2

Observe that it is equivalent to say that a function f is one-to-one if and only if the

equality f (a) = f (b) implies a = b. This version of the definition is often useful for

proofs involving one-to-one functions.

y

x
a b

y   f (x)

FIGURE 6.6a
f (a) = f (b), for a  = b.

So, f does not pass the horizontal

line test and is not one-to-one.

It is also most helpful to think of the concept of one-to-one in graphical terms. Notice

that a function f is one-to-one if and only if every horizontal line intersects the graph in at

most one point. This is usually referred to as the horizontal line test. We illustrate this in

Figures 6.6a and 6.6b and state the following result.

THEOREM 2.1

A function f has an inverse if and only if it is one-to-one.

Theorem 2.1 simply says that one-to-one functions have an inverse, but says nothing

about how to find them. For very simple functions, we can find inverses by solving equations.

y

a
x

y   f (x)

FIGURE 6.6b
Every horizontal line intersects the

curve in at most one point. So, f

passes the horizontal line test and is

one-to-one.

y

x
 4  2 42

40

20

 20

 40

FIGURE 6.7
y = x3 − 5

EXAMPLE 2.3 Finding an Inverse Function

Find the inverse of f (x) = x3 − 5.

Solution You will show in the exercises that f is one-to-one and therefore has an

inverse. Note that it is not entirely clear from the graph (see Figure 6.7) whether or not f

passes the horizontal line test. To find the inverse function, write y = f (x) and solve for

x (i.e., solve for the input x that produced the observed output y). We have

y = x3 − 5.

Adding 5 to both sides and taking the cube root gives us

(y + 5)1/3 = (x3)1/3 = x .

So, we have that x = f −1(y) = (y + 5)1/3. Reversing the variables x and y (think about

why this makes sense), we have

f −1(x) = (x + 5)1/3. �

EXAMPLE 2.4 A Function That Is Not One-to-One

Show that f (x) = 10 − x4 does not have an inverse.

Solution You can see from a graph (see Figure 6.8) that f is not one-to-one; for

instance, f (1) = f (−1) = 9. Consequently, f does not have an inverse. �

REMARK 2.3

Most often, we cannot find a formula for an inverse function and must be satisfied

with simply knowing that the inverse function exists. Example 2.5 is typical of this

situation.
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FIGURE 6.8
y = 10 − x4

EXAMPLE 2.5 Showing That a Function Has an Inverse

Show that f (x) = x5 + 8x3 + x + 1 has an inverse. Also, find f −1(1) and f −1(11).

Solution From the graph shown in Figure 6.9, the function looks like it might be

one-to-one, but how can we be certain of this? (Remember that graphs can be

deceptive!) Observe that if a function is strictly increasing or strictly decreasing on its

entire domain, then it is one-to-one and hence, has an inverse. In this case, we have that

f  (x) = 5x4 + 24x2 + 1 > 0, for all x .

So, f is strictly increasing and consequently, has an inverse. It would certainly be ideal

to find the inverse function algebraically. In this case, that means solving the equation

y = x5 + 8x3 + x + 1

for x. However, you should quickly realize that you cannot do this and so, you do not

know how to find a formula for the inverse function.

Turning to the problem of finding f −1(1) and f −1(11), you might wonder if this is

possible, since we were unable to find a formula for f −1(x). While it’s certainly true

that we have no such formula, you might observe that f (0) = 1, so that f −1(1) = 0. By

trial and error, you might also discover that f (1) = 11 and so, f −1(11) = 1. �
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 3  1 2 321

400

200
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 400

FIGURE 6.9
y = x5 + 8x3 + x + 1

In example 2.5, we saw a function that we knew had an inverse, although we could not

find that inverse algebraically. Even when we can’t find an inverse function explicitly, we

can say something graphically. Notice that if (a, b) is a point on the graph of y = f (x) and

f has an inverse, f −1, then since

b = f (a),

we have that f −1(b) = f −1( f (a)) = a.

That is, (b, a) is a point on the graph of y = f −1(x). This tells us a great deal about the

inverse function. In particular, we can immediately obtain any number of points on the graph

of y = f −1(x), simply by inspection. Further, notice that the point (b, a) is the reflection

of the point (a, b) through the line y = x . (See Figure 6.10.) It now follows that given the

graph of any one-to-one function, you can draw the graph of its inverse simply by reflecting

the entire graph through the line y = x . One consequence of this symmetry is the following

result.

y

x
ab

a

b

y   x

(b, a)

(a, b)

FIGURE 6.10
Reflection through y = x

THEOREM 2.2

Suppose that f is a one-to-one and continuous function. Then, f −1 is also continuous.

In example 2.6, we illustrate the symmetry of a function and its inverse.

EXAMPLE 2.6 The Graph of a Function and Its Inverse

Draw a graph of f (x) = x3 and its inverse.
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Solution From example 2.1, the inverse of f (x) = x3 is f −1(x) = x1/3. Notice the

symmetry of their graphs shown in Figure 6.11. �

Observe that we can use this symmetry principle to draw the graph of an inverse

function, even when we don’t have a formula for that function. (See Figure 6.12.)

EXAMPLE 2.7 Drawing the Graph of an Unknown Inverse Function

Draw a graph of f (x) = x5 + 8x3 + x + 1 and its inverse.

Solution In example 2.5, we showed that f is strictly increasing and hence, is

one-to-one, but we were unable to find a formula for the inverse function. Despite this,

we can draw a graph of f −1 with ease. One way to do this would be to plot a few points

on the graph of y = f −1(x) by hand, but we suggest that you use the parametric

plotting feature of your graphing utility. To write down parametric equations for the

curve y = f (x), we introduce the parameter t and observe that

x = t and y = f (t) (2.1)

are parametric equations for y = f (x). Notice that parametric equations for y = f −1(x)

are then simply

x = f (t) and y = t. (2.2)

We used the two pairs of parametric equations (2.1) and (2.2) to produce the graphs of

y = f (x) and y = f −1(x) shown in Figure 6.13. We also added a dashed line for the

line y = x , entered parametrically as

x = t and y = t . �

y

x

 1

1

1 1

y   x

y   x
3

y   x
1/3

FIGURE 6.11
y = x3 and y = x1/3
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y   f (x)

(a, f (a))

( f (a), a)

y   f  1(x)

y   x

FIGURE 6.12
Graph of f and f −1 We make one final observation regarding inverse functions. Suppose that f is a one-to-

one and differentiable function. Then, as a consequence of the symmetry of the function and

its inverse, notice that, as long as f  ( f −1(a))  = 0 (i.e., the tangent line is not horizontal),

then f −1(x) should be differentiable at x = a (the tangent line to f −1(x) is not vertical).

We express this notion carefully in Theorem 2.3.

y

x
1 1

 1

1
y   x

y   f (x)

y   f  1(x)

FIGURE 6.13
Graph of f and f −1

THEOREM 2.3

Suppose that f is a one-to-one and differentiable function. Then, as long as

f  ( f −1(x))  = 0,

d

dx
f −1(x) = 1

f  ( f −1(x))
.

PROOF

Let g(x) = f −1(x). Then for any fixed x = a, we have from the alternative definition of

derivative that

g (a) = lim
x→a

g(x) − g(a)

x − a
. (2.3)

Since g = f −1, we have that y = g(x) if and only if f (y) = x and b = g(a) if and only if

f (b) = a. Further, since f is differentiable, it is continuous and so, from Theorem 2.2, gmust
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be continuous, also. In particular, this says that as x → a, we must also have g(x) → g(a),

so that y → b. From (2.3), we now have

g (a) = lim
x→a

g(x) − g(a)

x − a
= lim

y→b

y − b

f (y) − f (b)

= lim
y→b

1

f (y) − f (b)

y − b

= 1

lim
y→b

f (y) − f (b)

y − b

= 1

f  (b)

= 1

f  ( f −1(a))
,

as desired, since the limit in the denominator is nonzero.

NOTES

Notice that Theorem 2.3 says that

the slope of the tangent line to

y = f −1(x) at a point (a, b) is

simply the reciprocal of the slope

of the tangent line to y = f (x) at

the mirror image point (b, a).

As an alternative to the proof of Theorem 2.3, if we know that an inverse function

is differentiable, we can find its derivative using implicit differentiation, as follows. If

y = f −1(x), then

f (y) = x . (2.4)

Differentiating both sides of (2.4) with respect to x, we find that

d

dx
f (y) = d

dx
x,

so that f  (y)
dy

dx
= 1,

from the chain rule. (Notice that in this last step, we needed to assume that
dy

dx
exists.)

Thus, so long as f  (y)  = 0, we have

dy

dx
= 1

f  (y)

or
d

dx
f −1(x) = 1

f  ( f −1(x))
,

as we had previously determined.

TODAY IN
MATHEMATICS

Kim Rossmo (1955– ) A

Canadian criminologist who

developed the Criminal

Geographic Targeting algorithm

that indicates the most probable

area of residence for serial

murderers, rapists and other

criminals. Rossmo served 21 years

with the Vancouver Police

Department. His mentors were

Professors Paul and Patricia

Brantingham of Simon Fraser

University. The Brantinghams

developed Crime Pattern Theory

which predicts crime locations

from where criminals live, work

and play. Rossmo inverted their

model and used the crime sites to

determine where the criminal

most likely lives. The premiere

episode of the television drama

Numb3rs was based on Rossmo’s

work.

EXAMPLE 2.8 Finding a Tangent Line to the Graph of an Inverse
Function

Find an equation of the tangent line to the graph of y = f −1(x) at x = 3, where

f (x) = x3 − 5.

Solution First, note that f  (x) = 3x2 and f (2) = 3, so that f −1(3) = 2. From

Theorem 2.3, we have

d

dx
f −1(x)

    
x=3

= 1

f  ( f −1(3))

= 1

f  (2)
= 1

12
.
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So, the tangent line has slope 1
12

and passes through the point with coordinates x = 3

and y = f −1(3) = 2. An equation of the tangent line is then

y = 1

12
(x − 3) + 2.

�

Recall that for the function in example 2.8, we had found (in example 2.3) a formula

for the inverse function,

f −1(x) = (x + 5)1/3

You should differentiate this directly and verify that the value of the derivative at x = 3 is

the same either way we compute it. Of course, the primary value of Theorem 2.3 is for the

most common case where we cannot find a formula for the inverse function.

In example 2.9, we apply our theoretical knowledge of inverse functions in a medical

setting.

EXAMPLE 2.9 Determining the Proper Dosage of a Drug

Suppose that the injection of a certain drug raises the level of a key hormone in the

body. Physicians want to determine the dosage that produces a healthy hormone level.

Dosages of 1, 2, 3 and 4 mg produce hormone levels of 12, 20, 40 and 76, respectively.

If the desired hormone level is 30, what is the proper dosage?

Solution A plot of the points (1, 12), (2, 20), (3, 40) and (4, 76) summarizes the data.

(See Figure 6.14a.) The problem is an inverse problem: given y = 30, what is x? It is

tempting to argue the following: since 30 is halfway between 20 and 40, the x-value

should be halfway between 2 and 3: x = 2.5. This method of solution is called linear

interpolation, since the point x = 2.5, y = 30 lies on the line through the points (2, 20)

and (3, 40). While this provides a primitive estimate of the needed dosage, we should be

able to do better. After all, this estimate does not take into account all of the information

we have. (Think about what’s missing here.) The points in Figure 6.14a suggest a curve

that is concave up. If this is the case, x = 2.6 or x = 2.7 may be a better estimate of the

required dosage. In Figure 6.14b, we have sketched a smooth curve through the data

points and indicated a graphical solution of the problem. There are numerous more

advanced techniques (e.g., polynomial interpolation) developed by mathematicians to

make the estimate of such quantities as accurate as possible.
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FIGURE 6.14a
Hormone data

FIGURE 6.14b
Approximate curve

�
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BEYOND FORMULAS

The examples in this section should remind you somewhat of a mystery movie. There

are just enough clues available to solve the problem. The basic idea is that every fact

about an inverse function f −1 corresponds to a fact about the original function f. The

trick is to ask the right questions about f to reveal the desired information about f −1.

EXERCISES 6.2

WRITING EXERCISES

1. Explain in words (and a picture) why the following is true: if

f (x) is increasing for all x, then f has an inverse.

2. Suppose the graph of a function passes the horizontal line test.

Explain why you know that the function has an inverse (defined

on the range of the function).

3. Radar works by bouncing a high-frequency electromagnetic

pulse off of a moving object, and then measuring the distur-

bance in the pulse as it is bounced back. Explain why this is an

inverse problem by identifying the input and output.

4. Each human disease has a set of symptoms associated with

it. Physicians attempt to solve an inverse problem: given the

symptoms, they try to identify the disease causing the symp-

toms. Explain why this is not a well-defined inverse problem

(i.e., logically it is not always possible to correctly identify

diseases from symptoms alone).

In exercises 1–4, show that f (g(x))  x and g( f (x))  x for all

x.

1. f (x) = x5 and g(x) = x1/5

2. f (x) = 4x3 and g(x) =
 

1

4
x

 1/3

3. f (x) = 2x3 + 1 and g(x) = 3

 
x − 1

2

4. f (x) = 1

x + 2
and g(x) = 1 − 2x

x
(x  = 0, x  = −2)

In exercises 5–12, determine whether or not the function is one-

to-one. If it is, find the inverse and graph both the function and

its inverse.

5. f (x) = x3 − 2 6. f (x) = x3 + 4

7. f (x) = x5 − 1 8. f (x) = x5 + 4

9. f (x) = x4 + 2 10. f (x) = x4 − 2x − 1

11. f (x) =
√
x3 + 1 12. f (x) =

√
x2 + 1

In exercises 13–18, assume that the function has an inverse.

Without solving for the inverse, find the values of the inverse

function and its derivative at x  a, and graph the inverse func-

tion.

13. f (x) = x3 + 4x − 1, (a) a = −1, (b) a = 4

14. f (x) = x3 + 2x + 1, (a) a = 1, (b) a = 13

15. f (x) = x5 + 3x3 + x , (a) a = −5, (b) a = 5

16. f (x) = x5 + 4x − 2, (a) a = 38, (b) a = 3

17. f (x) =
√
x3 + 2x + 4, (a) a = 4, (b) a = 2

18. f (x) =
√
x5 + 4x3 + 3x + 1, (a) a = 3, (b) a = 1

In exercises 19–22, use the given graph to graph the inverse

function.

19. y

x

2 4 2 4

 4

 2

2

4

20. y

x

2 4 2 4

 4

 2

2

4
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21. y

x

2 4 2 4

 4

 2

2

4

22. y

x

2 4 2 4

 4

 2

2

4

In exercises 23–26, use linear interpolation as in example 2.9 to

estimate f−1(b). Use the concavity of the graph to conjecture

whether the estimate is too high or too low.

23. (1, 12), (2, 20), (3, 26), (4, 30), b = 23

24. (1, 12), (2, 10), (3, 6), (4, 0), b = 8

25. (1, 12), (2, 6), (3, 2), (4, 0), b = 5

26. (1, 12), (2, 20), (3, 36), (4, 50), b = 32

In exercises 27–36, use a graph to determine if the function is

one-to-one. If it is, graph the inverse function.

27. f (x) = x3 − 5 28. f (x) = x2 − 3

29. f (x) = x3 + 2x − 1 30. f (x) = x3 − 2x − 1

31. f (x) = x5 − 3x3 − 1 32. f (x) = x5 + 4x3 − 2

33. f (x) = 1

x + 1
34. f (x) = 4

x2 + 1

35. f (x) = x

x + 4
36. f (x) = x√

x2 + 4

Exercises 37–46 involve inverse functions on restricted domains.

37. Show that f (x) = x2 (x ≥ 0) and g(x) = √
x (x ≥ 0) are in-

verse functions. Graph both functions.

38. Show that f (x) = x2 − 1(x ≥ 0) and g(x) = √
x − 1

(x ≥ −1) are inverse functions. Graph both functions.

39. Graph f (x) = x2 for x ≤ 0 and verify that it is one-to-one.

Find its inverse. Graph both functions.

40. Graph f (x) = x2 + 2 for x ≤ 0 and verify that it is one-to-one.

Find its inverse. Graph both functions.

41. Graph f (x) = (x − 2)2 and find an interval on which it is one-

to-one. Find the inverse of the function restricted to that inter-

val. Graph both functions.

42. Graph f (x) = (x + 1)4 and find an interval on which it is one-

to-one. Find the inverse of the function restricted to that inter-

val. Graph both functions.

43. Graph f (x) =
√
x2 − 2x and find an interval on which it is

one-to-one. Find the inverse of the function restricted to that

interval. Graph both functions.

44. Graph f (x) = x

x2 − 4
and find an interval on which it is one-to-

one. Find the inverse of the function restricted to that interval.

Graph both functions.

45. Graph f (x) = sin x and find an interval on which it is one-to-

one. Find the inverse of the function restricted to that interval.

Graph both functions.

46. Graph f (x) = cos x and find an interval on which it is one-to-

one. Find the inverse of the function restricted to that interval.

Graph both functions.

In exercises 47–52, discuss whether or not the function described

has an inverse.

47. The income of a company varies with time.

48. The height of a person varies with time.

49. For a dropped ball, its height varies with time.

50. For a ball thrown upward, its height varies with time.

51. The shadow made by an object depends on its three-

dimensional shape.

52. The number of calories burned depends on how fast a person

runs.

53. Suppose that your boss informs you that you have been awarded

a 10% raise. The next week, your boss announces that due to

circumstances beyond her control, all employees will have their

salaries cut by 10%. Are you as well off now as you were two

weeks ago? Show that increasing by 10% and decreasing by

10% are not inverse processes. Find the inverse for adding 10%.

(Hint: To add 10% to a quantity you can multiply by 1.10.)

54. Suppose that the graph of profit versus time of a rival company

is increasing and concave up. Explain why you would prefer

to look at the graph of the inverse function.
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55. Find an equation of the tangent line for exercise 13 at x = 4.

56. Find an equation of the tangent line for exercise 14 at x = 13.

57. Use the quadratic regression option on your calculator or

CAS to find a quadratic model of the data in example

2.9. Find the value of x for which the quadratic model

equals 30.

EXPLORATORY EXERCISES

1. Find all values of k such that f (x) = x3 + kx + 1 is one-to-

one.

2. Find all values of k such that f (x) = x3 + 2x2 + kx − 1 is

one-to-one.

3. The idea of an inverse can be extended from functions to op-

erators. That is, suppose there is an operator D such that if

f is a function of a certain type, Df is another function of

the same type. The operator D would have an inverse D−1

if D−1Df = DD−1 f = f for all functions f of the right

type. Define Df = f  (x) for all functions for which deriva-

tives of all orders exist. Show that the operator I defined by

I f =  x

0
f (t)dt is not the inverse operator of D. However, if

you only consider functions for which f (0) = 0, the two op-

erators are inverses of each other.

6.3 THE EXPONENTIAL FUNCTION

You no doubt already have some familiarity with the natural exponential function, ex . As

we did with the natural logarithm in section 6.1, we will now carefully define this function

and develop its properties. First, recall that in section 6.1, we gave the (usual) mysterious

description of e as an irrational number e ≈ 2.71828 . . . , without attempting to explain

why this number is significant. Now that we have carefully defined ln x (independent of the

definition of e), we can clearly define e, as well as calculate its approximate value.
1

 1

1 2 3e 4

y

x

y   ln x

FIGURE 6.15
Definition of e

DEFINITION 3.1

We define e to be that number for which

ln e = 1.

That is, e is the x-coordinate of the point of intersection of the graphs of y = ln x and y = 1.

(See Figure 6.15.) In other words, e is the solution of the equation

ln x − 1 = 0.

You can solve this approximately (e.g., using Newton’s method) to obtain

e ≈ 2.71828182846.

So, having defined the irrational number e, you might wonder what the big deal is with

defining the function ex? Of course, there’s no problem at all, when x is rational. For

instance, we have

e2 = e · e
e3 = e · e · e

e1/2 = √
e

e5/7 = 7
√
e5

and so on. In fact, for any rational power, x = p/q (where p and q are integers), we have

ex = ep/q = q
√
ep.



450 CHAPTER 6 .. Exponentials, Logarithms and Other Transcendental Functions 6-20

On the other hand, if x is irrational, what could we mean by ex? What does it mean to raise

a number to an irrational power? For instance, could you give any meaning to eπ? Make

no mistake about it, this is a serious issue.

First, observe that for f (x) = ln x(x > 0), f  (x) = 1/x > 0. So, f is a strictly increas-

ing function and consequently, must be one-to-one and therefore, has an inverse, f −1. As

is often the case, there is no algebraic method of solving for the inverse function. However,

from Theorem 1.2 (iv), we have that for any rational power x,

ln(ex ) = x ln e = x,

since we have defined e so that ln e = 1. Observe that this says that

f −1(x) = ex , for x rational.

That is, the (otherwise unknown) inverse function, f −1(x), agrees with ex at every rational

number x. Since ex so far has no meaning when x is irrational, we now define it to be the

value of f −1(x), as follows.

DEFINITION 3.2

For x irrational, we define y = ex to be that number for which

ln y = ln(ex ) = x .

According to this definition, notice that for any x > 0, eln x is that real number for which

ln(eln x ) = ln x . (3.1)

Since ln x is a one-to-one function, (3.1) says that

eln x = x, for x > 0.

(3.2)

Notice that (3.2) says that

ln x = loge x .

That is, the integral definition of ln x given in section 6.1 is consistent with your earlier

definition of ln x as loge x . Observe also that with this definition of the exponential function,

we have

ln(ex ) = x, for all x ∈ (−∞,∞)

and eln x = x, for all x > 0.

Thus, we have that ex and ln x are inverse functions. Keep in mind that for x irrational, ex is

defined only through the inverse function relationship given in Definition 3.2. We now state

some familiar laws of exponents and prove that they hold even for the case of irrational

exponents.
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THEOREM 3.1

For r, s any real numbers and t any rational number,

(i) er es = er+s

(ii)
er

es
= er−s and

(iii) (er )t = ert .

PROOF

These laws are all obvious when the exponents are rational. If the exponent is irrational

though, we only know the value of these exponentials indirectly, through the inverse function

relationship with ln x, given in Definition 3.2.

(i) Note that using the rules of logarithms, we have

ln(er es) = ln(er ) + ln(es) = r + s = ln(er+s).

Since ln x is one-to-one, it must follow that

er es = er+s .

The proofs of (ii) and (iii) are similar and are left as exercises. (See exercise 39.)

Derivative of the Exponential Function

Your initial thought might be to find the derivative of ex using the usual limit definition of

derivative. However, for f (x) = ex , we have that

d

dx
ex = f  (x) = lim

h→0

f (x + h) − f (x)

h

= lim
h→0

ex+h − ex

h
= lim

h→0

exeh − ex

h

= ex lim
h→0

eh − 1

h
. (3.3)

While we do not know how to compute this limit exactly, it is an easy exercise to show

its value is approximately 1. We revisit this limit in exercises 73 and 74, at the end of this

section. We now present an alternative derivation, based on Definition 3.2. We have that

y = ex if and only if ln y = x .

Differentiating this last equation with respect to x gives us

d

dx
ln y = d

dx
x = 1.

From the chain rule, we now have

1 = d

dx
ln y = 1

y

dy

dx
. (3.4)
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Multiplying both sides of (3.4) by y, we have

dy

dx
= y = ex

or
d

dx
ex = ex . (3.5)

Note that (3.5) is consistent with (3.3) and confirms that the limit in (3.3) is 1, as we had

conjectured. Of course, this also gives us the corresponding integration rule 
exdx = ex + c.

We give several examples of the calculus of exponential functions in examples 3.1 and 3.2.

EXAMPLE 3.1 Computing the Derivative of Some Exponentials

Compute the derivatives of the functions (a) e3x and (b) esin x .

Solution For (a), we have

d

dx
e3x = e3x d

dx
(3x)    

chain rule

= e3x (3) = 3e3x .

Similarly, for (b), we get

d

dx
esin x = esin x d

dx
(sin x)    

chain rule

= esin x (cos x) = cos xesin x .

�

EXAMPLE 3.2 Evaluating the Integral of Some Exponentials

Evaluate the integrals (a)
 
e−5x dx and

 
x3ex

4

dx .

Solution We can resolve these with simple substitutions. For (a), we have 
e−5x dx = −1

5

 
e−5x    
eu

(−5) dx    
du

= −1

5
eu + c = −1

5
e−5x + c.

For (b), taking u = x4, we get 
x3ex

4

dx = 1

4

 
ex

4    
eu

(4x3) dx    
du

= 1

4
eu + c = 1

4
ex

4 + c.

�

We now have the tools to produce the graph of f (x) = ex . Since e = 2.718 . . . > 1, we

have

lim
x→∞

ex = ∞ and lim
x→−∞

ex = 0.

We also have that

f  (x) = ex > 0,

so that f is increasing for all x and

f   (x) = ex > 0,
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so that the graph is concave up everywhere. You should now readily obtain the graph in

Figure 6.16. (Notice that you can also obtain this graph by reflecting the graph of y = ln x

through the line y = x .)

y

x

2 4 2 4

2

4

6

8

10

FIGURE 6.16
y = ex

Similarly, for f (x) = e−x , we have

lim
x→∞

e−x = 0 and lim
x→−∞

e−x = ∞.

Further, from the chain rule,

f  (x) = −e−x < 0,

so that f is decreasing for all x. We also have

f   (x) = e−x > 0,

so that the graph is concave up everywhere. You should easily obtain the graph in

Figure 6.17.

You might be wondering about derivatives of more general exponential functions, such

as f (x) = bx , for any base b > 0. These functions are easy to express in terms of the natural

exponential function, as follows. Notice that for any constant b > 0, we have by the usual

rules of logs and exponentials that

bx = eln(bx ) = ex ln b.

y

x

2 4 2 4

2

4

6

8

10

FIGURE 6.17
y = e−x

In particular, observe that this says that

d

dx
bx = d

dx
ex ln b = ex ln b d

dx
(x ln b)

= ex ln b(ln b) = bx (ln b).

NOTES

We will occasionally write

ex = exp(x). This is particularly

helpful when the exponent is a

complicated expression. For

example,

exp(x3 − 5x2 + 2x + 7)

= ex
3−5x2+2x+7,

where the former is more easily

read than the latter.

Similarly, we can use the properties of the natural exponential to evaluate integrals involving

more general exponentials, as follows. For b > 0 (b  = 1), we have 
bx dx =

 
ex ln b dx = 1

ln b

 
e
x ln b    

u (ln b) dx    
du

= 1

ln b
ex ln b + c = 1

ln b
bx + c.

Although of less significance than the natural exponential function, you can now see that

the general exponential functions are easily dealt with in terms of the natural exponential.

In fact, you should not bother to memorize the formulas for the derivatives and integrals of

general exponentials. Rather, each time you run across the exponential function f (x) = bx ,

simply rewrite it as f (x) = ex ln b and then use the familiar rules for the derivative and

integral of the natural exponential and the chain rule.

In a similar way, we can use our knowledge of the natural logarithm to discuss more

general logarithms. First, recall that for any base a > 0 (a  = 1) and any x > 0, y = loga x

if and only if x = ay . Taking the natural logarithm of both sides of this equation, we have

ln x = ln(ay) = y ln a.

Solving for y gives us

y = ln x

ln a
.
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This proves the following result.

THEOREM 3.2

For any base a > 0 (a  = 1) and any x > 0, loga x = ln x

ln a
.

Among other things, Theorem 3.2 enables us to use a calculator to evaluate logarithms

with any base. Calculators typically do not have built-in functions for evaluation of general

logarithms, opting instead for only ln x and log10 x keys. Notice that evaluating general

logarithms is now easy. For instance, we have

log7 3 = ln 3

ln 7
≈ 0.564575.

More importantly, observe that we can use Theorem 3.2 to express derivatives of general

logarithms in terms of the familiar derivative of the natural logarithm. In particular, for any

base a > 0 (a  = 1), we have

d

dx
loga x = d

dx

 
ln x

ln a

 
= 1

ln a

d

dx
(ln x)

= 1

ln a

 
1

x

 
= 1

x ln a
.

As with the derivative formula for general exponentials, there is little point in learning this

as a new differentiation rule. Rather, when you need to differentiate the general logarithmic

function f (x) = loga x , simply rewrite it first as f (x) = ln x

ln a
and use the familiar derivative

of the natural logarithm.

Applications of exponential functions are found everywhere, making ex one of the most

important functions you will study. In example 3.3, we consider the velocity of a falling

object.

EXAMPLE 3.3 Finding the Limiting Velocity of a Falling Object

The velocity in ft/s of a falling object is modeled by

v(t) = −
 

32

k

1 − e−2t
√

32k

1 + e−2t
√

32k
,

where k is a constant that depends upon the size and shape of the object and the density

of the air. Find the limiting velocity of the object; that is, find lim
t→∞

v(t) and compare

limiting velocities for skydivers with k = 0.00016 (head first) and k = 0.001 (spread

eagle).

Solution Observe that the only place that t appears in the expression for v(t) is in the

two identical exponential terms: e−2t
√

32k . Also notice that lim
t→∞

e−2t
√

32k = 0, since

lim
x→−∞

ex = 0. We then have

lim
t→∞

v(t) = lim
t→∞

−
 

32

k

 
1 − e−2t

√
32k

1 + e−2t
√

32k

 

= −
 

32

k

⎛
⎝1 − lim

t→∞
e−2t

√
32k

1 + lim
t→∞

e−2t
√

32k

⎞
⎠ = −

 
32

k

 
1 − 0

1 + 0

 
= −

 
32

k
ft/s,
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where the negative sign indicates a downward direction. So, with k = 0.00016, the

limiting velocity is −
 

32
0.00016

≈ −447 ft/s (about 300 mph!), and with k = 0.001, the

limiting velocity is −
 

32
0.001

≈ −179 ft/s (about 122 mph).
�

EXAMPLE 3.4 Finding the Maximum Concentration of a Chemical

The concentration x of a certain chemical after t seconds of an autocatalytic reaction is

given by x(t) = 10

9e−20t + 1
. Show that x  (t) > 0 and use this information to determine

that the concentration of the chemical never exceeds 10.

Solution Before computing the derivative, look carefully at the function x(t). The

independent variable is t and the only term involving t is in the denominator. So, we

don’t need to use the quotient rule. Instead, first rewrite the function as

x(t) = 10(9e−20t + 1)−1 and use the chain rule. We get

x  (t) = −10(9e−20t + 1)−2 d

dt
(9e−20t + 1)

= −10(9e−20t + 1)−2(−180e−20t )

= 1800e−20t (9e−20t + 1)−2

= 1800e−20t

(9e−20t + 1)2
.

Notice that since e−20t > 0 for all t, both the numerator and denominator are positive, so

that x  (t) > 0. Since all of the tangent lines have positive slope, the graph of y = x(t)

rises from left to right, as shown in Figure 6.18.

x
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10

0.2 1.00.80.60.4

FIGURE 6.18
Chemical concentration

Since the concentration increases for all time, the concentration is always less than

the limiting value lim
t→∞

x(t), which is easily computed to be

lim
t→∞

10

9e−20t + 1
= 10

0 + 1
= 10.

�

EXERCISES 6.3

WRITING EXERCISES

1. Thinking of e as a number (larger than 1), explain why

lim
x→∞

ex = ∞ and lim
x→−∞

ex = 0.

2. Explain why the graph of y = e−x in Figure 6.17 is the mirror

image (about the y-axis) of the graph of y = ex in Figure 6.16.

3. The graph of f (x) = ex curves upward in the interval from

x = −1 to x = 1. Interpreting f  (x) = ex as the slopes of tan-

gent lines and noting that the larger x is, the larger ex is, explain

why the graph curves upward. For larger values of x, the graph

of f (x) = ex appears to shoot straight up with no curve. Using

the tangent line, determine whether this is correct or just an

optical illusion.

4. There are a variety of equivalent ways of defining the num-

ber e. Discuss the definition given in this section versus the

usual precalculus definition e = lim
n→∞

 
1 + 1

n

 n
. Explain why

the limit definition was more convenient in a precalculus class,

whereas the inverse function definition is more convenient now.

In exercises 1–6, graph the indicated function.

1. 3e2x 2. 3e−2x

3. 3xe−2x 4. 2xe−3x

5. e1/x 6. e−2/(x3−x)

In exercises 7–14, find the derivative of the given function.

7. 4e3x 8. 3xe−2x

9.
e4x

x
10.

x2

e6x
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11. 2ex
3−3x 12. e2x−x2

13.
√
e2x2

14. (e3x + 1)2

In exercises 15–18, use a CAS or graphing calculator.

15. Find the derivative of f (x) = eln x2
on your CAS. Compare its

answer to 2x . Explain how to get this answer and your CAS’s

answer, if it differs.

16. Find the derivative of f (x) = eln(−x2) on your CAS. The correct

answer is that it does not exist. Explain how to get this answer

and your CAS’s answer, if it differs.

17. Find the derivative of f (x) = ln
√

4e3x on your CAS. Compare

its answer to 3
2
. Explain how to get this answer and your CAS’s

answer, if it differs.

18. Find the derivative of f (x) = ln

 
e4x

x2

 
on your CAS. Com-

pare its answer to 4 − 2/x . Explain how to get this answer and

your CAS’s answer, if it differs.

In exercises 19–34, evaluate the given integral.

19.

 
e3x dx 20.

 
e2−3x dx

21.

 
xex

2

dx 22.

 
2x2e−x3

dx

23.

 
sin xecos x dx 24.

 
ex cos(ex ) dx

25.

 
e1/x

x2
dx 26.

 
ex

1 + ex
dx

27.

 
(1 + ex )2 dx 28.

 
2√
xe

√
x
dx

29.

 
ln ex

2

dx 30.

 
e− ln x dx

31.

 1

0

e3x dx 32.

 2

0

e−2x dx

33.

 2

−2

xe−x2

dx 34.

 1

0

ex − 1

e2x
dx

In exercises 35–38, find all extrema and inflection points.

35. xe−2x 36. xe−4x

37. x2e−2x 38.
ex

x

39. Prove parts (ii) and (iii) of Theorem 3.1.

40. The atmospheric pressure at height h feet above sea level is

approximately p = 2116e−0.0000318h . If a balloon is at height

1000 feet and rising at the rate of 160 ft/s, at what rate is the

atmospheric pressure changing?

41. The concentration of a certain chemical after t seconds of an

autocatalytic reaction is given by x(t) = 6

2e−8t + 1
. Show that

x  (t) > 0 and use this information to determine that the con-

centration of the chemical never exceeds 6.

42. The concentration of a certain chemical after t seconds of an

autocatalytic reaction is given by x(t) = 10

9e−10t + 2
. Show that

x  (t) > 0 and use this information to determine that the con-

centration of the chemical never exceeds 5.

43. In statistics, the function f (x) = e−x2/2 is used to analyze ran-

dom quantities that have a bell-shaped distribution. Solutions

of the equation f   (x) = 0 give statisticians a measure of the

variability of the random variable. Find all solutions.

44. Repeat exercise 43 for the function f (x) = e−x2/8. Compar-

ing the graphs of the two functions, explain why you would

say that this distribution is more spread out than that of

exercise 43.

In exercises 45–48, graph each function.

45. 3x 46.
 

1
2

 x
47. 3−x 48.

 
1
2

 −x

49. Based on exercises 45 and 46, describe the graph of y = bx for

b > 1; 0 < b < 1.

50. Based on exercises 47 and 48, describe the graph of y = b−x

for b > 1; 0 < b < 1.

In exercises 51–56, find the derivative of the given function.

51. 32x 52. 5−2x

53. 3x2
54. 4−x

55. log4 x
2 56. log6(x2 + 5)

In exercises 57–60, evaluate each integral.

57.

 
2x dx 58.

 
43x dx

59.

 
x2x2

dx 60.

 
2x3−x2

dx

61. A water wave of length L meters in water of depth d meters

has velocity ν satisfying the equation

ν2 = 4.9L

π

e2πd/L − e−2πd/L

e2πd/L + e−2πd/L
.

Treating L as a constant and thinking of v2 as a function f (d),

use a linear approximation to show that f (d) ≈ 9.8d for small

values of d. That is, for small depths, the velocity of the

wave is approximately
√

9.8d and is independent of the wave-

length L.

62. Planck’s law states that the energy density of blackbody radi-

ation of wavelength x is given by

f (x) = 8πhcx−5

ehc/(kT x) − 1
.
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Use the linear approximation ex ≈ 1 + x to show that

f (x) ≈ 8π kT/x4, which is known as the Rayleigh-Jeans law.

63. If two soccer teams each score goals at a rate of r goals per

minute, the probability that n goals will be scored in t minutes

is P = (r t)n

n!
e−r t . Take r = 1

25
. Show that for a 90-minute

game, P is maximized with n = 3. Briefly explain why this

makes sense.

64. In the situation of exercise 63, find t to maximize the proba-

bility that exactly 1 goal has been scored. Briefly explain why

your answer makes sense.

65. Researchers in a number of fields (including population biol-

ogy, economics and the study of animal tumors) make use of

the Gompertz growth curve,W (t) = ae−be−t
. As t → ∞, show

thatW (t) → a andW  (t) → 0. Find the maximum growth rate.

66. The antiarrhythmic drug lidocaine slowly decays after enter-

ing the bloodstream. The plasma concentration t minutes after

administering the drug can be modeled by

c(t) = 92.8(−0.129e−t/6.55 + 0.218e−t/65.7 − 0.089e−t/13.3).

Use a CAS to estimate the time of maximum concentration

and inflection point (t > 0). Suppose that f (t) represents the

concentration of another drug. If the graph of f (t) has a similar

shape and the same maximum point as the graph of c(t) but the

inflection point occurs at a larger value of t, would this drug be

more or less effective than lidocaine? Briefly explain.

67. The function f (t) = a/(1 + 3e−bt ) has been used to model the

spread of a rumor. Suppose that a = 70 and b = 0.2. Compute

f (2), the percentage of the population that has heard the rumor

after 2 hours. Compute f  (2) and describe what it represents.

Compute lim
t→∞

f (t) and describe what it represents.

68. After an injection, the concentration of drug in a muscle is

given by a function of time, f (t). Suppose that t is measured

in hours and f (t) = e−0.02t − e−0.42t . Determine the time when

the maximum concentration of drug occurs.

69. The sigmoid function f (x) = 1

1 + e−x
is used to model situ-

ations with a threshold. For example, in the brain each neuron

receives inputs from numerous other neurons and fires only

after its total input crosses some threshold. Graph y = f (x)

and find lim
x→∞

f (x) and lim
x→−∞

f (x). Define the function g(x) to

be the value of f (x) rounded off to the nearest integer. What

value of x is the threshold for this function to switch from “off”

(0) to “on” (1)? How could you modify the function to move

the threshold to x = 4 instead?

70. A human being starts with a single fertilized egg cell, which

divides into 2 cells, which then divide into 4 cells and so on,

until the newborn infant has about 1 quadrillion (1015) cells.

Without doing any calculations, guess how many divisions are

required to reach 1015. Then, determine the value of n such that

2n ≈ 1015. Are you surprised?

71. Suppose a certain type of cell grows for three days and

then divides into two cells. The distribution of ages of cells

will have a probability distribution function (pdf) of the

form f (x) = 2ke−kx for 0 ≤ x ≤ 3. Find the value of k such

that f (x) is a pdf; that is,
 3

0
f (x) dx = 1. Then find the

probability that a given cell is between one and two days

old, given by
 2

1
f (x) dx .

72. Suppose you have a 1-in-10 chance of winning a prize with

some purchase (like a lottery). If you make 10 purchases (i.e.,

you get 10 tries), the probability of winning at least one prize

is 1 − (9/10)10. If the prize had probability 1-in-20 and you

tried 20 times, would the probability of winning at least once

be higher or lower? Compare 1 − (9/10)10 and 1 − (19/20)20

to find out. To see what happens for larger and larger odds,

compute lim
n→∞

{1 − [(n − 1)/n]n}.

73. In the text, we referred the proof of lim
h→0

eh − 1

h
= 1 to the ex-

ercises. In this exercise, we guide you through one possible

proof. (Another proof is given in exercise 74.) Starting with

h > 0, write h = ln eh =
 eh

1

1

x
dx . Use the Integral Mean

Value Theorem to write

 eh

1

1

x
dx = eh − 1

x̄
for some number

x̄ between 1 and eh . This gives you
eh − 1

h
= x̄ . Now, take

the limit as h → 0+. For h < 0, repeat this argument, with h

replaced with −h.

74. In this exercise, we guide you through a different proof

of lim
h→0

eh − 1

h
= 1. Start with f (x) = ln x and the fact that

f  (1) = 1. Using the alternative definition of derivative, we

write this as f  (1) = lim
x→1

ln x − ln 1

x − 1
= 1. Explain why this

implies that lim
x→1

x − 1

ln x
= 1. Finally, substitute x = eh .

75. In this exercise, we show that if e = lim
n→∞

 
1 + 1

n

 n
, then

ln e = 1. (That is, the definitions of e in writing ex-

ercise 4 are equivalent.) Define xn =  
1 + 1

n

 n
. By the

continuity of the natural logarithm function, we have

ln e = ln
 

lim
n→∞

 
1 + 1

n

 n = lim
n→∞

!
ln

 
1 + 1

n

 n"
. Show nume-

rically that lim
n→∞

 
ln(1 + 1/n)

1/n

 
equals 1.

76. Apply Newton’s method to the function f (x) = ln x − 1 to

find an iterative scheme for approximating e. Discover how

many steps are needed to start at x0 = 3 and obtain five digits

of accuracy.

77. The derivative of ex is derived in the text from (3.4) and (3.5).

As an alternative, start with f (x) = ex and apply Theorem 2.3

from section 6.2, to obtain the same derivative formula.
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EXPLORATORY EXERCISES

1. Find the number of intersections of y = xa and y = ax for

a = 3, a = e and a = 2. The number of intersections changes

betweena = 2 anda = 3. Repeat this fora = 2.1, a = 2.2 and

so on, to explore whether other a-values have different num-

bers of intersections. Prove your conjecture. You will want to

use the following fact: if f (c) = g(c), f  (x) > g (x) for x > c

and f  (x) < g (x) for x < c, then x = c is the only intersection

of f and g.

2. Determine the general properties (positive/negative,

increasing/decreasing, concave up/down) of the functions

xe−bx and x2e−bx for a constant b > 0. In a number of ap-

plications, mathematicians need to find a function for which

f (0) = 0 and (for x > 0) f (x) rises to a single maximum at

x = c and gradually drops with lim
x→∞

f (x) = 0. Show that both

families of functions meet these criteria and find the appro-

priate values for b. Taking c = 2, graph xe−bx and x2e−bx .

Compare and contrast the graphs. Explain what an applied

mathematician might use to decide which one is a more real-

istic function for a given application.

3. For n = 1 and n = 2, investigate lim
x→0

e−1/x

xn
numerically and

graphically. Conjecture the value of lim
x→0

e−1/x

xn
for any posi-

tive integer n and use your conjecture for the remainder of the

exercise. For f (x) =
#

0 if x ≤ 0

e−1/x if x > 0
, show that f is differ-

entiable at each x and that f  (x) is continuous for all x. Then

show that f   (0) exists and compare the work needed to show

that f  (x) is continuous at x = 0 and to show that f   (0) exists.

6.4 THE INVERSE TRIGONOMETRIC FUNCTIONS

In this section, we expand the set of functions available to you by defining inverses to

the trigonometric functions. To get started, let’s again look at a graph of y = sin x . (See

Figure 6.19.) Notice that we cannot define an inverse function, since sin x is not one-to one.

We can remedy this by looking at only a portion of the domain. If we restrict the domain to

the interval
!−π

2
, π

2

"
, then y = sin x is one-to-one there (see Figure 6.20) and hence, has

an inverse. We thus define the inverse sine function by

y = sin−1 x if and only if sin y = x and − π

2
≤ y ≤ π

2
. (4.1)

It is convenient to think of this definition as follows. If y = sin−1 x , then y is the angle

(between −π
2

and π
2

) for which sin y = x . You should note that we could have selected any

interval on which sin x is one-to-one, but
!−π

2
, π

2

"
is the most convenient. To see that these

are indeed inverse functions, you should observe that

sin(sin−1 x) = x, for all x ∈ [−1, 1]

and sin−1(sin x) = x, for all x ∈
 
−π

2
,
π

2

 
. (4.2)

Read equation (4.2) very carefully. It does not say that sin−1(sin x) = x for all x , but rather,

only for those in the restricted domain,
!−π

2
, π

2

"
. So, while it might be tempting to write

sin−1(sinπ ) = π , this is incorrect, as

sin−1(sinπ ) = sin−1(0) = 0.

REMARK 4.1

Mathematicians often use the notation arcsin x in place of sin−1 x . People will read

sin−1 x interchangeably as “inverse sine of x” or “arcsine of x.”

x

 p

 1

1

y

p
 q q

FIGURE 6.19
y = sin x

y

x

 q q

 1

1

FIGURE 6.20
y = sin x on

!− π

2
, π

2

"
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EXAMPLE 4.1 Evaluating an Inverse Sine

Evaluate sin−1
 √

3
2

 
.

Solution We look for the angle θ in the interval
!−π

2
, π

2

"
for which sin θ =

√
3

2
. Note

that since sin
 
π
3

 =
√

3
2

and π
3

∈ !−π
2
, π

2

"
, we have that sin−1

 √
3

2

 
= π

3
.
�

EXAMPLE 4.2 Evaluating an Inverse Sine with a Negative Argument

Evaluate sin−1
 − 1

2

 
.

Solution Here, note that sin
 −π

6

 = − 1
2

and −π
6

∈ !−π
2
, π

2

"
. Thus,

sin−1

 
−1

2

 
= −π

6
.
�

Judging by examples 4.1 and 4.2, you might think that (4.1) is a roundabout way of

defining a function. If so, you’ve got the idea exactly. In fact, we want to emphasize that what

we know about the inverse sine function is principally through reference to the sine function.

We will not have any other definition of arcsine, nor are there any algebraic formulas for this

function. (These things are true of most inverse functions.) Further, you should recall from

our discussion in section 6.2 that we can draw a graph of y = sin−1 x simply by reflecting

the graph of y = sin x on the interval
!−π

2
, π

2

"
(from Figure 6.20) through the line y = x .

(See Figure 6.21.)

y

x

 q

q

1 1

FIGURE 6.21
y = sin−1 x

y

x

q p

 1

1

FIGURE 6.22
y = cos x on [0, π ]

Turning to y = cos x , can you think of how to restrict the domain to make the function

one-to-one? Notice that restricting the domain to the interval
!−π

2
, π

2

"
, as we did for the

inverse sine function will not work here. (Why not?) The simplest way to do this is to

restrict its domain to the interval [0, π ]. (See Figure 6.22.) Consequently, we define the

inverse cosine function by

y = cos−1 x if and only if cos y = x and 0 ≤ y ≤ π. (4.3)

Note that here, we have

cos(cos−1 x) = x, for all x ∈ [−1, 1]

and cos−1(cos x) = x, for all x ∈ [0, π ].

As with the definition of arcsine, it is helpful to think of cos−1 x as that angle θ in [0, π ] for

which cos θ = x . As with sin−1 x , it is common to use cos−1 x and arccos x interchangeably.

EXAMPLE 4.3 Evaluating an Inverse Cosine

Evaluate cos−1(0).

Solution You will need to find that angle θ in [0, π ] for which cos θ = 0. It’s not hard

to see that cos−1(0) = π
2

. If you calculate this on your calculator and get 90, your

calculator is in degrees mode. In this event, you should immediately change it to radians

mode. �
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EXAMPLE 4.4 Evaluating an Inverse Cosine with a Negative Argument

Evaluate cos−1
 

−
√

2
2

 
.

Solution Here, look for the angle θ ∈ [0, π ] for which cos θ = −
√

2
2

. Notice that

cos
 

3π
4

 = −
√

2
2

and 3π
4

∈ [0, π ]. Consequently,

cos−1

 
−

√
2

2

 
= 3π

4
.

�

Once again, we obtain the graph of this inverse function by reflecting the graph of

y = cos x on the interval [0, π ] (seen in Figure 6.22) through the line y = x . (See

Figure 6.23.)

y

x
1 1

q

p

FIGURE 6.23
y = cos−1 x

q q

 6

 4

 2

2

4

6

y

x

FIGURE 6.24
y = tan x on

!− π

2
, π

2

"

We can define inverses for each of the four remaining trig functions in similar ways. For

y = tan x , we restrict the domain to the interval
 −π

2
, π

2

 
. Think about why the endpoints

of this interval are not included. (See Figure 6.24.) Having done this, you should readily

see that we define the inverse tangent function by

y = tan−1 x if and only if tan y = x and − π

2
< y <

π

2
. (4.4)

The graph of y = tan−1 x is then as seen in Figure 6.25, found by reflecting the graph in

Figure 6.24 through the line y = x .

y

x

 q

q

4 62 6  4  2

FIGURE 6.25
y = tan−1 x

EXAMPLE 4.5 Evaluating an Inverse Tangent

Evaluate tan−1(1).

Solution You must look for the angle θ on the interval
 −π

2
, π

2

 
for which tan θ = 1.

This is easy enough. Since tan
 
π
4

 = 1 and π
4

∈  −π
2
, π

2

 
, we have that tan−1(1) = π

4
. �

We now turn to defining an inverse for sec x. First, we must issue a disclaimer. As

we have indicated, there are any number of ways to suitably restrict the domains of the

trigonometric functions in order to make them one-to-one. With the first three we’ve seen,

there has been an obvious choice of how to do this and there is general agreement among

mathematicians on the choice of these intervals. In the case of sec x, this is not true. There are

several reasonable ways in which to suitably restrict the domain and different authors restrict

these differently. We have (arbitrarily) chosen to restrict the domain to be [0, π
2

) ∪ (π
2
, π ].

You might initially think that this looks strange. Why not use all of [0, π ]? You need only
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think about the definition of sec x to see why we needed to exclude the point x = π
2

. See

Figure 6.26 for a graph of sec x on this domain. (Note the vertical asymptote at x = π
2

.)

Consequently, we define the inverse secant function by

y = sec−1x if and only if sec y = x and y ∈ !
0, π

2

 ∪  
π
2
, π

"
. (4.5)

A graph of sec−1 x is shown in Figure 6.27.

EXAMPLE 4.6 Evaluating an Inverse Secant

Evaluate sec−1(−
√

2).

Solution You must look for the angle θ with θ ∈ !
0, π

2

 ∪  
π
2
, π

"
, for which

sec θ = −
√

2. Notice that if sec θ = −
√

2, then cos θ = − 1√
2

= −
√

2
2

. Recall from

example 4.4 that cos 3π
4

= −
√

2
2

. Further, the angle 3π
4

is in the interval
 
π
2
, π

"
and so,

sec−1(−
√

2) = 3π
4

. �

Calculators do not usually have built-in functions for sec x or sec−1 x . In this case, you

must convert the desired secant value to a cosine value and use the inverse cosine function,

as we did in example 4.6.

y

x
p

 10

 5

 1

5

1

10

q

FIGURE 6.26
y = sec x on [0, π ]

y

x

q

1051 5  1 10

p

FIGURE 6.27
y = sec−1 x

u   cos
 1x

sin u   兹1   x2

1

cos u   x

FIGURE 6.28
θ = cos−1 x

REMARK 4.2

We can likewise define inverses for cot x and csc x. As these functions are used only

infrequently, we will omit them here and examine them in the exercises.

Often, as a part of a larger problem (for example, evaluating an integral by some of

the methods discussed in Chapter 7) you will need to recognize some relationship between

the trigonometric functions and their inverses. We present several clues here. When you are

faced with these problems, our best advice is to keep in mind the definitions of the inverse

functions and then draw a picture.

EXAMPLE 4.7 Simplifying Expressions Involving Inverse
Trigonometric Functions

Simplify sin(cos−1 x) and tan(cos−1 x).

Solution Do not look for some arcane formula to help you out. Think first: cos−1 x is

the angle (call it θ ) for which x = cos θ . First, consider the case where x > 0. Looking

at Figure 6.28, we have drawn a right triangle, with hypotenuse 1 and adjacent angle θ .

From the definition of the sine and cosine, then, we have that the base of the triangle is

cos θ = x and the altitude is sin θ , which by the Pythagorean Theorem is

sin(cos−1 x) = sin θ =
 

1 − x2.

There are two subtle points that we should illuminate here. First, what if anything

in Figure 6.28 changes if x < 0? (Think about this one.) Second, since θ = cos−1 x , we

have that θ ∈ [0, π ] and hence, sin θ ≥ 0. Finally, you can also read from Figure 6.28 that

tan(cos−1 x) = tan θ = sin θ

cos θ
=

√
1 − x2

x
.

Note that this last identity is valid, regardless of whether x = cos θ is positive or

negative. �
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EXAMPLE 4.8 Simplifying an Expression Involving an Inverse Tangent

Simplify sin
 
tan−1 4

3

 
.

Solution Once again, keep in mind that tan−1 4
3

is the angle θ , in the interval
 −π

2
, π

2

 
for which tan θ = 4

3
. As an aid, we visualize the triangle shown in Figure 6.29. Note

that we have made the side opposite the angle θ to be of length 4 and the adjacent side

of length 3, so that the tangent of the angle is 4
3
, as desired. Of course, this makes the

hypotenuse 5, by the Pythagorean Theorem. Using the picture as a guide, we can read

off the desired value.

sin θ = sin

 
tan−1 4

3

 
= 4

5
.

While we’re at it, we should also observe that we have found that

cos θ = cos

 
tan−1 4

3

 
= 3

5
.
�

5 4   5 sin u

3   5 cos u

u   tan 1(  )3

4

FIGURE 6.29
θ = tan−1

 
4
3

 

BEYOND FORMULAS

There is a subtle device we have used throughout this section. Since the function sin x

is not one-to-one, it clearly does not have an inverse. However, inverse functions are

so useful that in cases such as this, mathematicians don’t like to take this as the final

answer and restrict the domain of the function, effectively defining a new function

that does have an inverse. In the case of sin x , we restricted the domain to the interval

[−π/2, π/2], thus defining a new function that equals sin x on this interval and yet,

does have an inverse. The general idea of manipulating various features of a function

to produce a desired result is common in mathematics. The alternative would mean

meekly accepting the existing limitations of a function, which is not part of the culture

of mathematics.

EXERCISES 6.4

WRITING EXERCISES

1. Discuss how to compute sec−1 x, csc−1x and cot−1 x on a cal-

culator that only has built-in functions for sin−1 x, cos−1 x and

tan−1 x .

2. Give a different range for sec−1 x than that given in the text.

For which x’s would the value of sec−1 x change? Using the

calculator discussion in exercise 1, give one reason why we

might have chosen the range that we did.

3. Inverse functions are necessary for solving equations. The re-

stricted range we had to use to define inverses of the trigonomet-

ric functions also restricts their usefulness in equation solving.

Explain how to use sin−1 x to find all solutions of the equation

sin u = x .

4. The idea of restricting ranges can be used to define inverses

for a variety of functions. Explain how to define an inverse for

f (x) = x2.

In exercises 1–6, evaluate the inverse function by sketching a

unit circle and locating the correct angle on the circle.

1. (a) sin−1(0) (b) sin−1(− 1
2
) (c) sin−1(−1)

2. (a) cos−1(0) (b) cos−1(1) (c) cos−1( 1
2
)

3. (a) tan−1(1) (b) tan−1(0) (c) tan−1(−1)

4. (a) cot−1(0) (b) cot−1(1) (c) cot−1(
√

3)
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5. (a) sec−1(1) (b) sec−1(2) (c) sec−1(
√

2)

6. (a) csc−1(1) (b) csc−1(−1) (c) csc−1(−2)

In exercises 7–18, use a triangle to simplify each expression.

Where applicable, state the range of x’s for which the simplifi-

cation holds.

7. cos(sin−1 x) 8. cos(tan−1 x)

9. tan(sec−1 x) 10. cot(cos−1 x)

11. sin
 
cos−1 1

2

 
12. cos

 
sin−1 1

2

 
13. tan

 
cos−1 3

5

 
14. csc

 
sin−1 2

3

 
15. cos−1(cos(−π/8)) 16. sin−1(sin 3π/4)

17. sin(2 sin−1 x/3) 18. cos(2 sin−1 2x)

In exercises 19–24, sketch a graph of the function.

19. cos−1(2x) 20. cos−1(x3)

21. sin−1(3x) 22. sin−1(x/4)

23. tan−1

 
1

x2 − 1

 
24. sin−1

 
1 − 1

x2

 
In exercises 25–32, find all solutions.

25. cos(2x) = 0 26. cos(3x) = 1

27. sin(3x) = 0 28. sin(x/4) = 1

29. tan(5x) = 1 30. sin(x/4) = − 1
2

31. sec(2x) = 2 32. csc(2x) = −2

33. Give precise definitions of csc−1x and cot−1 x .

34. In baseball, outfielders are able to easily track down and catch

fly balls that have very long and high trajectories. Physicists

have argued for years about how this is done. A recent expla-

nation involves the following geometry.

Outfielder

Ball

Home

plate

c
b

a

The player can catch the ball by running to keep the angle

ψ constant (this makes it appear that the ball is moving in

a straight line). Assuming that all triangles shown are right

triangles, show that tanψ = tanα

tanβ
and then solve for ψ .

35. A picture hanging in an art gallery has a frame 20 inches high

and the bottom of the frame is 6 feet above the floor. A person

whose eye is 6 feet above the floor stands x feet from the wall.

Let A be the angle formed by the ray from the person’s eye

to the bottom of the frame and the ray from the person’s eye

to the top of the frame. Write A as a function of x and graph

y = A(x).

x

20"

6'

A

36. In golf, the goal is to hit a ball into a hole of diameter

4.5 inches. Suppose a golfer stands x feet from the hole trying

to putt the ball into the hole. A first approximation of the mar-

gin of error in a putt is to measure the angle A formed by the

ray from the ball to the right edge of the hole and the ray from

the ball to the left edge of the hole. Find A as a function of x.

EXPLORATORY EXERCISES

1. An oil tank with circular cross sections lies on its side. A stick

is inserted in a hole at the top and used to measure the depth

d of oil in the tank. Based on this measurement, the goal is to

compute the percentage of oil left in the tank.

d

To simplify calculations, suppose the circle is a unit circle with

center at (0, 0). Sketch radii extending from the origin to the

top of the oil. The area of oil at the bottom equals the area of

the portion of the circle bounded by the radii minus the area of

the triangle formed above.
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d

1 1
u

Start with the triangle, which has area one-half base times

height. Explain why the height is 1 − d. Find a right triangle

in the figure (there are two of them) with hypotenuse 1 (the

radius of the circle) and one vertical side of length 1 − d. The

horizontal side has length equal to one-half the base of

the larger triangle. Show that this equals
 

1 − (1 − d)2. The

area of the portion of the circle equalsπθ/2π = θ/2, where θ is

the angle at the top of the triangle. Find this angle as a function

of d. (Hint: Go back to the right triangle used previously with

upper angle θ/2.) Then find the area filled with oil and divide

by π to get the portion of the tank filled with oil.

2. In this exercise, you will design a movie theater with all seats

having an equal view of the screen. Suppose the screen extends

vertically from 10 feet to 30 feet above the floor. The first row

of seats is 15 feet from the screen. Your task is to determine a

function h(x) such that if seats x feet from the screen are raised

h(x) feet above floor level, then the angle from the bottom of

the screen to the viewer to the top of the screen will be the same

as for a viewer sitting in the first row. You will be able to ac-

complish this only for a limited range of x-values. Beyond the

maximum such x, find the height that maximizes the viewing

angle. [Hint: Write the angle as a difference of inverse tangents

and use the formula tan(a − b) = tan a − tan b

1 + tan a tan b
.]

6.5 THE CALCULUS OF THE INVERSE
TRIGONOMETRIC FUNCTIONS

Now that we have defined the inverse trigonometric functions in section 6.4, we will examine

the calculus of these functions briefly in the present section. Our first job is to find the

derivative of sin−1 x . You might think of the definition of derivative,

d

dx
sin−1 x = lim

h→0

sin−1(x + h) − sin−1 x

h
,

but we don’t know enough about sin−1 x to resolve this limit directly. Beyond the definition

and a few isolated values, you probably don’t know much about this function. Thus, while

you might compute this limit approximately, for fixed values of x, you have little hope of

resolving this limit symbolically. However, this is an inverse function and if you focus on

that, you’ll see the following analysis. Recall the definition of sin−1 x given in (4.1):

y = sin−1 x if and only if sin y = x and y ∈
 
−π

2
,
π

2

 
.

Differentiating the equation sin y = x implicitly, we have

d

dx
sin y = d

dx
x

and so, cos y
dy

dx
= 1.

Solving this for
dy

dx
, we find (for cos y  = 0) that

dy

dx
= 1

cos y
.
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This is not entirely satisfactory, though, since this gives us the derivative in terms of y.

Notice that for y ∈ !−π
2
, π

2

"
, cos y ≥ 0 and hence.

cos y =
 

1 − sin2 y =
 

1 − x2.

This leaves us with

dy

dx
= 1

cos y
= 1√

1 − x2
.

for −1 < x < 1. That is,

d

dx
sin−1 x = 1√

1 − x2
, for −1 < x < 1.

Alternatively, we can derive this same derivative formula using Theorem 2.3 in section 6.2.

We leave it as an exercise to show that

d

dx
cos−1 x = −1√

1 − x2
, for −1 < x < 1.

To find
d

dx
tan−1 x , we rely on its definition in (4.4). Recall that we have

y = tan−1 x if and only if tan y = x and y ∈
 

−π
2
,
π

2

 
.

Using implicit differentiation, we then have

d

dx
tan y = d

dx
x

and so, (sec2 y)
dy

dx
= 1.

We solve this for
dy

dx
, to obtain

dy

dx
= 1

sec2 y

= 1

1 + tan2 y

= 1

1 + x2
.

That is,

d

dx
tan−1 x = 1

1 + x2
.

You can likewise show that

d

dx
sec−1 x = 1

|x |
√
x2 − 1

, for |x | > 1.

This is left as an exercise. The derivatives of the two remaining inverse trigonometric

functions are not important and are not discussed here.
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EXAMPLE 5.1 Finding the Derivative of an Inverse
Trigonometric Function

Compute the derivative of (a) cos−1(3x2) and (b) (sec−1 x)2.

Solution (a) From the chain rule, we have

d

dx
cos−1(3x2) = −1 

1 − (3x2)2

d

dx
(3x2)

= −6x√
1 − 9x4

.

(b) Also from the chain rule, we have

d

dx
(sec−1 x)2 = 2(sec−1 x)

d

dx
(sec−1 x)

= 2(sec−1 x)
1

|x |
√
x2 − 1

.
�

EXAMPLE 5.2 Modeling the Rate of Change of a Ballplayer’s Gaze

One of the guiding principles of most sports is to “keep your eye on the ball.” In

baseball, a batter stands 2 feet from home plate as a pitch is thrown with a velocity of

130 ft/s (about 90 mph). At what rate does the batter’s angle of gaze need to change

when the ball crosses home plate?

Solution First, look at the triangle shown in Figure 6.30. We denote the distance from

the ball to home plate by d and the angle of gaze by θ . Since the distance is changing

with time, we write d = d(t). The velocity of 130 ft/s means that d  (t) = −130. [Why

would d  (t) be negative?] From Figure 6.30, notice that

θ (t) = tan−1

 
d(t)

2

 
.

d

u

2

Overhead view

FIGURE 6.30
A ballplayer’s gaze
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The rate of change of the angle is then

θ  (t) = 1

1 + !
d(t)

2

"2

d  (t)
2

= 2d  (t)
4 + [d(t)]2

radians/second.

When d(t) = 0 (i.e., when the ball is crossing home plate), the rate of change is then

θ  (t) = 2(−130)

4
= −65 radians/second.

One problem with this is that most humans can accurately track objects only at the rate

of about 3 radians/second. Keeping your eye on the ball in this case is thus physically

impossible. How do those ballplayers do it? Research indicates that ballplayers must

anticipate where the ball is going, instead of continuing to track the ball visually. (See

Watts and Bahill, Keep Your Eye on the Ball.) �

Integrals Involving the Inverse Trigonometric Functions

You may have already guessed the next step. Each of our new differentiation formulas gives

rise to a new integration formula. First, since

d

dx
sin−1 x = 1√

1 − x2
,

we also have that  
1√

1 − x2
dx = sin−1 x + c. (5.1)

Likewise, since

d

dx
cos−1 x = −1√

1 − x2
,

we also have that  
1√

1 − x2
dx = − cos−1 x + c. (5.2)

However, since the integral in (5.2) is the same integral as in (5.1), we will ignore (5.2).

In the same way, we obtain

 
1

1 + x2
dx = tan−1 x + c

and  
1

|x |
√
x2 − 1

dx = sec−1 x + c.
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EXAMPLE 5.3 An Integral Related to tan−1
x

Evaluate

 
1

9 + x2
dx .

Solution Notice that the integrand is nearly the derivative of tan−1 x . However, the

constant in the denominator is 9, instead of the 1 we need. With this in mind, we rewrite

the integral as  
1

9 + x2
dx = 1

9

 
1

1 +  
x
3

 2
dx .

If we let u = x
3
, then du = 1

3
dx and hence, 

1

9 + x2
dx = 1

9

 
1

1 +  
x
3

 2
dx

= 1

3

 
1

1 +
 x

3

 2

    
1+u2

1

3
dx    
du

= 1

3

 
1

1 + u2
du

= 1

3
tan−1 u + c

= 1

3
tan−1

 x
3

 
+ c.

�

We leave it as an exercise to prove the more general formula:

 
1

a2 + x2
dx = 1

a
tan−1

 x
a

 
+ c.

EXAMPLE 5.4 An Integral Requiring a Simple Substitution

Evaluate

 
ex

1 + e2x
dx .

Solution Think about how you might approach this. You probably won’t recognize an

antiderivative immediately. Remember that it often helps to look for terms that are

derivatives of other terms. You should also recognize that e2x = (ex )2. With this in

mind, we let u = ex , so that du = ex dx . We then have 
ex

1 + e2x
dx =

 
1

1 + (ex )2    
1+u2

ex dx    
du

=
 

1

1 + u2
du

= tan−1 u + c

= tan−1(ex ) + c. �
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EXAMPLE 5.5 Another Integral Requiring a Simple Substitution

Evaluate

 
x√

1 − x4
dx .

Solution Look carefully at the integrand and recognize that you don’t know an anti-

derivative. However, you might observe that 
x√

1 − x4
dx =

 
x 

1 − (x2)2
dx .

Once you’ve recognized this one small step, you can complete the problem with a

simple substitution. Letting u = x2, we have du = 2x dx and 
x√

1 − x4
dx = 1

2

 
2x 

1 − (x2)2
dx

= 1

2

 
1√

1 − u2
du

= 1

2
sin−1 u + c

= 1

2
sin−1(x2) + c.

�

You will explore integrals involving the inverse trigonometric functions further in the

exercises. Whenever dealing with these functions, it is easiest if you keep the basic defini-

tions in mind (including the domains and ranges). You will only need to know the derivative

formulas for sin−1 x, tan−1 x and sec−1 x . With these basic formulas, you can quickly de-

velop anything else that you need, using elementary techniques (such as substitution).

EXERCISES 6.5

WRITING EXERCISES

1. Explain why, as is indicated in the text, antiderivatives cor-

responding to three of the six inverse trigonometric functions

“can be ignored.”

2. From equations (5.1) and (5.2), explain why it follows that

sin−1 x = − cos−1 x + c. From the graphs of y = sin x and

y = cos x , explain why this is plausible and identify the con-

stant c for 0 < x < π/2.

In exercises 1–10, find the derivative of the function.

1. sin−1(3x2) 2. cos−1(x3 + 1)

3. sec−1(x2) 4. csc−1(
√
x)

5. x cos−1(2x) 6. sin x sin−1(2x)

7. cos−1(sin x) 8. tan−1(cos x)

9. tan−1(sec x) 10. sec−1(tan x)

In exercises 11–26, evaluate the given integral.

11.

 
6

1 + x2
dx 12.

 
2

9 + x2
dx

13.

 
2x

1 + x4
dx 14.

 
3x3

1 + x4
dx

15.

 
4x√

1 − x4
dx 16.

 
2x2

√
1 − x6

dx

17.

 
2x

x2
√
x4 − 1

dx 18.

 
3

|x |
√
x6 − 1

dx

19.

 
2

4 + x2
dx 20.

 
2x

4 + x2
dx

21.

 
ex√

1 − e2x
dx 22.

 
cos x

4 + sin2 x
dx

23.

 2

0

6

4 + x2
dx 24.

 √
3

1

1

2 + 2x2
dx
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25.

 1/4

0

3√
1 − 4x2

dx 26.

 1

0

2√
4 − x2

dx

27. Derive the formula
d

dx
cos−1 x = −1√

1 − x2
.

28. Derive the formula
d

dx
sec−1 x = 1

|x |
√
x2 − 1

.

29. Derive the formula

 
1

a2 + x2
dx = 1

a
tan−1

 x
a

 
+ c for any

positive constant a.

30. In this exercise, we give a different derivation from the text

for the derivative of sin−1 x . Use Theorem 2.3 of section 6.2

to show that
d

dx
sin−1 x = 1

cos(sin−1 x)
. Then, evaluate

cos(sin−1 x).

31. In example 5.2, it was shown that by the time the baseball

reached home plate, the rate of rotation of the player’s gaze

(θ  ) was too fast for humans to track. Given a maximum ro-

tational rate of θ  = −3 radians per second, find d such that

θ  = −3. That is, find how close to the plate a player can track

the ball. In a major league setting, the player must start swing-

ing by the time the pitch is halfway (30 ) to home plate. How

does this correspond to the distance at which the player loses

track of the ball?

32. Suppose the pitching speed x  in example 5.2 is different. Then

θ  will be different and the value of x for which θ  = −3 will

change. Find x as a function of x  for x  ranging from 30 ft/s

(slowpitch softball) to 140 ft/s (major league fastball) and

sketch the graph.

33. Suppose a painting hangs on a wall. The frame extends from

6 feet to 8 feet above the floor. A person whose eye is five

feet above the floor stands x feet from the wall and views the

painting, with a viewing angle A formed by the ray from the

person’s eye to the top of the frame and the ray from the per-

son’s eye to the bottom of the frame. Find the value of x that

maximizes the viewing angle A.

34. What changes in exercise 33 if the person’s eye is six feet above

the floor?

35. Show that

 −1√
1 − x2

dx = cos−1 x + c and −1√
1 − x2

dx = − sin−1 x + c. Explain why this does not

imply that cos−1 x = − sin−1 x . Find an equation relating

cos−1 x and sin−1 x .

36. Evaluate

 
1

|x |
√
x2 − 1

dx by rewriting the integrand as

1

x2
 

1 − 1/x2
and then making the substitution u = 1/x . Use

your answer to derive an identity involving sin−1(1/x) and

sec−1 x .

37. Show that both

 1

0

 
1 − x2 dx and

 1

0

1

1 + x2
dx equal

π

4
.

Use Simpson’s Rule on each integral with n = 4 and n = 8 and

compare to the exact value. Which integral provides a better

algorithm for estimating π?

38. Find and simplify the derivative of sin−1

 
x√

x2 + 1

 
. Use the

result to write out an equation relating sin−1

 
x√

x2 + 1

 
and

tan−1 x .

39. Use the Mean Value Theorem to show that | tan−1 a| < |a| for

all a  = 0 and use this inequality to find all solutions of the

equation tan−1 x = x .

40. Prove that |x | < | sin−1 x | for 0 < |x | < 1.

41. In the diagram, a hockey player isD feet from the net on the cen-

tral axis of the rink. The goalie blocks off a segment of width

w and stands d feet from the net. The shooting angle to the

left of the goalie is given by φ = tan−1

 
3(1 − d/D) − w/2

D − d

 
.

Use a linear approximation of tan−1 x at x = 0 to show that if

d = 0, then φ ≈ 3−w/2
D

. Based on this, describe how φ changes

if there is an increase in (a) w or (b) D.

D

w
φ

EXERCISE 41

42. The shooter in exercise 41 is assumed to be in the center of the

ice. Suppose that the line from the shooter to the center of the

goal makes an angle of θ with the center line. For the goalie to

completely block the goal, he must stand d feet away from the

net where d = D(1 − w/6 cos θ ). Show that for small angles,

d ≈ D(1 − w/6).

43. For a college football field with the dimensions shown,

the angle θ for kicking a field goal from a (horizon-

tal) distance of x feet from the goal post is given by

θ (x) = tan−1(29.25/x) − tan−1(10.75/x). Show that

f (t) = t

a2 + t2
is increasing for a > t and use this fact to

show that θ (x) is a decreasing function for x ≥ 30. Announc-

ers often say that for a short field goal (50 ≤ x ≤ 60), a team

can improve the angle by backing up 5 yards with a penalty.

Is this true?

x

18.5

40'
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44. To start skating, you must angle your foot and push off the ice.

Alain Haché’s The Physics of Hockey derives the relationship

between the skate angle θ , the sideways stride distance s, the

stroke period T and the forward speed v of the skater, with

θ = tan−1( 2s
vT

). For T = 1 second, s = 60 cm and an acceler-

ation of 1 m/s2, find the rate of change of the angle θ when the

skater reaches (a) 1 m/s and (b) 2 m/s. Interpret the sign and

size of θ  in terms of skating technique.

u

s

v

push

45. Use Theorem 2.3 of section 6.2 with f (x) = cos x to derive

the formula for
d

dx
cos−1 x .

46. Use Theorem 2.3 of section 6.2 with f (x) = tan x to derive

the formula for
d

dx
tan−1 x .

EXPLORATORY EXERCISES

1. When the astronauts blasted off from the moon, the lunar ex-

cursion module (LEM) burned its rockets briefly. Suppose the

acceleration of the LEM was a(t) =
#

40 if 0 ≤ t ≤ 2

0 if 2 < t
ft/s2.

A camera was set up on the moon to enable viewers at home

to watch the takeoff. Obviously, there was no camera opera-

tor, but the motion of the camera had to be preprogrammed.

Suppose that the camera was 200 feet from the LEM. Find the

camera angle between the ground and LEM as a function of

the height h of the LEM. Integrate the equation h  (t) = a(t)

to find the height and hence the camera angle as a function of

time. To rotate the camera to the correct angle, a torque would

have to be applied at the pivot point of the camera. Torque is

proportional to the second derivative of the angle. Find this

derivative.

2. You have already seen that one of the important features of cal-

culus is that one technique (e.g., differentiation) can be used to

solve a wide variety of problems. Mathematicians take this lazi-

ness principle (don’t rework a problem that has already been

solved) to an extreme. The idea of a homeomorphism helps

to identify when superficially different sets are essentially the

same. For example, the intervals (0, 1), (0, π ) and (−π/2, π/2)

are all finite open intervals. They are homeomorphic. By defini-

tion, intervals I1 and I2 are homeomorphic if there is a function

f from I1 onto I2 that has an inverse with f and f −1 both be-

ing continuous. A homeomorphism from (0, 1) to (0, π ) is

f (x) = πx . Show that this is a homeomorphism by finding its

inverse and verifying that both are continuous. Find a homeo-

morphism from (0, π ) to (−π/2, π/2). [Hint: Sketch a picture,

and decide how you could move the interval (0, π ) to produce

the interval (−π/2, π/2).] This will take some thinking, but

try to find a homeomorphism for any two finite open inter-

vals (a, b) and (c, d). It remains to decide whether the interval

(−∞,∞) is different because it is infinite or the same because

it is open. In fact, (−∞,∞) is homeomorphic to (−π/2, π/2)

and hence to all other open intervals. Show that tan−1 x is a

homeomorphism from (−∞,∞) to (−π/2, π/2).

3. Explore the graphs of e−x , xe−x , x2e−x and x3e−x . Find all lo-

cal extrema and graphically determine the behavior as x → ∞.

You can think of the graph of xne−x as showing the re-

sults of a tug-of-war: xn → ∞ as x → ∞ but e−x → 0 as

x → ∞. Describe the graph of xne−x in terms of this tug-of-

war.

4. Suppose that a hockey player is shooting at a 6-foot-wide net

from a distance of d feet away from the goal line and 4 feet to

the side of the center line. (a) Find the distance d that maxi-

mizes the shooting angle. (b) Repeat part (a) with the shooter

2 feet to the side of the center line. Explain why the answer is

so different. (c) Repeat part (a) with the goalie blocking all but

the far 2 feet of the goal.

6.6 THE HYPERBOLIC FUNCTIONS

The Gateway Arch in Saint Louis is one of the most distinctive and recognizable architectural

structures in the United States. There are several surprising features of its shape. For instance,

is the arch taller than it is wide? Most people think that it is taller, but this is the result of

a common optical illusion. In fact, the arch has the same width as height. A slightly less

mysterious illusion of the arch’s shape is that it is not a parabola. Its shape corresponds to
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the graph of the hyperbolic cosine function (called a catenary). This function and the other

five hyperbolic functions are introduced in this section.

The Gateway Arch, St. Louis, MO

You may be wondering why we need more functions. Well, these functions are not

entirely new. They are simply common combinations of exponentials. We study them be-

cause of their usefulness in applications (e.g., the Gateway Arch) and their convenience in

solving equations (in particular, differential equations).

The hyperbolic sine function is defined by

sinh x = ex − e−x

2
,

for all x ∈ (−∞,∞). The hyperbolic cosine function is defined by

cosh x = ex + e−x

2
,

again for all x ∈ (−∞,∞). You can easily use the preceding definitions to verify the

important identity

cosh2 u − sinh2 u = 1, (6.1)

for any value of u. (We leave this as an exercise.) In light of this identity, notice that if

x = cosh u and y = sinh u, then

x2 − y2 = cosh2 u − sinh2 u = 1,

which you should recognize as the equation of a hyperbola. This identity is the source of

the name “hyperbolic” for these functions. You should also notice some parallel with the

trigonometric functions cos x and sin x . This will become even more apparent with what

follows.

The remaining four hyperbolic functions are defined in terms of the hyperbolic sine and

hyperbolic cosine functions, in a manner analogous to their trigonometric counterparts. That

is, we define the hyperbolic tangent function tanh x, the hyperbolic cotangent function

coth x, the hyperbolic secant function sech x and the hyperbolic cosecant function csch x

as follows:

tanh x = sinh x

cosh x
, coth x = cosh x

sinh x

sech x = 1

cosh x
, csch x = 1

sinh x
.

These functions are remarkably easy to deal with, and we can readily determine their

behavior, using what we have already learned about exponentials. First, note that

d

dx
sinh x = d

dx

 
ex − e−x

2

 
= ex + e−x

2
= cosh x .
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Similarly, we can establish the remaining derivative formulas:

d

dx
cosh x = sinh x,

d

dx
tanh x = sech2 x

d

dx
coth x = −csch2 x,

d

dx
sech x = −sech x tanh x

and
d

dx
csch x = −csch x coth x .

These are all elementary applications of earlier derivative rules and are left as exercises. As

it turns out, only the first three of these are of much significance.

EXAMPLE 6.1 Computing the Derivative of a Hyperbolic Function

Compute the derivative of f (x) = sinh2(3x).

Solution From the chain rule, we have

f  (x) = d

dx
sinh2(3x) = d

dx
[sinh(3x)]2

= 2 sinh(3x)
d

dx
[sinh(3x)]

= 2 sinh(3x) cosh(3x)
d

dx
(3x)

= 2 sinh(3x) cosh(3x)(3)

= 6 sinh(3x) cosh(3x). �

Of course, every new differentiation rule gives us a corresponding integration rule. In

particular, we now have  
cosh x dx = sinh x + c, 
sinh x dx = cosh x + c

and

 
sech2 x dx = tanh x + c.

We illustrate a simple integral in example 6.2.

EXAMPLE 6.2 An Integral Involving a Hyperbolic Function

Evaluate
 
x cosh(x2) dx .

Solution Notice that you can evaluate this integral using a substitution. If we let u = x2,

we get du = 2x dx and so, 
x cosh(x2) dx = 1

2

 
cosh(x2)    

cosh u

(2x) dx    
du

= 1

2

 
cosh u du = 1

2
sinh u + c

= 1

2
sinh(x2) + c.

�
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For f (x) = sinh x , note that

f (x) = sinh x = ex − e−x

2

#
> 0 if x > 0

< 0 if x < 0
.

This is left as an exercise. Further, since f  (x) = cosh x > 0, sinh x is increasing for all x.

Next, note that f   (x) = sinh x . Thus, the graph is concave down for x < 0 and concave up

for x > 0. Finally, you can easily verify that

lim
x→∞

sinh x = ∞ and lim
x→−∞

sinh x = −∞.

It is now a simple matter to produce the graph seen in Figure 6.31. Similarly, you should be

able to produce the graphs of cosh x and tanh x seen in Figures 6.32a and 6.32b, respectively.

We leave the graphs of the remaining three hyperbolic functions to the exercises.

If a flexible cable or wire (such as a power line or telephone line) hangs between two

towers, it will assume the shape of a catenary curve (derived from the Latin word catena

meaning “chain”). As we will show at the end of this section, this naturally occurring curve

corresponds to the graph of the hyperbolic cosine function f (x) = a cosh
 
x
a

 
.

y

x

 10

 5

5

10

42 2 4

FIGURE 6.31
y = sinh x

y

x

2 4 2 4

2

4

6

8

10

1

 1

y

x

2 4 4  2

FIGURE 6.32a
y = cosh x

FIGURE 6.32b
y = tanh x

y

x

10 20 10 20

10

30

FIGURE 6.33
y = 20 cosh

 
x

20

 

EXAMPLE 6.3 Finding the Amount of Sag in a Hanging Cable

For the catenary f (x) = 20 cosh( x
20

), for −20 ≤ x ≤ 20, find the amount of sag in the

cable and the arc length.

Solution From the graph of the function in Figure 6.33, it appears that the minimum

value of the function is at the midpoint x = 0, with the maximum at x = −20 and

x = 20. To verify this observation, note that

f  (x) = sinh
 x

20

 
and hence, f  (0) = 0, while f  (x) < 0 for x < 0 and f  (x) > 0, for x > 0. Thus, f

decreases to a minimum at x = 0. Further, f (−20) = f (20) ≈ 30.86 is the maximum

for −20 ≤ x ≤ 20 and f (0) = 20, so that the cable sags approximately 10.86 feet. From

the usual formula for arc length, developed in section 5.4, the length of the cable is

L =
 20

−20

 
1 + [ f  (x)]2 dx =

 20

−20

 
1 + sinh2

 x

20

 
dx .

Notice that from (6.1), we have

1 + sinh2 x = cosh2 x .
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Using this identity, the arc length integral simplifies to

L =
 20

−20

 
1 + sinh2

 x

20

 
dx =

 20

−20

cosh
 x

20

 
dx

= 20 sinh
 x

20

    20

−20
= 20[sinh(1) − sinh(−1)]

= 40 sinh(1) ≈ 47 feet. �

The Inverse Hyperbolic Functions

You should note from the graphs of sinh x and tanh x that these functions are one-to-one.

Also, cosh x is one-to-one for x ≥ 0. Thus, we can define inverses for these functions, as

follows. For any x ∈ (−∞,∞), we define the inverse hyperbolic sine by

y = sinh−1 x if and only if sinh y = x .

For any x ≥ 1, we define the inverse hyperbolic cosine by

y = cosh−1 x if and only if cosh y = x, and y ≥ 0.

Finally, for any x ∈ (−1, 1), we define the inverse hyperbolic tangent by

y = tanh−1 x if and only if tanh y = x .

Inverses for the remaining three hyperbolic functions can be defined similarly and are left

to the exercises. We show the graphs of y = sinh−1 x, y = cosh−1 x and y = tanh−1 x in

Figures 6.34a, 6.34b and 6.34c, respectively. (As usual, you can obtain these by reflecting

the graph of the original function through the line y = x .)

y

x

2 4 2 4

2

 2

FIGURE 6.34a
y = sinh−1 x

x

2 6 10

y

4

2

FIGURE 6.34b
y = cosh−1 x

2

 2

 1 1

 4

4

y

x

FIGURE 6.34c
y = tanh−1 x

We can find derivatives for the inverse hyperbolic functions using implicit differentia-

tion, just as we have for previous inverse functions. We have that

y = sinh−1 x if and only if sinh y = x . (6.2)

Differentiating both sides of this last equation with respect to x yields

d

dx
sinh y = d

dx
x

or cosh y
dy

dx
= 1.

Solving for the derivative, we find

dy

dx
= 1

cosh y
= 1 

1 + sinh2 y
= 1√

1 + x2
,

since we know that

cosh2 y − sinh2 y = 1,

from (6.1). That is, we have shown that

d

dx
sinh−1 x = 1√

1 + x2
.

Note the similarity with the derivative formula for sin−1 x . We can likewise establish deriva-

tive formulas for the other five inverse hyperbolic functions. We list these here for the sake
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of completeness.

d

dx
sinh−1 x = 1√

1 + x2

d

dx
cosh−1 x = 1√

x2 − 1
d

dx
tanh−1 x = 1

1 − x2

d

dx
coth−1 x = 1

1 − x2

d

dx
sech−1x = −1

x
√

1 − x2

d

dx
csch−1x = −1

|x |
√

1 + x2

Before closing this section, we wish to point out that the inverse hyperbolic functions

have a significant advantage over earlier inverse functions we have discussed. It turns out

that we can solve for the inverse functions explicitly in terms of more elementary functions.

EXAMPLE 6.4 Finding a Formula for an Inverse Hyperbolic Function

Find an explicit formula for sinh−1 x .

Solution Recall from (6.2) that

y = sinh−1 x if and only if sinh y = x .

Using this definition, we have

x = sinh y = ey − e−y

2
. (6.3)

We can solve this equation for y, as follows. First, recall also that

cosh y = ey + e−y

2
.

Now, notice that adding these last two equations and using the identity (6.1), we have

ey = sinh y + cosh y = sinh y +
 

cosh2y

= sinh y +
 

sinh2y + 1

= x +
 
x2 + 1,

from (6.3). Finally, taking the natural logarithm of both sides, we get

y = ln(ey) = ln(x +
 
x2 + 1).

That is, we have found a formula for the inverse hyperbolic sine function:

sinh−1 x = ln(x +
 
x2 + 1). �

Similarly, we can show that for x ≥ 1,

cosh−1 x = ln(x +
 
x2 − 1)

and for −1 < x < 1,

tanh−1 x = 1

2
ln

 
1 + x

1 − x

 
.

We leave it to the exercises to derive these formulas and corresponding formulas for the

remaining inverse hyperbolic functions. There is little point in memorizing any of these for-

mulas. You need only realize that these are always available by performing some elementary

algebra.
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Derivation of the Catenary

We close this section by deriving a formula for the catenary. As you follow the steps, pay

special attention to the variety of calculus results that we use.
y   f (x)

(x, y)

T cos u

T sin u

x
H

T

y

u

FIGURE 6.35
Forces acting on a section of

hanging cable

In Figure 6.35, we assume that the lowest point of the catenary curve is located at the

origin. We further assume that the cable has constant linear density ρ (measured in units of

weight per unit length) and that the function y = f (x) is twice continuously differentiable.

We focus on the portion of the cable from the origin to the general point (x, y) indicated

in the figure. Since this section is not moving, the horizontal and vertical forces must be

balanced. Horizontally, this section of cable is pulled to the left by the tension H at the

origin and is pulled to the right by the horizontal component T cos θ of the tension T at the

point (x, y). Notice that these forces are balanced if

H = T cos θ. (6.4)

Vertically, the section of cable is pulled up by the vertical component T sin θ of the tension.

The section of cable is pulled down by the weight of the section. Notice that the weight of

the section is given by the product of the density ρ (weight per unit length) and the length

of the section. Recall from your study of arc length in Chapter 5 that the arc length of this

section of cable is given by
 x

0

 
1 + [ f  (t)]2 dt . So, the vertical forces will balance if

T sin θ = ρ
 x

0

 
1 + [ f  (t)]2 dt. (6.5)

We can combine equations (6.4) and (6.5) by multiplying (6.4) by tan θ to get

H tan θ = T sin θ , and then using (6.5) to conclude that

H tan θ = ρ
 x

0

 
1 + [ f  (t)]2 dt.

Notice from Figure 6.35 that tan θ = f  (x), so that we have

H f  (x) = ρ
 x

0

 
1 + [ f  (t)]2 dt.

Differentiating both sides of this equation, the Fundamental Theorem of Calculus gives us

H f   (x) = ρ
 

1 + [ f  (x)]2. (6.6)

Now, divide both sides of the equation by H and name b = ρ

H
. Further, substitute

u(x) = f  (x). Equation (6.6) then becomes

u (x) = b
 

1 + [u(x)]2.

Putting together all of the u terms and integrating with respect to x gives us 
1 

1 + [u(x)]2
u (x) dx =

 
b dx .

You should recognize the integral on the left-hand side as sinh−1(u(x)), so that we now have

sinh−1(u(x)) = bx + c.

Notice that since f (x) has a minimum at x = 0, we must have that u(0) = f  (0) = 0.

So, taking x = 0, we get c = sinh−1(0) = 0. From sinh−1(u(x)) = bx , we obtain

u(x) = sinh(bx). Now, recall that u(x) = f  (x), so that f  (x) = sinh(bx). Integrating this
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gives us

f (x) =
 

sinh(bx) dx

= 1

b
cosh(bx) + c.

Recall that f (0) = 0 and so, we must have c = −1
b

. This leaves us with f (x) = 1
b

cosh(bx)− 1
b
.

Finally, writing a = 1
b
, we obtain the catenary equation f (x) = a cosh

 
x
a

 − a.

EXERCISES 6.6

WRITING EXERCISES

1. Compare the derivatives and integrals of the trigonomet-

ric functions to the derivatives and integrals of the hyper-

bolic functions. Also note that the trigonometric identity

cos2 x + sin2 x = 1 differs only by a minus sign from the cor-

responding hyperbolic identity cosh2 x − sinh2 x = 1.

2. As noted in the text, the hyperbolic functions are not really

new functions. They provide names for useful combinations of

exponential functions. Explain why it is advantageous to as-

sign special names to these functions instead of leaving them

as exponentials.

3. Briefly describe the graphs of sinh x, cosh x and tanh x .

Which simple polynomials do the graphs of sinh x and cosh x

resemble?

4. The catenary (hyperbolic cosine) is the shape assumed by a

hanging cable because this distributes the weight of the ca-

ble most evenly throughout the cable. Knowing this, why

was it smart to build the Gateway Arch in this shape? Why

would you suspect that the profile of an egg has this same

shape?

In exercises 1–6, sketch the graph of each function.

1. cosh 2x 2. sinh 3x

3. tanh 4x 4. tanh x2

5. cosh 2x sinh 2x 6. e−x sinh x

In exercises 7–16, find the derivative of each function.

7. cosh 4x 8. cosh x2

9. sinh
√
x 10. tanh x2

11. cosh−1 2x 12. sinh−1 3x

13. x2 sinh 2x 14. x3 sinh x

15. tanh 4x 16. tanh−1 4x

In exercises 17–26, evaluate each integral.

17.

 
cosh 6x dx 18.

 
sinh 2x dx

19.

 
tanh 3x dx 20.

 
sech2 x dx

21.

 1

0

e4x − e−4x

2
dx 22.

 
2x√

1 + x4
dx

23.

 
cos x sinh(sin x) dx 24.

 
x cosh(x2) dx

25.

 1

0

cosh x esinh x dx 26.

 1

0

cosh 2x

3 + sinh 2x
dx

27. Derive the formulas
d

dx
cosh x = sinh x and

d

dx
tanh x = sech2 x .

28. Derive the formulas for the derivatives of coth x, sech x and

csch x .

29. Using the properties of exponential functions, prove that

sinh x > 0 if x > 0 and sinh x < 0 if x < 0.

30. Use the first and second derivatives to explain the properties of

the graph of tanh x .

31. Use the first and second derivatives to explain the properties of

the graph of cosh x .

32. Prove that cosh2 x − sinh2 x = 1.

33. Find an explicit formula, as in example 6.4, for cosh−1 x .

34. Find an explicit formula, as in example 6.4, for tanh−1 x .

35. Suppose that a hanging cable has the shape 10 cosh(x/10) for

−20 ≤ x ≤ 20. Find the amount of sag in the cable.

36. Find the length of the cable in exercise 35.

37. Suppose that a hanging cable has the shape 15 cosh(x/15) for

−25 ≤ x ≤ 25. Find the amount of sag in the cable.

38. Find the length of the cable in exercise 37.
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39. Suppose that a hanging cable has the shape a cosh(x/a)

for −b ≤ x ≤ b. Show that the amount of sag is given by

a cosh(b/a) − a and the length of the cable is 2a sinh(b/a).

40. Show that cosh(−x) = cosh x (i.e., cosh x is an even function)

and sinh(−x) = − sinh x (i.e., sinh x is an odd function).

41. Show that ex = cosh x + sinh x . In fact, we will show that this

is the only way to write ex as the sum of even and odd functions.

To see this, assume that ex = f (x) + g(x), where f is even and

g is odd. Show that e−x = f (x) − g(x). Adding equations and

dividing by two, conclude that f (x) = cosh x . Then conclude

that g(x) = sinh x .

42. Show that both cosh x and sinh x are solutions of the differen-

tial equation y  − y = 0. By comparison, show that both cos x

and sin x are solutions of the differential equation y  + y = 0.

43. Show that lim
x→∞

tanh x = 1 and lim
x→−∞

tanh x = −1.

44. Show that tanh x = e2x − 1

e2x + 1
.

45. In this exercise, we solve the initial value problem for the ver-

tical velocity v(t) of a falling object subject to gravity and

air drag. Assume that mv (t) = −mg + kv2 for some positive

constant k.

(a) Rewrite the equation as
1

v2 − mg/k
v (t) = k

m
.

(b) Use the identity
1

v2 − a2
= 1

2a

 
1

v − a
− 1

v + a

 
with

a =
 
mg

k
to solve the equation in part (a).

(c) Show that v(t) = −
 
mg

k

c e2
√
kg/mt − 1

c e2
√
kg/mt + 1

.

(d) Use the initial condition v(0) = 0 to show that c = 1.

(e) Use the result of exercise 44 to conclude that

v(t) = −
 
mg

k
tanh

  
kg

m
t

 
.

(f) Find the terminal velocity by computing lim
t→∞

v(t).

46. Integrate the velocity function in exercise 45 part (e) to find

the distance fallen in t seconds.

47. Two skydivers of weight 800 N drop from a height of 1000 m.

The first skydiver dives head-first with a drag coefficient of

k = 1
8
. The second skydiver is in a spread-eagle position

with k = 1
2
. Compare the terminal velocities and the distances

fallen in 2 seconds; 4 seconds.

48. A skydiver with an open parachute has terminal velocity 5 m/s.

If the weight is 800 N, determine the value of k.

49. Long and Weiss derive the following equation for the horizontal

velocity of the space shuttle during reentry (see section 4.1):

v(t) = 7901 tanh(−0.00124t + tanh−1(v0/7901)) m/s, where

v0 is the velocity at time t = 0. Find the maximum acceler-

ation experienced by the shuttle from this horizontal motion

(i.e., maximize |v (t)|).
50. Graph the velocity function in exercise 49 with v0 = 2000.

Estimate the time t at which v(t) = 0.

51. On the same axes, sketch in the graphs of y = 1
2
ex and

y = 1
2
e−x . Explain why these graphs serve as an envelope for

the graphs of y = sinh x and y = cosh x . (Hint: As x → ±∞,

what happens to ex and e−x?)

EXPLORATORY EXERCISES

1. The Saint Louis Gateway Arch is both 630 feet wide and

630 feet tall. Its shape looks very much like a parabola, but

is actually a catenary. You will explore the difference be-

tween the two shapes in this exercise. First, consider the

model y = 757.7 − 127.7 cosh(x/127.7) for y ≥ 0. Find the

x- and y-intercepts and show that this model (approximately)

matches the arch’s measurements of 630 feet wide and 630 feet

tall. What would the 127.7 in the model have to be to match

the measurements exactly? Now, consider a parabolic model.

To have x-intercepts x = −315 and x = 315, explain why

the model must have the form y = −c(x + 315)(x − 315) for

some positive constant c. Then find c to match the desired

y-intercept of 630. Graph the parabola and the catenary on the

same axes for −315 ≤ x ≤ 315. How much difference is there

between the graphs? Find the maximum distance between

the curves. The authors have seen mathematics books where

the arch is modeled by a parabola. How wrong is it to do this?

2. Suppose a person jumps out of an airplane from a great height.

There are two primary forces acting on the skydiver: gravity

and air resistance. In this situation, the air resistance would be

proportional to the square of the velocity. Then an equation

for the (downward) velocity would be v = g − cv2, where g

is the gravitational constant and c is a constant determined by

the orientation of the jumper’s body. Replace c with g/v2
T and

explain why the initial condition v(0) = 0 is reasonable. Then

show that the solution of the IVP can be written in the form

v = vT tanh(gt/vT ). Show that v, the downward velocity, is

an increasing function and find the limiting velocity, usually

called the terminal velocity, as t → ∞. As mentioned, the

constant c depends on the position of the jumper’s body. If

spread-eagle represents a c-value four times as large as a head-

first dive, compare the corresponding terminal velocities. You

may have seen video of skydivers jumping out of a plane at

different times but catching up to each other and forming a

circle. Explain how one diver could catch up to someone who

jumped out of the plane earlier. Now, integrate the velocity

function to obtain the distance function. Finally, answer the

following two-part question. How much time and height does

it take for a skydiver to reach 90% of terminal velocity?
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Review Exercises

WRITING EXERCISES

The following list includes terms that are defined and theorems that

are stated in this chapter. For each term or theorem, (1) give a precise

definition or statement, (2) state in general terms what it means and

(3) describe the types of problems with which it is associated.

Natural logarithm Logarithmic Inverse function

differentiation

One-to-one Exponential Inverse sine

function function function

Inverse cosine Inverse tangent Hyperbolic sine

function function function

Hyperbolic cosine Hyperbolic tangent

function function

TRUE OR FALSE

State whether each statement is true or false and briefly explain

why. If the statement is false, try to “fix it” by modifying the given

statement to a new statement that is true.

1. The functions ln x =
 x

1

1

u
du and loge x have many properties

in common but are not exactly the same.

2. The derivative of the inverse function f −1(x) is the inverse of

the derivative of f (x).

3. If f has a derivative that exists for all x, then f has an inverse.

4. If f (x) has a term of the form eg(x) for some function g(x),

then f −1(x) also has a term of the form eg(x).

5. The function f (x) = sin−1(x) is not the inverse of sin x .

6. We could define the function f (x) = cos−1(x) to have the range

−π ≤ cos−1(x) ≤ 0.

7. Because the derivative of cos−1(x) is the negative of the deriva-

tive of sin−1(x), we can conclude that cos−1(x) = − sin−1(x).

8. The properties of the functions sinh x and cosh x are identical

to the properties of the corresponding functions sin x and cos x .

In exercises 1–16, find the derivative of the function.

1. ln(x3 + 5) 2. ln(1 − sin x)

3. ln
√
x4 + x 4. ln

x2 − 1

x3 + 2x + 1

5. e−x2
6. etan x

7. 4x3
8. 31−2x

9. sin−1 2x 10. cos−1 x2

11. tan−1(cos 2x) 12. sec−1(3x2)

13. cosh
√
x 14. sinh(e2x )

15. sinh−1 3x 16. tanh−1(3x + 1)

In exercises 17–40, evaluate the integral.

17.

 
x2

x3 + 4
dx 18.

 
e2x

e2x + 4
dx

19.

 1

0

x

x2 + 1
dx 20.

 π/4

π/12

cos 2x

sin 2x
dx

21.

 
sin(ln x)

x
dx 22.

 
ln x + 1

x
dx

23.

 
e−4x dx 24.

 
e2x cos(e2x ) dx

25.

 
e

√
x

√
x
dx 26.

 
xe−x2

dx

27.

 2

0

e3x dx 28.

 0

−2

e−3x dx

29.

 
34x dx 30.

 
2−5x dx

31.

 
3

x2 + 4
dx 32.

 
6√

4 − x2
dx

33.

 
x2

√
1 − x6

dx 34.

 
e−x

1 + e−2x
dx

35.

 
9x

x2
√
x4 − 1

dx 36.

 
9x3

√
x4 − 1

dx

37.

 
4√

1 + x2
dx 38.

 
4

x2 − 1
dx

39.

 
cosh 4x dx 40.

 
tanh 3x dx

In exercises 41–44, determine if the function is one-to-one. If so,

find its inverse.

41. x3 − 1 42. e−4x

43. e2x2
44. x3 − 2x + 1

In exercises 45–48, do both parts without solving for the inverse:

(a) find the derivative of the inverse at x  a and (b) graph the

inverse.

45. x5 + 2x3 − 1, a = 2 46. x3 + 5x + 2, a = 2

47.
√
x3 + 4x, a = 4 48. ex

3+2x , a = 1
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Review Exercises

In exercises 49–52, evaluate the quantity using the unit circle.

49. sin−1 1 50. cos−1(− 1
2
)

51. tan−1(−1) 52. csc−1(−2)

In exercises 53–56, simplify the expression using a triangle.

53. sin(sec−1 2) 54. tan(cos−1(4/5))

55. sin−1(sin(3π/4)) 56. cos−1(sin(−π/4))

In exercises 57 and 58, find all solutions of the equation.

57. sin 2x = 1 58. cos 3x = 1
2

In exercises 59–64, sketch a graph.

59. y = cosh 2x 60. y = tanh−1 3x

61. y = sin−1 2x 62. y = tan−1 3x

63. y = e−x2
64. y = ln 2x

65. A hanging cable assumes the shape of y = 20 cosh
x

20
for

−25 ≤ x ≤ 25. Find the amount of sag in the cable.

66. Find the arc length of the cable in exercise 65.

In exercises 67 and 68, determine which function “dominates,”

where we say that the function f (x) dominates the func-

tion g(x) as x→∞ if lim
x→∞

f (x)  lim
x→∞

g(x)  ∞ and either

lim
x→∞

f (x)

g(x)
 ∞ or lim

x→∞

g(x)

f (x)
 0.

67. ex or xn (n = any positive integer)

68. ln x or x p (for any number p > 0)

69. The diagram shows a football field with hash marks H feet

apart and goalposts P feet apart. If a field goal is to be tried

from a (horizontal) distance of x feet from the goalposts, the

angle θ gives the margin of error for that direction. Find x to

maximize θ .

P

x



H

70. In the situation of exercise 69, sports announcers often say that

for a short field goal (50 ≤ x ≤ 60), a team can improve the

angle by backing up 5 yards with a penalty. Determine whether

this is true for high school (H = 53 1
3

and P = 23 1
3
), college

(H = 40 and P = 18 1
2
) or pros (H = 18 1

2
and P = 18 1

2
).

EXPLORATORY EXERCISES

1. In tennis, a serve must clear the net and then land inside of a

box drawn on the other side of the net. In this exercise, you

will explore the margin of error for successfully serving. First,

consider a straight serve (this essentially means a serve hit

infinitely hard) struck 9 feet above the ground. Call the start-

ing point (0, 9). The back of the service box is 60 feet away,

at (60, 0). The top of the net is 3 feet above the ground and

39 feet from the server, at (39, 3). Find the service angle θ

(i.e., the angle as measured from the horizontal) for the trian-

gle formed by the points (0, 9), (0, 0) and (60, 0). Of course,

most serves curve down due to gravity. Ignoring air resistance,

the path of the ball struck at angle θ and initial speed v ft/s

is y = − 16

(v cos θ )2
x2 − (tan θ )x + 9. To hit the back of the

service line, you need y = 0 when x = 60. Substitute in these

values along with v = 120. Multiply by cos2 θ and replace

sin θ with
√

1 − cos2 θ . Replacing cos θ with z gives you an

algebraic equation in z. Numerically estimate z. Similarly, sub-

stitute x = 39 and y = 3 and find an equation for w = cos θ .

Numerically estimate w. The margin of error for the serve is

given by cos−1 z < θ < cos−1 w.

9

60

u

3

2. Baseball players often say that an unusually fast pitch rises or

even hops up as it reaches the plate. One explanation of this il-

lusion involves the players’ inability to track the ball all the way

to the plate. The player must compensate by predicting where

the ball will be when it reaches the plate. Suppose the height of

a pitch when it reaches home plate is h = −(240/v)2 + 6 feet

for a pitch with velocity v ft/s. (This equation takes into con-

sideration gravity but not air resistance.) Halfway to the plate,

the height would be h = −(120/v)2 + 6 feet. Compare the

halfway heights for pitches with v = 132 and v = 139 (about

90 and 95 mph, respectively). Would a batter be able to tell

much difference between them? Now compare the heights

at the plate. Why might the batter think that the faster pitch

hopped up right at the plate? How many inches did the faster

pitch hop?





CHA P T E R

7
Integration Techniques

Electronics companies constantly test their products for reliability. A

small change in the reliability of a component can make or break the

sales of a product. The lifetime of an electronics component is often

viewed as having three stages, as illustrated by the so-called bathtub

curve shown in the figure.

This curve indicates the average failure rate of the product as a function

of age. In the first stage (called the infant mortality phase), the failure

rate drops rapidly as faulty components quickly fail. If the component

survives this initial phase, it enters a lengthy second phase (the useful

life phase) of constant failure rate. The third phase shows an increase in

failure rate as the components reach the physical limit of their lifespan.

The constant failure rate of the useful life phase has several inter-

esting consequences. First, the failures are “memoryless,” in the sense

that the probability that the component lasts another hour is indepen-

dent of the age of the component. A component that is 40 hours old may

be as likely to last another hour as a component that is only 10 hours

old. This unusual property holds for electronics components such as

lightbulbs, during the useful life phase.

In
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Time

Infant mortality

Decreasing failure rate

End-of-life wear-out

Increasing failure rate

Normal life (useful life)

Low "constant" failure rate

A constant failure rate also implies that component failures follow what is

called an exponential distribution. (See exercise 89 on page 556.) The computation

of statistics for the exponential distribution requires more sophisticated integration

techniques than those discussed so far. For instance, the mean (average) lifetime of

certain electronics components is given by an integral of the form
 ∞

0
cxe−cxdx ,

for some constant c > 0. Before we evaluate this, we will need to extend our notion

of integral to include improper integrals such as this, where one or both of the

limits of integration are infinite. We do this in section 7.7. Another difficulty with

this integral is that we do not presently know an antiderivative for f (x) = xe−cx .

483
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In section 7.2, we introduce a powerful technique called integration by parts that can be

used to find antiderivatives of many such functions.

The new techniques of integration introduced in this chapter provide us with a broad

range of tools used to solve countless problems of interest to engineers, mathematicians

and scientists.

7.1 REVIEW OF FORMULAS AND TECHNIQUES

In this brief section, we draw together all of the integration formulas and the one integration

technique (integration by substitution) that we have developed so far. We use these to

develop some more general formulas, as well as to solve more complicated integration

problems. First, look over the following table of the basic integration formulas developed in

Chapters 4 and 6.

 
xrdx = xr+1

r + 1
+ c, for r  = −1 (power rule)

 
1

x
dx = ln |x | + c, for x  = 0 

sin x dx = − cos x + c

 
cos x dx = sin x + c 

sec2 x dx = tan x + c

 
sec x tan x dx = sec x + c 

csc2 x dx = − cot x + c

 
csc x cot x dx = − csc x + c 

ex dx = ex + c

 
e−x dx = −e−x + c 

tan x dx = − ln |cos x | + c

 
1√

1 − x2
dx = sin−1 x + c 

1

1 + x2
dx = tan−1 x + c

 
1

|x |
√
x2 − 1

dx = sec−1 x + c

Recall that each of these follows from a corresponding differentiation rule. So far, we

have expanded this list slightly by using the method of substitution, as in example 1.1.

EXAMPLE 1.1 A Simple Substitution

Evaluate
 

sin(ax) dx , for a  = 0.

Solution The obvious choice here is to let u = ax , so that du = a dx . This gives us 
sin(ax) dx = 1

a

 
sin(ax)    

sin u

a dx    
du

= 1

a

 
sin u du

= − 1

a
cos u + c = − 1

a
cos(ax) + c.

�

There is no need to memorize general rules like the ones given in examples 1.1 and

1.2, although it is often convenient to do so. You can reproduce such general rules any time

you need them using substitution.
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EXAMPLE 1.2 Generalizing a Basic Integration Rule

Evaluate

 
1

a2 + x2
dx , for a  = 0.

Solution Notice that this is nearly the same as

 
1

1 + x2
dx and we can write

 
1

a2 + x2
dx = 1

a2

 
1

1 +  
x
a

 2
dx .

Now, letting u = x
a

, we have du = 1
a
dx and so, 

1

a2 + x2
dx = 1

a2

 
1

1 +  
x
a

 2
dx = 1

a

 
1

1 +  
x
a

 2    
1 + u2

 
1

a

 
dx    

du

= 1

a

 
1

1 + u2
du = 1

a
tan−1 u + c = 1

a
tan−1

 x
a

 
+ c.

�

Substitution will not resolve all of your integration difficulties, as we see in example 1.3.

EXAMPLE 1.3 An Integrand That Must Be Expanded

Evaluate
 

(x2 − 5)2 dx .

Solution Your first impulse might be to substitute u = x2 − 5. However, this fails, as

we don’t have du = 2x dx in the integral. (We can force the constant 2 into the integral,

but we can’t get the x in there.) On the other hand, you can always multiply out the

binomial to obtain 
(x2 − 5)2 dx =

 
(x4 − 10x2 + 25) dx = x5

5
− 10

x3

3
+ 25x + c.

�

The moral of example 1.3 is to make certain you don’t overlook simpler methods. The

most general rule in integration is to keep trying. Sometimes, you will need to do some

algebra before you can recognize the form of the integrand.

EXAMPLE 1.4 An Integral Where We Must Complete the Square

Evaluate

 
1√

−5 + 6x − x2
dx .

Solution Not much may come to mind here. Substitution for either the entire

denominator or the quantity under the square root does not work. (Why not?) So, what’s

left? Recall that there are essentially only two things you can do to a quadratic

polynomial: either factor it or complete the square. Here, doing the latter sheds some

light on the integral. We have 
1√

−5 + 6x − x2
dx =

 
1 

−5 − (x2 − 6x + 9) + 9
dx =

 
1 

4 − (x − 3)2
dx .
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Notice how much this looks like

 
1√

1 − x2
dx = sin−1 x + c. If we factor out the 4 in

the square root, we get 
1√

−5 + 6x − x2
dx =

 
1 

4 − (x − 3)2
dx =

 
1 

1 −  
x−3

2

 2

1

2
dx .

Now, let u = x − 3

2
, so that du = 1

2
dx . This gives us

 
1√

−5 + 6x − x2
dx =

 
1 

1 −  
x−3

2

 2    √
1 − u2

1

2
dx    
du

=
 

1√
1 − u2

du

= sin−1 u + c = sin−1

 
x − 3

2

 
+ c.

�

Example 1.5 illustrates the value of perseverance.

EXAMPLE 1.5 An Integral Requiring Some Imagination

Evaluate

 
4x + 1

2x2 + 4x + 10
dx .

Solution As with most integrals, you cannot evaluate this as it stands. Notice that the

numerator is very nearly the derivative of the denominator (but not quite). Recognize

that you can complete the square in the denominator, to obtain 
4x + 1

2x2 + 4x + 10
dx =

 
4x + 1

2(x2 + 2x + 1) − 2 + 10
dx =

 
4x + 1

2(x + 1)2 + 8
dx .

Now, the denominator nearly looks like the denominator in

 
1

1 + x2
dx = tan−1 x + c.

If we factor out an 8, it will look even more like this, as follows. 
4x + 1

2x2 + 4x + 10
dx =

 
4x + 1

2(x + 1)2 + 8
dx

= 1

8

 
4x + 1

1
4
(x + 1)2 + 1

dx

= 1

8

 
4x + 1 
x+1

2

 2 + 1
dx .

Now, taking u = x + 1

2
, we have du = 1

2
dx and x = 2u − 1, and so,

 
4x + 1

2x2 + 4x + 10
dx = 1

8

 
4x + 1 
x+1

2

 2 + 1
dx = 1

4

 4(2u − 1) + 1    
4x + 1 
x+1

2

 2 + 1    
u2 + 1

1

2
dx    
du

= 1

4

 
4(2u − 1) + 1

u2 + 1
du = 1

4

 
8u − 3

u2 + 1
du
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= 4

4

 
2u

u2 + 1
du − 3

4

 
1

u2 + 1
du

= ln(u2 + 1) − 3

4
tan−1 u + c

= ln

  
x + 1

2

 2

+ 1

 
− 3

4
tan−1

 
x + 1

2

 
+ c.

�

Example 1.5 was tedious, but reasonably straightforward. The issue in integration is to

recognize what pieces are present in a given integral and to see how you might rewrite the

integral in a more familiar form.

EXERCISES 7.1

WRITING EXERCISES

1. In example 1.2, explain how you should know to write the de-

nominator as a2
 
1 +  

x

a

 2
 
. Would this still be a good first

step if the numerator were x instead of 1? What would you do

if the denominator were
√
a2 − x2?

2. In both examples 1.4 and 1.5, we completed the square and

found antiderivatives involving sin−1 x, tan−1 x and ln(x2 + 1).

Briefly describe how the presence of an x in the numerator or a

square root in the denominator affects which of these functions

will be in the antiderivative.

In exercises 1–40, evaluate the integral.

1.

 
sin 6x dx 2.

 
3 cos 4x dx

3.

 
sec 2x tan 2x dx 4.

 
x sec x2 tan x2 dx

5.

 
e3−2x dx 6.

 
3

e6x
dx

7.

 
4

x1/3(1 + x2/3)
dx 8.

 
2

x1/4 + x
dx

9.

 
sin

√
x√

x
dx 10.

 
cos(1/x)

x2
dx

11.

 π

0

cos xesin x dx 12.

 π/4

0

sec2 xetan x dx

13.

 0

−π/4

sin x

cos2 x
dx 14.

 π/2

π/4

1

sin2 x
dx

15.

 
3

16 + x2
dx 16.

 
2

4 + 4x2
dx

17.

 
x2

1 + x6
dx 18.

 
x5

1 + x6
dx

19.

 
1√

4 − x2
dx 20.

 
ex√

1 − e2x
dx

21.

 
x√

1 − x4
dx 22.

 
2x3

√
1 − x4

dx

23.

 
4

5 + 2x + x2
dx 24.

 
4x + 4

5 + 2x + x2
dx

25.

 
4x

5 + 2x + x2
dx 26.

 
x + 1

x2 + 2x + 4
dx

27.

 
(x2 + 4)2 dx 28.

 
x(x2 + 4)2 dx

29.

 
1√

3 − 2x − x2
dx 30.

 
x + 1√

3 − 2x − x2
dx

31.

 
1 + x

1 + x2
dx 32.

 
1√
x + x

dx

33.

 −1

−2

eln (x2+1) dx 34.

 3

1

e2 ln x dx

35.

 4

3

x
√
x − 3 dx 36.

 1

0

x(x − 3)2 dx

37.

 2

0

ex

1 + e2x
dx 38.

 0

−1

ex cot(ex ) csc(ex ) dx

39.

 4

1

x2 + 1√
x

dx 40.

 0

−2

xe−x2

dx

In exercises 41–46, you are given a pair of integrals. Evaluate

the integral that can be worked using the techniques covered so

far (the other cannot).

41.

 
5

3 + x2
dx and

 
5

3 + x3
dx

42.

 
sin 2x dx and

 
sin2 x dx

43.

 
ln x dx and

 
ln x

2x
dx

44.

 
x3

1 + x8
dx and

 
x4

1 + x8
dx

45.

 
e−x2

dx and

 
xe−x2

dx
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46.

 
sec x dx and

 
sec2 x dx

47. Find

 2

0

f (x) dx , where f (x) =
 
x/(x2 + 1) if x ≤ 1

x2/(x2 + 1) if x > 1

48. Find

 2

−2

f (x) dx , where f (x) =
 
xex

2
if x < 0

x2ex
3

if x ≥ 0

49. Rework example 1.5 by rewriting the integral as 
4x + 4

2x2 + 4x + 10
dx −

 
3

2x2 + 4x + 10
dx and complet-

ing the square in the second integral.

EXPLORATORY EXERCISES

1. Find

 
1

1 + x2
dx,

 
x

1 + x2
dx,

 
x2

1 + x2
dx and

 
x3

1 + x2
dx.

Generalize to give the form of

 
xn

1 + x2
dx for any positive

integer n, as completely as you can.

2. Find

 
x

1 + x4
dx,

 
x3

1 + x4
dx and

 
x5

1 + x4
dx . Generalize

to give the form of

 
xn

1 + x4
dx for any odd positive integer n.

3. Use a CAS to find
 
xe−x2

dx,
 
x3e−x2

dx and
 
x5e−x2

dx .

Verify that each antiderivative is correct. Generalize to give

the form of
 
xne−x2

dx for any odd positive integer n.

4. In many situations, the integral as we’ve defined it

must be extended to the Riemann-Stieltjes integral con-

sidered in this exercise. For functions f and g, let P

be a regular partition of [a, b] and define the sums

R( f, g, P) =
n 
i=1

f (ci )[g(xi ) − g(xi−1)]. The integral b
a
f (x) dg(x) equals the limit of the sums R( f, g, P)

as n → ∞, if the limit exists and equals the same

number for all evaluation points ci . (a) Show that if

g exists, then
 b
a
f (x) dg(x) =  b

a
f (x)g (x) dx . (b) If

g(x) =
 

1 a ≤ x ≤ c

2 c < x ≤ b
for some constant c with a < c < b,

evaluate
 b
a
f (x) dg(x). (c) Find a function g(x) such that 1

0
1
x
dg(x) exists.

7.2 INTEGRATION BY PARTS

At this point, you will have recognized that there are many integrals that cannot be evaluated

using our basic formulas or integration by substitution. For instance, 
x sin x dx

cannot be evaluated with what you presently know. We improve this situation in the current

section by introducing a powerful tool called integration by parts.

HISTORICAL NOTES

Brook Taylor (1685–1731)

An English mathematician who is

credited with devising integration

by parts. Taylor made important

contributions to probability,

the theory of magnetism and

the use of vanishing lines in linear

perspective. However, he is best

known for Taylor’s Theorem (see

section 9.7), in which he general-

ized results of Newton, Halley, the

Bernoullis and others. Personal

tragedy (both his wives died

during childbirth) and poor health

limited the mathematical output

of this brilliant mathematician.

We have observed that every differentiation rule gives rise to a corresponding integration

rule. So, for the product rule:

d

dx
[ f (x)g(x)] = f  (x)g(x) + f (x)g (x),

integrating both sides of this equation gives us 
d

dx
[ f (x)g(x)] dx =

 
f  (x)g(x) dx +

 
f (x)g (x) dx .

Ignoring the constant of integration, the integral on the left-hand side is simply f (x)g(x).

Solving for the second integral on the right-hand side then yields 
f (x)g (x) dx = f (x)g(x) −

 
f  (x)g(x) dx .

This rule is called integration by parts. You’re probably wondering about the significance

of this new rule. In short, it lets us replace a given integral with an easier one. We’ll let the
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examples convince you of the power of this technique. First, it’s usually convenient to write

this using the notation u = f (x) and v = g(x). Then,

du = f  (x) dx and dv = g (x) dx,

so that the integration by parts algorithm becomes

INTEGRATION BY PARTS 
u dv = uv −

 
v du. (2.1)

To apply integration by parts, you need to make a judicious choice of u and dv so that the

integral on the right-hand side of (2.1) is one that you know how to evaluate.

EXAMPLE 2.1 Integration by Parts

Evaluate
 
x sin x dx .

Solution First, observe that this is not one of our basic integrals and there’s no

obvious substitution that will help. To use integration by parts, you will need to choose

u (something to differentiate) and dv (something to integrate). If we let

u = x and dv = sin x dx,

then du = dx and integrating dv, we have

v =
 

sin x dx = − cos x + k.

In performing integration by parts, we drop this constant of integration. (Think about

why it makes sense to do this.) Also, we usually write this information as the block:

u = x dv = sin x dx

du = dx v = −cos x .

This gives us

 
x    
u

sin x dx    
dv

=
 
u dv = uv −

 
v du

= −x cos x −
 

(−cos x) dx

= −x cos x + sin x + c. (2.2)

It’s a simple matter to differentiate the expression on the right-hand side of (2.2) and

verify directly that you have indeed found an antiderivative of x sin x . �

You should quickly realize that the choice of u and dv is critical. Observe what happens

if we switch the choice of u and dv made in example 2.1.

EXAMPLE 2.2 A Poor Choice of u and dv

Consider
 
x sin x dx as in example 2.1, but this time, reverse the choice of u and dv.

Solution Here, we let

u = sin x dv = x dx

du = cos x dx v = 1
2
x2

This gives us

 
sin x    
u

x dx    
dv

= uv −
 
v du = 1

2
x2 sin x − 1

2

 
x2 cos x dx .
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Notice that the last integral is one that we do not know how to calculate any better than

the original one. In fact, we have made the situation worse in that the power of x in the

new integral is higher than in the original integral. �

REMARK 2.1

When using integration by

parts, keep in mind that you are

splitting up the integrand into

two pieces. One of these pieces,

corresponding to u, will be

differentiated and the other,

corresponding to dv, will be

integrated. Since you can

differentiate virtually every

function you run across, you

should choose a dv for which

you know an antiderivative and

make a choice of both that will

result in an easier integral. If

possible, a choice of u = x

results in the simple du = dx .

You will learn what works best

by working through lots of

problems. Even if you don’t see

how the problem is going to end

up, try something!

EXAMPLE 2.3 An Integrand with a Single Term

Evaluate
 

ln x dx .

Solution This may look like it should be simple, but it’s not one of our basic integrals

and there’s no obvious substitution that will simplify it. That leaves us with integration

by parts. Remember that you must pick u (to be differentiated) and dv (to be integrated).

You obviously can’t pick dv = ln x dx , since the problem here is to find a way to

integrate this very term. So, try

u = ln x dv = dx

du = 1
x
dx v = x .

Integration by parts now gives us 
ln x    
u

dx    
dv

= uv −
 
v du = x ln x −

 
x

 
1

x

 
dx

= x ln x −
 

1 dx = x ln x − x + c.
�

Frequently, an integration by parts results in an integral that we cannot evaluate directly,

but instead, one that we can evaluate only by repeating integration by parts one or more times.

REMARK 2.2

In the second integration by

parts in example 2.4, if you

choose u = cos x and

dv = x dx , then integration by

parts will fail and leave you

with the less than astounding

conclusion that the integral that

you started with equals itself.

(Try this as an exercise.)

EXAMPLE 2.4 Repeated Integration by Parts

Evaluate
 
x2 sin x dx .

Solution Certainly, you cannot evaluate this as it stands and there is no simplification

or obvious substitution that will help. We choose

u = x2 dv = sin x dx

du = 2x dx v = −cos x .

With this choice, integration by parts yields 
x2    
u

sin x dx    
dv

= −x2 cos x + 2

 
x cos x dx .

Of course, this last integral cannot be evaluated as it stands, but we could do it using a

further integration by parts. We now choose

u = x dv = cos x dx

du = dx v = sin x .

Applying integration by parts to the last integral, we now have 
x2 sin x dx = −x2 cos x + 2

 
x    
u

cos x dx    
dv

= −x2 cos x + 2

 
x sin x −

 
sin x dx

 
= −x2 cos x + 2x sin x + 2 cos x + c. �
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Based on our work in example 2.4, try to figure out how many integrations by parts

would be required to evaluate
 
xn sin x dx , for a positive integer n. (There will be more

on this, including a shortcut, in the exercises.)

Repeated integration by parts sometimes takes you back to the integral you started

with. This can be bad news (see Remark 2.2), or this can give us a clever way of evaluating

an integral, as in example 2.5.

EXAMPLE 2.5 Repeated Integration by Parts with a Twist

Evaluate
 
e2x sin x dx .

Solution None of our elementary methods works on this integral. For integration by

parts, there are two viable choices for u and dv. We take

u = e2x dv = sin x dx

du = 2e2x dx v = −cos x .

(The opposite choice also works. Try this as an exercise.) Integration by parts yields 
e2x    
u

sin x dx    
dv

= −e2x cos x + 2

 
e2x cos x dx .

The remaining integral again requires integration by parts. We choose

u = e2x dv = cos x dx

du = 2e2x dx v = sin x .

It now follows that 
e2x sin x dx = −e2x cos x + 2

 
e2x    
u

cos x dx    
dv

= −e2x cos x + 2

 
e2x sin x − 2

 
e2x sin x dx

 

= −e2x cos x + 2e2x sin x − 4

 
e2x sin x dx . (2.3)

Observe that the last line includes the integral that we started with. Treating the integral 
e2x sin x dx as the unknown, we can add 4

 
e2x sin x dx to both sides of equation (2.3),

leaving

5

 
e2x sin x dx = −e2x cos x + 2e2x sin x + K ,

where we have added the constant of integration K on the right side. Dividing both sides

by 5 then gives us  
e2x sin x dx = −1

5
e2x cos x + 2

5
e2x sin x + c,

where we have replaced the arbitrary constant of integration K
5

by c.
�

REMARK 2.3

For integrals like
 
e2x sin x dx

(or related integrals like 
e−3x cos 2x dx), repeated

integration by parts as in

example 2.5 will produce an

antiderivative. The first choice

of u and dv is up to you (either

choice will work) but your

choice of u and dv in the second

integration by parts must be

consistent with your first

choice. For instance, in example

2.5, our initial choice of u = e2x

commits us to using u = e2x for

the second integration by parts,

as well. To see why, rework the

second integral taking u = cos x

and observe what happens!

Observe that for any positive integer n, the integral
 
xnex dx will require integration

by parts. At this point, it should be no surprise that we take

u = xn dv = ex dx

du = nxn−1 dx v = ex .
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Applying integration by parts gives us 
xn    
u

ex dx    
dv

= xnex − n

 
xn−1ex dx . (2.4)

Notice that if n − 1 > 0, we will need to perform another integration by parts. In fact, we’ll

need to perform a total of n integrations by parts to complete the process. An alternative is

to apply formula (2.4) (called a reduction formula) repeatedly to evaluate a given integral.

We illustrate this in example 2.6.

EXAMPLE 2.6 Using a Reduction Formula

Evaluate the integral
 
x4ex dx .

Solution The prospect of performing four integrations by parts may not particularly

appeal to you. However, we can use the reduction formula (2.4) repeatedly to evaluate

the integral with relative ease, as follows. From (2.4), with n = 4, we have 
x4ex dx = x4ex − 4

 
x4−1ex dx = x4ex − 4

 
x3ex dx .

Applying (2.4) again, this time with n = 3, gives us 
x4ex dx = x4ex − 4

 
x3ex − 3

 
x2ex dx

 
.

By now, you should see that we can resolve this by applying the reduction formula two

more times. By doing so, we get 
x4ex dx = x4ex − 4x3ex + 12x2ex − 24xex + 24ex + c,

where we leave the details of the remaining calculations to you. �

Note that to evaluate a definite integral, it is always possible to apply integration by parts

to the corresponding indefinite integral and then simply evaluate the resulting antiderivative

between the limits of integration. Whenever possible, however (i.e., when the integration

is not too involved), you should apply integration by parts directly to the definite integral.

Observe that the integration by parts algorithm for definite integrals is simply

Integration by parts

for a definite integral

 x=b

x=a
u dv = uv

    x=b

x=a
−
 x=b

x=a
v du,

where we have written the limits of integration as we have to remind you that these refer to

the values of x. (Recall that we derived the integration by parts formula by taking u and v

both to be functions of x.)

EXAMPLE 2.7 Integration by Parts for a Definite Integral

Evaluate
 2

1
x3 ln x dx .

Solution Again, since more elementary methods are fruitless, we try integration by

parts. Since we do not know how to integrate ln x (except via integration by parts),

we choose

u = ln x dv = x3 dx

du = 1
x
dx v = 1

4
x4
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and hence, we have 2

1

ln x    
u

x3dx    
dv

= uv

    2
1

−
 2

1

v du = 1

4
x4 ln x

    2
1

− 1

4

 2

1

x4

 
1

x

 
dx

= 1

4
(24 ln 2 − 14 ln 1) − 1

4

 2

1

x3dx

= 16 ln 2

4
− 0 − 1

16
x4

    2
1

= 4 ln 2 − 1

16
(24 − 14)

= 4 ln 2 − 1

16
(16 − 1) = 4 ln 2 − 15

16
.
�

Integration by parts is the most powerful tool in our integration arsenal. In order to

master its use, you will need to work through many problems. We provide a wide assortment

of these in the exercise set that follows.

EXERCISES 7.2

WRITING EXERCISES

1. Discuss your best strategy for determining which part of the

integrand should be u and which part should be dv.

2. Integration by parts comes from the product rule for deriva-

tives. Which integration technique comes from the chain rule?

Briefly discuss why there is no commonly used integration

technique derived from the quotient rule.

In exercises 1–26, evaluate the integrals.

1.

 
x cos x dx 2.

 
x sin 4x dx

3.

 
xe2xdx 4.

 
x ln x dx

5.

 
x2 ln x dx 6.

 
ln x

x
dx

7.

 
x2e−3xdx 8.

 
x2ex

3

dx

9.

 
ex sin 4x dx 10.

 
e2x cos x dx

11.

 
cos x cos 2x dx 12.

 
sin x sin 2x dx

13.

 
x sec2 x dx 14.

 
x3ex

2

dx

15.

 
(ln x)2 dx 16.

 
x2e3xdx

17.

 
cos x ln(sin x) dx 18.

 
x sin x2dx

19.

 1

0

x sin 2x dx 20.

 π

0

2x cos x dx

21.

 1

0

x cosπx dx 22.

 1

0

xe3xdx

23.

 1

0

x sinπx dx 24.

 1

0

x cos 2πx dx

25.

 10

1

ln x dx 26.

 2

1

x ln x dx

In exercises 27–36, evaluate the integral using integration by

parts and substitution. (As we recommended in the text, “Try

something!”)

27.

 
cos−1 x dx 28.

 
tan−1 x dx

29.

 
sin

√
x dx 30.

 
e

√
x dx

31.

 
sin(ln x) dx 32.

 
x ln(4 + x2) dx

33.

 
e6x sin(e2x ) dx 34.

 
cos 3

√
x dx

35.

 8

0

e
3√xdx 36.

 1

0

x tan−1 x dx

37. How many times would integration by parts need to be per-

formed to evaluate
 
xn sin x dx (where n is a positive integer)?

38. How many times would integration by parts need to be per-

formed to evaluate
 
xn ln x dx (where n is a positive integer)?

39. Several useful integration formulas (called reduction formu-

las) are used to automate the process of performing multiple

integrations by parts. Prove that for any positive integer n, 
cosn x dx = 1

n
cosn−1 x sin x + n − 1

n

 
cosn−2 x dx .
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(Use integration by parts with u = cosn−1 x and

dv = cos x dx .)

40. Use integration by parts to prove that for any positive integer n, 
sinn x dx = − 1

n
sinn−1 x cos x + n − 1

n

 
sinn−2 x dx .

In exercises 41–48, evaluate the integral using the reduction

formulas from exercises 39 and 40 and (2.4).

41.

 
x3ex dx 42.

 
cos5 x dx

43.

 
cos3 x dx 44.

 
sin4 x dx

45.

 1

0

x4ex dx 46.

 π/2

0

sin4 x dx

47.

 π/2

0

sin5 x dx 48.

 π/2

0

sin6 x dx

49. Based on exercises 46–48, conjecture a formula for π/2
0

sinm x dx . (Note: You will need different formulas for

m odd and for m even.)

50. Conjecture a formula for
 π/2

0
cosm x dx .

51. The excellent movie Stand and Deliver tells the story of math-

ematics teacher Jaime Escalante, who developed a remark-

able AP calculus program in inner-city Los Angeles. In one

scene, Escalante shows a student how to evaluate the integral 
x2 sin x dx . He forms a chart like the following:

sin x

x2 −cos x +
2x −sin x −
2 cos x +

Multiplying across each full row, the antiderivative is

−x2 cos x + 2x sin x + 2 cos x + c. Explain where each col-

umn comes from and why the method works on this problem.

In exercises 52–57, use the method of exercise 51 to evaluate the

integral.

52.

 
x4 sin x dx 53.

 
x4 cos x dx

54.

 
x4ex dx 55.

 
x4e2xdx

56.

 
x5 cos 2x dx 57.

 
x3e−3xdx

58. You should be aware that the method of exercise 51 doesn’t

always work, especially if both the derivative and antideriva-

tive columns have powers of x . Show that the method doesn’t

work on
 
x2 ln x dx .

59. Show that
 π

−π cos(mx) cos(nx) dx = 0 and π
−π sin(mx) sin(nx) dx = 0 for positive integers m  = n.

60. Show that
 π

−π cos(mx) sin(nx) dx = 0 for positive integers m

and n and
 π

−π cos2 nx dx =  π
−π sin2 nx dx = π , for any pos-

itive integer n.

61. Find all mistakes in the following (invalid) attempted

proof that 0 = −1. Start with
 
exe−xdx and apply inte-

gration by parts with u = ex and dv = e−xdx . This gives 
exe−xdx = −1 +  

exe−xdx . Then subtract
 
exe−xdx to

get 0 = −1.

62. Find the volume of the solid formed by revolving the region

bounded by y = x
√

sin x and y = 0 (0 ≤ x ≤ π ) about the

x-axis.

63. Evaluate
 
ex
 
ln x + 1

x

 
dx by using integration by parts on 

ex ln x dx .

64. Generalize the technique of exercise 63 to any integral of the

form
 
ex [ f (x) + f  (x)] dx . Prove your result without using

integration by parts.

65. Use the quotient rule to show that 
f  (x)

g(x)
dx = f (x)

g(x)
+
 

f (x)g (x)

[g(x)]2
dx .

66. Derive the formula of exercise 65 using integration by parts

with u = 1

g(x)
.

EXPLORATORY EXERCISES

1. Integration by parts can be used to compute coefficients for

important functions called Fourier series. We cover Fourier

series in detail in Chapter 9. Here, you will discover what some

of the fuss is about. Start by computing an = 2
π

 π
−π x sin nx dx

for an unspecified positive integer n. Write out the specific val-

ues for a1, a2, a3 and a4 and then form the function

f (x) = a1 sin x + a2 sin 2x + a3 sin 3x + a4 sin 4x .

Compare the graphs of y = x and y = f (x) on the interval

[−π, π ]. From writing out a1 through a4, you should notice a

nice pattern. Use it to form the function

g(x) = f (x) + a5 sin 5x + a6 sin 6x + a7 sin 7x + a8 sin 8x .

Compare the graphs of y = x and y = g(x) on the interval

[−π, π ]. Is it surprising that you can add sine functions to-

gether and get something close to a straight line? It turns out

that Fourier series can be used to find cosine and sine ap-

proximations to nearly any continuous function on a closed

interval.

2. Along with giving us a technique to compute antideriva-

tives, integration by parts is very important theoretically. In

this context, it can be thought of as a technique for mov-

ing derivatives off of one function and onto another. To see
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what we mean, suppose that f (x) and g(x) are functions with

f (0) = g(0) = 0, f (1) = g(1) = 0 and with continuous sec-

ond derivatives f   (x) and g  (x). Use integration by parts twice

to show that 1

0

f   (x)g(x) dx =
 1

0

f (x)g  (x) dx .

3. Assume that f is an increasing continuous function on [a, b]

with 0 ≤ a < b and f (x) ≥ 0. Let A1 be the area under

y = f (x) from x = a to x = b and let A2 be the

area to the left of y = f (x) from f (a) to f (b).

Show that A1 + A2 = b f (b) − a f (a) and b
a
f (x) dx = b f (b) − a f (a) −  f (b)

f (a)
f −1(y) dy. Use this

result to evaluate
 π/4

0
tan−1 x dx .

y

x
a

f(b)

f(a)

A2

A1

b

4. Assume that f is a function with a continuous

second derivative. Show that

f (b) = f (a) + f  (a)(b − a) +  b
a
f   (x)(b − x) dx . Use this

result to show that the error in the approximation sin x ≈ x

is at most 1
2
x2.

7.3 TRIGONOMETRIC TECHNIQUES OF INTEGRATION

Integrals Involving Powers of Trigonometric Functions

Evaluating an integral whose integrand contains powers of one or more trigonometric func-

tions often involves making a clever substitution. These integrals are sufficiently common

that we present them here as a group.

We first consider integrals of the form 
sinm x cosn x dx,

where m and n are positive integers.

Case 1: m or n Is an Odd Positive Integer
If m is odd, first isolate one factor of sin x . (You’ll need this for du.) Then, replace any

factors of sin2 x with 1 − cos2 x and make the substitution u = cos x . Likewise, if n is odd,

first isolate one factor of cos x . (You’ll need this for du.) Then, replace any factors of cos2 x

with 1 − sin2 x and make the substitution u = sin x .

We illustrate this for the case where m is odd in example 3.1.

EXAMPLE 3.1 A Typical Substitution

Evaluate
 

cos4 x sin x dx .

Solution Since you cannot evaluate this integral as it stands, you should consider

substitution. (Hint: Look for terms that are derivatives of other terms.) Here, letting

u = cos x , so that du = − sin x dx , gives us 
cos4 x sin x dx = −

 
cos4 x    

u4

(−sin x) dx    
du

= −
 
u4 du

= −u5

5
+ c = −cos5 x

5
+ c. Since u = cos x .

�
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While this first example was not particularly challenging, it should give you an idea of

what to do with example 3.2.

EXAMPLE 3.2 An Integrand with an Odd Power of Sine

Evaluate
 

cos4 x sin3 x dx .

Solution If you’re looking for terms that are derivatives of other terms, you should

see both sine and cosine terms, but for which do you substitute? Here, with u = cos x ,

we have du = −sin x dx , so that 
cos4 x sin3 x dx =

 
cos4 x sin2 x sin x dx = −

 
cos4 x sin2 x(−sin x) dx

= −
 

cos4 x(1 −cos2 x)    
u4(1 − u2)

(−sin x) dx    
du

= −
 
u4(1 − u2) du

= −
 

(u4 − u6) du = −
 
u5

5
− u7

7

 
+ c

= −cos5 x

5
+ cos7 x

7
+ c. Since u = cos x .

Pay close attention to how we did this. We took the odd power (in this case, sin3x) and

factored out one power of sin x (to use for du). The remaining (even) powers of sin x

were rewritten in terms of cos x using the Pythagorean identity

sin2 x + cos2 x = 1. �

The ideas used in example 3.2 can be applied to any integral of the specified form.

EXAMPLE 3.3 An Integrand with an Odd Power of Cosine

Evaluate
 √

sin x cos5 x dx .

Solution Observe that we can rewrite this as √
sin x cos5 x dx =

 √
sin x cos4 x cos x dx =

 √
sin x (1 − sin2 x)2 cos x dx .

Substituting u = sin x , so that du = cos x dx , we have √
sin x cos5 x dx =

 √
sin x (1 − sin2 x)2    √

u(1 − u2)2

cos x dx    
du

=
 √

u(1 − u2)2 du =
 
u1/2(1 − 2u2 + u4) du

=
 

(u1/2 − 2u5/2 + u9/2) du

= 2

3
u3/2 − 2

 
2

7

 
u7/2 + 2

11
u11/2 + c

= 2

3
sin3/2 x − 4

7
sin7/2 x + 2

11
sin11/2 x + c. Since u = sin x .

Looking beyond the details of calculation here, you should see the main point: that all

integrals of this form are calculated in essentially the same way. �
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Case 2: m and n Are Both Even Positive Integers
In this case, we can use the half-angle formulas for sine and cosine (shown in the margin)

to reduce the powers in the integrand.

We illustrate this case in example 3.4.

NOTES

Half-angle formulas

sin2 x = 1
2
(1 − cos 2x)

cos2 x = 1
2
(1 + cos 2x) EXAMPLE 3.4 An Integrand with an Even Power of Sine

Evaluate
 

sin2 x dx .

Solution Using the half-angle formula, we can rewrite the integral as 
sin2 x dx = 1

2

 
(1 − cos 2x) dx .

We can evaluate this last integral by using the substitution u = 2x , so that du = 2 dx .

This gives us 
sin2 x dx = 1

2

 
1

2

  
(1 − cos 2x)    

1 − cos u

2 dx    
du

= 1

4

 
(1 − cos u) du

= 1

4
(u − sin u) + c = 1

4
(2x − sin 2x) + c. Since u = 2x .

�

With some integrals, you may need to apply the half-angle formulas several times, as

in example 3.5.

EXAMPLE 3.5 An Integrand with an Even Power of Cosine

Evaluate
 

cos4 x dx .

Solution Using the half-angle formula for cosine, we have 
cos4 x dx =

 
(cos2 x)2 dx = 1

4

 
(1 + cos 2x)2 dx

= 1

4

 
(1 + 2 cos 2x + cos2 2x) dx .

Using the half-angle formula again, on the last term in the integrand, we get 
cos4 x dx = 1

4

  
1 + 2 cos 2x + 1

2
(1 + cos 4x)

 
dx

= 3

8
x + 1

4
sin 2x + 1

32
sin 4x + c,

where we leave the details of the final integration as an exercise. �

Our next aim is to devise a strategy for evaluating integrals of the form 
tanm x secn x dx,

where m and n are integers.

Case 1: m Is an Odd Positive Integer
First, isolate one factor of sec x tan x . (You’ll need this for du.) Then, replace any factors

of tan2 x with sec2 x − 1 and make the substitution u = sec x .
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We illustrate this in example 3.6.

EXAMPLE 3.6 An Integrand with an Odd Power of Tangent

Evaluate
 

tan3x sec3x dx .

Solution Looking for terms that are derivatives of other terms, we rewrite the

integral as  
tan3 x sec3 x dx =

 
tan2 x sec2 x (sec x tan x) dx

=
 

(sec2 x − 1) sec2 x (sec x tan x) dx,

where we have used the Pythagorean identity

tan2 x = sec2 x − 1.

You should see the substitution now. We let u = sec x , so that du = sec x tan x dx and

hence, 
tan3 x sec3 x dx =

 
(sec2 x − 1) sec2 x    

(u2 − 1)u2

(sec x tan x) dx    
du

=
 

(u2 − 1)u2du =
 

(u4 − u2) du

= 1

5
u5 − 1

3
u3 + c = 1

5
sec5 x − 1

3
sec3 x + c. Since u = sec x .

�

Case 2: n Is an Even Positive Integer
First, isolate one factor of sec2 x . (You’ll need this for du.) Then, replace any remaining

factors of sec2 x with 1 + tan2 x and make the substitution u = tan x .

We illustrate this in example 3.7.

EXAMPLE 3.7 An Integrand with an Even Power of Secant

Evaluate
 

tan2 x sec4 x dx .

Solution Since d
dx

tan x = sec2 x , we rewrite the integral as 
tan2 x sec4 x dx =

 
tan2 x sec2 x sec2 x dx =

 
tan2 x(1 + tan2 x) sec2 x dx .

Now, we let u = tan x , so that du = sec2 x dx and 
tan2 x sec4 x dx =

 
tan2 x(1 + tan2 x)    

u2(1 + u2)

sec2 x dx    
du

=
 
u2(1 + u2) du =

 
(u2 + u4) du

= 1

3
u3 + 1

5
u5 + c

= 1

3
tan3 x + 1

5
tan5 x + c. Since u = tan x .

�
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Case 3: m Is an Even Positive Integer and n Is an Odd Positive Integer
Replace any factors of tan2 x with sec2 x − 1 and then use a special reduction formula (given

in the exercises) to evaluate integrals of the form
 

secn x dx . This complicated case will

be covered briefly in the exercises. Much of this depends on example 3.8.

EXAMPLE 3.8 An Unusual Integral

Evaluate the integral
 

sec x dx .

Solution Finding an antiderivative here depends on an unusual observation. Notice

that if we multiply the integrand by the fraction
sec x + tan x

sec x + tan x
(which is of course equal

to 1), we get  
sec x dx =

 
sec x

 
sec x + tan x

sec x + tan x

 
dx

=
 

sec2 x + sec x tan x

sec x + tan x
dx .

Now, observe that the numerator is exactly the derivative of the denominator. That is,

d

dx
(sec x + tan x) = sec x tan x + sec2 x,

so that taking u = sec x + tan x gives us 
sec x dx =

 
sec2 x + sec x tan x

sec x + tan x
dx

=
 

1

u
du = ln |u| + c

= ln |sec x + tan x | + c. Since u = sec x + tan x . �

Trigonometric Substitution

If an integral contains a term of the form
√
a2 − x2,

√
a2 + x2 or

√
x2 − a2, for some

a > 0, you can often evaluate the integral by making a substitution involving a trig function

(hence, the name trigonometric substitution).

First, suppose that an integrand contains a term of the form
√
a2 − x2, for some a > 0.

Letting x = a sin θ , where −π
2

≤ θ ≤ π
2

, we can eliminate the square root, as follows: 
a2 − x2 =

 
a2 − (a sin θ )2 =

 
a2 − a2 sin2 θ

= a
 

1 − sin2 θ = a
√

cos2 θ = a cos θ,

since for −π
2

≤ θ ≤ π
2
, cos θ ≥ 0. Example 3.9 is typical of how these substitutions are

used.

NOTE

Terms of the form
√
a2 − x2 can

also be simplified using the

substitution x = a cos θ , using a

different restriction for θ .

EXAMPLE 3.9 An Integral Involving
√
a2 − x 2

Evaluate

 
1

x2
√

4 − x2
dx .

Solution You should always first consider whether an integral can be done directly,

by substitution or by parts. Since none of these methods help here, we consider
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trigonometric substitution. Keep in mind that the immediate objective here is to

eliminate the square root. A substitution that will accomplish this is

x = 2 sin θ, for − π

2
< θ <

π

2
.

(Why do we need strict inequalities here?) This gives us

dx = 2 cos θ dθ

and hence, 
1

x2
√

4 − x2
dx =

 
1

(2 sin θ )2
 

4 − (2 sin θ )2
2 cos θ dθ

=
 

2 cos θ

4 sin2 θ
 

4 − 4 sin2 θ
dθ

=
 

cos θ

(2 sin2 θ ) 2
 

1 − sin2 θ
dθ

=
 

cos θ

4 sin2 θ cos θ
dθ Since 1 − sin2 θ = cos2 θ.

= 1

4

 
csc2 θ dθ = −1

4
cot θ + c. Since

1

sin2 θ
= csc2 θ.

The only remaining problem is that the antiderivative is presently written in terms of the

variable θ . When converting back to the original variable x = 2 sin θ , we urge you to

draw a diagram, as in Figure 7.1. Since the substitution was x = 2 sin θ , we have

sin θ = x

2
= opposite

hypotenuse
and so we label the hypotenuse as 2. The side opposite the

angle θ is then 2 sin θ . By the Pythagorean Theorem, we get that the adjacent side is√
4 − x2, as indicated. So, we have

cot θ = cos θ

sin θ
=

√
4 − x2

x
.

It now follows that 
1

x2
√

4 − x2
dx = −1

4
cot θ + c = −1

4

√
4 − x2

x
+ c.

�

Next, suppose that an integrand contains a term of the form
√
a2 + x2, for some a > 0.

Taking x = a tan θ , where −π
2
< θ < π

2
, we eliminate the square root, as follows: 

a2 + x2 =
 
a2 + (a tan θ )2 =

 
a2 + a2 tan2 θ

= a
 

1 + tan2 θ = a
√

sec2 θ = a sec θ,

since for −π
2
< θ < π

2
, sec θ > 0. Example 3.10 is typical of how these substitutions are

used.

u

2 cos u    4   x2

2
2 sin u   x

FIGURE 7.1

EXAMPLE 3.10 An Integral Involving
√
a2 + x 2

Evaluate the integral

 
1√

9 + x2
dx .
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Solution You can eliminate the square root by letting x = 3 tan θ , for −π
2
< θ < π

2
.

This gives us dx = 3 sec2 θ dθ , so that

 
1√

9 + x2
dx =

 
1 

9 + (3 tan θ )2
3 sec2 θ dθ

=
 

3 sec2 θ√
9 + 9 tan2 θ

dθ

=
 

3 sec2 θ

3
√

1 + tan2 θ
dθ

=
 

sec2 θ

sec θ
dθ Since 1 + tan2 θ = sec2 θ.

=
 

sec θ dθ

= ln |sec θ + tan θ | + c,

from example 3.8. We’re not done here, though, since we must still express the integral

in terms of the original variable x. Observe that we had x = 3 tan θ , so that tan θ = x
3
.

It remains only to solve for sec θ . Although you can do this with a triangle, as in

example 3.9, the simplest way to do this is to recognize that for −π
2
< θ < π

2
,

sec θ =
 

1 + tan2 θ =
 

1 +
 x

3

 2

.

This leaves us with

 
1√

9 + x2
dx = ln |sec θ + tan θ | + c

= ln

     
 

1 +
 x

3

 2

+ x

3

     + c.

�

Finally, suppose that an integrand contains a term of the form
√
x2 − a2, for some

a > 0. Taking x = a sec θ , where θ ∈  0, π
2

 ∪  π
2
, π
 
, we eliminate the square root,

as follows:  
x2 − a2 =

 
(a sec θ )2 − a2 =

 
a2 sec2 θ − a2

= a
 

sec2 θ − 1 = a
 

tan2 θ = a |tan θ |.

Notice that the absolute values are needed, as tan θ can be both positive and negative on 
0, π

2

 ∪  π
2
, π
 
. Example 3.11 is typical of how these substitutions are used.

EXAMPLE 3.11 An Integral Involving
√

x 2 − a2

Evaluate the integral

 √
x2 − 25

x
dx , for x ≥ 5.

Solution Here, we let x = 5 sec θ , for θ ∈  0, π
2

 
, where we chose the first half of the

domain
 
0, π

2

 ∪  π
2
, π
 
, so that x = 5 sec θ > 5. (If we had x < −5, we would have
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chosen θ ∈ (π
2
, π].) This gives us dx = 5 sec θ tan θ dθ and the integral then becomes: √

x2 − 25

x
dx =

  
(5 sec θ )2 − 25

5 sec θ
(5 sec θ tan θ ) dθ

=
  

25 sec2 θ − 25 tan θ dθ

=
 

5
 

sec2 θ − 1 tan θ dθ

= 5

 
tan2 θ dθ Since sec2 θ − 1 = tan2 θ.

= 5

 
(sec2 θ − 1) dθ

= 5(tan θ − θ ) + c.

Finally, observe that since x = 5 sec θ , for θ ∈ [0, π
2

), we have that

tan θ =
 

sec2 θ − 1 =
  x

5

 2

− 1 = 1

5

 
x2 − 25

and θ = sec−1
 
x
5

 
. We now have √

x2 − 25

x
dx = 5(tan θ − θ ) + c

=
 
x2 − 25 − 5 sec−1

 x
5

 
+ c.

�

You will find a number of additional integrals requiring trigonometric substitution in

the exercises. The principal idea here is to see that you can eliminate certain square root

terms in an integrand by making use of a carefully chosen trigonometric substitution.

We summarize the three trigonometric substitutions presented here in the following

table.

Trigonometric

Expression Substitution Interval Identity
√
a2 − x2 x = a sin θ − π

2
≤ θ ≤ π

2
1 − sin2 θ = cos2 θ

√
a2 + x2 x = a tan θ − π

2
< θ < π

2
1 + tan2 θ = sec2 θ

√
x2 − a2 x = a sec θ θ ∈ [0, π

2
) ∪ ( π

2
, π ] sec2 θ − 1 = tan2 θ

EXERCISES 7.3

WRITING EXERCISES

1. Suppose a friend in your calculus class tells you that this section

just has too many rules to memorize. (By the way, the authors

would agree.) Help your friend out by making it clear that each

rule indicates when certain substitutions will work. In turn, a

substitution u(x) works if the expression u (x) appears in the

integrand and the resulting integral is easier to integrate. For

each of the rules covered in the text, identify u (x) and point

out why n has to be odd (or whatever the rule says) for the re-

maining integrand to be workable. Without memorizing rules,

you can remember a small number of potential substitutions

and see which one works for a given problem.

2. In the text, we suggested that when the integrand contains a

term of the form
√

4 − x2, you might try the trigonometric
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substitution x = 2 sin θ . We should admit now that this does

not always work. How can you tell whether this substitution

will work?

In exercises 1–30, evaluate the integrals.

1.

 
cos x sin4 x dx 2.

 
cos3 x sin4 x dx

3.

 π/4

0

cos x sin3 x dx 4.

 π/3

π/4

cos3 x sin3 x dx

5.

 π/2

0

cos2 x sin x dx 6.

 0

−π/2
cos3 x sin x dx

7.

 
cos2 x dx 8.

 
sin4 x dx

9.

 
tan x sec3 x dx 10.

 
cot x csc4 x dx

11.

 π/4

0

tan4 x sec4 x dx 12.

 π/4

−π/4
tan4 x sec2 x dx

13.

 
cos2 x sin2 x dx 14.

 
(cos2 x + sin2 x) dx

15.

 0

−π/3

√
cos x sin3 x dx 16.

 π/2

π/4

cot2 x csc4 x dx

17.

 
1

x2
√

9 − x2
dx 18.

 
1

x2
√

16 − x2
dx

19.

 2

0

 
4 − x2 dx 20.

 1

0

x√
4 − x2

dx

21.

 
x2

√
x2 − 9

dx 22.

 
x3
 
x2 − 1 dx

23.

 
2√

x2 − 4
dx 24.

 
x√

x2 − 4
dx

25.

 
x2

√
x2 + 9

dx 26.

 
x3
 
x2 + 8 dx

27.

  
x2 + 16 dx 28.

 
1√

x2 + 4
dx

29.

 1

0

x
 
x2 + 8 dx 30.

 2

0

x2
 
x2 + 9 dx

In exercises 31 and 32, evaluate the integral using both substi-

tutions u  tan x and u  sec x and compare the results.

31.

 
tan x sec4 x dx 32.

 
tan3 x sec4 x dx

33. Show that for any integer n > 1, we have the reduction formula 
secn x dx = 1

n − 1
secn−2 x tan x + n − 2

n − 1

 
secn−2 x dx .

34. Evaluate (a)
 

sec3 x dx , (b)
 

sec4 x dx and (c)
 

sec5 x dx .

(Hint: Use the result of exercise 33.)

35. In an AC circuit, the current has the form i(t) = I cos(ωt) for

constants I and ω. The power is defined as Ri2 for a constant

R. Find the average value of the power by integrating over the

interval [0, 2π/ω].

36. The area of the ellipse
x2

a2
+ y2

b2
= 1 is given by

4b

a

 a

0

 
a2 − x2 dx . Compute this integral.

37. Evaluate the antiderivatives in examples 3.2, 3.3, 3.5, 3.6

and 3.7 using your CAS. Based on these examples, speculate

whether or not your CAS uses the same techniques that we do.

In the cases where your CAS gives a different antiderivative

than we do, comment on which antiderivative looks simpler.

38. Repeat exercise 37 for examples 3.9, 3.10 and 3.11.

39. One CAS produces − 1
7

sin2 x cos5 x − 2
35

cos5 x as an anti-

derivative in example 3.2. Find c such that this equals our

antiderivative of − 1
5

cos5 x + 1
7

cos7 x + c.

40. One CAS produces − 2
15

tan x − 1
15

sec2 x tan x + 1
5

sec4 x tan x

as an antiderivative in example 3.7. Find c such that this equals

our antiderivative of 1
3

tan3 x + 1
5

tan5 x + c.

EXPLORATORY EXERCISES

1. In section 7.2, you were asked to show that

for positive integers m and n with m  = n, π
−π cosmx cos nx dx = 0 and

 π
−π sinmx sin nx dx = 0.

Also,
 π

−π cos2 nx dx =  π
−π sin2 nx dx = π . Finally, π

−π cosmx sin nx dx = 0, for any positive integers m and

n. We will use these formulas to explain how a radio can tune

in an AM station.

Amplitude modulation (or AM) radio sends a signal (e.g.,

music) that modulates the carrier frequency. For example, if the

signal is 2 sin t and the carrier frequency is 16, then the radio

sends out the modulated signal 2 sin t sin 16t . The graphs of

y = 2 sin t, y = −2 sin t and y = 2 sin t sin 16t are shown in

the figure.

y

t

 2

 1

1

2

3

The graph of y = 2 sin t sin 16t oscillates as rapidly as the car-

rier sin 16t , but the amplitude varies between 2 sin t and −2 sin t

(hence the term amplitude modulation). The radio’s problem

is to tune in the frequency 16 and recover the signal 2 sin t . The

difficulty is that other radio stations are broadcasting simulta-

neously. A radio receives all the signals mixed together. To see
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how this works, suppose a second station broadcasts the sig-

nal 3 sin t at frequency 32. The combined signal that the radio

receives is 2 sin t sin 16t + 3 sin t sin 32t . We will decompose

this signal. The first step is to rewrite the signal using the

identity

sin A sin B = 1

2
cos(B − A) − 1

2
cos(B + A).

The signal then equals

f (t) = cos 15t − cos 17t + 3

2
cos 31t − 3

2
cos 33t.

If the radio “knows” that the signal has the form c sin t, for

some constant c, it can determine the constant c at frequency

16 by computing the integral
 π

−π f (t) cos 15t dt and multi-

plying by 2/π . Show that
 π

−π f (t) cos 15t dt = π , so that the

correct constant is c = π (2/π ) = 2. The signal is then 2 sin t .

To recover the signal sent out by the second station, compute π
−π f (t) cos 31t dt and multiply by 2/π . Show that you cor-

rectly recover the signal 3 sin t .

2. In this exercise, we derive an important result called Wallis’

product. Define the integral In =  π/2
0

sinn xdx for a pos-

itive integer n. (a) Show that In = n

n−1
In−2. (b) Show

that
I2n+1

I2n
= 2242 · · · (2n)22

3252 · · · (2n − 1)2(2n + 1)π
. (c) Conclude that

π

2
= lim

n→∞
2242 · · · (2n)2

3252 · · · (2n − 1)2(2n + 1)
.

7.4 INTEGRATION OF RATIONAL FUNCTIONS
USING PARTIAL FRACTIONS

In this section we introduce a method for rewriting certain rational functions that is very

useful in integration as well as in other applications. We begin with a simple observation.

Note that

3

x + 2
− 2

x − 5
= 3(x − 5) − 2(x + 2)

(x + 2)(x − 5)
= x − 19

x2 − 3x − 10
. (4.1)

So, suppose that you wanted to evaluate the integral of the function on the right-hand side

of (4.1). While it’s not clear how to evaluate this integral, the integral of the (equivalent)

function on the left-hand side of (4.1) is easy to evaluate. From (4.1), we now have 
x − 19

x2 − 3x − 10
dx =

  
3

x + 2
− 2

x − 5

 
dx = 3 ln |x + 2| − 2 ln |x − 5| + c.

The second integrand,
3

x + 2
− 2

x − 5

is called a partial fractions decomposition of the first integrand. More generally, if the three

factors a1x + b1, a2x + b2 and a3x + b3 are all distinct (i.e., none is a constant multiple of

another), then we can write

a1x + b1

(a2x + b2)(a3x + b3)
= A

a2x + b2

+ B

a3x + b3

,

for some choice of constantsA andB to be determined. Notice that if you wanted to integrate

this expression, the partial fractions on the right-hand side are very easy to integrate, just

as they were in the introductory example just presented.

EXAMPLE 4.1 Partial Fractions: Distinct Linear Factors

Evaluate

 
1

x2 + x − 2
dx .
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Solution First, note that you can’t evaluate this as it stands and all of our earlier

methods fail to help. (Consider each of these for this problem.) However, we can make a

partial fractions decomposition, as follows.

1

x2 + x − 2
= 1

(x − 1)(x + 2)
= A

x − 1
+ B

x + 2
.

Multiplying both sides of this equation by the common denominator (x − 1)(x + 2),

we get

1 = A(x + 2) + B(x − 1). (4.2)

We would like to solve this equation for A and B. The key is to realize that this equation

must hold for all x, including x = 1 and x = −2. [We single out these two values

because they will make one or the other of the terms in (4.2) zero and thereby allow us

to easily solve for the unknowns A and B.] In particular, for x = 1, notice that from

(4.2), we have

1 = A(1 + 2) + B(1 − 1) = 3A,

so that A = 1
3
. Likewise, taking x = −2, we have

1 = A(−2 + 2) + B(−2 − 1) = −3B,

so that B = − 1
3
. Thus, we have 

1

x2 + x − 2
dx =

  
1

3

 
1

x − 1

 
− 1

3

 
1

x + 2

  
dx

= 1

3
ln |x − 1| − 1

3
ln |x + 2| + c.

�

We can do the same as we did in example 4.1 whenever a rational expression has a

denominator that factors into n distinct linear factors, as follows. If the degree of P(x) < n

and the factors (ai x + bi ), for i = 1, 2, . . . , n are all distinct, then we can write

Partial fractions:

distinct linear factors

P(x)

(a1x + b1)(a2x + b2) · · · (anx + bn)
= c1

a1x + b1

+ c2

a2x + b2

+ · · · + cn

anx + bn
,

for some constants c1, c2, . . . , cn .

EXAMPLE 4.2 Partial Fractions: Three Distinct Linear Factors

Evaluate

 
3x2 − 7x − 2

x3 − x
dx .

Solution Once again, our earlier methods fail us, but we can rewrite the integrand using

partial fractions. We have

3x2 − 7x − 2

x3 − x
= 3x2 − 7x − 2

x(x − 1)(x + 1)
= A

x
+ B

x − 1
+ C

x + 1
.

Multiplying by the common denominator x(x − 1)(x + 1), we get

3x2 − 7x − 2 = A(x − 1)(x + 1) + Bx(x + 1) + Cx(x − 1). (4.3)

In this case, notice that taking x = 0, x = 1 or x = −1 will make two of the three terms

on the right side of (4.3) zero. Specifically, for x = 0, we get

−2 = A(−1)(1) = −A,
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so that A = 2. Likewise, taking x = 1, we find B = −3 and taking x = −1, we find

C = 4. Thus, we have

 
3x2 − 7x − 2

x3 − x
dx =

  
2

x
− 3

x − 1
+ 4

x + 1

 
dx

= 2 ln |x | − 3 ln |x − 1| + 4 ln |x + 1| + c. �

REMARK 4.1

If the numerator of a rational

expression has the same or

higher degree than the

denominator, you must first

perform a long division and

follow this with a partial

fractions decomposition of the

remaining (proper) fraction.

EXAMPLE 4.3 Partial Fractions Where Long Division Is Required

Find the indefinite integral of f (x) = 2x3 − 4x2 − 15x + 5

x2 − 2x − 8
using a partial fractions

decomposition.

Solution Since the degree of the numerator exceeds that of the denominator, first

divide. We show the long division below. (You should perform the division however you

are most comfortable.)

x2 − 2x − 8
 2x

2x3 − 4x2 − 15x + 5

2x3 − 4x2 − 16x

x + 5

Thus, we have f (x) = 2x3 − 4x2 − 15x + 5

x2 − 2x − 8
= 2x + x + 5

x2 − 2x − 8
.

The remaining proper fraction can be expanded as

x + 5

x2 − 2x − 8
= x + 5

(x − 4)(x + 2)
= A

x − 4
+ B

x + 2
.

It is a simple matter to solve for the constants: A = 3
2

and B = − 1
2
. (This is left as an

exercise.) We now have

 
2x3 − 4x2 − 15x + 5

x2 − 2x − 8
dx =

  
2x + 3

2

 
1

x − 4

 
− 1

2

 
1

x + 2

  
dx

= x2 + 3

2
ln |x − 4| − 1

2
ln |x + 2| + c.

�

You may already have begun to wonder what happens when the denominator of a

rational expression contains repeated linear factors, such as

2x + 3

(x − 1)2
.

In this case, the decomposition looks like the following. If the degree of P(x) is less than

n, then we can write

Partial fractions:

repeated linear factors

P(x)

(ax + b)n
= c1

ax + b
+ c2

(ax + b)2
+ · · · + cn

(ax + b)n
,

for constants c1, c2, . . . , cn to be determined.
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Example 4.4 is typical.

EXAMPLE 4.4 Partial Fractions with a Repeated Linear Factor

Use a partial fractions decomposition to find an antiderivative of

f (x) = 5x2 + 20x + 6

x3 + 2x2 + x
.

Solution First, note that there is a repeated linear factor in the denominator. We have

5x2 + 20x + 6

x3 + 2x2 + x
= 5x2 + 20x + 6

x(x + 1)2
= A

x
+ B

x + 1
+ C

(x + 1)2
.

Multiplying by the common denominator x(x + 1)2, we have

5x2 + 20x + 6 = A(x + 1)2 + Bx(x + 1) + Cx .

Taking x = 0, we find A = 6. Likewise, taking x = −1, we find that C = 9. To

determine B, substitute any convenient value for x, say x = 1. (Unfortunately, notice

that there is no choice of x that will make the two terms containing A and C both zero,

without also making the term containing B zero.) You should find that B = −1. So,

we have  
5x2 + 20x + 6

x3 + 2x2 + x
dx =

  
6

x
− 1

x + 1
+ 9

(x + 1)2

 
dx

= 6 ln |x | − ln |x + 1| − 9(x + 1)−1 + c. �

We can extend the notion of partial fractions decomposition to rational expressions

with denominators containing irreducible quadratic factors (i.e., quadratic factors that have

no real factorization). If the degree of P(x) is less than 2n (the degree of the denominator)

and all of the factors in the denominator are distinct, then we can write

Partial fractions:

irreducible quadratic factors

P(x)

(a1x2 + b1x + c1)(a2x2 + b2x + c2) · · · (anx2 + bnx + cn)
(4.4)

= A1x + B1

a1x2 + b1x + c1

+ A2x + B2

a2x2 + b2x + c2

+ · · · + Anx + Bn

anx2 + bnx + cn
.

Think of this in terms of irreducible quadratic denominators in a partial fractions decompo-

sition getting linear numerators, while linear denominators get constant numerators. If you

think this looks messy, you’re right, but only the algebra is messy (and you can always use a

CAS to do the algebra for you). You should note that the partial fractions on the right-hand

side of (4.4) are integrated comparatively easily using substitution together with possibly

completing the square.

EXAMPLE 4.5 Partial Fractions with a Quadratic Factor

Use a partial fractions decomposition to find an antiderivative of f (x) = 2x2 − 5x + 2

x3 + x
.

Solution First, note that

2x2 − 5x + 2

x3 + x
= 2x2 − 5x + 2

x(x2 + 1)
= A

x
+ Bx + C

x2 + 1
.
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Multiplying through by the common denominator x(x2 + 1) gives us

2x2 − 5x + 2 = A(x2 + 1) + (Bx + C)x

= (A + B)x2 + Cx + A.

Rather than substitute numbers for x (notice that there are no convenient values to plug

in, except for x = 0), we instead match up the coefficients of like powers of x:

2 = A + B

−5 = C

2 = A.

This leaves us with B = 0 and so, 
2x2 − 5x + 2

x3 + x
dx =

  
2

x
− 5

x2 + 1

 
dx = 2 ln |x | − 5 tan−1 x + c.

�

Partial fractions decompositions involving irreducible quadratic terms often lead to

expressions that require further massaging (such as completing the square) before we can

find an antiderivative. We illustrate this in example 4.6.

EXAMPLE 4.6 Partial Fractions with a Quadratic Factor

Use a partial fractions decomposition to find an antiderivative for

f (x) = 5x2 + 6x + 2

(x + 2)(x2 + 2x + 5)
.

Solution First, notice that the quadratic factor in the denominator does not factor and

so, the correct decomposition is

5x2 + 6x + 2

(x + 2)(x2 + 2x + 5)
= A

x + 2
+ Bx + C

x2 + 2x + 5
.

Multiplying through by (x + 2)(x2 + 2x + 5), we get

5x2 + 6x + 2 = A(x2 + 2x + 5) + (Bx + C)(x + 2).

Matching up the coefficients of like powers of x, we get

5 = A + B

6 = 2A + 2B + C

2 = 5A + 2C.

You’ll need to solve this by elimination. We leave it as an exercise to show that

A = 2, B = 3 and C = −4. Integrating, we have 
5x2 + 6x + 2

(x + 2)(x2 + 2x + 5)
dx =

  
2

x + 2
+ 3x − 4

x2 + 2x + 5

 
dx . (4.5)

The integral of the first term is easy, but what about the second term? Since the

denominator doesn’t factor, you have very few choices. Try substituting for the

denominator: let u = x2 + 2x + 5, so that du = (2x + 2) dx . Notice that we can now
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write the integral of the second term as 
3x − 4

x2 + 2x + 5
dx =

 
3(x + 1) − 7

x2 + 2x + 5
dx =

   
3

2

 
2(x + 1)

x2 + 2x + 5
− 7

x2 + 2x + 5

 
dx

= 3

2

 
2(x + 1)

x2 + 2x + 5
dx −

 
7

x2 + 2x + 5
dx

= 3

2
ln(x2 + 2x + 5) −

 
7

x2 + 2x + 5
dx . (4.6)

Completing the square in the denominator of the remaining integral, we get 
7

x2 + 2x + 5
dx =

 
7

(x + 1)2 + 4
dx = 7

2
tan−1

 
x + 1

2

 
+ c.

(We leave the details of this last integration as an exercise.) Putting this together with

(4.5) and (4.6), we now have 
5x2 + 6x + 2

(x + 2)(x2 + 2x + 5)
dx = 2 ln |x + 2| + 3

2
ln(x2 + 2x + 5) − 7

2
tan−1

 
x + 1

2

 
+ c.

�

Rational expressions with repeated irreducible quadratic factors in the denominator are

explored in the exercises. The idea of these is the same as the preceding decompositions,

but the algebra (without a CAS) is even messier.

REMARK 4.2

Most CASs include commands

for performing partial fractions

decomposition. Even so, we

urge you to work through the

exercises in this section by

hand. Once you have the idea of

how these decompositions

work, by all means, use your

CAS to do the drudge work for

you. Until that time, be patient

and work carefully by hand.

After mastering decompositions involving repeated irreducible quadratic factors, you

will be able to find the partial fractions decomposition ofany rational function. Theoretically,

the denominator of such a function (a polynomial) can always be factored into linear and

quadratic factors, some of which may be repeated. Then, use the techniques covered in this

section. You should recognize that while this observation is certainly true, in practice you

may require a CAS to accurately complete the calculations.

Brief Summary of Integration Techniques

At this point, we pause to briefly summarize what we have learned about techniques of

integration. As you certainly recognize by now, integration is far less straightforward than

differentiation. You can differentiate virtually any function that you can write down, simply

by applying the formulas. We are not nearly so fortunate with integrals. Many cannot be

evaluated at all exactly, while others can be evaluated, but only by recognizing which

technique might lead to a solution. With these things in mind, we present now a few hints

for evaluating integrals.

Integration by Substitution:
 

f (u(x)) u (x) dx =
 

f (u) du

What to look for:

1. Compositions of the form f (u(x)), where the integrand also contains u (x); for

example,  
2x cos(x2) dx =

 
cos(x2)    

cos u

2x dx    
du

=
 

cos u du.
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2. Compositions of the form f (ax + b); for example,

 u − 1    
x√
x + 1    √
u

dx    
du

=
 

u − 1√
u

du.

Integration by Parts:
 
u dv = uv −

 
v du

What to look for: products of different types of functions: xn, cos x, ex ; for example,

 
2x cos x dx

 
u = x dv = cos x dx

du = dx v = sin x

= x sin x −
 

sin x dx .

Trigonometric Substitution:

What to look for:

1. Terms like
√
a2 − x2: Let x = a sin θ (−π/2 ≤ θ ≤ π/2), so that dx = a cos θ dθ and√

a2 − x2 =
 
a2 − a2 sin2 θ = a cos θ ; for example,

 sin2 θ    
x2 

1 − x2    
cos θ

dx    
cos θ dθ

=
 

sin2 θ dθ.

2. Terms like
√
x2 + a2: Let x = a tan θ (−π/2 < θ < π/2), so that dx = a sec2 θ dθ and√

x2 + a2 =
√
a2 tan2 θ + a2 = a sec θ ; for example,

 27 tan3 θ    
x3 
x2 + 9    
3 sec θ

dx    
3 sec2 θ dθ

= 27

 
tan3 θ sec θ dθ.

3. Terms like
√
x2 − a2: Let x = a sec θ , for θ ∈ [0, π/2) ∪ (π/2 , π ], so that

dx = a sec θ tan θ dθ and
√
x2 − a2 =

√
a2 sec2 θ − a2 = a tan θ ; for example,

 
x3    

8 sec3 θ

 
x2 − 4    
2 tan θ

dx    
2 sec θ tan θ dθ

= 32

 
sec4 θ tan2 θ dθ.

Partial Fractions:

What to look for: rational functions; for example, 
x + 2

x2 − 4x + 3
dx =

 
x + 2

(x − 1)(x − 3)
dx =

  
A

x − 1
+ B

x − 3

 
dx .
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EXERCISES 7.4

WRITING EXERCISES

1. There is a shortcut for determining the constants for linear

terms in a partial fractions decomposition. For example, take

x − 1

(x + 1)(x − 2)
= A

x + 1
+ B

x − 2
.

To compute A, take the original fraction on the left, cover

up the x + 1 in the denominator and replace x with −1:

A = −1 − 1

−1 − 2
= 2

3
. Similarly, to solve forB, cover up the x − 2

and replace xwith 2: B = 2 − 1

2 + 1
= 1

3
. Explain why this works

and practice it for yourself.

2. For partial fractions, there is a big distinction between quadratic

functions that factor into linear terms and quadratic functions

that are irreducible. Recall that a quadratic function factors as

(x − a)(x − b) if and only if a and b are zeros of the function.

Explain how you can use the quadratic formula to determine

whether a given quadratic function is irreducible.

In exercises 1–30, find the partial fractions decomposition and

an antiderivative. If you have a CAS available, use it to check

your answer.

1.
x − 5

x2 − 1
2.

5x − 2

x2 − 4

3.
6x

x2 − x − 2
4.

3x

x2 − 3x − 4

5.
−x + 5

x3 − x2 − 2x
6.

3x + 8

x3 + 5x2 + 6x

7.
x3 + x + 2

x2 + 2x − 8
8.

x2 + 1

x2 − 5x − 6

9.
5x − 23

6x2 − 11x − 7
10.

3x + 5

5x2 − 4x − 1

11.
x − 1

x3 + 4x2 + 4x
12.

4x − 5

x3 − 3x2

13.
x + 4

x3 + 3x2 + 2x
14.

−2x2 + 4

x3 + 3x2 + 2x

15.
x + 2

x3 + x
16.

1

x3 + 4x

17.
4x − 2

16x4 − 1
18.

3x + 7

x4 − 16

19.
4x2 − 7x − 17

6x2 − 11x − 10
20.

x3 + x

x2 − 1

21.
2x + 3

x2 + 2x + 1
22.

2x

x2 − 6x + 9

23.
x3 − 4

x3 + 2x2 + 2x
24.

4

x3 − 2x2 + 4x

25.
x3 + x

3x2 + 2x + 1
26.

x3 − 2x

2x2 − 3x + 2

27.
4x2 + 3

x3 + x2 + x
28.

4x + 4

x4 + x3 + 2x2

29.
3x3 + 1

x3 − x2 + x − 1
30.

2x4 + 9x2 + x − 4

x3 + 4x

31. In this exercise, we find the partial fractions decomposition of
4x2 + 2

(x2 + 1)2
. Consistent with the form for repeated linear fac-

tors, the form for the decomposition is
Ax + B

x2 + 1
+ Cx + D

(x2 + 1)2
.

We set

4x2 + 2

(x2 + 1)2
= Ax + B

x2 + 1
+ Cx + D

(x2 + 1)2
.

Multiplying through by (x2 + 1)2, we get

4x2 + 2 = (Ax + B)(x2 + 1) + Cx + D

= Ax3 + Bx2 + Ax + B + Cx + D.

As in example 4.5, we match up coefficients of like powers

of x. For x3, we have 0 = A. For x2, we have 4 = B. Match

the coefficients of x and the constants to finish the decom-

position.

In exercises 32–36, find the partial fractions decomposition.

(Refer to exercise 31.)

32.
x3 + 2

(x2 + 1)2
33.

2x2 + 4

(x2 + 4)2

34.
2x3 − x2

(x2 + 1)2
35.

4x2 + 3

(x2 + x + 1)2

36.
x4 + x3

(x2 + 4)2

37. Often, more than one integration technique can be applied.

Evaluate

 
3

x4 + x
dx in each of the following ways. First,

use the substitution u = x3 + 1 and partial fractions. Second,

use the substitution u = 1

x
and evaluate the resulting integral.

Show that the two answers are equivalent.

38. Evaluate

 
2

x3 + x
dx in each of the following ways. First,

use the substitution u = x2 + 1 and partial fractions. Second,

use the substitution u = 1

x
and evaluate the resulting integral.

Show that the two answers are equivalent.
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EXPLORATORY EXERCISES

1. In developing the definite integral, we looked at sums such as
n 
i=1

2

i2 + i
. As with Riemann sums, we are especially inter-

ested in the limit as n → ∞. Write out several terms of the

sum and try to guess what the limit is. It turns out that this is

one of the few sums for which a precise formula exists, because

this is a telescoping sum. To find out what this means, write

out the partial fractions decomposition for
2

i2 + i
. Using the

partial fractions form, write out several terms of the sum and

notice how much cancellation there is. Briefly describe why

the term telescoping is appropriate, and determine
n 
i=1

2

i2 + i
.

Then find the limit as n → ∞. Repeat this process for the

telescoping sum
n 
i=2

4

i2 − 1
.

2. Use the substitution u = x1/4 to evaluate

 
1

x5/4 + x
dx .

Use similar substitutions to evaluate

 
1

x1/4 + x1/3
dx, 

1

x1/5 + x1/7
dx and

 
1

x1/4 + x1/6
dx . Find the form of the

substitution for the general integral

 
1

x p + xq
dx .

7.5 INTEGRATION TABLES AND COMPUTER
ALGEBRA SYSTEMS

Ask anyone who has ever needed to evaluate a large number of integrals as part of their work

(this includes engineers, mathematicians, physicists and others) and they will tell you that

they have made extensive use of integral tables and/or a computer algebra system. These

are extremely powerful tools for the professional user of mathematics. However, they do

not take the place of learning all the basic techniques of integration. To use a table, you

often must first rewrite the integral in the form of one of the integrals in the table. This may

require you to perform some algebraic manipulation or to make a substitution. While a CAS

will report an antiderivative, it will occasionally report it in an inconvenient form. More

significantly, a CAS will from time to time report an answer that is (at least technically)

incorrect. We will point out some of these shortcomings in the examples that follow.

Using Tables of Integrals

We include a small table of indefinite integrals at the back of the book. A larger table can

be found in the CRC Standard Mathematical Tables. An amazingly extensive table is found

in the book Table of Integrals, Series and Products, compiled by Gradshteyn and Ryzhik.

EXAMPLE 5.1 Using an Integral Table

Use a table to evaluate

 √
3 + 4x2

x
dx .

Solution Certainly, you could evaluate this integral using trigonometric substitution.

However, if you look in our integral table, you will find

 √
a2 + u2

u
du =

 
a2 + u2 − a ln

     a +
√
a2 + u2

u

     + c. (5.1)
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Unfortunately, the integral in question is not quite in the form of (5.1). However, we can

fix this with the substitution u = 2x , so that du = 2 dx . This gives us √
3 + 4x2

x
dx =

  
3 + (2x)2

2x
(2) dx =

 √
3 + u2

u
du

=
 

3 + u2 −
√

3 ln

     
√

3 +
√

3 + u2

u

     + c

=
 

3 + 4x2 −
√

3 ln

     
√

3 +
√

3 + 4x2

2x

     + c.

�

A number of the formulas in the table are called reduction formulas. These are of the form 
f (u) du = g(u) +

 
h(u) du,

where the second integral is simpler than the first. These are often applied repeatedly, as in

example 5.2.

EXAMPLE 5.2 Using a Reduction Formula

Use a reduction formula to evaluate
 

sin6 x dx .

Solution You should recognize that this integral can be evaluated using techniques you

already know. (How?) However, for any integer n ≥ 1, we have the reduction formula 
sinn u du = − 1

n
sinn−1 u cos u + n − 1

n

 
sinn−2 u du. (5.2)

(See number 59 in the table of integrals found inside the back cover of the book.) If we

apply (5.2) with n = 6, we get 
sin6 x dx = −1

6
sin5 x cos x + 5

6

 
sin4 x dx .

We can apply the same reduction formula (this time with n = 4) to evaluate
 

sin4 x dx .

We have 
sin6 x dx = −1

6
sin5 x cos x + 5

6

 
sin4 x dx

= −1

6
sin5 x cos x + 5

6

 
−1

4
sin3 x cos x + 3

4

 
sin2 x dx

 
.

Finally, for
 

sin2 x dx , we can use (5.2) once again (with n = 2), or evaluate the integral

using a half-angle formula. We choose the former here and obtain 
sin6 x dx = −1

6
sin5 x cos x + 5

6

 
−1

4
sin3 x cos x + 3

4

 
sin2 x dx

 

= −1

6
sin5 x cos x − 5

24
sin3 x cos x + 5

8

 
−1

2
sin x cos x + 1

2

 
dx

 

= −1

6
sin5 x cos x − 5

24
sin3 x cos x − 5

16
sin x cos x + 5

16
x + c.

�

We should remind you at this point that there are many different ways to find an

antiderivative. Antiderivatives found through different means may look quite different,

even though they are equivalent. For instance, notice that if an antiderivative has the form
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sin2 x + c, then an equivalent antiderivative is −cos2 x + c, since we can write

sin2 x + c = 1 − cos2 x + c = −cos2 x + (1 + c).

Finally, since c is an arbitrary constant, so is 1 + c. In example 5.2, observe that the first

three terms all have factors of sin x cos x , which equals 1
2

sin 2x . Using this and other

identities, you can show that our solution in example 5.2 is equivalent to the following

solution obtained from a popular CAS: 
sin6 x dx = 5

16
x − 15

64
sin 2x + 3

64
sin 4x − 1

192
sin 6x + c.

So, do not panic if your answer differs from the one in the back of the book. Both

answers may be correct. If you’re unsure, find the derivative of your answer. If you get the

integrand, you’re right.

You will sometimes want to apply different reduction formulas at different points in a

given problem.

EXAMPLE 5.3 Making a Substitution Before Using a Reduction Formula

Evaluate
 
x3 sin 2x dx .

Solution From our table (see number 63), we have the reduction formula 
un sin u du = −un cos u + n

 
un−1 cos u du. (5.3)

In order to use (5.3), we must first make the substitution u = 2x , so that du = 2 dx ,

which gives us 
x3 sin 2x dx = 1

2

 
(2x)3

23
sin 2x(2) dx = 1

16

 
u3 sin u du

= 1

16

 
−u3 cos u + 3

 
u2 cos u du

 
,

where we have used the reduction formula (5.3) with n = 3. Now, to evaluate this last

integral, we use the reduction formula (see number 64 in our table) 
un cos u du = un sin u − n

 
un−1 sin u du,

with n = 2, to get 
x3 sin 2x dx = − 1

16
u3 cos u + 3

16

 
u2 cos u du

= − 1

16
u3 cos u + 3

16

 
u2 sin u − 2

 
u sin u du

 
.

Applying the first reduction formula (5.3) one more time (this time, with n = 1), we get 
x3 sin 2x dx = − 1

16
u3 cos u + 3

16
u2 sin u − 3

8

 
u sin u du

= − 1

16
u3 cos u + 3

16
u2 sin u − 3

8

 
−u cos u +

 
u0 cos u du

 

= − 1

16
u3 cos u + 3

16
u2 sin u + 3

8
u cos u − 3

8
sin u + c

= − 1

16
(2x)3 cos 2x + 3

16
(2x)2 sin 2x + 3

8
(2x) cos 2x − 3

8
sin 2x + c

= −1

2
x3 cos 2x + 3

4
x2 sin 2x + 3

4
x cos 2x − 3

8
sin 2x + c.

�
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As we’ll see in example 5.4, some integrals require some insight before using an integral

table.

EXAMPLE 5.4 Making a Substitution Before Using an Integral Table

Evaluate

 
sin 2x√

4 cos x − 1
dx .

Solution You won’t find this integral or anything particularly close to it in our integral

table. However, with a little fiddling, we can rewrite this in a simpler form. First, use the

double-angle formula to rewrite the numerator of the integrand. We get 
sin 2x√

4 cos x − 1
dx = 2

 
sin x cos x√
4 cos x − 1

dx .

Remember to always be on the lookout for terms that are derivatives of other terms.

Here, taking u = cos x, we have du = − sin x dx and so, 
sin 2x√

4 cos x − 1
dx = 2

 
sin x cos x√
4 cos x − 1

dx = −2

 
u√

4u − 1
du.

From our table (see number 18), notice that 
u√

a + bu
du = 2

3b2
(bu − 2a)

√
a + bu + c. (5.4)

Taking a = −1 and b = 4 in (5.4), we have 
sin 2x√

4 cos x − 1
dx = −2

 
u√

4u − 1
du = (−2)

2

3(42)
(4u + 2)

√
4u − 1 + c

= − 1

12
(4 cos x + 2)

√
4 cos x − 1 + c.

�

Integration Using a Computer Algebra System

Computer algebra systems are some of the most powerful new tools to arrive on the math-

ematical scene in the last 20 years. They run the gamut from handheld calculators (like the

TI-89 and the HP-48) to powerful software systems (like Mathematica and Maple), which

will run on nearly any personal computer.

The examples that follow focus on some of the rare problems you may encounter using

a CAS. We admit that we intentionally searched for CAS mistakes. The good news is that

the mistakes were very uncommon and the CAS you’re using won’t necessarily make any

of them. The bottom line here is that a CAS is “taught” many rules by its programmers. If

it applies the wrong rule to the problem at hand, you get an incorrect answer. Be aware that

these are software bugs and the next version of your CAS may be given a more complete

set of rules. As an intelligent user of technology, you need to be aware of common errors

and have the calculus skills to catch mistakes when they occur.

The first thing you notice when using a CAS to evaluate an indefinite integral is that

it typically supplies an antiderivative, instead of the most general one (the indefinite inte-

gral) by leaving off the constant of integration (a minor shortcoming of this very powerful

software).

EXAMPLE 5.5 A Shortcoming of Some Computer Algebra Systems

Use a computer algebra system to evaluate

 
1

x
dx .
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Solution Many CASs evaluate  
1

x
dx = ln x .

(Actually, one CAS reports the integral as log x, where it is using the notation log x to

denote the natural logarithm.) Not only is this missing the constant of integration, but

notice that this antiderivative is valid only for x > 0. A popular calculator returns the

more general antiderivative  
1

x
dx = ln |x |,

which, while still missing the constant of integration, at least is valid for all x  = 0.

On the other hand, all of the CASs we tested correctly evaluate −1

−2

1

x
dx = − ln 2,

even though the reported antiderivative ln x is not defined at the limits of integration. �

Sometimes the antiderivative reported by a CAS is not valid, as written, for any real

values of x, as in example 5.6. (In some cases, CASs give an antiderivative that is correct

for the more advanced case of a function of a complex variable.)

EXAMPLE 5.6 An Incorrect Antiderivative

Use a computer algebra system to evaluate

 
cos x

sin x − 2
dx .

Solution One CAS reports the incorrect antiderivative 
cos x

sin x − 2
dx = ln(sin x − 2).

At first glance, this may not appear to be wrong, especially since the chain rule seems to

indicate that it’s correct:

d

dx
ln(sin x − 2) = cos x

sin x − 2
. This is incorrect!

The error is more fundamental (and subtle) than a misuse of the chain rule. Notice that

the expression ln(sin x − 2) is undefined for all real values of x, as sin x − 2 < 0 for all

x. A general antiderivative rule that applies here is 
f  (x)

f (x)
dx = ln | f (x)| + c,

where the absolute value is important. The correct antiderivative is ln |sin x − 2| + c,

which can also be written as ln (2 − sin x) + c since 2 − sin x > 0 for all x. �

Probably the most common errors you will run into are actually your own. If you give

your CAS a problem in the wrong form, it may solve a different problem than you intended.

One simple, but common, mistake is shown in example 5.7.

EXAMPLE 5.7 A Problem Where the CAS Misinterprets
What You Enter

Use a computer algebra system to evaluate
 

4x 8x dx .
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Solution After entering the integrand as 4x8x , one CAS returned the odd answer 
4x8x dx = 4x8xx .

You can easily evaluate the integral (first, rewrite the integrand as 32x2) to show this is

incorrect, but what was the error? Because of the way in which we wrote the integrand,

the CAS interpreted it as four times a variable named x8x , which is unrelated to the

variable of integration, x. Its answer is of the form
 

4c dx = 4cx . �

The form of the antiderivative reported by a CAS will not always be the most

convenient.

EXAMPLE 5.8 An Inconvenient Form of an Antiderivative

Use a computer algebra system to evaluate
 
x(x2 + 3)5 dx .

Solution Several CASs evaluate 
x(x2 + 3)5 dx = 1

12
x12 + 3

2
x10 + 45

4
x8 + 45x6 + 405

4
x4 + 243

2
x2,

while others return the much simpler expression 
x(x2 + 3)5 dx = (x2 + 3)6

12
.

The two answers are equivalent, although they differ by a constant. �

CASs will often correctly evaluate an integral, but report it in terms of a function or

functions with which you are not especially familiar, as in example 5.9.

EXAMPLE 5.9 A Less Familiar Antiderivative

Use a computer algebra system to evaluate

 
1√

9 + x2
dx .

Solution Recall that we have already evaluated this integral in example 3.10. There,

we found through trigonometric substitution that 
1√

9 + x2
dx = ln

     
 

1 +
 x

3

 2

+ x

3

     + c.

One CAS reports an antiderivative of arcsinh 1
3
x . While this is equivalent to what we had

obtained in example 3.10, it is likely less familiar to most students. On the other hand, it

is certainly a simpler form of the antiderivative. �

Typically, a CAS will perform even lengthy integrations with ease.

TODAY IN
MATHEMATICS

Jean-Christophe Yoccoz

(1957– ) A French

mathematician who earned a

Fields Medal for his contributions

to dynamical systems. His citation

for the Fields Medal stated, “He

combines an extremely acute

geometric intuition, an impressive

command of analysis, and a

penetrating combinatorial sense

to play the chess game at which

he excels. He occasionally spends

half a day on mathematical

‘experiments’ by hand or by

computer. ‘When I make such an

experiment,’ he says, ‘it is not just

the results that interest me, but

the manner in which it unfolds,

which sheds light on what is really

going on.’”

EXAMPLE 5.10 Some Good Integrals for Using a CAS

Use a computer algebra system to evaluate
 
x3 sin 2x dx and

 
x10 sin 2x dx .

Solution Using a CAS, you can get in one step 
x3 sin 2x dx = −1

2
x3 cos 2x + 3

4
x2 sin 2x + 3

4
x cos 2x − 3

8
sin 2x + c.
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With the same effort, you can obtain 
x10 sin 2x dx = −1

2
x10 cos 2x + 5

2
x9 sin 2x + 45

4
x8 cos 2x − 45x7 sin 2x

−315

2
x6 cos 2x + 945

2
x5 sin 2x + 4725

4
x4 cos 2x

−4725

2
x3 sin 2x − 14,175

4
x2 cos 2x + 14,175

4
x sin 2x

+14,175

8
cos 2x + c.

If you wanted to, you could even evaluate 
x100 sin 2x dx,

although the large number of terms makes displaying the result prohibitive. Think about

doing this by hand, using a staggering 100 integrations by parts or by applying a

reduction formula 100 times. �

You should get the idea by now: a CAS can perform repetitive calculations (numerical

or symbolic) that you could never dream of doing by hand. It is difficult to find a function

that has an elementary antiderivative that your CAS cannot find. Consider the following

example of a hard integral.

EXAMPLE 5.11 A Very Hard Integral

Evaluate
 
x7ex sin x dx .

Solution Consider what you would need to do to evaluate this integral by hand and

then use a computer algebra system. For instance, one CAS reports the antiderivative 
x7ex sin x dx =

 
−1

2
x7 + 7

2
x6 − 21

2
x5 + 105x3 − 315x2 + 315x

 
ex cos x

+
 

1

2
x7 − 21

2
x5 + 105

2
x4 − 105x3 + 315x − 315

 
ex sin x .

Don’t try this by hand unless you have plenty of time and patience. However, based on

your experience, observe that this antiderivative is plausible. �

BEYOND FORMULAS

You may ask why we’ve spent so much time on integration techniques when you can

always let a CAS do the work for you. No, it’s not to prepare you in the event that

you are shipwrecked on a desert island without a CAS. Your CAS can solve virtually

all of the computational problems that arise in this text. On rare occasions, however, a

CAS-generated answer may be incorrect or misleading and you need to be prepared for

these. More importantly, many of the insights at the heart of science and engineering

are arrived at through a precise use of several integration techniques. As a result, you

need to understand how the integration techniques transform one set of symbols into

another. Computers are faster and more accurate at symbol manipulation than humans

will ever be. However, our special ability as humans is to understand the intent as
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well as the logic of the techniques and to apply the right technique at the right time to

make a surprising connection or important discovery. In what other areas of computer

technology is the same human input needed?

EXERCISES 7.5

WRITING EXERCISES

1. Suppose that you are hired by a company to develop a new

CAS. Outline a strategy for symbolic integration. Include pro-

visions for formulas in the Table of Integrals at the back of the

book and the various techniques you have studied.

2. In the text, we discussed the importance of knowing general

rules for integration. Consider the integral in example 5.4, 
sin 2x√

4 cos x − 1
dx . Can your CAS evaluate this integral? For

many integrals like this that do show up in applications (there

are harder ones in the exploratory exercises), you have to do

some work before the technology can finish the task. For this

purpose, discuss the importance of recognizing basic forms

and understanding how substitution works.

In exercises 1–28, use the Table of Integrals at the back of the

book to find an antiderivative. Note: When checking the back

of the book or a CAS for answers, beware of functions that look

very different but that are equivalent (through a trig identity,

for instance).

1.

 
x

(2 + 4x)2
dx 2.

 
x2

(2 + 4x)2
dx

3.

 
e2x

√
1 + ex dx 4.

 
e3x
 

1 + e2x dx

5.

 
x2

√
1 + 4x2

dx 6.

 
cos x

sin2 x(3 + 2 sin x)
dx

7.

 1

0

x8
 

4 − x6 dx 8.

 ln 4

0

 
16 − e2x dx

9.

 ln 2

0

ex√
e2x + 4

dx 10.

 2

√
3

x
√
x4 − 9

x2
dx

11.

 √
6x − x2

(x − 3)2
dx 12.

 
sec2 x

tan x
√

8 tan x − tan2 x
dx

13.

 
tan6 x dx 14.

 
csc4 x dx

15.

 
cos x

sin x
√

4 + sin x
dx 16.

 
x5

√
4 + x2

dx

17.

 
x3 cos x2 dx 18.

 
x sin 3x2 cos 4x2 dx

19.

 
sin x cos x√

1 + cos x
dx 20.

 
x
√

1 + 4x2

x4
dx

21.

 
sin2 x cos x 

sin2 x + 4
dx 22.

 
ln

√
x√
x

dx

23.

 
e−2/x2

x3
dx 24.

 
x3e2x2

dx

25.

 
x√

4x − x2
dx 26.

 
e5x cos 3x dx

27.

 
ex tan−1(ex ) dx 28.

 
(ln 4x)3 dx

29. Check your CAS against all examples in this section. Discuss

which errors, if any, your CAS makes.

30. Find out how your CAS evaluates
 
x sin x dx if you fail to

leave a space between x and sin x.

31. Have your CAS evaluate
 

(
√

1 − x + √
x − 1) dx . If you get

an answer, explain why it’s wrong.

32. To find out if your CAS “knows” integration by parts, try 
x3 cos 3x dx and

 
x3e5x cos 3x dx . To see if it “knows” re-

duction formulas, try
 

sec5 x dx .

33. To find out how many trigonometric techniques your

CAS “knows,” try
 

sin6 x dx,
 

sin4 x cos3 x dx and 
tan4 x sec3 x dx .

34. Find out if your CAS has a special command (e.g., APART in

Mathematica) to do partial fractions decompositions. Also, try 
x2 + 2x − 1

(x − 1)2(x2 + 4)
dx and

 
3x

(x2 + x + 2)2
dx .

35. To find out if your CAS “knows” how to do substitution,

try

 
1

x2(3 + 2x)
dx and

 
cos x

sin2 x(3 + 2 sin x)
dx . Try to

find one that your CAS can’t do: start with a basic formula

like

 
1

|x |
√
x2 − 1

dx = sec−1 x + c and substitute your fa-

vorite function. With x = eu , the preceding integral becomes 
eu

eu
√
e2u − 1

du, which you can use to test your CAS.

36. To compute the area of the ellipse
x2

a2
+ y2

b2
= 1, note that the

upper-right quarter of the ellipse is given by

y = b

 
1 − x2

a2

for 0 ≤ x ≤ a. Thus, the area of the ellipse is

4b

 a

0

 
1 − x2

a2
dx . Try this integral on your CAS. The
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(implicit) assumption we usually make is that a > 0, but your

CAS should not make this assumption for you. Does your CAS

give you πab or πb|a|?

EXPLORATORY EXERCISES

1. This exercise explores two aspects of a very famous prob-

lem (solved in the 1600s; when you finish the problem, think

about solving this problem before calculators, computers or

even much of calculus was invented). The idea is to imagine

a bead sliding down a thin wire that extends in some shape

from the point (0, 0) to the point (π,−2). Assume that grav-

ity pulls the bead down but that there is no friction or other

force acting on the bead. This situation is easiest to analyze

using parametric equations where we have functions x(u)

and y(u) giving the horizontal and vertical position of the bead

in terms of the variable u. Examples of paths the bead might

follow are

 
x(u) = πu

y(u) = −2u
and

 
x(u) = πu

y(u) = 2(u − 1)2 − 2
and 

x(u) = πu − sinπu

y(u) = cosπu − 1
. In each case, the bead starts at (0, 0)

for u = 0 and finishes at (π,−2) for u = 1. You should graph

each path on your graphing calculator. The first path is a line,

the second is a parabola and the third is a special curve called

a brachistochrone. For a given path, the time it takes the bead

to travel the path is given by

T = 1√
g

 1

0

 
[x  (u)]2 + [y (u)]2

−2y(u)
du,

where g is the gravitational constant. Compute this quantity

for the line and the parabola. Explain why the parabola would

be a faster path for the bead to slide down, even though the

line is shorter in distance. (Think of which would be a faster

hill to ski down.) It can be shown that the brachistochrone

is the fastest path possible. Try to get your CAS to compute

the optimal time. Comparing the graphs of the parabola and

brachistochrone, what important advantage does the brachis-

tochrone have at the start of the path?

2. It turns out that the brachistochrone in exploratory exercise 1

has an amazing property, along with providing the fastest time

(which is essentially what the term brachistochrone means).

The path is shown in the figure.

y

x
1 2 3

 2

 1



Suppose that instead of starting the bead at the point (0, 0),

you start the bead partway down the path at x = c. How would

the time to reach the bottom from x = c compare to the total

time from x = 0? Note that the answer is not obvious, since

the farther down you start, the less speed the bead will gain.

If x = c corresponds to u = a, the time to reach the bottom is

given by
π√
g

 1

a

 
1 − cosπu

cos aπ − cosπu
du. If a = 0 (that is, the

bead starts at the top), the time is π/
√
g (the integral equals 1).

If you have a very good CAS, try to evaluate the integral for

various values of a between 0 and 1. If your CAS can’t handle

it, approximate the integral numerically. You should discover

the amazing fact that the integral always equals 1. The brachis-

tochrone is also the tautochrone, a curve for which the time

to reach the bottom is the same regardless of where you start.

7.6 INDETERMINATE FORMS AND L’HÔPITAL’S RULE

In this section, we reconsider the problem of computing limits. You have frequently seen

limits of the form

lim
x→a

f (x)

g(x)
,

where lim
x→a

f (x) = lim
x→a

g(x) = 0 or where lim
x→a

f (x) = lim
x→a

g(x) = ∞ (or −∞). Recall that

from either of these forms
 

0
0

or ∞
∞ , called indeterminate forms

 
, we cannot determine

the value of the limit, or even whether the limit exists. For instance, note that

lim
x→1

x2 − 1

x − 1
= lim

x→1

(x − 1)(x + 1)

x − 1
= lim

x→1

x + 1

1
= 2

1
= 2,

lim
x→1

x − 1

x2 − 1
= lim

x→1

x − 1

(x − 1)(x + 1)
= lim

x→1

1

x + 1
= 1

2
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and lim
x→1

x − 1

x2 − 2x + 1
= lim

x→1

x − 1

(x − 1)2
= lim

x→1

1

x − 1
, which does not exist,

CAUTION

We will frequently write
 

0
0

 
or ∞

∞
 

next to an expression, for

instance,

lim
x→1

x − 1

x2 − 1

 
0

0

 
.

We use this shorthand to

indicate that the limit has the

indicated indeterminate form.

This notation does not mean

that the value of the limit is 0
0
.

You should take care to avoid

writing lim
x→a

f (x) = 0
0

or ∞
∞ ,

as these are meaningless

expressions.

even though all three limits initially look like 0
0
. The lesson here is that the expression 0

0

is mathematically meaningless. It indicates only that both the numerator and denominator

tend to zero and that we’ll need to dig deeper to find the value of the limit.

Similarly, each of the following limits has the indeterminate form ∞
∞ :

lim
x→∞

x2 + 1

x3 + 5
= lim

x→∞

(x2 + 1)

 
1

x3

 

(x3 + 5)

 
1

x3

 = lim
x→∞

1

x
+ 1

x3

1 + 5

x3

= 0

1
= 0,

lim
x→∞

x3 + 5

x2 + 1
= lim

x→∞

(x3 + 5)

 
1

x2

 

(x2 + 1)

 
1

x2

 = lim
x→∞

x + 5

x2

1 + 1

x2

= ∞

and

lim
x→∞

2x2 + 3x − 5

x2 + 4x − 11
= lim

x→∞

(2x2 + 3x − 5)

 
1

x2

 

(x2 + 4x − 11)

 
1

x2

 = lim
x→∞

2 + 3

x
− 5

x2

1 + 4

x
− 11

x2

= 2

1
= 2.

So, as with limits of the form 0
0
, if a limit has the form ∞

∞ , we must dig deeper to de-

termine the value of the limit or whether the limit even exists. Unfortunately, limits with

indeterminate forms are frequently more difficult than those just given. For instance, back

in section 2.6, we struggled with the limit lim
x→0

sin x

x
, ultimately resolving it only with an

intricate geometric argument. This limit has the indeterminate form 0
0
, but there is no way

to manipulate the numerator or denominator to simplify the expression. In the case of

lim
x→c

f (x)

g(x)
, where lim

x→c
f (x) = lim

x→c
g(x) = 0, we can use linear approximations to suggest a

solution, as follows.

If both functions are differentiable at x = c, then they are also continuous at x = c, so

that f (c) = lim
x→c

f (x) = 0 and g(c) = lim
x→c

g(x) = 0. We now have the linear approximations

f (x) ≈ f (c) + f  (c)(x − c) = f  (c)(x − c)

and g(x) ≈ g(c) + g (c)(x − c) = g (c)(x − c),

since f (c) = 0 and g(c) = 0. As we have seen, the approximation should improve as x

approaches c, so we would expect that if the limits exist,

lim
x→c

f (x)

g(x)
= lim

x→c

f  (c)(x − c)

g (c)(x − c)
= lim

x→c

f  (c)
g (c)

= f  (c)
g (c)

,

assuming that g (c)  = 0. Note that if f  (x) and g (x) are continuous at x = c and g (c)  = 0,

then
f  (c)
g (c)

= lim
x→c

f  (x)

g (x)
. This suggests the following result.
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THEOREM 6.1 (L’Hôpital’s Rule)

Suppose that f and g are differentiable on the interval (a, b), except possibly at

some fixed point c ∈ (a, b) and that g (x)  = 0 on (a, b), except possibly at c.

Suppose further that lim
x→c

f (x)

g(x)
has the indeterminate form

0

0
or

∞
∞ and that

lim
x→c

f  (x)

g (x)
= L (or ±∞). Then,

lim
x→c

f (x)

g(x)
= lim

x→c

f  (x)

g (x)
.

HISTORICAL NOTES

Guillaume de l’Hôpital

(1661–1704) A French

mathematician who first published

the result now known as

l’Hôpital’s Rule. Born into nobility,

l’Hôpital was taught calculus

by the brilliant mathematician

Johann Bernoulli. A competent

mathematician, l’Hôpital is best

known as the author of the first

calculus textbook. L’Hôpital was a

friend and patron of many of the

top mathematicians of the

seventeenth century.

PROOF

Here, we prove only the 0
0

case where f, f  , g and g are all continuous on all of (a, b) and

g (c)  = 0, while leaving the more intricate general 0
0

case for Appendix A. First, recall the

alternative form of the definition of derivative (found in section 2.2):

f  (c) = lim
x→c

f (x) − f (c)

x − c
.

Working backward, we have by continuity that

lim
x→c

f  (x)

g (x)
= f  (c)

g (c)
=

lim
x→c

f (x) − f (c)

x − c

lim
x→c

g(x) − g(c)

x − c

= lim
x→c

f (x) − f (c)

x − c
g(x) − g(c)

x − c

= lim
x→c

f (x) − f (c)

g(x) − g(c)
.

Further, since f and g are continuous at x = c, we have that

f (c) = lim
x→c

f (x) = 0 and g(c) = lim
x→c

g(x) = 0.

It now follows that

lim
x→c

f  (x)

g (x)
= lim

x→c

f (x) − f (c)

g(x) − g(c)
= lim

x→c

f (x)

g(x)
,

which is what we wanted.

We leave the proof for the ∞
∞ case to more advanced texts.

REMARK 6.1

The conclusion of Theorem 6.1 also holds if lim
x→c

f (x)

g(x)
is replaced with any of the

limits lim
x→c+

f (x)

g(x)
, lim
x→c−

f (x)

g(x)
, lim
x→∞

f (x)

g(x)
or lim

x→−∞
f (x)

g(x)
. (In each case, we must make

appropriate adjustments to the hypotheses.)

EXAMPLE 6.1 The Indeterminate Form 0

0

Evaluate lim
x→0

1 − cos x

sin x
.

Solution This has the indeterminate form 0
0
, and both (1 − cos x) and sin x are

continuous and differentiable everywhere. Further, d
dx

sin x = cos x  = 0 in some
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interval containing x = 0. (Can you determine one such interval?) From the graph of

f (x) = 1 − cos x

sin x
seen in Figure 7.2, it appears that f (x) → 0, as x → 0. We can

confirm this with l’Hôpital’s Rule, as follows:

lim
x→0

1 − cos x

sin x
= lim

x→0

d

dx
(1 − cos x)

d

dx
(sin x)

= lim
x→0

sin x

cos x
= 0

1
= 0.

�

y

x
21 2

 3

 2

 1

1

2

3

FIGURE 7.2

y = 1 − cos x

sin x

L’Hôpital’s Rule is equally easy to apply with limits of the form ∞
∞ .

y

1 2 3 4 5

10

20

30

x

FIGURE 7.3

y = ex

x

EXAMPLE 6.2 The Indeterminate Form ∞
∞

Evaluate lim
x→∞

ex

x
.

Solution This has the form ∞
∞ and from the graph in Figure 7.3, it appears that the

function grows larger and larger, without bound, as x → ∞. Applying l’Hôpital’s Rule

confirms our suspicions, as

lim
x→∞

ex

x
= lim

x→∞

d

dx
(ex )

d

dx
(x)

= lim
x→∞

ex

1
= ∞.

�

For some limits, you may need to apply l’Hôpital’s Rule repeatedly. Just be careful to

verify the hypotheses at each step.

y

x
2 4 6 8 10

0.2

0.4

0.6

FIGURE 7.4

y = x2

ex

EXAMPLE 6.3 A Limit Requiring Two Applications of L’Hôpital’s Rule

Evaluate lim
x→∞

x2

ex
.

Solution First, note that this limit has the form ∞
∞ . From the graph in Figure 7.4, it

seems that the function tends to 0 as x → ∞ (and does so very rapidly, at that).

Applying l’Hôpital’s Rule twice, we get

lim
x→∞

x2

ex
= lim

x→∞

d

dx
(x2)

d

dx
(ex )

= lim
x→∞

2x

ex

 ∞
∞
 

= lim
x→∞

d

dx
(2x)

d

dx
(ex )

= lim
x→∞

2

ex
= 0,

as expected. �

REMARK 6.2

A very common error is to apply l’Hôpital’s Rule indiscriminately, without first

checking that the limit has the indeterminate form 0
0

or ∞
∞ . Students also sometimes

incorrectly compute the derivative of the quotient, rather than the quotient of the

derivatives. Be very careful here.
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y

x

 3

3

FIGURE 7.5

y = x2

ex − 1

EXAMPLE 6.4 An Erroneous Use of L’Hôpital’s Rule

Find the mistake in the string of equalities

lim
x→0

x2

ex − 1
= lim

x→0

2x

ex
= lim

x→0

2

ex
= 2

1
= 2.

Solution From the graph in Figure 7.5, we can see that the limit is approximately 0, so

2 appears to be incorrect. The first limit, lim
x→0

x2

ex − 1
, has the form 0

0
and the functions

f (x) = x2 and g(x) = ex − 1 satisfy the hypotheses of l’Hôpital’s Rule. Therefore, the

first equality, lim
x→0

x2

ex − 1
= lim

x→0

2x

ex
, holds. However, notice that lim

x→0

2x

ex
= 0

1
= 0 and

l’Hôpital’s Rule does not apply here. The correct evaluation is then

lim
x→0

x2

ex − 1
= lim

x→0

2x

ex
= 0

1
= 0.

�

Sometimes an application of l’Hôpital’s Rule must be followed by some simplification,

as we see in example 6.5.

EXAMPLE 6.5 Simplification of the Indeterminate Form ∞
∞

Evaluate lim
x→0+

ln x

csc x
.

y

x
0.4 0.8 1.2

 0.4

 0.2

0.2

0.4

FIGURE 7.6

y = ln x

csc x

Solution First, notice that this limit has the form ∞
∞ . From the graph in Figure 7.6, it

appears that the function tends to 0 as x → 0+. Applying l’Hôpital’s Rule, we have

lim
x→0+

ln x

csc x
= lim

x→0+

d

dx
(ln x)

d

dx
(csc x)

= lim
x→0+

1

x

−csc x cot x

 ∞
∞
 
.

This last limit still has the indeterminate form ∞
∞ , but rather than apply l’Hôpital’s Rule

again, observe that we can rewrite the expression. (Do this wherever possible when a

limit expression gets too complicated.) We have

lim
x→0+

ln x

csc x
= lim

x→0+

1

x

−csc x cot x
= lim

x→0+

 
− sin x

x
tan x

 
= (−1)(0) = 0,

as expected, where we have used the fact (established in section 2.6) that

lim
x→0

sin x

x
= 1.

(You can also establish this by using l’Hôpital’s Rule.) Notice that if we had simply

blasted away with further applications of l’Hôpital’s Rule to lim
x→0+

1
x

−csc x cot x
, we

would never have resolved the limit. (Why not?) �

Other Indeterminate Forms

There are five additional indeterminate forms to consider: ∞ − ∞, 0 · ∞, 00, 1∞ and ∞0.

Look closely at each of these to see why they are indeterminate. When evaluating a limit

of this type, the objective is to somehow reduce it to one of the indeterminate forms 0
0

or
∞
∞ , at which point we can apply l’Hôpital’s Rule.
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EXAMPLE 6.6 The Indeterminate Form ∞ − ∞

Evaluate lim
x→0

 
1

x2
− 1

x4

 
.

Solution First, notice that the limit has the form (∞ − ∞). From the graph of the

function in Figure 7.7, it appears that the function values tend to −∞ as x → 0. If we

add the fractions, we get

lim
x→0

 
1

x2
− 1

x4

 
= lim

x→0

 
x2 − 1

x4

 
= −∞,

as conjectured, where we have resolved the limit without using l’Hôpital’s Rule, which

does not apply here. (Why not?) �

y

x
2 3 2 3

 10

 5

FIGURE 7.7

y = 1

x2
− 1

x4

EXAMPLE 6.7 The Indeterminate Form ∞ − ∞

Evaluate lim
x→0

 
1

ln (x + 1)
− 1

x

 
.

y

x
1 2 3 1

0.2

0.4

0.6

0.8

1.0

FIGURE 7.8

y = 1

ln (x + 1)
− 1

x

Solution In this case, the limit has the form (∞ − ∞). From the graph in Figure 7.8,

it appears that the limit is somewhere around 0.5. If we add the fractions, we get a form

to which we can apply l’Hôpital’s Rule. We have

lim
x→0

 
1

ln (x + 1)
− 1

x

 
= lim

x→0

x − ln (x + 1)

ln (x + 1)x

 
0

0

 

= lim
x→0

d

dx
[x − ln (x + 1)]

d

dx
[ln (x + 1)x]

By l’Hôpital’s Rule.

= lim
x→0

1 − 1

x + 1 
1

x + 1

 
x + ln (x + 1)(1)

 
0

0

 
.

Rather than apply l’Hôpital’s Rule to this last expression, we first simplify the

expression, by multiplying top and bottom by (x + 1). We now have

lim
x→0

 
1

ln (x + 1)
− 1

x

 
= lim

x→0

1 − 1

x + 1 
1

x + 1

 
x + ln (x + 1)(1)

 
x + 1

x + 1

 

= lim
x→0

(x + 1) − 1

x + (x + 1) ln (x + 1)

 
0

0

 

= lim
x→0

d

dx
(x)

d

dx
[x + (x + 1) ln (x + 1)]

By l’Hôpital’s Rule.

= lim
x→0

1

1 + (1) ln (x + 1) + (x + 1)
1

(x + 1)

= 1

2
,

which is consistent with Figure 7.8. �
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EXAMPLE 6.8 The Indeterminate Form 0 · ∞
Evaluate lim

x→∞

 
1

x
ln x

 
.

Solution This limit has the indeterminate form (0 · ∞). From the graph in Figure 7.9,

it appears that the function is decreasing very slowly toward 0 as x → ∞. It’s easy to

rewrite this in the form ∞
∞ , from which we can use l’Hôpital’s Rule. Note that

lim
x→∞

 
1

x
ln x

 
= lim

x→∞
ln x

x

 ∞
∞

 

= lim
x→∞

d

dx
ln x

d

dx
x

By l’Hôpital’s Rule.

= lim
x→∞

1

x

1
= 0

1
= 0.

�

y

x
20 40 60 80 100

0.1

0.2

0.3

0.4

FIGURE 7.9

y = 1

x
ln x

Note: If lim
x→c

[ f (x)]g(x) has one of the indeterminate forms 00,∞0 or 1∞, then, letting

y = [ f (x)]g(x), we have for f (x) > 0 that

ln y = ln[ f (x)]g(x) = g(x) ln [ f (x)],

so that lim
x→c

ln y = lim
x→c

{g(x) ln [ f (x)]} will have the indeterminate form 0 · ∞, which we

can deal with as in example 6.8.

EXAMPLE 6.9 The Indeterminate Form 1
∞

Evaluate lim
x→1+

x
1

x−1 .

y

x
0.5 1.0 1.5 2.0

5

10

15

20

FIGURE 7.10

y = x
1

x−1

Solution First, note that this limit has the indeterminate form (1∞). From the graph in

Figure 7.10, it appears that the limit is somewhere around 3. We define y = x
1

x−1 , so that

ln y = ln x
1

x−1 = 1

x − 1
ln x .

We now consider the limit

lim
x→1+

ln y = lim
x→1+

1

x − 1
ln x (∞ · 0)

= lim
x→1+

ln x

x − 1

 
0

0

 

= lim
x→1+

d

dx
(ln x)

d

dx
(x − 1)

= lim
x→1+

x−1

1
= 1. By l’Hôpital’s Rule.

Be careful; we have found that lim
x→1+

ln y = 1, but this is not the original limit. We want

lim
x→1+

y = lim
x→1+

eln y = e1,

which is consistent with Figure 7.10. �
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Often, the computation of a limit in this form requires several applications of l’Hôpital’s

Rule. Just be careful (in particular, verify the hypotheses at every step) and do not lose sight

of the original problem.

EXAMPLE 6.10 The Indeterminate Form 00

Evaluate lim
x→0+

(sin x)x .

x
0.2 0.4 0.6 0.8 1.0

0.7

0.8

0.9

1.0

y

FIGURE 7.11
y = (sin x)x

Solution This limit has the indeterminate form (00). In Figure 7.11, it appears that the

limit is somewhere around 1. We let y = (sin x)x , so that

ln y = ln (sin x)x = x ln (sin x).

Now consider the limit

lim
x→0+

ln y = lim
x→0+

ln (sin x)x = lim
x→0+

[x ln (sin x)] (0 · ∞)

= lim
x→0+

ln (sin x) 
1

x

  ∞
∞

 

= lim
x→0+

d

dx
[ln (sin x)]

d

dx
(x−1)

By l’Hôpital’s Rule.

= lim
x→0+

(sin x)−1 cos x

−x−2

 ∞
∞

 
.

As we have seen earlier, we should rewrite the expression before proceeding. Here, we

multiply top and bottom by x2 sin x to get

lim
x→0+

ln y = lim
x→0+

(sin x)−1 cos x

−x−2

 
x2 sin x

x2 sin x

 

= lim
x→0+

−x2 cos x

sin x

 
0

0

 

= lim
x→0+

d

dx
(−x2 cos x)

d

dx
(sin x)

By l’Hôpital’s Rule.

= lim
x→0+

−2x cos x + x2 sin x

cos x
= 0

1
= 0.

Again, we have not yet found the original limit. However,

lim
x→0+

y = lim
x→0+

eln y = e0 = 1,

which is consistent with Figure 7.11. �

TODAY IN
MATHEMATICS

Vaughan Jones (1952– )

A New Zealand mathematician

whose work has connected

apparently disjoint areas of

mathematics. He was awarded

the Fields Medal in 1990 for

mathematics that was described

by peers as “astonishing.” One of

his major accomplishments is a

discovery in knot theory that has

given biologists insight into the

replication of DNA. A strong

supporter of science and

mathematics education in New

Zealand, Jones’ “style of working

is informal, and one which

encourages the free and open

interchange of ideas . . .His

openness and generosity in

this regard have been in the

best tradition and spirit of

mathematics.” His ideas have

“served as a rich source of ideas

for the work of others.”

EXAMPLE 6.11 The Indeterminate Form ∞0

Evaluate lim
x→∞

(x + 1)2/x .

Solution This limit has the indeterminate form (∞0). From the graph in Figure 7.12

(on page 528), it appears that the function tends to a limit around 1 as x → ∞. We let
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y = (x + 1)2/x and consider

lim
x→∞

ln y = lim
x→∞

ln (x + 1)2/x = lim
x→∞

 
2

x
ln (x + 1)

 
(0 · ∞)

= lim
x→∞

2 ln (x + 1)

x

 ∞
∞

 

= lim
x→∞

d

dx
[2 ln (x + 1)]

d

dx
x

= lim
x→∞

2(x + 1)−1

1
By l’Hôpital’s Rule.

= lim
x→∞

2

x + 1
= 0.

We now have that lim
x→∞

y = lim
x→∞

eln y = e0 = 1,

as expected. �

y

x
20 40 60 80 100

1

2

3

4

FIGURE 7.12
y = (x + 1)2/x

BEYOND FORMULAS

On several occasions, we have had the benefit of rewriting a function or an equation

into a more convenient form. L’Hôpital’s Rule gives us a way to rewrite limits that are

indeterminate. As we have seen, sometimes just the act of rewriting a function as a

single fraction lets us determine the limit. What are other examples where an equation

is made easier by rewriting, perhaps with a trigonometric identity or exponential rule?

EXERCISES 7.6

WRITING EXERCISES

1. L’Hôpital’s Rule states that, in certain situations, the ratios of

function values approach the same limits as the ratios of corre-

sponding derivatives (rates of change). Graphically, this may

be hard to understand. To get a handle on this, consider
f (x)

g(x)
where both f (x) = ax + b and g(x) = cx + d are linear func-

tions. Explain why the value of lim
x→∞

f (x)

g(x)
should depend on

the relative sizes of the slopes of the lines; that is, it should be

equal to lim
x→∞

f  (x)

g (x)
.

2. Think of a limit of 0 as actually meaning “getting very small”

and a limit of ∞ as meaning “getting very large.” Discuss

whether the following limit forms are indeterminate or not and

explain your answer: ∞ − ∞, 1
0
, 0 · ∞,∞ · ∞,∞0, 0∞ and 00.

3. A friend is struggling with l’Hôpital’s Rule. When asked to

work a problem, your friend says, “First, I plug in for x and

get 0 over 0. Then I use the quotient rule to take the derivative.

Then I plug x back in.” Explain to your friend what the mistake

is and how to correct it.

4. Suppose that two runners begin a race from the starting line,

with one runner initially going twice as fast as the other. If

f (t) and g(t) represent the positions of the runners at time

t ≥ 0, explain why we can assume that f (0) = g(0) = 0 and

lim
t→0+

f  (t)

g (t)
= 2. Explain in terms of the runners’ positions why

l’Hôpital’s Rule holds: that is, lim
t→0

f (t)

g(t)
= 2.

In exercises 1–38, find the indicated limits.

1. lim
x→−2

x + 2

x2 − 4
2. lim

x→2

x2 − 4

x2 − 3x + 2

3. lim
x→∞

3x2 + 2

x2 − 4
4. lim

x→−∞
x + 1

x2 + 4x + 3

5. lim
x→0

e2x − 1

x
6. lim

x→0

sin x

e3x − 1

7. lim
x→0

tan−1 x

sin x
8. lim

x→0

sin x

sin−1 x
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9. lim
x→π

sin 2x

sin x
10. lim

x→−1

cos−1 x

x2 − 1

11. lim
x→0

sin x − x

x3
12. lim

x→0

tan x − x

x3

13. lim
x→1

√
x − 1

x − 1
14. lim

x→1

ln x

x − 1

15. lim
x→∞

x3

ex
16. lim

x→∞
ex

x4

17. lim
x→0

x cos x − sin x

x sin2 x
18. lim

x→0

 
cot2 x − 1

x2

 

19. lim
x→1

sinπx

x − 1
20. lim

x→1

ex−1 − 1

x2 − 1

21. lim
x→∞

ln x

x2
22. lim

x→∞
ln x√
x

23. lim
x→∞

xe−x 24. lim
x→∞

x sin (1/x)

25. lim
x→1

ln (ln x)

ln x
26. lim

x→0

sin (sin x)

sin x

27. lim
x→0+

x ln x 28. lim
x→0+

sin x√
x

29. lim
x→0+

ln x

cot x
30. lim

x→0+

√
x

ln x

31. lim
x→∞

(
 
x2 + 1 − x) 32. lim

x→∞
(ln x − x)

33. lim
x→∞

 
1 + 1

x

 x

34. lim
x→∞

    x + 1

x − 2

    
√

x2−4

35. lim
x→0+

 
1√
x

−
 

x

x + 1

 
36. lim

x→1

√
5 − x − 2√

10 − x − 3

37. lim
x→0+

(1/x)x 38. lim
x→0+

(cos x)1/x

In exercises 39 and 40, find the error(s) in the incorrect

calculations.

39. lim
x→0

cos x

x2
= lim

x→0

−sin x

2x
= lim

x→0

−cos x

2
= − 1

2

40. lim
x→0

ex − 1

x2
= lim

x→0

ex

2x
= lim

x→0

ex

2
= 1

2

41. Find all errors in the string

lim
x→0

x2

ln x2
= lim

x→0

x2

2 ln x
= lim

x→0

2x

2/x
= lim

x→0

2

−2/x2

= lim
x→0

(−x2) = 0.

Then, determine the correct value of the limit.

42. Find all errors in the string

lim
x→0

sin x

x2
= lim

x→0

cos x

2x
= lim

x→0

−sin x

2
= 0.

Then, determine the correct value of the limit.

43. Starting with lim
x→0

sin 3x

sin 2x
, cancel sin to get lim

x→0

3x

2x
, then cancel

x’s to get 3
2
. This answer is correct. Is either of the steps used

valid? Use linear approximations to argue that the first step is

likely to give a correct answer.

44. Evaluate lim
x→0

sin nx

sinmx
for nonzero constants n and m.

45. (a) Compute lim
x→0

sin x2

x2
and compare your result to lim

x→0

sin x

x
.

(b) Compute lim
x→0

1 − cos x2

x4
and compare your result to

lim
x→0

1 − cos x

x2
.

46. Use your results from exercise 45 to evaluate lim
x→0

sin x3

x3
and

lim
x→0

1 − cos x3

x6
without doing any calculations.

47. Show that lim
x→0

sin kx2

x2
has the indeterminate form 0

0
and then

evaluate the limit (where k is some real number). What is the

range of values that a limit of the indeterminate form 0
0

can

have?

48. Show that lim
x→0

cot kx2

csc x2
has the indeterminate form ∞

∞ and then

evaluate the limit (where k is some real number). What is the

range of values that a limit of the indeterminate form ∞
∞ can

have?

In exercises 49 and 50, determine which function “dominates,”

where we say that the function f (x) dominates the func-

tion g(x) as x→∞ if lim
x→∞

f (x)  lim
x→∞

g(x)  ∞ and either

lim
x→∞

f (x)

g(x)
 ∞ or lim

x→∞

g(x)

f (x)
 0.

49. ex or xn (n = any positive integer)

50. ln x or x p (for any number p > 0)

51. Evaluate lim
x→0

ecx − 1

x
for any constant c.

52. Evaluate lim
x→0

tan cx − cx

x3
for any constant c.

53. If lim
x→0

f (x)

g(x)
= L , what can be said about lim

x→0

f (x2)

g(x2)
? Explain

why knowing that lim
x→a

f (x)

g(x)
= L for a  = 0, 1 does not tell you

anything about lim
x→a

f (x2)

g(x2)
.

54. Give an example of functions f and g for which lim
x→0

f (x2)

g(x2)
exists, but lim

x→0

f (x)

g(x)
does not exist.

55. In section 1.2, we briefly discussed the position of a baseball

thrown with the unusual knuckleball pitch. The left/right posi-

tion (in feet) of a ball thrown with spin rate ω and a particular

grip at time t seconds is f (ω) = (2.5/ω)t − (2.5/4ω2) sin 4ωt.

Treating t as a constant andω as the variable (change to x if you

like), show that lim
ω→0

f (ω) = 0 for any value of t . (Hint: Find

a common denominator and use l’Hôpital’s Rule.) Conclude

that this pitch does not move left or right at all.

56. In this exercise, we look at a knuckleball thrown with a differ-

ent grip than that of exercise 55. The left or right position (in

feet) of a ball thrown with spin rate ω and this new grip at time

t seconds is f (ω) = (2.5/4ω2) − (2.5/4ω2) sin (4ωt + π/2).

Treating t as a constant and ω as the variable (change to x if
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you like), find lim
ω→0

f (ω). Your answer should depend on t . By

graphing this function of t , you can see the path of the pitch

(use a domain of 0 ≤ t ≤ 0.68). Describe this pitch.

57. Find functions f such that lim
x→∞

f (x) has the indeterminate

form ∞
∞ , but where the limit (a) does not exist; (b) equals 0;

(c) equals 3 and (d) equals −4.

58. Find functions f such that lim
x→∞

f (x) has the indeterminate

form ∞ − ∞, but where the limit (a) does not exist; (b) equals

0 and (c) equals 2.

59. In the figure shown here, a section of the unit circle is deter-

mined by an angle θ . Region 1 is the triangle ABC. Region 2

is bounded by the line segments AB and BC and the arc of the

circle. As the angle θ decreases, the difference between the

two regions decreases, also. You might expect that the areas

of the regions become nearly equal, in which case the ratio

of the areas approaches 1. To see what really happens, show

that the area of region 1 divided by the area of region 2 equals

(1 − cos θ ) sin θ

θ − cos θ sin θ
= sin θ − 1

2
sin 2θ

θ − 1
2

sin 2θ
and find the limit of this

expression as θ → 0. Surprise!

1

1

x
B

A

Cθ

y

Exercise 59

60. The size of an animal’s pupils expand and contract depending

on the amount of light available. Let f (x) = 160x−0.4 + 90

8x−0.4 + 10
be

the size in mm of the pupils at light intensity x . Find lim
x→0+

f (x)

and lim
x→∞

f (x), and argue that these represent the largest and

smallest possible sizes of the pupils, respectively.

EXPLORATORY EXERCISES

1. In this exercise, you take a quick look at what we call Taylor

series in Chapter 9. Start with the limit lim
x→0

sin x

x
= 1. Briefly

explain why this means that for x close to 0, sin x ≈ x . Graph

y = sin x and y = x to see why this is true. If you look

far enough away from x = 0, the graph of y = sin x even-

tually curves noticeably. Let’s see if we can find polyno-

mials of higher order to match this curving. Show that

lim
x→0

sin x − x

x2
= 0. This means that sin x − x ≈ 0 or (again)

sin x ≈ x .Show that lim
x→0

sin x − x

x3
= − 1

6
.This says that if x is

close to 0, then sin x − x ≈ − 1

6
x3 or sin x ≈ x − 1

6
x3.Graph

these two functions to see how well they match up. To continue,

compute lim
x→0

sin x − (x − x3/6)

x4
and lim

x→0

sin x − f (x)

x5
for the

appropriate approximation f (x). At this point, look at the pat-

tern of terms you have (Hint: 6 = 3! and 120 = 5!). Using this

pattern, approximate sin x with an 11th-degree polynomial and

graph the two functions.

2. A zero of a function f (x) is a solution of the equation f (x) = 0.

Clearly, not all zeros are created equal. For example, x = 1

is a zero of f (x) = x − 1, but in some ways it seems that

x = 1 should count as two zeros of f (x) = (x − 1)2. To quan-

tify this, we say that x = 1 is a zero of multiplicity 2 of

f (x) = (x − 1)2. The precise definition is: x = c is a zero of

multiplicity n of f (x) if f (c) = 0 and lim
x→c

f (x)

(x − c)n
exists and

is nonzero. Thus, x = 0 is a zero of multiplicity 2 of x sin x

since lim
x→0

x sin x

x2
= lim

x→0

sin x

x
= 1. Find the multiplicity of

each zero of the following functions: x2 sin x, x sin x2,

x4 sin x3, (x − 1) ln x, ln (x − 1)2, ex − 1 and cos x − 1.

7.7 IMPROPER INTEGRALS

Improper Integrals with a Discontinuous Integrand

We’re willing to bet that you have heard the saying “familiarity breeds contempt” more than

once. This phrase has particular relevance for us in this section. You have been using the

Fundamental Theorem of Calculus for quite some time now. Do you always check to see

that the hypotheses of the theorem are met before applying it? What hypotheses, you ask?

We won’t make you look back, but before we give you the answer, try to see what is wrong
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with the following erroneous calculation. 2

−1

1

x2
dx = x−1

−1

    2
−1

= −3

2
. This is incorrect!

There is something fundamentally wrong with this “calculation.” Note that f (x) = 1/x2 is

not continuous over the interval of integration. (See Figure 7.13.) Since the Fundamental

Theorem assumes a continuous integrand, our use of the theorem is invalid and our answer

is incorrect. Further, note that an answer of − 3
2

is especially suspicious given that the

integrand 1
x2 is always positive.

y

x
2 4 2 4

2

4

FIGURE 7.13

y = 1

x2

Recall that in Chapter 4, we defined the definite integral by b

a

f (x) dx = lim
n→∞

n 
i=1

f (ci ) x,

where ci was taken to be any point in the subinterval [xi−1, xi ], for i = 1, 2, . . . , n and

where the limit had to be the same for any choice of these ci ’s. So, if f (x) → ∞ [or

f (x) → −∞] at some point in [a, b], then the limit defining
 b
a
f (x) dx is meaningless.

[How would we add f (ci ) to the sum, if f (x) → ∞ as x → ci?] In this case, we call this

integral an improper integral and we will need to carefully define what we mean by such

an integral. First, we examine a somewhat simpler case.

Consider

 1

0

1√
1 − x

dx . Observe that this is not a proper definite integral, as the

integrand is discontinuous at x = 1. In Figure 7.14a, note that the integrand blows up to

∞ as x → 1−. Despite this, can we find the area under the curve on the interval [0, 1]?

Assuming the area is finite, notice from Figure 7.14b that for 0 < R < 1, we can approximate

it by

 R

0

1√
1 − x

dx . This is a proper definite integral, since for 0 ≤ x ≤ R < 1, f (x)

is continuous. Further, the closer R is to 1, the better the approximation should be. In

the accompanying table, we compute some approximate values of

 R

0

1√
1 − x

dx , for a

sequence of values of R approaching 1.

R

 R

0

1√
1− x

dx

0.9 1.367544

0.99 1.8

0.999 1.936754

0.9999 1.98

0.99999 1.993675

0.999999 1.998

0.9999999 1.999368

0.99999999 1.9998
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y = 1√
1 − x

FIGURE 7.14b R

0

f (x) dx

From the table, the sequence of integrals seems to be approaching 2, as R → 1−. Notice

that since we know how to compute

 R

0

1√
1 − x

dx , for any 0 < R < 1, we can compute
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this limiting value exactly. We have

lim
R→1−

 R

0

1√
1 − x

dx = lim
R→1−

 −2(1 − x)1/2
 R

0

= lim
R→1−

 −2(1 − R)1/2 + 2(1 − 0)1/2
 = 2.

From this computation, we can see that the area under the curve is the limiting value, 2.

In general, suppose that f is continuous on the interval [a, b) and | f (x)| → ∞, as

x → b− (i.e., as x approaches b from the left). Then we can approximate
 b
a
f (x) dx by R

a
f (x) dx , for some R < b, but close to b. [Recall that since f is continuous on [a, R],

for any a < R < b,
 R
a
f (x) dx is defined.] Further, as in our introductory example, the

closer R is to b, the better the approximation should be. See Figure 7.15 for a graphical

representation of this approximation.

Finally, let R → b−; if
 R

a
f (x) dx approaches some value, L, then we define the

improper integral
 b
a
f (x) dx to be this limiting value. We have the following definition.bRa

y

x

FIGURE 7.15 R

a

f (x) dx DEFINITION 7.1

If f is continuous on the interval [a, b) and | f (x)| → ∞ as x → b−, we define the

improper integral of f on [a, b] by b

a

f (x) dx = lim
R→b−

 R

a

f (x) dx .

Similarly, if f is continuous on (a, b] and | f (x)| → ∞ as x → a+, we define the

improper integral  b

a

f (x) dx = lim
R→a+

 b

R

f (x) dx .

In either case, if the limit exists (and equals some value L), we say that the improper

integral converges (to L). If the limit does not exist, we say that the improper integral

diverges.

EXAMPLE 7.1 An Integrand That Blows Up at the Right Endpoint

Determine whether

 1

0

1√
1 − x

dx converges or diverges.

Solution Based on the work we just completed, 1

0

1√
1 − x

dx = lim
R→1−

 R

0

1√
1 − x

dx = 2

and so, the improper integral converges to 2. �

In example 7.2, we illustrate a divergent improper integral closely related to this sec-

tion’s introductory example.

EXAMPLE 7.2 A Divergent Improper Integral

Determine whether the improper integral

 0

−1

1

x2
dx converges or diverges.
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Solution From Definition 7.1, we have 0

−1

1

x2
dx = lim

R→0−

 R

−1

1

x2
dx = lim

R→0−

 
x−1

−1

 R

−1

= lim
R→0−

 
− 1

R
− 1

1

 
= ∞.

Since the defining limit does not exist, the improper integral diverges. �

In examples 7.3 and 7.4, the integrand is discontinuous at the lower limit of integration.

EXAMPLE 7.3 A Convergent Improper Integral

Determine whether the improper integral

 1

0

1√
x
dx converges or diverges.

Solution We show a graph of the integrand on the interval in question in Figure 7.16.

Notice that in this case f (x) = 1√
x

is continuous on (0, 1] and f (x) → ∞ as x → 0+.
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y = 1√
x

R

 1

R

1√
x
dx

0.1 1.367544

0.01 1.8

0.001 1.936754

0.0001 1.98

0.00001 1.993675

0.000001 1.998

0.0000001 1.999368

0.00000001 1.9998

From the computed values shown in the table, it appears that the integrals are

approaching 2 as R → 0+. Since we know an antiderivative for the integrand, we can

compute these integrals exactly, for any fixed 0 < R < 1. We have from Definition 7.1

that  1

0

1√
x
dx = lim

R→0+

 1

R

1√
x
dx = lim

R→0+

x1/2

1
2

    1
R

= lim
R→0+

2(11/2 − R1/2) = 2

and so, the improper integral converges to 2. �

HISTORICAL
NOTES

Pierre Simon Laplace

(1749–1827) A French

mathematician who utilized

improper integrals to develop the

Laplace transform and other

important mathematical

techniques. Laplace made

numerous contributions in

probability, celestial mechanics,

the theory of heat and a variety of

other mathematical topics. Adept

at political intrigue, Laplace

worked on a new calendar for the

French Revolution, served as an

advisor to Napoleon and was

named a marquis by the

Bourbons.

EXAMPLE 7.4 A Divergent Improper Integral

Determine whether the improper integral

 2

1

1

x − 1
dx converges or diverges.

Solution From Definition 7.1, we have 2

1

1

x − 1
dx = lim

R→1+

 2

R

1

x − 1
dx = lim

R→1+
ln |x − 1|

    2
R

= lim
R→1+

 
ln |2 − 1| − ln |R − 1| = ∞,

so that the improper integral diverges. �
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The introductory example in this section represents a third type of improper integral,

one where the integrand blows up at a point in the interior of the interval (a, b). We can

define such an integral as follows.

DEFINITION 7.2

Suppose that f is continuous on the interval [a, b], except at some c ∈ (a, b), and

| f (x)| → ∞ as x → c. Again, the integral is improper and we write b

a

f (x) dx =
 c

a

f (x) dx +
 b

c

f (x) dx .

If both
 c
a
f (x) dx and

 b
c
f (x) dx converge (to L1 and L2, respectively), we say that

the improper integral
 b
a
f (x) dx converges, also (to L1 + L2). If either of the

improper integrals
 c
a
f (x) dx or

 b
c
f (x) dx diverges, then we say that the improper

integral
 b
a
f (x) dx diverges, also.

We can now return to our introductory example.

EXAMPLE 7.5 An Integrand That Blows Up in the Middle of an Interval

Determine whether the improper integral

 2

−1

1

x2
dx converges or diverges.

Solution From Definition 7.2, we have 2

−1

1

x2
dx =

 0

−1

1

x2
dx +

 2

0

1

x2
dx .

In example 7.2, we determined that
 0

−1
1
x2 dx diverges. Thus,

 2

−1
1
x2 dx also diverges.

Note that you do not need to consider
 2

0
1
x2 dx (although it’s an easy exercise to show

that this, too, diverges). Keep in mind that if either of the two improper integrals defining

this type of improper integral diverges, then the original integral diverges, too. �

Improper Integrals with an Infinite Limit of Integration

Another type of improper integral that is frequently encountered in applications is one where

one or both of the limits of integration is infinite. For instance,
 ∞

0
e−x2

dx is of fundamental

importance in probability and statistics.

So, given a continuous function f defined on [a,∞), what could we mean by ∞
a

f (x) dx? Notice that the usual definition of the definite integral: b

a

f (x) dx = lim
n→∞

n 
i=1

f (ci ) x,

where  x = b − a

n
, makes no sense when b = ∞. We should define

 ∞
a

f (x) dx in some

way consistent with what we already know about integrals.

Since f (x) = 1
x2 is positive and continuous on the interval [1,∞),

 ∞
1

1
x2 dx should

correspond to area under the curve (assuming this area is, in fact, finite). From the graph

of y = 1
x2 shown in Figure 7.17, it should appear at least plausible that the area under this

curve is finite.

Assuming the area is finite, you could approximate it by
 R

1
1
x2 dx , for some large value

R. (Notice that this is a proper definite integral, as long as R is finite.) A sequence of values

of this integral for increasingly large values of R is displayed in the table.
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y = 1

x2

R

 R

1

1

x2
dx

10 0.9

100 0.99

1000 0.999

10,000 0.9999

100,000 0.99999

1,000,000 0.999999

The sequence of approximating definite integrals seems to be approaching 1, as

R → ∞. As it turns out, we can compute this limit exactly. We have

lim
R→∞

 R

1

x−2 dx = lim
R→∞

x−1

−1

    R
1

= lim
R→∞

 
− 1

R
+ 1

 
= 1.

Thus, the area under the curve on the interval [1,∞) is seen to be 1, even though the interval

is infinite.

More generally, we have Definition 7.3.

DEFINITION 7.3

If f is continuous on the interval [a,∞), we define the improper integral ∞
a

f (x) dx to be  ∞

a

f (x) dx = lim
R→∞

 R

a

f (x) dx .

Similarly, if f is continuous on (−∞, a], we define a

−∞
f (x) dx = lim

R→−∞

 a

R

f (x) dx .

In either case, if the limit exists (and equals some value L), we say that the improper

integral converges (to L). If the limit does not exist, we say that the improper integral

diverges.

EXAMPLE 7.6 An Integral with an Infinite Limit of Integration

Determine whether the improper integral

 ∞

1

1

x2
dx converges or diverges.

Solution From our work above, observe that the improper integral ∞

1

1

x2
dx = lim

R→∞

 R

1

x−2 dx = 1,

so that the improper integral converges to 1. �
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You may have already observed that for a decreasing function f, in order for
 ∞
a

f (x) dx

to converge, it must be the case that f (x) → 0 as x → ∞. (Think about this in terms of

area.) However, the reverse need not be true. That is, even though f (x) → 0 as x → ∞,

the improper integral may diverge, as we see in example 7.7.
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y = 1√
x
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FIGURE 7.19
y = xe−x

EXAMPLE 7.7 A Divergent Improper Integral

Determine whether

 ∞

1

1√
x
dx converges or diverges.

Solution Note that 1√
x

→ 0 as x → ∞. Further, from the graph in Figure 7.18, it

should seem at least plausible that the area under the curve is finite. However, from

Definition 7.3, we have that ∞

1

1√
x
dx = lim

R→∞

 R

1

x−1/2 dx = lim
R→∞

x1/2

1
2

    R
1

= lim
R→∞

(2R1/2 − 2) = ∞.

This says that the improper integral diverges. �

Note that examples 7.6 and 7.7 are special cases of
 ∞

1
1
x p
dx , corresponding to

p = 2 and p = 1/2, respectively. In the exercises, you will show that this integral con-

verges whenever p > 1 and diverges for p ≤ 1.

You may need to utilize l’Hôpital’s Rule to evaluate the defining limit, as in example 7.8.

EXAMPLE 7.8 A Convergent Improper Integral

Determine whether
 ∞

0
xe−x dx converges or diverges.

Solution The graph of y = xe−x in Figure 7.19 makes it appear plausible that there

could be a finite area under the graph. From Definition 7.3, we have ∞

0

xe−x dx = lim
R→∞

 R

0

xe−x dx .

To evaluate the last integral, you will need integration by parts. Let

u = x dv = e−x dx
du = dx v = −e−x .

We then have ∞

0

xe−x dx = lim
R→∞

 R

0

xe−x dx = lim
R→∞

 
−xe−x

    R
0

+
 R

0

e−x dx

!

= lim
R→∞

 
(−Re−R + 0) − e−x   R

0

 
= lim

R→∞
(−Re−R − e−R + e0).

Note that the limit lim
R→∞

Re−R has the indeterminate form ∞ · 0. We resolve this with

l’Hôpital’s Rule, as follows:

lim
R→∞

Re−R = lim
R→∞

R

eR

 ∞
∞
 

= lim
R→∞

d

dR
R

d

dR
eR

= lim
R→∞

1

eR
= 0. By l’Hôpital’s Rule.
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Returning to the improper integral, we now have ∞

0

xe−x dx = lim
R→∞

(−Re−R − e−R + e0) = 0 − 0 + 1 = 1.

�

In examples 7.9 and 7.10, the lower limit of integration is −∞.

EXAMPLE 7.9 An Integral with an Infinite Lower Limit of Integration

Determine whether

 −1

−∞

1

x
dx converges or diverges.

Solution In Figure 7.20, it appears plausible that there might be a finite area bounded

between the graph of y = 1
x

and the x-axis, on the interval (−∞,−1]. However, from

Definition 7.3, we have −1

−∞

1

x
dx = lim

R→−∞

 −1

R

1

x
dx = lim

R→−∞
ln |x |

    −1

R

= lim
R→−∞

[ln |− 1| − ln |R|] = −∞

and hence, the improper integral diverges. �

EXAMPLE 7.10 A Convergent Improper Integral

Determine whether

 0

−∞

1

(x − 1)2
dx converges or diverges.

Solution The graph in Figure 7.21 gives us hope to believe that the improper integral

might converge. From Definition 7.3, we have 0

−∞

1

(x − 1)2
dx = lim

R→−∞

 0

R

(x − 1)−2 dx = lim
R→−∞

(x − 1)−1

−1

    0
R

= lim
R→−∞

 
1 + 1

R − 1

 
= 1

and hence, the improper integral converges. �
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(x − 1)2

A final type of improper integral is
 ∞

−∞ f (x) dx , defined as follows.

DEFINITION 7.4

If f is continuous on (−∞,∞), we write ∞

−∞
f (x) dx =

 a

−∞
f (x) dx +

 ∞

a

f (x) dx, for any constant a,

where
 ∞

−∞ f (x) dx converges if and only if both
 a

−∞ f (x) dx and
 ∞
a

f (x) dx

converge. If either one diverges, the original improper integral also diverges.

In Definition 7.4, note that you can choose a to be any real number. So, choose it to be

something convenient (usually 0).

EXAMPLE 7.11 An Integral with Two Infinite Limits of Integration

Determine whether
 ∞

−∞ xe−x2

dx converges or diverges.
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Solution Notice from the graph of the integrand in Figure 7.22 that, since the function

tends to 0 relatively quickly (both as x → ∞ and as x → −∞), it appears plausible

that there is a finite area bounded by the graph of the function and the x-axis. From

Definition 7.4 we have ∞

−∞
xe−x2

dx =
 0

−∞
xe−x2

dx +
 ∞

0

xe−x2

dx . (7.1)

You must evaluate each of the improper integrals on the right side of (7.1) separately.

First, we have  0

−∞
xe−x2

dx = lim
R→−∞

 0

R

xe−x2

dx .

Letting u = −x2, we have du = −2x dx and so, being careful to change the limits of

integration to match the new variable, we have 0

−∞
xe−x2

dx = −1

2
lim

R→−∞

 0

R

e−x2

(−2x) dx = −1

2
lim

R→−∞

 0

−R2

eu du

= −1

2
lim

R→−∞
eu
    0
−R2

= −1

2
lim

R→−∞

 
e0 − e−R2 = −1

2
.

Similarly, we get (you should fill in the details) ∞

0

xe−x2

dx = lim
R→∞

 R

0

xe−x2

dx = −1

2
lim
R→∞

eu
    −R2

0

= −1

2
lim
R→∞

(e−R2 − e0) = 1

2
.

Since both of the preceding improper integrals converge, we get from (7.1) that the

original integral also converges, to ∞

−∞
xe−x2

dx =
 0

−∞
xe−x2

dx +
 ∞

0

xe−x2

dx = −1

2
+ 1

2
= 0.

�
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EXAMPLE 7.12 An Integral with Two Infinite Limits of Integration

Determine whether
 ∞

−∞ e−x dx converges or diverges.

Solution From Definition 7.4, we write ∞

−∞
e−x dx =

 0

−∞
e−x dx +

 ∞

0

e−x dx .

It’s easy to show that
 ∞

0
e−x dx converges. (This is left as an exercise.) However, 0

−∞
e−x dx = lim

R→−∞

 0

R

e−x dx = lim
R→−∞

−e−x
    0
R

= lim
R→−∞

(−e0 + e−R) = ∞.

This says that
 0

−∞ e−x dx diverges and hence,
 ∞

−∞ e−x dx diverges, also, even though ∞
0
e−x dx converges. �

CAUTION

Do not write ∞

−∞
f (x) dx = lim

R→∞

 R

−R

f (x) dx .

It’s certainly tempting to write

this, especially since this will

often give a correct answer,

with about half of the work.

Unfortunately, this will often

give incorrect answers, too, as

the limit on the right-hand side

frequently exists for divergent

integrals. We explore this issue

further in the exercises.

We can’t emphasize enough that you should verify the continuity of the integrand for

every single integral you evaluate. In example 7.13, we see another reminder of why you

must do this.
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EXAMPLE 7.13 An Integral That Is Improper for Two Reasons

Determine the convergence or divergence of the improper integral

 ∞

0

1

(x − 1)2
dx .

Solution First try to see what is wrong with the following erroneous calculation: ∞

0

1

(x − 1)2
dx = lim

R→∞

 R

0

1

(x − 1)2
dx . This is incorrect!

Look carefully at the integrand and observe that it is not continuous on [0,∞). In fact,

the integrand blows up at x = 1, which is in the interval over which you’re trying to

integrate. Thus, this integral is improper for several different reasons. In order to deal

with the discontinuity at x = 1, we must break up the integral into several pieces, as in

Definition 7.2. We write ∞

0

1

(x − 1)2
dx =

 1

0

1

(x − 1)2
dx +

 ∞

1

1

(x − 1)2
dx . (7.2)

The second integral on the right side of (7.2) must be further broken into two pieces,

since it is improper, both at the left endpoint and by virtue of having an infinite limit of

integration. You can pick any point on (1,∞) at which to break up the interval. We’ll

simply choose x = 2. We now have ∞

0

1

(x − 1)2
dx =

 1

0

1

(x − 1)2
dx +

 2

1

1

(x − 1)2
dx +

 ∞

2

1

(x − 1)2
dx .

Each of these three improper integrals must be evaluated separately, using the

appropriate limit definitions. We leave it as an exercise to show that the first two

integrals diverge, while the third one converges. This says that the original improper

integral diverges (a conclusion you would miss if you did not notice that the integrand

blows up at x = 1). �
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The Comparison Test

A Comparison Test

We have now defined several different types of improper integrals, each as a limit of a

proper definite integral. In order to compute such a limit, we first need to find an antideriva-

tive. However, since no antiderivative is available for e−x2

, how would you establish the

convergence or divergence of
 ∞

0
e−x2

dx? An answer lies in the following result.

Given two functions f and g that are continuous on the interval [a,∞), suppose that

0 ≤ f (x) ≤ g(x), for all x ≥ a.

We illustrate this situation in Figure 7.23. In this case,
 ∞
a

f (x) dx and
 ∞
a
g(x) dx corre-

spond to the areas under the respective curves. Notice that if
 ∞
a
g(x) dx (corresponding to

the larger area) converges, then this says that there is a finite area under the curve y = g(x)

on the interval [a,∞). Since y = f (x) lies below y = g(x), there can be only a finite area

under the curve y = f (x), as well. Thus,
 ∞
a

f (x) dx converges also.

On the other hand, if
 ∞
a

f (x) dx (corresponding to the smaller area) diverges, the area

under the curve y = f (x) is infinite. Since y = g(x) lies above y = f (x), there must be

an infinite area under the curve y = g(x), also, so that
 ∞
a
g(x) dx diverges, as well. This

comparison of improper integrals based on the relative size of their integrands is called a

comparison test (one of several) and is spelled out in Theorem 7.1.
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THEOREM 7.1 (Comparison Test)

Suppose that f and g are continuous on [a,∞) and 0 ≤ f (x) ≤ g(x), for all

x ∈ [a,∞).

(i) If
 ∞
a
g(x) dx converges, then

 ∞
a

f (x) dx converges, also.

(ii) If
 ∞
a

f (x) dx diverges, then
 ∞
a
g(x) dx diverges, also.

We omit the proof of Theorem 7.1, leaving it to stand on the intuitive argument already

made.

REMARK 7.1

We can state corresponding

comparison tests for improper

integrals of the form a
−∞ f (x) dx , where f is

continuous on (−∞, a], as well

as for integrals that are

improper owing to a

discontinuity in the integrand.

The idea of the Comparison Test is to compare a given improper integral to another

improper integral whose convergence or divergence is already known (or can be more easily

determined). If you use a comparison to establish that an improper integral converges, then

you can always approximate its value numerically. If you use a comparison to establish that

an improper integral diverges, then there’s nothing more to do.

EXAMPLE 7.14 Using the Comparison Test for an Improper Integral

Determine the convergence or divergence of

 ∞

0

1

x + ex
dx .

Solution First, note that you do not know an antiderivative for
1

x + ex
and so, there is

no way to compute the improper integral directly. However, notice that for x ≥ 0,

0 ≤ 1

x + ex
≤ 1

ex
.

(See Figure 7.24.) It’s an easy exercise to show that

 ∞

0

1

ex
dx converges (to 1). From

Theorem 7.1, it now follows that

 ∞

0

1

x + ex
dx converges, also. So, we know that the

integral is convergent, but to what value does it converge? The Comparison Test only

helps us to determine whether or not the integral converges. Notice that it does not help

to find the value of the integral. We can, however, use numerical integration (e.g.,

Simpson’s Rule) to approximate

 R

0

1

x + ex
dx , for a sequence of values of R. The

accompanying table illustrates some approximate values of

 R

0

1

x + ex
dx , produced

using the numerical integration package built into our CAS. [If you use Simpson’s Rule

for this, note that you will need to increase the value of n (the number of subintervals in

the partition) as R increases.] Notice that as R gets larger and larger, the approximate

values for the corresponding integrals seem to be approaching 0.8063956, so we take

this as an approximate value for the improper integral. ∞

0

1

x + ex
dx ≈ 0.8063956.

You should calculate approximate values for even larger values of R to convince

yourself that this estimate is accurate. �

y

x

y  
1

x   ex

y  
1
ex

FIGURE 7.24

Comparing y = 1

ex
and y = 1

x + ex

R

 R

0

1

x  ex
dx

10 0.8063502

20 0.8063956

30 0.8063956

40 0.8063956

In example 7.15, we examine an integral that has important applications in probability

and statistics.
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EXAMPLE 7.15 Using the Comparison Test for an Improper Integral

Determine the convergence or divergence of
 ∞

0
e−x2

dx .

y

x

y   e
−
x

2

1

y   e−
x

FIGURE 7.25
y = e−x2

and y = e−x

Solution Once again, notice that you do not know an antiderivative for the integrand

e−x2

. However, observe that for x > 1, e−x2

< e−x . (See Figure 7.25.) We can rewrite

the integral as  ∞

0

e−x2

dx =
 1

0

e−x2

dx +
 ∞

1

e−x2

dx .

Since the first integral on the right-hand side is a proper definite integral, only the

second integral is improper. It’s an easy matter to show that
 ∞

1
e−x dx converges. By

the Comparison Test, it then follows that
 ∞

1
e−x2

dx also converges. We leave it as an

exercise to show that ∞

0

e−x2

dx =
 1

0

e−x2

dx +
 ∞

1

e−x2

dx ≈ 0.8862269.

Using more advanced techniques of integration, it is possible to prove the surprising

result that
 ∞

0
e−x2

dx =
√
π

2
.
�

The Comparison Test can be used with equal ease to show that an improper integral is

divergent.

EXAMPLE 7.16 Using the Comparison Test: A Divergent Integral

Determine the convergence or divergence of

 ∞

1

2 + sin x√
x

dx .

Solution As in examples 7.14 and 7.15, you do not know an antiderivative for the

integrand and so, your only hope for determining whether or not the integral converges

is to use a comparison. First, recall that

−1 ≤ sin x ≤ 1, for all x .

We then have that

1√
x

= 2 − 1√
x

≤ 2 + sin x√
x

, for 1 ≤ x < ∞.

(See Figure 7.26 for a graph of the two functions.) Recall that we showed in

example 7.7 that

 ∞

1

1√
x
dx diverges. The Comparison Test now tells us that ∞

1

2 + sin x√
x

dx must diverge, also.
�

y

x

y  
2   sin x

 x

y  
1

 x

FIGURE 7.26

Comparing y = 1√
x

and

y = 2 + sin x√
x

The big question, of course, is how to find an improper integral to compare to a

given integral. Look carefully at the integrand to see if it resembles any functions whose

antiderivative you might know (or at least have a hope of finding using our various techniques

of integration). Beyond this, our best answer is that this comes with experience. Comparisons

are typically done by the seat of your pants. We provide ample exercises on this topic to give

you some experience with finding appropriate comparisons. Look hard for comparisons and

don’t give up too easily.
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BEYOND FORMULAS

It may seem that this section introduces an overwhelming number of new formulas to

memorize. Actually, you can look at this entire section as a warning with a familiar

outcome. The warning is that not all functions and intervals satisfy the hypotheses of

the Fundamental Theorem. Watch out for this! The solution is one we’ve seen over and

over again. Approximate the integral and compute a limit as the approximate interval

approaches the desired interval. Answer the following for yourself. How do each of

the examples in this section fit this pattern?

EXERCISES 7.7

WRITING EXERCISES

1. For many students, our emphasis on working through the limit

process for an improper integral may seem unnecessarily care-

ful. Explain, using examples from this section, why it is im-

portant to have and use precise definitions.

2. Identify the following statement as true or false (meaning not

always true) and explain why: If the integrand f (x) → ∞ as

x → a+ or as x → b−, then the area
 b
a
f (x) dx is infinite;

that is,
 b
a
f (x) dx diverges.

In exercises 1–6, determine whether or not the integral is

improper.

1.

 2

0

x−2/5 dx 2.

 2

1

x−2/5 dx

3.

 2

0

x2/5 dx 4.

 ∞

0

x2/5 dx

5.

 2

−2

3

x
dx 6.

 ∞

2

3

x
dx

In exercises 7–34, determine whether the integral converges or

diverges. Find the value of the integral if it converges.

7.

 1

0

x−1/3 dx 8.

 1

0

x−4/3 dx

9.

 ∞

1

x−4/5 dx 10.

 ∞

1

x−6/5 dx

11.

 1

0

1√
1 − x

dx 12.

 5

1

2√
5 − x

dx

13.

 1

0

ln x dx 14.

 π/2

0

tan x dx

15.

 3

0

2

x2 − 1
dx 16.

 4

−4

2x

x2 − 1
dx

17.

 ∞

0

xex dx 18.

 ∞

1

x2e−2x dx

19.

 1

−∞
x2e3x dx 20.

 0

−∞
xe−4x dx

21.

 ∞

−∞

1

x2
dx 22.

 ∞

−∞

1
3

√
x
dx

23.

 ∞

−∞

1

1 + x2
dx 24.

 ∞

−∞

1

x2 − 1
dx

25.

 π

0

cot x dx 26.

 π

0

sec2 x dx

27.

 2

0

x

x2 − 1
dx 28.

 ∞

0

1

(x − 2)2
dx

29.

 1

0

2√
1 − x2

dx 30.

 1

0

2

x
√

1 − x2
dx

31.

 ∞

0

1√
xe

√
x
dx 32.

 ∞

0

tan x dx

33.

 ∞

0

cos x dx 34.

 ∞

0

cos xe− sin x dx

35. Based on exercises 7 and 8 and similar integrals, conjecture a

value of r for which
 1

0
x−n dx converges if and only if n < r .

36. Based on exercises 9 and 10 and similar integrals, conjecture a

value of r for which
 ∞

1
x−n dx converges if and only if n > r .

37. Based on exercises 17–20, conjecture that the exponential

term controls the convergence or divergence of
 ∞

0
xecx dx

and
 0

−∞ xecx dx . For which values of c do these integrals

converge?

38. At the beginning of this section, we indicated that the calcula-

tion
 2

−1
1

x2 dx = − 3
2

was incorrect. Without any calculations,

explain how you should immediately recognize that negative

3/2 is not a correct value.

In exercises 39–48, use a comparison to determine whether the

integral converges or diverges.

39.

 ∞

1

x

1 + x3
dx 40.

 ∞

1

x2 − 2

x4 + 3
dx

41.

 ∞

2

x

x3/2 − 1
dx 42.

 ∞

1

2 + sec2 x

x
dx
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43.

 ∞

0

3

x + ex
dx 44.

 ∞

1

e−x3

dx

45.

 ∞

0

sin2 x

1 + ex
dx 46.

 ∞

2

ln x

ex + 1
dx

47.

 ∞

2

x2ex

ln x
dx 48.

 ∞

1

ex
2+x+1 dx

In exercises 49 and 50, use integration by parts and l’Hôpital’s

Rule to evaluate the integral.

49.

 1

0

x ln 4x dx 50.

 ∞

0

xe−2x dx

51. In this exercise, you will look at an interesting pair of calcula-

tions known as Gabriel’s horn. The horn is formed by taking

the curve y = 1/x for x ≥ 1 and revolving it about the x-axis.

Show that the volume is finite (i.e., the integral converges), but

that the surface area is infinite (i.e., the integral diverges). The

paradox is that this would seem to indicate that the horn could

be filled with a finite amount of paint but that the outside of

the horn could not be covered with any finite amount of paint.

52. Show that
 ∞

−∞ x3 dx diverges but lim
R→∞

 R

−R
x3 dx = 0.

In exercises 53–56, determine whether the statement is true or

false (not always true).

53. If lim
x→∞

f (x) = 1, then
 ∞

0
f (x) dx diverges.

54. If lim
x→∞

f (x) = 0, then
 ∞

0
f (x) dx converges.

55. If lim
x→0

f (x) = ∞, then
 1

0
f (x) dx diverges.

56. If f (−x) = − f (x) for all x, then
 ∞

−∞ f (x) dx = 0.

57. Find all values of p for which
 1

0
1
x p
dx converges. For these

values of p, show that
 1

0
1
x p
dx =  1

0
1

(1−x)p
dx .

58. Show that
 ∞

−∞ x p dx diverges for every p.

59. Given that
 ∞

−∞ e−x2
dx = √

π , evaluate
 ∞

−∞ e−kx2
dx for k> 0.

60. Given that
 ∞

−∞ e−x2
dx = √

π , evaluate
 ∞

−∞ x2e−kx2
dx for

k > 0.

61. A function f (x) ≥ 0 is a probability density function (pdf)

on the interval [0,∞) if
 ∞

0
f (x) dx = 1. Find the value of the

constant k to make each of the following pdf’s on the interval

[0,∞).

(a) f (x) = ke−2x (b) f (x) = ke−4x (c) f (x) = ke−r x

62. Find the value of the constant k to make each of the following

pdf’s on the interval [0,∞). (See exercise 61.)

(a) f (x) = kxe−2x (b) f (x) = kxe−4x (c) f (x) = kxe−r x

63. The mean μ (one measure of average) of a random variable

with pdf f (x) on the interval [0,∞) isμ =  ∞
0
x f (x) dx . Find

the mean if f (x) = re−r x .

64. Find the mean of a random variable with pdf f (x) = r 2xe−r x .
(See exercise 63.)

65. For the mean μ found in exercise 63, compute the probabil-

ity that the random variable is greater than μ. This probability

is given by
 ∞
μ
re−r x dx . Do you think that it is odd that the

probability is not equal to 1/2?

66. Find the median (another measure of average) for a random

variable with pdf f (x) = re−r x on x ≥ 0. The median is the

50% mark on probability, that is, the value m for which ∞

m

re−r xdx = 1

2
.

67. Explain why

 π/2

0

1

1 + tan x
dx is an improper integral.

Assuming that it converges, explain why it is equal to π/2

0

f (x) dx , where f (x) =

⎧⎨
⎩

1

1 + tan x
if 0 ≤ x < π

2

0 if x = π

2

.

Similarly, find a function g(x) such that the improper integral π/2

0

tan x

1 + tan x
dx equals the proper integral

 π/2

0

g(x) dx .

68. Interpreting

 π/2

0

1

1 + tan x
dx and

 π/2

0

tan x

1 + tan x
dx as

in exercise 67, use the substitution u = x − π

2
to show

that

 π/2

0

1

1 + tan x
dx =

 π/2

0

tan x

1 + tan x
dx . Adding the

first integral to both sides of the equation, evaluate π/2

0

1

1 + tan x
dx .

69. Being careful to use limits for the improper inte-

grals, use the substitution u = π

2
− x to show that

(a)
 π/2

0
ln(sin x) dx =  π/2

0
ln(cos x) dx . Add

 π/2
0

ln(sin x) dx

to both sides of this equation and simplify the right-hand side

with the identity sin 2x = 2 sin x cos x . (b) Use this result to

show that 2
 π/2

0
ln(sin x) dx = − π

2
ln 2 + 1

2

 π
0

ln(sin x) dx .

(c) Show that
 π

0
ln(sin x) dx = 2

 π/2
0

ln(sin x) dx . (d) Use

parts (b) and (c) to evaluate
 π/2

0
ln(sin x) dx .

70. Determine whether
 π/2

0
ln xdx converges or diverges. Given

the result of exercise 69 and the approximation sin x ≈ x for

small x, explain why this result is not surprising.

71. Assuming that all integrals converge, use integration by parts

to write
 ∞

−∞ x4e−x2
dx in terms of

 ∞
−∞ x2e−x2

dx and then

in terms of
 ∞

−∞ e−x2
dx = √

π . By induction, show that ∞

−∞
x2ne−x2

dx = (2n − 1)(2n − 3) · · · 3 · 1

2n

√
π , for any pos-

itive integer n.

72. Show that
 ∞

−∞ e−ax2
dx =  

π

a
, for any positive constant a.

Formally (that is, ignore issues of convergence) compute n

derivatives with respect to a of this equation, set a = 1 and

compare the result to that of exercise 71.

73. As discussed in the chapter introduction, the mean (av-

erage) lifetime of a lightbulb might have the form
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 ∞
0

0.001xe−0.001xdx . To determine the mean, compute

lim
b→∞

 b
0

0.001xe−0.001xdx .

74. As in exercise 73, find the mean of any exponential distribution

with pdf f (x) = λe−λx , 0 ≤ x < ∞.

75. Many probability questions involve conditional probabili-

ties. For example, if you know that a lightbulb has already

burned for 30 hours, what is the probability that it will last

at least 5 more hours? This is the “probability that x > 35

given that x > 30” and is written as P(x > 35|x > 30). In gen-

eral, for events A and B, P(A|B) = P(A and B)

P(B)
, which in this

case reduces to P(x > 35|x > 30) = P(x > 35)

P(x > 30)
. For the pdf

f (x) = 1
40
e−x/40 (in hours), compute P(x > 35|x > 30). Also,

compute P(x > 40|x > 35) and P(x > 45|x > 40). (Hint:

P(x > 35) = 1 − P(x ≤ 35) = 1 −  35

0
f (x) dx .)

76. Exercise 75 illustrates the “memoryless property” of exponen-

tial distributions. The probability that a lightbulb lasts m more

hours given that it has already lasted n hours depends only on

m and not on n. Prove this for the pdf f (x) = 1
40
e−x/40.

77. Show that any exponential pdf f (x) = ce−cx has the memory-

less property of exercise 76.

78. The reliability function R(t) gives the probability that x > t .

For the pdf of a lightbulb, this is the probability that the bulb

lasts at least t hours. Compute R(t) for a general exponential

pdf f (x) = ce−cx .

79. The Omega function is used for risk/reward analysis of fi-

nancial investments. Suppose that f (x) is a pdf on (−∞,∞)

and gives the distribution of returns on an investment. (Then b

a

f (x) dx is the probability that the investment returns

between $a and $b.) Let F(x) =
 x

−∞
f (t) dt be the

cumulative distribution function for returns. Then

 (r ) =
 ∞
r

[1 − F(x)] dx r
−∞ F(x) dx

is the Omega function for the

investment.

(a) Compute  1(r ) for the exponential distribution

f1(x) = 2e−2x , 0 ≤ x < ∞. Note that  1(r ) will be un-

defined (∞) for r ≤ 0.

(b) Compute  2(r ) for f2(x) = 1, 0 ≤ x ≤ 1.

(c) Show that the means of f1(x) and f2(x) are the same and

that  (r ) = 1 when r equals the mean.

(d) Even though the means are the same, investments with dis-

tributions f1(x) and f2(x) are not equivalent. Use the graphs

of f1(x) and f2(x) to explain why f1(x) corresponds to a

riskier investment than f2(x).

(e) Show that for some value c,  2(r ) >  1(r ) for r < c and

 2(r ) <  1(r ) for r > c. In general, the larger  (r ) is,

the better the investment is. Explain this in terms of this

example.

EXPLORATORY EXERCISES

1. The so-called Boltzmann integral

I (p) =
 1

0

p(x) ln p(x) dx

is important in the mathematical field of information the-

ory. Here, p(x) is a pdf on the interval [0, 1]. Graph the pdf’s

p1(x) = 1 and

p2(x) =
 

4x if 0 ≤ x ≤ 1/2

4 − 4x if 1/2 ≤ x ≤ 1

and compute the integrals
 1

0
p1(x) dx and

 1

0
p2(x) dx to ver-

ify that they are pdf’s. Then compute the Boltzmann integrals

I (p1) and I (p2). Suppose that you are trying to determine the

value of a quantity that you know is between 0 and 1. If the pdf

for this quantity is p1(x), then all values are equally likely. What

would a pdf of p2(x) indicate? Noting that I (p2) > I (p1), ex-

plain why it is fair to say that the Boltzmann integral measures

the amount of information available. Given this interpretation,

sketch a pdf p3(x) that would have a larger Boltzmann integral

than p2(x).

2. The Laplace transform is an invaluable tool in many engi-

neering disciplines. As the name suggests, the transform turns

a function f (t) into a different function F(s). By definition,

the Laplace transform of the function f (t) is

F(s) =
 ∞

0

f (t)e−st dt.

To find the Laplace transform of f (t) = 1, compute ∞

0

(1)e−st dt =
 ∞

0

e−st dt.

Show that the integral equals 1/s, for s > 0. We write

L{1} = 1/s. Show that

L{t} =
 ∞

0

te−st dt = 1

s2
,

for s > 0. Compute L{t2} and L{t3} and conjecture the general

formula for L{tn}. Then, find L{eat } for s > a.

3. The gamma function is defined by  (x) =  ∞
0
t x−1e−t dt ,

if the integral converges. For such a complicated-looking

function, the gamma function has some surprising prop-

erties. First, show that  (1) = 1. Then use integration by

parts and l’Hôpital’s Rule to show that  (n + 1) = n (n),

for any n > 0. Use this property and mathematical induc-

tion to show that  (n + 1) = n!, for any positive integer n.

(Notice that this includes the value 0! = 1.) Numerically ap-

proximate  
 

3
2

 
and  

 
5
2

 
. Is it reasonable to define these
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as
 

1
2

 
! and

 
3
2

 
!, respectively? In this sense, show that 

1
2

 
! = 1

2

√
π . Finally, for x < 1, the defining integral for  (x)

is improper in two ways. Use a comparison test to show

the convergence of
 ∞

1
t x−1e−t dt . This leaves

 1

0
t x−1e−t dt .

Determine the range of p-values for which
 1

0
t pe−t dt

converges and then determine the set of x’s for which  (x) is

defined.

4. Generalize exercise 68 to evaluate

 π/2

0

1

1 + tank x
dx for any

real number k.

7.8 PROBABILITY

The mathematical fields of probability and statistics focus on the analysis of random pro-

cesses. In this section, we give a brief introduction to the use of calculus in probability

theory. It may surprise you to learn that calculus provides insight into random processes,

but this is in fact, a very important application of integration.

We begin with a simple example involving coin-tossing. Suppose that you toss two

coins, each of which has a 50% chance of coming up heads. Because of the randomness

involved, you cannot calculate exactly how many heads you will get on a given number of

tosses. But you can calculate the likelihood of each of the possible outcomes. If we denote

heads by H and tails by T, then the four possible outcomes from tossing two coins are HH,

HT, TH and TT. Each of these four outcomes is equally likely, so we can say that each has

probability 1
4
. This means that, on average, each of these events will occur in one-fourth of

your tries. Said a different way, the relative frequency with which each event occurs in a

large number of trials will be approximately 1
4
.

Suppose that we record the number of heads. Based on our calculations above, the

probability of getting two heads is 1
4
, the probability of getting one head is 2

4
(since there

are two ways for this to happen: HT and TH) and the probability of getting zero heads is 1
4
.

We often summarize such information by displaying it in a histogram, a bar graph where

the outcomes are listed on the horizontal axis. (See Figure 7.27.)

0 1 2

0.1

0.2

0.3

0.4

0.5

FIGURE 7.27
Histogram for two-coin toss

Suppose that we instead toss eight coins. The probabilities for getting a given number

of heads are given in the accompanying table and the corresponding histogram is shown

in Figure 7.28. You should notice that the sum of all the probabilities is 1 (or 100%, since

it’s certain that one of the possible outcomes will occur on a given try). This is one of

the defining properties of probability theory. Another basic property is called the addition

principle: to compute the probability of getting 6, 7 or 8 heads (or any other mutually

exclusive outcomes), simply add together the individual probabilities:

P(6, 7 or 8 heads) = 28

256
+ 8

256
+ 1

256
= 37

256
≈ 0.145.

Number

of Heads Probability

0 1/256

1 8/256

2 28/256

3 56/256

4 70/256

5 56/256

6 28/256

7 8/256

8 1/256

0 1 2 3 4 5 6 7 8

0.05

0.10

0.15

0.20

0.25

0.30

FIGURE 7.28
Histogram for eight-coin toss

A graphical interpretation of this calculation is very revealing. In the histogram in Fig-

ure 7.28, notice that each bar is a rectangle of width 1. Then the probability associated with

each bar equals the area of the rectangle. In graphical terms,

r The total area in such a histogram is 1.
r The probability of getting between 6 and 8 heads (inclusive) equals the sum of the

areas of the rectangles located between 6 and 8 (inclusive).

Not all probability events have the nice theoretical structure of coin-tossing. For in-

stance, suppose that we want to find the probability that a randomly chosen person will

have a height of 5 9  or 5 10  . There is no easy theory we can use here to compute the prob-

abilities (since not all heights are equally likely). In this case, we use the correspondence
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between probability and relative frequency. If we collect information about the heights of

a large number of adults, we might find the following.

Height <64  64  65  66  67  68  69  70  71  72  73  >73  

Number of people 23 32 61 94 133 153 155 134 96 62 31 26

Since the total number of people in the survey is 1000, the relative frequency of the

height 5 9  (69  ) is 155
1000

= 0.155 and the relative frequency of the height 5 10  (70  )
is 134

1000
= 0.134. An estimate of the probability of being 5 9  or 5 10  is then

0.155 + 0.134 = 0.289. A histogram is shown in Figure 7.29.

0.02
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0.10
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0.16

 64 64 65 66 67 68 69 70 71 72 73  73

FIGURE 7.29
Histogram for relative frequency of heights

Suppose that we want to be more specific: for example, what is the probability that a

randomly chosen person is 5 8 1
2

  
or 5 9  ? To answer this question, we would need to have

our data broken down further, as in the following partial table.

66 1
2

  
67  67 1

2

  
68  68 1

2

  
69  69 1

2

  
70  70 1

2

  
71  

52 61 72 71 82 81 74 69 65 58

The probability that a person is 5 9  can be estimated by the relative frequency of

5 9  people in our survey, which is 81
1000

= 0.081. Similarly, the probability that a person

is 5 8 1
2

  
is approximately 82

1000
= 0.082. The probability of being 5 8 1

2

  
or 5 9  is then

approximately 0.082 + 0.081 = 0.163. A histogram for this portion of the data is shown in

Figure 7.30a.

Notice that since each bar of the histogram now represents a half-inch range of height,

we can no longer interpret area in the histogram as the probability. We will modify the his-

togram to make the area connection clearer. In Figure 7.30b, we have labeled the horizontal

axis with the height in inches, while the vertical axis shows twice the relative frequency.

The bar at 69  has height 0.162 and width 1
2
. Its area, 1

2
(0.162) = 0.081, corresponds to the

relative frequency (or probability) of the height 5 9  .
Of course, we could continue subdividing the height intervals into smaller and smaller

pieces. Think of doing this while modifying the scale on the vertical axis so that the area of

each rectangle (length times width of interval) always gives the relative frequency (proba-

bility) of that height interval. For example, suppose that there are n height intervals between

5 8  and 5 9  . Let x represent height in inches and f (x) equal the height of the histogram bar

for the interval containing x. Let x1 = 68 + 1
n
, x2 = 68 + 2

n
and so on, so that xi = 68 + i

n
,

for 1 ≤ i ≤ n and let  x = 1
n

. For a randomly selected person, the probability that their
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FIGURE 7.30a
Histogram for relative frequency

of heights

FIGURE 7.30b
Histogram showing double the

relative frequency

height is between 5 8  and 5 9  is estimated by the sum of the areas of the corresponding

histogram rectangles, given by

P(68 ≤ x ≤ 69) ≈ f (x1) x + f (x2) x + · · · + f (xn) x =
n 
i=1

f (xi ) x . (8.1)

Observe that as n increases, the histogram of Figure 7.31 will “smooth out,” approaching a

curve like the one shown in Figure 7.32.

0.04
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0.12

0.16

62 64 66 68 70 72 7463 65 67 69 71 73

0.04

0.08

0.12

0.16

62 64 66 68 70 72 7463 65 67 69 71 73

FIGURE 7.31
Histogram for heights

FIGURE 7.32
Probability density function and

histogram for heights

We call this limiting function f (x), the probability density function (pdf) for heights.

Notice that for any given i = 1, 2, . . . , n, f (xi ) does not give the probability that a person’s

height equals xi . Instead, for small values of x , the quantity f (xi ) x is an approximation

of the probability that a randomly selected height is in the range [xi−1, xi ].

Look carefully at (8.1) and observe that as n → ∞, the Riemann sum on the right

should approach an integral
 b
a
f (x) dx . Here, the limits of integration are 68 (5 8  ) and

69 (5 9  ). We have

lim
n→∞

n 
i=1

f (xi ) x =
 69

68

f (x) dx .

HISTORICAL
NOTES

Blaise Pascal (1623–1662)

A French mathematician and

physicist who teamed with Pierre

Fermat to begin the systematic

study of probability. Pascal is

credited with numerous

inventions, including a wrist

watch, barometer, hydraulic

press, syringe and a variety of

calculating machines. He also

discovered what is now known as

Pascal’s Principle in hydrostatics.

(See section 5.6.) Pascal may well

have become one of the founders

of calculus, but poor health and

large periods of time devoted to

religious and philosophical

contemplation reduced his

mathematical output.

Notice that by adjusting the function values so that probability corresponds to area, we

have found a familiar and direct technique for computing probabilities. We now summarize

our dicussion with some definitions. The preceding examples are of discrete probability

distributions (discrete since the quantity being measured can only assume values from a

certain finite set). For instance, in coin-tossing, the number of heads must be an integer. By

contrast, many distributions are continuous. That is, the quantity of interest (the random

variable) assumes values from a continuous range of numbers (an interval). For instance,
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although height is normally rounded off to the nearest integer number of inches, a person’s

actual height can be any number.

For continuous distributions, the graph corresponding to a histogram is the graph of a

probability density function (pdf). We now give a precise definition of a pdf.

DEFINITION 8.1

Suppose that X is a random variable that may assume any value x with a ≤ x ≤ b. A

probability density function for X is a function f (x) satisfying

(i) f (x) ≥ 0 for a ≤ x ≤ b. Probability density functions are never negative.

and

(ii)

 b

a

f (x) dx = 1. The total probability is 1.

The probability that the (observed) value of X falls between c and d is given by the

area under the graph of the pdf on that interval. That is,

P(c ≤ X ≤ d) =
 d

c

f (x) dx . Probability corresponds to area under the curve.

To verify that a function defines a pdf for some (unknown) random variable, we must

show that it satisfies properties (i) and (ii) of Definition 8.1.

EXAMPLE 8.1 Verifying That a Function Is a pdf on an Interval

Show that f (x) = 3x2 defines a pdf on the interval [0, 1] by verifying properties (i) and

(ii) of Definition 8.1.

Solution Clearly, f (x) ≥ 0. For property (ii), we integrate the pdf over its domain.

We have  1

0

3x2dx = x3

    1
0

= 1.
�

EXAMPLE 8.2 Using a pdf to Estimate Probabilities

Suppose that f (x) = 0.4√
2π

e−0.08(x−68)2

is the probability density function for the

heights in inches of adult American males. Find the probability that a randomly selected

adult American male will be between 5 8  and 5 9  . Also, find the probability that a

randomly selected adult American male will be between 6 2  and 6 4  .

Solution To compute the probabilities, you first need to convert the specified heights

into inches. The probability of being between 68 and 69 inches tall is

P(68 ≤ X ≤ 69) =
 69

68

0.4√
2π

e−0.08(x−68)2

dx ≈ 0.15542.

Here, we approximated the value of the integral numerically. (You can use Simpson’s

Rule or the numerical integration method built into your calculator or CAS.) Similarly,

the probability of being between 74 and 76 inches is

P(74 ≤ X ≤ 76) =
 76

74

0.4√
2π

e−0.08(x−68)2

dx ≈ 0.00751,

where we have again approximated the value of the integral numerically. �
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According to data in Gyles Brandreth’s Your Vital Statistics, the pdf for the heights of

adult males in the United States looks like the graph of f (x) = 0.4√
2π

e−0.08(x−68)2

shown

in Figure 7.33 and used in example 8.2. You probably have seen bell-shaped curves like

this before. This distribution is referred to as a normal distribution. Besides the normal

distribution, there are many other probability distributions that are important in applications.

y

60 70 80 90

0.05

0.10

0.15

0.20

x

FIGURE 7.33
Heights of adult males

EXAMPLE 8.3 Computing Probability with an Exponential pdf

Suppose that the lifetime in years of a certain brand of lightbulb is exponentially

distributed with pdf f (x) = 4e−4x . Find the probability that a given lightbulb lasts

3 months or less.

Solution First, since the random variable measures lifetime in years, convert

3 months to 1
4

year. The probability is then

P

 
0 ≤ X ≤ 1

4

 
=
 1/4

0

4e−4xdx = 4

 
−1

4

 
e−4x

     
1/4

0

= −e−1 + e0 = 1 − e−1 ≈ 0.63212. �

In some cases, there may be theoretical reasons for assuming that a pdf has a certain

form. In this event, the first task is to determine the values of any constants to achieve the

properties of a pdf.

EXAMPLE 8.4 Determining the Coefficient of a pdf

Suppose that the pdf for a random variable has the form f (x) = ce−3x for some constant

c, with 0 ≤ x ≤ 1. Find the value of c that makes this a pdf.

Solution To be a pdf, we first need that f (x) = ce−3x ≥ 0, for all x ∈ [0, 1]. (This will

be the case as long as c ≥ 0.) Also, the integral over the domain must equal 1. So, we set

1 =
 1

0

c e−3xdx = c

 
−1

3

 
e−3x

    1
0

= − c

3
e−3 + c

3
= c

3
(1 − e−3).

It now follows that c = 3

1 − e−3
≈ 3.1572.

�

TODAY
IN MATHEMATICS

Persi Diaconis (1945– )

An American statistician who was

one of the first recipients of a

lucrative MacArthur Foundation

Fellowship, often called a “genius

grant.” Diaconis trained on the

violin at Juilliard until age 14,

when he left home to become a

professional magician for 10 years.

His varied interests find

expression in his work, where he

uses all areas of mathematics and

statistics to solve problems from

throughout science and

engineering. He says, “What

makes somebody a good applied

mathematician is a balance

between finding an interesting

real-world problem and finding an

interesting real-world problem

which relates to beautiful

mathematics.”

Given a pdf, it is possible to compute various statistics to summarize the properties

of the random variable. The most common statistic is the mean, the best-known measure

of average value. If you wanted to average test scores of 85, 89, 93 and 93, you would

probably compute the mean, given by 85 + 89 + 93 + 93
4

= 90.

Notice here that there were three different test scores recorded: 85, which has a relative

frequency of 1
4
, 89, also with a relative frequency of 1

4
and 93, with a relative frequency of

2
4
. We can also compute the mean by multiplying each value by its relative frequency and

then summing: (85) 1
4

+ (89) 1
4

+ (93) 2
4

= 90.

Now, suppose we wanted to compute the mean height of the people in the following

table.

Height 63  64  65  66  67  68  69  70  71  72  73  74  

Number 23 32 61 94 133 153 155 134 96 62 31 26

It would be silly to write out the heights of all 1000 people, add and divide by 1000. It is

much easier to multiply each height by its relative frequency and add the results. Following
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this route, the mean m is given by

m = (63)
23

1000
+ (64)

32

1000
+ (65)

61

1000
+ (66)

94

1000
+ (67)

133

1000
+ · · · + (74)

26

1000

= 68.523.

If we denote the heights by x1, x2, . . . , xn and let f (xi ) be the relative frequency or proba-

bility corresponding to x = xi , the mean then has the form

m = x1 f (x1) + x2 f (x2) + x3 f (x3) + · · · + x12 f (x12).

If the heights in our data set were given for every half-inch or tenth-of-an-inch, we would

compute the mean by multiplying each xi by the corresponding probability f (xi ) x , where

 x is the fraction of an inch between data points. The mean now has the form

m = [x1 f (x1) + x2 f (x2) + x3 f (x3) + · · · + xn f (xn)] x =
n 
i=1

xi f (xi ) x,

where n is the number of data points. Notice that, as n increases and  x approaches 0, the

Riemann sum approaches the integral
 b
a
x f (x) dx . This gives us the following definition.

DEFINITION 8.2

The mean μ of a random variable with pdf f (x) on the interval [a, b] is given by

μ =
 b

a

x f (x) dx . (8.2)

Although the mean is commonly used to report the average value of a random variable,

it is important to realize that it is not the only measure of average used by statisticians. An

alternative measurement of average is the median, the x-value that divides the probability in

half. (That is, half of all values of the random variable lie at or below the median and half lie

at or above the median.) In example 8.5 and in the exercises, you will explore situations in

which each measure provides a different indication about the average of a random variable.

EXAMPLE 8.5 Finding the Mean Age and Median Age
of a Group of Cells

Suppose that the age in days of a type of single-celled organism has pdf

f (x) = (ln 2)e−kx , where k = 1
2

ln 2. The domain is 0 ≤ x ≤ 2. (The assumption here is

that upon reaching an age of 2 days, each cell divides into two daughter cells.) Find (a)

the mean age of the cells, (b) the proportion of cells that are younger than the mean and

(c) the median age of the cells.

y

x
0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIGURE 7.34
y = (ln 2)e−(ln 2)x/2

Solution For part (a), we have from (8.2) that the mean is given by

μ =
 2

0

x(ln 2)e−(ln 2)x/2dx ≈ 0.88539 day,

where we have approximated the value of the integral numerically. Notice that even

though the cells range in age from 0 to 2 days, the mean is not 1. The graph of the pdf in

Figure 7.34 shows that younger ages are more likely than older ages and this causes the

mean to be less than 1.
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For part (b), notice that the proportion of cells younger than the mean is the same as

the probability that a randomly selected cell is younger than the mean. This probability

is given by

P(0 ≤ X ≤ μ) =
 0.88539

0

(ln 2)e−(ln 2)x/2dx ≈ 0.52848,

where we have again approximated the value of the integral numerically. Therefore, the

proportion of cells younger than the mean is about 53%. Notice that in this case the

mean does not represent the 50% mark for probabilities. In other words, the mean is not

the same as the median.

To find the median in part (c), we must solve for the constant c such that

0.5 =
 c

0

(ln 2)e−(ln 2)x/2dx .

Since an antiderivative of e−(ln 2)x/2 is − 2
ln 2
e−(ln 2)x/2, we have

0.5 =
 c

0

(ln 2)e−(ln 2)x/2dx

= ln 2

 
− 2

ln 2
e−(ln 2)x/2

 c
0

= −2e−(ln 2)c/2 + 2.

Subtracting 2 from both sides, we have

−1.5 = −2e−(ln 2)c/2,

so that dividing by −2 yields 0.75 = e−(ln 2)c/2.

Taking the natural log of both sides gives us

ln 0.75 = −(ln 2)c/2.

Finally, solving for c gives us c = −2 ln 0.75

ln 2
,

so that the median is −2 ln 0.75/ ln 2 ≈ 0.83. We can now conclude that half of the cells

are younger than 0.83 day and half the cells are older than 0.83 day. �

EXERCISES 7.8

WRITING EXERCISES

1. In the text, we stated that the probability of tossing two fair

coins and getting two heads is 1
4
. If you try this experiment

four times, explain why you will not always get two heads ex-

actly one out of four times. If probability doesn’t give precise

predictions, what is its usefulness? To answer this question, dis-

cuss the information conveyed by knowing that in the above

experiment the probability of getting one head and one tail is
1
2

(twice as big as 1
4
).

2. Suppose you toss two coins numerous times (or simulate this

on your calculator or computer). Theoretically, the probability

of getting two heads is 1
4
. In the long run (as the coins are tossed

more and more often), what proportion of the time should two

heads occur? Try this and discuss how your results compare to

the theoretical calculation.

3. Based on Figures 7.27 and 7.28, describe what you expect the

histogram to look like for larger numbers of coins. Compare

to Figure 7.33.

4. The height of a person is determined by numerous factors,

both hereditary and environmental (e.g., diet). Explain why
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this might produce a histogram similar to that produced by

tossing a large number of coins.

In exercises 1–6, show that the given function is a pdf on the

indicated interval.

1. f (x) = 4x3, [0, 1] 2. f (x) = 3
8
x2, [0, 2]

3. f (x) = x + 2x3, [0, 1] 4. f (x) = cos x, [0, π/2]

5. f (x) = 1
2

sin x, [0, π ] 6. f (x) = e−x/2, [0, ln 4]

In exercises 7–12, find a value of c for which f (x) is a pdf on the

indicated interval.

7. f (x) = cx3, [0, 1] 8. f (x) = cx + x2, [0, 1]

9. f (x) = ce−4x , [0, 1] 10. f (x) = ce−x/2, [0, 2]

11. f (x) = 2ce−cx , [0, 2] 12. f (x) = 2ce−cx , [0, 4]

In exercises 13–16, use the pdf in example 8.2 to find the proba-

bility that a randomly selected American male has height in the

indicated range.

13. Between 5 10  and 6 .

14. Between 6 6  and 6 10  .

15. Between 7 and 10 .

16. Between 2 and 5 .

In exercises 17–20, find the indicated probabilities, given that

the lifetime of a lightbulb is exponentially distributed with pdf

f (x)  6e−6x (with x measured in years).

17. The lightbulb lasts less than 3 months.

18. The lightbulb lasts less than 6 months.

19. The lightbulb lasts between 1 and 2 years.

20. The lightbulb lasts between 3 and 10 years.

In exercises 21–24, suppose the lifetime of an organism has pdf

f (x)  4xe−2x (with x measured in years).

21. Find the probability that the organism lives less than 1 year.

22. Find the probability that the organism lives between 1 and

2 years.

23. Find the mean lifetime (0 ≤ x ≤ 10).

24. Graph the pdf and compare the maximum value of the pdf to

the mean.

In exercises 25–30, find (a) the mean and (b) the median of the

random variable with the given pdf.

25. f (x) = 3x2, 0 ≤ x ≤ 1

26. f (x) = 4x3, 0 ≤ x ≤ 1

27. f (x) = 1
2

sin x, 0 ≤ x ≤ π

28. f (x) = cos x, 0 ≤ x ≤ π/2

29. f (x) = 1
2
(ln 3)e−kx , k = 1

3
ln 3, 0 ≤ x ≤ 3

30. f (x) = 4

1 − e−4
e−4x , 0 ≤ x ≤ 1

31. For f (x) = ce−4x , find c so that f (x) is a pdf on the interval

[0, b] for b > 0. What happens to c as b → ∞?

32. For the pdf of exercise 31, find the mean exactly (use a CAS for

the antiderivative). As b increases, what happens to the mean?

33. Repeat exercises 31 and 32 for f (x) = ce−6x .

34. Based on the results of exercises 31–33, conjecture the values

for c and the mean as b → ∞, for f (x) = ce−ax , a > 0.

35. For eight coins being tossed, the probabilities of getting var-

ious numbers of heads are shown in the table. Use the addi-

tion principle to find the probability of each event indicated

below.

Number of heads 0 1 2 3 4

Probability 1
256

8
256

28
256

56
256

70
256

Number of heads 5 6 7 8

Probability 56
256

28
256

8
256

1
256

(a) three or fewer heads (b) more heads than tails

(c) all heads or all tails (d) an odd number of heads

36. In one version of the game of keno, you choose 10 numbers be-

tween 1 and 80. A random drawing selects 20 numbers between

1 and 80. Your payoff depends on how many of your numbers

are selected. Use the given probabilities (rounded to 4 digits)

to find the probability of each event indicated below. (To win,

at least 5 of your numbers must be selected. On a $2 bet, you

win $40 or more if 6 or more of your numbers are selected.)

Number selected 0 1 2 3 4

Probability 0.0458 0.1796 0.2953 0.2674 0.1473

Number selected 5 6 7 8 9 10

Probability 0.0514 0.0115 0.0016 0.0001 0.0 0.0

(a) winning (at least 5 selected)

(b) losing (4 or fewer selected)

(c) winning big (6 or more)

(d) 3 or 4 numbers selected

37. In the baseball World Series, two teams play games until one

team or the other wins four times. Suppose team A should win

each game with probability 0.6. The probabilities for team A’s

record (given as wins/losses) in the World Series are shown.

Find the probability of each event indicated below.
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Wins/losses 0/4 1/4 2/4 3/4

Probability 0.0256 0.0615 0.0922 0.1106

Wins/losses 4/3 4/2 4/1 4/0

Probability 0.1659 0.2073 0.2073 0.1296

(a) Team A wins the World Series

(b) Team B wins the World Series

(c) One team wins all four games

(d) The teams play six or seven games

38. Suppose a basketball player makes 70% of her free throws.

If she shoots three free throws and the probability of making

each one is 0.7, the probabilities for the total number made are

as shown. Find the probability of each event indicated below.

Number made 0 1 2 3

Probability 0.027 0.189 0.441 0.343

(a) She makes 2 or 3 (b) She makes at least 1

39. In any given time period, some species become extinct. Mass

extinctions (such as that of the dinosaurs) are relatively rare.

Fossil evidence indicates that the probability that p percent

(1 < p < 100) of the species become extinct in a 4-million-

year period is approximately e(p) = cp−2 for some constant

c. Find c to make e(p) a pdf and estimate the probability that

in a 4-million-year period 60–70% of the species will become

extinct.

40. In example 8.5, we found the median (also called the sec-

ond quartile). Now find the first and third quartiles, the ages

such that the probability of being younger are 0.25 and 0.75,

respectively.

41. The pdf in example 8.2 is the pdf for a normally distributed ran-

dom variable. The mean is easily read off from f (x); in exam-

ple 8.2, the mean is 68. The mean and a number called the

standard deviation characterize normal distributions. As

Figure 7.33 indicates, the graph of the pdf has a maximum at

the mean and has two inflection points located on opposite sides

of the mean. The standard deviation equals the distance from

the mean to an inflection point. Find the standard deviation in

example 8.2.

42. In exercise 41, you found the standard deviation for the pdf in

example 8.2. Denoting the mean as μ and the standard devi-

ation as σ , find the probability that a given height is between

μ− σ and μ+ σ (that is, within one standard deviation of

the mean). Find the probability that a given height is within

two standard deviations of the mean (μ− 2σ to μ+ 2σ ) and

within three standard deviations of the mean. These probabil-

ities are the same for any normal distribution. So, if you know

the mean and standard deviation of a normally distributed

random variable, you automatically know these probabilities.

43. If the probability of an event is p, the probability that it will hap-

pen m times in n tries is f (p) = n!

m!(n − m)!
pm(1 − p)n−m .

Find the value of p that maximizes f (p). This is called the

maximum likelihood estimator of p. Briefly explain why your

answer makes sense.

44. The Buffon needle problem is one of the oldest and most

famous of probability problems. Suppose that a series of hor-

izontal lines are spaced one unit apart and a needle of length

one is placed randomly. What is the probability that the needle

intersects one of the horizontal lines?

1
y

θ

In the figure, y is the distance from the center of the needle to

the nearest line and θ is the positive angle that the needle makes

with the horizontal. Show that the needle intersects the line if

and only if 0 ≤ y ≤ 1
2

sin θ . Since 0 ≤ θ ≤ π and 0 ≤ y ≤ 1
2
,

the desired probability is

 π
0

1
2

sin θdθ π
0

1
2
dθ

. Compute this.

45. Suppose that a game player has won m games out of n, with

a winning percentage of 100m

n
< 75. The player then wins

several games in a row, so that the winning percentage exceeds

75%. Show that at some point in this process the player’s

winning percentage is exactly 75%.

46. Generalize exercise 45 to any winning percentage that can be

written as 100
k

k + 1
, for some integer k.

47. Suppose that a soccer team has a probability p of scoring the

next goal in a game. The probability of a 2-goal game ending in

a 1-1 tie is 2p(1 − p), the probability of a 4-goal game ending

in a 2-2 tie is
4 · 3

2 · 1
p2(1 − p)2, the probability of a 6-goal game

ending in a 3-3 tie is
6 · 5 · 4

3 · 2 · 1
p3(1 − p)3 and so on. Assume that

an even number of goals is scored. Show that the probability

of a tie is a decreasing function of the number of goals scored.

48. The pdf for inter-spike intervals of neurons firing in the

cochlear nucleus of a cat is f (t) = kt−3/2ebt−a/t , where

a = 100, b = 0.38 and t is measured in microseconds. (See

Mackey and Glass, From Clocks to Chaos.) Use your CAS to

find the value of k that makes f a pdf on the interval [0, 40].

Then find the probability that neurons fire between 20 and

30 microseconds apart.

49. The Maxwell-Boltzmann pdf for molecular speeds in a gas at

equilibrium is f (x) = ax2e−b2x2
, for positive parameters a and

b. Find the most common speed [i.e., find x to maximize f (x)].

EXPLORATORY EXERCISES

1. The mathematical theory of chaos indicates that numbers

generated by very simple algorithms can look random. Chaos
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researchers look at a variety of graphs to try to distinguish

randomness from deterministic chaos. For example, iterate the

function f (x) = 4x(1 − x) starting at x = 0.1. That is, com-

pute f (0.1) = 0.36, f (0.36) = 0.9216, f (0.9216) ≈ 0.289

and so on. Iterate 50 times and record how many times each first

digit occurs. (So far, we’ve got a 1, a 3, a 9 and a 2.) If the pro-

cess were truly random, the digits would occur about the same

number of times. Does this seem to be happening? To unmask

this process as nonrandom, you can draw a phase portrait.

To do this, take consecutive iterates as coordinates of a point

(x, y) and plot the points. The first three points are (0.1, 0.36),

(0.36, 0.9216) and (0.9216, 0.289). Describe the (nonrandom)

pattern that appears, identifying it as precisely as possible.

2. Suppose that a spring is oscillating up and down with verti-

cal position given by u(t) = sin t . If you pick a random time

and look at the position of the spring, would you be more

likely to find the spring near an extreme (u = 1 or u = −1) or

near the middle (u = 0)? The pdf is inversely proportional to

speed. (Why is this reasonable?) Show that speed is given by

| cos t | =
√

1 − u2, so the pdf is f (u) = c/
√

1 − u2,

−1 ≤ u ≤ 1, for some constant c. Show that c = 1/π , then

graph f (x) and describe the positions in which the spring is

likely to be found. Use this result to explain the following. If

you are driving in a residential neighborhood, you are more

likely to meet a car coming the other way at an intersection

than in the middle of a block.

Review Exercises

WRITING EXERCISES

The following list includes terms that are defined and theorems that

are stated in this chapter. For each term or theorem, (1) give a precise

definition or statement, (2) state in general terms what it means and

(3) describe the types of problems with which it is associated.

Integration by parts Reduction formula

Partial fractions decomposition CAS

Improper integral Integral converges

Integral diverges Comparison Test

Probability density function

TRUE OR FALSE

State whether each statement is true or false, and briefly ex-

plain why. If the statement is false, try to “fix it” by modifying

the given statement to a new statement that is true.

1. Integration by parts works only for integrals of the form 
f (x)g(x) dx .

2. For an integral of the form
 
x f (x) dx , always use integration

by parts with u = x .

3. The trigonometric techniques in section 7.3 are all versions of

substitution.

4. If an integrand contains a factor of
√

1 − x2, you should sub-

stitute x = sin θ .

5. If p and q are polynomials, then any integral of the form 
p(x)

q(x)
dx can be evaluated.

6. With an extensive integral table, you don’t need to know any

integration techniques.

7. If f (x) has a vertical asymptote at x = a, then
 b
a
f (x) dx

diverges for any b.

8. If lim
x→∞

f (x) = L  = 0, then
 ∞

1
f (x) dx diverges.

9. The mean of a random variable is always larger than the

median.

10. L’Hôpital’s Rule states that the limit of the derivative equals

the limit of the function.

In exercises 1–44, evaluate the integral.

1.

 
e

√
x

√
x
dx 2.

 
sin(1/x)

x2
dx

3.

 
x2

√
1 − x2

dx 4.

 
2√

9 − x2
dx

5.

 
x2e−3x dx 6.

 
x2e−x3

dx

7.

 
x

1 + x4
dx 8.

 
x3

1 + x4
dx

9.

 
x3

4 + x4
dx 10.

 
x

4 + x4
dx

11.

 
e2 ln x dx 12.

 
cos 4x dx

13.

 1

0

x sin 3x dx 14.

 1

0

x sin 4x2 dx
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15.

 π/2

0

sin4 x dx 16.

 π/2

0

cos3 x dx

17.

 1

−1

x sinπx dx 18.

 1

0

x2 cosπx dx

19.

 2

1

x3 ln x dx 20.

 π/4

0

sin x cos x dx

21.

 
cos x sin2 x dx 22.

 
cos x sin3 x dx

23.

 
cos3 x sin3 x dx 24.

 
cos4 x sin3 x dx

25.

 
tan2 x sec4 x dx 26.

 
tan3 x sec2 x dx

27.

 √
sin x cos3 x dx 28.

 
tan3 x sec3 x dx

29.

 
2

8 + 4x + x2
dx 30.

 
3√

−2x − x2
dx

31.

 
2

x2
√

4 − x2
dx 32.

 
x√

9 − x2
dx

33.

 
x3

√
9 − x2

dx 34.

 
x3

√
x2 − 9

dx

35.

 
x3

√
x2 + 9

dx 36.

 
4√
x + 9

dx

37.

 
x + 4

x2 + 3x + 2
dx 38.

 
5x + 6

x2 + x − 12
dx

39.

 
4x2 + 6x − 12

x3 − 4x
dx 40.

 
5x2 + 2

x3 + x
dx

41.

 
ex cos 2x dx 42.

 
x3 sin x2 dx

43.

 
x
 
x2 + 1 dx 44.

  
1 − x2 dx

In exercises 45–50, find the partial fractions decomposition.

45.
4

x2 − 3x − 4
46.

2x

x2 + x − 6

47.
−6

x3 + x2 − 2x
48.

x2 − 2x − 2

x3 + x

49.
x − 2

x2 + 4x + 4
50.

x2 − 2

(x2 + 1)2

In exercises 51–60, use the Table of Integrals to find the integral.

51.

 
e3x
 

4 + e2x dx 52.

 
x
 
x4 − 4 dx

53.

 
sec4 x dx 54.

 
tan5 x dx

55.

 
4

x(3 − x)2
dx 56.

 
cos x

sin2 x(3 + 4 sin x)
dx

57.

 √
9 + 4x2

x2
dx 58.

 
x2

√
4 − 9x2

dx

59.

 √
4 − x2

x
dx 60.

 
x2

(x6 − 4)3/2
dx

In exercises 61–68, determine whether the integral converges or

diverges. If it converges, find the limit.

61.

 1

0

x

x2 − 1
dx 62.

 10

4

2√
x − 4

dx

63.

 ∞

1

3

x2
dx 64.

 ∞

1

xe−3x dx

65.

 ∞

0

4

4 + x2
dx 66.

 ∞

−∞
xe−x2

dx

67.

 2

−2

3

x2
dx 68.

 2

−2

x

1 − x2
dx

In exercises 69–76, find the limit.

69. lim
x→1

x3 − 1

x2 − 1
70. lim

x→0

sin x

x2 + 3x

71. lim
x→∞

e2x

x4 + 2
72. lim

x→∞
(x2e−3x )

73. lim
x→2+

    x + 1

x − 2

    
√

x2−4

74. lim
x→∞

x ln(1 + 1/x)

75. lim
x→0+

(tan x ln x) 76. lim
x→0

tan−1 x

sin−1 x

77. Show that f (x) = x + 2x3 is a pdf on the interval [0, 1].

78. Show that f (x) = 8
3
e−2x is a pdf on the interval [0, ln 2].

79. Find the value of c such that f (x) = c

x2
is a pdf on the interval

[1, 2].

80. Find the value of c such that f (x) = ce−2x is a pdf on the

interval [0, 4].

81. The lifetime of a lightbulb has pdf f (x) = 4e−4x (x in years).

Find the probability that the lightbulb lasts (a) less than

6 months; (b) between 6 months and 1 year.

82. The lifetime of an organism has pdf f (x) = 9xe−3x (x in

years). Find the probability that the organism lasts (a) less

than 2 months; (b) between 3 months and 1 year.

83. Find the (a) mean and (b) median of a random variable with

pdf f (x) = x + 2x3 on the interval [0, 1].
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84. Find the (a) mean and (b) median of a random variable with

pdf f (x) = 8
3
e−2x on the interval [0, ln 2].

85. Cardiologists test heart efficiency by injecting a dye at a con-

stant rate R into a vein near the heart and measuring the con-

centration of the dye in the bloodstream over a period of T

seconds. If all of the dye is pumped through, the concentra-

tion is c(t) = R. Compute the total amount of dye
 T

0
c(t) dt .

For a general concentration, the cardiac output is defined by

RT T
0
c(t) dt

. Interpret this quantity. Compute the cardiac output

if c(t) = 3te2T t .

86. For
 

ln(x + 1) dx , you can use integration by parts with

u = ln(x + 1) and dv = 1. Compare your answers using v = x

versus using v = x + 1.

87. Show that the average value of ln x on the interval (0, en) equals

n − 1 for any positive integer n.

88. Many probability questions involve conditional probabilities.

For example, if you know that a lightbulb has already burned for

30 hours, what is the probability that it will last at least 5 more

hours? This is the “probability that x > 35 given that x > 30”

and is written as P(x > 35|x > 30). In general, for events A

and B, P(A|B) = P(A and B)

P(B)
. The failure rate function is

given as the limit of
P(x < t + t |x > t)

 t
as t → 0. For the

pdf f (x) of the lifetime of a lightbulb, the numerator is the

probability that the bulb burns out between times t and t + t .

Use R(t) = P(x > t) to show that the failure rate function can

be written as
f (t)

R(t)
.

89. Show that the failure rate function (see exercise 88) of an ex-

ponential pdf f (x) = ce−cx is constant.

90. For the gamma distribution f (x) = xe−x , (a) use a CAS to

show that P(x > s + t |x > s) = e−t + t

1 + s
e−t . (b) Show

that this is a decreasing function of s (for a fixed t). (c) If this

is the pdf for annual rainfall amounts in a certain city, interpret

the result of part (b).

91. Scores on IQ tests are intended to follow the distribution

f (x) = 1√
450π

e−(x−100)2/450. Based on this distribution, what

percentage of people are supposed to have IQs between 90 and

100? If the top 1% of scores are to be given the title of “genius,”

how high do you have to score to get this title?

EXPLORATORY EXERCISES

1. In this exercise, you will try to determine whether or

not
 1

0
sin(1/x) dx converges. Since |sin(1/x)| ≤ 1, the

integral does not diverge to ∞, but that does not necessar-

ily mean it converges. Explain why the integral

 ∞

0

sin x dx

diverges (not to ∞, but by oscillating indefinitely). You

need to determine whether a similar oscillation occurs for 1

0

sin(1/x) dx . First, estimate

 1

R

sin(1/x) dx numerically

for R = 1/π, 1/(2π ), 1/(3π ) and so on. Note that once you

have

 1

1/π

sin(1/x) dx , you can get

 1

1/(2π )

sin(1/x) dx by

“adding”

 1/π

1/(2π )

sin(1/x) dx . We put this in quotes because

this new integral is negative. Verify that the integrals 1/π

1/(2π )

sin(1/x) dx,

 1/(2π )

1/(3π )

sin(1/x) dx and so on, are alter-

nately negative and positive, so that the sum

 1

R

sin(1/x) dx

does seem to converge as R → 0+. It turns out that the limit

does converge if the additional integrals

 1/(nπ )

1/((n+1)π)

sin(1/x) dx

tend to 0 as n → ∞. Show that this is true.

2. Suppose that f (x) is a function such that both

 ∞

−∞
f (x) dx and ∞

−∞
f (x − 1/x) dx converge. Start with

 ∞

−∞
f (x − 1/x) dx

and make the substitution u = − 1
x
. Show that

2

 ∞

−∞
f (x − 1/x) dx =

 ∞

−∞

1

u2
f (u − 1/u) du. Then let

y = u − 1/u. Show that

 ∞

−∞
f (x) dx =

 ∞

−∞
f (x − 1/x) dx .

Use this result to evaluate

 ∞

−∞

x2

x2 + (x2 − 1)2
dx and ∞

−∞
e−x2+2−1/x2

dx .

3. Evaluate

 π/2

0

ab

(a cos x + b sin x)2
dx , by dividing all terms

by cos2 x , using the substitution u = ab tan x and evaluating

the improper integral

 ∞

0

a2

(u + a2)2
dx .
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8
First-Order
Differential Equations

The discovery of a well-preserved fossil can provide paleontologists

with priceless clues about the early history of life on Earth. In 1993, an

amateur fossil hunter named Ruben Carolini found the bones of a mas-

sive dinosaur in southern Argentina. The new species of dinosaur, named

Giganotosaurus, replaced Tyrannosaurus Rex as the largest known car-

nivore. Measuring up to 45 feet in length and standing 12 feet high at

the hip bone, Giganotosaurus is estimated to have weighed in at about

8 tons.

To place finds like Giganotosaurus in their correct historical perspective,

paleontologists employ several techniques for dating fossils. The most well known

of these is radiocarbon dating using carbon-14, an unstable isotope of carbon

formed by collisions of cosmic rays with nitrogen atoms in the upper atmosphere.

In living plants and animals, the ratio of the amount of carbon-14 to the total

amount of carbon is constant. When a plant or animal dies, it stops taking in

carbon-14 and the existing carbon-14 begins to decay, at a constant (though nearly

imperceptible) percentage rate. An accurate measurement of the proportion of

carbon-14 remaining can then be converted into an estimate of the time of death.

Carbon-14 is suitable for this kind of dating because its decay rate is so very slow.

Estimates from carbon-14 dating are considered to be reliable for fossils dating

back tens of thousands of years.

Dating using other radioisotopes with slower decay rates than that of carbon-

14 works on the same basic principle, but cannot be applied directly to the fossilized

organism. Instead, these isotopes can be used to accurately date very old rock or

sediment that surrounds the fossils. Using such techniques, paleontologists believe

that Giganotosaurus lived about 100 million years ago. This is critical information

to scientists studying life near the end of the Mesozoic era. For example, based on

this method of dating, it is apparent that Giganotosaurus did not live at the same

time and therefore did not compete with the smaller but stronger Tyrannosaurus

Rex.

The mathematics underlying carbon-14 and other radioisotope dating tech-

niques is developed in this chapter. Amazingly, the same mathematics can be

applied to computing the balance in your bank account and to estimating the

population of a bacterial colony. The study of differential equations is full of sur-

prising connections like this. An understanding of differential equations provides

you with essential tools to analyze many important phenomena beginning with

basic physical principles. In this chapter, we introduce the basic theory and a few

common applications of some elementary differential equations. In Chapter 16,

557
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we return to the topic of differential equations and present additional examples. However,

a more thorough examination of this vast field will need to wait for a course focused on

this topic.
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FIGURE 8.1
Growth of bacteria

Number of

Time Bacteria

(hours) (millions per ml)

0 1.2

0.5 2.5

1 5.1

1.5 11.0

2 23.0

2.5 45.0

3 91.0

3.5 180.0

4 350.0

8.1 MODELING WITH DIFFERENTIAL EQUATIONS

Growth and Decay Problems

In this age, we are all keenly aware of how infection by microorganisms such as Escherichia

coli (E. coli) causes disease. Many organisms (such as E. coli) produce a toxin that can

cause sickness or even death. Some bacteria can reproduce in our bodies at a surprisingly

fast rate, overwhelming our bodies’ natural defenses with the sheer volume of toxin they

are producing. The table shown in the margin indicates the number of E. coli bacteria

(in millions of bacteria per ml) in a laboratory culture measured at half-hour intervals

during the course of an experiment. We have plotted the number of bacteria per milliliter

versus time in Figure 8.1. What would you say the graph most resembles? If you said, “an

exponential,” you guessed right. Careful analysis of experimental data has shown that many

populations grow at a rate proportional to their current level. This is quite easily observed in

bacterial cultures, where the bacteria reproduce by binary fission (i.e., each cell reproduces

by dividing into two cells). In this case, the rate at which the bacterial culture grows is

directly proportional to the current population (until such time as resources become scarce

or overcrowding becomes a limiting factor). If we let y(t) represent the number of bacteria

in a culture at time t, then the rate of change of the population with respect to time is y (t).
Thus, since y (t) is proportional to y(t), we have

y (t) = ky(t), (1.1)

for some constant of proportionality k (the growth constant). Since equation (1.1) involves

the derivative of an unknown function, we call it a differential equation. Our aim is to

solve the differential equation, that is, find the function y(t). Assuming that y(t) > 0 (this

is a reasonable assumption, since y(t) represents a population), we have

y (t)
y(t)

= k. (1.2)

Integrating both sides of equation (1.2) with respect to t, we obtain 
y (t)
y(t)

dt =
 

k dt. (1.3)

Substituting y = y(t) in the integral on the left-hand side, we have dy = y (t) dt and so,

(1.3) becomes  
1

y
dy =

 
k dt.

Evaluating these integrals, we obtain

ln |y| + c1 = kt + c2,

where c1 and c2 are constants of integration. Subtracting c1 from both sides yields

ln |y| = kt + (c2 − c1) = kt + c,
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for some constant c. Since y(t) > 0, we have

ln y(t) = kt + c

and taking exponentials of both sides, we get

y(t) = eln y(t) = ekt+c = ekt ec.

Since c is an arbitrary constant, we write A = ec and get

y(t) = Aekt . (1.4)

We refer to (1.4) as the general solution of the differential equation (1.1). For k > 0,

equation (1.4) is called an exponential growth law and for k < 0, it is an exponential

decay law. (Think about the distinction.)

In example 1.1, we examine how an exponential growth law predicts the number of

cells in a bacterial culture.

EXAMPLE 1.1 Exponential Growth of a Bacterial Colony

A freshly inoculated bacterial culture of Streptococcus A (a common group of

microorganisms that cause strep throat) contains 100 cells. When the culture is checked

60 minutes later, it is determined that there are 450 cells present. Assuming exponential

growth, determine the number of cells present at any time t (measured in minutes) and

find the doubling time.

Solution Exponential growth means that

y (t) = ky(t)

and hence, from (1.4), y(t) = Aekt , (1.5)

where A and k are constants to be determined. If we set the starting time as t = 0, we

have

y(0) = 100. (1.6)

Equation (1.6) is called an initial condition. Setting t = 0 in (1.5), we now have

100 = y(0) = Ae0 = A

and hence, y(t) = 100 ekt .

We can use the second observation to determine the value of the growth constant k.

We have

450 = y(60) = 100 e60k .

Dividing both sides by 100 and taking the natural logarithm of both sides, we have

ln 4.5 = ln e60k = 60k,

so that k = ln 4.5

60
≈ 0.02507.

We now have a formula representing the number of cells present at any time t:

y(t) = 100 ekt = 100 exp

 
ln 4.5

60
t

 
.
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See Figure 8.2 for a graph of the projected bacterial growth over the first 120 minutes.

One further question of interest to microbiologists is the doubling time, that is, the time

it takes for the number of cells to double. We can find this by solving for the time t for

which y(t) = 2y(0) = 200. We have

200 = y(t) = 100 exp

 
ln 4.5

60
t

 
.

Dividing both sides by 100 and taking logarithms, we obtain

ln 2 = ln 4.5

60
t,

so that t = 60 ln 2

ln 4.5
≈ 27.65.

So, the doubling time for this culture of Streptococcus A is about 28 minutes. The

doubling time for a bacterium depends on the specific strain of bacteria, as well as the

quality and quantity of the food supply, the temperature and other environmental

factors. However, it is not dependent on the initial population. Here, you can easily

check that the population reaches 400 at time

t = 120 ln 2

ln 4.5
≈ 55.3

(exactly double the time it took to reach 200).

That is, the initial population of 100 doubles to 200 in approximately 28 minutes

and it doubles again (to 400) in another 28 minutes and so on. �
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y = 100 e

 
ln 4.5

60 t
 

Numerous physical phenomena satisfy exponential growth or decay laws. For instance,

experiments have shown that the rate at which a radioactive element decays is directly

proportional to the amount present. (Recall that radioactive elements are chemically unstable

elements that gradually decay into other, more stable elements.) Let y(t) be the amount

(mass) of a radioactive element present at time t. Then, we have that the rate of change (rate

of decay) of y(t) satisfies

y (t) = ky(t). (1.7)

Note that (1.7) is precisely the same differential equation as (1.1), encountered in exam-

ple 1.1 for the growth of bacteria and hence, from (1.4), we have that

y(t) = Aekt ,

for some constants A and k (here, the decay constant) to be determined.

It is common to discuss the decay rate of a radioactive element in terms of its half-life,

the time required for half of the initial quantity to decay into other elements. For instance,

scientists have calculated that the half-life of carbon-14 (14C) is approximately 5730 years.

That is, if you have 2 grams of 14C today and you come back in 5730 years, you will

have approximately 1 gram of 14C remaining. It is this long half-life and the fact that living

creatures continually take in 14C that make 14C measurements useful for radiocarbon dating.

(See the exercise set for more on this important application.)

EXAMPLE 1.2 Radioactive Decay

If you have 50 grams of 14C today, how much will be left in 100 years?

Solution Let y(t) be the mass (in grams) of 14C present at time t. Then, we have

y (t) = ky(t)
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and as we have already seen, y(t) = Aekt .

The initial condition is y(0) = 50, so that

50 = y(0) = Ae0 = A

and y(t) = 50 ekt .

To find the decay constant k, we use the half-life:

25 = y(5730) = 50 e5730k .

Dividing both sides by 50 and taking logarithms gives us

ln
1

2
= ln e5730k = 5730k,

so that k = ln 1
2

5730
≈ −1.20968 × 10−4.

A graph of the mass of 14C as a function of time is seen in Figure 8.3. Notice the

extremely large time scale shown. This should give you an idea of the incredibly slow

rate of decay of 14C. Finally, notice that if we start with 50 grams, then the amount left

after 100 years is

y(100) = 50e100k ≈ 49.3988 grams. �
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Decay of 14C

A mathematically similar physical principle is Newton’s Law of Cooling. If you intro-

duce a hot object into cool surroundings (or equivalently, a cold object into warm surround-

ings), the rate at which the object cools (or warms) is not proportional to its temperature, but

rather, to the difference in temperature between the object and its surroundings. Symboli-

cally, if we let y(t) be the temperature of the object at time t and let Ta be the temperature

of the surroundings (the ambient temperature, which we assume to be constant), we have

the differential equation

y (t) = k[y(t) − Ta]. (1.8)

Notice that (1.8) is not the same as the differential equation describing exponential growth or

decay. (Compare these; what’s the difference?) Even so, we can approach finding a solution

in the same way. In the case of cooling, we assume that

Ta < y(t).

(Why is it fair to assume this?) If we divide both sides of equation (1.8) by y(t) − Ta and

then integrate both sides, we obtain 
y (t)

y(t) − Ta

dt =
 

k dt = kt + c1. (1.9)

Notice that we can evaluate the integral on the left-hand side by making the substitution

u = y(t) − Ta , so that du = y (t) dt . Thus, we have 
y (t)

y(t) − Ta

dt =
 

1

u
du = ln |u| + c2 = ln |y(t) − Ta| + c2

= ln [y(t) − Ta] + c2,

since y(t) − Ta > 0. From (1.9), we now have

ln [y(t) − Ta] + c2 = kt + c1 or ln [y(t) − Ta] = kt + c,
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where we have combined the two constants of integration. Taking exponentials of both

sides, we obtain

y(t) − Ta = ekt+c = ekt ec.

Finally, for convenience, we write A = ec, to obtain

y(t) = Aekt + Ta,

where A and k are constants to be determined.

We illustrate Newton’s Law of Cooling in example 1.3.

EXAMPLE 1.3 Newton’s Law of Cooling for a Cup of Coffee

A cup of fast-food coffee is 180◦F when freshly poured. After 2 minutes in a room

at 70◦F, the coffee has cooled to 165◦F. Find the temperature at any time t and find the

time at which the coffee has cooled to 120◦F.

Solution Letting y(t) be the temperature of the coffee at time t, we have

y (t) = k[y(t) − 70].

Proceeding as above, we obtain

y(t) = Aekt + 70.

Observe that the initial condition here is the initial temperature, y(0) = 180. This

gives us

180 = y(0) = Ae0 + 70 = A + 70,

so that A = 110 and y(t) = 110 ekt + 70.

We can now use the second measured temperature to solve for the constant k. We have

165 = y(2) = 110 e2k + 70.

Subtracting 70 from both sides and dividing by 110, we have

e2k = 165 − 70

110
= 95

110
.

Taking logarithms of both sides yields 2k = ln

 
95

110

 

and hence, k = 1

2
ln

 
95

110

 
≈ −0.0733017.

A graph of the projected temperature against time is shown in Figure 8.4. From

Figure 8.4, you might observe that the temperature appears to have fallen to 120◦F after

about 10 minutes. We can solve this symbolically by finding the time t for which

120 = y(t) = 110 ekt + 70.

It is not hard to solve this to obtain

t = 1

k
ln

5

11
≈ 10.76 minutes.

The details are left as an exercise. �
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FIGURE 8.4
Temperature of coffee
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Compound Interest

If a bank agrees to pay you 8% (annual) interest on your investment of $10,000, then at the

end of a year, you will have

$10,000 + (0.08)$10,000 = $10,000(1 + 0.08) = $10,800.

On the other hand, if the bank agrees to pay you interest twice a year at the same 8% annual

rate, you receive 8
2
% interest twice each year. At the end of the year, you will have

$10,000

 
1 + 0.08

2

  
1 + 0.08

2

 
= $10,000

 
1 + 0.08

2

 2

= $10,816.

Continuing in this fashion, notice that paying (compounding) interest monthly would pay
8
12

% each month (period), resulting in a balance of

$10,000

 
1 + 0.08

12

 12

≈ $10,830.00.

Further, if interest is compounded daily, you would end up with

$10,000

 
1 + 0.08

365

 365

≈ $10,832.78.

It should be evident that the more often interest is compounded, the greater the interest

will be. A reasonable question to ask is whether there is a limit to how much interest can

accrue on a given investment at a given interest rate. If n is the number of times per year

that interest is compounded, we wish to calculate the annual percentage yield (APY) under

continuous compounding,

APY = lim
n→∞

 
1 + 0.08

n

 n

− 1.

To determine this limit, you must observe (see exercise 33 in section 7.6) that

e = lim
m→∞

 
1 + 1

m

 m

.

Notice that if we make the change of variable n = 0.08m, then we have

APY = lim
m→∞

 
1 + 0.08

0.08m

 0.08m

− 1

=
 

lim
m→∞

 
1 + 1

m

 m 0.08

− 1

= e0.08 − 1 ≈ 0.083287.

Under continuous compounding, you would thus earn approximately 8.3% or

$10,000(e0.08 − 1) ≈ $832.87

in interest, leaving your investment with a total value of $10,832.87. More generally, suppose

that you invest $P at an annual interest rate r, compounded n times per year. Then the value

of your investment after t years is

$P
 

1 + r

n

 nt

.
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Under continuous compounding (i.e., taking the limit as n → ∞), this becomes

$Pert . (1.10)

Alternatively, if y(t) is the value of your investment after t years, with continuous com-

pounding, the rate of change of y(t) is proportional to y(t). That is,

y (t) = r y(t),

where r is the annual interest rate. From (1.4), we have

y(t) = Aert .

For an initial investment of $P , we have

$P = y(0) = Ae0 = A,

so that y(t) = $Pert ,

which is the same as (1.10).

EXAMPLE 1.4 Comparing Forms of Compounding Interest

If you invest $7000 at an annual interest rate of 5.75%, compare the value of your

investment after 5 years under various forms of compounding.

Solution With annual compounding, the value is

$7000

 
1 + 0.0575

1

 5

≈ $9257.63.

With monthly compounding, this becomes

$7000

 
1 + 0.0575

12

 12(5)

≈ $9325.23.

With daily compounding, this yields

$7000

 
1 + 0.0575

365

 365(5)

≈ $9331.42.

Finally, with continuous compounding, the value is

$7000 e0.0575(5) ≈ $9331.63. �

The mathematics used to describe the compounding of interest also applies to accounts

that are decreasing in value.

EXAMPLE 1.5 Depreciation of Assets

(a) Suppose that the value of a $10,000 asset decreases continuously at a constant rate

of 24% per year. Find its worth after 10 years; after 20 years. (b) Compare these values

to a $10,000 asset that is depreciated to no value in 20 years using linear depreciation.

Solution The value v(t) of any quantity that is changing at a constant rate r satisfies

v = rv. Here, r = −0.24, so that

v(t) = Ae−0.24t .

Since the value of the asset is initially 10,000, we have

10,000 = v(0) = Ae0 = A.
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We now have v(t) = 10,000 e−0.24t .

At time t = 10, the value of the asset is then

$10,000 e−0.24(10) ≈ $907.18

and at time t = 20, the value has decreased to

$10,000 e−0.24(20) ≈ $82.30.

For part (b), linear depreciation means we use a linear function v(t) = mt + b for the

value of the asset. We start with v(0) = 10,000 and end at v(20) = 0. From

v(0) = 10,000 we get b = 10,000 and using the points (0,10,000) and (20, 0), we

compute the slope m = 10,000

−20
= −500. We then have

v(t) = −500t + 10,000.

At time t = 10, v(10) = $5000. Notice that this is considerably more than the

approximately $900 that exponential depreciation gave us. By time t = 20, however,

the linear depreciation value of $0 is less than the exponential depreciation value of

$82.30. The graphs in Figure 8.5 illustrate these comparisons. �
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FIGURE 8.5
Linear versus exponential

depreciation

BEYOND FORMULAS

With a basic understanding of differential equations, you can model a diverse collection

of physical phenomena arising in the sciences and engineering. Understanding the

physical assumptions that go into the model allows you to interpret the physical meaning

of the solution. Moreover, part of the power of mathematics lies in its generality. In

this case, the same differential equation may model a collection of vastly different

phenomena. In this sense, knowing a little bit of mathematics goes a long way. Having

solved for doubling time in example 1.1, if you are told that the value of an investment

or the size of a tumor is modeled by the same equation, what can you conclude?

EXERCISES 8.1

WRITING EXERCISES

1. A linear function is defined by constant slope. If a population

showed a constant numerical increase year by year, explain

why the population could be represented by a linear function.

If the population showed a constant percentage increase in-

stead, explain why the population could be represented by an

exponential function.

2. If a population has a constant birthrate and a constant death

rate (smaller than the birthrate), describe what the population

would look like over time. In the United States, is the death rate

increasing, decreasing or staying the same? Given this, why is

there concern about reducing the birthrate?

3. Explain, in monetary terms, why for a given interest rate the

more times the interest is compounded the more money is in

the account at the end of a year.

4. In the growth and decay examples, the constant A turned out to

be equal to the initial value. In the cooling examples, the con-

stant A did not equal the initial value. Explain why the cooling

example worked differently.

In exercises 1–8, find the solution of the given differential equa-

tion satisfying the indicated initial condition.

1. y = 4y, y(0) = 2 2. y = 3y, y(0) = −2

3. y = −3y, y(0) = 5 4. y = −2y, y(0) = −6

5. y = 2y, y(1) = 2 6. y = −y, y(1) = 2

7. y = −3, y(0) = 3 8. y = −2, y(0) = −8
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Exercises 9–16 involve exponential growth.

9. Suppose a bacterial culture doubles in population every 4 hours.

If the population is initially 100, find an equation for the pop-

ulation at any time. Determine when the population will reach

6000.

10. Suppose a bacterial culture triples in population every 5 hours.

If the population is initially 200, find an equation for the pop-

ulation at any time. Determine when the population will reach

20,000.

11. Suppose a bacterial culture initially has 400 cells. After 1 hour,

the population has increased to 800. Find an equation for

the population at any time. What will the population be after

10 hours?

12. Suppose a bacterial culture initially has 100 cells. After 2 hours,

the population has increased to 400. Find an equation for

the population at any time. What will the population be after

8 hours?

13. A bacterial culture grows exponentially with growth constant

0.44 hour−1. Find its doubling time.

14. A bacterial culture grows exponentially with growth constant

0.12 hour−1. Find its doubling time.

15. Suppose that a population of E. coli doubles every 20 min-

utes. A treatment of the infection removes 90% of the E. coli

present and is timed to accomplish the following. The popu-

lation starts at size 108, grows for T minutes, the treatment

is applied and the population returns to size 108. Find the

time T.

16. Research by Meadows, Meadows, Randers and Behrens indi-

cates that the earth has 3.2 × 109 acres of arable land available.

The world population of 1950 required 109 acres to sustain it,

and the population of 1980 required 2 × 109 acres. If the re-

quired acreage grows at a constant percentage rate, in what

year will the population reach the maximum sustainable size?

17. Suppose some quantity is increasing exponentially (e.g., the

number of cells in a bacterial culture) with growth rate r. Show

that the doubling time is
ln 2

r
.

18. Suppose some quantity is decaying exponentially with decay

constant r. Show that the half-life is − ln 2

r
. What is the dif-

ference between the half-life here and the doubling time in

exercise 17?

Exercises 19–26 involve exponential decay.

19. The radioactive element iodine-131 has a decay constant of

−1.3863 day−1. Find its half-life.

20. The radioactive element cesium-137 has a decay constant of

−0.023 year−1. Find its half-life.

21. The half-life of morphine in the human bloodstream is 3 hours.

If initially there is 0.4 mg of morphine in the bloodstream, find

an equation for the amount in the bloodstream at any time.

When does the amount drop below 0.01 mg?

22. Given a half-life of 3 hours, by what percentage will the amount

of morphine in the bloodstream have decreased in 1 day? (See

exercise 21.)

23. Strontium-90 is a dangerous radioactive isotope. Because of its

similarity to calcium, it is easily absorbed into human bones.

The half-life of strontium-90 is 28 years. If a certain amount is

absorbed into the bones due to exposure to a nuclear explosion,

what percentage will remain after 50 years?

24. The half-life of uranium 235U is approximately 0.7 × 109 years.

If 50 grams are buried at a nuclear waste site, how much will

remain after 100 years?

25. Scientists dating a fossil estimate that 20% of the original

amount of carbon-14 is present. Recalling that the half-life

is 5730 years, approximately how old is the fossil?

26. If a fossil is 1 million years old, what percentage of its original

carbon-14 should remain?

Exercises 27–34 involve Newton’s Law of Cooling.

27. A bowl of porridge at 200◦F (too hot) is placed in a 70◦F room.

One minute later the porridge has cooled to 180◦F. When will

the temperature be 120◦F ( just right)?

28. A smaller bowl of porridge served at 200◦F cools to 160◦F in

1 minute. What temperature (too cold) will this porridge be

when the bowl of exercise 27 has reached 120◦F ( just right)?

29. A cold drink is poured out at 50◦F. After 2 minutes of sitting in

a 70◦F room, its temperature has risen to 56◦F. Find the drink’s

temperature at any time t.

30. For the cold drink in exercise 29, what will the temperature be

after 10 minutes? When will the drink have warmed to 66◦F?

31. At 10:07 P.M. you find a secret agent murdered. Next to him

is a martini that got shaken before the secret agent could stir

it. Room temperature is 70◦F. The martini warms from 60◦F

to 61◦F in the 2 minutes from 10:07 P.M. to 10:09 P.M. If the

secret agent’s martinis are always served at 40◦F, what was the

time of death?

32. Twenty minutes after being served a cup of fast-food coffee,

it is still too hot to drink at 160◦F. Two minutes later, the tem-

perature has dropped to 158◦F. Your friend, whose coffee is

also too hot to drink, speculates that since the temperature is

dropping an average of 1 degree per minute, it was served at

180◦F. Explain what is wrong with this logic. Was the actual

serving temperature hotter or cooler than 180◦F?

33. Find the actual serving temperature in exercise 32 if room tem-

perature is 68◦F.
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34. For the cup of coffee in example 1.3, suppose that the goal is to

have the coffee cool to 120◦F in 5 minutes. At what temperature

should the coffee be served?

Exercises 35–38 involve compound interest.

35. If you invest $1000 at an annual interest rate of 8%, compare

the value of the investment after 1 year under the following

forms of compounding: annual, monthly, daily, continuous.

36. Repeat exercise 35 for the value of the investment after 5 years.

37. Person A invests $10,000 in 1990 and person B invests $20,000

in 2000. If both receive 12% interest (compounded continu-

ously), what are the values of the investments in 2010?

38. Repeat exercise 37 for an interest rate of 4%. Then determine

the interest rate such that person A ends up exactly even with

person B. (Hint: You want person A to have $20,000 in 2000.)

39. One of the authors bought a set of basketball trading cards in

1985 for $34. In 1995, the “book price” for this set was $9800.

Assuming a constant percentage return on this investment, find

an equation for the worth of the set at time t years (where t = 0

corresponds to 1985). At this rate of return, what would the set

have been worth in 2005?

40. The author also bought a set of baseball cards in 1985, costing

$22. In 1995, this set was worth $32. At this rate of return,

what would the set have been worth in 2005?

41. In 1975, income between $16,000 and $20,000 was taxed at

28%. In 1988, income between $16,000 and $20,000 was taxed

at 15%. This makes it seem as if taxes went down considerably

between 1975 and 1988. Taking inflation into account, briefly

explain why this is not a valid comparison.

42. To make the comparison in exercise 41 a little fairer, note that

income above $30,000 was taxed at 28% in 1988 and assume

that inflation averaged 5.5% between 1975 and 1988. Adjust

$16,000 for inflation by computing its value after increasing

continuously at 5.5% for 13 years. Based on this calculation,

how do the tax rates compare?

43. Suppose the income tax structure is as follows: the first $30,000

is taxed at 15%, the remainder is taxed at 28%. Compute the

tax T1 on an income of $40,000. Now, suppose that inflation

is 5% and you receive a cost of living (5%) raise to $42,000.

Compute the tax T2 on this income. To compare the taxes, you

should adjust the tax T1 for inflation (add 5%).

44. In exercise 43, the tax code stayed the same, but (adjusted for

inflation) the tax owed did not stay the same. Briefly explain

why this happened. What could be done to make the tax owed

remain constant?

45. Suppose that the value of a $40,000 asset decreases at a con-

stant percentage rate of 10%. Find its worth after (a) 10 years

and (b) 20 years. Compare these values to a $40,000 asset that

is depreciated to no value in 20 years using linear depreciation.

46. Suppose that the value of a $400,000 asset decreases at a con-

stant percentage rate of 40%. Find its worth after (a) 5 years

and (b) 10 years. Compare these values to a $40,000 as-

set that is depreciated to no value in 10 years using linear

depreciation.

47. One of the mysteries in population biology is how populations

regulate themselves. The most famous myth involves lemmings

diving off of cliffs at times of overpopulation. It is true that

lemming populations rise and fall dramatically, for whatever

reason (not including suicide). Animal ecologists draw graphs

to visualize the rises and falls of animal populations. Instead

of graphing population versus time, ecologists graph the loga-

rithm of population versus time. To understand why, note that

a population drop from 1000 to 500 would represent the same

percentage decrease as a drop from 10 to 5. Show that the

slopes of the drops are different, so that these drops would ap-

pear to be different on a population/time graph. However, show

that the slopes of the drops in the logarithms (e.g., ln 1000 to

ln 500) are the same. In general, if a population were changing

at a constant percentage rate, what would the graph of pop-

ulation versus time look like? What would the graph of the

logarithm of population versus time look like?

48. It has been conjectured that half the people who have ever

lived are still alive today. To see whether this is plausible,

assume that humans have maintained a constant birthrate b

and death rate d. Show that the statement is true if and only

if b ≥ 2d.

49. Using the bacterial population data at the beginning of this

section, define x to be time and y to be the natural logarithm

of the population. Plot the data points (x, y) and comment on

how close the data are to being linear. Take two representative

points and find an equation of the line through the two points.

Then find the population function p(x) = ey(x).

50. If your calculator or CAS does exponential regression, com-

pare the regression equation to your model from exercise 49.

51. As in exercise 49, find an exponential model for the population

data (0, 10), (1, 15), (2, 22), (3, 33) and (4, 49).

52. As in exercise 49, find an exponential model for the population

data (0, 20), (1, 16), (2, 13), (3, 11) and (4, 9).

53. Use the method of exercise 49 to fit an exponential model to the

following data representing percentage of the U.S. population

classified as living on rural farms (data from the U.S. Census

Bureau).

Year 1960 1970 1980 1990

% Pop. Farm 7.5 5.2 2.5 1.6

54. Use the method of exercise 49 to fit an exponential model to the

following data representing percentage of the U.S. population
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classified as living in urban areas (data from the U.S. Census

Bureau).

Year 1960 1970 1980 1990

% Pop. Urban 69.9 73.5 73.7 75.2

55. An Internet site reports that the antidepressant drug amitripty-

line has a half-life in humans of 31–46 hours. For a dosage of

150 mg, compare the amounts left in the bloodstream after one

day for a person for whom the half-life is 31 hours versus a per-

son for whom the half-life is 46 hours. Is this a large difference?

56. It is reported that Prozac® has a half-life of 2 to 3 days but may

be found in your system for several weeks after you stop taking

it. What percentage of the original dosage would remain after

2 weeks if the half-life is 2 days? How much would remain if

the half-life is 3 days?

57. The antibiotic ertapenem has a half-life of 4 hours in the human

bloodstream. The dosage is 1 gm per day. Find and graph the

amount in the bloodstream t hours after taking it (0 ≤ t ≤ 24).

58. Compare your answer to exercise 57 with a similar drug that

is taken with a dosage of 1 gm four times a day and has a

half-life of 1 hour. (Note that you will have to do four separate

calculations here.)

59. A bank offers to sell a bank note that will reach a maturity

value of $10,000 in 10 years. How much should you pay for it

now if you wish to receive an 8% return on your investment?

(Note: This is called the present value of the bank note.) Show

that in general, the present value of an item worth $P in t years

with constant interest rate r is given by $Pe−r t .

60. Suppose that the value of a piece of land t years from now is

$40,000e2
√

t . Given 6% annual inflation, find t that maximizes

the present value of your investment: $40,000e2
√

t−0.06t .

61. Suppose that a business has an income stream of $P(t). The

present value at interest rate r of this income for the next T

years is
 T

0
P(t)e−r t dt . Compare the present values at 5%

for three people with the following salaries for 3 years:

A: P(t) = 60,000; B: P(t) = 60,000 + 3000t ; and

C: P(t) = 60,000e0.05t .

62. The future value of an income stream after T years at interest

rate r is given by
 T

0
P(t)er (T −t)dt . Calculate the future value

for cases A, B and C in exercise 61. Briefly describe the dif-

ference between what present value and future value measure.

63. If you win a “million dollar” lottery, would you be better off

getting your money in four annual installments of $280,000

or in one lump sum of $1 million? Assume 8% interest and

payments made at the beginning of the year.

64. The “Rule of 72” is used by many investors to quickly esti-

mate how fast an investment will double in value. For example,

at 8% the rule suggests that the doubling time will be about
72
8

= 9 years. Calculate the actual doubling time. Explain why a

“Rule of 69” would be more accurate. Give at least one reason

why the number 72 is used instead.

EXPLORATORY EXERCISES

1. In the text, we briefly discussed the use of the radioactive iso-

tope carbon-14 to date fossils. We elaborate on that here. The

amount of carbon-14 in the atmosphere is largely determined

by cosmic ray bombardment, with nuclear testing also playing

a role. Living organisms maintain a constant level of carbon-

14 through exchanges with the environment. At death, the or-

ganism no longer takes in carbon-14, so the carbon-14 level

decreases with the 5730-year half-life. Scientists can measure

the rate of disintegration of carbon-14. (You might visualize a

Geiger counter.) If y(t) is the amount of carbon-14 remaining

at time t, the rate of change is y (t) = ky(t). The main assump-

tion is that the rate of disintegration at the time of death is the

same as it is now for living organisms. Mathematically, this

rate corresponds to ky(0). The ratio of disintegration rates is

y(t)/y(0). Given this ratio, describe how to determine the time

t. In particular, suppose that ky(t) = −2.4 (disintegrations per

minute) and ky(0) = −6.7 (disintegrations per minute). Solve

for t. Different inaccuracies can creep into this process. First,

suppose the assumption of constant carbon-14 levels is wrong.

If ky(0) is decreased by 5%, by what percentage does the es-

timate of the time t change? There may also be inaccuracies

in the measurement of the current disintegration rate. If ky(t)

is decreased by 5%, by what percentage does the estimate of

the time change? Roughly, how do errors in the measurements

translate to errors in the estimate of the time?

2. The carbon-14 method of dating fossils is discussed in exer-

cise 1. Here, we discuss the potassium-argon dating method,

used to date old volcanic rock. The background theory is that

radioactive potassium-40 decays very slowly, with a half-life of

about 1.3 billion years. Approximately 11% of the potassium-

40 that decays produces argon-40. Argon escapes from molten

lava but is trapped in cool rock, so the amount of argon can

be used to measure how much time has passed since the lava

cooled. First, show that the amount K (t) of potassium-40 and

the amount A(t) of argon-40 satisfy the equations

d K

dt
= −0.0000000005305K (t) and

d A

dt
= 0.0000000000585K (t).

A change of variables improves the look of these numbers. If

s = t

1010
, show that

d K

ds
= −5.305K (s) and

d A

ds
= 0.585K (s).

Choose units of measurement so that K (0) = 1. If we measure

the current ratio of argon-40 to potassium-40 in a rock, this is

A(0). If the rock cooled T years ago, then A(−T ) = 0, since
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argon-40 does not remain in molten lava. For a ratio of 0.00012,

find the age of the rock. Comment on why this method is used

to date very old rocks.

3. Three confused hunting dogs start at the vertices of an equi-

lateral triangle of side 1. Each dog runs with a constant speed

aimed directly at the dog that is positioned clockwise from it.

The chase stops when the dogs meet in the middle (having

grabbed each other by their tails). How far does each dog run?

[Hints: Represent the position of each dog in polar coordinates

(r, θ ) with the center of the triangle at the origin. By symme-

try, each dog has the same r-value, and if one dog has angle

θ , then it is aimed at the dog with angle θ − 2π

3
. Set up a

differential equation for the motion of one dog and show that

there is a solution if r  (θ ) =
√

3r . Use the arc length formula

L =  θ2
θ1

 
[r  (θ )]2 + [r (θ )]2 dθ.]

4. To generalize exercise 3, suppose that there are n dogs starting

at the vertices of a regular n-gon of side s. If α is the interior

angle from the center of the n-gon to adjacent vertices, show

that the distance run by each dog equals
s

1 − cosα
. What hap-

pens to the distance as n increases without bound? Explain this

in terms of the paths of the dogs.

8.2 SEPARABLE DIFFERENTIAL EQUATIONS

In section 8.1, we solved two different differential equations:

y (t) = ky(t) and y (t) = k[y(t) − Ta].

These are both examples of separable differential equations. We will examine this type

of equation at some length in this section. First, we consider the more general first-order

ordinary differential equation

y = f (x, y). (2.1)

Here, the derivative y of some unknown function y(x) is given as a function f of both x and

y. Our objective is to find some function y(x) (a solution) that satisfies equation (2.1). The

equation is first-order, since it involves only the first derivative of the unknown function.

We will consider the case where the x’s and y’s can be separated. We call equation (2.1)

separable if we can separate the variables, i.e., if we can rewrite it in the form

g(y)y = h(x),

where all of the x’s are on one side of the equation and all of the y’s are on the other side.

EXAMPLE 2.1 A Separable Differential Equation

Determine whether the differential equation

y = xy2 − 2xy

is separable.

Solution Notice that this equation is separable, since we can rewrite it as

y = x(y2 − 2y)

and then divide by (y2 − 2y) (assuming this is not zero), to obtain

1

y2 − 2y
y = x .

�

NOTE

Do not be distracted by the letter

used for the independent variable.

We frequently use the independent

variable x, as in equation (2.1).

Whenever the independent

variable represents time, we use t

as the independent variable, in

order to reinforce this connection,

as we did in example 1.2. There,

the equation describing

radioactive decay was given as

y (t) = ky(t).
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EXAMPLE 2.2 An Equation That Is Not Separable

The equation y = xy2 − 2x2 y

is not separable, as there is no way to separate the x’s and the y’s. (Try this for

yourself!) �

Essentially, the x’s and y’s must be separated by multiplication or division in order for

a differential equation to be separable. Notice that in example 2.2, you can factor to get

y = xy(y − 2x), but the subtraction y − 2x keeps this equation from being separable.

Separable differential equations are of interest because there is a very simple means of

solving them. Notice that if we integrate both sides of

g(y)y (x) = h(x)

with respect to x, we get

 
g(y)y (x) dx =

 
h(x) dx . (2.2)

Since dy = y (x) dx , the integral on the left-hand side of (2.2) becomes 
g(y) y (x) dx    

dy

=
 

g(y) dy.

Consequently, from (2.2), we have 
g(y) dy =

 
h(x) dx .

So, provided we can evaluate both of these integrals, we have an equation relating x and y,

which no longer involves y .

EXAMPLE 2.3 Solving a Separable Equation

Solve the differential equation

y = x2 + 7x + 3

y2
.

Solution Separating variables, observe that we have

y2 y = x2 + 7x + 3.

Integrating both sides with respect to x, we obtain 
y2 y (x) dx =

 
(x2 + 7x + 3) dx

or

 
y2dy =

 
(x2 + 7x + 3) dx .

Performing the indicated integrations yields

y3

3
= x3

3
+ 7

x2

2
+ 3x + c,

where we have combined the two constants of integration into one on the right-hand

side.

Solving for y, we get

y = 3

 
x3 + 21

2
x2 + 9x + 3c.
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FIGURE 8.6
A family of solutions

Notice that for each value of c, we get a different solution of the differential

equation. This is called a family of solutions (or the general solution) of the

differential equation. In Figure 8.6, we have plotted a number of the members of this

family of solutions. �

In general, the solution of a first-order separable equation will include an arbitrary

constant (the constant of integration). To select just one of these solution curves, we specify

a single point through which the solution curve must pass, say (x0, y0). That is, we require

that

y(x0) = y0.

This is called an initial condition (since this condition often specifies the initial state of a

physical system). Such a differential equation together with an initial condition is referred

to as an initial value problem (IVP).

EXAMPLE 2.4 Solving an Initial Value Problem

Solve the IVP y = x2 + 7x + 3

y2
, y(0) = 3.

Solution In example 2.3, we found that the general solution of the differential

equation is

y = 3

 
x3 + 21

2
x2 + 9x + 3c.

From the initial condition, we now have

3 = y(0) = 3
√

0 + 3c = 3
√

3c
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and hence, c = 9. The solution of the IVP is then

y = 3

 
x3 + 21

2
x2 + 9x + 27.

We show a graph of this solution in Figure 8.7. Notice that this graph would fit above

the curves shown in Figure 8.6. We’ll explore the effects of other initial conditions in

the exercises. �

We are not always as fortunate as we were in example 2.4. There, we were able to

obtain an explicit representation of the solution (i.e., we found a formula for y in terms

of x). Most often, we must settle for an implicit representation of the solution, that is, an

equation relating x and y that cannot be solved for y in terms of x alone.
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 3 4

FIGURE 8.7

y = 3

 
x3 + 21

2
x2 + 9x + 27

432 2
x

c = 100
c = 80

c = 60

c = 40

c = 25

c 
=

 −
12

c 
=
 −

8

4

2

 2

y

c 
=
 −

4

FIGURE 8.8a
A family of solutions
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FIGURE 8.8b
The solution of the IVP

EXAMPLE 2.5 An Initial Value Problem That Has Only
an Implicit Solution

Find the solution of the IVP

y = 9x2 − sin x

cos y + 5ey
, y(0) = π.

Solution First, note that the differential equation is separable, since we can rewrite

it as

(cos y + 5ey)y (x) = 9x2 − sin x .

Integrating both sides of this equation with respect to x, we find 
(cos y + 5ey)y (x) dx =

 
(9x2 − sin x) dx

or

 
(cos y + 5ey) dy =

 
(9x2 − sin x) dx .

Evaluating the integrals, we obtain

sin y + 5ey = 3x3 + cos x + c. (2.3)

Notice that there is no way to solve this equation explicitly for y in terms of x. However,

you can still picture the graphs of some members of this family of solutions by using the

implicit plot mode on your graphing utility. Several of these are plotted in Figure 8.8a.

Even though we have not solved for y explicitly in terms of x, we can still use the initial

condition. Substituting x = 0 and y = π into equation (2.3), we have

sinπ + 5eπ = 0 + cos 0 + c

or 5eπ − 1 = c.

This leaves us with

sin y + 5ey = 3x3 + cos x + 5eπ − 1

as an implicit representation of the solution of the IVP. Although we cannot solve for y

in terms of x alone, given any particular value for x, we can use Newton’s method (or

some other numerical method) to approximate the value of the corresponding y. This is

essentially what your CAS does (with many, many points) when you use it to plot a

graph in implicit mode. We plot the solution of the IVP in Figure 8.8b. �
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Logistic Growth

In section 8.1, we introduced the differential equation

y = ky

as a model of bacterial population growth, valid for populations growing with unlimited

resources and with unlimited room for growth. Of course, all populations have factors

that eventually limit their growth. Thus, this particular model generally provides useful

information only for relatively short periods of time.

HISTORICAL NOTES

Pierre Verhulst (1804–1849)

A Belgian mathematician who

proposed the logistic model for

population growth. Verhulst

was a professor of mathematics

in Brussels and did research

on number theory and social

statistics. His most important

contribution was the logistic

equation (also called the Verhulst

equation) giving the first realistic

model of a population with

limited resources. It is worth

noting that Verhulst’s estimate of

Belgium’s equilibrium population

closely matches the current

Belgian population.

An alternative model of population growth assumes that there is a maximum sustain-

able population, M (called the carrying capacity), determined by the available resources.

Further, as the population size approaches M (as available resources become more scarce),

the population growth will slow. To reflect this, we assume that the rate of population growth

is jointly proportional to the present population level and the difference between the current

level and the maximum, M. That is, if y(t) is the population at time t, we assume that

y (t) = ky(M − y).

This differential equation is referred to as the logistic equation.

Two special solutions of this differential equation are apparent. The constant functions

y = 0 and y = M are both solutions of this differential equation. These are called equi-

librium solutions since, under the assumption of logistic growth, once a population hits

one of these levels, it remains there for all time. If y  = 0 and y  = M , we can solve the

differential equation, since it is separable, as

1

y(M − y)
y (t) = k. (2.4)

Integrating both sides with respect to t, we obtain 
1

y(M − y)
y (t) dt =

 
k dt

or
 

1

y(M − y)
dy =

 
k dt. (2.5)

We use partial fractions to write

1

y(M − y)
= 1

My
+ 1

M(M − y)
.

Observe that from (2.5) we now have  
1

My
+ 1

M(M − y)

 
dy =

 
k dt.

Carrying out the integrations gives us

1

M
ln |y| − 1

M
ln |M − y| = kt + c.

Multiplying both sides by M and using the fact that 0 < y < M , we have

ln y − ln(M − y) = k Mt + Mc.

Taking exponentials of both sides, we find

exp[ln y − ln(M − y)] = ek Mt+Mc = ek Mt eMc.
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Next, using rules of exponentials and logarithms and replacing the constant term eMc by a

new constant A, we obtain

y

M − y
= Aek Mt .

To solve this for y, we first multiply both sides by (M − y) to obtain

y = Aek Mt (M − y)

= AMek Mt − Aek Mt y.

Combining the two y terms, we find

y(1 + Aek Mt ) = AMek Mt ,

which gives us the explicit solution of the logistic equation,

y = AMek Mt

1 + Aek Mt
. (2.6)

In Figure 8.9, we plot a number of these solution curves for various values of A (for the

case where M = 1000 and k = 0.001), along with the equilibrium solution y = 1000. You

can see from Figure 8.9 that logistic growth consists of nearly exponential growth initially,

followed by the graph becoming concave down and then asymptotically approaching the

maximum, M.
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FIGURE 8.9
Several solution curves
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FIGURE 8.10

y = 35,000e7t

65 + 35e7t

EXAMPLE 2.6 Solving a Logistic Growth Problem

Given a maximum sustainable population of M = 1000 (this could be measured in

millions or tons, etc.) and growth rate k = 0.007, find an expression for the population

at any time t, given an initial population of y(0) = 350 and assuming logistic growth.

Solution From the solution (2.6) of the logistic equation, we have k M = 7 and

y = 1000Ae7t

1 + Ae7t
.

From the initial condition, we have

350 = y(0) = 1000A

1 + A
.

Solving for A, we obtain A = 35
65

, which gives us the solution of the IVP

y = 35,000e7t

65 + 35e7t
.

This solution is plotted in Figure 8.10. �

Note that, in practice, the values of M and k are not known and must be estimated

from a careful study of the particular population. We explore these issues further in the

exercises.

In our final example, we consider an investment plan. Before working the problems,

try to make an educated guess of the answer in advance. For investments over long periods

of time, most people are surprised at how rapidly the money accumulates.
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EXAMPLE 2.7 Investment Strategies for Making a Million

Money is invested at 8% interest compounded continuously. If deposits are made

continuously at the rate of $2000 per year, find the size of the initial investment needed

to reach $1 million in 20 years.

Solution Here, interest is earned at the rate of 8% and additional deposits are

assumed to be made on a continuous basis. If the deposit rate is $d per year, the amount

A(t) in the account after t years satisfies the differential equation

dA

dt
= 0.08A + d.

This equation is separable and can be solved by dividing both sides by 0.08A + d and

integrating. We have  
1

0.08A + d
dA =

 
1 dt,

so that

1

0.08
ln |0.08A + d| = t + c.

Using d = 2000, we have

12.5 ln |0.08A + 2000| = t + c.

Setting t = 0 and taking A(0) = x gives us the constant of integration:

12.5 ln |0.08x + 2000| = c,

so that

12.5 ln |0.08A + 2000| = t + 12.5 ln |0.08x + 2000|. (2.7)

To find the value of x such that A(20) = 1,000,000, we substitute t = 20 and

A = 1,000,000 into equation (2.7) to obtain

12.5 ln |0.08(1,000,000) + 2000| = 20 + 12.5 ln |0.08x + 2000|
or 12.5 ln |82,000| = 20 + 12.5 ln |0.08x + 2000|.
We can solve this for x, by subtracting 20 from both sides and then dividing by 12.5,

to obtain

12.5 ln 82,000 − 20

12.5
= ln |0.08x + 2000|.

Taking the exponential of both sides, we now have

e(12.5 ln 82,000−20)/12.5 = 0.08x + 2000.

Solving this for x yields

x = eln 82,000−1.6 − 2000

0.08
≈ 181,943.93.

So, the initial investment needs to be $181,943.93 (slightly less than $200,000) in order

to be worth $1 million at the end of 20 years. �

To be fair, the numbers in example 2.7 (like most investment numbers) must be in-

terpreted carefully. Of course, 20 years from now, $1 million likely won’t buy as much

as $1 million does today. For instance, the value of a million dollars adjusted for 8%
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annual inflation would be $1,000,000e−0.08(20) ≈ $201,896, which is not much larger than

the $181,943 initial investment required. However, if inflation is only 4%, then the value

of a million dollars (in current dollars) is $449,328. The lesson here is the obvious one: Be

sure to invest money at an interest rate that exceeds the rate of inflation.

EXERCISES 8.2

WRITING EXERCISES

1. Discuss the differences between solving algebraic equations

(e.g., x2 − 1 = 0) and solving differential equations. Espe-

cially note what type of mathematical object you are solving

for.

2. A differential equation is not separable if it can’t be writ-

ten in the form g(y)y = h(x). If you have an equation that

you can’t write in this form, how do you know whether

it’s really impossible or you just haven’t figured it out yet?

Discuss some general forms (e.g., x + y and xy) that give

you clues as to whether the equation is likely to separate or

not.

3. The solution curves in Figures 8.6, 8.8a and 8.9 do not appear

to cross. In fact, they never intersect. If solution curves crossed

at the point (x1, y1), then there would be two solutions satisfy-

ing the initial condition y(x1) = y1. Explain why this does not

happen. In terms of the logistic equation as a model of popula-

tion growth, explain why it is important to know that this does

not happen.

4. The logistic equation includes a term in the differential equa-

tion that slows population growth as the population increases.

Discuss some of the reasons why this occurs in real populations

(human, animal and plant).

In exercises 1–8, determine whether the differential equation is

separable.

1. y = (3x + 1) cos y 2. y = 2x(cos y − 1)

3. y = (3x + y) cos y 4. y = 2x(y − x)

5. y = x2 y + y cos x 6. y = 2x cos y − xy3

7. y = x2 y − x cos y 8. y = x3 − 2x + 1

In exercises 9–22, the differential equation is separable. Find the

general solution, in an explicit form if possible. Sketch several

members of the family of solutions.

9. y = (x2 + 1)y 10. y = 2x(y − 1)

11. y = 2x2 y2 12. y = 2(y2 + 1)

13. y = 6x2

y(1 + x3)
14. y = 3x

y + 1

15. y = 2xey

yex
16. y =

 
1 − y2

x ln x

17. y = y2 − y 18. y = x cos2 y

19. y = xy

1 + x2
20. y = 2

xy + y

21. y = cos2 y

4x − 3
22. y = (y2 + 1) ln x

4y

In exercises 23–30, solve the IVP, explicitly if possible.

23. y = 3(x + 1)2 y, y(0) = 1 24. y = x − 1

y2
, y(0) = 2

25. y = 4x2

y
, y(0) = 2 26. y = x − 1

y
, y(0) = −2

27. y = 4y

x + 3
, y(−2) = 1 28. y = 3x

4y + 1
, y(1) = 4

29. y = 4x

cos y
, y(0) = 0 30. y = tan y

x
, y(1) = π

2

In exercises 31–36, use equation (2.6) to help solve the IVP.

31. y = 3y(2 − y), y(0) = 1 32. y = y(3 − y), y(0) = 2

33. y = 2y(5 − y), y(0) = 4 34. y = y(2 − y), y(0) = 1

35. y = y(1 − y), y(0) = 3
4

36. y = y(3 − y), y(0) = 0

37. The logistic equation is sometimes written in the form

y (t) = r y(t)(1 − y(t)/M). Show that this is equivalent to

equation (2.4) with r/M = k. Biologists have measured the

values of the carrying capacity M and growth rate r for a

variety of fish. Just for the halibut, approximate values are

r = 0.71 year−1 and M = 8 × 107 kg. If the initial biomass of

halibut is y(0) = 2 × 107 kg, find an equation for the biomass

of halibut at any time. Sketch a graph of the biomass as a

function of time.

38. Estimate how long it will take for the biomass of the halibut

in exercise 37 to get within 10% of the carrying capacity.

39. Find the solution of equation (2.4) if y(t) > M .

40. Use the solution found in exercise 39 and the parameters for

the halibut in exercise 37 to answer the following question. If

the halibut biomass explodes to 3 × 108 kg, how long will

it take for the population to drop back to within 10% of the

carrying capacity?
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41. In example 2.4, find and graph the solution passing through

(0, 0).

42. In exercise 41, notice that the initial value problem is

y = x2 + 7x + 3

y2
with y(0) = 0. If you substitute y = 0 into

the differential equation, what is y (0)? Verify that your answer

in exercise 41 has this property. Describe what is happening

graphically at x = 0. (See Figure 8.6.)

43. For the differential equation y = x2 + 7x + 3

y2
used in exer-

cises 41 and 42, notice that y (x) does not exist at any x for

which y(x) = 0. Given the solution of example 2.4, this occurs

if x3 + 21
2

x2 + 9x + 3c = 0. Find the values c1 and c2 such that

this equation has three real solutions if and only if c1 < c < c2.

44. Graph the solution of y = x2 + 7x + 3

y2
with c = c2. (See

exercise 43.)

45. For c = c2 in exercise 43, argue that the solution to

y = x2 + 7x + 3

y2
with y(0) = 3

√
3c2 has two points with

vertical tangent lines.

46. Estimate the locations of the three points with vertical tangent

lines in exercise 41.

Exercises 47–56 relate to money investments.

47. If continuous deposits are made into an account at the rate

of $2000 per year and interest is earned at 6% compounded

continuously, find the size of the initial investment needed to

reach $1 million in twenty years. Comparing your answer to

that of example 2.7, how much difference does the interest rate

make?

48. If $10,000 is invested initially at 6% interest compounded

continuously, find the (yearly) continuous deposit rate needed

to reach $1 million in twenty years. Comparing your answer

to that of exercise 47, how much difference does an initial

deposit make?

49. A home mortgage is a loan that is to be paid over a fixed

period of time. Suppose $150,000 is borrowed at 8% interest.

If the monthly payment is $P , then explain why the equation

A (t) = 0.08A(t) − 12P, A(0) = 150,000 is a model of the

amount owed after t years. For a 30-year mortgage, the pay-

ment P is set so that A(30) = 0. Find P. Then, compute the

total amount paid and the amount of interest paid.

50. Rework exercise 49 with a 7.5% loan. Does the half-percent

decrease in interest rate make a difference?

51. Rework exercise 49 with a 15-year mortgage. Compare the

monthly payments and total amount paid.

52. Rework exercise 49 with a loan of $125,000. How much differ-

ence does it make to add an additional $25,000 down payment?

53. A person contributes $10,000 per year to a retirement fund

continuously for 10 years until age 40 but makes no initial

payment and no further payments. At 8% interest, what is the

value of the fund at age 65?

54. A person contributes $20,000 per year to a retirement fund

from age 40 to age 65 but makes no initial payment. At 8%

interest, what is the value of the fund at age 65? Compare with

your answer to exercise 53.

55. Find the interest rate r at which the investors of exercises 53

and 54 have equal retirement funds.

56. An endowment is seeded with $1,000,000 invested with inter-

est compounded continuously at 10%. Determine the amount

that can be withdrawn (continuously) annually so that the

endowment lasts thirty years.

Exercises 57–60 relate to reversible bimolecular chemical re-

actions, where molecules A and B combine to form two other

moleculesC andDand vice versa. If x(t) and y(t) are the concen-

trations of C and D, respectively and the initial concentrations

of A, B, C and D are a, b, c and d, respectively, then the reaction

is modeled by

x (t)  k1(a  c − x)(b c − x) − k−1x(d − c x)

for rate constants k1 and k−1.

57. If k1 = 1, k−1 = 0.625, a + c = 0.4, b + c = 0.6, c = d and

x(0) = 0.2, find the concentration x(t). Graph x(t) and find

the eventual concentration level.

58. Repeat exercise 57 with (a) x(0) = 0.3 and (b) x(0) = 0.6.

Briefly explain what is physically impossible about the initial

condition in part (b).

59. For the bimolecular reaction with k1 = 0.6, k−1 = 0.4,

a + c = 0.5, b + c = 0.6 and c = d, write the differential

equation for the concentration of C. For x(0) = 0.2, solve for

the concentration at any time and graph the solution.

60. For the bimolecular reaction with k1 = 1.0, k−1 = 0.4,

a + c = 0.6, b + c = 0.4 and d − c = 0.1, write the differ-

ential equation for the concentration of C. For x(0) = 0.2,

solve for the concentration at any time and graph the solution.

61. In a second-order chemical reaction, one molecule each of

substances A and B combine to produce one molecule of sub-

stance X. If a and b are the initial concentrations of A and B,

respectively, the concentration x of the substance X satisfies the

differential equation x  = r (a − x)(b − x) for some positive

rate constant r. (a) If r = 0.4, a = 6, b = 8 and x(0) = 0, find

x(t) and lim
t→∞

x(t). Explain this answer in terms of the chemical

process. (b) Repeat part (a) with r = 0.6. Graph the solutions

and discuss differences and similarities.

62. In a second-order chemical reaction, if there is initially 10 g

of substance A available and 12 g of substance B available,

then the amount x(t) of substance X formed by time t satisfies
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the IVP x  (t) = r (10 − x)(12 − x), x(0) = 0. Explain why,

physically, it makes sense that 0 ≤ x < 10. Solve the IVP and

indicate where you need this assumption.

Exercises 63–68 relate to logistic growth with harvesting. Sup-

pose that a population in isolation satisfies the logistic equation

y (t)  ky(M − y). If the population is harvested (for example,

by fishing) at the rate R, then the population model becomes

y (t)  ky(M − y) − R.

63. Suppose that a species of fish has population in hundreds of

thousands that follows the logistic model with k = 0.025 and

M = 8. Determine the long-term effect on population if the

initial population is 800,000 [y(0) = 8] and fishing removes

fish at the rate of 20,000 per year.

64. Repeat exercise 63 if fish are removed at the rate of 60,000 per

year.

65. For the fishing model P  (t) = 0.025P(t)[8 − P(t)] − R

(see exercise 63), the population is constant if

P  (t) = P2 − 8P + 40R = 0. The solutions are called equi-

librium points. Compare the equilibrium points for exercises

63 and 64.

66. Determine the critical fishing level Rc such that there are two

equilibrium points if and only if R < Rc.

67. Solve the population model

P  (t) = 0.05P(t)[8 − P(t)] − 0.6

= 0.4P(t)[1 − P(t)/8] − 0.6

with P(0) > 2 and determine the limiting amount lim
t→∞

P(t).

What happens if P(0) < 2?

68. The constant 0.4 in exercise 67 represents the natural growth

rate of the species. Comparing answers to exercises 63 and 67,

discuss how this constant affects the population size.

69. The resale value r (t) of a machine decreases at a rate propor-

tional to the difference between the current price and the scrap

value S. Write a differential equation for r. If the machine sells

new for $14,000, is worth $8000 in 4 years and has a scrap value

of $1000, find an equation for the resale value at any time.

70. A granary is filled with 6000 kg of grain. The grain is shipped

out at a constant rate of 1000 kg per month. Storage costs

equal 2 cents per kg per month. Let S(t) be the total storage

charge for t months. Write a differential equation for S with

0 ≤ 1 ≤ 6. Solve the initial value problem for S(t). What is

the total storage bill for six months?

71. The population models P  (t) = k P(t) and P  (t) = k[P(t)]1.1

look very similar. The first is called exponential growth and is

studied in detail in section 8.1. The second is sometimes called

a doomsday model. Solve the general doomsday equation.

Assuming that P(0) and k are positive, find the time at which

the population becomes infinite.

72. Suppose that the thrust of a boat’s propeller produces a constant

acceleration, but that friction with water produces a decelera-

tion that is proportional to the square of the speed of the boat.

Write a differential equation for the speed v of the boat. Find

equilibrium points and use a slope diagram to determine the

eventual speed of the boat.

73. For the logistic equation y (t) = ky(M − y), show that a graph

of 1
y

y as a function of y produces a linear graph. Given the

slope m and intercept b of this line, explain how to compute

the model parameters k and M.

74. You suspect that a fish population follows a logistic equation.

Use the following data to estimate k and M, as in exercise 73.

Predict the eventual population of the fish.

t 2 3 4 5

y 1197 1291 1380 1462

75. The downward velocity of a falling object is modeled by the

differential equation
dv

dt
= 32 − 0.4v2. If v(0) = 0 ft/s, the

velocity will increase to a terminal velocity. The terminal

velocity is an equilibrium solution where the upward air drag

exactly cancels the downward gravitational force. Find the

terminal velocity.

76. Suppose that f is a function such that f (x) ≥ 0 and f  (x) < 0

for x > 0. Show that the area of the triangle with sides

x = 0, y = 0 and the tangent line to y = f (x) at x = a > 0

is A(a) = − 1
2
{a2 f  (a) − 2a f (a) + [ f (a)]2/ f  (a)}. To find a

curve such that this area is the same for any choice of a > 0,

solve the equation
d A

da
= 0.

77. It is an interesting fact that the inflection point in the solu-

tion of a logistic equation (see figure) occurs at y = 1
2

M . To

verify this, you do not want to compute two derivatives of

equation (2.6) and solve y  = 0. This would be quite ugly and

would give you the solution in terms of t, instead of y. Instead,

a more abstract approach works well. Start with the differential

equation y = ky(M − y) and take derivatives of both sides.

y

x

M

2

M

Inflection point

(Hint: Use the product and chain rules on the right-hand side.)

You should find that y  = ky (M − 2y). Then, y  = 0 if and

only if y = 0 or y = 1
2

M . Rule out y = 0 by describing how

the solution behaves at the equilibrium values.
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78. The differential equation y = −ay ln(y/b) (for positive con-

stants a and b) arises in the study of the growth of some animal

tumors. Solve the differential equation and sketch several mem-

bers of the family of solutions. What adjective (e.g., rapid,

moderate, slow) would you use to characterize this type of

growth?

79. Use the technique of exercise 77 to show that solutions of

y = −ay ln(y/b) for positive constants a and b have at most

one inflection point, which occurs at y = b/a.

EXPLORATORY EXERCISES

1. Look up the census figures for the U.S. population starting

in 1790. (You can find this information in any library, in

virtually any almanac or encyclopedia.) Plot the data on a

graph of population versus time. Does this look like the so-

lution of a logistic equation? Briefly explain. If you wanted

to model these data with a logistic function, you would need

to estimate values for k and M. As shown in exercise 77, M

equals twice the height of the inflection point. Explain why

(for the logistic curve) the inflection point represents the point

of maximum slope. Estimate this for the population data. To

estimate r, note that for small populations, the logistic equation

y = r y(1 − y/k) ≈ r y. Then r equals the rate of exponential

increase. Show that for the first 50 years, the U.S. population

growth was approximately exponential and find the percentage

increase as an estimate of r. With these values of r and M and

the initial population in 1790, find a function describing the

population. Test this model by comparing actual populations

to predicted populations for several years.

2. An object traveling through the air is acted on by grav-

ity (acting vertically), air resistance (acting in the direc-

tion opposite velocity) and other forces (such as a motor).

An equation for the horizontal motion of a jet plane is

v = c − f (v)/m, where c is the thrust of the motor and

f (v) is the air resistance force. For some ranges of ve-

locity, the air resistance actually drops substantially for

higher velocities as the air around the object becomes tur-

bulent. For example, suppose that v = 32,000 − f (v), where

f (v) =
 

0.8v2 if 0 ≤ v ≤ 100

0.2v2 if 100 < v
. To solve the initial value

problem v = 32,000 − f (v), v(0) = 0, start with the initial

value problem v = 32,000 − 0.8v2, v(0) = 0. Solve this IVP 
Hint:

1

40,000−v2
= 1

400

 
1

200 + v + 1

200 − v

  
and de-

termine the time t such that v(t) = 100. From this time forward,

the equation becomes v = 32,000 − 0.2v2. Solve the IVP

v = 32,000 − 0.2v2, v(0) = 100. Put this solution together

with the previous solution to piece together a solution valid

for all time.

3. Solve the initial value problems dy

dt
= 2(1 − y)(2 − y)(3 − y)

with (a) y(0) = 0, (b) y(0) = 1.5, (c) y(0) = 2.5 and

(d) y(0) = 4. State as completely as possible how the limit

lim
t→∞

y(t) depends on y(0).

8.3 DIRECTION FIELDS AND EULER’S METHOD

In section 8.2, we saw how to solve some simple first-order differential equations, namely,

those that are separable. While there are numerous other special cases of differential equa-

tions whose solutions are known (you will encounter many of these in any beginning course

in differential equations), the vast majority cannot be solved exactly. For instance, the

equation

y = x2 + y2 + 1

is not separable and cannot be solved using our current techniques. Nevertheless, some infor-

mation about the solution(s) can be determined. In particular, since y = x2 + y2 + 1 > 0,

we can conclude that every solution is an increasing function. This type of information is

called qualitative, since it tells us about some quality of the solution without providing any

specific quantitative information.

In this section, we examine first-order differential equations in a more general setting.

We consider any first-order equation of the form

y = f (x, y). (3.1)

While we cannot solve all such equations, it turns out that there are many numerical methods

available for approximating the solution of such problems. In this section, we will study

one such method, called Euler’s method.
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We begin by observing that any solution of equation (3.1) is a function y = y(x) whose

slope at any particular point (x, y) is given by f (x, y). To get an idea of what a solution

curve looks like, we draw a short line segment through each of a sequence of points (x, y),

with slope f (x, y), respectively. This collection of line segments is called the direction

field or slope field of the differential equation. Notice that if a particular solution curve

passes through a given point (x, y), then its slope at that point is f (x, y). Thus, the direction

field gives an indication of the behavior of the family of solutions of a differential equation.

HISTORICAL
NOTES

Leonhard Euler (1707–1783)

A Swiss mathematician regarded

as the most prolific mathematician

of all time. Euler’s complete

works fill over 100 large volumes,

with much of his work being

completed in the last 17 years of

his life after losing his eyesight.

Euler made important and lasting

contributions in numerous

research fields, including calculus,

number theory, calculus of

variations, complex variables,

graph theory and differential

geometry. Mathematics author

George Simmons calls Euler, “the

Shakespeare of mathematics—

universal, richly detailed and

inexhaustible.”

EXAMPLE 3.1 Constructing a Direction Field

Construct the direction field for

y = 1

2
y. (3.2)

Solution All that needs to be done is to plot a number of points and then through each

point (x, y), draw a short line segment with slope f (x, y). For example, at the point

(0, 1), draw a short line segment with slope

y (0) = f (0, 1) = 1
2
(1) = 1

2
.

Draw similar segments at 25 to 30 points. This is a bit tedious to do by hand, but a good

graphing utility can do this for you with minimal effort. See Figure 8.11a for the

direction field for equation (3.2). Notice that equation (3.2) is separable. We leave it as

an exercise to produce the general solution

y = Ae
1
2

x .

We plot a number of the curves in this family of solutions in Figure 8.11b using the

same graphing window we used for Figure 8.11a. Notice that if you connected some of

the line segments in Figure 8.11a, you would obtain a close approximation to the

exponential curves depicted in Figure 8.11b. This is significant because the direction

field was constructed using only elementary algebra, without first solving the

differential equation. That is, by constructing the direction field, we obtain a reasonably

good picture of how the solution curves behave. This is qualitative information about

the solution: we get a graphical idea of how solutions behave, but no details, such as the

value of a solution at a specific point. We’ll see later in this section that we can obtain

approximate values of the solution of an IVP numerically.

 4  2 2 4

2

x

y

 4

 2

4
4

 4

 4 2 4

y

x

FIGURE 8.11a
Direction field for y = 1

2
y

FIGURE 8.11b
Several solutions of y = 1

2
y

�
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As we have already seen, differential equations are used to describe a wide variety

of phenomena in science and engineering. Among many other applications, differential

equations are used to find flow lines or equipotential lines for electromagnetic fields. In

such cases, it is very helpful to visualize solutions graphically, so as to gain an intuitive

understanding of the behavior of such solutions and the physical phenomena they are

modeling.

EXAMPLE 3.2 Using a Direction Field to Visualize the Behavior
of Solutions

Construct the direction field for

y = x + e−y .

Solution There’s really no trick to this; just draw a number of line segments with the

correct slope. Again, we let our CAS do this for us and obtained the direction field in

Figure 8.12a. Unlike example 3.1, you do not know how to solve this differential

equation exactly. Even so, you should be able to clearly see from the direction field how

solutions behave. For example, solutions that start out in the second quadrant initially

decrease very rapidly, may dip into the third quadrant and then get pulled into the first

quadrant and increase quite rapidly toward infinity. This is quite a bit of information to

have determined using little more than elementary algebra. In Figure 8.12b, we have

plotted the solution of the differential equation that also satisfies the initial condition

y(−4) = 2. We’ll see how to generate such an approximate solution later in this section.

Note how well this corresponds with what you get by connecting a few of the line

segments in Figure 8.12a.

 4  2

 2

4

x

y

 4

2 4

2

x

y

 2 2

2

4

 4

FIGURE 8.12a
Direction field for y = x + e−y

FIGURE 8.12b
Solution of y = x + e−y

passing through (−4, 2)

�

You have already seen (in sections 8.1 and 8.2) how differential equation models can

provide important information about how populations change over time. A model that

includes a critical threshold is

P  (t) = −2[1 − P(t)][2 − P(t)]P(t),

where P(t) represents the size of a population at time t.

A simple context in which to understand a critical threshold is with the problem of the

sudden infestations of pests. For instance, suppose that you have some method for removing
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ants from your home. As long as the reproductive rate of the ants is lower than your removal

rate, you will keep the ant population under control. However, as soon as your removal

rate becomes less than the ant reproductive rate (i.e., the removal rate crosses a critical

threshold), you won’t be able to keep up with the extra ants and you will suddenly be faced

with a big ant problem. We see this type of behavior in example 3.3.

EXAMPLE 3.3 Population Growth with a Critical Threshold

Draw the direction field for

P  (t) = −2[1 − P(t)][2 − P(t)]P(t)

and discuss the eventual size of the population.

Solution The direction field is particularly easy to sketch here since the right-hand

side depends on P, but not on t. If P(t) = 0, then P  (t) = 0, also, so that the direction

field is horizontal. The same is true for P(t) = 1 and P(t) = 2. If 0 < P(t) < 1, then

P  (t) < 0 and the solution decreases. If 1 < P(t) < 2, then P  (t) > 0 and the solution

increases. Finally, if P(t) > 2, then P  (t) < 0 and the solution decreases. Putting all of

these pieces together, we get the direction field seen in Figure 8.13. The constant

solutions P(t) = 0, P(t) = 1 and P(t) = 2 are called equilibrium solutions. P(t) = 1

is called an unstable equilibrium, since populations that start near 1 don’t remain close

to 1. P(t) = 0 and P(t) = 2 are called stable equilibria, since populations either rise to

2 or drop to 0 (extinction), depending on which side of the critical threshold P(t) = 1

they are on. (Look again at Figure 8.13.)

2 31

1

2

3

 1 2 3
t

P

FIGURE 8.13
Direction field for P  (t) = −2[1 − P(t)][2 − P(t)]P(t)

�

In cases where you are interested in finding a particular solution, the numerous arrows

of a direction field can be distracting. Euler’s method, developed below, enables you to

approximate a single solution curve. The method is quite simple, based almost entirely on

the idea of a direction field. However, Euler’s method does not provide particularly accurate

approximations. More accurate methods will be explored in the exercises.

Consider the IVP

y = f (x, y), y(x0) = y0.

We must emphasize once again that, assuming there is a solution y = y(x), the differential

equation tells us that the slope of the tangent line to the solution curve at any point (x, y) is
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given by f (x, y). Remember that the tangent line to a curve stays close to that curve near

the point of tangency. Notice that we already know one point on the graph of y = y(x),

namely, the initial point (x0, y0). Referring to Figure 8.14, if we would like to approximate

the value of the solution at x = x1 [i.e., y(x1)] and if x1 is not too far from x0, then

we could follow the tangent line at (x0, y0) to the point corresponding to x = x1 and use

the y-value at that point (call it y1) as an approximation to y(x1). This is virtually the same

thinking we employed when we devised Newton’s method and differential (tangent line)

approximations. The equation of the tangent line at x = x0 is

y = y0 + y (x0)(x − x0).

Thus, an approximation to the value of the solution at x = x1 is the y-coordinate of the

point on the tangent line corresponding to x = x1, that is,

y(x1) ≈ y1 = y0 + y (x0)(x1 − x0). (3.3)

You have only to glance at Figure 8.14 to realize that this approximation is valid only when

x1 is close to x0. In solving an IVP, though, we are usually interested in finding the value of

the solution on an interval [a, b] of the x-axis. With Euler’s method, we settle for finding

an approximate solution at a sequence of points in the interval [a, b]. First, we partition the

interval [a, b] into n equal-sized pieces (a regular partition; where did you see this notion

before?):
a = x0 < x1 < x2 < · · · < xn = b,

where xi+1 − xi = h,

for all i = 0, 1, . . . , n − 1. We call h the step size. From the tangent line approximation

(3.3), we already have

y(x1) ≈ y1 = y0 + y (x0)(x1 − x0)

= y0 + h f (x0, y0),

where we have replaced (x1 − x0) by the step size, h and used the differential equation to

write y (x0) = f (x0, y0). To approximate the value of y(x2), we could use the tangent line

at the point (x1, y(x1)) to produce a tangent line approximation, but we don’t know the

y-coordinate of the point of tangency, y(x1). We do, however, have an approximation for

this, produced in the preceding step. So, we make the further approximation

y(x2) ≈ y(x1) + y (x1)(x2 − x1)

= y(x1) + h f (x1, y(x1)),

where we have used the differential equation to replace y (x1) by f (x1, y(x1)) and used the

fact that x2 − x1 = h. Finally, we approximate y(x1) by the approximation obtained in the

previous step, y1, to obtain

y(x2) ≈ y(x1) + h f (x1, y(x1))

≈ y1 + h f (x1, y1) = y2.

Continuing in this way, we obtain the sequence of approximate values

EULER’S METHOD

y(xi+1) ≈ yi+1 = yi + h f (xi , yi ), for i = 0, 1, 2 . . . . (3.4)

This tangent line method of approximation is called Euler’s method.

x0 x1

y

x

y   y(x)

(x1, y(x1))

(x1, y1)

FIGURE 8.14
Tangent line approximation
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EXAMPLE 3.4 Using Euler’s Method

Use Euler’s method to approximate the solution of the IVP

y = y, y(0) = 1.

Solution You can probably solve this equation by inspection, but if not, notice that

it’s separable and that the solution of the IVP is y = y(x) = ex . We will use this exact

solution to evaluate the performance of Euler’s method. From (3.4) with f (x, y) = y

and taking h = 1, we have

y(x1) ≈ y1 = y0 + h f (x0, y0)

= y0 + hy0 = 1 + 1(1) = 2.

Likewise, for further approximations, we have

y(x2) ≈ y2 = y1 + h f (x1, y1)

= y1 + hy1 = 2 + 1(2) = 4,

y(x3) ≈ y3 = y2 + h f (x2, y2)

= y2 + hy2

= 4 + 1(4) = 8

and so on. In this way, we construct a sequence of approximate values of the solution

function. In Figure 8.15, we have plotted the exact solution (solid line) against the

approximate solution obtained from Euler’s method (dashed line). Notice how the error

grows as x gets farther and farther from the initial point. This is characteristic of Euler’s

method (and other similar methods). This growth in error becomes even more apparent

if we look at a table of values of the approximate and exact solutions together. We

display these in the table that follows, where we have used h = 0.1 (values are

displayed to seven digits).

y

x

1

2

3

4

5

6

7

8

1 2 3

FIGURE 8.15
Exact solution versus the

approximate solution (dashed line)

x Euler Exact Error  Exact − Euler

0.1 1.1 1.1051709 0.0051709

0.2 1.21 1.2214028 0.0114028

0.3 1.331 1.3498588 0.0188588

0.4 1.4641 1.4918247 0.0277247

0.5 1.61051 1.6487213 0.0382113

0.6 1.771561 1.8221188 0.0505578

0.7 1.9487171 2.0137527 0.0650356

0.8 2.1435888 2.2255409 0.0819521

0.9 2.3579477 2.4596031 0.1016554

1.0 2.5937425 2.7182818 0.1245393

As you might expect from our development of Euler’s method, the smaller we make h,

the more accurate the approximation at a given point tends to be. As well, the smaller

the value of h, the more steps it takes to reach a given value of x. In the following table,

we display the Euler’s method approximation, the error and the number of steps needed

to reach x = 1.0. Here, the exact value of the solution is y = e1 ≈ 2.718281828459.
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h Euler Error  Exact − Euler Number of Steps

1.0 2 0.7182818 1

0.5 2.25 0.4682818 2

0.25 2.4414063 0.2768756 4

0.125 2.5657845 0.1524973 8

0.0625 2.6379285 0.0803533 16

0.03125 2.6769901 0.0412917 32

0.015625 2.697345 0.0209369 64

0.0078125 2.707739 0.0105428 128

0.00390625 2.7129916 0.0052902 256

From the table, observe that each time the step size h is cut in half, the error is also cut

roughly in half. This increased accuracy though, comes at the cost of the additional

steps of Euler’s methods required to reach a given point (doubled each time h

is halved). �

The point of having a numerical method, of course, is to find meaningful approximations

to the solution of problems that we do not know how to solve exactly. Example 3.5 is of

this type.

TODAY IN
MATHEMATICS

Kay McNulty (1921– )

An Irish mathematician who

became one of the first computer

software designers. In World

War II, before computers, she

approximated solutions of

projectile differential equations.

McNulty says, “We did have desk

calculators at that time,

mechanical and driven with

electric motors, that could do

simple arithmetic. You’d do a

multiplication and when the

answer appeared, you had to

write it down to reenter it into

the machine to do the next

calculation. We were preparing a

firing table for each gun, with

maybe 1800 simple trajectories.

To hand-compute just one of

these trajectories took 30 or

40 hours of sitting at a desk with

paper and a calculator. . . .

Actually, my title working for

the ballistics project was

‘computer’. . . . ENIAC made me,

one of the first ‘computers,’

obsolete.’’

EXAMPLE 3.5 Finding an Approximate Solution

Find an approximate solution for the IVP

y = x2 + y2, y(−1) = −1

2
.

1 1 2

 1

1

x

y

FIGURE 8.16
Direction field for y = x2 + y2

Solution First let’s take a look at the direction field, so that we can see how solutions

to this differential equation should behave. (See Figure 8.16.) Using Euler’s method

with h = 0.1, we get

y(x1) ≈ y1 = y0 + h f (x0, y0)

= y0 + h
 
x2

0 + y2
0

 
= −1

2
+ 0.1

 
(−1)2 +

 
−1

2

 2
 

= −0.375



586 CHAPTER 8 .. First-Order Differential Equations 8-30

and y(x2) ≈ y2 = y1 + h f (x1, y1)

= y1 + h
 
x2
1 + y21

 

= −0.375 + 0.1[(−0.9)2 + (−0.375)2] = −0.2799375

and so on. Continuing in this way, we generate the table of values that follows.

x Euler x Euler x Euler

−0.9 −0.375 0.1 −0.0575822 1.1 0.3369751

−0.8 −0.2799375 0.2 −0.0562506 1.2 0.4693303

−0.7 −0.208101 0.3 −0.0519342 1.3 0.6353574

−0.6 −0.1547704 0.4 −0.0426645 1.4 0.8447253

−0.5 −0.116375 0.5 −0.0264825 1.5 1.1120813

−0.4 −0.0900207 0.6 −0.0014123 1.6 1.4607538

−0.3 −0.0732103 0.7 0.0345879 1.7 1.9301340

−0.2 −0.0636743 0.8 0.0837075 1.8 2.5916757

−0.1 −0.0592689 0.9 0.1484082 1.9 3.587354

0.0 −0.0579176 1.0 0.2316107 2.0 5.235265

0.5 1.0 1.5 2.0
x

 1.0

0.5

1.0

1.5

y

 0.5

 1.0

 1.5

0.5 1.0 1.5 2.0
x

 1.0

0.5

1.0

1.5

y

 0.5

 1.0

 1.5

FIGURE 8.17a

Approximate solution of y 
= x2

+ y2,

passing through (−1, −
1

2
)

FIGURE 8.17b

Approximate solution superimposed

on the direction field

In Figure 8.17a, we display a smooth curve connecting the data points in the preceding

table. Take particular note of how well this corresponds with the direction field in

Figure 8.16. To make this correspondence more apparent, we show a graph of the

approximate solution superimposed on the direction field in Figure 8.17b. Since this

corresponds so well with the behavior you expect from the direction field, you should

expect that there are no gross errors in this approximate solution. (Certainly, there is

always some level of round-off and other numerical errors.) �

We can expand on the concept of equilibrium solution, which we introduced briefly in

example 3.3. More generally, we say that the constant function y = c is an equilibrium

solution of the differential equation y 
= f (t, y) if f (t, c) = 0 for all t. In simple terms,

this says that y = c is an equilibrium solution of the differential equation y 
= f (t, y) if the

substitution y = c reduces the equation to simply y 
= 0. Observe that this, in turn, says
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that y(t) = c is a (constant) solution of the differential equation. In example 3.6, notice that

finding equilibrium solutions requires only basic algebra.

0 2 2 4 4

40

80

120

x

y

FIGURE 8.18a
Direction field
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FIGURE 8.18b
Solution curve starting above

y = 70
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FIGURE 8.18c
Solution curve starting below

y = 70
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FIGURE 8.19
Direction field for y = 2y(4 − y)

EXAMPLE 3.6 Finding Equilibrium Solutions

Find all equilibrium solutions of (a) y (t) = k[y(t) − 70] and (b) y (t) = 2y(t)[4 − y(t)].

Solution An equilibrium solution is a constant solution that reduces the equation to

y (t) = 0. For part (a), this gives us

0 = y (t) = k[y(t) − 70] or 0 = y(t) − 70.

The only equilibrium solution is then y = 70. For part (b), we want

0 = 2y(t)[4 − y(t)] or 0 = y(t)[4 − y(t)].

So, in this case, there are two equilibrium solutions: y = 0 and y = 4. �

There is some special significance to an equilibrium solution, which we describe from

a sketch of the direction field. Start with the differential equation y (t) = k[y(t) − 70] for

some negative constant k. Notice that if y(t) > 70, then y (t) = k[y(t) − 70] < 0 (since

k is negative). Of course, y (t) < 0 means that the solution is decreasing. Similarly, when

y(t) < 70, we have that y (t) = k[y(t) − 70] > 0, so that the solution is increasing. Observe

that the direction field sketched in Figure 8.18a suggests that y(t) → 70 as t → ∞, since

all arrows point toward the line y = 70. More precisely, if a solution curve lies slightly

above the line y = 70, notice that the solution decreases, toward y = 70, as indicated in

Figure 8.18b. Similarly, if the solution curve lies slightly below y = 70, then the solution

increases toward y = 70, as shown in Figure 8.18c. You should observe that we obtained

this information without solving the differential equation.

We say that an equilibrium solution is stable if solutions close to the equilibrium

solution tend to approach that solution as t → ∞. Observe that this is the behavior indicated

in Figures 8.18a to 8.18c, so that the solution y = 70 is stable. Alternatively, an equilibrium

solution is unstable if solutions close to the equilibrium solution tend to get further away

from that solution as t → ∞.

In example 3.6, part (b), we found that y (t) = 2y(t)[4 − y(t)] has the two equilibrium

solutions y = 0 and y = 4. We now use a direction field to determine whether these solutions

are stable or unstable.

EXAMPLE 3.7 Determining the Stability of Equilibrium Solutions

Draw a direction field for y (t) = 2y(t)[4 − y(t)] and determine the stability of all

equilibrium solutions.

Solution We previously determined that the equilibrium solutions are y = 0 and

y = 4.

We add the horizontal lines y = 0 and y = 4 to the direction field, as shown in

Figure 8.19.

Observe that the behavior is distinctly different in each of three regions in this

diagram: y > 4, 0 < y < 4 and y < 0.We analyze each separately. First, observe that if

y(t) > 4, then y (t) = 2y(t)[4 − y(t)] < 0 (since 2y is positive, but 4 − y is negative).

Next, if 0 < y(t) < 4, then y (t) = 2y(t)[4 − y(t)] > 0 (since 2y and 4−y are both

positive in this case). Finally, if y(t) < 0, then y (t) = 2y(t)[4 − y(t)] < 0. In

Figure 8.19, the arrows on either side of the line y = 4 all point toward y = 4. This

indicates that y = 4 is stable. By contrast, the arrows on either side of y = 0 point away

from y = 0, indicating that y = 0 is unstable. �
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Notice that the direction field in example 3.7 gives strong evidence that if y(0) > 0,

then the limiting value is lim
t→∞

y(t) = 4. [Think about why the condition y(0) > 0 is needed

here.]

BEYOND FORMULAS

Numerical approximations of solutions of differential equations are basic tools of the

trade for modern engineers and scientists. Euler’s method, presented in this section, is

one of the least accurate methods in use today, but its simplicity makes it useful in a

variety of applications. Most differential equations cannot be solved exactly. For such

cases, we need reliable numerical methods to obtain approximate values of the solution.

What other types of calculations have you seen that typically must be approximated?

EXERCISES 8.3

WRITING EXERCISES

1. For Euler’s method, explain why using a smaller step size

should produce a better approximation.

2. Look back at the direction field in Figure 8.16 and the Euler’s

method solution in Figure 8.17a. Describe how the direction

field gives you a more accurate sense of the exact solution.

Given this, explain why Euler’s method is important. (Hint:

How would you get a table of approximate values of the solu-

tion from a direction field?)

3. In the situation of example 3.3, if you only needed to know the

stability of an equilibrium solution, explain why a qualitative

method is preferred over trying to solve the differential equa-

tion. Describe one situation in which you would need to solve

the equation.

4. Imagine superimposing solution curves over Figure 8.12a. Ex-

plain why the Euler’s method approximation takes you from

one solution curve to a nearby one. Use one of the exam-

ples in this section to describe how such a small error could

lead to very large errors in approximations for large values

of x.

In exercises 1–6, construct four of the direction field arrows by

hand and use your CAS or calculator to do the rest. Describe

the general pattern of solutions.

1. y = x + 4y

2. y =
 

x2 + y2

3. y = 2y − y2

4. y = y3 − 1

5. y = 2xy − y2

6. y = y3 − x

In exercises 7–12,match eachdifferential equation to the correct

direction field.

7. y = 2 − xy 8. y = 1 + 2xy 9. y = x cos 3y

10. y = y cos 3x 11. y =
 

x2 + y2 12. y = ln(x2 + y2)

 5

 5

5

5

y

x

FIELD A

 5

 5

5

5

y

x

FIELD B
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In exercises 13–20, use Euler’s method with h  0.1 and

h  0.05 to approximate y(1) and y(2). Show the first two steps

by hand.

13. y = 2xy, y(0) = 1 14. y = x/y, y(0) = 2

15. y = 4y − y2, y(0) = 1 16. y = x/y2, y(0) = 2

17. y = 1 − y + e−x , y(0) = 3 18. y = sin y − x2, y(0) = 1

19. y = √
x + y, y(0) = 1 20. y =

 
x2 + y2, y(0) = 4

21. Find the exact solutions in exercises 13 and 14, and compare

y(1) and y(2) to the Euler’s method approximations.

22. Find the exact solutions in exercises 15 and 16, and compare

y(1) and y(2) to the Euler’s method approximations.

23. Sketch the direction fields for exercises 17 and 18, highlight

the curve corresponding to the given initial condition and com-

pare the Euler’s method approximations to the location of the

curve at x = 1 and x = 2.

24. Sketch the direction fields for exercises 19 and 20, highlight

the curve corresponding to the given initial condition and com-

pare the Euler’s method approximations to the location of the

curve at x = 1 and x = 2.

In exercises 25–30, find the equilibrium solutions and determine

which are stable and which are unstable.

25. y = 2y − y2 26. y = y3 − 1

27. y = y2 − y4 28. y = e−y − 1

29. y = (1 − y)
 

1 + y2 30. y =
 

1 − y2

31. Zebra stripes and patterns on butterfly wings are thought to

be the result of gene-activated chemical processes. Suppose

g(t) is the amount of gene that is activated at time t. The dif-

ferential equation g = −g + 3g2

1 + g2
has been used to model

the process. Show that there are three equilibrium solutions:

0 and two positive solutions a and b, with a < b. Show that

g > 0 if a < g < b and g < 0 if 0 < g < a or g > b. Explain

why lim
t→∞

g(t) could be 0 or b, depending on the initial amount

of activated gene. Suppose that a patch of zebra skin extends

from x = 0 to x = 4π with an initial activated-gene distribu-

tion g(0) = 3
2

+ 3
2

sin x at location x. If black corresponds to

an eventual activated-gene level of 0 and white corresponds

to an eventual activated-gene level of b, show what the zebra

stripes will look like.
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32. Many species of trees are plagued by sudden infestations of

worms. Let x(t) be the population of a species of worm on a par-

ticular tree. For some species, a model for population change is

x  = 0.1x(1 − x/k) − x2/(1 + x2) for some positive constant

k. If k = 10, show that there is only one positive equilibrium

solution. If k = 50, show that there are three positive equilib-

rium solutions. Sketch the direction field for k = 50. Explain

why the middle equilibrium value is called a threshold. An

outbreak of worms corresponds to crossing the threshold for a

large value of k (k is determined by the resources available to

the worms).

33. Apply Euler’s method with h = 0.1 to the initial value prob-

lem y = y2 − 1, y(0) = 3 and estimate y(0.5). Repeat with

h = 0.05 and h = 0.01. In general, Euler’s method is more

accurate with smaller h-values. Conjecture how the exact so-

lution behaves in this example. (This is explored further in

exercises 34–36.)

34. Show that f (x) = 2 + e2x

2 − e2x
is a solution of the initial

value problem in exercise 33. Compute f (0.1), f (0.2), f (0.3),

f (0.4) and f (0.5), and compare to the approximations in ex-

ercise 33.

35. Graph the solution of y = y2 − 1, y(0) = 3, given in exer-

cise 34. Find an equation of the vertical asymptote. Explain

why Euler’s method would be “unaware” of the existence of

this asymptote and would therefore provide very unreliable

approximations.

36. In exercises 33–35, suppose that x represents time (in hours)

and y represents the force (in newtons) exerted on an arm of

a robot. Explain what happens to the arm. Given this, explain

why the negative function values in exercise 34 are irrelevant

and, in some sense, the Euler’s method approximations in ex-

ercise 33 give useful information.

In exercises 37–40, use the direction field to sketch solution

curves and estimate the initial value y(0) such that the solu-

tion curve would pass through the given point P. In exercises 37

and 38, solve the equation and determine how accurate your

estimate is. In exercises 39 and 40, use a CAS if available to

determine how accurate your estimate is.

37. y = x2 − 4x + 2, P(3, 0)

5

3

 5

y

x
p•

38. y = x − 3

4x + 1
, P(8, 1)

 10

10

y

811
x

 

•p

39. y = 0.2x + e−y2
, P(5,−3)

 10

5

10

y

x

 

•p

40. y = −0.1x − 0.1e−y2/20, P(10, 4)

10

10

y

x

•p

EXPLORATORY EXERCISES

1. There are several ways of deriving the Euler’s method formula.

One benefit of having an alternative derivation is that it may

suggest an improvement of the method. Here, we use an alter-

native form of Euler’s method to derive a method known as the

Improved Euler’s method. Start with the differential equa-

tion y (x) = f (x, y(x)) and integrate both sides from x = xn to

x = xn+1. Show that y(xn+1) = y(xn) +  xn+1

xn
f (x, y(x)) dx .

Given y(xn), then, you can estimate y(xn+1) by estimating
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the integral
 xn+1

xn
f (x, y(x)) dx . One such estimate is a

Riemann sum using left-endpoint evaluation, given by

f (xn, y(xn)) x . Show that with this estimate you get Eu-

ler’s method. There are numerous ways of getting better es-

timates of the integral. One is to use the Trapezoidal Rule, xn+1

xn

f (x, y(x)) dx ≈ f (xn, y(xn)) + f (xn+1, y(xn+1))

2
 x .

The drawback with this estimate is that you know y(xn) but

you do not know y(xn+1). Briefly explain why this state-

ment is correct. The way out is to use Euler’s method;

you do not know y(xn+1) but you can approximate it by

y(xn+1) ≈ y(xn) + h f (xn, y(xn)). Put all of this together to get

the Improved Euler’s method:

yn+1 = yn + h

2
[ f (xn, yn) + f (xn + h, yn + h f (xn, yn))].

Use the Improved Euler’s method for the IVP y = y, y(0) = 1

with h = 0.1 to compute y1, y2 and y3. Compare to the exact

values and the Euler’s method approximations given in exam-

ple 3.4.

2. As in exercise 1, derive a numerical approximation method

based on (a) the Midpoint rule and (b) Simpson’s rule.

Compare your results to those obtained in example 3.4 and

exercise 1.

3. In sections 8.1 and 8.2, you explored some differential equa-

tion models of population growth. An obvious flaw in those

models was the consideration of a single species in isolation.

In this exercise, you will investigate a predator-prey model.

In this case, there are two species, X and Y, with populations

x(t) and y(t), respectively. The general form of the model is

x  (t) = ax(t) − bx(t)y(t)

y (t) = bx(t)y(t) − cy(t)

for positive constants a, b and c. First, look carefully at the

equations. The term bx(t)y(t) is included to represent the ef-

fects of encounters between the species. This effect is negative

on species X and positive on species Y. If b = 0, the species

don’t interact at all. In this case, show that species Y dies out

(with death rate c) and species X thrives (with growth rate a).

Given all of this, explain why X must be the prey and Y the

predator. Next, you should find the equilibrium point for co-

existence. That is, find positive values x̄ and ȳ such that both

x  (t) = 0 and y (t) = 0. For this problem, think of X as an in-

sect that damages farmers’ crops and Y as a natural predator

(e.g., a bat). A farmer might decide to use a pesticide to reduce

the damage caused by the X’s. Briefly explain why the effects

of the pesticide might be to decrease the value of a and increase

the value of c. Now, determine how these changes affect the

equilibrium values. Show that the pest population X actually

increases and the predator population Y decreases. Explain, in

terms of the interaction between predator and prey, how this

could happen. The moral is that the long-range effects of pesti-

cides can be the exact opposite of the short-range (and desired)

effects.

8.4 SYSTEMS OF FIRST-ORDER DIFFERENTIAL EQUATIONS

In this section, we consider systems of two or more first-order differential equations. Recall

that the exponential growth described in example 1.1 and the logistic growth shown in

example 2.6 both model the population of a single organism in isolation. A more realistic

model would account for interactions between two species, where interactions significantly

impact both populations. For instance, the population of rabbits in a given area is negatively

affected by the presence of various predators (such as foxes), while the population of

predators will grow in response to an abundant supply of prey and decrease when the prey

are less plentiful. We begin with the analysis of such a predator-prey model, where a

species of predators depends on a species of prey for food.

Predator-Prey Systems

Suppose that the population of the prey (in hundreds of animals) is given by x(t). This species

thrives in its environment, except for interactions with a predator, with population y(t) (in

hundreds of animals). Without any predators, we assume that x(t) satisfies the logistic

equation x  (t) = bx(t) − c[x(t)]2, for positive constants b and c. The negative effect of the

predator should be proportional to the number of interactions between the species, which
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we assume to be proportional to x(t)y(t), since the number of interactions increases as x(t)

or y(t) increases. This leads us to the model

x  (t) = bx(t) − c[x(t)]2 − k1 x(t)y(t),

for some positive constant k1. On the other hand, the population of predators depends on

interactions between the two species to survive. We assume that without any available prey,

the population y(t) decays exponentially. Interactions between predator and prey have a

positive influence on the population of predators. This gives us the model

y (t) = −d y(t) + k2 x(t)y(t),

for positive constants d and k2.

Putting these equations together, we have a system of first-order differential equations:

PREDATOR-PREY EQUATIONS

x  (t) = b x(t) − c[x(t)]2 − k1 x(t)y(t)

y (t) = −d y(t) + k2 x(t)y(t).

A solution of this system is a pair of functions, x(t) and y(t), that satisfy both of the equa-

tions. We refer to this system as coupled, since we must solve the equations together, as each

of x  (t) and y (t) depends on both x(t) and y(t). Although solving such a system is beyond

the level of this course, we can learn something about the solutions using graphical meth-

ods. The analysis of this system proceeds similarly to examples 3.6 and 3.7. As before, it is

helpful to first find equilibrium solutions (solutions for which both x  (t) = 0 and y (t) = 0).

EXAMPLE 4.1 Finding Equilibrium Solutions of a System of Equations

Find and interpret all equilibrium solutions of the predator-prey model 
x  (t) = 0.2x(t) − 0.1[x(t)]2 − 0.4x(t)y(t)

y (t) = −0.1y(t) + 0.1x(t)y(t),

where x and y represent the populations (in hundreds of animals) of a prey and a

predator, respectively.

Solution If (x, y) is an equilibrium solution, then the constant functions x(t) = x and

y(t) = y satisfy the system of equations with x  (t) = 0 and y (t) = 0. Substituting into

the equations, we have

0 = 0.2x − 0.1x2 − 0.4xy

0 = −0.1y + 0.1xy

This is now a system of two (nonlinear) equations for the two unknowns x and y. There

is no general method for solving systems of nonlinear algebraic equations exactly. In

this case, you should solve the simpler equation carefully and then substitute solutions

back into the more complicated equation. Notice that both equations factor, to give

0 = 0.1x(2 − x − 4y)

0 = 0.1y(−1 + x).

The second equation has solutions y = 0 and x = 1. We now substitute these solutions

one at a time into the first equation.

Taking y = 0, the first equation becomes 0 = 0.1x(2 − x), which has the solutions

x = 0 and x = 2. This says that (0, 0) and (2, 0) are equilibrium solutions of the system.
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Note that the equilibrium point (0, 0) corresponds to the case where there are no predators

or prey, while (2, 0) corresponds to the case where there are prey but no predators.

Taking x = 1, the first equation becomes 0 = 0.2 − 0.1 − 0.4y, which has the

solution y = 0.1
0.4

= 0.25. A third equilibrium solution is then (1, 0.25), corresponding to

having both populations constant, with four times as many prey as predators.

Since we have now considered both solutions from the second equation, we have

found all equilibrium solutions of the system: (0, 0), (2, 0) and (1, 0.25). �

Next, we analyze the stability of each equilibrium solution. We can infer from this which

solution corresponds to the natural balance of the populations. More advanced techniques

for determining stability can be found in most differential equations texts. For simplicity,

we use a graphical technique involving a plot called the phase portrait to determine the

stability. For the system in example 4.1, we can eliminate the time variable, by observing

that by the chain rule,

dy

dx
= y (t)

x  (t)
= −0.1y + 0.1xy

0.2x − 0.1x2 − 0.4xy
.

Observe that this is simply a first-order differential equation for y as a function of x. In this

case, we refer to the xy-plane as the phase plane for the original system. A phase portrait

is a sketch of a number of solution curves of the differential equation in the xy-plane. We

illustrate this in example 4.2.

EXAMPLE 4.2 Using a Direction Field to Sketch a Phase Portrait

Sketch a direction field of
dy

dx
= −0.1y + 0.1xy

0.2x − 0.1x2 − 0.4xy
and use the resulting phase

portrait to determine the stability of the three equilibrium points (0, 0), (2, 0) and

(1, 0.25).

Solution The direction field generated by our CAS (see Figure 8.20) is not especially

helpful, largely because it does not show sufficient detail near the equilibrium points.

0.25
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0.5

0.6
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y

x

FIGURE 8.20
Direction field



594 CHAPTER 8 .. First-Order Differential Equations 8-38

To more clearly see the behavior of solutions near each equilibrium solution, we

zoom in on each equilibrium point in turn and plot a number of solution curves, as

shown in Figures 8.21a, 8.21b and 8.21c.
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Phase portrait near (0, 0)

FIGURE 8.21b
Phase portrait near (2, 0)
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Phase portrait near (1, 0.25)

Since the arrows in Figure 8.21a point away from (0, 0), we refer to (0, 0) as an

unstable equilibrium. That is, solutions that start out close to (0, 0) move away from

that point as t → ∞. Similarly, most of the arrows in Figure 8.21b point away from

(2, 0) and so, we conclude that (2, 0) is also unstable. Finally, in Figure 8.21c, the

arrows spiral in toward the point (1, 0.25), indicating that solutions that start out near

(1, 0.25) tend toward that point as t → ∞, making this is a stable equilibrium. From

this, we conclude that the naturally balanced state is for the two species to coexist, with

4 times as many prey as predators. �

We next consider a two-species system where the species compete for the same

resources and/or space. General equations describing this case (where species X has
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population x(t) and species Y has population y(t)) are

x  (t) = b1x(t) − c1[x(t)]2 − k1 x(t)y(t)

y (t) = b2 y(t) − c2[y(t)]2 − k2 x(t)y(t),

for positive constants b1, b2, c1, c2, k1 and k2. Notice how this differs from the predator-prey

case. As before, species X grows logistically in the absence of species Y. However, here,

species Y also grows logistically in the absence of species X. Further, the interaction terms

k1 x(t)y(t) and k2 x(t)y(t) are now negative for both species. So, in this case, both species

survive nicely on their own but are hurt by the presence of the other. As with predator-prey

systems, our focus here is on finding equilibrium solutions.

EXAMPLE 4.3 Finding Equilibrium Solutions of a System of Equations

Find and interpret all equilibrium solutions of the competing species model 
x  (t) = 0.4x(t) − 0.1[x(t)]2 − 0.4x(t)y(t)

y (t) = 0.3y(t) − 0.2[y(t)]2 − 0.1x(t)y(t).

Solution If (x, y) is an equilibrium solution, then the constant functions x(t) = x and

y(t) = y satisfy the system of equations with x  (t) = 0 and y (t) = 0. Substituting into

the equations, we have

0 = 0.4x − 0.1x2 − 0.4xy

0 = 0.3y − 0.2y2 − 0.1xy.

Notice that both equations factor, to give

0 = 0.1x(4 − x − 4y)

0 = 0.1y(3 − 2y − x).

The equations are equally complicated, so we work with both equations simultaneously.

From the top equation, either x = 0 or x + 4y = 4. From the bottom equation,

either y = 0 or x + 2y = 3. Summarizing, we have

x = 0 or x + 4y = 4

and y = 0 or x + 2y = 3.

Taking x = 0 from the top line and y = 0 from the bottom gives us the equilibrium

solution (0, 0). Taking x = 0 from the top and substituting into x + 2y = 3 on the

bottom, we get y = 3
2

so that
 
0, 3

2

 
is a second equilibrium solution. Note that (0, 0)

corresponds to the case where neither species exists and
 
0, 3

2

 
corresponds to the case

where species Y exists but species X does not.

Substituting y = 0 from the bottom line into x + 4y = 4, we get x = 4 so that

(4, 0) is an equilibrium solution, corresponding to the case where species X exists but

species Y does not. The fourth and last possibility has x + 4y = 4 and x + 2y = 3.

Subtracting the equations gives 2y = 1 or y = 1
2
. With y = 1

2
, x + 2y = 3 gives us

x = 2. The final equilibrium solution is then
 
2, 1

2

 
. In this case, both species exist, with

4 times as many of species X.

Since we have now considered all combinations that make both equations true, we

have found all equilibrium solutions of the system: (0, 0),
 
0, 3

2

 
, (4, 0) and

 
2, 1

2

 
. �

We explore predator-prey systems and models for competing species further in the

exercises.
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Systems of first-order differential equations also arise when we rewrite a single higher-

order differential equation as a system of first-order equations. There are several reasons for

doing this, notably so that the theory and numerical approximation schemes for first-order

equations (such as Euler’s method from section 8.3) can be applied.

A falling object is acted on by two primary forces, gravity (pulling down) and air

drag (pushing in the direction opposite the motion). In section 5.5, we solved a number

of problems by ignoring air drag and assuming that the force due to gravity (i.e., the

weight) is constant. While these assumptions lead to solvable equations, in many important

applications, neither assumption is valid. Air drag is frequently described as proportional to

the square of velocity. Further, the weight of an object of constant mass is not constant, but

rather, depends on its distance from the center of the earth. In this case, if we take y as the

height of the object above the surface of the earth, then the velocity is y and the acceleration

is y  . The air drag is then c(y )2, for some positive constant c (the drag coefficient) and

the weight is − mgR2

(R + y)2
, where R is the radius of the earth. Newton’s second law F = ma

then gives us

− mgR2

(R + y)2
+ c(y )2 = my  .

Since this equation involves y, y and y  , we refer to this as a second-order differential

equation. In example 4.4, we see how to write this as a system of first-order equations.

EXAMPLE 4.4 Writing a Second-Order Equation as a System
of First Order Equations

Write the equation y  = 0.1(y )2 − 1600

(40 + y)2
as a system of first-order equations.

Then, find all equilibrium points and interpret the result.

Solution The idea is to define new functions u and v where u = y and v = y . We

then have u = y = v and

v = y  = 0.1(y )2 − 1600

(40 + y)2
= 0.1v2 − 1600

(40 + u)2
.

Summarizing, we have the system of first-order equations

u = v

v = 0.1v2 − 1600

(40 + u)2
.

The equilibrium points are then solutions of

0 = v

0 = 0.1v2 − 1600

(40 + u)2
.

With v = 0, observe that the second equation has no solution, so that there are no

equilibrium points. For a falling object, the position (u) is not constant and so, there are

no equilibrium solutions. �

Some graphing calculators will graph solutions of differential equations, but the equa-

tions must be written as a single first-order equation or a system of first-order equations.

With the technique shown in example 4.4, you can use such a calculator to graph solutions

of higher-order equations.
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EXERCISES 8.4

WRITING EXERCISES

1. Explain why in the general predator-prey model, the interac-

tion term k1xy is subtracted in the prey equation and k2xy is

added in the predator equation.

2. In general, explain why you would expect the constants for the

interaction terms in the predator-prey model to satisfy k1 > k2.

3. In example 4.1, the second equilibrium equation is solved to

get x = 1 and y = 0. Explain why this does not mean that

(1, 0) is an equilibrium point.

4. If the populations in a predator-prey or other system approach

constant values, explain why the values must come from an

equilibrium point.

In exercises 1–6, find and interpret all equilibrium points for

the predator-prey model.

1.

 
x  = 0.2x − 0.2x2 − 0.4xy

y = −0.1y + 0.2xy

2.

 
x  = 0.4x − 0.1x2 − 0.2xy

y = −0.2y + 0.1xy

3.

 
x  = 0.3x − 0.1x2 − 0.2xy

y = −0.2y + 0.1xy

4.

 
x  = 0.1x − 0.1x2 − 0.4xy

y = −0.1y + 0.2xy

5.

 
x  = 0.2x − 0.1x2 − 0.4xy

y = −0.3y + 0.1xy

6.

 
x  = 0.2x − 0.1x2 − 0.4xy

y = −0.2y + 0.1xy

In exercises 7–10, use direction fields to determine the stability

of each equilibrium point found in the given exercise.

7. exercise 1 8. exercise 2 9. exercise 5 10. exercise 6

In exercises 11–16, use the direction fields to determine the sta-

bility of each point.

11. The point (0, 0)

y

x

0.02 0.04 0.06 0.08 0.1

0.02

0.04

0.06

0.08

0.1

12. The point (3, 0)

y

x
3.02 3.04 3.062.94 2.96 2.98 30

0.02

0.04

0.06

0.08

0.1

13. The point (0.5, 0.5)

y

x

0.48 0.49 0.50 0.51 0.52

0.49

0.50

0.51

0.52

0.48

14. The point (0.5, 0.5)

x

y

0.48 0.49 0.50 0.51 0.52

0.51

0.52

0.49

0.50

0.48
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15. The point (1, 0)

y

x

0.02

0.04

0.960 10.98 1.02 1.04

0.06

0.08

0.1

16. The point (0, 2)

y

1.96

2

1.98

2.02

2.04

x

0.02 0.04 0.06 0.08 0.1

In exercises 17–22, find and interpret all equilibrium points for

the competing species model. (Hint: There are four equilibrium

points in exercise 17.)

17.

 
x  = 0.3x − 0.2x2 − 0.1xy

y = 0.2y − 0.1y2 − 0.1xy
18.

 
x  = 0.4x − 0.1x2 − 0.2xy

y = 0.5y − 0.4y2 − 0.1xy

19.

 
x  = 0.3x − 0.2x2 − 0.2xy

y = 0.2y − 0.1y2 − 0.2xy
20.

 
x  = 0.4x − 0.3x2 − 0.1xy

y = 0.3y − 0.2y2 − 0.1xy

21.

 
x  = 0.2x − 0.2x2 − 0.1xy

y = 0.1y − 0.1y2 − 0.2xy
22.

 
x  = 0.1x − 0.2x2 − 0.1xy

y = 0.3y − 0.2y2 − 0.1xy

23. The population models in exercises 17–22 are competing

species models. Suppose that x(t) and y(t) are the popula-

tions of two species of animals that compete for the same plant

food. Explain why the interaction terms for both species are

negative.

24. The competitive exclusion principle in biology states that two

species with the same niche cannot coexist in the same ecol-

ogy. Explain why the existence in exercise 17 of an equilibrium

point with both species existing does not necessarily contradict

this principle.

25. Use direction fields to determine the stability of each equilib-

rium point in exercise 17. Do your results contradict or affirm

the competitive exclusion principle?

26. Use direction fields to determine the stability of each equilib-

rium point in exercise 18. Do your results contradict or affirm

the competitive exclusion principle?

27. If you have a CAS that can solve systems of equations, sketch

solutions of the system of exercise 1 with the initial conditions

(a) x = 1, y = 1; (b) x = 0.2, y = 0.4; (c) x = 1, y = 0.

28. If you have a CAS that can solve systems of equations,

sketch solutions of the system of exercise 17 with the ini-

tial conditions (a) x = 0.5, y = 0.5; (b) x = 0.2, y = 0.4;

(c) x = 0, y = 0.5.

In exercises 29–32, write the second-order equation as a system

of first-order equations.

29. y  + 2xy + 4y = 4x2 30. y  − 3y + 3
√

xy = 4

31. y  − (cos x)y + xy2 = 2x 32. xy  + 3(y )2 = y + 2x

33. To write a third-order equation as a system of equations, define

u1 = y, u2 = y and u3 = y  and compute derivatives as in ex-

ample 4.4. Write y   + 2xy  − 4y + 2y = x2 as a system of

first-order equations.

34. As in exercise 33, write y   − 2x2 y + y2 = 2 as a system of

first-order equations.

35. As in exercise 33, write y(4) − 2y   + xy = 2 − ex as a system

of first-order equations.

36. As in exercise 33, write y(4) − 2y  y + (cos x)y2 = 0 as a sys-

tem of first-order equations.

37. Euler’s method applied to the system of equations

x  = f (x, y), x(0) = x0, y = g(x, y), y(0) = y0 is given by

xn+1 = xn + h f (xn, yn), yn+1 = yn + hg(xn, yn).

Use Euler’s method with h = 0.1 to estimate the solution at

t = 1 for exercise 3 with x(0) = y(0) = 0.2.

38. Use Euler’s method with h = 0.1 to estimate the solution at

t = 1 for exercise 17 with x(0) = y(0) = 0.2.

In exercises 39–42, find all equilibrium points.

39.

 
x  = (x2 − 4)(y2 − 9)

y = x2 − 2xy
40.

 
x  = (x − y)(1 − x − y)

y = 2x − xy

41.

 
x  = (2 + x)(y − x)

y = (4 − x)(x + y)
42.

 
x  = −x + y

y = y + x2

43. For the predator-prey model

 
x  = 0.4x − 0.1x2 − 0.2xy

y = −0.5y + 0.1xy

show that the species cannot coexist. If the death rate 0.5 of

species Y could be reduced, determine how much it would have

to decrease before the species can coexist.

44. In exercise 43, if the death rate of species Y stays constant but

the birthrate 0.4 of species X can be increased, determine how

much it would have to increase before the species can coexist.

Briefly explain why an increase in the birthrate of species X

could help species Y survive.
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45. For the general predator-prey model

 
x  = bx − cx2 − k1xy

y = −dy + k2xy

show that the species can coexist if and only if bk2 > cd.

46. In the predator-prey model of exercise 45, the prey could

be a pest insect that attacks a farmer’s crop and the preda-

tor, a natural predator (e.g., a bat) of the pest. Assume that

c = 0 and the coexistence equilibrium point is stable. The

effect of a pesticide would be to reduce the birthrate b of

the pest. It could also potentially increase the death rate d

of the predator. If this happens, state the effect on the co-

existence equilibrium point. Is this the desired effect of the

pesticide?

EXPLORATORY EXERCISES

1. The equations of motion for a golf ball with position (x, y, z)
measured in feet and spin defined by parameters a, b and c are
given by

x   = −0.0014x   (x  )2 + (y )2 + (z )2 + 0.001(bz − cy )

y  = −0.0014y  (x  )2 + (y )2 + (z )2 + 0.001(cx  − az )

z  = −32 − 0.0014z  (x  )2 + (y )2 + (z )2 + 0.001(ay − bx  )

Write this as a system of six first-order equations and use a

CAS to generate graphical solutions to answer the following

questions. Think of x as being measured left to right, y mea-

sured downrange and z measuring height above the ground.

(a) The ball starts at (0, 0) and has an initial velocity with

x  (0) = 0 and y (0) and z (0) being the components of a speed

of 260 ft/s launched at 18◦ above the horizontal. The spin is

backspin at 2200 rpm, so that a = 220 and b = c = 0. Esti-

mate the maximum height of the ball and the horizontal range.

(b) Repeat part (a), except assume there is now some sidespin so

that a = 210 and b = c = −46. Estimate the maximum height

of the ball, the horizontal range and the amount of left/right dis-

tance that the ball hooks or slices.

2. In this exercise, we expand the predator-prey model of exam-

ple 4.1 to a model of a small ecology with one predator and

two prey. To start, let x and y be the populations of the prey

species and z the predator population. Consider the model

x  (t) = b1x(t) − k1x(t)z(t)

y (t) = b2 y(t) − k2 y(t)z(t)

z (t) = −dz(t) + k3x(t)z(t) + k4 y(t)z(t)

for positive constants b1, b2, d and k1, . . . , k4. Notice that in

the absence of the predator, each prey population grows ex-

ponentially. Assuming that the predator population is reason-

ably large and stable, explain why it might be an acceptable

simplification to leave out the x2 and y2 terms for logistic

growth. According to this model, are there significant inter-

actions between the x and y populations? Find all equilib-

rium points and determine the conditions under which all

three species could coexist. Repeat this with the logistic terms

restored.

x  (t) = b1x(t) − c1[x(t)]2 − k1x(t)z(t)

y (t) = b2 y(t) − c2[y(t)]2 − k2 y(t)z(t)

z (t) = −dz(t) + k3x(t)z(t) + k4 y(t)z(t)

Does it make any difference which model is used?

3. For the general competing species model

x  (t) = b1x(t) − c1[x(t)]2 − k1x(t)y(t)

y (t) = b2 y(t) − c2[y(t)]2 − k2x(t)y(t)

show that the species cannot coexist under either of the follow-

ing conditions:

(a)
b1

k1

>
b2

c2

and
b1

c1

>
b2

k2

or (b)
b2

k2

>
b1

c1

and
b2

c2

>
b1

k1

.

Review Exercises

WRITING EXERCISES

The following list includes terms that are defined and theorems

that are stated in this chapter. For each term or theorem, (1) give

a precise definition or statement, (2) state in general terms what

it means and (3) describe the types of problems with which it is

associated.

Differential equation Doubling time Half-life

Newton’s Law of Equilibrium solution Stable

Cooling Logistic growth Euler’s method

Separable equation System of equations

Direction field Phase portrait

Predator-prey systems
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Review Exercises

TRUE OR FALSE

State whether each statement is true or false and briefly explain

why. If the statement is false, try to “fix it” by modifying the given

statement to a new statement that is true.

1. For exponential growth and decay, the rate of change is

constant.

2. For logistic growth, the rate of change is proportional to the

amount present.

3. Any separable equation can be solved for y as a function of x.

4. The direction field of a differential equation is tangent to the

solution.

5. The smaller h is, the more accurate Euler’s method is.

6. An equilibrium point of a system of two equations and un-

known functions x and y is any value of x such that x  = 0 or

y = 0.

7. A phase portrait shows several solutions on the same graph.

In exercises 1–6, solve the IVP.

1. y = 2y, y(0) = 3 2. y = −3y, y(0) = 2

3. y = 2x

y
, y(0) = 2 4. y = −3xy2, y(0) = 4

5. y = √
xy, y(1) = 4 6. y = x + y2x, y(0) = 1

7. A bacterial culture has an initial population 104 and doubles

every 2 hours. Find an equation for the population at any time

t and determine when the population reaches 106.

8. An organism has population 100 at time t = 0 and population

140 at time t = 2. Find an equation for the population at any

time and determine the population at time t = 6.

9. The half-life of nicotine in the human bloodstream is 2 hours.

If there is initially 2 mg of nicotine present, find an equation

for the amount at any time t and determine when the nicotine

level reaches 0.1 mg.

10. If the half-life of a radioactive material is 3 hours, what per-

centage of the material will be left after 9 hours? 11 hours?

11. If you invest $2000 at 8% compounded continuously, how long

will it take the investment to double?

12. If you invest $4000 at 6% compounded continuously, how

much will the investment be worth in 10 years?

13. A cup of coffee is served at 180◦F in a room with temperature

68◦F. After 1 minute, the temperature has dropped to 176◦F.

Find an equation for the temperature at any time and determine

when the temperature will reach 120◦F.

14. A cold drink is served at 46◦F in a room with temperature 70◦F.

After 4 minutes, the temperature has increased to 48◦F. Find an

equation for the temperature at any time and determine when

the temperature will reach 58◦F.

In exercises 15–18, solve each separable equation, explicitly if

possible.

15. y = 2x3 y 16. y = y√
1 − x2

17. y = 4

(y2 + y)(1 + x2)
18. y = ex+y

In exercises 19–22, find all equilibrium solutions and determine

which are stable and which are unstable.

19. y = 3y(2 − y) 20. y = y(1 − y2)

21. y = −y
 

1 + y2 22. y = y + 2y

1 − y

In exercises 23–26, sketch the direction field.

23. y = −x(4 − y) 24. y = 4x − y2

25. y = 2xy − y2 26. y = 4x − y

27. Suppose that the concentration x of a chemical in

a bimolecular reaction satisfies the differential equation

x  (t) = (0.3 − x)(0.4 − x) − 0.25x2. For (a) x(0) = 0.1 and

(b) x(0) = 0.4, find the concentration at any time. Graph

the solutions. Explain what is physically impossible about

problem (b).

28. For exercise 27, find equilibrium solutions and use a slope

diagram to determine the stability of each equilibrium.

29. In the second-order chemical reaction x  = r (a − x)(b − x),

suppose that A and B are the same (thus, a = b). Identify the

values of x that are possible. Draw the direction field and de-

termine the limiting amount lim
t→∞

x(t). Verify your answer by

solving for x. Interpret the physical significance of a in this

case.

30. In an autocatalytic reaction, a substance reacts with itself.

Explain why the concentration would satisfy the differential

equation x  = r x(1 − x). Identify the values of x that are possi-

ble. Draw the direction field and determine the limiting amount

lim
t→∞

x(t). Verify your answer by solving for x.

31. Suppose that $100,000 is invested initially and continuous de-

posits are made at the rate of $20,000 per year. Interest is

compounded continuously at 10%. How much time will it take

for the account to reach $1 million?



8-45 CHAPTER 8 .. Review Exercises 601

Review Exercises

32. Rework exercise 31 with the $20,000 payment made at the end

of each year instead of continuously.

In exercises 33–36, identify the system of equations as a

predator-prey model or a competing species model. Find and

interpret all equilibrium points.

33.

 
x  = 0.1x − 0.1x2 − 0.2xy

y = −0.1y + 0.1xy

34.

 
x  = 0.2x − 0.1x2 − 0.2xy

y = 0.1y − 0.1y2 − 0.1xy

35.

 
x  = 0.5x − 0.1x2 − 0.2xy

y = 0.4y − 0.1y2 − 0.2xy

36.

 
x  = 0.4x − 0.1x2 − 0.2xy

y = −0.2y + 0.1xy

37. Use direction fields to determine the stability of each equilib-

rium point in exercise 33.

38. Use direction fields to determine the stability of each equilib-

rium point in exercise 35.

39. Write the second-order equation y  − 4x2 y + 2y = 4xy − 1

as a system of first-order equations.

40. If you have a CAS that can solve systems of equations, sketch

solutions of the system of exercise 33 with the initial conditions

(a) x = 0.4, y = 0.1; (b) x = 0.1, y = 0.4.

EXPLORATORY EXERCISES

1. In this exercise, we compare two models of the vertical velocity

of a falling object. Forces acting on the object are gravity and

air drag. From experience, you know that the faster an object

moves, the more air drag there is. But, is the drag force pro-

portional to velocity v or the square of velocity v2? It turns out

that the answer depends on the shape and speed of the object.

The goal of this exercise is to explore how much difference it

makes which model is used. Define the following models for

a falling object with v ≤ 0 (units of meters and seconds):

Model 1:
dv

dt
= −9.8 + 0.7v

Model 2:
dv

dt
= −9.8 + 0.05v2.

Solve each equation with the initial condition v(0) = 0. Graph

the two solutions on the same axes and discuss similarities and

differences. Show that in both cases the limiting velocity is

lim
t→∞

v(t) = 14 m/s. In each case, determine the time required

to reach 4 m/s and the time required to reach 13 m/s. Summa-

rizing, discuss how much difference it makes which model you

use.

2. In this exercise, we compare the two drag models for objects

moving horizontally. Since gravity does not affect horizontal

motion, if v ≥ 0, the models are

Model 1:
dv

dt
= −c1v

Model 2:
dv

dt
= −c2v

2,

for positive constants c1 and c2. Explain why the negative signs

are needed. If v ≤ 0, how would the equations change? For a

pitched baseball, physicists find that the second model is more

accurate. The drag coefficient is approximately c2 = 0.0025

if v is measured in ft/s. For comparison purposes, find the

value of c1 such that c1v = c2v
2 for v = 132 ft/s. (This is a

90-mph pitch.) Then solve each equation with initial condi-

tion v(0) = 132. Find the time it takes the ball to reach home

plate 60 feet away. Find the velocity of the ball when it reaches

home plate. How much difference is there in the two models?

For a tennis serve, use the second model with c2 = 0.003 to

estimate how much a 140-mph serve has slowed by the time it

reaches the service line 60 feet away. Both baseball and tennis

use radar guns to measure speeds. Based on your calculations,

does it make much of a difference at which point the speed of

a ball is measured?





CHA P T E R

9
Infinite Series

In our daily lives, we are increasingly seeing the impact of digital tech-

nologies. For instance, the dominant media for the entertainment industry

are now CDs and DVDs; we have digital video and still cameras, and the

Internet gives us easy access to a virtual world of digital information. An

essential ingredient in this digital revolution is the use of Fourier analysis,

a mathematical idea that is introduced in this chapter.

In this digital age, we have learned to represent information in a vari-

ety of ways. The ability to easily transform one representation into another

gives us tremendous problem-solving powers. As an example, consider the

music made by a saxophone. The music is initially represented as a series

of notes on sheet music, but the musician brings her own special interpreta-

tion to the music. Such an individual performance can then be recorded, to

be copied and replayed later. While this is easily accomplished with con-

ventional analog technology, the advent of digital technology has allowed

us to record the performance with a previously unknown fidelity. The key to this

is that the music is broken down into its component parts, which are individually

recorded and then reassembled on demand to recreate the original sound. Think for

a moment how spectacular this feat really is. The complex rhythms and intonations

603
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generated by the saxophone reed and body are somehow converted into a relatively small

number of digital bits (zeros and ones). The bits are then turned back into music by a CD

player.

The basic idea behind any digital technology is to break down a complex whole into a

set of component pieces. To digitally capture a saxophone note, all of the significant features

of the saxophone waveform must be captured. Done properly, the components can then be

recombined to reproduce each original note.

In this chapter, we learn how series of numbers combine and how functions can be

broken down into a series of component functions. As part of this discussion, we will

explore how music synthesizers work, but we will also see how calculators can quickly

approximate a quantity like sin 1.234567 and how equations can be solved using functions

for which we don’t even have names. This chapter opens up a new world of important

applications.

9.1 SEQUENCES OF REAL NUMBERS

The mathematical notion of sequence is not much different from the common English usage

of the word. For instance, to describe the sequence of events that led up to a traffic accident,

you’d not only need to list the events, but you’d need to do so in the correct order. In

mathematics, the term sequence refers to an infinite collection of real numbers, written in

a specific order.

We have already seen sequences several times now. For instance, to find approximate

solutions to nonlinear equations such as tan x − x = 0, we began by first making an initial

guess, x0 and then using Newton’s method to compute a sequence of successively improved

approximations, x1, x2, . . . , xn, . . . .

DEFINITION OF SEQUENCE

A sequence is any function whose domain is the set of integers starting with some

integer n0 (often 0 or 1). For instance, the function a(n) = 1
n

, for n = 1, 2, 3, . . . ,

defines the sequence

1

1
,

1

2
,

1

3
,

1

4
, · · · .

Here, 1
1

is called the first term, 1
2

is the second term and so on. We call a(n) = 1
n

the

general term, since it gives a (general) formula for computing all the terms of the

sequence. Further, we use subscript notation instead of function notation and write an

instead of a(n).

EXAMPLE 1.1 The Terms of a Sequence

Write out the first four terms of the sequence whose general term is given by an = n + 1

n
,

for n = 1, 2, 3, . . . .
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Solution We have the sequence

a1 = 1 + 1

1
= 2

1
, a2 = 2 + 1

2
= 3

2
, a3 = 4

3
, a4 = 5

4
, . . . .

�

an

n

0.04

5 10 15 20

0.08

0.12

FIGURE 9.1

an = 1

n2

We often use set notation to denote a sequence. For instance, the sequence with general

term an = 1

n2
, for n = 1, 2, 3, . . . , is denoted by

{an}∞
n=1 =

 
1

n2

 ∞

n=1

,

or equivalently, by listing the terms of the sequence: 
1

1
,

1

22
,

1

32
, . . . ,

1

n2
, . . .

 
.

To graph this sequence, we plot a number of discrete points, since a sequence is a function

defined only on the integers. (See Figure 9.1.) You have likely already noticed some-

thing about the sequence

 
1

n2

 ∞

n=1

. As n gets larger and larger, the terms of the sequence,

an = 1

n2
, get closer and closer to zero. In this case, we say that the sequence converges to 0

and write

lim
n→∞

an = lim
n→∞

1

n2
= 0.

In general, we say that the sequence {an}∞
n=1 converges to L (i.e., lim

n→∞
an = L) if

we can make an as close to L as desired, simply by making n sufficiently large. No-

tice that this language parallels that used in the definition of the limit lim
x→∞

f (x) = L

for a function of a real variable x (given in section 1.6). The only difference is that n

can take on only integer values, while x can take on any real value (integer, rational or

irrational).

When we say that we can make an as close to L as desired (i.e., arbitrarily close), just

how close must we be able to make an to L? Well, if you pick any (small) real number,

ε > 0, you must be able to make an within a distance ε of L, simply by making n sufficiently

large. That is, we need |an − L| < ε.

We summarize this in Definition 1.1.

DEFINITION 1.1

The sequence {an}∞
n=n0

converges to L if and only if given any number ε > 0, there is

an integer N for which

|an − L| < ε, for every n > N .

If there is no such number L, then we say that the sequence diverges.

We illustrate Definition 1.1 in Figure 9.2 (on the following page). Notice that the

definition says that the sequence {an}∞
n=1 converges to L if given any number ε > 0, we can

find an integer N so that the terms of the sequence stay between L − ε and L + ε for all

values of n > N .

In example 1.2, we show how to use Definition 1.1 to prove that a sequence converges.
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y

n
1 2 3 4 5 N

L   ´
L

L   ´

FIGURE 9.2
Convergence of a sequence

EXAMPLE 1.2 Proving That a Sequence Converges

Use Definition 1.1 to show that the sequence

 
1

n2

 ∞

n=1

converges to 0.

Solution Here, we must show that we can make
1

n2
as close to 0 as desired,

just by making n sufficiently large. So, given any ε > 0, we must find N sufficiently

large so that for every n > N ,    1

n2
− 0

    < ε or
1

n2
< ε. (1.1)

Since n2 and ε are positive, we can divide both sides of (1.1) by ε and multiply by n2,

to obtain

1

ε
< n2.

Taking square roots gives us

 
1

ε
< n.

Working backwards now, observe that if we choose N to be an integer with N ≥
 

1

ε
,

then n > N implies that
1

n2
< ε, as desired.

�

Most of the usual rules for computing limits of functions of a real variable also apply

to computing the limit of a sequence, as we see in Theorem 1.1.

THEOREM 1.1

Suppose that {an}∞
n=n0

and {bn}∞
n=n0

both converge. Then

(i) lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn ,

(ii) lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn ,

(iii) lim
n→∞

(anbn) =  lim
n→∞

an

  
lim

n→∞
bn

 
and

(iv) lim
n→∞

an

bn

=
lim

n→∞
an

lim
n→∞

bn

(assuming lim
n→∞

bn  = 0).
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The proof of Theorem 1.1 is virtually identical to the proof of the corresponding theorem

about limits of a function of a real variable (see Theorem 3.1 in section 1.3 and Appen-

dix A) and is omitted.

To find the limit of a sequence, you should work largely the same as when computing

the limit of a function of a real variable, but keep in mind that sequences are defined only

for integer values of the variable.

an

n
5 10 15 20

1

2

3

4

5

6

FIGURE 9.3

an = 5n + 7

3n − 5

REMARK 1.1

If you (incorrectly) apply

l’Hôpital’s Rule in example 1.3,

you get the right answer. (Go

ahead and try it; nobody’s

looking.) Unfortunately, you

will not always be so lucky. It’s

a lot like trying to cross a busy

highway: while there are times

when you can successfully cross

with your eyes closed, it’s not

generally recommended.

Theorem 1.2 describes how you

can safely use l’Hôpital’s Rule.

EXAMPLE 1.3 Finding the Limit of a Sequence

Evaluate lim
n→∞

5n + 7

3n − 5
.

Solution This has the indeterminate form
∞
∞ . The graph in Figure 9.3 suggests that

the sequence tends to some limit around 2. Note that we cannot apply l’Hôpital’s Rule

here, since the functions in the numerator and the denominator are defined only for

integer values of n and hence, are not differentiable. Instead, simply divide numerator

and denominator by the highest power of n in the denominator. We have

lim
n→∞

5n + 7

3n − 5
= lim

n→∞
(5n + 7)

 
1
n

 
(3n − 5)

 
1
n

 = lim
n→∞

5 + 7
n

3 − 5
n

= 5

3
.

�

In example 1.4, we see a sequence that diverges by virtue of its terms tending to +∞.

an

n
5 10 15 20

2

4

6

8

10

12

FIGURE 9.4

an = n2 + 1

2n − 3

EXAMPLE 1.4 A Divergent Sequence

Evaluate lim
n→∞

n2 + 1

2n − 3
.

Solution Again, this has the indeterminate form
∞
∞ , but from the graph in Figure 9.4,

the sequence appears to be increasing without bound. Dividing top and bottom by n (the

highest power of n in the denominator), we have

lim
n→∞

n2 + 1

2n − 3
= lim

n→∞
(n2 + 1)

 
1
n

 
(2n − 3)

 
1
n

 = lim
n→∞

n + 1
n

2 − 3
n

= ∞

and so, the sequence

 
n2 + 1

2n − 3

 ∞

n=1

diverges.
�

In example 1.5, we see that a sequence doesn’t need to tend to ±∞ in order to diverge.

EXAMPLE 1.5 A Divergent Sequence Whose Terms Do Not Tend to ∞
Determine the convergence or divergence of the sequence {(−1)n}∞

n=1.

Solution If we write out the terms of the sequence, we have

{−1, 1,−1, 1,−1, 1, . . .}.
That is, the terms of the sequence alternate back and forth between −1 and 1 and so,

the sequence diverges. To see this graphically, we plot the first few terms of the

sequence in Figure 9.5 (on the following page). Notice that the points do not approach

any limit (a horizontal line). �
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10 155

 1

1

an

n

5 1510

1

2

an

n

FIGURE 9.5
an = (−1)n

FIGURE 9.6
an = f (n), where f (x) → 2,

as x → ∞

You can use an advanced tool like l’Hôpital’s Rule to find the limit of a sequence, but

you must be careful. Theorem 1.2 says that if f (x) → L as x → ∞ through all real values,

then f (n) must approach L, too, as n → ∞ through integer values. (See Figure 9.6 for a

graphical representation of this.)

5 10 15 20

0.2

0.4

0.6

0.8

1.0

1.2

an

n

FIGURE 9.7a
an = cos(2πn)

10

 0.5

 1

0.5

1

x

y

FIGURE 9.7b
y = cos(2πx)

THEOREM 1.2

Suppose that lim
x→∞

f (x) = L . Then, lim
n→∞

f (n) = L , also.

REMARK 1.2

The converse of Theorem 1.2 is false. That is, if lim
n→∞

f (n) = L , it need not be true

that lim
x→∞

f (x) = L . This is clear from the following observation. Note that

lim
n→∞

cos(2πn) = 1,

since cos(2πn) = 1 for every integer n. (See Figure 9.7a.) However,

lim
x→∞

cos(2πx) does not exist,

since as x → ∞, cos(2πx) oscillates between −1 and 1. (See Figure 9.7b.)

5 10 15 20

0.2

0.4

0.6

0.8

an

n

FIGURE 9.8

an = n + 1

en

EXAMPLE 1.6 Applying l’Hôpital’s Rule to a Related Function

Evaluate lim
n→∞

n + 1

en
.

Solution This has the indeterminate form
∞
∞ , but the graph in Figure 9.8 suggests

that the sequence converges to 0. However, there is no obvious way to resolve this,

except by l’Hôpital’s Rule (which does not apply to limits of sequences). So, we instead

consider the limit of the corresponding function of a real variable to which we may

apply l’Hôpital’s Rule. (Be sure you check the hypotheses.) We have

lim
x→∞

x + 1

ex
= lim

x→∞

d

dx
(x + 1)

d

dx
(ex )

= lim
x→∞

1

ex
= 0.
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From Theorem 1.2, we now have

lim
n→∞

n + 1

en
= 0, also.

�

Although we now have a few tools for computing the limit of a sequence, for many

sequences (including infinite series, which we study in the remainder of this chapter),

we don’t even have an explicit formula for the general term. In such cases, we must

test for convergence in some indirect way. Our first indirect tool corresponds to the

result (of the same name) for limits of functions of a real variable presented in sec-

tion 1.3.

THEOREM 1.3 (Squeeze Theorem)

Suppose {an}∞
n=n0

and {bn}∞
n=n0

are convergent sequences, both converging to the limit

L. If there is an integer n1 ≥ n0 such that for all n ≥ n1, an ≤ cn ≤ bn , then {cn}∞
n=n0

converges to L, too.

In example 1.7, we demonstrate how to apply the Squeeze Theorem to a sequence.

Observe that the trick here is to find two sequences, one on each side of the given sequence

(i.e., one larger and one smaller) that have the same limit.

105 15 20
 0.05

0.25

0.20

0.15

0.10

0.05

an

n

FIGURE 9.9

an = sin n

n2

EXAMPLE 1.7 Applying the Squeeze Theorem to a Sequence

Determine the convergence or divergence of

 
sin n

n2

 ∞

n=1

.

Solution From the graph in Figure 9.9, the sequence appears to converge to 0, despite

the oscillation. Further, note that you cannot compute this limit using the rules we have

established so far. (Try it!) However, since

−1 ≤ sin n ≤ 1, for all n,

dividing through by n2 gives us

−1

n2
≤ sin n

n2
≤ 1

n2
, for all n ≥ 1.

Finally, since lim
n→∞

−1

n2
= 0 = lim

n→∞
1

n2
,

the Squeeze Theorem gives us that lim
n→∞

sin n

n2
= 0,

also. �

The following useful result follows immediately from Theorem 1.3.

COROLLARY 1.1

If lim
n→∞

|an| = 0, then lim
n→∞

an = 0, also.
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PROOF

Notice that for all n, −|an| ≤ an ≤ |an|.

Further, lim
n→∞

|an| = 0 and lim
n→∞

(−|an|) = − lim
n→∞

|an| = 0.

So, from the Squeeze Theorem, lim
n→∞

an = 0, too.

Corollary 1.1 is particularly useful for sequences with both positive and negative terms,

as in example 1.8.

105 15 20

 1

 0.5

0.5

an

n

FIGURE 9.10

an = (−1)n

n

EXAMPLE 1.8 A Sequence with Terms of Alternating Signs

Determine the convergence or divergence of

 
(−1)n

n

 ∞

n=1

.

Solution The graph of the sequence in Figure 9.10 suggests that although the

sequence oscillates, it still may be converging to 0. Since (−1)n oscillates back and

forth between −1 and 1, we cannot compute lim
n→∞

(−1)n

n
directly. However, notice that    (−1)n

n

    = 1

n

and lim
n→∞

1

n
= 0.

From Corollary 1.1, we get that lim
n→∞

(−1)n

n
= 0, too.

�

We remind you of the following definition, which we use throughout the chapter.

DEFINITION 1.2

For any integer n ≥ 1, the factorial, n! is defined as the product of the first n positive

integers,

n! = 1 · 2 · 3 · · · · · n.

We define 0! = 1.

Example 1.9 shows a sequence whose limit would be extremely difficult to find without

the Squeeze Theorem.

5 10 15 20

0.2

0.4

0.6

0.8

1.0

an

n

FIGURE 9.11

an = n!

nn

EXAMPLE 1.9 An Indirect Proof of Convergence

Investigate the convergence of

 
n!

nn

 ∞

n=1

.

Solution First, notice that we have no means of computing lim
n→∞

n!

nn
directly.

(Try this!) From the graph of the sequence in Figure 9.11, it appears that the sequence
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is converging to 0. Notice that the general term of the sequence satisfies

0 <
n!

nn
= 1 · 2 · 3 · · · · · n

n · n · n · · · · · n    
n factors

=
 

1

n

 
2 · 3 · · · · · n

n · n · · · · · n    
n − 1 factors

≤
 

1

n

 
(1) = 1

n
. (1.2)

From the Squeeze Theorem and (1.2), we have that since

lim
n→∞

1

n
= 0 and lim

n→∞
0 = 0,

then lim
n→∞

n!

nn
= 0, also.

�

Just as we did with functions of a real variable, we need to distinguish between se-

quences that are increasing and decreasing. The definitions are straightforward.

DEFINITION 1.3

(i) The sequence {an}∞
n=1 is increasing if

a1 ≤ a2 ≤ · · · ≤ an ≤ an+1 ≤ · · · .
(ii) The sequence {an}∞

n=1 is decreasing if

a1 ≥ a2 ≥ · · · ≥ an ≥ an+1 ≥ · · · .
If a sequence is either increasing or decreasing, it is called monotonic.

There are several ways to show that a sequence is monotonic. Regardless of which

method you use, you will need to show that either an ≤ an+1 for all n (increasing) or

an+1 ≤ an for all n (decreasing). We illustrate two very useful methods in examples 1.10

and 1.11.

5 10 15 20

0.2

0.4

0.6

0.8

1.0

an

n

FIGURE 9.12

an = n

n + 1

EXAMPLE 1.10 An Increasing Sequence

Investigate whether the sequence

 
n

n + 1

 ∞

n=1

is increasing, decreasing or neither.

Solution From the graph in Figure 9.12, it appears that the sequence is increasing.

However, you should not be deceived by looking at the first few terms of a sequence.

More generally, we look at the ratio of two successive terms. Defining an = n

n + 1
, we

have an+1 = n + 1

n + 2
and so,

an+1

an

=

 
n + 1

n + 2

 
 

n

n + 1

 =
 

n + 1

n + 2

  
n + 1

n

 

= n2 + 2n + 1

n2 + 2n
= 1 + 1

n2 + 2n
> 1. (1.3)
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Multiplying both sides of (1.3) by an > 0, we obtain

an+1 > an,

for all n and so, the sequence is increasing. Alternatively, consider the function

f (x) = x

x + 1
(of the real variable x) corresponding to the sequence. Observe that

f  (x) = (x + 1) − x

(x + 1)2
= 1

(x + 1)2
> 0,

which says that the function f (x) is increasing. From this, it follows that the

corresponding sequence an = n

n + 1
is also increasing.

�

105

50

100

150

200

an

n

FIGURE 9.13

an = n!

en

EXAMPLE 1.11 A Sequence That Is Increasing for n ≥ 2

Investigate whether the sequence

 
n!

en

 ∞

n=1

is increasing, decreasing or neither.

Solution From the graph of the sequence in Figure 9.13, it appears that the sequence

is increasing (and rather rapidly, at that). Here, for an = n!

en
, we have an+1 = (n + 1)!

en+1
,

so that

an+1

an

=

 
(n + 1)!

en+1

 
 

n!

en

 = (n + 1)!

en+1

en

n!

= (n + 1)n!en

e(en)n!
= n + 1

e
> 1, for n ≥ 2. Since (n + 1)! = (n + 1) · n! (1.4)

and en+1 = e · en .

Multiplying both sides of (1.4) by an > 0, we get

an+1 > an, for n ≥ 2.

Notice that in this case, although the sequence is not increasing for all n, it is increasing

for n ≥ 2. Keep in mind that it doesn’t really matter what the first few terms do,

anyway. We are only concerned with the behavior of a sequence as n → ∞. �

We need to define one additional property of sequences.

DEFINITION 1.4

We say that the sequence {an}∞
n=n0

is bounded if there is a number M > 0 (called a

bound) for which |an| ≤ M , for all n.

It is important to realize that a given sequence may have any number of bounds (for

instance, if |an| ≤ 10 for all n, then |an| ≤ 20, for all n, too).

EXAMPLE 1.12 A Bounded Sequence

Show that the sequence

 
3 − 4n2

n2 + 1

 ∞

n=1

is bounded.



9-11 SECTION 9.1 .. Sequences of Real Numbers 613

Solution We use the fact that 4n2 − 3 > 0, for all n ≥ 1, to get

|an| =
    3 − 4n2

n2 + 1

    = 4n2 − 3

n2 + 1
<

4n2

n2 + 1
<

4n2

n2
= 4.

So, this sequence is bounded by 4. (We might also say in this case that the sequence is

bounded between −4 and 4.) Further, note that we could also use any number greater

than 4 as a bound. �

5 10 15 20

0.2

0.4

0.6

0.8

1.0

n

an

FIGURE 9.14a
A bounded and increasing

sequence

Theorem 1.4 provides a powerful tool for the investigation of sequences.

THEOREM 1.4

Every bounded, monotonic sequence converges.

5 10 15 20

2

4

6

n

an

FIGURE 9.14b
A bounded and decreasing

sequence

A typical bounded and increasing sequence is illustrated in Figure 9.14a, while a

bounded and decreasing sequence is illustrated in Figure 9.14b. In both figures, notice that

a bounded and monotonic sequence has nowhere to go and consequently, must converge.

The proof of Theorem 1.4 is rather involved and we leave it to the end of the section.

Theorem 1.4 says that if we can show that a sequence is bounded and monotonic, then

it must also be convergent, although we may have little idea of what its limit might be.

Once we establish that a sequence converges, we can approximate its limit by computing a

sufficient number of terms, as in example 1.13.

5 10 15 20

0.5

1.0

1.5

2.0

n

an

FIGURE 9.15

an = 2n

n!

EXAMPLE 1.13 An Indirect Proof of Convergence

Investigate the convergence of the sequence

 
2n

n!

 ∞

n=1

.

Solution First, note that we do not know how to compute lim
n→∞

2n

n!
. This has the

indeterminate form
∞
∞ , but we cannot use l’Hôpital’s Rule here directly or indirectly.

(Why not?) The graph in Figure 9.15 suggests that the sequence converges to 0. To

confirm this suspicion, we first show that the sequence is monotonic. We have

an+1

an

=

 
2n+1

(n + 1)!

 
 

2n

n!

 = 2n+1

(n + 1)!

n!

2n

= 2(2n)n!

(n + 1)n!2n
= 2

n + 1
≤ 1, for n ≥ 1. Since 2n+1 = 2 · 2n and

(n + 1)! = (n + 1) · n!.
(1.5)

Multiplying both sides of (1.5) by an > 0 gives us an+1 ≤ an for all n and so, the

sequence is decreasing. Next, since the sequence is decreasing, we have that

|an| = 2n

n!
≤ 21

1!
= 2,

for n ≥ 1 (i.e., the sequence is bounded by 2). Since the sequence is both bounded and

monotonic, it must be convergent, by Theorem 1.4. We display a number of terms of the

sequence in the accompanying table, from which it appears that the sequence is

converging to approximately 0. We can make a slightly stronger statement, though.
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Since we have established that the sequence is decreasing and convergent, we have

from our computations that

0 ≤ an ≤ a20 ≈ 4.31 × 10−13, for n ≥ 20.

Further, the limit L must also satisfy the inequality

0 ≤ L ≤ 4.31 × 10−13.

We can confirm that the limit is 0, as follows. From (1.5),

L = lim
n→∞

an+1 = lim
n→∞

 
2

n + 1

 
an,

so that L =
 

lim
n→∞

2

n + 1

  
lim

n→∞
an

 
= 0 · L = 0.

�

n an  
2n

n!

2 2

4 0.666667

6 0.088889

8 0.006349

10 0.000282

12 0.0000086

14 1.88 × 10−7

16 3.13 × 10−9

18 4.09 × 10−11

20 4.31 × 10−13

REMARK 1.3

Do not understimate the

importance of Theorem 1.4.

This indirect way of testing a

sequence for convergence takes

on additional significance when

we study infinite series (a

special type of sequence that is

the topic of the remainder of

this chapter).

Proof of Theorem 1.4
Before we can prove Theorem 1.4, we need to state one of the properties of the real number

system.

THE COMPLETENESS AXIOM

If a nonempty set S of real numbers has a lower bound, then it has a greatest lower

bound. Equivalently, if it has an upper bound, it has a least upper bound.

This axiom says that if a nonempty set S has an upper bound, that is, a number M

such that

x ≤ M, for all x ∈ S,

then there is an upper bound L, for which

L ≤ M for all upper bounds, M,

with a corresponding statement holding for lower bounds.

The Completeness Axiom enables us to prove Theorem 1.4.

PROOF

(Increasing sequence) Suppose that {an}∞
n=n0

is increasing and bounded. This is illustrated

in Figure 9.16, where you can see an increasing sequence bounded by 1. We have

a1 ≤ a2 ≤ a3 ≤ · · · ≤ an ≤ an+1 ≤ · · ·

and for some number M > 0, |an| ≤ M for all n. This is the same as saying that

−M ≤ an ≤ M, for all n.5 10 15 20

0.2

0.4

0.6

0.8

1.0

n

an

FIGURE 9.16
Bounded and increasing

Now, let S be the set containing all of the terms of the sequence, S = {a1, a2, . . . , an, . . .}.
Notice that M is an upper bound for the set S. From the Completeness Axiom, S must have
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a least upper bound, L. That is, L is the smallest number for which

an ≤ L , for all n. (1.6)

Notice that for any number ε > 0, L − ε < L and so, L − ε is not an upper bound, since

L is the least upper bound. Since L − ε is not an upper bound for S, there is some element,

aN , of S for which

L − ε < aN .

Since {an} is increasing, we have that for n ≥ N , aN ≤ an . Finally, from (1.6) and the fact

that L is an upper bound for S and since ε > 0, we have

L − ε < aN ≤ an ≤ L < L + ε,

or more simply L − ε < an < L + ε,

for n ≥ N . This is equivalent to

|an − L| < ε, for n ≥ N .

This says that {an} converges to L. The proof for the case of a decreasing sequence is similar

and is left as an exercise.

BEYOND FORMULAS

The essential logic behind sequences is the same as that behind much of the calculus.

When evaluating limits (including limits of sequences and those that define deriva-

tives and integrals), we are frequently able to compute an exact answer directly, as in

example 1.3. However, some limits are more difficult to determine and can be found

only by using an indirect method, as in example 1.13. Such indirect methods prove to be

extremely important (and increasingly common) as we expand our study of sequences

to those defining infinite series in the rest of this chapter.

EXERCISES 9.1

WRITING EXERCISES

1. Compare and contrast lim
x→∞

sinπx and lim
n→∞

sinπn. Indicate

the domains of the two functions and how they affect the

limits.

2. Explain why Theorem 1.2 should be true, taking into account

the respective domains and their effect on the limits.

3. In words, explain why a decreasing bounded sequence must

converge.

4. A sequence is said to diverge if it does not converge. The word

“diverge” is well chosen for sequences that diverge to ∞, but is

less descriptive of sequences such as {1, 2, 1, 2, 1, 2, . . .} and

{1, 2, 3, 1, 2, 3, . . .}. Briefly describe the limiting behavior of

these sequences and discuss other possible limiting behaviors

of divergent sequences.

In exercises 1–4, write out the terms a1, a2, . . . , a6 of the given

sequence.

1. an = 2n − 1

n2
2. an = 3

n + 4

3. an = 4

n!
4. an = (−1)n n

n + 1

In exercises 5–10, (a) find the limit of each sequence, (b) use the

definition to show that the sequence converges and (c) plot the

sequence on a calculator or CAS.

5. an = 1

n3
6. an = 2

n2

7. an = n

n + 1
8. an = 2n + 1

n

9. an = 2√
n

10. an = 4√
n + 1
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In exercises 11–28, determine whether the sequence converges

or diverges.

11. an = 3n2 + 1

2n2 − 1
12. an = 5n3 − 1

2n3 + 1

13. an = n2 + 1

n + 1
14. an = n2 + 1

n3 + 1

15. an = (−1)n n + 2

3n − 1
16. an = (−1)n n + 4

n + 1

17. an = (−1)n n + 2

n2 + 4
18. an = cosπn

19. an = ne−n 20. an = cos n

en

21. an = en + 2

e2n − 1
22. an = 3n

en + 1

23. an = n2n

3n
24. an = cos n

n!

25. an = n!

2n
26. an =

√
n2 + n − n

27. an = ln(2n + 1) − ln(n)

28. an =
   cos

nπ

2
+ sin

nπ

2

   2n − 1

n + 2

In exercises 29–32, use the Squeeze Theorem and Corol-

lary 1.1 to prove that the sequence converges to 0 (given that

lim
n→∞

1

n
 lim

n→∞

1

n2
 0).

29. an = cos n

n2
30. an = cos nπ

n2

31. an = (−1)n e−n

n
32. an = (−1)n ln n

n2

In exercises 33–38, determine whether the sequence is increas-

ing, decreasing or neither.

33. an = n + 3

n + 2
34. an = n − 1

n + 1

35. an = en

n
36. an = n!

5n

37. an = 2n

(n + 1)!
38. an = 3n

(n + 2)!

In exercises 39–42, show that the sequence is bounded.

39. an = 3n2 − 2

n2 + 1
40. an = 6n − 1

n + 3

41. an = sin(n2)

n + 1
42. an = e1/n

43. Numerically estimate the limits of the sequences

an =  1 + 2
n

 n
and bn =  1 − 2

n

 n
. Compare the answers

to e2 and e−2.

44. Given that lim
n→∞

 
1 + 1

n

 n = e, show that lim
n→∞

 
1 + r

n

 n = er

for any constant r. (Hint: Make the substitution n = rm.)

45. A packing company works with 12  square boxes. Show

that for n = 1, 2, 3, . . . , a total of n2 disks of diameter 12  
n

fit into a box. Let an be the wasted area in a box with n2 disks.

Compute an .

46. The pattern of a sequence can’t always be determined from the

first few terms. Start with a circle, pick two points on the circle

and connect them with a line segment. The circle is divided

into a1 = 2 regions. Add a third point, connect all points and

show that there are now a2 = 4 regions. Add a fourth point,

connect all points and show that there are a3 = 8 regions. Is

the pattern clear? Show that a4 = 16 and then compute a5 for

a surprise!

47. You have heard about the “population explosion.” The follow-

ing dramatic warning is adapted from the article “Doomsday:

Friday 13 November 2026” by Foerster, Mora and Amiot in

Science (Nov. 1960). Start with a0 = 3.049 to indicate that

the world population in 1960 was approximately 3.049 billion.

Then compute a1 = a0 + 0.005a2.01
0 to estimate the population

in 1961. Compute a2 = a1 + 0.005a2.01
1 to estimate the popu-

lation in 1962, then a3 = a2 + 0.005a2.01
2 for 1963 and so on.

Continue iterating and compare your calculations to the ac-

tual populations in 1970 (3.721 billion), 1980 (4.473 billion)

and 1990 (5.333 billion). Then project ahead to the year 2035.

Frightening, isn’t it?

48. The so-called hailstone sequence is defined by

xk =
 

3xk−1 + 1 if xk−1 is odd
1
2
xk−1 if xk−1 is even

.

If you start with x1 = 2n for some positive integer n, show

that xn+1 = 1. The question (an unsolved research problem)

is whether you eventually reach 1 from any starting value.

Try several odd values for x1 and show that you always

reach 1.

49. A different population model was studied by Fibonacci, an

Italian mathematician of the thirteenth century. He imagined a

population of rabbits starting with a pair of newborns. For one

month, they grow and mature. The second month, they have

a pair of newborn baby rabbits. We count the number of pairs

of rabbits. Thus far, a0 = 1, a1 = 1 and a2 = 2. The rules are:

adult rabbit pairs give birth to a pair of newborns every month,

newborns take one month to mature and no rabbits die. Show

that a3 = 3, a4 = 5 and in general an = an−1 + an−2. This se-

quence of numbers, known as the Fibonacci sequence, occurs

in an amazing number of applications.

50. In this exercise, we visualize the Fibonacci sequence (see ex-

ercise 49). Start with two squares of side 1 placed next to each

other (see Figure A). Place a square on the long side of the

resulting rectangle (see Figure B); this square has side 2. Con-

tinue placing squares on the long sides of the rectangles: a
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square of side 3 is added in Figure C, then a square of side 5 is

added to the bottom of Figure C, and so on.

FIGURE A FIGURE B FIGURE C

Argue that the sides of the squares are determined by the

Fibonacci sequence of exercise 49.

51. Suppose that a1 = 1 and an+1 = 1
2

 
an + 4

an

 
. Show numeri-

cally that the sequence converges to 2. To find this limit an-

alytically, let L = lim
n→∞

an+1 = lim
n→∞

an and solve the equation

L = 1
2

 
L + 4

L

 
.

52. As in exercise 51, determine the limit of the sequence defined

by a1 = 1, an+1 = 1
2

 
an + c

an

 
for c > 0 and an > 0.

53. Define the sequence an with a1 =
√

2 and an =  2 + √
an−1

for n ≥ 2. Show that {an} is increasing and bounded by 2.

Evaluate the limit of the sequence by estimating the appropri-

ate solution of x =
 

2 + √
x .

54. Define the sequence an with a1 =
√

3 and an = √
3 + 2an−1

for n ≥ 2. Show that {an} converges and estimate the limit of

the sequence.

55. Find all values of p such that the sequence an = 1
pn converges.

56. Find all values of p such that the sequence an = 1
n p converges.

57. Define an = 1

n2 + 2

n2 + · · · + n

n2 . Evaluate the sum using a

formula from section 4.2 and show that the sequence converges.

By thinking of an as a Riemann sum, identify the definite in-

tegral to which the sequence converges.

58. Define an =
n 

k=1

1

n + k
. By thinking of an as a Riemann sum,

identify the definite integral to which the sequence converges.

59. Start with two circles C1 and C2 of radius r1 and r2, respectively,

that are tangent to each other and each tangent to the x-axis.

Construct the circle C3 that is tangent to C1,C2 and the x-axis.

(See the accompanying figure.) If the centers of C1

and C2 are (c1, r1) and (c2, r2), respectively, show that

(c2 − c1)2 + (r2 − r1)2 = (r1 + r2)2 and then |c2 − c1| = 2
√

r1r2.

Find similar relationships for circles C1 and C3 and for cir-

cles C2 and C3. Show that the radius r3 of C3 is given by
√

r3 =
√

r1r2√
r1 + √

r2

.

y

C1

C2

C3

x

60. In exercise 59, construct a sequence of circles where C4 is

tangent to C2,C3 and the x-axis; then C5 is tangent to C3,C4

and the x-axis. If you start with unit circles r1 = r2 = 1, find

a formula for the radius rn in terms of Fn , the nth term in the

Fibonacci sequence of exercises 49 and 50.

61. Let C be the circle of radius r inscribed in the parabola y = x2.

(See the figure.) Show that the y-coordinate c of the center of

the circle equals c = 1
4

+ r 2.

y

x
10

1.25

2.5

5

3.75

2 2  1

62. In exercise 61, let C1 be the circle of radius r1 = 1 inscribed

in y = x2. Construct a sequence of circles C2,C3 and so on,

where each circle Cn rests on top of the prevíous circle Cn−1

(that is, Cn is tangent to Cn−1) and is inscribed in the parabola.

If rn is the radius of circle Cn , find a (simple) formula for rn .

EXPLORATORY EXERCISES

1. Suppose that a ball is launched from the ground with initial

velocity v. Ignoring air resistance, it will rise to a height of

v2/(2g) and fall back to the ground at time t = 2v/g. De-

pending on how “lively” the ball is, the next bounce will

rise to only a fraction of the previous height. The coeffi-

cient of restitution r, defined as the ratio of landing veloc-

ity to rebound velocity, measures the liveliness of the ball.

The second bounce has launch velocity rv, the third bounce

has launch velocity r 2v and so on. It might seem that the

ball will bounce forever. To see that it does not, argue that

the time to complete two bounces is a2 = 2v
g

(1 + r ), the time

to complete three bounces is a3 = 2v
g

(1 + r + r 2), etc. Take

r = 0.5 and numerically determine the limit of this sequence.

(We study this type of sequence in detail in section 9.2.) In

particular, show that (1 + 0.5) = 3
2
, (1 + 0.5 + 0.52) = 7

4
and

(1 + 0.5 + 0.52 + 0.53) = 15
8

, find a general expression for an

and determine the limit of the sequence. Argue that at the end

of this amount of time, the ball has stopped bouncing.

2. A surprising follow-up to the bouncing ball problem of ex-

ercise 1 is found in An Experimental Approach to Nonlinear

Dynamics and Chaos by Tufillaro, Abbott and Reilly. Suppose

the ball is bouncing on a moving table that oscillates up and
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down according to the equation A cosωt for some amplitude A

and frequency ω. Without the motion of the table, the ball will

quickly reach a height of 0 as in exercise 1. For different values

of A and ω, however, the ball can settle into an amazing variety

of patterns. To understand this, explain why the collision be-

tween table and ball could subtract or add velocity to the ball

(what happens if the table is going up? down?). A simplified

model of the velocity of the ball at successive collisions with

the table is vn+1 = 0.8vn − 10 cos(v0 + v1 + · · · + vn). Start-

ing with v0 = 5, compute v1, v2, . . . , v15. In this case, the ball

never settles into a pattern; its motion is chaotic.

3. (a) If a1 = 3 and an+1 = an + sin an for n ≥ 2, show nu-

merically that {an} converges to π . With the same relation

an+1 = an + sin an , try other starting values a1 (Hint: Try

a1 = −3, a1 = 9, a1 = 15 and other values.) and state a gen-

eral rule for the limit of the sequence as a function of the

starting value. (b) If a1 = 6 and an+1 = an − sin an for n ≥ 2,

numerically estimate the limit of {an} in terms of π . Then try

other starting values and state a general rule for the limit of the

sequence as a function of the starting value. (c) State a general

rule for the limit of the sequence with an+1 = an + cos an as a

function of the starting value a1.

9.2 INFINITE SERIES

Recall that we write the decimal expansion of 1
3

as the repeating decimal 1
3

= 0.33333333̄,

where we understand that the 3’s in this expansion go on forever. Alternatively, we can

think of this as

1

3
= 0.3 + 0.03 + 0.003 + 0.0003 + 0.00003 + · · ·
= 3(0.1) + 3(0.1)2 + 3(0.1)3 + 3(0.1)4 + · · · + 3(0.1)k + · · · . (2.1)

For convenience, we write (2.1) using summation notation as

1

3
=

∞ 
k=1

3(0.1)k . (2.2)

Since we can’t add together infinitely many terms, we need to carefully define the infinite

sum indicated in (2.2). Equation (2.2) means that as you add together more and more terms,

the sum gets closer and closer to 1
3
.

In general, for any sequence {ak}∞
k=1, suppose we start adding the terms together. We

define the partial sums S1, S2, . . . , Sn, . . . by

S1 = a1,

S2 = a1 + a2 = S1 + a2,

S3 = a1 + a2    
S2

+ a3 = S2 + a3,

S4 = a1 + a2 + a3    
S3

+ a4 = S3 + a4,

...

Sn = a1 + a2 + · · · + an−1    
Sn−1

+ an = Sn−1 + an (2.3)

and so on. Note that each partial sum Sn is the sum of two numbers: the nth term, an , and

the previous partial sum, Sn−1, as indicated in (2.3).
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For instance, for the sequence

 
1

2k

 ∞

k=1

, consider the partial sums

S1 = 1

2
, S2 = 1

2
+ 1

22
= 3

4
,

S3 = 3

4
+ 1

23
= 7

8
, S4 = 7

8
+ 1

24
= 15

16

and so on. Look at these carefully and you might notice that S2 = 3

4
= 1 − 1

22
,

S3 = 7

8
= 1 − 1

23
, S4 = 15

16
= 1 − 1

24
and so on, so that Sn = 1 − 1

2n
, for each

n = 1, 2, . . . . Observe that the sequence {Sn}∞
n=1 of partial sums converges, since

lim
n→∞

Sn = lim
n→∞

 
1 − 1

2n

 
= 1.

This says that as we add together more and more terms of the sequence

 
1

2k

 ∞

k=1

, the partial

sums are drawing closer and closer to 1. In view of this, we write

∞ 
k=1

1

2k
= 1. (2.4)

It’s very important to understand what’s going on here. This new mathematical object,
∞ 

k=1

1

2k
, is called a series (or infinite series). It is not a sum in the usual sense of the word,

but rather, the limit of the sequence of partial sums. Equation (2.4) says that as we add to-

gether more and more terms, the sums are approaching the limit of 1.

In general, for any sequence, {ak}∞
k=1, we can write down the series

a1 + a2 + · · · + ak + · · · =
∞ 

k=1

ak .

If the sequence of partial sums Sn =
n 

k=1

ak converges (to some number S), then we say that

the series
∞ 

k=1

ak converges (to S) and write

DEFINITION OF INFINITE SERIES

∞ 
k=1

ak = lim
n→∞

n 
k=1

ak = lim
n→∞

Sn = S. (2.5)

In this case, we call S the sum of the series. Alternatively, if the sequence of partial sums

{Sn}∞
n=1 diverges (i.e., lim

n→∞
Sn does not exist), then we say that the series diverges.

EXAMPLE 2.1 A Convergent Series

Determine whether the series
∞ 

k=1

1

2k
converges or diverges.
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Solution From our work on the introductory example, observe that

∞ 
k=1

1

2k
= lim

n→∞

n 
k=1

ak = lim
n→∞

 
1 − 1

2n

 
= 1.

In this case, we say that the series converges to 1. �

In example 2.2, we examine a simple divergent series.

EXAMPLE 2.2 A Divergent Series

Investigate the convergence or divergence of the series
∞ 

k=1

k2.

Solution Here, we have the nth partial sum.

Sn =
n 

k=1

k2 = 12 + 22 + · · · + n2

and lim
n→∞

Sn = lim
n→∞

(12 + 22 + · · · + n2) = ∞.

Since the sequence of partial sums diverges, the series diverges also. �

Determining the convergence or divergence of a series is only rarely as simple as it was

in examples 2.1 and 2.2.

EXAMPLE 2.3 A Series with a Simple Expression for the Partial Sums

Investigate the convergence or divergence of the series
∞ 

k=1

1

k(k + 1)
.

Solution In Figure 9.17, we have plotted the first 20 partial sums. In the

accompanying table, we list a number of partial sums of the series.

From both the graph and the table, it appears that the partial sums are approaching

1, as n → ∞. However, we must urge caution. It is extremely difficult to look at a graph

or a table of any partial sums and decide whether a given series converges or diverges.

In the present case, we can find a simple expression for the partial sums. The partial

fractions decomposition of the general term of the series is

1

k(k + 1)
= 1

k
− 1

k + 1
. (2.6)

Now, consider the nth partial sum. From (2.6), we have

Sn =
n 

k=1

1

k(k + 1)
=

n 
k=1

 
1

k
− 1

k + 1

 

=
 

1

1
− 1

2

 
+
 

1

2
− 1

3

 
+
 

1

3
− 1

4

 
+ · · · +

 
1

n − 1
− 1

n

 
+
 

1

n
− 1

n + 1

 
.

5 10 15 20

0.2

0.4

0.6

0.8

1.0

n

Sn

FIGURE 9.17

Sn =
n 

k=1

1

k(k + 1)

n Sn  
n 

k 1

1

k(k 1)

10 0.90909091

100 0.99009901

1000 0.999001

10,000 0.99990001

100,000 0.99999

1 × 106 0.999999

1 × 107 0.9999999
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Notice how nearly every term in the partial sum is canceled by another term in the

sum (the next term). For this reason, such a sum is referred to as a telescoping sum

(or collapsing sum). We now have

Sn = 1 − 1

n + 1

and so, lim
n→∞

Sn = lim
n→∞

 
1 − 1

n + 1

 
= 1.

This says that the series converges to 1, as suggested by the graph and the table. �

It is relatively rare that we can find the sum of a convergent series exactly. Usually, we

must test a series for convergence using some indirect method and then approximate the sum

by calculating some partial sums. The series we considered in example 2.1,
∞ 

k=1

1

2k
, is an

example of a geometric series, whose sum is known exactly. We have the following result.

THEOREM 2.1

For a  = 0, the geometric series
∞ 

k=0

ark converges to
a

1 − r
if |r | < 1 and diverges if

|r | ≥ 1. (Here, r is referred to as the ratio.)

NOTE

A geometric series is any series

that can be written in the form∞ 
k=0

ark for nonzero constants a

and r . In this case, each term in

the series equals the constant r

times the previous term.

PROOF

The proof relies on a clever observation. Since the first term of the series corresponds to

k = 0, the nth partial sum (the sum of the first n terms) is

Sn = a + ar1 + ar2 + · · · + arn−1. (2.7)

Multiplying (2.7) by r, we get

r Sn = ar1 + ar2 + ar3 + · · · + arn. (2.8)

Subtracting (2.8) from (2.7), we get

(1 − r )Sn = (a + ar1 + ar2 + · · · + arn−1) − (ar1 + ar2 + ar3 + · · · + arn)

= a − arn = a(1 − rn).

Dividing both sides by (1 – r ) gives us

Sn = a(1 − rn)

1 − r
.

If |r | < 1, notice that rn → 0 as n → ∞ and so,

lim
n→∞

Sn = lim
n→∞

a(1 − rn)

1 − r
= a

1 − r
.

We leave it as an exercise to show that if |r | ≥ 1, lim
n→∞

Sn does not exist.

EXAMPLE 2.4 A Convergent Geometric Series

Investigate the convergence or divergence of the series
∞ 

k=2

5
 

1
3

 k
.
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Solution The first 20 partial sums are plotted in Figure 9.18. It appears from the

graph that the sequence of partial sums is converging to some number around 0.8.

Further evidence is found in the following table of partial sums.

5 10 15 20

0.2

0.4

0.6

0.8

1.0

n

Sn

FIGURE 9.18

Sn =
n+1 
k=2

5 ·
 

1

3

 k

n Sn  
n 1 
k 2

5

 
1

3

 k
6 0.83219021

8 0.83320632

10 0.83331922

12 0.83333177

14 0.83333316

16 0.83333331

18 0.83333333

20 0.83333333

The table suggests that the series converges to approximately 0.83333333. Again, we

must urge caution. Some sequences and series converge (or diverge) far too slowly to

observe graphically or numerically. You must always confirm your suspicions with

careful mathematical analysis. In the present case, note that the series is a geometric

series, as follows:

∞ 
k=2

5

 
1

3

 k

= 5

 
1

3

 2

+ 5

 
1

3

 3

+ 5

 
1

3

 4

+ · · · + 5

 
1

3

 n

+ · · ·

= 5

 
1

3

 2
 

1 + 1

3
+
 

1

3

 2

+ · · ·
 

=
∞ 

k=0

 
5

 
1

3

 2  
1

3

 k
 
.

You can now see that this is a geometric series with ratio r = 1
3

and a = 5
 

1
3

 2
.

Further, since

|r | = 1

3
< 1,

we have from Theorem 2.1 that the series converges to

a

1 − r
= 5

 
1
3

 2
1 −  1

3

 =
 

5
9

  
2
3

 = 5

6
= 0.83333333̄,

which is consistent with the graph and the table of partial sums. �

EXAMPLE 2.5 A Divergent Geometric Series

Investigate the convergence or divergence of the series
∞ 

k=0

6

 
−7

2

 k

.
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Solution A graph showing the first 20 partial sums (see Figure 9.19) is not

particularly helpful, until you look at the vertical scale. The following table showing a

number of partial sums is more revealing.

 1.0   1011

 1.5   1011

 0.5   1011

0.5   1011

Sn

n
2015105

FIGURE 9.19

Sn =
n−1 
k= 0

6 ·
 

− 7

2

 k

n Sn  
n−1 
k 0

6

 
−
7

2

 k
11 1.29 × 106

12 −4.5 × 106

13 1.6 × 107

14 −5.5 × 107

15 1.9 × 108

16 −6.8 × 108

17 2.4 × 109

18 −8.3 × 109

19 2.9 × 1010

20 −1 × 1011

Note that while the partial sums are oscillating back and forth between positive and

negative values, they are growing larger and larger in absolute value. We can confirm

our suspicions by observing that this is a geometric series with ratio r = − 7
2
. Since

|r | =
    −7

2

    = 7

2
≥ 1,

the series is divergent, as we suspected. �

You will find that determining whether a series is convergent or divergent usually

involves a lot of hard work. The following simple observation provides us with a very

useful test.

THEOREM 2.2

If
∞ 

k=1

ak converges, then lim
k→∞

ak = 0.

PROOF

Suppose that
∞ 

k=1

ak converges to some number L. This means that the sequence of partial

sums defined by Sn =
n 

k=1

ak also converges to L. Notice that

Sn =
n 

k=1

ak =
n−1 
k=1

ak + an = Sn−1 + an.

Subtracting Sn−1 from both sides, we have

an = Sn − Sn−1.
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This gives us

lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = lim
n→∞

Sn − lim
n→∞

Sn−1 = L − L = 0,

as desired.

The following very useful test follows directly from Theorem 2.2.

kTH-TERM TEST FOR DIVERGENCE

If lim
k→∞

ak  = 0, then the series
∞ 

k=1

ak diverges.

The kth-term test is so simple, you should use it to test every series you run into. It says

that if the terms don’t tend to zero, the series is divergent and there’s nothing more to do.

However, as we’ll soon see, if the terms do tend to zero, the series may or may not converge

and additional testing is needed.

EXAMPLE 2.6 A Series Whose Terms Do Not Tend to Zero

Investigate the convergence or divergence of the series
∞ 

k=1

k

k + 1
.

Solution A graph showing the first 20 partial sums is shown in Figure 9.20. The

partial sums appear to be increasing without bound as n increases. We can resolve the

question of convergence quickly by observing that

lim
k→∞

k

k + 1
= 1  = 0.

From the kth-term test for divergence, the series must diverge. �

Example 2.7 shows an important series whose terms tend to 0 as k → ∞, but that diverges,

nonetheless.

105 15 20

5

10

15

20

Sn

n

FIGURE 9.20

Sn =
n 

k=1

k

k + 1

REMARK 2.1

The converse of Theorem 2.2

is false. That is, having

lim
k→∞

ak = 0 does not guarantee

that the series
∞ 

k=1

ak converges.

Be very clear about this point.

This is a very common

misconception.

EXAMPLE 2.7 The Harmonic Series

Investigate the convergence or divergence of the harmonic series:
∞ 

k=1

1

k
.

5 10 15 20

2

3

4

1

Sn

n

FIGURE 9.21

Sn =
n 

k=1

1

k

Solution In Figure 9.21, we see the first 20 partial sums of the series. In the table, we

display several partial sums. The table and the graph suggest that the series might

converge to a number around 3.6. As always with sequences and series, we need to

confirm this suspicion. First, note that

lim
k→∞

ak = lim
k→∞

1

k
= 0.

Be careful: once again, this does not say that the series converges. If the limit had been

nonzero, we would have concluded that the series diverges. In the present case, where

the limit is 0, we can conclude only that the series may converge, but we will need to

investigate further.
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The following clever proof provides a preview of things to come. Consider the nth

partial sum

Sn =
n 

k=1

1

k
= 1

1
+ 1

2
+ 1

3
+ · · · + 1

n
.

Note that Sn corresponds to the sum of the areas of the n rectangles superimposed on

the graph of y = 1
x
, as shown in Figure 9.22 for the case where n = 7.

Since each of the indicated rectangles lies partly above the curve, we have

Sn = Sum of areas of n rectangles

≥ Area under the curve =
 n+1

1

1

x
dx

= ln |x |
   n+1

1
= ln(n + 1). (2.9)

However, the sequence {ln(n + 1)}∞
n=1 diverges, since

lim
n→∞

ln(n + 1) = ∞.

Since Sn ≥ ln(n + 1), for all n [from (2.9)], we must also have that lim
n→∞

Sn = ∞.

From the definition of convergence of a series, we now have that
∞ 

k=1

1

k
diverges, too,

even though lim
k→∞

1

k
= 0.

�

We conclude this section with several unsurprising results.

THEOREM 2.3

(i) If
∞ 

k=1

ak converges to A and
∞ 

k=1

bk converges to B, then the series
∞ 

k=1

(ak ± bk)

converges to A ± B and
∞ 

k=1

(cak) converges to cA, for any constant, c.

(ii) If
∞ 

k=1

ak converges and
∞ 

k=1

bk diverges, then
∞ 

k=1

(ak ± bk) diverges.

The proof of the theorem is left as an exercise.

n Sn  
n 

k 1

1

k

11 3.01988

12 3.10321

13 3.18013

14 3.25156

15 3.31823

16 3.38073

17 3.43955

18 3.49511

19 3.54774

20 3.59774

1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1.0

1.2

y

FIGURE 9.22

y = 1

x

BEYOND FORMULAS

The harmonic series illustrates one of the most counterintuitive facts in calculus. A

full understanding of this particular infinite series will help you recognize many of the

subtle issues that arise in later mathematics courses. The general result may be stated

this way: in the case where lim
k→∞

ak = 0, the series
∞ 

k=1

ak might diverge and might

converge, depending on how fast the sequence ak approaches zero. Keep thinking

about why the harmonic series diverges and you will develop a deeper understanding

of how infinite series in particular and calculus in general work.
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EXERCISES 9.2

WRITING EXERCISES

1. Suppose that your friend is confused about the difference be-

tween the convergence of a sequence and the convergence

of a series. Carefully explain the difference between conver-

gence or divergence of the sequence ak = k

k + 1
and the series

∞ 
k=1

k

k + 1
.

2. Explain in words why the kth-term test for divergence is valid.

Explain why it is not true that if lim
k→∞

ak = 0 then
∞ 

k=1

ak nec-

essarily converges. In your explanation, include an impor-

tant example that proves that this is not true and comment

on the fact that the convergence of ak to 0 can be slow or

fast.

3. In Theorems 2.2 and 2.3, the series start at k = 1, as in
∞ 

k=1

ak .

Explain why the conclusions of the theorems hold if the series

start at k = 2, k = 3 or at any positive integer.

4. We emphasized in the text that numerical and graphical evi-

dence for the convergence of a series can be misleading. Sup-

pose your calculator carries 14 digits in its calculations. Explain

why for large enough values of n, the term
1

n
will be too small

to change the partial sum
n 

k=1

1

k
. Thus, the calculator would

incorrectly indicate that the harmonic series converges.

In exercises 1–22, determine whether the series converges or

diverges. For convergent series, find the sum of the series.

1.

∞ 
k=0

3

 
1

5

 k

2.

∞ 
k=0

1

3
(5)k

3.

∞ 
k=0

1

2

 
− 1

3

 k

4.

∞ 
k=0

4

 
1

2

 k

5.

∞ 
k=0

1

2
(3)k 6.

∞ 
k=0

5

 
− 1

3

 k

7.

∞ 
k=1

4

k(k + 2)
8.

∞ 
k=1

4k

k + 2

9.

∞ 
k=1

3k

k + 4
10.

∞ 
k=1

9

k(k + 3)

11.

∞ 
k=1

2

k
12.

∞ 
k=0

4

k + 1

13.

∞ 
k=1

2k + 1

k2(k + 1)2
14.

∞ 
k=1

4

k(k + 1)(k + 3)(k + 4)

15.

∞ 
k=2

3−k 16.
∞ 

k=3

(−1)k
3

2k

17.

∞ 
k=0

 
1

2k
− 1

k + 1

 
18.

∞ 
k=0

 
1

2k
− 1

3k

 

19.

∞ 
k=2

 
2

3k
+ 1

2k

 
20.

∞ 
k=2

 
1

k
− 1

4k

 

21.

∞ 
k=0

(−1)k+1 3k

k + 1
22.

∞ 
k=0

(−1)k k3

k2 + 1

In exercises 23–26, use graphical and numerical evidence to con-

jecture the convergence or divergence of the series.

23.

∞ 
k=1

1

k2
24.

∞ 
k=1

1√
k

25.

∞ 
k=1

3

k!
26.

∞ 
k=1

2k

k!

27. Prove that if
∞ 

k=1

ak converges, then
∞ 

k=m

ak converges for any

positive integer m. In particular, if
∞ 

k=1

ak converges to L, what

does
∞ 

k=m

ak converge to?

28. Prove that if
∞ 

k=1

ak diverges, then
∞ 

k=m

ak diverges for any posi-

tive integer m.

29. Prove Theorem 2.3 (i). 30. Prove Theorem 2.3 (ii).

31. The harmonic series is probably the single most impor-

tant series to understand. In this exercise, we guide you

through another proof of the divergence of this series. Let

Sn =
n 

k=1

1

k
. Show that S1 = 1 and S2 = 3

2
. Since 1

3
> 1

4
, we

have 1
3

+ 1
4
> 1

4
+ 1

4
= 1

2
. Therefore, S4 >

3
2

+ 1
2

= 2. Simi-

larly, 1
5

+ 1
6

+ 1
7

+ 1
8
> 1

8
+ 1

8
+ 1

8
+ 1

8
= 1

2
, so S8 >

5
2
. Show

that S16 > 3 and S32 >
7
2
. For which n can you guarantee that

Sn > 4? Sn > 5? For any positive integer m, determine n such

that Sn > m. Conclude that the harmonic series diverges.

32. Compute several partial sums of the series

1 + 1 − 1 + 1 − 1 + 1 − 1 + · · · . Argue that the limit of the

sequence of partial sums does not exist, so that the series

diverges. Also, write this series as a geometric series and use

Theorem 2.1 to conclude that the series diverges. Finally, use

the kth-term test for divergence to conclude that the series

diverges.

33. Write 0.99999̄ = 0.9 + 0.09 + 0.009 + · · · and sum the geo-

metric series to prove that 0.99999̄ = 1.
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34. As in exercise 33, prove that 0.199999̄ = 0.2.

35. Write 0.181818 as a geometric series and then write the sum

of the geometric series as a fraction.

36. As in exercise 35, write 2.134134 as a fraction.

37. Suppose you have n boards of length L. Place the first board

with length L

2n
hanging over the edge of the table. Place the

next board with length L

2(n−1)
hanging over the edge of the first

board. The next board should hang L

2(n−2)
over the edge of the

second board. Continue on until the last board hangs L

2
over

the edge of the (n − 1)st board. Theoretically, this stack will

balance (in practice, don’t use quite as much overhang). With

n = 8, compute the total overhang of the stack. Determine the

number of boards n such that the total overhang is greater than

L. This means that the last board is entirely beyond the edge of

the table. What is the limit of the total overhang as n → ∞?

L

2
L

4

. . .

38. Have you ever felt that the line you’re standing in moves more

slowly than the other lines? In An Introduction to Probabil-

ity Theory and Its Applications, William Feller proved just

how bad your luck is. Let N be the number of people who

get in line until someone waits longer than you do (you’re

the first, so N ≥ 2). The probability that N = k is given by

p(k) = 1

k(k − 1)
. Prove that the total probability equals 1;

that is,
∞ 

k=2

1

k(k − 1)
= 1. From probability theory, the average

(mean) number of people who must get in line before someone

has waited longer than you is given by
∞ 

k=2

k
1

k(k − 1)
. Prove

that this diverges to ∞. Talk about bad luck!

39. If 0 < r < 1
2
, show that

1 + 2r +4r 2 + · · · + (2r )n + · · · = 1

1 − 2r
. Replace r with

1

1000
and discuss what’s interesting about the decimal repre-

sentation of
500

499
.

40. In exploratory exercise 1 of section 9.1, you showed that a par-

ticular bouncing ball takes 2 seconds to complete its infinite

number of bounces. In general, the total time it takes for a ball

to complete its bounces is
2v

g

∞ 
k=0

rk and the total distance the

ball moves is
v2

g

∞ 
k=0

r 2k . Assuming 0 < r < 1, find the sums

of these geometric series.

41. To win a deuce tennis game, one player or the other must

win the next two points. If each player wins one point, the

deuce starts over. If you win each point with probability

p, the probability that you win the next two points is p2.

The probability that you win one of the next two points is

2p(1 − p). The probability that you win a deuce game is then

p2 + 2p(1−p)p2 + [2p(1 − p)]2 p2 + [2p(1 − p)]3 p2 + · · · .
Explain what each term represents, explain why the geometric

series converges and find the sum of the series. If p = 0.6,

you’re a better player than your opponent. Show that you are

more likely to win a deuce game than you are a single point.

The slightly strange scoring rules in tennis make it more likely

that the better player wins.

42. On an analog clock, at 1:00, the minute hand points to 12 and

the hour hand points to 1. When the minute hand reaches 1,

the hour hand has progressed to 1 + 1
12

. When the minute hand

reaches 1 + 1
12

, the hour hand has moved to 1 + 1
12

+ 1

122 . Find

the sum of a geometric series to determine the time at which

the minute hand and hour hand are in the same location.

43. A dosage d of a drug is given at times t = 0, 1, 2, . . . .

The drug decays exponentially with rate r in the blood-

stream. The amount in the bloodstream after n + 1 doses is

d + de−r + de−2r + · · · + de−nr . Show that the eventual level

of the drug (after an “infinite” number of doses) is
d

1 − e−r
. If

r = 0.1, find the dosage needed to maintain a drug level of 2.

44. Two bicyclists are 40 miles apart, riding toward each other at

20 mph (each). A fly starts at one bicyclist and flies toward the

other bicyclist at 60 mph. When it reaches the bike, it turns

around and flies back to the first bike. It continues flying back

and forth until the bikes meet. Determine the distance flown on

each leg of the fly’s journey and find the sum of the geometric

series to get the total distance flown. Verify that this is the right

answer by solving the problem the easy way.

45. Suppose $100,000 of counterfeit money is introduced into the

economy. Each time the money is used, 25% of the remaining

money is identified as counterfeit and removed from circula-

tion. Determine the total amount of counterfeit money success-

fully used in transactions. This is an example of themultiplier

effect in economics. Suppose that a new marking scheme on

dollar bills helps raise the detection rate to 40%. Determine the

reduction in the total amount of counterfeit money successfully

spent.

46. In this exercise, we will find the present value of a plot of

farmland. Assume that a crop of value $c will be planted in

years 1, 2, 3 and so on, and the yearly inflation rate is r. The

present value is given by

P = ce−r + ce−2r + ce−3r + · · · .
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Find the sum of the geometric series to compute the present

value.

47. Give an example where
∞ 

k=1

ak and
∞ 

k=1

bk both diverge but
∞ 

k=1

(ak + bk) converges.

48. If
∞ 

k=0

ak converges and
∞ 

k=0

bk diverges, is it necessarily true that

∞ 
k=0

(ak + bk) diverges?

49. Prove that the sum of a convergent geometric series

1 + r + r 2 + · · · must be greater than 1
2
.

50. Prove that
∞ 

k=1

(ak − ak−1) converges if and only if the sequence

{an} converges.

51. Prove that if the series
∞ 

k=0

ak converges, then the series
∞ 

k=0

1

akdiverges.

52. Prove that the partial sum Sn = 1 + 1
2

+ 1
3

+ · · · + 1
n

does not

equal an integer for any prime n > 1. Is the statement true for

all integers n > 1?

53. Suppose you repeat a game at which you have a probability

p of winning each time you play. The probability that your

first win comes in your nth game is p(1 − p)n−1. Compute
∞ 

n=1

p(1 − p)n−1 and state in terms of probability why the re-

sult makes sense.

54. The Cantor set is one of the most famous sets in mathemat-

ics. To construct the Cantor set, start with the interval [0, 1].

Then remove the middle third,
 

1
3
, 2

3

 
. This leaves the set 

0, 1
3

 ∪  2
3
, 1
 
. For each of the two subintervals, remove the

middle third; in this case, remove the intervals
 

1
9
, 2

9

 
and 

7
9
, 8

9

 
. Continue in this way, removing the middle thirds of

each remaining interval. The Cantor set is all points in [0, 1]

that are not removed. Argue that 0, 1, 1
3

and 2
3

are in the Cantor

set, and identify four more points in the set. It can be shown

that there are an infinite number of points in the Cantor set. On

the other hand, the total length of the subintervals removed is
1
3

+ 2
 

1
9

 + · · · . Find the third term in this series, identify the

series as a convergent geometric series and find the sum of the

series. Given that you started with an interval of length 1, how

much “length” does the Cantor set have?

EXPLORATORY EXERCISES

1. Infinite products are also of great interest to

mathematicians. Numerically explore the con-

vergence or divergence of the infinite product 
1 − 1

4

  
1 − 1

9

  
1 − 1

25

  
1 − 1

49

 · · · =  
p = prime

 
1 − 1

p2

 
. Note

that the product is taken over the prime numbers, not all

integers. Compare your results to the number
6

π 2
.

2. In example 2.7, we showed that

1 + 1
2

+ 1
3

+ · · · + 1
n
> ln(n + 1). Superimpose the graph

of f (x) = 1
x−1

onto Figure 9.22 and show that

1
2

+ 1
3

+ · · · + 1
n
< ln(n). Conclude that

ln(n + 1) < 1 + 1
2

+ 1
3

+ · · · + 1
n
< 1 + ln(n). Euler’s con-

stant is defined by

γ = lim
n→∞

 
1 + 1

2
+ 1

3
+ · · · + 1

n
− ln(n)

 
.

Look up the value of γ . (Hint: Use your CAS.) Use γ to esti-

mate
n 

i=1

1

i
for n = 10,000 and n = 100,000.

3. Investigate whether the sequence an =
2n 

k=n

1

k
converges or

diverges.

9.3 THE INTEGRAL TEST AND COMPARISON TESTS

Keep in mind that, for most series, we cannot determine whether they converge or diverge

by simply looking at the sequence of partial sums. Most of the time, we will need to test

a series for convergence in some indirect way. In this section, we will develop additional

tests for convergence of series. The first of these is a generalization of the method we used

in section 9.2 to show that the harmonic series is divergent.

For a given series
∞ 

k=1

ak , suppose that there is a function f for which

f (k) = ak, for k = 1, 2, . . . ,
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where f is continuous and decreasing and f (x) ≥ 0 for all x ≥ 1. We consider the nth partial

sum

Sn =
n 

k=1

ak = a1 + a2 + · · · + an.

y

1 4 n32
x

(2, a2)

(3, a3)

(n, an)

y   f (x)

FIGURE 9.23a
(n − 1) rectangles, lying

beneath the curve

In Figure 9.23a, we show (n − 1) rectangles constructed on the interval [1, n], each of

width 1 and with height equal to the value of the function at the right-hand endpoint of

the subinterval on which it is constructed. Notice that since each rectangle lies completely

beneath the curve, the sum of the areas of the (n − 1) rectangles shown is less than the area

under the curve from x = 1 to x = n. That is,

0 ≤ Sum of areas of (n − 1) rectangles ≤ Area under the curve =
 n

1

f (x) dx . (3.1)

Note that the area of the first rectangle is length × width = (1)(a2), the area of the second

rectangle is (1)(a3) and so on. We get that the sum of the areas of the (n − 1) rectangles

shown is

a2 + a3 + a4 + · · · + an = Sn − a1,

since Sn = a1 + a2 + · · · + an.

Together with (3.1), this gives us

0 ≤ Sum of areas of (n − 1) rectangles

= Sn − a1 ≤ Area under the curve =
 n

1

f (x) dx . (3.2)

Now, suppose that the improper integral
 ∞

1
f (x) dx converges. Then, from (3.2), we

have

0 ≤ Sn − a1 ≤
 n

1

f (x) dx ≤
 ∞

1

f (x) dx .

Adding a1 to all the terms gives us

a1 ≤ Sn ≤ a1 +
 ∞

1

f (x) dx,

so that the sequence of partial sums {Sn}∞
n=1 is bounded. Since {Sn}∞

n=1 is also monotonic

(why is that?), {Sn}∞
n=1 is convergent by Theorem 1.4 and so, the series

∞ 
k=1

ak is also

convergent.

In Figure 9.23b, we show (n − 1) rectangles constructed on the interval [1, n], each

of width 1, but with height equal to the value of the function at the left-hand endpoint of

the subinterval on which it is constructed. In this case, the sum of the areas of the (n − 1)

rectangles shown is greater than the area under the curve. That is,

0 ≤ Area under the curve =
 n

1

f (x) dx

≤ Sum of areas of (n − 1) rectangles. (3.3)

y

1 4 n32
x

y   f (x)

(1, a1)

(2, a2)

(n   1, an 1)

FIGURE 9.23b
(n − 1) rectangles, partially

above the curve

Further, note that the area of the first rectangle is length × width = (1)(a1), the area of

the second rectangle is (1)(a2) and so on. We get that the sum of the areas of the (n − 1)

rectangles indicated in Figure 9.23b is

a1 + a2 + · · · + an−1 = Sn−1.
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Together with (3.3), this gives us

0 ≤ Area under the curve =
 n

1

f (x) dx

≤ Sum of areas of (n − 1) rectangles = Sn−1. (3.4)

Now, suppose that the improper integral
 ∞

1
f (x) dx diverges. Since f (x) ≥ 0, this says

that lim
n→∞

 n

1
f (x) dx = ∞. From (3.4), we have that n

1

f (x) dx ≤ Sn−1.

This says that lim
n→∞

Sn−1 = ∞,

also. So, the sequence of partial sums {Sn}∞
n=1 diverges and hence, the series

∞ 
k=1

ak diverges,

too.

HISTORICAL NOTES

Colin Maclaurin (1698–1746)

Scottish mathematician who

discovered the Integral Test.

Maclaurin was one of the founders

of the Royal Society of Edinburgh

and was a pioneer in the

mathematics of actuarial studies.

The Integral Test was introduced

in a highly influential book that

also included a new treatment of

an important method for finding

series of functions. Maclaurin

series, as we now call them, are

developed in section 9.7.

We summarize the results of this analysis in Theorem 3.1.

THEOREM 3.1 (Integral Test)

If f (k) = ak for all k = 1, 2, . . . , f is continuous and decreasing, and f (x) ≥ 0 for

x ≥ 1, then
 ∞

1
f (x) dx and

∞ 
k=1

ak either both converge or both diverge.

Note that while the Integral Test might say that a given series and improper integral

both converge, it does not say that they will converge to the same value. In fact, this is

generally not the case, as we see in example 3.1.

5 10 15 20

0.5

1.0

1.5

2.0

2.5

Sn

n

FIGURE 9.24

Sn =
n−1 
k=0

1

k2 + 1

EXAMPLE 3.1 Using the Integral Test

Investigate the convergence or divergence of the series
∞ 

k=0

1

k2 + 1
.

Solution The graph of the first 20 partial sums shown in Figure 9.24 suggests that the

series converges to some value around 2. In the accompanying table, we show some

selected partial sums. Based on this, we cannot say whether the series is converging

very slowly to a limit around 2.076 or whether the series is instead diverging very

slowly. To determine which is the case, we must test the series further. Define

f (x) = 1

x2 + 1
. Note that f is continuous and positive everywhere and

f (k) = 1

k2 + 1
= ak , for all k ≥ 1. Further,

f  (x) = (−1)(x2 + 1)−2(2x) < 0,

for x ∈ (0,∞), so that f is decreasing. This says that the Integral Test applies to this

series. So, we consider the improper integral ∞

0

1

x2 + 1
dx = lim

R→∞

 R

0

1

x2 + 1
dx = lim

R→∞
tan−1 x

    R
0

= lim
R→∞

(tan−1 R − tan−1 0) = π

2
− 0 = π

2
.
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The Integral Test says that since the improper integral converges, the series must

converge, also. Now that we have established that the series is convergent, our earlier

calculations give us the estimated sum 2.076. Notice that this is not the same as the

value of the corresponding improper integral, which is
π

2
≈ 1.5708.

�

n Sn  
n−1 
k 0

1

k2  1

10 1.97189

50 2.05648

100 2.06662

200 2.07166

500 2.07467

1000 2.07567

2000 2.07617

In example 3.2, we discuss an important type of series.

EXAMPLE 3.2 The p-Series

Determine for which values of p the series
∞ 

k=1

1

k p
(a p-series) converges.

Solution First, notice that for p = 1, this is the harmonic series, which diverges. For

p > 1, define f (x) = 1

x p
= x−p. Notice that for x ≥ 1, f is continuous and positive.

Further,

f  (x) = −px−p−1 < 0,

so that f is decreasing. This says that the Integral Test applies. We now consider ∞

1

x−p dx = lim
R→∞

 R

1

x−p dx = lim
R→∞

x−p+1

−p + 1

    R
1

= lim
R→∞

 
R−p+1

−p + 1
− 1

−p + 1

 
= −1

−p + 1
.

Since p > 1 implies

that −p + 1 < 0.

In this case, the improper integral converges and so too, must the series. In the case

where p < 1, we leave it as an exercise to show that the series diverges. �

We summarize the result of example 3.2 as follows.

p-SERIES

The p-series
∞ 

k=1

1

k p
converges if p > 1 and diverges if p ≤ 1.

Notice that in each of examples 3.1 and 3.2, we were able to use the Integral Test to

establish the convergence of a series. While you can use the partial sums of a convergent

series to estimate its sum, how precise is a given estimate? First, if we estimate the sum s

of the series
∞ 

k=1

ak by the nth partial sum Sn =
n 

k=1

ak , we define the remainder Rn to be

Rn = s − Sn =
∞ 

k=1

ak −
n 

k=1

ak =
∞ 

k=n+1

ak .

Notice that this says that the remainder Rn is the error in approximating s by Sn . For any

series shown to be convergent by the Integral Test, we can estimate the size of the remainder,

as follows. From Figure 9.25, observe that Rn corresponds to the sum of the areas of the

indicated rectangles. Further, under the conditions of the Integral Test, this is less than the

area under the curve y = f (x). (Recall that this area is finite, as
 ∞

1
f (x) dx converges.)

That is, we have the following result.

y

n
n   1

x

(n   1, an 1)

y   f (x)

FIGURE 9.25
Estimate of the remainder
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THEOREM 3.2 (Error Estimate for the Integral Test)

Suppose that f (k) = ak for all k = 1, 2, . . . , where f is continuous and decreasing,

and f (x) ≥ 0 for all x ≥ 1. Further, suppose that
 ∞

1
f (x) dx converges. Then, the

remainder Rn satisfies

0 ≤ Rn =
∞ 

k=n+1

ak ≤
 ∞

n

f (x) dx .

We can use Theorem 3.2 to estimate the error in using a partial sum to approximate the

sum of a series.

EXAMPLE 3.3 Estimating the Error in a Partial Sum

Estimate the error in using the partial sum S100 to approximate the sum of the series
∞ 

k=1

1

k3
.

Solution First, recall that in example 3.2, we used the Integral Test to show that this

series (a p-series, with p = 3) is convergent. From Theorem 3.2, the remainder satisfies

0 ≤ R100 ≤
 ∞

100

1

x3
dx = lim

R→∞

 R

100

1

x3
dx = lim

R→∞

 
− 1

2x2

 R

100

= lim
R→∞

 −1

2R2
+ 1

2(100)2

 
= 5 × 10−5.

�

A more interesting and far more practical question related to example 3.3 is to determine

the number of terms of the series necessary to obtain a given accuracy.

EXAMPLE 3.4 Finding the Number of Terms Needed
for a Given Accuracy

Determine the number of terms needed to obtain an approximation to the sum of the

series
∞ 

k=1

1

k3
correct to within 10−5.

Solution Again, we already used the Integral Test to show that the series in question

converges. Then, by Theorem 3.2, we have that the remainder satisfies

0 ≤ Rn ≤
 ∞

n

1

x3
dx = lim

R→∞

 R

n

1

x3
dx = lim

R→∞

 
− 1

2x2

 R

n

= lim
R→∞

 −1

2R2
+ 1

2n2

 
= 1

2n2
.

So, to ensure that the remainder is less than 10−5, we require that

0 ≤ Rn ≤ 1

2n2
≤ 10−5.

Solving this last inequality for n yields

n2 ≥ 105

2
or n ≥

 
105

2
= 100

√
5 ≈ 223.6.
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So, taking n ≥ 224 will guarantee the required accuracy and consequently, we have
∞ 

k=1

1

k3
≈

224 
k=1

1

k3
≈ 1.202047, which is correct to within 10−5, as desired.

�

Comparison Tests

We next present two results that allow us to compare a given series with one that is already

known to be convergent or divergent, much as we did with improper integrals in section 7.7.

THEOREM 3.3 (Comparison Test)

Suppose that 0 ≤ ak ≤ bk , for all k.

(i) If
∞ 

k=1

bk converges, then
∞ 

k=1

ak converges, too.

(ii) If
∞ 

k=1

ak diverges, then
∞ 

k=1

bk diverges, too.

Intuitively, this theorem should make abundant sense: if the “larger” series converges,

then the “smaller” one must also converge. Likewise, if the “smaller” series diverges, then

the “larger” one must diverge, too.

PROOF

Given that 0 ≤ ak ≤ bk for all k, observe that the nth partial sums of the two series satisfy

0 ≤ Sn = a1 + a2 + · · · + an ≤ b1 + b2 + · · · + bn.

(i) If
∞ 

k=1

bk converges (say to B), this says that

0 ≤ Sn ≤ a1 + a2 + · · · + an ≤ b1 + b2 + · · · + bn ≤
∞ 

k=1

bk = B, (3.5)

for all n ≥ 1. From (3.5), the sequence {Sn}∞
n=1 of partial sums of

∞ 
k=1

ak is bounded. No-

tice that {Sn}∞
n=1 is also increasing. (Why?) Since every bounded, monotonic sequence is

convergent (see Theorem 1.4), we get that
∞ 

k=1

ak is convergent, too.

(ii) If
∞ 

k=1

ak is divergent, we have (since all of the terms of the series are nonnegative) that

lim
n→∞

(b1 + b2 + · · · + bn) ≥ lim
n→∞

(a1 + a2 + · · · + an) = ∞.

Thus,
∞ 

k=1

bk must be divergent, also.

You can use the Comparison Test to test the convergence of series that look similar

to series that you already know are convergent or divergent (notably, geometric series or

p-series).
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EXAMPLE 3.5 Using the Comparison Test for a Convergent Series

Investigate the convergence or divergence of
∞ 

k=1

1

k3 + 5k
.

Solution The graph of the first 20 partial sums shown in Figure 9.26 suggests that

the series converges to some value near 0.3. To confirm such a conjecture, we must

carefully test the series. Note that for large values of k, the general term of the series

looks like
1

k3
, since when k is large, k3 is much larger than 5k. This observation is

significant, since we already know that
∞ 

k=1

1

k3
is a convergent p-series (p = 3 > 1).

Further, observe that

1

k3 + 5k
≤ 1

k3
,

for all k ≥ 1. Since
∞ 

k=1

1

k3
converges, the Comparison Test says that

∞ 
k=1

1

k3 + 5k
converges, too. As with the Integral Test, although the Comparison Test tells us that

both series converge, the two series need not converge to the same sum. A quick

calculation of a few partial sums should convince you that
∞ 

k=1

1

k3
converges to

approximately 1.202, while
∞ 

k=1

1

k3 + 5k
converges to approximately 0.2798. (Note that

this is consistent with what we saw in Figure 9.26.) �

5 10 15 20

0.1

0.2

0.3

Sn

n

FIGURE 9.26

Sn =
n 

k=1

1

k3 + 5k

5 10 15 20

Sn

0.5   108

1.0   108

1.5   108

2.0   108

n

FIGURE 9.27

Sn =
n 

k=1

5k + 1

2k − 1

EXAMPLE 3.6 Using the Comparison Test for a Divergent Series

Investigate the convergence or divergence of
∞ 

k=1

5k + 1

2k − 1
.

Solution From the graph of the first 20 partial sums seen in Figure 9.27, it appears

that the partial sums are growing very rapidly. On this basis, we would conjecture that

the series diverges. Of course, to verify this, we need further testing. Notice that for k

large, the general term looks like
5k

2k
=
 

5

2

 k

and we know that
∞ 

k=1

 
5
2

 k
is a divergent

geometric series

 
|r | = 5

2
> 1

 
. Further,

5k + 1

2k − 1
≥ 5k

2k − 1
≥ 5k

2k
=
 

5

2

 k

.

By the Comparison Test,
∞ 

k=1

5k + 1

2k − 1
diverges, too.

�

There are plenty of series whose general term looks like the general term of a familiar

series, but for which it is unclear how to get the inequality required for the Comparison Test

to go in the right direction.
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5 10 15 20

0.04

0.08

0.12

0.16

Sn

n

FIGURE 9.28

Sn =
n+2 
k=3

1

k3 − 5k

EXAMPLE 3.7 A Comparison That Does Not Work

Investigate the convergence or divergence of the series
∞ 

k=3

1

k3 − 5k
.

Solution Note that this is nearly identical to example 3.5, except that there is a “−”

sign in the denominator instead of a “+” sign. The graph of the first 20 partial sums seen

in Figure 9.28 looks somewhat similar to the graph in Figure 9.26, except that the series

appears to be converging to about 0.12. In this case, however, we have the inequality

1

k3 − 5k
≥ 1

k3
, for all k ≥ 3.

Unfortunately, this inequality goes the wrong way: we know that
∞ 

k=3

1

k3
is a convergent

p-series, but since
∞ 

k=3

1

k3 − 5k
is “larger” than this convergent series, the Comparison

Test says nothing. �

Think about what happened in example 3.7 this way: while you might observe that

k2 ≥ 1

k3
, for all k ≥ 1

and you know that
∞ 

k=1

1

k3
is convergent, the Comparison Test says nothing about the “larger”

series
∞ 

k=1

k2. In fact, we know that this last series is divergent (by the kth-term test for

divergence, since lim
k→∞

k2 = ∞  = 0). To resolve this difficulty for the present problem, we

will need to either make a different comparison or use the Limit Comparison Test, which

follows.

NOTES

When we say lim
k→∞

ak

bk

= L > 0,

we mean that the limit exists and

is positive. In particular, we mean

that lim
k→∞

ak

bk

 = ∞.

THEOREM 3.4 (Limit Comparison Test)

Suppose that ak, bk > 0 and that for some (finite) value, L , lim
k→∞

ak

bk

= L > 0. Then,

either
∞ 

k=1

ak and
∞ 

k=1

bk both converge or they both diverge.

PROOF

If lim
k→∞

ak

bk

= L > 0, this says that we can make
ak

bk

as close to L as desired. So, in particular,

we can make
ak

bk

within distance
L

2
of L. That is, for some number N > 0,

L − L

2
<

ak

bk

< L + L

2
, for all k > N

or
L

2
<

ak

bk

<
3L

2
. (3.6)
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Multiplying inequality (3.6) through by bk (recall that bk > 0), we get

L

2
bk < ak <

3L

2
bk, for k ≥ N .

Note that this says that if
∞ 

k=1

ak converges, then the “smaller” series
∞ 

k=1

 
L

2
bk

 
= L

2

∞ 
k=1

bk

must also converge, by the Comparison Test. Likewise, if
∞ 

k=1

ak diverges, the “larger”

series
∞ 

k=1

 
3L

2
bk

 
= 3L

2

∞ 
k=1

bk must also diverge. In the same way, if
∞ 

k=1

bk converges,

then
∞ 

k=1

 
3L

2
bk

 
converges and so, too must the “smaller” series

∞ 
k=1

ak . Finally, if
∞ 

k=1

bk

diverges, then
∞ 

k=1

 
L

2
bk

 
diverges and hence, the “larger” series

∞ 
k=1

ak must diverge,
also.

We can now use the Limit Comparison Test to test the series from example 3.7 whose

convergence we have so far been unable to confirm.

EXAMPLE 3.8 Using the Limit Comparison Test

Investigate the convergence or divergence of the series
∞ 

k=3

1

k3 − 5k
.

Solution Recall that we had already observed in example 3.7 that the general term

ak = 1

k3 − 5k
“looks like” bk = 1

k3
, for k large. We then consider the limit

lim
k→∞

ak

bk

= lim
k→∞

 
ak

1

bk

 
= lim

k→∞
1

(k3 − 5k)

1 
1

k3

 = lim
k→∞

1

1 − 5

k2

= 1 > 0.

Since
∞ 

k=1

1

k3
is a convergent p-series (p = 3 > 1), the Limit Comparison Test says that

∞ 
k=3

1

k3 − 5k
is also convergent, as we had originally suspected. �

The Limit Comparison Test can be used to resolve convergence questions for a great

many series. The first step in using this (like the Comparison Test) is to find another series

(whose convergence or divergence is known) that “looks like” the series in question.

EXAMPLE 3.9 Using the Limit Comparison Test

Investigate the convergence or divergence of the series

∞ 
k=1

k2 − 2k + 7

k5 + 5k4 − 3k3 + 2k − 1
.

5 10 15 20

1.52

1.54

1.56

1.58

1.60

1.62

1.50

Sn

n

FIGURE 9.29

Sn =
n 

k=1

k2 − 2k + 7

k5 + 5k4 − 3k3 + 2k − 1

Solution The graph of the first 20 partial sums in Figure 9.29 suggests that the series

converges to a limit of about 1.61. The accompanying table of partial sums supports this

conjecture.
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Notice that for k large, the general term looks like
k2

k5
= 1

k3
(since the terms with the

largest exponents tend to dominate the expression, for large values of k). From the Limit

Comparison Test, for bk = 1
k3 , we have

lim
k→∞

ak

bk

= lim
k→∞

k2 − 2k + 7

k5 + 5k4 − 3k3 + 2k − 1

1 
1

k3

 
= lim

k→∞
(k2 − 2k + 7)

(k5 + 5k4 − 3k3 + 2k − 1)

k3

1

= lim
k→∞

(k5 − 2k4 + 7k3)

(k5 + 5k4 − 3k3 + 2k − 1)

 
1

k5

 
 

1

k5

 
= lim

k→∞

1 − 2
k

+ 7

k2

1 + 5
k

− 3

k2
+ 2

k4
− 1

k5

= 1 > 0.

Since
∞ 

k=1

1

k3
is a convergent p-series (p = 3 > 1), the Limit Comparison Test says that

∞ 
k=1

k2 − 2k + 7

k5 + 5k4 − 3k3 + 2k − 1
converges, also. Finally, now that we have established

that the series is, in fact, convergent, we can use our table of computed partial sums to

approximate the sum of the series as 1.61457. �

n Sn  
n 

k 1

k2−2k 7
k5 5k4−3k3 2k−1

5 1.60522

10 1.61145

20 1.61365

50 1.61444

75 1.61453

100 1.61457

BEYOND FORMULAS

Keeping track of the many convergence tests arising in the study of infinite series can

be somewhat challenging. We need all of these convergence tests because there is not

a single test that works for all series (although more than one test may be used for a

given series). Keep in mind that each test works only for specific types of series. As a

result, you must be able to distinguish one type of infinite series (such as a geometric

series) from another (such as a p-series), in order to determine the right test to use.

EXERCISES 9.3

WRITING EXERCISES

1. Notice that the Comparison Test doesn’t always give us infor-

mation about convergence or divergence. If ak ≤ bk for each k

and
∞ 

k=1

bk diverges, explain why you can’t tell whether or not

∞ 
k=1

ak diverges.

2. Explain why the Limit Comparison Test works. In particular,

if lim
k→∞

ak

bk

= 1, explain how ak and bk compare and conclude

that
∞ 

k=1

ak and
∞ 

k=1

bk either both converge or both diverge.

3. In the Limit Comparison Test, if lim
k→∞

ak

bk

= 0 and
∞ 

k=1

ak con-

verges, explain why you can’t tell whether or not
∞ 

k=1

bk con-

verges.

4. A p-series converges if p > 1 and diverges if p < 1.

What happens for p = 1? If your friend knows that

the harmonic series diverges, explain an easy way to

remember the rest of the conclusion of the p-series

test.
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In exercises 1–34, determine convergence or divergence of the

series.

1.

∞ 
k=1

4
3

√
k

2.

∞ 
k=1

k−9/10

3.

∞ 
k=4

k−11/10 4.

∞ 
k=6

4√
k

5.

∞ 
k=3

k + 1

k2 + 2k + 3
6.

∞ 
k=2

k2 + 1

k3 + 3k + 2

7.

∞ 
k=8

4

2 + 4k
8.

∞ 
k=6

4

(2 + 4k)2

9.

∞ 
k=2

2

k ln k
10.

∞ 
k=2

3

k(ln k)2

11.

∞ 
k=1

2k

k3 + 1
12.

∞ 
k=0

√
k

k2 + 1

13.

∞ 
k=3

e1/k

k2
14.

∞ 
k=4

 
1 + 1/k

k2

15.

∞ 
k=1

e−
√

k

√
k

16.

∞ 
k=1

ke−k2

4 + e−k

17.

∞ 
k=1

2k2

k5/2 + 2
18.

∞ 
k=0

2 
k2 + 4

19.

∞ 
k=0

4 
k3 + 1

20.

∞ 
k=0

k2 + 1 
k5 + 1

21.

∞ 
k=1

tan−1 k

1 + k2
22.

∞ 
k=1

sin−1(1/k)

k2

23.

∞ 
k=1

1

cos2 k
24.

∞ 
k=1

e1/k + 1

k3

25.

∞ 
k=2

ln k

k
26.

∞ 
k=1

2 + cos k

k

27.

∞ 
k=4

k4 + 2k − 1

k5 + 3k2 + 1
28.

∞ 
k=6

k3 + 2k + 3

k4 + 2k2 + 4

29.

∞ 
k=3

k + 1

k + 2
30.

∞ 
k=2

k + 1

k2 + 2

31.

∞ 
k=8

k + 1

k3 + 2
32.

∞ 
k=5

√
k + 1√
k3 + 2

33.

∞ 
k=1

1

(k + 1)
√

k + k
√

k + 1

34.

∞ 
k=1

2k + 1

(k + 1)
√

k + k2
√

k + 1

35. In our statement of the Comparison Test, we required that

ak ≤ bk for all k. Explain why the conclusion would remain

true if ak ≤ bk for k ≥ 100.

36. If ak > 0 and
∞ 

k=1

ak converges, prove that
∞ 

k=1

a2
k converges.

37. Prove the following extension of the Limit Comparison Test:

if lim
k→∞

ak

bk

= 0 and
∞ 

k=1

bk converges, then
∞ 

k=1

ak converges.

38. Prove the following extension of the Limit Comparison Test:

if lim
k→∞

ak

bk

= ∞ and
∞ 

k=1

bk diverges, then
∞ 

k=1

ak diverges.

39. Prove that if
∞ 

k=1

a2
k and

∞ 
k=1

b2
k converge, then

∞ 
k=1

|akbk |
converges.

40. Prove that for ak > 0,
∞ 

k=1

ak converges if and only if
∞ 

k=1

ak

1 + ak

converges. (Hint: If x < 1, then x <
2x

1 + x
.)

In exercises 41–44, determine all values of p for which the series

converges.

41.

∞ 
k=2

1

k(ln k)p
42.

∞ 
k=0

1

(a + bk)p
, a > 0, b > 0

43.

∞ 
k=2

ln k

k p
44.

∞ 
k=1

k p−1ekp

In exercises 45–50, estimate the error in using the indicated par-

tial sum Sn to approximate the sum of the series.

45. S100,

∞ 
k=1

1

k4
46. S100,

∞ 
k=1

4

k2

47. S50,

∞ 
k=1

6

k8
48. S80,

∞ 
k=1

2

k2 + 1

49. S40,

∞ 
k=1

ke−k2

50. S200,

∞ 
k=1

tan−1 k

1 + k2

In exercises 51–54, determine the number of terms needed to

obtain an approximation accurate to within 10−6.

51.

∞ 
k=1

3

k4
52.

∞ 
k=1

2

k2

53.

∞ 
k=1

ke−k2

54.

∞ 
k=1

4

k5

In exercises 55 and 56, answer with “converges” or “diverges”

or “can’t tell.” Assume that ak > 0 and bk > 0.

55. Assume that
∞ 

k=1

ak converges and fill in the blanks.

(a) If bk ≥ ak for k ≥ 10, then
∞ 

k=1

bk ———.

(b) If lim
k→∞

bk

ak

= 0, then
∞ 

k=1

bk ———.
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(c) If bk ≤ ak for k ≥ 6, then
∞ 
k=1

bk ———.

(d) If lim
k→∞

bk

ak

= ∞, then
∞ 
k=1

bk ———.

56. Assume that
∞ 
k=1

ak diverges and fill in the blanks.

(a) If bk ≥ ak for k ≥ 10, then
∞ 
k=1

bk ———.

(b) If lim
k→∞

bk

ak

= 0, then
∞ 
k=1

bk ———.

(c) If bk ≤ ak for k ≥ 6, then
∞ 
k=1

bk ———.

(d) If lim
k→∞

bk

ak

= ∞, then
∞ 
k=1

bk ———.

57. Prove that the every-other-term harmonic series

1+ 1

3
+

1

5
+

1

7
+ · · · diverges. (Hint: Write the series as

∞ 
k=0

1

2k + 1
and use the Limit Comparison Test.)

58. Would the every-third-term harmonic series

1+ 1

4
+

1

7
+

1

10
+ · · · diverge? How about the every-fourth-

term harmonic series 1+ 1

5
+

1

9
+

1

13
+ · · ·? Make as general

a statement as possible about such series.

59. The Riemann-zeta function is defined by ζ (x) =
∞ 
k=1

1

kx
for

x > 1. Explain why the restriction x > 1 is necessary. Leon-

hard Euler, considered to be one of the greatest and most pro-

lific mathematicians ever, proved the remarkable result that

ζ (x) =
 

p=prime

1 
1−

1

px

 .

60. Estimate ζ (2) numerically. Compare your result with that of

exploratory exercise 1 of section 9.2.

In exercises 61–64, use your CAS or graphing calculator to

numerically estimate the sum of the convergent p-series and

identify x such that the sum equals ζ(x) for the Riemann-zeta

function of exercise 59.

61.

∞ 
k=1

1

k4
62.

∞ 
k=1

1

k6

63.

∞ 
k=1

1

k8
64.

∞ 
k=1

1

k10

65. Show that
∞ 
k=2

1

(ln k)ln k
and

∞ 
k=2

1

(ln k)k
both converge.

66. Show that
∞ 
k=2

1

(ln k)n
diverges for any integer n > 0. Compare

this result to exercise 65.

67. Suppose that you toss a fair coin until you get heads. How

many times would you expect to toss the coin? To answer this,

notice that the probability of getting heads on the first toss is

1

2
, getting tails then heads is

 
1

2

 2
, getting two tails then heads

is
 
1

2

 3
and so on. The mean number of tosses is

∞ 
k=1

k
 
1

2

 k
.

Use the Integral Test to prove that this series converges and

estimate the sum numerically.

68. A clever trick can be used to sum the series in exercise 67.

The series
∞ 
k=1

k
 
1

2

 k
can be visualized as the area shown in

the figure. In columns of width one, we see one rectangle

of height 1

2
, two rectangles of height 1

4
, three rectangles of

height 1

8
and so on. Start the sum by taking one rectangle

from each column. The combined area of the first rectangles

is 1

2
+

1

4
+

1

8
+ · · · . Show that this is a convergent series with

sum 1. Next, take the second rectangle from each column that

has at least two rectangles. The combined area of the second

rectangles is 1

4
+

1

8
+

1

16
+ · · · . Show that this is a convergent

series with sum 1

2
. Next, take the third rectangle from each

column that has at least three rectangles. The combined area

from the third rectangles is 1

8
+

1

16
+

1

32
+ · · · . Show that this

is a convergent series with sum 1

4
. Continue this process and

show that the total area of all rectangles is 1+ 1

2
+

1

4
+ · · · .

Find the sum of this convergent series.

0

0.125

0.25

0.5

1 2 3 4
x

y

0.375

69. This problem is sometimes called the coupon collectors’

problem. The problem is faced by collectors of trading cards.

If there are n different cards that make a complete set and you

randomly obtain one at a time, how many cards would you ex-

pect to obtain before having a complete set? (By random, we

mean that each different card has the same probability of 1

n
of

being the next card obtained.) In exercises 69–72, we find the

answer for n = 10. The first step is simple; to collect one card

you need to obtain one card. Now, given that you have one card,

how many cards do you need to obtain to get a second (differ-

ent) card? If you’re lucky, the next card is it (this has probability
9

10
). But your next cardmight be a duplicate, then you get a new

card (this has probability 1

10
·

9

10
). Or you might get two dupli-

cates and then a new card (this has probability 1

10
·

1

10
·

9

10
); and

so on. The mean is 1 · 9

10
+ 2 · 1

10
·

9

10
+ 3 · 1

10
·

1

10
·

9

10
+ · · ·

or
∞ 
k=1

k
 

1

10

 k−1  9

10

 
=

∞ 
k=1

9k

10k
. Using the same trick as in

exercise 68, show that this is a convergent series with

sum
10

9
.

70. In the situation of exercise 69, if you have two different cards

out of ten, the average number of cards to get a third distinct
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card is
∞ 

k=1

8k2k−1

10k
; show that this is a convergent series with

sum
10

8
.

71. Extend the results of exercises 69 and 70 to find the average

number of cards you need to obtain to complete the set of ten

different cards.

72. Compute the ratio of cards obtained to cards in the set in

exercise 71. That is, for a set of 10 cards, on the average

you need to obtain times 10 cards to complete the

set.

73. Generalize exercises 71 and 72 in the case of n cards in the set

(n > 2).

74. Use the divergence of the harmonic series to state the unfortu-

nate fact about the ratio of cards obtained to cards in the set as

n increases.

EXPLORATORY EXERCISES

1. Numerically investigate the p-series
∞ 

k=1

1

k0.9
and

∞ 
k=1

1

k1.1
and

for other values of p close to 1. Can you distinguish convergent

from divergent series numerically?

2. You know that
∞ 

k=2

1

k
diverges. This is the “smallest” p-series

that diverges, in the sense that
1

k
<

1

k p
for p < 1.

Show that
∞ 

k=2

1

k ln k
diverges and

1

k ln k
<

1

k
. Show that

∞ 
k=2

1

k ln k ln(ln k)
diverges and

1

k ln k ln(ln k)
<

1

k ln k
. Find a

series such that
∞ 

k=2

ak diverges and ak <
1

k ln k ln(ln k)
. Is there

a smallest divergent series?

3. In this exercise, you explore the convergence of the infinite

product P = 21/431/941/16 · · · . This can be written in the form

P =
∞ 

k=2

k1/k2
. For the partial product Pn =

n 
k=2

k1/k2
, use the

natural logarithm to write

Pn = eln Pn = eln[21/431/941/16···n1/n2
] = eSn, where

Sn = ln [21/431/941/16 · · · n1/n2

]

= 1

4
ln 2 + 1

9
ln 3 + 1

16
ln 4 + · · · + 1

n2
ln n.

By comparing to an appropriate integral and showing that the

intergal converges, show that {Sn} converges. Show that {Pn}
converges to a number between 2.33 and 2.39. Use a CAS or

calculator to compute Pn for large n and see how accurate the

computation is.

4. Define a function f (x) in the following way for 0 ≤ x ≤ 1.

Write out the binary expansion of x. That is,

x = a1

2
+ a2

4
+ a3

8
+ · · ·

where each ai is either 0 or 1. Prove that this infinite series

converges. Then f (x) is the corresponding ternary expansion,

given by

f (x) = a1

3
+ a2

9
+ a3

27
+ · · ·

Prove that this series converges. There is a subtle issue here

of whether the function is well defined or not. Show that 1
2

can be written with a1 = 1 and ak = 0 for k ≥ 2 and also

with a1 = 0 and ak = 1 for k ≥ 2. Show that you get dif-

ferent values of f (x) with different representations. In such

cases, we choose the representation with as few 1’s as possi-

ble. Show that f (2x) = 3 f (x) and f
 
x + 1

2

 = 1
3

+ f (x) for

0 ≤ x ≤ 1
2
. Use these facts to compute

 1

0
f (x) dx . Generalize

the result for any base n conversion

f (x) = a1

n
+ a2

n2
+ a3

n3
+ · · · ,

where n is an integer greater than 1.

9.4 ALTERNATING SERIES

So far, we have focused our attention on positive-term series, that is, series all of whose

terms are positive. Before we consider the general case, we spend some time in this section

examining alternating series, that is, series whose terms alternate back and forth from

positive to negative.

An alternating series is any series of the form

∞ 
k=1

(−1)k+1ak = a1 − a2 + a3 − a4 + a5 − a6 + · · · ,

where ak > 0, for all k.
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EXAMPLE 4.1 The Alternating Harmonic Series

Investigate the convergence or divergence of the alternating harmonic series

∞ 
k=1

(−1)k+1

k
= 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ · · · .

5 10 15 20

0.2

0.4

0.6

0.8

1.0

n

Sn

FIGURE 9.30

Sn =
n 

k=1

(−1)k+1

k

Solution The graph of the first 20 partial sums seen in Figure 9.30 suggests that the

series might converge to about 0.7. We now calculate the first few partial sums by hand.

Note that

S1 = 1, S2 = 1 − 1

2
= 1

2
,

S3 = 1

2
+ 1

3
= 5

6
, S4 = 5

6
− 1

4
= 7

12
,

S5 = 7

12
+ 1

5
= 47

60
, S6 = 47

60
− 1

6
= 37

60
,

and so on. We have plotted the first 8 partial sums on the number line shown in

Figure 9.31.

0.5 0.6 0.7 0.8 0.9 1

S2 S4 S6 S8 S7 S5 S3 S1

FIGURE 9.31

Partial sums of
∞ 

k=1

(−1)k+1

k

Notice that the partial sums are bouncing back and forth, but seem to be zeroing in on

some value. This should not be surprising, since each new term that is added or

subtracted is less than the term added or subtracted to get the previous partial sum. You

should notice this same zeroing-in process in the accompanying table displaying the

first 20 partial sums of the series. Based on the behavior of the partial sums, it is

reasonable to conjecture that the series converges to some value between 0.66877 and

0.71877. We can resolve the question of convergence definitively with Theorem 4.1. �

n Sn  
n 

k 1

(−1)k 1

k

1 1

2 0.5

3 0.83333

4 0.58333

5 0.78333

6 0.61667

7 0.75952

8 0.63452

9 0.74563

10 0.64563

11 0.73654

12 0.65321

13 0.73013

14 0.65871

15 0.72537

16 0.66287

17 0.7217

18 0.66614

19 0.71877

20 0.66877

THEOREM 4.1 (Alternating Series Test)

Suppose that lim
k→∞

ak = 0 and 0 < ak+1 ≤ ak for all k ≥ 1. Then, the alternating

series
∞ 

k=1

(−1)k+1ak converges.

Before considering the proof of Theorem 4.1, make sure that you have a clear idea what

it is saying. In the case of an alternating series satisfying the hypotheses of the theorem,

we start with 0 and add a1 > 0 to get the first partial sum S1. To get the next partial sum,

S2, we subtract a2 from S1, where a2 < a1. This says that S2 will be between 0 and S1. We

illustrate this situation in Figure 9.32 on the following page.

Continuing in this fashion, we add a3 to S2 to get S3. Since a3 < a2, we must have that

S2 < S3 < S1. Referring to Figure 9.32, notice that

S2 < S4 < S6 < · · · < S5 < S3 < S1.
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a1

a2

a3

a4

a5

a6

0 S2 S4 S6 S5 S3 S1

FIGURE 9.32
Convergence of the partial sums of an alternating series

In particular, this says that all of the odd-indexed partial sums (i.e, S2n+1, for n = 0, 1, 2, . . .)

are larger than all of the even-indexed partial sums (i.e., S2n, for n = 1, 2, . . .). As the

partial sums oscillate back and forth, they should be drawing closer and closer to some

limit S, somewhere between all of the even-indexed partial sums and the odd-indexed

partial sums,

S2 < S4 < S6 < · · · < S < · · · < S5 < S3 < S1. (4.1)

PROOF

Notice from Figure 9.32 that the even- and odd-indexed partial sums seem to behave some-

what differently. First, we consider the even-indexed partial sums. We have

S2 = a1 − a2 > 0

and S4 = S2 + (a3 − a4) ≥ S2,

since (a3 − a4) ≥ 0. Likewise, for any n, we can write

S2n = S2n−2 + (a2n−1 − a2n) ≥ S2n−2,

since (a2n−1 − a2n) ≥ 0. This says that the sequence of even-indexed partial sums {S2n}∞
n=1

is increasing (as we saw in Figure 9.32). Further, observe that

0 < S2n = a1 + (−a2 + a3) + (−a4 + a5) + · · · + (−a2n−2 + a2n−1) − a2n ≤ a1,

for all n, since every term in parentheses is negative. Thus, {S2n}∞
n=1 is both bounded (by a1)

and monotonic (increasing). By Theorem 1.4, {S2n}∞
n=1 must be convergent to some number,

say L.

Turning to the sequence of odd-indexed partial sums, notice that we have

S2n+1 = S2n + a2n+1.

From this, we have

lim
n→∞

S2n+1 = lim
n→∞

(S2n + a2n+1) = lim
n→∞

S2n + lim
n→∞

a2n+1 = L + 0 = L ,

since lim
n→∞

an = 0. Since both the sequence of odd-indexed partial sums {S2n+1}∞
n=0 and the

sequence of even-indexed partial sums {S2n}∞
n=1 converge to the same limit, L, we have that

lim
n→∞

Sn = L ,

also.
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EXAMPLE 4.2 Using the Alternating Series Test

Reconsider the convergence of the alternating harmonic series
∞ 

k=1

(−1)k+1

k
.

Solution Notice that

lim
k→∞

ak = lim
k→∞

1

k
= 0.

Further, 0 < ak+1 = 1

k + 1
≤ 1

k
= ak, for all k ≥ 1.

By the Alternating Series Test, the series converges. (The calculations from example 4.1

give an approximate sum. An exact sum is found in exercise 43.) �

The Alternating Series Test is straightforward, but you will sometimes need to work a

bit to verify the hypotheses.

EXAMPLE 4.3 Using the Alternating Series Test

Investigate the convergence or divergence of the alternating series
∞ 

k=1

(−1)k(k + 3)

k(k + 1)
.

Solution The graph of the first 20 partial sums seen in Figure 9.33 suggests that the

series converges to some value around −1.5. The following table showing some select

partial sums suggests the same conclusion.

n Sn  
n 

k 1

(−1)k(k 3)

k(k 1)

50 −1.45545

100 −1.46066

200 −1.46322

300 −1.46406

400 −1.46448

n Sn  
n 

k 1

(−1)k(k 3)

k(k 1)

51 −1.47581

101 −1.47076

201 −1.46824

301 −1.46741

401 −1.46699

5 10 15 20

 0.5

 1.0

 1.5

 2.0

Sn

n

FIGURE 9.33

Sn =
n 

k=1

(−1)k(k + 3)

k(k + 1)
We can verify that the series converges by first checking that

lim
k→∞

ak = lim
k→∞

(k + 3)

k(k + 1)

1
k2

1
k2

= lim
k→∞

1
k

+ 3
k2

1 + 1
k

= 0.

Next, consider the ratio of two consecutive terms:

ak+1

ak

= (k + 4)

(k + 1)(k + 2)

k(k + 1)

(k + 3)
= k2 + 4k

k2 + 5k + 6
< 1,

for all k ≥ 1. From this, it follows that ak+1 < ak , for all k ≥ 1 and so, by the

Alternating Series Test, the series converges. Finally, from the preceding table, we can

see that the series converges to a sum between −1.46448 and −1.46699. (How can you

be sure that the sum is in this interval?) �

EXAMPLE 4.4 A Divergent Alternating Series

Determine whether the alternating series
∞ 

k=3

(−1)kk

k + 2
converges or diverges.
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Solution First, notice that

lim
k→∞

ak = lim
k→∞

k

k + 2
= 1  = 0.

So, this alternating series is divergent, since by the kth-term test for divergence, the terms

must tend to zero in order for the series to be convergent. �

Estimating the Sum of an Alternating Series

So far, we have calculated approximate sums of series by observing that a number of suc-

cessive partial sums of the series are within a given distance of one another. The underlying

assumption here is that when this happens, the partial sums are also within that same dis-

tance of the sum of the series. While this is not true in general, we can say something very

precise for the case of alternating series. First, note that the error in approximating the sum

S by the nth partial sum Sn is S − Sn .

Look back at Figure 9.32 and observe that all of the even-indexed partial sums Sn of the

convergent alternating series
∞ 

k=1

(−1)k+1ak lie below the sum S, while all of the odd-indexed

partial sums lie above S. That is [as in (4.1)],

S2 < S4 < S6 < · · · < S < · · · < S5 < S3 < S1.

This says that for n even, Sn ≤ S ≤ Sn+1.

Subtracting Sn from all terms, we get

0 ≤ S − Sn ≤ Sn+1 − Sn = an+1.

Since an+1 > 0, we have −an+1 ≤ 0 ≤ S − Sn ≤ an+1,

or |S − Sn| ≤ an+1, for n even. (4.2)

Similarly, for n odd, we have that Sn+1 ≤ S ≤ Sn.

Again subtracting Sn , we get

−an+1 = Sn+1 − Sn ≤ S − Sn ≤ 0 ≤ an+1

or |S − Sn| ≤ an+1, for n odd. (4.3)

Since (4.2) and (4.3) (these are called error bounds) are the same, we have the same error

bound whether n is even or odd. This establishes the following result.

THEOREM 4.2

Suppose that lim
k→∞

ak = 0 and 0 < ak+1 ≤ ak for all k ≥ 1. Then, the alternating

series
∞ 

k=1

(−1)k+1ak converges to some number S and the error in approximating S by

the nth partial sum Sn satisfies

|S − Sn| ≤ an+1. (4.4)

Theorem 4.2 says that the absolute value of the error in approximating S by Sn does

not exceed an+1 (the absolute value of the first neglected term).
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EXAMPLE 4.5 Estimating the Sum of an
Alternating Series

Approximate the sum of the alternating series
∞ 

k=1

(−1)k+1

k4
by the 40th partial sum and

estimate the error in this approximation.

Solution We leave it as an exercise to show that this series is convergent. We then

approximate the sum by

S ≈ S40 ≈ 0.9470326439.

From our error estimate (4.4), we have

|S − S40| ≤ a41 = 1

414
≈ 3.54 × 10−7.

This says that our approximation S ≈ 0.9470326439 is off by no more than

±3.54 × 10−7. �

A much more interesting question than the one asked in example 4.5 is the following. For

a given convergent alternating series, how many terms must we take, in order to guarantee

that our approximation is accurate to a given level? We use the same estimate of error from

(4.4) to answer this question, as in example 4.6.

EXAMPLE 4.6 Finding the Number of Terms Needed
for a Given Accuracy

For the convergent alternating series
∞ 

k=1

(−1)k+1

k4
, how many terms are needed to

guarantee that Sn is within 1 × 10−10 of the actual sum S?

Solution In this case, we want to find the number of terms n for which

|S − Sn| ≤ 1 × 10−10.

From (4.4), we have that |S − Sn| ≤ an+1 = 1

(n + 1)4
.

So, we look for n such that
1

(n + 1)4
≤ 1 × 10−10.

Solving for n, we get 1010 ≤ (n + 1)4,

so that
4

√
1010 ≤ n + 1

or n ≥ 4
√

1010 − 1 ≈ 315.2.

So, if we take n ≥ 316, we will guarantee an error of no more than 1 × 10−10. Using

the suggested number of terms, we get the approximate sum

S ≈ S316 ≈ 0.947032829447,

which we now know to be correct to within 1 × 10−10. �
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BEYOND FORMULAS

When you think about infinite series, you must understand the interplay between se-

quences and series. Our tests for convergence involve sequences and are completely

separate from the question of finding the sum of the series. It is important to keep

reminding yourself that the sum of a convergent series is the limit of the sequence of

partial sums. Often, the best we can do is approximate the sum of a series by adding

together a number of terms. In this case, it becomes important to determine the accu-

racy of the approximation. For alternating series, this is found by examining the first

neglected term. When finding an approximation with a specified accuracy, you first use

the error bound in Theorem 4.2 to find how many terms you need to add. You then get

an approximation with the desired accuracy by adding together that many terms.

EXERCISES 9.4

WRITING EXERCISES

1. If ak ≥ 0, explain in terms of partial sums why
∞ 

k=1

(−1)k+1ak

is more likely to converge than
∞ 

k=1

ak .

2. Explain why in Theorem 4.2 we need the assumption that

ak+1 ≤ ak . That is, what would go wrong with the proof if

ak+1 > ak?

3. The Alternating Series Test was stated for the series
∞ 

k=1

(−1)k+1ak . Explain the difference between
∞ 

k=1

(−1)kak and

∞ 
k=1

(−1)k+1ak and explain why we could have stated the theo-

rem for
∞ 

k=1

(−1)kak .

4. A common mistake is to think that if lim
k→∞

ak = 0, then
∞ 

k=1

ak

converges. Explain why this is not true for positive-term series.

This is also not true for alternating series unless you add one

more hypothesis. State the extra hypothesis and explain why

it’s needed.

In exercises 1–24, determine whether the series is convergent or

divergent.

1.

∞ 
k=1

(−1)k+1 3

k
2.

∞ 
k=1

(−1)k 2

k2

3.

∞ 
k=1

(−1)k 4√
k

4.

∞ 
k=1

(−1)k+1 k2

k + 1

5.

∞ 
k=2

(−1)k k

k2 + 2
6.

∞ 
k=7

(−1)k 2k − 1

k3

7.

∞ 
k=5

(−1)k+1 k

2k
8.

∞ 
k=4

(−1)k+1 3k

k

9.

∞ 
k=1

(−1)k 4k

k2
10.

∞ 
k=1

(−1)k k + 2

4k

11.

∞ 
k=1

2k

k + 1
12.

∞ 
k=1

4k2

k2 + 2k + 2

13.

∞ 
k=3

(−1)k 3√
k + 1

14.

∞ 
k=4

(−1)k k + 1

k3

15.

∞ 
k=1

(−1)k+1 2

k!
16.

∞ 
k=3

(−1)k+1 k!

3k

17.

∞ 
k=2

(−1)k k!

2k
18.

∞ 
k=3

(−1)k 4k

k!

19.

∞ 
k=5

(−1)k+12e−k 20.

∞ 
k=6

(−1)k+13e1/k

21.

∞ 
k=2

(−1)k ln k 22.

∞ 
k=2

(−1)k 1

ln k

23.

∞ 
k=0

(−1)k+1 1

2k
24.

∞ 
k=0

(−1)k+12k

In exercises 25–32, estimate the sum of each convergent series

to within 0.01.

25.

∞ 
k=1

(−1)k+1 4

k3
26.

∞ 
k=1

(−1)k+1 2

k3

27.

∞ 
k=3

(−1)k k

2k
28.

∞ 
k=4

(−1)k k2

10k
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29.

∞ 
k=0

(−1)k 3

k!
30.

∞ 
k=0

(−1)k+1 2

k!

31.

∞ 
k=2

(−1)k+1 4

k4
32.

∞ 
k=3

(−1)k+1 3

k5

In exercises 33–36, determine how many terms are needed to

estimate the sum of the series to within 0.0001.

33.

∞ 
k=1

(−1)k+1 2

k

34.

∞ 
k=0

(−1)k 2k

k!

35.

∞ 
k=0

(−1)k 10k

k!

36.

∞ 
k=1

(−1)k+1 k!

kk

37. In the text, we showed you one way to verify that a sequence

is decreasing. As an alternative, explain why if ak = f (k) and

f  (k) < 0, then the sequence ak is decreasing. Use this method

to prove that ak = k

k2 + 2
is decreasing.

38. Use the method of exercise 37 to prove that ak = k

2k
is

decreasing.

39. In this exercise, you will discover why the Alternating Series

Test requires that ak+1 ≤ ak . If ak =
 

1/k if k is odd

1/k2 if k is even
,

argue that
∞ 

k=1

(−1)k+1ak diverges to ∞. Thus, an alternating

series can diverge even if lim
k→∞

ak = 0.

40. Verify that the series
∞ 

k=0

(−1)k
1

2k + 1
= 1 − 1

3
+ 1

5
− 1

7
+ · · ·

converges. It can be shown that the sum of this series is
π

4
.

Given this result, we could use this series to obtain an approxi-

mation of π . How many terms would be necessary to get eight

digits of π correct?

41. A person starts walking from home (at x = 0) toward a friend’s

house (at x = 1). Three-fourths of the way there, he changes

his mind and starts walking back home. Three-fourths of the

way home, he changes his mind again and starts walking back

to his friend’s house. If he continues this pattern of indecision,

always turning around at the three-fourths mark, what will be

the eventual outcome? A similar problem appeared in a national

magazine and created a minor controversy due to the ambigu-

ous wording of the problem. It is clear that the first turnaround

is at x = 3
4

and the second turnaround is at 3
4

− 3
4

 
3
4

 = 3
16

.

But is the third turnaround three-fourths of the way to x = 1

or x = 3
4
? The magazine writer assumed the latter. Show that

with this assumption, the person’s location forms a geomet-

ric series. Find the sum of the series to find where the person

ends up.

42. If the problem of exercise 41 is interpreted differently, a

more interesting answer results. As before, let x1 = 3
4

and

x2 = 3
16

. If the next turnaround is three-fourths of the way

from x2 to 1, then x3 = 3
16

+ 3
4

 
1 − 3

16

 = 3
4

+ 1
4
x2 = 51

64
.

Three-fourths of the way back to x = 0 would put us at

x4 = x3 − 3
4
x3 = 1

4
x3 = 51

256
. Show that if n is even, then

xn+1 = 3
4

+ 1
4
xn and xn+2 = 1

4
xn+1. Show that the person ends

up walking back and forth between two specific locations.

43. For the alternating harmonic series, show that

S2n =
2n 

k=1

1

k
−

n 
k=1

1

k
=

n 
k=1

1

n + k
= 1

n

n 
k=1

1

1 + k/n
. Identify

this as a Riemann sum and show that the alternating harmonic

series converges to ln 2.

44. Find all values of p such that the series
∞ 

k=1

(−1)k
1

k p
converges.

Compare your result to the p-series of section 9.3.

45. Find a counterexample to show that the following statement

is false (not always true). If
∞ 

k=1

ak and
∞ 

k=1

bk converge, then

∞ 
k=1

akbk converges.

46. Find assumptions that can be made (for example, ak > 0) that

make the statement in exercise 45 true.

EXPLORATORY EXERCISES

1. In this exercise, you will determine whether or not the

improper integral
 1

0
sin(1/x) dx converges. Argue that 1

1/π
sin(1/x) dx,

 1/π

1/(2π )
sin(1/x) dx,

 1/(2π)

(1/3π )
sin(1/x) dx, . . .

exist and that (if it exists), 1

0

sin(1/x) dx =
 1

1/π

sin(1/x) dx +
 1/π

1/(2π )

sin(1/x) dx

+
 1/(2π )

1/(3π )

sin(1/x) dx + · · · .

Verify that the series is an alternating series and show that the

hypotheses of the Alternating Series Test are met. Thus, the

series and the improper integral both converge.

2. Consider the series
∞ 

k=1

(−1)k+1
xk

k
, where x is a constant. Show

that the series converges for x = 1/2; x = −1/2; any x such

that −1 < x ≤ 1. Show that the series diverges if x = −1,

x < −1 or x > 1. We see in exercise 5 of section 9.7 that

when the series converges, it converges to ln(1 + x). Verify

this numerically for x = 1/2 and x = −1/2.
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9.5 ABSOLUTE CONVERGENCE AND THE RATIO TEST

Outside of the Alternating Series Test presented in section 9.4, our other tests for conver-

gence of series (i.e., the Integral Test and the two comparison tests) apply only to series all

of whose terms are positive. So, what do we do if we’re faced with a series that has both

positive and negative terms, but that is not an alternating series? For instance, look at the

series

∞ 
k=1

sin k

k3
= sin 1 + 1

8
sin 2 + 1

27
sin 3 + 1

64
sin 4 + · · · .

This has both positive and negative terms, but the terms do not alternate signs. (Calculate

the first five or six terms of the series to see this for yourself.) For any such series
∞ 

k=1

ak , we

can get around this problem by checking whether the series of absolute values
∞ 

k=1

|ak | is

convergent. When this happens, we say that the original series
∞ 

k=1

ak is absolutely conver-

gent (or converges absolutely). You should note that to test the convergence of the series

of absolute values
∞ 

k=1

|ak | (all of whose terms are positive), we have all of our earlier tests

for positive-term series available to us.

EXAMPLE 5.1 Testing for Absolute Convergence

Determine whether
∞ 

k=1

(−1)k+1

2k
is absolutely convergent.

Solution It is easy to show that this alternating series is convergent. (Try it!) The

graph of the first 20 partial sums in Figure 9.34 suggests that the series converges to

approximately 0.35. To determine absolute convergence, we need to determine whether

or not the series of absolute values,
∞ 

k=1

    (−1)k+1

2k

    , is convergent. We have

∞ 
k=1

    (−1)k+1

2k

    =
∞ 

k=1

1

2k
=

∞ 
k=1

 
1

2

 k

,

which you should recognize as a convergent geometric series (|r | = 1
2
< 1). This says

that the original series
∞ 

k=1

(−1)k+1

2k
converges absolutely.

�
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FIGURE 9.34

Sn =
n 

k=1

(−1)k+1

2k

We’ll prove shortly that every absolutely convergent series is also convergent (as in

example 5.1). However, the reverse is not true; there are many series that are convergent,

but not absolutely convergent. These are called conditionally convergent series. Can you

think of an example of such a series? If so, it’s probably the example that follows.

EXAMPLE 5.2 A Conditionally Convergent Series

Determine whether the alternating harmonic series
∞ 

k=1

(−1)k+1

k
is absolutely convergent.
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Solution In example 4.2, we showed that this series is convergent. To test this for

absolute convergence, we consider the series of absolute values,

∞ 
k=1

    (−1)k+1

k

    =
∞ 

k=1

1

k

(the harmonic series), which diverges. This says that
∞ 

k=1

(−1)k+1

k
converges conditionally

(i.e., it converges, but does not converge absolutely). �

THEOREM 5.1

If
∞ 

k=1

|ak | converges, then
∞ 

k=1

ak converges.

This result says that if a series converges absolutely, then it must also converge. Because

of this, when we test series, we first test for absolute convergence. If the series converges

absolutely, then we need not test any further to establish convergence.

PROOF

Notice that for any real number, x, we can say that −|x | ≤ x ≤ |x |. So, for any k, we have

−|ak | ≤ ak ≤ |ak |.
Adding |ak | to all the terms, we get

0 ≤ ak + |ak | ≤ 2|ak |. (5.1)

Since
∞ 

k=1

ak is absolutely convergent, we have that
∞ 

k=1

|ak | and hence, also

∞ 
k=1

2|ak | = 2
∞ 

k=1

|ak | is convergent. Define bk = ak + |ak |. From (5.1),

0 ≤ bk ≤ 2|ak |

and so, by the Comparison Test,
∞ 

k=1

bk is convergent. Observe that we may write

∞ 
k=1

ak =
∞ 

k=1

(ak + |ak | − |ak |) =
∞ 

k=1

(ak + |ak |)    
bk

−
∞ 

k=1

|ak |

=
∞ 

k=1

bk −
∞ 

k=1

|ak |.

Since the two series on the right-hand side are convergent, it follows that
∞ 

k=1

ak must also

be convergent.

EXAMPLE 5.3 Testing for Absolute Convergence

Determine whether
∞ 

k=1

sin k

k3
is convergent or divergent.
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Solution Notice that while this is not a positive-term series, neither is it an

alternating series. Because of this, our only choice is to test the series for absolute

convergence. From the graph of the first 20 partial sums seen in Figure 9.35, it appears

that the series is converging to some value around 0.94. To test for absolute

convergence, we consider the series of absolute values,
∞ 

k=1

    sin k

k3

    . Notice that

    sin k

k3

    = | sin k|
k3

≤ 1

k3
, (5.2)

since |sin k| ≤ 1, for all k. Of course,
∞ 

k=1

1

k3
is a convergent p-series (p = 3 > 1). By

the Comparison Test and (5.2),
∞ 

k=1

    sin k

k3

    converges, too. Consequently, the original

series
∞ 

k=1

sin k

k3
converges absolutely and hence, converges.

�
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FIGURE 9.35

Sn =
n 

k=1

sin k

k3

The Ratio Test

We next introduce a very powerful tool for testing a series for absolute convergence. This

test can be applied to a wide range of series, including the extremely important case of

power series that we discuss in section 9.6. As you’ll see, this test is remarkably easy to

use.

THEOREM 5.2 (Ratio Test)

Given
∞ 

k=1

ak , with ak  = 0 for all k, suppose that

lim
k→∞

    ak+1

ak

    = L .

Then,

(i) if L < 1, the series converges absolutely,

(ii) if L > 1 (or L = ∞), the series diverges and

(iii) if L = 1, there is no conclusion.

PROOF

(i) For L < 1, pick any number r with L < r < 1. Then, we have

lim
k→∞

    ak+1

ak

    = L < r.

For this to occur, there must be some number N > 0, such that for k ≥ N ,    ak+1

ak

    < r. (5.3)

Multiplying both sides of (5.3) by |ak | gives us

|ak+1| < r |ak |.
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In particular, taking k = N gives us

|aN+1| < r |aN |

and taking k = N + 1 gives us

|aN+2| < r |aN+1| < r2|aN |.

Likewise, |aN+3| < r |aN+2| < r3|aN |

and so on. We have |aN+k | < rk |aN |, for k = 1, 2, 3, . . . .

Notice that
∞ 

k=1

|aN |rk = |aN |
∞ 

k=1

rk is a convergent geometric series, since 0 < r < 1. By

the Comparison Test, it follows that
∞ 

k=1

|aN+k | =
∞ 

n=N+1

|an| converges, too. This says that

∞ 
n=N+1

an converges absolutely. Finally, since

∞ 
n=1

an =
N 

n=1

an +
∞ 

n=N+1

an,

we also get that
∞ 

n=1

an converges absolutely.

(ii) For L > 1, we have

lim
k→∞

    ak+1

ak

    = L > 1.

This says that there must be some number N > 0, such that for k ≥ N ,     ak+1

ak

     > 1. (5.4)

Multiplying both sides of (5.4) by |ak |, we get

|ak+1| > |ak | > 0, for all k ≥ N .

Notice that if this is the case, then

lim
k→∞

ak  = 0.

By the kth-term test for divergence, we now have that
∞ 

k=1

ak diverges.

5 10 15 20
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0.5
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n

FIGURE 9.36

Sn =
n 

k=1

k

2k

EXAMPLE 5.4 Using the Ratio Test

Test
∞ 

k=1

(−1)kk

2k
for convergence.

Solution The graph of the first 20 partial sums of the series of absolute values,
∞ 

k=1

k

2k
,

seen in Figure 9.36, suggests that the series of absolute values converges to about 2. From
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the Ratio Test, we have

lim
k→∞

    ak+1

ak

    = lim
k→∞

k + 1

2k+1

k

2k

= lim
k→∞

k + 1

2k+1

2k

k
= 1

2
lim

k→∞
k + 1

k
= 1

2
< 1

Since

2k+1 = 2k · 21.

and so, the series converges absolutely, as expected from Figure 9.36. �

The Ratio Test is particularly useful when the general term of a series contains an

exponential term, as in example 5.4, or a factorial, as in example 5.5.

EXAMPLE 5.5 Using the Ratio Test

Test
∞ 

k=0

(−1)kk!

ek
for convergence.

Solution The graph of the first 20 partial sums of the series seen in Figure 9.37 suggests

that the series diverges. We can confirm this suspicion with the Ratio Test. We have

lim
k→∞

    ak+1

ak

    = lim
k→∞

(k + 1)!

ek+1

k!

ek

= lim
k→∞

(k + 1)!

ek+1

ek

k!

= lim
k→∞

(k + 1)k!

ek!
= 1

e
lim

k→∞
k + 1

1
= ∞.

Since (k + 1)! = (k + 1) · k!

and ek+1 = ek · e1.

By the Ratio Test, the series diverges, as we suspected. �
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FIGURE 9.37
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Recall that in the statement of the Ratio Test, we said that if

lim
k→∞

    ak+1

ak

    = 1,

then the Ratio Test yields no conclusion. By this, we mean that in such cases, the series

may or may not converge and further testing is required.

HISTORICAL NOTES

Srinivasa Ramanujan

(1887–1920) Indian

mathematician whose incredible

discoveries about infinite series

still amaze mathematicians.

Largely self-taught, Ramanujan

filled notebooks with conjectures

about series, continued fractions

and the Riemann-zeta function.

Ramanujan rarely gave a proof or

even justification of his results.

Nevertheless, the famous English

mathematician G. H. Hardy said,

“They must be true because, if

they weren’t true, no one would

have had the imagination to invent

them.” (See exercise 39.)

EXAMPLE 5.6 A Divergent Series for Which the Ratio Test Fails

Use the Ratio Test for the harmonic series
∞ 

k=1

1

k
.

Solution We have

lim
k→∞

    ak+1

ak

    = lim
k→∞

1

k + 1
1

k

= lim
k→∞

k

k + 1
= 1.

In this case, the Ratio Test yields no conclusion, although we already know that the

harmonic series diverges. �

EXAMPLE 5.7 A Convergent Series for Which the Ratio Test Fails

Use the Ratio Test to test the series
∞ 

k=0

1

k2
.
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Solution Here, we have

lim
k→∞

    ak+1

ak

    = lim
k→∞

1

(k + 1)2

k2

1
= lim

k→∞
k2

k2 + 2k + 1
= 1.

So again, the Ratio Test yields no conclusion, although we already know that this is a

convergent p-series. �

Carefully examine examples 5.6 and 5.7, and you should recognize that the Ratio Test

will be inconclusive for any p-series.

The Root Test

We now present one final test for convergence of series.

TODAY IN
MATHEMATICS

Alain Connes (1947– )

A French mathematician who

earned a Fields Medal in 1983 for

his spectacular results in the

classification of operator algebras.

As a student, Connes developed a

very personal understanding of

mathematics. He has explained,

“I first began to work in a very

small place in the mathematical

geography . . . . I had my own

system, which was very strange

because when the problems the

teacher was asking fell into my

system, then of course I would

have an instant answer, but when

they didn’t—and many problems,

of course, didn’t fall into my

system—then I would be like an

idiot and I wouldn’t care.” As

Connes’ personal mathematical

system expanded, he found more

and more “instant answers” to

important problems.

THEOREM 5.3 (Root Test)

Given
∞ 

k=1

ak , suppose that lim
k→∞

k
√|ak | = L . Then,

(i) if L < 1, the series converges absolutely,

(ii) if L > 1 (or L = ∞), the series diverges and

(iii) if L = 1, there is no conclusion.

Notice how similar the conclusion is to the conclusion of the Ratio Test. The proof is

also similar to that of the Ratio Test and we leave this as an exercise.

EXAMPLE 5.8 Using the Root Test

Use the Root Test to determine the convergence or divergence of the series
∞ 

k=1

 
2k + 4

5k − 1

 k

.

Solution In this case, we consider

lim
k→∞

k
 

|ak | = lim
k→∞

k

     2k + 4

5k − 1

    k = lim
k→∞

2k + 4

5k − 1
= 2

5
< 1.

By the Root Test, the series is absolutely convergent. �

Summary of Convergence Tests

By this point in your study of series, it may seem as if we have thrown at you a dizzying

array of different series and tests for convergence or divergence. Just how are you to keep

all of these straight? The only suggestion we have is that you work through many problems.

We provide a good assortment in the exercise set that follows this section. Some of these

require the methods of this section, while others are drawn from the preceding sections (just

to keep you thinking about the big picture). For the sake of convenience, we summarize our

convergence tests in the table that follows.
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Test When to Use Conclusions Section

Geometric Series
∞ 

k=0

ark Converges to
a

1 − r
if |r | < 1; 9.2

diverges if |r | ≥ 1.

kth-Term Test All series If lim
k→∞

ak  = 0, the series diverges. 9.2

Integral Test
∞ 

k=1

ak where f (k) = ak ,
∞ 

k=1

ak and

 ∞

1

f (x) dx 9.3

f is continuous and decreasing and f (x) ≥ 0 both converge or both diverge.

p-series
∞ 

k=1

1

k p
Converges for p > 1; diverges for p ≤ 1. 9.3

Comparison Test
∞ 

k=1

ak and
∞ 

k=1

bk , where 0 ≤ ak ≤ bk If
∞ 

k=1

bk converges, then
∞ 

k=1

ak converges. 9.3

If
∞ 

k=1

ak diverges, then
∞ 

k=1

bk diverges.

Limit Comparison Test
∞ 

k=1

ak and
∞ 

k=1

bk , where
∞ 

k=1

ak and
∞ 

k=1

bk 9.3

ak , bk > 0 and lim
k→∞

ak

bk

= L > 0 both converge or both diverge.

Alternating Series Test
∞ 

k=1

(−1)k+1ak where ak > 0 for all k If lim
k→∞

ak = 0 and ak+1 ≤ ak for all k, 9.4

then the series converges.

Absolute Convergence Series with some positive and some

negative terms (including alternating series)

If
∞ 

k=1

|ak | converges, then 9.5

∞ 
k=1

ak converges absolutely.

Ratio Test Any series (especially those involving

exponentials and/or factorials)

For lim
k→∞

    ak+1

ak

    = L , 9.5

if L < 1,
∞ 

k=1

ak converges absolutely

if L > 1,
∞ 

k=1

ak diverges,

if L = 1, no conclusion.

Root Test Any series (especially those involving

exponentials)

For lim
k→∞

k
 

|ak | = L , 9.5

if L < 1,
∞ 

k=1

ak converges absolutely

if L > 1,
∞ 

k=1

ak diverges,

if L = 1, no conclusion.

EXERCISES 9.5

WRITING EXERCISES

1. Suppose that two series have identical terms except that in se-

ries A all terms are positive and in series B some terms are

positive and some terms are negative. Explain why series B

is more likely to converge. In light of this, explain why Theo-

rem 5.1 is true.

2. In the Ratio Test, if lim
k→∞

    ak+1

ak

    > 1, which is bigger, |ak+1|

or |ak |? Explain why this implies that the series
∞ 

k=1

ak

diverges.
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3. In the Ratio Test, if lim
k→∞

    ak+1

ak

    = L < 1, which is bigger,

|ak+1| or |ak |? This inequality could also hold if L = 1. Com-

pare the relative sizes of |ak+1| and |ak | if L = 0.8 versus

L = 1. Explain why L = 0.8 would be more likely to cor-

respond to a convergent series than L = 1.

4. In many series of interest, the terms of the series involve pow-

ers of k (e.g., k2 ), exponentials (e.g., 2k ) or factorials (e.g., k!).

For which type(s) of terms is the Ratio Test likely to produce

a result (i.e., a limit different from 1)? Briefly explain.

In exercises 1–38, determine whether the series is absolutely

convergent, conditionally convergent or divergent.

1.

∞ 
k=0

(−1)k 3

k!
2.

∞ 
k=0

(−1)k 6

k!

3.

∞ 
k=0

(−1)k2k 4.

∞ 
k=0

(−1)k 2

3k

5.

∞ 
k=1

(−1)k+1 k

k2 + 1
6.

∞ 
k=1

(−1)k+1 k2 + 1

k

7.

∞ 
k=3

(−1)k 3k

k!
8.

∞ 
k=4

(−1)k 10k

k!

9.

∞ 
k=2

(−1)k+1 k

2k + 1
10.

∞ 
k=3

(−1)k+1 4

2k + 1

11.

∞ 
k=6

(−1)k k2k

3k
12.

∞ 
k=1

(−1)k k23k

2k

13.

∞ 
k=1

 
4k

5k + 1

 k

14.

∞ 
k=5

 
1 − 3k

4k

 k

15.

∞ 
k=1

−2

k
16.

∞ 
k=1

4

k

17.

∞ 
k=0

(−1)k+1

√
k

k + 1
18.

∞ 
k=2

(−1)k+1 k

k3 + 1

19.

∞ 
k=7

k2

ek
20.

∞ 
k=1

k3e−k

21.

∞ 
k=2

e3k

k3k
22.

∞ 
k=4

 
ek

k2

 k

23.

∞ 
k=1

sin k

k2
24.

∞ 
k=1

cos k

k3

25.

∞ 
k=1

cos kπ

k
26.

∞ 
k=1

sin kπ

k

27.

∞ 
k=2

(−1)k

ln k
28.

∞ 
k=2

(−1)k

k ln k

29.

∞ 
k=1

(−1)k

k
√

k
30.

∞ 
k=1

(−1)k+1

√
k

31.

∞ 
k=3

3

kk
32.

∞ 
k=8

2k

3k

33.

∞ 
k=6

(−1)k+1 k!

4k
34.

∞ 
k=4

(−1)k+1 k24k

k!

35.

∞ 
k=1

(−1)k+1 k10

(2k)!
36.

∞ 
k=0

(−1)k 4k

(2k + 1)!

37.

∞ 
k=0

(−2)k(k + 1)

5k
38.

∞ 
k=1

(−3)k

k24k

39. In the 1910s, the Indian mathematician Srinivasa Ramanujan

discovered the formula

1

π
=

√
8

9801

∞ 
k=0

(4k)!(1103 + 26,390k)

(k!)43964k
.

Approximate the series with only the k = 0 term and show that

you get 6 digits of π correct. Approximate the series using the

k = 0 and k = 1 terms and show that you get 14 digits ofπ cor-

rect. In general, each term of this remarkable series increases

the accuracy by 8 digits.

40. Prove that Ramanujan’s series in exercise 39 converges.

41. To show that
∞ 

k=1

k!

kk
converges, use the Ratio Test and the fact

that

lim
k→∞

 
k + 1

k

 k

= lim
k→∞

 
1 + 1

k

 k

= e.

42. Determine whether
∞ 

k=1

k!

1 · 3 · 5 · · · (2k − 1)
converges or

diverges.

43. Find all values of p such that
∞ 

k=1

pk

k
converges.

44. Find all values of p such that
∞ 

k=1

pk

k2
converges.

EXPLORATORY EXERCISES

1. One reason that it is important to distinguish absolute from con-

ditional convergence of a series is the rearrangement of series,

to be explored in this exercise. Show that the series
∞ 

k=0

(−1)k

2k

is absolutely convergent and find its sum S. Find the sum S+
of the positive terms of the series. Find the sum S− of the neg-

ative terms of the series. Verify that S = S+ + S−. This may

seem obvious, since for the finite sums you are most familiar

with, the order of addition never matters. However, you cannot

separate the positive and negative terms for conditionally con-

vergent series. For example, show that
∞ 

k=0

(−1)k

k + 1
converges

(conditionally) but that the series of positive terms and the
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series of negative terms both diverge. Explain in words why

this will always happen for conditionally convergent series.

Thus, the order of terms matters for conditionally convergent

series. By exploring further, we can uncover a truly remarkable

fact: for conditionally convergent series, you can reorder the

terms so that the partial sums converge to any real number. To

illustrate this, suppose we want to reorder the series
∞ 

k=0

(−1)k

k + 1
so that the partial sums converge to π

2
. Start by pulling out

positive terms
 
1 + 1

3
+ 1

5
+ · · · such that the partial sum is

within 0.1 of π

2
. Next, take the first negative term

 − 1
2

 
and

positive terms such that the partial sum is within 0.05 of π

2
.

Then take the next negative term
 − 1

4

 
and positive terms such

that the partial sum is within 0.01 of π

2
. Argue that you could

continue in this fashion to reorder the terms so that the partial

sums converge to π

2
. (Especially explain why you will never

“run out of” positive terms.) Then explain why you cannot do

the same with the absolutely convergent series
∞ 

k=0

(−1)k

2k
.

2. In this exercise, you show that the Root Test is more

general than the Ratio Test. To be precise, show that if

lim
n→∞

    an+1

an

    = r  = 1 then lim
n→∞

|an|1/n = r by considering

lim
n→∞

ln

    an+1

an

    and lim
n→∞

ln |an|1/n = lim
n→∞

1

n

n 
k=1

ln

    ak+1

ak

    . Inter-

pret this result in terms of how likely the Ratio Test or Root Test

is to give a definite conclusion. Show that the result is not “if

and only if ” by finding a sequence for which lim
n→∞

|an|1/n < 1

but lim
n→∞

    an+1

an

    does not exist. In spite of this, give one reason

why the Ratio Test might be preferable to the Root Test.

9.6 POWER SERIES

We now expand our discussion of series to the case where the terms of the series are

functions of the variable x. Pay close attention, as the primary reason for studying series is

that we can use them to represent functions. This opens up numerous possibilities for us,

from approximating the values of transcendental functions to calculating derivatives and

integrals of such functions, to studying differential equations. As well, defining functions as

convergent series produces an explosion of new functions available to us, including many

important functions, such as the Bessel functions. We take the first few steps in this section.
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1

2

3 y   f (x)
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y

x

FIGURE 9.38

y = 1

3 − x
and the first three partial

sums of
∞ 

k=0

(x − 2)k

As a start, consider the series

∞ 
k=0

(x − 2)k = 1 + (x − 2) + (x − 2)2 + (x − 2)3 + · · · .

Notice that for each fixed x, this is a geometric series with r = (x − 2), which will converge

whenever |r | = |x − 2| < 1 and diverge whenever |r | = |x − 2| ≥ 1. Further, for each x

with |x − 2| < 1 (i.e., 1 < x < 3), the series converges to

a

1 − r
= 1

1 − (x − 2)
= 1

3 − x
.

That is, for each x in the interval (1, 3), we have

∞ 
k=0

(x − 2)k = 1

3 − x
.

For all other values of x, the series diverges. In Figure 9.38, we show a graph of

f (x) = 1

3 − x
, along with the first three partial sums Pn of this series, where

Pn(x) =
n 

k=0

(x − 2)k = 1 + (x − 2) + (x − 2)2 + · · · + (x − 2)n,

on the interval [1, 3]. Notice that as n gets larger, Pn(x) appears to get closer to f (x), for

any given x in the interval (1, 3). Further, as n gets larger, Pn(x) tends to stay close to f (x)

for a larger range of x-values.
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So, we have taken a series and noticed that it is equivalent to (i.e., it converges to)

a known function on a certain interval. You might wonder why this is useful. Imagine

what benefits you might find if you could take a given function (one that you don’t know

much about) and find an equivalent series representation. This is precisely what we do in

section 9.7. For instance, we will show that for all x,

ex =
∞ 

k=0

xk

k!
= 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ · · · . (6.1)

As one immediate use of (6.1), suppose that you wanted to calculate e1.234567. Using (6.1),

for any given x, we can compute an approximation to ex , simply by summing the first few

terms of the equivalent power series. This is easy to do, since the partial sums of the series

are simply polynomials.

In general, any series of the form

POWER SERIES

∞ 
k=0

bk(x − c)k = b0 + b1(x − c) + b2(x − c)2 + b3(x − c)3 + · · ·

is called a power series in powers of (x − c). We refer to the constants bk, k = 0, 1, 2, . . . ,

as the coefficients of the series. The first question is: for what values of x does the series

converge? Saying this another way, the power series
∞ 

k=0

bk(x − c)k defines a function of x.

Its domain is the set of all x for which the series converges. The primary tool for investigating

the convergence or divergence of a power series is the Ratio Test.

EXAMPLE 6.1 Determining Where a Power Series Converges

Determine the values of x for which the power series
∞ 

k=0

k

3k+1
xk converges.

Solution Using the Ratio Test, we have

lim
k→∞

    ak+1

ak

    = lim
k→∞

    (k + 1)xk+1

3k+2

3k+1

kxk

    
= lim

k→∞
(k + 1)|x |

3k
= |x |

3
lim

k→∞
k + 1

k

Since xk+1 = xk · x1

and 3k+2 = 3k+1 · 31.

= |x |
3

< 1,

for |x | < 3 or −3 < x < 3. So, the series converges absolutely for −3 < x < 3 and

diverges for |x | > 3 (i.e., for x > 3 or x < −3). Since the Ratio Test gives no

conclusion for the endpoints x = ±3, we must test these separately.

For x = 3, we have the series

∞ 
k=0

k

3k+1
xk =

∞ 
k=0

k

3k+1
3k =

∞ 
k=0

k

3
.

Since lim
k→∞

k

3
= ∞  = 0,

the series diverges by the kth-term test for divergence. The series diverges when

x = −3, for the same reason. Thus, the power series converges for all x in the interval

(−3, 3) and diverges for all x outside this interval. �
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Observe that example 6.1 has something in common with our introductory example.

In both cases, the series have the form
∞ 

k=0

bk(x − c)k and there is an interval of the form

(c − r, c + r ) on which the series converges and outside of which the series diverges. (In

the case of example 6.1, notice that c = 0.) This interval on which a power series converges

is called the interval of convergence. The constant r is called the radius of convergence

(i.e., r is half the length of the interval of convergence). It turns out that there is such an

interval for every power series. We have the following result.

NOTE

In part (iii) of Theorem 6.1, the

series may converge at neither,

one or both of the endpoints

x = c − r and x = c + r .

Because the interval of

convergence is centered at x = c,

we refer to c as the center of the

power series.

THEOREM 6.1

Given any power series,
∞ 

k=0

bk(x − c)k , there are exactly three possibilities:

(i) The series converges absolutely for all x ∈ (−∞,∞) and the radius of

convergence is r = ∞;

(ii) The series converges only for x = c (and diverges for all other values of x) and

the radius of convergence is r = 0; or

(iii) The series converges absolutely for x ∈ (c − r, c + r ) and diverges for

x < c − r and for x > c + r , for some number r with 0 < r < ∞.

The proof of the theorem can be found in Appendix A.

EXAMPLE 6.2 Finding the Interval and Radius of Convergence

Determine the interval and radius of convergence for the power series

∞ 
k=0

10k

k!
(x − 1)k .

Solution From the Ratio Test, we have

lim
k→∞

    ak+1

ak

    = lim
k→∞

    10k+1(x − 1)k+1

(k + 1)!

k!

10k(x − 1)k

    
= 10|x − 1| lim

k→∞
k!

(k + 1)k!
Since (x − 1)k+1 = (x − 1)k (x − 1)1

and (k + 1)! = (k + 1)k!.

= 10|x − 1| lim
k→∞

1

k + 1
= 0 < 1,

for all x. This says that the series converges absolutely for all x. Thus, the interval of

convergence for this series is (−∞,∞) and the radius of convergence is r = ∞. �

The interval of convergence for a power series can be a closed interval, an open interval

or a half-open interval, as in example 6.3.

EXAMPLE 6.3 A Half-Open Interval of Convergence

Determine the interval and radius of convergence for the power series
∞ 

k=1

xk

k4k
.
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Solution From the Ratio Test, we have

lim
k→∞

    ak+1

ak

    = lim
k→∞

    xk+1

(k + 1)4k+1

k4k

xk

    
= |x |

4
lim

k→∞
k

k + 1
= |x |

4
< 1.

So, we are guaranteed absolute convergence for |x | < 4 and divergence for |x | > 4. It

remains only to test the endpoints of the interval: x = ±4. For x = 4, we have

∞ 
k=1

xk

k4k
=

∞ 
k=1

4k

k4k
=

∞ 
k=1

1

k
,

which you will recognize as the harmonic series, which diverges. For x = −4, we have

∞ 
k=1

xk

k4k
=

∞ 
k=1

(−4)k

k4k
=

∞ 
k=1

(−1)k

k
,

which is the alternating harmonic series, which we know converges conditionally. (See

example 5.2.) So, in this case, the interval of convergence is the half-open interval

[−4, 4) and the radius of convergence is r = 4. �

Notice that (as stated in Theorem 6.1) every power series
∞ 

k=0

ak(x − c)k converges at

least for x = c since for x = c, we have the trivial case

∞ 
k=0

ak(x − c)k =
∞ 

k=0

ak(c − c)k = a0 +
∞ 

k=1

ak0k = a0 + 0 = a0.

EXAMPLE 6.4 A Power Series That Converges at Only One Point

Determine the radius of convergence for the power series
∞ 

k=0

k!(x − 5)k .

Solution From the Ratio Test, we have

lim
k→∞

    ak+1

ak

    = lim
k→∞

    (k + 1)!(x − 5)k+1

k!(x − 5)k

    
= lim

k→∞
(k + 1)k!|x − 5|

k!

= lim
k→∞

[(k + 1)|x − 5|]

=
 

0, if x = 5

∞, if x  = 5
.

Thus, this power series converges only for x = 5 and so, its radius of convergence is

r = 0. �

Suppose that the power series
∞ 

k=0

bk(x − c)k has radius of convergence r > 0. Then the

series converges absolutely for all x in the interval (c − r, c + r ) and might converge at one

or both of the endpoints, x = c − r and x = c + r . Notice that since the series converges

for each x ∈ (c − r, c + r ), it defines a function f on the interval (c − r, c + r ),

f (x) =
∞ 

k=0

bk(x − c)k = b0 + b1(x − c) + b2(x − c)2 + b3(x − c)3 + · · · .
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It turns out that such a function is continuous and differentiable, although the proof is

beyond the level of this course. In fact, we differentiate exactly the way you might expect,

f  (x) = d

dx
f (x) = d

dx
[b0 + b1(x − c) + b2(x − c)2 + b3(x − c)3 + · · ·]

= b1 + 2b2(x − c) + 3b3(x − c)2 + · · · =
∞ 

k=1

bkk(x − c)k−1,

Differentiating a power series

where the radius of convergence of the resulting series is also r. Since we find the deriva-

tive by differentiating each term in the series, we call this term-by-term differentiation.

Likewise, we can integrate a convergent power series term-by-term,

Integrating a power series

 
f (x) dx =

 ∞ 
k=0

bk(x − c)kdx =
∞ 

k=0

bk

 
(x − c)kdx

=
∞ 

k=0

bk

(x − c)k+1

k + 1
+ K ,

where the radius of convergence of the resulting series is again r and where K is a constant

of integration. The proof of these two results can be found in a text on advanced calculus.

It’s important to recognize that these two results are not obvious. They are not simply an

application of the rule that a derivative or integral of a sum is the sum of the derivatives or

integrals, respectively, since a series is not a sum, but rather, a limit of a sum. Further, these

results are true for power series, but are not true for series in general.

EXAMPLE 6.5 A Convergent Series Whose Series
of Derivatives Diverges

Find the interval of convergence of the series
∞ 

k=1

sin(k3x)

k2
and show that the series of

derivatives does not converge for any x.

Solution Notice that     sin(k3x)

k2

    ≤ 1

k2
, for all x,

since |sin(k3x)| ≤ 1. Since
∞ 

k=1

1

k2
is a convergent p-series (p = 2 > 1), it follows from

the Comparison Test that
∞ 

k=0

sin(k3x)

k2
converges absolutely, for all x. On the other hand,

the series of derivatives (found by differentiating the series term-by-term) is

∞ 
k=1

d

dx

 
sin(k3x)

k2

 
=

∞ 
k=1

k3 cos(k3x)

k2
=

∞ 
k=1

[k cos(k3x)],

which diverges for all x, by the kth-term test for divergence, since the terms do not tend

to zero as k → ∞, for any x. �
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Keep in mind that
∞ 

k=1

sin(k3x)

k2
is not a power series. (Why not?) The result of

example 6.5 (a convergent series whose series of derivatives diverges) cannot occur with

any power series with radius of convergence r > 0.

In example 6.6, we find that once we have a convergent power series representation for

a given function, we can use this to obtain power series representations for any number of

other functions, by substitution or by differentiating and integrating the series term-by-term.

EXAMPLE 6.6 Differentiating and Integrating a Power Series

Use the power series
∞ 

k=0

(−1)k xk to find power series representations of
1

(1 + x)2
,

1

1 + x2

and tan−1 x .

Solution Notice that
∞ 

k=0

(−1)k xk =
∞ 

k=0

(−x)k is a geometric series with ratio r = −x .

This series converges, then, whenever |r | = |−x | = |x | < 1, to

a

1 − r
= 1

1 − (−x)
= 1

1 + x
.

That is, for −1 < x < 1,
1

1 + x
=

∞ 
k=0

(−1)k xk . (6.2)

Differentiating both sides of (6.2), we get

−1

(1 + x)2
=

∞ 
k=0

(−1)kkxk−1, for − 1 < x < 1.

Multiplying both sides by −1 gives us a new power series representation:

1

(1 + x)2
=

∞ 
k=0

(−1)k+1kxk−1,

valid for −1 < x < 1. Notice that we can also obtain a new power series from (6.2) by

substitution. For instance, if we replace x with x2, we get

1

1 + x2
=

∞ 
k=0

(−1)k(x2)k =
∞ 

k=0

(−1)k x2k, (6.3)

valid for −1 < x2 < 1 (which is equivalent to having x2 < 1 or −1 < x < 1).

Integrating both sides of (6.3) gives us 
1

1 + x2
dx =

∞ 
k=0

(−1)k

 
x2k dx =

∞ 
k=0

(−1)k x2k+1

2k + 1
+ c. (6.4)

You should recognize the integral on the left-hand side of (6.4) as tan−1 x . That is,

tan−1 x =
∞ 

k=0

(−1)k x2k+1

2k + 1
+ c, for − 1 < x < 1. (6.5)

Taking x = 0 gives us

tan−1 0 =
∞ 

k=0

(−1)k02k+1

2k + 1
+ c = c,
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so that c = tan−1 0 = 0. Equation (6.5) now gives us a power series representation for

tan−1 x , namely:

tan−1 x =
∞ 

k=0

(−1)k x2k+1

2k + 1
= x − 1

3
x3 + 1

5
x5 − 1

7
x7 + · · · , for − 1 < x < 1.

�

Notice that working as in example 6.6, we can produce power series representations

of any number of functions. In section 9.7, we present a systematic method for producing

power series representations for a wide range of functions.

BEYOND FORMULAS

You should think of a power series as a different form for writing functions. Just as
x

ex
can be rewritten as xe−x , many functions can be rewritten as power series. In

general, having another alternative for writing a function gives you one more option to

consider when trying to solve a problem. Power series representations are often easier

to work with than other representations. Further, power series representations have the

advantage of having derivatives and integrals that are easy to compute. As a result,

power series are a very useful addition to our set of problem-solving techniques.

EXERCISES 9.6

WRITING EXERCISES

1. Power series have the form
∞ 

k=0

ak(x − c)k . Explain why the

farther x is from c, the larger the terms of the series are and the

less likely the series is to converge. Describe how this general

trend relates to the radius of convergence.

2. Applying the Ratio Test to
∞ 

k=0

ak(x − c)k requires you to eval-

uate lim
k→∞

    ak+1

ak

(x − c)

    . For x = c, this limit equals 0 and the

series converges. As x increases or decreases, |x − c| increases.

If the series has a finite radius of convergence r > 0, what is

the value of the limit when |x − c| = r? Explain how the limit

changes when |x − c| < r and |x − c| > r and how this deter-

mines the convergence or divergence of the series.

3. As shown in example 6.2,
∞ 

k=0

10k

k!
(x − 1)k converges for all x.

If x = 1001, the value of (x − 1)k = 1000k gets very large very

fast, as k increases. Explain why, for the series to converge, the

value of k! must get large faster than 1000k . To illustrate how

fast the factorial grows, compute 50!, 100! and 200! (if your

calculator can).

4. In a power series representation of
√

x + 1 about c = 0, ex-

plain why the radius of convergence cannot be greater than 1.

(Think about the domain of
√

x + 1.)

In exercises 1–8, find apower series representation of f (x) about

c  0 (refer to example 6.6). Also, determine the radius and in-

terval of convergence, and graph f (x) together with the partial

sums
3 

k 0

akx
k and

6 
k 0

akx
k.

1. f (x) = 2

1 − x
2. f (x) = 3

x − 1

3. f (x) = 3

1 + x2
4. f (x) = 2

1 − x2

5. f (x) = 2x

1 − x3
6. f (x) = 3x

1 + x2

7. f (x) = 2

4 + x
8. f (x) = 3

6 − x

In exercises 9–14, determine the interval of convergence and the

function to which the given power series converges.

9.

∞ 
k=0

(x + 2)k 10.

∞ 
k=0

(x − 3)k

11.

∞ 
k=0

(2x − 1)k 12.

∞ 
k=0

(3x + 1)k

13.

∞ 
k=0

(−1)k
 x

2

 k

14.

∞ 
k=0

3
 x

4

 k
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In exercises 15–30, determine the radius and interval of

convergence.

15.

∞ 
k=0

2k

k!
(x − 2)k 16.

∞ 
k=0

3k

k!
xk

17.

∞ 
k=0

k

4k
xk 18.

∞ 
k=0

k

2k
xk

19.

∞ 
k=1

(−1)k

k3k
(x − 1)k 20.

∞ 
k=1

(−1)k+1

k4k
(x + 2)k

21.

∞ 
k=0

k!(x + 1)k 22.

∞ 
k=1

1

k
(x − 1)k

23.

∞ 
k=2

k2(x − 3)k 24.

∞ 
k=4

1

k2
(x + 2)k

25.

∞ 
k=3

k!

(2k)!
xk 26.

∞ 
k=2

(k!)2

(2k)!
xk

27.

∞ 
k=1

2k

k2
(x + 2)k 28.

∞ 
k=0

k2

k!
(x + 1)k

29.

∞ 
k=1

4k

√
k

xk 30.

∞ 
k=1

(−1)k xk

√
k

In exercises 31–36, find a power series representation and ra-

dius of convergence by integrating or differentiating one of the

series from exercises 1–8.

31. f (x) = 3 tan−1 x 32. f (x) = 2 ln(1 − x)

33. f (x) = 2x

(1 − x2)2
34. f (x) = 3

(x − 1)2

35. f (x) = ln(1 + x2) 36. f (x) = ln(4 + x)

In exercises 37–40, find the interval of convergence of the (non-

power) series and the corresponding series of derivatives.

37.

∞ 
k=1

cos(k3x)

k2
38.

∞ 
k=1

cos(x/k)

k

39.

∞ 
k=0

ekx 40.

∞ 
k=0

e−2kx

41. For any constants a and b > 0, determine the interval and ra-

dius of convergence of
∞ 

k=0

(x − a)k

bk
.

42. Prove that if
∞ 

k=0

ak xk has radius of convergence r, with

0 < r < ∞, then
∞ 

k=0

ak x2k has radius of convergence
√

r .

43. If
∞ 

k=0

ak xk has radius of convergence r, with 0 < r < ∞, de-

termine the radius of convergence of
∞ 

k=0

ak(x − c)k for any

constant c.

44. If
∞ 

k=0

ak xk has radius of convergence r, with 0 < r < ∞, deter-

mine the radius of convergence of
∞ 

k=0

ak

 x

b

 k

for any constant

b  = 0.

45. Show that f (x) = x + 1

(1 − x)2
=

2x

1−x
+ 1

1 − x
has the power se-

ries representation f (x) = 1 + 3x + 5x2 + 7x3 + 9x4 + · · · .
Find the radius of convergence. Set x = 1

1000
and discuss the

interesting decimal representation of
1,001,000

998,001
.

46. Use long division to show that
1

1 − x
= 1 + x + x2 + x3 + · · · .

47. Even great mathematicians can make mistakes. Leon-

hard Euler started with the equation
x

x − 1
+ x

1 − x
= 0,

rewrote it as
1

1 − 1/x
+ x

1 − x
= 0, found power se-

ries representations for each function and concluded that

· · · + 1

x2
+ 1

x
+ 1 + x + x2 + · · · = 0. Substitute x = 1 to

show that the conclusion is false, then find the mistake in

Euler’s derivation.

48. If your CAS or calculator has a command named “Taylor,” use

it to verify your answers to exercises 31–36.

49. An electric dipole consists of a charge q at x = 1 and a

charge −q at x = −1. The electric field at any x > 1 is given

by E(x) = kq

(x − 1)2
− kq

(x + 1)2
, for some constant k. Find a

power series representation for E(x).

50. Show that a power series representation of f (x) = ln(1 + x2)

is given by
∞ 

k=0

(−1)k
x2k+2

k + 1
. For the partial sums

Pn(x) =
n 

k=0

(−1)k
x2k+2

k + 1
, compute | f (0.9) − Pn(0.9)| for

each of n = 2, 4, 6. Discuss the pattern. Then compute

| f (1.1) − Pn(1.1)| for each of n = 2, 4, 6. Discuss the pat-

tern. Discuss the relevance of the radius of convergence to

these calculations.

EXPLORATORY EXERCISES

1. Note that the radius of convergence in each of exercises 1–5

is 1. Given that the functions in exercises 1, 2, 4 and 5 are

undefined at x = 1, explain why the radius of convergence

can’t be larger than 1. The restricted radius in exercise 3 can

be understood using complex numbers. Show that 1 + x2 = 0

for x = ±i , where i = √−1. In general, a complex number

a + b i is associated with the point (a, b). Find the “distance”

between the complex numbers 0 and i by finding the dis-

tance between the associated points (0, 0) and (0, 1). Discuss
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how this compares to the radius of convergence. Then use the

ideas in this exercise to quickly conjecture the radius of con-

vergence of power series with center c = 0 for the functions

f (x) = 4

1 + 4x
, f (x) = 2

4 + x
and f (x) = 2

4 + x2
.

2. For each series f (x), compare the intervals of convergence

of f (x) and
 

f (x) dx , where the antiderivative is taken

term-by-term. (a) f (x) =
∞ 

k=0

(−1)k xk ; (b) f (x) =
∞ 

k=0

√
kxk ;

(c) f (x) =
∞ 

k=0

1

k
xk . As stated in the text, the radius of con-

vergence remains the same after integration (or differentia-

tion). Based on the examples in this exercise, does integration

make it more or less likely that the series will converge

at the endpoints? Conversely, will differentiation make it

more or less likely that the series will converge at the

endpoints?

3. Let { fk(x)} be a sequence of functions defined on a set E.

The Weierstrass M-test states that if there exist constants

Mk such that | fk(x)| ≤ Mk for each x and
∞ 

k=1

Mk converges,

then
∞ 

k=1

fk(x) converges (uniformly) for each x in E. Prove

that
∞ 

k=1

1

k2 + x2
and

∞ 
k=1

x2e−kx converge (uniformly) for all

x. “Uniformly” in this exercise refers to the rate at which the

infinite series converges to its sum. A precise definition can be

found in an advanced calculus book. We explore the main idea

of the definition in this exercise. Explain why you would expect

the convergence of the series
∞ 

k=1

1

k2 + x2
to be slowest at x = 0.

Now, numerically explore the following question. Defining

f (x) =
∞ 

k=1

1

k2 + x2
and Sn(x) =

n 
k=1

1

k2 + x2
, is there an inte-

ger N such that if n > N then | f (x) − Sn(x)| < 0.01 for all x?

9.7 TAYLOR SERIES

Representation of Functions as Power Series

In this section, we develop a compelling reason for considering series. They are not merely

a mathematical curiosity, but rather, are an essential means for exploring and computing

with transcendental functions (e.g., sin x, cos x, ln x, ex , etc.).

Suppose that the power series
∞ 

k=0

bk(x − c)k has radius of convergence r > 0. As we’ve

observed, this means that the series converges absolutely to some function f on the interval

(c − r, c + r ). We have

f (x) =
∞ 

k=0

bk(x − c)k = b0 + b1(x − c) + b2(x − c)2 + b3(x − c)3 + b4(x − c)4 + · · · ,

for each x ∈ (c − r, c + r ). Differentiating term-by-term, we get that

f  (x) =
∞ 

k=0

bkk(x − c)k−1 = b1 + 2b2(x − c) + 3b3(x − c)2 + 4b4(x − c)3 + · · · ,

again, for each x ∈ (c − r, c + r ). Likewise, we get

f   (x) =
∞ 

k=0

bkk(k − 1)(x − c)k−2 = 2b2 + 3 · 2b3(x − c) + 4 · 3b4(x − c)2 + · · ·

and f    (x) =
∞ 

k=0

bkk(k − 1)(k − 2)(x − c)k−3 = 3 · 2b3 + 4 · 3 · 2b4(x − c) + · · ·

and so on (all valid for c − r < x < c + r ). Notice that if we substitute x = c in each of

the above derivatives, all the terms of the series drop out, except one. We get

f (c) = b0,

f  (c) = b1,

f   (c) = 2b2,

f    (c) = 3! b3
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and so on. Observe that in general, we have

f (k)(c) = k! bk . (7.1)

Solving (7.1) for bk , we have

bk = f (k)(c)

k!
, for k = 0, 1, 2, . . . .

To summarize, we found that if
∞ 

k=0

bk(x − c)k is a convergent power series with radius of

convergence r > 0, then the series converges to some function f that we can write as

f (x) =
∞ 

k=0

bk(x − c)k =
∞ 

k=0

f (k)(c)

k!
(x − c)k, for x ∈ (c − r, c + r ).

Now, think about this problem from another angle. Instead of starting with a series,

suppose that you start with an infinitely differentiable function, f (i.e., f can be differentiated

infinitely often). Then, we can construct the series

Taylor Series Expansion

of f (x) about x = c

∞ 
k=0

f (k)(c)

k!
(x − c)k,

called a Taylor series expansion for f. (See the historical note on Brook Taylor in

section 7.2.) There are two important questions we need to answer.

r Does a series constructed in this way converge? If so, what is its radius of

convergence?
r If the series converges, it converges to a function. Does it converge to f ?

We can answer the first of these questions on a case-by-case basis, usually by applying

the Ratio Test. The second question will require further insight.

EXAMPLE 7.1 Constructing a Taylor Series Expansion

Construct the Taylor series expansion for f (x) = ex , about x = 0 (i.e., take c = 0).

Solution Here, we have the extremely simple case where

f  (x) = ex , f   (x) = ex and so on, f (k)(x) = ex , for k = 0, 1, 2, . . . .

This gives us the Taylor series

∞ 
k=0

f (k)(0)

k!
(x − 0)k =

∞ 
k=0

e0

k!
xk =

∞ 
k=0

1

k!
xk .

From the Ratio Test, we have

lim
k→∞

     ak+1

ak

     = lim
k→∞

|x |k+1

(k + 1)!

k!

|x |k = |x | lim
k→∞

k!

(k + 1)k!

= |x | lim
k→∞

1

k + 1
= |x |(0) = 0 < 1, for all x .

So, the Taylor series
∞ 

k=0

1

k!
xk converges absolutely for all real numbers x. At this point,

though, we do not know the function to which the series converges. (Could it be ex ?) �

REMARK 7.1

The special case of a Taylor

series expansion about x = 0

is often called a Maclaurin

series. (See the historical note

about Colin Maclaurin in

section 9.3.) That is, the series
∞ 

k=0

f (k)(0)

k!
xk is the Maclaurin

series expansion for f.
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Before we present any further examples of Taylor series, let’s see if we can determine

the function to which a given Taylor series converges. First, notice that the partial sums of

a Taylor series (like those for any power series) are simply polynomials. We define

Pn(x) =
n 

k=0

f (k)(c)

k!
(x − c)k

= f (c) + f  (c)(x − c) + f   (c)

2!
(x − c)2 + · · · + f (n)(c)

n!
(x − c)n.

Observe that Pn(x) is a polynomial of degree n, as
f (k)(c)

k!
is a constant for each k. We refer

to Pn as the Taylor polynomial of degree n for f expanded about x = c.

EXAMPLE 7.2 Constructing and Graphing Taylor Polynomials

For f (x) = ex , find the Taylor polynomial of degree n expanded about x = 0.

Solution As in example 7.1, we have that f (k)(x) = ex , for all k. So, we have that the

nth-degree Taylor polynomial is

Pn(x) =
n 

k=0

f (k)(0)

k!
(x − 0)k =

n 
k=0

e0

k!
xk

=
n 

k=0

1

k!
xk = 1 + x + x2

2!
+ x3

3!
+ · · · + xn

n!
.

Since we established in example 7.1 that the Taylor series for f (x) = ex about x = 0

converges for all x, this says that the sequence of partial sums (i.e., the sequence of

Taylor polynomials) converges for all x. In an effort to determine the function to which

the Taylor polynomials are converging, we have plotted P1(x), P2(x), P3(x) and P4(x),

together with the graph of f (x) = ex in Figures 9.39a–d, respectively.

x
2 4 2

 2

2

4

6

8
y   ex

y   P1(x)

y

x
2 4 2

 2

2

4

6

8
y   ex

y   P2(x)

y

x
2 4 2

 2

2

4

6

8
y   ex

y   P3(x)

y

FIGURE 9.39a
y = ex and y = P1(x)

FIGURE 9.39b
y = ex and y = P2(x)

FIGURE 9.39c
y = ex and y = P3(x)
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Notice that as n gets larger, the graphs of Pn(x) appear (at least on the interval

x
2 4 2

 2

2

4

6

8 y   ex

y   P4(x)

y

FIGURE 9.39d
y = ex and y = P4(x)

displayed) to be approaching the graph of f (x) = ex . Since we know that the Taylor

series converges and the graphical evidence suggests that the partial sums of the series

are approaching f (x) = ex , it is reasonable to conjecture that the series converges to ex .

This is, in fact, exactly what is happening, as we can prove using Theorems 7.1

and 7.2. �

THEOREM 7.1 (Taylor’s Theorem)

Suppose that f has (n + 1) derivatives on the interval (c − r, c + r ), for some r > 0.

Then, for x ∈ (c − r, c + r ), f (x) ≈ Pn(x) and the error in using Pn(x) to

approximate f (x) is

Rn(x) = f (x) − Pn(x) = f (n+1)(z)

(n + 1)!
(x − c)n+1, (7.2)

for some number z between x and c.

The error term Rn(x) in (7.2) is often called the remainder term. Note that this term

looks very much like the first neglected term of the Taylor series, except that f (n+1) is

evaluated at some (unknown) number z between x and c, instead of at c. This remainder

term serves two purposes: it enables us to obtain an estimate of the error in using a Taylor

polynomial to approximate a given function and as we’ll see in Theorem 7.2, it gives us the

means to prove that a Taylor series for a given function f converges to f.

The proof of Taylor’s Theorem is somewhat technical and so we leave it for the end of

the section.

Note: If we could show that

lim
n→∞

Rn(x) = 0, for all x in (c − r, c + r ),

then we would have that

0 = lim
n→∞

Rn(x) = lim
n→∞

[ f (x) − Pn(x)] = f (x) − lim
n→∞

Pn(x)

or lim
n→∞

Pn(x) = f (x), for all x ∈ (c − r, c + r ).

That is, the sequence of partial sums of the Taylor series (i.e., the sequence of Tay-

lor polynomials) converges to f (x) for each x ∈ (c − r, c + r ). We summarize this in

Theorem 7.2.

REMARK 7.2

Observe that for n = 0, Taylor’s

Theorem simplifies to a very

familiar result. We have

R0(x) = f (x) − P0(x)

= f  (z)

(0 + 1)!
(x − c)0+1.

Since P0(x) = f (c), we have

simply

f (x) − f (c) = f  (z)(x − c).

Dividing by (x − c), gives us

f (x) − f (c)

x − c
= f  (z),

which is the conclusion of the

Mean Value Theorem. In this

way, observe that Taylor’s

Theorem is a generalization of

the Mean Value Theorem.

THEOREM 7.2

Suppose that f has derivatives of all orders in the interval (c − r, c + r ), for some

r > 0 and lim
n→∞

Rn(x) = 0, for all x in (c − r, c + r ). Then, the Taylor series for f

expanded about x = c converges to f (x), that is,

f (x) =
∞ 

k=0

f (k)(c)

k!
(x − c)k,

for all x in (c − r, c + r ).
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We now return to the Taylor series expansion of f (x) = ex about x = 0, constructed

in example 7.1 and investigated further in example 7.2 and prove that it converges to ex , as

we had suspected.

EXAMPLE 7.3 Proving That a Taylor Series Converges
to the Desired Function

Show that the Taylor series for f (x) = ex expanded about x = 0 converges to ex .

Solution We already found the indicated Taylor series,
∞ 

k=0

1

k!
xk in example 7.1.

Here, we have f (k)(x) = ex , for all k = 0, 1, 2, . . . . This gives us the remainder term

Rn(x) = f (n+1)(z)

(n + 1)!
(x − 0)n+1 = ez

(n + 1)!
xn+1, (7.3)

where z is somewhere between x and 0 (and depends also on the value of n). We first

find a bound on the size of ez . Notice that if x > 0, then 0 < z < x and so,

ez < ex .

If x ≤ 0, then x ≤ z ≤ 0, so that

ez ≤ e0 = 1.

We define M to be the larger of these two bounds on ez . That is, we let

M = max{ex , 1}.

Then, for any x and any n, we have

ez ≤ M.

Together with (7.3), this gives us the error estimate

|Rn(x)| = ez

(n + 1)!
|x |n+1 ≤ M

|x |n+1

(n + 1)!
. (7.4)

To prove that the Taylor series converges to ex , we want to use (7.4) to show that

lim
n→∞

Rn(x) = 0, for all x. However, for any given x, we cannot compute lim
n→∞

|x |n+1

(n + 1)!

directly. Instead, we use the following indirect approach. We test the series

∞ 
n=0

|x |n+1

(n + 1)!

using the Ratio Test. We have

lim
n→∞

    an+1

an

    = lim
n→∞

|x |n+2

(n + 2)!

(n + 1)!

|x |n+1
= |x | lim

n→∞
1

n + 2
= 0 < 1,

for all x. This says that the series
∞ 

n=0

|x |n+1

(n + 1)!
converges absolutely for all x. By the

kth-term test for divergence, it follows that the general term must tend to 0 as n → ∞,

for all x. That is,

lim
n→∞

|x |n+1

(n + 1)!
= 0
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and so, from (7.4), lim
n→∞

Rn(x) = 0, for all x. From Theorem 7.2, we now conclude that

the Taylor series converges to ex for all x. That is,

ex =
∞ 

k=0

1

k!
xk=1 + x + x2

2!
+ x3

3!
+ x4

4!
+ · · · . (7.5)

�

When constructing a Taylor series expansion, it is essential to accurately calculate

enough derivatives for you to recognize the general form of the nth derivative. So, take

your time and BE CAREFUL! Once this is done, you need only show that Rn(x) → 0, as

n → ∞, for all x, to ensure that the series converges to the function you are expanding.

One of the reasons for calculating Taylor series is that we can use their partial sums to

compute approximate values of a function.

EXAMPLE 7.4 Using a Taylor Series to Obtain an Approximation of e

Use the Taylor series for ex in (7.5) to obtain an approximation to the number e.

Solution We have

e = e1 =
∞ 

k=0

1

k!
1k =

∞ 
k=0

1

k!
.

We list some partial sums of this series in the accompanying table. From this we get the

very accurate approximation

e ≈ 2.718281828. �

M
M 
k 0

1

k!

5 2.716666667

10 2.718281801

15 2.718281828

20 2.718281828

EXAMPLE 7.5 A Taylor Series Expansion of sin x

Find the Taylor series for f (x) = sin x , expanded about x = π
2

and prove that the series

converges to sin x for all x.

Solution In this case, the Taylor series is

∞ 
k=0

f (k)(π
2

)

k!

 
x − π

2

 k

.

First, we compute some derivatives and their value at x = π
2

. We have

f (x) = sin x f
 
π
2

 = 1,

f  (x) = cos x f   π
2

 = 0,

f   (x) = −sin x f    π
2

 = −1,

f    (x) = −cos x f     π
2

 = 0,

f (4)(x) = sin x f (4)
 
π
2

 = 1

and so on. Recognizing that every other term is zero and every other term is ±1, we see

that the Taylor series is

∞ 
k=0

f (k)
 
π
2

 
k!

 
x − π

2

 k

= 1 − 1

2

 
x − π

2

 2

+ 1

4!

 
x − π

2

 4

− 1

6!

 
x − π

2

 6

+ · · ·

=
∞ 

k=0

(−1)k

(2k)!

 
x − π

2

 2k

.
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In order to test this series for convergence, we consider the remainder term

|Rn(x)| =
    f (n+1)(z)

(n + 1)!

 
x − π

2

 n+1
    , (7.6)

for some z between x and π
2

. From our derivative calculation, note that

f (n+1)(z) =
 ± cos z, if n is even

± sin z, if n is odd
.

From this, it follows that | f (n+1)(z)| ≤ 1,

for every n. (Notice that this is true whether n is even or odd.) From (7.6), we now have

|Rn(x)| =
    f (n+1)(z)

(n + 1)!

    
    x − π

2

    n+1

≤ 1

(n + 1)!

    x − π

2

    n+1

→ 0,

as n → ∞, for every x, as in example 7.3. This says that

sin x =
∞ 

k=0

(−1)k

(2k)!

 
x − π

2

 2k

= 1 − 1

2

 
x − π

2

 2

+ 1

4!

 
x − π

2

 4

− · · · ,

for all x. In Figures 9.40a–d, we show graphs of f (x) = sin x together with the Taylor

polynomials P2(x), P4(x), P6(x) and P8(x) (the first few partial sums of the series).

Notice that the higher the degree of the Taylor polynomial is, the larger the interval is

over which the polynomial provides a close approximation to f (x) = sin x .

y

x
2 4 6 2

 1

1

y   sin x
y   P2(x)

y

x
2 4 6 2

 1

1

y   sin x

y   P4(x)

FIGURE 9.40a
y = sin x and y = P2(x)

FIGURE 9.40b
y = sin x and y = P4(x)

y

x
2 4 6 2

 1

1

y   sin x

y   P6(x)

y

x
2 4 6 2

 1

1

y   sin x

y   P8(x)

FIGURE 9.40c
y = sin x and y = P6(x)

FIGURE 9.40d
y = sin x and y = P8(x)

�
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In example 7.6, we illustrate how to use Taylor’s Theorem to estimate the error in using

a Taylor polynomial to approximate the value of a function.

2 31

2

 2

 4

y   ln x

y   P4(x)

y

x

FIGURE 9.41
y = ln x and y = P4(x)

EXAMPLE 7.6 Estimating the Error in a Taylor
Polynomial Approximation

Expand f (x) = ln x in a Taylor series about a convenient point and use a Taylor

polynomial of degree 4 to approximate the value of ln(1.1). Then, estimate the error in

this approximation.

Solution First, note that since ln 1 is known exactly and 1 is close to 1.1 (why would

this matter?), we expand f (x) = ln x in a Taylor series about x = 1. We compute an

adequate number of derivatives so that the pattern becomes clear. We have

f (x) = ln x f (1) = 0

f  (x) = x−1 f  (1) = 1

f   (x) = −x−2 f   (1) = −1

f    (x) = 2x−3 f    (1) = 2

f (4)(x) = −3 · 2x−4 f (4)(1) = −3!

f (5)(x) = 4! x−5 f (5)(1) = 4!
...

...

f (k)(x) = (−1)k+1(k − 1)! x−k f (k)(1) = (−1)k+1(k − 1)!

We get the Taylor series

∞ 
k=0

f (k)(1)

k!
(x − 1)k

= (x − 1) − 1

2
(x − 1)2 + 2

3!
(x − 1)3 + · · · + (−1)k+1 (k − 1)!

k!
(x − 1)k + · · ·

=
∞ 

k=1

(−1)k+1

k
(x − 1)k .

We leave it as an exercise to show that the series converges to f (x) = ln x , for

0 < x < 2. The Taylor polynomial P4(x) is then

P4(x) =
4 

k=1

(−1)k+1

k
(x − 1)k

= (x − 1) − 1

2
(x − 1)2 + 1

3
(x − 1)3 − 1

4
(x − 1)4.

We show a graph of y = ln x and y = P4(x) in Figure 9.41. Taking x = 1.1 gives us the

approximation

ln(1.1) ≈ P4(1.1) = 0.1 − 1

2
(0.1)2 + 1

3
(0.1)3 − 1

4
(0.1)4 ≈ 0.095308333.

We can use the remainder term to estimate the error in this approximation. We have

|Error| = |ln(1.1) − P4(1.1)| = |R4(1.1)|

=
    f (4+1)(z)

(4 + 1)!
(1.1 − 1)4+1

    = 4!|z|−5

5!
(0.1)5,



672 CHAPTER 9 .. Infinite Series 9-70

where z is between 1 and 1.1. This gives us the following bound on the error:

|Error| = (0.1)5

5z5
<

(0.1)5

5(15)
= 0.000002,

since 1 < z < 1.1 implies that
1

z
<

1

1
= 1. This says that the approximation

ln(1.1) ≈ 0.095308333 is off by no more than ±0.000002. �

A more significant problem related to example 7.6 is to determine how many terms of

the Taylor series are needed in order to guarantee a given accuracy. We use the remainder

term to accomplish this in example 7.7.

EXAMPLE 7.7 Finding the Number of Terms Needed
for a Given Accuracy

Find the number of terms in the Taylor series for f (x) = ln x expanded about x = 1

that will guarantee an accuracy of at least 1 × 10−10 in the approximation of (a) ln(1.1)

and (b) ln(1.5).

y

x
1 2 3

 2

 4

2

y   ln x

y   P9(x)

FIGURE 9.42
y = ln x and y = P9(x)

Solution (a) From our calculations in example 7.6 and (7.2), we have that for some

number z between 1 and 1.1,

|Rn(1.1)| =
    f (n+1)(z)

(n + 1)!
(1.1 − 1)n+1

    
= n!|z|−n−1

(n + 1)!
(0.1)n+1 = (0.1)n+1

(n + 1)zn+1
<

(0.1)n+1

n + 1
.

Further, since we want the error to be less than 1 × 10−10, we require that

|Rn(1.1)| < (0.1)n+1

n + 1
< 1 × 10−10.

You can solve this inequality for n by trial and error, to find that n = 9 will guarantee

the required accuracy. Notice that larger values of n will also guarantee this accuracy,

since
(0.1)n+1

n + 1
is a decreasing function of n. We then have the approximation

ln(1.1) ≈ P9(1.1) =
9 

k=0

(−1)k+1

k
(1.1 − 1)k

= (0.1) − 1

2
(0.1)2 + 1

3
(0.1)3 − 1

4
(0.1)4 + 1

5
(0.1)5

− 1

6
(0.1)6 + 1

7
(0.1)7 − 1

8
(0.1)8 + 1

9
(0.1)9

≈ 0.095310179813,

which from our error estimate we know is correct to within 1 × 10−10. We show a graph

of y = ln x and y = P9(x) in Figure 9.42. In comparing Figure 9.42 with Figure 9.41,

observe that while P9(x) provides an improved approximation to P4(x) over the interval

of convergence (0, 2), it does not provide a better approximation outside of this interval.

(b) Similarly, notice that for some number z between 1 and 1.5,

|Rn(1.5)| =
    f (n+1)(z)

(n + 1)!
(1.5 − 1)n+1

    = n!|z|−n−1

(n + 1)!
(0.5)n+1

= (0.5)n+1

(n + 1)zn+1
<

(0.5)n+1

n + 1
,
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since 1 < z < 1.5 implies that
1

z
<

1

1
= 1. So, here we require that

|Rn(1.5)| < (0.5)n+1

n + 1
< 1 × 10−10.

Solving this by trial and error shows that n = 28 will guarantee the required accuracy.

Observe that this says that to obtain the same accuracy, many more terms are needed to

approximate f (1.5) than for f (1.1). This further illustrates the general principle that the

farther away x is from the point about which we expand, the slower the convergence of

the Taylor series will be. �

For your convenience, we have compiled a list of common Taylor series in the following

table.

Interval of

Taylor Series Convergence Where to Find

ex =
∞ 

k=0

1

k!
xk = 1 + x + 1

2
x2 + 1

3!
x3 + 1

4!
x4 + · · · (−∞,∞) examples 7.1 and 7.3

sin x =
∞ 

k=0

(−1)k

(2k + 1)!
x2k+1 = x − 1

3!
x3 + 1

5!
x5 − 1

7!
x7 + · · · (−∞,∞) exercise 2

cos x =
∞ 

k=0

(−1)k

(2k)!
x2k = 1 − 1

2
x2 + 1

4!
x4 − 1

6!
x6 + · · · (−∞,∞) exercise 1

sin x =
∞ 

k=0

(−1)k

(2k)!

 
x − π

2

 2k

= 1 − 1

2

 
x − π

2

 2

+ 1

4!

 
x − π

2

 4

− · · · (−∞,∞) example 7.5

ln x =
∞ 

k=1

(−1)k+1

k
(x − 1)k = (x − 1) − 1

2
(x − 1)2 + 1

3
(x − 1)3 − · · · (0, 2] examples 7.6 and 7.7

tan−1 x =
∞ 

k=0

(−1)k

2k + 1
x2k+1 = x − 1

3
x3 + 1

5
x5 − 1

7
x7 + · · · (−1, 1) example 6.6

Notice that once you have found a Taylor series expansion for a given func-

tion, you can find any number of other Taylor series simply by making a substitution.

EXAMPLE 7.8 Finding New Taylor Series from Old Ones

Find Taylor series in powers of x for e2x , ex2

and e−2x .

Solution Rather than compute the Taylor series for these functions from scratch, recall

that we had established in example 7.3 that

et =
∞ 

k=0

1

k!
t k = 1 + t + 1

2!
t2 + 1

3!
t3 + 1

4!
t4 + · · · , (7.7)

for all t ∈ (−∞,∞). We use the variable t here instead of x, so that we can more easily

make substitutions. Taking t = 2x in (7.7), we get the new Taylor series:

e2x =
∞ 

k=0

1

k!
(2x)k =

∞ 
k=0

2k

k!
xk = 1 + 2x + 22

2!
x2 + 23

3!
x3 + · · · .



674 CHAPTER 9 .. Infinite Series 9-72

Similarly, letting t = x2 in (7.7), we get the Taylor series

ex2 =
∞ 

k=0

1

k!
(x2)k =

∞ 
k=0

1

k!
x2k = 1 + x2 + 1

2!
x4 + 1

3!
x6 + · · · .

Finally, taking t = −2x in (7.7), we get

e−2x =
∞ 

k=0

1

k!
(−2x)k =

∞ 
k=0

(−1)k

k!
2k xk = 1 − 2x + 22

2!
x2 − 23

3!
x3 + · · · .

Notice that all of these last three series converge for all x ∈ (−∞,∞). (Why is that?) �

Proof of Taylor’s Theorem

Recall that we had observed that the Mean Value Theorem was a special case of Taylor’s

Theorem. As it turns out, the proof of Taylor’s Theorem parallels that of the Mean Value

Theorem. Both make use of Rolle’s Theorem: If g is continuous on the interval [a, b]

and differentiable on (a, b) and g(a) = g(b), then there is a number z ∈ (a, b) for which

g (z) = 0. As with the proof of the Mean Value Theorem, for a fixed x ∈ (c − r, c + r ), we

define the function

g(t) = f (x) − f (t) − f  (t)(x − t) − 1

2!
f   (t)(x − t)2 − 1

3!
f    (t)(x − t)3

− · · · − 1

n!
f (n)(t)(x − t)n − Rn(x)

(x − t)n+1

(x − c)n+1
,

where Rn(x) is the remainder term, Rn(x) = f (x) − Pn(x). If we take t = x , notice that

g(x) = f (x) − f (x) − 0 − 0 − · · · − 0 = 0

and if we take t = c, we get

g(c) = f (x) − f (c) − f  (c)(x − c) − 1

2!
f   (c)(x − c)2 − 1

3!
f    (c)(x − c)3

− · · · − 1

n!
f (n)(c)(x − c)n − Rn(x)

(x − c)n+1

(x − c)n+1

= f (x) − Pn(x) − Rn(x) = Rn(x) − Rn(x) = 0.

By Rolle’s Theorem, there must be some number z between x and c for which g (z) = 0.

Differentiating our expression for g(t) (with respect to t), we get (beware of all the product

rules!)

g (t) = 0 − f  (t) − f  (t)(−1) − f   (t)(x − t) − 1

2
f   (t)(2)(x − t)(−1)

−1

2
f    (t)(x − t)2 − · · · − 1

n!
f (n)(t)(n)(x − t)n−1(−1)

− 1

n!
f (n+1)(t)(x − t)n − Rn(x)

(n + 1)(x − t)n(−1)

(x − c)n+1

= − 1

n!
f (n+1)(t)(x − t)n + Rn(x)

(n + 1)(x − t)n

(x − c)n+1
,

after most of the terms cancel. So, taking t = z, we have that

0 = g (z) = − 1

n!
f (n+1)(z)(x − z)n + Rn(x)

(n + 1)(x − z)n

(x − c)n+1
.
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Solving this for the term containing Rn(x), we get

Rn(x)
(n + 1)(x − z)n

(x − c)n+1
= 1

n!
f (n+1)(z)(x − z)n

and finally,

Rn(x) = 1

n!
f (n+1)(z)(x − z)n (x − c)n+1

(n + 1)(x − z)n

= f (n+1)(z)

(n + 1)n!
(x − c)n+1

= f (n+1)(z)

(n + 1)!
(x − c)n+1,

as we had claimed.

BEYOND FORMULAS

You should think of this section as giving a general procedure for finding power series

representations, where section 9.6 solves that problem only for special cases. Further,

we can utilize the idea that if a function is the sum of a convergent power series, then

we can approximate the function with a partial sum of the series. Taylor’s Theorem

provides us with an estimate of the error in a given approximation and tells us that (in

general) the approximation is improved by taking more terms.

EXERCISES 9.7

WRITING EXERCISES

1. Describe how the Taylor polynomial with n = 1 compares to

the linear approximation. (See section 3.1.) Give an analo-

gous interpretation of the Taylor polynomial with n = 2. That

is, how do various graphical properties (position, slope, con-

cavity) of the Taylor polynomial compare with those of the

function f (x) at x = c?

2. Briefly discuss how a computer might use Taylor polynomi-

als to compute sin(1.2). In particular, how would the computer

know how many terms to compute? How would the number of

terms necessary to compute sin(1.2) compare to the number

needed to compute sin(100)? Describe a trick that would make

it much easier for the computer to compute sin(100). (Hint:

The sine function is periodic.)

3. Taylor polynomials are built up from a knowledge of

f (c), f  (c), f   (c) and so on. Explain in graphical terms why

information at one point (e.g., position, slope, concavity, etc.)

can be used to construct the graph of the function on the entire

interval of convergence.

4. If f (c) is the position of an object at time t = c, then f  (c)

is the object’s velocity and f   (c) is the object’s acceleration

at time c. Explain in physical terms how knowledge of these

values at one time (plus f    (c), etc.) can be used to predict the

position of the object on the interval of convergence.

5. Our table of common Taylor series lists two different series for

sin x. Explain how the same function could have two different

Taylor series representations. For a given problem (e.g., ap-

proximate sin 2), explain how you would choose which Taylor

series to use.

6. Explain why the Taylor series with center c = 0 of

f (x) = x2 − 1 is simply x2 − 1.

In exercises 1–8, find the Maclaurin series (i.e., Taylor series

about c  0) and its interval of convergence.

1. f (x) = cos x 2. f (x) = sin x

3. f (x) = e2x 4. f (x) = cos 2x

5. f (x) = ln(1 + x) 6. f (x) = e−x

7. f (x) = 1/(1 + x)2 8. f (x) = 1/(1 − x)
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In exercises 9–14, find the Taylor series about the indicated cen-

ter and determine the interval of convergence.

9. f (x) = ex−1, c = 1 10. f (x) = cos x, c = −π/2

11. f (x) = ln x, c = e 12. f (x) = ex , c = 2

13. f (x) = 1/x, c = 1 14. f (x) = 1/x, c = −1

In exercises 15–20, graph f (x) and the Taylor polynomials for

the indicated center c and degree n.

15. f (x) = √
x, c = 1, n = 3; n = 6

16. f (x) = 1

1 + x
, c = 0, n = 4; n = 8

17. f (x) = ex , c = 2, n = 3; n = 6

18. f (x) = cos x, c = π/2, n = 4; n = 8

19. f (x) = sin−1 x, c = 0, n = 3; n = 5

20. f (x) = ln x, c = 1, n = 4; n = 8

In exercises 21–24, prove that theTaylor series converges to f (x)

by showing that Rn(x)→ 0 as n→∞ .

21. sin x =
∞ 

k=0

(−1)k x2k+1

(2k + 1)!

22. cos x =
∞ 

k=0

(−1)k x2k

(2k)!

23. ln x =
∞ 

k=1

(−1)k+1 (x − 1)k

k
, 1 ≤ x ≤ 2

24. e−x =
∞ 

k=0

(−1)k xk

k!

In exercises 25–28, (a) use a Taylor polynomial of degree 4 to

approximate the given number, (b) estimate the error in the ap-

proximation and (c) estimate the number of terms needed in a

Taylor polynomial to guarantee an accuracy of 10−10.

25. ln(1.05) 26. ln(0.9)

27.
√

1.1 28.
√

1.2

In exercises 29–32, useaTaylor series toverify thegiven formula.

29.

∞ 
k=0

2k

k!
= e2 30.

∞ 
k=0

(−1)kπ2k+1

(2k + 1)!
= 0

31.

∞ 
k=0

(−1)k

2k + 1
= π

4
32.

∞ 
k=1

(−1)k+1

k
= ln 2

In exercises 33–38, use a known Taylor series to find the Taylor

series about c  0 for the given function and find its radius of

convergence.

33. f (x) = e−3x 34. f (x) = ex − 1

x
35. f (x) = xe−x2

36. f (x) = sin x2

37. f (x) = x sin 2x 38. f (x) = cos x3

39. You may have wondered why it is necessary to show that

lim
n→∞

Rn(x) = 0 to conclude that a Taylor series converges

to f (x). Consider f (x) =
 

e−1/x2
, if x  = 0

0, if x = 0
. Show that

f  (0) = f   (0) = 0. (Hint: Use the fact that lim
h→0

e−1/h2

hn
= 0

for any positive integer n.) It turns out that f (n)(0) = 0 for

all n. Thus, the Taylor series of f (x) about c = 0 equals 0, a

convergent “series” that does not converge to f (x).

40. In many applications, the error function

erf(x) = 2√
π

 x

0

e−u2

du is important. Compute and graph

the fourth-order Taylor polynomial for erf(x) about c = 0.

41. Find the Taylor series of f (x) = |x | with center c = 1. Argue

that the radius of convergence is ∞. However, show that the

Taylor series of f (x) does not converge to f (x) for all x.

42. Find the Maclaurin series of f (x) =
√

a2 + x2 −
√

a2 − x2

for some nonzero constant a.

43. Prove that if f and g are functions such that f   (x)

and g  (x) exist for all x and lim
x→a

f (x) − g(x)

(x − a)2
= 0, then

f (a) = g(a), f  (a) = g (a) and f   (a) = g  (a). What does

this imply about the Taylor series for f (x) and g(x)?

44. Generalize exercise 43 by proving that if f and g are functions

such that for some positive integer n, f (n)(x) and g(n)(x) exist

for all x and lim
x→a

f (x) − g(x)

(x − a)n
= 0, then f (k)(a) = g(k)(a) for

0 ≤ k ≤ n.

45. We have seen that sin 1 = 1 − 1
3!

+ 1
5!

+ · · · . Determine how

many terms are needed to approximate sin 1 to within 10−5.

Show that sin 1 =  1

0
cos xdx . Determine how many points

are needed for Simpson’s Rule to approximate this integral

to within 10−5. Compare the efficiency of Maclaurin series

and Simpson’s Rule for this problem.

46. As in exercise 45, compare the efficiency of Maclaurin series

and Simpson’s Rule in estimating e to within 10−5.

47. Find the first five terms in the Taylor series about c = 0 for

f (x) = ex sin x and compare to the product of the Taylor poly-

nomials about c = 0 of ex and sin x .

48. Find the first five terms in the Taylor series about c = 0 for

f (x) = tan x and compare to the quotient of the Taylor poly-

nomials about c = 0 of sin x and cos x .

49. Find the first four nonzero terms in the Maclaurin series of

f (x) =
 

sin x

x
, x  = 0

1, x = 0
and compare to the Maclaurin series

for sin x .

50. Find the Taylor series of f (x) = x ln x about c = 1. Compare

to the Taylor series for ln x about c = 1.

51. Suppose that a plane is at location f (0) = 10 miles with veloc-

ity f  (0) = 10 miles/min, acceleration f   (0) = 2 miles/min2
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and f    (0) = −1 miles/min3. Predict the location of the plane

at time t = 2 min.

52. Suppose that an astronaut is at (0, 0) and the moon is rep-

resented by a circle of radius 1 centered at (10, 5). The

astronaut’s capsule follows a path y = f (x) with current posi-

tion f (0) = 0, slope f  (0) = 1/5, concavity f   (0) = −1/10,

f    (0) = 1/25, f (4)(0) = 1/25 and f (5)(0) = −1/50. Graph a

Taylor polynomial approximation of f (x). Based on your cur-

rent information, do you advise the astronaut to change paths?

How confident are you in the accuracy of your approximation?

53. Find the Taylor series for ex about a general center c.

54. Find the Taylor series for
√

x about a general center c = a2.

Exercises 55–58 involve the binomial expansion.

55. Show that the Maclaurin series for (1 + x)r is

1 +
∞ 

k=1

r (r − 1) · · · (r − k + 1)

k!
xk, for any constant r.

56. Simplify the series in exercise 55 for r = 2; r = 3; r is a pos-

itive integer.

57. Use the result of exercise 55 to write out the Maclaurin series

for f (x) = √
1 + x .

58. Use the result of exercise 55 to write out the Maclaurin series

for f (x) = (1 + x)3/2.

59. Find the Maclaurin series of f (x) = cosh x and f (x) = sinh x .

Compare to the Maclaurin series of cos x and sin x .

60. Use the Maclaurin series for tan x and the result of exercise 59

to conjecture the Maclaurin series for tanh x .

EXPLORATORY EXERCISES

1. Almost all of our series results apply to series of complex num-

bers. Defining i = √−1, show that i2 = −1, i3 = −i, i4 = 1

and so on. Replacing x with ix in the Maclaurin series for

ex , separate terms containing i from those that don’t contain i

(after the simplifications indicated above) and derive Euler’s

formula: eix = cos x + i sin x .

2. Using the technique of exercise 1, show that cos(i x) = cosh x

and sin(i x) = i sinh x . That is, the trig functions and their hy-

perbolic counterparts are closely related as functions of com-

plex variables.

3. The method used in examples 7.3, 7.5, 7.6 and 7.7 does not

require us to actually find Rn(x), but to approximate it with a

worst-case bound. Often this approximation is fairly close to

Rn(x), but this is not always true. As an extreme example of

this, show that the bound on Rn(x) for f (x) = ln x about c = 1

(see exercise 23) increases without bound for 0 < x < 1
2
. Ex-

plain why this does not necessarily mean that the actual error

increases without bound. In fact, Rn(x) → 0 for 0 < x < 1
2

but

we must show this using some other method. Use integration of

an appropriate power series to show that
∞ 

k=1

(−1)k+1
(x − 1)k

k

converges to ln x for 0 < x < 1
2
.

4. Verify numerically that if a1 is close to π , the sequence

an+1 = an + sin an converges to π . (In other words, if an is

an approximation of π , then an + sin an is a better approxima-

tion.) To prove this, find the Taylor series for sin x about c = π .

Use this to show that if π < an < 2π , then π < an+1 < an .

Similarly, show that if 0 < an < π , then an < an+1 < π .

9.8 APPLICATIONS OF TAYLOR SERIES

In section 9.7, we developed the concept of a Taylor series expansion and gave many

illustrations of how to compute these. In this section, we expand on our earlier presentation,

by giving a few examples of how Taylor series are used to approximate the values of

transcendental functions, evaluate limits and integrals and define important new functions.

These represent but a small sampling of the important applications of Taylor series.

First, consider how calculators and computers might calculate values of transcendental

functions, such as sin(1.234567). We illustrate this in example 8.1.

EXAMPLE 8.1 Using Taylor Polynomials to Approximate
a Sine Value

Use a Taylor series to approximate sin(1.234567) accurate to within 10−11.
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Solution In section 9.7, we left it as an exercise to show that the Taylor series

expansion for f (x) = sin x about x = 0 is

sin x =
∞ 

k=0

(−1)k

(2k + 1)!
x2k+1 = x − 1

3!
x3 + 1

5!
x5 − 1

7!
x7 + · · · ,

where the interval of convergence is (−∞,∞). Notice that if we take x = 1.234567,

the series representation of sin 1.234567 is

sin 1.234567 =
∞ 

k=0

(−1)k

(2k + 1)!
(1.234567)2k+1,

which is an alternating series. We can use a partial sum of this series to approximate the

desired value, but how many terms will we need for the desired accuracy? Recall that

for alternating series, the error in a partial sum is bounded by the absolute value of the

first neglected term. (Note that you could also use the remainder term from Taylor’s

Theorem to bound the error.) To ensure that the error is less than 10−11, we must find an

integer k such that
1.2345672k+1

(2k + 1)!
< 10−11. By trial and error, we find that

1.23456717

17!
≈ 1.010836 × 10−13 < 10−11,

so that k = 8 will do. This says that the first neglected term corresponds to k = 8 and

so, we compute the partial sum

sin 1.234567 ≈
7 

k=0

(−1)k

(2k + 1)!
(1.234567)2k+1

= 1.234567− 1.2345673

3!
+ 1.2345675

5!
− 1.2345677

7!
+· · ·− 1.23456715

15!

≈ 0.94400543137.

Check your calculator or computer to verify that this matches your calculator’s estimate.

�

In example 8.1, while we produced an approximation with the desired accuracy, we

did not do this in the most efficient fashion, as we simply grabbed the most handy Taylor

series expansion of f (x) = sin x . You should try to resist the impulse to automatically use

the Taylor series expansion about x = 0 (i.e., the Maclaurin series), rather than making a

more efficient choice. We illustrate this in example 8.2.

EXAMPLE 8.2 Choosing a More Appropriate Taylor Series Expansion

Repeat example 8.1, but this time, make a more appropriate choice of the Taylor series.

Solution Recall that Taylor series converge much faster close to the point about

which you expand, than they do far away. Given this and the fact that we know the exact

value of sin x at only a few points, you should quickly recognize that a series expanded

about x = π
2

≈ 1.57 is a better choice for computing sin 1.234567 than one expanded

about x = 0. (Another reasonable choice is the Taylor series expansion about x = π
3

.)

In example 7.5, recall that we had found that

sin x =
∞ 

k=0

(−1)k

(2k)!

 
x − π

2

 2k

= 1 − 1

2

 
x − π

2

 2

+ 1

4!

 
x − π

2

 4

− · · · ,
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where the interval of convergence is (−∞,∞). Taking x = 1.234567 gives us

sin 1.234567 =
∞ 

k=0

(−1)k

(2k)!

 
1.234567 − π

2

 2k

= 1 − 1

2

 
1.234567 − π

2

 2

+ 1

4!

 
1.234567 − π

2

 4

− · · · ,

which is again an alternating series. Using the remainder term from Taylor’s Theorem

to bound the error, we have that

|Rn(1.234567)| =
    f (2n+2)(z)

(2n + 2)!

    
    1.234567 − π

2

    2n+2

≤
  1.234567 − π

2

  2n+2

(2n + 2)!
.

(Note that we get the same error bound if we use the error bound for an alternating

series.) By trial and error, you can find that  1.234567 − π
2

  2n+2

(2n + 2)!
< 10−11

for n = 4, so that an approximation with the required degree of accuracy is

sin 1.234567 ≈
4 

k=0

(−1)k

(2k)!

 
1.234567 − π

2

 2k

= 1 − 1

2

 
1.234567 − π

2

 2

+ 1

4!

 
1.234567 − π

2

 4

− 1

6!

 
1.234567 − π

2

 6

+ 1

8!

 
1.234567 − π

2

 8

≈ 0.94400543137.

Compare this result to example 8.1, where we needed many more terms of the Taylor

series to obtain the same degree of accuracy. �

We can also use Taylor series to quickly conjecture the value of difficult limits. Be

careful, though: the theory of when these conjectures are guaranteed to be correct is be-

yond the level of this text. However, we can certainly obtain helpful hints about certain

limits.

EXAMPLE 8.3 Using Taylor Polynomials to Conjecture
the Value of a Limit

Use Taylor series to conjecture lim
x→0

sin x3 − x3

x9
.

Solution Again recall that the Maclaurin series for sin x is

sin x =
∞ 

k=0

(−1)k

(2k + 1)!
x2k+1 = x − 1

3!
x3 + 1

5!
x5 − 1

7!
x7 + · · · ,

where the interval of convergence is (−∞,∞). Substituting x3 for x gives us

sin x3 =
∞ 

k=0

(−1)k

(2k + 1)!
(x3)2k+1 = x3 − x9

3!
+ x15

5!
− · · · .
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This gives us

sin x3 − x3

x9
=

 
x3 − x9

3!
+ x15

5!
− · · ·

 
− x3

x9
= − 1

3!
+ x6

5!
+ · · ·

and so, we conjecture that

lim
x→0

sin x3 − x3

x9
= − 1

3!
= −1

6
.

You can verify that this limit is correct using l’Hôpital’s Rule (three times, simplifying

each time). �

Since Taylor polynomials are used to approximate functions on a given interval and

since polynomials are easy to integrate, we can use a Taylor polynomial to obtain an

approximation of a definite integral. It turns out that such an approximation is often better

than that obtained from the numerical methods developed in section 4.7. We illustrate this

in example 8.4.

EXAMPLE 8.4 Using Taylor Series to Approximate a Definite Integral

Use a Taylor polynomial with n = 8 to approximate
 1

−1
cos(x2) dx .

Solution Since we do not know an antiderivative of cos(x2), we must rely on a

numerical approximation of the integral. Since we are integrating on the interval

(−1, 1), a Maclaurin series expansion (i.e., a Taylor series expansion about x = 0) is a

good choice. We have

cos x =
∞ 

k=0

(−1)k

(2k)!
x2k = 1 − 1

2
x2 + 1

4!
x4 − 1

6!
x6 + · · · ,

which converges on all of (−∞,∞). Replacing x by x2 gives us

cos(x2) =
∞ 

k=0

(−1)k

(2k)!
x4k = 1 − 1

2
x4 + 1

4!
x8 − 1

6!
x12 + · · · ,

so that cos(x2) ≈ 1 − 1

2
x4 + 1

4!
x8.

This leads us to the approximation 1

−1

cos(x2) dx ≈
 1

−1

 
1 − 1

2
x4 + 1

4!
x8

 
dx

=
 

x − x5

10
+ x9

216

     x=1

x=−1

= 977

540
≈ 1.809259.

Our CAS gives us
 1

−1
cos(x2) dx ≈ 1.809048, so our approximation appears to be very

accurate. �

You might reasonably argue that we don’t need Taylor series to obtain approximations

like those in example 8.4, as you could always use other, simpler numerical methods like

Simpson’s Rule to do the job. That’s often true, but just try to use Simpson’s Rule on the

integral in example 8.5.
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EXAMPLE 8.5 Using Taylor Series to Approximate the
Value of an Integral

Use a Taylor polynomial with n = 5 to approximate

 1

−1

sin x

x
dx .

Solution Note that you do not know an antiderivative of
sin x

x
. Further, while the

integrand is discontinuous at x = 0, this does not need to be treated as an improper

integral, since lim
x→0

sin x

x
= 1. (This says that the integrand has a removable

discontinuity at x = 0.) From the first few terms of the Maclaurin series for

f (x) = sin x , we have the Taylor polynomial approximation

sin x ≈ x − x3

3!
+ x5

5!
,

so that sin x

x
≈ 1 − x2

3!
+ x4

5!
.

Consequently,

 1

−1

sin x

x
dx ≈

 1

−1

 
1 − x2

6
+ x4

120

 
dx

=
 

x − x3

18
+ x5

600

     x=1

x=−1

=
 

1 − 1

18
+ 1

600

 
−
 

−1 + 1

18
− 1

600

 

= 1703

900
≈ 1.89222.

Our CAS gives us

 1

−1

sin x

x
dx ≈ 1.89216, so our approximation is quite good. On the

other hand, if you try to apply Simpson’s Rule or Trapezoidal Rule, the algorithm will

not work, as they will attempt to evaluate
sin x

x
at x = 0.

�

While you have now calculated Taylor series expansions of many familiar functions,

many other functions are actually defined by a power series. These include many functions in

the very important class of special functions that frequently arise in physics and engineering

applications. One important family of special functions are the Bessel functions, which

arise in the study of fluid mechanics, acoustics, wave propagation and other areas of applied

mathematics. The Bessel function of order p is defined by the power series

Jp(x) =
∞ 

k=0

(−1)k x2k+p

22k+pk!(k + p)!
, (8.1)

for nonnegative integers p. Bessel functions arise in the solution of the differential equa-

tion x2 y  + xy + (x2 − p2)y = 0. In examples 8.6 and 8.7, we explore several interesting

properties of Bessel functions.

EXAMPLE 8.6 The Radius of Convergence of a Bessel Function

Find the radius of convergence for the series defining the Bessel function J0(x).
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Solution From equation (8.1) with p = 0, we have J0(x) =
∞ 

k=0

(−1)k x2k

22k(k!)2
. The Ratio

Test gives us

lim
k→∞

    ak+1

ak

    = lim
k→∞

    x2k+2

22k+2[(k + 1)!]2

22k(k!)2

x2k

    = lim
k→∞

    x2

4(k + 1)2

    = 0 < 1,

for all x. The series then converges absolutely for all x and so, the radius of convergence

is ∞. �

In example 8.7, we explore an interesting relationship between the zeros of two Bessel

functions.

EXAMPLE 8.7 The Zeros of Bessel Functions

Verify graphically that on the interval [0, 10], the zeros of J0(x) and J1(x) alternate.

Solution Unless you have a CAS with these Bessel functions available as built-in

functions, you will need to graph partial sums of the defining series:

J0(x) ≈
n 

k=0

(−1)k x2k

22k(k!)2
and J1(x) ≈

n 
k=0

(−1)k x2k+1

22k+1k!(k + 1)!
.

Before graphing these, you must first determine how large n should be in order to

produce a reasonable graph. Notice that for each fixed x > 0, both of the defining series

are alternating series. Consequently, the error in using a partial sum to approximate the

function is bounded by the first neglected term. That is,     J0(x) −
n 

k=0

(−1)k x2k

22k(k!)2

     ≤ x2n+2

22n+2[(n + 1)!]2

and

     J1(x) −
n 

k=0

(−1)k x2k+1

22k+1k!(k + 1)!

     ≤ x2n+3

22n+3(n + 1)!(n + 2)!
,

with the maximum error in each occurring at x = 10. Notice that for n = 12, we have

that      J0(x) −
12 

k=0

(−1)k x2k

22k(k!)2

     ≤ x2(12)+2

22(12)+2[(12 + 1)!]2
≤ 1026

226(13!)2
< 0.04

and     J1(x) −
12 

k=0

(−1)k x2k+1

22k+1k!(k + 1)!

     ≤ x2(12)+3

22(12)+3(12 + 1)!(12 + 2)!
≤ 1027

227(13!)(14!)
< 0.04.

So, in either case, using a partial sum with n = 12 results in an approximation that is

within 0.04 of the correct value for each x in the interval [0, 10]. This is plenty of

accuracy for our present purposes. Figure 9.43 shows graphs of partial sums with

n = 12 for J0(x) and J1(x).

y

x
2 4 6 8 10

 0.5

0.5

1
y   J0(x)

y   J1(x)

FIGURE 9.43
y = J0(x) and y = J1(x)

Notice that J1(0) = 0 and in the figure, you can clearly see that J0(x) = 0 at about

x = 2.4, J1(x) = 0 at about x = 3.9, J0(x) = 0 at about x = 5.6, J1(x) = 0 at about

x = 7.0 and J0(x) = 0 at about x = 8.8. From this, it is now apparent that the zeros of

J0(x) and J1(x) do indeed alternate on the interval [0, 10]. �

It turns out that the result of example 8.7 generalizes to any interval of positive numbers

and any two Bessel functions of consecutive order. That is, between consecutive zeros of
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Jp(x) is a zero of Jp+1(x) and between consecutive zeros of Jp+1(x) is a zero of Jp(x). We

explore this further in the exercises.

The Binomial Series

You are already familiar with the Binomial Theorem, which states that for any positive

integer n,

(a + b)n = an + nan−1b + n (n − 1)

2
an−2b2 + · · · + nabn−1 + bn.

We often write this as (a + b)n =
n 

k=0

 
n

k

 
an−kbk,

where we use the shorthand notation

 
n

k

 
to denote the binomial coefficient, defined by 

n

0

 
= 1,

 
n

1

 
= n,

 
n

2

 
= n(n − 1)

2
and 

n

k

 
= n(n − 1) · · · (n − k + 1)

k!
, for k ≥ 3.

For the case where a = 1 and b = x , the Binomial Theorem simplifies to

(1 + x)n =
n 

k=0

 
n

k

 
xk .

Newton discovered that this result could be extended to include values of n other than

positive integers. What resulted is a special type of power series known as the binomial

series, which has important applications in statistics and physics. We begin by deriving the

Maclaurin series for f (x) = (1 + x)n , for some constant n  = 0. Computing derivatives and

evaluating these at x = 0, we have

f (x) = (1 + x)n f (0) = 1

f  (x) = n(1 + x)n−1 f  (0) = n

f   (x) = n(n − 1)(1 + x)n−2 f   (0) = n(n − 1)
...

...

f (k)(x) = n(n − 1) · · · (n − k + 1) f (k)(0) = n(n − 1) · · · (n − k + 1).

We call the resulting Maclaurin series the binomial series, given by

∞ 
k=0

f (k)(0)

k!
xk = 1 + nx + n(n − 1)

x2

2!
+ · · · + n(n − 1) · · · (n − k + 1)

xk

k!
+ · · ·

=
∞ 

k=0

 
n

k

 
xk .

From the Ratio Test, we have

lim
k→∞

    ak+1

ak

    = lim
k→∞

    n(n − 1) · · · (n − k + 1)(n − k)xk+1

(k + 1)!

k!

n(n − 1) · · · (n − k + 1)xk

    
= |x | lim

k→∞
|n − k|
k + 1

= |x |,

so that the binomial series converges absolutely for |x | < 1 and diverges for |x | > 1. By

showing that the remainder term Rk(x) tends to zero as k → ∞, we can confirm that the

binomial series converges to (1 + x)n for |x | < 1. We state this formally in Theorem 8.1.
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THEOREM 8.1 (Binomial Series)

For any real number r, (1 + x)r =
∞ 

k=0

 
r

k

 
xk, for −1 < x < 1.

As seen in the exercises, for some values of the exponent r, the binomial series

also converges at one or both of the endpoints x = ±1.

EXAMPLE 8.8 Using the Binomial Series

Using the binomial series, find a Maclaurin series for f (x) = √
1 + x and use it to

approximate
√

17 accurate to within 0.000001.

Solution From the binomial series with r = 1
2
, we have

√
1 + x = (1 + x)1/2 =

∞ 
k=0

 
1/2

k

 
xk = 1 + 1

2
x +

 
1
2

  − 1
2

 
2

x2 +
 

1
2

  − 1
2

  − 3
2

 
3!

x3 + · · ·

= 1 + 1

2
x − 1

8
x2 + 1

16
x3 − 5

128
x4 + · · · ,

for −1 < x < 1. To use this to approximate
√

17, we first rewrite it in a form involving√
1 + x , for −1 < x < 1. Observe that we can do this by writing

√
17 =

 
16 · 17

16
= 4

 
17

16
= 4

 
1 + 1

16
.

Since x = 1
16

is in the interval of convergence, −1 < x < 1, the binomial series gives us

√
17 = 4

 
1 + 1

16
= 4

 
1 + 1

2

 
1

16

 
− 1

8

 
1

16

 2

+ 1

16

 
1

16

 3

− 5

128

 
1

16

 4

+ · · ·
 
.

Since this is an alternating series, the error in using the first n terms to approximate the

sum is bounded by the first neglected term. So, if we use only the first three terms of the

series, the error is bounded by 1
16

 
1

16

 3 ≈ 0.000015 > 0.000001. Similarly, if we use

the first four terms of the series to approximate the sum, the error is bounded by
5

128

 
1
16

 4 ≈ 0.0000006 < 0.000001, as desired. So, we can achieve the desired

accuracy by summing the first four terms of the series:

√
17 ≈ 4

 
1 + 1

2

 
1

16

 
− 1

8

 
1

16

 2

+ 1

16

 
1

16

 3
 

≈ 4.1231079,

where this approximation is accurate to within the desired accuracy. �

EXERCISES 9.8

WRITING EXERCISES

1. In example 8.2, we showed that an expansion about x = π

2
is

more accurate for approximating sin(1.234567) than an expan-

sion about x = 0 with the same number of terms. Explain why

an expansion about x = 1.2 would be even more efficient, but

is not practical.

2. Assuming that you don’t need to rederive the Maclaurin series

for cos x, compare the amount of work done in example 8.4 to

the work needed to compute a Simpson’s Rule approximation

with n = 16.
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3. In equation (8.1), we defined the Bessel functions as series.

This may seem like a convoluted way of defining a func-

tion, but compare the levels of difficulty doing the following

with a Bessel function versus sin x : computing f (0), com-

puting f (1.2), evaluating f (2x), computing f  (x), computing 
f (x) dx and computing

 1

0
f (x) dx .

4. Discuss how you might estimate the error in the approximation

of example 8.4.

In exercises 1–6, use an appropriate Taylor series to approxi-

mate the given value, accurate to within 10−11.

1. sin 1.61 2. sin 6.32 3. cos 0.34

4. cos 3.04 5. e−0.2 6. e0.4

In exercises 7–12, use a known Taylor series to conjecture the

value of the limit.

7. lim
x→0

cos x2 − 1

x4
8. lim

x→0

sin x2 − x2

x6

9. lim
x→1

ln x − (x − 1)

(x − 1)2
10. lim

x→0

tan−1 x − x

x3

11. lim
x→0

ex − 1

x
12. lim

x→0

e−2x − 1

x

In exercises 13–18, use a known Taylor polynomial with n

nonzero terms to estimate the value of the integral.

13.

 1

−1

sin x

x
dx, n = 3 14.

 √
π

−√
π

cos x2 dx, n = 4

15.

 1

−1

e−x2

dx, n = 5 16.

 1

0

tan−1 x dx, n = 5

17.

 2

1

ln x dx, n = 5 18.

 1

0

e
√

x dx, n = 4

19. Find the radius of convergence of J1(x).

20. Find the radius of convergence of J2(x).

21. Find the number of terms needed to approximate J2(x) within

0.04 for x in the interval [0, 10].

22. Show graphically that the zeros of J1(x) and J2(x) alternate on

the interval (0, 10].

23. Einstein’s theory of relativity states that the mass of an object

traveling at velocity v is m(v) = m0/
 

1 − v2/c2, where m0 is

the rest mass of the object and c is the speed of light. Show

that m ≈ m0 +
 m0

2c2

 
v2. Use this approximation to estimate

how large v would need to be to increase the mass by 10%.

24. Find the fourth-degree Taylor polynomial expanded about

v = 0, for m(v) in exercise 23.

25. The weight (force due to gravity) of an object of mass

m and altitude x miles above the surface of the earth is

w(x) = mgR2

(R + x)2
, where R is the radius of the earth and g is the

acceleration due to gravity. Show that w(x) ≈ mg(1 − 2x/R).

Estimate how large x would need to be to reduce the weight

by 10%.

26. Find the second-degree Taylor polynomial for w(x) in exer-

cise 25. Use it to estimate how large x needs to be to reduce

the weight by 10%.

27. Based on your answers to exercises 25 and 26, is weight sig-

nificantly different at a high-altitude location (e.g., 7500 ft)

compared to sea level?

28. The radius of the earth is up to 300 miles larger at the equator

than it is at the poles. Which would have a larger effect on

weight, altitude or latitude?

In exercises 29–32, use the Maclaurin series expansion

tanh x  x −
1

3
x3  2

15
x5 − · · · .

29. The tangential component of the space shuttle’s velocity during

reentry is approximately v(t) = vc tanh

 
g

vc

t + tanh−1 v0

vc

 
,

where v0 is the velocity at time 0 and vc is the terminal veloc-

ity (see Long and Weiss, The American Mathematical Monthly,

February 1999). If tanh−1 v0

vc

= 1

2
, show that v(t) ≈ gt + 1

2
vc.

Is this estimate of v(t) too large or too small?

30. Show that in exercise 29, v(t) → vc as t → ∞. Use the approx-

imation in exercise 29 to estimate the time needed to reach 90%

of the terminal velocity.

31. The downward velocity of a sky diver of mass

m is v(t) =
 

40mg tanh

  
g

40m
t

 
. Show that

v(t) ≈ gt − g2

120m
t3.

32. The velocity of a water wave of length L in water of depth h

satisfies the equation v2 = gL

2π
tanh

2πh

L
. Show that v ≈ √

gh.

In exercises 33–36, use the Binomial Theorem to find the first

five terms of the Maclaurin series.

33. f (x) = 1√
1 − x

34. f (x) = 3
√

1 + 2x

35. f (x) = 6
3

√
1 + 3x

36. f (x) = (1 + x2)4/5

In exercises 37 and 38, use the Binomial Theorem to approxi-

mate the value to within 10−6.

37. (a)
√

26 (b)
√

24 38. (a)
2

3
√

9
(b)

4
√

17

39. Apply the Binomial Theorem to (x + 4)3 and (1 − 2x)4. Deter-

mine the number of nonzero terms in the binomial expansion

for any positive integer n.

40. If n and k are positive integers with n > k, show that 
n

k

 
= n!

k!(n − k)!
.
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41. Use exercise 33 to find the Maclaurin series for
1√

1 − x2
and

use it to find the Maclaurin series for sin−1 x .

42. Use the Binomial Theorem to find the Maclaurin series for

(1 + 2x)4/3 and compare this series to that of exercise 34.

43. Use a Taylor polynomial to estimate

 π

0

sin x

x
dx accurate to

within 0.00001. (This value will be used in the next section.)

44. Use a Taylor polynomial to conjecture the value of

lim
x→0

ex + e−x − 2

x2
and then confirm your conjecture using

l’Hôpital’s Rule.

45. The energy density of electromagnetic radiation at wave-

length λ from a black body at temperature T (degrees

Kelvin) is given by Planck’s law of black body radiation:

f (λ) = 8πhc

λ5(ehc/λkT − 1)
, where h is Planck’s constant, c is

the speed of light and k is Boltzmann’s constant. To find the

wavelength of peak emission, maximize f (λ) by minimizing

g(λ) = λ5(ehc/λkT − 1). Use a Taylor polynomial for ex with

n = 7 to expand the expression in parentheses and find the crit-

ical number of the resulting function. (Hint: Use hc

k
≈ 0.014.)

Compare this toWien’s law: λmax = 0.002898

T
. Wien’s law is

accurate for small λ. Discuss the flaw in our use of Maclaurin

series.

46. Use a Taylor polynomial for ex to expand the denominator in

Planck’s law of exercise 45 and show that f (λ) ≈ 8πkT

λ4
. State

whether this approximation is better for small or large wave-

lengths λ. This is known in physics as theRayleigh-Jeans law.

47. The power of a reflecting telescope is proportional to

the surface area S of the parabolic reflector, where

S = 8π

3
c2

  
d2

16c2
+ 1

 3/2

− 1

 
. Here, d is the diameter

of the parabolic reflector, which has depth k with c = d2

4k
.

Expand the term

 
d2

16c2
+ 1

 3/2

and show that if
d2

16c2
is small,

then S ≈ πd2

4
.

48. A disk of radius a has a charge of constant density σ . Point P

lies at a distance r directly above the disk. The electrical po-

tential at point P is given by V = 2πσ (
√

r 2 + a2 − r ). Show

that for large r, V ≈ πa2σ

r
.

EXPLORATORY EXERCISES

1. The Bessel functions andLegendre polynomials are examples

of the so-called special functions. For nonnegative integers n,

the Legendre polynomials are defined by

Pn(x) = 2−n

[n/2] 
k=0

(−1)k(2n − 2k)!

(n − k)!k!(n − 2k)!
xn−2k .

Here, [n/2] is the greatest integer less than or equal to

n/2 (for example, [1/2] = 0 and [2/2] = 1). Show that

P0(x) = 1, P1(x) = x and P2(x) = 3
2
x2 − 1

2
. Show that for

these three functions, 1

−1

Pm(x)Pn(x) dx = 0, for m  = n.

This fact, which is true for all Legendre polynomials, is called

the orthogonality condition. Orthogonal functions are com-

monly used to provide simple representations of complicated

functions.

2. Use the Ratio Test to show that the radius of convergence of
∞ 

k=0

 
n

k

 
xk is 1. (a) If n ≤ −1, show that the interval of con-

vergence is (−1, 1). (b) If n > 0 and n is not an integer, show

that the interval of convergence is [−1, 1]. (c) If −1 < n < 0,

show that the interval of convergence is (−1, 1].

3. Suppose that p is an approximation ofπ with |p − π | < 0.001.

Explain why p has at least two digits of accuracy and has

a decimal expansion that starts p = 3.14 . . . . Use Taylor’s

Theorem to show that p + sin p has six digits of accuracy.

In general, if p has n digits of accuracy, show that p + sin p

has 3n digits of accuracy. Compare this to the accuracy of

p − tan p.

9.9 FOURIER SERIES

Many phenomena we encounter in the world around us are periodic in nature. That is, they

repeat themselves over and over again. For instance, light, sound, radio waves and x-rays are

all periodic. For such phenomena, Taylor polynomial approximations have shortcomings.

As x gets farther away from c (the point about which you expanded), the difference between

the function and a given Taylor polynomial grows. Such behavior is illustrated in Figure 9.44

for the case of f (x) = sin x expanded about x = π
2

.
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Because Taylor polynomials provide an accurate approximation only in the vicinity

of c, we say that they are accurate locally. In general, no matter how large you make n, the

approximation is still only valid locally. In many situations, notably in communications,

we need to find an approximation to a given periodic function that is valid globally (i.e.,

for all x). For this reason, we construct a different type of series expansion for periodic

functions, one where each of the terms in the expansion is periodic.

 1

1

q q wp

y   sin x

y   P4(x)

y

x

FIGURE 9.44
y = sin x and y = P4(x)

Recall that we say that a function f isperiodicofperiod T > 0 if f (x + T ) = f (x), for

all x in the domain of f. Can you think of any periodic functions? Surely, sin x and cos x come

to mind. These are both periodic of period 2π . Further, sin(2x), cos(2x), sin(3x), cos(3x)

and so on are all periodic of period 2π . In fact,

sin(kx) and cos(kx), for k = 1, 2, 3, . . .

are each periodic of period 2π , as follows. For any integer k, let f (x) = sin(kx). We then

have

f (x + 2π ) = sin[k(x + 2π )] = sin(kx + 2kπ ) = sin(kx) = f (x).

Likewise, you can show that cos(kx) has period 2π .

So, if you wanted to expand a periodic function of period 2π in a series, you might

consider a series each of whose terms has period 2π , for instance,

FOURIER SERIES

a0

2
+

∞ 
k=1

[ak cos(kx) + bk sin(kx)],

called a Fourier series. Notice that if the series converges, it will converge to a periodic

function whose period is 2π , since every term in the series has period 2π . The coefficients

of the series, a0, a1, a2, . . . and b1, b2, . . . , are called the Fourier coefficients. You may

have noticed the unusual way in which we wrote the leading term of the series
 a0

2

 
. We

did this in order to simplify the formulas for computing these coefficients, as we’ll see later.

There are a number of important questions we must address.

r What functions can be expanded in a Fourier series?
r How do we compute the Fourier coefficients?
r Does the Fourier series converge? If so, to what function does the series converge?

We begin our investigation much as we did with power series. Suppose that a given

Fourier series converges on the interval [−π, π ]. It then represents a function f on that

interval,

f (x) = a0

2
+

∞ 
k=1

[ak cos(kx) + bk sin(kx)], (9.1)

where f must be periodic outside of [−π, π ]. Although some of the details of the proof

are beyond the level of this course, we want to give you some idea of how the Fourier

coefficients are computed. If we integrate both sides of equation (9.1) with respect to x on

the interval [−π, π ], we get π

−π

f (x) dx =
 π

−π

a0

2
dx +

 π

−π

∞ 
k=1

[ak cos(kx) + bk sin(kx)] dx

=
 π

−π

a0

2
dx +

∞ 
k=1

 
ak

 π

−π

cos(kx) dx + bk

 π

−π

sin(kx) dx

 
, (9.2)
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assuming we can interchange the order of integration and summation. In general, the order

may not be interchanged (this is beyond the level of this course), but for many Fourier

series, doing so is permissible. Observe that for every k = 1, 2, 3, . . . , we have π

−π

cos(kx) dx = 1

k
sin(kx)

    π
−π

= 1

k
[sin(kπ ) − sin(−kπ )] = 0

and

 π

−π

sin(kx) dx = −1

k
cos(kx)

    π
−π

= −1

k
[cos(kπ ) − cos(−kπ )] = 0.

This reduces equation (9.2) to simply π

−π

f (x) dx =
 π

−π

a0

2
dx = a0 π.

Solving this for a0, we have

a0 = 1

π

 π

−π

f (x) dx . (9.3)

HISTORICAL NOTES

Jean Baptiste Joseph Fourier

(1768–1830) French

mathematician who invented

Fourier series. Fourier was

heavily involved in French politics,

becoming a member of the

Revolutionary Committee, serving

as scientific advisor to Napoleon

and establishing educational

facilities in Egypt. Fourier held

numerous offices, including

secretary of the Cairo Institute

and Prefect of Grenoble. Fourier

introduced his trigonometric

series as an essential technique

for developing his highly original

and revolutionary theory of heat.

Similarly, if we multiply both sides of equation (9.1) by cos(nx) (where n is an integer,

n ≥ 1) and then integrate with respect to x on the interval [−π, π ], we get π

−π

f (x) cos(nx) dx

=
 π

−π

a0

2
cos(nx) dx

+
 π

−π

∞ 
k=1

[ak cos(kx) cos(nx) + bk sin(kx) cos(nx)] dx

= a0

2

 π

−π

cos(nx) dx

+
∞ 

k=1

 
ak

 π

−π

cos(kx) cos(nx) dx + bk

 π

−π

sin(kx) cos(nx) dx

 
, (9.4)

again assuming we can interchange the order of integration and summation. Next, recall that π

−π

cos(nx) dx = 0, for all n = 1, 2, . . . .

It’s a straightforward, yet lengthy exercise to show that π

−π

sin(kx) cos(nx) dx = 0, for all n = 1, 2, . . . and for all k = 1, 2, . . .

and that

 π

−π

cos(kx) cos(nx) dx =
 

0, if n  = k

π, if n = k
.

Notice that this says that every term in the series in equation (9.4) except one (the term

corresponding to k = n) is zero and equation (9.4) reduces to simply π

−π

f (x) cos(nx) dx = anπ.

This gives us (after substituting k for n)

Fourier coefficients ak = 1

π

 π

−π

f (x) cos(kx) dx, for k = 1, 2, 3, . . . . (9.5)
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Similarly, multiplying both sides of equation (9.1) by sin(nx) and integrating from −π to

π gives us

bk = 1

π

 π

−π

f (x) sin(kx) dx, for k = 1, 2, 3, . . . . (9.6)

Equations (9.3), (9.5) and (9.6) are called the Euler-Fourier formulas. Notice that

equation (9.3) is the same as (9.5) with k = 0. (This was the reason we chose the lead-

ing term of the series to be
a0

2
, instead of simply a0.)

Let’s summarize what we’ve done so far. We have observed that if a Fourier series

converges on some interval, then it converges to a function f where the Fourier coefficients

satisfy the Euler-Fourier formulas (9.3), (9.5) and (9.6).

Just as we did with power series, given any integrable function f, we can compute the

coefficients in (9.3), (9.5) and (9.6) and write down a Fourier series. But, will the series

converge and if it does, to what function will it converge? We’ll answer these questions

shortly. For the moment, let’s simply compute the terms of a Fourier series and see what

we can observe.

TODAY IN
MATHEMATICS

Ingrid Daubechies (1954– )

A Belgian physicist and

mathematician who pioneered

the use of wavelets, which extend

the ideas of Fourier series. In a

talk on the relationship between

algorithms and analysis, she

explained that her wavelet

research was of a type

“stimulated by the requirements

of engineering design rather than

natural science problems, but

equally interesting and possibly

far-reaching.” To meet the needs

of an efficient image compression

algorithm, she created the

first continuous wavelet

corresponding to a fast algorithm.

The Daubechies wavelets are

now the most commonly used

wavelets in applications and were

instrumental in the explosion of

wavelet applications in areas as

diverse as FBI fingerprinting,

magnetic resonance imaging

(MRI) and digital storage formats

such as JPEG-2000.

EXAMPLE 9.1 Finding a Fourier Series Expansion

Find the Fourier series corresponding to the square-wave function

f (x) =
 

0, if − π < x ≤ 0

1, if 0 < x ≤ π
,

where f is assumed to be periodic outside of the interval [−π, π ]. (See the graph in

Figure 9.45.)

y

x

1

0.5

2p 2p  p p

FIGURE 9.45
Square-wave function

Solution Even though a0 satisfies the same formula as ak for k ≥ 1, we must always

compute a0 separately from the rest of the ak’s. From equation (9.3), we get

a0 = 1

π

 π

−π

f (x) dx = 1

π

 0

−π

0 dx + 1

π

 π

0

1 dx = 0 + π

π
= 1.

From (9.5), we also have that for k ≥ 1,

ak = 1

π

 π

−π

f (x) cos(kx) dx = 1

π

 0

−π

(0) cos(kx) dx + 1

π

 π

0

(1) cos(kx) dx

= 1

πk
sin(kx)

    π
0

= 1

πk
[sin(kπ ) − sin(0)] = 0.
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Finally, from (9.6), we have

bk = 1

π

 π

−π

f (x) sin(kx) dx = 1

π

 0

−π

(0) sin(kx) dx + 1

π

 π

0

(1) sin(kx) dx

= − 1

πk
cos(kx)

    π
0

= − 1

πk
[cos(kπ ) − cos(0)] = − 1

πk
[(−1)k − 1]

=

⎧⎨
⎩

0, if k is even

2

πk
, if k is odd

.

Notice that we can write the even- and odd-indexed coefficients separately as b2k = 0,

for k = 1, 2, . . . and b2k−1 = 2

(2k − 1)π
, for k = 1, 2, . . . . We then have the Fourier

series

a0

2
+

∞ 
k=1

[ak cos(kx) + bk sin(kx)] = 1

2
+

∞ 
k=1

bk sin(kx) = 1

2
+

∞ 
k=1

b2k−1 sin[(2k − 1)x]

= 1

2
+

∞ 
k=1

2

(2k − 1)π
sin[(2k − 1)x]

= 1

2
+ 2

π
sin x + 2

3π
sin(3x) + 2

5π
sin(5x) + · · · .

None of our existing convergence tests are appropriate for this series. Instead, we

consider the graphs of the first few partial sums of the series defined by

Fn(x) = 1

2
+

n 
k=1

2

(2k − 1)π
sin[(2k − 1)x].

In Figures 9.46a–d, we graph a number of these partial sums.

y

x

1

0.5

p p 2p 2p

y

x

1

0.5

p p 2p 2p

FIGURE 9.46a
y = F4(x) and y = f (x)

FIGURE 9.46b
y = F8(x) and y = f (x)

y

x

1

0.5

p p 2p 2p

y

x

1

0.5

p p 2p 2p

FIGURE 9.46c
y = F20(x) and y = f (x)

FIGURE 9.46d
y = F50(x) and y = f (x)
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Notice that as n gets larger and larger, the graph of Fn(x) appears to be approaching the

graph of the square-wave function f (x) shown in red and seen in Figure 9.45. Based on

this, we might conjecture that the Fourier series converges to the function f (x). As it

turns out, this is not quite correct. We’ll soon see that the series converges to f (x)

everywhere, except at points of discontinuity. �

Next, we give an example of constructing a Fourier series for another common

waveform.

EXAMPLE 9.2 A Fourier Series Expansion
for the Triangular-Wave Function

Find the Fourier series expansion of f (x) = |x |, for −π ≤ x ≤ π , where f is assumed

to be periodic, of period 2π , outside of the interval [−π, π ].

Solution In this case, f is the triangular-wave function graphed in Figure 9.47. From

the Euler-Fourier formulas, we have

a0 = 1

π

 π

−π

|x |dx = 1

π

 0

−π

−x dx + 1

π

 π

0

x dx

= − 1

π

x2

2

    0
−π

+ 1

π

x2

2

    π
0

= π

2
+ π

2
= π.

y

3

2

p 2p p 2p 3p 4p 3p 4p
x

FIGURE 9.47
Triangular-wave function

Similarly, for each k ≥ 1, we get

ak = 1

π

 π

−π

|x | cos(kx) dx = 1

π

 0

−π

(−x) cos(kx) dx + 1

π

 π

0

x cos(kx) dx .

Both integrals require the same integration by parts. We let

u = x dv = cos(kx) dx

du = dx v = 1

k
sin(kx)
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so that

ak = − 1

π

 0

−π

x cos(kx) dx + 1

π

 π

0

x cos(kx) dx

= − 1

π

 
x

k
sin(kx)

 0

−π

+ 1

πk

 0

−π

sin(kx) dx + 1

π

 
x

k
sin(kx)

 π
0

− 1

πk

 π

0

sin(kx) dx

= − 1

π

 
0 + π

k
sin(−πk)

 
− 1

πk2
cos(kx)

    0
−π

+ 1

π

 
π

k
sin(πk) − 0

 
+ 1

πk2
cos(kx)

    π
0

= 0 − 1

πk2
[cos 0 − cos(−kπ )] + 0 + 1

πk2
[cos(kπ ) − cos 0]

Since sin kπ = 0

and sin(−kπ ) = 0.

= 2

πk2
[cos(kπ ) − 1] =

⎧⎨
⎩

0, if k is even

−4

πk2
, if k is odd

.
Since cos(kπ ) = 1 when k is even, and

cos(kπ ) = −1 when k is odd.

Writing the even- and odd-indexed coefficients separately, we have a2k = 0, for

k = 1, 2, . . . and a2k−1 = −4

π (2k − 1)2
, for k = 1, 2, . . . . We leave it as an exercise to

show that

bk = 0, for all k.

This gives us the Fourier series

a0

2
+

∞ 
k=1

[ak cos(kx) + bk sin(kx)] = π

2
+

∞ 
k=1

ak cos(kx) = π

2
+

∞ 
k=1

a2k−1 cos[(2k − 1)x]

= π

2
−

∞ 
k=1

4

π (2k − 1)2
cos[(2k − 1)x]

= π

2
− 4

π
cos x − 4

9π
cos(3x) − 4

25π
cos(5x) − · · · .

You can show that this series converges absolutely for all x, by using the Comparison

Test, since

|ak | =
    4

π (2k − 1)2
cos(2k − 1)x

    ≤ 4

π (2k − 1)2

and the series
∞ 

k=1

4

π (2k − 1)2
converges. (Hint: Compare this last series to the

convergent p-series
∞ 

k=1

1

k2
, using the Limit Comparison Test.) To get an idea of the

function to which the series converges, we plot several of the partial sums of the

series,

Fn(x) = π

2
−

n 
k=1

4

π (2k − 1)2
cos[(2k − 1)x].

See if you can conjecture the sum of the series by looking at Figures 9.48a–d. Notice

how quickly the partial sums of the series appear to converge to the triangular-wave

function f (shown in red; also see Figure 9.47). We’ll see later that the Fourier series

converges to f (x) for all x. There’s something further to note here: the accuracy of the
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y
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p 2p p 2p 3p 4p 3p 4p
x
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p 2p p 2p 3p 4p 3p 4p
x

FIGURE 9.48a
y = F1(x) and y = f (x)

FIGURE 9.48b
y = F2(x) and y = f (x)

y

3

2

p 2p p 2p 3p 4p 3p 4p
x

y

3

2

p 2p p 2p 3p 4p 3p 4p
x

FIGURE 9.48c
y = F4(x) and y = f (x)

FIGURE 9.48d
y = F8(x) and y = f (x)

approximation is fairly uniform. That is, the difference between a given partial sum and

f (x) is roughly the same for each x. Take care to distinguish this behavior from that of

Taylor polynomial approximations, where the farther you get away from the point about

which you’ve expanded, the worse the approximation tends to get. �

Functions of Period Other Than 2π

Now, suppose you have a function f that is periodic of period T, but T  = 2π . In this case,

we want to expand f in a series of simple functions of period T. First, define l = T
2

and

notice that

cos

 
kπx

l

 
and sin

 
kπx

l

 

are periodic of period T = 2l, for each k = 1, 2, . . . . The Fourier series expansion of f of

period 2l is then

a0

2
+

∞ 
k=1

 
ak cos

 
kπx

l

 
+ bk sin

 
kπx

l

  
.
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We leave it as an exercise to show that the Fourier coefficients in this case are given by the

Euler-Fourier formulas:

ak = 1

l

 l

−l

f (x) cos

 
kπx

l

 
dx, for k = 0, 1, 2, . . . (9.7)

and bk = 1

l

 l

−l

f (x) sin

 
kπx

l

 
dx, for k = 1, 2, 3, . . . . (9.8)

Notice that (9.3), (9.5) and (9.6) are equivalent to (9.7) and (9.8) with l = π .

EXAMPLE 9.3 A Fourier Series Expansion for a Square-Wave Function

Find a Fourier series expansion for the function

f (x) =
 −2, if −1 < x ≤ 0

2, if 0 < x ≤ 1
,

where f is defined so that it is periodic of period 2 outside of the interval [−1, 1].

Solution The graph of f is the square wave seen in Figure 9.49. From the

Euler-Fourier formulas (9.7) and (9.8) with l = 1, we have

a0 = 1

1

 1

−1

f (x) dx =
 0

−1

(−2) dx +
 1

0

2 dx = 0.

Likewise, we get

ak = 1

1

 1

−1

f (x) cos

 
kπx

1

 
dx = 0, for k = 1, 2, 3, . . . .

y

x
1 2 3 1 2 3

 2

 1

1

2

FIGURE 9.49
Square wave

Finally, we have

bk = 1

1

 1

−1

f (x) sin

 
kπx

1

 
dx =

 0

−1

(−2) sin(kπx) dx +
 1

0

2 sin(kπx) dx

= 2

kπ
cos(kπx)

    0
−1

− 2

kπ
cos(kπx)

    1
0

= 4

kπ
[cos 0 − cos(kπ )]

= 4

kπ
[1 − cos(kπ )] =

⎧⎨
⎩

0, if k is even

8

kπ
, if k is odd

.
Since cos(kπ ) = 1 when k is even,

and cos(kπ ) = −1 when k is odd.
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This gives us the Fourier series

a0

2
+

∞ 
k=1

[ak cos(kπx) + bk sin(kπx)] =
∞ 

k=1

bk sin(kπx) =
∞ 

k=1

b2k−1 sin[(2k − 1)πx]

=
∞ 

k=1

8

(2k − 1)π
sin[(2k − 1)πx].

Since b2k = 0 and b2k−1 = 8

(2k − 1)π
.

Although we as yet have no tools for determining the convergence or divergence of this

series, we graph a few of the partial sums of the series,

Fn(x) =
n 

k=1

8

(2k − 1)π
sin[(2k − 1)πx]

in Figures 9.50a–d. From the graphs, it appears that the series is converging to the

square-wave function f, except at the points of discontinuity, x = 0,±1,±2,±3, . . . .

At those points, the series appears to converge to 0. You can easily verify this by

observing that the terms of the series are

8

(2k − 1)π
sin[(2k − 1)πx] = 0, for integer values of x .

Since each term in the series is zero, the series converges to 0 at all integer values

of x. You might think of this as follows: at the points where f is discontinuous, the

series converges to the average of the two function values on either side of the

discontinuity. As we will see, this is typical of the convergence of Fourier series.

y

x
1 2 3 1 2 3

 2

 1

1

2

y

x
1 2 3 1 2 3
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 1

1

2

FIGURE 9.50a
y = F4(x) and y = f (x)

FIGURE 9.50b
y = F8(x) and y = f (x)
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FIGURE 9.50c
y = F20(x) and y = f (x)

FIGURE 9.50d
y = F50(x) and y = f (x)

�
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We now state the following major result on the convergence of Fourier series.

THEOREM 9.1 (Fourier Convergence Theorem)

Suppose that f is periodic of period 2l and that f and f  are continuous on the interval

[−l, l], except for at most a finite number of jump discontinuities. Then, f has a

convergent Fourier series expansion. Further, the series converges to f (x), when f is

continuous at x and to

1

2

 
lim

t→x+
f (t) + lim

t→x−
f (t)

 
at any points x where f is discontinuous.

REMARK 9.1

The Fourier Convergence

Theorem says that a Fourier

series may converge to a

discontinuous function, even

though every term in the

series is continuous (and

differentiable) for all x.

The proof of the theorem is beyond the level of this text and can be found in texts on

advanced calculus or Fourier analysis.

EXAMPLE 9.4 Proving Convergence of a Fourier Series

Use the Fourier Convergence Theorem to prove that the Fourier series expansion of

period 2π ,

π

2
−

∞ 
k=1

4

(2k − 1)2π
cos[(2k − 1)x],

derived in example 9.2, for f (x) = |x |, for −π ≤ x ≤ π and periodic outside of

[−π, π ], converges to f (x) everywhere.

Solution First, note that f is continuous everywhere. (See Figure 9.47.) We also have

that since

f (x) = |x | =
 −x, if −π ≤ x < 0

x, if 0 ≤ x < π

and is periodic outside [−π, π ], then

f  (x) =
 −1, −π < x < 0

1, 0 < x < π
.

So, f  is also continuous on [−π, π ], except for jump discontinuities at x = 0 and

x = ±π . From the Fourier Convergence Theorem, we now have that the Fourier series

converges to f (x) everywhere (since f is continuous everywhere). Because of this, we

write

f (x) = π

2
−

∞ 
k=1

4

(2k − 1)2π
cos(2k − 1)x,

for all x. �

As you can see from the Fourier Convergence Theorem, Fourier series do not always

converge to the function you are expanding.

EXAMPLE 9.5 Investigating Convergence of a Fourier Series

Use the Fourier Convergence Theorem to investigate the convergence of the Fourier series

∞ 
k=1

8

(2k − 1)π
sin[(2k − 1)πx],
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derived as an expansion of the square-wave function

f (x) =
 −2, if −1 < x ≤ 0

2, if 0 < x ≤ 1
,

where f is taken to be periodic outside of [−1, 1]. (See example 9.3.)

Solution First, note that f is continuous, except for jump discontinuities at

x = 0,±1,±2, . . . . Further,

f  (x) =
 

0, if −1 < x < 0

0, if 0 < x < 1

and is periodic outside of [−1, 1]. Thus, f  is also continuous everywhere, except at

integer values of x where f  is undefined. From the Fourier Convergence Theorem,

the Fourier series will converge to f (x) everywhere, except at the discontinuities,

x = 0,±1,±2, . . . , where the series converges to the average of the one-sided limits,

that is, 0. A graph of the function to which the series converges is shown in Figure 9.51.

Since the series does not converge to f everywhere, we cannot say that the function and

the series are equal. In this case, we usually write

f (x) ∼
∞ 

k=1

8

(2k − 1)π
sin[(2k − 1)πx]

to indicate that the series corresponds to f (but is not necessarily equal to f ). In the

case of Fourier series, this says that the series converges to f (x) at every x where f is

continuous and to the average of the one-sided limits at any jump discontinuities. Notice

that this is the behavior seen in the graphs of the partial sums of the series seen in

Figures 9.50a–d.
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FIGURE 9.51
∞ 

k=1

8

(2k − 1)π
sin[(2k − 1)πx]

�

Fourier Series and Music Synthesizers

Fourier series are widely used in engineering, physics, chemistry and so on. We give you a

sense of how they are used with the following brief discussion of music synthesizers and a

variety of exercises.

Suppose that you had a music machine that could generate pure tones at various pitches

and volumes. What types of sounds could you synthesize by combining several pure tones

together? To answer this question, we first translate the problem into mathematics. A pure
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tone can be modeled by A sinωt , where the amplitude A determines the volume and the

frequency ω determines the pitch. For example, to mimic a saxophone, you must match

the characteristic waveform of a saxophone. (See Figure 9.52.) The shape of the waveform

affects the timbre of the tone, a quality most humans readily discern. (A saxophone sounds

different than a trumpet, doesn’t it?)

FIGURE 9.52
Saxophone waveform

Consider the following music synthesizer problem. Given a waveform such as the one

shown in Figure 9.52, can you add together several pure tones of the form A sinωt to approx-

imate the waveform? Note that if the pure tones are of the form b1 sin t, b2 sin 2t, b3 sin 3t

and so on, this is essentially a Fourier series problem. That is, we want to approximate a

given wave function f (t) by a sum of these pure tones, as follows:

f (t) ≈ b1 sin t + b2 sin 2t + b3 sin 3t + · · · + bn sin nt.

Although the cosine terms are all missing, notice that this is the partial sum of a Fourier series.

(Such series are called Fourier sine series and are explored in the exercises.) For music

synthesizers, the Fourier coefficients are simply the amplitudes of the various harmonics in

a given waveform. In this context, you can think of the bass and treble knobs on a stereo

as manipulating the amplitudes of different terms in a Fourier series. Cranking up the bass

emphasizes low-frequency terms (i.e., increases the coefficients of the first few terms of

the Fourier series), while turning up the treble emphasizes the high-frequency terms. An

equalizer (see Figure 9.53) gives you more direct control of individual frequencies.

FIGURE 9.53
A graphic equalizer

In general, the idea of analyzing a wave phenomenon by breaking the wave down into

its component frequencies is essential to much of modern science and engineering. This

type of spectral analysis is used in numerous scientific disciplines.

BEYOND FORMULAS

Fourier series provide an alternative to power series for representing functions. Which

representation is more useful depends on the specifics of the problem you are work-

ing on. Fourier series and its extensions (including wavelets) are used to represent

wave phenomena such as sight and sound. In our digital age, such applications are

everywhere.

EXERCISES 9.9

WRITING EXERCISES

1. Explain why the Fourier series of f (x) = 1 + 3 cos x− sin 2x

on the interval [−π, π ] is simply 1 + 3 cos x− sin 2x . (Hint:

Explain what the goal of a Fourier series representation is and

note that in this case no work needs to be done.) Would this

change if the interval were [−1, 1] instead?

2. Polynomials are built up from the basic operations of arith-

metic. We often use Taylor series to rewrite an awkward func-

tion (e.g., sin x) into arithmetic form. Many natural phenomena

are waves, which are well modeled by sines and cosines. Dis-

cuss the extent to which the following statement is true: Fourier

series allow us to rewrite algebraic functions (e.g., x2) into a

natural (wave) form.

3. Theorem 9.1 states that a Fourier series may converge to a

function with jump discontinuities. In examples 9.1 and 9.3,

identify the locations of the jump discontinuities and the values

to which the Fourier series converges at these points. In what

way are these values reasonable compromises?

4. Carefully examine Figures 9.46 and 9.50. For which x’s does

the Fourier series seem to converge rapidly? Slowly? Note that

for every n, the partial sum Fn(x) passes exactly through the

limiting point for jump discontinuities. Describe the behav-

ior of the partial sums near the jump discontinuities. This

overshoot/undershoot behavior is referred to as the Gibbs

phenomenon.
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In exercises 1–8, find the Fourier series of the function on the

interval [−π,π]. Graph the function and the partial sums F4(x)

and F8(x) on the interval [−2π, 2π].

1. f (x) = x 2. f (x) = x2

3. f (x) = 2|x | 4. f (x) = 3x

5. f (x) =
 

1, if −π < x < 0

−1, if 0 < x < π

6. f (x) =
 

1, if −π < x < 0

0, if 0 < x < π

7. f (x) = 3 sin 2x 8. f (x) = 2 sin 3x

In exercises 9–14, find the Fourier series of the function on the

given interval.

9. f (x) = −x, [−1, 1] 10. f (x) = |x |, [−1, 1]

11. f (x) = x2, [−1, 1] 12. f (x) = 3x, [−2, 2]

13. f (x) =
 

0, if −1 < x < 0

x, if 0 < x < 1

14. f (x) =
 

0, if −1 < x < 0

1 − x, if 0 < x < 1

In exercises 15–20, do not compute the Fourier series, but graph

the function to which the Fourier series converges, showing at

least three full periods.

15. f (x) = x, [−2, 2] 16. f (x) = x2, [−3, 3]

17. f (x) =
 −x, if −1 < x < 0

0, if 0 < x < 1

18. f (x) =
 

1, if −2 < x < 0

3, if 0 < x < 2

19. f (x) =

⎧⎨
⎩

−1, if −2 < x < −1

0, if −1 < x < 1

1, if 1 < x < 2

20. f (x) =

⎧⎨
⎩

2, if −2 < x < −1

−2, if −1 < x < 1

0, if 1 < x < 2

21. Substitute x = 1 into the Fourier series formula of exercise 11

to prove that
∞ 

k=1

1

k2
= π 2

6
.

22. Use the Fourier series of example 9.1 to prove that
∞ 

k=1

sin(2k − 1)

2k − 1
= π

4
.

23. Use the Fourier series of example 9.2 to prove that
∞ 

k=1

1

(2k − 1)2
= π 2

8
.

24. Combine the results of exercises 21 and 23 to find
∞ 

k=1

1

(2k)2
.

In exercises 25–28, use the Fourier Convergence Theorem to

investigate the convergence of the Fourier series in the given

exercise.

25. exercise 5 26. exercise 7

27. exercise 9 28. exercise 17

29. You have undoubtedly noticed that many Fourier series consist

of only cosine or only sine terms. This can be easily understood

in terms of even and odd functions. A function f is even if

f (−x) = f (x) for all x. A function is odd if f (−x) = − f (x)

for all x. Show that cos x is even, sin x is odd and cos x + sin x

is neither.

30. If f is even, show that g(x) = f (x) cos x is even and

h(x) = f (x) sin x is odd.

31. If f is odd, show that g(x) = f (x) cos x is odd and

h(x) = f (x) sin x is even. If f and g are even, what can you

say about f g?

32. If f is even and g is odd, what can you say about f g? If f and

g are odd, what can you say about f g?

33. Prove the general Euler-Fourier formulas (9.7) and (9.8).

34. If g is an odd function (see exercise 29), show that l

−l
g(x) dx = 0 for any (positive) constant l. (Hint: Compare 0

−l
g(x) dx and

 l

0
g(x) dx . You will need to make the change

of variable t = −x in one of the integrals.) Using the results of

exercise 30, show that if f is even, then bk = 0 for all k and the

Fourier series of f (x) consists only of a constant and cosine

terms. If f is odd, show that ak = 0 for all k and the Fourier

series of f (x) consists only of sine terms.

In exercises 35–38, use the even/odd properties of f (x) to pre-

dict (don’t compute)whether theFourier serieswill contain only

cosine terms, only sine terms or both.

35. f (x) = x3 36. f (x) = x4

37. f (x) = ex 38. f (x) = |x |

39. The function f (x) =
 −1, if −2 < x < 0

3, if 0 < x < 2
is neither even

nor odd, but can be written as f (x) = g(x) + 1 where

g(x) =
 −2, if −2 < x < 0

2, if 0 < x < 2
. Explain why the Fourier se-

ries of f (x) will contain sine terms and the constant 1, but no

cosine terms.

40. Suppose that you want to find the Fourier series of

f (x) = x + x2. Explain why to find bk you would need only

to integrate x sin
 

kπx

l

 
and to find ak you would need only to

integrate x2 cos
 

kπx

l

 
.

Exercises 41–44 are adapted from the owner’smanual of a high-

end music synthesizer.

41. A fundamental choice to be made when generating a new

tone on a music synthesizer is the waveform. The options
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are sawtooth, square and pulse. You worked with the saw-

tooth wave in exercise 9. Graph the limiting function for the

function in exercise 9 on the interval [−4, 4]. Explain why

“sawtooth” is a good name. A square wave is shown in Figure

9.49. A pulse wave of period 2 with width 1/n is generated

by f (x) =
 −2, if 1/n < |x | < 1

2, if |x | ≤ 1/n
. Graph pulse waves of

width 1/3 and 1/4 on the interval [−4, 4].

42. The harmonic content of a wave equals the ratio of inte-

gral harmonic waves to the fundamental wave. To understand

what this means, write the Fourier series of exercise 9 as
2
π

(− sinπx + 1
2

sin 2πx − 1
3

sin 3πx + 1
4

sin 4πx − · · ·). The

harmonic content of the sawtooth wave is 1
n
. Explain how this

relates to the relative sizes of the Fourier coefficients. The

harmonic content of the square wave is 1
n

with even-numbered

harmonics missing. Compare this description to the Fourier

series of example 9.3. The harmonic content of the pulse wave

of width 1
3

is 1
n

with every third harmonic missing. Without

computing the Fourier coefficients, write out the general form

of the Fourier series of f (x) =
 −2, if 1/3 < |x | < 1

2, if |x | ≤ 1/3
.

43. The cutoff frequency setting on a music synthesizer has a dra-

matic effect on the timbre of the tone produced. In terms of

harmonic content (see exercise 42), when the cutoff frequency

is set at n > 0, all harmonics beyond the nth harmonic are

set equal to 0. In Fourier series terms, explain how this corre-

sponds to the partial sum Fn(x). For the sawtooth and square

waves, graph the waveforms with the cutoff frequency set at 4.

Compare these to the waveforms with the cutoff frequency set

at 2. As the setting is lowered, you hear more of a “pure” tone.

Briefly explain why.

44. The resonance setting on a music synthesizer also changes

timbre significantly. Set at 1, you get the basic waveform (e.g.,

sawtooth or square). Set at 2, the harmonic content of the first

four harmonics are divided by 2, the fifth harmonic is mul-

tiplied by 3
4
, the sixth harmonic is left the same, the seventh

harmonic is divided by 2 and the remaining harmonics are set to

0. Graph the sawtooth and square waves with resonance set to

2. Which one is starting to resemble the saxophone waveform

of Figure 9.52?

45. Piano tuning is relatively simple, due to the phenomenon stud-

ied in this exercise. Compare the graphs of sin 8t + sin 8.2t and

2 sin 8t . Note especially that the amplitude of sin 8t + sin 8.2t

appears to slowly rise and fall. In the trigonometric identity

sin 8t + sin 8.2t = [2 cos(0.2t)] sin(8.1t), think of 2 cos(0.2t)

as the amplitude of sin(8.1t) and explain why the amplitude

varies slowly. Piano tuners often start by striking a tuning fork

of a certain pitch (e.g., sin 8t) and then striking the corre-

sponding piano note. If the piano is slightly out-of-tune (e.g.,

sin 8.2t), the tuning fork plus piano produces a combined tone

that noticeably increases and decreases in volume. Use your

graph to explain why this occurs.

46. The function sin 8π t represents a 4-Hz signal (1 Hz equals

1 cycle per second) if t is measured in seconds. If you received

this signal, your task might be to take your measurements of the

signal and try to reconstruct the function. For example, if you

measured three samples per second, you would have the data

f (0) = 0, f (1/3) =
√

3/2, f (2/3) = −
√

3/2 and f (1) = 0.

Knowing the signal is of the form A sin Bt , you would use the

data to try to solve for A and B. In this case, you don’t have

enough information to guarantee getting the right values for

A and B. Prove this by finding several values of A and B with

B  = 8π that match the data. A famous result of H. Nyquist

from 1928 states that to reconstruct a signal of frequency f you

need at least 2 f samples.

47. The energy of a signal f (x) on the interval [−π, π ] is

defined by E = 1

π

 π
−π

[ f (x)]2 dx . If f (x) has a Fourier

series f (x) = a0

2
+

∞ 
k=0

[ak cos kx + bk sin kx], show that

E = A2
0 + A2

1 + A2
2 + · · · , where Ak =

 
a2

k + b2
k . The se-

quence {Ak} is called the energy spectrum of f (x).

48. Carefully examine the graphs in Figure 9.46. There is a

Gibbs phenomenon at x = 0. Does it appear that the size

of the Gibbs overshoot changes as the number of terms in-

creases? We examine that here. For the partial sum Fn(x)

as defined in example 9.1, it can be shown that the absolute

maximum occurs at
π

2n
. Evaluate Fn

 π
2n

 
for n = 4, n = 6

and n = 8. Show that for large n, the size of the bump is   Fn

 π
2n

 
− f

 π
2n

    ≈ 0.09. Gibbs showed that, in general,

the size of the bump at a jump discontinuity is about 0.09 times

the size of the jump.

49. Some fixes have been devised to reduce the Gibbs phe-

nomenon. Define the σ-factors by σk =
sin

 
kπ

n

 
kπ

n

for

k = 1, 2, . . . , n and consider the modified Fourier sum
a0

2
+

n 
k=0

[akσk cos kx + bkσk sin kx]. For example 9.1, plot

the modified sums for n = 4 and n = 8 and compare to

Figure 9.46: f (x) =
 

1, −π < x < 0

−1, 0 < x < π
, F2n−1 has critical

point at π/2n and lim
n→∞

F2n−1

 
π

2n

 = 2
π

 π

0

sin x

x
dx ≈ 1.18.

EXPLORATORY EXERCISES

1. Suppose that you wanted to approximate a waveform with sine

functions (no cosines), as in the music synthesizer problem.

Such a Fourier sine series will be derived in this exercise.

You essentially use Fourier series with a trick to guarantee

sine terms only. Start with your waveform as a function defined
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on the interval [0, l], for some length l. Then define a function

g(x) that equals f (x) on [0, l] and that is an odd function. Show

that g(x) =
 

f (x) if 0 ≤ x ≤ l

− f (−x) if −l < x < 0
works. Explain why

the Fourier series expansion of g(x) on [−l, l] would contain

sine terms only. This series is the sine series expansion of f (x).

Show the following helpful shortcut: the sine series coefficients

are

bk = 1

l

 l

−l

g(x) sin

 
kπ

l

 
dx = 2

l

 l

0

f (x) sin

 
kπ

l

 
dx .

Then compute the sine series expansion of f (x) = x2 on

[0, 1] and graph the limit function on [−3, 3]. Analogous to

the above, develop a Fourier cosine series and find the cosine

series expansion of f (x) = x on [0, 1].

2. Fourier series are a part of the field of Fourier analysis,

which is central to many engineering applications. Fourier

analysis includes the Fourier transforms (and the FFT or

Fast Fourier Transform) and inverse Fourier transforms, to

which you will get a brief introduction in this exercise. Given

measurements of a signal (waveform), the goal is to con-

struct the Fourier series of a function. To start with a sim-

ple version of the problem, suppose the signal has the form

f (x) = a0

2
+ a1 cosπx + a2 cos 2πx + b1 sinπx + b2 sin 2πx

and you have the measurements

f (−1) = 0, f (− 1
2
) = 1, f (0) = 2, f ( 1

2
) = 1 and f (1) = 0.

Substituting into the general equation for f (x), show that

f (−1) = a0

2
− a1 + a2 = 0

f

 
− 1

2

 
= a0

2
− a2 − b1 = 1

f (0) = a0

2
+ a1 + a2 = 2

f

 
1

2

 
= a0

2
− a2 + b1 = 1

and f (1) = a0

2
− a1 + a2 = 0.

Note that the first and last equations are identical and

that b2 never appears in an equation. Thus, you have four

equations and four unknowns. Solve the equations. (Hint:

Start by comparing the second and fourth equations, then

the third and fifth equations.) You should conclude that

f (x) = 1 + cosπx + b2 sinπx , with no information about

b2. To determine b2, we would need another function value.

In general, the number of measurements determines how

many terms you can find in the Fourier series. (See exer-

cise 46.) Fortunately, there is an easier way of determining

the Fourier coefficients. Recall that ak =  1

−1
f (x) cos kπx dx

and bk =  1

−1
f (x) sin kπx dx . You can estimate the in-

tegral using function values at x = −1/2, x = 0, x = 1/2

and x = 1. Find a version of a Riemann sum ap-

proximation that gives a0 = 2, a1 = 1, a2 = 0 and b1 = 0.

What value is given for b2? Use this Riemann sum

rule to find the appropriate coefficients for the data

f (− 3
4
) = 3

4
, f (− 1

2
) = 1

2
, f (− 1

4
) = 1

4
, f (0) = 0, f ( 1

4
) = − 1

4
,

f ( 1
2
) = − 1

2
, f ( 3

4
) = − 3

4
and f (1) = −1. Compare to the

Fourier series of exercise 9.

3. Fourier series have been used extensively in processing digi-

tal information, including digital photographs as well as mu-

sic synthesis. A digital photograph stored in “bitmap” format

can be thought of as three functions fR(x, y), fG(x, y) and

fB(x, y). For example, fR(x, y) could be the amount of red

content in the pixel that contains the point (x, y). Briefly ex-

plain what fG(x, y) and fB(x, y) would represent and how

the three functions could be combined to create a color pic-

ture. A sine series for a function f (x) on the interval [0, L] is
∞ 

k=1

bk sin
 

kπx

L

 
where bk = 2

L

 L

0
f (x) sin

 
kπx

L

 
dx . Describe

what a sine series for a function f (x, y) with 0 ≤ x ≤ L and

0 ≤ y ≤ M would look like. If possible, take your favorite pho-

tograph in bitmap format and write a program to find Fourier

approximations. The accompanying images were created in

this way. The first three images show Fourier approximations

with 2, 10 and 50 terms, respectively. Notice that while the

50-term approximation is fairly sharp, there are some ripples

(or “ghosts”) outlining the two people; the ripples are more ob-

vious in the 10-term image. Briefly explain how these ripples

relate to the Gibbs phenomenon.

2 terms 10 terms 50 terms

In exercise 49, a σ -correction is introduced that reduces

the Gibbs phenomenon. The next three images show the same

picture using σ -corrected Fourier approximations with 2, 10

and 50 terms, respectively. Describe how the correction of the

Gibbs phenomenon shows up in the images. Based on these

images, how does the rate of convergence for Fourier series

compare to σ -corrected Fourier series?

2 terms 10 terms 50 terms
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Review Exercises

WRITING EXERCISES

The following list includes terms that are defined and theorems that

are stated in this chapter. For each term or theorem, (1) give a precise

definition or statement, (2) state in general terms what it means and

(3) describe the types of problems with which it is associated.

Sequence Limit of sequence Squeeze Theorem

Infinite series Partial sum Series converges

Series diverges Geometric series kth-term test for

Harmonic series Integral Test divergence

Comparison Test Limit Comparison p-Series

Conditional Test Alternating Series Test

convergence Absolute convergence Alternating harmonic

Ratio Test Root Test series

Radius of Taylor series Power series

convergence Fourier series Taylor polynomial

Taylor’s Theorem

TRUE OR FALSE

State whether each statement is true or false, and briefly explain

why. If the statement is false, try to “fix it” by modifying the given

statement to a new statement that is true.

1. An increasing sequence diverges to infinity.

2. As n increases, n! increases faster than 10n .

3. If the sequence an diverges, then the series
∞ 

k=1

ak diverges.

4. If ak decreases to 0 as k → ∞, then
∞ 

k=1

ak diverges.

5. If
 ∞

1
f (x) dx converges, then

∞ 
k=1

ak converges for ak = f (k).

6. If the Comparison Test can be used to determine the conver-

gence or divergence of a series, then the Limit Comparison

Test can also determine the convergence or divergence of the

series.

7. Using the Alternating Series Test, if lim
k→∞

ak  = 0, then you can

conclude that
∞ 

k=1

ak diverges.

8. The difference between a partial sum of a convergent se-

ries and its sum is less than the first neglected term in the

series.

9. If a series is conditionally convergent, then the Ratio Test will

be inconclusive.

10. A series with all negative terms cannot be conditionally con-

vergent.

11. If
∞ 

k=1

|ak | diverges, then
∞ 

k=1

ak diverges.

12. A series may be integrated term-by-term and the interval of

convergence will remain the same.

13. A Taylor series of a function f is simply a power series repre-

sentation of f.

14. The more terms in a Taylor polynomial, the better the approx-

imation.

15. The Fourier series of x2 converges to x2 for all x.

In exercises 1–8, determine whether the sequence converges or

diverges. If it converges, give the limit.

1. an = 4

3 + n
2. an = 3n

1 + n

3. an = (−1)n n

n2 + 4
4. an = (−1)n n

n + 4

5. an = 4n

n!
6. an = n!

nn

7. an = cosπn 8. an = cos nπ

n

In exercises 9–18, answer with “converges”, “diverges” or

“can’t tell.”

9. If lim
k→∞

ak = 1, then
∞ 

k=1

ak .

10. If lim
k→∞

ak = 0, then
∞ 

k=1

ak .

11. If lim
k→∞

    ak+1

ak

    = 1, then
∞ 

k=1

ak .

12. If lim
k→∞

    ak+1

ak

    = 0, then
∞ 

k=1

ak .

13. If lim
k→∞

ak = 1

2
, then

∞ 
k=1

ak .

14. If lim
k→∞

    ak+1

ak

    = 1

2
, then

∞ 
k=1

ak .

15. If lim
k→∞

k
 

|ak | = 1

2
, then

∞ 
k=1

ak .

16. If lim
k→∞

k2ak = 0, then
∞ 

k=1

ak .
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17. If p > 1, then
∞ 

k=1

8

k p
.

18. If r > 1, then
∞ 

k=1

ark .

In exercises 19–22, find the sum of the convergent series.

19.

∞ 
k=0

4

 
1

2

 k

20.

∞ 
k=1

4

k(k + 2)

21.

∞ 
k=0

4−k 22.

∞ 
k=0

(−1)k 3

4k

In exercises 23 and 24, estimate the sum of the series to within

0.01.

23.

∞ 
k=0

(−1)k k

k4 + 1
24.

∞ 
k=0

(−1)k+1 3

k!

In exercises 25–44, determine whether the series converges or

diverges.

25.

∞ 
k=0

2k

k + 3
26.

∞ 
k=0

(−1)k 2k

k + 3

27.

∞ 
k=0

(−1)k 4√
k + 1

28.

∞ 
k=0

4√
k + 1

29.

∞ 
k=1

3k−7/8 30.

∞ 
k=1

2k−8/7

31.

∞ 
k=1

√
k

k3 + 1
32.

∞ 
k=1

k√
k3 + 1

33.

∞ 
k=1

(−1)k 4k

k!
34.

∞ 
k=1

(−1)k 2k

k

35.

∞ 
k=1

(−1)k ln

 
1 + 1

k

 
36.

∞ 
k=1

cos kπ√
k

37.

∞ 
k=1

2

(k + 3)2
38.

∞ 
k=2

4

k ln k

39.

∞ 
k=1

k!

3k
40.

∞ 
k=1

k

3k

41.

∞ 
k=1

e1/k

k2
42.

∞ 
k=1

1

k
√

ln k + 1

43.

∞ 
k=1

4k

(k!)2
44.

∞ 
k=1

k2 + 4

k3 + 3k + 1

In exercises 45–48, determine whether the series converges ab-

solutely, converges conditionally or diverges.

45.

∞ 
k=1

(−1)k k

k2 + 1
46.

∞ 
k=1

(−1)k 3

k + 1

47.

∞ 
k=1

sin k

k3/2
48.

∞ 
k=1

(−1)k+1 3

ln k + 1

In exercises 49 and 50, find all values of p for which the series

converges.

49.

∞ 
k=1

2

(3 + k)p
50.

∞ 
k=1

ekp

In exercises 51 and 52, determine the number of terms necessary

to estimate the sum of the series to within 10−6.

51.

∞ 
k=1

(−1)k 3

k2
52.

∞ 
k=1

(−1)k 2k

k!

In exercises 53–56, find a power series representation for the

function. Find the radius of convergence.

53.
1

4 + x
54.

2

6 − x

55.
3

3 + x2
56.

2

1 + 4x2

In exercises 57 and 58, use the series from exercises 53 and 54

to find a power series and its radius of convergence.

57. ln(4 + x) 58. ln(6 − x)

In exercises 59–66, find the interval of convergence.

59.

∞ 
k=0

(−1)k2xk 60.

∞ 
k=0

(−1)k(2x)k

61.

∞ 
k=1

(−1)k 2

k
xk 62.

∞ 
k=1

−3√
k

 x

2

 k

63.

∞ 
k=0

4

k!
(x − 2)k 64.

∞ 
k=0

k2(x + 3)k

65.

∞ 
k=0

3k(x − 2)k 66.

∞ 
k=0

k

4k
(x + 1)k

In exercises 67 and 68, derive the Taylor series of f (x) about the

center x  c.

67. f (x) = sin x, c = 0 68. f (x) = 1

x
, c = 1

In exercises 69 and 70, find the Taylor polynomial P4(x). Graph

f (x) and P4(x).

69. f (x) = ln x, c = 1 70. f (x) = 1√
x
, c = 1
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In exercises 71 and 72, use the Taylor polynomials from exer-

cises 69 and 70 to estimate the given values. Determine the order

of the Taylor polynomial needed to estimate the value to within

10−8.

71. ln 1.2 72.
1√
1.1

In exercises 73 and 74, use a knownTaylor series to find a Taylor

series of the function and find its radius of convergence.

73. e−3x2
74. sin 4x

In exercises 75 and 76, use the first five nonzero terms of a known

Taylor series to estimate the value of the integral.

75.

 1

0

tan−1 x dx 76.

 2

0

e−3x2

dx

In exercises 77 and 78, derive the Fourier series of the function.

77. f (x) = x,−2 ≤ x ≤ 2

78. f (x) =
 

0 if −π < x ≤ 0

1 if 0 < x ≤ π

In exercises 79–82, graph at least three periods of the function

to which the Fourier series converges.

79. f (x) = x2,−1 ≤ x ≤ 1

80. f (x) = 2x,−2 ≤ x ≤ 2

81. f (x) =
 −1 if −1 < x ≤ 0

1 if 0 < x ≤ 1

82. f (x) =
 

0 if −2 < x ≤ 0

x if 0 < x ≤ 2

83. Suppose you and your friend take turns tossing a coin. The

first one to get a head wins. Obviously, the person who goes

first has an advantage, but how much of an advantage is it? If

you go first, the probability that you win on your first toss is
1
2
, the probability that you win on your second toss is 1

8
, the

probability that you win on your third toss is 1
32

and so on. Sum

a geometric series to find the probability that you win.

84. In a game similar to that of exercise 83, the first one to roll a

4 on a six-sided die wins. Is this game more fair than the pre-

vious game? The probabilities of winning on the first, second

and third roll are 1
6
, 25

216
and 625

7776
, respectively. Sum a geometric

series to find the probability that you win.

85. Recall the Fibonacci sequence defined by a0 = 1,

a1 = 1, a2 = 2 and an+1 = an + an−1. Prove the following

fact: lim
n→∞

an+1

an

= 1 +
√

5

2
. (This number, known to the

ancient Greeks, is called the golden ratio.) (Hint: Start with

an+1 = an + an−1 and divide by an . If r = lim
n→∞

an+1

an

, argue

that lim
n→∞

an−1

an

= 1

r
and then solve the equation r = 1 + 1

r
.)

86. The Fibonacci sequence can be visualized with the following

construction. Start with two side-by-side squares of side 1 (Fig-

ure A). Above them, draw a square (Figure B), which will have

side 2. To the left of that, draw a square (Figure C), which will

have side 3. Continue to spiral around, drawing squares that

have sides given by the Fibonacci sequence. For each bounding

rectangle in Figures A–C, compute the ratio of the sides of the

rectangle. (Hint: Start with 2
1

and then 3
2
.) Find the limit of the

ratios as the construction process continues. The Greeks pro-

claimed this to be the most “pleasing” of all rectangles, building

the Parthenon and other important buildings with these propor-

tions. (See The Divine Proportion by H. E. Huntley.)

FIGURE A FIGURE B FIGURE C

87. Another type of sequence studied by mathematicians is

the continued fraction. Numerically explore the sequence

1 + 1

1
, 1 + 1

1 + 1
1

, 1 + 1

1 + 1

1+ 1
1

and so on. This is yet an-

other occurrence of the golden ratio. Viscount Brouncker, a

seventeenth-century English mathematician, showed that the

sequence 1 + 12

2
, 1 + 12

2 + 32

2

, 1 + 12

2 + 32

2+ 52

2

and so on, con-

verges to
4

π
. (See A History of Pi by Petr Beckmann.) Explore

this sequence numerically.

88. For the power series
1

1 − x − x2
= c1 + c2x + c3x2 + · · ·,

show that the constants ci are the Fibonacci numbers. Sub-

stitute x = 1

1000
to find the interesting decimal representation

for
1,000,000

998,999
.

EXPLORATORY EXERCISES

1. The challenge here is to determine
∞ 

k=1

xk

k(k + 1)
as completely

as possible. Start by finding the interval of convergence. Find

the sum for the special cases (a) x = 0 and (b) x = 1. For

0 < x < 1, do the following: (c) Rewrite the series using the
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Review Exercises

partial fractions expansion of
1

k(k + 1)
. (d) Because the se-

ries converges absolutely, it is legal to rearrange terms. Do so

and rewrite the series as x + x − 1

x

 
1
2
x2 + 1

3
x3 + 1

4
x4 + · · · .

(e) Identify the series in brackets as
  ∞ 

k=1

xk

 
dx , evaluate

the series and then integrate term-by-term. (f) Replace the term

in brackets in part (d) with its value obtained in part (e). (g) The

next case is for −1 < x < 0. Use the technique in parts (c)–(f)

to find the sum. (h) Evaluate the sum at x = −1 using the fact

that the alternating harmonic series sums to ln 2. (Used by per-

mission of the Virginia Tech Mathematics Contest. Solution

suggested by Gregory Minton.)

2. You have used Fourier series to show that
∞ 

k=1

1

k2
= π2

6
. Here,

you will use a version ofVièta’s formula to give an alternative

derivation. Start by using a Maclaurin series for sin x to derive a

series for f (x) = sin
√

x√
x

. Then find the zeros of f (x). Vièta’s

formula states that the sum of the reciprocals of the zeros of

f (x) equals the negative of the coefficient of the linear term in

the Maclaurin series of f (x) divided by the constant term. Take

this equation and multiply by π2 to get the desired formula.

Use the same method with a different function to show that
∞ 

k=1

1

(2k − 1)2
= π 2

8
.





CHA P T E R

10
Parametric Equations
and Polar Coordinates

You are all familiar with sonic booms, those loud crashes of noise caused

by aircraft flying faster than the speed of sound. You may have even

heard a sonic boom, but you have probably never seen a sonic boom. The

remarkable photograph here shows water vapor outlining the surface

of a shock wave created by an F-18 jet flying supersonically. (Note that

there is also a small cone of water vapor trailing the back of the cockpit

of the jet.)

You may be surprised at the apparently conical shape assumed by

the shock waves. A mathematical analysis of the shock waves verifies

that the shape is indeed conical. (You will have an opportunity to explore

this in the exercises in section 10.1.) To visualize how sound waves propagate,

imagine an exploding firecracker. If you think of this in two dimensions, you’ll

recognize that the sound waves propagate in a series of ever-expanding concentric

circles that reach everyone standing a given distance away from the firecracker at

the same time.

In this chapter, we extend the concepts of calculus to curves described

by parametric equations and polar coordinates. For instance, in order to study

the motion of an object such as an airplane in two dimensions, we would

need to describe the object’s position (x, y) as a function of the parameter

t (time). That is, we write the position in the form (x, y) = (x(t), y(t)), where

x(t) and y(t) are functions to which our existing techniques of calculus can

be applied. The equations x = x(t) and y = y(t) are called parametric equa-

tions. Additionally, we’ll explore how to use polar coordinates to represent

curves, not as a set of points (x, y), but rather, by specifying the points by

the distance from the origin to the point and an angle corresponding to the

direction from the origin to the point. Polar coordinates are especially con-

venient for describing circles, such as those that occur in propagating sound

waves.

These alternative descriptions of curves bring us a great deal of needed flex-

ibility in attacking many problems. Often, even very complicated looking curves

have a simple description in terms of parametric equations or polar coordinates.

We explore a variety of interesting curves in this chapter and see how to extend

the methods of calculus to such curves.

707
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10.1 PLANE CURVES AND PARAMETRIC EQUATIONS

We often find it convenient to describe the location of a point (x, y) in the plane in terms of

a parameter. For instance, in tracking the movement of a satellite, we would naturally want

to give its location in terms of time. In this way, we not only know the path it follows, but

we also know when it passes through each point.

Given any pair of functions x(t) and y(t) defined on the same domain D, the equations

x = x(t), y = y(t)

are called parametric equations. Notice that for each choice of t, the parametric equations

specify a point (x, y) = (x(t), y(t)) in the xy-plane. The collection of all such points is

called the graph of the parametric equations. In the case where x(t) and y(t) are continuous

functions and D is an interval of the real line, the graph is a curve in the xy-plane, referred

to as a plane curve.

The choice of the letter t to denote the independent variable (called the parameter)

should make you think of time, which is often what the parameter represents. For instance,

we might represent the position (x(t), y(t)) of a moving object as a function of the time

t. In fact, you might recall that in section 5.5, we used a pair of equations of this type to

describe two-dimensional projectile motion. In many applications, the parameter has an

interpretation other than time; in others, it has no physical meaning at all. In general, the

parameter can be any quantity that is convenient for describing the relationship between x

and y. In example 1.1, we can simplify our discussion by eliminating the parameter.

EXAMPLE 1.1 Graphing a Plane Curve

Sketch the plane curve defined by the parametric equations x = 6− t2, y = t/2, for

−2 ≤ t ≤ 4.

Solution In the accompanying table, we list a number of values of the parameter t and

the corresponding values of x and y.

t x y

−2 2 −1
−1 5 − 1

2

0 6 0
1 5 1

2

2 2 1
3 −3 3

2

4 −10 2

We have plotted these points and connected them with a smooth curve in

Figure 10.1. You might also notice that we can easily eliminate the parameter here, by

solving for t in terms of y. We have t = 2y, so that x = 6− 4y2. The graph of this last

equation is a parabola opening to the left. However, the plane curve we’re looking for is

the portion of this parabola corresponding to −2 ≤ t ≤ 4. From the table, notice that

y

42 2 4 6 8 10

 1

1

23
2

( 10, 2)
( 3,   )

(5, Q)
(6, 0)

(2, 1)

(2,  1)
(5,  Q)

x

FIGURE 10.1

x = 6− t2, y = t

2
,−2 ≤ t ≤ 4
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this corresponds to −1 ≤ y ≤ 2, so that the plane curve is the portion of the parabola

indicated in Figure 10.1, where we have also indicated a number of points on the

curve. �

y

x
20 40

t = 0

t = 1

t = 1.5

t = 2

20

40

60

FIGURE 10.2
Path of projectile

You probably noticed the small arrows drawn on top of the plane curve in Figure 10.1.

These indicate the orientation of the curve (i.e., the direction of increasing t). If t represents

time and the curve represents the path of an object, the orientation indicates the direction

followed by the object as it traverses the path, as in example 1.2.

EXAMPLE 1.2 The Path of a Projectile

Find the path of a projectile thrown horizontally with initial speed of 20 ft/s from a

height of 64 feet.

Solution Following our discussion in section 5.5, the path is defined by the

parametric equations

x = 20t, y = 64− 16t2, for 0 ≤ t ≤ 2,

where t represents time (in seconds). This describes the plane curve shown in

Figure 10.2. Note that in this case, the orientation indicated in the graph gives the

direction of motion. Although we could eliminate the parameter, as in example 1.1, the

parametric equations provide us with more information. It is important to recognize that

while the corresponding x-y equation y = 64− 16
 

x2

202

 
describes the path followed by

the projectile, the parametric equations provide us with additional information, as they

also tell us when the object is located at a given point and indicate the direction of

motion. We indicate the location of the projectile at several times in Figure 10.2. �

Graphing calculators and computer algebra systems sketch a plane curve by plotting

points corresponding to a large number of values of the parameter t and then connecting

the plotted points with a curve. The appearance of the resulting graph depends greatly on

the graphing window used and also on the particular choice of t-values. This can be seen

in example 1.3.

EXAMPLE 1.3 Parametric Equations Involving Sines and Cosines

Sketch the plane curve defined by the parametric equations

x = 2 cos t, y = 2 sin t, for (a) 0 ≤ t ≤ 2π and (b) 0 ≤ t ≤ π. (1.1)

y

x
4 4

 4

4

FIGURE 10.3a
x = 2 cos t, y = 2 sin t

y

x
2 2

 2

2

FIGURE 10.3b
x = 2 cos t, y = 2 sin t

Solution (a) The default graph produced by most graphing calculators looks

something like the curve shown in Figure 10.3a (where we have added arrows

indicating the orientation). With some thought, we can improve this sketch. First, notice

that since x = 2 cos t, x ranges between −2 and 2. Similarly, y ranges between −2 and

2. Changing the graphing window to −2.1 ≤ x ≤ 2.1 and −2.1 ≤ y ≤ 2.1 produces the

curve shown in Figure 10.3b, which is an improvement over Figure 10.3a. The curve

still looks like an ellipse, but with some more thought we can identify it as a circle.

Rather than eliminate the parameter by solving for t in terms of either x or y, instead

notice from (1.1) that

x2 + y2 = 4 cos2 t + 4 sin2 t = 4(cos2 t + sin2 t) = 4.
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So, the plane curve lies on the circle of radius 2 centered at the origin. In fact, it’s the

whole circle, as we can see by recognizing what the parameter represents in this

case. Recall from the definition of sine and cosine that if (x, y) is a point on the unit

circle and θ is the angle from the positive x-axis to the line segment joining (x, y) and

the origin, then we define cos θ = x and sin θ = y. Since we have x = 2 cos t and

y = 2 sin t , the parameter t corresponds to the angle θ . Further, the curve is the entire

circle of radius 2, traced out as the angle t ranges from 0 to 2π . A “square” graphing

window is one with the same scale on the x- and y-axes (though not necessarily the

same x and y ranges). Such a square window gives us the circle seen in Figure 10.3c.

(b) Finally, what would change if the domain were limited to 0 ≤ t ≤ π? Since

we’ve identified t as the angle as measured from the positive x-axis, it should be clear

that you will now get the top half of the circle, as shown in Figure 10.3d.

y

x
2 2

 2

2 y

x
2 2

2

FIGURE 10.3c
A circle

FIGURE 10.3d
Top semicircle

�REMARK 1.1

To sketch a parametric graph on

a CAS, you may need to write

the equations in vector format.

For instance, in the case of

example 1.3, instead of entering

x = 2 cos t and y = 2 sin t , you

would enter the ordered pair of

functions (2 cos t, 2 sin t).

Simple modifications to the parametric equations in example 1.3 will produce a variety

of circles and ellipses. We explore this in example 1.4 and the exercises.

EXAMPLE 1.4 More Circles and Ellipses Defined
by Parametric Equations

Identify the plane curves (a) x = 2 cos t, y = 3 sin t, (b) x = 2+ 4 cos t,

y = 3+ 4 sin t and (c) x = 3 cos 2t, y = 3 sin 2t , all for 0 ≤ t ≤ 2π .

y

x
2 2

 3

3

FIGURE 10.4a
x = 2 cos t, y = 3 sin t

Solution A computer-generated sketch of (a) is shown in Figure 10.4a. It’s difficult to

determine from the sketch whether the curve is an ellipse or simply a distorted graph of

a circle. You can rule out a circle, since the parametric equations produce x-values

between −2 and 2 and y-values between −3 and 3. To verify that this is an ellipse,

observe that

x2

4
+ y2

9
= 4 cos2 t

4
+ 9 sin2 t

9
= cos2 t + sin2 t = 1.

A computer-generated sketch of (b) is shown in Figure 10.4b. You should verify

that this is the circle (x − 2)2 + (y − 3)2 = 16. Finally, a computer sketch of (c) is

shown in Figure 10.4c. You should verify that this is the circle x2 + y2 = 9. So, what is

the role of the 2 in the argument of cosine and sine? If you sketched this on a calculator,

you may have noticed that the circle was completed long before the calculator finished

graphing. Because of the 2, a complete circle corresponds to 0 ≤ 2t ≤ 2π or
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y

x
2 6 2

2

4

y

x
3 3

 3

3

FIGURE 10.4b
x = 2+ 4 cos t, y = 3+ 4 sin t

FIGURE 10.4c
x = 3 cos 2t, y = 3 sin 2t

0 ≤ t ≤ π . With the domain 0 ≤ t ≤ 2π , the circle is traced out twice. You might say

that the factor of 2 in the argument doubles the speed with which the curve is traced. �

REMARK 1.2

Look carefully at the plane

curves in examples 1.3 and 1.4

until you can identify the roles

of each of the constants in the

equations x = a + b cos ct,

y(t) = d + e sin ct . These

interpretations are important in

applications.

In example 1.5, we see how to find parametric equations for a line segment.

EXAMPLE 1.5 Parametric Equations for a Line Segment

Find parametric equations for the line segment joining the points (1, 2) and (4, 7).

Solution For a line segment, notice that the parametric equations can be chosen to be

linear functions. That is,

x = a + bt, y = c + dt,

for some constants a, b, c and d. (Eliminate the parameter t to see why this generates a

line.) The simplest way to choose these constants is to have t = 0 correspond to the

starting point (1, 2). Note that if t = 0, the equations reduce to x = a and y = c. To

start our segment at x = 1 and y = 2, we set a = 1 and c = 2. Now note that with

t = 1, the equations are x = a + b and y = c + d. To produce the endpoint (4, 7), we

must have a + b = 4 and c + d = 7. With a = 1 and c = 2, solve to get b = 3 and

d = 5. We now have that

x = 1+ 3t, y = 2+ 5t, for 0 ≤ t ≤ 1

is a pair of parametric equations describing the line segment. �

In general, for parametric equations of the form x = a + bt, y = c + dt , notice that

you can always choose a and c to be the x- and y-coordinates, respectively, of the starting

point (since x = a, y = b corresponds to t = 0). Then b is the difference in x-coordinates

(endpoint minus starting point) and d is the difference in y-coordinates. With these choices,

the line segment is always sketched out for 0 ≤ t ≤ 1.

REMARK 1.3

There are infinitely many

choices of parameters that

produce a given curve. For

instance, you can verify that

x = −2+ 3t, y = −3+ 5t,

for 1 ≤ t ≤ 2

and

x = t, y = 1+ 5t

3
,

for 1 ≤ t ≤ 4

both produce the line segment

from example 1.5. We say that

each of these pairs of parametric

equations is a different

parameterization of the curve.

As we illustrate in example 1.6, every equation of the form y = f (x) can be simply

expressed using parametric equations.

EXAMPLE 1.6 Parametric Equations from an x -y Equation

Find parametric equations for the portion of the parabola y = x2 from (−1, 1)

to (3, 9).
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Solution Any equation of the form y = f (x) can be converted to parametric form

simply by defining t = x . Here, this gives us y = x2 = t2, so that

x = t, y = t2, for −1 ≤ t ≤ 3,

is a parametric representation of the curve. (Of course, you can use the letter x as the

parameter instead of the letter t, if you prefer.) �

Besides indicating an orientation, parametric representations of curves often also

carry with them a built-in restriction on the portion of the curve included, as we see in

example 1.7.

y

x
2 4 2 4 6

 5

5

10

15

20

FIGURE 10.5a
y = (x + 1)2 − 2

y

x
2 4 2 4 6

 5

5

10

15

20

FIGURE 10.5b
x = t2 − 1, y = t4 − 2

EXAMPLE 1.7 Parametric Representations of a Curve
with a Subtle Difference

Sketch the plane curves (a) x = t − 1, y = t2 − 2 and (b) x = t2 − 1, y = t4 − 2.

Solution Since there is no restriction placed on t , we can assume that t can be any

real number. Eliminating the parameter in (a), we get t = x + 1, so that the parametric

equations in (a) correspond to the parabola y = (x + 1)2 − 2, shown in Figure 10.5a.

Notice that the graph includes the entire parabola, since t and hence, x = t − 1 can be

any real number. (If your calculator sketch doesn’t show both sides of the parabola,

adjust the range of t-values in the plot.) The importance of this check is shown by (b).

When we eliminate the parameter, we get t2 = x + 1 and so, y = (x + 1)2 − 2. This

gives the same parabola as in (a). However, the initial computer sketch of the parametric

equations shown in Figure 10.5b shows only the right half of the parabola. To verify

that this is correct, note that since x = t2 − 1, we have that x ≥ −1 for every real

number t. Therefore, the curve is only the right half of the parabola y = (x + 1)2 − 2,

as shown. �

Many plane curves described parametrically are unlike anything you’ve seen so far in

your study of calculus. Many of these are difficult to draw by hand, but can be easily plotted

with a graphing calculator or CAS.

y

x
2 4 2 4

 4

 2

2

4

FIGURE 10.6a
x = t2 − 2, y = t3 − t

EXAMPLE 1.8 Some Unusual Plane Curves

Sketch the plane curves (a) x = t2 − 2, y = t3 − t and (b) x = t3 − t,

y = t4 − 5t2 + 4.

Solution A sketch of (a) is shown in Figure 10.6a. From the vertical line test, this is

not the graph of any function. Further, converting to an x-y equation here is messy and

not particularly helpful. (Try this to see why.) However, examine the parametric

equations to see if important portions of the graph have been left out (e.g., is there

supposed to be anything to the left of x = −2?). Here, x = t2 − 2 ≥ −2 for all t and

y = t3 − t has no maximum or minimum (think about why). It seems that most of the

graph is indeed shown in Figure 10.6a.

A computer sketch of (b) is shown in Figure 10.6b. Again, this is not a familiar

graph. To get an idea of the scope of the graph, note that x = t3 − t has no maximum or

minimum. To find the minimum of y = t4 − 5t2 + 4, note that critical numbers are at
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t = 0 and t = ±
 

5
2

with corresponding function values 4 and − 9
4
, respectively. You

should conclude that y ≥ − 9
4
, as indicated in Figure 10.6b. �

y

x
4 8 4 8

6

4

2

FIGURE 10.6b
x = t3 − t, y = t4 − 5t2 + 4

You should now have some idea of the flexibility of parametric equations. Quite

significantly, a large number of applications translate simply into parametric equations.

Bear in mind that parametric equations communicate more information than do the

corresponding x-y equations. We illustrate this with example 1.9.

EXAMPLE 1.9 Intercepting a Missile in Flight

Suppose that a missile is fired toward your location from 500 miles away and follows a

flight path given by the parametric equations

x = 100t, y = 80t − 16t2, for 0 ≤ t ≤ 5.

Two minutes later, you fire an interceptor missile from your location following the flight

path

x = 500− 200(t − 2), y = 80(t − 2)− 16(t − 2)2, for 2 ≤ t ≤ 7.

Determine whether the interceptor missile hits its target.

y

x
100 200 300 400 500

20

40

60

80

100

FIGURE 10.7a
Missile flight paths

Solution In Figure 10.7a, we have plotted the flight paths for both missiles

simultaneously. The two paths clearly intersect, but this does not necessarily mean that

the two missiles collide. For that to happen, they need to be at the same point at the

same time. To determine whether there are any values of t for which both paths are

simultaneously passing through the same point, we set the two x-values equal:

100t = 500− 200(t − 2)

and obtain one solution: t = 3. Note that this simply says that the two missiles have the

same x-coordinate when t = 3. Unfortunately, the y-coordinates are not the same here,

since when t = 3, we have

80t − 16t2 = 96 but 80(t − 2)− 16(t − 2)2 = 64.

You can see this graphically by plotting the two paths simultaneously for 0 ≤ t ≤ 3

only, as we have done in Figure 10.7b. From the graph, you can clearly see that the two

missiles pass one another without colliding. So, by the time the interceptor missile

intersects the flight path of the incoming missile, it is long gone! Another very nice way

to observe this behavior is to plot the two sets of parametric equations on your graphing

calculator in “simultaneous plot” mode. With this, you can animate the flight paths and

watch the missiles pass by one another. �
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x
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FIGURE 10.7b
Missile flight paths

BEYOND FORMULAS

When thinking of parametric equations, it is often helpful to think of t as representing

time and the graph as representing the position of a moving particle. It is important

to realize that the parameter can be anything. For example, in equations of circles and

ellipses, the parameter may represent the angle as you rotate around the oval. Allowing

the parameter to change from problem to problem gives us an incredible flexibility to

describe the relationship between x and y in the most convenient way possible.
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EXERCISES 10.1

WRITING EXERCISES

1. Interpret in words the roles of each of the constants in the

parametric equations

 
x = a1 + b1 cos(ct)

y = a2 + b2 sin(ct)
.

2. An algorithm was given in example 1.5 for finding parametric

equations of a line segment. Discuss the advantages that this

method has over the other methods presented in remark 1.3.

3. As indicated in remark 1.3, a given curve can be described by

numerous sets of parametric equations. Explain why several

different equations can all be correct. (Hint: Emphasize the

fact that t is a dummy variable.)

4. In example 1.9, you saw that missiles don’t collide even

though their paths intersect. If you wanted to determine

the intersection point of the graphs, explain why you

would need to solve for values s and t (possi-

bly different) such that 100t = 500− 200(s − 2) and

80t − 16t2 = 80(s − 2)− 16(s − 2)2.

In exercises 1–10, sketch the plane curve defined by the given

parametric equations and find a corresponding x-y equation for

the curve.

1.

 
x = 2 cos t

y = 3 sin t
2.

 
x = 1+ 2 cos t

y = −2+ 2 sin t

3.

 
x = −1+ 2t

y = 3t
4.

 
x = 4+ 3t

y = 2− 4t

5.

 
x = 1+ t

y = t2 + 2
6.

 
x = 2− t

y = t2 + 1

7.

 
x = t2 − 1

y = 2t
8.

 
x = t2 − 1

y = t2 + 1

9.

 
x = cos t

y = 3 cos t − 1
10.

 
x = 2 sin t

y = 3 cos t

In exercises 11–20, use your CAS or graphing calculator

to sketch the plane curves defined by the given parametric

equations.

11.

 
x = t3 − 2t

y = t2 − 3
12.

 
x = t3 − 2t

y = t2 − 3t

13.

 
x = t2 − 1

y = t4 − 4t
14.

 
x = t2 − 1

y = t4 − 4t2

15.

 
x = cos 2t

y = sin 7t
16.

 
x = cos 2t

y = sinπ t

17.

 
x = 3 cos 2t + sin 5t

y = 3 sin 2t + cos 5t
18.

 
x = 3 cos 2t + sin 6t

y = 3 sin 2t + cos 6t

19.

 
x = et

y = e−2t 20.

 
x = et

y = e2t

21. Conjecture the difference between the graphs of

 
x = cos 2t ,
y = sin kt

where k is an integer compared to when k is an irrational num-

ber. (Hint: Use exercises 15 and 16 and try k = 3, k =
√

3 and

other values.)

22. Compare the graphs of

 
x = cos 3t

y = sin kt
for k = 1, k = 2,

k = 3, k = 4 and k = 5, and describe the role that k plays in

the graph.

23. Compare the graphs of

 
x = cos t − 1

2
cos kt

y = sin t − 1
2

sin kt
for k = 2,

k = 3, k = 4 and k = 5, and describe the role that k plays

in the graph.

24. Describe the role that r plays in the graph of 
x = r cos t

y = r sin t
and then describe how to sketch the graph of 

x = t cos t

y = t sin t
.

In exercises 25–30,match the parametric equationswith the cor-

responding plane curve displayed in Figures A–F. Give reasons

for your choices.

25.

 
x = t2 − 1

y = t4 26.

 
x = t − 1

y = t3

27.

 
x = t2 − 1

y = sin t
28.

 
x = t2 − 1

y = sin 2t

29.

 
x = cos 3t

y = sin 2t
30.

 
x = 3 cos t

y = 2 sin t

y

x
0.5 1 0.5 1

 0.5

 1

0.5

1

FIGURE A
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y

x
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FIGURE B

y

x
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FIGURE C

y

x
 1 1 3

 8

 4

4

8

FIGURE D

y

x
3020

 1

1

FIGURE E

y

x
1 2 3 1 2 3

 1

 3

1

3

FIGURE F

In exercises 31–40, find parametric equations describing the

given curve.

31. The line segment from (0, 1) to (3, 4)

32. The line segment from (3, 1) to (1, 3)

33. The line segment from (−2, 4) to (6, 1)

34. The line segment from (4, −2) to (2, −1)

35. The portion of the parabola y = x2 + 1 from (1, 2) to (2, 5)

36. The portion of the parabola y = 2x2 − 1 from (0,−1) to (2, 7)

37. The portion of the parabola y = 2− x2 from (2, −2) to (0, 2)

38. The portion of the parabola y = x2 + 1 from (1, 2) to (−1, 2)

39. The circle of radius 3 centered at (2, 1), drawn counter-

clockwise

40. The circle of radius 5 centered at (−1, 3), drawn counter-

clockwise

In exercises 41–44, find all points of intersection of the two

curves.

41.

 
x = t

y = t2 − 1
and

 
x = 1+ s

y = 4− s

42.

 
x = t2

y = t + 1
and

 
x = 2+ s

y = 1− s

43.

 
x = t + 3

y = t2 and

 
x = 1+ s

y = 2− s

44.

 
x = t2 + 3

y = t3 + t
and

 
x = 2+ s

y = 1− s

45. Rework example 1.9 with the interceptor missile

following the flight path x = 500− 500(t − 2) and

y = 208(t − 2)− 16(t − 2)2.

46. Rework example 1.9 with the interceptor missile following the

flight path x = 500− 100t and y = 80t − 16t2.
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47. In example 1.9 and exercise 45, explain why the 2 in the term

t − 2 represents the time delay between the launches of the

two missiles. For the equations in example 1.9, find a value of

the time delay such that the two missiles do collide.

48. Explain why the missile path in exercise 46 must produce a

collision (compare the y-equations) but is unrealistic.

Exercises 49–56 explore the sound barrier problem discussed in

the chapter introduction. Define 1 unit to be the distance trav-

eled by sound in 1 second.

49. Suppose a sound wave is emitted from the origin at time 0.

After t seconds (t > 0), explain why the position in units of

the sound wave is modeled by x = t cos θ and y = t sin θ ,

where the dummy parameter θ has range 0 ≤ θ ≤ 2π .

50. Find parametric equations as in exercise 49 for the position

at time t seconds (t > 0) of a sound wave emitted at time c

seconds from the point (a, b).

51. Suppose that a jet has speed 0.8 unit per second (i.e., Mach 0.8)

with position function x(t) = 0.8t and y(t) = 0. To model the

position at time t = 5 seconds of various sound waves emitted

by the jet, do the following on one set of axes. (a) Graph the

position after 5 seconds of the sound wave emitted from (0, 0);

(b) graph the position after 4 seconds of the sound wave emit-

ted from (0.8, 0); (c) graph the position after 3 seconds of the

sound wave emitted from (1.6, 0); (d) graph the position after

2 seconds of the sound wave emitted from (2.4, 0); (e) graph

the position after 1 second of the sound wave emitted from

(3.2, 0); (f) mark the position of the jet at time t = 5.

52. Repeat exercise 51 for a jet with speed 1.0 unit per second

(Mach 1). You should notice that the sound waves all intersect

at the jet’s location. This is the “sound barrier” that must be

broken.

53. Repeat exercise 51 for a jet with speed 1.4 units per second

(Mach 1.4).

54. In exercise 53, you should find that the sound waves inter-

sect each other. The intersections form the “shock wave”

that we hear as a sonic boom. Theoretically, the angle θ

between the shock wave and the x-axis satisfies the equation

sin θ = l

m
, where m is the Mach speed of the jet. Show that for

m = 1.4, the theoretical shock wave is formed by the lines

x(t) = 7−
√

0.96t, y(t) = t and x(t) = 7−
√

0.96t,

y(t) = −t . Superimpose these lines onto the graph of

exercise 53.

55. In exercise 54, the shock wave of a jet at Mach 1.4 is modeled by

two lines. Argue that in three dimensions, the shock wave has

circular cross sections. Describe the three-dimensional figure

formed by revolving the lines in exercise 54 about the x-axis.

56. If a pebble is dropped into water, a wave spreads out in an

expanding circle. Let v be the speed of the propagation of the

wave. If a boat moves through this water with speed 1.4v, argue

that the boat’s wake will be described by the graphs of exer-

cises 54 and 55. Graph the wake of a boat with speed 1.6v.

Exercises 57–62 show that a celestial object can incorrectly be

perceived as moving faster than the speed of light.

57. A bright object is at position (0, D) at time 0, where D is a very

large positive number. The object moves toward the positive

x-axis with constant speed v at an angle θ from the vertical.

Find parametric equations for the position of the object at time t.

58. For the object of exercise 57, let s(t) be the distance from

the object to the origin at time t. Then L(t) = s(t)

c
gives the

amount of time it takes for light emitted by the object at time

t to reach the origin. Show that L  (t) = 1

c

v2t − Dv cos θ

s(t)
.

59. An observer stands at the origin and tracks the horizontal

movement of the object in exercises 57 and 58. As com-

puted in exercise 58, light received at time T was emit-

ted by the object at time t, where T = t + L(t). Similarly,

light received at time T + T was emitted at time t + dt ,

where typically dt  =  T . The apparent x-coordinate of the

object at time T is xa(T ) = x(t). The apparent horizontal

speed of the object at time T as measured by the observer is

h(T ) = lim
 T→0

xa(T + T )− xa(T )

 T
. Tracing back to time t,

show that h(t)= lim
dt→0

x(t+dt)− x(t)

 T
= v sin θ

T  (t)
= v sin θ

1+ L  (t)
.

60. In exercise 59, show that h(0) = cv sin θ

c − v cos θ
.

61. For the moving object of exercises 57–60, show that for a con-

stant speed v, the maximum apparent horizontal speed h(10)

occurs when the object moves at an angle with cos θ = v
c

.

Find the maximum speed in terms of v and the contraction

factor γ = 1 
1− v2/c2

.

62. For the moving object of exercises 57–61, show that as v ap-

proaches c, the apparent horizontal speed can exceed c, causing

the observer to measure an object moving faster than the speed

of light! As v approaches c, show that the angle producing the
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maximum apparent horizontal speed decreases to 0. Discuss

why this is paradoxical.

63. Compare the graphs of

 
x = cos 2t

y = sin t
and

 
x = cos t

y = sin 2t
. Use

the identities cos 2t = cos2 t − sin2 t and sin 2t = 2 cos t sin t

to find x-y equations for each graph.

64. Sketch the graph of

 
x = cosh t

y = sinh t
. Use the identity

cosh2 t − sinh2 t = 1 to find an x-y equation for the graph.

Explain where the “hyperbolic” in hyperbolic sine and hyper-

bolic cosine might come from.

65. Sketch the graph of

 
x = 1

2
cos t − 1

4
cos 2t

y = 1
2

sin t − 1
4

sin 2t
. This heart-

shaped region is the largest feature of theMandelbrot set, one

of the most famous mathematical sets. Portions of the Mandel-

brot set have been turned into colorful T-shirts and posters that

you may have seen.

Mandelbrot set

Mandelbrot zoom

To progress further on a sketch of the Mandelbrot set, add the

circle

 
x = −1+ 1

4
cos t

y = 1
4

sin t
to your initial sketch.

66. Determine parametric equations for the curves defined

by x2n + y2n = r 2n for integers n. (Hint: Start with n = 1,

x2 + y2 = r 2, then think of the general equation as (xn)2 +
(yn)2 = r 2n .) Sketch the graphs for n = 1, n = 2 and n = 3,

and predict what the curve will look like for large values of n.

EXPLORATORY EXERCISES

1. Many carnivals have a version of the double Ferris wheel. A

large central arm rotates clockwise. At each end of the central

arm is a Ferris wheel that rotates clockwise around the arm.

Assume that the central arm has length 200 feet and rotates

about its center. Also assume that the wheels have radius 40 feet

and rotate at the same speed as the central arm. Find parametric

equations for the position of a rider and graph the rider’s path.

Adjust the speed of rotation of the wheels to improve the ride.

2. The Flying Zucchini Circus Troupe has a human cannon-

ball act, shooting a performer from a cannon into a spe-

cially padded seat of a turning Ferris wheel. The Ferris

wheel has a radius of 40 feet and rotates counterclockwise at

one revolution per minute. The special seat starts at ground

level. Carefully explain why parametric equations for the

seat are

 
x = 40 cos( π

30
t − π

2
)

y = 40+ 40 sin( π
30

t − π

2
)

. The cannon is located

200 feet left of the Ferris wheel with the muzzle 10 feet

above ground. The performer is launched 35 seconds after

the wheel starts turning with an initial velocity of 100 ft/s

at an angle of π

5
above the horizontal. Carefully explain

why parametric equations for the human cannonball are 
x = (100 cos π

5
)(t − 35)− 200

y = −16(t − 35)2 + (100 sin π

5
)(t − 35)+ 10

(t ≥ 35).

Determine whether the act is safe or the Flying Zucchini

comes down squash.

3. Rework exercise 2 with initial velocity 135 ft/s, launch angle

30◦ and a 27-second delay. How close does the Flying Zucchini

get to the special seat? Given that a Ferris wheel seat actually

has height, width, and depth, do you think that this is close

enough? Repeat with (a) initial velocity 75 ft/s, launch angle

47◦ and 47.25-second delay; (b) initial velocity 118 ft/s, launch

angle 35◦ and 28-second delay. Develop criteria for a safe and

exciting human cannonball act. Consider each of the following:

Should the launch velocity be large or small? Should the seat

be high or low when the cannonball lands? Should the human

have a positive or negative vertical velocity at landing? How

close (vertically and horizontally) should the human need to

get to the center of the seat? Based on your criteria, which of

the launches in this exercise is the best? Find an initial velocity,

launch angle and launch delay that is better.
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FIGURE 10.8a
The Scrambler

y

x
3 3

 3

3

FIGURE 10.8b
Path of a Scrambler rider

10.2 CALCULUS AND PARAMETRIC EQUATIONS

The Scrambler is a popular carnival ride consisting of two sets of rotating arms. (See

Figure 10.8a.) Suppose that the inner arms have length 2 and rotate counterclockwise. In

this case, we can describe the location (xi , yi ) of the end of one of the inner arms by the

parametric equations xi = 2 cos t, yi = 2 sin t . At the end of each inner arm, a set of outer

arms rotate clockwise at roughly twice the speed. If the outer arms have length 1, parametric

equations describing the outer arm rotation are xo = sin 2t, yo = cos 2t . Here, the reversal

of sine and cosine terms indicates that the rotation is clockwise and the factor of 2 inside the

sine and cosine terms indicates that the speed of the rotation is double that of the inner arms.

The position of a person riding the Scrambler is the sum of the two component motions;

that is,

x = 2 cos t + sin 2t, y = 2 sin t + cos 2t.

The graph of these parametric equations is shown in Figure 10.8b. Passengers on

the Scrambler feel like they rapidly accelerate to the outside of the ride, momentarily

stop, then change direction and accelerate to a different point on the outside of the ride.

Figure 10.8b suggests that this is an accurate description of the ride, but we need to develop

the calculus of parametric equations to determine whether the riders actually come to a

complete stop.

REMARK 2.1

Be careful with how you

interpret equation (2.1). The

primes on the right side of the

equation refer to derivatives

with respect to the parameter t.

We recommend that you (at

least initially) use the Leibniz

notation, which also gives you a

simple way to accurately

remember the chain rule.

Our initial aim is to find a way to determine the slopes of tangent lines to curves that are

defined parametrically. First, recall that for a differentiable function y = f (x), the slope of

the tangent line at the point x = a is given by f  (a). Written in Leibniz notation, the slope

is
dy

dx
(a). In the case of the Scrambler ride, both x and y are functions of the parameter t.

Notice that if x = x(t) and y = y(t) both have derivatives that are continuous at t = c, the

chain rule gives us

dy

dt
= dy

dx

dx

dt
.

As long as
dx

dt
(c)  = 0, we then have

dy

dx
(a) =

dy

dt
(c)

dx

dt
(c)

= y (c)

x  (c)
, (2.1)

where a = x(c). In the case where x  (c) = y (c) = 0, we define

dy

dx
(a) = lim

t→c

dy

dt
dx

dt

= lim
t→c

y (t)
x  (t)

, (2.2)

provided the limit exists.
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We can use (2.1) to calculate second (as well as higher order) derivatives. Notice that

if we replace y by
dy

dx
, we get

d2 y

dx2
= d

dx

 
dy

dx

 
=

d

dt

 
dy

dx

 
dx

dt

. (2.3)

CAUTION

Look carefully at (2.3) and

convince yourself that

d2 y

dx2
 =

d2 y

dt2

d2x

dt2

.

Equating these two expressions

is a common error. You should

be careful to avoid this trap.

y

x
3 3

 3

3

t   0

t   d

t   w

FIGURE 10.9
Tangent lines to the

Scrambler path

EXAMPLE 2.1 Slopes of Tangent Lines to the Path
of the Scrambler

Find the slope of the tangent line to the path of the Scrambler

x = 2 cos t + sin 2t, y = 2 sin t + cos 2t at (a) t = 0; (b) t = π
4

and (c) the point

(0,−3).

Solution (a) First, note that

dx

dt
= −2 sin t + 2 cos 2t and

dy

dt
= 2 cos t − 2 sin 2t.

From (2.1), the slope of the tangent line at t = 0 is then

dy

dx

    
t=0

=
dy

dt
(0)

dx

dt
(0)

= 2 cos 0− 2 sin 0

−2 sin 0+ 2 cos 0
= 1.

(b) The slope of the tangent line at t = π
4

is

dy

dx

    
t=π/4

=
dy

dt

 π
4

 
dx

dt

 π
4

 = 2 cos
π

4
− 2 sin

π

2

−2 sin
π

4
+ 2 cos

π

2

=
√

2− 2

−
√

2
.

(c) To determine the slope at the point (0,−3), we must first determine a value of t that

corresponds to the point. In this case, notice that t = 3π/2 gives x = 0 and y = −3.

Here, we have

dx

dt

 
3π

2

 
= dy

dt

 
3π

2

 
= 0

and consequently, we must use (2.2) to compute
dy

dx
. Since the limit has the

indeterminate form 0
0
, we use l’Hôpital’s Rule, to get

dy

dx

 
3π

2

 
= lim

t→3π/2

2 cos t − 2 sin 2t

−2 sin t + 2 cos 2t
= lim

t→3π/2

−2 sin t − 4 cos 2t

−2 cos t − 4 sin 2t
,

which does not exist, since the limit in the numerator is 6 and the limit in the

denominator is 0. This says that the slope of the tangent line at t = 3π/2 is undefined.

In Figure 10.9, we have drawn in the tangent lines at t = 0, π/4 and 3π/2. Notice that

the tangent line at the point (0,−3) is vertical. �

For the passenger on the Scrambler of example 2.1, notice that the slope of the tangent

line indicates the direction of motion and does not correspond to speed, which we discuss

shortly.

Finding slopes of tangent lines can help us identify many points of interest.
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EXAMPLE 2.2 Finding Vertical and Horizontal Tangent Lines

Identify all points at which the plane curve x = cos 2t, y = sin 3t has a horizontal or

vertical tangent line.

y

x
1 1

 1

1

FIGURE 10.10
x = cos 2t, y = sin 3t

Solution A sketch of the curve is shown in Figure 10.10. There appear to be two

locations (the top and bottom of the bow) with horizontal tangent lines and one point

(the far right edge of the bow) with a vertical tangent line. Recall that horizontal tangent

lines occur where
dy

dx
= 0. From (2.1), we then have

dy

dx
= y (t)

x  (t)
= 0, which can occur

only when

0 = y (t) = 3 cos 3t,

provided that x  (t) = −2 sin 2t  = 0 for the same value of t. Since cos θ = 0 only

when θ is an odd multiple of π
2

, we have that y (t) = 3 cos 3t = 0, only when

3t = π
2
, 3π

2
, 5π

2
, . . . and so, t = π

6
, 3π

6
, 5π

6
, . . . . The corresponding points on the curve

are then  
x
 π

6

 
, y

 π
6

  
=

 
cos

π

3
, sin

π

2

 
=

 
1

2
, 1

 
,

 
x

 
3π

6

 
, y

 
3π

6

  
=

 
cosπ, sin

3π

2

 
= (−1,−1),

 
x

 
7π

6

 
, y

 
7π

6

  
=

 
cos

7π

3
, sin

7π

2

 
=

 
1

2
,−1

 

and

 
x

 
9π

6

 
, y

 
9π

6

  
=

 
cos 3π, sin

9π

2

 
= (−1, 1).

Note that t = 5π
6

and t = 11π
6

reproduce the first and third points, respectively, and

so on. The points ( 1
2
, 1) and ( 1

2
,−1) are on the top and bottom of the bow, respectively,

where there clearly are horizontal tangents. The points (−1,−1) and (−1, 1) should not

seem quite right, though. These points are on the extreme ends of the bow and certainly

don’t look like they have vertical or horizontal tangents. In fact, they don’t. Notice that

at both t = π
2

and t = 3π
2

, we have x  (t) = y (t) = 0 and so, the slope must be

computed as a limit using (2.2). We leave it as an exercise to show that the slopes at

t = π
2

and t = 3π
2

are 9
4

and − 9
4
, respectively.

To find points where there is a vertical tangent, we need to see where x  (t) = 0 but

y (t)  = 0. Setting 0 = x  (t) = −2 sin 2t , we get sin 2t = 0, which occurs if 2t = 0, π,

2π, . . . or t = 0, π
2
, π, . . . . The corresponding points are

(x(0), y(0)) = (cos 0, sin 0) = (1, 0),

(x(π ), y(π )) = (cos 2π, sin 3π ) = (1, 0)

and the points corresponding to t = π
2

and t = 3π
2

, which we have already discussed

(where y (t) = 0, also). Since y (t) = 3 cos 3t  = 0, for t = 0 or t = π , there is a

vertical tangent line only at the point (1, 0). �

Theorem 2.1 generalizes what we observed in example 2.2.
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THEOREM 2.1

Suppose that x  (t) and y (t) are continuous. Then for the curve defined by the

parametric equations x = x(t) and y = y(t),

(i) if y (c) = 0 and x  (c)  = 0, there is a horizontal tangent line at the point

(x(c), y(c));

(ii) if x  (c) = 0 and y (c)  = 0, there is a vertical tangent line at the point (x(c), y(c)).

x'(t)

 [x'(t)]2 
  [y'(t)]2

y'(t)

FIGURE 10.11
Horizontal and vertical components

of velocity and speed

PROOF

The proof depends on the calculation of derivatives for parametric curves and is left as an

exercise.

Recall that our introductory question about the Scrambler was whether or not the rider

ever comes to a complete stop. To answer this question, we will need to be able to compute

velocities. Recall that if the position of an object moving along a straight line is given by

the differentiable function f (t), the object’s velocity is given by f  (t). The situation with

parametric equations is completely analogous. If the position is given by (x(t), y(t)), for

differentiable functions x(t) and y(t), then the horizontal component of velocity is given

by x  (t) and the vertical component of velocity is given by y (t). (See Figure 10.11.) We

define the speed to be
 

[x  (t)]2 + [y (t)]2. From this, note that the speed is 0 if and only if

x  (t) = y (t) = 0. In this event, there is no horizontal or vertical motion.

EXAMPLE 2.3 Velocity of the Scrambler

For the path of the Scrambler x = 2 cos t + sin 2t, y = 2 sin t + cos 2t , find the

horizontal and vertical components of velocity and speed at times t = 0 and t = π
2

, and

indicate the direction of motion. Also determine all times at which the speed is zero.

Solution Here, the horizontal component of velocity is
dx

dt
= −2 sin t + 2 cos 2t and

the vertical component is
dy

dt
= 2 cos t − 2 sin 2t . At t = 0, the horizontal and vertical

components of velocity both equal 2 and the speed is
√

4+ 4 =
√

8. The rider is

located at the point (x(0), y(0)) = (2, 1) and is moving to the right [since x  (0) > 0] and

up [since y (0) > 0]. At t = π
2

, the velocity has components −4 (horizontal) and 0

(vertical) and the speed is
√

16+ 0 = 4. At this time, the rider is located at the point

(0, 1) and is moving to the left [since x  
 
π
2

 
< 0].

In general, the speed of the rider at time t is given by

s(t) =
  

dx

dt

 2

+
 

dy

dt

 2

=
 

(−2 sin t + 2 cos 2t)2 + (2 cos t − 2 sin 2t)2

=
 

4 sin2 t − 8 sin t cos 2t + 4 cos2 2t + 4 cos2 t − 8 cos t sin 2t + 4 sin2 2t

=
√

8− 8 sin t cos 2t − 8 cos t sin 2t

=
√

8− 8 sin 3t,

using the identities sin2 t + cos2 t = 1, cos2 2t + sin2 2t = 1 and

sin t cos 2t + sin 2t cos t = sin 3t . So, the speed is 0 whenever sin 3t = 1.



722 CHAPTER 10 .. Parametric Equations and Polar Coordinates 10-16

This occurs when 3t = π
2
, 5π

2
, 9π

2
, . . . , or t = π

6
, 5π

6
, 9π

6
, . . . . The corresponding points

on the curve are
 
x
 
π
6

 
, y

 
π
6

  =  
3
2

√
3, 3

2

 
,
 
x
 

5π
6

 
, y

 
5π
6

  =  − 3
2

√
3, 3

2

 
and 

x
 

9π
6

 
, y

 
9π
6

  = (0,−3). You can easily verify that these points are the three tips of

the path seen in Figure 10.8b. �

We just showed that riders in the Scrambler of Figure 10.8b actually come to a brief

stop at the outside of each loop. As you will explore in the exercises, for similar Scrambler

paths, the riders slow down but have a positive speed at the outside of each loop. This is

true of the Scrambler at most carnivals, for which a more complicated path makes up for

the lack of stopping.

Notice that the Scrambler path shown in Figure 10.8b begins and ends at the same

point and so, encloses an area. An interesting question is to determine the area enclosed

by such a curve. Computing areas in parametric equations is a straightforward extension

of our original development of integration. Recall that for a continuous function f defined

on [a, b], where f (x) ≥ 0 on [a, b], the area under the curve y = f (x) for a ≤ x ≤ b is

given by

A =
 b

a

f (x) dx =
 b

a

y dx .

Now, suppose that this same curve is described parametrically by x = x(t) and y = y(t),

where the curve is traversed exactly once for c ≤ t ≤ d. We can then compute the area

by making the substitution x = x(t). It then follows that dx = x  (t) dt and so, the area is

given by

A =
 b

a

y    
y(t)

dx    
x  (t)dt

=
 d

c

y(t)x  (t) dt,

where you should notice that we have also changed the limits of integration to match the

new variable of integration. We generalize this result in Theorem 2.2.

THEOREM 2.2 (Area Enclosed by a Curve Defined Parametrically)

Suppose that the parametric equations x = x(t) and y = y(t), with c ≤ t ≤ d,

describe a curve that is traced out clockwise exactly once, as t increases from c to d

and where the curve does not intersect itself, except that the initial and terminal points

are the same [i.e., x(c) = x(d) and y(c) = y(d)]. Then the enclosed area is given by

A =
 d

c

y(t)x  (t) dt = −
 d

c

x(t)y (t) dt. (2.4)

If the curve is traced out counterclockwise, then the enclosed area is given by

A = −
 d

c

y(t)x  (t) dt =
 d

c

x(t)y (t) dt. (2.5)

PROOF

This result is a special case of Green’s Theorem, which we will develop in section 15.4.

The new area formulas given in Theorem 2.2 turn out to be quite useful. As we see in

example 2.4, we can use these to find the area enclosed by a parametric curve.
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EXAMPLE 2.4 Finding the Area Enclosed by a Curve

Find the area enclosed by the path of the Scrambler x = 2 cos t + sin 2t,

y = 2 sin t + cos 2t .

Solution Notice that the curve is traced out counterclockwise once for 0 ≤ t ≤ 2π .

From (2.5), the area is then

A =
 2π

0

x(t)y (t) dt =
 2π

0

(2 cos t + sin 2t)(2 cos t − 2 sin 2t) dt

=
 2π

0

(4 cos2 t − 2 cos t sin 2t − 2 sin2 2t) dt = 2π,

where we evaluated the integral using a CAS. �

In example 2.5, we use Theorem 2.2 to derive a formula for the area enclosed by

an ellipse. Pay particular attention to how much easier this is to do with parametric equations

than it is to do with the original x-y equation.

EXAMPLE 2.5 Finding the Area Enclosed by an Ellipse

Find the area enclosed by the ellipse
x2

a2
+ y2

b2
= 1 (for constants a, b > 0).

Solution One way to compute the area is to solve the equation for y to obtain

y = ±b

 
1− x2

a2
and then integrate:

A =
 a

−a

 
b

 
1− x2

a2
−

 
−b

 
1− x2

a2

  
dx .

You can evaluate this integral by trigonometric substitution or by using a CAS, but a

simpler, more elegant way to compute the area is to use parametric equations. Notice

that the ellipse is described parametrically by x = a cos t, y = b sin t , for 0 ≤ t ≤ 2π .

The ellipse is then traced out counterclockwise exactly once for 0 ≤ t ≤ 2π , so that the

area is given by (2.5) to be

A = −
 2π

0

y(t)x  (t) dt = −
 2π

0

(b sin t)(−a sin t) dt = ab

 2π

0

sin2 t dt = abπ,

where this last integral can be evaluated by using the half-angle formula:

sin2 t = 1

2
(1− cos 2t).

We leave the details of this calculation as an exercise. �

BEYOND FORMULAS

The formulas in this section are not new, but are simply modifications of the well-

established rules for differentiation and integration. If you think of them this way, they

are not complicated memorization exercises, but instead are old standards expressed

in a slightly different way.



724 CHAPTER 10 .. Parametric Equations and Polar Coordinates 10-18

EXERCISES 10.2

WRITING EXERCISES

1. In the derivation of parametric equations for the Scrambler,

we used the fact that reversing the sine and cosine functions

to

 
x = sin t

y = cos t
causes the circle to be traced out clockwise.

Explain why this is so by starting at t = 0 and following the

graph as t increases to 2π .

2. Explain why Theorem 2.1 makes sense. (Hint: If y (c) = 0,

what does that say about the change in y-coordinates on the

graph? Why do you also need x  (c)  = 0 to guarantee a hori-

zontal tangent?)

3. Imagine an object with position given by x(t) and y(t). If a

right triangle has a horizontal leg of length x  (t) and a vertical

leg of length y (t), what would the length of the hypotenuse

represent? Explain why this makes sense.

4. Explain why the sign (±) of
 d

c
y(t)x  (t) dt in Theorem 2.2

is different for curves traced out clockwise and counter-

clockwise.

In exercises 1–6, find the slopes of the tangent lines to the given

curves at the indicated points.

1.

 
x = t2 − 2

y = t3 − t
(a) t = −1, (b) t = 1, (c) (−2, 0)

2.

 
x = t3 − t

y = t4 − 5t2 + 4
(a) t = −1, (b) t = 1, (c) (0, 4)

3.

 
x = 2 cos t

y = 3 sin t
(a) t = π

4
, (b) t = π

2
, (c) (0, 3)

4.

 
x = 2 cos 2t

y = 3 sin 2t
(a) t = π

4
, (b) t = π

2
, (c) (−2, 0)

5.

 
x = cos 2t

y = sin 4t
(a) t = π

4
, (b) t = π

2
, (c)

 √
2

2
, 1

 

6.

 
x = cos 2t

y = sin 3t
(a) t = π

2
, (b) t = 3π

2
, (c) (1, 0)

In exercises 7 and 8, sketch the graph and find the slope of the

curve at the given point.

7.

 
x = t2 − 2

y = t3 − t
at (−1, 0)

8.

 
x = t3 − t

y = t4 − 5t2 + 4
at (0, 0)

In exercises 9–14, identify all points at which the curve has

(a) a horizontal tangent and (b) a vertical tangent.

9.

 
x = cos 2t

y = sin 4t
10.

 
x = cos 2t

y = sin 7t

11.

 
x = t2 − 1

y = t4 − 4t
12.

 
x = t2 − 1

y = t4 − 4t2

13.

 
x = 2 cos t + sin 2t

y = 2 sin t + cos 2t
14.

 
x = 2 cos 2t + sin t

y = 2 sin 2t + cos t

In exercises 15–20, parametric equations for the position of an

object are given. Find the object’s velocity and speed at the given

times and describe its motion.

15.

 
x = 2 cos t

y = 2 sin t
(a) t = 0, (b) t = π

2

16.

 
x = 2 cos 2t

y = 2 sin 2t
(a) t = 0, (b) t = π

2

17.

 
x = 20t

y = 30− 2t − 16t2 (a) t = 0, (b) t = 2

18.

 
x = 40t + 5

y = 20+ 3t − 16t2 (a) t = 0, (b) t = 2

19.

 
x = 2 cos 2t + sin 5t

y = 2 sin 2t + cos 5t
(a) t = 0, (b) t = π

2

20.

 
x = 3 cos t + sin 3t

y = 3 sin t + cos 3t
(a) t = 0, (b) t = π

2

In exercises 21–28, find the area enclosed by the given curve.

21.

 
x = 3 cos t

y = 2 sin t
22.

 
x = 6 cos t

y = 2 sin t

23.

 
x = 1

2
cos t − 1

4
cos 2t

y = 1
2

sin t − 1
4

sin 2t
24.

 
x = 2 cos 2t + cos 4t

y = 2 sin 2t + sin 4t

25.

 
x = cos t

y = sin 2t
,
π

2
≤ t ≤ 3π

2

26.

 
x = t sin t

y = t cos t
, −π

2
≤ t ≤ π

2

27.

 
x = t3 − 4t

y = t2 − 3
, −2 ≤ t ≤ 2

28.

 
x = t3 − 4t

y = t4 − 1
, −2 ≤ t ≤ 2
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In exercises 29 and 30, find the speed of the object each time it

crosses the x-axis.

29.

 
x = 2 cos2 t + 2 cos t − 1

y = 2(1− cos t) sin t
30.

 
x = 6 cos t + 5 cos 3t

y = 6 sin t − 5 sin 3t

31. A modification of the Scrambler in example 2.1 is 
x = 2 cos 3t + sin 5t

y = 2 sin 3t + cos 5t
. In example 2.1, the ratio of the speed

of the outer arms to the speed of the inner arms is 2-to-1. What

is the ratio in this version of the Scrambler? Sketch a graph

showing the motion of this new Scrambler.

32. Compute the speed of the Scrambler in exercise 31. Using

trigonometric identities as in example 2.3, show that the speed

is at a minimum when sin 8t = 1 but that the speed is never

zero. Show that the minimum speed is reached at the outer

points of the path.

33. Find parametric equations for a Scrambler that is the same as in

example 2.1 except that the outer arms rotate three times as fast

as the inner arms. Sketch a graph of its motion and determine

its minimum and maximum speeds.

34. Find parametric equations for a Scrambler that is the same as in

example 2.1 except that the inner arms have length 3. Sketch a

graph of its motion and determine its minimum and maximum

speeds.

35. Suppose an object follows the path

 
x = sin 4t

y = −cos 4t
. Show that

its speed is constant. Show that, at any time t, the tangent line

is perpendicular to a line connecting the origin and the object.

36. A Ferris wheel has height 100 feet and completes one revolu-

tion in 3 minutes at a constant speed. Compute the speed of a

rider in the Ferris wheel.

37. Suppose you are standing at the origin watching an object

that has position (x(t), y(t)) at time t. Show that, from your

perspective, the object is moving clockwise if

 
y(t)

x(t)

  
< 0

and is moving counterclockwise if

 
y(t)

x(t)

  
> 0.

38. In the Ptolemaic model of planetary motion, the earth was at the

center of the solar system and the sun and planets orbited the

earth. Circular orbits, which were preferred for aesthetic rea-

sons, could not account for the actual motion of the planets as

viewed from the earth. Ptolemy modified the circles into epicy-

cloids, which are circles on circles similar to the Scrambler

of example 2.1. Suppose that a planet’s motion is given by 
x = 10 cos 16π t + 20 cos 4π t

y = 10 sin 16π t + 20 sin 4π t
. Using the result of

exercise 37, find the intervals in which the planet rotates

clockwise and the intervals in which the planet rotates coun-

terclockwise.

39. Find parametric equations for the path traced out by a spe-

cific point on a circle of radius r rolling from left to right at a

constant speed v > r . Assume that the point starts at (r, r ) at

time t = 0. (Hint: First, find parametric equations for the center

of the circle. Then, add on parametric equations for the point

going around the center of the circle.) Find the minimum and

maximum speeds of the point and the locations where each

occurs. Graph the curve for v = 3 and r = 2. This curve is

called a cycloid.

40. Find parametric equations for the path traced out by a spe-

cific point inside the circle as the circle rolls from left to right.

(Hint: If r is the radius of the circle, let d < r be the distance

from the point to the center.) Find the minimum and maximum

speeds of the point and the locations where each occurs. Graph

the curve for v = 3, r = 2 and d = 1. This curve is called a

trochoid.

41. A hypocycloid is the path traced out by a point on a smaller

circle of radius b that is rolling inside a larger circle of ra-

dius a > b. Find parametric equations for the hypocycloid and

graph it for a = 5 and b = 3. Find an equation in terms of the

parameter t for the slope of the tangent line to the hypocycloid

and determine one point at which the tangent line is vertical.

What interesting simplification occurs if a = 2b?

Figure for exercise 41 Figure for exercise 42

42. An epicycloid is the path traced out by a point on a smaller

circle of radius b that is rolling outside a larger circle of ra-

dius a > b. Find parametric equations for the epicycloid and

graph it for a = 8 and b = 5. Find an equation in terms of the

parameter t for the slope of the tangent line to the epicycloid

and determine one point at which the slope is vertical. What

interesting simplification occurs if a = 2b?

43. Suppose that x = 2 cos t and y = 2 sin t . At the point (
√

3, 1),

show that
d2 y

dx2
(
√

3)  =
d2 y

dt2
(π/6)

d2x

dt2
(π/6)

.

44. For x = at2 and y = bx2 for nonzero constants a and b,

determine whether there are any values of t such that

d2 y

dx2
(x(t)) =

d2 y

dt2
(t)

d2x

dt2
(t)

.
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EXPLORATORY EXERCISES

1. By varying the speed of the outer arms, the Scrambler of exam-

ple 2.1 can be generalized to

 
x = 2 cos t + sin kt

y = 2 sin t + cos kt
for some

positive constant k. Show that the minimum speed for any such

Scrambler is reached at the outside of a loop. Show that the

only value of k that actually produces a speed of 0 is k = 2.

By varying the lengths of the arms, you can further generalize

the Scrambler to

 
x = r cos t + sin kt

y = r sin t + cos kt
for positive constants

r > 1 and k. Sketch the paths for several such Scramblers and

determine the relationship between r and k needed to produce

a speed of 0.

2. Bézier curves are essential in almost all areas of mod-

ern engineering design. (For instance, Bézier curves were

used for sketching many of the figures for this book.) One

version of a Bézier curve starts with control points at

(a, ya), (b, yb), (c, yc) and (d, yd ). The Bézier curve passes

through the points (a, ya) and (d, yd ). The tangent line at x = a

passes through (b, yb) and the tangent line at x = d passes

through (c, yc). Show that these criteria are met, for 0 ≤ t ≤ 1,

with⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x = (a + b − c − d)t3 + (2d − 2b + c − a)t2

+ (b − a)t + a

y = (ya + yb − yc − yd )t3 + (2yd − 2yb + yc − ya)t2

+ (yb − ya)t + ya

Use this formula to find and graph the Bézier curve with con-

trol points (0, 0), (1, 2), (2, 3) and (3, 0). Explore the effect of

moving the middle control points, for example, moving them

up to (1, 3) and (2, 4), respectively.

10.3 ARC LENGTH AND SURFACE AREA
IN PARAMETRIC EQUATIONS

In this section, we investigate arc length and surface area for curves defined parametri-

cally. Along the way, we explore one of the most famous and interesting curves in mathe-

matics.

Let C be the curve defined by the parametric equations x = x(t) and y = y(t), for

a ≤ t ≤ b (see Figure 10.12a), where x, x  , y and y are continuous on the interval [a, b].

We further assume that the curve does not intersect itself, except possibly at a finite number

of points. Our goal is to compute the length of the curve (the arc length). As we have done

countless times now, we begin by constructing an approximation.

y

x

(x(a), y(a))

(x(b), y(b))

FIGURE 10.12a
The plane curve C

y

x

FIGURE 10.12b
Approximate arc length

First, we divide the t-interval [a, b] into n subintervals of equal length,  t :

a = t0 < t1 < t2 < · · · < tn = b,

where ti − ti−1 =  t = b − a

n
, for each i = 1, 2, 3, . . . , n. For each subinterval [ti−1, ti ],

we approximate the arc length si of the portion of the curve joining the point (x(ti−1), y(ti−1))

to the point (x(ti ), y(ti )) with the length of the line segment joining these points. This

approximation is shown in Figure 10.12b for the case where n = 4. We have

si ≈ d{(x(ti−1), y(ti−1)), (x(ti ), y(ti ))}

=
 

[x(ti )− x(ti−1)]2 + [y(ti )− y(ti−1)]2.

Recall that from the Mean Value Theorem (see section 2.8 and make sure you know why

we can apply it here), we have that

x(ti )− x(ti−1) = x  (ci )(ti − ti−1) = x  (ci ) t

and y(ti )− y(ti−1) = y (di )(ti − ti−1) = y (di ) t,
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where ci and di are some points in the interval (ti−1, ti ). This gives us

si ≈
 

[x(ti )− x(ti−1)]2 + [y(ti )− y(ti−1)]2

=
 

[x  (ci ) t]2 + [y (di ) t]2

=
 

[x  (ci )]2 + [y (di )]2 t.

Notice that if  t is small, then ci and di are close together. So, we can make the further

approximation

si ≈
 

[x  (ci )]2 + [y (ci )]2 t,

for each i = 1, 2, . . . , n. The total arc length is then approximately

s ≈
n 

i=1

 
[x  (ci )]2 + [y (ci )]2 t.

Taking the limit as n →∞ then gives us the exact arc length, which you should recognize

as an integral:

s = lim
n→∞

n 
i=1

 
[x  (ci )]2 + [y (ci )]2 t =

 b

a

 
[x  (t)]2 + [y (t)]2 dt.

We summarize this discussion in Theorem 3.1.

THEOREM 3.1 (Arc Length for a Curve Defined Parametrically)

For the curve defined parametrically by x = x(t), y = y(t), a ≤ t ≤ b, if x  and y 

are continuous on [a, b] and the curve does not intersect itself (except possibly at a

finite number of points), then the arc length s of the curve is given by

s =
 b

a

 
[x  (t)]2 + [y (t)]2 dt =

 b

a

  
dx

dt

 2

+
 

dy

dt

 2

dt. (3.1)

In example 3.1, we illustrate the use of (3.1) to find the arc length of the Scrambler

curve from example 2.1.

EXAMPLE 3.1 Finding the Arc Length of a Plane Curve

Find the arc length of the Scrambler curve x = 2 cos t + sin 2t, y = 2 sin t + cos 2t , for

0 ≤ t ≤ 2π . Also, find the average speed of the Scrambler over this interval.

y

x
3 3

 3

3

FIGURE 10.13
x = 2 cos t + sin 2t,

y = 2 sin t + cos 2t,

0 ≤ t ≤ 2π

Solution The curve is shown in Figure 10.13. First, note that x, x  , y and y are all

continuous on the interval [0, 2π ]. From (3.1), we then have

s =
 b

a

  
dx

dt

 2

+
 

dy

dt

 2

dt =
 2π

0

 
(−2 sin t + 2 cos 2t)2 + (2 cos t − 2 sin 2t)2 dt

=
 2π

0

 
4 sin2 t − 8 sin t cos 2t + 4 cos2 2t + 4 cos2 t − 8 cos t sin 2t + 4 sin2 2t dt

=
 2π

0

√
8− 8 sin t cos 2t − 8 cos t sin 2t dt =

 2π

0

√
8− 8 sin 3t dt ≈ 16,
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since sin2 t + cos2 t = 1, cos2 2t + sin2 2t = 1 and sin t cos 2t + sin 2t cos t = sin 3t

and where we have approximated the last integral numerically. To find the average

speed over the given interval, we simply divide the arc length (i.e., the distance

traveled), by the total time, 2π , to obtain

save ≈
16

2π
≈ 2.546.

�

y

x
1 1

 1

1

FIGURE 10.14
A Lissajous curve

We want emphasize that Theorem 3.1 allows the curve to intersect itself at a finite

number of points, but a curve cannot intersect itself over an entire interval of values of the

parameter t. To see why this requirement is needed, notice that the parametric equations

x = cos t, y = sin t , for 0 ≤ t ≤ 4π , describe the circle of radius 1 centered at the origin.

However, the circle is traversed twice as t ranges from 0 to 4π . If you were to apply (3.1)

to this curve, you’d obtain

 4π

0

  
dx

dt

 2

+
 

dy

dt

 2

dt =
 4π

0

 
(− sin t)2 + cos2 t dt = 4π,

which corresponds to twice the arc length (circumference) of the circle. As you can see, if

a curve intersects itself over an entire interval of values of t , the arc length of such a portion

of the curve is counted twice by (3.1).

EXAMPLE 3.2 Finding the Arc Length of a Complicated Plane Curve

Find the arc length of the plane curve x = cos 5t, y = sin 7t , for 0 ≤ t ≤ 2π .

Solution This unusual curve (an example of a Lissajous curve) is sketched in

Figure 10.14. We leave it as an exercise to verify that the hypotheses of Theorem 3.1 are

met. From (3.1), we then have that

s =
 2π

0

  
dx

dt

 2

+
 

dy

dt

 2

dt =
 2π

0

 
(−5 sin 5t)2 + (7 cos 7t)2 dt ≈ 36.5,

where we have approximated the integral numerically. This is a long curve to be

confined within the rectangle −1 ≤ x ≤ 1,−1 ≤ y ≤ 1! �

The arc length formula (3.1) should seem familiar to you. Parametric equations for

a curve y = f (x) are x = t, y = f (t) and from (3.1), the arc length of this curve for

a ≤ x ≤ b is then

s =
 b

a

  
dx

dt

 2

+
 

dy

dt

 2

dt =
 b

a

 
1+ [ f  (t)]2 dt,

which is the arc length formula derived in section 5.4. Thus, the formula developed in

section 5.4 is a special case of (3.1).

Observe that the speed of the Scrambler calculated in example 2.3 and the

length of the Scrambler curve found in example 3.1 both depend on the same

quantity:

  
dx

dt

 2

+
 

dy

dt

 2

. Observe that if the parameter t represents time, then  
dx

dt

 2

+
 

dy

dt

 2

represents speed and from Theorem 3.1, the arc length (i.e., the dis-

tance traveled) is the integral of the speed with respect to time.
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We can use our notion of arc length to address a famous problem called the brachis-

tochrone problem. We state this problem in the context of a downhill skier. Consider a ski

slope consisting of a tilted plane, where a skier wishes to get from a point A at the top of

the slope to a point B down the slope (but not directly beneath A) in the least time possible.

(See Figure 10.15.) Suppose the path taken by the skier is given by the parametric equations

x = x(u) and y = y(u), 0 ≤ u ≤ 1, where x and y determine the position of the skier in the

plane of the ski slope. (For simplicity, we orient the positive y-axis so that it points down.

Also, we name the parameter u since u will, in general, not represent time.)

A

B

FIGURE 10.15
Downhill skier

To derive a formula for the time required to get from point A to point B, start with

the simple formula d = r · t relating the distance to the time and the rate. As seen in the

derivation of the arc length formula (3.1), for a small section of the curve, the distance

is approximately
 

[x  (u)]2 + [y (u)]2. The rate is harder to identify since we aren’t given

position as a function of time. For simplicity, we assume that the only effect of friction is to

keep the skier on the path and that y(t) ≥ 0. In this case, using the principle of conservation

of energy, it can be shown that the skier’s speed is given by

√
y(u)

k
for some constant k ≥ 0.

Putting the pieces together, the total time from point A to point B is given by

Time =
 1

0

k

 
[x  (u)]2 + [y (u)]2

y(u)
du. (3.2)

Your first thought might be that the shortest path from point A to point B is along a straight

line. If you’re thinking of short in terms of distance, you’re right, of course. However, if

you think of short in terms of time (how most skiers would think of it), this is not true. In

example 3.3, we show that the fastest path from point A to point B is, in fact, not along a

straight line, by exhibiting a faster path.

EXAMPLE 3.3 Skiing a Curved Path that Is Faster Than Skiing
a Straight Line

If point A in our skiing example is (0, 0) and point B is (π, 2), show that the cycloid

defined by

x = πu − sinπu, y = 1− cosπu

is faster than the line segment connecting the points. Explain the result in physical terms.

Solution First, note that the line segment connecting the points is given by

x = πu, y = 2u, for 0 ≤ u ≤ 1. Further, both curves meet the endpoint requirements

that (x(0), y(0)) = (0, 0) and (x(1), y(1)) = (π, 2). For the cycloid, we have from (3.2)

that

Time =
 1

0

k

 
[x  (u)]2 + [y (u)]2

y(u)
du

= k

 1

0

 
(π − π cosπu)2 + (π sinπu)2

1− cosπu
du

= k
√

2π

 1

0

 
1− cosπu

1− cosπu
du

= k
√

2π.
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Similarly, for the line segment, we have that

Time =
 1

0

k

 
[x  (u)]2 + [y (u)]2

y(u)
du

= k

 1

0

 
π2 + 22

2u
du

= k
√

2
 
π2 + 4.

Notice that the cycloid route is faster since π <
√
π2 + 4. The two paths are shown in

Figure 10.16. Observe that the cycloid is very steep at the beginning, which would

allow a skier to go faster following the cycloid than following the straight line. As it

turns out, the greater speed of the cycloid more than compensates for the longer

distance of the cycloid path. �

y

x
1 2 3

3

2

1

FIGURE 10.16
Two skiing paths

HISTORICAL
NOTES

Jacob Bernoulli (1654–1705)

and Johann Bernoulli

(1667–1748) Swiss

mathematicians who were

instrumental in the development

of the calculus. Jacob was the

first of several generations of

Bernoullis to make important

contributions to mathematics. He

was active in probability, series

and the calculus of variations and

introduced the term “integral.”

Johann followed his brother into

mathematics while also earning a

doctorate in medicine. Johann

first stated l’Hôpital’s Rule, one

of many results over which he

fought bitterly (usually with his

brother, but, after Jacob’s death,

also with his own son Daniel) to

receive credit. Both brothers

were sensitive, irritable,

egotistical ( Johann had his

tombstone inscribed, “The

Archimedes of his age”) and

quick to criticize others. Their

competitive spirit accelerated

the development of calculus.

We will ask you to construct some skiing paths of your own in the exercises. However, it

has been proved that the cycloid is the plane curve with the shortest time (which is what the

Greek root words for brachistochrone mean). In addition, we will give you an opportunity

to discover another remarkable property of the cycloid, relating to another famous problem,

the tautochrone problem. Both problems have an interesting history focused on brothers

Jacob and Johann Bernoulli, who solved the problem in 1697 (along with Newton, Leibniz

and l’Hôpital) and argued incessantly about who deserved credit.

Much as we did in section 5.4, we can use our arc length formula to find a formula for

the surface area of a surface of revolution. Recall that if the curve y = f (x) for c ≤ x ≤ d

is revolved about the x-axis (see Figure 10.17), the surface area is given by

Surface Area =
 d

c

2π | f (x)|    
radius

 
1+ [ f  (x)]2    

arc length

dx .

Let C be the curve defined by the parametric equations x = x(t) and y = y(t) with

a ≤ t ≤ b, where x, x  , y and y are continuous and where the curve does not intersect

itself for a ≤ t ≤ b. We leave it as an exercise to derive the corresponding formula for

parametric equations:

Surface Area =
 b

a

2π |y(t)|    
radius

 
[x  (t)]2 + [y (t)]2    

arc length

dt.

More generally, we have that if the curve is revolved about the line y = c, the surface area

is given by

Surface Area =
 b

a

2π |y(t)− c|    
radius

 
[x  (t)]2 + [y (t)]2    

arc length

dt. (3.3)

Likewise, if we revolve the curve about the line x = d, the surface area is given by

Surface Area =
 b

a

2π|x(t)− d|    
radius

 
[x  (t)]2 + [y (t)]2    

arc length

dt. (3.4)
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Look carefully at what all of the surface area formulas have in common. That is, in each

case, the surface area is given by

y   f (x)

x

y

dc

Circular cross

sections

FIGURE 10.17
Surface of revolution

y

x
3 3

3

FIGURE 10.18

y = 2

 
1− x2

9

SURFACE AREA

Surface Area =
 b

a

2π (radius)(arc length) dt. (3.5)

Look carefully at the graph of the curve and the axis about which you are revolving, to see

how to fill in the blanks in (3.5). As we observed in section 5.4, it is very important that you

draw a picture here.

EXAMPLE 3.4 Finding Surface Area with Parametric Equations

Find the surface area of the surface formed by revolving the half-ellipse
x2

9
+ y2

4
= 1, y ≥ 0, about the x-axis. (See Figure 10.18.)

Solution It would truly be a mess to set up the integral for y = f (x) = 2
 

1− x2/9.

(Think about this!) Instead, notice that you can represent the curve by the parametric

equations x = 3 cos t, y = 2 sin t , for 0 ≤ t ≤ π . From (3.3), the surface area is then

given by

Surface Area =
 π

0

2π (2 sin t)    
radius

 
(−3 sin t)2 + (2 cos t)2    

arc length

dt

= 4π

 π

0

sin t
 

9 sin2 t + 4 cos2 t dt

= 4π
9
√

5 sin−1(
√

5/3)+ 10

5
≈ 67.7,

where we used a CAS to evaluate the integral. �

y

x
1 2

1

 1

FIGURE 10.19
x = sin 2t, y = cos 3t

EXAMPLE 3.5 Revolving about a Line Other Than a Coordinate Axis

Find the surface area of the surface formed by revolving the curve x = sin 2t,

y = cos 3t , for 0 ≤ t ≤ π/3, about the line x = 2.

Solution A sketch of the curve is shown in Figure 10.19. Since the x-values on the

curve are all less than 2, the radius of the solid of revolution is 2− x = 2− sin 2t and

so, from (3.4), the surface area is given by

Surface Area =
 π/3

0

2π (2− sin 2t)    
radius

 
[2 cos 2t]2 + [−3 sin 3t]2    

arc length

dt ≈ 20.1,

where we have approximated the value of the integral numerically. �

In example 3.6, we model a physical process with parametric equations. Since the

modeling process is itself of great importance, be sure that you understand all of the steps.

See if you can find an alternative approach to this problem.
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EXAMPLE 3.6 Arc Length for a Falling Ladder

An 8-foot-tall ladder stands vertically against a wall. The bottom of the ladder is pulled

along the floor, with the top remaining in contact with the wall, until the ladder rests flat

on the floor. Find the distance traveled by the midpoint of the ladder.

y

x

FIGURE 10.20
Ladder sliding down a wall

Solution We first find parametric equations for the position of the midpoint of the

ladder. We orient the x- and y-axes as shown in Figure 10.20.

Let x denote the distance from the wall to the bottom of the ladder and let y denote

the distance from the floor to the top of the ladder. Since the ladder is 8 feet long, observe

that x2 + y2 = 64. Defining the parameter t = x , we have y =
√

64− t2. The midpoint

of the ladder has coordinates
 

x
2
,

y

2

 
and so, parametric equations for the midpoint are 

x(t) = 1
2
t

y(t) = 1
2

√
64− t2

.

When the ladder stands vertically against the wall, we have x = 0 and when it lies flat

on the floor, x = 4. So, 0 ≤ t ≤ 8. From (3.1), the arc length is then given by

s =
 8

0

  
1

2

 2

+
 

1

2

−t√
64− t2

 2

dt =
 8

0

 
1

4

 
1+ t2

64− t2

 
dt

=
 8

0

1

2

 
64

64− t2
dt =

 8

0

1

2

 
1

1− (t/8)2
dt.

Substituting u = t

8
gives us du = 1

8
dt or dt = 8 du. For the limits of integration, note

that when t = 0, u = 0 and when t = 8, u = 1. The arc length is then

s =
 8

0

1

2

 
1

1− (t/8)2
dt =

 1

0

1

2

 
1

1− u2
8 du = 4 sin−1 u

   u=1

u=0

= 4
 π

2
− 0

 
= 2π.

Since this is a rare arc length integral that can be evaluated exactly, you might be

suspicious that there is an easier way to find the arc length. We explore this in the

exercises. �

EXERCISES 10.3

WRITING EXERCISES

1. In the derivation preceding Theorem 3.1, we justified the

equation
g(ti )− g(ti−1) = g (ci ) t.

Thinking of g(t) as position and g (t) as velocity, explain why

this makes sense.

2. The curve in example 3.2 was a long curve contained within

a small rectangle. What would you guess would be the maxi-

mum length for a curve contained in such a rectangle? Briefly

explain.

3. In example 3.3, we noted that the steeper initial slope of the

cycloid would allow the skier to build up more speed than the

straight-line path. The cycloid takes this idea to the limit by

having a vertical tangent line at the origin. Explain why, despite

the vertical tangent line, it is still physically possible for the

skier to stay on this slope. (Hint: How do the two dimensions

of the path relate to the three dimensions of the ski slope?)

4. The tautochrone problem discussed in exploratory exercise 2

involves starting on the same curve at two different places and
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comparing the times required to reach the end. For the cy-

cloid, compare the speed of a skier starting at the origin versus

one starting halfway to the bottom. Explain why it is not clear

whether starting halfway down would get you to the bottom

faster.

In exercises 1–12, find the arc length of the curve; approximate

numerically, if needed.

1.

 
x = 2 cos t

y = 4 sin t
2.

 
x = 1− 2 cos t

y = 2+ 3 sin t

3.

 
x = t3 − 4t

y = t2 − 3
,−2 ≤ t ≤ 2

4.

 
x = t3 − 4t

y = t2 − 3t
,−2 ≤ t ≤ 2 5.

 
x = cos 4t

y = sin 4t

6.

 
x = cos 7t

y = sin 11t

7.

 
x = t cos t

y = t sin t
,−1 ≤ t ≤ 1

8.

 
x = t2 cos t

y = t2 sin t
,−1 ≤ t ≤ 1

9.

 
x = sin 2t cos t

y = sin 2t sin t
, 0 ≤ t ≤ π/2

10.

 
x = sin 4t cos t

y = sin 4t sin t
, 0 ≤ t ≤ π/2

11.

 
x = sin t

y = sinπ t
, 0 ≤ t ≤ π

12.

 
x = sin t

y = sin
√

2t
, 0 ≤ t ≤ π

In exercises 13–16, show that the curve starts at the origin at

t  0 and reaches the point (π, 2) at t  1. Then use the time

formula (3.2) to determine how long it would take a skier to take

the given path.

13.

 
x = π t

y = 2
√

t
14.

 
x = π t

y = 2 4
√

t

15.

 
x = − 1

2
π (cosπ t − 1)

y = 2t + 7
10

sinπ t
16.

 
x = π t − 0.6 sinπ t

y = 2t + 0.4 sinπ t

In exercises 17–20, find the slope at the origin and the arc length

for the curve in the indicated exercise. Compare to the cycloid

from example 3.3.

17. exercise 13 18. exercise 14

19. exercise 15 20. exercise 16

In exercises 21–26, compute the surface area of the surface ob-

tained by revolving the given curve about the indicated axis.

21.

 
x = t2 − 1

y = t3 − 4t
,−2 ≤ t ≤ 0, about the x-axis

22.

 
x = t2 − 1

y = t3 − 4t
, 0 ≤ t ≤ 2, about the x-axis

23.

 
x = t2 − 1

y = t3 − 4t
,−1 ≤ t ≤ 1, about the y-axis

24.

 
x = t2 − 1

y = t3 − 4t
,−2 ≤ t ≤ 0, about x = −1

25.

 
x = t3 − 4t

y = t2 − 3
, 0 ≤ t ≤ 2, about the y-axis

26.

 
x = t3 − 4t

y = t2 − 3
, 0 ≤ t ≤ 2, about y = 2

27. An 8-foot-tall ladder stands vertically against a wall. The top

of the ladder is pulled directly away from the wall, with the

bottom remaining in contact with the wall, until the ladder

rests on the floor. Find parametric equations for the position

of the midpoint of the ladder. Find the distance traveled by the

midpoint of the ladder.

28. The answer in exercise 27 equals the circumference of a

quarter-circle of radius 4. Discuss whether this is a coin-

cidence or not. Compare this value to the arc length in

example 3.6. Discuss whether or not this is a coincidence.

29. The figure shown here is called Cornu’s spiral. It is de-

fined by the parametric equations x =  t

0
cosπs2ds and

y =  t

0
sinπs2ds. Each of these integrals is important in the

study of Fresnel diffraction. Find the arc length of the spi-

ral for (a) −2π ≤ t ≤ 2π and (b) general a ≤ t ≤ b. Use this

result to discuss the rate at which the spiralling occurs.

y

0.2 0.2 0.4 0.4

 0.4

 0.2

0.4

0.2

x

30. A cycloid is the curve traced out by a point on a circle as the

circle rolls along the x-axis. Suppose the circle has radius 4,

the point we are following starts at (0, 8) and the circle rolls

from left to right. Find parametric equations for the cycloid

and find the arc length as the circle completes one rotation.
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EXPLORATORY EXERCISES

1. For the brachistochrone problem, two criteria for the fastest

curve are: (1) steep slope at the origin and (2) concave down.

(Note in Figure 10.16 that the positive y-axis points downward.)

Explain why these criteria make sense and identify other crite-

ria. Then find parametric equations for a curve (different from

the cycloid or those of exercises 13–16) that meet all the crite-

ria. Use the formula of example 3.3 to find out how fast your

curve is. You can’t beat the cycloid, but get as close as you can!

2. The tautochrone problem is another surprising problem that

was studied and solved by the same seventeenth-century

mathematicians as the brachistochrone problem. (See Journey

Through Genius by William Dunham for a description of this

interesting piece of history, featuring the brilliant yet combat-

ive Bernoulli brothers.) Recall that the cycloid of example 3.3

runs from (0, 0) to (π, 2). It takes the skier k
√

2π = π/g sec-

onds to ski the path. How long would it take the skier starting

partway down the path, for instance, at (π/2− 1, 1)? Find the

slope of the cycloid at this point and compare it to the slope at

(0, 0). Explain why the skier would build up less speed start-

ing at this new point. Graph the speed function for the cycloid

with 0 ≤ u ≤ 1 and explain why the farther down the slope you

start, the less speed you’ll have. To see how speed and distance

balance, use the time formula

T = π
g

 1

a

√
1− cosπu√

cosπa − cosπu
du

for the time it takes to ski the cycloid starting at the point

(πa − sinπa, 1− cosπa), 0 < a < 1. What is the remark-

able property that the cycloid has?

10.4 POLAR COORDINATES

You’ve probably heard the cliche about how difficult it is to try to fit a round peg into a

square hole. In some sense, we have faced this problem on several occasions so far in our

study of calculus. For instance, if we were to use an integral to calculate the area of the

circle x2 + y2 = 9, we would have

A =
 3

−3

  
9− x2 −

 
−
 

9− x2

  
dx = 2

 3

−3

 
9− x2 dx . (4.1)

Note that you can evaluate this integral by making the trigonometric substitution x = 3 sin θ .

(It’s a good thing that we already know a simple formula for the area of a circle!) A better

plan might be to use parametric equations, such as x = 3 cos t, y = 3 sin t , for 0 ≤ t ≤ 2π ,

to describe the circle. In section 10.2, we saw that the area is given by 2π

0

x(t)y (t) dt =
 2π

0

(3 cos t)(3 cos t) dt

= 9

 2π

0

cos2 t dt.

y

x

(x, y)

y

x

0

FIGURE 10.21
Rectangular coordinates

y

x

(r, u )

r

u

FIGURE 10.22
Polar coordinates

This is certainly better than the integral in (4.1), but it still requires some effort to evaluate

this. The basic problem is that circles do not translate well into the usual x-y coordi-

nate system. We often refer to this system as a system of rectangular coordinates, be-

cause a point is described in terms of the horizontal and vertical distances from the origin.

(See Figure 10.21.)

An alternative description of a point in the xy-plane consists of specifying the distance

r from the point to the origin and an angle θ (in radians) measured from the positive

x-axis counterclockwise to the ray connecting the point and the origin. (See Figure 10.22.)

We describe the point by the ordered pair (r, θ ) and refer to r and θ as polar coordinates

for the point.
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EXAMPLE 4.1 Converting from Polar to Rectangular
Coordinates

Plot the points with the indicated polar coordinates (r, θ ) and determine the

corresponding rectangular coordinates (x, y) for: (a) (2, 0), (b) (3, π
2

), (c) (−3, π
2

) and

(d) (2, π ).

Solution (a) Notice that the angle θ = 0 locates the point on the positive x-axis.

At a distance of r = 2 units from the origin, this corresponds to the point (2, 0) in

rectangular coordinates. (See Figure 10.23a.)

(b) The angle θ = π
2

locates points on the positive y-axis. At a distance of r = 3

units from the origin, this corresponds to the point (0, 3) in rectangular coordinates.

(See Figure 10.23b.)

(c) The angle is the same as in (b), but a negative value of r indicates that the point

is located 3 units in the opposite direction, at the point (0, −3) in rectangular

coordinates. (See Figure 10.23b.)

(d) The angle θ = π corresponds to the negative x-axis. The distance of r = 2

units from the origin gives us the point (−2, 0) in rectangular coordinates. (See

Figure 10.23c.)

y

x
(2, 0)

2

y

x

3

 3

(3, q)

( 3, q)

q

2

y

x
(2, p)

p

FIGURE 10.23a
The point (2, 0) in polar

coordinates

FIGURE 10.23b

The points
 

3,
π

2

 
and

 
−3,

π

2

 
in polar coordinates

FIGURE 10.23c
The point (2, π ) in

polar coordinates

�

EXAMPLE 4.2 Converting from Rectangular to
Polar Coordinates

Find a polar coordinate representation of the rectangular point (1, 1).

y

x
1

1

d

 2

FIGURE 10.24a
Polar coordinates for the point (1, 1)

Solution From Figure 10.24a, notice that the point lies on the line y = x , which

makes an angle of π
4

with the positive x-axis. From the distance formula, we get that

r =
√

12 + 12 =
√

2. This says that we can write the point as
 √

2, π
4

 
in polar

coordinates. Referring to Figure 10.24b (on the following page), notice that we can

specify the same point by using a negative value of r, r = −
√

2, with the angle 5π
4

.

(Think about this some.) Notice further, that the angle 9π
4
= π

4
+ 2π corresponds to the
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y

x
1

1

h

 2

y

x
1

1

,   d   2p

 2

FIGURE 10.24b
An alternative polar

representation of (1, 1)

FIGURE 10.24c
Another polar representation

of the point (1, 1)

same ray shown in Figure 10.24a. (See Figure 10.24c.) In fact, all of the polar points

(
√

2, π
4
+ 2nπ ) and (−

√
2, 5π

4
+ 2nπ ) for any integer n correspond to the same point in

the xy-plane. �

Referring to Figure 10.25, notice that it is a simple matter to find the rectangular coor-

dinates (x, y) of a point specified in polar coordinates as (r, θ ). From the usual definitions

for sin θ and cos θ , we get

x = r cos θ and y = r sin θ. (4.2)

From equations (4.2), notice that for a point (x, y) in the plane,

x2 + y2 = r2 cos2 θ + r2 sin2 θ = r2(cos2 θ + sin2 θ ) = r2

and for x  = 0,
y

x
= r sin θ

r cos θ
= sin θ

cos θ
= tan θ.

That is, every polar coordinate representation (r, θ ) of the point (x, y), where x  = 0 must

satisfy

r2 = x2 + y2 and tan θ = y

x
. (4.3)

Notice that since there’s more than one choice of r and θ , we cannot actually solve equa-

tions (4.3) to produce formulas for r and θ . In particular, while you might be tempted to

write θ = tan−1
 

y

x

 
, this is not the only possible choice. Remember that for (r, θ ) to be

a polar representation of the point (x, y), θ can be any angle for which tan θ = y

x
, while

tan−1
 

y

x

 
gives you an angle θ in the interval

 −π
2
, π

2

 
. Finding polar coordinates for a

given point is typically a process involving some graphing and some thought.

REMARK 4.1

As we see in example 4.2, each

point (x, y) in the plane has

infinitely many polar coordinate

representations. For a given

angle θ , the angles θ ± 2π,

θ ± 4π and so on, all

correspond to the same ray. For

convenience, we use the

notation θ + 2nπ (for any

integer n) to represent all of

these possible angles.

y

x

(r, u )

r

x   r cos u

y   r sin u

u

FIGURE 10.25
Converting from polar to

rectangular coordinates EXAMPLE 4.3 Converting from Rectangular to Polar Coordinates

Find all polar coordinate representations for the rectangular points (a) (2, 3) and

(b) (−3, 1).

Solution (a) With x = 2 and y = 3, we have from (4.3) that

r2 = x2 + y2 = 22 + 32 = 13,
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so that r = ±
√

13. Also,

tan θ = y

x
= 3

2
.

One angle is then θ = tan−1
 

3
2

 ≈ 0.98 radian. To determine which choice of r

corresponds to this angle, note that (2, 3) is located in the first quadrant. (See

Figure 10.26a.) Since 0.98 radian also puts you in the first quadrant, this angle

corresponds to the positive value of r, so that
 √

13, tan−1
 

3
2

  
is one polar

representation of the point. The negative choice of r corresponds to an angle one

half-circle (i.e., π radians) away (see Figure 10.26b), so that another representation is −√13, tan−1
 

3
2

 + π . Every other polar representation is found by adding multiples

of 2π to the two angles used above. That is, every polar representation of the point

(2, 3) must have the form
 √

13, tan−1
 

3
2

 + 2nπ
 

or
 −√13, tan−1

 
3
2

 + π + 2nπ
 
,

for some integer choice of n.

REMARK 4.2

Notice that for any point (x, y)

specified in rectangular

coordinates (x  = 0), we can

always write the point in polar

coordinates using either of the

polar angles tan−1
 

y

x

 
or

tan−1
 

y

x

 + π . You can deter-

mine which angle corresponds

to r =
 

x2 + y2 and which

corresponds to r = −
 

x2 + y2

by looking at the quadrant in

which the point lies.

y

x

 13

u   tan 1(    )

3

2

(2, 3)

3
2

y

x

  p

(2, 3)

u   tan 1(    )3
2

u   tan 1(    )3
2

FIGURE 10.26a
The point (2, 3)

FIGURE 10.26b
Negative value of r

(b) For the point (−3, 1), we have x = −3 and y = 1. From (4.3), we have

r2 = x2 + y2 = (−3)2 + 12 = 10,

so that r = ±
√

10. Further,

tan θ = y

x
= 1

−3
,

so that the most obvious choice for the polar angle is θ = tan−1
 − 1

3

 ≈ −0.32, which

lies in the fourth quadrant. Since the point (−3, 1) is in the second quadrant, this choice

of the angle corresponds to the negative value of r. (See Figure 10.27.) The positive

value of r then corresponds to the angle θ = tan−1
 − 1

3

 + π . Observe that all polar

coordinate representations must then be of the form (−
√

10, tan−1
 − 1

3

 + 2nπ ) or

(
√

10, tan−1
 − 1

3

 + π + 2nπ ), for some integer choice of n. �

y

x

u   tan 1( W)

( 3, 1) u   tan 1( W)   p

FIGURE 10.27
The point (−3, 1)

Observe that the conversion from polar coordinates to rectangular coordinates is com-

pletely straightforward, as in example 4.4.

EXAMPLE 4.4 Converting from Polar to Rectangular Coordinates

Find the rectangular coordinates for the polar points (a)
 
3, π

6

 
and (b) (−2, 3).

Solution For (a), we have from (4.2) that

x = r cos θ = 3 cos
π

6
= 3

√
3

2
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and y = r sin θ = 3 sin
π

6
= 3

2
.

The rectangular point is then
 

3
√

3
2
, 3

2

 
. For (b), we have

x = r cos θ = −2 cos 3 ≈ 1.98

and y = r sin θ = −2 sin 3 ≈ −0.28.

The rectangular point is (−2 cos 3,−2 sin 3), which is located at approximately

(1.98, −0.28). �

The graph of a polar equation r = f (θ ) is the set of all points (x, y) for which

x = r cos θ, y = r sin θ and r = f (θ ). In other words, the graph of a polar equation is

a graph in the xy-plane of all those points whose polar coordinates satisfy the given equa-

tion. We begin by sketching two very simple (and familiar) graphs. The key to drawing the

graph of a polar equation is to always keep in mind what the polar coordinates represent.

EXAMPLE 4.5 Some Simple Graphs in Polar Coordinates

Sketch the graphs of (a) r = 2 and (b) θ = π/3.

Solution For (a), notice that 2 = r =
 

x2 + y2 and so, we want all points whose

distance from the origin is 2 (with any polar angle θ ). Of course, this is the definition of

a circle of radius 2 with center at the origin. (See Figure 10.28a.) For (b), notice that

θ = π/3 specifies all points with a polar angle of π/3 from the positive x-axis (at any

distance r from the origin). Including negative values for r, this defines a line with slope

tanπ/3 =
√

3. (See Figure 10.28b.) �

y

2 2

 2

2

x

r   2

FIGURE 10.28a
The circle r = 2

y

x

u

FIGURE 10.28b
The line θ = π

3

y

x
2 4 6 2 4 6

 2

 4

 6

2

4

6

FIGURE 10.29
x2 − y2 = 9

It turns out that many familiar curves have simple polar equations.

EXAMPLE 4.6 Converting an Equation from Rectangular
to Polar Coordinates

Find the polar equation(s) corresponding to the hyperbola x2 − y2 = 9. (See

Figure 10.29.)

Solution From (4.2), we have

9 = x2 − y2 = r2 cos2 θ − r2 sin2 θ

= r2(cos2 θ − sin2 θ ) = r2 cos 2θ.

Solving for r, we get

r2 = 9

cos 2θ
= 9 sec 2θ,

so that r = ±3
√

sec 2θ.

Notice that in order to keep sec 2θ > 0, we can restrict 2θ to lie in the interval

−π
2
< 2θ < π

2
, so that −π

4
< θ < π

4
. Observe that with this range of values of θ , the

hyperbola is drawn exactly once, where r = 3
√

sec 2θ corresponds to the right branch

of the hyperbola and r = −3
√

sec 2θ corresponds to the left branch. �
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EXAMPLE 4.7 A Surprisingly Simple Polar Graph

Sketch the graph of the polar equation r = sin θ .

Solution For reference, we first sketch a graph of the sine function in rectangular

coordinates on the interval [0, 2π ]. (See Figure 10.30a.) Notice that on the interval

0 ≤ θ ≤ π
2
, sin θ increases from 0 to its maximum value of 1. This corresponds to a

polar arc in the first quadrant from the origin (r = 0) to 1 unit up on the y-axis. Then, on

the interval π
2
≤ θ ≤ π, sin θ decreases from 1 to 0. This corresponds to an arc in the

second quadrant, from 1 unit up on the y-axis back to the origin. Next, on the interval

π ≤ θ ≤ 3π
2
, sin θ decreases from 0 to its minimum value of −1. Since the values of r

are negative, remember that this means that the points plotted are in the opposite

quadrant (i.e., the first quadrant). Notice that this traces out the same curve in the first

quadrant as we’ve already drawn for 0 ≤ θ ≤ π
2

. Likewise, taking θ in the interval

y

x

 1

1

q wp 2p

FIGURE 10.30a
y = sin x plotted in rectangular

coordinates

y

x
1 1

1

FIGURE 10.30b
The circle r = sin θ

3π
2
≤ θ ≤ 2π retraces the portion of the curve in the second quadrant. Since sin θ is

periodic of period 2π , taking further values of θ simply retraces portions of the curve

that we have already drawn. A sketch of the polar graph is shown in Figure 10.30b. We

now verify that this curve is actually a circle. Notice that if we multiply the equation

r = sin θ through by r, we get

r2 = r sin θ.

You should immediately recognize from (4.2) and (4.3) that y = r sin θ and

r2 = x2 + y2. This gives us the rectangular equation

x2 + y2 = y

or 0 = x2 + y2 − y.

Completing the square, we get

0 = x2 +
 

y2 − y + 1

4

 
− 1

4

or, adding 1
4

to both sides,  
1

2

 2

= x2 +
 

y − 1

2

 2

.

This is the rectangular equation for the circle of radius 1
2

centered at the point
 
0, 1

2

 
,

which is what we see in Figure 10.30b. �
y

x
20 20

 20

20

FIGURE 10.31
The spiral r = θ, θ ≥ 0

The graphs of many polar equations are not the graphs of any functions of the form

y = f (x), as in example 4.8.

EXAMPLE 4.8 An Archimedian Spiral

Sketch the graph of the polar equation r = θ , for θ ≥ 0.

Solution Notice that here, as θ increases, so too does r. That is, as the polar

angle increases, the distance from the origin also increases accordingly. This produces

the spiral (an example of an Archimedian spiral) seen in Figure 10.31. �

The graphs shown in examples 4.9, 4.10 and 4.11 are all in the general class known as

limaçons. This class of graphs is defined by r = a ± b sin θ or r = a ± b cos θ, for positive

constants a and b. If a = b, the graphs are called cardioids.
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EXAMPLE 4.9 A Limaçon

Sketch the graph of the polar equation r = 3+ 2 cos θ .

Solution We begin by sketching the graph of y = 3+ 2 cos x in rectangular

coordinates on the interval [0, 2π ], to use as a reference. (See Figure 10.32.) Notice that

in this case, we have r = 3+ 2 cos θ > 0 for all values of θ . Further, the maximum

value of r is 5 (corresponding to when cos θ = 1 at θ = 0, 2π , etc.) and the minimum

value of r is 1 (corresponding to when cos θ = −1 at θ = π, 3π , etc.). In this case, the

polar graph is traced out with 0 ≤ θ ≤ 2π . We summarize the intervals of increase and

decrease for r in the following table.

y

x

1

2

3

4

5

q wp 2p

FIGURE 10.32
y = 3+ 2 cos x in rectangular

coordinates

1 2 3 4 5

 3

 2

 1

1

2

3

y

x
 1

FIGURE 10.33a
0 ≤ θ ≤ π

2

Interval cosθ r  3 2 cosθ!
0, π

2

"
Decreases from 1 to 0 Decreases from 5 to 3!

π

2
, π

"
Decreases from 0 to −1 Decreases from 3 to 1!

π, 3π
2

"
Increases from −1 to 0 Increases from 1 to 3!

3π
2
, 2π

"
Increases from 0 to 1 Increases from 3 to 5

In Figures 10.33a–10.33d, we show how the sketch progresses through each interval

indicated in the table, with the completed figure (called a limaçon) shown in

Figure 10.33d.

1 2 3 4 5 1

 3

 2

 1

1

2

3

y

x
1 2 3 4 5

 3

 2

 1

1

2

3

y

x
1 2 3 4 5

 3

 2

 1

1

2

3

y

x

FIGURE 10.33b
0 ≤ θ ≤ π

FIGURE 10.33c
0 ≤ θ ≤ 3π

2

FIGURE 10.33d
0 ≤ θ ≤ 2π

�

EXAMPLE 4.10 The Graph of a Cardioid

Sketch the graph of the polar equation r = 2− 2 sin θ .

Solution As we have done several times now, we first sketch a graph of

y = 2− 2 sin x in rectangular coordinates, on the interval [0, 2π ], as in Figure 10.34.

We summarize the intervals of increase and decrease in the following table.
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y

x

1

2

3

4

q wp 2p

FIGURE 10.34
y = 2− 2 sin x in rectangular

coordinates

Interval sinθ r  2− 2 sinθ!
0, π

2

"
Increases from 0 to 1 Decreases from 2 to 0!

π

2
, π

"
Decreases from 1 to 0 Increases from 0 to 2!

π, 3π
2

"
Decreases from 0 to −1 Increases from 2 to 4!

3π
2
, 2π

"
Increases from −1 to 0 Decreases from 4 to 2

Again, we sketch the graph in stages, corresponding to each of the intervals indicated in

the table, as seen in Figures 10.35a–10.35d.

y

x
1 2 3 1 2 3

 5

 3

 4

 2

 1

1

y

x
1 2 3 1 2 3

 5

 3

 4

 2

 1

1

FIGURE 10.35a
0 ≤ θ ≤ π

2

FIGURE 10.35b
0 ≤ θ ≤ π

y

x
1 2 3 1 2 3

 5

 3

 4

 2

 1

1

y

x
1 2 3 1 2 3

 5

 3

 4

 2

 1

1

FIGURE 10.35c
0 ≤ θ ≤ 3π

2

FIGURE 10.35d
0 ≤ θ ≤ 2π

The completed graph appears in Figure 10.35d and is sketched out for 0 ≤ θ ≤ 2π . You

can see why this figure is called a cardioid (“heartlike”). �

EXAMPLE 4.11 A Limaçon with a Loop

Sketch the graph of the polar equation r = 1− 2 sin θ .

Solution We again begin by sketching a graph of y = 1− 2 sin x in rectangular

coordinates, as in Figure 10.36. We summarize the intervals of increase and decrease in

the following table.
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y

x

1

2

3

q wp 2p

 1

FIGURE 10.36
y = 1− 2 sin x in rectangular

coordinates

Interval sinθ r  1− 2 sinθ!
0, π

2

"
Increases from 0 to 1 Decreases from 1 to −1!

π

2
, π

"
Decreases from 1 to 0 Increases from −1 to 1!

π, 3π
2

"
Decreases from 0 to −1 Increases from 1 to 3!

3π
2
, 2π

"
Increases from −1 to 0 Decreases from 3 to 1

Notice that since r assumes both positive and negative values in this case, we need to

exercise a bit more caution, as negative values for r cause us to draw that portion of the

graph in the opposite quadrant. Observe that r = 0 when 1− 2 sin θ = 0, that is, when

sin θ = 1
2
. This will occur when θ = π

6
and when θ = 5π

6
. For this reason, we expand

the above table, to include more intervals and where we also indicate the quadrant

where the graph is to be drawn, as follows:

Interval sinθ r 1− 2 sinθ Quadrant!
0, π

6

"
Increases from 0 to 1

2
Decreases from 1 to 0 First!

π

6
, π

2

"
Increases from 1

2
to 1 Decreases from 0 to −1 Third!

π

2
, 5π

6

"
Decreases from 1 to 1

2
Increases from −1 to 0 Fourth!

5π
6
, π

"
Decreases from 1

2
to 0 Increases from 0 to 1 Second!

π, 3π
2

"
Decreases from 0 to −1 Increases from 1 to 3 Third!

3π
2
, 2π

"
Increases from −1 to 0 Decreases from 3 to 1 Fourth

We sketch the graph in stages in Figures 10.37a–10.37f, corresponding to each of the

intervals indicated in the table.

y

x
21 1 2

1

 3

 2

 1

y

x
21 1 2

1

 3

 2

 1

y

x
21 1 2

1

 3

 2

 1

FIGURE 10.37a
0 ≤ θ ≤ π

6

FIGURE 10.37b
0 ≤ θ ≤ π

2

FIGURE 10.37c
0 ≤ θ ≤ 5π

6

The completed graph appears in Figure 10.37f and is sketched out for 0 ≤ θ ≤ 2π . You

should observe from this the importance of determining where r = 0, as well as where r

is increasing and decreasing.
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y

x
21 1 2

1

 3

 2

 1

y

x
21 1 2

1

 3

 2

 1

y

x
21 1 2

1

 3

 2

 1

FIGURE 10.37d
0 ≤ θ ≤ π

FIGURE 10.37e
0 ≤ θ ≤ 3π

2

FIGURE 10.37f
0 ≤ θ ≤ 2π

�

EXAMPLE 4.12 A Four-Leaf Rose

Sketch the graph of the polar equation r = sin 2θ .

Solution As usual, we will first draw a graph of y = sin 2x in rectangular coordinates

on the interval [0, 2π ], as seen in Figure 10.38. Notice that the period of sin 2θ is only

π.We summarize the intervals on which the function is increasing and decreasing in the

following table.

Interval r sin 2θ Quadrant!
0, π

4

"
Increases from 0 to 1 First!

π

4
, π

2

"
Decreases from 1 to 0 First!

π

2
, 3π

4

"
Decreases from 0 to −1 Fourth!

3π
4
, π

"
Increases from −1 to 0 Fourth!

π, 5π
4

"
Increases from 0 to 1 Third!

5π
4
, 3π

2

"
Decreases from 1 to 0 Third!

3π
2
, 7π

4

"
Decreases from 0 to −1 Second!

7π
4
, 2π

"
Increases from −1 to 0 Second

y

x

 1

1

q wp 2p

FIGURE 10.38
y = sin 2x in rectangular

coordinates

We sketch the graph in stages in Figures 10.39a–10.39h, each one corresponding to the

intervals indicated in the table, where we have also indicated the lines y = ±x , as a

guide.

This is an interesting curve known as a four-leaf rose. Notice again the significance

of the points corresponding to r = 0, or sin 2θ = 0. Also, notice that r reaches a

maximum of 1 when 2θ = π
2
, 5π

2
, . . . or θ = π

4
, 5π

4
, . . . and r reaches a minimum of −1

when 2θ = 3π
2
, 7π

2
, . . . or θ = 3π

4
, 7π

4
, . . . . Again, you must keep in mind that when the

value of r is negative, this causes us to draw the graph in the opposite quadrant.
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 1

1
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x
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 1

1

FIGURE 10.39a
0 ≤ θ ≤ π

4

FIGURE 10.39b
0 ≤ θ ≤ π

2

FIGURE 10.39c
0 ≤ θ ≤ 3π

4

FIGURE 10.39d
0 ≤ θ ≤ π
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x
1 1

 1

1

y

x
1 1

 1

1

y

x
1 1

 1

1

y

x
1 1

 1

1

FIGURE 10.39e
0 ≤ θ ≤ 5π

4

FIGURE 10.39f
0 ≤ θ ≤ 3π

2

FIGURE 10.39g
0 ≤ θ ≤ 7π

4

FIGURE 10.39h
0 ≤ θ ≤ 2π

�

Note that in example 4.12, even though the period of the function sin 2θ is π , it took

θ -values ranging from 0 to 2π to sketch the entire curve r = sin 2θ . By contrast, the period

of the function sin θ is 2π , but the circle r = sin θ was completed with 0 ≤ θ ≤ π . To

determine the range of values of θ that produces a graph, you need to carefully identify

important points as we did in example 4.12. The Trace feature found on graphing calculators

can be very helpful for getting an idea of the θ -range, but remember that such Trace values

are only approximate.

You will explore a variety of other interesting graphs in the exercises.

BEYOND FORMULAS

The graphics in Figures 10.35, 10.37 and 10.39 provide a good visual model of

how to think of polar graphs. Most polar graphs r = f (θ ) can be sketched as a

sequence of connected arcs, where the arcs start and stop at places where r = 0

or where a new quadrant is entered. By breaking the larger graph into small arcs,

you can use the properties of f to quickly determine where each arc starts and

stops.
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EXERCISES 10.4

WRITING EXERCISES

1. Suppose a point has polar representation (r, θ ). Explain why

another polar representation of the same point is (−r, θ + π ).

2. Afterworkingwith rectangular coordinates for so long, the idea

of polar representationsmay seem slightly awkward. However,

polar representations are entirely natural in many settings. For

instance, if you were on a ship at sea and another ship was ap-

proaching you, explain whether you would use a polar repre-

sentation (distance and bearing) or a rectangular representation

(distance east-west and distance north-south).

3. In example 4.7, the graph (a circle) of r = sin θ is completely

traced out with 0 ≤ θ ≤ π . Explain why graphing r = sin θ

with π ≤ θ ≤ 2π would produce the same full circle.

4. Two possible advantages of introducing a new coordinate sys-

tem are making previous problems easier to solve and allowing

new problems to be solved. Give two examples of graphs for

which the polar equation is simpler than the rectangular equa-

tion. Give two examples of polar graphs for which you have

not seen a rectangular equation.

In exercises 1–6, plot the given polar points (r, θ) and find their

rectangular representation.

1. (2, 0) 2. (2, π ) 3. (−2, π )

4.
 
−3, 3π

2

 
5. (3,−π ) 6.

 
5,− π

2

 

In exercises 7–12, find all polar coordinate representations of

the given rectangular point.

7. (2,−2) 8. (−1, 1) 9. (0, 3)

10. (2,−1) 11. (3, 4) 12. (−2,−
√
5)

In exercises 13–18, find rectangular coordinates for the given

polar point.

13.
 
2,− π

3

 
14.

 
−1, π

3

 
15. (0, 3)

16.
 
3, π

8

 
17.

 
4, π

10

 
18. (−3, 1)

In exercises 19–26, sketch the graph of the polar equation and

find a corresponding x-y equation.

19. r = 4 20. r =
√
3 21. θ = π/6

22. θ = 3π/4 23. r = cos θ 24. r = 2 cos θ

25. r = 3 sin θ 26. r = 2 sin θ

In exercises 27–50, sketch the graph and identify all values of θ

where r  0 and a range of values of θ that produces one copy

of the graph.

27. r = cos 2θ 28. r = cos 3θ

29. r = sin 3θ 30. r = sin 2θ

31. r = 3+ 2 sin θ 32. r = 2− 2 cos θ

33. r = 2− 4 sin θ 34. r = 2+ 4 cos θ

35. r = 2+ 2 sin θ 36. r = 3− 6 cos θ

37. r = 1

4
θ 38. r = e

θ/4

39. r = 2 cos(θ − π/4) 40. r = 2 sin(3θ − π )

41. r = cos θ + sin θ 42. r = cos θ + sin 2θ

43. r = tan−1 2θ 44. r = θ/
√
θ 2 + 1

45. r = 2+ 4 cos 3θ 46. r = 2− 4 sin 4θ

47. r = 2

1+ sin θ
48. r = 3

1− sin θ

49. r = 2

1+ cos θ
50. r = 3

1− cos θ

51. Graph r = 4 cos θ sin2 θ and explain why there is no curve to

the left of the y-axis.

52. Graph r = θ cos θ for −2π ≤ θ ≤ 2π . Explain why this is

called the Garfield curve.

GARFIELD c�2002 Paws, Inc. Reprinted with permission

of UNIVERSAL PRESS SYNDICATE. All rights reserved.

53. Based on your graphs in exercises 23 and 24, conjecture the

graph of r = a cos θ for any positive constant a.

54. Based on your graphs in exercises 25 and 26, conjecture the

graph of r = a sin θ for any positive constant a.

55. Based on the graphs in exercises 27 and 28 and others (try

r = cos 4θ and r = cos 5θ ), conjecture the graph of r = cos nθ

for any positive integer n.

56. Based on the graphs in exercises 29 and 30 and others (try

r = sin 4θ and r = sin 5θ ), conjecture the graph of r = sin nθ

for any positive integer n.

In exercises 57–62, find a polar equation corresponding to the

given rectangular equation.

57. y
2 − x

2 = 4 58. x
2 + y

2 = 9

59. x
2 + y

2 = 16 60. x
2 + y

2 = x

61. y = 3 62. x = 2
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63. Sketch the graph of r = cos 11
12
θ first for 0 ≤ θ ≤ π , then

for 0 ≤ θ ≤ 2π , then for 0 ≤ θ ≤ 3π, . . . and finally for

0 ≤ θ ≤ 24π . Discuss any patterns that you find and predict

what will happen for larger domains.

64. Sketch the graph of r = cosπθ first for 0 ≤ θ ≤ 1, then for

0 ≤ θ ≤ 2, then for 0 ≤ θ ≤ 3, . . . and finally for 0 ≤ θ ≤ 20.

Discuss any patterns that you find and predict what will happen

for larger domains.

65. One situation where polar coordinates apply directly to sports

is in making a golf putt. The two factors that the golfer tries

to control are distance (determined by speed) and direction

(usually called the “line”). Suppose a putter is d feet from

the hole, which has radius h = 1
6

 
. Show that the path of the

ball will intersect the hole if the angle A in the figure satisfies

−sin−1(h/d) < A < sin−1(h/d).

A

  (0, 0)

(r, A)

  (d, 0)

66. The distance r that the golf ball in exercise 65 travels

also needs to be controlled. The ball must reach the front

of the hole. In rectangular coordinates, the hole has equa-

tion (x − d)2 + y2 = h2, so the left side of the hole is

x = d −
 

h2 − y2. Show that this converts in polar coordi-

nates to r = d cos θ −
 

d2 cos2 θ − (d2 − h2). (Hint: Substi-

tute for x and y, isolate the square root term, square both sides,

combine r 2 terms and use the quadratic formula.)

67. The golf putt in exercises 65 and 66 will not go in the hole if it

is hit too hard. Suppose that the putt would go r = d + c feet

if it did not go in the hole (c > 0). For a putt hit toward the

center of the hole, define b to be the largest value of c such that

the putt goes in (i.e., if the ball is hit more than b feet past the

hole, it is hit too hard). Experimental evidence (see Dave Pelz’s

Putt Like the Pros) shows that at other angles A, the distance r

must be less than d + b

 
1−

#
A

sin−1(h/d)

$2
 

. The results of

exercises 65 and 66 define limits for the angle A and distance

r of a successful putt. Identify the functions r1(A) and r2(A)

such that r1(A) < r < r2(A) and constants A1 and A2 such that

A1 < A < A2.

68. Take the general result of exercise 67 and apply it to a putt

of d = 15 feet with a value of b = 4 feet. Visualize this by

graphing the region

15 cos θ −
 

225 cos2 θ − (225− 1/36)

< r < 15+ 4

 
1−

#
θ

sin−1(1/90)

$2
 

with − sin−1(1/90) < θ < sin−1(1/90). A good choice of

graphing windows is 13.8 ≤ x ≤ 19 and −0.5 ≤ y ≤ 0.5.

EXPLORATORY EXERCISES

1. In this exercise, you will explore the roles of the constants

a, b and c in the graph of r = a f (bθ + c). To start, sketch

r = sin θ followed by r = 2 sin θ and r = 3 sin θ . What does

the constant a affect? Then sketch r = sin(θ + π/2) and

r = sin(θ − π/4). What does the constant c affect? Now for

the tough one. Sketch r = sin 2θ and r = sin 3θ . What does

the constant b seem to affect? Test all of your hypotheses

on the base function r = 1+ 2 cos θ and several functions of

your choice.

2. The polar curve r = aebθ is sometimes called an equian-

gular curve. To see why, sketch the curve and then show

that
dr

dθ
= br . A somewhat complicated geometric argument

shows that
dr

dθ
= r cotα, where α is the angle between the

tangent line and the line connecting the point on the curve to

the origin. Comparing equations, conclude that the angle α

is constant (hence “equiangular”). To illustrate this property,

compute α for the points at θ = 0 and θ = π for r = eθ . This

type of spiral shows up often in nature, possibly because the

equal-angle property can be easily achieved. Spirals can be

found among shellfish (the picture shown here is of an am-

monite fossil from about 350 million years ago) and the florets

of the common daisy. Other examples, including the connec-

tion to sunflowers, the Fibonacci sequence and the musical

scale, can be found in H. E. Huntley’s The Divine Proportion.



10-41 SECTION 10.5 .. Calculus and Polar Coordinates 747

10.5 CALCULUS AND POLAR COORDINATES

Having introduced polar coordinates and looked at a variety of polar graphs, our next step

is to extend the techniques of calculus to the case of polar coordinates. In this section,

we focus on tangent lines, area and arc length. Surface area and other applications will be

examined in the exercises.

Notice that you can think of the graph of the polar equation r = f (θ ) as the graph of the

parametric equations x = f (t) cos t, y(t) = f (t) sin t (where we have used the parameter

t = θ ), since from (4.2)

x = r cos θ = f (θ ) cos θ (5.1)

and y = r sin θ = f (θ ) sin θ. (5.2)

In view of this, we can now take any results already derived for parametric equations and

extend these to the special case of polar coordinates.

In section 10.2, we showed that the slope of the tangent line at the point corresponding

to θ = a is given [from (2.1)] to be

dy

dx

    
θ=a

=
dy

dθ
(a)

dx

dθ
(a)

. (5.3)

From the product rule, (5.1) and (5.2), we have

dy

dθ
= f  (θ ) sin θ + f (θ ) cos θ

and
dx

dθ
= f  (θ ) cos θ − f (θ ) sin θ.

Putting these together with (5.3), we get

dy

dx

    
θ=a

= f  (a) sin a + f (a) cos a

f  (a) cos a − f (a) sin a
. (5.4)

EXAMPLE 5.1 Finding the Slope of the Tangent Line
to a Three-Leaf Rose

Find the slope of the tangent line to the three-leaf rose r = sin 3θ at θ = 0 and θ = π
4

.
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FIGURE 10.40a
Three-leaf rose

Solution A sketch of the curve is shown in Figure 10.40a. From (4.2), we have

y = r sin θ = sin 3θ sin θ

and x = r cos θ = sin 3θ cos θ.

Using (5.3), we have

dy

dx
=

dy

dθ
dx

dθ

= (3 cos 3θ ) sin θ + sin 3θ (cos θ )

(3 cos 3θ ) cos θ − sin 3θ (sin θ )
. (5.5)
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At θ = 0, this gives us

dy

dx

    
θ=0

= (3 cos 0) sin 0+ sin 0(cos 0)

(3 cos 0) cos 0− sin 0(sin 0)
= 0

3
= 0.

In Figure 10.40b, we sketch r = sin 3θ for−0.1 ≤ θ ≤ 0.1, in order to isolate the portion

of the curve around θ = 0. Notice that from this figure, a slope of 0 seems reasonable.

Similarly, at θ = π
4

, we have from (5.5) that

dy

dx

    
θ=π/4

=

 
3 cos

3π

4

 
sin
π

4
+ sin

3π

4

 
cos

π

4

 
 

3 cos
3π

4

 
cos

π

4
− sin

3π

4

 
sin
π

4

 = −3

2
+ 1

2

−3

2
− 1

2

= 1

2
.

In Figure 10.40c, we show the section of r = sin 3θ for 0 ≤ θ ≤ π
3

, along with the

tangent line at θ = π
4

. �
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FIGURE 10.40b
−0.1 ≤ θ ≤ 0.1
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FIGURE 10.40c
The tangent line at θ = π

4

Recall that for functions y = f (x), horizontal tangents were especially significant for

locating maximum and minimum points. For polar graphs, the significant points are often

places where r has reached a maximum or minimum, which may or may not correspond to

a horizontal tangent. We explore this idea further in example 5.2.

EXAMPLE 5.2 Polar Graphs and Horizontal Tangent Lines

For the three-leaf rose r = sin 3θ , find the locations of all horizontal tangent lines and

interpret the significance of these points. Further, at the three points where |r | is a

maximum, show that the tangent line is perpendicular to the line segment connecting

the point to the origin.

x

 2

 3

 1

2

1

3

d fq p

y

FIGURE 10.41a
y = 3 cos 3x sin x + sin 3x cos x

Solution From (5.3) and (5.4), we have

dy

dx
=

dy

dθ
dx

dθ

= f  (θ ) sin θ + f (θ ) cos θ

f  (θ ) cos θ − f (θ ) sin θ
.

Here, f (θ ) = sin 3θ and so, to have
dy

dx
= 0, we must have

0 = dy

dθ
= 3 cos 3θ sin θ + sin 3θ cos θ.

Solving this equation is not an easy matter. As a start, we graph

f (x) = 3 cos 3x sin x + sin 3x cos x with 0 ≤ x ≤ π . (See Figure 10.41a.) You should

observe that there appear to be five solutions. Three of the solutions can be found exactly:

θ = 0, θ = π
2

and θ = π . You can find the remaining two numerically: θ ≈ 0.659 and

θ ≈ 2.48. (You can also use trig identities to arrive at sin2 θ = 3
8
.) The corresponding

points on the curve r = sin 3θ (specified in rectangular coordinates) are (0, 0),

(0.73, 0.56), (0,−1), (−0.73, 0.56) and (0, 0). The point (0, −1) lies at the bottom

of a leaf. This is the familiar situation of a horizontal tangent line at a local (and in

fact, absolute) minimum. The point (0, 0) is a little more tricky to interpret. As seen in

Figure 10.40b, if we graph a small piece of the curve with θ near 0 (orπ ), the point (0, 0) is

a minimum point. However, this is not true for other values of θ (e.g., π
3

) where the curve

passes through the point (0, 0). The tangent lines at the points (±0.73, 0.56) are shown

in Figure 10.41b. Note that these points correspond to points where the y-coordinate is a

maximum. However, referring to the graph, these points do not appear to be of particular
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FIGURE 10.41b
Horizontal tangent lines

FIGURE 10.41c
The tangent line at the tip of a leaf

interest. Rather, the tips of the leaves represent the extreme points of most interest.

Notice that the tips are where |r | is a maximum. For r = sin 3θ , this occurs when

sin 3θ = ±1, that is, where 3θ = π
2
, 3π

2
, 5π

2
, . . . , or θ = π

6
, π

2
, 5π

6
, . . . . From (5.4),

the slope of the tangent line to the curve at θ = π
6

is given by

dy

dx

    
θ=π/6

=

 
3 cos

3π

6

 
sin
π

6
+ sin

3π

6

 
cos

π

6

 
 

3 cos
3π

6

 
cos

π

6
− sin

3π

6

 
sin
π

6

 = 0+
√

3

2

0− 1

2

= −
√

3.

The rectangular point corresponding to θ = π
6

is given by

 
1 cos

π

6
, 1 sin

π

6

 
=

 √
3

2
,

1

2

 
.

The slope of the line segment joining this point to the origin is then 1√
3
. Observe that the

line segment from the origin to the point is perpendicular to the tangent line since the

product of the slopes
 
−
√

3 and 1√
3

 
is−1.This is illustrated in Figure 10.41c. Similarly,

the slope of the tangent line at θ = 5π
6

is
√

3, which again makes the tangent line at that

point perpendicular to the line segment from the origin to the point
 − √

3
2
, 1

2

 
. Finally,

we have already shown that the slope of the tangent line at θ = π
2

is 0 and a horizontal

tangent line is perpendicular to the vertical line from the origin to the point (0, −1). �

Next, for polar curves like the three-leaf rose seen in Figure 10.40a, we would like to

compute the area enclosed by the curve. Since such a graph is not the graph of a function of

the form y = f (x), we cannot use the usual area formulas developed in Chapter 5. While

we can convert our area formulas for parametric equations (from Theorem 2.2) into polar

coordinates, a simpler approach uses the following geometric argument.

y

x

r u

FIGURE 10.42
Circular sector

Observe that a sector of a circle of radius r and central angle θ , measured in radians

(see Figure 10.42) contains a fraction

 
θ

2π

 
of the area of the entire circle. So, the area of

the sector is given by

A = πr2 θ

2π
= 1

2
r2θ.

Now, consider the area enclosed by the polar curve defined by the equation r = f (θ ) and

the rays θ = a and θ = b (see Figure 10.43a on the following page), where f is continuous

and positive on the interval a ≤ θ ≤ b. As we did when we defined the definite integral, we
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FIGURE 10.43a
Area of a polar region

FIGURE 10.43b
Approximating the area of

a polar region

begin by partitioning the θ -interval into n equal pieces:

a = θ0 < θ1 < θ2 < · · · < θn = b.

The width of each of these subintervals is then  θ = θi − θi−1 =
b − a

n
. (Does this look

familiar?) On each subinterval [θi−1, θi ] (i = 1, 2, . . . , n), we approximate the curve with

the circular arc r = f (θi ). (See Figure 10.43b.) The area Ai enclosed by the curve on this

subinterval is then approximately the same as the area of the circular sector of radius f (θi )

and central angle  θ :

Ai ≈
1

2
r2 θ = 1

2
[ f (θi )]

2 θ.

The total area A enclosed by the curve is then approximately the same as the sum of the

areas of all such circular sectors:

A ≈
n 

i=1

Ai =
n 

i=1

1

2
[ f (θi )]

2 θ.

As we have done numerous times now, we can improve the approximation by making n

larger. Taking the limit as n →∞ gives us a definite integral:

A = lim
n→∞

n 
i=1

1

2
[ f (θi )]

2 θ =
 b

a

1

2
[ f (θ )]2 dθ. (5.6)Area in polar coordinates
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FIGURE 10.44
One leaf of r = sin 3θ

EXAMPLE 5.3 The Area of One Leaf of a Three-Leaf Rose

Find the area of one leaf of the rose r = sin 3θ .

Solution Notice that one leaf of the rose is traced out with 0 ≤ θ ≤ π
3

. (See

Figure 10.44.) From (5.6), the area is given by

A =
 π/3

0

1

2
(sin 3θ )2 dθ = 1

2

 π/3

0

sin2 3θ dθ

= 1

4

 π/3

0

(1− cos 6θ ) dθ = 1

4

 
θ − 1

6
sin 6θ

     π/3
0

= π

12
,

where we have used the half-angle formula sin2 α = 1
2
(1− cos 2α) to simplify the

integrand. �
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Often, the most challenging part of finding the area of a polar region is determining the

limits of integration.
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FIGURE 10.45
r = 2− 3 sin θ

EXAMPLE 5.4 The Area of the Inner Loop of a Limaçon

Find the area of the inner loop of the limaçon r = 2− 3 sin θ.

Solution A sketch of the limaçon is shown in Figure 10.45. Starting at θ = 0, the

curve starts at the point (2, 0), passes through the origin, traces out the inner loop,

passes back through the origin and finally traces out the outer loop. Thus, the inner loop

is formed by θ -values between the first and second occurrences of r = 0 with θ > 0.

Solving r = 0, we get sin θ = 2
3
. The two smallest positive solutions are θ = sin−1

 
2
3

 
and θ = π − sin−1

 
2
3

 
. Numerically, these are approximately equal to θ = 0.73 and

θ = 2.41. From (5.6), the area is approximately

A ≈
 2.41

0.73

1

2
(2− 3 sin θ )2 dθ = 1

2

 2.41

0.73

(4− 12 sin θ + 9 sin2 θ ) dθ

= 1

2

 2.41

0.73

#
4− 12 sin θ + 9

2
(1− cos 2θ )

$
dθ ≈ 0.44,

where we have used the half-angle formula sin2 θ = 1
2
(1− cos 2θ ) to simplify the

integrand. (Here the area is approximate, owing only to the approximate limits of

integration.) �
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FIGURE 10.46a
r = 3+ 2 cos θ and r = 2
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FIGURE 10.46b
2π
3
≤ θ ≤ 4π

3

When finding the area lying between two polar graphs, we use the familiar device

of subtracting one area from another. Although the calculations in example 5.5 aren’t too

messy, finding the points of intersection of two polar curves often provides the greatest

challenge.

EXAMPLE 5.5 Finding the Area between Two Polar Graphs

Find the area inside the limaçon r = 3+ 2 cos θ and outside the circle r = 2.

Solution We show a sketch of the two curves in Figure 10.46a. Notice that the limits

of integration correspond to the values of θ where the two curves intersect. So, we must

first solve the equation 3+ 2 cos θ = 2. Notice that since cos θ is periodic, there are

infinitely many solutions of this equation. Consequently, it is essential to consult the

graph to determine which solutions you are interested in. In this case, we want the least

negative and the smallest positive solutions. (Look carefully at Figure 10.46b, where we

have shaded the area between the graphs corresponding to θ between 2π
3

and 4π
3

, the

first two positive solutions. This portion of the graphs corresponds to the area outside

the limaçon and inside the circle!) With 3+ 2 cos θ = 2, we have cos θ = − 1
2
, which

occurs at θ = − 2π
3

and θ = 2π
3

. From (5.6), the area enclosed by the portion of the

limaçon on this interval is given by 2π/3

−2π/3

1

2
(3+ 2 cos θ )2 dθ = 33

√
3+ 44π

6
.

Similarly, the area enclosed by the circle on this interval is given by 2π/3

−2π/3

1

2
(2)2 dθ = 8π

3
.
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The area inside the limaçon and outside the circle is then given by

A =
 2π/3

−2π/3

1

2
(3+ 2 cos θ )2 dθ −

 2π/3

−2π/3

1

2
(2)2 dθ

= 33
√

3+ 44π

6
− 8π

3
= 33

√
3+ 28π

6
≈ 24.2.

Here, we have left the (routine) details of the integrations to you. �

In cases where r takes on both positive and negative values, finding the intersection

points of two curves is more complicated.
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FIGURE 10.47a
r = 1− 2 cos θ and r = 2 sin θ
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FIGURE 10.47b
Rectangular plot:

y = 1− 2 cos x, y = 2 sin x,

0 ≤ x ≤ π
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FIGURE 10.47c
Rectangular plot: y = 1− 2 cos x,

y = 2 sin x, 0 ≤ x ≤ 2π

EXAMPLE 5.6 Finding Intersections of Polar Curves Where r

Can Be Negative

Find all intersections of the limaçon r = 1− 2 cos θ and the circle r = 2 sin θ .

Solution We show a sketch of the two curves in Figure 10.47a. Notice from the

sketch that there are three intersections of the two curves. Since r = 2 sin θ is

completely traced with 0 ≤ θ ≤ π , you might reasonably expect to find three solutions

of the equation 1− 2 cos θ = 2 sin θ on the interval 0 ≤ θ ≤ π . However, if we draw a

rectangular plot of the two curves y = 1− 2 cos x and y = 2 sin x , on the interval

0 ≤ x ≤ π (see Figure 10.47b), we can clearly see that there is only one solution in

this range, at approximately θ ≈ 1.99. (Use Newton’s method or your calculator’s

solver to obtain an accurate approximation.) The corresponding rectangular point is

(r cos θ, r sin θ ) ≈ (−0.74, 1.67). Looking at Figure 10.47a, observe that there is

another intersection located below this point. One way to find this point is to look at a

rectangular plot of the two curves corresponding to an expanded range of values of θ .

(See Figure 10.47c.) Notice that there is a second solution of the equation

1− 2 cos θ = 2 sin θ , near θ = 5.86, which corresponds to the point (−0.74, 0.34).

Note that this point is on the inner loop of r = 1− 2 cos θ and corresponds to a negative

value of r. Finally, there appears to be a third intersection at or near the origin. Notice

that this does not arise from any solution of the equation 1− 2 cos θ = 2 sin θ . This is

because, while both curves pass through the origin (You should verify this!), they each

do so for different values of θ . (Keep in mind that the origin corresponds to the point

(0, θ ), in polar coordinates, for any angle θ .) Notice that 1− 2 cos θ = 0 for θ = π
3

and

2 sin θ = 0 for θ = 0. So, although the curves intersect at the origin, they each pass

through the origin for different values of θ . �

REMARK 5.1

To find points of intersection of two polar curves r = f (θ ) and r = g(θ ), you must

keep in mind that points have more than one representation in polar coordinates. In

particular, this says that points of intersection need not correspond to solutions of

f (θ ) = g(θ ).

In example 5.7, we see an application that is far simpler to set up in polar coordinates

than in rectangular coordinates.
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EXAMPLE 5.7 Finding the Volume of a Partially Filled Cylinder

A cylindrical oil tank with a radius of 2 feet is lying on its side. A measuring stick shows

that the oil is 1.8 feet deep. (See Figure 10.48a.) What percentage of a full tank is left?4 

1.8 

FIGURE 10.48a
A cylindrical oil tank

y

x
2 2

2

 2

FIGURE 10.48b
Cross section of tank

Solution Notice that since we wish to find the percentage of oil remaining in the tank,

the length of the tank has no bearing on this problem. (Think about this some.) We need

only consider a cross section of the tank, which we represent as a circle of radius 2

centered at the origin. The proportion of oil remaining is given by the area of that

portion of the circle lying beneath the line y = −0.2, divided by the total area of the

circle. The area of the circle is 4π , so we need only find the area of the shaded region in

Figure 10.48b. Computing this area in rectangular coordinates is a mess (try it!), but it is

straightforward in polar coordinates. First, notice that the line y = −0.2 corresponds to

r sin θ = −0.2 or r = −0.2 csc θ . The area beneath the line and inside the circle is then

given by (5.6) as

Area =
 θ2

θ1

1

2
(2)2 dθ −

 θ2

θ1

1

2
(−0.2 csc θ )2 dθ,

where θ1 and θ2 are the appropriate intersections of r = 2 and r = −0.2 csc θ . Using

Newton’s method, the first two positive solutions of 2 = −0.2 csc θ are θ1 ≈ 3.242 and

θ2 ≈ 6.183. The area is then

Area =
 θ2

θ1

1

2
(2)2 dθ −

 θ2

θ1

1

2
(−0.2 csc θ )2 dθ

= (2θ + 0.02 cot θ )
  θ2

θ1
≈ 5.485.

The fraction of oil remaining in the tank is then approximately 5.485/4π ≈ 0.43648 or

about 43.6% of the total capacity of the tank. �

We close this section with a brief discussion of arc length for polar curves. Recall

that from (3.1), the arc length of a curve defined parametrically by x = x(t), y = y(t), for

a ≤ t ≤ b, is given by

s =
 b

a

  
dx

dt

 2

+
 

dy

dt

 2

dt. (5.7)

Once again thinking of a polar curve as a parametric representation (where the parameter

is θ ), we have that for the polar curve r = f (θ ),

x = r cos θ = f (θ ) cos θ and y = r sin θ = f (θ ) sin θ.

This gives us 
dx

dθ

 2

+
 

dy

dθ

 2

= [ f  (θ ) cos θ − f (θ ) sin θ ]2 + [ f  (θ ) sin θ + f (θ ) cos θ ]2

= [ f  (θ )]2(cos2 θ + sin2 θ )+ f  (θ ) f (θ )(−2 cos θ sin θ + 2 sin θ cos θ )

+ [ f (θ )]2(cos2 θ + sin2 θ )

= [ f  (θ )]2 + [ f (θ )]2.
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From (5.7), the arc length is then

s =
 b

a

 
[ f  (θ )]2 + [ f (θ )]2 dθ. (5.8)Arc length in polar coordinates

EXAMPLE 5.8 Arc Length of a Polar Curve

Find the arc length of the cardioid r = 2− 2 cos θ .

Solution A sketch of the cardioid is shown in Figure 10.49. First, notice that the curve

is traced out with 0 ≤ θ ≤ 2π . From (5.8), the arc length is given by

s =
 b

a

 
[ f  (θ )]2 + [ f (θ )]2 dθ =

 2π

0

 
(2 sin θ )2 + (2− 2 cos θ )2 dθ

=
 2π

0

 
4 sin2 θ + 4− 8 cos θ + 4 cos2 θ dθ =

 2π

0

√
8− 8 cos θ dθ = 16,

where we leave the details of the integration as an exercise. (Hint: Use the half-angle

formula sin2 x = 1
2
(1− cos 2x) to simplify the integrand. Be careful: remember that√

x2 = |x |!) �
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FIGURE 10.49
r = 2− 2 cos θ

EXERCISES 10.5

WRITING EXERCISES

1. Explain why the tangent line is perpendicular to the radius line

at any point at which r is a local maximum. (See example 5.2.)

In particular, if the tangent and radius are not perpendicular at

(r, θ ), explain why r is not a local maximum.

2. In example 5.5, explain why integrating from 2π
3

to 4π
3

would

give the area shown in Figure 10.46b and not the desired area.

3. Referring to example 5.6, explain why intersections can oc-

cur in each of the cases f (θ ) = g(θ ), f (θ ) = −g(θ + π ) and

f (θ1) = g(θ2) = 0.

4. In example 5.7, explain why the length of the tank doesn’t

matter. If the problem were to compute the amount of oil left,

would the length matter?

In exercises 1–10, find the slope of the tangent line to the polar

curve at the given point.

1. r = sin 3θ at θ = π

3
2. r = sin 3θ at θ = π

2

3. r = cos 2θ at θ = 0 4. r = cos 2θ at θ = π

4

5. r = 3 sin θ at θ = 0 6. r = 3 sin θ at θ = π

2

7. r = sin 4θ at θ = π

4
8. r = sin 4θ at θ = π

16

9. r = cos 3θ at θ = π

6
10. r = cos 3θ at θ = π

3

In exercises 11–14, find all points at which |r| is a maximum

and show that the tangent line is perpendicular to the radius

connecting the point to the origin.

11. r = sin 3θ 12. r = cos 4θ

13. r = 2− 4 sin 2θ 14. r = 2+ 4 sin 2θ

In exercises 15–30, find the area of the indicated region.

15. One leaf of r = cos 3θ

16. One leaf of r = sin 4θ

17. Inner loop of r = 3− 4 sin θ

18. Inner loop of r = 1− 2 cos θ

19. Bounded by r = 2 cos θ

20. Bounded by r = 2− 2 cos θ

21. Small loop of r = 1+ 2 sin 2θ

22. Large loop of r = 1+ 2 sin 2θ

23. Inner loop of r = 2+ 3 sin 3θ

24. Outer loop of r = 2+ 3 sin 3θ

25. Inside of r = 3+ 2 sin θ and outside of r = 2

26. Inside of r = 2 and outside of r = 2− 2 sin θ
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27. Inside of r = 2 and outside of both loops of r = 1+ 2 sin θ

28. Inside of r = 2 sin 2θ and outside r = 1

29. Inside of both r = 1+ cos θ and r = 1

30. Inside of both r = 1+ sin θ and r = 1+ cos θ

In exercises 31–34, find all points at which the two curves

intersect.

31. r = 1− 2 sin θ and r = 2 cos θ

32. r = 1+ 3 cos θ and r = −2+ 5 sin θ

33. r = 1+ sin θ and r = 1+ cos θ

34. r = 1+
√

3 sin θ and r = 1+ cos θ

In exercises 35–40, find the arc length of the given curve.

35. r = 2− 2 sin θ 36. r = 3− 3 cos θ

37. r = sin 3θ 38. r = 2 cos 3θ

39. r = 1+ 2 sin 2θ 40. r = 2+ 3 sin 3θ

41. Repeat example 5.7 for the case where the oil stick shows a

depth of 1.4.

42. Repeat example 5.7 for the case where the oil stick shows a

depth of 1.0.

43. Repeat example 5.7 for the case where the oil stick shows a

depth of 2.4.

44. Repeat example 5.7 for the case where the oil stick shows a

depth of 2.6.

45. The problem of finding the slope of r = sin 3θ at the point

(0, 0) is not a well-defined problem. To see what we mean,

show that the curve passes through the origin at θ = 0, θ = π

3

and θ = 2π
3

, and find the slopes at these angles. Briefly ex-

plain why they are different even though the point is the

same.

46. For each of the three slopes found in exercise 45, illustrate with

a sketch of r = sin 3θ for θ -values near the given values (e.g.,

− π

6
≤ θ ≤ π

6
to see the slope at θ = 0).

47. If the polar curve r = f (θ ), a ≤ θ ≤ b, has length L, show that

r = c f (θ ), a ≤ θ ≤ b, has length |c|L for any constant c.

48. If the polar curve r = f (θ ), a ≤ θ ≤ b, encloses area A, show

that for any constant c, r = c f (θ ), a ≤ θ ≤ b, encloses area

c2 A.

49. A logarithmic spiral is the graph of r = aebθ for positive con-

stants a and b. The accompanying figure shows the case where

a = 2 and b = 1
4

with θ ≤ 1. Although the graph never reaches

the origin, the limit of the arc length from θ = d to a given point

with θ = c, as d decreases to −∞, exists. Show that this total

arc length equals

√
b2 + 1

b
R, where R is the distance from the

starting point to the origin.
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50. For the logarithmic spiral of exercise 49, if the starting point

P is on the x-axis, show that the total arc length to the origin

equals the distance from P to the y-axis along the tangent line

to the curve at P.

EXPLORATORY EXERCISES

1. In this exercise, you will discover a remarkable property about

the area underneath the graph of y = 1
x
. First, show that a

polar representation of this curve is r 2 = 1
sin θ cos θ

. We will

find the area bounded by y = 1
x
, y = mx and y = 2mx for

x > 0, where m is a positive constant. Sketch graphs for

m = 1 (the area bounded by y = 1
x
, y = x and y = 2x) and

m = 2 (the area bounded by y = 1
x
, y = 2x and y = 4x).

Which area looks larger? To find out, you should integrate.

Explain why this would be a very difficult integration in

rectangular coordinates. Then convert all curves to polar co-

ordinates and compute the polar area. You should discover

that the area equals 1
2

ln 2 for any value of m. (Are you

surprised?)

2. In the study of biological oscillations (e.g., the beating of

heart cells), an important mathematical term is limit cycle.

A simple example of a limit cycle is produced by the polar

coordinates initial value problem
dr

dt
= ar (1− r ), r (0) = r0

and
dθ

dt
= 2π, θ (0) = θ0. Here, a is a positive constant. In

section 8.2, we showed that the solution of the initial value

problem
dr

dt
= ar (1− r ), r (0) = r0 is

r (t) = r0

r0 − (r0 − 1)e−at

and it is not hard to show that the solution of the initial value

problem
dθ

dt
= 2π, θ (0) = θ0 is θ (t) = 2π t + θ0. In rectan-

gular coordinates, the solution of the combined initial value



756 CHAPTER 10 .. Parametric Equations and Polar Coordinates 10-50

problem has parametric equations x(t) = r (t) cos θ (t) and

y(t) = r (t) sin θ (t). Graph the solution in the cases

(a) a = 1, r0 = 1
2
, θ0 = 0; (b) a = 1, r0 = 3

2
, θ0 = 0; (c) your

choice of a > 0, your choice of r0 with 0 < r0 < 1, your choice

of θ0; (d) your choice of a > 0, your choice of r0 with r0 > 1,

your choice of θ0. As t increases, what is the limiting behav-

ior of the solution? Explain what is meant by saying that this

system has a limit cycle of r = 1.

10.6 CONIC SECTIONS

So far in this chapter, we have introduced a variety of interesting curves, many of which are

not graphs of a function y = f (x) in rectangular coordinates. Among the most important

curves are the conic sections,which we explore here. The conic sections include parabolas,

ellipses and hyperbolas, which are undoubtedly already familiar to you. In this section, we

focus on geometric properties that are most easily determined in rectangular coordinates.

We visualize each conic section as the intersection of a plane with a right circular cone.

(See Figures 10.50a–10.50c.)

FIGURE 10.50a
Parabola

FIGURE 10.50b
Ellipse

FIGURE 10.50c
Hyperbola

Focus

Directrix

Vertex

FIGURE 10.51
Parabola

Depending on the orientation of the plane, the resulting curve can be a parabola, an ellipse

or a hyperbola.

Parabolas

We define a parabola (see Figure 10.51) to be the set of all points that are equidistant from

a fixed point (called the focus) and a line (called the directrix). A special point on the

parabola is the vertex, the midpoint of the perpendicular line segment from the focus to the

directrix.

A parabola whose directrix is a horizontal line has a simple rectangular equation.

EXAMPLE 6.1 Finding the Equation of a Parabola

Find an equation of the parabola with focus at the point (0, 2) whose directrix is the line

y = −2.

Solution By definition, any point (x, y) on the parabola must be equidistant from the

focus and the directrix. (See Figure 10.52.) From the distance formula, the distance
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from (x, y) to the focus is given by
 

x2 + (y − 2)2 and the distance to the directrix is

|y − (−2)|. Since these distances must be equal, the parabola is defined by the

equation  
x2 + (y − 2)2 = |y + 2| .

Squaring both sides, we get

x2 + (y − 2)2 = (y + 2)2.

Expanding this out and simplifying, we get

x2 + y2 − 4y + 4 = y2 + 4y + 4

or x2 = 8y.

Solving for y gives us y = 1

8
x2.

�

y

(0, 2)

(x, y)

y    2

x

FIGURE 10.52
The parabola with focus

at (0, 2) and directrix y = −2

In general, the following relationship holds.

THEOREM 6.1

The parabola with vertex at the point (b, c), focus at
 
b, c + 1

4a

 
and directrix given

by the line y = c − 1
4a

is described by the equation y = a(x − b)2 + c.

4a
1(b, c  )

4a
1

y   c  
4a
1

4a
1

(b, c)

FIGURE 10.53
Parabola

PROOF

Given the focus
 
b, c + 1

4a

 
and directrix y = c − 1

4a
, the vertex is the midpoint (b, c). (See

Figure 10.53.) For any point (x, y) on the parabola, its distance to the focus is given by 
(x − b)2 +  

y − c − 1
4a

 2
, while its distance to the directrix is given by

  y − c + 1
4a

  .
Setting these equal and squaring as in example 6.1, we have

(x − b)2 +
 

y − c − 1

4a

 2

=
 

y − c + 1

4a

 2

.

Expanding this out and simplifying, we get the more familiar form of the equation:

y = a(x − b)2 + c, as desired.

Notice that the roles of x and y can be reversed. We leave the proof of the following

result as an exercise.

THEOREM 6.2

The parabola with vertex at the point (c, b), focus at
 
c + 1

4a
, b

 
and directrix given

by the line x = c − 1
4a

is described by the equation x = a(y − b)2 + c.

We illustrate Theorem 6.2 in example 6.2.
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EXAMPLE 6.2 A Parabola Opening to the Left

For the parabola 4x + 2y2 + 8 = 0, find the vertex, focus and directrix.

Solution To put this into the form of the equation given in Theorem 6.2, we must first

solve for x. We have x = − 1
2

y2 − 2. The vertex is then at (−2, 0). The focus and

directrix are shifted left and right, respectively from the vertex by 1
4a
= − 1

2
. This puts

the focus at
 −2− 1

2
, 0

 =  − 5
2
, 0

 
and the directrix at x = −2−  − 1

2

 = − 3
2
. We

show a sketch of the parabola in Figure 10.54. �

y

 1 3  2 4 5

 2

 1

1

2

x

FIGURE 10.54
Parabola with focus at (− 5

2
, 0) and

directrix x = − 3
2

y

x
2 4 6 8 10 2

 4

4

8
y   6

(3, 4)

(3, 2)

FIGURE 10.55
Parabola with focus at (3, 2) and

directrix y = 6

EXAMPLE 6.3 Finding the Equation of a Parabola

Find an equation relating all points that are equidistant from the point (3, 2) and the line

y = 6.

Solution Referring to Figure 10.55, notice that the vertex must be at the point (3, 4)

(i.e., the midpoint of the perpendicular line segment connecting the focus to the

directrix) and the parabola opens down. From the vertex, the focus is shifted vertically

by 1
4a
= −2 units, so a = 1

(−2)4
= − 1

8
. An equation is then

y = −1

8
(x − 3)2 + 4.

�

y

x
4 8

 8

 4

4

8

(3,  1)

(1,  1)

x    1

FIGURE 10.56
Parabola with focus at (3,−1) and

directrix at x = −1

EXAMPLE 6.4 A Parabola Opening to the Right

Find an equation relating all points that are equidistant from the point (3,−1) and the

line x = −1.

Solution Referring to Figure 10.56, notice that the vertex must be halfway between

the focus (3,−1) and the directrix x = −1, that is, at the point (1,−1), and the parabola

opens to the right. From the vertex, the focus is shifted horizontally by 1
4a
= 2 units, so

that a = 1
8
. An equation is then

x = 1

8
(y + 1)2 + 1.

�

You see parabolas nearly every day. As we discussed in section 5.5, the motion of many

projectiles is approximately parabolic. In addition, parabolas have a reflective property

that is extremely useful in many important applications. This can be seen as follows. For

the parabola x = ay2 indicated in Figure 10.57a, draw a horizontal line that intersects the

parabola at the point A. Then, one can show that the acute angle α between the horizontal

line and the tangent line at A is the same as the acute angle β between the tangent line

and the line segment joining A to the focus. You may already have recognized that light

rays are reflected from a surface in exactly the same fashion (since the angle of incidence

must equal the angle of reflection). In Figure 10.57a, we indicate a number of rays (you can

think of them as light rays, although they could represent other forms of energy) traveling

horizontally until they strike the parabola. As indicated, all rays striking the parabola are

reflected through the focus of the parabola.

Due to this reflective property, satellite dishes are usually built with a parabolic shape

and have a microphone located at the focus to receive all signals. (See Figure 10.57b.)

This reflective property works in both directions. That is, energy emitted from the focus



10-53 SECTION 10.6 .. Conic Sections 759

Focus

A

a

b

Focus

FIGURE 10.57a
Reflection of rays

FIGURE 10.57b
The reflective property

will reflect off the parabola and travel in parallel rays. For this reason, flashlights utilize

parabolic reflectors to direct their light in a beam of parallel rays.

EXAMPLE 6.5 Design of a Flashlight

A parabolic reflector for a flashlight has the shape x = 2y2. Where should the

lightbulb be located?

Solution Based on the reflective property of parabolas, the lightbulb should be

located at the focus of the parabola. The vertex is at (0, 0) and the focus is shifted to

the right from the vertex 1
4a
= 1

8
units, so the lightbulb should be located at the point 

1
8
, 0

 
. �

Ellipses

The second conic section we study is the ellipse. We define an ellipse to be the set of all

points for which the sum of the distances to two fixed points (called foci, the plural of focus)

is constant. This definition is illustrated in Figure 10.58a. We define the center of an ellipse

to be the midpoint of the line segment connecting the foci.
FocusFocus

FIGURE 10.58a
Definition of ellipse

The familiar equation of an ellipse can be derived from this definition. For convenience,

we assume that the foci lie at the points (c, 0) and (−c, 0), for some positive constant c

(i.e., they lie on the x-axis, at the same distance from the origin). For any point (x, y) on

the ellipse, the distance from (x, y) to the focus (c, 0) is
 

(x − c)2 + y2 and the distance

to the focus (−c, 0) is
 

(x + c)2 + y2. The sum of these distances must equal a constant

that we’ll call k. We then have 
(x − c)2 + y2 +

 
(x + c)2 + y2 = k.

Subtracting the first square root from both sides and then squaring, we get  
(x + c)2 + y2

 2 =  
k −

 
(x − c)2 + y2

 2

or x2 + 2cx + c2 + y2 = k2 − 2k
 

(x − c)2 + y2 + x2 − 2cx + c2 + y2.
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Now, solving for the remaining term with the radical and squaring gives us!
2k

 
(x − c)2 + y2

"2 = (k2 − 4cx)2,

so that 4k2x2 − 8k2cx + 4k2c2 + 4k2 y2 = k4 − 8k2cx + 16c2x2

or (4k2 − 16c2)x2 + 4k2 y2 = k4 − 4k2c2.

To simplify this expression, we set k = 2a, to obtain

(16a2 − 16c2)x2 + 16a2 y2 = 16a4 − 16a2c2.

Notice that since 2a is the sum of the distances from (x, y) to (c, 0) and from (x, y)

to (−c, 0) and the distance from (c, 0) to (−c, 0) is 2c, we must have 2a > 2c, so that

a > c > 0. Dividing both sides of the equation by 16 and defining b2 = a2 − c2, we get

b2x2 + a2 y2 = a2b2.

Finally, dividing by a2b2 leaves us with the familiar equation

x2

a2
+ y2

b2
= 1.

In this equation, notice that x can assume values from −a to a and y can assume values

from −b to b. The points (a, 0) and (−a, 0) are called the vertices of the ellipse. (See

Figure 10.58b.) Since a > b, we call the line segment joining the vertices the major axis

and we call the line segment joining the points (0, b) and (0,−b) the minor axis. Notice

that the length of the major axis is 2a and the length of the minor axis is 2b.

We state the general case in Theorem 6.3.

(a, 0)

(0, b)

(0,  b)

( c, 0) (c, 0)

( a, 0)

y

x

FIGURE 10.58b
Ellipse with foci at (c, 0) and (−c, 0)

THEOREM 6.3

The equation

(x − x0)2

a2
+ (y − y0)2

b2
= 1 (6.1)

with a > b > 0 describes an ellipse with foci at (x0 − c, y0) and (x0 + c, y0), where

c =
√

a2 − b2. The center of the ellipse is at the point (x0, y0) and the vertices are

located at (x0 ± a, y0) on the major axis. The endpoints of the minor axis are located

at (x0, y0 ± b).

The equation

(x − x0)2

b2
+ (y − y0)2

a2
= 1 (6.2)

with a > b > 0 describes an ellipse with foci at (x0, y0 − c) and (x0, y0 + c) where

c =
√

a2 − b2. The center of the ellipse is at the point (x0, y0) and the vertices are

located at (x0, y0 ± a) on the major axis. The endpoints of the minor axis are located

at (x0 ± b, y0).

In example 6.6, we use Theorem 6.3 to identify the features of an ellipse whose major

axis lies along the x-axis.
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EXAMPLE 6.6 Identifying the Features of an Ellipse

Identify the center, foci and vertices of the ellipse
x2

16
+ y2

9
= 1.

Solution From (6.1), the equation describes an ellipse with center at the origin. The

values of a2 and b2 are 16 and 9, respectively, and so, c =
√

a2 − b2 =
√

7. Since the

major axis is parallel to the x-axis, the foci are shifted c units to the left and right of the

center. That is, the foci are located at (−
√

7, 0) and (
√

7, 0). The vertices here are the

x-intercepts (i.e., the intersections of the ellipse with the major axis). With y = 0,

we have x2 = 16 and so, the vertices are at (±4, 0). Taking x = 0, we get y2 = 9 so

that y = ±3. The y-intercepts are then (0,−3) and (0, 3). The ellipse is sketched in

Figure 10.59. �

2 4 2 4

 4

 2

2

4

y

x

FIGURE 10.59
x2

16
+ y2

9
= 1

Theorem 6.3 can also be used to identify the features of an ellipse whose major axis

runs parallel to the y-axis.

y

x
4 6 2

 2

 4

 6

2

4

FIGURE 10.60
(x − 2)2

4
+ (y + 1)2

25
= 1

EXAMPLE 6.7 An Ellipse with Major Axis Parallel to the y-axis

Identify the center, foci and vertices of the ellipse
(x − 2)2

4
+ (y + 1)2

25
= 1.

Solution From (6.2), the center is at (2,−1). The values of a2 and b2 are 25 and 4,

respectively, so that c =
√

21. Since the major axis is parallel to the y-axis, the foci are

shifted c units above and below the center, at (2,−1−
√

21) and (2,−1+
√

21).

Notice that in this case, the vertices are the intersections of the ellipse with the line

x = 2. With x = 2, we have (y + 1)2 = 25, so that y = −1± 5 and the vertices are

(2,−6) and (2, 4). Finally, the endpoints of the minor axis are found by setting y = −1.

We have (x − 2)2 = 4, so that x = 2± 2 and these endpoints are (0,−1) and (4,−1).

The ellipse is sketched in Figure 10.60. �

EXAMPLE 6.8 Finding an Equation of an Ellipse

Find an equation of the ellipse with foci at (2, 3) and (2, 5) and vertices (2, 2) and (2, 6).

Solution Recall that the center is the midpoint of the foci, in this case (2, 4). You can

now see that the foci are shifted c = 1 unit from the center. The vertices are shifted

a = 2 units from the center. From c2 = a2 − b2, we get b2 = 4− 1 = 3. Notice that the

major axis is parallel to the y-axis, so that a2 = 4 is the divisor of the y-term. From

(6.2), the ellipse has the equation

(x − 2)2

3
+ (y − 4)2

4
= 1.

�

Focus Focus

A

a

a

FIGURE 10.61
The reflective property of ellipses

Much like parabolas, ellipses have some useful reflective properties. As illustrated in

Figure 10.61, a line segment joining one focus to a point A on the ellipse makes the same

acute angle with the tangent line at A as does the line segment joining the other focus to

A. Again, this is the same way in which light and sound reflect off a surface, so that a

ray originating at one focus will always reflect off the ellipse toward the other focus. A

surprising application of this principle is found in the so-called “whispering gallery” of the

U.S. Senate. The ceiling of this room is elliptical, so that by standing at one focus you can
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hear everything said on the other side of the room at the other focus. (You probably never

imagined how much of a role mathematics could play in political intrigue.)

EXAMPLE 6.9 A Medical Application of the Reflective
Property of Ellipses

A medical procedure called shockwave lithotripsy is used to break up kidney stones

that are too large or irregular to be passed. In this procedure, shockwaves emanating

from a transducer located at one focus are bounced off of an elliptical reflector to the

kidney stone located at the other focus. Suppose that the reflector is described by the

equation
x2

112
+ y2

48
= 1 (in units of inches). Where should the transducer be

placed?

Solution In this case,

c =
 

a2 − b2 =
√

112− 48 = 8,

so that the foci are 16 inches apart. Since the transducer must be located at one focus,

it should be placed 16 inches away from the kidney stone and aligned so that the line

segment from the kidney stone to the transducer lies along the major axis of the

elliptical reflector. �

Focus Focus

(x, y)

FIGURE 10.62
Definition of hyperbola

Hyperbolas

The third type of conic section is the hyperbola. We define a hyperbola to be the set of

all points such that the difference of the distances between two fixed points (called the

foci) is a constant. This definition is illustrated in Figure 10.62. Notice that it is nearly

identical to the definition of the ellipse, except that we subtract the distances instead of add

them.

The familiar equation of the hyperbola can be derived from the definition. The

derivation is almost identical to that of the ellipse, except that the quantity a2 − c2 is

now negative. We leave the details of the derivation of this as an exercise. An equation

of the hyperbola with foci at (±c, 0) and parameter 2a (equal to the difference of the

distances) is

x2

a2
− y2

b2
= 1,

where b2 = c2 − a2. An important feature of hyperbolas that is not shared by ellipses is

the presence of asymptotes. For the hyperbola
x2

a2
− y2

b2
= 1, we have

y2

b2
= x2

a2
− 1 or

y2 = b2

a2
x2 − b2. Notice that

lim
x→±∞

y2

x2
= lim

x→±∞

 
b2

a2
− b2

x2

 
= b2

a2
.

That is, as x →±∞, y2

x2
→ b2

a2
, so that

y

x
→±b

a
and so, y = ±b

a
x are the (slant) asymp-

totes, as shown in Figure 10.63.

a
bx

y    a
bx

y  

 c c a a

y

x

FIGURE 10.63
Hyperbola, shown with its

asymptotes We state the general case in Theorem 6.4.
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THEOREM 6.4

The equation

(x − x0)2

a2
− (y − y0)2

b2
= 1 (6.3)

describes a hyperbola with foci at the points (x0 − c, y0) and (x0 + c, y0), where

c =
√

a2 + b2. The center of the hyperbola is at the point (x0, y0) and the vertices

are located at (x0 ± a, y0). The asymptotes are y = ±b

a
(x − x0)+ y0.

The equation

(y − y0)2

a2
− (x − x0)2

b2
= 1 (6.4)

describes a hyperbola with foci at the points (x0, y0 − c) and (x0, y0 + c), where

c =
√

a2 + b2. The center of the hyperbola is at the point (x0, y0) and the vertices

are located at (x0, y0 ± a). The asymptotes are y = ±a

b
(x − x0)+ y0.

In example 6.10, we use Theorem 6.4 to identify the features of a hyperbola.

EXAMPLE 6.10 Identifying the Features of a Hyperbola

For the hyperbola
x2

4
− y2

9
= 1, find the center, vertices, foci and asymptotes.

Solution From (6.3), we can see that the center is at (0, 0). Further, the vertices lie on

the x-axis, where x2

4
= 1 (set y = 0), so that x = ±2. The vertices are then located at

(2, 0) and (−2, 0). The foci are shifted by c =
√

a2 + b2 = √4+ 9 =
√

13 units from

the center, to (±
√

13, 0). Finally, the asymptotes are y = ± 3
2
x . A sketch of the

hyperbola is shown in Figure 10.64. �
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6

y

x

FIGURE 10.64
x2

4
− y2

9
= 1

y
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x

FIGURE 10.65
(y − 1)2

9
− (x + 1)2

16
= 1

EXAMPLE 6.11 Identifying the Features of a Hyperbola

For the hyperbola
(y − 1)2

9
− (x + 1)2

16
= 1, find the center, vertices, foci and

asymptotes.

Solution Notice that from (6.4), the center is at (−1, 1). Setting x = −1, we find that

the vertices are shifted vertically by a = 3 units from the center, to (−1,−2) and

(−1, 4). The foci are shifted vertically by c =
√

a2 + b2 =
√

25 = 5 units from the

center, to (−1,−4) and (−1, 6). The asymptotes are y = ± 3
4
(x + 1)+ 1. A sketch of

the hyperbola is shown in Figure 10.65. �

EXAMPLE 6.12 Finding the Equation of a Hyperbola

Find an equation of the hyperbola with center at (−2, 0), vertices at (−4, 0) and (0, 0)

and foci at (−5, 0) and (1, 0).

Solution Notice that since the center, vertices and foci all lie on the x-axis, the

hyperbola must have an equation of the form of (6.3). Here, the vertices are shifted
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a = 2 units from the center and the foci are shifted c = 3 units from the center. Then,

we have b2 = c2 − a2 = 5. Following (6.3), we have the equation

(x + 2)2

4
− y2

5
= 1.

�

Much like parabolas and ellipses, hyperbolas have a reflective property that is useful

in applications. It can be shown that a ray directed toward one focus will reflect off the

hyperbola toward the other focus. We illustrate this in Figure 10.66.

4 6

 6

6

x

y

FIGURE 10.66
The reflective property of

hyperbolas

EXAMPLE 6.13 An Application to Hyperbolic Mirrors

A hyperbolic mirror is constructed in the shape of the top half of the hyperbola

(y + 2)2 − x2

3
= 1. Toward what point will light rays following the paths y = kx

reflect (where k is a constant)?

Solution For the given hyperbola, we have c =
√

a2 + b2 = √1+ 3 = 2. Notice

that the center is at (0,−2) and the foci are at (0, 0) and (0,−4). Since rays of the

form y = kx will pass through the focus at (0, 0), they will be reflected toward

the focus at (0,−4). �

As a final note on the reflective properties of the conic sections, we briefly discuss

a clever use of parabolic and hyperbolic mirrors in telescope design. In Figure 10.67, a

parabolic mirror to the left and a hyperbolic mirror to the right are arranged so that they

have a common focus at the point F. The vertex of the parabola is located at the other focus

of the hyperbola, at the point E, where there is an opening for the eye or a camera. Notice

that light entering the telescope from the right (and passing around the hyperbolic mirror)

will reflect off the parabola directly toward its focus at F. Since F is also a focus of the

hyperbola, the light will reflect off the hyperbola toward its other focus at E. In combination,

the mirrors focus all incoming light at the point E.

Hyperbola

Parabola

F
E

FIGURE 10.67
A combination of parabolic and hyperbolic mirrors
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EXERCISES 10.6

WRITING EXERCISES

1. Each fixed point referred to in the definitions of the conic sec-

tions is called a focus.Use the reflective properties of the conic

sections to explain why this is an appropriate name.

2. A hyperbola looks somewhat like a pair of parabolas facing op-

posite directions. Discuss the differences between a parabola

and one half of a hyperbola. (Recall that hyperbolas have

asymptotes.)

3. Carefully explain why in example 6.8 (or for any other ellipse)

the sum of the distances from a point on the ellipse to the two

foci equals 2a.

4. Imagine playing a game of pool on an elliptical pool table with

a single hole located at one focus. If a ball rests near the other

focus, which is clearly marked, describe an easy way to hit the

ball into the hole.

In exercises 1–12, find an equation for the indicated conic

section.

1. Parabola with focus (0,−1) and directrix y = 1

2. Parabola with focus (1, 2) and directrix y = −2

3. Parabola with focus (3, 0) and directrix x = 1

4. Parabola with focus (2, 0) and directrix x = −2

5. Ellipse with foci (0, 1) and (0, 5) and vertices (0,−1) and

(0, 7)

6. Ellipse with foci (1, 2) and (1, 4) and vertices (1, 1) and (1, 5)

7. Ellipse with foci (2, 1) and (6, 1) and vertices (0, 1) and (8, 1)

8. Ellipse with foci (3, 2) and (5, 2) and vertices (2, 2) and (6, 2)

9. Hyperbola with foci (0, 0) and (4, 0) and vertices (1, 0) and

(3, 0)

10. Hyperbola with foci (−2, 2) and (6, 2) and vertices (0, 2) and

(4, 2)

11. Hyperbola with foci (2, 2) and (2, 6) and vertices (2, 3) and

(2, 5)

12. Hyperbola with foci (0,−2) and (0, 4) and vertices (0, 0) and

(0, 2)

In exercises 13–24, identify the conic section and find each

vertex, focus and directrix.

13. y = 2(x + 1)2 − 1

14. y = −2(x + 2)2 − 1

15.
(x − 1)2

4
+ (y − 2)2

9
= 1

16.
(x + 2)2

16
+ y2

4
= 1

17.
(x − 1)2

9
− y2

4
= 1

18.
(x + 1)2

4
− (y − 3)2

4
= 1

19.
(y + 1)2

16
− (x + 2)2

4
= 1

20.
y2

4
− (x + 2)2

9
= 1

21. (x − 2)2 + 9y2 = 9

22. 4x2 + (y + 1)2 = 16

23. (x + 1)2 − 4(y − 2) = 16

24. 4(x + 2)− (y − 1)2 = −4

In exercises 25–30, graph the conic section and find an equation.

25. All points equidistant from the point (2, 1) and the line

y = −3

26. All points equidistant from the point (−1, 0) and the line

y = 4

27. All points such that the sum of the distances to the points (0, 2)

and (4, 2) equals 8

28. All points such that the sum of the distances to the points (3, 1)

and (−1, 1) equals 6

29. All points such that the difference of the distances to the points

(0, 4) and (0,−2) equals 4

30. All points such that the difference of the distances to the points

(2, 2) and (6, 2) equals 2

31. A parabolic flashlight reflector has the shape x = 4y2. Where

should the lightbulb be placed?

32. A parabolic flashlight reflector has the shape x = 1
2

y2. Where

should the lightbulb be placed?

33. A parabolic satellite dish has the shape y = 2x2. Where should

the microphone be placed?

34. A parabolic satellite dish has the shape y = 4x2. Where should

the microphone be placed?
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35. In example 6.9, if the shape of the reflector is
x2

124
+ y2

24
= 1,

how far from the kidney stone should the transducer be

placed?

36. In example 6.9, if the shape of the reflector is
x2

44
+ y2

125
= 1,

how far from the kidney stone should the transducer be

placed?

37. If a hyperbolic mirror is in the shape of the top half of

(y + 4)2 − x2

15
= 1, to which point will light rays following

the path y = cx (y < 0) reflect?

38. If a hyperbolic mirror is in the shape of the bottom half of

(y − 3)2 − x2

8
= 1, to which point will light rays following

the path y = cx (y > 0) reflect?

39. If a hyperbolic mirror is in the shape of the right half of
x2

3
− y2 = 1, to which point will light rays following the path

y = c(x − 2) reflect?

40. If a hyperbolic mirror is in the shape of the left half of
x2

8
− y2 = 1, to which point will light rays following the path

y = c(x + 3) reflect?

41. If the ceiling of a room has the shape
x2

400
+ y2

100
= 1, where

should you place the desks so that you can sit at one desk and

hear everything said at the other desk?

42. If the ceiling of a room has the shape
x2

900
+ y2

100
= 1, where

should you place two desks so that you can sit at one desk and

hear everything said at the other desk?

43. A spectator at the 2000 Summer Olympic Games throws

an object. After 2 seconds, the object is 28 meters from

the spectator. After 4 seconds, the object is 48 meters from

the spectator. If the object’s distance from the spectator is

a quadratic function of time, find an equation for the posi-

tion of the object. Sketch a graph of the path. What is the

object?

44. Halley’s comet follows an elliptical path with a = 17.79 Au

(astronomical units) and b = 4.53 (Au). Compute the distance

the comet travels in one orbit. Given that Halley’s comet com-

pletes an orbit in approximately 76 years, what is the average

speed of the comet?

EXPLORATORY EXERCISES

1. All of the equations of conic sections that we have seen so

far have been of the form Ax2 + Cy2 + Dx + Ey + F = 0.

In this exercise, you will classify the conic sections for dif-

ferent values of the constants. First, assume that A > 0 and

C > 0. Which conic section will you get? Next, try A > 0 and

C < 0. Which conic section is it this time? How about A < 0

and C > 0? A < 0 and C < 0? Finally, suppose that either

A or C (not both) equals 0; which conic section is it? In all

cases, the values of the constants D, E and F do not affect the

classification. Explain what effect these constants have.

2. In this exercise, you will generalize the re-

sults of exercise 1 by exploring the equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. (In exercise 1, the

coefficient of xy was 0.) You will need to have software

that will graph such equations. Make up several examples

with B2 − 4AC = 0 (e.g., B = 2, A = 1 and C = 1). Which

conic section results? Now, make up several examples with

B2 − 4AC < 0 (e.g., B = 1, A = 1 and C = 1). Which conic

section do you get? Finally, make up several examples with

B2 − 4AC > 0 (e.g., B = 4, A = 1 and C = 1). Which conic

section is this?

10.7 CONIC SECTIONS IN POLAR COORDINATES

There are a variety of alternative definitions of the conic sections. One such alternative,

utilizing an important quantity called eccentricity, is especially convenient for studying

conic sections in polar coordinates. We introduce this concept in this section and review

some options for parametric representations of conic sections.

For a fixed point P (the focus) and a fixed line l not containing P (the directrix),

consider the set of all points whose distance to the focus is a constant multiple of their

distance to the directrix. The constant multiple e > 0 is called the eccentricity. Note that

if e = 1, this is the usual definition of a parabola. For other values of e, we get the other

conic sections, as we see in Theorem 7.1.
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THEOREM 7.1

The set of all points whose distance to the focus is the product of the eccentricity e

and the distance to the directrix is

(i) an ellipse if 0 < e < 1,

(ii) a parabola if e = 1 or

(iii) a hyperbola if e > 1.

y

x

(x, y)

d

FIGURE 10.68
Focus and directrix

PROOF

We can simplify the algebra greatly by assuming that the focus is located at the origin

and the directrix is the line x = d > 0. (We illustrate this in Figure 10.68 for the case of a

parabola.) For any point (x, y) on the curve, observe that the distance to the focus is given

by
 

x2 + y2 and the distance to the directrix is d − x . We then have 
x2 + y2 = e(d − x). (7.1)

Squaring both sides gives us

x2 + y2 = e2(d2 − 2dx + x2).

Finally, if we gather together the like terms, we get

x2(1− e2)+ 2de2x + y2 = e2d2. (7.2)

Note that (7.2) has the form of the equation of a conic section. In particular, if e = 1,

(7.2) becomes

2dx + y2 = d2,

which is the equation of a parabola. If 0 < e < 1, notice that (1− e2) > 0 and so, (7.2) is

the equation of an ellipse (with center shifted to the left by the x-term). Finally, if e > 1,

then (1− e2) < 0 and so, (7.2) is the equation of a hyperbola.

Notice that the original form of the defining equation (7.1) of these conic sections

includes the term
 

x2 + y2, which should make you think of polar coordinates. Recall that

in polar coordinates, r =
 

x2 + y2 and x = r cos θ . Equation (7.1) now becomes

r = e(d − r cos θ )

or r (e cos θ + 1) = ed.

Finally, solving for r, we have

r = ed

e cos θ + 1
,

which is the polar form of an equation for the conic sections with focus and directrix oriented

as in Figure 10.68. As you will show in the exercises, different orientations of the focus and

directrix can produce different forms of the polar equation. We summarize the possibilities

in Theorem 7.2.
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THEOREM 7.2

The conic section with eccentricity e > 0, focus at (0, 0) and the indicated directrix

has the polar equation

(i) r = ed

e cos θ + 1
, if the directrix is the line x = d > 0,

(ii) r = ed

e cos θ − 1
, if the directrix is the line x = d < 0,

(iii) r = ed

e sin θ + 1
, if the directrix is the line y = d > 0 or

(iv) r = ed

e sin θ − 1
, if the directrix is the line y = d < 0.

Notice that we proved part (i) above. The remaining parts are derived in similar fashion

and are left as exercises. (See numbers 31–33.) In example 7.1, we illustrate how the

eccentricity affects the graph of a conic section.

EXAMPLE 7.1 The Effect of Various Eccentricities

Find polar equations of the conic sections with focus (0, 0), directrix x = 4 and

eccentricities (a) e = 0.4, (b) e = 0.8, (c) e = 1, (d) e = 1.2 and (e) e = 2.

Solution By Theorem 7.1, observe that (a) and (b) are ellipses, (c) is a parabola and

(d) and (e) are hyperbolas. By Theorem 7.2, all have polar equations of the form

r = 4e

e cos θ + 1
. The graphs of the ellipses r = 1.6

0.4 cos θ + 1
and r = 3.2

0.8 cos θ + 1
are shown in Figure 10.69a. Note that the ellipse with the smaller eccentricity is much

more nearly circular than the ellipse with the larger eccentricity. Further, the ellipse

with e = 0.8 opens up much farther to the left. In fact, as the value of e approaches 1,

the ellipse will open up farther to the left, approaching the parabola with e = 1,

4 4 8 12 16

 10

10

x

y

FIGURE 10.69a
e = 0.4, e = 0.8 and e = 1.0
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r = 4

cos θ + 1
, also shown in Figure 10.69a. For values of e > 1, the graph is a

hyperbola, opening up to the right and left. For instance, with e = 1.2 and e = 2, we

have the hyperbolas r = 4.8

1.2 cos θ + 1
and r = 8

2 cos θ + 1
(shown in Figure 10.69b),

where we also indicate the parabola with e = 1. Notice how the second hyperbola

approaches its asymptotes much more rapidly than the first. �
x

403020 10

 15

 10

15

10

 5

5

y

FIGURE 10.69b
e = 1.0, e = 1.2 and e = 2.0

EXAMPLE 7.2 The Effect of Various Directrixes

Find polar equations of the conic sections with focus (0, 0), eccentricity e = 0.5 and

directrix given by (a) y = 2, (b) y = −3 and (c) x = −2.

Solution First, note that with an eccentricity of e = 0.5, each of these conic sections

is an ellipse. From Theorem 7.2, we know that (a) has the form r = 1

0.5 sin θ + 1
. A

sketch is shown in Figure 10.70a.

For (b), we have r = −1.5

0.5 sin θ − 1
and show a sketch in Figure 10.70b. For (c), the

directrix is parallel to the x-axis and so, from Theorem 7.2, we have r = −1

0.5 cos θ − 1
.

A sketch is shown in Figure 10.70c.
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1

2
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FIGURE 10.70a
Directrix: y = 2

FIGURE 10.70b
Directrix: y = −3

FIGURE 10.70c
Directrix: x = −2

�

The results of Theorem 7.2 apply only to conic sections with a focus at the origin.

Recall that in rectangular coordinates, it’s easy to translate the center of a conic section.

Unfortunately, this is not true in polar coordinates.

In example 7.3, we see how to write some conic sections parametrically.

EXAMPLE 7.3 Parametric Equations for Some Conic Sections

Find parametric equations of the conic sections (a)
(x − 1)2

4
+ (y + 2)2

9
= 1 and

(b)
(x + 2)2

9
− (y − 3)2

16
= 1.
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Solution Notice that the curve in (a) is an ellipse with center at (1,−2) and major axis

parallel to the y-axis. Parametric equations for the ellipse are 
x = 2 cos t + 1

y = 3 sin t − 2
with 0 ≤ t ≤ 2π.

We show a sketch in Figure 10.71a.

y

x
4321 2  1

 5

 3

 2

 1

1

FIGURE 10.71a
(x − 1)2

4
+ (y + 2)2

9
= 1

y

x
105 10

 10

 5

15

10

5

FIGURE 10.71b
(x + 2)2

9
− (y − 3)2

16
= 1

You should recognize that the curve in (b) is a hyperbola. It is convenient to use

hyperbolic functions in its parametric representation. The parameters are a2 = 9 (a = 3)

and b2 = 16 (b = 4) and the center is (−2, 3). Parametric equations are 
x = 3 cosh t − 2

y = 4 sinh t + 3
,

for the right half of the hyperbola and 
x = −3 cosh t − 2

y = 4 sinh t + 3
,

for the left half. We leave it as an exercise to verify that this is a correct parameterization.

We sketch the hyperbola in Figure 10.71b. �

In 1543, the astronomer Copernicus shocked the world with the publication of his

theory that the earth and the other planets revolve in circular orbits about the sun. This

stood in sharp contrast to the age-old belief that the sun and other planets revolved around

the earth. By the early part of the seventeenth century, Johannes Kepler had analyzed

20 years worth of painstaking observations of the known planets made by Tycho Brahe

(before the invention of the telescope). He concluded that, in fact, each planet moves in an

elliptical orbit, with the sun located at one focus. About 100 years later, Isaac Newton used

his newly created calculus to show that Kepler’s conclusions follow directly from Newton’s

universal law of gravitation. Although we must delay a more complete presentation of

Kepler’s laws until Chapter 12, we are now in a position to illustrate one of these. Kepler’s

second law states that, measuring from the sun to a planet, equal areas are swept out in

equal times. As we see in example 7.4, this implies that planets speed up and slow down as

they orbit the sun.

EXAMPLE 7.4 Kepler’s Second Law of Planetary Motion

Suppose that a planet’s orbit follows the elliptical path r = 2

sin θ + 2
with the sun

located at the origin (one of the foci), as illustrated in Figure 10.72a. Show that roughly

equal areas are swept out from θ = 0 to θ = π and from θ = 3π
2

to θ = 5.224895.

Then, find the corresponding arc lengths and compare the average speeds of the planet

on these arcs.

Solution First, note that the area swept out by the planet from θ = 0 to θ = π is the

area bounded by the polar graphs r = f (θ ) = 2

sin θ + 2
, θ = 0 and θ = π . (See

Figure 10.72b.) From (5.6), this is given by

A = 1

2

 π

0

[ f (θ )]2 dθ = 1

2

 π

0

 
2

sin θ + 2

 2

dθ ≈ 0.9455994.
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Planet

Sun

y

x

Sun

y

x
Planet

Sun

y

x

Planet

FIGURE 10.72a
Elliptical orbit

FIGURE 10.72b
Area swept out by the orbit

from θ = 0 to θ = π

FIGURE 10.72c
Area swept out by the orbit

from θ = 3π
2

to θ = 5.224895

Similarly, the area swept out from θ = 3π
2

to θ = 5.224895 (see Figure 10.72c) is

given by

A = 1

2

 5.224895

3π/2

 
2

sin θ + 2

 2

dθ ≈ 0.9455995.

From (5.8), the arc length of the portion of the curve on the interval from θ = 0 to

θ = π is given by

s1 =
 π

0

 
[ f  (θ )]2 + [ f (θ )]2 dθ

=
 π

0

 
4 cos2 θ

(sin θ + 2)4
+ 4

(sin θ + 2)2
dθ ≈ 2.53,

while the arc length of the portion of the curve on the interval from θ = 3π
2

to

θ = 5.224895 is given by

s2 =
 5.224895

3π/2

 
4 cos2 θ

(sin θ + 2)4
+ 4

(sin θ + 2)2
dθ ≈ 1.02.

Since these arcs are traversed in the same time, this says that the average speed on the

portion of the orbit from θ = 0 to θ = π is roughly two-and-a-half times the average

speed on the portion of the orbit from θ = 3π
2

to θ = 5.224895. �

EXERCISES 10.7

WRITING EXERCISES

1. Based on Theorem 7.1, we might say that parabolas are the

rarest of the conic sections, since they occur only for e = 1

exactly. Referring to Figure 10.50, explain why it takes a fairly

precise cut of the cone to produce a parabola.

2. Describe how the ellipses in Figure 10.69a “open up” into a

parabola as e increases to e = 1. What happens as e decreases

to e = 0?
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In exercises 1–16, find polar equations for and graph the conic

section with focus (0, 0) and the given directrix and eccentricity.

1. Directrix x = 2, e = 0.6

2. Directrix x = 2, e = 1.2

3. Directrix x = 2, e = 1

4. Directrix x = 2, e = 2

5. Directrix y = 2, e = 0.6

6. Directrix y = 2, e = 1.2

7. Directrix y = 2, e = 1

8. Directrix y = 2, e = 2

9. Directrix x = −2, e = 0.4

10. Directrix x = −2, e = 1

11. Directrix x = −2, e = 2

12. Directrix x = −2, e = 4

13. Directrix y = −2, e = 0.4

14. Directrix y = −2, e = 0.9

15. Directrix y = −2, e = 1

16. Directrix y = −2, e = 1.1

In exercises 17–22, graph and interpret the conic section.

17. r = 4

2 cos(θ − π/6)+ 1

18. r = 4

4 sin(θ − π/6)+ 1

19. r = −6

sin(θ − π/4)− 2

20. r = −4

cos(θ − π/4)− 4

21. r = −3

2 cos(θ + π/4)− 2

22. r = 3

2 cos(θ + π/4)+ 2

In exercises 23–28, find parametric equations of the conic

sections.

23.
(x + 1)2

9
+ (y − 1)2

4
= 1 24.

(x − 2)2

9
− (y + 1)2

16
= 1

25.
(x + 1)2

16
− y2

9
= 1 26.

x2

4
+ y2 = 1

27.
x2

4
+ y = 1 28. x − y2

4
= 1

29. Repeat example 7.4 with 0 ≤ θ ≤ π

2
and 3π

2
≤ θ ≤ 4.953.

30. Repeat example 7.4 with π

2
≤ θ ≤ π and 4.471 ≤ θ ≤ 3π

2
.

31. Prove Theorem 7.2 (ii).

32. Prove Theorem 7.2 (iii).

33. Prove Theorem 7.2 (iv).

EXPLORATORY EXERCISES

1. Earth’s orbit is approximately elliptical with the sun at one fo-

cus, a minor axis of length 93 million miles and eccentricity

e = 0.017. Find a polar equation for Earth’s orbit.

2. If Neptune’s orbit is given by

r = 1.82× 1014

343 cos(θ − 0.77)+ 40,000

and Pluto’s orbit is given by

r = 5.52× 1013

2481 cos(θ − 3.91)+ 10,000
,

show that Pluto is sometimes closer and sometimes farther

from the sun than Neptune. Based on these equations, will the

planets ever collide?

3. Vision has proved to be one of the biggest challenges for build-

ing functional robots. Robot vision either can be designed to

mimic human vision or can follow a different design. Two pos-

sibilities are analyzed here. In the diagram to the left, a camera

follows an object directly from left to right. If the camera is

at the origin, the object moves with speed 1 m/s and the line

of motion is at y = c, find an expression for θ  as a function

of the position of the object. In the diagram to the right, the

camera looks down into a curved mirror and indirectly views

the object. Assume that the mirror has equation r = 1− sin θ

2 cos2 θ
.

Show that the mirror is parabolic and find its focus and direc-

trix. With x = r cos θ , find an expression for θ  as a function

of the position of the object. Compare values of θ  at x = 0

and other x-values. If a large value of θ  causes the image to

blur, which camera system is better? Does the distance y = c

affect your preference?

θ

(x, y)

θ

(x, y)
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Review Exercises

WRITING EXERCISES

The following list includes terms that are defined in this chapter. For

each term, (1) give a precise definition, (2) state in general terms

what it means and (3) describe the types of problems with which it

is associated.

Parametric equations Velocity Focus

Polar coordinates Arc length Vertex

Slope in parametric equations Surface area Directrix

Slope in polar coordinates Parabola Eccentricity

Area in parametric equations Ellipse Kepler’s laws

Area in polar coordinates Hyperbola

TRUE OR FALSE

State whether each statement is true or false and briefly explain

why. If the statement is false, try to “fix it” by modifying the given

statement to make a new statement that is true.

1. For a given curve, there is exactly one set of parametric equa-

tions that describes it.

2. In parametric equations, circles are always sketched

counterclockwise.

3. In parametric equations, the derivative equals slope and

velocity.

4. If a point has polar coordinates (r, θ ), then it also has polar

coordinates (−r, θ + π ).

5. If f is periodic with fundamental period 2π , then one copy of

r = f (θ ) is traced out with 0 ≤ θ ≤ 2π .

6. In polar coordinates, you can describe circles but not lines.

7. To find all intersections of polar curves r = f (θ ) and r = g(θ ),

solve f (θ ) = g(θ ).

8. The focus, vertex and directrix of a parabola all lie on the same

line.

9. The equation of any conic section can be written in the form

r = ed

e cos θ + 1
.

In exercises 1–4, sketch the plane curve defined by the para-

metric equations and find a corresponding x-y equation for the

curve.

1.

 
x = −1+ 3 cos t

y = 2+ 3 sin t
2.

 
x = 2− t

y = 1+ 3t

3.

 
x = t2 + 1

y = t4 4.

 
x = cos t

y = cos2 t − 1

In exercises 5–8, sketch the plane curves defined by the para-

metric equations.

5.

 
x = cos 2t

y = sin 6t
6.

 
x = cos 6t

y = sin 2t

7.

 
x = cos 2t cos t

y = cos 2t sin t
8.

 
x = cos 2t cos 3t

y = cos 2t sin 3t

In exercises 9–12, match the parametric equations with the cor-

responding plane curve.

9.

 
x = t2 − 1

y = t3
10.

 
x = t3

y = t2 − 1

11.

 
x = cos 2t cos t

y = cos 2t sin t
12.

 
x = cos(t + cos t)

y = cos(t + sin t)

y

x
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 1
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2

3

FIGURE A
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FIGURE B
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Review Exercises
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FIGURE D

In exercises 13 and 14, find parametric equations for the given

curve.

13. The line segment from (2, 1) to (4, 7)

14. The portion of the parabola y = x2 + 1 from (1, 2) to (3, 10)

In exercises 15 and 16, find the slopes of the curves at the points

(a) t  0, (b) t  1 and (c) (2, 3).

15.

 
x = t3 − 3t

y = t2 − t + 1
16.

 
x = t2 − 2

y = t + 2

In exercises 17 and 18, parametric equations for the position of

an object are given. Find the object’s velocity and speed at time

t  0 and describe its motion.

17.

 
x = t3 − 3t

y = t2 + 2t
18.

 
x = t3 − 3t

y = t2 + 2

In exercises 19–22, find the area enclosed by the curve.

19.

 
x = 3 sin t

y = 2 cos t

20.

 
x = 4 sin 3t

y = 3 cos 3t

21.

 
x = cos 2t

y = sinπ t
,−1 ≤ t ≤ 1

22.

 
x = t2 − 1

y = t3 − t
,−1 ≤ t ≤ 1

In exercises 23–26, find the arc length of the curve (approximate

numerically, if needed).

23.

 
x = cos 2t

y = sinπ t
,−1 ≤ t ≤ 1

24.

 
x = t2 − 1

y = t3 − 4t
,−1 ≤ t ≤ 1

25.

 
x = cos 4t

y = sin 5t

26.

 
x = sin 10t

y = t2 − 1
,−π ≤ t ≤ π

In exercises 27 and 28, compute the surface area of the surface

obtained by revolving the curve about the indicated axis.

27.

 
x = t3 − 4t

y = t4 − 4t
,−1 ≤ t ≤ 1, about the x-axis

28.

 
x = t3 − 4t

y = t4 − 4t
,−1 ≤ t ≤ 1, about y = 2

In exercises 29 and 30, sketch the graph of the polar equation

and find a corresponding x-y equation.

29. r = 3 cos θ 30. r = 2 sec θ

In exercises 31–38, sketch the graph and identify all values of θ

where r  0 and a range of values of θ that produces one copy

of the graph.

31. r = 2 sin θ 32. r = 2− 2 sin θ

33. r = 2− 3 sin θ 34. r = cos 3θ + sin 2θ

35. r2 = 4 sin 2θ 36. r = ecos θ − 2 cos 4θ

37. r = 2

1+ 2 sin θ
38. r = 2

1+ 2 cos θ
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In exercises 39 and 40, find a polar equation corresponding to

the rectangular equation.

39. x2 + y2 = 9 40. (x − 3)2 + y2 = 9

In exercises 41 and 42, find the slope of the tangent line to the

polar curve at the given point.

41. r = cos 3θ at θ = π

6
42. r = 1− sin θ at θ = 0

In exercises 43–48, find the area of the indicated region.

43. One leaf of r = sin 5θ

44. One leaf of r = cos 2θ

45. Inner loop of r = 1− 2 sin θ

46. Bounded by r = 3 sin θ

47. Inside of r = 1+ sin θ and outside of r = 1+ cos θ

48. Inside of r = 1+ cos θ and outside of r = 1+ sin θ

In exercises 49 and 50, find the arc length of the curve.

49. r = 3− 4 sin θ 50. r = sin 4θ

In exercises 51–53, find an equation for the conic section.

51. Parabola with focus (1, 2) and directrix y = 0

52. Ellipse with foci (2, 1) and (2, 3) and vertices (2, 0) and (2, 4)

53. Hyperbola with foci (2, 0) and (2, 4) and vertices (2, 1) and

(2, 3)

In exercises 54–58, identify the conic section and find each ver-

tex, focus and directrix.

54. y = 3(x − 2)2 + 1

55.
(x + 1)2

9
+ (y − 3)2

25
= 1

56.
x2

9
− (y + 2)2

4
= 1

57. (x − 1)2 + y = 4

58. (x − 1)2 + 4y2 = 4

59. A parabolic satellite dish has the shape y = 1
2
x2. Where should

the microphone be placed?

60. If a hyperbolic mirror is in the shape of the top half of

(y + 2)2 − x2

3
= 1, to which point will light rays following

the path y = cx (c < 0) reflect?

In exercises 61–64, find a polar equation and graph the conic

section with focus (0, 0) and the given directrix and eccentricity.

61. Directrix x = 3, e = 0.8

62. Directrix y = 3, e = 1

63. Directrix y = 2, e = 1.4

64. Directrix x = 1, e = 2

In exercises 65 and 66, find parametric equations for the conic

sections.

65.
(x + 1)2

9
+ (y − 3)2

25
= 1

66.
x2

9
− (y + 2)2

4
= 1

EXPLORATORY EXERCISE

1. Sketch several polar graphs of the form r = 1+ a cos θ and

r = 1+ a sin θ using some constants a that are positive and

some that are negative, greater than 1, equal to 1 and less than

1 (for example, a = −2, a = −1, a = −1/2, a = 1/2, a = 1

and a = 2). Discuss all patterns you find.





Appendix A
PROOFS OF SELECTED THEOREMS

In this appendix, we provide the proofs of selected theorems from the body of the text.

These are results that were not proved in the body of the text for one reason or another.

The first several results require the formal (ε-δ) definition of limit, which was not

discussed until section 1.6. Given what we’ve done in section 1.6, we are now in a position

to prove these results. The first of these results concerns our routine rules for calculating

limits and appeared as Theorem 3.1 in section 1.3.

THEOREM A.1

Suppose that lim
x→a

f (x) and lim
x→a

g(x) both exist and let c be any constant. The

following then apply:

(i) lim
x→a

[c · f (x)] = c · lim
x→a

f (x),

(ii) lim
x→a

[ f (x) ± g(x)] = lim
x→a

f (x) ± lim
x→a

g(x),

(iii) lim
x→a

[ f (x) · g(x)] =
 

lim
x→a

f (x)
  

lim
x→a

g(x)
 

and

(iv) lim
x→a

f (x)

g(x)
=

lim
x→a

f (x)

lim
x→a

g(x)

 
if lim

x→a
g(x)  = 0

 
.

PROOF

(i) Given lim
x→a

f (x) = L1, we know by the precise definition of limit that given any number

ε1 > 0, there is a number δ1 > 0 for which

| f (x) − L1| < ε1, whenever 0 < |x − a| < δ1. (A.1)

In order to show that lim
x→a

[c f (x)] = c lim
x→a

f (x), we need to be able to make c f (x) as

close to cL1 as desired. We have

|c f (x) − cL1| = |c|| f (x) − L1|.

We already know that we can make | f (x) − L1| as small as desired. Specifically, given any

number ε1 > 0, there is a number δ1 > 0 for which

|c f (x) − cL1| = |c|| f (x) − L1| < |c|ε1, whenever 0 < |x − a| < δ1.

A-1
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Taking ε1 = ε
|c| and δ = δ1, we get

|c f (x) − cL1| < |c|ε1 = |c| ε

|c| = ε,whenever 0 < |x − a| < δ.

This says that lim
x→a

[c f (x)] = cL1, as desired.

(ii) Likewise, given lim
x→a

g(x) = L2, we know that given any number ε2 > 0, there is

a number δ2 > 0 for which

|g(x) − L2| < ε2, whenever 0 < |x − a| < δ2. (A.2)

Now, in order to verify that

lim
x→a

[ f (x) + g(x)] = L1 + L2,

we must show that, given any number ε > 0, there is a number δ > 0 such that

|[ f (x) + g(x)] − (L1 + L2)| < ε, whenever 0 < |x − a| < δ.

Notice that |[ f (x) + g(x)] − (L1 + L2)| = |[ f (x) − L1] + [g(x) − L2]|

≤ | f (x) − L1| + |g(x) − L2|, (A.3)

by the triangle inequality. Of course, both terms on the right-hand side of (A.3) can be

made arbitrarily small, from (A.1) and (A.2). In particular, if we take ε1 = ε2 = ε
2
, then as

long as

0 < |x − a| < δ1 and 0 < |x − a| < δ2,

we get from (A.1), (A.2) and (A.3) that

|[ f (x) + g(x)] − (L1 + L2)| ≤ | f (x) − L1| + |g(x) − L2|

<
ε

2
+ ε

2
= ε,

as desired. This will occur if we take

0 < |x − a| < δ = min{δ1, δ2},
where taking δ = min{δ1, δ2} simply means to pick δ to be the smaller of δ1 and δ2. (Recog-

nize that if 0 < |x − a| < δ = min{δ1, δ2}, then 0 < |x − a| < δ1 and 0 < |x − a| < δ2.)

(iii) In this case, we need to show that for any given ε > 0, we can find a δ > 0,

such that

| f (x)g(x) − L1L2| < ε, whenever 0 < |x − a| < δ.

The object, then, is to make | f (x)g(x) − L1L2| as small as needed. Notice that we have

| f (x)g(x) − L1L2| = | f (x)g(x) − g(x)L1 + g(x)L1 − L1L2|

= |[ f (x) − L1]g(x) + L1[g(x) − L2]|

≤ | f (x) − L1||g(x)| + |L1||g(x) − L2|, (A.4)

by the triangle inequality. Now, notice that we can make | f (x) − L1| and |g(x) − L2| as

small as we like. If we make both of the terms in (A.4) less than ε
2
, then the sum will be

less than ε, as desired. In particular, we know that there is a number δ2 > 0, such that

|g(x) − L2| < ε

2|L1| ,whenever 0 < |x − a| < δ2,
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assuming L1  = 0, so that

|L1||g(x) − L2| < |L1| ε

2|L1| = ε

2
.

If L1 = 0, then |L1||g(x) − L2| = 0 <
ε

2
.

So, no matter the value of L1, we have that

|L1||g(x) − L2| < ε

2
, whenever 0 < |x − a| < δ2. (A.5)

Notice that the first term in (A.4) is slightly more complicated, as we must also estimate

the size of |g(x)|. Notice that

|g(x)| = |g(x) − L2 + L2| ≤ |g(x) − L2| + |L2|. (A.6)

Since lim
x→a

g(x) = L2, there is a number δ3 > 0, such that

|g(x) − L2| < 1, whenever 0 < |x − a| < δ3.

From (A.6), we now have that

|g(x)| ≤ |g(x) − L2| + |L2| < 1 + |L2|.
Returning to the first term in (A.4), we have that for 0 < |x − a| < δ3,

| f (x) − L1||g(x)| < | f (x) − L1|(1 + |L2|). (A.7)

Now, since lim
x→a

f (x) = L1, given any ε > 0, there is a number δ1 > 0 such that for

0 < |x − a| < δ1,

| f (x) − L1| < ε

2(1 + |L2|) .

From (A.7), we then have

| f (x) − L1||g(x)| < | f (x) − L1|(1 + |L2|)

<
ε

2(1 + |L2|) (1 + |L2|)

= ε

2
,

whenever 0 < |x − a| < δ1 and 0 < |x − a| < δ3. Together with (A.4) and (A.5), this tells

us that for δ = min{δ1, δ2, δ3}, if 0 < |x − a| < δ, then

| f (x)g(x) − L1L2| ≤ | f (x) − L1||g(x)| + |L1||g(x) − L2|

<
ε

2
+ ε

2
= ε,

which proves (iii).

(iv) We first show that

lim
x→a

1

g(x)
= 1

L2

,

for L2  = 0. Notice that in this case, we need to show that we can make
  1
g(x)

− 1
L2

  as small

as possible. We have     1

g(x)
− 1

L2

    =
    L2 − g(x)

L2g(x)

    . (A.8)
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Of course, since lim
x→a

g(x) = L2, we can make the numerator of the fraction on the right-

hand side as small as needed. We must also consider what happens to the denominator,

though. Recall that given any ε2 > 0, there is a δ2 > 0 such that

|g(x) − L2| < ε2, whenever 0 < |x − a| < δ2.

In particular, for ε2 = |L2|
2

, this says that

|g(x) − L2| < |L2|
2

.

Notice that by the triangle inequality, we can now say that

|L2| = |L2 − g(x) + g(x)| ≤ |L2 − g(x)| + |g(x)| < |L2|
2

+ |g(x)|.

Subtracting |L2|
2

from both sides now gives us

|L2|
2

< |g(x)|,

so that
2

|L2| >
1

|g(x)| .

From (A.8), we now have that for 0 < |x − a| < δ2,    1

g(x)
− 1

L2

    =
    L2 − g(x)

L2g(x)

    < 2|L2 − g(x)|
L2

2

. (A.9)

Further, given any ε > 0, there is a δ3 > 0 so that

|L2 − g(x)| < εL2
2

2
, whenever 0 < |x − a| < δ3.

From (A.9), we now have that for δ = min{δ2, δ3},    1

g(x)
− 1

L2

    < 2|L2 − g(x)|
L2

2

< ε,

whenever 0 < |x − a| < δ, as desired. We have now established that

lim
x→a

1

g(x)
= 1

L2

.

From (iii), we now have that

lim
x→a

f (x)

g(x)
= lim

x→a

 
f (x)

1

g(x)

 
=
 

lim
x→a

f (x)
  

lim
x→a

1

g(x)

 

= L1

 
1

L2

 
= L1

L2

,

which proves the last part of the theorem.

The following result appeared as Theorem 3.3 in section 1.3.
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THEOREM A.2

Suppose that lim
x→a

f (x) = L and n is any positive integer. Then,

lim
x→a

n
 

f (x) = n

 
lim
x→a

f (x) = n
√
L,

where for n even, we assume that L > 0.

PROOF

Since lim
x→a

f (x) = L , we know that given any number ε1 > 0, there is a number δ1 > 0,

so that

| f (x) − L| < ε1, whenever 0 < |x − a| < δ1.

To show that lim
x→a

n
 

f (x) = n
√
L , we need to show that given any ε > 0, there is a δ > 0

such that    n
 

f (x) − n
√
L

   < ε, whenever 0 < |x − a| < δ.

Notice that this is equivalent to having

n
√
L − ε < n

 
f (x) <

n
√
L + ε.

Now, raising all sides to the nth power, we have

 
n

√
L − ε

 n
< f (x) <

 
n

√
L + ε

 n
.

Subtracting L from all terms gives us

 
n

√
L − ε

 n − L < f (x) − L <
 

n
√
L + ε

 n − L .

Since ε is taken to be small, we now assume that ε <
n

√
L . Observe that in this case,

0 <
n

√
L − ε <

n
√
L . Let ε1 = min{ n

√
L + ε

 n − L , L −  n
√
L − ε

 n} > 0. Then, since

lim
x→a

f (x) = L , we know that there is a number δ > 0, so that

−ε1 < f (x) − L < ε1, whenever 0 < |x − a| < δ.

It then follows that

(
n

√
L − ε)n − L ≤ −ε1 < f (x) − L < ε1 ≤ (

n
√
L + ε)n − L ,

whenever 0 < |x − a| < δ. Reversing the above sequence of steps gives us

lim
x→a

n
√

f (x) = n
√
L , as desired.

The following result appeared in section 1.3, as Theorem 3.5.
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THEOREM A.3 (Squeeze Theorem)

Suppose that

f (x) ≤ g(x) ≤ h(x), (A.10)

for all x in some interval (c, d), except possibly at the point a ∈ (c, d) and that

lim
x→a

f (x) = lim
x→a

h(x) = L ,

for some number L. Then, it follows that

lim
x→a

g(x) = L , also.

PROOF

To show that lim
x→a

g(x) = L , we must prove that given any ε > 0, there is a δ > 0, such that

|g(x) − L| < ε, whenever 0 < |x − a| < δ.

Since lim
x→a

f (x) = L , we have that given any ε > 0, there is a δ1 > 0, such that

| f (x) − L| < ε, whenever 0 < |x − a| < δ1.

Likewise, since lim
x→a

h(x) = L , we have that given any ε > 0, there is a δ2 > 0, such that

|h(x) − L| < ε, whenever 0 < |x − a| < δ2.

Now, choose δ = min{δ1, δ2}. Then, if 0 < |x − a| < δ, it follows that 0 < |x − a| < δ1

and 0 < |x − a| < δ2, so that

| f (x) − L| < ε and |h(x) − L| < ε.

Equivalently, we can say that

L − ε < f (x) < L + ε and L − ε < h(x) < L + ε. (A.11)

It now follows from (A.10) and (A.11) that if 0 < |x − a| < δ, then

L − ε < f (x) ≤ g(x) ≤ h(x) < L + ε,

which gives us

L − ε < g(x) < L + ε

or |g(x) − L| < ε and it follows that lim
x→a

g(x) = L , as desired.

The following result appeared as Theorem 4.3 in section 1.4.

THEOREM A.4

Suppose lim
x→a

g(x) = L and f is continuous at L. Then,

lim
x→a

f (g(x)) = f
 

lim
x→a

g(x)
 

= f (L).
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PROOF

To prove the result, we must show that given any number ε > 0, there is a number δ > 0

for which

| f (g(x)) − f (L)| < ε, whenever 0 < |x − a| < δ.

Since f is continuous at L, we know that lim
t→L

f (t) = f (L). Consequently, given any ε > 0,

there is a δ1 > 0 for which

| f (t) − f (L)| < ε, whenever 0 < |t − L| < δ1.

Further, since lim
x→a

g(x) = L , we can make g(x) as close to L as desired, simply by making x

sufficiently close to a. In particular, there must be a number δ > 0 for which |g(x) − L| < δ1

whenever 0 < |x − a| < δ. It now follows that if 0 < |x − a| < δ, then |g(x) − L| < δ1,

so that

| f (g(x)) − f (L)| < ε,

as desired.

The following result appeared as Theorem 5.1 in section 1.5.

THEOREM A.5

For any rational number t > 0,

lim
x→±∞

1

xt
= 0,

where for the case where x → −∞, we assume that t = p

q
, where q is odd.

PROOF

We first prove that lim
x→∞

1

xt
= 0. To do so, we must show that given any number ε > 0,

there is an M > 0 for which

    1

xt
− 0

    < ε, whenever x > M . Since x → ∞, we can take

x to be positive, so that     1

xt
− 0

    = 1

xt
< ε,

which is equivalent to
1

x
< ε1/t

or
1

ε1/t
< x .

Notice that taking M to be any number greater than
1

ε1/t
, we will have

    1

xt
− 0

    < ε when-

ever x > M , as desired.
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For the case lim
x→−∞

1

xt
= 0, we must show that given any number ε > 0, there is an

N < 0 for which

    1

xt
− 0

    < ε, whenever x < N . Since x → −∞, we can take x to be

negative, so that     1

xt
− 0

    = 1

|xt | < ε,

which is equivalent to
1

|x | < ε1/t

or
1

ε1/t
< |x | = −x,

since x < 0. Multiplying both sides of the inequality by −1, we get

− 1

ε1/t
> x .

Notice that takingN to be any number less than − 1

ε1/t
, we will have

    1

xt
− 0

    < ε, whenever

x < N , as desired.

In section 7.6, we prove l’Hôpital’s Rule only for a special case. Here, we present a

general proof for the 0
0

case. First, we need the following generalization of the Mean Value

Theorem.

THEOREM A.6 (Generalized Mean Value Theorem)

Suppose that f and g are continuous on the interval [a, b] and differentiable on

the interval (a, b) and that g (x)  = 0, for all x on (a, b). Then, there is a number

z ∈ (a, b), such that

f (b) − f (a)

g(b) − g(a)
= f  (z)

g (z)
.

Notice that the Mean Value Theorem (Theorem 8.4 in section 2.8) is simply the special

case of Theorem A.6 where g(x) = x .

PROOF

First, observe that since g (x)  = 0, for all x on (a, b), we must have that g(b) − g(a)  = 0.

This follows from Rolle’s Theorem (Theorem 8.1 in section 2.8), since if g(a) = g(b), there

would be some number c ∈ (a, b) for which g (c) = 0. Now, define

h(x) = [ f (b) − f (a)]g(x) − [g(b) − g(a)] f (x).

Notice that h is continuous on [a, b] and differentiable on (a, b), since both f and g are

continuous on [a, b] and differentiable on (a, b). Further, we have

h(a) = [ f (b) − f (a)]g(a) − [g(b) − g(a)] f (a)

= f (b)g(a) − g(b) f (a)
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and h(b) = [ f (b) − f (a)]g(b) − [g(b) − g(a)] f (b)

= g(a) f (b) − f (a)g(b),

so that h(a) = h(b). In view of this, Rolle’s Theorem says that there must be a number

z ∈ (a, b) for which

0 = h (z) = [ f (b) − f (a)]g (z) − [g(b) − g(a)] f  (z)

or
f (b) − f (a)

g(b) − g(a)
= f  (z)

g (z)
,

as desired.

We can now give a general proof of l’Hôpital’s Rule for the 0
0

case. The proof of the
∞
∞ case can be found in a more advanced text.

THEOREM A.7 (l’Hôpital’s Rule)

Suppose that f and g are differentiable on the interval (a, b), except possibly at some

fixed point c ∈ (a, b) and that g (x)  = 0, on (a, b), except possibly at x = c. Suppose

further that lim
x→c

f (x)

g(x)
has the indeterminate form

0

0
or

∞
∞ and that lim

x→c

f  (x)

g (x)
= L

(or ±∞). Then,

lim
x→c

f (x)

g(x)
= lim

x→c

f  (x)

g (x)
.

PROOF 
0
0

case
 

In this case, we have that lim
x→c

f (x) = lim
x→c

g(x) = 0. Define

F(x) =
 

f (x) if x  = c

0 if x = c
and G(x) =

 
g(x) if x  = c

0 if x = c
.

Notice that lim
x→c

F(x) = lim
x→c

f (x) = 0 = F(c)

and lim
x→c

G(x) = lim
x→c

g(x) = 0 = G(c),

so that both F and G are continuous on all of (a, b). Further, observe that for x  = c,

F  (x) = f  (x) and G  (x) = g (x) and so, both F and G are differentiable on each of the

intervals (a, c) and (c, b). We first consider the interval (c, b). Notice that F and G are

continuous on [c, b] and differentiable on (c, b) and so, by the Generalized Mean Value

Theorem, for any x ∈ (c, b), we have that there is some number z, with c < z < x , for which

F  (z)
G  (z)

= F(x) − F(c)

G(x) − G(c)
= F(x)

G(x)
= f (x)

g(x)
,

where we have used the fact that F(c) = G(c) = 0. Notice that as x → c+, z → c+, also,

since c < z < x . Taking the limit as x → c+, we now have

lim
x→c+

f (x)

g(x)
= lim

z→c+

F  (z)
G  (z)

= lim
z→c+

f  (z)
g (z)

= L .
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Similarly, by focusing on the interval (a, c), we can show that lim
x→c−

f (x)

g(x)
= L , which proves

that lim
x→c

f (x)

g(x)
= L (since both one-sided limits agree).

The following theorem corresponds to Theorem 6.1 in section 9.6.

THEOREM A.8

Given any power series,
∞ 
k=0

bk(x − c)k , there are exactly three possibilities:

(i) the series converges for all x ∈ (−∞,∞) and the radius of convergence is

r = ∞;

(ii) the series converges only for x = c (and diverges for all other values of x)

and the radius of convergence is r = 0 or

(iii) the series converges for x ∈ (c − r, c + r ) and diverges for x < c − r and for

x > c + r , for some number r with 0 < r < ∞.

In order to prove Theorem A.8, we first introduce and prove two simpler results.

THEOREM A.9

(i) If the power series
∞ 
k=0

bkx
k converges for x = a  = 0, then it also converges for

all x with |x | < |a|.
(ii) If the power series

∞ 
k=0

bkx
k diverges for x = d, then it also diverges for all x

with |x | > |d|.

PROOF

(i) Suppose that
∞ 
k=0

bka
k converges. Then, by Theorem 2.2 in section 9.2, lim

k→∞
bka

k = 0.

For this to occur, we must be able to make |bkak | as small as desired, just by making k

sufficiently large. In particular, there must be a number N > 0, such that |bkak | < 1, for all

k > N . So, for k > N , we must have

|bkxk | =
    bkak

 
xk

ak

     =
  bkak     x

a

   k <

   x
a

   k .

If |x | < |a|, then
  x
a

  < 1 and so,
∞ 
k=0

  x
a

  k is a convergent geometric series. It then follows

from the Comparison Test (Theorem 3.3 in section 9.3) that
∞ 
k=0

|bkxk | converges and hence,

∞ 
k=0

bkx
k converges absolutely.
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(ii) Suppose that
∞ 
k=0

bkd
k diverges. Notice that if x is any number with |x | > |d|, then

∞ 
k=0

bkx
k must diverge, since if it converged, we would have by part (i) that

∞ 
k=0

bkd
k would

also converge, which contradicts our assumption.

Next, we state and prove a slightly simpler version of Theorem A.8.

THEOREM A.10

Given any power series,
∞ 
k=0

bkx
k , there are exactly three possibilities:

(i) the series converges for all x ∈ (−∞,∞) and the radius of convergence is

r = ∞;

(ii) the series converges only for x = 0 (and diverges for all other values of x)

and the radius of convergence is r = 0 or

(iii) the series converges for x ∈ (−r, r ) and diverges for x < −r and x > r , for

some number r with 0 < r < ∞.

PROOF

If neither (i) nor (ii) is true, then there must be nonzero numbers a and d such that the series

converges for x = a and diverges for x = d . From Theorem A.9, observe that
∞ 
k=0

bkx
k

diverges for all values of x with |x | > |d|. Define the set S to be the set of all values of x for

which the series converges. Since the series converges for x = a, S is nonempty. Further,

|d| is an upper bound on S, since the series diverges for all values of x with |x | > |d|. By the

Completeness Axiom (see section 9.1), S must have a least upper bound r. So, if |x | > r ,

then
∞ 
k=0

bkx
k diverges. Further, if |x | < r , then |x | is not an upper bound for S and there

must be a number t in S with |x | < t . Since t ∈ S,
∞ 
k=0

bkt
k converges and by Theorem A.9,

∞ 
k=0

bkx
k converges since |x | < t ≤ |t |. This proves the result.

We can now prove the original result (Theorem A.8).

PROOF OF THEOREM A.8

Let t = x − c and the power series
∞ 
k=0

bk(x − c)k becomes simply
∞ 
k=0

bkt
k . By Theo-

rem A.10, we know that either the series converges for all t (i.e., for all x) or only for t = 0

(i.e., only for x = c) or there is a number r > 0 such that the series converges for |t | < r

(i.e., for |x − c| < r ) and diverges for |t | > r (i.e., for |x − c| > r ). This proves the original

result.





Appendix B
ANSWERS TO ODD-NUMBERED EXERCISES

CHAPTER 0

Exercises 0.1, page 8

1. x < 3 3. x < −2 5. x > − 2
3

7. 3 ≤ x < 6 9. − 1
2
< x < 2

11. x < −4 or x > 1 13. −2 < x < 3

15. all reals 17. −1 < x < 7

19. 2 < x < 4 21. x < − 3
2
or x > 1

2

23. x < −2 or x > 2

25. x < −4 or −4 < x < −1 or x > 2

27. x < −1 or x > 0 29.
√
13 31. 4

33.
√
20 35. yes 37. yes

39. increases by 550, 650, 750; predict 3200 + 850 = 4050

41. decreases by 10, 30, 50; predict 3910 − 70 = 3840

43. finite number of digits terminate

45.

 
1
2

 7 −  
2
3

 12
 
1
2

 7 = 0.013

47. P: 0.551, 0.587, 0.404, 0.538, 0.605

win%: 0.568, 0.593, 0.414, 0.556, 0.615

Exercises 0.2, page 20

1. yes 3. no 5. 2

7. − 5
2

9. − 5
7

11. (2, 5), y = 2(x − 1) + 3

y

x

2

4

6

8

10

12

10 5 6432

13. (0, 1), y = 1

y

x

0.5

1

1.5

2

10 5 6432

15. (3.3, 2.3), y = 1.2(x − 2.3) + 1.1

y

x

 1

0

1

2

3

4

5

654321

17. parallel 19. perpendicular 21. perpendicular

23. (a) y = 2(x − 2) + 1 (b) y = − 1
2
(x − 2) + 1

25. (a) y = 2(x − 3) + 1 (b) y = − 1
2
(x − 3) + 1

27. y = 2(x − 1) + 1; 7 29. y = −2(x − 1) + 3; −3

31. yes 33. no 35. both 37. rational

39. neither 41. x ≥ −2 43. all reals 45. x  = ±1

47. −1, 1, 11,− 5
4

49. 1, 2, 0,

 
3
2

51. x > 0

53. 0 ≤ x ≤ number made, x an integer 55. no: many y’s for one x

57. no: many y’s for one x

59. constant, increasing, decreasing; graph going down;

graph going up

A-13
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61. x-intercepts: −2, 4; y-intercept: −8

63. x-intercept: 2; y-intercept: −8

65. x-intercepts: ±2; y-intercept: −4

67. 1, 3 69. 2 +
√
2, 2 −

√
2 71. 0, 1, 2 73. 1, − 3

√
2

75. 63,000 feet 77. T = 1
4
R + 39 79. 51

Exercises 0.3, page 30

1.

 5

 5

5

5

y

x

3.

 10  5 0 5 10

10

15

5

y

x

5.

 5

 10

50

10

y

x

7.

 4

 15

4

15

y

x

9.

 5
 2

5

10

x

y

11.

 5 8

20

x

y

13.

 5

 4

5

10

y

x

15.

 5

 30

5

30

x

y

17.

 10

 10

10

10

x

y

19.

 10

 5

10

10

y

x

21.

 5
 10

30

10

y

x
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23.

 5

5

 5 5
x

y

25.

 0.1

0.9

 6 6
x

y

27.

 4

4

 4 4
x

y

29.

 4

4

 8 8
x

y

31. x = −2, x = 2 33. x = −5, x = 2 35. none

37. x = −2, x = −1, x = 0

39.

 1E 4

1E 4

 0.1 0.1
x

y

41.

 80

80

 14 14
x

y

43. x = 1 45. x = −1, x = 1 47. x = 0

49. 1, 1.2 (approx.) 51. 1 53. 0, 9.53 (approx.)

55. −1.18, 1.18 (approx.) 57. −1.88, 0.35, 1.53

59. 0.56, 3.07 61. −5.25, 10.01

63. possible answer: −9 ≤ x ≤ 11,−17 ≤ y ≤ 23

65. parabola y = 1
4

x2 + 1

Exercises 0.4, page 39

1. (a) 45◦ (b) 60◦ (c) 30◦ (d) 240◦

3. (a) π (b)
3π

2
(c)

2π

3
(d)

π

6

5. −π
3

+ 2nπ ;
π

3
+ 2nπ 7. −π

4
+ 2nπ ;

π

4
+ 2nπ 9.

π

2
+ 2nπ

11.
π

2
+ nπ ; 2nπ 13. π + 2nπ ;

π

2
+ nπ

15.

 2 

 1

2 

1

x

y

17.

  

 10

 

10

x

y

19.

 2 

 3

2 

3

y

x

21.

 2 

 3

2 

3

y

x
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23.

 1

1

 

2
 

 

2

y

x

25. A = 3, period = π, frequency = 1

π

27. A = 5, period = 2π

3
, f = 3

2π

29. A = 3, period = π, f = 1

π

31. A = 4, period = 2π, f = 1

2π

37. β ≈ 0.6435 39. no 41. yes, 2π 43.
2
√
2

3

45. −
√
3

2
47. 3; x = 0, x ≈ 1.109, x ≈ 3.698

49. 2; x ≈ −1.455, x ≈ 1.455

51. 2 tan 20◦ ≈ 0.73 mile

53. 100 tan 50◦ ≈ 119 feet

55. f = 30

π
,
170√
2

≈ 120.2 volts 57. $24,000 per year

Exercises 0.5, page 47

1. ( f ◦ g)(x) = √
x − 3 + 1, x ≥ 3

(g ◦ f )(x) = √
x − 2, x ≥ 2

3. ( f ◦ g)(x) = 1

x3 + 4
, x  = 3

√−4

(g ◦ f )(x) = 1

x3
+ 4, x  = 0

5. ( f ◦ g)(x) = sin2 x + 1, all reals

(g ◦ f )(x) = sin(x2 + 1), all reals

7. possible answer: f (x) = √
x, g(x) = x4 + 1

9. possible answer: f (x) = 1

x
, g(x) = x2 + 1

11. possible answer: f (x) = x2 + 3, g(x) = 4x + 1

13. possible answer: f (x) = x3, g(x) = sin x

15. possible answer: f (x) = 3

x
, g(x) = √

x, h(x) = sin x + 2

17. possible answer: f (x) = x3, g(x) = cos x, h(x) = 4x − 2

19. possible answer: f (x) = 4x − 5, g(x) = cos x, h(x) = x2

21. y

1

x0 1

23. y

1

x0 1

25.
y

1

x0

0.5

27.

x0 1

y

4

29.
y

2

x0 1

31. y

2

x

0.5

33.
y

2
x

0 1

3

35. y

2
x0 1

37. y = (x + 1)2, shift left one

39. y = (x + 1)2 + 3, shift left one, up three

41. y = 2[(x + 1)2 + 1], shift left one, up one, double vertical scale

43. reflect across x-axis, double vertical scale

45. reflect across x-axis, triple vertical scale, shift up two

47. reflect across y-axis

49. reflect across y-axis, shift up one

51. reflect across x-axis, vertical scale times |c|

53. y

x
0 4  2

120

100

80

60

40

20

2 4

57. go to 0 59. 0.739085
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Chapter 0 Review Exercises, page 49

1. −2 3. parallel 5. no

7. y = 1
2
(x − 1) + 1, y = 5

2
9. y = − 1

3
(x + 1) − 1

11. yes 13. −2 ≤ x ≤ 2

15.

 10

 10

10

10

x

y

17.

 5
 2 5

10

y

x

19.

 12

 8

8

12

y

x

21.

  

 3

 1
 

3

1
x

y

23.

 2 

 3

2 

3

y

x

25.

 5

5

y

x
 

4
 

3 

4
 

3 

4

 

4

27. x = −4, x = 2, y = −8 29. x = −2 31. −2, 5

33. 1, 1 +
√
3, 1 −

√
3 35. 3 37. 50 tan 34◦ ≈ 33.7 feet

39. (a)
1√
5

(b)
1

9

41. ( f ◦ g)(x) = x − 1, x ≥ 1

(g ◦ f )(x) =
√

x2 − 1, x ≤ −1 or x ≥ 1

43. f (x) = cos x, g(x) = 3x2 + 2

45. (x − 2)2 − 3, shift two right and three down

47.
π

4
+ nπ

CHAPTER 1

Exercises 1.1, page 58

1. 3 3. 0 5. 3 7. 1
2

9. 1

11. (a) 1.5522 (b) 1.5643

13. (a) 4.6267 (b) 4.6417 (c) 4.64678

15. (a) 1.90626 (b) 1.90913 (c) 1.91010

17. (a) 3.16732 (b) 3.16771 (c) 3.16784

19. (a) 9.15298 (b) 9.25345 (c) 9.29357 21. 1.375

23. (a) 1.33594 (b) 1.33398 (c) 1.33349 (d) 4
3

25. 0.25

Exercises 1.2, page 65

1. (a) −2 (b) 2 (c) does not exist (d) 1 (e) 0

(f ) −1 (g) 3 (h) does not exist (i) 2 ( j) 2.5

3. (a) 4 (b) 4 (c) 4 (d) 2

5. (a) 2 (b) −2 (c) does not exist (d) 4

7. 2.2247, 2.0488, 2.0050, 2.0005 → 2;

1.7071, 1.9487, 1.9950, 1.9995 → 2

9. 2 11. 1 13. 1

15. no; vertical asymptote 17. 1.5

19. limit does not exist, oscillates 21. does not exist, jump

23. does not exist

25.

x

y

1–1

–3

3
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27.

x

y

0 1

3

29. m = 1
2

31. The first argument doesn’t depend on specific values of x .

33. One possibility: f (x) = sin x

x
, g(x) =

 
2x, x = 0

x + 1, x > 0

37. 8; does not exist

Exercises 1.3, page 75

1. 1 3. 0 5. 5 7. 3
4

9. 1 11. cos(1)

13. 1
4

15. 2 17. 1
2

19. 2 21. does not exist

23. 4 25. 1 27. does not exist 29. 4

31. 2
√
3 33. − 1

4
35. 0, f (x) = −x2, h(x) = x2

37. f (x) = 0, h(x) = √
x 39. does not exist—undefined for x > 4

41. 0 43.

 
1
2

45. h(a) 47. (a) −1 (b) −2

49. 4 51. 0 53. m = 1
2

55. does not exist

57. −18 59. can’t tell 65. f (x) = 1

x
, g(x) = x

67. False, f (x) = 1
x

69. a = 0, b = 2400

71. (a) does not exist (b) 1 (c) does not exist

(d) does not exist

Exercises 1.4, page 86

1. x = −2, x = 2 3. x = −2, x = 1, x = 4

5. x = −2, x = 2, x = 4

7. f (1) is not defined and lim
x→1

f (x) does not exist

9. f (0) is not defined and lim
x→0

f (x) does not exist

11. lim
x→2

f (x)  = f (2)

13. x = 1 (removable), g(x) = 1

x + 1
; x = −1 (nonremovable)

15. none 17.
nπ

2
for odd integers n (nonremovable)

19. x = 1 (nonremovable)

21. x = 1 (nonremovable) 23. x = 1 (nonremovable)

25. [−3,∞) 27. (−1,∞) 29. (−∞,∞) 31. a = b = 2

33. a = 1
3
, b = nπ

3
35. −700

37. b = $12,747.50, c = $23,801.30

39. f (2) < 0, f (3) > 0,
 
2 20
32
, 2 21

32

 
41. f (−1) > 0, f (0) < 0,

 − 18
32
,− 17

32

 
43. f (0) > 0, f (1) < 0,

 
23
32
, 24
32

 
45. yes 47. no

49. #47 is 51. g(T ) = 100 − 25(T − 30)

53.

x

y

0 20 40 60 10080

20

x = 100,

force that moves box

40

60

80

100

Friction

55. M(t) = distance from home at time t on Monday

T (t) = distance from home at time t on Tuesday

M(1:59 P.M.) − T (1:59 P.M.) > 0 and

M(7:13 A.M.) − T (7:13 A.M.) < 0

57. raises at 3-month marks, f (t) = s(t) when t is a multiple of 3

x

y

0 3 6 9 12
40

46

Salary

(thousand

dollars)

Time (months)

59. If f (d) < 0 for a < d < b then f (x) = 0 for some x between c and d.

65. No, it would not necessarily be true if f were not continuous.

Exercises 1.5, page 96

1. (a) ∞ (b) −∞ (c) does not exist

3. (a) −∞ (b) −∞ (c) −∞
5. −∞ 7. 1 9. ∞ 11. 1

2
13. does not exist 15. −2

17. 3
4

19. 0

21. horizontal asymptotes at y = 1 as x → ∞ and at y = −1 as

x → −∞
23. vertical asymptotes at x = ±2; horizontal asymptote at y = 0

25. vertical asymptotes at x = −1 and x = 3; horizontal asymptote at

y = 3

27. vertical asymptotes at x = 2πn

29. horizontal asymptote at y = 0

31. vertical asymptotes at x = ±2; slant asymptote at y = −x

33. vertical asymptotes at x = − 1
2

±
 

17
4
; slant asymptote at y = x − 1

35. 1 37. 1 39. − 1
2

41. 3

2
√
5

45. with no light, 40 mm; with an infinite amount of light, 12 mm

47. f (x) = 80x−0.3 + 60

10x−0.3 + 30
49. ∞, c

51. ve =
√
19.6 R 53. no 55. one larger

57. −2(x − 3)2 59. true 61. false 63. true

65. vertical asymptote at x = 2; horizontal asymptotes at y = 0 and

y = 4

67. system A: about 8.4 s; system B: about 2.0 s

69. g(x) = sin x, h(x) = x

Exercises 1.6, page 110

1. (a)
√
0.1 ≈ 0.32 (b)

√
0.05 ≈ 0.22

3. (a) 0.45 (b) 0.31

5. (a) 0.39 (b) 0.19

7. (a) 0.02 (b) 0.009
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9.
ε

3
11.

ε

3
13.

ε

4
15. δ ≤ ε 17. min

 
1,
ε

3

 
19. min

 
1,
ε

5

 
21.

ε

|m| , no 25. 0.02 27. 0.0095

29. 0.0001 31. 12 33. −3.4 35. 6.6 37. M = 3

 
2

ε

39. M = k

 
1

ε
41. N = −

 
1

ε
− 2, for 0 < ε ≤ 1

2

43. δ = 4

 
− 2

N
45. δ = 2√

M
47. 2 49. 1.9

51. min
 
1,
ε

10

 
59. δ1 ≤ δ2, so δ1 is the correct choice. The definition states that

|x2 − 4| < ε for all x such that |x − 2| < δ. The only way to

guarantee that the condition is satisfied for all x is to choose the

smaller value of δ.

Exercises 1.7, page 118

1. 1
4
;

x√
4x2 + 1 + 2x

3. 1;
2
√

x√
x + 4 + √

x + 2

5. 1;
2x√

x2 + 4 +
√

x2 + 2
7. 1

6
;

sin2 2x

12x2(1 + cos 2x)

9. 1
2
;

sin2(x3)

x6(1 + cos(x3))

11. 2
3
;

2x4/3

3
 
(x2 + 1)2 + 3

 
(x2 + 1)(x2 − 1) + 3

 
(x2 − 1)2

13. 3, does not exist

15. f (x) = 0, g(x) = 0.0016,−0.0159,−0.1586,−0.9998

17. 20, 0

Chapter 1 Review Exercises, page 119

1. 2 3. (a) 1.05799 (b) 1.05807 5. 0

7. does not exist 9. − 1
3

11. (a) 1 (b) −2 (c) does not exist (d) 0

13. x = −1, x = 1 15. 3
4

17. does not exist

19. does not exist 21. 5 23. 2
3

25. ∞
27. 1

3
29. −∞ 31. 0 33. does not exist

37. x = −3, x = 1 (removable)

39. x = 2 41. (−∞,−2) ∪ (−2, 3) ∪ (3,∞)

43. (−∞,∞) 45. x = 1, x = 2, y = 0

47. x = −1, x = 1, y = 1 49. y = x − 1

51. x = 2πn 53.
1

4
;

sin2 x

2x2(1 + cos x)
55. 66 rad/s; larger; no

CHAPTER 2

Exercises 2.1, page 133

1. y

0.5

1.0

x0 1

3. y

1

x0 1

5. −1 7. C, B, A, D

9. (a) 6 (b) 18 (c) 8.25 (d) 14.25 (e) 10.41

(f) 11.61 (g) 11

11. (a) −1.19 (b) −0.26 (c) −0.05 (d) 3.3 (e) 2.4

(f) 3.6 (g) 3

13.

0 0.5 1 1.5 2 2.5 3 3.5 4

5

10

15

20

25

y

x

17. y = 2(x − 1) − 1 19. y = −7(x + 2) + 10

21. y = − 1
2
(x − 1) + 1 23. y = 1

2
(x + 2) + 1

25. no; sharp corner 27. yes; 0

29. no; jump discontinuity

31. (a) 32 (b) 48 (c) 62.4 (d) 63.84 (e) 64

33. (a) 2.236 (b) 1.472 (c) 1.351 (d) 1.343

(e) 1.342

35. (a) −32 (b) −64 37. −10; 4.5

39. about 1.75 hours; 1.5 hours; 4 hours; rest

45.
√
9.6π rad/s 51. yes

Exercises 2.2, page 144

1. 3 3. 3
4

5. 6x 7.
−3

(x + 1)2
9.

3

2
√
3x + 1

11. 3x2 + 2 13. c 15. a 17. b

19. y

10

x0 1

21. y

2

x
0 1

23. y

1
x

0 1

25. x = 0 and x = 2 27. p ≥ 1 29.
f (a) f  (a)

a
31. 0.0375 degrees per rps 33. 10

35. (a) 0.4 ton per year (b) 0.2 ton per year
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37. D+ f (0) = 3, D− f (0) = 2 39. D− f (0)  = g (0)

45. f (x) = −1 − x2

47. (a) meters per second (b) items per dollar

49. losing value; sell

53. f  (1),
f (1.5) − f (1)

0.5
, f (2) − f (1), f (1)

55. f (x) = x2 − x, a = 1 57. f (x) = 1

x
, a = 2

61. f  (t) =

⎧⎨
⎩

0, 0 < t < 20

10, 20 < t < 80

8, t > 80

Exercises 2.3, page 155

1. 3x2 − 2 3. 9t2 − 1√
t

5. − 3

x2
− 8 7. −5x−3/2 − 2

9. 3s1/2 + s−4/3 11. 2
3

x−2/3 13. 9x2 − 3
2

x1/2

15. 3
2

− 1
2

x−2 17. 12x2 + 6 19. 24x2 − 9
4

x−5/2

21. 24 23. − 3
8

x−3/2 − 3
8

x−5/2 − 15
8

x−7/2

25. v(t) = −32t + 40, a(t) = −32

27. v(t) = 1
2

t−1/2 + 4t, a(t) = − 1
4

t−3/2 + 4

29. v(1) = 8 (going up); a(1) = −32 (slowing down)

31. v(2) = 16 (going up); a(2) = 20 (speeding up)

33. y = −x + 4 35. y = 4(x − 2) + 2

37. x = −1 (peak); x = 1 (trough) 39. x = 0 (minimum)

41. (a) f   (x) (b) f (x) (c) f  (x)

43. (−1)(n−1) 1 · 3 · · · (2n − 3)

2n
x−(2n−1)/2 45. 3

2
x2 + 2x − 2

47. 2 49. (a) f  (x) (b) 0 51. second; not much

53. b >
4

9c2
55. f  (2000) ≈ 174.4, f   (2000) ≈ −160

59. x4 61. 2
3

x3/2 63. f   (a)

Exercises 2.4, page 164

1. 2x(x3 − 3x + 1) + (x2 + 3)(3x2 − 3)

3.

 
1

2
x−1/2 + 3

  
5x2 − 3

x

 
+ (

√
x + 3x)(10x + 3x−2)

5.
3(5x + 1) − (3x − 2)5

(5x + 1)2
= 13

(5x + 1)2

7.
(3 − 3x−1/2)(5x2 − 2) − (3x − 6

√
x)10x

(5x2 − 2)2

9.
(2x − 1)(x2 − 5x + 1) − (x2 − x − 2)(2x − 5)

(x2 − 5x + 1)2

11. 3
2

x1/2 + 3
2

x−1/2 + x−3/2 13. 4
3

x1/3 + 3

15. 2x
x3 + 3x2

x2 + 2
+ (x2 − 1)

(3x2 + 6x)(x2 + 2) − (x3 + 3x2)(2x)

(x2 + 2)2

17. f  (x)g(x)h(x) + f (x)g (x)h(x) + f (x)g(x)h (x)

19. 2
3

x−1/3(x2 − 2)(x3 − x + 1) + x2/3(2x)(x3 − x + 1) +
x2/3(x2 − 2)(3x2 − 1)

21. (a) y = 7x − 9 (b) y = −2x − 3

23. (a) y = −x − 1 (b) y = 0

25. P  (t) = 0.03P(t); 3 − 4 = −1 27. $65,000 per year

29.
19.125

(m + 0.15)2
; bigger bat gives greater speed

31.
−14.11

(m + 0.05)2
; heavier club gives less speed 33. f  (0) = g(0)

37. cos x ; 2 cos 2x ; 3 cos 3x ; k cos kx

41. F    (x) = f    (x)g(x) + 3 f   (x)g (x) + 3 f  (x)g  (x) + f (x)g   (x)

45. Tc = 8a

27Rb
, Vc = 3nb, Pc = a

27b2
; 647K

47.
2.7x1.7

(1 + x2.7)2
49. 3x2 f (x) + x3 f  (x)

51.
f (x) − 2x f  (x)
2
√

x[ f (x)]2

Exercises 2.5, page 170

1. 6x2(x3 − 1) 3. 6x(x2 + 1)2 5. x(x2 + 4)−1/2

7.
x4(13x3 + 20)

2
√

x3 + 2
9. − x2(x2 − 12)

(x2 + 4)3
11. − 6x

(x2 + 4)3/2

13.
2(

√
x + 3)1/3

3
√

x
15. −3x2(x3 + 2)−1/2 + 4

(
√

x3 + 2 + 2x)3

17. (x2 + 1)−3/2 19. − x2 − 1

2
√

x(x2 + 1)3/2

21.
1

3

⎛
⎝x

 
x4 + 2x

4

 
8

x + 2

⎞
⎠

−2/3
⎛
⎜⎜⎝
 

x4 + 2x
4

 
8

x + 2

+ x
1

2

⎡
⎣4x3 + 2

4
√
8

 
(x + 2)−1/4 − 1

4
x(x + 2)−5/4

 
 

x4 + 2x 4

 
8

x + 2

⎤
⎥⎥⎦
⎞
⎟⎟⎠

23. y = 3

5
(x − 3) + 5 25.

1√
3

27. −(2x + 1)−3/2; 3(2x + 1)−5/2;−15(2x + 1)−7/2;

(−1)n+13 · 5 . . . (2n − 3)(2x + 1)−(2n−1)/2

29. 4 31. −3 33. −6

35.
1

3
(x2 + 3)3 37.

√
x2 + 1 41.

f  (
√

x)

2
√

x

43. − 2 f (x) f  (x)
(1 + [ f (x)]2)2

45. −6 47. 6

49. 0, 1, 2; vertical tangent

Exercises 2.6, page 180

3. 4 cos x − 1 5. 3 tan2 x sec2 x + 4 csc4 x cot x

7. cos(5x2) − 10x2 sin(5x2) 9. 2x cos(tan(x2)) sec2(x2)

11.
2

x3
(x2 cos(x2) − sin(x2)) 13. sec2 t

15. −4 csc(4x) cot(4x) 17. 2 cos2 x − 2 sin2 x

19.
x√

x2 + 1
sec2

 
x2 + 1 25. y = 1
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27. y = −x + π

2
29. −2 ft/s 31.

1

π2
ft/s

33. max speed of 12 occurs when t = n
π

3
with f = 0

35. Q (0) = 7, Q (1) ≈ −1.5 37. − cos x ;− sin x

43. (a) 3 (b) 1
4

(c) 0 (d) 1

45. f  (x) =
 
(x cos x − sin x)/x2, x  = 0

0, x = 0

Exercises 2.7, page 189

1. − 1
2

3. 0 5.
4 − 2xy2

3 + 2x2y
7.

y

16y
√

xy − x

9.
y − 4y2

x + 3 + 2y3
11. − 1 + 2xy sin(x2y)

x2 sin(x2y) + cos y
13.

16x
√

x + y − 1

1 − 2
√

x + y

15.
2 + y2

4 sec2 4y − 2xy
17. y = 1

3
(x − 2) + 1

19. y = −(x − 2) + 1 21. y =
√
3

3
(x − 1) +

√
3

2

23. horizontal tangent at (0, 2.1958) vertical tangents at (±
√
6, 1) and

(±
√
2,−1)

25. y  = 27x2 + 48y2 − 180x + 240y − 144xy + 200

4(x2y − 2)3

27. y  = 3[4x(y + 2 sin y)2 − 3(x2 − 2)2(1 + 2 cos y)]

4(y + 2 sin y)3

29. x = 1.9, y ≈ 1 − 4(−0.1) = 1.4

x = 2.1, y ≈ 1 − 4(0.1) = 0.6

31. (4, 7)

33. vertical asymptotes at x = ±
√
2, horizontal asymptote at y = 0

39. x2 + ny2 = k

Exercises 2.8, page 197

1. c = 0 3. c =
√
7 − 1

3
5. c = cos−1

 
2

π

 
9. increasing 11. decreasing 13. neither

15. increasing (x ≥ −1) 17. 3x2 + 5 > 0

19. f  (x) = 4x3 + 6x has one zero 21. 3x2 + a > 0

23. 5x4 + 3ax2 + b > 0 29. 1
3

x3 + c 31. − 1

x
+ c

33. − cos x + c 35. discontinuous at x = 0

37. discontinuous at x = π

2

39. f (x) > 0 in an interval (b, 0) for some b < 0

43. discontinuous at x = 0

Chapter 2 Review Exercises, page 199

1. 0.8 3. 2 5. 1
2

7. 3x2 + 1

9. y = 2x − 2 11. y = 6x 13. y = −3(x − 1) + 1

15. v(t) = −32t + 40; a(t) = −32

17. v(t) = 40 cos 4t ; a(t) = −160 sin 4t

19. 8 ft/s going up, −24 ft/s coming down

21. (a) 0.3178 (b) 0.3339 (c) 0.3492 (d) 0.35

23. 4x3 − 9x2 + 2 25. − 3
2

x−3/2 − 10x−3

27. 2t(t + 2)3 + 3t2(t + 2)2 29.
(3x2 − 1) − x(6x)

(3x2 − 1)2

31. 2x sin x + x2 cos x 33. 1
2

x−1/2 sec2
√

x

35. csc t − t csc t cot t 37.
−2x

(x2 + 2)3/2
39.

3x sin
√
4 − x2

√
4 − x2

41. 2 cos 4x(sin 4x)−1/2 43. 2

 
x + 1

x − 1

 −2

(x − 1)2

45. − 4√
x
sin(4 − √

x) cos(4 − √
x)

49. 12x2 − 18x + 4

51. 8x sin 2x − 12 cos 2x 53. 2 sec2 x tan x 55. −326 sin 3x

57. (a) f (t) = ±4 (b) f (t) = 0 (c) f (t) = 0

59.
2x − 2xy

x2 − 9y2
61.

sec2 x + y

(x + 1)2

1

(x + 1)
− 3

63. y(0) = − 1
3
√
3
; slope of tangent line at x = 0 is 0;

y  (0) = −2
3
√
3 − 2

3
√
9

9
≈ −0.78

65. (a) (0, 1) and (4,−31) (b) none

67. (a) (0, 0) (b) none 69. 3x2 + 7 > 0

75. c = 1 77. x3 − sin x + c 79. m = 3

CHAPTER 3

Exercises 3.1, page 213

1. 1 + 1
2
(x − 1) 3. 3 + 1

3
x 5. 3x

7. all three are the same; y = 2x + 1

9. (a) 2.00125 (b) 2.0025 (c) 2.005

11. 0.00000117; 0.00000467; 0.0000186

13. (a) 16.4 thousand (b) 12.8 thousand

15. (a) 133.6 (b) 138.4 17. x = 1 19. fails

21. 2
3
, 79
144
, 0.53209 23. 1

2
, 5
8
, 0.61803 25. −4.685780

27. 0.525261 29. −0.636733, 1.409624

33. f (x) = x2 − 11; 3.316625 35. f (x) = x3 − 11; 2.223980

37. f (x) = x4.4 − 24; 2.059133

39. f  (0) = 0;−0.3454, 0.4362, 1.6592

41. f  (0) = 0; no root 43. f  (−1) does not exist; 0.1340, 1.8660

45. (a) 1 (b) 2, slower 47. (a) −1 (b) 2, faster

49. 0.01 and 0.0100003; 0.1 and 0.1003; 1 and 1.557

51. 2.0025 and 2.002498; 2.025 and 2.0248; 2.25 and 2.2361

53. −0.306 < x < 0.306 55. 0.1328; 1.0 57. 0.6407

59. P(1 − 2x/R); 104,500 ft

61. (a) 0 (b) 1 (c) 2

Exercises 3.2, page 225

1. (a) none (b) max of −1 at x = 0 (c) none

3. (a) max of 1 at x = π
2

+ 2πn, min of −1 at x = 3π
2

+ 2πn

(b) max of 1√
2
at x = π

4
, min of 0 at x = 0

(c) max of 1 at x = π
2
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5. − 5
2
, local minimum 7. −1, local maximum; 1, local minimum

9. none 11. 0, neither; 9
4
, local minimum

13. 0, neither; 16
9
, local minimum

15.
π

4
,
5π

4
, local maxima;

3π

4
,
7π

4
, local minima

17. −2 +
√
2, local minimum; −2 −

√
2, local maximum

19. −1, local minimum; 1, local maximum

21. −2, 1, local minima 23. − 2
3
, local minimum; −1, endpoint

25. 0, local maximum; ±1, local minima

27. −1, 2: local minima; 0, local maximum

29. (a) minimum, −1; maximum, 3

(b) minimum −17; maximum, 3

31. (a) maximum, 24/3; minimum, 22/3

(b) maximum, 32/3; minimum, 0

33. (a) maximum, 0; minimum, −12

(b) no maximum; no minimum

35. (a) absolute min at (−1,−3);

absolute max at (0.3660, 1.3481)

(b) absolute min at (−1.3660,−3.8481);

absolute max at (−3, 49)

37. (a) absolute min at (0.6371, −1.1305);

absolute max at (−1.2269, 2.7463)

(b) absolute min at (−2.8051,−0.0748);

absolute max at (−5, 29.2549)

39. for #29: (a) minimum, −1; no maximum

(b) no minimum; maximum, 3

for #31: (a) no maximum; no minimum

(b) no maximum; minimum, 0

for #33: (a) maximum, 0; no minimum

(b) no maximum; no minimum

45. f (x) = sec2 x

47. c ≥ 0, none; c < 0, one relative maximum, one relative minimum

49. 4b2 − 12c > 0 if c < 0

51. c ≥ 0, one relative minimum; c < 0, two relative minima, one

relative maximum

55.

 
1

3

57. x = −1.575, top; x = 1.575, bottom; steepest at x = ±2

Exercises 3.3, page 235

1. increasing: x < −1, x > 1; decreasing: −1 < x < 1

y

x

 5

 4

 3

 2

 1

1

2

3

4

5

 1 2 3 4 5 210 3 4 5

3. increasing: −2 < x < 0, x > 2;

decreasing: x < −2, 0 < x < 2

y

x

 15

 10

 5

5

10

15

 1 2 3 4 5 210 3 4 5

5. increasing: x > −1; decreasing: x < −1

y

x

 4

 5

 2

 3

 1

1

2

3

5

4

 5 0 5

7. y is increasing on
 − 3π

4
+ 2nπ, π

4
+ 2nπ

 
;

y is decreasing on
 
π
4

+ 2nπ, 5π
4

+ 2nπ
 

y

x

 4

 5

 2

 3

 1

1

2

3

5

4

 5π 0 5π

9. x = −3 (local minimum) and x = 0 (neither)

11. x = ±  
2
3

 3/4
(minima), x = 0 (local maximum)

13. x = 1
3
√
2
(local maximum)

15. local max at x = −2,

local min at x = 0

17. vertical asymptotes at x = −1 and x = 1;

horizontal asymptote at y = 0

y

x
 5

 10

 5

5

10

50 10
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19. vertical asymptotes at x = 1 and x = 3; horizontal asymptote at

y = 1; local minimum at x = 0, local maximum at x = 3/2
y

x
 10

 20

 10

10

20

 20 100 20

21. horizontal asymptotes at y = −1 and y = 1
y

x
 2

1

 1

 2

2

 4 20 4

23. local max: x = −0.3689; local min: x = 9.0356

 16 12 8  4 4 8 12 16

y

x

200

300

 500

 400

 300

 200

 100

100

25. local max: x = 0.9374;

local min: x = −0.9474, x = 11.2599

−20 −16 −12 −8 −4 4 8 12 16 20

2200

−5500

−4400

−3300

−2200

−1100

1100

y

x

27. local max: x = −10.9079, x = 1.0084;

local min: x = −1.0084, x = 10.9079

−20−16−12−8 −4 4 8 12 16 20

−100000

−80000

−60000

−40000

−20000

20000

40000

60000

80000

100000

y

x

33. critical numbers: x ≈ 0.20 (local min) and x ≈ 40 (local max)

35. critical numbers: x ≈ −120.008 (min) and x ≈ 0.008 (max)

37. f (0) = 1

41. If f (x) = 2
√

x and g(x) = 3 − 1

x
, f (1) = g(1) = 2

and for x > 1, f  (x) = 1√
x
>

1

x2
= g (x)

43. If f (x) = tan x and g(x) = x , f (0) = g(0) = 0 and for 0 < x < π
2
,

f  (x) = sec2 x > g (x) = 1.

45. yes

47. s (t) = 1

2
√

t + 4
= rate of increase of sales function

53. (a) −0.000125 (b) 0.000125 (c) easier if c < −8

Exercises 3.4, page 244

1. concave up for x > 1, concave down for x < 1

3. concave up for x > 0, concave down for x < 0

5. concave up on

 
−3π

4
+ 2nπ,

π

4
+ 2nπ

 
;

concave down on

 
π

4
+ 2nπ,

5π

4
+ 2nπ

 
7. concave up for x < 0, x > 2; concave down for 0 < x < 2

9. critical numbers:

x = −3 (min), x = 0 (inflection point)

11. local max at x = −2,

local min at x = 2

13. min at x = 0, no inflection points

y

2

x0 1

15. local max at x = 0; asymptotes: x = ±3, y = 1

y

x
 10 20

 20

 10

10

100 20

20

17. local minimum at x = 16
9
; inflection point at x = 16

0 10 20 30

 4

4

y

x
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19. inflection point at x = 0

y

x
 2

5

15

10

 4 20 4

 15

 5

 10

21. local minimum at x = − 1
6
; inflection points at x = 0, 2

3

y

x
 2

 2

 4 20 4

2

4

23. local min at x = −0.1129 and x = 19.4993,

local max at x = 0.1135, inflection points at x = 0, x = 13

y

 40,000

x0 20 5

25. minimum at x = 0; inflection points at x = ±
 

1
2

 10 0 10

 5

5

10

y

x

27. local min at x = 0.8952 and x = 9.9987,

local max at x = 1.106, inflection points at x = 1, x = 7

y

400

x0 2

29. inflection points at x = −
√
6 and x =

√
6

y

x
 2

 20

 10

10

20

 4 20 4

31. up: x < − 1
2
, x > 1

2
; down: − 1

2
< x < 1

2

33. up: x > 1; down: x < 1

39. cubic has one inflection point at x = − b

3a
; quartic has two inflection

points if and only if 3b2 − 8ac > 0

41. increasing: x > 0; decreasing: x < 0; min at x = 0; concave up for

all x

43. (for #41) increasing: x < −1, x > 1; decreasing: −1 < x < 1;

max at x = −1, min at x = 1; concave up: x > 0;

concave down: x < 0; inflection point at x = 0

45. need to know w (0) 47. x = 30 49. x = 600

51. minimum at x = −3
4

c; inflection point at x = −1
2

c

53. f (x) = −1 − x2

55. tangent line points above sun

Exercises 3.5, page 258

1. inflection point at x = 1

−5

−60

5
x

y

90

3. local max at x = −
 

6
5
, local min at x =

 
6
5
,

inflection points at x = −
 

3
5
, x = 0, x =

 
3
5

−2

−5

2
x

y

5

5. local max at x = −2, local min at x = 2;

asymptotes: x = 0, y = x

−20

−16

−12

4

8

12

16

20

−10−8 −6 −4 −2 2 4 6 8 10

y

x

−8

−4
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7. min at x = 0

−5 0 5

8

x

y

9. local min at x = −1, local max at x = 1,

inflection points at x = −1.879, x = 0.347, x = 1.532;

horizontal asymptote at y = 0

−5

−5

5

5

x

y

11. local max at x = 1 − 1√
3
, local min at x = 1 + 1√

3
, vertical tangent

lines at x = 0, 1, 2, asymptote is y = x − 1, inflection points at

x = 0, 1, 2

y

x
 10

 40

 30

 20

 10

20

10

40

30

 20 100 20

13. local max at x = −1, inflection point at x = 0,

local min at x = 1

−2

−5

2

5

x

y

15. vertical asymptote at x = 0, horizontal asymptote at y = 3

 5 5
 2

8

y

x

17. local max at x = 1 −
√
3
3
, x = 1 +

√
3
3
; local min at x = 0, 1, 2;

inflection points at x ≈ −0.1883, 2.1883

y

x

10

5

 5

15

 1 210 3

19. local max at x = 0, vertical asymptotes at x = ±
 

1
3
; horizontal

asymptote at y = 1
3

y

x
 2

2

 2

 4

 4 20 4

4

21. vertical asymptote at x ≈ −1.3, horizontal asymptote at y = 0, local

max at x = 3

 
1
2
, inflection points at x ≈ −0.390, 0.433, 1.108

y

x
 5

5

 5

 10

10

 10 50 10

23. local minima at x = ±3, inflection points at x ≈ ±3.325

y

32

48

64

80

 16

16

x
 5  4  2 3  1 1 2 3 4 5

25. horizontal asymptotes at y = −50 and y = 50

y

x
 2

50

 50

 100

100

 4 20 4
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27. local minima at x = 0.895 and x = 9.999, local maximum at

x = 1.106, inflection points at x = 1 and x = 7

−16−12 −8
x

y

−4 4 8 12 16

880

−2200

−1760

−1320

−880

−440

440

29. c < 0: 3 extrema, 2 inflection points;

c ≥ 0: 1 extremum, 0 inflection points;

as c → −∞, the graph widens and lowers;
as c → +∞, the graph narrows

31. min at x = 0; inflection points at x = ± c√
3
; graph widens as

c2 → ∞; y = 1 for c = 0 (undefined at x = 0)

33. |c| = frequency of oscillation

35. max at x =
√

b;
√

b is the most common gestation time; most

common lifespan

37. no; no

39. y = 3x

 4  3  2  1 1 2 3 4

4

6

8

10

 10

 8

 6

 4

 2

2

x

y

41. y = x − 2

 2

2

6

8

 4

 2 2 4 6 4

y

x
8 10

4

43. y = x

 2

2

4

6

8

 4

 2 2 4 8 10 4

y

x
6

45. f (x) = 3x2

(x − 1)(x − 2)

47. f (x) = 2x√
(x − 1)(x + 1)

Exercises 3.6, page 268

1. f (x) = x2 + 1 3. 30 × 60 ; the perimeter is 120 

5. 20 × 30 9.

  
1
2
, 1
2

 
or

 
−
 

1
2
, 1
2

 

11. (0, 1) 15.
8

3
−

√
19

3
≈ 1.2137

17. 15
7

≈ 2.143 miles east of first development

19. 1.2529 miles east of bridge; $1.964 million

21. 1.8941 miles east of bridge; $234,800

25. r = 1.1989  , h = 4.7959  27. r = 2
3

r0, contracts

29. x = R 31. 2 × 2 

33. printed region:
√
46   × 2

√
46   ; overall: (

√
46 + 2)  × (2

√
46 + 4)  

35. 12.7 ft 37. 1.1 ft 39. x = 5; R(5) = 2.5 41. 4

43. 30 45. (a) 50◦ (b) 45◦ (c) 40◦

47. 100-by- 200
π

meters; 200 meters on straightaway

49. 2ab 51.

√
3p2

36

Exercises 3.7, page 276

1. (a) 1.22 ft/min (b) 0.61 ft/min 3. 58.9 gal/min

5. 6π mm2/hr 9. −2.25 ft/s

11. 0.00246 rad/s 13. 24
√
101 ≈ 241 mph

15. − 100√
5

≈ 44.7 mph is more accurate

19. −2 dollars per year

21. s  (20) = 0.768 thousand dollars per year 23. −65 rad/s

25. 0.03 rad/s 27. 1 ft/s

31. 2.088 when x = 20, 2.332 when x = 10

33. 1760 Hz/s; 1
8
second 35. 0 37.

10

9π
ft/s

Exercises 3.8, page 285

1. 3x2 + 40x + 90; 9590 vs. 9421

3. 3x2 + 42x + 110; 34,310 vs. 33,990

5. x = 10; costs rise more sharply 7. x =
 
20,000 ≈ 141

9. x = 3
√
18

11. C  (100) = 42,C(100) = 77;C(101) = 76.65 < C(100)

13. min at x = 600;C  (600) = C(600) = 52

15. P  (x) = 0 if R (x) = C  (x)

17. (a)
p

p − 30
(b) 15 < p < 30

19. (a)
2p − 20

p − 20
(b)

40

3
< p < 20

21. revenue decreases 25. x(t) = 2

27. If 0 < x(t) < 4, then x  (t) > 0, and if x(t) > 4, then

x  (t) < 0; x(t) = 5 is limit

29. r = cK 31. 0; same

33. no max; rate → r as x → ∞ 35.
−5c5/7

7P12/7
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37. 4 − cos x ; less dense at ends 39. 4; homogeneous

41. 2.5

43. f  (x) = −816x−1.4 
4x−0.4 + 15

 2 < 0

45. could be min or inflection point

47. the critical number is 2c, representing a minimum

Chapter 3 Review Exercises, page 288

1. 1 3. 2 + 1
12
(7.96 − 8) ≈ 1.99666 5. 0.198437

7. f  (1) = 0

9. (a) x = −3, 1

(b) increase: x < −3, x > 1; decrease: −3 < x < 1

(c) local max at x = −3, local min at x = 1

(d) up: x > −1, down: x < −1 (e) x = −1

11. (a) x = 0, 3 (b) increase: x > 3; decrease: x < 3 (x  = 0)

(c) min at x = 3 (d) up: x < 0, x > 2; down: 0 < x < 2

(e) x = 0, x = 2

13. (a) x = 180 (b) 0 < x < 180; x < 0 and x > 180

(c) local maximum at x = 180

(d) f is concave up for x > 270; f is concave

down for x < 0 and 0 < x < 270

(e) there is an inflection point at x = 270

15. (a) x = −2, 2

(b) increase: −2 < x < 2, decrease: x < −2, x > 2

(c) min at x = −2, max at x = 2

(d) up: −
√
12 < x < 0, x >

√
12;

down: x < −
√
12, 0 < x <

√
12

(e) x = −
√
12, x = 0, x =

√
12

17. min = −5 at x = 1,max = 76 at x = 4

19. min = 0 at x = 0,max = 34/5 at x = 3

21. local max at x = − 4

3
−

√
10

3
, local min at x = − 4

3
+

√
10

3

23. local max at x ≈ 0.2553, local min at x ≈ 0.8227

27. min at x = −3, inflection points at x = −2, x = 0

 5

 30

5

30

x

y

29. min at x = −1

 5 5

 40

60

x

y

31. min at x = −1, max at x = 1,

inflection points at x = −
√
3, x = 0, and x =

√
3,

horizontal asymptote at y = 0

 5

 2

5

2

x

y

33. min at x = 0, inflection points at x = −
 

1
3
, x =

 
1
3
horizontal

asymptote at y = 1

 3

 1

3

3

x

y

35. local max at x = −
√
3, local min at x =

√
3, inflection point

at x = 0, vertical asymptotes at x = −1 and x = 1, slant asymptote

at y = x

y

x
 5

 10

 5

5

10

 10 50 10

37. (0.8237, 1.3570) 39. 1.136 miles east of point A

41. r = 1.663, h = 3.325

43. 2x , denser to the right

45. 0.04x + 20, 20.8 versus 20.78

CHAPTER 4

Exercises 4.1, page 298

1. y

x

x4 + 1x4 + 2

x4

0 1
 1

 1

 2

 3

 4

 5

 2

1 2 3 2 3
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3.

 5 5

 5

5

y

x

5. 3
5

x5 − 3
2

x2 + c 7. 2x3/2 + 1
3

x−3 + c

9. 3
2

x2/3 − 9x1/3 + c 11. −2 cos x + sin x + c

13. 2 sec x + c 15. 5 tan x + c 17. 3 sin x − 2x + c

19. 5
2

x2 + 3
x

+ c 21. x − 4
x

+ c

23. 2
5

x5/2 − 16
5

x5/4 + c

25. (a) N/A (b) 2
5

x5/2 + 4x + c

27. (a) N/A (b) tan x + c

33. 1
3

x3 + 1
2

x2 + 4 35. 6x2 + 2x + 3

37. −3 sin x + 1
3

x4 + c1x + c2

39. 2
3

x3 + 1
3

x−1 + c1
2

x2 + c2x + c3

41. 3t − 6t2 + 3 43. −3 sin t + 1
2

t2 + 3t + 4

45. a = 1
720

mi/s2; 2
45

mi ≈ 235 ft

47. y

x

1

0

1

49. translations of the answer to 47

51. distances fallen: 5.95, 12.925, 17.4, 19.3; accelerations:

−31.6,−24.2,−11.6,−3.6

53. speeds: 70, 69.55, 70.3, 70.35, 70.65; distances: 0, 34.89, 69.85,

105.01, 140.26

55. f (x) = x3

6
− x2

2
+ 7

2
x − 7

6
57. sin(x2) + c

59. 1
2
(x2 sin 2x) + c 61.

 
sin(x2) + c

Exercises 4.2, page 306

1.
50 

i=1

i2 = 42,925 3.
10 

i=1

√
i ≈ 22.47

5. 3 + 12 + 27 + 48 + 75 + 108 = 273

7. 26 + 30 + 34 + 38 + 42 = 170

9. 7385 11. −21,980

13. 323,400 15. −2,746,200

17.
n(n + 1)(2n + 1)

6
− 3n + 1

19.
(n + 1)(2n + 1)

6n2
+ n + 1

n
→ 4

3

21.
8

3

(n + 1)(2n + 1)

n2
− n + 1

n
→ 13

3

23. 2.84 25. 24.34 27. 375 miles

29. 74
3
miles 31. 217.75 ft 35. 2870

37. 171,707,655,800

41. 1 −
 
1

4

 n

; 1

Exercises 4.3, page 313

1. (a) 0.125, 0.375, 0.625, 0.875; 1.328125

(b) 0.25, 0.75, 1.25, 1.75; 4.625

3. (a)
π

8
,
3π

8
,
5π

8
,
7π

8
; 2.05234

(b)
π

16
,
3π

16
,
5π

16
, · · · , 13π

16
,
15π

16
; 2.0129

5. (a) 1.3027 (b) 1.3330 (c) 1.3652

7. (a) 6.2663 (b) 6.3340 (c) 6.4009

9. (a) 1.0156 (b) 1.00004 (c) 0.9842

11.
32

3
13. 18

15. 4
3

17. 58
3

19. left: 1.81, right: 1.67

21. left: 1.18, right: 1.26

23. (a) less than, (b) less than, (c) greater than

25. (a) greater than, (b) less than, (c) less than

27. For example, use x = 1√
12

on [0, 0.5] and
 
7/12 on [0.5, 1]

31. a − 1
2
 x + i x for i = 1, . . . , n 33. 0.092615

35. 3.75, 1.75

37. (a) 4
3

 
1 + 1

n

  
2 + 1

n

 
(b) 4

3

 
1 − 1

n

  
2 − 1

n

 
; limit is 8

3

39. (a) 6 + 8
n

+ 4
n2

(b) 6 − 8
n

+ 4
n2
; limit is 6

Exercises 4.4, page 326

1. 24.75 3. 0.77 5. 1 7. 8
3

9. 8
3

11.

 2

−2

(4 − x2) dx 13. −
 2

−2

(x2 − 4) dx 15.

 π

0

sin x dx

17.

 1

0

(x3 − 3x2 + 2x) dx −
 2

1

(x3 − 3x2 + 2x) dx 19. 2.0947

21.

 3

0

f (x) dx 23.

 1

0

f (x) dx
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25.

0 1

1

2

2

x

y

27.

0 1

0.5

1

x

y

29. between −1.23 and 0.72 31. between 2 and 6 33. 2√
3

35. 5 37. 10
3

41. positive

43. negative 45. x = 1 is not an evaluation point.

47. 13 49. t < 40; t < 40; t > 40; t = 40 51. 6.93

53. 9 55. 6 57. π 59. (a) 67.75 (b) 66.5

61.
Q
2

63.

 
2c0D

cc(1 − r/p)
65. 9000 lb; 360 ft/s

67. symmetry; positive

Exercises 4.5, page 335

1. −2 3. 0 5. 88
3

7. 23
20

9.
√
2 − 1 11. 3

13. − 4
3

15. 16
3

17. 2.96 19. 1.71

21.
√
2 − 1 23. x2 − 3x + 2 25. 2x[cos (3x2) + 1]

27. −
√

x2 + 1 29. y = 0 31. y = x − 2

33. local max at x = 1, local min at x = 2

35. 32
3

37. 8
3

39. 2

41. (a) 1
x2
> 0 (b) 1

x2
is discontinuous at x = 0

43. 40t + cos t + 1 45. 2t2 − 1
6

t3 + 8t

47. 8 rad/s; 24 ft/s; 3.2 rad 49. 10
3

51. 1
3

53. 2
π

55.

 3

0

f (x) dx,

 2

0

f (x) dx,

 1

0

f (x) dx 57.

 x

0

sin
 

t2 + 1 dt

59.
Q2

r2
;

Q

3
61. F  (2) does not exist, but f (2) = 3

63. g (x) =
 x

0

f (t) dt ; g  (x) = f (x) 65. b and c

67. (a) 2
π

(b) 2/3

Exercises 4.6, page 344

1. 2
9
(x3 + 2)3/2 + c 3. 1

2
(
√

x + 2)4 + c 5. 1
6
(x4 + 3)3/2 + c

7. −2
√
cos x + c 9. 1

3
sin x3 + c 11. sin(tan x) + c

13. 2 sin
√

x + c 15. − 1
6
(sin 3x + 1)−2 + c

17. −2(
√

x + 1)−1 + c

19.
 
2
x

+ 1
 −2 + c 21.

 
3
x

− 1
 −3 + c

23. 1
6
(4x − 1)3/2 + c 25. −2(x + 7)−1 + 11

2
(x + 7)−2 + c

27. 4
3
(1 + √

x)3/2 − 4(1 + √
x)1/2 + c

29. 5
3

√
5 − 1

3
31. 0 33. 1

3
sin(1)

35. 8
3

37. (a) 0.77 (b) 1
2

− 1
2
cosπ2

39. (a) 1.414 (b)
8

5
41.

1

2

 4

0

f (u) du

43.

 1

0

f (u) du 47. 5 49. 1 51. 1

55. x = ± u1/4

Exercises 4.7, page 357

1. midpoint 85
64
, trapezoidal 43

32
, Simpson 4

3

3. midpoint 3776
3465

, trapezoidal 67
60
, Simpson 11

10

5. (a) 0.75 (b) 0.7 (c) 0.75

7.
n Midpoint Trapezoidal Simpson

10 0.5538 0.5889 0.5660

20 0.5629 0.5713 0.5657

50 0.5652 0.5666 0.5657

9.
n Midpoint Trapezoidal Simpson

10 51.7073 51.8311 51.7486

20 51.7381 51.7692 51.7485

50 51.7468 51.7518 51.7485

11.
Midpoint Trapezoidal Simpson

n Error Error Error

10 0.00832 0.01665 0.00007

20 0.00208 0.00417 4.2 × 10−6

40 0.00052 0.00104 2.6 × 10−7

80 0.00013 0.00026 1.6 × 10−8

13. Midpoint Trapezoidal Simpson

n Error Error Error

10 5.5 × 10−17 0 0

20 2.7 × 10−17 1.6 × 10−16 1.1 × 10−16

40 2.9 × 10−16 6.9 × 10−17 1.3 × 10−16

80 1.7 × 10−16 3.1 × 10−16 1.5 × 10−16

15. 4, 4, 16 17. (a) 3.1468 (b) 3.1312 (c) 3.1416

19. (a) 0.8437 (b) 0.8371 (c) 0.8415

21. (a) 0.021 (b) 0.042 23. 1826, 3652

25. answers for n = 80: midpoint bound 0.000391, midpoint error

0.00013; trapezoidal bound 0.000781, trapezoidal error 0.00026;

Simpson’s bound 1.63 × 10−8, Simpson’s error 1.63 × 10−8

27. (a) 9.1 (b) 9.033 29. 6193 ft2
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31. 529 ft 33. 2.6 liters

35. (a) under (b) over (c) can’t tell

37. (a) over (b) under (c) can’t tell

39. (a) under (b) over (c) exact

47. if Tn − I ≈ −2(Mn − I ) then 1
3

Tn + 2
3

Mn ≈ I

Chapter 4 Review Exercises, page 360

1. 4
3

x3 − 3x + c 3. 8
√

x + c 5. − 1
2
cos 4x + c

7. 1
2

x2 − 1
4
sin 4x + c 9. 1

2
x2 + 4x + c 11. 1

2
x2 − x + c

13. 1
3
(x2 + 4)3/2 + c 15. 2 sin x3 + c 17. cos(1/x) + c

19. 1
2
tan2 x + c 21. x3 + x + 2 23. −16t2 + 10t + 2

25. 4 + 10 + 18 + 28 + 40 + 54 = 154 27. 338,250

29.
n(n + 1)(2n + 1)

6n3
− n(n + 1)

2n3
→ 1

3
31. 2.65625

33. 4.668 35. (a) 2.84 (b) 2.92 (c) 2.88 (d) 2.907

37. Simpson 39. 2
3

41.

 3

0

(3x − x2) dx = 9
2

43. 25

45. 2
π

47. − 4
3

49. 1 51. 10 − 20
3

√
10

53. 200 55. 1
3
(83/2 − 8) 57. 29

6

59. sin x2 − 2 61. (a) 2.079 (b) 2.083 (c) 2.080

63. (a) 2.08041, 2.08045 (b) 2.08055, 2.08048

(c) 2.08046, 2.08046

CHAPTER 5

Exercises 5.1, page 370

1. 40
3

3. 52
5

5. 64
3

7. 27
4

9. 7
3

11. 125
6

13. 4.01449

15. 0.135698 17.

 1

0

(2 − 2y) dy = 1

19.

 1

0

2x dx = 1 21.

 2

0

(6 − 2y) dy = 8

23. 3;

 √
3

0

 
3 − x2

 
dx =

 3

√
3

 
x2 − 3

 
dx = 2

√
3

25. 16.2 million barrels 27. 2 million people

29. 35.08%

31. 93.02% 33. 2; 0

35.
time 1 2 3 4 5

amount 397 403 401 412 455
(answers will vary)

0 1 2 3 4 5
350

400

450

time

g
al
lo
n
s

37. (q∗, p∗) = (80, 8); consumer surplus is 80

39. assuming C(0) = 0:

(a) loss from selling the first 2000 items

(b) profit from selling items 2001 through 5000

(c) The sum of parts (a) and (b)

(d) loss from selling items 5001 through 6000

45. L = 3
16

Exercises 5.2, page 385

1. 12 3.
56π

3
5.

 60

0

π [60(60 − y)] dy = 108,000π ft3

7.

 500

0

 
750 − 3

2
x

 2

dx = 93,750,000 ft3

9.

 30

0

 
3 − 1

12
x

 2

dx = 215

2
ft3

11.

 2π

0

π

 
4 + sin

! x

2

"#2
dx = 33π2 + 32π in3

13. 0.2467 cm3 15. 2.5 ft3

17. (a)
8π

3
(b)

28π

3
19. (a)

32π

5
(b)

224π

15

21. (a) 28.99 (b)
2

3
π (24

√
6 − 17)

23. (a) 0.637 (b) 7.472

25. (a) 9π (b) 9π (c) 18π (d) 36π (e) 18π (f) 36π

27. (a)
π

2
(b)

π

5
(c)

π

6
(d)

7π

15
(e)

7π

6
(f)

13π

15

29.
πh2

2a
= 1

2
πh

$ 
h

a

%2

31.

 1

−1

π (1)2 dy = 2π

33.

 1

−1

π

 
1 − y

2

 2

dy = 2π

3
35.

 r

−r

π (r2 − y2) dy = 4

3
πr3

37. same volume

39. (a)
16

3
(b)

2π

3

41. (a)
64

15
(b)

8π

15
(c)

16
√
3

15

43. using Simpson’s rule, 12.786

45. answers will vary; one possibility is shown:

0

1

2

3

4

5

height

time

Exercises 5.3, page 394

1. r = 2 − x, h = x2, V = 8π

3
3. r = x, h = 2x, V = 4π

3

5. r = 3 − y, h = 2y, V = 40π

3
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7. r = y, h =
 
1 − (y − 1)2, V = π2 ≈ 9.8696

9.
32π

3
11.

128π

3
13.

27π

2
15. 288π

17. (a)
80π

3
(b) 16π (c) 16π (d)

16π

3

19. (a)
625π

6
(b)

625π

3
(c)

875π

6
(d)

500π

3

21. (a) 16.723 (b) 12.635 (c) 4.088 (d) 1.497

23. (a)
32π

15
(b)

5π

6
(c)

3π

2
(d)

38π

15

25. (a)
5π

6
(b)

64π

15
27. y = 2x − x2 about y = 0

29. x = √
y and x = y about x = 0

y

x
0

exercise 27 exercise 29

y

x
0

31. same as #29

35.

√
3π

2
37.

 
1 −

√
0.9 ≈ 0.2265

Exercises 5.4, page 402

1. 1.4604; 1.4743 3. 3.7242; 3.7901 5. 2
√
5

7.
73

√
73 − 37

√
37

54
9.

10

3

11.

 1

−1

 
1 + 9x4 dx ≈ 3.0957

13.

 2

0

 
1 + (2 − 2x)2 dx ≈ 2.9579

15.

 π

0

 
1 + sin2 x dx ≈ 3.8202

17.

 π

0

 
1 + (x sin x)2 dx ≈ 4.6984 19. 29.58 ft 21. 5 ft

23. 60 yards; 60 yards; 139.4 yards; 104.55 ft/s

29.

 1

0

2πx2
 
1 + 4x2 dx ≈ 3.8097

31.

 2

0

2π (2x − x2)
 
1 + (2 − 2x)2 dx ≈ 10.9655

33.

 π/2

0

2π cos x
 
1 + sin2 x dx ≈ 7.2118 35. 0.9998

37. 0.99984 39. 1.672, 1.720, 1.754 → 2

41. 4x3 > 2x if x >

 
1
2
; 6x5 > 4x3 if x >

 
2
3

43. 4π

Exercises 5.5, page 412

1. y(0) = 80, y (0) = 0 3. y(0) = 60, y (0) = 10

5. −8
√
30 ft/s ≈ −30 mph 7.

√
h 9. 256 ft

11. −16t2 + 64t ; 64 feet; 4 sec;−64 ft/s 13. 8

 
5
3
ft/sec

17. d = 490t2

19. 10
√
3 ≈ 17 sec, 490

√
3 ≈ 849 m; the same

21. The serve is not in; 7.7◦, 9.0◦ 23. 2.59 ft

25. ball bounces (h ≈ −0.62)

27. 40

 
5√
3

≈ 68 ft/s; 20
√
10 ≈ 63 ft/s

29. (a)
25

16
sin 4t − 25

4
t (b)

25

16
sin(4t + π/2) − 25

16

31.
20π√
30

≈ 11.5 rad/s 35. Goal! (x ≈ −0.288 at y = 90)

37. 25 sec 39. 25 ft; 30.25 ft

43. maximum allowed error is 0.01 rad ≈ 0.6◦ 45. 482.43 ft

47. 86.18 ft; 530.34 ft 49. 26.35 ft

53. (a) v =
 
2gH (b) 32 ft/s

(c) 22.63 ft/s (d) 3.94 ft/s; 22.28 ft/s

Exercises 5.6, page 425

1. 15
8
ft-lb 3. 1250

3
ft-lb

5. 270,000,000 ft-lb 7. 704,000 ft-lb

9. 8,168,140,899 ft-lb 11. 816,814 ft-lb

13. 7.07 ft 15. J ≈ 2.133; 113 ft/s

17. J ≈ 7533.3; 37.7 ft/s ≈ 25.7 mph

19. maximum thrust: f (3) = 11; impulse: ≈ 53.11

21. m = 15 kg, x = 16
5
m; heavier to right of center

23. 0.0614 slug, 31.5 oz

25. 16.6 in.; same mass, x differs by 3

27. 0.0614 slug, 31.4 oz; x = 17.86 in.

29. 2, 4, 1
2
; 5
12
, 3, 16

3

31.
 
8
3
, 2

 
33. (0, 1.6) 35. 8,985,600 lb

37. 196,035 lb 39. 12,252 lb 41. −16
√
5 ft/s

43. 10,667 hp 45. 27.22, 20.54, 24.53% 47. 1
4
ρπa3b

49.
midsized

wooden
≈ 1.35;

oversized

wooden
≈ 1.78

Chapter 5 Review Exercises, page 428

1.
π3

3
+ 2π − 2 3.

1

12
5.

16
√
2

3
7.

5

6

9. 10,054 11.
98π

3
13. 4.373

15. (a)
256π

5
(b) 8π (c)

128π

3
(d)

1408π

15

17. (a)
2π

3
(b) 2π (c) 4π (d)

22π

3
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19.

 1

−1

 
1 + 16x6 dx ≈ 3.2

21.

 3

0

 
1

4(x + 1)
+ 1 dx ≈ 3.1678

23.

 1

0

2π
 
1 − x2

  
1 + 4x2 dx ≈ 5.483 25. −64 ft/s

27. 1.026 sec, 46.3 ft 29. no, ball bounces

31. 64
√
2 ft/s, −64

√
2 ft/s 33. 40

3
ft-lb

35. m = 112
3
, x = 16

7
, heavier to right of x = 2

37. 22,630,400 lb 39. J ≈ 1.52; 32 ft/s

CHAPTER 6

Exercises 6.1, page 438

1. ln 4 =
 4

1

1

t
dt 3. ln 8.2 =

 8.2

1

1

t
dt

5. (a) 1.38629687 (b) 1.38629452

7. 0 9. 1
2

11. 2
x

13. − tan x

15. −3x2 tan x3[cos(ln(cos x3))]

17. 7
2
ln 2 19. 1

2
ln 3 21. ln(x2 + 1) + c

23. −1
2
ln | cos 2x | + c 25. ln | ln x | + c

27. 1
3
(ln x + 1)3 + c 29. 2

3
(ln 2)3/2

31.
x

x2 + 1
33.

4

x
− 5x4

x5 + 1
35. ∞

37. 4 39. x sin x

 
cos x ln x + sin x

x

 
41. (sin x)x [ln(sin x) + x cot x]

43. y

x   2

1

x0 1

y   ln(x − 2)

increasing and concave down on (2, ∞)

45.

y   ln(x2 + 1)

y

1

x0 1

increasing on (0, ∞),

decreasing on (−∞, 0);

concave up on (−1, 1),

concave down on (−∞, −1) ∪ (1, ∞)

47.

y   x lnx

y

x0 1

1

decreasing on (0, 0.37), increasing on (0.37, ∞);

concave up on (0, ∞)

51. approximately 0.6

55. 2.744 s; x = 150; relay; straight throw is faster

57. x = 25; times equal with 0.0062-s delay

59. f = 1
2
; pH → ∞

Exercises 6.2, page 447

5. f −1(x) = 3
√

x + 2 7. f −1(x) = 5
√

x + 1

9. not one-to-one 11. f −1(x) = 3
√

x2 − 1, x ≥ 0

13. (a) 0; 1
4

(b) 1; 1
7

15. (a) −1; 1
15

(b) 1; 1
15

17. (a) 2; 7
4

(b) 0; 2

19. y

x
2 4−2−4

−4

−2

2

4

21. y

x
2 2 2 4

 4

 2

2

4

23. 2.5; too high 25. 2.25; too high
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27. y

x

5

 5

 10  5 10

29. y

x
 30  20  10 10

 1

 2

 3

3

2

1

20 30

31. not one-to-one

33. y

x

 10  5

 5

5

10

 10

5 10

35. y

x
 5

 5

5

10

 10

5 10

 15

37.

x

2

3

4

0.50

1

0
21.51

y

y   f(x)

y   f −1(x)

39. f −1(x) = −√
x, x ≥ 0

y

x
0

 2 1.5 1 0.5

0.5 1 1.5 2

 1

 2

 3

 4

3

4

2

1

y   f (x)

y   f −1(x)

41. f is one-to-one for x ≥ 2; f −1(x) = √
x + 2, x ≥ 0

x

2

3

5

4

10

1

0
5432

y

y   f −1(x)

y   f (x)

43. f is one-to-one for x ≥ 2; f −1(x) =
√

x2 + 1 + 1, x ≥ 0

y

x

1

0

2

3

4

5

7

6

10 5 6432

y   f(x)

y   f −1(x)
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45. f is one-to-one for − π
2

≤ x ≤ π
2

y

x
0 1.5  1  0.5 0.5

 0.5

 1

 1.5

1.5

1

0.5

1 1.5

y   f(x)

y   f −1(x)

53. no; subtract 9.0909%

55. y = 1
7
(x − 4) + 1 57. 2.5804

Exercises 6.3, page 455

1.

y   3e2x

x

y

0 1

1

3.
y   3xe−2x

x

y

0 1

1

5.

2.5

5

7.5

10

2.5 50

0

−2.5−5

y

y   e1/x

x

7. 12e3x 9.
(4x − 1)e4x

x2
11. 2(3x2 − 3)ex3−3x

13. 2xex2 19. 1
3

e3x + c 21. 1
2

ex2 + c

23. −ecos x + c 25. −e1/x + c 27. x + 2ex + 1
2

e2x + c

29. 1
3

x3 + c 31. 1
3

e3 − 1
3

33. 0

35. max at x = 1
2
, inflection point at x = 1

37. min at x = 0, local max at x = 1,

inflection points at x = 1 ±
√
2

2

43. x = ±1

45.

0

10

 4 4

47.

0

10

 4 4

49. increasing, concave up; decreasing, concave up

51. 2(ln 3)32x 53. 2x(ln 3)3x2 55.
2

x ln 4

57.
1

ln 2
2x + c 59.

1

2 ln 2
2x2 + c

65. W  (t) = abe−be−t −t ; max W  = ae−1 at t = ln b

67. 23; 3.105 is percent per hour to hear rumor at t = 2; 70 is percent to

eventually hear rumor

69. 1; 0; x = 0;
1

1 + e−(x−4)

 2 2

2

0

y

x

1
1 e xf (x)  

71. k = 1
3
ln 2; 22/3 − 21/3 ≈ 0.327

Exercises 6.4, page 462

1. (a) 0 (b) −π
6

(c) −π
2

3. (a)
π

4
(b) 0 (c) −π

4

5. (a) 0 (b)
π

3
(c)

π

4

7.
√
1 − x2,−1 ≤ x ≤ 1

9.
√

x2 − 1, x ≥ 1 or −
√

x2 − 1, x ≤ −1 11.
√
3
2

13. 4
3

15. π
8

17. 2
9

x
√
9 − x2, |x | ≤ 3
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19.

2

10

y

x

y   cos−1(2x)





21.

1

y

x

y   sin 1(3x)

2


2

 

3
1

 
3
1

23.

 2.5

1.25

2.5

 1.25

 2.5 2.5 5−5

0
0

y

x

2
 y   tan 1 (         ) x2 

− 1
1

2

 

25.
nπ

4
, odd n 27.

nπ

3
29.

π

20
+ nπ

5

31. ±π
6

+ πn 35. tan−1

 
5

3x

 

Exercises 6.5, page 469

1.
6x√

1 − 9x4
3.

2

x
√

x4 − 1
5. cos−1 2x − 2x√

1 − 4x2

7.
− cos x 
1 − sin2 x

= ±1 9.
sec x tan x

1 + sec2 x
11. 6 tan−1 x + c

13. tan−1 x2 + c 15. 2 sin−1 x2 + c 17. sec−1 x2 + c

19. tan−1
! x

2

"
+ c 21. sin−1(ex ) + c 23.

3π

4
25.

π

4

31.

 
248
3

≈ 9.09 feet 33.
√
3 ≈ 1.73 feet

35. cos−1 x + sin−1 x = π

2

37. Integrating
1

1 + x2
gives better accuracy for a given n.

39. x = 0 41. (a) decreases (b) decreases 43. no

Exercises 6.6, page 478

1.

2

0 1

y

x

y   cosh(2x)

3.

0 1

1

y

x

y   tanh 4x

5.

0 1

1

y

x

y   cosh(2x) sinh(2x)

7. 4 sinh 4x 9.
cosh

√
x

2
√

x
11.

2√
4x2 − 1

13. 2x sinh 2x + 2x2 cosh 2x 15. 4 sech24x

17. 1
6
sinh 6x + c 19. 1

3
ln (cosh 3x) + c 21. 1

4
cosh 4 − 1

4

23. cosh(sin x) + c 25. esinh1 − 1

31. f  (x) < 0 for x < 0, f  (x) > 0 for x > 0, f   (x) > 0 for all x

33. ln
 
x +

√
x2 − 1

 
35. 27.62 37. 26.13

47. −80 m/s, 19.41 m, 75.45 m; −40 m/s, 18.86 m, 68.35 m

49. 9.8 m/s2

Chapter 6 Review Exercises, page 480

1.
3x2

x3 + 5
3.

4x3 + 1

2(x4 + x)
5. −2xe−x2 7. (3x2 ln 4)4x3

9.
2√

1 − 4x2
11.

−2 sin 2x

1 + cos2 2x
13. 1

2
x−1/2 sinh

√
x

15.
3√

9x2 + 1
17. 1

3
ln |x3 + 4| + c 19. 1

2
ln 2

21. − cos(ln x) + c 23. − 1
4

e−4x + c 25. 2e
√

x + c

27.
1

3
e6 − 1

3
29.

1

4 ln 3
34x + c 31.

3

2
tan−1

! x

2

"
+ c

33
1

3
sin−1(x3) + c 35. 9

2
sec−1 x2 + c 37. 4 sinh−1x + c

39. 1
4
sinh 4x + c 41. yes, 3

√
x + 1 43. no

45.
1

f  (1)
= 1

11
47.

1

f  (2)
= 1

2
49.

π

2

51. −π
4

53.

√
3

2
55.

π

4
57.

π

4
+ πn

59.

2

0 1

y

x

y   cosh(2x)

61.

1

y

x

y   sin 1(2x)

2


2


 

2
1

 
2
1

63. y

y   e x2

x0
1

1

65. 17.77 67. ex 69. x =
√

H2 − P2

2
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CHAPTER 7

Exercises 7.1, page 487

1. − 1
6
cos 6x + c 3. 1

2
sec 2x + c 5. − 1

2
e3−2x + c

7. 6 ln (1 + x2/3) + c 9. −2 cos
√

x + c 11. 0 13. 1 −
√
2

15.
3

4
tan−1

! x

4

"
+ c 17.

1

3
tan−1 x3 + c 19. sin−1 x

2
+ c

21.
1

2
sin−1 x2 + c 23. 2 tan−1

 
x + 1

2

 
+ c

25. 2 ln |x2 + 2x + 5| − 2 tan−1

 
x + 1

2

 
+ c

27.
1

5
x5 + 8

3
x3 + 16x + c 29. sin−1

 
x + 1

2

 
+ c

31. tan−1 x + 1

2
ln (1 + x2) + c 33.

10

3
35.

12

5

37. tan−1(e2) − 1

4
π 39.

72

5

41.

 
5

3 + x2
dx = 5√

3
tan−1

 
x√
3

 
+ c

43.

 
ln x

2x
dx = 1

4
(ln x)2 + c 45.

 
xe−x2dx = − 1

2
e−x2 + c

47. 1 + 1
2
ln 2 − tan−1(2) + 1

4
π

49. ln (2x2 + 4x + 10) − 3

4
tan−1

 
x + 1

2

 
+ c

Exercises 7.2, page 493

1. x sin x + cos x + c 3. 1
2

xe2x − 1
4

e2x + c

5. 1
3

x3 ln x − 1
9

x3 + c 7. − 1
3

x2e−3x − 2
9

xe−3x − 2
27

e−3x + c

9. 1
17

ex sin 4x − 4
17

ex cos 4x + c

11. 2
3
sin 2x cos x − 1

3
cos 2x sin x + c

13. x tan x + ln |cos x | + c 15. x(ln x)2 − 2x ln x + 2x + c

17. sin x ln (sin x) − sin x + c

19.
1

4
sin 2 − 1

2
cos 2 21. − 2

π2
23.

1

π
25. 10 ln 10 − 9

27. x cos−1 x −
 
1 − x2 + c 29. −2

√
x cos

√
x + 2 sin

√
x + c

31.
x

2
[sin (ln x) − cos (ln x)] + c

33.

 
1 − e4x

2

 
cos (e2x ) + e2x sin (e2x ) + c 35. 6(e2 − 1)

37. n times 41. ex
 
x3 − 3x2 + 6x − 6

 + c

43. 1
3
cos2 x sin x + 2

3
sin x + c 45. 9e − 24 47. 8

15

49. m even:
(m − 1)(m − 3) · · · 1

m(m − 2) · · · 2 · π
2
;

m odd:
(m − 1)(m − 3) · · · 2

m(m − 2) · · · 3
51. first column: derivatives; second column: antiderivatives

53. x4 sin x + 4x3 cos x − 12x2 sin x − 24x cos x + 24 sin x + c

55.
 
1
2

x4 − x3 + 3
2

x2 − 3
2

x + 3
4

 
e2x + c

57. − 1
3

x3e−3x − 1
3

x2e−3x − 2
9

xe−3x − 2
27

e−3x + c

63. ex ln x + c

Exercises 7.3, page 502

1. 1
5
sin5 x + c 3. 1

16
5. 1

3
7. 1

2
x + 1

4
sin 2x + c

9. 1
3
sec3 x + c 11. 12

35
13. 1

8
x − 1

32
sin 4x + c

15. − 8

21
+ 25

√
2

168
17. −1

9

√
9 − x2

x
+ c 19. π

21.
3x

2

 ! x

3

"2
− 1 + 9

2
ln

&&&&& x

3
+

 ! x

3

"2
− 1

&&&&& + c

23. 2 ln |
√

x2 − 4 + x | + c

25.
3x

2

 ! x

3

"2
+ 1 − 9

2
ln

&&&&& x

3
+

 ! x

3

"2
+ 1

&&&&& + c

27.
1

2
x
 
16 + x2 + 8 ln

&&&&14
 
16 + x2 + x

4

&&&& + c

29. 9 − 16
√
2

3

31. 1
4
tan4 x + 1

2
tan2 x + c; 1

4
sec4 x + c 35. 1

2
RI 2

Exercises 7.4, page 511

1.
3

x + 1
− 2

x − 1
; 3 ln |x + 1| − 2 ln |x − 1| + c

3.
2

x + 1
+ 4

x − 2
; 2 ln |x + 1| + 4 ln |x − 2| + c

5.
2

x + 1
+

1
2

x − 2
−

5
2

x
; 2 ln |x + 1| + 1

2
ln |x − 2| − 5

2
ln |x | + c

7.
11

x + 4
+ 2

x − 2
+ x − 2; 11 ln |x + 4| + 2 ln |x − 2| + 1

2
x2− 2x + c

9.
3

2x + 1
− 2

3x − 7
;
3

2
ln |2x + 1| − 2

3
ln |3x − 7| + c

11.

1
4

x + 2
+

3
2

(x + 2)2
−

1
4

x
;
1

4
ln |x + 2| − 3

2
(x + 2)−1 − 1

4
ln |x | + c

13.
1

x + 2
− 3

x + 1
+ 2

x
; ln |x + 2| − 3 ln |x + 1| + 2 ln |x | + c

15.
−2x + 1

x2 + 1
+ 2

x
;− ln(x2 + 1) + tan−1 x + 2 ln |x | + c

17.
1

2x + 1
+ −2x + 1

4x2 + 1
;

1

2
ln |2x + 1| − 1

4
ln(4x2 + 1) + 1

2
tan−1(2x) + c

19.
2

3
+ 1

3

'
5

3x + 2
− 3

2x − 5

(
;

2

3
x + 5

9
ln |3x + 2| − 1

2
ln |2x − 5| + c

21.
2

x + 1
+ 1

(x + 1)2
; 2 ln |x + 1| − (x + 1)−1 + c

23. 1 − 2

x
+ 2

x2 + 2x + 2
; x − 2 ln |x | + 2 tan−1(x + 1) + c
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25.
1

3
x − 2

9
+ 5

9

'
6x + 2

(3x + 1)2 + 2

(
− 2

9

1!
3x+1√

2

"2
+ 1

;

1

6
x2 − 2

9
x + 5

9
ln [(3x + 1)2 + 2] − 2

√
2

27
tan−1

 
3x + 1√

2

 
+ c

27.
3

x
+ x + 1

2

x2 + x + 1
− 7/2

x2 + x + 1

3 ln |x | + 1
2
ln |x2 + x + 1| − 7√

3
tan−1

 
2x + 1√

3

 
+ c

29. 3 + 2

x − 1
+ x − 2

x2 + 1
;

3x + 2 ln |x − 1| + 1
2
ln

 
x2 + 1

 −2 tan−1 x + c

31.
4

x2 + 1
− 2 

x2 + 1
 2 33.

2

x2 + 4
− 4 

x2 + 4
 2

35.
4

x2 + x + 1
− 4x + 1 

x2 + x + 1
 2

37. ln |x3| − ln |x3 + 1| + c;− ln |1 + 1/x3| + c

Exercises 7.5, page 519

1.
1

8(2 + 4x)
+ 1

16
ln |2 + 4x | + c

3. 2
15
(3ex − 2)(1 + ex )3/2 + c

5. 1
4

x
 
1/4 + x2 − 1

16
ln

&&&x +
 
1/4 + x2

&&& + c

7. −
√
3

12
+ π

9
9. ln

 
2 +

√
8
 − ln

 
1 +

√
5
 

11.
−1

x − 3

 
9 − (x − 3)2 − sin−1

 
x − 3

3

 
+ c

13. 1
5
tan5 x − 1

3
tan3 x + tan x − x + c

15.
1

2
ln

&&&&&
√
4 + sin x − 2√
4 + sin x + 2

&&&&& + c

17. 1
2
cos x2 + 1

2
x2 sin x2 + c

19. − 2
3
(cos x − 2)

√
1 + cos x + c

21. 1
2
sin x

 
4 + sin2 x − 2 ln

!
sin x +

 
4 + sin2 x

"
+ c

23. 1
4

e−2/x2 + c

25. −
 
4x − x2 + 2 cos−1

 
2 − x

2

 
+ c

27. ex tan−1(ex ) − ln
!
1 + e2x

"
+ c

Exercises 7.6, page 528

1. − 1
4

3. 3 5. 2 7. 1 9. −2 11. − 1
6

13. 1
2

15. 0 17. − 1
3

19. −π 21. 0 23. 0

25. does not exist 27. 0 29. 0 31. 0 33. e

35. ∞ 37. 1 39. not indeterminate

41. 0 is the correct value, but the original expression is not indeterminate

43. sin 3x ≈ 3x, sin 2x ≈ 2x

45. (a) 1 (b) 1
2

47. all reals 49. ex

51. c

53. L; a2  = a

57. (a)
(x + 1)(2 + sin x)

x(2 + cos x)
(b)

x

ex

(c)
3x + 1

x − 7
(d)

3 − 8x

1 + 2x

59. 3
4

Exercises 7.7, page 542

1. improper 3. not 5. improper 7. converges to 3
2

11. converges to 2 13. converges to −1

15. diverges 17. diverges 19. converges to 5
27

e3

21. diverges 23. converges to π 25. diverges 27. diverges

29. converges to π 31. converges to 2 33. diverges

35. r = 1 37. c < 0; c > 0 39.
x

1 + x3
<

1

x2
, converges

41.
x

x3/2 − 1
>

1√
x
, diverges 43.

3

x + ex
<

3

ex
, converges

45.
sin2 x

1 + ex
<

1

ex
, converges 47.

x2ex

ln x
> ex , diverges

49. 1
2
ln 4 − 1

4
53. true 55. false 57. p < 1

59.

 
π

k

61. (a) 2 (b) 4 (c) r

63.
1

r
65. e−1 ≈ 0.3679

67. g(x) =

⎧⎪⎨
⎪⎩

tan x

1 + tan x
if 0 ≤ x <

π

2

1 if x = π

2

69. (d) − π

2
ln 2 73. 1000 75. e−1/8 ≈ 0.882

79. (a)  1(r ) = 1

(2r − 1)e2r + 1
(b)  2(r ) =  

1 − 1
r

 2
(c) μ = 1

2

(d) f1(x) > f2(x) for 0 < x < 0.34 and x > 1

(e) c = 1
2
; higher risk needed for higher gain

Exercises 7.8, page 551

7. 4 9.
4

1 − e−4
11.

ln 2

2
≈ 0.346 13. 0.157

15. 7.77 × 10−11 17. 1 − e−3/2 ≈ 0.77687

19. e−6 − e−12 ≈ 0.00247 21. 0.594 23. 0.9999995

25. (a) 3
4

(b) 3

 
1
2

≈ 0.7937

27. (a)
π

2
≈ 1.57 (b)

π

2
≈ 1.57

29. (a) 1.23 (b) −3 ln 2
3

ln 3
≈ 1.11

31. c = 4

1 − e−4b
→ 4

33. c = 6

1 − e−6b
→ 6; mean = c

36
[1 − (6b + 1)e−6b] → 1

6
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35. (a) 93
256

(b) 93
256

(c) 1
128

(d) 1
2

37. (a) 0.7101 (b) 0.2899 (c) 0.1552 (d) 0.576

39.
100

99
, 0.0024 41.

5

2
43. p = m

n
49. m = 1

b

Chapter 7 Review Exercises, page 554

1. 2e
√

x + c 3. 1
2
sin−1 x − 1

2
x
√
1 − x2 + c

5. − 1
3

x2e−3x − 2
9

xe−3x − 2
27

e−3x + c 7. 1
2
tan−1 x2 + c

9. 1
4
ln (4 + x4) + c 11. 1

3
x3 + c

13.
1

9
sin 3 − 1

3
cos 3 15.

3π

16
17.

2

π

19. 4 ln 2 − 15
16

21. 1
3
sin3 x + c

23. 1
4
sin4 x − 1

6
sin6 x + c

25. 1
5
tan5 x + 1

3
tan3 x + c

27.
2

3
(sin x)3/2 − 2

7
(sin x)7/2 + c 29. tan−1

 
x + 2

2

 
+ c

31. −
 
4 − x2

2x
+ c 33. − x2

3

 
9 − x2 − 6

 
9 − x2 + c

35.
x2

3

 
x2 + 9 − 6

 
x2 + 9 + c

37. 3 ln |x + 1| − 2 ln |x + 2| + c

39. 3 ln |x | + 2 ln |x − 2| − ln |x + 2| + c

41. 1
5

ex cos 2x + 2
5

ex sin 2x + c 43. 1
3
(x2 + 1)3/2 + c

45.

4
5

x − 4
−

4
5

x + 1
47.

3

x
− 1

x + 2
− 2

x − 1

49.
1

x + 2
− 4

(x + 2)2

51. 1
8

ex (4 + 2e2x )
√
4 + e2x − 2 ln (ex +

√
4 + e2x ) + c

53. 1
3
tan x sec2 x + 2

3
tan x + c

55.
4

3(3 − x)
+ 4

9
ln

&&&& x

3 − x

&&&& + c

57. −
 
9 + 4x2

x
+ 2 ln

$
x +

 
9

4
+ x2

%
+ c

59.
 
4 − x2 − 2 ln

&&&&&2 +
 
4 − x2

x

&&&&& + c

61. diverges 63. converges to 3 65. converges to π

67. diverges 69. 3
2

71. ∞ 73. 1 75. 0 79. 2

81. (a) 1 − e−2 ≈ 0.865 (b) e−2 − e−4 ≈ 0.117

83. (a) 11
15

(b)

 
−1+

√
5

2
≈ 0.786

85. RT ;
4RT 3

3(2T 2 − 1)e2T 2 + 3

89. c 91. 24.75%; 135

CHAPTER 8

Exercises 8.1, page 565

1. 2e4t 3. 5e−3t 5. 2e2(t−1) 7. −3t + 3

9. 100e(ln 2/4)t ; 23.6 hours 11. 400e(ln 2)t ; 409,600

13.
ln 2

0.44
≈ 1.575 hours 15. 20

ln 10

ln 2
≈ 66.4 minutes

19.
ln 2

1.3863
≈ 0.5 day 21. 0.4e−(ln 2/3)t ; 15.97 hours 23. 29%

25. 13,305 years 27.

ln

 
5

13

 

ln

 
11

13

 ≈ 5.72 minutes

29. 70 − 20ekt , k = ln 0.7

2
31. 9:46 p.m. 33. 182.6◦

35. $1080, $1083, $1083.28, $1083.29

37. A: $110,231.76; B: $66,402.34

39. 34ekt , k = 1

10
ln

 
9800

34

 
; $2,824,705.88

43. $7300; $7860 vs. $7665

45. (a) $14,715.18 (b) $5413.41

with linear depreciation: 10 years, $20,000; 20 years, $0

47. exponential, linear

49. p(x) ≈ e1.468x+0.182; answers will vary

51. p(x) ≈ e0.397x+2.303; answers will vary

53. p(t) ≈ e−0.055t+2.015, where t is years since 1960

55. for 31-hour half-life: 87.71 mg; for 46-hour half-life: 104.48 mg

57. E(t) = e−(ln 2/4)t

0 6 12 18 24

0.5

1

t

E

59. $4493.29 61. A: $167,150.43; B: $179,373.42; C: $180,000

63. With four payments you have $1,267,853.18 after three years (just

after the fourth payment); with the lump sum you have $1,271,249.15

after three years; the lump sum is better.

Exercises 8.2, page 576

1. yes 3. no 5. yes 7. no 9. y = cex+x3/3

11. y = − 1

2

3
x3 + c

13. y = ±
 
4 ln

&&1 + x3
&& + c

15. (y + 1)e−y = 2(x + 1)e−x + c 17. y = 1

1 + cex

19. y = c
√
1 + x2 21. y = tan−1

 
1
4
ln |4x − 3| + c

 

23. y = e−1e(x+1)3 25. y =
 
8

3
x3 + 4 27. y = (x + 3)4

29. sin y = 2x2 31. y = 2e6t

1 + e6t
33. y = 20e10t

1 + 4e10t
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35. y = 3et

1 + 3et
37. y =

 
8 × 107

 
e0.71t

3 + e0.71t
39. y = AMek Mt

Aek Mt − 1

41. y = 3

 
x3 + 21

2
x2 + 9x

 10  5 0 5 10

5

10

15

y

x

43. the cubic has three real solutions for

−217 − 37
√
37

12
< c <

−217 + 37
√
37

12

47. at 6% the initial investment must be $277,900.69; the change in

interest rate makes a big difference

49. monthly payment: $1099.77; total paid: $395,917.20; interest paid:

$245,917.20

51. monthly payment: $1431.01; total paid: $257,581.80; interest paid:

$107,581.80

53. assuming continuous payments from age 30 to 40, the account is

worth $1,131,948.86 at age 65

55. 10.5%

57. x(t) = 4
 
11 − 3e−(4/5)t

 
5
 
33 − e−(4/5)t

 ; limiting concentration is
4

15

0 5

0.3

x

t
10

59. x(t) = 3
 
14 − 5e−(27/50)t

 
5
 
28 − e−(27/50)t

 

0 5 10

0.3

x

y

61. (a) x(t) = 24
 
1 − e−(4/5)t

 
4 − 3e−(4/5)t

→ 6

(b) x(t) = 24
 
e(6/5)t − 1

 
4e(6/5)t − 3

→ 6

63. the long-term population is about 682,800

65. for exercise 63 the equilibrium points are 4 + 2
√
2 (the long-term

population) and 4 − 2
√
2 (in hundreds of thousands); for exercise 64

there are no equilibrium points

67. x(t) = 2 − 6 ce0.2t

1 − ce0.2t
→ 6; if p(0) < 2, then c > 1 and there is a

vertical asymptote

69. r  (t) = k(S − r ); r (t) = 1 + 13e−k (values in thousands) where

k = 1
4
ln

 
7
13

 ≈ −0.155

71. P(t) =
 −k

10
t + P(0)−0.1

 −10

; t = 10

kP(0)1/10

73. m = −k, b = k M 75.
√
80 ft/s

Exercises 8.3, page 588

1.

3.

5.

7. C 9. D 11. A

13. h = 0.1: y1 = 1, y2 = 1.02, y(1) ≈ 2.3346, y(2) ≈ 29.4986;

h = 0.05: y1 = 1, y2 = 1.005, y(1) ≈ 2.5107, y(2) ≈ 39.0930

15. h = 0.1: y1 = 1.3, y2 = 1.651, y(1) ≈ 3.8478, y(2) ≈ 3.9990;

h = 0.05: y1 = 1.15, y2 ≈ 1.3139, y(1) ≈ 3.8188, y(2) ≈ 3.9978

17. h = 0.1: y1 = 2.9, y2 ≈ 2.8005, y(1) ≈ 2.0943, y(2) ≈ 1.5276;

h = 0.05: y1 = 2.95, y2 ≈ 2.9001, y(1) ≈ 2.0990, y(2) ≈ 1.5345

19. h = 0.1: y1 = 1.1, y2 ≈ 1.2095, y(1) ≈ 2.3960, y(2) ≈ 4.5688;

h = 0.05: y1 = 1.05, y2 ≈ 1.1024, y(1) ≈ 2.4210, y(2) ≈ 4.6203



A-40 APPENDIX B .. Answers to Odd-Numbered Exercises

21. y(1) = e ≈ 2.7183, y(2) = e4 ≈ 54.5982;

y(1) =
√
5 ≈ 2.236068, y(2) =

√
8 ≈ 2.828427

23.

25. y = 0 (unstable), y = 2 (stable)

27. y = 0 (unstable), y = −1 (unstable), y = 1 (stable)

29. y = 1 (stable)

31. a = 3 −
√
5

2
, b = 3 +

√
5

2
; g = 0 and g = b are stable; g(t) → 0 if

3.98 < g(0) < 5.44 and 10.27 < g(0) < 11.72

33. estimates are 31.64, 218.12, overflow

35. x = ln 2

2

37. y(0) = 3; y = 1

3
x3 − 2x2 + 2x + 3

39. y(0) = −5.5

Exercises 8.4, page 597

1. (0, 0): no prey or predators; (1, 0): prey but no predators;

(1/2, 1/4): twice as many prey as predators

3. (0, 0): no prey or predators; (3, 0): prey but no predators;

(2, 1/2): four times as many prey as predators

5. (0, 0): no prey or predators; (2, 0): prey but no predators

7. (0, 0) and (1, 0) are unstable, (0.5, 0.25) is stable

9. (0, 0) is unstable, (2, 0) is stable

11. unstable 13. stable 15. stable

17. (0, 0): none of either species; (3/2, 0): some of first species,

none of second; (0, 2): some of second species, none of first;

(1, 1): equal amounts of each species

19. (0, 0): none of either species; (3/2, 0): some of first species,

none of second; (0, 2): some of second species, none of first;

(1/2, 1): second species is double the first species

21. (0, 0): none of either species; (1, 0): some of first species, none of

second; (0, 1): some of second species, none of first

23. The presence of either species tends to decrease the population of the

other because of competition for finite resources.

25. (1, 1) is stable, the others are unstable

27. (a)

x

y

1.510.50 0.5

 0.5

0.5

1

1.5

(b)

x

y

1.510.50 0.5

 0.5

0.5

1

1.5

(c)

x

y

1.510.50 0.5

 0.5

0.5

1

1.5
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29. u = v; v = −4u − 2xv + 4x2

31. u = v; v = −xu2 + (cos u)v + 2x

33. u 
1 = u2; u 

2 = u3; u 
3 = −2xu3 + 4u2 − 2u1 + x2

35. u 
1 = u2; u 

2 = u3; u 
3 = u4; u 

4 = 2u4 − xu2 + 2 − ex

37. x(1) ≈ 0.253718, y(1) ≈ 0.167173

39. (0, 3), (0,−3), (2, 1), (−2,−1), (6, 3), (−6,−3)

41. (0, 0), (−2, 2), (4, 4)

43. death rate < 0.4

Chapter 8 Review Exercises, page 599

1. 3e2x 3.
√
2x2 + 4

5.

 
1

3
x3/2 + 5

3

 2

7. 104e(ln 2/2)t ;
2 ln 100

ln 2
≈ 13.29 hours

9. 2e−(ln 2/2)t ;
−2 ln 0.05

ln 2
≈ 8.64 hours

11.
ln 2

0.08
≈ 8.66 years

13. 112e[ln(108/112)]t + 68; 21.10 minutes

15. y = ce(1/2)x
4

17.
1

3
y3 + 1

2
y2 = 4 tan−1 x + c

19. y = 0 (unstable), y = 2 (stable)

21. y = 0 (stable)

23.

25.

27. (a) x(t) = 0.01849
38.239e−0.36056t−1.5700 − 12.239

e−0.36056t−1.5700 − 1

(b) x(t) = 0.01849
38.239e−0.36056t−0.56968 + 12.239

e−0.36056t−0.56968 + 1

0 5 10 15 20

0.2

0.4

t

x

29. 0 ≤ x ≤ a; x(t) = x(0) + t
 
ra2 − ra · x(0)

 
1 + t(ra − r · x(0))

;

the limiting concentrationwill be a

31. 10 ln 4 ≈ 13.86 years

33. predator-prey model; equilibrium solutions are (0, 0) (no prey or

predators) and (1, 0) (prey but no predators)

35. competing species model; equilibrium solutions are (0, 0) (none of

either species); (0, 4) (none of first species, some of second); (5, 0)

(some of first species, none of second); (1, 2) (twice as many of

second species as first species)

37. (0,0) is unstable, (1,0) is stable

39. Let u = y and v = u to get the system

u = v; v = −2u + 4x2v + 4xu − 1.

CHAPTER 9

Exercises 9.1, page 615

1. 1, 3
4
, 5
9
, 7
16
, 9
25
, 11
36

3. 4, 2, 2
3
, 1
6
, 1
30
, 1
180

5. converges to 0 7. converges to 1 9. converges to 0

11. converges to 3
2

13. diverges 15. diverges

17. converges to 0 19. converges to 0 21. converges to 0

23. converges to 0 25. diverges 27. converges to ln 2

33. decreasing 35. increasing 37. decreasing

39. |an | < 3 41. |an | < 1
2

43. lim
n→∞

 
1 + 2

n

 n = e2; lim
n→∞

 
1 − 2

n

 n = e−2

45. an = 144 − 36π ≈ 30.9

47. 3.096, 3.144, 3.194; 3.594 < 3.721; 4.376 < 4.473;

5.589 > 5.33; 4.131 × 1053 billion

53. 1.8312 55. p < −1 and p ≥ 1

57. converges to 1
2
;
* 1
0 x dx

59. (c3 − c1)
2 + (r3 − r1)

2 = (r1 + r3)
2; |c3 − c1| = 2

√
r1r3;

(c3 − c2)
2 + (r3 − r2)

2 = (r2 + r3)
2; |c3 − c2| = 2

√
r2r3

Exercises 9.2, page 626

1. converges to 15
4

3. converges to 3
8

5. diverges

7. converges to 3 9. diverges 11. diverges

13. converges to 1 15. converges to 1
6

17. diverges

19. converges to 6
5

21. diverges 23. converges

25. converges 27. L −
m−1 
k=1

ak 31. 64; 256; 4m−1

33.
0.9

1 − 0.1
= 1 35.

2

11
37. 1.3589L; n = 4
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39. 1.002004008 . . . 41.
p2

1 − 2p(1 − p)
> p if p >

1

2
; 0.692

43. 2
 
1 − e−0.1

 ≈ 0.19 45. $400,000; save $150, 000

47. ak = 1
k
and bk = − 1

k
49. 1

1−r
> 1

2
if −1 < r < 1

51. lim
k→∞

1
ak

 = 0 53. 1; you eventually win a game

Exercises 9.3, page 637

1. diverges 3. converges 5. diverges 7. diverges

9. diverges 11. converges 13. converges 15. converges

17. diverges 19. converges 21. converges 23. diverges

25. diverges 27. diverges 29. diverges 31. converges

33. converges 41. p > 1 43. p > 1

45. 1
3·1003 47. 6

7·507 49. e−1600 ≈ 6.73 × 10−696 51. 101

53. 4

55. (a) can’t tell (b) converges (c) converges (d) can’t tell

59. series converges for x > 1 61. 1.0823, x = 4

63. 1.0041, x = 8 67. 2 71. 10
10 

k=1

1
k

≈ 29.3

73. ratio is
n 

k=1

1

k

Exercises 9.4, page 646

1. convergent 3. convergent 5. convergent

7. convergent 9. divergent 11. divergent 13. convergent

15. convergent 17. divergent 19. convergent

21. divergent 23. convergent 25. 3.61

27. −0.22 29. 1.10 31. −0.21 33. 20,000 35. 33

37. f  (k) < 0 for k ≥ 2

39. positives diverge, negatives converge 41.

3
4

1 + 3
4

= 3

7

43.

 2

1

1

x
dx 45. ak = bk = (−1)k√

k

Exercises 9.5, page 654

1. absolutely convergent 3. divergent

5. conditionally convergent 7. absolutely convergent

9. divergent 11. absolutely convergent

13. absolutely convergent 15. divergent

17. conditionally convergent 19. absolutely convergent

21. absolutely convergent 23. absolutely convergent

25. conditionally convergent 27. conditionally convergent

29. absolutely convergent 31. absolutely convergent

33. divergent 35. absolutely convergent

37. absolutely convergent 43. −1 ≤ p < 1

Exercises 9.6, page 662

1.

∞+
k=0

2xk , r = 1, (−1, 1) 3.

∞+
k=0

(−1)k3x2k , r = 1, (−1, 1)

5.

∞+
k=0

2x3k+1, r = 1, (−1, 1)

7.

∞+
k=0

(−1)k
1

22k+1
xk , r = 4, (−4, 4) 9. (−3,−1),

−1

1 + x

11. (0, 1),
1

2 − 2x
13. (−2, 2),

2

2 + x
15. ∞, (−∞,∞)

17. 4, (−4, 4) 19. 3, (−2, 4] 21. 0, {x = −1}
23. 1, (2, 4) 25. ∞, (−∞,∞) 27. 1

2
,
 − 5

2
,− 3

2

 
29. 1

4
,
 − 1

4
, 1
4

 
31.

∞+
k=0

(−1)k
3

2k + 1
x2k+1, r = 1

33.

∞+
k=1

2kx2k−1, r = 1 35.

∞+
k=0

(−1)k
1

k + 1
x2k+2, r = 1

37. (−∞,∞), {x = nπ} 39. (−∞, 0), (−∞, 0)
41. (a − b, a + b), r = b 43. r

45. r = 1, 1.003005007. . . 47. no x’s for which both series converge

49.
∞ 
j=1

4 kq j x2 j−1

Exercises 9.7, page 675

1.

∞+
k=0

(−1)k
x2k

(2k)!
, (−∞,∞) 3.

∞+
k=0

2k

k!
xk , (−∞,∞)

5.

∞+
k=0

(−1)k
xk+1

k + 1
, (−1, 1] 7.

∞+
k=0

(−1)k (k + 1)xk , (−1, 1)

9.

∞+
k=0

(x − 1)k

k!
, (−∞,∞)

11. 1 +
∞+

k=1

(−1)k+1 e−k

k
(x − e)k , (0, 2e]

13.

∞+
k=0

(−1)k (x − 1)k , (0, 2)

15. 1 + 1
2
(x − 1) − 1

8
(x − 1)2 + 1

16
(x − 1)3 − 5

128
(x − 1)4

+ 7
256

(x − 1)5 − 21
1024

(x − 1)6

17. e2
 
1 + (x − 2) + 1

2
(x − 2)2 + 1

6
(x − 2)3 + 1

24
(x − 2)4

+ 1
120

(x − 2)5 + 1
720

(x − 2)6
 

19. x + 1
6

x3 + 3
40

x5

21. |Rn(x)| ≤ |x |n+1

(n + 1)!
→ 0 23. |Rn(x)| = 1

n + 1

&&&& x − 1

z

&&&&
n+1

→ 0

25. (a) 0.04879 (b)
0.055

5
(c) 7

27. (a) 1.0488 (b)
7(0.1)5

256
(c) 9

29. ex with x = 2 31. tan−1 x with x = 1

33.

∞+
k=0

(−3)k

k!
xk ; r = ∞ 35.

∞+
k=0

(−1)k
x2k+1

k!
; r = ∞

37.

∞+
k=0

(−1)k22k+1

(2k + 1)!
x2k+2; r = ∞

41. x; converges to f for all x ≥ 0

43. the first three terms of the Taylor series for f and g are identical

45. 4; 6; Taylor is more efficient

47. x + x2 + 1
3

x3 − 1
30

x5 − 1
90

x6; equals the product
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49. 1 − x2

3!
+ x4

5!
− x6

7!
; equals to the Maclaurin series for sin x , divided

by x

51.
98

3
miles 53. ec

∞ 
k=0

(x − c)k

k!

57. 1 +
∞ 

k=1

(−1)k (2k − 3)(2k − 1) · · · (−1)

2kk!
xk

Exercises 9.8, page 684

1. 0.99923163442 3. 0.94275466553

5. 0.81873075307 7. − 1

2
9. − 1

2
11. 1

13.
1703

900
15.

5651

3780
17.

2

5
19. ∞ 21. 12

23.
√
0.2c ≈ 83,000 miles per second

25.
R

20
≈ 200 miles 27. no 29. too large

33. 1 + 1

2
x + 3

8
x2 + 5

16
x3 + 35

128
x4 + · · ·

35. 6 − 6x + 12x2 − 28x3 + 70x4 − · · ·
37. (a) 5.0990200 (b) 4.8989800

39. 64 + 48x + 12x2 + x3; 1 − 8x + 24x2 − 32x3 + 16x4; n + 1

41. x + 1

6
x3 + 3

40
x5 + 5

112
x7 + 35

1152
x9 + · · ·

43. 1.85194 45. λ ≈ 0.0016
T

Exercises 9.9, page 698

1.

∞+
k=1

(−1)k+1 2

k
sin kx 3. π −

∞+
k=1

8

(2k − 1)2π
cos [(2k − 1)x]

5.

∞+
k=1

−4

π (2k − 1)
sin [(2k − 1)x] 7. 3 sin 2x

9.

∞+
k=1

(−1)k
2

kπ
sin kπx 11.

1

3
+

∞+
k=1

(−1)k
4

k2π2
cos kπx

13.
1

4
+

∞+
k=1

−2

(2k − 1)2π2
cos (2k − 1)πx +

∞+
k=1

(−1)k+1 1

kπ
sin kπx

15.

1

1

y

x

17.

0

y

x

1

1–3 –2 –1 32

19. y

x2 4 6–2
–1

–4–6

1

2

31. If f and g are even then fg is even.

35. sine 37. both

41.

0

y

x21 43–1–2 –3–4

1

2

–1

–2

3 1 1 3

3

3

x

y

3 1 1 3

3

3

x

y

43.

 2π 2π

 2π 2π

 3

3

 3

3

 2π 2π

 3

3

 2π 2π

 3

3
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45. The amplitude varies slowly because the frequency of 2 cos(0.2t) is

small compared to the frequency of sin(8.1t). The variation of the

amplitude explains why the volume varies, since the volume is

proportional to the amplitude.

49.

 8  4 0 84

0.2

0.4

0.6

0.8

1

y
n = 8

x

The modified Fourier series is

1

2
+

n+
k=1

2n

[(2k − 1)π ]2
sin

'
(2k − 1)π

n

(
sin[(2k − 1)x].

Chapter 9 Review Exercises, page 702

1. converges to 0 3. converges to 0 5. converges to 0

7. diverges 9. diverges 11. can’t tell 13. diverges

15. converges 17. converges 19. 8 21. 4
3

23. −0.41 25. diverges 27. converges 29. diverges

31. converges 33. converges 35. converges

37. converges 39. diverges 41. converges 43. converges

45. converges conditionally 47. converges absolutely

49. p > 1 51. 1732 53.

∞+
k=0

(−1)k
xk

4k+1
, r = 4

55.

∞+
k=0

(−1)k
x2k

3k
, r =

√
3 57.

∞+
k=0

(−1)k
xk+1

(k + 1)4k+1
+ ln 4, r = 4

59. (−1, 1) 61. (−1, 1] 63. (−∞,∞)

65.
 
5
3
, 7
3

 
67.

∞+
k=0

(−1)k
x2k+1

(2k + 1)!

69. (x − 1) − 1
2
(x − 1)2 + 1

3
(x − 1)3 − 1

4
(x − 1)4

71. 0.1822666, 10 73.

∞+
k=0

(−1)k
3k x2k

k!
, r = ∞ 75.

1117

2520

77.

∞+
k=1

(−1)k+1 4

kπ
sin

 
kπ

2
x

 

79.
y

x31 5 5  1

 2

 4

 3

4

2

81. y

x5

5

83. 2
3

CHAPTER 10

Exercises 10.1, page 714

1. x2

4
+ y2

9
= 1

y

x
 2  1 0 1 2

 3

 2

 1

1

2

3

3. y = 3
2

x + 3
2

x
 5

 3

5

3

y

5. y = x2 − 2x + 3

x
 5 0 5

6

y

7. x = 1
4

y2 − 1

x
 5

 3

5

3

y

9. y = 3x − 1, with domain −1 ≤ x ≤ 1

x

 1  0.5 0 0.5 1

 4

 3

 2

 1

1

2

y
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11. y

x
 4

 3

4

3

13.

x
 10

 3
10

9

y

15.

x
 2

 2

2

2

y

17.

x

 6 6

4

 4

y

19. y

x
 3 6

5

 1

21. Integer values for k lead to closed curves,

but irrational values for k do not.

23. k = 2

x
 1.5 0.5 0.5 1

y

 1

 0.5

1

0.5

k = 3

y

x

 1  0.5

 1.5

 0.5

 1

10.5

1.5

1

0.5

k = 4

y

x

 1 1.5  0.5
 0.5

 1

10.5

1

0.5

k = 5

y

x
 1 1.5  0.5

 0.5

 1

10.5

1

0.5

25. C 27. B 29. A 31. x = 3t, y = 1 + 3t, 0 ≤ t ≤ 1

33. x = −2 + 8t, y = 4 − 3t, 0 ≤ t ≤ 1

35. x = t, y = t2 + 1, 1 ≤ t ≤ 2

37. x = 2 − t, y = −t2 + 4t − 2, 0 ≤ t ≤ 2

39. x = 2 + 3 cos t, y = 1 + 3 sin t, 0 ≤ t ≤ 2π

41. (2, 3) and (−3, 8) 43. (2, 1) and (3, 0)

45. yes, at (250, 100)

47. y = 0 at t = 2; d = 0 or d = 5 (impractical)

49. a circle with radius t at time t

51. y

x
 5

 5

5

5
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53.

x
 5

 5

5

5

y

55. a cone

57. x = (v sin θ )t, y = D − (v cos θ )t 61. vγ

63. x = 1 − 2y2, y = ±2x
√
1 − x2

65. y

x
 1.5

 0.775

0.85

0.775

Exercises 10.2, page 724

1. (a) −1 (b) 1 (c) undefined 3. (a) − 3
2

(b) 0 (c) 0

5. (a) 2 (b) undefined (c) 0 7. 1 at t = 1; −1 at t = −1

9. (a)

$√
2

2
, 1

%
,

$√
2

2
,−1

%
,

$
−

√
2

2
, 1

%$
−

√
2

2
,−1

%

(b) (1, 0), (−1, 0)

11. (a) (0, −3) (b) (−1, 0) 13. (a) (0, 1) (b) (0, −3)

15. (a) x  (0) = 0, y (0) = 2, speed = 2, up

(b) x  
!π
2

"
= −2, y 

!π
2

"
= 0, speed = 2, left

17. (a) x  (0) = 20, y (0) = −2, speed = 2
√
101, right/down

(b) x  (2) = 20, y (2) = −66, speed =
√
4756, right/down

19. (a) x  (0) = 5, y (0) = 4, speed =
√
41, right/up

(b) x  
!π
2

"
= 0, y 

!π
2

"
= −9, speed = 9, down

21. 6π 23. 3π
8

25. 4
3

27. 256
15

29. at (−1, 0), speed is 4; at (3, 0), speed is 0

31. 5: 3

x
 4

 3

4

3

y

33. x = 2 cos t + sin 3t, y = 2 sin t + cos 3t ;

x
 4 4

 3

3

y

Min/max speeds: 1, 5

35. speed = 4, (tan 4t)(− cot 4t) = −1

39. x(t) = vt + r cos
 
v
r

t
 
, y(t) = r − r sin

 
v
r

t
 
;

min speed = 0 at bottom (y = 0), max speed = 2v at top (y = 2r )

41. one possibility: x(t) = 2 cos t + 3 cos 5
3

t, y(t) = 2 sin t − 3 sin 5
3

t

Exercises 10.3, page 732

1. 19.38 3. 15.69 5. 2π

7. ln (1 +
√
2) +

√
2 ≈ 2.30 9. 2.42

11. 6.91 13. 4.4859k 15. 4.4569k

17. undefined; 3.890 19. undefined; 4.066 21. 85.8

23. 29.7 25. 85.8 27. x = 4u, y = 4
√
1 − u2; 2π

29. (a) 4π (b) b − a

Exercises 10.4, page 745

1. (2, 0) 3. (2, 0) 5. (−3, 0)

7.
!
2
√
2,− π

4
+ 2πn

"
,

!
−2

√
2, 3π

4
+ 2πn

"
9.

 
3, π

2
+ 2πn

 
,
 −3, 3π

2
+ 2πn

 
11.

 
5, tan−1

 
4
3

 + 2nπ
 
,
 −5, tan−1

 
4
3

 + 2(n + 1)π
 

13. (1,−
√
3) 15. (0, 0) 17. (3.80, 1.24)

19.

x
 8

 6

8

6

y

x2 + y2 = 16

21.

x
 4 4

 3

3

y

y = 1√
3

x

23.

x

 1

 2 2

1

y

x2 + y2 = x
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25.

x
 4 4

 2

4

y

x2 + y2 = 3y

27.

x

 1

 2 2

1

y

r = 0 at θ = kπ
4
(k odd), 0 ≤ θ ≤ 2π

29.

x

 1

 2 2

1

y

r = 0 at θ = nπ
3
, 0 ≤ θ ≤ π

31.

x
 6

 2

6

6

y

r > 0, 0 ≤ θ ≤ 2π

33. y

x
 6 6

 7

1

r = 0 at θ = π
6

+ 2πn, 5π
6

+ 2πn; 0 ≤ θ ≤ 2π

35. y

x
 5

 1 5

5

r = 0 at θ = 3π
2

+ 2πn, 0 ≤ θ ≤ 2π

37. y

x
 5 5

3

 3

r = 0 at θ = 0,−∞ < θ < ∞

39. y

x
 2

 1

2

2

r = 0 at θ = 3π
4

+ πn, 0 ≤ θ ≤ π

41. y

x
 2 2

2

 1

r = 0 at θ = 3π
4

+ πn, 0 ≤ θ ≤ π

43.

x

 2

 3 3

2

y

r = 0 at θ = 0,−∞ < θ < ∞

45.

x

 6

 9 9

6

y

r = 0 at θ = 2π
9

+ 2πn
3
, 4π

9
+ 2πn

3
, 0 ≤ θ ≤ 2π

47.

x
 4 4

3

y

 3

r  = 0,− π
2
< θ < 3π

2
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49.

x
 4 4

3

y

 3

r  = 0,−π < θ < π

51. y

x

 0.5

 1

10.80.60.40.2

1

0.5

53. circle, radius a
2
, center

 
a
2
, 0

 
55. rose with n leaves (n odd) or 2n leaves (n even)

57. r = ±2
√− sec 2θ

59. r = 4

61. r = 3 csc θ

63. n wide overlapping petals on a flower when 0 ≤ θ ≤ nπ ,

up to n = 24; graph repeats for larger domains

65.

x
B (d, o)

h

h
C

y

sin B = h
d

⇒ B = sin−1
 

h
d

 
;

sinC = − h
d

⇒ C = sin−1
 − h

d

 
= −sin−1

 
h
d

 
67. r1(A) = d cos A −

 
d2 cos2 A − (d2 − h2);

r2(A) = d + b

⎛
⎝1 −

$
A

sin−1
 

h
d

 
%2

⎞
⎠ ;

A1 = −sin−1
 

h
d

 
, A2 = sin−1

 
h
d

 

Exercises 10.5, page 754

1.
√
3 3. undefined 5. 0 7. 1 9. 1√

3

11.
!√

3
2
, 1
2

"
,

!
−

√
3
2
, 1
2

"
, (0,−1)

13. (3
√
2,−3

√
2), (−3

√
2, 3

√
2)

15. π
12

17. 0.3806 19. π 21. π
2

− 3
√
3

4
≈ 0.2718

23. 0.1470 25. 11
√
3

2
+ 14π

3
≈ 24.187

27. 5π
3

+
√
3 ≈ 6.9680 29. 5π

4
− 2 ≈ 1.9270

31. (0, 0), (0.3386, −0.75), (1.6614, −0.75)

33. (0, 0), (1.2071, 1.2071), (−0.2071, −0.2071)

35. 16 37. 6.6824 39. 20.0158 41. 31.2%

43. 62.6% 45. θ = 0:0, θ = π
3
:
√
3, θ = 2π

3
:−

√
3

Exercises 10.6, page 765

1. y = − 1
4

x2 3. x = 1
4

y2 + 2 5.
x2

12
+ (y − 3)2

16
= 1

7.
(x − 4)2

16
+ (y − 1)2

12
= 1 9.

(x − 2)2

1
− y2

3
= 1

11.
(y − 4)2

1
− (x − 2)2

3
= 1

13. parabola, (−1,−1), (−1,− 7
8
), y = − 9

8

15. ellipse, (1, −1) and (1, 5), (1, 2 −
√
5) and (1, 2 +

√
5)

17. hyperbola, (−2, 0) and (4, 0), (1 −
√
13, 0) and (1 +

√
13, 0)

19. hyperbola, (−2,−5) and (−2, 3), (−2,−1 −
√
20) and

(−2,−1 +
√
20)

21. ellipse, (−1, 0) and (5, 0), (2 −
√
8, 0) and (2 +

√
8, 0)

23. parabola, (−1,−2), (−1,−1), y = −3

25. y = 1
8
(x − 2)2 − 1

0

y

x

27.
(x − 2)2

16
+ (y − 2)2

12
= 1

0

y

x–3 7

7

–3

29.
(y − 1)2

4
− x2

5
= 1

0

y

x–5 5

5

–5

31.
 
1
16
, 0

 
33.

 
0, 1

8

 
35. 20 inches 37. (0, −8)

39. (−2, 0) 41. (
√
300, 0) and (−

√
300, 0)

43. −t2 + 16t , boomerang
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Exercises 10.7, page 771

1. r = 1.2

0.6 cos θ + 1

x

 3

 4 4

3

y

3. r = 2

cos θ + 1

x
 4 4

3

y

 3

5. r = 1.2

0.6 sin θ + 1

y

x
 4 4

2

 4

7. r = 2

sin θ + 1

x
 4 4

3

y

 3

9. r = −0.8

0.4 cos θ − 1

y

x
 2

 1

2

1

11. r = −4

2 cos θ − 1

y

 6

6

x

 12 6

13. r = −0.8

0.4 sin θ − 1

y

x
 2

 2

2

2

15. r = −2

sin θ − 1

x
 4 4

3

y

 3

17. rotated hyperbola

y

 2

6

x

 4 8

19. rotated ellipse

y

x
 8

 6

8

6
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21. rotated parabola

10

2

 6

 2
x

y

23. x = −1 + 3 cos t, y = 1 + 2 sin t, 0 ≤ t ≤ 2π

25. x = −1 + 4 cosh t, y = 3 sinh t for the right half;

x = −1 − 4 cosh t, y = 3 sinh t for the left half

27. x = t, y = − 1
4

t2 + 1 29. 2.6 times as fast

Chapter 10 Review Exercises, page 773

1. (x + 1)2 + (y − 2)2 = 9

y

x
 5

 2

5

5

3. y = x2 − 2x + 1

y

x
 2 6

5

 1

5. y

x
 2 2

1

 1

7. y

x
 2

 1

2

1

9. C 11. B 13. x = 2 + 2t, y = 1 + 6t, 0 ≤ t ≤ 1

15. (a) 1
3

(b) undefined (c) undefined at t = −1; 1
3
at t = 2

17. x  (0) = −3, y (0) = 2, speed =
√
13, left/up 19. 6π

21. 1.9467 23. 5.2495 25. 13.593 27. 128.075

29. x2 + y2 = 3x

x
 1

4

y

 2

2

31. y

x

 4 4

3

 3

r = 0 at θ = nπ ; 0 ≤ θ ≤ π

33.

x
 5 5

1

y

 5

r = 0 at θ = sin−1 2
3

+ 2πn, π − sin−1 2
3

+ 2πn; 0 ≤ θ ≤ 2π

35.

 2

2

x

 3 3

y

r = 0 at θ = π
2

n; 0 ≤ θ ≤ π
2

37.

 2

4

x
 4 4

y

r  = 0; 0 ≤ θ ≤ 2π 
θ  = 7π

6
, 11π

6

 
39. r = 3 41. 1√

3
43. 0.157 45. 0.543
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47. 2.828 49. 28.814 51. y = 1
4
(x − 1)2 + 1

53.
(y − 2)2

1
− (x − 2)2

3
= 1

55. ellipse, (−1, −2) and (−1, 8), (−1, −1) and (−1, 7)

57. parabola, (1, 4), (1, 15
4
), y = 17

4
59. (0, 1

2
)

61. r = 2.4

0.8 cos θ + 1
63. r = 2.8

1.4 sin θ + 1

65. x = −1 + 3 cos t, y = 3 + 5 sin t, 0 ≤ t ≤ 2π
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Index

A
Abacus, 158

Absolute convergence, 648–654, 654

Absolute extremum (extrema), 217

approximate, 224

on closed interval, 218, 223

of continuous function, 219

Absolute maximum, 217–218

Absolute minimum, 217–218,

234, 266

Absolute value, 5

derivative of log of, 433

Acceleration, 198

angular, 336

finding position from, 297

of skydiver, 154

in a straight line, 299

Acid dissociation constant, 439

Acute angle, 38

Adair, Robert, 420

Adaptive quadrature routines, 354

Addition

loss-of-significance error involving,

116–117

Addition principle, 545

Advertising costs, 275

AIDS, 236–237, 287–288, 329, 338

Air resistance, 410

Alligator gender, 88

Allosteric enzyme, 166

Alternating harmonic series, 641

Alternating series, 639–646

divergent, 643–644

estimating sum of, 644–645

Alternating Series Test, 641–643, 654

Ambient temperature, 561

Ambrose, Warren, 103

Amplitude

altering, 35–36

Analog calculations, 133

Analysis, mathematical, 99

Analyst, The (Berkeley), 155

Angle

acute, 38

half, 497

radian vs. degree, 33, 39, 459

throwing height, 201–202

Angular acceleration, 336

Angular speed, 135, 336. See also Velocity

Antiderivatives, 292–297

finding, by trial and error, 338–339

incorrect, CAS reporting, 516

unevaluated, 296–297

Antidifferentiation, 196

Approximate zero, 19, 29, 210

Approximation

arc length, 56–58, 397–398, 726–727

by calculators, 29–30, 205

of cube root, 211

of definite integral, 680

of derivative, 143

of e, 669

by Euler’s method, 583

with given accuracy, 348

of initial value problem, 584–585

of integral, 680

of limit, 63

linear, 205

by line segment, 56–57

by Midpoint Rule, 316–317, 346–347

minimum distance, 264

quadratic, 246

by Simpson’s Rule, 351–353

straight-line, 58

successive, 209

tangent line, 126–128, 205, 213

Taylor polynomials in, 669–672,

677–681

by Trapezoidal Rule, 350–351

of volume, 393–394

of zeros, 85–86, 210

Archimedes, 315, 374

Archimedian spiral, 739

Arc length, 396–402

in brachistochrone problem, 729–730

for falling ladder, 732

in parametric equations, 726–732

of polar curve, 753

straight-line approximation of, 397

Arcsine, 458

Area, 308–313. See also Surface area

approximating, with rectangles, 301, 309

bounded by functions of y, 368

under curve, 301, 309–310, 311

between curves, 364–366

between curves that cross, 366

determined by three curves, 366–367

enclosed by curve, 723

enclosed by ellipse, 723

exact, 310

by Fundamental Theorem, 330–333

of inner loop of limaçon, 751

integrating with respect to y, 368

maximum, 260–261

parametric equations, 722–723

signed, 319–320

of three-leaf rose, 750

total, 319

between two polar graphs, 751–752

Area function, 332

Arnold, Vladimir, 407

Asset depreciation, 564–565

Assumption, induction, 305

Asteroids, Trojan, 204

Asymptote(s)

horizontal, 93–94

of hyperbolas, 762

oblique, 95

slant, 95

vertical (See Vertical asymptote)

Asynchrony, perfect, 361

Atmospheric pressure, 456

Attractors, 121, 202

Autocatalytic reaction, 283, 288, 600

Automatic graphing window, 24

I-1



I-2 Index

Average costs, 246

formula for, 280

minimizing, 280–281

Average linear density, 284

Average speed, 129–132

Average value of function, 323–326

mean, 549–551

Average velocity, 129–132

Axiom of completeness, 614

Axis (axes)

major, 760

minor, 760

origin, 6

B
Bacterial growth, 558–560

Bahill, A. Terry, 64, 410

Balance, determining, 420–421

Baldini, Stefano, 123

Baseball

corked bats, 427

design of cover, 410

eye on the ball, 121, 466–467

fast pitch, 51, 481

fly balls, 463

impulse for, 420

and Keep Your Eye on the Ball,

64

knuckleball, 64, 410–411

mass of bat, 422–423

speed of pitch, 64

throwing height, 201–202

Basin of attraction, 215

Basketball free throw, 99, 413

Bathtub curve, 483

Beckmann, Petr, 704

Berkeley, Bishop George, 155

Bernoulli, Jacob, 730

Bernoulli, Johann, 522, 730

Bessel function, 681–683

Bézier curves, 726

Bifurcation point, 121, 202

Binary fusion, 558

Binomial series, 683–684

Binomial Theorem, 149–150

Bisections, method of, 85–86

Boiling point, of water, 22

Bounded sequence, 612–613

Box construction, 262

Brachistochrone, 520, 729, 730

Brandreth, Gyles, 549

Branges, Louis de, 313

Brantingham, Patricia, 445

Brantingham, Paul, 445

Brody, Howard, 145

Brown, Ezra, 189

Buffon needle problem, 553

Butterfly effect, 118–119

C
Cable, finding sag in, 474–475

Calculator. See also Computer algebra

system

adaptive quadrature routines, 354

approximate values and, 204

degrees vs. radians mode, 459

and errors in negative numbers, 222

graphing, 19, 23–30

on differential equations, 596

limitations of, 29–30, 41

limits, computation of, 63

trigonometric functions on, 34

Cans, designing, 265

Cantor set, 628

Carbon dating, 557–558

Cardioids, 739, 740–741

Carolini, Ruben, 557

Carrying capacity, 573

Cartesian plane, 6–8

CAS. See Computer algebra system

Catenary curve, 474, 477–478

Cauchy, Augustin Louis, 100

Cauchy Mean Value Theorem, 199

Census, 10

Center

of ellipse, 760

of hyperbolas, 763

of mass, 421

Center of mass, 421–423

Centroid, 427

Chain Rule, 167–193

with Fundamental Theorem, Part II, 333

Leibniz notation and, 718

with related rates, 273

Change, rate of. See Rate of change

Chaos theory, 121, 202

Chemical

maximum concentration of, 455

reaction rate of, 283

second-order, 577

Chung, Fan, 169

Circle

parametric equations of, 710–711

tangent lines to, 128

volume of, 463–464

Circular sector, 174

Closed interval, 3

absolute extrema of, 223

continuity on, 82

Closing speed, 274–275

Coefficient

drag, 596

Fourier, 687

of indefinite integral, 294

of polynomial, 15

of probability distribution, 549

of restitution, 166, 307, 617

of series, 657

Coin-tossing, 545

Colinear points, 10, 11

Collapsing sum, 621

Comparison test, 654

for integrals, 539–542

Limit, 635–637

for series, 628, 633–637

Competition exclusion principle, 598

Completeness axiom, 614

Composite functions, 41–43

continuity for, 82

Compound interest, 563–565, 575

Computer algebra system. See also Calculator

for graphing, 19, 23–30

for integration, 512–518

limitations of, 29

parametric graph on, 710

problems in using, 515–518

Computerized tomography, 376–377

Computers, real numbers, representation of by,

113–117

Concavity, 237–243

Conditional probability, 544, 556

Cone

frustum of, 400

right circular, 400

Conic sections, 756–764. See also Ellipses;

Hyperbolas; Parabolas

directrix, 766, 769

eccentricity, 766, 768–769

parametric equations for, 769–770

reflective qualities of, 764

Connes, Alain, 653

Constant

Euler’s, 628

limit of, 68

sum of, 302

Constant polynomial, 15

Consumer surplus, 337, 372

Continued fraction, 704

Continuity, 71

on closed interval, 82

definition of, 78



Index I-3

Continuity—Cont.

of federal tax tables, 83–84

of functions, 77–78

on interval, 82

from left, 88

of rational function, 79

Continuous compounding, 563

Continuous probability distributions, 547

Control points, 726

Convergence

absolute, 648–654

of Bessel function, 681–682

conditional, 648–649

of Fourier series, 696–697

of improper integral, 532–536

interval of, 658–659

linear, 212

radius of, 658

of sequence, 605–606, 610–611

of series, 619–624, 628–637

comparison test for, 634

geometric, 621–622

harmonic, 624–625

power, 657–662

summary of tests for, 653–654

of Taylor series, 668–669

Cooling, Newton’s law of, 561–562

Coordinates

polar (See Polar coordinates)

rectangular (See Rectangular coordinates)

Copernicus, 770

Corked bats, 427

Cornu spiral, 733

Cosecant function, 34–35

hyperbolic, 472

Cosine functions, 32

altering amplitude and period, 35–36

combinations of

of different periods, 38

sines, 37

writing as single sine term, 38

common values of, 34

derivation of, 175

half-angle, 497

integrals involving powers of, 340–341

integrand

with even power of, 497

with odd power of, 496

inverse, 459–460

limit of, 71

linear approximation of, 206

parametric equations involving,

709–710

Cost

average, 280

marginal, 279

minimizing, 267–268

Cotangent function, 34–35

hyperbolic, 472

Coupled system, 592

Coupon collectors’ problem, 639

Crawford, Shawn, 123

Cricket chirp rate, 23

Crime Pattern Theory, 445

Criminal Geographic Targeting algorithm,

445

Critical number, 220

Fermat’s Theorem, 222

Critical threshold, 581

Cross, Rod, 145

Cube roots, 211

linear approximation of, 207–208

Cubic function, 17

Cubic polynomials, 15

graphing, 18–19, 26–27

Cumulative distribution function, 362, 544

Current. See Electrical circuit

Curve(s)

antiderivative, 293

arc length of, 56–58, 396–402, 726–727

area between, 364–366

area enclosed by, 723

area under, 301, 309–310, 311

Bèzier, 726

catenary, 474, 477–478

computing distance along, 56

conic sections, 756–764

elliptic, 189

equiangular, 746

four-leaf rose, 743–744

Garfield, 745

implicit differentiation of, 183

inflection point of, 26

Lissajous, 728

orientation of, 709

parameterization of, 711

parametric equations of, 708–713

plane, 708–713

polar, 752

slope of, estimating, 54–57

solution, 574

tangent lines to, 124–128, 144, 583

thrust-time, 426

Curve sketching, 247–257

Cycloid, 725, 729

Cylinder, 373

partially filled, volume of, 753

right circular, 374

volume of, 227–228, 374

Cylindrical shells, volume by, 388–394

D
Dam, hydrostatic force of, 423–424

Damping, 178

Daubechies, Ingrid, 689

Dawson, Terry, 363

Debt, 285

Decay constant, 560

Decay problems, 558–560

Decomposition, partial fraction, 504–505

Decreasing function, 146, 228–234

Deficit, 285

Definite integral, 315–326, 363–369

approximation of, 317, 680

computing exactly, 331

integration by parts for, 492–493

involving trigonometric function, 343

relating, to signed area, 319–320

substitution in, 342–343

using Riemann sums, 318–319

with variable upper limit, 331

Degree

angles measured in, 33

of polynomial, 15

Demand

elasticity of, 281

relative change in, 281

Density, 284

nonconstant, 422

Dependent variable, 14

Depreciation of assets, 564–565

Derbyshire, John, 440

Derivatives

alternative notations, 141–142

approximating numerically, 143

of catenary, 477–478

Chain Rule, 167–193

of cosine, 175

of exponential function, 451–455

higher order, 153–154

of hyperbolic function, 473

of log of absolute value, 433

at point, 137

power of x in, 149

Power Rule, 148–151

Product Rule, 158–160, 162–163, 167

Quotient Rule, 160–163

rates as, 279

of rational function, 138

rewriting function prior to computing,

152

rules, 151–153, 169–170, 295

of sine, 175

in sports analysis, 163–164

of square root, 139



I-4 Index

Derivatives—Cont.

of sum, 152

of trigonometric functions, 172–179

inverse, 466

at unspecified point, 137–138

Diaconis, Persi, 549

Difference

indefinite integral of, 296

limit of, 68

Difference quotient, 126, 159

Differentiable function, 137–144, 229

not continuous, 141

Differential, 205

Differential equations, 292

AIDS model, 236–237

compound interest, 563–565

decay problem, 558–560

direction field, 300, 579–583

equilibrium solution to, 586

Euler’s method, 579, 583–588

first-order ordinary, 569

first-order systems, 591–596

general solution of, 559

growth problem, 558–560

logistic, 573–576

Newton’s law of cooling, 561–562

predator-prey system, 334

second-order, 596 (See Second-order

differential equations)

separable, 569–572

slope field, 580

Differential operator, 141

Differentiation, 138

anti-, 196

implicit, 182–188

of logarithm, 433

logarithmic, 437–438

logarithms in simplifying, 436

numerical, 142–143

of power series, 661–662

term-by-term, 660

Digital photography, 701

Digital technology, 603–604

Dirac delta, 346

Direction field, 300, 579–583

in phase portrait, 593–594

Directrix, 756, 766, 769

Discontinuity, 78

nonremovable, 79–80

removable, 79

Discontinuous integrand, integral with,

322–323

Discrete probability distributions, 547

Disease symptomology, 447

Disk method, 378–380

Distance

along curved path, 56

fallen by object, 334

and first moment, 420–421

formula for, 264

minimum, 264

nonconstant, 418

from point to curve, 263

between real numbers, 5

signed, 129

Distance formula, 8

Diver, velocity of, at impact, 405–406

Divergence

of alternating series, 643–644

of geometric series, 622–623

of harmonic series, 624–625

of improper integral, 532–536

kth-term tests for, 624

of sequence, 605, 607

of series, 619–624

comparison test for, 634

Divine Proportion, The (Huntley), 704, 746

Do Dogs Know Calculus? (Pennings), 272

Domain

approximate, 252–253

of function, 14

of sine, 458

Domes, 374, 377–378

Doomsday model, 578

Double root polynomial, 201

Doubling time, 560

Drag coefficient, 596

Drag force, 410

Drugs

proper dosage of, 446

sensitivity to, 287

Dummy variable, 302

Dunham, William, 734

E
e, 669

Earth, circumference of, 40–41

Eccentricity, 766, 768–769

Economic Order Quantity (EOQ), 328

Economics, multiplier effect, 627

Einstein, Albert, 98

Electrical circuit

failure rate of, 483–484

rate of change of, 179

Electrical potential, 686

Electric dipole, 663

Electrocardiogram (EKG), 440

Electromagnetic waves, 32

Ellipses, 759–762

area enclosed by, 723

center of, 760

equation of, 759–760, 761

features of, 761

focus of, 759

with major axis parallel to the y-axis, 761

parametric equations of, 710–711

reflective property of, 761–762

Elliptical integral of the second kind, 403

Elliptic curves, 189

and “Three Fermat Trails to Elliptic

Curves” (Brown), 189

Endpoints, 3

Energy

estimating loss, 369

kinetic, 417–418

potential, 417–418

stress-strain curve, 363

Energy spectrum, 700

Environmental Protection Agency, 146, 166

Epicycloid, 725

Epidemiology, 287

Equal-tempered tuning, 9

Equation(s)

converting from rectangular to polar

coordinates, 738

differential (See Differential equation)

of ellipse, 761

of hyperbola, 763–764

impulse-momentum, 420

of lines, 10–14

logistic, 284, 573–576

of parabola, 756–757, 758

parametric (See Parametric equations)

point-slope, 12

polar, 738

predator-prey, 592

root of, 208

of secant line, 124–126

second-order differential (See

Second-order differential equations)

separable, 570–571

with sine and cosine, 34–36

slope-intercept, 13

solving, 29

systems of, 592–596

of tangent line, 127, 153, 160

van der Waals’, 166, 183, 186

Verhulst, 573

x-y, parametric equations from, 711–712

Equiangular curve, 746

Equilibrium

stable, 582, 594

unstable, 582, 594



Index I-5

Equilibrium point, 345

Equilibrium solution, 573, 582, 586, 595

finding, 587

stable, 587

of system of equations, 592–593

unstable, 587

Equivalence point, 439

Eratosthenes, 41

Error

in Euler’s method, 584–585

in integral test, 632

loss-of-significance, 112–117

in negative numbers, 222

in numerical integration, 354–357

in partial sum, 632

rounded-off, 112

in Taylor polynomial approximation,

671–672

Error bounds, 112–117, 644

Error function, 676

Escape velocity, 98

Escherichia coli, 558

Euler, Leonhard, 580

Euler-Fourier formulas, 689

Euler’s constant, 628

Euler’s formula, 677

Euler’s method, 579, 583–588

error in, 584–585

improved, 590–591

Evaluation points, 311

Even functions, 699

Exponent, 113

fractional, 295

negative, 295

Exponential decay law, 559

Exponential distribution, 483

Exponential functions

derivation of, 451–455

limit of, 71

probability involving, 549

Exponential growth law, 559

Extrapolation, 14, 359

Extreme Value Theorem, 223, 225

Extremum (extrema)

absolute (See Absolute extremum

(extrema))

local (See Local extremum (extrema))

F
Factorial, 610

Factoring, 17–18

finding limit by, 69–70

Factor theorem, 19

Failure rate, 483–484

Failure rate function, 556

Falling object

arc length of, 732

finding position of, 297

Family of solutions, 571

Federal tax tables, 83–84

Feller, William, 627

Fermat, Pierre de, 220, 547

Fermat’s Last Theorem, 221

Fermat’s Theorem, 220

Ferris wheel, 717

Feynman, Richard, 158

Fibonacci sequence, 616

Finite precision, 113

First Derivative Test, 233, 247

First moment, 420–421, 422

First-order ordinary differential equation, 569

Fixed graphing window, 24

Fixed point, 49, 202

Flashlight design, 759

Flight path, 713

FM radio, 259

Fobonacci sequence, 1, 2

Foci, 759

Focus

of conic sections, 765

of parabola, 756

Force

air drag, 410

first moment and, 420–421

friction, 88

hydrostatic, 423–425

magnus, 410

nonconstant, 418

Form, indeterminate, 94, 520, 522–523,

524–528

Fourier, Jean Baptiste Joseph, 688

Fourier analysis, 701

Fourier coefficients, 687

Fourier Convergence Theorem, 696–697

Fourier cosine series, 701

Fourier series, 494, 686–698

music synthesizers and, 697–698

Fourier sine series, 698

Four-leaf rose, 743–744

Fractal geometry, 331

Fractions

continued, 704

inequality involving, 4–5

partial, 504–509

Freedman, Michael, 74

Frequency, 36

of guitar string, 278

relative, 545

Frequency modulation, 259

Friction, coefficient of, 236

Friction force, 88

Frustum, 400

Fuel efficiencies, 146, 166

Function(s), 14

absolute extrema of, 217

acceleration, 154

antiderivatives, 293

area, 315, 332

average cost, 246

average value of, 323–326

Bessel, 681–683

composition of, 41–43

concavity, 237–243

continuous, 77–85, 316

from left, 88

cosine (See Cosine functions)

cotangent, 34–35

cumulative distribution, 544

decreasing, 146, 228–234

density, 421

derivatives of, 138–139, 195, 196

differentiable, 137–144, 142, 197, 229

discontinuous, 78

domain of, 17, 247

error, 676

even, 345, 699

exponential (See Exponential functions)

failure rate, 556

Fermat’s Theorem, 220

finding zeros of, 193

gamma, 544–545

global behavior of, 27, 232

graph of (See Graph(s))

Hill, 246

hyperbolic, 471–476

increasing, 146, 228–234

inside, 168

integrable, 316, 321

interval, 107, 108

inverse (See Inverse functions)

iterations of, 49

linear, 205

Lipschitz, 329

local behavior of, 27, 232

local extremum of, 24, 219

local maximum of, 24

logarithm (See Logarithm function)

log integral, 440

natural logarithm, 432

odd, 345, 699

Omega, 544

one-to-one, 441

orthogonal, 686



I-6 Index

Function(s)—Cont.

outside, 168–169

periodic, 32, 687

piecewise continuous, 322

piecewise-defined, 74–75

polynomial (See Polynomial function)

positive and negative, 317–318

potential, 338

as power-series, 664–665

probability density, 547–551

radical, 169

rational (See Rational functions)

reliability, 544

Riemann-zeta, 639

secant, 34–35, 461

sigmoid, 457

sine (See Sine functions)

as single fraction, 528

smooth, 144

special, 681

square wave, 689, 694–695

sum of, 304

tangent, 34–35

testing of, 247

transcendental, 677

triangular wave, 691–693

trigonometric (See Trigonometric

functions)

Weierstrass’, 147

zero of, 18, 193

Fundamental period, 32

Fundamental Theorem of Calculus, 195,

329–335

Fusion, binary, 558

Future value, 568

G
Gabriel’s horn paradox, 404

Gamma function, 544–545

Garden layout, 260–261

Garfield curve, 745

Gas Law, van der Waals’ equation, 166, 183,

186

Gatlin, Justin, 123

Gauss, Karl Friedrich, 303

Gaussian quadrature, 359

Gelfand, Israel, 188

Gene activation, 589

General solution, 559, 571

Genetics

alligator gender, 88

Geometric series, 621–624, 622–623,

654

Gibbs phenomena, 698

Gini index, 314–315

Global behavior

of functions, 27

of graphs, 232

Golden ratio, 704

Golf

motion of ball, 599

putting, 746

spin rate of ball, 23

Graphing window, 24, 41

default, 248

square, 710

Graph(s)

of antiderivative curves, 293

with approximate domain, 251–252

with approximate extrema, 251–252

of Bessel functions, 682

cardioids, 739, 740–741

computer-generated, 19, 23–30

concavity in, 238

of continuous function, 78

of cosecant function, 34–35

of cosine, derivative of, 172

of cotangent function, 34–35

of cubic polynomials, 18–19, 26–27

of derivation, 140–141

difficult to see features, 254–255

of functions, 14–15, 230–231

hidden behavior in, 231–232

horizontal translation of, 44

of integrand, 538

of Intermediate Value Theorem,

84–85

of inventory ranges, 291

of inverse function, 443–444

labeling of, 17

of lateral motion, 411

limaçons, 739, 740

with a loop, 741–743

of limits, 61–64, 104–105

of linear functions, 23

of lines, 12

of local extrema, 220, 233

of Mean Value Theorem, 194

with no tangent lines at a point, 132–133

of one-to-one function, 442

parametric, 710

of parametric equation, 708

of plane curves, 708–709

polar, 738–739, 741–744, 748–749,

751–752

of polynomial functions, 16, 247–249

of probability density function, 547

of projectile motion, 407

of quadratic polynomials, 23, 25–26

of rational functions, 27–28, 242–243, 249

tangent line to, 127–128

representative, 247–257

of Rolle’s Theorem, 191

scale in, 45–47

scatterplot, 6

of secant function, 34–35

of sequence, 613

of sine, derivative of, 172

sketching, 23–30

of slant asymptotes, 95

of sum of polynomial and trigonometric

function, 251–252

from table of data, 7

of tangent function, 34–35

of Taylor polynomials, 666–667

testing of function, 247

of triangular wave, 691

of trigonometric functions, 34–35

with two horizontal tangents, 191

of two vertical asymptotes, 27, 251–252

of van der Waals’ equation, 186

vertical asymptotes in, 34–35

vertical translation of, 43–44

zoomed, 19

Gravitation, 292

Lagrange point and, 203–204

of moon, 415

Newton’s universal law of, 770

Greatest integer function, 77

Gross domestic product, 314

Growth constant, 558

Growth problems, 558–560

Guess, initial, 211

H
Haché, Alain, 471

Hailstone sequence, 616

Half-life, 560

Halley, Edmund, 155

Halmos, Paul, 103

Hardy, G.H., 652

Harmonic content, 700

Harmonic series, 624–625

Heads-or-tails, 545

Heart efficiency test, 556

Height

histogram for, 547

initial velocity required to reach, 407–408

probability of, 545–547

throwing, of ball, 201–202

of tower, 39



Index I-7

Higher order derivatives, 153–154

Highway construction costs, 267

Hill functions, 246

Histogram, 545

History of Pi (Beckmann), 704

Hockey, 471

Homeomorphism, 471

Hooke’s Law, 417

Horizontal asymptote, 93–94, 247

Horizontal component of velocity, 721

Horizontal line, 11

tangent line to, 148

Horizontal line test, 442

Horizontal tangent line, 720

polar graphs and, 748–749

Horizontal tangents, 172

local extrema and, 222

Horizontal translation, 44, 47

Human cannonball, 413, 717

Humans

eye focus of, 121

speed of, 123–124, 136

Huntley, H.E., 704, 746

Hydrostatic force, 374, 423–425

Hyperbolas, 762–764

asymptotes of, 762

center of, 763

equation of, 763–764

features of, 763

reflective property of, 764

Hyperbolic function

cosine, 472

derivative of, 473

integral involving, 473

inverse, 475–476

sine, 472

Hyperbolic mirrors, 764

Hypocycloid, 725

I
Identities, in trigonometric functions, 36–37

Impact velocity, 405–406

Implicit differentiation, 182–188

Implicit plotter, 189

Improper integrals

comparison test, 539–542

convergent, 532–536

with discontinuous integrand, 530–534

divergent, 532–536

with infinite limit of integration, 534–539

Impulse, 419

for a baseball, 420

Impulse function, 362

Impulse-momentum equation, 420

Income elasticity of demand, 286

Increasing function, 146, 228–234

Increments, 205

Indefinite integral, 294–296, 296

Independent variable, 14

Indeterminate form, 94, 520, 522–523,

524–528

Index, Gini, 314–315

Index of summation, 301

Induction, mathematical, 77

Induction assumption, 305

Inequality, 2

involving a fraction, 4–5

linear, 3–4

proving, by Mean Value Theorem,

196–197

quadratic, 5

triangle, 5

two-sided, 4

Infant mortality phase, 483

Infinite limits, 92–96, 106–110

of integration, 534–539

Infinite products, 628

Infinite series, 307, 618–625

Infinite sum, 618

Inflation rate, 575–576

Inflection points, 26, 239–240

Information theory, 544

Initial condition, 559, 571

Initial guess, 209

Initial value problem, 571–572

approximate solution for, 585–586

using Euler’s method, 584–585

Initial velocity, 407–408

Inside function, 168

Instantaneous velocity, 130–132

Integer, 2, 188, 301, 495

Integral Mean Value Theorem, 325

Integrals

approximation of, 680

comparison test, 539–542

definite (See Definite integrals)

with discontinuous integrand, 322–323

estimating, 325–326

evaluating, using substitution, 339–340

of exponentials, 452

improper (See Improper integrals)

indefinite, 294–296

with infinite lower limit of integration,

537

involving hyperbolic function, 473

involving inverse trigonometric functions,

467–469

involving logarithms, 434

involving powers of trigonometric

functions, 341, 495–499

line (See Line integrals)

requiring simple solution, 468–469

Riemann-Stieltjes, 488

rules for, 321

table of, 512–515

from table of function values, 349

tangent line for function defined as,

335

with two infinite limits of integration,

537–538

with variable upper and lower limits,

333

where square must be completed,

485–486

Integral Test, 628–633, 654

estimating error for, 632

Integrand, 316

discontinuous, 322–323

improper integrals with, 530–534

with even power of cosine, 497

with even power of sine, 497

expanding, 342, 485

with odd power of cosine, 496

with odd power of sine, 496

with single term, 490

Integration, 294

basic formulas for, 484

computer algebra systems, 512–518

infinite limit of, 534–539

with infinite lower limit, 537

lower limit of, 316

numerical (See Numerical integration)

by partial fractions, 504–509

by parts, 488–493

Power Rule, 294–295

of power series, 661–662

in random processes, 545

of rational functions, 504–509

by substitution, 338–343, 484, 509–510

summary of techniques, 509–510

two infinite limits of, 537–538

upper limit of, 316

variable of, 378

Intelligence quotient distribution, 556

Intercepts, 247

Interest, compounding, 563–565

Intergrand, 294

Intermediate Value Theorem, 84–85

Internal Revenue Service, 83–84

Interpolation, linear, 446

Intersections

finding, by calculator, 29

Interval of convergence, 658–659



I-8 Index

Intervals, 3

as approximation of zero, 85

closed, 218

continuity on, 82

open, 107

probability distribution function on, 548

Introduction to Probability Theory and Its

Applications, An (Feller), 627

Inventory, just-in-time, 291

Inverse functions, 440–447

cosine, 71, 459–460

hyperbolic, 475–476

limit to, 71

sine, 71, 458–459

tangent, 34–35, 71, 460–461

trigonometric, 71, 458–462

Inverse problem, 431, 440

Investment

compounding interest, 575

inflation rate, 575–576

strategies for, 575

In x, 437

Irrational numbers, 2

Irregular partitions, 315

Irrigation ditch, 190

Iterations, of function, 49

J
Jerk, 157

Jones, Vaughan, 527

Jordan, Michael, 407

Journey Through Genius (Dunham), 734

Just-in-time inventory, 291

K
Kangeroo hopping ability, 363

Keep Your Eye on the Ball (Watts & Bahill), 64

Keno, 552

Kepler, Johannes, 227

Kepler’s second law of planetary motion,

770–771

Kidney stones, 762

Kinetic energy, 417–418, 428

Knuckleball, 64, 410–411

kth-term test, 624, 654

L
Ladder, sliding down wall, 732

Lagrange point, 203, 216

Laplace, Pierre Simon, 533

Laplace transform, 544

Legendre polynomials, 686

Leibniz, Gottfried, 141, 330

on product rule, 164

Leibniz notation, 141, 718

Lemmas theorem, 173

Lemmings, 567

Length

of arc (See Arc length)

of curve, 56–58, 396–402

of rope, 399

Lewis, Carl, 143

l’Hôpital, Guillaume de, 522

l’Hôpital’s Rule, 520–528

Light

amount of, and pupil dilation, 53, 96

speed of, 98

temperature variation effect on, 136

Limaçons, 739, 740

area of inner loop of, 751

with a loop, 741–743

Limit, 53

commonality among, 109

computation of, 63, 67–75

concept of, 59

conjecturing value of, using Taylor

polynomials, 679–680

correct, proving, 101–102

describing velocity, 75

of a difference, 68

estimating, 56–57

graphing, 61–64

infinite, 92–96, 106–110

l’Hôpital’s Rule, 523, 608

loss-of-significance error, 112–117

Newton’s definition of, 110

not existing, 62, 105–106

one-sided, 60–64, 90–93

for piecewise-defined function, 74–75

of polynomial, 69–70

precise definition of, 102

exploring, graphically, 104–106

of a product, 72

of rational function, 69–70

Riemann sums, 313

of sequence, 606–607

speed, 65

of a sum, 68, 109

with unusual graphical and numerical

behavior, 112–113

value of, 63

verifying, using Squeeze Theorem,

73–74

verification of, 101

Limit Comparison Test, 635–637, 654

Limit cycle, 755

Lindsey, Crawford, 145

Linear approximation, 204–208

Linear density, 284

Linear interpolation, 208, 446

Linear polynomial, 15

Line(s)

directrix, 756

equations of, 10–14

estimating population by, 14

finding intersection of parabola and, 19–20

graphing, 12

horizontal, 11

parallel, 13

perpendicular, 13

point-slope form of, 12

revolving about different, 383

slope-intercept form of, 13

tangent (See Tangent line)

vertical, 10

Line segment, 56

parametric equations for, 711

Lipschitz function, 329

Lissajous curve, 728

Local behavior

of functions, 27

of graphs, 232

Local extremum, 24, 219

approximate, 234

by First Derivative Test, 233

of function with fractional exponents,

233–234

of function with undefined derivative, 220

graphing, 230–231

of polynomial, 221

by Second Derivation Test, 241

Local maximum, 219

Local minimum, 219

Logarithm

differentiating, 433

integrals involving, 434

natural, 71

in simplifying differentiation, 436

Logarithmic differentiation, 437–438

Logarithmic spirals, 1

Log integral function, 440

Logistic equation, 284

Logistic growth, 573–576

Lorentz curve, 314

Loss-of-significance error, 112–117

M
Maclaurin, Colin, 630

Maclaurin series, 630, 665, 683



Index I-9

Magnetic resonance imaging, 376–377

Magnus force, 410

Major axis, 760

Mandelbrot, Benoit, 331

Mandelbrot set, 717

Mantissa, 113

Marathon, 123

Marginal cost, 279

Mass

of baseball bat, 422–423

center of, 421

Mass density, 283

Mathematical analysis, 99

Mathematical chaos, 121

Mathematical induction, 77, 305–306

Mathematical modeling, 292

Mathematical Principles of Natural

Philosophy (Newton), 110

Mathematics of Juggling, The (Polster), 414

Maximum likelihood estimator, 227

Maximum values

absolute, 217–218

local, 219–221

McDuff, Dusa, 188

McNulty, Kay, 585

Mean, 543, 549–551

Mean Value Theorem, 193

Median, 543, 549–551

Mercator map, 440

Method of bisections, 85–86

Midpoint Rule, 316–317, 321, 346–347

Minimum values

absolute, 217–218

local, 219–221

Minor axis, 760

Missile intercept, 713

Modeling

baseball pitch, 67

by parametric equations, 731

predator-prey, 591

pupil dilation, 53

of spring-mass system, 98

Moments, first, 420–421, 422

Momentum

impulse equation, 420

Monotonic sequence, 611

Moon’s gravitation, 415

Morrison, Philip, 40

Motion

air resistance effect on, 410

Newton’s first law of, 124

Newton’s second law of, 157, 172, 405

planetary

Kepler’s second law of, 770–771

Ptolemaic model of, 725

projectile, 404–411

of tennis serve, 409

of thrown ball, 201–202

in two dimensions, 707

vertical, 406–407

Multiplicity, zero of, 530

Multiplier effect, 627

Murphy’s Law, 415

Musical mathematics, 9

Music synthesizers, 697–698

N
Napier, John, 434

“Napier’s bones,” 434

National Aeronautics and Space

Administration (NASA), 203

Natural logarithm, limit of, 71

Nautilus shell, 1

Needle problem, Buffon, 558

Newton, Isaac, 110, 124, 157, 172, 209, 330

Newton-Raphson method, 210

Newton’s law of cooling, 561–562

Newton’s method, 19, 158, 208–212, 215–216

Newton’s second law of motion, 292, 405

applied to lateral motion, 410–411

Newton’s universal law of gravitation, 770

New Treatise on Fluxions, A (Simpson), 351

Nonlinear dynamics, 121

nth roots, limit of, 70

Numbers

irrational, 2, 450

rational, 2, 113

real, 2–6, 113–117

Numb3rs (television show), 445

Numerical integration, 346–357

comparison of rules, 353

error bounds for, 355

Gaussian quadrature, 359

Midpoint Rule, 346–347

number of steps to guarantee given

accuracy, 356

Simpson’s Rule, 351–353

Trapezoidal Rule, 350–351

O
Oblique asymptote, 95

Octave, 9

Odd functions, 699

Odd positive integer, 495

Oil spill radius, 273

Omega function, 362, 544

One-sided limits, 60–64, 90–93

One-to-one function, 441

Open interval, 3

Optimization, 260–268

Ordered pair, 6

Orientation, 709

Origin of axes, 6

Orthogonality condition, 686

Oscillations, biological, 755

Outside function, 168–169

P
Paleontology, 557–558

Pappus’ Theorem, 388

Parabola, 756–759

closest point to, 263

equation of, 756–757, 758

finding intersection of line and, 19–20

opening downward, 25

opening to the left, 758

opening to the right, 758

opening upward, 25

reflective property of, 758

in Simpson’s Rule, 352

of throwing height, 201–202

Parallel lines, 13

Parameter, 708

Parameterization, 711

Parametric equations, 520, 707

arc length, 726–732

area, 722–723

calculus of, 718

of circles, 710–711

of conic sections, 769–770

of ellipses, 710–711

of flight path, 713

involving sines and cosines, 709–710

of line segment, 711

for midpoint, 732

plane curves and, 708–713

speed, 721

surface area, 726–732

of surface area, 731

of tangent lines, 719–720

from x-y equation, 711–712

Partial fraction decomposition, 504–505

Partial fractions, 504–509

Partial sum, 618, 620–621, 623

estimating error in, 632

Pascal, Blaise, 547

Pascal’s Principle, 423

Pennings, Timothy J., 272

Percentage, computing, 463–464



I-10 Index

Perfect asynchrony, 361

Perfect synchrony, 361

Period

altering, 35–36

other than 2π , 693–697

Periodic function, 32, 687

Periodic phenomena, 686

Perpendicular lines, 13

Phase plane, 593

Phase portrait, 554, 593

Physics and Technology of Tennis, The (Brody,

Cross, Lindsey), 145

Physics of Baseball, The (Adair), 420

Physics of Hockey, The (Haché), 471

Piano tuning, 9, 40, 700

Picard iteration, 290

Piecewise continuous function, 322

Piecewise-defined function, 74–75

Pivot point, 420–421

Pixels, 24

Planck’s law, 686

Plane curves, 708–713

arc length of, 727–728

Planetary motion, 725

Kepler’s second law of, 770–771

Pneumotachograph, 358

Poincaré conjecture, 74

Point-masses, 421

Point(s)

bifurcation, of function, 121, 202

colinear, 10, 11

derivative at, 137

fixed, 121

attracting, 202

repelling, 202

inflection, 26, 239–240

Point-slope equation, 12

Polar coordinates, 1, 707, 734–744

area in, 750–752

conic sections in, 766–771

converting

to rectangular coordinates from, 735,

737–738

from rectangular coordinates to,

735–736, 736–737

curves, 752, 754

graphs

area between, 751–752

cardioid, 740–741

four-leaf rose, 743–744

horizontal tangent lines, 748–749

limaçon, 740, 741–743

Pole vaulting, 428

Pollution

rate of, 198–199

Polster, Buckard, 414

Polynomial function, 2, 15–16

graphs of, 16, 247–249

limit of, 69, 70

Polynomials

behavior, at infinity, 93

continuity of, 80

cubic, 234

double root of, 201

finding zeros of, 18–19

first term of, 259

fourth-degree, 234

Legendre, 686

local extrema of, 221

nth root, limit of, 70

quintic, 16

Rolle’s Theorem for, 190–191

shapes of, 25–26

Taylor, 182, 666–667, 671–672,

677–678

Population doomsday model, 578

Population estimation

transforming data used in, 10

using line, 14

Population growth

of bacteria, 558–560

carrying capacity, 573

with critical threshold, 581–582

explosion, 616

inflection point, 244

logistic equation and, 284–285

maximum rate of, 284–285

rates of change in, 132

Position vector, 297

Positive integer, 495

Potassium-argon dating, 568–569

Potential function, 338

Power Rule

Bishop Berkeley on, 155

derivatives, 148–151, 294–295

Power series, 656–662

binomial series, 683–684

Fourier series as alternative to, 698

Predator-prey system, 345, 591–593

Present value, 568, 627

Price, relative change in, 281

Prime Obsession (Derbyshire), 440

Probability, 545–551

in coin toss, 545

conditional, 544, 556

histogram, 545

mean, 549–551

median, 549–501

of “memoryless” failures, 483

normal distribution, 549

Probability density function, 547–551

Producer surplus, 372

Production costs, 280–281

Product Rule, 158–160, 162–163, 167

Products, infinite, 628

Profit, 286

Projectile motion, 404–411

Projectile path, 709

Proof by contradiction, 9

P-series, 631, 654

Pupil dilation, 53, 96

Pyramids, 374

Pythagorean comma, 9

Pythagorem Theorem, 36, 174, 418

Q
Quadratic approximation, 246

Quadratic function, 18. See also Parabola

Quadratic inequality, 5

Quadratic polynomial, 15

finding limit of, 103

graphing, 25–26

Quartic polynomial, 15

Quintic polynomial, 16

Quotient

limit of, 94

of two continuous functions, 80

R
Radar gun, 274–275, 447

Radians, angles measured in, 32–33

Radiation, 686

Radical function, 169

Radioactive decay, 560–561

Radiocarbon dating, 557–558

Radius

of convergence, 658

of Bessel function, 681–682

of solids, 384

Ramanujan, Srinivasa, 652

Range of function, 14

Rate of change

average, 132

in economics, 275, 279–285

instantaneous, 132

logistic equation and, 285

maximum, 275

of revenue, 163

scientific applications of, 283–285

of volume, 334

with respect to pressure, 186



Index I-11

Rates, related, 273–276

Ratio, Golden, 704

Rational exponent, 188

Rational functions, 2, 16, 17

continuity of, 79, 81

critical numbers of, 222–223

derivation of, 138

graphing, 27–28, 242–243, 249

tangent line to, 127–128

integration of, 504–509

limit of, 69

indeterminate form in, 94

vertical asymptote of, 27–28

Rational number, 2

computer representation of, 113

Ratio Test, 650–653, 654, 657, 658

Rayleigh-Jeans law, 686

Reactants, 283, 286

Reaction rates, 282–283

Real line, 2

Real numbers, 2–6

cartesian plane, 6–8

computer representation of, 113–117

sequence of, 604–615

Real number system, 2

Rectangles

approximating area with, 301, 309

constructing, of maximum area, 260–261

Rectangular coordinates, 734

converting

to polar coordinates from, 735–736,

736–737

from polar coordinates to, 735,

737–738

Reduction formula, 492, 512–515

Redundancy, 118

Reflective property

of ellipse, 761–762

of hyperbolas, 764

of parabola, 758–759

Regular partition, 308–309

Related rates, 273–276

Relative extremum, 219

Relative frequency, 545

Relative maxima, 219

Relative minima, 219

Relativity, theory of, 98

Reliability function, 544

Remainder, 631

Remainder term, 667

Removable discontinuity, 79

Repelling fixed point, 202

Resonance, 700

Restitution, coefficient of, 617

Revenue

elasticity of demand and, 281

rate of change in, 163

Revolution

solid of, 378–385, 394

surface of, 731

Riemann, Bernhard, 311

Riemann’s condition, 329

Riemann sum

for area, 311–312

for average value, 324

for center of mass, 421

for definite integrals, 317–319

with different evaluation points,

312–313

for first moment, 421

irregular partitions, 315

Riemann-zeta function, 639

Ring of Truth, The (Morrison), 40–41

Robot vision, 279, 772

Rolle, Michel, 190

Rolle’s Theorem, 190

Root, of equation, 208

Root-mean-square, 40

Root Test, 653, 654

Rope, computing length of, 399

Rose

four-leaf, 743–744

three-leaf, 747–749, 750

Rossmo, Kim, 445

Rotation rate

of golf ball, 23

of knuckleball, 64

“Rule of 72,” 568

Rule of Three, 74

S
Saint Louis Gateway Arch, 479

Satellite dishes, 758–759

Scale, comparison on, 45–47

Scatterplot, 6

Science of Soccer, The (Wesson), 182

Scrambler, 718, 719, 721–722

Secant function, 34–35

hyperbolic, 472

integrand with even power of, 498

inverse, 461

Secant line, 54, 124–128

Second Derivative Test, 237–243, 247

Second difference, 290

Second-order chemical reaction, 577

Second-order differential equations, 596

Sensitive dependence on initial conditions,

118–119

Separable differential equations, 569–572

Sequence

alternating signs, 610

bounded, 612–613

convergent, 605–606

decreasing, 611

divergent, 605, 607

Fibonacci, 616

hailstone, 616

increasing, 611–612

limit of, 606–607

l’Hôpital’s Rule, 608

monotonic, 611

of real numbers, 604–615

Squeeze Theorem, 609

terms of, 604–606

Series

alternating, 639–646

divergent, 643–644

estimating sum of, 644–645

alternating harmonic, 641

binomial, 683–684

coefficients of, 657

Comparison Test for, 628, 633–637

conditionally convergent, 648–649

convergent, 619–624, 660

comparison test for, 634

divergent, 619–624

comparison test for, 634

Fourier, 494

music synthesizers and, 697–698

geometric, 621–624, 622–623, 654

harmonic, 624–625

infinite, 307

Integral Test for, 628–633

kth-term test for, 624

Limit Comparison Test for, 635–637

Maclaurin, 630, 665

p-, 631

power, 656–662

summary of convergence tests for, 653–654

Taylor, 530, 664–675, 677–683

Sets

Cantor, 628

Mandelbrot, 717

Shockwave lithotripsy, 762

Shortcuts, 154–155

Sigma notation, 300–305

Sigmoid function, 457

Signed area, 319–320

Signed distance, 129

Similar triangles, 11

Simmons, George, 580

Simpson, Thomas, 351

Simpson’s Rule, 351–353



I-12 Index

Sine functions, 32

altering amplitude and period, 35–36

approximation of, using Taylor

polynomials, 677–678

average of, 324

combinations of

cosines, 37

of different periods, 38

writing as single sine term, 38

common values of, 34

derivation of, 175

half-angle, 497

integrals involving root function of,

341–342

integrand

with even power of, 497

with odd power of, 496

inverse, 458–459

limit of, 71

linear approximation of, 206–207

parametric equations involving,

709–710

Sine series, Fourier, 698

Sinusoidal function, 36

Skateboarding speed, 415

Skepticism, 112

Skiing, 729–730

Skydivers

acceleration of, 154

terminal velocity of, 315–316

Slant asymptotes, 95

Slant height, 399

Slingshot, 124, 190

Slope, 10–11

of curve, 54–57

determining colinear points by, 11

by implicit differentiation, 184–185

of secant lines, 124–126

of tangent line, 126–128

to curve, 124–128, 144

and derivation, 139

to instantaneous velocity, 131–132

to path of scrambler, 719

to three-leaf rose, 747–749

Slope field, 580

Slope-intercept equation, 13

Soda can design, 265

Solar and Heliospheric Observatory (SOHO),

203–204

Solid of revolution, 378–385, 394

surface area of, 402

Solution, 569

equilibrium, 573, 582, 586

family of, 571

general, 571

implicit, 572

using direction field, 581

Sonic boom, 707

Sound barrier, 707

Sound waves, 36, 707

Space shuttle, 292

Space station, 431

Special functions, 681

Speed

as absolute value of velocity, 131

acceleration, 154

average, of car, 129–132, 198

of ball, 64

closing, 275–276

of humans, 123–124, 136

instantaneous, 130–132

of light, 98

parametric equations, 721

of skateboarder, 415

Speed limit, 65

Speedometer, 133

Spiral

Archimedian, 739

Cornu, 733

Nautilus shell, 1

Sports analysis, 163–164

Spring constant, 417

Spring-mass system, 98, 172

analysis of, 178–179

Square root function, 17

derivative of, 139

Square wave function, 689, 694–695

Squeeze Theorem, 72–74, 173, 609

Stable equilibrium, 582, 594

Standard deviation, 553

Statistics, for exponential distribution,

483–484

Step size, 583

Streptococcus A, 559

Stretched spring, 417. See also Spring-mass

system

Stretching of tendons, 363

Substitution

in definite integrals, 342–343

before integral table, 515

integration by, 338–343, 484, 509–510

before reduction formula, 514

trigonometric, 499–502

Subtraction, loss-of-significance error in,

114–115

Successive approximation, 209

Sum

of alternating series, 644–645

collapsing, 621

of constants, 302

derivative of, 152

at equally spaced x’s, 304–305

expanding, 303–304

of first n positive integers, 302

of function values, 304

indefinite integral of, 296

involving odd integers, 302

limit of, 68

loss-of-significance error involving,

116–117

partial, 618, 620–621, 623

estimating error in, 632

Riemann (See Riemann sum)

of squares of first n positive integers, 302

telescoping, 512, 621

Summation notation, 300–305

Sun, study of, 203–204

Surely You’re Joking Mr. Feynman (Feynman),

158

Surface

of revolution, 731

Surface area, 399–402. See also Area

minimizing, 265–266

by parametric equations, 731

in parametric equations, 726–732

of solid of revolution, 402

Surplus, consumer, 337

“Sweet spot”

of baseball bat, 423

Symmetric difference quotient, 148

Synchrony, perfect, 361

Synthesizers, music, 697–698

T
Tangent functions, 34–35

hyperbolic, 472

inverse, 460–461

Tangent lines

to circle, 126

to curve, 124–128, 144

by Euler’s method, 583

for function defined as integral, 335

horizontal, 720, 748–749

to horizontal line, 148

by implicit differentiation, 185

to line y = x, 149

Newton’s Method, 158, 212

slope of, 126–128, 213

in computing velocity, 128–133

and derivation, 139

to path of scrambler, 719

positive and negative, 229

to three-leaf rose, 747–749

vertical, 243, 720



Index I-13

Tautochrone, 520, 730, 734

Taxes, 83–84

Taylor, Brook, 488

Taylor polynomials, 182, 666–667

estimating error in, 671–672

Taylor series, 530, 664–675, 677–683

Taylor’s Theorem, 488, 667, 674–675

Telescoping sum, 512, 621

Temperature

ambient, 561

Newton’s law of cooling, 562

Temperature variation

effect on chirping rate of cricket, 23

effect on light, 136

effect on sex of alligators, 88

Temporal binding, 86

Tennis

energy lost by ball, 369

serve, 145–146, 409, 481

Term-by-term differentiation, 660

Terminal velocity, 315–316, 416,

479, 578

Terms

general, 604

number needed for given accuracy,

632–633, 645

remainder, 667

of sequence, 604–606

in Taylor series, 672–673

Theorem

Alternating Series Test, 641–643

Binomial, 149–150

binomial series, 684

Cauchy Mean Value, 199

Chain Rule, 167

Comparison test

of improper integrals, 540

of series, 633

ethics of, 197

Extreme Value, 223, 225

Factor, 19

Fermat’s, 220

Fourier Convergence, 696

Fundamental, 195

geometric series, 621

Intermediate value, 84–85

lemmas, 173

Mean Value, 193

Pappus’, 388

Power Rule, 162

Product Rule, 159

Pythagorem, 36, 174

Quotient Rule, 160

Ration Test, 650

Rolle’s, 190

Squeeze, 72–74, 173, 609

Taylor’s, 488, 667, 674–675

Three-body problem, 203, 216

“Three Fermat Trails to Elliptic Curves”

(Brown), 189

Three-leaf rose, 747–749

area of one leaf of, 750

Thrust-time curve, 426

Timbre, 698

ton-MPG, 146

Torus, 388

Total area, 319

Tower, height of, 39

Transcendental functions, 206

Translation

horizontal, 44, 47

vertical, 43–44, 47

Trapezoidal Rule, 313, 350–351

Triangle inequality, 5, 109

Triangles

similar, 11

Triangular wave, 691–693

Trigonometric functions, 32–39

on calculators, 34

definite integral involving, 343

derivatives of, 172–179, 176

graphs of, 34–35

integrals

involving inverse, 467–469

involving powers of, 341, 495–499

inverse, 458–462, 464–469

limit to, 71

limit to, 92, 104–105

loss-of-significance error involving,

115–116

Trigonometric substitution, 499–502

Trochoid, 725

Trojan asteroids, 204, 216

U
Universal law of gravitation, 770

Unstable equilibrium, 582, 594

Useful life phase, 483

V
Value

future, 568

present, 568, 627

van der Waals’ equation, 166, 183, 186

Variables

choice of, 339

dummy, 302

independent, y as, 380

of integration, 294

using disk method, 380

VCRs, 136

Vectors

Velocity

acceleration, 154, 297

angular, 135, 336

average, of car, 129–132, 198

escape, 98

estimating numerically, 143

evaluating limit describing, 75

horizontal component of, 408, 721

impact, 405–406

impulse-momentum equation of,

419, 420

initial, 407–408

instantaneous, 130–132

limiting, of falling object, 454–455

nonconstant, 301

of scrambler, 721–722

of signed area, 320

tangent lines in computing,

128–133

terminal, 315–316, 416, 479,

578

vertical component of, 408, 721

Verhulst, Pierre, 573

Verhulst equation, 573

Vertex, 756

Vertical asymptote, 27, 243, 247

graphing, 251–252

in trigonometric functions, 34–35

Vertical component of velocity, 721

Vertical line, 10

Vertical line test, 14–15

Vertical motion, 406–407

Vertical tangent line, 720

Vertical tangents, 247

local extrema and, 222

Vertical translation, 43–44, 47

Vertices of ellipse, 760

Vièta’s formula, 705

Vision, robot, 279

Visual adjustment mechanism, 53

Volume

approximating, 393–394

of circle, 463–464

from cross-sectional areas, 376

from cross-sectional data, 376–377

of cylinders, 227–228, 374

partially filled, 753

by cylindrical shells, 388–394

by disks, 378–380

of dome, 377–378



I-14 Index

Volume—Cont.

maximum, 262

rate of change, 334

with respect to pressure, 186

by shells and washers, 391–392

by slicing, 374–378

of solid of revolution, 394

of tumor, 377

by washers, 380–385

W
Wallis’ product, 504

Washer method, 380–385

Water, boiling point of, 22

Water tank

rate of change in volume, 135

work required to pump out,

418–419

Watts, Robert G., 64, 410

Wavelets, 689

Waves, 32

harmonic content of, 700

pulse, 700

sawtooth, 700

square, 694–695, 700

triangular, 691–693

Weierstrass, Karl, 84

Weierstrass’ function, 147

Weierstrass M-test, 664

Weight, vertical displacement of, 172

Weightlifter, 417–418

Wesson, John, 182

Wien’s law, 686

Wiles, Andrew, 220, 221

Williams, Venus, 409

Wine casks, 227–228, 272

Work

pumping water out of tank,

418–419

quantifying, 416–417

stretched spring, 417

weightlifter, 417–418

Y
Yoccoz, Jean-Christophe, 517

Your Vital Statistics (Brandreth), 549

Z
Zero, of function, 208

Zero of multiplicity, 77, 530

Zeros

approximation of, 19

basin of attraction, 215

of Bessel functions, 682

finding, 17–18, 29, 193

multiplicity of, 216

Zoom in (out), 19, 25, 132
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