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The fourteenth edition of Calculus for Business, Economics, Life Sciences, and Social 
Sciences is designed for a one- or two-term course in Calculus for students who have 
had one to two years of high school algebra or the equivalent. The book’s overall 
approach, refined by the authors’ experience with large sections of undergraduates, 
addresses the challenges of teaching and learning when prerequisite knowledge varies 
greatly from student to student. The authors had three main goals when writing this 
text:

1. To write a text that students can easily comprehend

2. To make connections between what students are learning and how they may 
 apply that knowledge

3. To give flexibility to instructors to tailor a course to the needs of their students.

Many elements play a role in determining a book’s effectiveness for students. Not 
only is it critical that the text be accurate and readable, but also, in order for a book 
to be effective, aspects such as the page design, the interactive nature of the presenta-
tion, and the ability to support and challenge all students have an incredible impact 
on how easily students comprehend the material. Here are some of the ways this text 
addresses the needs of students at all levels:

■■ Page layout is clean and free of potentially distracting elements.
■■ Matched Problems that accompany each of the completely worked examples 

help students gain solid knowledge of the basic topics and assess their own level 
of understanding before moving on.

■■ Review material (Appendix A and Chapter 1) can be used judiciously to help 
remedy gaps in prerequisite knowledge.

■■ A Diagnostic Prerequisite Test prior to Chapter 1 helps students assess their 
skills, while the Basic Algebra Review in Appendix A provides students with the 
content they need to remediate those skills.

■■ Explore and Discuss problems lead the discussion into new concepts or build 
upon a current topic. They help students of all levels gain better insight into the 
mathematical concepts through thought-provoking questions that are effective in 
both small and large classroom settings.

■■ Instructors are able to easily craft homework assignments that best meet the 
needs of their students by taking advantage of the variety of types and dif-
ficulty levels of the exercises. Exercise sets at the end of each section consist 
of a Skills Warm-up (four to eight problems that review prerequisite knowl-
edge specific to that section) followed by problems divided into categories 
A, B, and C by level of difficulty, with level-C exercises being the most 
challenging.

■■ The MyLab Math course for this text is designed to help students help them-
selves and provide instructors with actionable information about their progress. 
The immediate feedback students receive when doing homework and practice 
in MyLab Math is invaluable, and the easily accessible eText enhances student 
learning in a way that the printed page sometimes cannot.

■■ Most important, all students get substantial experience in modeling and 
solving real-world problems through application examples and exercises 
chosen from business and economics, life sciences, and social sciences. 
Great care has been taken to write a book that is mathematically correct, 
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 PREFACE 7

with its emphasis on computational skills, ideas, and problem solving rather 
than mathematical theory.

■■ Finally, the choice and independence of topics make the text readily adaptable 
to a variety of courses.

New to This Edition
Fundamental to a book’s effectiveness is classroom use and feedback. Now in its 
fourteenth edition, this text has had the benefit of a substantial amount of both. 
Improvements in this edition evolved out of the generous response from a large num-
ber of users of the last and previous editions as well as survey results from instruc-
tors. Additionally, we made the following improvements in this edition:

■■ Redesigned the text in full color to help students better use it and to help moti-
vate students as they put in the hard work to learn the mathematics (because let’s 
face it—a more modern looking book has more appeal).

■■ Updated graphing calculator screens to TI-84 Plus CE (color) format.
■■ Added Reminder features in the side margin to either remind students of a con-

cept that is needed at that point in the book or direct the student back to the sec-
tion in which it was covered earlier.

x

y

z

Slope of tangent
line 5 f x(a, b)

Slope of tangent
line 5 f y(a, b)

Curve
z 5 f (a, y)

Curve
z 5 f (x, b)

(a, b, 0)

Surface
z 5 f (x, y)

a
b

■■ Revised all 3-dimensional figures in the text using the latest soft-
ware. The difference in most cases is stunning, as can be seen in 
the sample figure here. We took full advantage of these updates 
to make the figures more effective pedagogically.

■■ Updated data in examples and exercises. Many modern and 
 student-centered applications have been added to help students 
see the relevance of the content.

■■ In Section 4.5, rewrote Theorem 3 on using the second-derivative 
test to find absolute extrema, making it applicable to more general 
invervals.

■■ In Section 6.3, rewrote the material on the future value of a con-
tinuous income stream to provide a more intuitive and less tech-
nical treatment.

■■ Analyzed aggregated student performance data and assignment frequency data 
from MyLab Math for the previous edition of this text. The results of this analy-
sis helped improve the quality and quantity of exercises that matter the most to 
instructors and students.

■■ Added 625 new exercises throughout the text. 

New to MyLab Math
Many improvements have been made to the overall functionality of MyLab Math 
since the previous edition. However, beyond that, we have also increased and 
 improved the content specific to this text.

■■ Instructors now have more exercises than ever to choose from in assigning home-
work. Most new questions are application-oriented. There are approximately 4,430 
assignable exercises in MyLab Math for this text. New exercise types include:

■● Additional Conceptual Questions provide support for assessing concepts 
and vocabulary. Many of these questions are application-oriented.

■● Setup & Solve exercises require students to show how they set up a problem 
as well as the solution, better mirroring what is required of students on tests.

■■ The Guide to Video-Based Assignments shows which MyLab Math exercises 
can be assigned for each video. (All videos are also assignable.) This resource is 
handy for online or flipped classes.
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8 PREFACE

■■ The Note-Taking Guide provides support for students as they take notes in class. 
The Guide includes definitions, theorems, and statements of examples but has blank 
space for students to write solutions to examples and sample problems. The Note-
Taking Guide corresponds to the Lecture PowerPoints that accompany the text. The 
Guide can be downloaded in PDF or Word format from within MyLab Math.

■■ A full suite of Interactive Figures has been added to support teaching and 
learning. The figures illustrate key concepts and allow manipulation. They have 
been designed to be used in lecture as well as by students independently.

■■ Enhanced Sample Assignments include just-in-time prerequisite review, help 
keep skills fresh with spaced practice of key concepts, and provide opportunities 
to work exercises without learning aids so students check their understanding. 
They are assignable and editable within MyLab Math.

■■ Study Skills Modules help students with the life skills that can make the differ-
ence between passing and failing.

■■ MathTalk videos highlight applications of the content of the course to business. 
The videos are supported by assignable exercises.

■■ The Graphing Calculator Manual and Excel Spreadsheet Manual, both spe-
cific to this course, have been updated to support the TI-84 Plus CE (color edi-
tion) and Excel 2016, respectively. Both manuals also contain additional topics 
to support the course. These manuals are within the Tools for Success tab.

■■ MyLab Math contains a downloadable Instructor’s Answers document—
with all answers in one place. (This augments the downloadable Instructor’s 
Solutions Manual, which contains solutions.)

Trusted Features
■■ Emphasis and Style—As was stated earlier, this text is written for student 

comprehension. To that end, the focus has been on making the book both math-
ematically correct and accessible to students. Most derivations and proofs are 
omitted, except where their inclusion adds significant insight into a particular 
concept as the emphasis is on computational skills, ideas, and problem solving 
rather than mathematical theory. General concepts and results are typically pre-
sented only after particular cases have been discussed.

■■ Design—One of the hallmark features of this text is the clean, straightforward 
design of its pages. Navigation is made simple with an obvious hierarchy of 
key topics and a judicious use of call-outs and pedagogical features. A func-
tional use of color improves the clarity of many illustrations, graphs, and ex-
planations, and guides students through critical steps (see pages 55 and 58).

■■ Examples—More than 380 completely worked examples are used to introduce 
concepts and to demonstrate problem-solving techniques. Many examples have 
multiple parts, significantly increasing the total number of worked examples. 
The examples are annotated using blue text to the right of each step, and the 
problem-solving steps are clearly identified. To give students extra help in work-
ing through examples, dashed boxes are used to enclose steps that are usually 
performed mentally and rarely mentioned in other books (see Example 4 on 
page 27). Though some students may not need these additional steps, many will 
appreciate the fact that the authors do not assume too much in the way of prior 
knowledge.

■■ Matched Problems—Each example is followed by a similar Matched Problem 
for the student to work while reading the material. This actively involves the 
student in the learning process. The answers to these matched problems are 
 included at the end of each section for easy reference.
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■■ Explore and Discuss—Most every section contains Explore and Discuss prob-
lems at appropriate places to encourage students to think about a relationship 
or process before a result is stated or to investigate additional consequences of 
a development in the text (see pages 39 and 53). This serves to foster critical 
thinking and communication skills. The Explore and Discuss material can be 
used for in-class discussions or out-of-class group activities and is effective in 
both small and large class settings.

■■ Exercise Sets—The book contains over 5,400 carefully selected and graded 
 exercises. Many problems have multiple parts, significantly increasing the total 
number of exercises. Writing exercises, indicated by the icon , provide stu-
dents with an opportunity to express their understanding of the topic in writing. 
Answers to all odd-numbered problems are in the back of the book. Exercises 
are paired so that consecutive odd- and even-numbered exercises are of the same 
type and difficulty level. Exercise sets are structured to facilitate crafting just the 
right assignment for students:

■● Skills Warm-up exercises, indicated by W , review key prerequisite knowledge.
■● Graded exercises: Levels A  (routine, easy mechanics), B  (more difficult 

mechanics), and C  (difficult mechanics and some theory) make it easy for 
instructors to create assignments that are appropriate for their classes.

■● Applications conclude almost every exercise set. These exercises are  labeled 
with the type of application to make it easy for instructors to select the right 
exercises for their audience.

■■ Applications—A major objective of this book is to give the student sub-
stantial experience in modeling and solving real-world problems. Enough 
applications are included to convince even the most skeptical student that 
mathematics is  really useful (see the Index of Applications at the back of the 
book). Almost every exercise set contains application problems, including ap-
plications from business and economics, life sciences, and social sciences. 
An instructor with students from all three disciplines can let them choose 
applications from their own field of interest; if most students are from one 
of the three areas, then special emphasis can be placed there. Most of the 
applications are simplified versions of actual real-world problems inspired 
by professional journals and books. No specialized experience is required to 
solve any of the application problems.

■■ Graphing Calculator and Spreadsheets—Although access to a graphing 
calculator or spreadsheets is not assumed, it is likely that many students will 
want to make use of this technology. To assist these students, optional graphing 
calculator and spreadsheet activities are included in appropriate places. These 
include brief discussions in the text, examples or portions of examples solved 
on a graphing calculator or spreadsheet, and exercises for the students to solve. 
For example, linear regression is introduced in Section 1.3, and regression tech-
niques on a graphing calculator are used at appropriate points to illustrate math-
ematical modeling with real data. All the optional graphing calculator material 
is clearly identified with the icon  and can be omitted without loss of con-
tinuity, if desired. Graphing calculator screens displayed in the text are actual 
output from the TI-84 Plus CE (color edition) graphing calculator.

Additional Pedagogical Features
The following features, while helpful to any student, are particularly helpful to stu-
dents enrolled in a large classroom setting where access to the instructor is more 
challenging or just less frequent. These features provide much-needed guidance for 
students as they tackle difficult concepts.
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■■ Call-out boxes highlight important definitions, results, and step-by-step pro-
cesses (see pages 74, 80, and 81).

■■ Caution statements appear throughout the text where student errors often occur 
(see pages 29 and 99).

■■ Conceptual Insights, appearing in nearly every section, often make explicit 
connections to previous knowledge but sometimes encourage students to think 
beyond the particular skill they are working on and attain a more enlightened 
view of the concepts at hand (see pages 37 and 51).

■■ Diagnostic Prerequisite Test, located on pages 17 and 18, provides students 
with a tool to assess their prerequisite skills prior to taking the course. The Basic 
Algebra Review, in Appendix A, provides students with seven sections of con-
tent to help them remediate in specific areas of need. Answers to the Diagnostic 
Prerequisite Test are at the back of the book and reference specific sections in 
the Basic Algebra Review or Chapter 1 for students to use for remediation.

■■ Chapter Reviews—Often it is during the preparation for a chapter exam that 
concepts gel for students, making the chapter review material particularly im-
portant. The chapter review sections in this text include a comprehensive sum-
mary of important terms, symbols, and concepts, keyed to completely worked 
examples, followed by a comprehensive set of Review Exercises. Answers to 
Review Exercises are included at the back of the book; each answer contains a 
reference to the section in which that type of problem is discussed so students 
can remediate any deficiencies in their skills on their own.

Content
The text begins with the development of a library of elementary functions in Chapter 
1, including their properties and applications. Many students will be familiar with 
most, if not all, of the material in this introductory chapter. Depending on students’ 
preparation and the course syllabus, an instructor has several options for using the 
first chapter, including the following:

■■ Skip Chapter 1 and refer to it only as necessary later in the course.
■■ Cover Section 1.3 quickly in the first week of the course, emphasizing price–

demand equations, price–supply equations, and linear regression, but skip the 
rest of Chapter 1.

■■ Cover Chapter 1 systematically before moving on to other chapters.

The calculus material consists of differential calculus (Chapters 2–4), integral calculus  
(Chapters 5 and 6), multivariable calculus (Chapter 7), and additional topics and 
applica tions (Chapters 9–11). In general, Chapters 2–5 must be covered in  sequence; 
however, certain sections can be omitted or given brief treatments, as pointed out in 
the discussion that follows.

Chapter 2 introduces the derivative. The first three sections cover limits (includ-
ing  infinite limits and limits at infinity), continuity, and the limit properties that are 
 essential to understanding the definition of the derivative in Section 2.4. The remain-
ing  sections cover basic rules of differentiation, differentials, and applications of de-
rivatives in business and economics. The interplay between graphical, numerical, and 
algebraic concepts is emphasized here and throughout the text.

In Chapter 3 the derivatives of exponential and logarithmic functions are obtained 
before the product rule, quotient rule, and chain rule are introduced. Implicit differen-
tiation is introduced in Section 3.6 and applied to related rates problems in Section 3.7. 
Elasticity of demand is introduced in Section 3.8. The topics in these last three sections 
of Chapter 3 are not referred to elsewhere in the text and can be omitted.
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Chapter 4 focuses on graphing and optimization. The first two sections cover first-
derivative and second-derivative graph properties. L’Hôpital’s rule is discussed  
in Section 4.3. A graphing strategy is introduced in Section 4.2 and developed in 
Section 4.4. Optimization is covered in Sections 4.5 and 4.6, including examples and 
problems involving endpoint solutions.

Chapter 5 introduces integration. The first two sections cover antidifferentiation tech-
niques essential to the remainder of the text. Section 5.3 discusses some applications 
involving differential equations that can be omitted. The definite integral is defined in 
terms of Riemann sums in Section 5.4 and the Fundamental Theorem of Calculus is 
discussed in Section 5.5. As before, the interplay between graphical,  numerical, and 
algebraic properties is emphasized. Section 5.6 deals with the area concepts in rela-
tion to the area between two curves and related applications.

Chapter 6 covers additional integration topics and is organized to provide maximum 
flexibility for the instructor. Sections 6.1 and 6.2 deal with additional methods of in-
tegration, including integration by parts, the trapezoidal rule, and Simpson’s rule, and 
Section 6.3 covers three more applications of integration. Any or all of the topics in 
Chapter 6 can be omitted.

Chapter 7 deals with multivariable calculus. The first five sections can be covered 
any time after Section 4.6 has been completed. Sections 7.6 and 7.7 require the inte-
gration concepts discussed in Chapter 5.

Chapter 8 extends the treatment of differential equations in Section 5.3. Separation 
of variables is introduced in Section 8.2 to solve differential equations that describe 
unlimited growth, exponential decay, limited growth, and logistic growth. Integrating 
factors are used in Section 8.3 to solve first-order linear differential equations.

Chapter 9 explores the approximation of non-polynomial functions by Taylor 
polynomials and Taylor series. The concepts of interval of convergence and radius 
of convergence are introduced in Section 9.2. Differentiation and integration of 
Taylor series are studied in Section 9.3, and consequences of Taylor’s formula for the 
remainder are investigated in Section 9.4.

Chapter 10 presents applications of calculus to probability, expanding the brief 
consideration of probability in Section 6.3. Improper integrals are defined and 
evaluated in Section 10.1 and are used in Section 10.2 to calculate probabilities that are 
associated with continuous random variables. The integral is applied in Section 10.3  
to define the mean, median, variance, and standard deviation of a continuous random 
variable. Properties and applications of uniform, exponential, and normal probability 
distributions are studied in Section 10.4.

Appendix A contains a concise review of basic algebra that may be covered as 
part of the course or referenced as needed. Appendix B (available online at www. 
pearsonglobaleditions.com) contains additional topics that can be covered in conjunc-
tion with certain sections in the text, if desired.
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 DIAGNOSTIC PREREQUISITE TEST 17

Work all of the problems in this self-test without using a calcula-
tor. Then check your work by consulting the answers in the back 
of the book. Where weaknesses show up, use the reference that 
follows each answer to find the section in the text that provides the 
necessary review.

1. Replace each question mark with an appropriate expres-
sion that will illustrate the use of the indicated real number 
property:

(A) Commutative 1 # 2: x1y + z2 = ?

(B) Associative 1+ 2: 2 + 1x + y2 = ?

(C) Distributive: 12 + 32x = ?

Problems 2–6 refer to the following polynomials:

(A) 3x - 4 (B) x + 2

(C) 2 - 3x2 (D) x3 + 8

2. Add all four.

3. Subtract the sum of (A) and (C) from the sum of (B)  
and (D).

4. Multiply (C) and (D).

5. What is the degree of each polynomial?

6. What is the leading coefficient of each polynomial?

In Problems 7 and 8, perform the indicated operations and 
 simplify.

7. 5x2 - 3x34 - 31x - 224
8. 12x + y213x - 4y2

In Problems 9 and 10, factor completely.

9. x2 + 7x + 10

10. x3 - 2x2 - 15x

11. Write 0.35 as a fraction reduced to lowest terms.

12. Write 
7
8

 in decimal form.

13. Write in scientific notation:

(A) 4,065,000,000,000 (B) 0.0073

14. Write in standard decimal form:

(A) 2.55 * 108 (B) 4.06 * 10-4

15. Indicate true (T) or false (F):

(A) A natural number is a rational number.

(B) A number with a repeating decimal expansion is an 
irrational number.

16. Give an example of an integer that is not a natural number.

Diagnostic Prerequisite Test
In Problems 17–24, simplify and write answers using positive expo-
nents only. All variables represent positive real numbers.

17. 61xy32 5 18. 
9u8

v

6

3u4
v

8

19. 12 * 105213 * 10-32 20. 1x-3y22 -2

21. u5>3u2>3 22. 19a4b-22 1>2

23. 
50

32 +
3-2

2-2 24. 1x1/2 + y1/22 2

In Problems 25–30, perform the indicated operation and write the 
answer as a simple fraction reduced to lowest terms. All variables 
represent positive real numbers.

25. 
a
b

+
b
a

26. 
a
bc

-
c

ab

27. 
x2

y
# y6

x3 28. 
x

y3 ,
x2

y

29. 

1
7 + h

-
1
7

h
30. 

x-1 + y-1

x-2 - y-2

31. Each statement illustrates the use of one of the following real 
number properties or definitions. Indicate which one.

Commutative 1+ , # 2 Associative 1+ , # 2 Distributive

Identity 1+ , # 2 Inverse 1+ , # 2 Subtraction

Division Negatives Zero

(A) 1-72 - 1-52 = 1-72 + 3- 1-524
(B) 5u + 13v + 22 = 13v + 22 + 5u

(C) 15m - 2212m + 32 = 15m - 222m + 15m - 223

(D) 9 # 14y2 = 19 # 42y

(E) 
u

- 1v - w2  =
u

w - v

(F) 1x - y2 + 0 = 1x - y2
32. Round to the nearest integer:

(A) 
17
3

(B) -  
5
19

33. Multiplying a number x by 4 gives the same result as sub-
tracting 4 from x. Express as an equation, and solve for x.

34. Find the slope of the line that contains the points 13, -52 and 
1-4, 102.

35. Find the x and y coordinates of the point at which the graph 
of y = 7x - 4 intersects the x axis.

36. Find the x and y coordinates of the point at which the graph 
of y = 7x - 4 intersects the y axis.
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18 DIAGNOSTIC PREREQUISITE TEST

In Problems 37 and 38, factor completely.

37. x2 - 3xy - 10y2

38. 6x2 - 17xy + 5y2

In Problems 39–42, write in the form axp + byq where a, b, p, and 
q are rational numbers.

39. 
3
x

+ 41y 40. 
8

x2 -
5

y4

41. 
2

5x3>4 -
7

6y2>3 42. 
1

31x
+

913 y

In Problems 43 and 44, write in the form a + b1c where a, b, 
and c are rational numbers.

43. 
1

4 - 12
44. 

5 - 13

5 + 13

In Problems 45–50, solve for x.

45. x2 = 5x

46. 3x2 - 21 = 0

47. x2 - x - 20 = 0

48. -6x2 + 7x - 1 = 0

49. x2 + 2x - 1 = 0

50. x4 - 6x2 + 5 = 0
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1
Introduction
When you jump out of an airplane, your speed increases rapidly in free fall. 
After several seconds, because of air resistance, your speed stops increasing, 
but you are falling at more than 100 miles per hour. When you deploy your 
parachute, air resistance increases dramatically, and you fall safely to the 
ground with a speed of around 10 miles per hour. It is the function concept, one 
of the most important ideas in mathematics, that enables us to describe a para-
chute jump with precision (see Problems 67 and 68 on page 64).

The study of mathematics beyond the elementary level requires a firm un-
derstanding of a basic list of elementary functions (see A Library of Elementary 
Functions at the back of the book). In Chapter 1, we introduce the elementary 
functions and study their properties, graphs, and applications in business, eco-
nomics, life sciences, and social sciences.

1.1 Functions

1.2 Elementary Functions: 
Graphs and 
Transformations

1.3 Linear and Quadratic 
Functions

1.4 Polynomial and Rational 
Functions

1.5 Exponential Functions

1.6 Logarithmic Functions

1.7 Right Triangle 
Trigonometry

1.8 Trigonometric Functions

Functions and 
Graphs

19
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20 CHAPTER 1 Functions and Graphs

After a brief review of the Cartesian (rectangular) coordinate system in the plane and 
graphs of equations, we discuss the concept of function, one of the most important 
ideas in mathematics.

Cartesian Coordinate System
Recall that to form a Cartesian or rectangular coordinate system, we select two 
real number lines—one horizontal and one vertical—and let them cross through their 
origins as indicated in the figure below. Up and to the right are the usual choices for 
the positive directions. These two number lines are called the horizontal axis and 
the vertical axis, or, together, the coordinate axes. The horizontal axis is usually 
referred to as the x axis and the vertical axis as the y axis, and each is labeled accord-
ingly. The coordinate axes divide the plane into four parts called quadrants, which 
are numbered counterclockwise from I to IV (see Fig. 1).

210

210 25 50 10

25

5

10

y

x

II

III IV

I
P 5 (a, b)

R 5 (10, 210)

Q 5 (25, 5)
b

a

Coordinates

Abscissa
Ordinate

Axis

Origin

Figure 1 The Cartesian (rectangular) coordinate system

Now we want to assign coordinates to each point in the plane. Given an arbitrary 
point P in the plane, pass horizontal and vertical lines through the point (see Fig. 1). 
The vertical line will intersect the horizontal axis at a point with coordinate a, and the 
horizontal line will intersect the vertical axis at a point with coordinate b. These two 
numbers, written as the ordered pair 1a, b2, form the coordinates of the point P.  
The first coordinate, a, is called the abscissa of P; the second coordinate, b, is 
called the ordinate of P. The abscissa of Q in Figure 1 is -5, and the ordinate of Q is 5.  
The coordinates of a point can also be referenced in terms of the axis labels. The x 
coordinate of R in Figure 1 is 10, and the y coordinate of R is -10. The point with 
coordinates 10, 02 is called the origin.

The procedure we have just described assigns to each point P in the plane a 
unique pair of real numbers 1a, b2. Conversely, if we are given an ordered pair of 
real numbers 1a, b2, then, reversing this procedure, we can determine a unique point 
P in the plane. Thus,

There is a one-to-one correspondence between the points in a plane and 
the elements in the set of all ordered pairs of real numbers.

This is often referred to as the fundamental theorem of analytic geometry.

Graphs of Equations
A solution to an equation in one variable is a number. For example, the equation 
4x - 13 = 7 has the solution x = 5; when 5 is substituted for x, the left side of the 
equation is equal to the right side.

1.1 Functions
■■ Cartesian Coordinate System
■■ Graphs of Equations
■■ Definition of a Function
■■ Functions Specified by Equations
■■ Function Notation
■■ Applications
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 SECTION 1.1   Functions 21

A solution to an equation in two variables is an ordered pair of numbers. For exam-
ple, the equation y = 9 - x2 has the solution 14, -72; when 4 is substituted for x and 
-7 is substituted for y, the left side of the equation is equal to the right side. The solution 
14, -72 is one of infinitely many solutions to the equation y = 9 - x2. The set of all 
solutions of an equation is called the solution set. Each solution forms the coordinates 
of a point in a rectangular coordinate system. To sketch the graph of an equation in 
two variables, we plot sufficiently many of those points so that the shape of the graph is 
apparent, and then we connect those points with a smooth curve. This process is called 
point-by-point plotting.

Point-by-Point Plotting Sketch the graph of each equation.

(A) y = 9 - x2 (B) x2 = y4

SOLUTION
(A) Make up a table of solutions—that is, ordered pairs of real numbers that satisfy 

the given equation. For easy mental calculation, choose integer values for x.

x -4 -3 -2 -1 0 1 2 3 4

y -7 0 5 8 9 8 5 0 -7

After plotting these solutions, if there are any portions of the graph that are 
unclear, plot additional points until the shape of the graph is apparent. Then 
join all the plotted points with a smooth curve (Fig. 2). Arrowheads are used 
to indicate that the graph continues beyond the portion shown here with no 
significant changes in shape.

525

25

5

10

210

210

(3, 0)

(2, 5)

(23, 0)

(22, 5)

(4, 27)(24, 27)

(0, 9)
(1, 8)(21, 8)

y 5 9 2 x2

y

x
10

Figure 2 y ∙ 9 ∙ x2

(B) Again we make a table of solutions—here it may be easier to choose integer 
values for y and calculate values for x. Note, for example, that if y = 2, 
then x = {4; that is, the ordered pairs 14, 22 and 1-4, 22 are both in the 
solution set.

x {9 {4 {1 0 {1 {4 {9

y -3 -2 -1 0 1 2 3

We plot these points and join them with a smooth curve (Fig. 3).

EXAMPLE 1

y

x

25

25 5 10210

5

210

10

x2 5 y4

Figure 3 x2 ∙ y4 Matched Problem 1  Sketch the graph of each equation.

(A) y = x2 - 4 (B) y2 =
100

x2 + 1
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22 CHAPTER 1 Functions and Graphs

The icon in the margin is used throughout this book to identify optional graphing 
calculator activities that are intended to give you additional insight into the concepts 
under discussion. You may have to consult the manual for your graphing calculator 
for the details necessary to carry out these activities. For example, to graph the equation 
in Explore and Discuss 1 on most graphing calculators, you must enter the equation 
(Fig. 5A) and the window variables (Fig. 5B).

To graph the equation y = -x3 + 3x, we use point-by-point plotting to obtain the 
graph in Figure 4.

5

25

25 5
x

y

Figure 4

Explore and Discuss 1

x y

-1 -2

0 0

1 2

(A) Do you think this is the correct graph of the equation? Why or why not?

(B) Add points on the graph for x = -2, -1.5, -0.5, 0.5, 1.5, and 2.

(C) Now, what do you think the graph looks like? Sketch your version of the graph, 
adding more points as necessary.

(D) Graph this equation on a graphing calculator and compare it with your graph 
from part (C).

As Explore and Discuss 1 illustrates, the shape of a graph may not be apparent 
from your first choice of points. Using point-by-point plotting, it may be difficult to 
find points in the solution set of the equation, and it may be difficult to determine 
when you have found enough points to understand the shape of the graph. We will 
supplement the technique of point-by-point plotting with a detailed analysis of 
several basic equations, giving you the ability to sketch graphs with accuracy and 
confidence.

Definition of a Function
Central to the concept of function is correspondence. You are familiar with corre-
spondences in daily life. For example,

To each person, there corresponds an annual income.

To each item in a supermarket, there corresponds a price.

To each student, there corresponds a grade-point average.

To each day, there corresponds a maximum temperature.

For the manufacture of x items, there corresponds a cost.

For the sale of x items, there corresponds a revenue.

To each square, there corresponds an area.

To each number, there corresponds its cube.

(A)

(B)

Figure 5
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One of the most important aspects of any science is the establishment of correspon-
dences among various types of phenomena. Once a correspondence is known, pre-
dictions can be made. A cost analyst would like to predict costs for various levels of 
output in a manufacturing process; a medical researcher would like to know the cor-
respondence between heart disease and obesity; a psychologist would like to predict 
the level of performance after a subject has repeated a task a given number of times; 
and so on.

What do all of these examples have in common? Each describes the matching of 
elements from one set with the elements in a second set.

Consider Tables 1–3. Tables 1 and 2 specify functions, but Table 3 does not. Why 
not? The definition of the term function will explain.

Table 1
Domain Range

Number Cube

-2 -8
-1 -1

0 0
1 1
2 8

Table 2
Domain Range

Number Square

-2
-1 4

0 1
1 0
2

Table 3
Domain Range

Number Square root

0 0
1

1 -1
2

4 -2
3

9 -3

DEFINITION Function
A function is a correspondence between two sets of elements such that to each ele-
ment in the first set, there corresponds one and only one element in the second set.

The first set is called the domain, and the set of corresponding elements in 
the second set is called the range.

Tables 1 and 2 specify functions since to each domain value, there corresponds 
exactly one range value (for example, the cube of -2 is -8 and no other number). On 
the other hand, Table 3 does not specify a function since to at least one domain value, 
there corresponds more than one range value (for example, to the domain value 9, 
there corresponds -3 and 3, both square roots of 9).

Consider the set of students enrolled in a college and the set of faculty members at 
that college. Suppose we define a correspondence between the two sets by saying 
that a student corresponds to a faculty member if the student is currently enrolled in 
a course taught by that faculty member. Is this correspondence a function? Discuss.

Explore and Discuss 2

Functions Specified by Equations
Most of the functions in this book will have domains and ranges that are (infinite) 
sets of real numbers. The graph of such a function is the set of all points 1x, y2 in 
the Cartesian plane such that x is an element of the domain and y is the corresponding 
element in the range. The correspondence between domain and range elements is of-
ten specified by an equation in two variables. Consider, for example, the equation for 
the area of a rectangle with width 1 inch less than its length (Fig. 6). If x is the length, 
then the area y is given by

x 2 1

x

Figure 6
y = x1x - 12  x Ú 1
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24 CHAPTER 1 Functions and Graphs

For each input x (length), we obtain an output y (area). For example,

 If  x = 5,   then  y = 515 - 12 = 5 # 4 = 20.
 If  x = 1,   then  y = 111 - 12 = 1 # 0 = 0.
 If  x = 15,  then  y = 15115 - 12 = 5 - 15

 ≈ 2.7639.

The input values are domain values, and the output values are range values. The 
equation assigns each domain value x a range value y. The variable x is called an  
independent variable (since values can be “independently” assigned to x from the do-
main), and y is called a dependent variable (since the value of y “depends” on the value 
assigned to x). In general, any variable used as a placeholder for domain values is called 
an independent variable; any variable that is used as a placeholder for range values is 
called a dependent variable.

When does an equation specify a function?

DEFINITION Functions Specified by Equations
If in an equation in two variables, we get exactly one output (value for the dependent 
variable) for each input (value for the independent variable), then the equation specifies 
a function. The graph of such a function is just the graph of the specifying equation.

If we get more than one output for a given input, the equation does not specify 
a function.

Functions and Equations Determine which of the following equations specify 
functions with independent variable x.

(A) 4y - 3x = 8, x a real number (B) y2 - x2 = 9, x a real number

SOLUTION
(A) Solving for the dependent variable y, we have

 4y - 3x = 8

  4y = 8 + 3x  (1)

 y = 2 +
3
4

 x

Since each input value x corresponds to exactly one output value 1y = 2 + 3
4x2, 

we see that equation (1) specifies a function.

(B) Solving for the dependent variable y, we have

 y2 - x2 = 9

  y2 = 9 + x2  (2)

 y = {29 + x2

Since 9 + x2 is always a positive real number for any real number x, and since 
each positive real number has two square roots, then to each input value x 
there corresponds two output values 1y = - 29 + x2 and y = 29 + x22. 
For example, if x = 4, then equation (2) is satisfied for y = 5 and for y = -5. 
So equation (2) does not specify a function.

Matched Problem 2 Determine which of the following equations specify 
functions with independent variable x.

(A) y2 - x4 = 9, x a real number (B) 3y - 2x = 3, x a real number

EXAMPLE 2

Reminder
Each positive real number u has 
two square roots: 1u, the principal 
square root; and - 1u, the nega-
tive of the principal square root (see 
 Appendix A, Section A.6).
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x
525

25

5

10

210

210 10

y

(A)   4y 2 3x 5 8

Figure 7

5

25

210

210 10

y

(B)  y2 2 x2 5 9

25

5

10

x

Since the graph of an equation is the graph of all the ordered pairs that satisfy 
the equation, it is very easy to determine whether an equation specifies a function by 
examining its graph. The graphs of the two equations we considered in Example 2 are 
shown in Figure 7.

In Figure 7A, notice that any vertical line will intersect the graph of the equa-
tion 4y - 3x = 8 in exactly one point. This shows that to each x value, there cor-
responds exactly one y value, confirming our conclusion that this equation specifies 
a function. On the other hand, Figure 7B shows that there exist vertical lines that 
intersect the graph of y2 - x2 = 9 in two points. This indicates that there exist x 
values to which there correspond two different y values and verifies our conclusion 
that this equation does not specify a function. These observations are generalized 
in Theorem 1.

THEOREM 1 Vertical-Line Test for a Function
An equation specifies a function if each vertical line in the coordinate system 
passes through, at most, one point on the graph of the equation.

If any vertical line passes through two or more points on the graph of an equation, 
then the equation does not specify a function.

The function graphed in Figure 7A is an example of a linear function. The vertical-
line test implies that equations of the form y = mx + b, where m ∙ 0, specify 
functions; they are called linear functions. Similarly, equations of the form y = b 
specify functions; they are called constant functions, and their graphs are horizontal 
lines. The vertical-line test implies that equations of the form x = a do not specify 
functions; note that the graph of x = a is a vertical line.

In Example 2, the domains were explicitly stated along with the given equations. 
In many cases, this will not be done. Unless stated to the contrary, we shall adhere 
to the following convention regarding domains and ranges for functions specified by 
equations:

If a function is specified by an equation and the domain is not indicated, 
then we assume that the domain is the set of all real-number replace-
ments of the independent variable (inputs) that produce real values for 
the dependent variable (outputs). The range is the set of all outputs cor-
responding to input values.
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26 CHAPTER 1 Functions and Graphs

Finding a Domain Find the domain of the function specified by the equation 
y = 14 - x, assuming that x is the independent variable.

SOLUTION For y to be real, 4 - x must be greater than or equal to 0; that is,

 4 - x Ú 0

 -x Ú -4

 x … 4  Sense of inequality reverses when both sides are divided by -1.

Domain: x … 4 (inequality notation) or 1- ∞ , 44 (interval notation)

Matched Problem 3 Find the domain of the function specified by the equation 

y = 1x - 2, assuming x is the independent variable.

EXAMPLE 3

Function Notation
We have seen that a function involves two sets, a domain and a range, and a cor-
respondence that assigns to each element in the domain exactly one element in the 
range. Just as we use letters as names for numbers, now we will use letters as names 
for functions. For example, f and g may be used to name the functions specified by 
the equations y = 2x + 1 and y = x2 + 2x - 3:

 f : y = 2x + 1

  g: y = x2 + 2x - 3 (3)

If x represents an element in the domain of a function f, then we frequently use 
the symbol

f 1x 2
in place of y to designate the number in the range of the function f to which x is 
paired (Fig. 8). This symbol does not represent the product of f and x. The symbol 
f1x2 is read as “f of x,” “f at x,” or “the value of f at x.” Whenever we write y = f1x2, 
we assume that the variable x is an independent variable and that both y and f1x2 are 
dependent variables.

f

f (x)x

DOMAIN RANGE

Figure 8
Using function notation, we can now write functions f and g in equation (3) as

f1x2 = 2x + 1  and  g1x2 = x2 + 2x - 3

Let us find f132 and g1-52. To find f132, we replace x with 3 wherever x occurs in 
f1x2 = 2x + 1 and evaluate the right side:

 f1x2 = 2x + 1

 f132 = 2 # 3 + 1

 = 6 + 1 = 7 For input 3, the output is 7.

Therefore,

f132 = 7 The function f assigns the range value 7 to the domain value 3.

To find g1-52, we replace each x by -5 in g1x2 = x2 + 2x - 3 and evaluate 
the right side:

 g1x2 = x2 + 2x - 3

 g1-52 = 1-52 2 + 21-52 - 3

 = 25 - 10 - 3 = 12  For input -5, the output is 12.

Therefore,

g1-52 = 12 The function g assigns the range value 12 to the domain value -5.
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It is very important to understand and remember the definition of f1x2:

For any element x in the domain of the function f, the symbol f 1x 2  represents 
the element in the range of f corresponding to x in the domain of f. If x is an 
input value, then f 1x 2  is the corresponding output value. If x is an element 
that is not in the domain of f, then f is not defined at x and f 1x 2  does not exist.

Function Evaluation For f1x2 = 12> 1x - 22, g1x2 = 1 - x2, and h1x2 =1x - 1, evaluate:

(A) f162

EXAMPLE 4

(B) g1-22 (C) h1-22 (D) f102 + g112 - h1102
SOLUTION

(A) f162 =
12

6 - 2
 =

12
4

= 3

(B) g1-22 = 1 - 1-22 2 = 1 - 4 = -3

(C) h1-22 = 1-2 - 1 = 1-3

But 1-3 is not a real number. Since we have agreed to restrict the domain of 
a function to values of x that produce real values for the function, -2 is not in 
the domain of h, and h1-22 does not exist.

(D)  f102 + g112 - h1102 =
12

0 - 2
+ 11 - 122 - 110 - 1

 =
12
-2

+ 0 - 19

 = -6 - 3 = -9

Matched Problem 4 Use the functions in Example 4 to find

(A) f1-22 (B) g1-12 (C) h1-82 (D) 
f132
h152

Reminder
Dashed boxes are used throughout 
the book to represent steps that are 
usually performed mentally.

Finding Domains Find the domains of functions f, g, and h:

f1x2 =
12

x - 2
  g1x2 = 1 - x2  h1x2 = 2x - 1

SOLUTION Domain of f: 12> 1x - 22 represents a real number for all replacements 
of x by real numbers except for x = 2 (division by 0 is not defined). Thus, f122 
does not exist, and the domain of f is the set of all real numbers except 2. We often 
indicate this by writing

f1x2 =
12

x - 2
  x ∙ 2

Domain of g: The domain is R, the set of all real numbers, since 1 - x2 represents 
a real number for all replacements of x by real numbers.

Domain of h: The domain is the set of all real numbers x such that 2x - 1 is 
a real number, so

 x - 1 Ú 0

 x Ú 1 or, in interval notation, 31, ∞ 2
Matched Problem 5 Find the domains of functions F, G, and H:

F1x2 = x2 - 3x + 1  G1x2 =
5

x + 3
  H1x2 = 22 - x

EXAMPLE 5
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28 CHAPTER 1 Functions and Graphs

In addition to evaluating functions at specific numbers, it is important to be able 
to evaluate functions at expressions that involve one or more variables. For example, 
the difference quotient

f1x + h2 - f1x2
h

 x and x + h in the domain of f, h ∙ 0

is studied extensively in calculus.

In algebra, you learned to use parentheses for grouping variables. For example,

21x + h2 = 2x + 2h

Now we are using parentheses in the function symbol f1 x2. For example, if 
f1 x2 = x2, then

f1x + h2 = 1x + h2 2 = x2 + 2xh + h2

Note that f1x2 + f1h2 = x2 + h2 ∙ f1x + h2. That is, the function name 
f does not distribute across the grouped variables 1x + h2, as the “2” does in 
21x + h2 (see Appendix A, Section A.2).

CONCEPTUAL INSIGHT

Applications
If we reduce the price of a product, will we generate more revenue? If we increase 
production, will our profits rise? Profit–loss analysis is a method for answering such 
questions in order to make sound business decisions.

Here are the basic concepts of profit–loss analysis: A manufacturing company 
has costs, C, which include fixed costs such as plant overhead, product design, setup, 
and promotion; and variable costs that depend on the number of items produced. 
The revenue, R, is the amount of money received from the sale of its product. The 
company takes a loss if R 6 C, breaks even if R = C, and has a profit if R 7 C.  

Using Function Notation For f1x2 = x2 - 2x + 7, find

(A) f1a2 (B) f1a + h2

(C) f1a + h2 - f1a2 (D) 
f1a + h2 - f1a2

h
, h ∙ 0

SOLUTION
(A) f1a2 = a2 - 2a + 7

(B) f1a + h2 = 1a + h2 2 - 21a + h2 + 7 = a2 + 2ah + h2 - 2a - 2h + 7

(C) f1a + h2 - f1a2 = 1a2 + 2ah + h2 - 2a - 2h + 72 - 1a2 - 2a + 72
 = 2ah + h2 - 2h

(D) 
f1a + h2 - f1a2

h
=

2ah + h2 - 2h
h

=
h12a + h - 22

h
 Because h ∙ 0, 

h
h

= 1.

= 2a + h - 2

Matched Problem 6 Repeat Example 6 for f1x2 = x2 - 4x + 9.

EXAMPLE 6
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The profit P is equal to revenue minus cost; that is, P = R - C. (So the company 
takes a loss if P 6 0, breaks even if P = 0, and has a profit if P 7 0.) To predict its 
revenue, a company uses a price–demand function, p1x2, determined using histori-
cal data or sampling techniques, that specifies the relationship between the demand 
x and the price p. A point (x, p) is on the graph of the price–demand function if x 
items can be sold at a price of $p per item. (Normally, a reduction in the price p will 
increase the demand x, so the graph of the price–demand function is expected to go 
downhill as you move from left to right.) The revenue R is equal to the number of 
items sold multiplied by the price per item; that is, R = xp.

Cost, revenue, and profit can be written as functions C(x), R(x), and P(x) of the 
independent variable x, the number of items manufactured and sold. The functions 
C(x), R(x), P(x), and p(x) often have the following forms, where a, b, m, and n are 
positive constants determined from the context of a particular problem:

Cost function

 C1x2 = a + bx  C = fixed costs + variable costs

Price–demand function

 p1x2 = m - nx              x is the number of items that can be sold at 
$p per item

Revenue function

 R1x2 = xp  R = number of items sold * price per item

 = x1m - nx2
Profit function

 P1x2 = R1x2 - C1x2
 = x1m - nx2 - 1a + bx2

Do not confuse the price–demand function p(x) with the profit 
function P(x). Price is always denoted by the lower case “p”. Prof-

it is always denoted by the upper case “P”. Note that the revenue and profit functions, 
R(x) and P(x), depend on the price–demand function p(x), but C(x) does not. 

Example 7 and Matched Problem 7 provide an introduction to profit–loss analysis.

! CAUTION

Price–Demand and Revenue A manufacturer of a popular digital camera whole-
sales the camera to retail outlets throughout the United States. Using statistical 
methods, the financial department in the company produced the price–demand data 
in Table 4, where p is the wholesale price per camera at which x million cameras are 
sold. Notice that as the price goes down, the number sold goes up.

Table 4 Price–Demand

x (millions) p 1$ 2
2 87
5 68
8 53

12 37

Using special analytical techniques (regression analysis), an analyst obtained 
the following price–demand function to model the Table 4 data:

 p1x2 = 94.8 - 5x  1 … x … 15 (4)

EXAMPLE 7
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30 CHAPTER 1 Functions and Graphs

(A) Plot the data in Table 4. Then sketch a graph of the price–demand function in 
the same coordinate system.

(B) What is the company’s revenue function for this camera, and what is its domain?

(C) Complete Table 5, computing revenues to the nearest million dollars.
Table 5 Revenue

x (millions) R 1x 2  (million $)

 1 90
 3
 6
 9
12
15

(D) Plot the data in Table 5. Then sketch a graph of the revenue function using these 
points.

Table 5 Revenue

x (millions) R 1x 2  (million $)

 1  90
 3 239
 6 389
 9 448
12 418
15 297

(E) Graph the revenue function on a graphing calculator.

SOLUTION
(A) The four data points are plotted in Figure 9. Note that p112 = 89.8 and 

p1152 = 19.8. So the graph of the price–demand function is the line through 
(1, 89.8) and (15, 19.8) (see Fig. 9).

p(x)

5 10 15
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Million cameras
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e 
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)

x

Figure 9 Price–demand

In Figure 9, notice that the model approximates the actual data in Table 4, and 
it is assumed that it gives realistic and useful results for all other values of x 
between 1 million and 15 million.

(B) R1x2 = x p1x2 = x194.8 - 5x2 million dollars
Domain: 1 … x … 15
[Same domain as the price–demand function, equation (4).]

(C) 

(D) The six points from Table 5 are plotted in Figure 10. The graph of the revenue 
function is the smooth curve drawn through those six points.
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Figure 10
(E) Figure 11 shows the graph of R1x2 = x194.8 - 5x2 on a graphing calculator.

0
1 15

500

Figure 11
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Matched Problem 7 The financial department in Example 7, using statistical 
techniques, produced the data in Table 6, where C1x2 is the cost in millions of 
dollars for manufacturing and selling x million cameras.

Table 6 Cost Data

x (millions) C 1x 2   (million $)

 1 175
 5 260
 8 305
12 395

Using special analytical techniques (regression analysis), an analyst produced 
the following cost function to model the Table 6 data:

 C1x2 = 156 + 19.7x  1 … x … 15 (5)

(A) Plot the data in Table 6. Then sketch a graph of equation ( 5) in the same 
coordinate system.

(B) Using the revenue function from Example 7(B), what is the company’s profit 
function for this camera, and what is its domain?

(C) Complete Table 7, computing profits to the nearest million dollars.

Table 7 Profit

x (millions) P 1x 2   (million $)

 1 -86
 3
 6
 9
12
15

(D) Plot the data in Table 7. Then sketch a graph of the profit function using these 
points.

(E) Graph the profit function on a graphing calculator.

Exercises 1.1
In Problems 1–8, use point-by-point plotting to sketch the graph 
of each equation.

1. y = x + 1 2. x = y + 1

A 13. RangeDomain

5

6

3
6
9

12

14. RangeDomain

6

22
21

0
1

11. RangeDomain

3 5
6

4 7
5 8

12. RangeDomain

8 0
9 1

2
10 3

Indicate whether each graph in Problems 15–20 specifies a 
function.

15. 

x

y

25 5 10

10

210

210

5

25

16. 

x

y

25 5 10

10

210

210

5

25

3. x = y2 4. y = x2

5. y = x3 6. x = y3

7. xy = -6 8. xy = 12

Indicate whether each table in Problems 9–14 specifies a function.

9. RangeDomain

3 0
5 1
7 2

10. RangeDomain

5
7
923

22
21
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y 5 f (x)f (x)

x
210 25 5 10

25

5

210

10

39. y = f1-52 40. y = f142
41. y = f132 42. y = f1-22
43. f1x2 = 0, x 6 0 44. f1x2 = -2

45. f1x2 = -5 46. f1x2 = 0

In Problems 47–52, find the domain of each function.

47. F1x2 = 2x3 - x2 + 3 48. H1x2 = 7 - 2x2 - x4

49. f1x2 =
x - 2
x + 4

50. g1x2 =
x + 5
x - 6

51. g1x2 = 27 - x 52. F1x2 =
829 + x

In Problems 53–60, does the equation specify a function with 
independent variable x? If so, find the domain of the function. If 
not, find a value of x to which there corresponds more than one 
value of y.

53. 2x + 5y = 10 54. 6x - 7y = 21

55. y1x + y2 = 4 56. x1x + y2 = 4

57. x-3 + y3 = 27 58. x2 + y2 = 9

59. x3 - y2 = 0 60. 1x - y3 = 0

In Problems 61–74, find and simplify the expression if 
f1x2 = x2 - 4.

61. f15x2 62. f1-3x2
63. f1x + 32 64. f1x - 12
65. f1x22 66. f1x32
67. f11x2 68. f124 x2
69. f122 + f1h2 70. f1-32 + f1h2
71. f12 + h2 72. f1-3 + h2
73. f12 + h2 - f122 74. f1-3 + h2 - f1-32
In Problems 75–80, find and simplify each of the following, 
 assuming h ∙ 0 in (C).

(A) f1x + h2
(B) f1x + h2 - f1x2

(C) 
f1x + h2 - f1x2

h

75. f1x2 = 4x - 3 76. f1x2 = -3x + 9

B

C

17. 

x

y

25 5 10

10

210

210

5

25

18. 

x

y

25 5 10

10

210

210

5

25

19. 

x

y

25 5 10

10

210

210

5

25

20. 

x

y

25 5 10

10

210

210

5

25

In Problems 21–28, each equation specifies a function with 
independent variable x. Determine whether the function is linear, 
constant, or neither.

21. y = -3x +
1
8

22. y = 4x +
1
x

23. 7x + 5y = 3 24. 2x - 4y - 6 = 0

25. y - 5x = 4 - 3x2 26. x + xy + 1 = 0

27. y - x2 + 2 = 10 - x2 28. 
y - x

2
+

3 + 2x
4

= 1

In Problems 29–36, use point-by-point plotting to sketch the graph 
of each function.

29. f1x2 = 1 - x 30. f1x2 =
x
2

- 3

31. f1x2 = x2 - 1 32. f1x2 = 3 - x2

33. f1x2 = 4 - x3 34. f1x2 = x3 - 2

35. f1x2 =
8
x

36. f1x2 =
-6
x

In Problems 37 and 38, the three points in the table are on the 
graph of the indicated function f. Do these three points provide 
sufficient information for you to sketch the graph of y = f1x2? 
Add more points to the table until you are satisfied that your 
sketch is a good representation of the graph of y = f1x2 for 
-5 … x … 5.

37. 

38. 

x -1 0 1
f1x2 =

2x

x2 + 1f1x2 -1 0 1

x 0 1 2
f1x2 =

3x2

x2 + 2f1x2 0 1 2

In Problems 39–46, use the following graph of a function f to de-
termine x or y to the nearest integer, as indicated. Some problems 
may have more than one answer.
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77. f1x2 = 4x2 - 7x + 6 78. f1x2 = 3x2 + 5x - 8

79. f1x2 = x120 - x2 80. f1x2 = x1x + 502
Problems 81–84 refer to the area A and perimeter P of a rectangle 
with length l and width w (see figure).

w

l

A 5 lw

P 5 2l 1 2w

81. The area of a rectangle is 25 sq in. Express the perimeter 
P1w2 as a function of the width w, and state the domain of 
this function.

82. The area of a rectangle is 216 sq ft. Express the perimeter 
P1l2 as a function of the length l, and state the domain of  
this function.

83. The perimeter of a rectangle is 100 m. Express the area  
A1l2 as a function of the length l, and state the domain of 
this function.

84. The perimeter of a rectangle is 160 m. Express the area 
A1w2 as a function of the width w, and state the domain of 
this function.

Applications
85. Price–demand. A company manufactures memory chips for 

microcomputers. Its marketing research department, using 
statistical techniques, collected the data shown in Table  8, 
where p is the wholesale price per chip at which x million 
chips can be sold. Using special analytical techniques  
(regression analysis), an analyst produced the following 
price–demand function to model the data:

p1x2 = 75 - 3x  1 … x … 20

Table 8 Price–Demand

x (millions) p 1$ 2
 1 72
 4 63
 9 48
14 33
20 15

(A) Plot the data points in Table 8, and sketch a graph of the 
price–demand function in the same coordinate system.

(B) What would be the estimated price per chip for a de-
mand of 7 million chips? For a demand of 11 million 
chips?

86. Price–demand. A company manufactures notebook  
computers. Its marketing research department, using statisti-
cal techniques, collected the data shown in Table 9, where 
p is the wholesale price per computer at which x thousand 
computers can be sold. Using special analytical techniques 

(regression analysis), an analyst produced the following 
price–demand function to model the data:

p1x2 = 2,000 - 60x  1 … x … 25

Table 9 Price–Demand

x (thousands) p 1$ 2
 1 1,940
 8 1,520
16 1,040
21  740
25  500

(A) Plot the data points in Table 9, and sketch a graph of the 
price–demand function in the same coordinate system.

(B) What would be the estimated price per computer for a 
demand of 11,000 computers? For a demand of 18,000 
computers?

87. Revenue. 

(A) Using the price–demand function

p1x2 = 75 - 3x  1 … x … 20

from Problem 85, write the company’s revenue function 
and indicate its domain.

(B) Complete Table 10, computing revenues to the nearest 
million dollars.

Table 10 Revenue

x (millions) R 1x 2  (million $)

 1 72
 4
 8
12
16
20

(C) Plot the points from part (B) and sketch a graph of the 
revenue function using these points. Choose millions for 
the units on the horizontal and vertical axes.

88. Revenue. 

(A) Using the price–demand function

p1x2 = 2,000 - 60x  1 … x … 25

from Problem 86, write the company’s revenue function 
and indicate its domain.

(B) Complete Table 11, computing revenues to the nearest 
thousand dollars.

Table 11 Revenue

x (thousands) R 1x 2  (thousand $)

 1 1,940
 5
10
15
20
25
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Conservatives (when expressed as decimal fractions) are 
related by the equation

8v - 5s = 1  0 6 s 6 1, 0.125 6 v 6 0.75

(A) Express v as a function of s and find the percentage  
of votes required for the Conservatives to win 51% of  
the seats.

(B) Express s as a function of v and find the percentage of 
seats won if the Conservatives  receive 51% of the votes.

Answers to Matched Problems

(C) Plot the points from part (B) and sketch a graph of the 
revenue function using these points. Choose thousands 
for the units on the horizontal and vertical axes.

89. Profit. The financial department for the company in  
Problems 85 and 87 established the following cost function  
for producing and selling x million memory chips:

C1x2 = 125 + 16x million dollars

(A) Write a profit function for producing and selling x million 
memory chips and indicate its domain.

(B) Complete Table 12, computing profits to the nearest  
million dollars.

Table 12 Profit

x (millions) P 1x 2  (million $)

 1 -69
 4
 8
12
16
20

(C) Plot the points in part (B) and sketch a graph of the 
profit function using these points.

90. Profit. The financial department for the company in  
Problems 86 and 88 established the following cost function 
for producing and selling x thousand notebook computers:

C1x2 = 4,000 + 500x thousand dollars

(A) Write a profit function for producing and selling x thou-
sand notebook computers and indicate its domain.

(B) Complete Table 13, computing profits to the nearest 
thousand dollars.

Table 13 Profit

x (thousands) P 1x 2  (thousand $)

 1 -2,560
 5
10
15
20
25

(C) Plot the points in part (B) and sketch a graph of the profit 
function using these points.

91. Muscle contraction. In a study of the speed of muscle 
contraction in frogs under various loads, British biophysicist 
A. W. Hill determined that the weight w (in grams) placed on 
the muscle and the speed of contraction v (in centimeters per 
second) are approximately related by an equation of the form

1w + a21v + b2 = c

where a, b, and c are constants. Suppose that for a certain 
muscle, a = 15, b = 1, and c = 90. Express v as a function 
of w. Find the speed of contraction if a weight of 16 g  
is placed on the muscle.

92. Politics. The percentage s of seats in the House of Commons 
won by Conservatives and the percentage v of votes cast for 

1. (A)

5

15

10

25

y 5 x2 2 4y

x
25 5 10210

 

x

y

25 5

10

210

5

25

y2 5 
x2 1 1

100

(B)

2. (A) Does not specify a function

(B) Specifies a function

3. x Ú 2 (inequality notation) or 32, ∞ 2 (interval notation)

4. (A) -3 (B) 0 (C) Does not exist (D) 6

5. Domain of F: R; domain of G: all real numbers except -3; 
domain of H: x … 2 (inequality notation) or 1- ∞ , 24  
(interval notation)

6. (A) a2 - 4a + 9 (B) a2 + 2ah + h2 - 4a - 4h + 9

(C) 2ah + h2 - 4h (D) 2a + h - 4

7. (A)

x

C(x)

50 10 15

100

200

300

400

500

Million cameras

M
ill

io
n 

do
lla

rs

(B)  P1x2 = R1x2 - C1x2
 = x194.8 - 5x2 - 1156 + 19.7x2;

domain: 1 … x … 15

(C) Table 7 Profit

x (millions) P 1x 2  (million $)

 1     -86
 3   24
 6  115
 9  115
12   25
15 -155
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(D) 

x

P(x)

5 100 15

100

200

2200

2100M
ill

io
n 

do
lla

rs

Million cameras

(E) 

2200

1

200

15

Each of the functions

g1x2 = x2 - 4  h1x2 = 1x - 42 2   k1x2 = -4x2

can be expressed in terms of the function f1x2 = x2:

g1x2 = f1x2 - 4  h1x2 = f1x - 42  k1x2 = -4f1x2
In this section, we will see that the graphs of functions g, h, and k are closely related 
to the graph of function f. Insight gained by understanding these relationships will 
help us analyze and interpret the graphs of many different functions.

A Beginning Library of Elementary Functions
As you progress through this book, you will repeatedly encounter a small number of el-
ementary functions. We will identify these functions, study their basic properties, and in-
clude them in a library of elementary functions (see A Library of Elementary Functions 
at the back of the book). This library will become an important addition to your math-
ematical toolbox and can be used in any course or activity where mathematics is applied.

We begin by placing six basic functions in our library.

1.2 Elementary Functions: Graphs and Transformations
■■ A Beginning Library of Elementary 
Functions

■■ Vertical and Horizontal Shifts
■■ Reflections, Stretches, and Shrinks
■■ Piecewise-Defined Functions

DEFINITION Basic Elementary Functions
f1x2 = x

h1x2 = x2

m1x2 = x3

n1x2 = 1x

p1x2 = 23 x

g1x2 = ∙ x ∙

Identity function

Square function

Cube function

Square root function

Cube root function

Absolute value function

These elementary functions can be evaluated by hand for certain values of x and 
with a calculator for all values of x for which they are defined.

Evaluating Basic Elementary Functions Evaluate each basic elementary function at

(A) x = 64 (B) x = -12.75

Round any approximate values to four decimal places.

SOLUTION
(A) f1642 = 64

 h1642 = 642 = 4,096  Use a calculator.

 m1642 = 643 = 262,144 Use a calculator.

EXAMPLE 1
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36 CHAPTER 1 Functions and Graphs

 n1642 = 264 = 8
 p1642 = 23 64 = 4
 g1642 = ∙ 64 ∙ = 64

(B)  f1-12.752 = -12.75
 h1-12.752 = 1-12.752 2 = 162.5625  Use a calculator.

 m1-12.752 = 1-12.752 3 ≈ -2,072.6719 Use a calculator.

 n1-12.752 = 2-12.75  Not a real number.

 p1-12.752 = 23 -12.75 ≈ -2.3362  Use a calculator.

 g1-12.752 = ∙ -12.75 ∙ = 12.75

Matched Problem 1 Evaluate each basic elementary function at

(A) x = 729 (B) x = -5.25

Round any approximate values to four decimal places.

Remark Most computers and graphing calculators use ABS(x) to represent the 
absolute value function. The following representation can also be useful:

 ∙x ∙ = 2x2 

Figure 1 shows the graph, range, and domain of each of the basic elementary 
functions.

f (x)

25

525

5

(A) Identity function
f (x) 5 x

Domain: R
Range: R

x

Figure 1 Some basic functions and their graphs

25

525

5

x

h(x)

(B) Square function
h(x) 5 x2

Domain: R
Range: [0, `)

25

525

5

x

m(x)

(C) Cube function
m(x) 5 x3

Domain: R
Range: R

n(x)

(D) Square root function
n(x) 5 Ïx

Domain: [0, `)
Range: [0, `)

25

525

5

x

p(x)

25

525

5

x

(E) Cube root function
p(x) 5 Ïx

Domain: R
Range: R

3

g(x)

25

525

5

x

(F) Absolute value function
g(x) 5 )x )

Domain: R
Range: [0, `)

Reminder
Letters used to designate these 
functions may vary from context 
to context; R is the set of all real 
numbers.
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Absolute Value In beginning algebra, absolute value is often interpreted as distance 
from the origin on a real number line (see Appendix A, Section A.1).

distance 5 6 5 2(26) distance 5 5

210 25 0 5 10

If x 6 0 , then -x  is the positive distance from the origin to x, and if x 7 0 , 
then x is the positive distance from the origin to x. Thus,

∙ x ∙ = e -x if x 6 0
x if x Ú 0

CONCEPTUAL INSIGHT

Vertical and Horizontal Shifts
If a new function is formed by performing an operation on a given function, then 
the graph of the new function is called a transformation of the graph of the original 
function. For example, graphs of y = f1x2 + k and y = f1x + h2 are transforma-
tions of the graph of y = f1x2.

Let f1x2 = x2.
(A) Graph y = f1x2 + k for k = -4, 0, and 2 simultaneously in the same coordi-

nate system. Describe the relationship between the graph of y = f1x2 and the 
graph of y = f1x2 + k for any real number k.

(B) Graph y = f1x + h2 for h = -4, 0, and 2 simultaneously in the same coordi-
nate system. Describe the relationship between the graph of y = f1x2 and the 
graph of y = f1x + h2 for any real number h.

Explore and Discuss 1

Vertical and Horizontal Shifts
(A) How are the graphs of y = ∙ x ∙ + 4 and y = ∙ x ∙ - 5 related to the graph of 

y = ∙ x ∙? Confirm your answer by graphing all three functions simultaneously 
in the same coordinate system.

(B) How are the graphs of y = ∙ x + 4 ∙  and y = ∙ x - 5 ∙  related to the graph of 
y = ∙ x ∙? Confirm your answer by graphing all three functions simultaneously 
in the same coordinate system.

SOLUTION
(A) The graph of y = ∙ x ∙ + 4 is the same as the graph of y = ∙ x ∙  shifted upward 

4 units, and the graph of y = ∙ x ∙ - 5 is the same as the graph of y = ∙ x ∙  
shifted downward 5 units. Figure 2 confirms these conclusions. [It appears that 
the graph of y = f1x2 + k is the graph of y = f1x2 shifted up if k is positive 
and down if k is negative.]

EXAMPLE 2

(B) The graph of y = ∙ x + 4 ∙  is the same as the graph of y = ∙ x ∙  shifted to 
the left 4 units, and the graph of y = ∙ x - 5 ∙  is the same as the graph of 
y = ∙ x ∙  shifted to the right 5 units. Figure 3 confirms these conclusions. 
[It appears that the graph of y = f1x + h2 is the graph of y = f1x2 shifted 
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38 CHAPTER 1 Functions and Graphs

right if h is negative and left if h is positive—the opposite of what you might 
expect.]

x
210

5

210

10

y y 5 |x| 1 4
y 5 |x|

y 5 |x| 2 5

Figure 2 Vertical shifts

x
210 25 5 10

25

5

210

10

y
y 5 |x 1 4|

y 5 |x 2 5|
y 5 |x|

Figure 3 Horizontal shifts

Matched Problem 2
(A) How are the graphs of y = 1x + 5 and y = 1x - 4 related to the graph 

of y = 1x ? Confirm your answer by graphing all three functions simultane-
ously in the same coordinate system.

(B) How are the graphs of y = 1x + 5 and y = 1x - 4 related to the graph of 
y = 1x? Confirm your answer by graphing all three functions simultaneously 
in the same coordinate system.

Comparing the graphs of y = f1x2 + k with the graph of y = f1x2, we see 
that the graph of y = f1x2 + k can be obtained from the graph of y = f 1 x 2  by  
vertically translating (shifting) the graph of the latter upward k units if k is positive 
and downward ∙ k ∙  units if k is negative. Comparing the graphs of y = f1x + h2 
with the graph of y = f1x2, we see that the graph of y = f1x + h2 can be obtained 
from the graph of y = f1x2 by horizontally translating (shifting) the graph of the 
latter h units to the left if h is positive and ∙ h ∙  units to the right if h is negative.

Vertical and Horizontal Translations (Shifts) The graphs in Figure   4 are either 
horizontal or vertical shifts of the graph of f1x2 = x2. Write appropriate equations 
for functions H, G, M, and N in terms of f.

EXAMPLE 3

x

y f

(A)

H G

5

25

25 5

Figure 4 Vertical and horizontal shifts

x

y

(B)

5

25

25 5

f NM
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SOLUTION Functions H and G are vertical shifts given by

H1x2 = x2 + 2   G1x2 = x2 - 4

Functions M and N are horizontal shifts given by

M1x2 = 1x + 22 2   N1x2 = 1x - 32 2

Matched Problem 3 The graphs in Figure 5 are either horizontal or vertical 

shifts of the graph of f1x2 = 23 x. Write appropriate equations for functions H, 
G, M, and N in terms of f.

x

y

f

(A)

H

G

5

25

25 5

Figure 5 Vertical and horizontal shifts

y

f

x

(B)

M

N

5

25

25 5

Reflections, Stretches, and Shrinks
We now investigate how the graph of y = Af1x2 is related to the graph of y = f1x2 
for different real numbers A.

(A) Graph y = Ax2 for A = 1, 4, and 14  simultaneously in the same coordinate system.

(B) Graph y = Ax2 for A = -1, -4, and -1
4 simultaneously in the same coordinate 

system.

(C) Describe the relationship between the graph of h1x2 = x2 and the graph of 
G1x2 = Ax2 for any real number A.

Explore and Discuss 2

Comparing y = Af1x2 to y = f1x2, we see that the graph of y = Af1x2 can be 
obtained from the graph of y = f1x2 by multiplying each ordinate value of the latter 
by A. The result is a vertical stretch of the graph of y = f1x2 if A 7 1, a vertical 
shrink of the graph of y = f1x2 if 0 6 A 6 1, and a reflection in the x axis if 
A = -1. If A is a negative number other than -1, then the result is a combination of 
a reflection in the x axis and either a vertical stretch or a vertical shrink.

Reflections, Stretches, and Shrinks
(A) How are the graphs of y = 2 ∙ x ∙  and y = 0.5 ∙ x ∙  related to the graph of 

y = ∙ x ∙? Confirm your answer by graphing all three functions simultaneously 
in the same coordinate system.

(B) How is the graph of y = -2 ∙ x ∙  related to the graph of y = ∙ x ∙? Confirm your 
answer by graphing both functions simultaneously in the same coordinate system.

EXAMPLE 4
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(B) The graph of y = -2 ∙ x ∙  is a reflection in the x axis and a vertical stretch of the 
graph of y = ∙ x ∙ . Figure 7 confirms this conclusion.

x
210 25 5 10

25

5

210

10

y y 5 2|x|
y 5 |x|

y 5 0.5|x|

Figure 6 Vertical stretch and shrink

x
210 25 5 10

25

5

210

10

y

y 5 22|x|

y 5 |x|

Figure 7 Reflection and vertical stretch

SOLUTION
(A) The graph of y = 2 ∙ x ∙  is a vertical stretch of the graph of y = ∙ x ∙  by a factor 

of 2, and the graph of y = 0.5 ∙ x ∙  is a vertical shrink of the graph of y = ∙ x ∙  
by a factor of 0.5. Figure 6 confirms this conclusion.

Matched Problem 4
(A) How are the graphs of y = 2x and y = 0.5x related to the graph of y = x? 

Confirm your answer by graphing all three functions simultaneously in the 
same coordinate system.

(B) How is the graph of y = -0.5x related to the graph of y = x? Confirm your 
answer by graphing both functions in the same coordinate system.

The various transformations considered above are summarized in the following 
box for easy reference:

SUMMARY Graph Transformations
Vertical Translation:

y = f1x2 + k e k 7 0 Shift graph of y = f1x2 up k units.
k 6 0  Shift graph of y = f1x2 down ∙ k ∙  units.

Horizontal Translation:

y = f1x + h2 e h 7 0 Shift graph of y = f1x2 left h units.
h 6 0  Shift graph of y = f1x2 right ∙ h ∙  units.

Reflection:

y = - f1x2 Reflect the graph of y = f1x2 in the x axis.

Vertical Stretch and Shrink:

y = Af1x2 µ
A 7 1 Stretch graph of y = f1x2 vertically

by multiplying each ordinate value by A.

0 6 A 6 1 Shrink graph of y = f1x2 vertically
by multiplying each ordinate value by A.

Explain why applying any of the graph transformations in the summary box to a linear 
function produces another linear function.

Explore and Discuss 3
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Piecewise-Defined Functions
Earlier we noted that the absolute value of a real number x can be defined as

∙ x ∙ = e -x if x 6 0
x  if x Ú 0

Notice that this function is defined by different rules for different parts of its domain. 
Functions whose definitions involve more than one rule are called piecewise-defined 
functions. Graphing one of these functions involves graphing each rule over the ap-
propriate portion of the domain (Fig. 10). In Figure 10C, notice that an open dot is 
used to show that the point 10, -22 is not part of the graph and a solid dot is used to 
show that (0, 2) is part of the graph.

Combining Graph Transformations Discuss the relationship between the graphs 
of y = - ∙ x - 3 ∙ + 1 and y = ∙ x ∙ . Confirm your answer by graphing both func-
tions simultaneously in the same coordinate system.

SOLUTION The graph of y = - ∙ x - 3 ∙ + 1 is a reflection of the graph of y = ∙ x ∙  
in the x axis, followed by a horizontal translation of 3 units to the right and a vertical 
translation of 1 unit upward. Figure 8 confirms this description.

y 5 |x|

x

y

y 5 2|x 2 3| 1 1

25

525

5

Figure 8 Combined transformations

Matched Problem 5 The graph of y = G1x2 in Figure 9 involves a reflection 
and a translation of the graph of y = x3. Describe how the graph of function G is 
related to the graph of y = x3 and find an equation of the function G.

EXAMPLE 5

x

y
G y 5 x3

525

5

Figure 9 Combined transformations

x

y

25

525

5

(A)  y 5 x2 2 2

x , 0 

Figure 10 Graphing a piecewise-defined function

x

y

25

525

5

(B)  y 5 2 2 x2

x $ 0 

x

y

25

525

5

(C)  y 5 
x2 2 2    if  x , 0

2 2 x2     if  x $ 0

Graphing Piecewise-Defined Functions Graph the piecewise-defined function

g1x2 = e x + 1 if  0 … x 6 2
0.5x if  x Ú 2

EXAMPLE 6
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SOLUTION If 0 … x 6 2, then the first rule applies and the graph of g lies on the line 
y = x + 1 (a vertical shift of the identity function y = x). If x = 0, then (0, 1) lies 
on y = x + 1; we plot (0, 1) with a solid dot (Fig. 11) because g102 = 1. If x = 2,  
then (2, 3) lies on y = x + 1; we plot (2, 3) with an open dot because g122 ∙ 3. 
The line segment from (0, 1) to (2, 3) is the graph of g for 0 … x 6 2. If x Ú 2, then 
the second rule applies and the graph of g lies on the line y = 0.5x (a vertical shrink 
of the identity function y = x). If x = 2, then (2, 1) lies on the line y = 0.5x; we plot 
(2, 1) with a solid dot because g122 = 1. The portion of y = 0.5x that starts at (2, 1) 
and extends to the right is the graph of g for x Ú 2.

x

g(x)

1 2 3 4 5

1

2

3

4

5

Figure 11

Matched Problem 6 Graph the piecewise-defined function

h1x2 = e -2x + 4 if  0 … x … 2
x - 1 if  x 7 2

As the next example illustrates, piecewise-defined functions occur naturally in 
many applications.

Natural Gas Rates Easton Utilities uses the rates shown in Table 1 to compute the 
monthly cost of natural gas for each customer. Write a piecewise definition for the 
cost of consuming x CCF (cubic hundred feet) of natural gas and graph the function.

Table 1 Charges per Month
$0.7866 per CCF for the first 5 CCF
$0.4601 per CCF for the next 35 CCF
$0.2508 per CCF for all over 40 CCF

SOLUTION If C1x2 is the cost, in dollars, of using x CCF of natural gas in one 
month, then the first line of Table 1 implies that

C1x2 = 0.7866x if 0 … x … 5

Note that C152 = 3.933 is the cost of 5 CCF. If 5 6 x … 40, then x - 5 represents 
the amount of gas that cost $0.4601 per CCF, 0.46011x - 52 represents the cost of 
this gas, and the total cost is

C1x2 = 3.933 + 0.46011x - 52
If x 7 40, then

C1x2 = 20.0365 + 0.25081x - 402
where 20.0365 = C1402, the cost of the first 40 CCF. Combining all these equations, 
we have the following piecewise definition for C1x2:

C1x2 = c 0.7866x if 0 … x … 5
3.933 + 0.46011x - 52 if 5 6 x … 40
20.0365 + 0.25081x - 402 if x 7 40

EXAMPLE 7
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To graph C, first note that each rule in the definition of C represents a transformation 
of the identity function f1x2 = x. Graphing each transformation over the indicated 
interval produces the graph of C shown in Figure 12.

2010 4030 50 60
x

C(x)

$10

$20

$30

(5, 3.933)

(40, 20.0365)

Figure 12 Cost of purchasing x CCF 
of natural gas

Matched Problem 7 Trussville Utilities uses the rates shown in Table 2 to 
compute the monthly cost of natural gas for residential customers. Write a 
piecewise definition for the cost of consuming x CCF of natural gas and graph 
the function.

Table 2 Charges per Month
$0.7675 per CCF for the first 50 CCF

$0.6400 per CCF for the next 150 CCF
$0.6130 per CCF for all over 200 CCF

Exercises 1.2
In Problems 1–10, find the domain and range of each function.

1. f1x2 = x2 - 4 2. f1x2 = 1 + 1x

3. f1x2 = 7 - 2x 4. f1x2 = x2 + 12

5. f1x2 = 8 - 1x 6. f1x2 = 5x + 3

7. f1x2 = 27 + 23 x 8. f1x2 = 20 - 18 ∙ x ∙

9. f1x2 = 6 ∙ x ∙ + 9 10. f1x2 = -8 + 23 x

31. f1x2 = 7 - 1x 32. g1x2 = -6 + 23 x

33. h1x2 = -3 ∙ x ∙ 34. m1x2 = -0.4x2

Each graph in Problems 35–42 is the result of applying a se-
quence of transformations to the graph of one of the six basic 
functions in Figure 1 on page 36. Identify the basic function and 
describe the transformation verbally. Write an equation for the 
given graph.

In Problems 11–26, graph each of the functions using the graphs 
of functions f and g below.

x

f (x)

25 5

25

5

 

x

g(x)

25 5

25

5

11. y = f1x2 + 2 12. y = g1x2 - 1

13. y = f1x + 22 14. y = g1x - 12
15. y = g1x - 32 16. y = f1x + 32
17. y = g1x2 - 3 18. y = f1x2 + 3

19. y = - f1x2 20. y = -g1x2
21. y = 0.5g1x2 22. y = 2f1x2
23. y = 2f1x2 + 1 24. y = -0.5g1x2 + 3

25. y = 21f1x2 + 12 26. y = - 10.5g1x2 + 32
In Problems 27–34, describe how the graph of each function is 
related to the graph of one of the six basic functions in Figure 1 
on page 36. Sketch a graph of each function.

27. g1x2 = - ∙ x + 3 ∙ 28. h1x2 = - ∙ x - 5 ∙

29. f1x2 = 1x - 42 2 - 3 30. m1x2 = 1x + 32 2 + 4

B

35. 

x

y

25 5

25

5

36. 

x

y

25 5

25

5

37. 

x

y

25 5

25

5

38. 

x

y

25 5

25

5

39. 

x

y

25 5

25

5

40. 

x

y

25 5

25

5

A
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In Problems 43–48, the graph of the function g is formed by 
applying the indicated sequence of transformations to the given 
function f. Find an equation for the function g and graph g using 
-5 … x … 5 and -5 … y … 5.

43. The graph of f1x2 = 1x is shifted 3 units to the left and  
2 units up.

44. The graph of f1x2 = 23 x is shifted 2 units to the right and  
3 units down.

45. The graph of f1x2 = ∙ x ∙  is reflected in the x axis and shifted 
to the left 3 units.

46. The graph of f1x2 = ∙ x ∙  is reflected in the x axis and shifted 
to the right 1 unit.

47. The graph of f1x2 = x3 is reflected in the x axis and shifted 
2 units to the right and down 1 unit.

48. The graph of f1x2 = x2 is reflected in the x axis and shifted 
to the left 2 units and up 4 units.

Graph each function in Problems 49–54.

49. f1x2 = b2 - 2x if x 6 2
x - 2 if x Ú 2

50. g1x2 = b x + 1 if x 6 -1
2 + 2x if x Ú -1

51. h1x2 = b5 + 0.5x if 0 … x … 10
-10 + 2x if x 7 10

52. h1x2 = b10 + 2x if 0 … x … 20
40 + 0.5x if x 7 20

53. h1x2 = c 2x if 0 … x … 20
x + 20 if 20 6 x … 40
0.5x + 40 if x 7 40

54. h1x2 = c 4x + 20 if 0 … x … 20
2x + 60 if 20 6 x … 100
-x + 360 if x 7 100

Each of the graphs in Problems 55–60 involves a reflection in 
the x axis and/or a vertical stretch or shrink of one of the basic 
functions in Figure 1 on page 36. Identify the basic function, and 
describe the transformation verbally. Write an equation for the 
given graph.

C

55. 

x

y

25 5

25

5

56. 

x

y

25 5

25

5

57. 

x

y

25 5

25

5

58. 

x

y

25 5

25

5

59. 

x

y

25 5

25

5

60. 

x

y

25 5

25

5

Changing the order in a sequence of transformations may 
change the final result. Investigate each pair of transforma-
tions in Problems 61–66 to determine if reversing their order 
can produce a different result. Support your conclusions with 
specific examples and/or mathematical arguments. (The graph of 
y = f1-x2 is the reflection of y = f1x2 in the y axis.)

61. Vertical shift; horizontal shift

62. Vertical shift; reflection in y axis

63. Vertical shift; reflection in x axis

64. Horizontal shift; vertical stretch

65. Horizontal shift; reflection in y axis

66. Horizontal shift; horizontal shrink

Applications
67. Price–demand. A retail chain sells bicycle helmets. The 

retail price p1x2 (in dollars) and the weekly demand x for a 
particular model are related by

p1x2 = 115 - 41x  9 … x … 289

(A) Describe how the graph of function p can be obtained from 
the graph of one of the basic functions in Figure 1 on page 36.

(B) Sketch a graph of function p using part (A) as an aid.

41. 

x

y

25 5

25

55

42. 

x

y

25 5

25

5

M01_BARN6152_14_GE_C01.indd   44 22/11/18   10:38 PM



 SECTION 1.2   Elementary Functions: Graphs and Transformations 45

68. Price–supply. The manufacturer of the bicycle helmets in 
Problem 67 is willing to supply x helmets at a price of p1x2 
as given by the equation

p1x2 = 41x  9 … x … 289

(A) Describe how the graph of function p can be obtained 
from the graph of one of the basic functions in Figure 1 
on page 36.

(B) Sketch a graph of function p using part (A) as an aid.

69. Hospital costs. Using statistical methods, the financial  
department of a hospital arrived at the cost equation

C1x2 = 0.000481x - 5002 3 + 60,000 100 … x … 1,000

where C1x2 is the cost in dollars for handling x cases per month.

(A) Describe how the graph of function C can be obtained 
from the graph of one of the basic functions in Figure 1 
on page 36.

(B) Sketch a graph of function C using part (A) and a graphing 
calculator as aids.

70. Price–demand. A company manufactures and sells in-line 
skates. Its financial department has established the price– 
demand function

p1x2 = 190 - 0.0131x - 102 2 10 … x … 100

where p1x2 is the price at which x thousand pairs of in-line 
skates can be sold.

(A) Describe how the graph of function p can be obtained 
from the graph of one of the basic functions in Figure 1 
on page 36.

(B) Sketch a graph of function p using part (A) and a graphing 
calculator as aids.

71. Electricity rates. Table 3 shows the electricity rates charged 
by Origin Energy for the state of Victoria in Australia. The 
daily supply charge is a fixed daily charge, independent of 
the kWh (kilowatt-hours) used during the day.

(A) Write a piecewise definition of the daily charge V1x2 for 
a customer who uses x kWh in a day.

(B) Graph V1x2.

Table 3 Victoria
Daily supply charge $1.34
First 11 kWh at $0.32 per kWh
Over 11 kWh at $0.35 per kWh

72. Electricity rates. Table 4 shows the electricity rates charged 
by Origin Energy for the regions in South Australia.

(A) Write a piecewise definition of the daily charge S1x2 for 
a customer who uses x kWh in a day.

Table 4 South Australia
Base charge, $0.90
First 11 kWh at $0.40 per kWh
Over 11 kWh at $0.43 per kWh

(B) Graph S1x2.

73. Real estate property tax. Table 5 shows real estate property 
tax rates in Peru.

(A) Write a piecewise definition for T(x), the amount of tax 
units due on a real estate’s value of x tax units (1 tax unit 
is approximately $1,265).

(B) Graph T(x).

(C) Find the amount of tax units due on a taxable value of 
30 tax units. Of 90 tax units. 

Table 5 Peru Real Estate Property Tax
Over But not over amount of tax units due is

0 tax units 15 tax units 0.2% of the property value
15 tax units 60 tax units 0.03 tax units plus 0.6% of

excess over 15 tax units
60 tax units 0.30 tax units plus 1.0% of

excess over 60 tax units

74. Real estate property tax. Table 6 shows real estate property 
tax rates in Bolivia.

(A) Write a piecewise definition for T(x), the tax due on a 
real estate’s value of x bolivianos (Bs).

(B) Graph T(x).

(C) Find the tax due on a taxable value of 300,000 Bs. 
Of 500,000 Bs. Of 1,000,000 Bs.

Table 6 Bolivia Real Estate Property Tax
Over But not over Tax due is

Bs 0 Bs 200,000 0.35% of the property value
Bs 200,000 Bs 400,000 Bs 700 plus 0.50% of

excess over Bs 200,000
Bs 400,000 Bs 600,000 Bs 1,700 plus 1.00% of

excess over Bs 400,000
Bs 600,000 Bs 3,700 plus 1.50% of

excess over Bs 600,000

75. Human weight. A good approximation of the normal 
weight of a person 60 inches or taller but not taller than  
80 inches is given by w1x2 = 5.5x - 220, where x is  
height in inches and w1x2 is weight in pounds.

(A) Describe how the graph of function w can be obtained from 
the graph of one of the basic functions in Figure 1, page 36.

(B) Sketch a graph of function w using part (A) as an aid.

76. Herpetology. The average weight of a particular species of 
snake is given by w1x2 = 463x3, 0.2 … x … 0.8, where x is 
length in meters and w1x2 is weight in grams.

(A) Describe how the graph of function w can be obtained from 
the graph of one of the basic functions in Figure 1, page 36.

(B) Sketch a graph of function w using part (A) as an aid.

77. Safety research. Under ideal conditions, if a person driving 
a vehicle slams on the brakes and skids to a stop, the speed of 
the vehicle v1x2 (in miles per hour) is given approximately 
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3. H1x2 = 23 x + 3, G1x2 = 23 x - 2, M1x2 =  23 x + 2, N1x2 = 23 x - 3

4. (A)  The graph of y = 2x is a vertical stretch of the graph 
of y = x, and the graph of y = 0.5x is a vertical shrink of 
the graph of y = x. The figure confirms these conclusions.

x

y

25 5 10

10

210

210

5

25

x

y 5 xy 5 2x

y 5 0.5x

(B) The graph of y = -0.5x is a vertical shrink and a 
reflection in the x axis of the graph of y = x. The figure 
confirms this conclusion.

x

y

25 5 10

10

210

210

5

25

x

y 5 x

y 5 20.5x

5. The graph of function G is a reflection in the x axis and a 
horizontal translation of 2 units to the left of the graph of 
y = x3. An equation for G is G1x2 = - 1x + 22 3.

by v1x2 = C1x, where x is the length of skid marks (in 
feet) and C is a constant that depends on the road condi-
tions and the weight of the vehicle. For a particular vehicle, 
v1x2 = 7.081x and 4 … x … 144.

(A) Describe how the graph of function v can be obtained 
from the graph of one of the basic functions in Figure 1, 
page 36.

(B) Sketch a graph of function v using part (A) as an aid.

78. Learning. A production analyst has found that on average 
it takes a new person T1x2 minutes to perform a particular 
assembly operation after x performances of the operation, 
where T1x2 = 10 - 23 x, 0 … x … 125.

(A) Describe how the graph of function T can be obtained 
from the graph of one of the basic functions in Figure 1, 
page 36.

(B) Sketch a graph of function T using part (A) as an aid.

Answers to Matched Problems
1. (A) f17292 = 729, h17292 = 531,441,

m17292 = 387, 420, 489, n17292 = 27, p17292 = 9,
g17292 = 729

 (B) f1-5.252 = -5.25, h1-5.252 = 27.5625,
m1-5.252 = -144.7031, n1-5.252 is not a real number,
p1-5.252 = -1.7380, g1-5.252 = 5.25

2. (A)  The graph of y = 1x + 5 is the same as the graph 
of y = 1x shifted upward 5 units, and the graph of 
y = 1x - 4 is the same as the graph of y = 1x 
shifted downward 4 units. The figure confirms these 
conclusions.

x

y

25 5 10

10

210

210

5

25

y 5 Ïx

x

y 5 Ïx 1 5

y 5 Ïx 2 4

(B) The graph of y = 1x + 5 is the same as the graph 
of y = 1x shifted to the left 5 units, and the graph 
of y = 1x - 4 is the same as the graph of y = 1x 
shifted to the right 4 units. The figure confirms these 
conclusions.

x

y

25 5 10

10

210

210

5

25

x

y 5 Ïx

y 5 Ïx 1 5

y 5 Ïx 2 4

6. 

7. C1x2 = µ
0.7675x if 0 … x … 50
38.375 + 0.64 1x - 502 if 50 6 x … 200
134.375 + 0.613 1x - 2002 if 200 6 x

x

200

100

0
300100 200

(50, 38.375)

(200, 134.375)

C(x)

2

3

1

4

5

x
1 2 3 4 5

h (x)
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 SECTION 1.3   Linear and Quadratic Functions 47

Mathematical modeling is the process of using mathematics to solve real-world 
problems. This process can be broken down into three steps (Fig. 1):

1.3 Linear and Quadratic Functions
■■ Linear Functions, Equations,  
and Inequalities

■■ Quadratic Functions, Equations,  
and Inequalities

■■ Properties of Quadratic Functions 
and Their Graphs

■■ Applications
■■ Linear and Quadratic Regression

Real-world
problem

1. Construct3.
 In

te
rp

re
t

Mathematical
solution

Mathematical
model

2. Solve

Figure 1

Step 1  Construct a mathematical model (that is, a mathematics problem that, 
when solved, will provide information about the real-world problem).

Step 2 Solve the mathematical model.

Step 3  Interpret the solution to the mathematical model in terms of the original 
real-world problem.

In more complex problems, this cycle may have to be repeated several times to obtain 
the required information about the real-world problem. In this section, we will show 
how linear functions and quadratic functions can be used to construct mathematical 
models of real-world problems.

Linear Functions, Equations, and Inequalities
Linear equations in two variables have (straight) lines as their graphs.

DEFINITION Linear Equations in Two Variables
A linear equation in two variables is an equation that can be written in the 
standard form

Ax + By = C

where A, B, and C are constants (A and B not both 0), and x and y are variables.

THEOREM 1 Graph of a Linear Equation in Two Variables
The graph of any equation of the form

 Ax + By = C (1)(A and B not both O)

is a line, and any line in a Cartesian coordinate system is the graph of an equation 
of this form.

If B = 0 and A ∙ 0, then equation (1) can be written as x = C
A and its graph is a 

vertical line. If B ∙ 0, then -A>B is the slope of the line (see Problems 63–64 in 
Exercises 1.3).
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x

y

(x2, y2)

(x2 2 x1)

(y22 y1)(x1, y1)

Figure 2

DEFINITION Slope of a Line
If 1x1, y12 and 1x2, y22 are two points on a line with x1 ∙ x2 (see Fig. 2), then the 
slope of the line is

m =
y2 - y1

x2 - x1

The slope measures the steepness of a line. The vertical change y2 - y1 is often 
called the rise, and the horizontal change is often called the run. The slope may be 
positive, negative, zero, or undefined (see Table 1).

Table 1 Geometric Interpretation of Slope
Line Rising as x moves 

from left to right
Falling as x moves 
from left to right

Horizontal Vertical

Slope Positive Negative 0 Not defined
Example

Table 2 Equations of a Line
Standard form Ax + By = C A and B not both 0
Slope-intercept form y = mx + b Slope: m; y intercept: b

Point-slope form y - y1 = m1x - x12 Slope: m; point: 1x1, y12
Horizontal line y = b Slope: 0

Vertical line x = a Slope: undefined

If B ∙ 0 in the standard form of the equation of a line, then solving for y gives the 
slope-intercept form y = mx + b, where m is the slope and b is the y intercept. If a 
line has slope m and passes through the point 1x1, y12, then y - y1 = m1x - x12 is 
the point-slope form of the equation of the line. The various forms of the equation of 
a line are summarized in Table 2.

Reminder
If a line passes through the points 
1a, 02 and 10, b2, then a is called 
the x intercept and b is called the 
y intercept. It is common practice 
to refer to either a or 1a, 02 as the x 
intercept, and either b or 10, b2 as 
the y intercept.

Equations of lines A line has slope 4 and passes through the point 13, 82. Find 
an equation of the line in point-slope form, slope-intercept form, and standard form.

SOLUTION Let m = 4 and 1x1, y12 = 13, 82. Substitute into the point-slope form 
y - y1 = m1x - x12:

Point@slope form:  y - 8 = 41x - 32  Add 8 to both sides.

 y = 41x - 32 + 8 Simplify.

Slope@intercept form:  y = 4x - 4  Subtract 4x from both sides.

Standard form:  -4x + y = -4

Matched Problem 1 A line has slope -3 and passes through the point 1-2, 102. 
Find an equation of the line in point-slope form, slope-intercept form, and standard 
form.

EXAMPLE 1
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So the linear function f1x2 = mx + b is the function that is specified by the linear 
equation y = mx + b.

DEFINITION Linear Function
If m and b are real numbers with m ∙ 0, then the function

f1x2 = mx + b

is a linear function.

Graphing a Linear Function
(A) Use intercepts to graph the equation 3x - 4y = 12.

(B) Use a graphing calculator to graph the function f1x2 that is specified by 
3x - 4y = 12, and to find its x and y intercepts.

(C) Solve the inequality f1x2 Ú 0.

SOLUTION
(A) To find the y intercept, let x = 0 and solve 

for y. To find the x intercept, let y = 0 and 
solve for x. It is a good idea to find a third 
point on the line as a check point, used to 
verify that all three points lie on the same 
line as in Figure 3.

EXAMPLE 2

y

x

25

25 5 10210

5

210

10

(4, 0)

(8, 3)

Check point

x intercept

y intercept

(0, 23)

Figure 3

x y

0 -3 y intercept

4 0 x intercept

8 3 Check point

(B) To find f1x2, we solve 3x - 4y = 12 for y.

3x - 4y = 12      Add -3x to both sides.

-4y = -3x + 12  Divide both sides by -4.

y =
-3x + 12

-4
 Simplify.

 y = f1x2 =
3
4

 x - 3 (2)

Now we enter the right side of equation (2) in a calculator (Fig. 4A), enter 
values for the window variables (Fig. 4B), and graph the line (Fig. 4C). (The 
inequalities -10 … x … 10 and -5 … y … 5 below the screen in Figure 4C 
show the values of Xmin, Xmax, Ymin, and Ymax, respectively.)

(A)

Figure 4 Graphing a line on a graphing calculator

(B) (C)

25

10

5

210
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Next we use two calculator commands to find the intercepts: trace (Fig. 5A) 
and zero (Fig. 5B).

(A)

25

10

5

210

(B)

Figure 5 Using trace and zero on a graphing calculator

(C) f1x2 Ú 0 if the graph of f1x2 = 3
4 x - 3 in the figures in parts (A) or (B) is  

on or above the x axis. This occurs if x Ú 4, so the solution of the inequality,  
in interval notation, is 34, ∞ 2.

Matched Problem 2 
(A) Use intercepts to graph the equation 4x - 3y = 12.

(B) Use a graphing calculator to graph the function f1x2 that is specified by 
4x - 3y = 12, and to find its x and y intercepts.

(C) Solve the inequality f1x2 Ú 0.

Reminder
Standard interval notation is ex-
plained in Table 3. The numbers a and 
b in Table 3 are called the endpoints 
of the interval. An interval is closed if 
it contains its endpoints and open if it 
does not contain any of its endpoints. 
The symbol ∞  (read “infinity”) is not 
a number and is not considered to 
be an endpoint. The notation 3b, ∞ 2 
simply denotes the interval that starts 
at b and continues indefinitely to the 
right. We never write 3b, ∞ 4. The in-
terval 1- ∞ , ∞ 2 is the entire real line.

Table 3 Interval Notation
Interval Notation Inequality Notation Line Graph

3a, b4 a … x … b

a

a

b

b

ba

ba

ba

ba

x

x

x

x

x

x

x

x

3a, b2 a … x 6 b

1a, b4 a 6 x … b

1a, b2 a 6 x 6 b

1- ∞ , a4 x … a

1- ∞ , a2 x 6 a

3b, ∞ 2 x Ú b

1b, ∞ 2 x 7 b

Quadratic Functions, Equations, and Inequalities
One of the basic elementary functions of Section 1.2 is the square function h1x2 = x2. 
Its graph is the parabola shown in Figure 6. It is an example of a quadratic function.

x
25 5

25

5

h(x)

Figure 6 Square function h(x) = x2
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DEFINITION Quadratic Functions
If a, b, and c are real numbers with a ∙ 0, then the function

f1x2 = ax2 + bx + c Standard form

is a quadratic function and its graph is a parabola.

The domain of any quadratic function is the set of all real numbers. We will dis-
cuss methods for determining the range of a quadratic function later in this section. 
Typical graphs of quadratic functions are shown in Figure 7.

(A)  f (x) 5 x2 2 4

x

210

525

10

f (x)

  
Figure 7 Graphs of quadratic functions

x

(B)  g(x) 5 3x2  2 12x 1 14

g(x)

210

525

10

  

x

h(x)

210

525

10

(C)  h(x) 5 3  2 2x 2 x2

Reminder

The union of two sets A and B, 
denoted A ∪ B, is the set of ele-
ments that belong to A or B (or both). 
So the set of all real numbers such 
that x2 - 4 Ú 0 (see Figure 7A) is 
1- ∞ , -24 ∪ 32, ∞ 2.

An x intercept of a function is also called a zero of the function. The x inter-
cepts of a quadratic function can be found by solving the quadratic equation 
y = ax2 + bx + c = 0 for x, a ∙ 0. Several methods for solving quadratic 
equations are discussed in Appendix  A, Section A.7. The most popular of these 
is the quadratic formula.

If ax2 + bx + c = 0,  a ∙ 0, then

x =
-b { 2b2 - 4ac

2a
, provided b2 - 4ac Ú 0

CONCEPTUAL INSIGHT

Intercepts, Equations, and Inequalities
(A) Sketch a graph of f1x2 = -x2 + 5x + 3 in a rectangular coordinate system.

(B) Find x and y intercepts algebraically to four decimal places.

(C) Graph f1x2 = -x2 + 5x + 3 in a standard viewing window.

(D) Find the x and y intercepts to four decimal places using trace and zero on 
your graphing calculator.

(E) Solve the quadratic inequality -x2 + 5x + 3 Ú 0 graphically to four decimal 
places using the results of parts (A) and (B) or (C) and (D).

(F) Solve the equation -x2 + 5x + 3 = 4 graphically to four decimal places using 
intersect on your graphing calculator.

EXAMPLE 3
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(B) Find intercepts algebraically:

 y intercept: f102 = - 102 2 + 5102 + 3 = 3

 x intercepts: f1x2 = -x2 + 5x + 3 = 0 Use the quadratic formula.

 x =
-b { 2b2 - 4ac

2a
 Substitute a = -1, b = 5, c = 3.

 x =
- 152 { 252 - 41-12132

21-12  Simplify.

 =
-5 { 237

-2
= -0.5414 or 5.5414

(C) Use a graphing calculator (Fig. 9).

210

10

10

210

Figure 9

(D) Find intercepts using a graphing calculator (Fig. 10).

5

x

f (x)

525

10

210 10

Figure 8

x y

-1 -3

  0   3

  1   7

  2   9

  3   9

  4   7

  5   3

  6 -3

210

10

10

210

(B)  x intercept: 5.5414   

210

10

10

210

(C)  y intercept: 3

210

10

10

210

(A)  x intercept: 20.5414   
Figure 10

SOLUTION
(A) Hand-sketch a graph of f  by drawing a smooth curve through the plotted points 

(Fig. 8).
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(E) Solve -x2 + 5x + 3 Ú 0 graphically: The quadratic inequality

-x2 + 5x + 3 Ú 0

holds for those values of x for which the graph of f1x2 = -x2 + 5x + 3 in 
the figures in parts (A) and (C) is at or above the x axis. This happens for x be-
tween the two x intercepts [found in part (B) or (D)], including the two x inter-
cepts. The solution set for the quadratic inequality is -0.5414 … x … 5.5414  
or, in interval notation,  3-0.5414, 5.54144.

(F) Solve the equation -x2 + 5x + 3 = 4 using a graphing calculator (Fig. 11).

210

10

10

210

(A)  2x2 1 5x 1 3 5 4  at  x 5 0.2087   
Figure 11

210

10

10

210

(B)  2x2 1 5x 1 3 5 4  at  x 5 4.7913

Matched Problem 3
(A) Sketch a graph of g1x2 = 2x2 - 5x - 5 in a rectangular coordinate system.

(B) Find x and y intercepts algebraically to four decimal places.

(C) Graph g1x2 = 2x2 - 5x - 5 in a standard viewing window.

(D) Find the x and y intercepts to four decimal places using trace and the zero 
command on your graphing calculator.

(E) Solve 2x2 - 5x - 5 Ú 0 graphically to four decimal places using the results 
of parts (A) and (B) or (C) and (D).

(F) Solve the equation 2x2 - 5x - 5 = -3 graphically to four decimal places 
using intersect on your graphing calculator.

How many x intercepts can the graph of a quadratic function have? How many y 
 intercepts? Explain your reasoning.

Explore and Discuss 1

Properties of Quadratic Functions and Their Graphs
Many useful properties of the quadratic function can be uncovered by transforming

f1x2 = ax2 + bx + c  a ∙ 0

into the vertex form

f1x2 = a1x - h2 2 + k

The process of completing the square (see Appendix A.7) is central to the transformation.  
We illustrate the process through a specific example and then generalize the results.

Consider the quadratic function given by

 f1x2 = -2x2 + 16x - 24 (3)
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We use completing the square to transform this function into vertex form:

  f1x2 = -2x2 + 16x - 24  Factor the coefficient of x2  
out of the first two terms.

 = -21x2 - 8x2 - 24

 = -21x2 - 8x + ?2 - 24

 = -21x2 - 8x + 162 - 24 + 32 

 Add 16 to complete the  
square inside the parentheses.  
Because of the -2 outside the  
parentheses, we have actually  
added -32, so we must add  
32 to the outside.

 = -21x - 42 2 + 8   The transformation is complete  
and can be checked by  
multiplying out.

Therefore,

 f1x2 = -21x - 42 2 + 8 (4)

If x = 4, then -21x - 42 2 = 0 and f142 = 8. For any other value of x, the 
negative number -21x - 42 2 is added to 8, making it smaller. Therefore,

f142 = 8

is the maximum value of f(x) for all x. Furthermore, if we choose any two x values that 
are the same distance from 4, we will obtain the same function value. For example, 
x = 3 and x = 5 are each one unit from x = 4 and their function values are

  f132 = -213 - 42 2 + 8 = 6

  f152 = -215 - 42 2 + 8 = 6

Therefore, the vertical line x = 4 is a line of symmetry. That is, if the graph of  
equation (3) is drawn on a piece of paper and the paper is folded along the line 
x = 4, then the two sides of the parabola will match exactly. All these results are il-
lustrated by graphing equations (3) and (4) and the line x = 4 simultaneously in the 
same coordinate system (Fig. 12).

From the preceding discussion, we see that as x moves from left to right, f1x2 
is increasing on 1- ∞ , 44, and decreasing on 34, ∞ 2, and that f1x2 can assume no 
value greater than 8. Thus,

Range of f : y … 8 or 1- ∞ , 84
In general, the graph of a quadratic function is a parabola with line of symmetry parallel 
to the vertical axis. The lowest or highest point on the parabola, whichever exists, is called 
the vertex. The maximum or minimum value of a quadratic function always occurs at the 
vertex of the parabola. The line of symmetry through the vertex is called the axis of the 
parabola. In the example above, x = 4 is the axis of the parabola and (4, 8) is its vertex.

x

f (x)

5

5

10

210

10

25

Maximum: f (4) 5 8

Line of symmetry: x 5 4

f(x) 5 22x2 1 16x 2 24
5 22(x 2 4)2 1 8

Figure 12  Graph of a quadratic 
function

Applying the graph transformation properties discussed in Section 1.2 to the 
transformed equation,

  f1x2 = -2x2 + 16x - 24

 = -21x - 42 2 + 8

we see that the graph of f1x2 = -2x2 + 16x - 24 is the graph of h1x2 = x2 
vertically stretched by a factor of 2, reflected in the x axis, and shifted to the right 
4 units and up 8 units, as shown in Figure 13.

CONCEPTUAL INSIGHT
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Note the important results we have obtained from the vertex form of the qua-
dratic function f:

• The vertex of the parabola

• The axis of the parabola

• The maximum value of f(x)

• The range of the function f

• The relationship between the graph of h1x2 = x2 and the graph of 
f1x2 = -2x2 + 16x - 24

The preceding discussion is generalized to all quadratic functions in the follow-
ing summary:

25
x

y

5

5

10

210

10

25

f(x) 5 22x2 1 16x 2 24
5 22(x 2 4)2 1 8

h(x) 5 x2

Figure 13 Graph of f is the graph of h transformed

SUMMARY Properties of a Quadratic Function and Its Graph
Given a quadratic function and the vertex form obtained by completing the square

  f1x2 = ax2 + bx + c  a ∙ 0 Standard form

 = a1x - h2 2 + k  Vertex form

we summarize general properties as follows:

1. The graph of f is a parabola that opens upward if a 7 0, downward if a 6 0 
(Fig. 14).

x

f (x)

Vertex (h, k) Min f (x)

Axis
x 5 h

k

h

a . 0
Opens upward

Figure 14

Axis
x 5 h

h

a , 0
Opens downward

x

f (x)

Vertex (h, k)

Max f (x)

k

2. Vertex: (h, k) (parabola increases on one side of the vertex and decreases on 
the other)

3. Axis (of symmetry): x = h (parallel to y axis)
4. f1h2 = k is the minimum if a 7 0 and the maximum if a 6 0
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5. Domain: All real numbers. Range: 1- ∞ , k4 if a 6 0 or 3k, ∞ 2 if a 7 0
6. The graph of f is the graph of g1x2 = ax2 translated horizontally h units and 

vertically k units.

Analyzing a Quadratic Function Given the quadratic function

f1x2 = 0.5x2 - 6x + 21

(A) Find the vertex form for f.

(B) Find the vertex and the maximum or minimum. State the range of f.

(C) Describe how the graph of function f can be obtained from the graph of 
h1x2 = x2 using transformations.

(D) Sketch a graph of function f in a rectangular coordinate system.

(E) Graph function f using a suitable viewing window.

(F) Find the vertex and the maximum or minimum using the appropriate graphing 
calculator command.

SOLUTION
(A) Complete the square to find the vertex form:

 f1x2 = 0.5x2 - 6x + 21

 = 0.51x2 - 12x + ?2 + 21

 = 0.51x2 - 12x + 362 + 21 - 18

 = 0.51x - 62 2 + 3

(B) From the vertex form, we see that h = 6 and k = 3. Thus, vertex: (6, 3); mini-
mum: f162 = 3; range: y Ú 3 or 33, ∞ 2.

(C) The graph of f1x2 = 0.51x - 62 2 + 3 is the same as the graph of h1x2 = x2 
vertically shrunk by a factor of 0.5, and shifted to the right 6 units and up 3 units.

(D) Graph in a rectangular coordinate system (Fig. 15).

x

f (x)

5 10

5

10

Figure 15

(E) Use a graphing calculator (Fig. 16).

210

10

10

210

Figure 16

EXAMPLE 4
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(F) Find the vertex and minimum using the minimum command (Fig. 17).

210

10

10

210

Figure 17

Vertex: (6, 3); minimum: f162 = 3

Matched Problem 4  Given the quadratic function f1x2 = -0.25x2 - 2x + 2

(A) Find the vertex form for f.

(B) Find the vertex and the maximum or minimum. State the range of f.

(C) Describe how the graph of function f can be obtained from the graph of 
h1x2 = x2 using transformations.

(D) Sketch a graph of function f in a rectangular coordinate system.

(E) Graph function f using a suitable viewing window.

(F) Find the vertex and the maximum or minimum using the appropriate graphing 
calculator command.

Applications
In a free competitive market, the price of a product is determined by the relation-
ship between supply and demand. If there is a surplus—that is, the supply is greater 
than the demand—the price tends to come down. If there is a shortage—that is, the 
demand is greater than the supply—the price tends to go up. The price tends to move 
toward an equilibrium price at which the supply and demand are equal. Example 5 
introduces the basic concepts.

Supply and Demand At a price of $9.00 per box of oranges, the supply is 320,000 
boxes and the demand is 200,000 boxes. At a price of $8.50 per box, the supply is 
270,000 boxes and the demand is 300,000 boxes.

(A) Find a price–supply equation of the form p = mx + b, where p is the price in 
dollars and x is the corresponding supply in thousands of boxes.

(B) Find a price–demand equation of the form p = mx + b, where p is the price  
in dollars and x is the corresponding demand in thousands of boxes.

(C) Graph the price–supply and price–demand equations in the same coordinate 
system and find their point of intersection.

SOLUTION
(A) To find a price–supply equation of the form p = mx + b, we must find two 

points of the form (x, p) that are on the supply line. From the given supply data, 
(320, 9) and (270, 8.5) are two such points. First, find the slope of the line:

m =
9 - 8.5

320 - 270
=

0.5
50

= 0.01

EXAMPLE 5
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Now use the point-slope form to find the equation of the line:

  p - p1 = m1x - x12    1x1, p12 = 1320, 92
 p - 9 = 0.011x - 3202
 p - 9 = 0.01x - 3.2

 p = 0.01x + 5.8  Price–supply equation

(B) From the given demand data, (200, 9) and (300, 8.5) are two points on the 
demand line.

m =
8.5 - 9

300 - 200
=

-0.5
100

= -0.005

 p - p1 = m1x - x12
 p - 9 = -0.0051x - 2002 1x1, p12 = 1200, 92
 p - 9 = -0.005x + 1

 p = -0.005x + 10         Price–demand equation

(C) From part (A), we plot the points (320, 9) and (270, 8.5) and then draw a line 
through them. We do the same with the points (200, 9) and (300, 8.5) from 
part (B) (Fig. 18). (Note that we restricted the axes to intervals that contain these 
data points.) To find the intersection point of the two lines, we equate the right-
hand sides of the price–supply and price–demand equations and solve for x:

Price∙supply Price∙demand

 0.01x + 5.8 = -0.005x + 10

 0.015x = 4.2

 x = 280

x

p

2000 240

Equilibrium
price ($)

8.00

Equilibrium
quantity

280 320

8.50
8.60

9.00

Price–demand equation
p 5 20.005x 1 10

Price–supply equation
p 5 0.01x 1 5.8

Equilibrium point
(280, 8.6)

(200, 9)

(270, 8.5)

(320, 9)

(300, 8.5)

Figure 18 Graphs of price–supply and price–demand equations

Now use the price–supply equation to find p when x = 280:

 p = 0.01x + 5.8

 p = 0.0112802 + 5.8 = 8.6

As a check, we use the price–demand equation to find p when x = 280:

 p = -0.005x + 10

 p = -0.00512802 + 10 = 8.6
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The lines intersect at (280, 8.6). The intersection point of the price–supply and 
price–demand equations is called the equilibrium point, and its coordinates are 
the equilibrium quantity (280) and the equilibrium price ($8.60). These terms 
are illustrated in Figure 18. The intersection point can also be found by using the 
intersect command on a graphing calculator (Fig. 19). To summarize, the price of a 
box of oranges tends toward the equilibrium price of $8.60, at which the supply and 
demand are both equal to 280,000 boxes.

Matched Problem 5  At a price of $12.59 per box of grapefruit, the supply 
is 595,000 boxes and the demand is 650,000 boxes. At a price of $13.19 per box, 
the supply is 695,000 boxes and the demand is 590,000 boxes. Assume that the 
relationship between price and supply is linear and that the relationship between 
price and demand is linear.

(A) Find a price–supply equation of the form p = mx + b.

(B) Find a price–demand equation of the form p = mx + b.

(C) Find the equilibrium point.

7
360

10

180

Figure 19  Finding an intersection 
point

Maximum Revenue This is a continuation of Example 7 in Section 1.1. Recall 
that the financial department in the company that produces a digital camera arrived 
at the following price–demand function and the corresponding revenue function:

 p1x2 = 94.8 - 5x  Price–demand function

 R1x2 = x p1x2 = x194.8 - 5x2 Revenue function

where p(x) is the wholesale price per camera at which x million cameras can be 
sold, and R(x) is the corresponding revenue (in millions of dollars). Both functions 
have domain 1 … x … 15.

(A) Find the value of x to the nearest thousand cameras that will generate the maxi-
mum revenue. What is the maximum revenue to the nearest thousand dollars? 
Solve the problem algebraically by completing the square.

(B) What is the wholesale price per camera (to the nearest dollar) that generates the 
maximum revenue?

(C) Graph the revenue function using an appropriate viewing window.

(D) Find the value of x to the nearest thousand cameras that will generate the maxi-
mum revenue. What is the maximum revenue to the nearest thousand dollars? 
Solve the problem graphically using the maximum command.

SOLUTION
(A) Algebraic solution:

 R1x2 = x194.8 - 5x2
 = -5x2 + 94.8x

 = -51x2 - 18.96x + ?2
 = -51x2 - 18.96x + 89.87042 + 449.352

 = -51x - 9.482 2 + 449.352

The maximum revenue of 449.352 million dollars ($449,352,000) occurs when 
x = 9.480 million cameras (9,480,000 cameras).

(B) Find the wholesale price per camera: Use the price–demand function for an 
output of 9.480 million cameras:

 p1x2 = 94.8 - 5x

 p19.4802 = 94.8 - 519.4802
 = $47 per camera

EXAMPLE 6
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(C) Use a graphing calculator (Fig. 20).

15
15

500

1

Figure 20

(D) Graphical solution using a graphing calculator (Fig. 21).

15
15

500

1

Figure 21
The manufacture and sale of 9.480 million cameras (9,480,000 cameras) will 
generate a maximum revenue of 449.352 million dollars ($449,352,000).

Matched Problem 6  The financial department in Example 6, using statistical  
and analytical techniques (see Matched Problem 7 in Section 1.1), arrived at the 
cost function

C1x2 = 156 + 19.7x Cost function

where C(x) is the cost (in millions of dollars) for manufacturing and selling x million 
cameras.

(A) Using the revenue function from Example 6 and the preceding cost function, 
write an equation for the profit function.

(B) Find the value of x to the nearest thousand cameras that will generate the 
maximum profit. What is the maximum profit to the nearest thousand dollars? 
Solve the problem algebraically by completing the square.

(C) What is the wholesale price per camera (to the nearest dollar) that generates 
the maximum profit?

(D) Graph the profit function using an appropriate viewing window.

(E) Find the output to the nearest thousand cameras that will generate the maxi-
mum profit. What is the maximum profit to the nearest thousand dollars? 
Solve the problem graphically using the maximum command.

Linear and Quadratic Regression
Price–demand and price–supply equations (see Example 5), or cost functions  
(see Example 6), can be obtained from data using regression analysis. Linear 
regression produces the linear function (line) that is the best fit for a data set; 
 quadratic regression produces the quadratic function (parabola) that is the best fit 
for a data set; and so on. (The definition of “best fit” is given in Section 7.5, where 
calculus is used to justify regression methods.) Examples 7 and 8 illustrate how a 
graphing calculator can be used to produce a scatter plot, that is, a graph of the 
points in a data set, and to find a linear or quadratic regression model.
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A visual inspection of the plot of a data set might indicate that a parabola would 
be a better model of the data than a straight line. In that case, we would use quadratic, 
rather than linear, regression.

Diamond Prices Table 4 gives diamond prices for round-shaped diamonds. Use 
linear regression to find the best linear model of the form y = ax + b for the price 
y (in dollars) of a diamond as a function of its weight x (in carats).

EXAMPLE 7

Table 4 Round-Shaped Diamond Prices

Source: www.tradeshop.com

Weight (carats) Price

0.5 $2,790
0.6 $3,191
0.7 $3,694
0.8 $4,154
0.9 $5,018
1.0 $5,898

SOLUTION Enter the data in a graphing calculator (Fig. 22A) and find the lin-
ear regression equation (Fig. 22B). The data set and the model, that is, the line 
y = 6,137.4x - 478.9, are graphed in Figure 22C.

(A)  Entering the data   
Figure 22 Linear regression on a graphing calculator

(B)  Finding the model   

0
1.5

8000

0

(C)  Graphing the data and the model

Table 5 Emerald-Shaped  
Diamond Prices

Source: www.tradeshop.com

Weight (carats) Price

0.5 $1,677
0.6 $2,353
0.7 $2,718
0.8 $3,218
0.9 $3,982
1.0 $4,510

Matched Problem 7  Prices for emerald-shaped diamonds are given in Table 5.  
Repeat Example 7 for this data set.

Outboard Motors Table 6 gives performance data for a boat powered by an 
 Evinrude outboard motor. Use quadratic regression to find the best model of the 
form y = ax2 + bx + c for fuel consumption y (in miles per gallon) as a function 
of speed x (in miles per hour). Estimate the fuel consumption (to one decimal place) 
at a speed of 12 miles per hour.

Table 6
rpm mph mpg

2,500 10.3 4.1
3,000 18.3 5.6
3,500 24.6 6.6
4,000 29.1 6.4
4,500 33.0 6.1
5,000 36.0 5.4
5,400 38.9 4.9

SOLUTION Enter the data in a graphing calculator (Fig. 23A) and find the quadratic 
regression equation (Fig. 23B). The data set and the regression equation are graphed 

EXAMPLE 8
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in Figure 23C. Using trace, we see that the estimated fuel consumption at a speed 
of 12 mph is 4.5 mpg.

(A)

Figure 23
(B)   (C)

0
50

10

0

Matched Problem 8  Refer to Table 6. Use quadratic regression to find the 
best model of the form y = ax2 + bx + c for boat speed y (in miles per hour) as 
a function of engine speed x (in revolutions per minute). Estimate the boat speed 
(in miles per hour, to one decimal place) at an engine speed of 3,400 rpm.

In Problems 1–4, sketch a graph of each equation in a rectangular 
coordinate system.

1. y = 2x - 3 2. y =
x
2

+ 1

3. 2x + 3y = 12 4. 8x - 3y = 24

In Problems 5–8, find the slope and y intercept of the graph of 
each equation.

5. y = 5x - 7 6. y = 3x + 2

7. y = -  
5
2

 x - 9 8. y = -  
10
3

 x + 4

In Problems 9–14, find the slope and x intercept of the graph of 
each equation.

9. y = 2x + 10 10. y = -4x + 12

11. 8x - y = 40 12. 3x + y = 6

13. -6x + 7y = 42 14. 9x + 2y = 4

In Problems 15–18, write an equation of the line with the indi-
cated slope and y intercept.

15. Slope = 2

y intercept = 1

16. Slope = 1

y intercept = 5

17. Slope = -  
1
3

y intercept = 6

18. Slope =
6
7

y intercept = -  
9
2

A In Problems 19–22, use the graph of each line to find the x inter-
cept, y intercept, and slope. Write the slope-intercept form of the 
equation of the line.

19. 

x

y

25 5

25

5

20. 

x

y

25 5

25

5

21. 

x

y

5

25

5

25

22. 

x

y

25 5

25

5

23. Match each equation with a graph of one of the functions f, g, 
m, or n in the figure.

(A) y = - 1x + 22 2 + 1 (B) y = 1x - 22 2 - 1

(C) y = 1x + 22 2 - 1 (D) y = - 1x - 22 2 + 1

Exercises 1.3
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35. 1-2, -12 and 12, -62 36. 12, 32 and 1-3, 72
37. 15, 32 and 15, -32 38. 11, 42 and 10, 42
39. 1-2, 52 and 13, 52 40. 12, 02 and 12, -32
In Problems 41–46, find the vertex form for each quadratic func-
tion. Then find each of the following:

(A) Intercepts (B) Vertex

(C) Maximum or minimum (D) Range

41. f1x2 = x2 - 8x + 12 42. g1x2 = x2 - 12x + 27

43. r1x2 = -4x2 + 16x - 15 44. s1x2 = -4x2 - 8x - 3

45. u1x2 = 0.5x2 - 2x + 5 46. v1x2 = 0.5x2 + 6x + 19

In Problems 47–54, use interval notation to write the solution set 
of the inequality.

47. 5x - 35 Ú 0 48. 9x + 54 7 0

49. 3x + 42 6 0 50. -4x + 44 … 0

51. 1x - 321x + 52 7 0 52. 1x + 621x - 32 6 0

53. x2 + x - 6 … 0 54. x2 + 7x + 12 Ú 0

55. Graph y = 25x + 200, x Ú 0.

56. Graph y = 40x + 160, x Ú 0.

57. (A) Graph y = 1.2x - 4.2 in a rectangular coordinate 
system.

(B) Find the x and y intercepts algebraically to one decimal 
place.

(C) Graph y = 1.2x - 4.2 in a graphing calculator.

(D) Find the x and y intercepts to one decimal place using 
trace and the zero command.

58. (A) Graph y = -0.8x + 5.2 in a rectangular coordinate 
system.

(B) Find the x and y intercepts algebraically to one decimal 
place.

(C) Graph y = -0.8x + 5.2 in a graphing calculator.

(D) Find the x and y intercepts to one decimal place using 
trace and the zero command.

(E) Using the results of parts (A) and (B), or (C) and (D), 
find the solution set for the linear inequality

-0.8x + 5.2 6 0

59. Let f1x2 = 0.3x2 - x - 8. Solve each equation graphically 
to two decimal places.

(A) f1x2 = 4 (B) f1x2 = -1 (C) f1x2 = -9

60. Let g1x2 = -0.6x2 + 3x + 4. Solve each equation graphi-
cally to two decimal places.

(A) g1x2 = -2 (B) g1x2 = 5 (C) g1x2 = 8

61. Let f1x2 = 125x - 6x2. Find the maximum value of f to 
four decimal places graphically.

62. Let f1x2 = 100x - 7x2 - 10. Find the maximum value of f 
to four decimal places graphically.

C

x

y

25 5

m

gf

n

24. Match each equation with a graph of one of the functions f, g, 
m, or n in the figure.

(A) y = 1x - 32 2 - 4 (B) y = - 1x + 32 2 + 4

(C) y = - 1x - 32 2 + 4 (D) y = 1x + 32 2 - 4

x

y

m

gf

n

27 7

25

5

For the functions indicated in Problems 25–28, find each of the 
following to the nearest integer by referring to the graphs for 
Problems 23 and 24.

(A) Intercepts (B) Vertex

(C) Maximum or minimum (D) Range

25. Function n in the figure for Problem 23

26. Function m in the figure for Problem 24

27. Function f in the figure for Problem 23

28. Function g in the figure for Problem 24

In Problems 29–32, find each of the following:

(A) Intercepts (B) Vertex

(C) Maximum or minimum (D) Range

29. f1x2 = - 1x - 32 2 + 2

30. g1x2 = - 1x + 22 2 + 3

31. m1x2 = 1x + 12 2 - 2

32. n1x2 = 1x - 42 2 - 3

In Problems 33–40,

(A) Find the slope of the line that passes through the given points.

(B) Find the point-slope form of the equation of the line.

(C) Find the slope-intercept form of the equation of the line.

(D) Find the standard form of the equation of the line.

33. 12, 52 and 15, 72 34. 11, 22 and 13, 52

B
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69. Cost analysis. A plant can manufacture 80 golf clubs per 
day for a total daily cost of $7,647 and 100 golf clubs per day 
for a total daily cost of $9,147.

(A) Assuming that daily cost and production are linearly re-
lated, find the total daily cost of producing x golf clubs.

(B) Graph the total daily cost for 0 … x … 200.

(C) Interpret the slope and y intercept of this cost equation.

70. Cost analysis. A plant can manufacture 50 tennis rackets per 
day for a total daily cost of $3,855 and 60 tennis rackets per 
day for a total daily cost of $4,245.

(A) Assuming that daily cost and production are linearly 
related, find the total daily cost of producing x tennis 
rackets.

(B) Graph the total daily cost for 0 … x … 100.

(C) Interpret the slope and y intercept of this cost equation.

71. Business—Depreciation. A farmer buys a new tractor for 
$157,000 and assumes that it will have a trade-in value of 
$82,000 after 10 years. The farmer uses a constant rate of 
depreciation (commonly called straight-line depreciation—
one of several methods permitted by the IRS) to determine 
the annual value of the tractor.

(A) Find a linear model for the depreciated value V of the 
tractor t years after it was purchased.

(B) What is the depreciated value of the tractor after 6 years?

(C) When will the depreciated value fall below $70,000?

(D) Graph V for 0 … t … 20 and illustrate the answers from 
parts (B) and (C) on the graph.

72. Business—Depreciation. A charter fishing company buys 
a new boat for $224,000 and assumes that it will have a trade-
in value of $115,200 after 16 years.

(A) Find a linear model for the depreciated value V of the 
boat t years after it was purchased.

(B) What is the depreciated value of the boat after 10 years?

(C) When will the depreciated value fall below $100,000?

(D) Graph V for 0 … t … 30 and illustrate the answers from 
(B) and (C) on the graph.

73. Flight conditions. In stable air, the air temperature drops 
about 3.6°F for each 1,000-foot rise in altitude. (Source: 
Federal Aviation Administration)

(A) If the temperature at sea level is 70°F, write a linear 
equation that expresses temperature T in terms of alti-
tude A in thousands of feet.

(B) At what altitude is the temperature 34°F?

74. Flight navigation. The airspeed indicator on some air-
craft is affected by the changes in atmospheric pressure at 
different altitudes. A pilot can estimate the true airspeed 
by observing the indicated airspeed and adding to it about 
1.6% for every 1,000 feet of altitude. (Source: Megginson 
Technologies Ltd.)

63. If B ∙ 0, Ax1 + By1 = C, and Ax2 + By2 = C, show 
 that the slope of the line through 1x1, y12 and 1x2, y22 is  

equal to -  
A
B

.

64. If B ∙ 0 and 1x1, y12, 1x2, y22, and 1x3, y32 are all solutions 
of Ax + By = C, show that the slope of the line through 
1x1, y12 and 1x2, y22 is equal to the slope of the line through 
1x1, y12 and 1x3, y32.

Applications
65. Underwater pressure. At sea level, the weight of the atmo-

sphere exerts a pressure of 14.7 pounds per square inch, com-
monly referred to as 1 atmosphere of pressure. As an object 
descends in water, pressure P and depth d are linearly related. 
In salt water, the pressure at a depth of 33 ft is 2 atms, or 29.4 
pounds per square inch.

(A) Find a linear model that relates pressure P (in pounds per 
square inch) to depth d (in feet).

(B) Interpret the slope of the model.

(C) Find the pressure at a depth of 50 ft.

(D) Find the depth at which the pressure is 4 atms.

66. Underwater pressure. Refer to Problem 65. In fresh water, 
the pressure at a depth of 34 ft is 2 atms, or 29.4 pounds per 
square inch.

(A) Find a linear model that relates pressure P (in pounds per 
square inch) to depth d (in feet).

(B) Interpret the slope of the model.

(C) Find the pressure at a depth of 50 ft.

(D) Find the depth at which the pressure is 4 atms.

67. Rate of descent—Parachutes. At low altitudes, the altitude 
of a parachutist and time in the air are linearly related. A jump 
at 2,880 ft using the U.S. Army’s T-10 parachute system lasts 
120 secs.

(A) Find a linear model relating altitude a (in feet) and time 
in the air t (in seconds).

(B) Find the rate of descent for a T-10 system.

(C) Find the speed of the parachutist at landing.

68. Rate of descent—Parachutes. The U.S Army is considering 
a new parachute, the Advanced Tactical Parachute System 
(ATPS). A jump at 2,880 ft using the ATPS system lasts 
180 secs.

(A) Find a linear model relating altitude a (in feet) and time 
in the air t (in seconds).

(B) Find the rate of descent for an ATPS system  
parachute.

(C) Find the speed of the parachutist at landing.
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(A) Draw a scatter plot of the data and a graph of the model 
on the same axes.

(B) If the population of Michigan in 2014 was about  
9.9 million, use the model to estimate the number of 
licensed drivers in Michigan in 2014 to the nearest 
thousand.

(C) If the number of licensed drivers in Georgia in 2014  
was about 6.7 million, use the model to estimate the 
population of Georgia in 2014 to the nearest  
thousand.

79. Tire mileage. An automobile tire manufacturer collected the 
data in the table relating tire pressure x (in pounds per square 
inch) and mileage (in thousands of miles):

x Mileage

28 45

30 52

32 55

34 51

36 47

A mathematical model for the data is given by

f1x2 = -0.518x2 + 33.3x - 481

(A) A pilot maintains a constant reading of 200 miles per 
hour on the airspeed indicator as the aircraft climbs from 
sea level to an altitude of 10,000 feet. Write a linear 
equation that expresses true airspeed T (in miles per 
hour) in terms of altitude A (in thousands of feet).

(B) What would be the true airspeed of the aircraft at 
6,500 feet?

75. Supply and demand. At a price of $2.28 per bushel, the 
 supply of barley is 7,500 million bushels and the demand is 
7,900  million bushels. At a price of $2.37 per bushel, the sup-
ply is 7,900 million bushels and the demand is 7,800 million 
bushels.

(A) Find a price–supply equation of the form p = mx + b.

(B) Find a price–demand equation of the form p = mx + b.

(C) Find the equilibrium point.

(D) Graph the price–supply equation, price–demand equa-
tion, and equilibrium point in the same coordinate 
system.

76. Supply and demand. At a price of $1.94 per bushel, the 
supply of corn is 9,800 million bushels and the demand is 
9,300 million bushels. At a price of $1.82 per bushel,  
the  supply is 9,400 million bushels and the demand is  
9,500 million bushels.

(A) Find a price–supply equation of the form p = mx + b.

(B) Find a price–demand equation of the form p = mx + b.

(C) Find the equilibrium point.

(D) Graph the price–supply equation, price–demand equa-
tion, and equilibrium point in the same coordinate 
system.

77. Licensed drivers. The table contains the state population and 
the number of licensed drivers in the state (both in millions) 
for the states with population under 1 million in 2014. The 
regression model for this data is

y = 0.75x

where x is the state population in millions and y is the number 
of licensed drivers in millions in the state.

Licensed Drivers in 2014

Source: Bureau of Transportation Statistics

State Population Licensed Drivers

Alaska 0.74 0.53

Delaware 0.94 0.73

Montana 1.00 0.77

North Dakota 0.74 0.53

South Dakota 0.85 0.61

Vermont 0.63 0.55

Wyoming 0.58 0.42

Licensed Drivers in 2014

Source: Bureau of Transportation Statistics

State Population Licensed Drivers

California 39 25

Florida 20 14

Illinois 13 8

New York 20 11

Ohio 12 8

Pennsylvania 13 9

Texas 27 16

(B) If the population of Hawaii in 2014 was about 1.4 million, 
use the model to estimate the number of licensed drivers 
in Hawaii in 2014 to the nearest thousand.

(C) If the number of licensed drivers in Maine in 2014 
was about 1,019,000 million, use the model to esti-
mate the population of Maine in 2014 to the nearest 
thousand.

78. Licensed drivers. The table contains the state population and 
the number of licensed drivers in the state (both in millions) 
for the most populous states in 2014. The regression model 
for this data is

y = 0.62x + 0.29

where x is the state population in millions and y is the number 
of licensed drivers in millions in the state.

(A) Draw a scatter plot of the data and a graph of the model 
on the same axes.
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82. Automobile production. Using quadratic regression on a 
graphing calculator, show that the quadratic function that best 
fits the data on market share in Problem 80 is

f1x2 = 0.0237x2 - 0.59x + 44.52

83. Revenue. The marketing research department for a company 
that manufactures and sells memory chips for microcomputers  
established the following price–demand and revenue  
functions:

 p1x2 = 75 - 3x  Price–demand function

 R1x2 = x p1x2 = x175 - 3x2 Revenue function

where p1x2 is the wholesale price in dollars at which x 
 million chips can be sold, and R1x2 is in millions of dollars. 
Both functions have domain 1 … x … 20.

(A) Sketch a graph of the revenue function in a rectangular 
coordinate system.

(B) Find the value of x that will produce the maximum 
 revenue. What is the maximum revenue?

(C) What is the wholesale price per chip that produces the 
maximum revenue?

84. Revenue. The marketing research department for a  
company that manufactures and sells notebook computers  
established the following price–demand and revenue  
functions:

 p1x2 = 2,000 - 60x  Price–demand function

 R1x2 = xp1x2  Revenue function

 = x12,000 - 60x2

where p1x2 is the wholesale price in dollars at which x 
thousand computers can be sold, and R1x2 is in thousands of 
dollars. Both functions have domain 1 … x … 25.

(A) Sketch a graph of the revenue function in a rectangular 
coordinate system.

(B) Find the value of x that will produce the maximum 
revenue. What is the maximum revenue to the nearest 
thousand dollars?

(C) What is the wholesale price per computer (to the nearest 
dollar) that produces the maximum revenue?

85. Forestry. The figure contains a scatter plot of 100 data 
points for black spruce trees and the linear regression model 
for this data.

(A) Interpret the slope of the model.

(B) What is the effect of a 1-in. increase in the diameter at 
breast height (Dbh)?

(C) Estimate the height of a black spruce with a Dbh of  
15 in. Round your answer to the nearest foot.

(D) Estimate the Dbh of a black spruce that is 25 ft tall. 
Round your answer to the nearest inch.

(A) Complete the following table. Round values of f1x2 to 
one decimal place.

x Mileage f 1x 2
28 45

30 52

32 55

34 51

36 47

(B) Sketch the graph of f and the mileage data in the same 
coordinate system.

(C) Use the modeling function f1x2 to estimate the mileage 
for a tire pressure of 31 lb/sq in. and for 35 lb/sq in. Round 
answers to two decimal places.

(D) Write a brief description of the relationship between tire 
pressure and mileage.

80. Automobile production. The table shows the retail 
 market share of passenger cars (excluding minivehicles) 
from Toyota Motor Corporation as a percentage of the 
Japanese market.

Year Market Share

1985 41.8%

1990 41.9%

1995 40.0%

2000 43.2%

2005 43.6%

2010 48.5%

A mathematical model for this data is given by

f1x2 = 0.0237x2 - 0.59x + 44.52

where x = 0 corresponds to 1980.

(A) Complete the following table. Round values of f1x2 to 
two decimal place.

x Market Share f 1x 2
5 41.8

10 41.9

15 40.0

20 43.2

25 43.6

30 48.5

(B) Sketch the graph of f and the market share data in the 
same coordinate system.

(C) Use values of the modeling function f to estimate 
Toyota’s market share in 2020 and in 2023.

(D) Write a brief verbal description of Toyota’s market share 
from 1985 to 2010.

81. Tire mileage. Using quadratic regression on a graphing 
calculator, show that the quadratic function that best fits the 
data on tire mileage in Problem 79 is

f1x2 = -0.518x2 + 33.3x - 481
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88. Olympic Games. Find a linear regression model for the 
men’s 200-meter backstroke data given in the table, where 
x is years since 1990 and y is winning time (in seconds). Do 
the same for the women’s 200-meter backstroke data. (Round 
regression coefficients to three decimal places.) Do these 
models indicate that the women will eventually catch up with 
the men?

89. Outboard motors. The table gives performance data for 
a boat powered by an Evinrude outboard motor. Find a 
quadratic regression model 1y = ax2 + bx + c2 for boat 
speed y (in miles per hour) as a function of engine speed 
(in revolutions per minute). Estimate the boat speed at an 
engine speed of 3,100 revolutions per minute.

45.0

40.0

35.0

30.0

25.0

20.0

15.0

10.0

5.0

5.0 10.0 15.0
Dbh (in.)

20.0 25.00.0
0.0

H
ei

gh
t (

ft
)

y 5 1.37x 2 2.58

Source: Lakehead University

86. Forestry. The figure contains a scatter plot of 100 data 
points for black walnut trees and the linear regression model 
for this data.

(A) Interpret the slope of the model.

(B) What is the effect of a 1-in. increase in Dbh?

(C) Estimate the height of a black walnut with a Dbh of 
12 in. Round your answer to the nearest foot.

(D) Estimate the Dbh of a black walnut that is 25 ft tall. 
Round your answer to the nearest inch.

45.0

40.0

35.0

30.0

25.0

20.0

15.0

10.0

5.0

5.0 10.0 15.0
Dbh (in.)

20.0 25.00.0
0.0

H
ei

gh
t (

ft
)

y 5 1.66x 2 5.14

Source: Kagen Research

Problems 87 and 88 require a graphing calculator or a computer 
that can calculate the linear regression line for a given data set.

87. Olympic Games. Find a linear regression model for the men’s 
100-meter freestyle data given in the table, where x is years 
since 1990 and y is winning time (in seconds). Do the same for 
the women’s 100-meter freestyle data. (Round regression coef-
ficients to three decimal places.) Do these models indicate that 
the women will eventually catch up with the men?

Winning Times in Olympic Swimming Events

Source: www.infoplease.com

100-Meter Freestyle 200-Meter Backstroke
Men Women Men Women

1992 49.02 54.65 1:58.47 2:07.06

1996 48.74 54.50 1:58.54 2:07.83

2000 48.30 53.83 1:56.76 2:08.16

2004 48.17 53.84 1:54.76 2:09.16

2008 47.21 53.12 1:53.94 2:05.24

2012 47.52 53.00 1:53.41 2:04.06

2016 47.58 52.70 1:53.62 2:05.99

Outboard Motor Performance
rpm mph mpg

1,500 4.5 8.2

2,000 5.7 6.9

2,500 7.8 4.8

3,000 9.6 4.1

3,500 13.4 3.7

Answers to Matched Problems
1. y - 10 = -31x + 22; y = -3x + 4; 3x + y = 4

2. (A) 

x

y

25 5

25

5

225

(B) y intercept = -4, x intercept = 3

25

5

25 5

25

5

25 5

(C) 33, ∞ 2

90. Outboard motors. The table gives performance data for a 
boat powered by an Evinrude outboard motor. Find a quadrat-
ic regression model 1y = ax2 + bx + c2 for fuel consump-
tion y (in miles per gallon) as a function of engine speed (in 
revolutions per minute). Estimate the fuel consumption at an 
engine speed of 2,300 revolutions per minute.
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5. (A) p = 0.006x + 9.02

(B) p = -0.01x + 19.09

(C) (629, 12.80)

6. (A) P1x2 = R1x2 - C1x2 = -5x2 + 75.1x - 156

(B) P1x2 = R1x2 - C1x2 = -51x - 7.512 2 + 126.0005;  
the manufacture and sale of 7,510,000 million cameras 
will produce a maximum profit of $126,001,000.

(C) p17.5102 = $57

(D) 

2300

300

1 15

(E) 

2300

300

1 15

The manufacture and sale of 7,510,000 million cameras will 
produce a maximum profit of $126,001,000. (Notice that 
maximum profit does not occur at the same value of x where 
maximum revenue occurs.)

7. y = 5,586x - 1,113

  

0

5000

0 1.5

8. 

22.9 mph

3. (A) 

x

g(x)

10

10

210

210

(B) x intercepts: -0.7656, 3.2656; y intercept: -5

(C) 

210

10

210 10

(D) x intercepts: -0.7656, 3.2656; y intercept: -5

(E) x … -0.7656 or x Ú 3.2656; or 1- ∞ , -0.76564  
or 33.2656, ∞ 2

(F) x = -0.3508, 2.8508

4. (A) f1x2 = -0.251x + 42 2 + 6.

(B) Vertex: 1-4, 62; maximum: f1-42 = 6; range: y … 6 
or 1- ∞ , 64

(C) The graph of f1x2 = -0.251x + 42 2 + 6 is the same 
as the graph of h1x2 = x2 vertically shrunk by a factor 
of 0.25, reflected in the x axis, and shifted 4 units to the 
left and 6 units up.

(D) 

210

210

10

10

x

y

(E) 

210

10

210 10

(F) Vertex: 1-4, 62; maximum: f1-42 = 6

210

10

210 10
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Figure 1 shows graphs of representative polynomial functions of degrees 1 through 6. 
The figure, which also appears on the inside back cover, suggests some general prop-
erties of graphs of polynomial functions.

Linear and quadratic functions are special cases of the more general class of poly-
nomial functions. Polynomial functions are a special case of an even larger class of 
functions, the rational functions. We will describe the basic features of the graphs of 
polynomial and rational functions. We will use these functions to solve real-world 
problems where linear or quadratic models are inadequate, for example, to determine 
the relationship between length and weight of a species of fish or to model the train-
ing of new employees.

Polynomial Functions
A linear function has the form f1x2 = mx + b 1where m ∙ 02 and is a polyno-
mial function of degree 1. A quadratic function has the form f1x2 = ax2 + bx + c 
1where a ∙ 02 and is a polynomial function of degree 2. Here is the general defini-
tion of a polynomial function.

1.4 Polynomial and Rational Functions
■■ Polynomial Functions
■■ Regression Polynomials
■■ Rational Functions
■■ Applications

DEFINITION Polynomial Function
A polynomial function is a function that can be written in the form

f1x2 = anx
n + an - 1x

n - 1 + g + a1x + a0

for n a nonnegative integer, called the degree of the polynomial. The coefficients 
a0, a1, . . . , an are real numbers with an ∙ 0. The domain of a polynomial func-
tion is the set of all real numbers.

(A)  f (x) 5 x 2 2

x

f (x)

25

525

5

  

g(x)

(B)  g(x) 5 x3  2 2x

x

25

525

5

  

x

25

525

5

h(x)

(C)  h(x) 5 x5 2 5x3 1 4x 1 1

Figure 1 Graphs of polynomial functions

x

25

525

5

F(x)

(D)  F(x) 5 x2 2 2x 1 2   

G(x)

(E)  G(x) 5 2x4  2 4x2 1 x 2 1

x

25

525

5

  

x

25

525

5

(F)  H(x) 5 x6 2 7x4 1 14x2 2 x 2 5

H(x)

Notice that the odd-degree polynomial graphs start negative, end positive, and 
cross the x axis at least once. The even-degree polynomial graphs start positive, end 
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positive, and may not cross the x axis at all. In all cases in Figure 1, the leading 
 coefficient—that is, the coefficient of the highest-degree term—was chosen positive. 
If any leading coefficient had been chosen negative, then we would have a similar 
graph but reflected in the x axis.

A polynomial of degree n can have, at most, n linear factors. Therefore, the graph 
of a polynomial function of positive degree n can intersect the x axis at most n times. 
Note from Figure 1 that a polynomial of degree n may intersect the x axis fewer than 
n times. An x intercept of a function is also called a zero or root of the function.

The graph of a polynomial function is continuous, with no holes or breaks. That 
is, the graph can be drawn without removing a pen from the paper. Also, the graph 
of a polynomial has no sharp corners. Figure 2 shows the graphs of two functions—
one that is not continuous, and the other that is continuous but with a sharp corner. 
Neither function is a polynomial.

Discontinuous–break
at x 5 0

(A)  f (x) 5
2|x|

x

f (x)

x

Figure 2 Discontinuous and sharp-corner functions

Continuous, but sharp
corner at (0, 23)

(B)  h(x) 5 |x| 2 3

x

h(x)

Regression Polynomials
In Section 1.3, we saw that regression techniques can be used to fit a straight line to a 
set of data. Linear functions are not the only ones that can be applied in this manner. 
Most graphing calculators have the ability to fit a variety of curves to a given set of 
data. We will discuss polynomial regression models in this section and other types of 
regression models in later sections.

Estimating the Weight of a Fish Using the length of a fish to estimate its weight 
is of interest to both scientists and sport anglers. The data in Table 1 give the average 
weights of lake trout for certain lengths. Use the data and regression techniques to 
find a polynomial model that can be used to estimate the weight of a lake trout for 
any length. Estimate (to the nearest ounce) the weights of lake trout of lengths 39, 
40, 41, 42, and 43 inches, respectively.

Table 1 Lake Trout
Length (in.) Weight (oz) Length (in.) Weight (oz)

x y x y
10 5 30 152
14 12 34 226
18 26 38 326
22 56 44 536
26 96

SOLUTION The graph of the data in Table 1 (Fig. 3A) indicates that a linear regression 
model would not be appropriate in this case. And, in fact, we would not expect a linear 
relationship between length and weight. Instead, it is more likely that the weight would 
be related to the cube of the length. We use a cubic regression polynomial to model the 

EXAMPLE 1

Reminder
Only real numbers can be x inter-
cepts. Functions may have complex 
zeros that are not real numbers, but 
such zeros, which are not x intercepts, 
will not be discussed in this book.
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data (Fig. 3B). Figure 3C adds the graph of the polynomial model to the graph of the 
data. The graph in Figure 3C shows that this cubic polynomial does provide a good fit 
for the data. (We will have more to say about the choice of functions and the accuracy 
of the fit provided by regression analysis later in the book.) Figure 3D shows the esti-
mated weights for the lengths requested.

0
50

600

0

(A)   (B)

Figure 3

0
50

600

0

(C)   (D)

Matched Problem 1  The data in Table 2 give the average weights of pike for 
certain lengths. Use a cubic regression polynomial to model the data. Estimate (to 
the nearest ounce) the weights of pike of lengths 39, 40, 41, 42, and 43 inches, 
respectively.

Table 2 Pike
Length (in.) Weight (oz) Length (in.) Weight (oz)

x y x y
10 5 30 108
14 12 34 154
18 26 38 210
22 44 44 326
26 72 52 522

Rational Functions
Just as rational numbers are defined in terms of quotients of integers, rational func-
tions are defined in terms of quotients of polynomials. The following equations 
specify rational functions:

 f1x2 =
1
x
 g1x2 =

x - 2

x2 - x - 6
 h1x2 =

x3 - 8
x

 p1x2 = 3x2 - 5x  q1x2 = 7 r1x2 = 0
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72 CHAPTER 1 Functions and Graphs

Figure 4 shows the graphs of representative rational functions. Note, for ex-
ample, that in Figure 4A the line x = 2 is a vertical asymptote for the function. The 
graph of f gets closer to this line as x gets closer to 2. The line y = 1 in Figure 4A 
is a horizontal asymptote for the function. The graph of f gets closer to this line as x 
increases or decreases without bound.

DEFINITION Rational Function
A rational function is any function that can be written in the form

f1x2 =
n1x2
d1x2  d1x2 ∙ 0

where n1x2 and d1x2 are polynomials. The domain is the set of all real numbers 
such that d1x2 ∙ 0.

f (x) 5
x 2 3
x 2 2

(A)  

x

25

525

5

f (x)

  
Figure 4 Graphs of rational functions

f (x) 5
8

x2 2 4
(B)  

x

25

525

5

f (x)

  
f (x) 5 x 1

1
x

(C)  

x

25

525

5

f (x)

The number of vertical asymptotes of a rational function f1x2 = n1x2 >d1x2 is 
at most equal to the degree of d1x2. A rational function has at most one horizontal 
asymptote (note that the graph in Fig. 4C does not have a horizontal asymptote). 
Moreover, the graph of a rational function approaches the horizontal asymptote 
(when one exists) both as x increases and decreases without bound.

Graphing Rational Functions Given the rational function

f1x2 =
3x

x2 - 4

(A) Find the domain.

(B) Find the x and y intercepts.

(C) Find the equations of all vertical asymptotes.

(D) If there is a horizontal asymptote, find its equation.

(E) Using the information from (A)–(D) and additional points as necessary, sketch 
a graph of f.

SOLUTION

(A) x2 - 4 = 1x - 221x + 22, so the denominator is 0 if x = -2 or x = 2. 
Therefore the domain is the set of all real numbers except -2 and 2.

(B) x intercepts: f1x2 = 0 only if 3x = 0, or x = 0. So the only x intercept is 0.
y intercept:

f102 =
3 # 0

02 - 4
=

0
-4

= 0

So the y intercept is 0.

EXAMPLE 2
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(C) Consider individually the values of x for which the denominator is 0, namely, 
2 and -2, found in part (A).
(i) If x = 2, the numerator is 6, and the denominator is 0, so f122 is undefined. 

But for numbers just to the right of 2 1like 2.1, 2.01, 2.0012, the numera-
tor is close to 6, and the denominator is a positive number close to 0, so 
the fraction f1x2 is large and positive. For numbers just to the left of 2 
1like 1.9, 1.99, 1.9992, the numerator is close to 6, and the denominator is 
a negative number close to 0, so the fraction f1x2 is large (in absolute value) 
and negative. Therefore, the line x = 2 is a vertical asymptote, and f1x2 is 
positive to the right of the asymptote, and negative to the left.

(ii) If x = -2, the numerator is -6, and the denominator is 0, so f122 is unde-
fined. But for numbers just to the right of -2 1like -1.9, -1.99, -1.9992,  
the numerator is close to -6, and the denominator is a negative number 
close to 0, so the fraction f1x2 is large and positive. For numbers just to 
the left of -2 1like -2.1, -2.01, -2.0012, the numerator is close to -6, 
and the denominator is a positive number close to 0, so the fraction f1x2 
is large (in absolute value) and negative. Therefore, the line x = -2 is a 
vertical asymptote, and f1x2 is positive to the right of the asymptote and 
negative to the left.

(D) Rewrite f1x2 by dividing each term in the numerator and denominator by the 
highest power of x in f1x2.

f1x2 =
3x

x2 - 4
=

3x

x2

x2

x2 -
4

x2

=

3
x

1 -
4

x2

As x increases or decreases without bound, the numerator tends to 0 and the 
denominator tends to 1; so, f1x2 tends to 0. The line y = 0 is a horizontal 
asymptote.

(E) Use the information from parts (A)–(D) and plot additional points as necessary 
to complete the graph, as shown in Figure 5.

x
5

5

25

f (x)

25

Figure 5

x f 1x 2
-4 -1

-2.3 -5.3

-1.7 4.6

0 0

1.7 -4.6

2.3 5.3

4 1

Matched Problem 2  Given the rational function g1x2 =
3x + 3

x2 - 9
(A) Find the domain.

(B) Find the x and y intercepts.

(C) Find the equations of all vertical asymptotes.

(D) If there is a horizontal asymptote, find its equation.

(E) Using the information from parts (A)–(D) and additional points as necessary, 
sketch a graph of g.
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74 CHAPTER 1 Functions and Graphs

Graphing rational functions is aided by locating vertical and horizontal asymp-
totes first, if they exist. The following general procedure is suggested by Example 2 
and the Conceptual Insight above.

Consider the rational function

g1x2 =
3x2 - 12x

x3 - 4x2 - 4x + 16
=

3x1x - 42
1x2 - 421x - 42

The numerator and denominator of g have a common zero, x = 4. If x ∙ 4, then 
we can cancel the factor x - 4 from the numerator and denominator, leaving the 
function f1x2 of Example 2. So the graph of g (Fig. 6) is identical to the graph 
of f (Fig. 5), except that the graph of g has an open dot at 14, 12, indicating that 
4 is not in the domain of g. In particular, f and g have the same asymptotes. Note 
that the line x = 4 is not a vertical asymptote of g, even though 4 is a zero of its 
denominator.

x
5

5

25

g(x)

25

Figure 6

CONCEPTUAL INSIGHT

PROCEDURE Vertical and Horizontal Asymptotes of Rational Functions
Consider the rational function

f1x2 =
n1x2
d1x2

where n1x2 and d1x2 are polynomials.

Vertical asymptotes:

Case 1. Suppose n1x2 and d1x2 have no real zero in common. If c is a real num-
ber such that d1c2 = 0, then the line x = c is a vertical asymptote of the graph 
of f.

Case 2. If n1x2 and d1x2 have one or more real zeros in common, cancel common 
linear factors, and apply Case 1 to the reduced function. (The reduced function has 
the same asymptotes as f.)

Horizontal asymptote:

Case 1. If degree n1x2 6 degree d1x2, then y = 0 is the horizontal asymptote.

Case 2. If degree n1x2 = degree d1x2, then y = a>b is the horizontal asymptote, 
where a is the leading coefficient of n1x2, and b is the leading coefficient of d1x2.

Case 3. If degree n1x2 7 degree d1x2, there is no horizontal asymptote.

Example 2 illustrates Case 1 of the procedure for horizontal asymptotes. Cases 2 
and 3 are illustrated in Example 3 and Matched Problem 3.
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Finding Asymptotes Find the vertical and horizontal asymptotes of the rational 
function

f1x2 =
3x2 + 3x - 6

2x2 - 2

SOLUTION Vertical asymptotes We factor the numerator n1x2 and the denominator 
d1x2:

 n1x2 = 31x2 + x - 22 = 31x - 121x + 22
 d1x2 = 21x2 - 12 = 21x - 121x + 12

The reduced function is

31x + 22
21x + 12

which, by the procedure, has the vertical asymptote x = -1. Therefore, x = -1 is 
the only vertical asymptote of f.

Horizontal asymptote Both n1x2 and d1x2 have degree 2 (Case 2 of the procedure 
for horizontal asymptotes). The leading coefficient of the numerator n1x2 is 3, and 
the leading coefficient of the denominator d1x2 is 2. So y = 3>2 is the horizontal 
asymptote.

Matched Problem 3  Find the vertical and horizontal asymptotes of the 
rational function

f1x2 =
x3 - 4x

x2 + 5x

EXAMPLE 3

A function f is bounded if the entire graph of f lies between two horizontal lines. The 
only polynomials that are bounded are the constant functions, but there are many 
rational functions that are bounded. Give an example of a bounded rational function, 
with domain the set of all real numbers, that is not a constant function.

Explore and Discuss 1

Applications
Rational functions occur naturally in many types of applications.

Employee Training A company that manufactures computers has established that, 
on the average, a new employee can assemble N1t2 components per day after t days 
of on-the-job training, as given by

N1t2 =
50t

t + 4
  t Ú 0

Sketch a graph of N, 0 … t … 100, including any vertical or horizontal asymptotes. 
What does N1t2 approach as t increases without bound?

SOLUTION Vertical asymptotes None for t Ú 0

Horizontal asymptote

N1t2 =
50t

t + 4
=

50

1 +
4
t

EXAMPLE 4
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N1t2 approaches 50 (the leading coefficient of 50t divided by the leading coeffi-
cient of t + 4) as t increases without bound. So y = 50 is a horizontal asymptote.

Sketch of graph Note that N(0) = 0, N(25) ≈ 43, and N(100) ≈ 48. We draw a 
smooth curve through (0, 0), (25, 43) and (100, 48) (Fig. 7).

N1t2 approaches 50 as t increases without bound. It appears that 50 components 
per day would be the upper limit that an employee would be expected to assemble.

Matched Problem 4  Repeat Example 4 for N1t2 =
25t + 5

t + 5
  t Ú 0.

N(t)

t

50

1000 50

Figure 7

In Problems 1–10, for each polynomial function find the  
following:

(A) Degree of the polynomial

(B) All x intercepts

(C) The y intercept

1. f1x2 = 7x + 21 2. f1x2 = x2 - 5x + 6

3. f1x2 = x2 + 9x + 20 4. f1x2 = 30 - 3x

5. f1x2 = x2 + 2x6 + 3x4 + 15

6. f1x2 = 5x4 + 3x2 + x10 + 7x8 + 9

7. f1x2 = x21x + 62 3

8. f1x2 = 1x - 82 21x + 42 3

9. f1x2 = 1x2 - 2521x3 + 82 3

10. f1x2 = 12x - 52 21x2 - 92 4

Each graph in Problems 11–18 is the graph of a polynomial func-
tion. Answer the following questions for each graph:

(A) What is the minimum degree of a polynomial function that 
could have the graph?

(B) Is the leading coefficient of the polynomial negative or 
positive?

11. 

x

25

525

5

f (x) 12. 

x

25

525

5

f (x)

A 13. 

x

25

525

5

f (x) 14. 

x

25

525

5

f (x)

15. 

x

25

525

5

f (x) 16. 

x

25

525

5

f (x)

17. 

x

25

525

5

f (x) 18. 

x

25

525

5

f (x)

19. What is the maximum number of x intercepts that a polynomial 
of degree 10 can have?

20. What is the maximum number of x intercepts that a polyno-
mial of degree 11 can have?

21. What is the minimum number of x intercepts that a polynomial 
of degree 9 can have? Explain.

22. What is the minimum number of x intercepts that a polyno-
mial of degree 6 can have? Explain.

Exercises 1.4
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43. f1x2 =
x2 - x - 6

x2 - 3x - 10
44. f1x2 =

x2 - 8x + 7

x2 + 7x - 8

45. f1x2 =
x2 - 49x

x3 - 49x
46. f1x2 =

x2 + x - 2

x3 - 3x2 + 2x

For each rational function in Problems 47–52,

(A) Find any intercepts for the graph.

(B) Find any vertical and horizontal asymptotes for the graph.

(C) Sketch any asymptotes as dashed lines. Then sketch a graph of f.

(D) Graph the function in a standard viewing window using a 
graphing calculator.

47. f1x2 =
2x2

x2 - x - 6
48. f1x2 =

3x2

x2 + x - 6

49. f1x2 =
6 - 2x2

x2 - 9
50. f1x2 =

3 - 3x2

x2 - 4

51. f1x2 =
-4x + 24

x2 + x - 6
52. f1x2 =

5x - 10

x2 + x - 12

53. Write an equation for the lowest-degree polynomial function 
with the graph and intercepts shown in the figure.

x

f (x)

25 5

25

5

54. Write an equation for the lowest-degree polynomial function 
with the graph and intercepts shown in the figure.

x

f (x)

25 5

25

5

55. Write an equation for the lowest-degree polynomial function 
with the graph and intercepts shown in the figure.

x

f (x)

25 5

25

5

C

For each rational function in Problems 23–28,

(A) Find the intercepts for the graph.

(B) Determine the domain.

(C) Find any vertical or horizontal asymptotes for the graph.

(D) Sketch any asymptotes as dashed lines. Then sketch a graph 
of y = f1x2.

23. f1x2 =
x + 2
x - 2

24. f1x2 =
x - 3
x + 3

25. f1x2 =
3x

x + 2
26. f1x2 =

2x
x - 3

27. f1x2 =
4 - 2x
x - 4

28. f1x2 =
3 - 3x
x - 2

29. Compare the graph of y = 2x4 to the graph of 
y = 2x4 - 5x2 + x + 2 in the following two viewing 
windows:

(A) -5 … x … 5, -5 … y … 5

(B) -5 … x … 5, -500 … y … 500

30. Compare the graph of y = x3 to the graph of 
y = x3 - 2x + 2 in the following two viewing windows:

(A) -5 … x … 5, -5 … y … 5

(B) -5 … x … 5, -500 … y … 500

31. Compare the graph of y = -x5 to the graph of 
y = -x5 + 4x3 - 4x + 1 in the following two viewing 
windows:

(A) -5 … x … 5, -5 … y … 5

(B) -5 … x … 5, -500 … y … 500

32. Compare the graph of y = -x5 to the graph of 
y = -x5 + 5x3 - 5x + 2 in the following two viewing 
windows:

(A) -5 … x … 5, -5 … y … 5

(B) -5 … x … 5, -500 … y … 500

In Problems 33–40, find the equation of any horizontal asymptote.

33. f1x2 =
4x3 + x2 - 10

5x3 + 7x2 + 9
34. f1x2 =

6x4 - x3 + 2

4x4 + 10x + 5

35. f1x2 =
1 - 5x + x2

2 + 3x + 4x2 36. f1x2 =
8 - x3

1 + 2x3

37. f1x2 =
x4 + 2x2 + 1

1 - x5 38. f1x2 =
3 + 5x

x2 + x + 3

39. f1x2 =
x2 + 6x + 1

x - 5
40. f1x2 =

x2 + x4 + 1

x3 + 2x - 4

In Problems 41–46, find the equations of any vertical asymptotes.

41. f1x2 =
x2 + 1

1x2 - 121x2 - 92 42. f1x2 =
x2 - 16

1x2 - 2521x2 - 362

B
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integer values until a minimum value is found.] The time 
when the average cost is minimum is frequently referred 
to as the replacement time for the piece of equipment.

(D) Graph the average cost function C on a graphing calcula-
tor and use an appropriate command to find when the 
average annual cost is at a minimum.

60. Minimum average cost. Financial analysts in a company 
that manufactures DVD players arrived at the following daily 
cost equation for manufacturing x DVD players per day:

C1x2 = x2 + 2x + 2,000

The average cost per unit at a production level of x players 
per day is C1x2 = C1x2 >x.

(A) Find the rational function C.

(B) Sketch a graph of C for 5 … x … 150.

(C) For what daily production level (to the nearest integer) 
is the average cost per unit at a minimum, and what is 
the minimum average cost per player (to the nearest 
cent)? [Hint: Refer to the sketch in part (B) and evalu-
ate C1x2 at appropriate integer values until a minimum 
value is found.]

(D) Graph the average cost function C on a graphing calcu-
lator and use an appropriate command to find the daily 
production level (to the nearest integer) at which the 
average cost per player is at a minimum. What is the 
minimum average cost to the nearest cent?

61. Minimum average cost. A consulting firm, using statisti-
cal methods, provided a veterinary clinic with the cost 
equation

C1x2 = 0.000481x - 5002 3 + 60,000

100 … x … 1,000

where C1x2 is the cost in dollars for handling x cases  
per month. The average cost per case is given by 
C1x2 = C1x2 >x.

(A) Write the equation for the average cost function C.

(B) Graph C on a graphing calculator.

(C) Use an appropriate command to find the monthly case-
load for the minimum average cost per case. What is the 
minimum average cost per case?

62. Minimum average cost. The financial department of a hospi-
tal, using statistical methods, arrived at the cost equation

C1x2 = 20x3 - 360x2 + 2,300x - 1,000

1 … x … 12

where C1x2 is the cost in thousands of dollars for handling  
x thousand cases per month. The average cost per case is 
given by C1x2 = C1x2 >x.

(A) Write the equation for the average cost function C.

(B) Graph C on a graphing calculator.

(C) Use an appropriate command to find the monthly 
caseload for the minimum average cost per case. What 
is the minimum average cost per case to the nearest 
dollar?

56. Write an equation for the lowest-degree polynomial function 
with the graph and intercepts shown in the figure.

x

f (x)

25 5

25

5

Applications
57. Average cost. A company manufacturing snowboards has 

fixed costs of $200 per day and total costs of $3,800 per day 
at a daily output of 20 boards.

(A) Assuming that the total cost per day, C1x2, is linearly 
related to the total output per day, x, write an equation 
for the cost function.

(B) The average cost per board for an output of x boards 
is given by C1x2 = C1x2 >x. Find the average cost 
function.

(C) Sketch a graph of the average cost function, including 
any asymptotes, for 1 … x … 30.

(D) What does the average cost per board tend to as produc-
tion increases?

58. Average cost. A company manufacturing surfboards has 
fixed costs of $300 per day and total costs of $5,100 per day 
at a daily output of 20 boards.

(A) Assuming that the total cost per day, C1x2, is linearly 
related to the total output per day, x, write an equation 
for the cost function.

(B) The average cost per board for an output of x boards is 
given by C1x2 = C1x2 >x. Find the average cost function.

(C) Sketch a graph of the average cost function, including 
any asymptotes, for 1 … x … 30.

(D) What does the average cost per board tend to as produc-
tion increases?

59. Replacement time. An office copier has an initial price of 
$2,500. A service contract costs $200 for the first year and 
increases $50 per year thereafter. It can be shown that the 
total cost of the copier after n years is given by

C1n2 = 2,500 + 175n + 25n2

The average cost per year for n years is given by 
C1n2 = C1n2 >n.

(A) Find the rational function C.

(B) Sketch a graph of C for 2 … n … 20.

(C) When is the average cost per year at a minimum, and 
what is the minimum average annual cost? [Hint: Refer 
to the sketch in part (B) and evaluate C1n2 at appropriate 
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66. Learning theory. In 1917, L. L. Thurstone, a pioneer in 
quantitative learning theory, proposed the rational function

f1x2 =
a1x + c2

1x + c2 + b

to model the number of successful acts per unit time that a 
person could accomplish after x practice sessions. Suppose 
that for a particular person enrolled in a typing class,

f1x2 =
551x + 12
1x + 82  x Ú 0

where f1x2 is the number of words per minute the person is 
able to type after x weeks of lessons.

(A) What does f1x2 approach as x increases?

(B) Sketch a graph of function f, including any vertical or 
horizontal asymptotes.

67. Marriage. Table 5 shows the marriage and divorce rates per 
1,000 population for selected years since 1960.

(A) Let x represent the number of years since 1960 and find 
a cubic regression polynomial for the marriage rate.

(B) Use the polynomial model from part (A) to estimate the 
marriage rate (to one decimal place) for 2025.

64. Diet. Refer to Table 4.

(A) Let x represent the number of years since 2000 and 
find a cubic regression polynomial for the per capita 
consumption of eggs.

(B) Use the polynomial model from part (A) to estimate (to 
the nearest integer) the per capita consumption of eggs 
in 2023.

63. Diet. Table 3 shows the per capita consumption of ice cream 
in the United States for selected years since 1987.

(A) Let x represent the number of years since 1980 and find 
a cubic regression polynomial for the per capita con-
sumption of ice cream.

(B) Use the polynomial model from part (A) to estimate  
(to the nearest tenth of a pound) the per capita consump-
tion of ice cream in 2023.

Table 3 Per Capita Consumption of Ice Cream

Source: U.S. Department of Agriculture

Year Ice Cream (pounds)

1987 18.0
1992 15.8
1997 15.7
2002 16.4
2007 14.9
2012 13.4
2014 12.8

Table 4 Per Capita Consumption of Eggs

Source: U.S. Department of Agriculture

Year Number of Eggs

2002 255
2004 257
2006 258
2008 247
2010 243
2012 254
2014 263

65. Physiology. In a study on the speed of muscle contrac-
tion in frogs under various loads, researchers W. O. 
Fems and J. Marsh found that the speed of contraction 
decreases with increasing loads. In particular, they found 
that the relationship between speed of contraction v (in 
centimeters per second) and load x (in grams) is given 
approximately by

v1x2 =
26 + 0.06x

x
 x Ú 5

(A) What does v1x2 approach as x increases?

(B) Sketch a graph of function v.

Table 5 Marriages and Divorces (per 1,000 population)

Source: National Center for Health Statistics

Date Marriages Divorces

1960 8.5 2.2
1970 10.6 3.5
1980 10.6 5.2
1990 9.8 4.7
2000 8.5 4.1
2010 6.8 3.6

68. Divorce. Refer to Table 5.

(A) Let x represent the number of years since 1960 and find 
a cubic regression polynomial for the divorce rate.

(B) Use the polynomial model from part (A) to estimate the 
divorce rate (to one decimal place) for 2025.

Answers to Matched Problems

1.   

2. (A) Domain: all real numbers except -3 and 3

(B) x intercept: -1; y intercept: -  
1
3

(C) Vertical asymptotes: x = -3 and x = 3

(D) Horizontal asymptote: y = 0
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(E) 

x

g(x)

210

10210

10

3. Vertical asymptote: x = -5
Horizontal asymptote: none

4. No vertical asymptotes for t Ú 0; y = 25 is a horizontal as-
ymptote. N1t2 approaches 25 as t increases without bound. It 
appears that 25 components per day would be the upper limit 
that an employee would be expected to assemble.

t

N(t)

10

20

30

0 10050

This section introduces an important class of functions called exponential func-
tions. These functions are used extensively in modeling and solving a wide variety 
of real-world problems, including growth of money at compound interest, growth 
of populations, radioactive decay, and learning associated with the mastery of such 
devices as a new computer or an assembly process in a manufacturing plant.

Exponential Functions
We start by noting that

f1x2 = 2x and g1x2 = x2

are not the same function. Whether a variable appears as an exponent with a constant 
base or as a base with a constant exponent makes a big difference. The function g is a 
quadratic function, which we have already discussed. The function f is a new type of 
function called an exponential function. In general,

1.5 Exponential Functions
■■ Exponential Functions
■■ Base e Exponential Function
■■ Growth and Decay Applications
■■ Compound Interest

DEFINITION Exponential Function
The equation

f1x2 = bx b 7 0, b ∙ 1

defines an exponential function for each different constant b, called the base. 
The domain of f is the set of all real numbers, and the range of f is the set of all 
positive real numbers.

We require the base b to be positive to avoid imaginary numbers such as 
1-22 1>2 = 1-2 = i12. We exclude b = 1 as a base since f1x2 = 1x = 1 is a 
constant function, which we have already considered.

When asked to hand-sketch graphs of equations such as y = 2x or y = 2 - x, 
many students do not hesitate. [Note: 2 - x = 1>2x = 11>22 x.] They make tables 
by assigning integers to x, plot the resulting points, and then join these points with 
a smooth curve as in Figure 1. The only catch is that we have not defined 2x for all  
real numbers. From Appendix A, Section A.6, we know what 25, 2-3, 22>3, 2 - 3>5, 21.4, 
and 2 - 3.14 mean (that is, 2p, where p is a rational number), but what does

222

mean? The question is not easy to answer at this time. In fact, a precise definition of 
212 must wait for more advanced courses, where it is shown that

2x

25 5
x

y

10

5

Figure 1 y ∙ 2x
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names a positive real number for x any real number, and that the graph of y = 2x is 
as indicated in Figure 1.

It is useful to compare the graphs of y = 2x and y = 2 - x by plotting both on the 
same set of coordinate axes, as shown in Figure 2A. The graph of

y 5 2x

y

10

25 5

5

x

y 5 (2)x
 5 22x1

2

(A)

Figure 2 Exponential functions

y 5 bx

b . 1

y

Domain 5 (2`, `)

Range 5 (0, `)

x

y 5 bx

0 , b , 1

(B)

f1x2 = bx b 7 1 (Fig. 2B)

looks very much like the graph of y = 2x, and the graph of

f1x2 = bx 0 6 b 6 1 (Fig. 2B)

looks very much like the graph of y = 2 - x. Note that in both cases the x axis is a 
horizontal asymptote for the graphs.

The graphs in Figure 2 suggest the following general properties of exponential 
functions, which we state without proof:

THEOREM 1 Basic Properties of the Graph of f1x2 = bx, b 7 0, b ∙ 1
1. All graphs will pass through the point 10, 12. b0 = 1 for any permissible base b.

2. All graphs are continuous curves, with no holes or jumps.
3. The x axis is a horizontal asymptote.
4. If b 7 1, then bx increases as x increases.
5. If 0 6 b 6 1, then bx decreases as x increases.

Recall that the graph of a rational function has at most one horizontal asymptote 
and that it approaches the horizontal asymptote (if one exists) both as x S ∞  
and as x S - ∞  (see Section 1.4). The graph of an exponential function, on the 
other hand, approaches its horizontal asymptote as x S ∞  or as x S - ∞ , but 
not both. In particular, there is no rational function that has the same graph as an 
exponential function.

CONCEPTUAL INSIGHT

The use of a calculator with the key yx, or its equivalent, makes the graphing of 
exponential functions almost routine. Example 1 illustrates the process.

Graphing Exponential Functions Sketch a graph of y = 11
224x, -2 … x … 2.

SOLUTION Use a calculator to create the table of values shown. Plot these points, 
and then join them with a smooth curve as in Figure 3.

EXAMPLE 1
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Matched Problem 1  Sketch a graph of y = 11
224 - x, -2 … x … 2.

22 2

y

x

5

10

Figure 3 Graph of y ∙ 11
224x

x y

-2 0.031

-1 0.125

0 0.50

1 2.00

2 8.00

Exponential functions, whose domains include irrational numbers, obey the famil-
iar laws of exponents discussed in Appendix A, Section A.6, for rational exponents. We 
summarize these exponent laws here and add two other important and useful properties.

THEOREM 2 Properties of Exponential Functions
For a and b positive, a ∙ 1, b ∙ 1, and x and y real,

1. Exponent laws:

 axay = ax + y  
ax

ay = ax - y        
42y

45y = 42y - 5y = 4 - 3y

 1ax2 y = axy  1ab2 x = axbx  aa
b
b

x

=
ax

bx

2. ax = ay if and only if x = y           If 75t + 1 = 73t - 3, then  
5t + 1 = 3t - 3, and t = -2.

3. For x ∙ 0,
ax = bx if and only if a = b            If a5 = 25, then a = 2.

Reminder
1-22 2 = 22, but this equation does 
not contradict property 3 of Theorem 2.  
In Theorem 2, both a and b must be 
positive.

Base e Exponential Function
Of all the possible bases b we can use for the exponential function y = bx, which 
ones are the most useful? If you look at the keys on a calculator, you will probably 
see 10x and ex. It is clear why base 10 would be important, because our number 
system is a base 10 system. But what is e, and why is it included as a base? It turns 
out that base e is used more frequently than all other bases combined. The reason 
for this is that certain formulas and the results of certain processes found in calculus 
and more advanced mathematics take on their simplest form if this base is used. This 
is why you will see e used extensively in expressions and formulas that model real-
world phenomena. In fact, its use is so prevalent that you will often hear people refer 
to y = ex as the exponential function.

The base e is an irrational number and, like p, it cannot be represented exactly by 
any finite decimal or fraction. However, e can be approximated as closely as we like 
by evaluating the expression

 a1 +
1
x
b

x

 (1)
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for sufficiently large values of x. What happens to the value of expression (1) as x 
increases without bound? Think about this for a moment before proceeding. Maybe 
you guessed that the value approaches 1 because

1 +
1
x

approaches 1, and 1 raised to any power is 1. Let us see if this reasoning is correct by 
actually calculating the value of the expression for larger and larger values of x. Table 1 
summarizes the results.

Table 1

x a1 +
1
x
b

x

1 2
10 2.593 74…

100 2.704 81…
1,000 2.716 92…

10,000 2.718 14…
100,000 2.718 26…

1,000,000 2.718 28…

Interestingly, the value of expression (1) is never close to 1 but seems to be  
approaching a number close to 2.7183. In fact, as x increases without bound, the 
value of expression (1) approaches an irrational number that we call e. The irrational 
number e to 12 decimal places is

e ∙ 2.718 281 828 459

Compare this value of e with the value of e1 from a calculator.

25 5

y 5 e2x y 5 ex

x

y

5

10

Figure 4

DEFINITION Exponential Functions with Base e and Base 1>e
The exponential functions with base e and base 1>e, respectively, are defined by

 y = ex and y = e - x

 Domain: 1-∞ , ∞2
 Range: 10, ∞ 2 (see Fig. 4)

Graph the functions f1x2 = ex, g1x2 = 2x, and h1x2 = 3x on the same set of  
coordinate axes. At which values of x do the graphs intersect? For positive values of 
x, which of the three graphs lies above the other two? Below the other two? How does 
your answer change for negative values of x?

Explore and Discuss 1

Growth and Decay Applications
Functions of the form y = cekt, where c and k are constants and the independent variable 
t represents time, are often used to model population growth and radioactive decay. Note 
that if t = 0, then y = c. So the constant c represents the initial population (or initial 
amount). The constant k is called the relative growth rate and has the following interpre-
tation: Suppose that y = cekt models the population of a country, where y is the number 
of persons and t is time in years. If the relative growth rate is k = 0.02, then at any time t, 
the population is growing at a rate of 0.02y persons (that is, 2% of the population) per year.

We say that population is growing continuously at relative growth rate k to 
mean that the population y is given by the model y = cekt.
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Exponential Growth Cholera, an intestinal disease, is caused by a cholera 
 bacterium that multiplies exponentially. The number of bacteria grows continuously 
at relative growth rate 1.386, that is,

N = N0 e
1.386t

where N is the number of bacteria present after t hours and N0 is the number of bac-
teria present at the start 1t = 02. If we start with 25 bacteria, how many bacteria 
(to the nearest unit) will be present

(A) In 0.6 hour? (B) In 3.5 hours?

SOLUTION Substituting N0 = 25 into the preceding equation, we obtain

N = 25e1.386t   The graph is shown in Figure 5.

(A) Solve for N when t = 0.6:

N = 25e1.38610.62 Use a calculator.

= 57 bacteria

(B) Solve for N when t = 3.5:

 N = 25e1.38613.52 Use a calculator.

 = 3,197 bacteria

 Matched Problem 2  Refer to the exponential growth model for cholera in 
Example 2. If we start with 55 bacteria, how many bacteria (to the nearest unit) will 
be present

(A) In 0.85 hour? (B) In 7.25 hours?

EXAMPLE 2

10,000

50

Time (hours)

t

N

Figure 5

Exponential Decay Cosmic-ray bombardment of the atmosphere produces neutrons, 
which in turn react with nitrogen to produce radioactive carbon-14 114C2. Radioactive 
14C enters all living tissues through carbon dioxide, which is first absorbed by plants. 
As long as a plant or animal is alive, 14C is maintained in the living organism at a 
constant level. Once the organism dies, however, 14C decays according to the equation

A = A  0e
- 0.000124t

where A is the amount present after t years and A0 is the amount present at time 
t = 0.

(A) If 500 milligrams of 14C is present in a sample from a skull at the time of death, 
how many milligrams will be present in the sample in 15,000 years? Compute 
the answer to two decimal places.

(B) The half-life of 14C is the time t at which the amount present is one-half the 
amount at time t = 0. Use Figure 6 to estimate the half-life of 14C.

SOLUTION Substituting A0 = 500 in the decay equation, we have

A = 500e - 0.000124t    See the graph in Figure 6.

(A) Solve for A when t = 15,000:

 A = 500e - 0.000124115,0002 Use a calculator.

 = 77.84 milligrams

(B) Refer to Figure 6, and estimate the time t at which the amount A has fallen to 250 
milligrams: t ≈ 6,000 years. (Finding the intersection of y1 = 500e - 0.000124x  
and y2 = 250 on a graphing calculator gives a better estimate: t ≈ 5,590 years.)

EXAMPLE 3

100

200

300

400

500

50,0000

M
ill

ig
ra

m
s

Years

A

t

Figure 6
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Matched Problem 3 Refer to the exponential decay model in Example 3. How 
many milligrams of 14C would have to be present at the beginning in order to have  
25 milligrams present after 18,000 years? Compute the answer to the nearest 
milligram.

If you buy a new car, it is likely to depreciate in value by several thousand dollars 
during the first year you own it. You would expect the value of the car to decrease in 
each subsequent year, but not by as much as in the previous year. If you drive the car 
long enough, its resale value will get close to zero. An exponential decay function 
will often be a good model of depreciation; a linear or quadratic function would not 
be suitable (why?). We can use exponential regression on a graphing calculator to 
find the function of the form y = abx that best fits a data set.

Depreciation Table 2 gives the market value of a hybrid sedan (in dollars) x years 
after its purchase. Find an exponential regression model of the form y = abx for 
this data set. Estimate the purchase price of the hybrid. Estimate the value of the 
hybrid 10 years after its purchase. Round answers to the nearest dollar.

Table 2
x Value ($)

1 12,575
2 9,455
3 8,115
4 6,845
5 5,225
6 4,485

SOLUTION Enter the data into a graphing calculator (Fig. 7A) and find the exponen-
tial regression equation (Fig. 7B). The estimated purchase price is y1102 =$14,910. 
The data set and the regression equation are graphed in Figure 7C. Using trace, we 
see that the estimated value after 10 years is $1,959.

EXAMPLE 4

(A)   
Figure 7

(B)   (C)

0 110

20000

Matched Problem 4 Table 3 gives the market value of a midsize sedan (in 
dollars) x years after its purchase. Find an exponential regression model of the form 
y = abx for this data set. Estimate the purchase price of the sedan. Estimate the 
value of the sedan 10 years after its purchase. Round answers to the nearest dollar.

Table 3
x Value ($)

1 23,125
2 19,050
3 15,625
4 11,875
5 9,450
6 7,125
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Compound Interest
The fee paid to use another’s money is called interest. It is usually computed as a 
percent (called interest rate) of the principal over a given period of time. If, at the 
end of a payment period, the interest due is reinvested at the same rate, then the inter-
est earned as well as the principal will earn interest during the next payment period. 
Interest paid on interest reinvested is called compound interest and may be calculated 
using the following compound interest formula:

If a principal P (present value) is invested at an annual rate r (expressed as a 
decimal) compounded m times a year, then the amount A (future value) in the account 
at the end of t years is given by

A = P a1 +
r
m
b

mt

 Compound interest formula

For given r and m, the amount A is equal to the principal P multiplied by the expo-
nential function bt, where b = 11 + r>m2m.

t

$10,000

$5,000

20100

Years

A

Figure 8

Compound Growth If $1,000 is invested in an account paying 10% compounded 
monthly, how much will be in the account at the end of 10 years? Compute the answer 
to the nearest cent.

SOLUTION We use the compound interest formula as follows:

 A = P a1 +
r
m
b

mt

 = 1,000 a1 +
0.10
12

b
11221102

 Use a calculator.

 = $2,707.04

The graph of

A = 1,000a1 +
0.10
12

b
12t

for 0 … t … 20 is shown in Figure 8.

Matched Problem 5 If you deposit $5,000 in an account paying 9% 
compounded daily, how much will you have in the account in 5 years? Compute 
the answer to the nearest cent.

EXAMPLE 5

Suppose that $1,000 is deposited in a savings account at an annual rate of 5%. Guess 
the amount in the account at the end of 1 year if interest is compounded (1) quarterly, 
(2) monthly, (3) daily, (4) hourly. Use the compound interest formula to compute the 
amounts at the end of 1 year to the nearest cent. Discuss the accuracy of your initial 
guesses.

Explore and Discuss 2

Explore and Discuss 2 suggests that if $1,000 were deposited in a savings account 
at an annual interest rate of 5%, then the amount at the end of 1 year would be less 
than $1,051.28, even if interest were compounded every minute or every second. The 
limiting value, approximately $1,051.271 096, is said to be the amount in the account 
if interest were compounded continuously.
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If a principal, P, is invested at an annual rate, r, and compounded continuously, 
then the amount in the account at the end of t years is given by

A = Pert Continuous compound interest formula

where the constant e ≈ 2.718 28 is the base of the exponential function.

Continuous Compound Interest If $1,000 is invested in an account paying 10% 
compounded continuously, how much will be in the account at the end of 10 years? 
Compute the answer to the nearest cent.

SOLUTION We use the continuous compound interest formula:

A = Pert = 1000e0.101102 = 1000e = $2,718.28

Compare with the answer to Example 5.

Matched Problem 6 If you deposit $5,000 in an account paying 9% 
compounded continuously, how much will you have in the account in 5 years? 
Compute the answer to the nearest cent.

EXAMPLE 6

The formulas for compound interest and continuous compound interest are summa-
rized below for convenient reference.

SUMMARY

Compound Interest: A = Pa1 +
r
m
b

mt

Continuous Compound Interest: A = Pert

where  A = amount (future value) at the end of t years

 P = principal (present value)

 r = annual rate (expressed as a decimal)

 m = number of compounding periods per year

 t = time in years

1. Match each equation with the graph of f, g, h, or k in the 
figure.

(A) y = 2x (B) y = 10.22 x 

(C) y = 4x (D) y = 11
32 x

x

y
f g h k

25 5

5

A 2. Match each equation with the graph of f, g, h, or k in the 
figure.

(A) y = 11
42 x

(B) y = 10.52 x

(C) y = 5x (D) y = 3x

x

y

25 5

f g h k

5

Exercises 1.5
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33. 13x + 92 5 = 32x5 34. 15x + 62 7 = 1117

35. 1x + 52 2 = 12x - 142 2 36. 12x + 12 2 = 13x - 12 2

37. 15x + 182 4 = 1x + 62 4 38. 18x - 112 6 = 17x - 192 6

In Problems 39–46, solve each equation for x. (Remember: 
ex ∙ 0 and e - x ∙ 0 for all values of x).

39. xe - x + 7e - x = 0 40. 10xex - 5ex = 0

41. 2x2ex - 8ex = 0 42. 3x2e-x - 48e-x = 0

43. e4x - e = 0 44. e4x + e = 0

45. e3x - 1 + e = 0 46. e3x - 1 - e = 0

Graph each function in Problems 47–50 over the indicated  
interval.

47. h1x2 = x12x2; 3-5, 04 48. m1x2 = x13 - x2; 30, 34
49. N =

100
1 + e-t; 30, 54 50. N =

300
1 + 4e-t; 30, 54

Applications
In all problems involving days, a 365-day year is assumed.

51. Continuous compound interest. Find the value of an 
investment of $100,000 in 9 years if it earns an annual rate 
of 2.85% compounded continuously.

52. Continuous compound interest. Find the value of an invest-
ment of $24,000 in 7 years if it earns an annual rate of 4.35% 
compounded continuously.

53. Compound growth. Suppose that $2,500 is invested at 7% 
compounded quarterly. How much money will be in the  
account in

(A) 3
4 year? (B) 15 years?

Compute answers to the nearest cent.

54. Compound growth. Suppose that $4,000 is invested at  
6% compounded weekly. How much money will be in the  
account in

(A) 1
2 year? (B) 10 years?

Compute answers to the nearest cent.

55. Finance. A person wishes to have $15,000 cash for a new 
car 5 years from now. How much should be placed in an  
account now, if the account pays 6.75% compounded 
weekly? Compute the answer to the nearest dollar.

56. Finance. A couple just had a baby. How much should they 
invest now at 5.5% compounded daily in order to have 
$40,000 for the child’s education 17 years from now?  
Compute the answer to the nearest dollar.

57. Money growth. Commonwealth Bank of Australia offers 
term deposits with different interest payment options. The 
rates for 24-month term deposits are the following:

(A) 2.40% compounded four weekly

(B) 2.50% compounded six monthly

C

Graph each function in Problems 3–10 over the indicated interval.

3. y = 5x; 3-2, 24 4. y = 3x; 3-3, 34
5. y = 11

52 x = 5 - x; 3-2, 24 6. y = 11
32 x = 3 - x; 3-3, 34

7. f1x2 = -5x; 3-2, 24 8. g1x2 = -3 - x; 3-3, 34
9. y = -e - x; 3-3, 34 10. y = -ex; 3-3, 34

In Problems 11–18, describe verbally the transformations that can be 
used to obtain the graph of g from the graph of f (see Section 1.2).

11. g1x2 = -2x; f1x2 = 2x

12. g1x2 = 2x - 2; f1x2 = 2x

13. g1x2 = 3x + 1; f1x2 = 3x

14. g1x2 = -3x; f1x2 = 3x

15. g1x2 = ex + 1; f1x2 = ex

16. g1x2 = ex - 2; f1x2 = ex

17. g1x2 = 2e - 1x + 22; f1x2 = e - x

18. g1x2 = 0.25e - 1x - 42; f1x2 = e - x

19. Use the graph of f shown in the figure to sketch the graph of 
each of the following.

(A) y = f1x2 - 1 (B) y = f1x + 22
(C) y = 3f1x2 - 2 (D) y = 2 - f1x - 32

x
25 5

25

5

y

Figure for 19 and 20

20. Use the graph of f shown in the figure to sketch the graph of 
each of the following.

(A) y = f1x2 + 2 (B) y = f1x - 32
(C) y = 2 f1x2 - 4 (D) y = 4 - f1x + 22

In Problems 21–26, graph each function over the indicated interval.

21. f1t2 = 2t>10; 3-30, 304 22. G1t2 = 3t>100; 3-200, 2004
23. y = -3 + e1 + x; 3-4, 24 24. N = 1 + ex - 3; 3-2, 64
25. y = e∙x∙; 3-3, 34 26. y = e- ∙x∙; 3-3, 34
27. Find all real numbers a such that a2 = a - 2. Explain why this 

does not violate the second exponential function property in 
Theorem 2 on page 82.

28. Find real numbers a and b such that a ∙ b but a4 = b4.  
Explain why this does not violate the third exponential 
 function property in Theorem 2 on page 82.

In Problems 29–38, solve each equation for x.

29. 22x + 5 = 2101 30. 3x + 4 = 32x - 5

31. 9x2
= 94x + 21 32. 5x2 - x = 542

B
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63. Marine biology. Marine life depends on the microscopic 
plant life that exists in the photic zone, a zone that goes to 
a depth where only 1% of surface light remains. In some 
waters with a great deal of sediment, the photic zone may go 
down only 15 to 20 feet. In some murky harbors, the intensity 
of light d feet below the surface is given approximately by

I = I0e
- 0.23d

What percentage of the surface light will reach a depth of

(A) 10 feet? (B) 20 feet?

64. Marine biology. Refer to Problem 63. Light intensity I rela-
tive to depth d (in feet) for one of the clearest bodies of water 
in the world, the Sargasso Sea, can be approximated by

I = I0e
- 0.00942d

where I0 is the intensity of light at the surface. What percent-
age of the surface light will reach a depth of

(A) 50 feet? (B) 100 feet?

65. Population growth. In 2015, the estimated population of South 
Sudan was 12 million with a relative growth rate of 4.02%.

(A) Write an equation that models the population growth in 
South Sudan, letting 2015 be year 0.

(B) Based on the model, what is the expected population of 
South Sudan in 2025?

66. Population growth. In 2015, the estimated population of 
Brazil was 204 million with a relative growth rate of 0.77%.

(A) Write an equation that models the population growth in 
Brazil, letting 2015 be year 0.

(B) Based on the model, what is the expected population of 
Brazil in 2030?

67. Population growth. In 2015, the estimated population of  
Japan was 127 million with a relative growth rate of -0.16%.

(A) Write an equation that models the population growth in 
Japan, letting 2015 be year 0.

(B) Based on the model, what is the expected population in 
Japan in 2030?

68. World population growth. From the dawn of humanity to 
1830, world population grew to one billion people. In 100 
more years (by 1930) it grew to two billion, and 3 billion 
more were added in only 60 years (by 1990). In 2016, the 

(C) 2.60% compounded annually

Compute the value of $10,000 invested in each interest pay-
ment option at the end of 2 years.

58. Money growth. Bankwest, a division of Commonwealth 
Bank of Australia, offers online term deposits with differ-
ent interest payment options. The rates for 60-month term 
 deposits are the following:

(A) 2.62% compounded monthly

(B) 2.62% compounded quarterly

(C) 2.63% compounded semiannually

(D) 2.65% compounded annually

Compute the value of $10,000 invested in each interest pay-
ment option at the end of 5 years.

59. Advertising. A company is trying to introduce a new product 
to as many people as possible through television advertising 
in a large metropolitan area with 2 million possible viewers. A 
model for the number of people N (in millions) who are aware 
of the product after t days of advertising was found to be

N = 211 - e-0.037t2
Graph this function for 0 … t … 50. What value does N 
 approach as t increases without bound?

60. Learning curve. People assigned to assemble circuit boards 
for a computer manufacturing company undergo on-the-job 
training. From past experience, the learning curve for the 
average employee is given by

N = 4011 - e - 0.12t2
where N is the number of boards assembled per day after 
t days of training. Graph this function for 0 … t … 30. What 
is the maximum number of boards an average employee can 
be expected to produce in 1 day?

61. Internet users. Table 4 shows the number of individuals 
worldwide who could access the internet from home for 
selected years since 2000.

(A) Let x represent the number of years since 2000 and find 
an exponential regression model 1y = abx2 for the num-
ber of internet users.

(B) Use the model to estimate the number of internet users 
in 2024.

Table 4 Internet Users (billions)

Source: Internet Stats Live

Year Users

2000 0.41
2004 0.91
2008 1.58
2012 2.02
2016 3.42

62. Mobile data traffic. Table 5 shows estimates of mobile data 
traffic, in exabytes 11018 bytes2 per month, for years from 
2015 to 2020.

(A) Let x represent the number of years since 2015 and find 
an exponential regression model 1y = abx2 for mobile 
data traffic.

Table 5 Mobile Data Traffic (exabytes per month)

Source: Cisco Systems Inc.

Year Traffic

2015   3.7
2016   6.2
2017   9.9
2018 14.9
2019 21.7
2020 30.6

(B) Use the model to estimate the mobile data traffic  
in 2025.
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2. (A) 179 bacteria

(B) 1,271,659 bacteria

3. 233 mg

4. Purchase price: $30,363; value after 10 yr: $2,864

5. $7,841.13
6. $7,841.56

estimated world population was 7.4 billion with a relative 
growth rate of 1.13%.

(A) Write an equation that models the world population 
growth, letting 2016 be year 0.

(B) Based on the model, what is the expected world popula-
tion (to the nearest hundred million) in 2025? In 2033?

Answers to Matched Problems

1. 

x

y

222

5

10

Find the exponential function keys 10x and ex on your calculator. Close to these keys 
you will find the log and ln keys. The latter two keys represent logarithmic functions, 
and each is closely related to its nearby exponential function. In fact, the exponential 
function and the corresponding logarithmic function are said to be inverses of each 
other. In this section we will develop the concept of inverse functions and use it to 
define a logarithmic function as the inverse of an exponential function. We will then 
investigate basic properties of logarithmic functions, use a calculator to evaluate them 
for particular values of x, and apply them to real-world problems.

Logarithmic functions are used in modeling and solving many types of prob-
lems. For example, the decibel scale is a logarithmic scale used to measure sound 
intensity, and the Richter scale is a logarithmic scale used to measure the force of an 
earthquake. An important business application has to do with finding the time it takes 
money to double if it is invested at a certain rate compounded a given number of 
times a year or compounded continuously. This requires the solution of an exponen-
tial equation, and logarithms play a central role in the process.

Inverse Functions

Look at the graphs of f1x2 =
x
2

 and g1x2 =
∙ x ∙
2

 in Figure 1:

1.6 Logarithmic Functions
■■ Inverse Functions
■■ Logarithmic Functions
■■ Properties of Logarithmic  
Functions

■■ Calculator Evaluation  
of Logarithms

■■ Applications

x
25 5

25

5

f (x)

(A)  f (x) 5 
x
2

Figure 1

x
25 5

25

5

(B)  g(x) 5 
|x|
2

g(x)
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Because both f and g are functions, each domain value corresponds to exactly 
one range value. For which function does each range value correspond to exactly one 
domain value? This is the case only for function f. Note that for function f, the range 
value 2 corresponds to the domain value 4. For function g the range value 2 corre-
sponds to both -4 and 4. Function f is said to be one-to-one.

DEFINITION One-to-One Functions
A function f is said to be one-to-one if each range value corresponds to exactly 
one domain value.

It can be shown that any continuous function that is either increasing or decreas-
ing for all domain values is one-to-one. If a continuous function increases for some 
domain values and decreases for others, then it cannot be one-to-one. Figure 1 shows 
an example of each case.

Reminder
We say that the function f is increasing  
on an interval 1a, b2 if f1x22 7 f1x12  
whenever a 6 x1 6 x2 6 b;  
and f is decreasing on 1a, b2 if  
f1x22 6 f1x12 whenever 
a 6 x1 6 x2 6 b.

Graph f1x2 = 2x and g1x2 = x2. For a range value of 4, what are the corresponding 
domain values for each function? Which of the two functions is one-to-one? Explain 
why.

Explore and Discuss 1 

Starting with a one-to-one function f, we can obtain a new function called the 
inverse of f.

DEFINITION Inverse of a Function
If f is a one-to-one function, then the inverse of f is the function formed by inter-
changing the independent and dependent variables for f. Thus, if 1a, b2 is a point 
on the graph of f, then 1b, a2 is a point on the graph of the inverse of f.

Note: If f is not one-to-one, then f does not have an inverse.

In this course, we are interested in the inverses of exponential functions, called 
logarithmic functions.

Logarithmic Functions
If we start with the exponential function f defined by

 y = 2x (1)

and interchange the variables, we obtain the inverse of f:

 x = 2y (2)

We call the inverse the logarithmic function with base 2, and write

y = log2 x if and only if x = 2y

We can graph y = log2 x by graphing x = 2y since they are equivalent. Any ordered 
pair of numbers on the graph of the exponential function will be on the graph of the 
logarithmic function if we interchange the order of the components. For example, 
13, 82 satisfies equation (1) and 18, 32 satisfies equation (2). The graphs of y = 2x 
and y = log2 x are shown in Figure 2. Note that if we fold the paper along the dashed 
line y = x in Figure 2, the two graphs match exactly. The line y = x is a line of sym-
metry for the two graphs.
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525

25

5

10

10

y 5 2x

y 5 x
y

x

x 5 2y

or
 y 5 log2 x

Figure 2

Exponential  
Function

Logarithmic  
Function

x y ∙ 2 x x ∙ 2 y y

-3 1
8

1
8

-3

-2 1
4

1
4

-2

-1 1
2

1
2

-1

0 1 1 0

1 2 2 1

2 4 4 2

3 8 8 3

Ordered  
pairs  

reversed

" "

In general, since the graphs of all exponential functions of the form f1x2 = bx,
b ∙ 1, b 7 0, are either increasing or decreasing, exponential functions have 
inverses.

y 5 x

y 5 logb x

x

y

525

5

10

10

25

y 5 bx

Figure 3

DEFINITION Logarithmic Functions
The inverse of an exponential function is called a logarithmic function. For 
 b 7 0 and  b ∙ 1,

Logarithmic form Exponential form

y = logb x   is equivalent to     x = by

The log to the base b of x is the exponent to which b must be raised to ob-
tain x. [Remember: A logarithm is an exponent.] The domain of the logarithmic 
 function is the set of all positive real numbers, which is also the range of the cor-
responding exponential function; and the range of the logarithmic function is the 
set of all real numbers, which is also the domain of the corresponding exponential 
function. Typical graphs of an exponential function and its inverse, a logarithmic 
function, are shown in Figure 3.

Because the domain of a logarithmic function consists of the positive real num-
bers, the entire graph of a logarithmic function lies to the right of the y axis. In 
contrast, the graphs of polynomial and exponential functions intersect every ver-
tical line, and the graphs of rational functions intersect all but a finite number of 
vertical lines.

CONCEPTUAL INSIGHT

The following examples involve converting logarithmic forms to equivalent 
 exponential forms, and vice versa.

Logarithmic–Exponential Conversions Change each logarithmic form to an 
equivalent exponential form:

(A) log5 25 = 2 (B) log9 3 = 1
2 (C) log211

42 = -2

SOLUTION

(A) log5 25 = 2 is equivalent to 25 = 52

(B) log9 3 = 1
2 is equivalent to 3 = 91>2

(C) log211
42 = -2 is equivalent to 1

4 = 2 - 2

EXAMPLE 1
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Matched Problem 1 Change each logarithmic form to an equivalent 
exponential form:

(A) log3 9 = 2 (B) log4 2 = 1
2 (C) log311

92 = -2

Exponential–Logarithmic Conversions Change each exponential form to an 
equivalent logarithmic form:

(A) 64 = 43 (B) 6 = 136 (C) 1
8 = 2-3

SOLUTION

(A) 64 = 43 is equivalent to log4 64 = 3

(B) 6 = 136 is equivalent to log36 6 = 1
2

(C) 1
8 = 2-3 is equivalent to log211

82 = -3

Matched Problem 2 Change each exponential form to an equivalent 
logarithmic form:

(A) 49 = 72 (B) 3 = 19 (C) 1
3 = 3-1

EXAMPLE 2

To gain a deeper understanding of logarithmic functions and their relationship to 
exponential functions, we consider a few problems where we want to find x, b, or y 
in y = logb x, given the other two values. All values are chosen so that the problems 
can be solved exactly without a calculator.

Solutions of the Equation y = logb x Find y, b, or x, as indicated.

(A) Find y:  y = log4 16 (B) Find x:  log2 x = -3

(C) Find b:  logb 100 = 2

SOLUTION

(A) y = log4 16 is equivalent to 16 = 4y. So,

y = 2

(B) log2 x = -3 is equivalent to x = 2-3. So,

x =
1

23 =
1
8

(C) logb 100 = 2 is equivalent to 100 = b2. So,

b = 10 Recall that b cannot be negative.

Matched Problem 3 Find y, b, or x, as indicated.

(A) Find y: y = log9 27 (B) Find x: log3 x = -1

(C) Find b: logb 1,000 = 3

Properties of Logarithmic Functions
The properties of exponential functions (Section 1.5) lead to properties of logarithmic 
functions. For example, consider the exponential property bxby = bx + y. Let M = bx, 
N = by. Then

logb MN = logb1bxby2 = logb b
x + y = x + y = logb M + logb N

So logb MN = logb M + logb N; that is, the logarithm of a product is the sum of the 
logarithms. Similarly, the logarithm of a quotient is the difference of the logarithms. 
These properties are among the eight useful properties of logarithms that are listed in 
Theorem 1.

EXAMPLE 3
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THEOREM 1 Properties of Logarithmic Functions
If b, M, and N are positive real numbers; b ∙ 1; and p and x are real numbers, then

1. logb 1 = 0

2. logb b = 1

3. logb b
x = x

4. blogb x = x, x 7 0

5. logb MN = logb M + logb N

6. logb 
M
N

= logb M - logb N

7. logb M
p = p logb M

8. logb M = logb N if and only if M = N

Using Logarithmic Properties Use logarithmic properties to write in simpler form:

(A) logb
wx
yz

(B) logb 1wx2 3>5

(C) ex loge b (D) 
loge x

loge b

SOLUTION

(A) logb 
wx
yz

  = logb wx - logb yz

= logb w + logb x - 1logb y + logb z2
= logb w + logb x - logb y - logb z

(B) logb 1wx2 3>5  = 3
5 logb wx  = 3

51logb w + logb x2

(C) ex loge b = eloge b
x

= bx

(D) 
loge x

loge b
=

loge   1blogb x2
loge b

=
1logb x21loge b2

loge b
= logb x

Matched Problem 4 Write in simpler form, as in Example 4.

(A) logb 
R

ST
(B) logb aR

S
b

2>3

(C) 2u log2 b
(D) 

log2 x

log2 b

EXAMPLE 4

The following examples and problems will give you additional practice in using basic 
logarithmic properties.

Solving Logarithmic Equations Find x so that
3
2 logb 4 - 2

3 logb 8 + logb 2 = logb x

SOLUTION  32 logb 4 - 2
3 logb8 + logb 2 = logb x Use property 7.

 logb 4
3>2 - logb8

2>3 + logb 2 = logb x Simplify.

 logb 8 - logb 4 + logb 2 = logb x Use properties 5 and 6.

 logb 
8 # 2

4
= logb x Simplify.

 logb 4 = logb x Use property 8.

 x = 4  

Matched Problem 5 Find x so that 3 logb 2 + 1
2 logb 25 - logb 20 = logb x.

EXAMPLE 5
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Calculator Evaluation of Logarithms
Of all possible logarithmic bases, e and 10 are used almost exclusively. Before we 
can use logarithms in certain practical problems, we need to be able to approximate 
the logarithm of any positive number either to base 10 or to base e. And conversely, 
if we are given the logarithm of a number to base 10 or base e, we need to be able 
to approximate the number. Historically, tables were used for this purpose, but now 
calculators make computations faster and far more accurate.

Common logarithms are logarithms with base 10. Natural logarithms are log-
arithms with base e. Most calculators have a key labeled “log” (or “LOG”) and a key 
labeled “ln” (or “LN”). The former represents a common (base 10) logarithm and the 
latter a natural (base e) logarithm. In fact, “log” and “ln” are both used extensively in 
mathematical literature, and whenever you see either used in this book without a base 
indicated, they will be interpreted as follows:

Common logarithm: log x means log10 x
Natural logarithm: ln x means loge x

Finding the common or natural logarithm using a calculator is very easy. On 
some calculators, you simply enter a number from the domain of the function and 
press log or ln. On other calculators, you press either log or ln, enter a number 
from the domain, and then press enter . Check the user’s manual for your calculator.

Solving Logarithmic Equations Solve: log10 x + log101x + 12=  log10 6.

SOLUTION  log10 x + log101x + 12 = log10 6 Use property 5.

 log10 3x1x + 124 = log10 6 Use property 8.

 x1x + 12 = 6  Expand.

 x2 + x - 6 = 0  Solve by factoring.

 1x + 321x - 22 = 0

 x = -3, 2

We must exclude x = -3 since the domain of the function log10 x is 10, ∞ 2; so 
x = 2 is the only solution.

Matched Problem 6 Solve: log3 x + log31x - 32 = log3 10.

EXAMPLE 6

Calculator Evaluation of Logarithms Use a calculator to evaluate each to six 
decimal places:

(A) log 3,184 (B) ln 0.000 349 (C) log 1-3.242
SOLUTION
(A) log 3,184 = 3.502 973

(B) ln 0.000 349 = -7.960 439

(C) log 1-3.242 = Error -3.24 is not in the domain of the log function.

Matched Problem 7 Use a calculator to evaluate each to six decimal places:

(A) log 0.013 529 (B) ln 28.693 28 (C) ln 1-0.4382

EXAMPLE 7

Given the logarithm of a number, how do you find the number? We make direct use 
of the logarithmic-exponential relationships, which follow from the definition of 
logarithmic function given at the beginning of this section.
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 log x ∙ y is equivalent to  x ∙ 10 y

 ln x ∙ y is equivalent to  x ∙ ey

Solving logb x = y for x Find x to four decimal places, given the indicated logarithm:

(A) log x = -2.315 (B) ln x = 2.386

SOLUTION
(A)  log x = -2.315  Change to equivalent exponential form.

 x = 10-2.315  Evaluate with a calculator.

 = 0.0048  

(B)  ln x = 2.386  Change to equivalent exponential form.

 x = e2.386  Evaluate with a calculator.

 = 10.8699

Matched Problem 8 Find x to four decimal places, given the indicated 
logarithm:

(A) ln x = -5.062 (B) log x = 2.0821

EXAMPLE 8

We can use logarithms to solve exponential equations.

Solving Exponential Equations Solve for x to four decimal places:

(A) 10 

x = 2 (B) e  

x = 3 (C) 3x = 4

SOLUTION
(A)  10 

x = 2  Take common logarithms of both sides.

 log 10 

x = log 2  Use property 3.

 x = log 2  Use a calculator.

 = 0.3010 To four decimal places

(B)  ex = 3  Take natural logarithms of both sides.

 ln ex = ln 3  Use property 3

 x = ln 3  Use a calculator.

 = 1.0986 To four decimal places

(C)  3x = 4   Take either natural or common logarithms of both sides.  
(We choose common logarithms.)

 log 3x = log 4  Use property 7

 x log 3 = log 4   Solve for x.

 x =
log 4

log 3
   Use a calculator.

 = 1.2619 To four decimal places

Matched Problem 9 Solve for x to four decimal places:

(A) 10 

x = 7 (B) ex = 6 (C) 4x = 5

EXAMPLE 9

Exponential equations can also be solved graphically by graphing both sides of 
an equation and finding the points of intersection. Figure 4 illustrates this approach 
for the equations in Example 9.
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Remark In the usual notation for natural logarithms, the simplifications of 
Example 4, parts (C) and (D) on page 94, become

 ex ln b = bx  and  
ln x
ln b

= logb x 

With these formulas, we can change an exponential function with base b, or a loga-
rithmic function with base b, to expressions involving exponential or logarithmic 
functions, respectively, to the base e. Such change-of-base formulas are useful in 
calculus. 

Applications
A convenient and easily understood way of comparing different investments is to 
use their doubling times—the length of time it takes the value of an investment to 
double. Logarithm properties, as you will see in Example 10, provide us with just the 
right tool for solving some doubling-time problems.

(A)
 y2

 5 2
 y1

 5 10 x

21

22

5

2

Figure 4 Graphical solution of exponential equations

21

22

5

2

(B)
 y2

 5 3
 y1

 5 ex

  

21

22

5

2

(C)
 y2

 5 4
 y1

 5 3 x

Discuss how you could find y = log5 38.25 using either natural or common loga-
rithms on a calculator. [Hint: Start by rewriting the equation in exponential form.]

Explore and Discuss 2

Doubling Time for an Investment How long (to the next whole year) will it take 
money to double if it is invested at 20% compounded annually?

SOLUTION We use the compound interest formula discussed in Section 1.5:

A = P a1 +
r
m
b

mt

 Compound interest

The problem is to find t, given r = 0.20, m = 1, and A = 2P; that is,

 2P = P11 + 0.22 t

 2 = 1.2t   Solve for t by taking the natural or  
common logarithm of both sides (we choose  
the natural logarithm).

 1.2t = 2

 ln 1.2t = ln 2

 t ln 1.2 = ln 2  Use property 7

 t =
ln 2

ln 1.2
 Use a calculator.

 ≈ 3.8 years  [Note: 1ln 22 >1ln 1.22 ∙ ln 2 - ln 1.2]

 ≈ 4 years  To the next whole year

EXAMPLE 10

M01_BARN6152_14_GE_C01.indd   97 22/11/18   10:41 PM



98 CHAPTER 1 Functions and Graphs

SOLUTION Enter the data in a graphing calculator (Fig. 7A) and find the loga-
rithmic regression equation (Fig. 7B). The data set and the regression equation are 
graphed in Figure 7C. Using trace, we predict that the home ownership rate in 
2025 would be 69.8%.

When interest is paid at the end of 3 years, the money will not be doubled; when 
paid at the end of 4 years, the money will be slightly more than doubled.
Example 10 can also be solved graphically by graphing both sides of the equation 
2 = 1.2t, and finding the intersection point (Fig. 5).

0

4

0 2

Figure 5 y1 = 1.2x, y2 ∙ 2

Matched Problem 10 How long (to the next whole year) will it take money 
to triple if it is invested at 13% compounded annually?

It is interesting and instructive to graph the doubling times for various rates com-
pounded annually. We proceed as follows:

 A = P11 + r2 t

 2P = P11 + r2 t

 2 = 11 + r2 t

 11 + r2 t = 2

 ln 11 + r2 t = ln 2

 t ln 11 + r2 = ln 2

 t =
ln 2

ln11 + r2
Figure 6 shows the graph of this equation (doubling time in years) for interest rates 
compounded annually from 1 to 70% (expressed as decimals). Note the dramatic 
change in doubling time as rates change from 1 to 20% (from 0.01 to 0.20).

Among increasing functions, the logarithmic functions (with bases b 7 1) 
increase much more slowly for large values of x than either exponential or polyno-
mial functions. When a visual inspection of the plot of a data set indicates a slowly 
increasing function, a logarithmic function often provides a good model. We use 
logarithmic regression on a graphing calculator to find the function of the form 
y = a + b ln x that best fits the data.

r

t

10

20

30

40

50

60

70

0

Y
ea

rs

0.600.400.20

Rate compounded annually

t 55
ln 2ln 22

ln (1 11 r)

Figure 6

Home Ownership Rates The U.S. Census Bureau published the data in Ta-
ble 1 on home ownership rates. Let x represent time in years with x = 0 rep-
resenting 1900. Use logarithmic regression to find the best model of the form 
y = a + b ln x for the home ownership rate y as a function of time x. Use the 
model to predict the home ownership rate in the United States in 2025 (to the 
nearest tenth of a percent).

EXAMPLE 11

Table 1 Home Ownership Rates
Year Rate (%)

1950 55.0
1960 61.9
1970 62.9
1980 64.4
1990 64.2
2000 67.4
2010 66.9
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(A)

Figure 7
(B)   (C)

40
40

80

130

Matched Problem 11 Refer to Example 11. Use the model to predict the 
home ownership rate in the United States in 2030 (to the nearest tenth of a percent).

! CAUTION
 Note that in Example 11 we let x = 0 represent 1900. If we let   
 x = 0 represent 1940, for example, we would obtain a different  

logarithmic regression equation. We would not let x = 0 represent 1950 (the first year 
in Table 1) or any later year, because logarithmic functions are undefined at 0.  

For Problems 1–6, rewrite in equivalent exponential form.

1. log3 27 = 3 2. log2 32 = 5

3. log10 1 = 0 4. loge 1 = 0

5. log4 8 = 3
2 6. log8 16 = 4

3

For Problems 7–12, rewrite in equivalent logarithmic form.

7. 49 = 72 8. 36 = 62

9. 8 = 43>2 10. 8 = 163>4

11. A = bu 12. M = bx

In Problems 13–22, evaluate the expression without using a 
calculator.

13. log10 1,000,000 14. log10 
1

1,000

15. log10 
1

100,000
16. log10 10,000

17. log2 128 18. log3 
1

243
19. ln e-3 20. eln1-12

21. eln1-32 22. ln e-1

For Problems 23–28, write in simpler form, as in Example 4.

23. logb 
P
Q

24. logb FG

25. logb L
5 26. logb w

26

27. 3p log3 q 28. 
log3 P

log3 R

A For Problems 29–38, find x, y, or b without using a calculator.

29. log10 x = -1 30. log10 x = 1

31. logb 64 = 3 32. logb 
1
25

= 2

33. log2 
1
8

= y 34. log49 7 = y

35. logb 81 = -4 36. logb 10,000 = 2

37. log4 x =
3
2

38. log27 x =
4
3

In Problems 39–46, discuss the validity of each statement. If the 
statement is always true, explain why. If not, give a counterexample.

39. Every polynomial function is one-to-one.

40. Every polynomial function of odd degree is one-to-one.

41. If g is the inverse of a function f, then g is one-to-one.

42. The graph of a one-to-one function intersects each vertical 
line exactly once.

43. The inverse of f1x2 = 2x is g1x2 = x>2.

44. The inverse of f1x2 = x2 is g1x2 = 1x.

45. If f is one-to-one, then the domain of f is equal to the range of f.

46. If g is the inverse of a function f, then f is the inverse of g.

Find x in Problems 47–54.

47. logb x = 2
3 logb 8 + 1

2 logb 9 - logb 6

48. logb x = 2
3 logb 27 + 2 logb 2 - logb3

B

C

Exercises 1.6
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the same viewing window for 1 … x … 16. Discuss what 
it means for one function to be larger than another on an 
interval, and then order the three functions from largest to 
smallest for 1 6 x … 16.

82. Let p1x2 = log x, q1x2 = 23 x, and r1x2 = x. Use a 
graphing calculator to draw graphs of all three functions in 
the same viewing window for 1 … x … 16. Discuss what 
it means for one function to be smaller than another on an 
interval, and then order the three functions from smallest to 
largest for 1 6 x … 16.

Applications
83. Doubling time. In its first 10 years the Gabelli Growth Fund 

produced an average annual return of 21.36%. Assume that 
money invested in this fund continues to earn 21.36% com-
pounded annually. How long (to the nearest year) will it take 
money invested in this fund to double?

84. Doubling time. In its first 10 years the Janus Flexible 
Income Fund produced an average annual return of 9.58%. 
Assume that money invested in this fund continues to earn 
9.58% compounded annually. How long (to the nearest year) 
will it take money invested in this fund to double?

85. Investing. How many years (to two decimal places) will it 
take $1,000 to grow to $1,800 if it is invested at 6% com-
pounded quarterly? Compounded daily?

86. Investing. How many years (to two decimal places) will it 
take $5,000 to grow to $7,500 if it is invested at 8% com-
pounded semiannually? Compounded monthly?

87. Continuous compound interest. How many years (to two 
decimal places) will it take an investment of $35,000 to grow to 
$50,000 if it is invested at 4.75% compounded continuously?

88. Continuous compound interest. How many years (to two 
decimal places) will it take an investment of $17,000 to grow to 
$41,000 if it is invested at 2.95% compounded continuously?

89. Supply and demand. A cordless screwdriver is sold 
through a national chain of discount stores. A marketing 
company established price–demand and price–supply tables 
(Tables  2 and 3), where x is the number of screwdrivers 
people are willing to buy and the store is willing to sell each 
month at a price of p dollars per screwdriver.

(A) Find a logarithmic regression model 1y = a + b ln x2 
for the data in Table 2. Estimate the demand (to the near-
est unit) at a price level of $50.

Table 2 Price–Demand

x p = D1x21$2
1,000 91
2,000 73
3,000 64
4,000 56
5,000 53

49. logb x = 3
2 logb 4 - 2

3 logb 8 + 2 logb 2

50. logb x = 1
2 logb 36 + 1

3 logb 125 - 1
2 logb 100

51. logb x + logb 1x - 42 = logb 21

52. logb1x + 22 + logb x = logb 24

53. log101x - 12 - log101x + 12 = 1

54. log101x + 62 - log101x - 32 = 1

Graph Problems 55 and 56 by converting to exponential form first.

55. y = log2 1x - 22 56. y = log3 1x + 22
57. Explain how the graph of the equation in Problem 55 can be 

obtained from the graph of y = log2 x using a simple trans-
formation (see Section 1.2).

58. Explain how the graph of the equation in Problem 56 can be 
obtained from the graph of y = log3 x using a simple trans-
formation (see Section 1.2).

59. What are the domain and range of the function defined by 
y = 1 + ln1x + 12?

60. What are the domain and range of the function defined by 
y = log 1x - 12 - 1?

For Problems 61 and 62, evaluate to five decimal places using a 
calculator.

61. (A) log 3,527.2 (B) log 0.006 913 2

(C) ln 277.63 (D) ln 0.040 883

62. (A) log 72.604 (B) log 0.033 041

(C) ln 40,257 (D) ln 0.005 926 3

For Problems 63 and 64, find x to four decimal places.

63. (A) log x = 1.1285 (B) log x = -2.0497

(C) ln x = 2.7763 (D) ln x = -1.8879

64. (A) log x = 2.0832 (B) log x = -1.1577

(C) ln x = 3.1336 (D) ln x = -4.3281

For Problems 65–70, solve each equation to four decimal places.

65. 10x = 12 66. 10x = 153

67. ex = 5.432 68. ex = 0.3059

69. 1.00512t = 3 70. 1.2345t = 6

Graph Problems 71–78 using a calculator and point-by-point 
plotting. Indicate increasing and decreasing intervals.

71. y = ln x 72. y = - ln x

73. y = ∙ ln x ∙ 74. y = ln ∙ x ∙

75. y = 3 ln1x + 42 76. y = 3 ln x + 4

77. y = 4 ln x - 3 78. y = 4 ln 1x - 32
79. Explain why the logarithm of 1 for any permissible base is 0.

80. Explain why 1 is not a suitable logarithmic base.

81. Let p1x2 = ln x, q1x2 = 1x, and r1x2 = x. Use a 
graphing calculator to draw graphs of all three functions in 
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(B) Find a logarithmic regression model 1y = a + b ln x2 
for the data in Table 3. Estimate the supply (to the near-
est unit) at a price level of $50.

model 1y = a + b ln x2 for the yield. Estimate (to the 
nearest bushel per acre) the yield in 2024.

94. Agriculture. Refer to Table 4. Find a logarithmic regression 
model 1y = a + b ln x2 for the total production. Estimate 
(to the nearest million) the production in 2024.

Table 4 United States Corn Production

Year x
Yield (bushels  

per acre)
Total Production 
(million bushels)

1950  50  38 2,782
1960  60  56 3,479
1970  70  81 4,802
1980  80  98 6,867
1990  90 116 7,802
2000 100 140 10,192
2010 110 153 12,447

95. World population. If the world population is now 7.4 
 billion people and if it continues to grow at an annual rate 
of 1.1% compounded continuously, how long (to the nearest 
year) would it take before there is only 1 square yard of land 
per person? (The Earth contains approximately 1.68 * 1014 
square yards of land.)

96. Archaeology: carbon-14 dating. The radioactive carbon-14 
114C2  in an organism at the time of its death decays according 
to the equation

A = A0e
-0.000124t

where t is time in years and A0 is the amount of 14C present at 
time t = 0. (See Example 3 in Section 1.5.) Estimate the age 
of a skull uncovered in an archaeological site if 10% of the 
original amount of 14C is still present. [Hint: Find t such that 
A = 0.1A0.]

Answers to Matched Problems
1. (A) 9 = 32 (B) 2 = 41>2 (C) 1

9 = 3-2

2. (A) log7 49 = 2 (B) log9 3 = 1
2 (C) log3 

11
32 = -1

3. (A) y = 3
2 (B) x = 1

3 (C) b = 10

4. (A) logb R - logb S - logb T (B) 2
3 1logb R - logb S2

(C) bu (D) logb x

5. x = 2 6. x = 5

7. (A) -1.868 734 (B) 3.356 663 (C) Not defined

8. (A) 0.0063 (B) 120.8092

9. (A) 0.8451 (B) 1.7918 (C) 1.1610

10. 9 yr 11. 70.3%

Table 3 Price–Supply

x p = S1x21$2
1,000 9
2,000 26
3,000 34
4,000 38
5,000 41

(C) Does a price level of $50 represent a stable condition, or 
is the price likely to increase or decrease? Explain.

90. Equilibrium point. Use the models constructed in Problem 
89 to find the equilibrium point. Write the equilibrium  
price to the nearest cent and the equilibrium quantity to the  
nearest unit.

91. Sound intensity: decibels. Because of the extraordinary 
range of sensitivity of the human ear (a range of over 
1,000 million millions to 1), it is helpful to use a logarith-
mic scale, rather than an absolute scale, to measure sound 
intensity over this range. The unit of measure is called 
the decibel, after the inventor of the telephone, Alexander 
Graham Bell. If we let N be the number of decibels, I the 
power of the sound in question (in watts per square centi-
meter), and I0 the power of sound just below the threshold 
of hearing (approximately 10-16 watt per square centime-
ter), then

I = I010 N>10

Show that this formula can be written in the form

N = 10 log 
I
I0

92. Sound intensity: decibels. Use the formula in Problem 91 
(with I0 = 10-16 W>cm2) to find the decibel ratings of the 
following sounds:

(A) Whisper: 10-13 W>cm2

(B) Normal conversation: 3.16 * 10-10 W>cm2

(C) Heavy traffic: 10-8 W>cm2

(D) Jet plane with afterburner: 10-1 W>cm2

93. Agriculture. Table 4 shows the yield (in bushels per acre) 
and the total production (in millions of bushels) for corn 
in the United States for selected years since 1950. Let x 
represent years since 1900. Find a logarithmic regression 
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102 CHAPTER 1 Functions and Graphs

Angles: Degree and Radian Measure
In a plane, an angle is formed by rotating a ray m, called the initial side of the angle, 
around its endpoint until the ray coincides with a ray n, called the terminal side of 
the angle. The common endpoint P of m and n is called the vertex (see Fig. 1).

There is no restriction on the amount or direction of rotation. A counterclockwise 
rotation produces a positive angle (Fig. 2A), and a clockwise rotation produces a 
negative angle (Fig. 2B). Two different angles may have the same initial and terminal 
sides, as shown in Figure 2C. Such angles are said to be coterminal.

1.7 Right Triangle Trigonometry
■■ Angles: Degree and Radian 
Measure

■■ Trigonometric Ratios
■■ Solving a Right Triangle
■■ Application

Terminal side

Initial side

Vertex P

m

n

u

Figure 1 Angle u

n

a m

(A)  Positive angle a :
        Counterclockwise rotation

n

b
m

(B)  Negative angle b :
        Clockwise rotation

n

b

a
m

(C)  a and b are coterminal

Figure 2

There are two widely used measures of angles: degree measure and radian 
measure. When a central angle of a circle is subtended by an arc that is 1

360 the cir-
cumference of the circle, the angle is said to have degree measure 1, written as 1° 
(see Fig. 3A). It follows that a central angle subtended by an arc that is 14 of the cir-
cumference has a degree measure of 90, 1

2 of the circumference has a degree mea-
sure of 180, and the whole circumference of a circle has a degree measure of 360.

circumference

(A) 18

1
360

(B)  1 radian

R

R

Figure 3 Degree and radian measure

Reminder
A right angle has measure 90°; an 
acute angle has measure between 
0° and 90°; and an obtuse angle has 
measure between 90° and 180°.

The other measure of angles is radian measure. A central angle subtended by an 
arc of length equal to the radius (R) of the circle is said to have radian measure 1, 
written as 1 radian or 1 rad (see Fig. 3B). In general, a central angle subtended by an 
arc of length s has radian measure that is determined as follows:

urad = radian measure of u =
arc length

radius
=

s
R

(See Figure 4.) [Note: If R = 1, then urad = s.]
What is the radian measure of a 180° angle? A central angle of 180° is subtended 

by an arc that is 12 the circumference of a circle. Thus,

s =
C
2

=
2pR

2
= pR  and  urad =

s
R

=
pR
R

= p rad

The following proportion can be used to convert degree measure to radian measure, 
and vice versa:

u

s

R

Figure 4
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 SECTION 1.7   Right Triangle Trigonometry 103

From Degrees to Radians Find the radian measure of 1°.

SOLUTION

 
1°

180°
=

urad

p rad

 urad =
p

180
 rad ≈ 0.0175 rad

Matched Problem 1 Find the degree measure of 1 rad.

A comparison of degree and radian measure for a few important angles is 
given in the following table:

Radian 0 p>6 p>4 p>3 p>2    p 2p

Degree 0  30°  45°  60°  90° 180° 360°

An angle in a rectangular coordinate system is said to be in standard position if 
its vertex is at the origin and its initial side is on the positive x axis. Figure 5 shows 
three angles in standard position.

u 5 2 rad, or 608

(A)

x

y

p

3

 

u 5 222  rad, or 21508

(B)

x

y

5p
6

 

x

u 5 222   rad, or 3908

(C)

y

13p
6

DEGREE–RADIAN CONVERSION

udeg

180°
=

urad

p rad

EXAMPLE 1

Figure 5 Angles in standard position

Trigonometric Ratios
Triangles ABC and DEF are similar if they have the same angles. See Figure 6, in 
which the angles at A and D have the same measure, as do the angles at B and E, and 
the angles at C and F. If triangles ABC and DEF are similar (Fig. 6), then their sides 
are proportional, that is,

Figure 6 Similar triangles

A

b

CaB

c

   

D

e

F
d

E

f
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104 CHAPTER 1 Functions and Graphs

a
d

=
b
e

=
c
f

Conversely, if the sides of two triangles are proportional, then the triangles are 
similar.

A right triangle is a triangle that has a right angle. The sum of the angles of any 
triangle is 180°, so any right triangle has two acute angles, and those two acute angles 
are complementary, that is, their sum is 90°. If an acute angle of one right triangle 
has the same measure as an acute angle of another right triangle, then the two right 
triangles are similar.

If u is an acute angle of a right triangle, then the sides of the triangle are referred to as 
the side opposite angle u, the side adjacent to angle u, and the hypotenuse (see Fig. 7).  
(The hypotenuse is the side opposite the right angle.) The six possible ratios of the three 
sides are called trigonometric ratios, and each is given a name (and abbreviation): sine 
(sin), cosine (cos), tangent (tan), cosecant (csc), secant (sec), and cotangent (cot).

c
b

u
a

Adjacent side

Hypotenuse

Opposite
side

Figure 7

 sin u =
b
c

  
Opposite

Hypotenuse
 csc u =

c
b

  
Hypotenuse

Opposite

 cos u =
a
c

  
Adjacent

Hypotenuse
 sec u =

c
a

  
Hypotenuse

Adjacent

 tan u =
b
a

  
Opposite

Adjacent
 cot u =

a
b

  
Adjacent

 Opposite

Note that the sine and cosecant are reciprocals, as are the cosine and secant, and the 
tangent and cotangent.

Suppose that two right triangles ABC and DEF are different sizes but have the same 
acute angle u. Explain why the sine of u for triangle ABC is equal to the sine of u for 
DEF. More generally, explain why each of the trigonometric ratios of u is indepen-
dent of the size of the right triangle.

Explore and Discuss 1

EXAMPLE 2 Calculating Trigonometric Ratios Without using a calculator, find:

(A) sin 30°

(B) sec 45°

(C) tan 60°

Using a calculator, find to four decimal places:

(D) cos 10°, cot 50°, and csc 75°

(E) sin 2, tan 4.8, and sec 1.5

SOLUTION
(A) By Explore and Discuss 1, we can use any right triangle that has a 30° angle. 

We choose to use the right triangle ABC, where C is the midpoint of the base 
of an equilateral triangle ABD of side length 2 (see Fig. 8). The side oppo-
site the 30° angle in triangle ABC is a = 1, and the hypotenuse c = 2, so  

sin 30° =
1
2

= 0.5.

c 5 2 2

a 5 1 1C

308

608
D

b

A

B

Figure 8

DEFINITION Trigonometric Ratios
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 SECTION 1.7   Right Triangle Trigonometry 105

(B) We choose to use the right triangle EGH, where EFGH is a square of side length 
1 (see Fig. 9). By the Pythagorean theorem, the hypotenuse of triangle EGH has 

length 12, so sec 45° =
12
1

= 12 ≈ 1.414.

(C) We choose to use the right triangle ABC of Figure 8 that has a 60° angle at 
B. By the Pythagorean theorem, the side opposite the 60° angle has length 

b = 2c2 - a2 = 222 - 12 = 13, so  tan 60° =
13
1

= 13 ≈ 1.732.

(D) First we check to make sure the calculator is in degree mode (Fig. 10). Then we 
perform the calculations (Fig. 11). So  cos 10° = 0.9848,  cot 50° = 0.8391, 
and  csc 75° = 1.0353.

458

1

1

1 1

HE

GF

Figure 9

Figure 10 Figure 11

Figure 12

(E) Because the angles are given in radians, not degrees, we set the calculator in 
radian mode and then perform the calculations (Fig. 12). So sin 2 = 0.9093, 
 tan 4.8 = -11.3849, and  sec 1.5 = 14.1368.

Matched Problem 2 Without using a calculator, find:

(A) cot 45°

(B) cos 30°

(C) csc 60°

Using a calculator, find to four decimal places:

(D) sin 64°, sec 27°, and tan 85°

(E) csc 0.3, cot 3.2, and cos 5.75

! CAUTION It is often difficult to calculate a trigonometric ratio for a given 
angle by hand. So we will make free use of a calculator, as in 

 Example 2, parts (D) and (E). However, before using a calculator to find a trigonomet-
ric ratio, be sure to set the calculator in the correct mode: degree mode if angles are 
measured in degrees, or radian mode if angles are measured in radians. 
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Solving a Right Triangle
Solving a triangle means to find the lengths of all three sides and the measures of all 
three angles. A right triangle can be solved if you are given (1) one side and one acute 
angle, or (2) two sides. The technique is illustrated in Examples 3 and 4.

EXAMPLE 3 Solving a Right Triangle Solve the right triangle with hypotenuse 13.6 and acute 
angle 38°. Round side lengths to one decimal place.

SOLUTION For convenience, label the right triangle as in Figure 13.

First, solve for b: We look for a trigonometric ratio that involves b and the 
known side c. We choose sine (cosecant would also work).

 sin 38° =
b
c
            Solve for b.

b = c  sin 38°    Substitute c = 13.6.

= 13.6  sin 38° Use a calculator.

= 8.4

Second, solve for a: We choose to use cosine, which involves both a and the 
known side c.

 cos 38° =
a
c
     Solve for a.

a = c  cos 38°      Substitute c = 13.6.

= 13.6  cos 38° Use a calculator.

= 10.7

Third, solve for the angle A that is the complement of 38° (to simplify notation, 
we use A, B, and C to denote the measures of the angles of the triangle in Figure 13):

A = 90° - 38° = 52°

Now we know all three angles and all three sides, so the triangle is solved: 
A = 52°, B = 38°, C = 90°, a = 10.7, b = 8.4, c = 13.6.

Matched Problem 3 Solve the right triangle in Figure 14. Round side lengths 
to one decimal place.

c 5 13.6

a

388
C

b

A

B

Figure 13

EXAMPLE 4 Solving a Right Triangle Solve the right triangle in Figure 15. Round angles to 
the nearest degree and side lengths to one decimal place.

SOLUTION The ratio of the known side b to the known side a is the tangent of the 
angle at B:

 tan B =
b
a

=
9.6
5.1

≈ 1.8824

To find the angle B that has tangent equal to 1.8824, we use the inverse tangent 
key,  tan-1, on a calculator.

B =  tan-11 1.88242 = 62°.

c

A

b 5 9.6

a 5 5.1 CB

Figure 15

C

b

A

c 5 17.9

a
238

B

Figure 14
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Angle A is the complement of angle B, so A = 90° - 62° = 28°. The hypot-
enuse c can be found by using the cosecant:

 csc B =
c
b
     Solve for c.

c = b  csc B  Substitute b = 9.6, B = 62°

= 9.6  csc 62°   Substitute  csc 62° = 1/ sin 62°

=
9.6

 sin 62°
  Use a calculator.

= 10.9

(The Pythagorean theorem gives an alternative method for finding c). So A = 28°,  
B = 62°, C = 90°, a = 5.1, b = 9.6, c = 10.9, and the right triangle is solved.

Matched Problem 4 Solve the right triangle in Figure 16. Round angles to the 
nearest degree and side lengths to one decimal place.

c 5 13.3

a 5 7.8 C

b

A

B

Figure 16
Application

EXAMPLE 5 Advertising An advertising agency is designing a billboard that is 40 feet long 
and 12 feet high. The billboard is mounted on a wall so that the bottom of the bill-
board is 30 feet above the ground. Suppose that a man, whose eyes are 6 feet above 
the ground, stands 150 feet from the wall. Find the angle u (to the nearest degree) 
between the man’s line of sight to the top of the billboard and his line of sight to the 
bottom of the billboard (see Fig. 17).

6 ft
150 ft

12 ft

30 ft
u1
u2

u

Figure 17

SOLUTION The angle u is equal to u2 - u1, where u2 is the angle between the line 
of sight to the top of the billboard and the horizontal, and u1 is the angle between the 
line of sight to the bottom of the billboard and the horizontal (Fig 17). We calculate 
the tangent of each angle:

 tan u1 =
30 - 6

150
=

24
150

    tan u2 =
30 - 6 + 12

150
=

36
150

So

u = u2 - u1 =  tan-1 36
150

-  tan-1 24
150

≈ 4.4°

The angle u, to the nearest degree, is 4°.

Matched Problem 5 Repeat Example 5 assuming that the man is standing 75 
feet from the wall.
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108 CHAPTER 1 Functions and Graphs

In Problems 43–52, refer to the figure and use the given informa-
tion to solve the triangle. Round angles to the nearest degree and 
side lengths to one decimal place.

C

b

A

c

aB

Figure for 43–52

43. B = 19°, b = 8.3 44. B = 48°, a = 12.1

45. A = 29°, c = 15.6 46. B = 65°, c = 14.5

47. A = 57°, b = 9.4 48. A = 67°, a = 8.9

49. b = 7.7, c = 13.4 50. a = 6.9, b = 4.8

51. a = 9.2, b = 11.5 52. a = 12.3, c = 23.4

Applications
53. Digital display. A 10-foot-tall departure board is mounted on 

a wall in the hall of a railway station so that the bottom of the 
display is 20 feet above the floor. A woman whose eyes are 
5 feet above the floor stands 140 feet away from the wall. 
Find the angle u (to the nearest degree) between the top and 
bottom of the display as seen by the woman.

54. Digital display. Repeat Problem 53 for a child standing 
110 feet from the wall if his eyes are 4 feet above the floor.

55. Parking design. A small business has limited parking space. 
Find the dimensions x and y (to the nearest tenth of a foot) that 
will accommodate four stalls for diagonal parking (see figure) if 
u = 25°. Each rectangular shaded area is 8 feet by 18 feet.

y

x

u

Figure for 55 and 56

56. Parking design. Repeat Problem 55 if u = 40°.

An angle above the horizontal is called an angle of eleva-
tion, and an angle below the horizontal is called an angle of 
 depression. This terminology is used in Problems 57–60 (see 
figure).

Angle of
elevation  

Angle of
depression

C

Exercises 1.7
Skills Warm-up Exercises

In Problems 1–8, mentally convert each degree measure to radian 
measure, and each radian measure to degree measure.

1. 60° 2. 90°

3. 135° 4. -30 ∘

5. -  
p

4
 rad 6. 

7p
6

 rad

7. 
3p
2

 rad 8. 
2p
3

 rad

In Problems 9–16, find the trigonometric ratio by referring to the 
figure.

9. cos a 10. tan a 

11. cot a 12. sec a 

13. csc b 14. sin b 

15. tan b 16. cot b 

4

3
5

a

b

Figure for 9–16

In Problems 17–24, find the exact value without using a  
calculator.

17. sec 30° 18. cot 30°

19. sin 45° 20. csc 45°

21. cos 60° 22. tan 45°

23. csc 30° 24. sec 60°

In Problems 25–36, use a calculator set in degree or radian 
mode, as appropriate, to find the value of each expression to four 
decimal places.

25. cot 15° 26. cos 57°

27. sec 0.5 28. csc 1.3

29. tan 1.1 30. sin 0.2

31. cos 31° 32. cot 32°

33. csc 72° 34. sec 5°

35. sin 0.9 36. tan 1.9

In Problems 37–42, use a calculator to find the acute angle u, to 
the nearest degree, that satisfies the equation.

37.  tan u = 5 38.  cos u = 0.45

39.  sin u = 0.67 40.  tan u = 4

41.  cos u = 0.8 42.  sin u = 0.4

W

A

B

Figure for Problems 57–60

M01_BARN6152_14_GE_C01.indd   108 22/11/18   10:41 PM
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57. Air travel. An airline passenger sees a lake at an angle of 
depression of 20°. If the plane is flying at an altitude of 
30,000 feet, find the distance from the plane to the lake (to 
the nearest mile).

58. Air travel. An airline pilot, flying at 25,000 feet, sees a sec-
ond plane at an angle of elevation of 50°. If the second plane 
is flying at an altitude of 28,000 feet, find the distance (to the 
nearest hundred feet) between the two planes.

59. Boat navigation. The pilot of a boat sees the light from a 
lighthouse at an angle of elevation of 10°. The light is on the 
shoreline, 500 feet above the dock. How far (to the nearest 
hundred feet) is the boat from the dock?

60. Boat navigation. Repeat Problem 59 if the angle of eleva-
tion is 5°.

Answers to Matched Problems

1. 180°
p

≈ 57.3°

2. (A) 1

(B) 13
2

(C) 
213

(D) 0.9848; 0.8391; 1.0353
(E) 3.3839; 17.1017; 0.8612

3. A = 67°; B = 23°; C = 90°; a = 16.5; b = 7.0; c = 17.9
4. A = 36°; B = 54°; C = 90°; a = 7.8; b = 10.8; c = 13.3
5. 8°

Definitions of the Sine and Cosine Functions
In Section 1.7, we defined the trigonometric ratios  sin u and cos u for 0° 6 u 6 90° 

(or, equivalently, for 0 6 u 6
p

2
 radians). We now remove that restriction on u to de-

fine the sine function and the cosine function, each having the set of all real numbers 
as its domain. We will use the letter x (rather than u) to denote the independent vari-
able, as we have done previously with polynomial, rational, exponential, and logarith-
mic functions. The definition is called the unit circle definition of the sine and cosine.

1.8 Trigonometric Functions
■■ Definitions of the Sine and Cosine 
Functions

■■ Graphs of the Sine and Cosine 
Functions

■■ Four Other Trigonometric Functions
■■ Applications

(0, 1)

(1, 0)(21, 0)

(0, 21)

P 5 (a, b)

u
x

v

Figure 1

DEFINITION Sine and Cosine Functions
Let x be the radian measure of an angle in standard position, and let P = 1a, b2 be 
the point on the unit circle that lies on the terminal side of the angle (Fig. 1). Then

 sin x = b and  cos x = a

We make several important observations about the definition and its consequences:

1. The coordinate axes in Figure 1 are the u and v axes, rather than the customary x and 
y axes, because x is used to denote the measure of the angle. So the sine of x is the 
second, or v, coordinate of P, and the cosine of x is the first, or u, coordinate of P.

2. The definition applies to angles with positive, negative, or zero radian measure, 
so the domain of the sine function, and of the cosine function, is the set of all real 
numbers.

3. The point P lies on the unit circle, so its coordinates a and b are between -1 and 1.  
That is, -1 …  cos x … 1 and -1 …  sin x … 1 for any real number x.

4. Because P lies on the unit circle, a2 + b2 = 1, and therefore 
1sin x2 2 + 1cos x2 2 = 1 for any real number x.

5. The angles in standard position with radian measures x and x + 2p are cotermi-
nal, so their terminal sides intersect the unit circle at the same point P. Therefore, 
sin x =  sin 1x + 2p2 and  cos x =  cos 1x + 2p2; that is, the sine and cosine 
functions are periodic with period 2p.
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110 CHAPTER 1 Functions and Graphs

6. The sine or cosine of an angle measured in degrees is equal to the sine or cosine 

of the same angle measured in radians. For example,  sin 90° =  sin 
p

2
= 1, be-

cause 1 is the second coordinate of the point P = 10, 12 on the unit circle that 

lies on the terminal side of the angle in standard position with radian measure 
p

2
.

7. If 0 6 x 6
p

2
, then the definitions of sin x and cos x agree with the trigonometric 

ratios of Section 1.7. Because P is on the unit circle, the hypotenuse of the tri-

angle in Figure 2 has length 1, so the trigonometric ratio for sine is 
b
1

, and the 

trigonometric ratio for cosine is 
a
1

.

(0, 1)

(1, 0)(21, 0)

(0, 21)

P 5 (a, b)

u
x

b
1

a

v

Figure 2

EXAMPLE 1 Evaluating Sine and Cosine Functions Referring to Figure 2, find

(A) cos 90° (B) sin1-p>22 (C) cos p

SOLUTION
(A) The terminal side of an angle of degree measure 90 passes through (0, 1) on the 

unit circle. This point has first coordinate 0. So

cos 90° = 0

(B) The terminal side of an angle of radian measure -p>2 1-90°2 passes through 
10, -12 on the unit circle. This point has second coordinate -1. So

sina-  
p

2
b = -1

(C) The terminal side of an angle of radian measure p 1180°2 passes through 
1-1, 02 on the unit circle. This point has first coordinate -1. So cos p = -1.

Matched Problem 1 Referring to Figure 2, find

(A) sin 180° (B) cos12p2 (C) sin1-p2

Finding the value of either the sine or cosine function by hand, using the defini-
tion, may be difficult. But we can use a calculator to evaluate these functions. The 
following table includes a few values produced by a calculator in radian mode:

x 1 -7 35.26 -105.9
sin x 0.8415 -0.6570 -0.6461 0.7920

cos x 0.5403 0.7539 -0.7632 0.6105

Many errors in trigonometry can be traced to having the calculator in the wrong 
mode, radian instead of degree, or vice versa, when performing calculations. The cal-
culator screen in Figure 3 gives two different values for cos 30. Experiment with your 
calculator and explain the discrepancy.

Explore and Discuss 1

Figure 3
We normally use a calculator to find values of the sine and cosine functions. 

However, it is possible to give exact values of sin x and cos x whenever x is a multiple 

of 
p

6
 radian (30°) or 

p

4
 radian (45°). The technique, which is illustrated in Example 2,  

is based on our knowledge of trigonometric ratios associated with the right triangles 
of Figure 4:
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 SECTION 1.8   Trigonometric Functions 111

 sin 30° =
1
2

       cos 30° =
13
2

 sin 60° =
13
2

   cos 60° =
1
2

 sin 45° =
112

   cos 45° =
112

So the coordinates of the point B on the unit circle, at an angle of 
p

6
 radian, are 

a13
2

, 
1
2
b  (see Fig. 5). Similarly, the coordinates of the point C, at an angle of 

p

3
 

radians, are a1
2

, 
13
2

b , and the coordinates of the point T, at an angle of 
p

4
 radian, are 

a 112
, 

112
b  (see Fig. 5).

2
1

308

608

Ï3

458

1

1
Ï2

C 5 (2, 22)1
2

Ï3
2

B 5 (22, 2)1
2

Ï3
2

A 5 (1, 0)
u

D
E

J
K

L

v

2
p

3
2
p

6

F

G

H

I

1

Ï2

1

Ï2
T 5 (22, 22)

S 5 (1, 0)
u

U

V

Y

Z

v

2
p

4W

X

Finding Exact Values of Sine and Cosine Find the exact values without using a 
calculator.

(A) cos 
5p
6

(B) sin 
5p
4

(C) cos 
7p
4

(D) sin a- 2p
3

b

SOLUTION

(A) The cosine of 
5p
6

 radians (150°) is the first coordinate of point F in Figure 5. 

But F is the reflection of B = a13
2

, 
1
2
b  in the v axis, so F = a- 

13
2

, 
1
2
b  and 

 cos 
5p
6

= -
13
2

 .

(B) The sine of 
5p
4

 radians (225°) is the second coordinate of point X in Figure 5. But 

X is the reflection of T = a 112
, 

112
b  in the origin, so X = a-  

112
, -

112
b  

and  sin 
5p
4

= -
112

 .

(C) The cosine of 
7p
4

 radians (315°) is the first coordinate of point Z in Figure 5.  

But Z is the reflection of T = a 112
, 

112
b  in the u axis, so Z = a 112

, -
112

b  

and cos 
7p
4

=
112

 .

EXAMPLE 2

Figure 4

Figure 5
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112 CHAPTER 1 Functions and Graphs

(D) The sine of -
2p
3

 radians (–120°) is the second coordinate of point I 

in Figure 5. But I is the reflection of C = a1
2

, 
13
2

b  in the origin, so  

I = a-  
1
2

, -
13
2

b  and  sin a-  
2p
3

b = -
13
2

 .

Graphs of the Sine and Cosine Functions
Imagine that the point P in Figure 2 moves in a counterclockwise direction, starting 

at the point (1, 0) and stopping at the point (0, 1). Then x is increasing from 0 to 
p

2
,  

and the second coordinate of P, which equals sin x, is increasing from 0 to 1. Also, 
the first coordinate of P, which equals cos x, is decreasing from 1 to 0.

Similarly, as P moves from (0, 1) to 1-1, 02, x is increasing from 
p

2
 to p, sin x 

is decreasing from 1 to 0, and cos x is decreasing from 0 to -1. Table 1 shows this 
behavior of sin x and cos x as P makes one complete revolution of the circle.

Table 1
As x Increases from y ∙  sin x y ∙  cos x

0 to p/2 Increases from 0 to 1 Decreases from 1 to 0
p/2 to p Decreases from 1 to 0 Decreases from 0 to -1
p to 3p/2 Decreases from 0 to -1 Increases from -1 to 0
3p/2 to 2p Increases from -1 to 0 Increases from 0 to 1

Using the information in Table 1, and plotting some additional points, gives the 
graphs of y = sin x and y = cos x (Fig. 6). The functions y = sin x and y = cos x 
are continuous for all real numbers.

x

x

y

21

1

1

0

0

y

21

y 5 sin x

y 5 cos x

24p 23p 22p 2p 3p 4p2p p

24p 23p 22p 2p 3p 4p2p p

Figure 6

A function f is periodic if f1x + p2 = f1x2 for some positive constant p and all 
real numbers x. The smallest such number p is called the period of the function. The 
fact that y = sin x and y = cos x are both periodic with period 2p shows up clearly 
in their repetitive graphs: the graph of y = sin x on [0, 2p], for example, is identical 
to its graph on [2p, 4p] or on [-2p, 0].

Matched Problem 2 Find the exact values without using a calculator.

(A) sin 
11p

6
(B) cos 

3p
4

(C) cos 
2p
3

(D) sin a-  
p

4
b
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 SECTION 1.8   Trigonometric Functions 113

Four Other Trigonometric Functions
The sine and cosine functions are only two of six trigonometric functions. They are, 
however, the most important of the six for many applications. The other four trigono-
metric functions are the tangent, cotangent, secant, and cosecant. Their graphs are 
shown in Figure 7.

DEFINITION Four Other Trigonometric Functions

 tan x =
sin x
cos x

   cos x ∙ 0     sec x =
1

cos x
   cos x ∙ 0

 cot x =
cos x
sin x

   sin x ∙ 0     csc x =
1

sin x
   sin x ∙ 0

Figure 7

The functions sin x and cos x are periodic with period 2p, so

tan1x + 2p2 =
sin1x + 2p2
cos1x + 2p2 =

sin x
cos x

= tan x

One might guess that tan x is periodic with period 2p. However, 2p is not the 
smallest positive constant p such that tan1x + p2 = tan x. Because the points 
(cos x, sin x) and 1cos1x + p2, sin1x + p22 are diametrically opposed on the 
unit circle,

sin1x + p2 = -sin x  and  cos1x + p2 = -cos x

Therefore,

tan1x + p2 =
sin1x + p2
cos1x + p2 =

-sin x
-cos x

= tan x

It follows that the functions tan x and cot x have period p. The other four trigonometric 
functions—sin x, cos x, sec x, and csc x—all have period 2p.

CONCEPTUAL  INSIGHT
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114 CHAPTER 1 Functions and Graphs

Applications

Finding Exact Values of Trigonometric Functions Find the exact values without 
using a calculator.

(A) tan 120°

(B) sec 
3p
2

(C) csc 225°

SOLUTION
(A) The point on the unit circle at an angle of 120° (the point E in Figure 5) has coor-

dinates a-  
1
2

, 
13
2

b  (it is the reflection of C in the v axis). So  sin 120° =
13
2

 

and  cos 120° = -
1
2

 . Therefore  tan 120° =
 sin 120°
 cos 120°

= - 13.

(B) The point on the unit circle at an angle of 
3p
2

 radians has coordinates 10, -12.  

So  cos 
3p
2

= 0 and  sec 
3p
2

 is not defined.

(C) The point on the unit circle at an angle of 225° is a-  
112

, -
112

b .  

So  sin 225° = -
112

 and  csc 225° =
1

 sin 225°
= - 12.

Matched Problem 3 Find the exact values without using a calculator.

(A) cot 210° (B) csc p (C) sec 2p

EXAMPLE 3

Exercise physiology. The volume V(t) of air (in liters) in the lungs of a running 
adult, t seconds after exhaling, is given approximately by

V1t2 = 3 - 2 cos pt 0 … t … 4

Figure 8 shows the graph of V(t) for two complete respirations.

V
ol

um
e 

(l
ite

rs
 o

f 
ai

r)

t
43210

V(t)

V(t) 5 3 2 2 cos pt

1

3

5

Time (seconds)

Figure 8

(A) Find the exact value of V(0), Va1
2
b , and V(l) without using a calculator.

(B) Use a calculator to find V(1.3) (to one decimal place) and interpret the results.

SOLUTION
(A) Substituting t = 0 into the expression for V(t), and using the fact that  cos 0 = 1,  

gives V102 = 3 - 2112, so V102 = 1. Similarly, substituting t =
1
2

 and 

EXAMPLE 4

M01_BARN6152_14_GE_C01.indd   114 22/11/18   10:42 PM



 SECTION 1.8   Trigonometric Functions 115

Exercises 1.8
Skills Warm-up Exercises

In Problems 1–8, find the exact value of each expression without 
using a calculator.

1. cot 30° 2. cos 45°

3. sin 60° 4. tan 30°

5. tan 
p

4
6. cot 

p

3

7. sec 
p

6
8. csc 

p

4

In Problems 9–24, find the exact value of each expression without 
using a calculator.

9. sin 270° 10. sin 300°

11. cos 135° 12. cos 120°

13. sin 90° 14. cos 180°

15. cos1-90°2 16. sin1-180°2

17. cos a5p
4
b 18. sin a 3p

4
b

19. sin a-  
p

6
b 20. cos a-  

2p
3
b

21. sin a3p
2
b

W

A

25. Show that 1tan x2 2 + 1 = 1sec x2 2 for all x.

26. Show that 1 + 1cot x2 2 = 1csc x2 2 for all x.

In Problems 27-42, find the exact value of each expression without 
using a calculator.

27. tan a3p
4
b 28. sec a5p

3
b

29. csc a7p
6
b 30. cot a5p

4
b

31. sec 90° 32. csc 1-30°2
33. cot 1-150°2 34. tan 1-90°2

35. csc a7p
6
b 36. cot a5p

6
b

37. sec 1-p2 38. csc a-  
3p
2
b

39. tan 150° 40. sec 1135°2
41. cot 1-210°2 42. tan 1-765°2

In Problems 43–54, use a calculator in radian or degree mode, 
as appropriate, to find the value of each expression to four 
 decimal places.

43. sin 10° 44. tan 123°

45. cos 1-52°2 46. sec 1-18°2
47. tan 1 48. cot 1-22
49. sec 1-1.582 50. cos 3.13

51. csc 1° 52. csc 182°

53. cot a p

10
b 54. cos a3p

5
b

t = 1 into V(t), and using the facts that cos 
p

2
= 0 and cos p = -1, respec-

tively, gives Va1
2
b = 3 and V112 = 5.

(B) Using a calculator in radian mode, V11.32 = 3 - 2  cos 11.3p2 = 4.2. So 
there are 4.2 liters of air in the lungs of the runner, 1.3 seconds after exhaling.

Matched Problem 4 Refer to Example 4.

(A) Find the exact value of V(2), V(3), and V(3.5) without using a calculator.

(B) Use a calculator to find V(3.9) (to one decimal place) and interpret the results.

22. cos 12p2

23. cos a-  
11p

6
b 24. sin a-  

7p
6
b

In Problems 25 and 26, use the fact that

1sin x2 2 + 1cos x2 2 = 1

for all x.

B
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116 CHAPTER 1 Functions and Graphs

In Problems 55–58, use a graphing calculator set in radian mode 
to graph each function.

55. y = 2 sin px; 0 … x … 2, -2 … y … 2

56. y = -0.5 cos 2x; 0 … x … 2p, -0.5 … y … 0.5

57. y = 4 - 4 cos 
px
2

; 0 … x … 8, 0 … y … 8

58. y = 6 + 6 sin 
px
26

; 0 … x … 104, 0 … y … 12

59. Find the domain of the tangent function.

60. Find the domain of the cotangent function.

61. Find the domain of the secant function.

62. Find the domain of the cosecant function.

63. Explain why the range of the cosecant function is 
1- ∞ , -14 ∪ 31, ∞ 2.

64. Explain why the range of the secant function is 
1- ∞ , -14 ∪ 31, ∞ 2.

65. Explain why the range of the cotangent function is 
1- ∞ , ∞ 2.

66. Explain why the range of the tangent function is 1- ∞ , ∞ 2.

Applications
67. Seasonal business cycle. Suppose that profits on the sale of 

swimming suits over a 2-year period are given approximately by

P1t2 = 5 - 5 cos 
pt
26
  0 … t … 104

where P is profit (in hundreds of dollars) for a week of sales 
t weeks after January 1. The graph of the profit function is 
shown in the figure.

P

t
104917865523926130

10

5

Pr
ofi

t (
hu

nd
re

d 
do

lla
rs

)

Weeks after January 1

JanuaryJanuaryJanuary

(A) Find the exact values of P(13), P(26), P(39), and P(52) 
without using a calculator.

(B) Use a calculator to find P(30) and P(100). Interpret the 
results.

(C) Use a graphing calculator to confirm the graph shown 
here for y = P1t2.

68. Seasonal business cycle. Revenues from sales of a soft 
drink over a 2-year period are given approximately by

R1t2 = 4 - 3 cos 
pt
6
  0 … t … 24

C where R(t) is revenue (in millions of dollars) for a month of 
sales t months after February 1. The graph of the revenue 
function is shown in the figure.

R
ev

en
ue

(m
ill

io
n 

do
lla

rs
) R(t)

t
242220181614121086420

7

1

3

5

Months after February 1

FebruaryFebruaryFebruary

(A) Find the exact values of R(0), R(2), R(3), and R(18) 
without using a calculator.

(B) Use a calculator to find R(5) and R(23). Interpret the 
results.

(C) Use a graphing calculator to confirm the graph shown 
here for y = R1t2.

69. Physiology. A normal seated adult inhales and exhales about 
0.8 liter of air every 4 seconds. The volume V(t) of air in the 
lungs t seconds after exhaling is given approximately by

V1t2 = 0.45 - 0.35 cos 
pt
2
  0 … t … 8

The graph for two complete respirations is shown in the figure.

V
ol

um
e 

(l
ite

rs
 o

f 
ai

r)

t
876543210

V(t)

0.1
0.3
0.5
0.7

Time (seconds)

(A) Find the exact value of V(0), V(1), V(2), V(3), and V(7) 
without using a calculator.

(B) Use a calculator to find V(3.5) and V(5.7). Interpret the 
results.

(C) Use a graphing calculator to confirm the graph shown 
here for y = V1t2.

70. Pollution. In a large city, the amount of sulfur dioxide pol-
lutant released into the atmosphere due to the burning of coal 
and oil for heating purposes varies seasonally. Suppose that 
the number of tons of pollutant released into the atmosphere 
during the nth week after January 1 is given approximately by

P1n2 = 1 + cos 
pn
26
  0 … n … 104

The graph of the pollution function is shown in the figure.

P

n
104917865523926130

2

1

Weeks after January 1

JanuaryJanuaryJanuary

T
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Important Terms, Symbols, and Concepts
1.1   Functions EXAMPLES

• A Cartesian or rectangular coordinate system is formed by the intersection of a horizontal real 
number line, usually called the x axis, and a vertical real number line, usually called the y axis, at their 
origins. The axes determine a plane and divide this plane into four quadrants. Each point in the plane 
corresponds to its coordinates—an ordered pair 1a, b2 determined by passing horizontal and verti-
cal lines through the point. The abscissa or x coordinate a is the coordinate of the intersection of the 
 vertical line and the x axis, and the ordinate or y coordinate b is the coordinate of the intersection of the 
horizontal line and the y axis. The point with coordinates 10, 02 is called the origin.

• Point-by-point plotting may be used to sketch the graph of an equation in two variables: Plot enough 
points from its solution set in a rectangular cordinate system so that the total graph is apparent and then 
connect these points with a smooth curve.

• A function is a correspondence between two sets of elements such that to each element in the first set 
there corresponds one and only one element in the second set. The first set is called the domain and the 
set of corresponding elements in the second set is called the range.

• If x is a placeholder for the elements in the domain of a function, then x is called the independent 
variable or the input. If y is a placeholder for the elements in the range, then y is called the dependent 
variable or the output.

• If in an equation in two variables we get exactly one output for each input, then the equation specifies a 
function. The graph of such a function is just the graph of the specifying equation. If we get more than 
one output for a given input, then the equation does not specify a function.

• The vertical-line test can be used to determine whether or not an equation in two variables specifies a 
function (Theorem 1, p. 25).

Ex. 1, p. 21

Ex. 2, p. 24

(A) Find the exact values of P(0), P(39), P(52), and P(65) 
without using a calculator.

(B) Use a calculator to find P(10) and P(95). Interpret the 
results.

(C) Use a graphing calculator to confirm the graph shown 
here for y = P1n2.

71. Psychology. Individuals perceive objects differently in dif-
ferent settings. Consider the well-known illusions shown in 
Figure A. Lines that appear parallel in one setting may appear 
to be curved in another (the two vertical lines are actually 
parallel). Lines of the same length may appear to be of dif-
ferent lengths in two different settings (the two horizontal 
lines are actually the same length). Psychologists Berliner 
and Berliner reported that when subjects were presented with 
a large tilted field of parallel lines and were asked to esti-
mate the position of a horizontal line in the field, most of the 
subjects were consistently off (Figure B). They found that the 
difference d in degrees between the estimates and the actual 
horizontal could be approximated by the equation

d = a + b sin 4u

  where a and b are constants associated with a particular per-
son and u is the angle of tilt of the visual field (in degrees). 

Suppose that, for a given person, a = -2.1 and b = -4. 
Find d if

(A) u = 30° (B) u = 10°

(A)  

u

d

(B)

Answers to Matched Problems
1. (A) 0 (B) -1 (C) -1

2. (A) -
1
2

 (B) -122 (C) -
1
2

 (D) -122

3. (A) - 23 (B) Not defined (C) 1
4. (A) V122 = 1, V132 = 5, V13.52 = 3

(B)  V13.92 = 1.1; there are approximately 1.1 L of air in 
the lungs of the runner, 3.9 seconds after exhalation.

Chapter 1 Summary and Review

 Summary and Review 117
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118 CHAPTER 1 Functions and Graphs

1.1      Functions (Continued)
• The functions specified by equations of the form y = mx + b, where m ∙ 0, are called linear 

 functions. Functions specified by equations of the form y = b are called constant functions.

• If a function is specified by an equation and the domain is not indicated, we agree to assume that the 
domain is the set of all inputs that produce outputs that are real numbers.

• The symbol f 1x 2  represents the element in the range of f that corresponds to the element x of the 
domain.

• Break-even and profit–loss analysis use a cost function C and a revenue function R to determine when 
a company will have a loss 1R 6 C2, will break even 1R = C2, or will have a profit 1R 7 C2. Typical 
cost, revenue, profit, and price–demand functions are given on page 29.

Ex. 3, p. 26
Ex. 5, p. 27

Ex. 4, p. 27
Ex. 6, p. 28
Ex. 7, p. 29

1.2      Elementary Functions: Graphs and Transformations
• The graphs of six basic elementary functions (the identity function, the square and cube functions, the 

square root and cube root functions, and the absolute value function) are shown on page 36.

• Performing an operation on a function produces a transformation of the graph of the function. The 
basic graph transformations, vertical and horizontal translations (shifts), reflection in the x axis, and 
vertical stretches and shrinks, are summarized on page 40.

• A piecewise-defined function is a function whose definition uses different rules for different parts of 
its domain.

Ex. 1, p. 35

Ex. 2, p. 37
Ex. 3, p. 38
Ex. 4, p. 39
Ex. 5, p. 41
Ex. 6, p. 41
Ex. 7, p. 42

1.3      Linear and Quadratic Functions
• A mathematical model is a mathematics problem that, when solved, will provide information about a 

real-world problem.

• A linear equation in two variables is an equation that can be written in the standard form 
Ax + By = C, where A, B, and C are constants (A and B are not both zero), and x and y are variables.

• The graph of a linear equation in two variables is a line, and every line in a Cartesian coordinate system 
is the graph of an equation of the form Ax + By = C.

• If 1x1, y12 and 1x2, y22 are two points on a line with x1 ∙ x2, then the slope of the line is m =
y2 - y1

x2 - x1
.

• The point-slope form of the line with slope m that passes through the point 1x1, y12 is 
y - y1 = m1x - x12.

• The slope-intercept form of the line with slope m that has y intercept b is y = mx + b.

• The graph of the equation x = a is a vertical line, and the graph of y = b is a horizontal line.

• A function of the form f1x2 = mx + b, where m ∙ 0, is a linear function.

• A function of the form f1x2 = ax2 + bx + c, where a ∙ 0, is a quadratic function in standard 
form, and its graph is a parabola.

• Completing the square in the standard form of a quadratic function produces the vertex form

f1x2 = a1x - h2 2 + k Vertex form

Ex. 2, p. 49

Ex. 1, p. 48

Ex. 3, p. 51

Ex. 4, p. 56

• From the vertex form of a quadratic function, we can read off the vertex, axis of symmetry, maximum or 
minimum, and range, and can easily sketch the graph (pp. 55 and 56).

• In a competitive market, the intersection of the supply equation and the demand equation is called the 
equilibrium point, the corresponding price is called the equilibrium price, and the common value of 
supply and demand is called the equilibrium quantity.

• A graph of the points in a data set is called a scatter plot. Linear regression can be used to find the 
linear function (line) that is the best fit for a data set. Quadratic regression can be used to find the qua-
dratic function (parabola) that is the best fit.

Ex. 6, p. 59

Ex. 5, p. 57

Ex. 7, p. 61
Ex. 8, p. 61
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1.4      Polynomial and Rational Functions
• A polynomial function is a function that can be written in the form

f1x2 = anx
n + an - 1x

n - 1 + g+ a1x + a0

for n a nonnegative integer called the degree of the polynomial. The coefficients a0, a1, ... , an are 
real numbers with leading coefficient an ∙ 0. The domain of a polynomial function is the set of all 
real numbers. Graphs of representative polynomial functions are shown on page 69 and at the back of 
the book.

• The graph of a polynomial function of degree n can intersect the x axis at most n times. An x intercept is 
also called a zero or root.

• The graph of a polynomial function has no sharp corners and is continuous; that is, it has no holes or breaks.

• Polynomial regression produces a polynomial of specified degree that best fits a data set.

• A rational function is any function that can be written in the form

f1x2 =
n1x2
d1x2     d1x2 ∙ 0

where n1x2 and d1x2 are polynomials. The domain is the set of all real numbers such that d1x2 ∙ 0. 
Graphs of representative rational functions are shown on page 72 and at the back of the book.

• Unlike polynomial functions, a rational function can have vertical asymptotes [but not more than the 
degree of the denominator d1x2] and at most one horizontal asymptote.

• A procedure for finding the vertical and horizontal asymptotes of a rational function is given on page 74.

Ex. 1, p. 70

Ex. 2, p. 72

Ex. 3, p. 75
Ex. 4, p. 75

1.5      Exponential Functions
• An exponential function is a function of the form

f1x2 = bx

where b ∙ 1 is a positive constant called the base. The domain of f is the set of all real numbers, and 
the range is the set of positive real numbers.

Ex. 1, p. 81

Ex. 2, p. 84

Ex. 3, p. 84

Ex. 4, p. 85

Ex. 5, p. 86
Ex. 6, p. 87

• The graph of an exponential function is continuous, passes through 10, 12, and has the x axis as a 
horizontal asymptote. If b 7 1, then bx increases as x increases; if 0 6 b 6 1, then bx decreases as x 
increases (Theorem 1, p. 81).

• Exponential functions obey the familiar laws of exponents and satisfy additional properties (Theorem 2, p. 82).

• The base that is used most frequently in mathematics is the irrational number e ≈ 2.7183.

• Exponential functions can be used to model population growth and radioactive decay.

• Exponential regression on a graphing calculator produces the function of the form y = abx that best fits 
a data set.

• Exponential functions are used in computations of compound interest and continuous compound 
interest:

A = Pa1 +
r
m
b

mt

 Compound interest

A = Pert  Continuous compound interest

(see summary on p. 87).

 Summary and Review 119
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120 CHAPTER 1 Functions and Graphs

1.6     Logarithmic Functions
• A function is said to be one-to-one if each range value corresponds to exactly one domain value.

• The inverse of a one-to-one function f is the function formed by interchanging the independent and 
dependent variables of f. That is, 1a, b2 is a point on the graph of f if and only if 1b, a2 is a point on the 
graph of the inverse of f. A function that is not one-to-one does not have an inverse.

• The inverse of the exponential function with base b is called the logarithmic function with base b, de-
noted y = logb x. The domain of logb x is the set of all positive real numbers (which is the range of bx),  
and the range of logb x is the set of all real numbers (which is the domain of bx).

• Because logb x is the inverse of the function bx,

Logarithmic form                                    Exponential form

y = logb x    is equivalent to    x = b y

Ex. 1, p. 92
Ex. 2, p. 93
Ex. 3, p. 93

Ex. 4, p. 94

• Properties of logarithmic functions can be obtained from corresponding properties of exponential func-
tions (Theorem 1, p. 94).

• Logarithms to the base 10 are called common logarithms, often denoted simply by log x. Logarithms to 
the base e are called natural logarithms, often denoted by ln x.

• Logarithms can be used to find an investment’s doubling time—the length of time it takes for the value 
of an investment to double.

• Logarithmic regression on a graphing calculator produces the function of the form y = a + b ln x that 
best fits a data set.

Ex. 5, p. 94
Ex. 6, p. 95
Ex. 7, p. 95
Ex. 8, p. 96
Ex. 9, p. 96

Ex. 10, p. 97

Ex. 11, p. 98

1.7 Right Triangle Trigonometry

• In a plane, an angle is formed by rotating a ray m, called the initial side of the angle, around its endpoint 
until the ray coincides with a ray n, called the terminal side of the angle. The common endpoint of m 
and n is called the vertex.

• A counterclockwise rotation produces a positive angle, and a clockwise rotation produces a negative 
angle.

• Two angles with the same initial and terminal sides are said to be coterminal.

• An angle of degree measure 1 is 1
360 of a complete rotation. In a circle, an angle of radian measure 1 is 

the central angle subtended by an arc having the same length as the radius of the circle.

• Degree measure can be converted to radian measure, and vice versa, by the proportion

udeg

180°
=

urad

p rad

• An angle in a rectangular coordinate system is in standard position if its vertex is at the origin and its 
initial side is on the positive x axis.

• A right triangle is a triangle that has a right angle. A right triangle can be solved (that is, all angles and 
side lengths can be found) if one side and one acute angle are known, or if two sides are known. In both 
cases, trigonometric ratios can be used to solve the right triangle (see figure):

b
c

a
u

    sin u =
b
c
  csc u =

c
b

 cos u =
a
c
  sec u =

c
a

 tan u =
b
a
  cot u =

a
b

Ex. 1, p. 103

Ex. 2, p. 104
Ex. 3, p. 106
Ex. 4, p. 106
Ex. 5, p. 107
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Work through all the problems in this chapter review and check 
your answers in the back of the book. Answers to all review prob-
lems are there along with section numbers in italics to indicate 
where each type of problem is discussed. Where weaknesses show 
up, review appropriate sections in the text.

In Problems 1–3, use point-by-point plotting to sketch the graph 
of each equation.

1. y = 5 - x2

2. x2 = y2

3. y2 = 4x2

4. Indicate whether each graph specifies a function:

(A) 

x

y

25 5

25

5

(B) 

x

y

25 5

25

5

(C) 

x

y

25 5

25

5

(D) 

x

y

25 5

25

5

A

5. For f1x2 = 2x - 1 and g1x2 = 2x2 + 3x, find:

(A) f1-12 + g1-22 (B) f1-22 # g102

(C) 
g1-12

f122 (D) 
f122

g1-12
6. Sketch a graph of 3x + 2y = 9.

7. Convert 15° to radian measure.

8. Evaluate without using a calculator:

(A) sin 
3p
2

(B) cos 
5p
6

(C) sin a -p

6
b

9. Write an equation of a line with x intercept 6 and y intercept 4. 
Write the final answer in the form Ax + By = C.

10. Sketch a graph of 2x - 3y = 18. What are the intercepts 
and slope of the line?

11. Write an equation in the form y = mx + b for a line with 

slope -
2
3

 and y intercept 6.

12. Write the equations of the vertical line and the horizontal 
line that pass through 1-6, 52.

13. Write the equation of a line through each indicated point 
with the indicated slope. Write the final answer in the form 
y = mx + b.

(A) m = -  
2
3

; 1-3, 22 (B) m = 0; 13, 32
14. Write the equation of the line through the two indicated 

points. Write the final answer in the form Ax + By = C.

(A) 1-3, 52, 11, -12 (B) 1-1, 52, 14, 52
(C) 1-2, 72, 1-2,  -22

1.8 Trigonometric Functions

• If x is the radian measure of an angle in standard position, then the terminal side of the angle intersects 
the unit circle at a point P = 1a, b2. We define the sine of x to be b, and the cosine of x to be a (see Fig. 
1 on page 109). This unit circle definition generalizes the trigonometric ratios for sine and cosine and 
defines sin x and cos x as functions with domain the set of all real numbers.

• A function is periodic if f1x + p2 = f1x2 for some positive constant p and all real numbers x for which 
f1x2 is defined. The smallest such constant p is called the period. Both sin x and cos x are periodic continu-
ous functions with period 2p. (See Fig. 6, p. 112 for the graphs of y = sin x and y = cos x.)

• Four additional trigonometric functions—the tangent, cotangent, secant, and cosecant functions—are 
defined in terms of sin x and cos x:

 tan x =
sin x
cos x

  cos x ∙ 0   sec x =
1

cos x
  cos x ∙ 0

 cot x =
cos x
sin x

  sin x ∙ 0   csc x =
1

sin x
  sin x ∙ 0

Ex. 1, p. 110
Ex. 2, p. 111
Ex. 3, p. 114

Ex. 4, p. 114

Review Exercises
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122 CHAPTER 1 Functions and Graphs

34. Sketch a graph of each of the functions in parts (A)–(D) us-
ing the graph of function f in the figure below.

(A) y = - f1x2 (B) y = f1x2 + 4

(C) y = f1x - 22 (D) y = - f1x + 32 - 3

x
25 5

25

5

f (x)

35. Complete the square and find the vertex form for the 
 quadratic function

f1x2 = -x2 + 4x

Then write a brief description of the relationship between the 
graph of f and the graph of y = x2.

36. Match each equation with a graph of one of the functions f, g, 
m, or n in the figure.

y
f g

m n

x
27 7

25

5

(A) y = 1x - 22 2 - 4 (B) y = - 1x + 22 2 + 4

(C) y = - 1x - 22 2 + 4 (D) y = 1x + 22 2 - 4

37. Referring to the graph of function f in the figure for Problem 36  
and using known properties of quadratic functions, find each 
of the following to the nearest integer:

(A) Intercepts (B) Vertex

(C) Maximum or minimum (D) Range

In Problems 38–41, each equation specifies a function. Determine 
whether the function is linear, quadratic, constant, or none of 
these.

38. y = 4 - x + 3x2 39. y =
1 + 5x

6

40. y =
7 - 4x

2x
41. y = 8x + 2110 - 4x2

Solve Problems 42–45 for x exactly without using a calculator.

42. log1x + 52 = log12x - 32 43. 2 ln1x - 12 = ln1x2 - 52
44. 12x2ex = 4xex 45. log1>3 9 = x

Solve Problems 46–49 for x to four decimal places.

46. 35 = 713x2 47. 0.001 = e0.03x

48. 8,000 = 4,00011.08x2 49. 52x - 3 = 7.08

15. Write in exponential form using base 10: log A = B.

16. Write in exponential form using base e: ln m = k.

17. Convert to radian measure in terms of p:

(A) 30° (B) 45° (C) 60° (D) 90°

18. Evaluate without using a calculator:

(A) cos p (B) sin 0 (C) sin 
p

2

19. Write in logarithmic form using base e: k = ex.

20. Write in logarithmic form using base 10: m = 10z.

21. Convert to degree measure:

(A) p>6 (B) p>4 (C) p>3 (D) p>2

22. Evaluate without using a calculator:

(A) sin 
p

6
(B) cos 

p

4
(C) sin 

p

3

23. Evaluate with the use of a calculator:

(A) cos 33.7 (B) sin 1-118.42
In Problems 24 and 25, refer to the figure and use the given 
 information to solve the triangle. Round angles to the nearest 
degree and side lengths to one decimal place.

C

b

A

c

aB

Figure for 24 and 25

24. A = 53°, b = 9.2 25. a = 12.6, c = 13.7

Solve Problems 26–28 for x exactly without using a calculator.

26. log4 x = 3 27. logx 49 = 2

28. log3 27 = x

Solve problems 29–32 for x to three decimal places.

29. 10x = 130.6 30. ex = 200

31. log  x = 2.15 32. ln m = -1.24

33. Use the graph of function f in the figure to determine (to the 
nearest integer) x or y as indicated.

(A) y = f102 (B) 4 = f1x2 (C) y = f132
(D) 3 = f1x2 (E) y = f1-62 (F) -1 = f1x2

x

f (x)

27 7

25

5

B

C
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72. Sketch the graph of g for x Ú 0.

g1x2 = c 0.5x + 5 if 0 … x … 10
1.2x - 2 if 10 6 x … 30

2x - 26 if x 7 30

73. Write an equation for the graph shown in the form 
y = a1x - h2 2 + k, where a is either -1 or +1 and h and k 
are integers.

y

x
25 7

25

5

74. Given f1x2 = -0.4x2 + 3.2x + 1.2, find the following 
algebraically (to one decimal place) without referring to a 
graph:

(A) Intercepts (B) Vertex

(C) Maximum or minimum (D) Range

75. Graph f1x2 = -0.4x2 + 3.2x + 1.2 in a graphing calcula-
tor and find the following (to one decimal place) using trace 
and appropriate commands:

(A) Intercepts (B) Vertex

(C) Maximum or minimum (D) Range

76. Noting that p = 3.141 592 654 c  and 12=1.414 213 562 c  explain why the calculator results 
shown here are obvious. Discuss similar connections between 
the natural logarithmic function and the exponential function 
with base e.

Solve Problems 77–80 exactly without using a calculator.

77. log x - log 8 = log 4 - log1x + 42
78. ln1x + 42 - ln12x - 12 = ln x

79. ln1x + 62 - ln 2x = 2 ln 2

80. log 3x2 = 2 + log 9x

81. Write ln y = -7t + ln b in an exponential form free of log-
arithms. Then solve for y in terms of the remaining variables.

82. Explain why 1 cannot be used as a logarithmic base.

50. Find the domain of each function:

(A) f1x2 =
2x - 5

x2 - x - 6
(B) g1x2 =

3x25 - x

51. Find the vertex form for f1x2 = 4x2 + 4x - 3 and then find 
the intercepts, the vertex, the maximum or minimum, and the 
range.

52. Let f1x2 = ex - 2 and g1x2 = ln 1x + 12. Find all points 
of intersection for the graphs of f and g. Round answers to 
two decimal places.

In Problems 53 and 54, use point-by-point plotting to sketch the 
graph of each function.

53. f1x2 =
50

x2 + 1
54. f1x2 =

-66

2 + x2

In Problems 55–58, if f1x2 = 5x + 1, find and simplify.

55. f1f1022 56. f1f1-122
57. f12x - 12 58. f14 - x2
59. Let f1x2 = 4 - 3x. Find

(A) f132 (B) f13 + h2
(C) f13 + h2 - f132 (D) 

f13 + h2 - f132
h

, h ∙ 0

60. Explain how the graph of m1x2 = - ∙ x - 6 ∙  is related to 
the graph of y = ∙ x ∙ .

61. Explain how the graph of g1x2 = 0.6x3 + 5 is related to the 
graph of y = x3.

In Problems 62–64, find the equation of any horizontal  asymptote.

62. f1x2 =
5x + 4

x2 - 3x + 1
63. f1x2 =

3x2 + 2x - 1

4x2 - 5x + 3

64. f1x2 =
x2 + 4

100x + 1

In Problems 65 and 66, find the equations of any vertical asymp-
wtotes.

65. f1x2 =
x2 + 100

x2 - 100
66. f1x2 =

x2 + 3x

x2 + 2x

In Problems 67–70, discuss the validity of each statement. If 
the statement is always true, explain why. If not, give a counter 
example.

67. Every polynomial function is a rational function.

68. Every rational function is a polynomial function.

69. The graph of every rational function has at least one vertical 
asymptote.

70. There exists a rational function that has both a vertical and 
horizontal asymptote.

71. Sketch the graph of f for x Ú 0.

f1x2 = e9 + 0.3x if 0 … x … 20
5 + 0.2x if x 7 20

D
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124 CHAPTER 1 Functions and Graphs

91. Sports medicine. A simple rule of thumb for determining 
your maximum safe heart rate (in beats per minute) is to sub-
tract your age from 220. While exercising, you should maintain 
a heart rate between 60% and 85% of your maximum safe rate.

(A) Find a linear model for the minimum heart rate m that a 
person of age x years should maintain while exercising.

(B) Find a linear model for the maximum heart rate M that a 
person of age x years should maintain while exercising.

(C) What range of heartbeats should you maintain while 
exercising if you are 20 years old?

(D) What range of heartbeats should you maintain while 
exercising if you are 50 years old?

92. Linear depreciation. A bulldozer was purchased by a con-
struction company for $224,000 and has a depreciated value 
of $100,000 after 8 years. If the value is depreciated linearly 
from $224,000 to $100,000,

(A) Find the linear equation that relates value V (in dollars) 
to time t (in years).

(B) What would be the depreciated value after 12 years?

93. High school dropout rates. The table gives U.S. high 
school dropout rates as percentages for selected years since 
1990. A linear regression model for the data is

r = -0.308t + 13.9

where t represents years since 1990 and r is the dropout rate 
expressed as a percentage.

High School Dropout Rates (%)
1996 2002 2006 2010 2014

11.8 10.5 9.3 7.4 6.5

(A) Interpret the slope of the model.

(B) Draw a scatter plot of the data and the model in the same 
coordinate system.

(C) Use the model to predict the first year for which the 
dropout rate is less than 3%.

94. Consumer Price Index. The U.S. Consumer Price Index 
(CPI) in recent years is given in the table. A scatter plot of the 
data and linear regression line are shown in the figure, where 
x represents years since 1990.

21
22

5

2

83. The following graph is the result of applying a sequence of 
transformations to the graph of y = 13 x. Describe the trans-
formations and write an equation for the graph.

y

x
27 7

25

5

84. Given G1x2 = 0.4x2 + 1.6x - 6.5, find the following 
algebraically (to three decimal place) without the use of a 
graph:

(A) Intercepts (B) Vertex

(C) Maximum or minimum (D) Range

85. Graph G1x2 = 0.3x2 + 1.2x - 6.9 in a standard viewing 
window. Then find each of the following (to one decimal 
place) using appropriate commands.

(A) Intercepts (B) Vertex

(C) Maximum or minimum (D) Range

Applications
In all problems involving days, a 365-day year is assumed.

86. Electricity rates. The table shows the electricity rates 
charged by Easton Utilities in the summer months.

(A) Write a piecewise definition of the monthly charge S1x2 
(in dollars) for a customer who uses x kWh in a summer 
month.

(B) Graph S1x2.

Energy Charge (June–September)
$3.00 for the first 20 kWh or less

5.70¢ per kWh for the next 180 kWh

3.46¢ per kWh for the next 800 kWh

2.17¢ per kWh for all over 1,000 kWh

87. Money growth. Provident Bank of Cincinnati, Ohio, offered 
a certificate of deposit that paid 1.25% compounded quar-
terly. If a $5,000 CD earns this rate for 5 years, how much 
will it be worth?

88. Money growth. Capital One Bank of Glen Allen, Virginia, 
offered a certificate of deposit that paid 1.05% compounded 
daily. If a $5,000 CD earns this rate for 5 years, how much 
will it be worth?

89. Money growth. How long will it take for money invested at 
6.59% compounded monthly to triple?

90. Money growth. How long will it take for money invested at 
7.39% compounded continuously to double?

Consumer Price Index 
11982∙1984 ∙ 100 2

Source: U.S. Bureau of Labor Statistics

Year CPI

1990 130.7

1995 152.4

2000 172.2

2005 195.3

2010 218.1

2015 237.0
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(A) Interpret the slope of the model.

(B) Predict the CPI in 2024.

95. Construction. A construction company has 840 feet of 
chain-link fence that is used to enclose storage areas for 
equipment and materials at construction sites. The supervisor 
wants to set up two identical rectangular storage areas shar-
ing a common fence (see figure).

x

y y

Assuming that all fencing is used,

(A) Express the total area A1x2 enclosed by both pens as a 
function of x.

(B) From physical considerations, what is the domain of the 
function A?

(C) Graph function A in a rectangular coordinate system.

(D) Use the graph to discuss the number and approximate 
locations of values of x that would produce storage areas 
with a combined area of 25,000 square feet.

(E) Approximate graphically (to the nearest foot) the values 
of x that would produce storage areas with a combined 
area of 25,000 square feet.

(F) Determine algebraically the dimensions of the storage 
areas that have the maximum total combined area. What 
is the maximum area?

96. Equilibrium point. A company is planning to introduce a 
10-piece set of nonstick cookware. A marketing company es-
tablished price–demand and price–supply tables for selected 
prices (Tables 1 and 2), where x is the number of cookware 
sets people are willing to buy and the company is willing to 
sell each month at a price of p dollars per set.

Table 1 Price–Demand
x p ∙ D 1x 2 1$ 2
985 330

2,145 225
2,950 170
4,225 105
5,100 50

Table 2 Price–Supply
x p ∙ S 1x 2 1$ 2
985 30

2,145 75
2,950 110
4,225 155
5,100 190

(A) Find a quadratic regression model for the data in 
Table 1. Estimate the demand at a price level of $180.

(B) Find a linear regression model for the data in Table 2. 
Estimate the supply at a price level of $180.

(C) Does a price level of $180 represent a stable condi-
tion, or is the price likely to increase or decrease? 
Explain.

(D) Use the models in parts (A) and (B) to find the 
 equilibrium point. Write the equilibrium price to the 
nearest cent and the equilibrium quantity to the nearest 
unit.

97. Crime statistics. According to data published by the FBI, 
the crime index in the United States has shown a downward 
trend since the early 1990s (see table).

Crime Index

Year
Crimes per 100,000 

Inhabitants

1987 5,550

1992 5,660

1997 4,930

2002 4,125

2007 3,749

2010 3,350

2013 3,099

(A) Find a cubic regression model for the crime index if 
x = 0 represents 1987.

(B) Use the cubic regression model to predict the crime 
index in 2025.

98. Medicine. One leukemic cell injected into a healthy mouse 
will divide into 2 cells in about 12 day. At the end of the day 
these 2 cells will divide into 4. This doubling continues until 
1 billion cells are formed; then the animal dies with leuke-
mic cells in every part of the body.

(A) Write an equation that will give the number N of leuke-
mic cells at the end of t days.

(B) When, to the nearest day, will the mouse die?

99. Marine biology. The intensity of light entering water is 
reduced according to the exponential equation

I = I0e
-kd

where I is the intensity d feet below the surface, I0 is the 
intensity at the surface, and k is the coefficient of extinction. 
Measurements in the Sargasso Sea have indicated that half 
of the surface light reaches a depth of 73.6 feet. Find k (to 
five decimal places), and find the depth (to the nearest foot) 
at which 1% of the surface light remains.

 Review Exercises 125
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(A) Find an exponential regression model 1y = abx2 for 
the data. Estimate (to the nearest billion) the annual 
expenditures in 2025.

(B) When will the annual expenditures exceed two trillion 
dollars?

103. Architecture. For a man standing on the ground, 5,300 
feet from the entrance to a tall building, the angle between 
the horizontal and the line of sight to the top of the build-
ing is 27°. Find the height of the building (to the nearest 
100 feet).

104. Revenue. Revenue from sportswear sales in a clothing store 
are given approximately by

R1t2 = 3 + 2 cos 
pt
6
 0 … t … 24

where R(t) is the revenue (in thousands of dollars) for a 
month of sales t months after January 1.

(A) Find the exact values of R102, R122, R132, and R162 
without using a calculator.

(B) Use a calculator to find R112 and R1222. Interpret the 
results.

100. Agriculture. The number of dairy cows on farms in the 
United States is shown in the table for selected years since 
1950. Let 1940 be year 0.

Dairy Cows on Farms in the United States

Year Dairy Cows (thousands)

1950 23,853

1960 19,527

1970 12,091

1980 10,758

1990 10,015

2000 9,190

2010 9,117

(A) Find a logarithmic regression model 1y = a + b ln x2 
for the data. Estimate (to the nearest thousand) the num-
ber of dairy cows in 2023.

(B) Explain why it is not a good idea to let 1950 be year 0.

101. Population growth. The population of some countries has 
a relative growth rate of 3% (or more) per year. At this rate, 
how many years (to the nearest tenth of a year) will it take a 
population to double?

102. Medicare. The annual expenditures for Medicare (in 
billions of dollars) by the U.S. government for selected 
years since 1980 are shown in the table. Let x represent 
years since 1980.

Medicare Expenditures
Year Billion $

1980   37

1985   72

1990 111

1995 181

2000 197

2005 299

2010 452

2015 546

M01_BARN6152_14_GE_C01.indd   126 22/11/18   10:43 PM



127

2
Introduction
How do algebra and calculus differ? The two words static and dynamic 
 probably come as close as any to expressing the difference between the two 
disciplines. In algebra, we solve equations for a particular value of a variable—
a static notion. In calculus, we are interested in how a change in one variable 
affects another variable—a dynamic notion.

Isaac Newton (1642–1727) of England and Gottfried Wilhelm von Leibniz 
(1646–1716) of Germany developed calculus independently to solve problems 
concerning motion. Today calculus is used not just in the physical sciences, but 
also in business, economics, life sciences, and social sciences—any discipline 
that seeks to understand dynamic phenomena.

In Chapter 2 we introduce the derivative, one of the two key concepts of calculus. 
The second, the integral, is the subject of Chapter 5. Both key concepts depend on 
the notion of limit, which is explained in Sections 2.1 and 2.2. We consider many 
applications of limits and derivatives. See, for example, Problem 91 in Section 2.5 
on the connection between advertising expenditures and power boat sales.

2.1 Introduction to Limits

2.2 Infinite Limits and Limits 
at Infinity

2.3 Continuity

2.4 The Derivative

2.5 Basic Differentiation 
Properties

2.6 Differentials

2.7 Marginal Analysis in 
Business and Economics

Limits and the  
Derivative
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Basic to the study of calculus is the concept of a limit. This concept helps us to 
describe, in a precise way, the behavior of f1x2 when x is close, but not equal, to a 
particular value c. In this section, we develop an intuitive and informal approach to 
evaluating limits.

Functions and Graphs: Brief Review
The graph of the function y = f1x2 = x + 2 is the graph of the set of all ordered pairs 
1x, f1x22. For example, if x = 2, then f122 = 4 and 12, f1222 = 12, 42 is a point on 
the graph of f. Figure 1 shows 1-1, f1-122, 11, f1122, and 12, f1222 plotted on the 
graph of f. Notice that the domain values -1, 1, and 2 are associated with the x axis and 
the range values f1-12 = 1, f112 = 3, and f122 = 4 are associated with the y axis.

2.1 Introduction to Limits
■■ Functions and Graphs: Brief Review
■■ Limits: A Graphical Approach
■■ Limits: An Algebraic Approach
■■ Limits of Difference Quotients

SOLUTION To determine g1x2, proceed vertically from the x value on the x axis to 
the graph of g and then horizontally to the corresponding y value g1x2 on the y axis 
(as indicated by the dashed lines).

g(x)

x
23 5

5

y 5 g(x)

x g 1x 2
-2 4.0

1 2.5

3 1.5

4 1.0

Finding Values of a Function from Its Graph Complete the following table, using 
the given graph of the function g.

g(x)

x
23 5

5

y 5 g(x)

EXAMPLE 1

x g 1x 2
-2

1

3

4

f (x)

x
124 21

2

f (1) 5 3

 f (21) 5 1

f (2) 5 4

5

6

2 3
21

22

 f (x) 5 x 1 2

(2, f (2)) 5 (2, 4)

4

Figure 1

Given x, it is sometimes useful to read f1x2 directly from the graph of f. Example 1 
reviews this process.

M02_BARN6152_14_GE_C02.indd   128 16/11/18   1:33 PM



 SECTION 2.1   Introduction to Limits 129

Limits: A Graphical Approach
We introduce the important concept of a limit through an example, which leads to an 
intuitive definition of the concept.

Matched Problem 1  Complete the following table, using the given graph of 
the function h.

h(x)

x
5

5

y 5 h(x)

24

Analyzing a Limit Let f1x2 = x + 2. Discuss the behavior of the values of f1x2 
when x is close to 2.

SOLUTION We begin by drawing a graph of f that includes the domain value x = 2 
(Fig. 2).

 f (x) 5 x 1 2

0

4

x x

f (x)

f (x)

f (x)

x
2

Figure 2

In Figure 2, we are using a static drawing to describe a dynamic process. This re-
quires careful interpretation. The thin vertical lines in Figure 2 represent values of x 
that are close to 2. The corresponding horizontal lines identify the value of f1x2 as-
sociated with each value of x. [Example 1 dealt with the relationship between x and 
f1x2 on a graph.] The graph in Figure 2 indicates that as the values of x get closer 
and closer to 2 on either side of 2, the corresponding values of f1x2 get closer and 
closer to 4. Symbolically, we write

lim
xS2

 f1x2 = 4

This equation is read as “The limit of f1x2 as x approaches 2 is 4.” Note that 
f122 = 4. That is, the value of the function at 2 and the limit of the function as x 
approaches 2 are the same. This relationship can be expressed as

lim
xS2

 f1x2 = f122 = 4

Graphically, this means that there is no hole or break in the graph of f at x = 2.

Matched Problem 2 Let f1x2 = x + 1. Discuss the behavior of the values 
of f1x2 when x is close to 1.

EXAMPLE 2

x h 1x 2
-2

-1

  0

  1

  2

  3

  4
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We now present an informal definition of the important concept of a limit. A pre-
cise definition is not needed for our discussion, but one is given in a footnote.*

*To make the informal definition of limit precise, we must make the word close more precise. This is done 
as follows: We write lim

xSc
 f1x2 = L if, for each e 7 0, there exists a d 7 0 such that ∙ f1x2 - L ∙ 6 e 

whenever 0 6 ∙ x - c ∙ 6 d. This definition is used to establish particular limits and to prove many useful 
properties of limits that will be helpful in finding particular limits.

DEFINITION Limit
We write

lim
xSc

 f1x2 = L  or  f1x2 S L as x S c

if the functional value f1x2 is close to the single real number L whenever x is 
close, but not equal, to c (on either side of c).

Note: The existence of a limit at c has nothing to do with the value of the function 
at c. In fact, c may not even be in the domain of f. However, the function must be 
defined on both sides of c.

The next example involves the absolute value function:

f1x2 = ∙x∙ = e -x if x 6 0
x if x Ú 0

 f1-22 = ∙ -2 ∙ = - 1-22 = 2

f132 = 0 3 0 = 3

The graph of f is shown in Figure 3.

Reminder:
The absolute value of a positive or 
negative number is positive. The 
absolute value of 0 is 0. 

 f (x) 5 )x )
f (x)

x
5

5

25

Figure 3 

Analyzing a Limit Let h1x2 = ∙ x ∙ >x. Explore the behavior of h1x2 for x near, 
but not equal, to 0. Find lim

xS0
 h1x2 if it exists.

SOLUTION The function h is defined for all real numbers except 0 [h102 = ∙ 0 ∙ >0 
is undefined]. For example,

 h1-22 =
0 -2 0
-2

=
2

-2
= -1

Note that if x is any negative number, then h1x2 = -1 (if x 6 0, then the numera-
tor ∙ x ∙  is positive but the denominator x is negative, so h1x2 = ∙ x ∙ >x = -12. If 
x is any positive number, then h1x2 = 1 (if x 7 0, then the numerator ∙ x ∙  is equal 
to the denominator x, so h1x2 = ∙ x ∙ >x = 1). Figure 4 illustrates the behavior of 
h1x2 for x near 0. Note that the absence of a solid dot on the vertical axis indicates 
that h is not defined when x = 0.

EXAMPLE 3

21

22

21

1
1

2

0

0

h(x)

h(x)

x

h(x)

2122

x

x

Figure 4

When x is near 0 (on either side of 0), is h1x2 near one specific number? The answer 
is “No,” because h1x2 is -1 for x 6 0 and 1 for x 7 0. Consequently, we say that

lim
xS0

 
∙ x ∙
x

 does not exist

Neither h1x2 nor the limit of h1x2 exists at x = 0. However, the limit from the left 
and the limit from the right both exist at 0, but they are not equal.

Matched Problem 3 Graph

h1x2 =
x - 2

∙ x - 2 ∙

and find lim
xS2

 h1x2 if it exists.

In Example 3, we see that the values of the function h1x2 approach two different 
numbers, depending on the direction of approach, and it is natural to refer to these values 
as “the limit from the left” and “the limit from the right.” These experiences suggest that 
the notion of one-sided limits will be very useful in discussing basic limit concepts.
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DEFINITION One-Sided Limits
We write

lim
xSc-

 f1x2 = K  x S c- is read “x approaches c from 
the left” and means x S c and x 6 c.

and call K the limit from the left or the left-hand limit if f1x2 is close to K 
whenever x is close to, but to the left of, c on the real number line. We write

lim
xSc+

 f1x2 = L  x S c+ is read “x approaches c from 
the right” and means x S c and x 7 c.

and call L the limit from the right or the right-hand limit if f1x2 is close to L 
whenever x is close to, but to the right of, c on the real number line.

If no direction is specified in a limit statement, we will always assume that the 
limit is two-sided or unrestricted. Theorem 1 states an important relationship be-
tween one-sided limits and unrestricted limits.

THEOREM 1 On the Existence of a Limit
For a (two-sided) limit to exist, the limit from the left and the limit from the right 
must exist and be equal. That is,

lim
xSc

 f1x2 = L if and only if lim
xSc-

  f1x2 = lim
xSc+

  f1x2 = L

In Example 3,

lim
xS0-

 
∙ x ∙
x

= -1  and  lim
xS0+

 
∙ x ∙
x

= 1

Since the left- and right-hand limits are not the same,

lim
xS0

 
∙ x ∙
x

 does not exist

Analyzing Limits Graphically Given the graph of the function f in Figure 5, discuss 
the behavior of f1x2 for x near (A) -1, (B) 1, and (C) 2.

EXAMPLE 4

1 2

f (x)

x
212223 3

3

2

1

4

5

Figure 5

1 2

f (x)

x
2123 3

3

2

4

5

1

x x

f (x)

f (x)

SOLUTION
(A) Since we have only a graph to work with, we use vertical and horizontal lines to 

relate the values of x and the corresponding values of f1x2. For any x near -1 
on either side of -1, we see that the corresponding value of f1x2, determined 
by a horizontal line, is close to 1. We then have f1-12 = lim

xS -1
 f1x2.

 lim
xS -1- f1x2 = 1

 lim
xS -1+ f1x2 = 1

 lim
xS -1

 f1x2 = 1

 f1-12 = 1
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(B) Again, for any x near, but not equal to, 1, the vertical and horizontal lines indi-
cate that the corresponding value of f1x2 is close to 3. The open dot at (1, 3), 
together with the absence of a solid dot anywhere on the vertical line through 
x = 1, indicates that f112 is not defined.

x x

f (x)

1

f (x)

x
212223 3

3

1

4

5

 lim
xS1- f1x2 = 3

 lim
xS1+ f1x2 = 3

 lim
xS1

 f1x2 = 3

f112 not defined

x x

f (x)

f (x)

2

f (x)

x
212223

3

2

1

4

5

(C) The abrupt break in the graph at x = 2 indicates that the behavior of the graph 
near x = 2 is more complicated than in the two preceding cases. If x is close 
to 2 on the left side of 2, the corresponding horizontal line intersects the y axis 
at a point close to 2. If x is close to 2 on the right side of 2, the corresponding 
horizontal line intersects the y axis at a point close to 5. This is a case where the 
one-sided limits are different.

lim
xS2- f1x2 = 2

lim
xS2+ f1x2 = 5

lim
xS2

 f1x2 does not exist

f122 = 2

Matched Problem 4 Given the graph of the function f shown in Figure 6, 
discuss the following, as we did in Example 4:

f (x)

x
1 2 3 4 5 622 21

2

3

4

Figure 6

(A) Behavior of f1x2 for x near 0

(B) Behavior of f1x2 for x near 1

(C) Behavior of f1x2 for x near 3
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Limits: An Algebraic Approach
Graphs are very useful tools for investigating limits, especially if something unusual 
happens at the point in question. However, many of the limits encountered in calculus 
are routine and can be evaluated quickly with a little algebraic simplification, some 
intuition, and basic properties of limits. The following list of properties of limits 
forms the basis for this approach:

In Example 4B, note that lim
xS1

 f1x2 exists even though f is not defined at x = 1 
and the graph has a hole at x = 1. In general, the value of a function at x = c 
has no effect on the limit of the function as x approaches c.

CONCEPTUAL INSIGHT

THEOREM 2 Properties of Limits
Let f and g be two functions, and assume that

lim
xSc

 f1x2 = L  lim
xSc

 g1x2 = M

where L and M are real numbers (both limits exist). Then

1. lim
xSc

 k = k for any constant k

2. lim
xSc

 x = c

3. lim
xSc

 3f1x2 + g1x24 = lim
xSc

 f1x2 + lim
xSc

 g1x2 = L + M

4. lim
xSc

 3f1x2 - g1x24 = lim
xSc

 f1x2 - lim
xSc

 g1x2 = L - M

5. lim
xSc

 kf1x2 = k lim
xSc

 f1x2 = kL for any constant k

6. lim
xSc

 3f1x2 # g1x24 = 3 lim
xSc

 f1x243 lim
xSc

 g1x24 = LM

7. lim
xSc

f1x2
g1x2 =

lim
xSc

 f1x2
lim
xSc

 g1x2 =
L
M
  if M ∙ 0

8. lim
xSc

 2n
f1x2 = 2n

lim
xSc

 f1x2 = 2n
L if L 7 0 or n is odd

Each property in Theorem 2 is also valid if x S c is replaced everywhere by 
x S c- or replaced everywhere by x S c+.

The properties listed in Theorem 2 can be paraphrased in brief verbal statements. For 
example, property 3 simply states that the limit of a sum is equal to the sum of the 
limits. Write brief verbal statements for the remaining properties in Theorem 2.

Explore and Discuss 1

Using Limit Properties Find lim
xS3

 1x2 - 4x2.

SOLUTION Using Property 4,

 lim
xS3

 1x2 - 4x2 = lim
xS3

 x2 - lim
xS3

 4x  Use properties 5 and 6

 = a lim
xS3

 xb # a lim
xS3

 xb - 4 lim
xS3

 x Use exponents

 = a lim
xS3 xb

2

- 4 lim
xS3

 x  Use Property 2

 = 32 - 4 # 3 = -3

EXAMPLE 5
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So, omitting the steps in the dashed boxes,

lim
xS3

 1x2 - 4x2 = 32 - 4 # 3 = -3

Matched Problem 5 Find lim
xS -2

 1x2 + 5x2.

If f1x2 = x2 - 4 and c is any real number, then, just as in Example 5

lim
xSc

 f1x2 = lim
xSc

 1x2 - 4x2 = c2 - 4c = f1c2
So the limit can be found easily by evaluating the function f at c.

This simple method for finding limits is very useful, because there are many 
functions that satisfy the property

 lim
xSc

 f1x2 = f1c2 (1)

Any polynomial function

f1x2 = an x
n + an - 1x

n - 1 + g + a0

satisfies (1) for any real number c. Also, any rational function

r1x2 =
n1x2
d1x2

where n1x2 and d1x2 are polynomials, satisfies (1) provided c is a real number for 
which d1c2 ∙ 0.

THEOREM 3 Limits of Polynomial and Rational Functions
1. lim

xSc
 f1x2 = f1c2 for f any polynomial function.

2. lim
xSc

 r1x2 = r1c2 for r any rational function with a nonzero denominator  
at x = c.

If Theorem 3 is applicable, the limit is easy to find: Simply evaluate the function 
at c.

Evaluating Limits Find each limit.

(A) lim
xS2

 1x3 - 5x - 12   (B) lim
xS -1

 22x2 + 3   (C) lim
xS4

2x
3x + 1

SOLUTION
(A) Use Theorem 3 to get lim

xS2
 1x3 - 5x - 12 = 23 - 5 # 2 - 1 = -3

(B) Using Property 8,  lim
xS -1

 22x2 + 3 = 2 lim
xS -1

 12x2 + 32 Use Theorem 3

  = 221-12 2 + 3

  = 25

(C) Use Theorem 3 to get  lim
xS4

2x
3x + 1

=
2 # 4

3 # 4 + 1

  =
8

13

Matched Problem 6 Find each limit.

(A) lim
xS -1

 1x4 - 2x + 32      (B) lim
xS2

 23x2 - 6       (C) lim
xS -2

x2

x2 + 1

EXAMPLE 6

M02_BARN6152_14_GE_C02.indd   134 16/11/18   1:33 PM



 SECTION 2.1   Introduction to Limits 135

Evaluating Limits Let

f1x2 = e x2 + 1 if x 6 2
x - 1 if x 7 2

Find:
(A) lim

xS2- f1x2 (B) lim
xS2+ f1x2 (C) lim

xS2
 f1x2 (D) f122

SOLUTION

(A)  lim
xS2- f1x2 = lim

xS2- 1x2 + 12 If x 6 2, f1x2 = x 2 + 1.

 = 22 + 1 = 5

(B)  lim
xS2+ f1x2 = lim

xS2+ 1x - 12   If x 7 2, f1x2 = x - 1.

 = 2 - 1 = 1

(C) Since the one-sided limits are not equal, lim
xS2

 f1x2 does not exist.

(D) Because the definition of f does not assign a value to f for x = 2, only for 
x 6 2 and x 7 2, f122 does not exist.

Matched Problem 7 Let

f1x2 = e 2x + 3 if x 6 5
-x + 12 if x 7 5

Find:
(A) lim

xS5- f1x2 (B) lim
xS5+ f1x2 (C) lim

xS5
 f1x2 (D) f152

EXAMPLE 7

It is important to note that there are restrictions on some of the limit properties. In 

particular, if lim
xSc

 f1x2 = 0 and lim
xSc

 g1x2 = 0, then finding lim
xSc

f1x2
g1x2  may present 

some difficulties, since limit property 7 (the limit of a quotient) does not apply when 

lim
xSc

 g1x2 = 0. The next example illustrates some techniques that can be useful in this 

situation.

Evaluating Limits Find each limit.

(A) lim
xS2

  
x2 - 4
x - 2

(B) lim
xS -1

 
x ∙ x + 1 ∙

x + 1

SOLUTION
(A) Note that lim

xS2 x
2 - 4 = 22 - 4 = 0 and lim

xS2 x - 2 = 2 - 2 = 0. Algebraic 

simplification is often useful in such a case when the numerator and denominator 
both have limit 0.

lim
xS2

x2 - 4
x - 2

= lim
xS2

1x - 221x + 22
x - 2

 Cancel 
x - 2
x - 2

= lim
xS2

 1x + 22 = 4   

(B) One-sided limits are helpful for limits involving the absolute value function.

 lim
xS -1+ 

x ∙ x + 1 ∙
x + 1

= lim
xS -1+ 1x2 = -1 If x 7 -1,  then   

∙ x + 1 ∙
x + 1

= 1.

 lim
xS -1- 

x ∙ x + 1 ∙
x + 1

= lim
xS -1- 1-x2 = 1 If x 6 -1, then  

∙ x + 1 ∙
x + 1

= -1.

Since the limit from the left and the limit from the right are not the same, we 
conclude that

lim
xS -1

 
x ∙ x + 1 ∙

x + 1
 does not exist

EXAMPLE 8
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Matched Problem 8 Find each limit.

(A) lim
xS -3

 
x2 + 4x + 3

x + 3
(B) lim

xS4
 
x2 - 16
∙ x - 4 ∙

In the solution to Example 8A we used the following algebraic identity:

x2 - 4
x - 2

=
1x - 221x + 22

x - 2
= x + 2, x ∙ 2

The restriction x ∙ 2 is necessary here because the first two expressions are not 
defined at x = 2. Why didn’t we include this restriction in the solution? When x 
approaches 2 in a limit problem, it is assumed that x is close, but not equal, to 2.  
It is important that you understand that both of the following statements are valid:

lim
xS2

x2 - 4
x - 2

= lim
xS2

 1x + 22 and 
x2 - 4
x - 2

= x + 2, x ∙ 2

CONCEPTUAL INSIGHT

Limits like those in Example 8 occur so frequently in calculus that they are given a 
special name.

DEFINITION Indeterminate Form

If lim
xSc

 f1x2 = 0 and lim
xSc

 g1x2 = 0, then lim
xSc

f1x2
g1x2  is said to be indeterminate,  

or, more specifically, a 0 ,0 indeterminate form.

The term indeterminate is used because the limit of an indeterminate form may 
or may not exist (see Examples 8A and 8B).

The expression 0>0 does not represent a real number and should 
never be used as the value of a limit. If a limit is a 0>0 indetermi-

nate form, further investigation is always required to determine whether the limit 
 exists and to find its value if it does exist. 

! CAUTION

If the denominator of a quotient approaches 0 and the numerator approaches a 
nonzero number, then the limit of the quotient is not an indeterminate form. In fact, in 
this case the limit of the quotient does not exist.

THEOREM 4 Limit of a Quotient
If lim

xSc
 f1x2 = L, L ∙ 0, and lim

xSc
 g1x2 = 0,

then

lim
xSc

 
f1x2
g1x2  does not exist

Indeterminate Forms Is the limit expression a 0>0 indeterminate form? Find the 
limit or explain why the limit does not exist.

(A) lim
xS1

x - 1

x2 + 1
(B) lim

xS1

x - 1

x2 - 1
(C) lim

xS1

x + 1

x2 - 1

EXAMPLE 9
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SOLUTION
(A) lim

xS1
 1x - 12 = 0 but lim

xS1
 1x2 + 12 = 2. So no, the limit expression is not  

a 0>0 indeterminate form. By property 7 of Theorem 2,

lim
xS1

x - 1

x2 + 1
=

0
2

= 0

(B) lim
xS1

 1x - 12 = 0 and lim
xS1

 1x2 - 12 = 0. So yes, the limit expression is a 

0>0 indeterminate form. We factor x2 - 1 to simplify the limit expression and 
find the limit:

lim
xS1

x - 1

x2 - 1
= lim

xS1

x - 1
1x - 121x + 12 = lim

xS1

1
x + 1

=
1
2

(C) lim
xS1

 1x + 12 = 2 and lim
xS1

 1x2 - 12 = 0. So no, the limit expression is not a 

0>0 indeterminate form. By Theorem 4,

lim
xS1

x + 1

x2 - 1
 does not exist

Matched Problem 9 Is the limit expression a 0>0 indeterminate form? Find 
the limit or explain why the limit does not exist.

(A) lim
xS3

x + 1
x + 3

(B) lim
xS3

x - 3

x2 + 9
(C) lim

xS3

x2 - 9
x - 3

Limits of Difference Quotients
Let the function f be defined in an open interval containing the number a. One of the 
most important limits in calculus is the limit of the difference quotient,

 lim
hS0

f1a + h2 - f1a2
h

 (2)

If

lim
hS0

 3f1a + h2 - f1a24 = 0

as it often does, then limit (2) is an indeterminate form.

Limit of a Difference Quotient Find the following limit for f1x2 = 4x - 5:

lim
hS0

 
f13 + h2 - f132

h

SOLUTION

 lim
hS0

f13 + h2 - f132
h

= lim
hS0

3413 ∙ h2 - 54 - 34132 - 54
h

 = lim
hS0

12 + 4h - 5 - 12 + 5
h

 = lim
hS0

4h
h

= lim
hS0

 4 = 4

EXAMPLE 10

Since this is a 
0>0 indeterminate 
form and property 
7 in Theorem 2 
does not apply, 
we proceed  
with algebraic 
simplification.

Matched Problem 10  Find the following limit for f1x2 = 7 - 2x: 

lim
hS0

f14 + h2 - f142
h

.
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If f1x2 =
1
x

, explain why lim
hS0

f13 + h2 - f132
h

= -  
1
9

.

Explore and Discuss 2

Exercises 2.1
Skills Warm-up Exercises
In Problems 1–8, factor each polynomial into the product of first-degree 
factors with integer coefficients. (If necessary, review Section A.3).

1. x2 - 81 2. x2 - 64

3. x2 - 4x - 21 4. x2 + 5x - 36

5. x3 - 7x2 + 12x 6. x3 + 15x2 + 50x

7. 6x2 - x - 1 8. 12x2 - 5x - 2

In Problems 9–16, use the graph of the function f shown to esti-
mate the indicated limits and function values.

f (x)

x
2 422

22

4

Figure for 9–16

9. f1-0.52 10. f10.52
11. f11.752 12. f12.252
13. (A) lim

xS0- f1x2 (B) lim
xS0+ f1x2

(C) lim
xS0

 f1x2 (D) f102
14. (A) lim

xS1- f1x2 (B) lim
xS1+ f1x2

(C) lim
xS1

 f1x2 (D) f112
15. (A) lim

xS2- f1x2 (B) lim
xS2+ f1x2

(C) lim
xS2

 f1x2 (D) f122
16. (A) lim

xS4- f1x2 (B) lim
xS4+ f1x2

(C) lim
xS4

 f1x2 (D) f142
In Problems 17–24, use the graph of the function g shown to esti-
mate the indicated limits and function values.

g(x)

x
2 422

22

4

Figure for 17–24

W

A

17. g11.92 18. g12.12
19. g13.52 20. g12.52
21. (A) lim

xS1- g1x2 (B) lim
xS1+ g1x2

(C) lim
xS1

 g1x2 (D) g112
22. (A) lim

xS2- g1x2 (B) lim
xS2+ g1x2

(C) lim
xS2

 g1x2 (D) g122
23. (A) lim

xS3- g1x2 (B) lim
xS3+ g1x2

(C) lim
xS3

 g1x2 (D) g132
24. (A) lim

xS4- g1x2 (B) lim
xS4+ g1x2

(C) lim
xS4

 g1x2 (D) g142
In Problems 25–28, use the graph of the function f shown to 
 estimate the indicated limits and function values.

25 5

25

5

x

f (x)

Figure for 25–28

25. (A) lim
xS -3+ f1x2 (B) lim

xS -3- f1x2
(C) lim

xS -3
 f1x2 (D) f1-32

26. (A) lim
xS -2+ f1x2 (B) lim

xS -2- f1x2
(C) lim

xS -2
 f1x2 (D) f1-22

27. (A) lim
xS0+ f1x2 (B) lim

xS0- f1x2
(C) lim

xS0
 f1x2 (D) f102

28. (A) lim
xS2+ f1x2 (B) lim

xS2- f1x2 

(C) lim
xS2

 f1x2 (D) f122
In Problems 29–38, find each limit if it exists.B

29. lim
xS3

 4x 30. lim
xS -6

 5x

31. lim
xS -4

 1x + 52 32. lim
xS5

 1x - 32
33. lim

xS2
 x1x - 42 34. lim

xS -3
 x1x + 52

35. lim
xS -3

  
x

x + 5 36. lim
xS4

  
x - 2

x

37. lim
xS1

 25x + 4 38. lim
xS -2

 217 - 4x
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39. lim
xS1

 1-32f1x2 40. lim
xS1

 2g1x2

41. lim
xS1

 32f1x2 + g1x24 42. lim
xS1

 33g1x2 - 4f1x24

43. lim
xS1

2 - f1x2
x + g1x2 44. lim

xS1

3 - f1x2
1 - 4g1x2

45. lim
xS1

 2g1x2 - f1x2 46. lim
xS1

 23 5g1x2 + 7x

In Problems 47–50, sketch a possible graph of a function that 
satisfies the given conditions.

47. f102 = 1; lim
xS0- f1x2 = 3; lim

xS0+ f1x2 = 1

48. f112 = -2; lim
xS1- f1x2 = 2; lim

xS1+ f1x2 = -2

49. f1-22 = 2; lim
xS -2- f1x2 = 1; lim

xS -2+ f1x2 = 1

50. f102 = -1; lim
xS0- f1x2 = 2; lim

xS0+ f1x2 = 2

In Problems 51–66, find each indicated quantity if it exists.

51. Let f1x2 = e1 - x2 if x … 0
1 + x2 if x 7 0

. Find

(A) lim
xS0+ f1x2 (B) lim

xS0- f1x2
(C) lim

xS0
 f1x2 (D) f102

52. Let f1x2 = e2 + x if x … 0
2 - x if x 7 0

. Find

(A) lim
xS0+ f1x2 (B) lim

xS0- f1x2
(C) lim

xS0
 f1x2 (D) f102

53. Let f1x2 = e x2 if x 6 1
2x if x 7 1

. Find

(A) lim
xS1+ f1x2 (B) lim

xS1- f1x2
(C) lim

xS1
 f1x2 (D) f112

54. Let f1x2 = e x + 3 if x 6 -22x + 2 if x 7 -2
. Find

(A) lim
xS -2+ f1x2 (B) lim

xS -2- f1x2
(C) lim

xS -2
 f1x2 (D) f1-22

55. Let f1x2 = d x2 - 9
x + 3

if x 6 0

x2 - 9
x - 3

if x 7 0
. Find

(A) lim
xS -3

 f1x2 (B) lim
xS0

 f1x2
(C) lim

xS3
 f1x2 

56. Let f1x2 = d x
x + 3

if x 6 0

x
x - 3

if x 7 0
. Find

(A) lim
xS -3

 f1x2 (B) lim
xS0

 f1x2
(C) lim

xS3
 f1x2

57. Let f1x2 =
∙ x - 1 ∙
x - 1

. Find

(A) lim
xS1+  f1x2 (B) lim

xS1- f1x2
(C) lim

xS1
 f1x2 (D) f112

58. Let f1x2 =
x - 3

∙ x - 3 ∙
. Find

(A) lim
xS3+ f1x2 (B) lim

xS3- f1x2
(C) lim

xS3
 f1x2 (D) f132

59. Let f1x2 =
x - 2

x2 - 2x
. Find

(A) lim
xS0

  f1x2 (B) lim
xS2

 f1x2
(C) lim

xS4
 f1x2

60. Let f1x2 =
x + 3

x2 + 3x
. Find

(A) lim
xS -3

 f1x2 (B) lim
xS0

 f1x2
(C) lim

xS3
 f1x2

61. Let f1x2 =
x2 - x - 6

x + 2
. Find

(A) lim
xS -2

 f1x2 (B) lim
xS0

 f1x2
(C) lim

xS3
 f1x2

62. Let f1x2 =
x2 + x - 6

x + 3
. Find

(A) lim
xS -3

 f1x2 (B) lim
xS0

 f1x2
(C) lim

xS2
 f1x2

63. Let f1x2 =
1x + 22 2

x2 - 4
. Find

(A) lim
xS -2

 f1x2 (B) lim
xS0

 f1x2
(C) lim

xS2
 f1x2

64. Let f1x2 =
x2 - 1

1x + 12 2. Find

(A) lim
xS -1

 f1x2 (B) lim
xS0

  f1x2
(C) lim

xS1
 f1x2

65. Let f1x2 =
2x2 - 3x - 2

x2 + x - 6
. Find

(A) lim
xS2

 f1x2 (B) lim
xS0

 f1x2
(C) lim

xS1
 f1x2

66. Let f1x2 =
3x2 + 2x - 1

x2 + 3x + 2
. Find

(A) lim
xS -3

 f1x2 (B) lim
xS -1

 f1x2
(C) lim

xS2
 f1x2

Given that lim
xS1

 f1x2 = -5 and lim
xS1

 g1x2 = 4, find the indicated 

limits in Problems 39–46.

M02_BARN6152_14_GE_C02.indd   139 16/11/18   1:34 PM



140 CHAPTER 2 Limits and the Derivative 

70. If f is a function such that f102 exists, then lim
xS0

 f1x2 exists.

71. If f is a polynomial, then, as x approaches 0, the right-hand 
limit exists and is equal to the left-hand limit.

72. If f is a rational function, then, as x approaches 0, the right-
hand limit exists and is equal to the left-hand limit. Applications

91. Car Sharing. A car sharing service offers a membership 
plan with a $50 per month fee that includes 10 hours of 
 driving each month and charges $9 for each additional hour.

(A) Write a piecewise definition of the cost F1x2 for a 
month in which a member uses a car for x hours.

(B) Graph F1x2 for 0 6 x … 15

(C) Find lim
xS10- F1x2, lim

xS10+ F1x2, and lim
xS10

 F1x2, which-

ever exist.

92. Car Sharing. A car sharing service offers a membership 
plan with no monthly fee. Members who use a car for at most 
10 hours are charged $15 per hour. Members who use a car 
for more than 10 hours are charged $10 per hour.

(A) Write a piecewise definition of the cost G1x2 for a 
month in which a member uses a car for x hours.

(B) Graph G1x2 for 0 6 x … 20

(C) Find lim
xS10- G1x2, lim

xS10+ G1x2, and lim
xS10

 G1x2, which-

ever exist.

93. Car Sharing. Refer to Problems 91 and 92. Write a 
brief verbal comparison of the two services described for 
 customers who use a car for 10 hours or less in a month.

94. Car Sharing. Refer to Problems 91 and 92. Write a 
brief verbal comparison of the two services described for 
 customers who use a car for more than 10 hours in a month.

A company sells custom embroidered apparel and promotional prod-
ucts. Table 1 shows the volume discounts offered by the  company, 
where x is the volume of a purchase in dollars.  Problems 95 and 96 
deal with two different interpretations of this discount method.

In Problems 73–80, is the limit expression a 0>0 indeterminate 
form? Find the limit or explain why the limit does not exist.

C

73. lim
xS4

1x + 221x - 42
1x - 121x - 42 74. lim

xS -3

x - 2
x + 3

75. lim
xS1

x - 5
x - 1 76. lim

xS6

1x + 921x - 62
1x - 621x - 32

77. lim
xS7

x2 - 49

x2 - 4x - 21
78. lim

xS5

x2 - 7x + 10

x2 - 4x - 5

79. lim
xS - 1

x2 + 3x + 2

x2 - 3x + 2
80. lim

xS -4

x2 - 6x + 9

x2 + 6x + 9

81. f1x2 = 3x + 1 82. f1x2 = 4x - 5

83. f1x2 = x2 + 1 84. f1x2 = x2 - 6x

85. f1x2 = -7x + 9 86. f1x2 = -4x + 13

87. f1x2 = ∙ x + 1 ∙ 88. f1x2 = -3 ∙ x ∙

89. Let f be defined by

f1x2 = e1 + mx if x … 1
4 - mx if x 7 1

where m is a constant.

(A) Graph f for m = 1, and find

lim
xS1- f1x2  and  lim

xS1+ f1x2
(B) Graph f for m = 2, and find

lim
xS1- f1x2  and  lim

xS1+ f1x2
(C) Find m so that

lim
xS1- f1x2 = lim

xS1+ f1x2
and graph f for this value of m.

(D) Write a brief verbal description of each graph. How does the 
graph in part (C) differ from the graphs in parts (A) and (B)?

90. Let f be defined by

f1x2 = e -3m + 0.5x if x … 2
3m - x if x 7 2

where m is a constant.

Table 1 Volume Discount (Excluding Tax)

Volume ($x) Discount Amount

$300 … x 6 $1,000  3%

$1,000 … x 6 $3,000  5%

$3,000 … x 6 $5,000  7%

$5,000 … x 10%

In Problems 67–72, discuss the validity of each statement. If the 
statement is always true, explain why. If not, give a counterexample.

67. If lim
xS1

 f1x2 = 0 and lim
xS1

 g1x2 = 0, then lim
xS1

  
f1x2
g1x2 = 0.

68. If lim
xS1

 f1x2 = 1 and lim
xS1

 g1x2 = 1, then lim
xS1

  
f1x2
g1x2 = 1.

69. If f is a function such that lim
xS0

 f1x2 exists, then f102 exists.

Compute the following limit for each function in Problems 81–88.

lim
hS0

f12 + h2 - f122
h

(A) Graph f for m = 0, and find

lim
xS2- f1x2  and  lim

xS2+ f1x2
(B) Graph f for m = 1, and find

lim
xS2- f1x2  and  lim

xS2+ f1x2
(C) Find m so that

lim
xS2- f1x2 = lim

xS2+ f1x2
and graph f for this value of m.

(D) Write a brief verbal description of each graph. How  
does the graph in part (C) differ from the graphs in 
parts (A) and (B)?

95. Volume discount. Assume that the volume discounts in 
Table 1 apply to the entire purchase. That is, if the volume  
x satisfies $300 … x 6 $1,000, then the entire purchase is  
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discounted 3%. If the volume x satisfies $1,000 … x 6 $3,000, 
the entire purchase is discounted 5%, and so on.

(A) If x is the volume of a purchase before the discount is 
applied, then write a piecewise definition for the dis-
counted price D1x2 of this purchase.

(B) Use one-sided limits to investigate the limit of D1x2 as x 
approaches $1,000. As x approaches $3,000.

96. Volume discount. Assume that the volume discounts in 
Table 1 apply only to that portion of the volume in each inter-
val. That is, the discounted price for a $4,000 purchase would 
be computed as follows:

300 + 0.9717002 + 0.9512,0002 + 0.9311,0002 = 3,809

(A) If x is the volume of a purchase before the discount is 
applied, then write a piecewise definition for the dis-
counted price P1x2 of this purchase.

(B) Use one-sided limits to investigate the limit of P1x2 as x 
approaches $1,000. As x approaches $3,000.

(C) Compare this discount method with the one in Problem 95. 
Does one always produce a lower price than the other? 
Discuss.

97. Pollution A state charges polluters an annual fee of $20 per 
ton for each ton of pollutant emitted into the atmosphere, up 
to a maximum of 4,000 tons. No fees are charged for emis-
sions beyond the 4,000-ton limit. Write a piecewise definition 
of the fees F1x2 charged for the emission of x tons of pollut-
ant in a year. What is the limit of F1x2 as x approaches 4,000 
tons? As x approaches 8,000 tons?

98. Pollution Refer to Problem 97. The average fee per ton of 
pollution is given by A1x2 = F1x2 >x. Write a piecewise 
definition of A1x2. What is the limit of A1x2 as x approaches 
4,000 tons? As x approaches 8,000 tons?

99. Voter turnout. Statisticians often use piecewise-defined 
functions to predict outcomes of elections. For the follow-
ing functions f and g, find the limit of each function as x 
 approaches 5 and as x approaches 10.

 f1x2 = •
  0
0.8 - 0.08x

0
 

if x … 5
if 5 6 x 6 10
if 10 … x

 g1x2 = •
  0  if x … 5
0.8x - 0.04x2 - 3 if 5 6 x 6 10

1  if 10 … x

x -2 -1 0 1 2 3 4

h 1x 2 1.0 1.5 2.0 2.5 3.0 3.5 4.0

2. lim
xS1

 f1x2 = 2

In this section, we consider two new types of limits: infinite limits and limits at infinity. 
Infinite limits and vertical asymptotes are used to describe the behavior of functions 
that are unbounded near x = a. Limits at infinity and horizontal asymptotes are used 
to describe the behavior of functions as x assumes arbitrarily large positive values or 
arbitrarily large negative values. Although we will include graphs to illustrate basic 
concepts, we postpone a discussion of graphing techniques until Chapter 4.

2.2 Infinite Limits and Limits at Infinity
■■ Infinite Limits
■■ Locating Vertical Asymptotes
■■ Limits at Infinity
■■ Finding Horizontal Asymptotes

Answers to Matched Problems
1. 

3. 

21

3

2

1

h(x)

x 2 2
x 2 2

h(x) 5

x
1 2 3 4 5

21

22

23

4. (A)   lim
xS0- f1x2 = 0 

 lim
xS0+ f1x2 = 0 

 lim
xS0

 f1x2 = 0 

 f102 = 0

lim
xS2

x - 2
∙ x - 2 ∙

 does not exist

(B)   lim
xS1- f1x2 = 1 

 lim
xS1+ f1x2 = 2 

 lim
xS1

 f1x2 does not exist 

f112 not defined

(C)   lim
xS3- f1x2 = 3 

 lim
xS3+ f1x2 = 3 

 lim
xS3

 f1x2 = 3 f132 not defined

5. -6 6. (A) 6

(B) 26

(C) 4
5

7. (A) 13

(B) 7

(C) Does not exist

(D) Not defined

8. (A) -2

(B) Does not exist

9. (A) No; 
2
3

(B) No; 0

(C) Yes; 6

10. -2

M02_BARN6152_14_GE_C02.indd   141 16/11/18   1:34 PM



142 CHAPTER 2 Limits and the Derivative 

does not exist. There does not exist a real number L that the values of f1x2 approach 
as x approaches 1 from the right. Instead, as x approaches 1 from the right, the values 
of f1x2 are positive and become larger and larger; that is, f1x2 increases without 
bound (Table 1). We express this behavior symbolically as

210

25

10

5

1
x 2 1

f (x) 5

x

f (x)

21

Figure 1

 lim
xS1 +  

1
x - 1

= ∞ or f1x2 =
1

x - 1
 S ∞ as x S 1+  (1)

Since ∞  is a not a real number, the limit in (1) does not exist. We are using the symbol 
∞  to describe the manner in which the limit fails to exist, and we call this situation 
an infinite limit. We use ∞  to describe positive growth without bound, we use -∞  
to describe negative growth without bound, and we use {∞  to mean “∞  or -∞”. 
If x approaches 1 from the left, the values of f1x2 are negative and become larger 
and larger in absolute value; that is, f1x2 decreases through negative values without 
bound (Table 2). We express this behavior symbolically as

Table 1

x f1x2 ∙
1

x ∙ 1
1.1 10
1.01 100
1.001 1,000
1.0001 10,000
1.00001 100,000
1.000001 1,000,000

Table 2

x f1x2 ∙
1

x ∙ 1
0.9 -10
0.99 -100
0.999 -1,000
0.9999 -10,000
0.99999 -100,000
0.999999 -1,000,000

 lim
xS1 -

1
x - 1

= - ∞ or f1x2 =
1

x - 1
 S - ∞ as x S 1-  (2)

The one-sided limits in (1) and (2) describe the behavior of the graph as x S 1 
(Fig. 1). Does the two-sided limit of f1x2 as x S 1 exist? No, because neither of the 
one-sided limits exists. Also, there is no reasonable way to use the symbol ∞  to de-
scribe the behavior of f1x2 as x S 1 on both sides of 1. We say that

lim
xS1

1
x - 1

 does not exist.

Let g1x2 =
1

1x - 12 2.

Construct tables for g1x2 as x S 1+ and as x S 1-. Use these tables and infinite limits 
to discuss the behavior of g1x2 near x = 1.

Explore and Discuss 1

We used the dashed vertical line x = 1 in Figure 1 to illustrate the infinite lim-
its as x approaches 1 from the right and from the left. We call this line a vertical 
asymptote.

Infinite Limits
The graph of f1x2 =

1
x - 1

 (Fig. 1) indicates that

lim
xS1 +  

1
x - 1
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Locating Vertical Asymptotes
How do we locate vertical asymptotes? If f is a polynomial function, then lim

xSa
 f1x2 is 

equal to the real number f1a2 [Theorem 3, Section 2.1]. So a polynomial function has 
no vertical asymptotes. Similarly (again by Theorem 3, Section 2.1), a vertical asymptote 
of a rational function can occur only at a zero of its denominator. Theorem 1 provides a 
simple procedure for locating the vertical asymptotes of a rational function.

DEFINITION Infinite Limits and Vertical Asymptotes
The vertical line x = a is a vertical asymptote for the graph of y = f1x2 if

f1x2 S ∞ or f1x2 S - ∞ as x S a + or x S a-

[That is, if f1x2 either increases or decreases without bound as x approaches a from 
the right or from the left].

THEOREM 1 Locating Vertical Asymptotes of Rational Functions
If f1x2 = n1x2 >d1x2 is a rational function, d1c2 = 0 and n1c2 ∙ 0, then the 
line x = c is a vertical asymptote of the graph of f.

If f1x2 = n1x2 >d1x2 and both n1c2 = 0 and d1c2 = 0, then the limit of f1x2 
as x approaches c involves an indeterminate form and Theorem 1 does not apply:

lim
xSc f1x2 = lim

xSc

n1x2
d1x2 

0
0

  indeterminate form

Algebraic simplification is often useful in this situation.

Reminder:
We no longer write “does not exist” 
for limits of ∞  or - ∞ .

Locating Vertical Asymptotes Let f1x2 =
x2 + x - 2

x2 - 1
.

Describe the behavior of f at each zero of the denominator. Use ∞  and -∞  when 
appropriate. Identify all vertical asymptotes.

SOLUTION Let n1x2 = x2 + x - 2 and d1x2 = x2 - 1. Factoring the denominator, 
we see that

d1x2 = x2 - 1 = 1x - 121x + 12
has two zeros: x = -1 and x = 1.

First, we consider x = -1. Since d1-12 = 0 and n1-12 = -2 ∙ 0, 
 Theorem 1 tells us that the line x = -1 is a vertical asymptote. So at least one of 
the one-sided limits at x = -1 must be either ∞  or - ∞ . Examining tables of values 
of f for x near -1 or a graph on a graphing calculator will show which is the case. 
From Tables 3 and 4, we see that

EXAMPLE 1

Table 3

x f1x2 ∙
x2 ∙ x ∙ 2

x2 ∙ 1

-1.1 -9
-1.01 -99
-1.001 -999
-1.0001 -9,999
-1.00001 -99,999

lim
xS -1-

x2 + x - 2

x2 - 1
= -∞ and lim

xS -1+

x2 + x - 2

x2 - 1
= ∞

Table 4

x f1x2 ∙
x2 ∙ x ∙ 2

x2 ∙ 1

-0.9 11
-0.99 101
-0.999 1,001
-0.9999 10,001
-0.99999 100,001
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 lim
xS1  f1x2 = lim

xS1

x2 + x - 2

x2 - 1
 0

0
 indeterminate form

 = lim
xS1

1x - 121x + 22
1x - 121x + 12 Cancel 

x - 1
x - 1

 = lim
xS1

 
x + 2
x + 1

      Reduced to lowest terms  
(see Appendix A.4)

 =
3
2

Since the limit exists as x approaches 1, f does not have a vertical asymptote at 
x = 1. The graph of f (Fig. 2 ) shows the behavior at the vertical asymptote x = -1 
and also at x = 1.

x

f (x)

25

5

25 5

x2 1 x 2 2
x2 2 1

f (x) 5

Figure 2

Matched Problem 1 Let f1x2 =
x - 3

x2 - 4x + 3
.

Describe the behavior of f at each zero of the denominator. Use ∞  and - ∞  when 
appropriate. Identify all vertical asymptotes.

Table 5

x f1x2 ∙
x2 ∙ 20

51x ∙ 22 2

2.1 488.2
2.01 48,080.02
2.001 4,800,800.2

Locating Vertical Asymptotes Let  f1x2 =
x2 + 20

51x - 22 2.

Describe the behavior of f at each zero of the denominator. Use ∞  and - ∞  when 
appropriate. Identify all vertical asymptotes.

SOLUTION Let n1x2 = x2 + 20 and d1x2 = 51x - 22 2. The only zero of d1x2 
is x = 2. Since n122 = 24 ∙ 0, f has a vertical asymptote at x = 2 (Theorem 1). 
Tables 5 and 6 show that f1x2 S ∞  as x S 2 from either side, and we have

EXAMPLE 2

lim
xS2+

x2 + 20

51x - 22 2 = ∞ and lim
xS2-

x2 + 20

51x - 22 2 = ∞

Table 6

x f1x2 ∙
x2 ∙ 20

51x ∙ 22 2

1.9 472.2
1.99 47,920.02
1.999 4,799,200.2

The denominator d has no other zeros, so f does not have any other vertical asymp-
totes. The graph of f (Fig. 3) shows the behavior at the vertical asymptote x = 2. 
Because the left- and right-hand limits are both infinite, we write

x

f (x)

20

5

10

15

321 4

x2 1 20
5(x 2 2)2

f (x) 5

Figure 3

lim
xS2

x2 + 20

51x - 22 2 = ∞

Matched Problem 2 Let f1x2 =
x - 1

1x + 32 2.

Describe the behavior of f at each zero of the denominator. Use ∞  and - ∞  when 
appropriate. Identify all vertical asymptotes.

Now we consider the other zero of d1x2, x = 1. This time n112 = 0 and 
 Theorem 1 does not apply. We use algebraic simplification to investigate the 
 behavior of the  function at x = 1:
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When is it correct to say that a limit does not exist, and when is it correct to use 
∞  or - ∞? It depends on the situation. Table 7 lists the infinite limits that we 
 discussed in Examples 1 and 2.

Table 7
Right-Hand Limit Left-Hand Limit Two-Sided Limit

lim
xS -1+ 

x2 + x - 2

x2 - 1
= ∞ lim

xS -1- 
x2 + x - 2

x2 - 1
= - ∞ lim

xS -1
 
x2 + x - 2

x2 - 1
 does not exist

lim
xS -2+ 

x2 + 20

51x - 22 2 = ∞ lim
xS2- 

x2 + 20

51x - 22 2 = ∞ lim
xS2

 
x2 + 20

51x - 22 2 = ∞

The instructions in Examples 1 and 2 said that we should use infinite limits to 
describe the behavior at vertical asymptotes. If we had been asked to evaluate the 
limits, with no mention of ∞  or asymptotes, then the correct answer would be 
that all of these limits do not exist. Remember, ∞  is a symbol used to describe 
the behavior of functions at vertical asymptotes.

CONCEPTUAL INSIGHT

Limits at Infinity
The symbol ∞  can also be used to indicate that an independent variable is increasing 
or decreasing without bound. We write x S ∞  to indicate that x is increasing without 
bound through positive values and x S - ∞  to indicate that x is decreasing without 
bound through negative values. We begin by considering power functions of the form 
x p and 1>x p where p is a positive real number.

If p is a positive real number, then x p increases as x increases. There is no upper 
bound on the values of x p. We indicate this behavior by writing

lim
xS ∞

 xp = ∞ or xp S ∞ as x S ∞

Since the reciprocals of very large numbers are very small numbers, it follows that 
1>x p approaches 0 as x increases without bound. We indicate this behavior by writing

lim
xS ∞

 
1
x p = 0 or 

1
x p S 0 as x S ∞

Figure 4 illustrates the preceding behavior for f1x2 = x2 and g1x2 = 1>x2, and 
we write

x

y

5

4

3

2

1

21

1
x2g(x) 5

f (x) 5 x2

Figure 4

lim
xS ∞  f1x2 = ∞ and lim

xS ∞
g1x2 = 0

Limits of power functions as x decreases without bound behave in a similar 
manner, with two important differences. First, if x is negative, then x p is not defined 
for all values of p. For example, x1>2 = 1x is not defined for negative values of x. 
Second, if x p is defined, then it may approach ∞  or - ∞ , depending on the value of p.  
For example,

lim
xS -∞

x2 = ∞ but lim
xS -∞

x3 = - ∞

For the function g in Figure 4, the line y = 0 (the x axis) is called a horizon-
tal asymptote. In general, a line y = b is a horizontal asymptote of the graph of 
y = f1x2 if f1x2 approaches b as either x increases without bound or x decreases 
without bound. Symbolically, y = b is a horizontal asymptote if either

lim
xS -∞  f1x2 = b or lim

xS ∞  f1x2 = b

In the first case, the graph of f will be close to the horizontal line y = b for large (in 
absolute value) negative x. In the second case, the graph will be close to the horizontal 
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line y = b for large positive x. Figure 5 shows the graph of a function with two hori-
zontal asymptotes: y = 1 and y = -1.

lim f (x) 5 21 
21

x

f (x)

525

1

x S 2`

lim f (x) 5 1 
x S `

Figure 5

Theorem 2 summarizes the various possibilities for limits of power functions as x 
increases or decreases without bound.

THEOREM 2 Limits of Power Functions at Infinity
If p is a positive real number and k is any real number except 0, then

1. lim
xS -∞

k
xp = 0 2. lim

xS ∞

k
xp = 0

3. lim
xS -∞

 k xp = ∞ or - ∞ 4. lim
xS ∞

 k xp = ∞ or -∞

provided that xp is a real number for negative values of x. The limits in 3 and 4 will 
be either - ∞  or ∞ , depending on k and p.

How can we use Theorem 2 to evaluate limits at infinity? It turns out that the 
limit properties listed in Theorem 2, Section 2.1, are also valid if we replace the state-
ment x S c with x S ∞  or x S - ∞ .

Limit of a Polynomial Function at Infinity Let p1x2 = 2x3 - x2 - 7x + 3. 
Find the limit of p1x2 as x approaches ∞  and as x approaches - ∞ .

SOLUTION Since limits of power functions of the form 1>x p approach 0 as x 
approaches ∞  or - ∞ , it is convenient to work with these reciprocal forms when-
ever possible. If we factor out the term involving the highest power of x, then we 
can write p1x2 as

p1x2 = 2x3a1 -   
1
2x

  -   
7

2x2 +
3

2x3 b

Using Theorem 2 above and Theorem 2 in Section 2.1, we write

lim
xS ∞

a1 -  
1
2x

 -  
7

2x2 +
3

2x3 b = 1 - 0 - 0 + 0  = 1

For large values of x,

a1 -  
1
2x

 -
7

2x2 +
3

2x3 b ≈ 1

and

p1x2 = 2x3a1 -  
1
2x

-  
7

2x2 +
3

2x3 b ≈ 2x3

Since 2x3 S ∞  as x S ∞ , it follows that

lim
xS ∞

 p1x2 = lim
xS ∞

 2x3 = ∞

Similarly, 2x3 S - ∞  as x S - ∞  implies that

lim
xS -∞

 p1x2 = lim
xS -∞

 2x3 = - ∞

So the behavior of p1x2 for large values is the same as the behavior of the highest-
degree term, 2x3.

Matched Problem 3 Let p1x2 = -4x4 + 2x3 + 3x. Find the limit of p1x2 
as x approaches ∞  and as x approaches - ∞ .

EXAMPLE 3
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The term with highest degree in a polynomial is called the leading term. In the 
solution to Example 3, the limits at infinity of p1x2 = 2x3 - x2 - 7x + 3 were the 
same as the limits of the leading term 2x3. Theorem 3 states that this is true for any 
polynomial of degree greater than or equal to 1.

THEOREM 3 Limits of Polynomial Functions at Infinity
If

p1x2 = anx
n + an - 1 x n - 1 + g + a1x + a0, an ∙ 0, n Ú 1

then

lim
xS ∞

 p1x2 = lim
xS ∞

 anx
n = ∞ or - ∞

and

lim
xS -∞

 p1x2 = lim
xS -∞

 anx
n = ∞ or - ∞

Each limit will be either - ∞  or ∞ , depending on an and n.

A polynomial of degree 0 is a constant function p1x2 = a0, and its limit as x 
approaches ∞  or - ∞  is the number a0. For any polynomial of degree 1 or greater, 
Theorem 3 states that the limit as x approaches ∞  or - ∞  cannot be equal to a num-
ber. This means that polynomials of degree 1 or greater never have horizontal 
asymptotes.

A pair of limit expressions of the form

lim
xS ∞

 f1x2 = A, lim
xS -∞

 f1x2 = B

where A and B are ∞ , - ∞ , or real numbers, describes the end behavior of the func-
tion f. The first of the two limit expressions describes the right end behavior and 
the second describes the left end behavior. By Theorem 3, the end behavior of any 
nonconstant polynomial function is described by a pair of infinite limits.

End Behavior of a Polynomial Give a pair of limit expressions that describe the 
end behavior of each polynomial.

(A) p1x2 = 3x3 - 500x2 (B) p1x2 = 3x3 - 500x4

SOLUTION
(A) By Theorem 3,

lim
xS ∞

13x3 - 500x22 = lim
xS ∞

3x3 = ∞  Right end behavior

and

lim
xS -∞

13x3 - 500x22 = lim
xS -∞

3x3 = - ∞  Left end behavior

(B) By Theorem 3,

lim
xS ∞

13x3 - 500x42 = lim
xS ∞

1-500x42 = - ∞  Right end behavior

and

lim
xS -∞

13x3 - 500x42 = lim
xS -∞

1-500x42 = - ∞ Left end behavior

Matched Problem 4 Give a pair of limit expressions that describe the end 
behavior of each polynomial.

(A) p1x2 = 300x2 - 4x5 (B) p1x2 = 300x6 - 4x5

EXAMPLE 4
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Sales Analysis The total number of downloads D (in millions) of a new app t 
months after it is released is given by

D1t2 =
3t2

2t2 + 100
.

Find and interpret lim
tS ∞

 D1t2. Use Figure 6 to confirm your answer.

EXAMPLE 5

x

y

1.5

1.0

0.5

2412

lim D(t) 5 1.5
x S `

Figure 6

SOLUTION Factoring the highest-degree term out of the numerator and the highest-
degree term out of the denominator, we write

D1t2 =
3t2

2t2 #  
1

1 +
100

2t2

lim
tS ∞

 D1t2 = lim
tS ∞

 
3t2

2t2 #  lim
tS ∞

 
1

1 +
100

2t2

 =
3
2

 #  
1

1 + 0
 =

3
2

.

Over time, the total number of downloads will approach 1.5 million. Figure 6 shows 
that as t S ∞ , D1t2 S 1.5.

Matched Problem 5 If the total number of downloads D (in millions) of a new 

app t months after it is released is given by D1t2 =
4t2

5t2 + 70
, find and interpret 

lim
tS ∞

 D1t2.

Finding Horizontal Asymptotes
Since a rational function is the ratio of two polynomials, it is not surprising that re-
ciprocals of powers of x can be used to analyze limits of rational functions at infinity. 
For example, consider the rational function

f1x2 =
3x2 - 5x + 9

2x2 + 7

Factoring the highest-degree term out of the numerator and the highest-degree 
term out of the denominator, we write

 f1x2 =
3x2

2x2
#
1 -  

5
3x

+
3

x2

1 +
7

2x2

 lim
xS ∞  f1x2 = lim

xS ∞

3x2

2x2  # lim
xS ∞

1 -  
5
3x

+
3

x2

1 +
7

2x2

 =
3
2

# 1 - 0 + 0
1 + 0

 =
3
2

The behavior of this rational function as x approaches infinity is determined by the 
ratio of the highest-degree term in the numerator (3x2) to the highest-degree term in 
the denominator (2x2). Theorem 2 can be used to generalize this result to any rational 
function. Theorem 4 lists the three possible outcomes.
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Notice that in cases 1 and 2 of Theorem 4, the limit is the same if x approaches 
∞  or - ∞ . So, a rational function can have at most one horizontal asymptote 
(see Fig. 7).

x

y

1

2

210220 10 20

y 5 1.5

2x2 1 7
f (x) 5

3x2 2 5x  1 9

Figure 7 

THEOREM 4 Limits of Rational Functions at Infinity and Horizontal 
Asymptotes of Rational Functions

(A) If f1x2 =
amxm + am - 1x

m - 1 + g+ a1x + a0

bnxn + bn - 1x
n - 1 + g+ b1x + b0

, am ∙ 0, bn ∙ 0

then lim
xS ∞

 f1x2 = lim
xS ∞

amxm

bnxn and lim
xS -∞

 f1x2 = lim
xS -∞

amxm

bnxn

(B) There are three possible cases for these limits:

1. If m 6 n, then lim
xS ∞

 f1x2 = lim
xS -∞

 f1x2 = 0, and the line y = 0 (the x axis) 

is a horizontal asymptote of f1x2.

2. If m = n, then lim
xS ∞

 f1x2 = lim
xS -∞

 f1x2 =
am

bn
, and the line y =

am

bn
 is a 

 horizontal asymptote of f1x2.

3. If m 7 n, then each limit will be ∞  or - ∞ , depending on m, n, am, and bn, 
and f1x2 does not have a horizontal asymptote.

Finding Horizontal Asymptotes Find all horizontal asymptotes, if any, of each 
function.

(A) f1x2 =
5x3 - 2x2 + 1

4x3 + 2x - 7
(B) f1x2 =

3x4 - x2 + 1

8x6 - 10

(C) f1x2 =
2x5 - x3 - 1

6x3 + 2x2 - 7

EXAMPLE 6

The graph of f in Figure 7 dispels the misconception that the graph of a function 
cannot cross a horizontal asymptote. Horizontal asymptotes give us information 
about the graph of a function only as x S ∞  and x S - ∞ , not at any specific 
value of x.

CONCEPTUAL INSIGHT
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SOLUTION We will make use of part A of Theorem 4.

(A) lim
xS ∞

 f1x2 = lim
xS ∞

5x3 - 2x2 + 1

4x3 + 2x - 7
= lim

xS ∞

5x3

4x3 =
5
4

The line y = 5>4 is a horizontal asymptote of f1x2. We may also use Theorem 4, 
part B2.

(B) lim
xS ∞

 f1x2 = lim
xS ∞

3x4 - x2 + 1

8x6 - 10
= lim

xS ∞

3x4

8x6 = lim
xS ∞

3

8x2 = 0

The line y = 0 (the x axis) is a horizontal asymptote of f1x2. We may also use 
Theorem 4, part B1.

(C) lim
xS ∞

 f1x2 = lim
xS ∞

2x5 - x3 - 1

6x3 + 2x2 - 7
= lim

xS ∞

2x5

6x3 = lim
xS ∞

x2

3
= ∞

The function f1x2 has no horizontal asymptotes. This agrees with Theorem 4, 
part B3.

Matched Problem 6 Find all horizontal asymptotes, if any, of each function.

(A) f1x2 =
4x3 - 5x + 8

2x4 - 7
(B) f1x2 =

5x6 + 3x

2x5 - x - 5

(C) f1x2 =
2x3 - x + 7

4x3 + 3x2 - 100

An accurate sketch of the graph of a rational function requires knowledge of both 
vertical and horizontal asymptotes. As we mentioned earlier, we are postponing a 
detailed discussion of graphing techniques until Section 4.4.

Find all vertical and horizontal asymptotes of the function

f1x2 =
2x2 - 5

x2 + 5x + 4

SOLUTION Let n1x2 = 2x2 - 5 and d1x2 = x2 + 5x + 4 = 1x + 121x + 42. 
The denominator d1x2 = 0 at x = -1 and x = -4. Since the numerator n1x2 is 
not zero at these values of x [n1-12 = -3 and n1-42 = 27], by Theorem 1 there 
are two vertical asymptotes of f: the line x = -1 and the line x = -4. Since

lim
xS ∞

 f1x2 = lim
xS ∞

2x2 - 5

x2 + 5x + 4
= lim

xS ∞

2x2

x2 = 2

the horizontal asymptote is the line y = 2 (Theorem 3).

Matched Problem 7 Find all vertical and horizontal asymptotes of the function 

f1x2 =
x2 - 9

x2 - 4
.

EXAMPLE 7

Skills Warm-up Exercises
In Problems 1–8, find an equation of the form Ax + By = C  
for the given line. (If necessary, review Section 1.3).

1. The horizontal line through 10, 42
2. The vertical line through 15, 02
3. The vertical line through 1-6, 32

W

4. The horizontal line through 17, 12
5. The line through 1-2, 92 that has slope 2

6. The line through 14, -52 that has slope -6

7. The line through 19, 02 and 10, 72
8. The line through 1-1, 202 and 11, 302

Exercises 2.2
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Problems 9–16 refer to the following graph of y = f1x2.

23

22

21

3

2

1

2224 2 4

y

x

Figure for 9–16

9. lim
xS ∞

 f1x2 = ? 10. lim
xS -∞

 f1x2 = ?

11. lim
xS -2+

 f1x2 = ? 12. lim
xS -2-

 f1x2 = ?

13. lim
xS -2

 f1x2 = ? 14. lim
xS2+

 f1x2 = ?

15. lim
xS2-  f1x2 = ? 16. lim

xS2
 f1x2 = ?

In Problems 17–24, find each limit. Use - ∞ and ∞ when appropriate.

17. f1x2 =
x

x - 5

(A) lim
xS5- f1x2 (B) lim

xS5+ f1x2 (C) lim
xS5

 f1x2

18. f1x2 =
x2

x + 3

(A) lim
xS -3- f1x2 (B) lim

xS -3+ f1x2 (C) lim
xS -3

 f1x2

19. f1x2 =
4 - 5x

1x - 62 2

(A) lim
xS6- f1x2 (B) lim

xS6+ f1x2 (C) lim
xS6

 f1x2

20. f1x2 =
2x + 2

1x + 22 2

(A) lim
xS -2- f1x2 (B) lim

xS -2+ f1x2 (C) lim
xS -2

 f1x2

21. f1x2 =
x2 + x - 2

x - 1

(A) lim
xS1- f1x2 (B) lim

xS1+ f1x2 (C) lim
xS1

 f1x2

22. f1x2 =
x2 + x + 2

x - 1

(A) lim
xS1- f1x2 (B) lim

xS1+ f1x2 (C) lim
xS1

 f1x2

23. f1x2 =
x2 - 3x + 2

x + 2

(A) lim
xS - 2- f1x2 (B) lim

xS - 2+ f1x2 (C) lim
xS - 2

 f1x2

24. f1x2 =
x2 + x - 2

x + 2

(A) lim
xS - 2- f1x2 (B) lim

xS - 2+ f1x2 (C) lim
xS - 2

 f1x2

A In Problems 25–32, find (A) the leading term of the polynomial, (B) 
the limit as x approaches ∞ , and (C) the limit as x approaches - ∞ .

25. p1x2 = 15 + 3x2 - 5x3

26. p1x2 = 10 - x6 + 7x3

27. p1x2 = 9x2 - 6x4 + 7x

28. p1x2 = -x5 + 2x3 + 9x

29. p1x2 = x2 + 7x + 12

30. p1x2 = 5x + x3 - 8x2

31. p1x2 = x4 + 2x5 - 11x

32. p1x2 = 2 - 3x4 - 5x6

In Problems 33–40, find each function value and limit. Use - ∞  
or ∞  where appropriate.

33. f1x2 =
4x + 7
5x - 9

(A) f1102 (B) f11002 (C) lim
xS ∞

 f1x2

34. f1x2 =
2 - 3x3

7 + 4x3

(A) f152 (B) f1102 (C) lim
xS ∞

 f1x2

35. f1x2 =
5x2 + 11
7x - 2

(A) f1202 (B) f1502 (C) lim
xS ∞

 f1x2

36. f1x2 =
5x + 11

7x3 - 2

(A) f1-82 (B) f1-162 (C) lim
xS - ∞

 f1x2

37. f1x2 =
7x4 - 14x2

6x5 + 3

(A) f1-62 (B) f1-122 (C) lim
xS - ∞

 f1x2

38. f1x2 =
4x7 - 8x

6x4 + 9x2

(A) f1-32 (B) f1-62 (C) lim
xS - ∞

 f1x2

39. f1x2 =
10 - 7x3

4 + x3

(A) f1-102 (B) f1-202 (C) lim
xS - ∞

 f1x2

40. f1x2 =
3 + x

5 + 4x

(A) f1-502 (B) f1-1002 (C) lim
xS - ∞

 f1x2

In Problems 41–50, use - ∞  or ∞  where appropriate to describe 
the behavior at each zero of the denominator and identify all 
vertical asymptotes.

41. f1x2 =
3x

x - 2
42. f1x2 =

2x
x - 5

B
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43. f1x2 =
x + 1

x2 - 1
44. f1x2 =

x - 3

x2 + 9

45. f1x2 =
x - 3

x2 + 1
46. f1x2 =

x - 5

x2 - 16

47. f1x2 =
x2 - 4x - 21

x2 - 3x - 10
48. f1x2 =

x2 - 1

x3 + 3x2 + 2x

49. f1x2 =
x2 - 4

x3 + x2 - 2x
50. f1x2 =

x2 + 2x - 15

x2 + 2x - 8

In Problems 51–64, find all horizontal and vertical asymptotes.

51. f1x2 =
2x

x + 2
52. f1x2 =

3x + 2
x - 4

53. f1x2 =
x2 + 1

x2 - 1
54. f1x2 =

9 - x2

9 + x2

55. f1x2 =
x3

x2 + 6
56. f1x2 =

x

x2 - 4

57. f1x2 =
x

x2 + 4
58. f1x2 =

x2 + 9
x

59. f1x2 =
x2

x - 3
60. f1x2 =

x + 5

x2

61. f1x2 =
2x2 + 3x - 2

x2 - x - 2
62. f1x2 =

2x2 + 7x + 12

2x2 + 5x - 12

63. f1x2 =
3x2 - x - 2

x2 - 5x + 4
64. f1x2 =

x2 - x - 12

2x2 + 5x - 12

In Problems 65–68, give a limit expression that describes the right 
end behavior of the function.

65. f1x2 =
x + 3

x2 - 5
66. f1x2 =

3 + 4x + x2

5 - x

67. f1x2 =
x2 - 5
x + 3

68. f1x2 =
3x2 + 1

6x2 + 5x

In Problems 69–72, give a limit expression that describes the left 
end behavior of the function.

69. f1x2 =
5 - 2x2

1 + 8x2 70. f1x2 =
2x + 3

x2 - 1

71. f1x2 =
x2 + 3
4 - 5x

72. f1x2 =
6 - x4

1 + 2x

In Problems 73–78, discuss the validity of each statement. 
If the statement is always true, explain why. If not, give a 
 counterexample.

73. A rational function has at least one vertical asymptote.

74. A rational function has at most one vertical asymptote.

75. A rational function has at least one horizontal asymptote.

C

76. A rational function has at most one horizontal asymptote.

77. A polynomial function of degree Ú 1 has neither horizontal 
nor vertical asymptotes.

78. The graph of a rational function cannot cross a horizontal 
asymptote.

79. Theorem 3 states that

lim
xS ∞

1anxn + an - 1x
n - 1 + g+ a02 = {∞ .

What conditions must n and an satisfy for the limit to be ∞? 
For the limit to be - ∞?

80. Theorem 3 also states that

lim
xS - ∞

1anxn + an - 1x
n - 1 + g + a02 = {∞ .

What conditions must n and an satisfy for the limit to be ∞? 
For the limit to be - ∞?

Applications
81. Average cost. A small company manufacturing chairs has 

fixed costs of $300 per day and total costs of $1,500 per day 
for a daily output of 30 chairs.

(A) Assuming that the total cost per day C(x) is linearly  
related to the total output per day x, write an equation  
for the cost function.

(B) The average cost per chair for an output of x chairs is 
given by C1x2 = C1x2 >x. Find the average cost  
function.

(C) Sketch a graph of the average cost function, including 
any asymptotes, for 1 … x … 40.

(D) What does the average cost per chair tend to as produc-
tion increases?

82. Average cost. A small company manufacturing tables has 
fixed costs of $400 per day and total costs of $2,500 per day 
for a daily output of 30 tables.

(A) Assuming that the total cost per day C1x2 is linearly 
related to the total output per day x, write an equation for 
the cost function.

(B) The average cost per table for an output of x tables  
is given by C1x2 = C1x2 >x. Find the average cost 
function.

(C) Sketch a graph of the average cost function, including 
any asymptotes, for 1 … x … 40.

(D) What does the average cost per table tend to as produc-
tion increases?

83. Operating System Updates. A newly released smart-
phone operating system gives users an update notice every 
time they download a new app. The percentage P of users 
that have installed the new update after t days is given by 

P1t2 =
100t2

t2 + 100
.
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(A) What percentage of users have installed the new update 
after 5 days? After 10 days? After 20 days?

(B) What happens to P(t) as t S ∞?

84. Operating System Updates. A newly released smart-
phone operating system gives users an immediate notice 
to update but no further reminders. The percent P of users 
that have installed the new update after t days is given by 

P1t2 =
99t2

t2 + 50
.

(A) What percentage of users have installed the new update 
after 5 days? After 10 days? After 20 days?

(B) What happens to P(t) as t S ∞?

85. Drug concentration. A drug is administered to a patient 
through an IV drip. The drug concentration (in milligrams/
milliliter) in the bloodstream t hours after the drip was  

started by C1t2 =
5t21t + 502

t3 + 100
. Find and interpret lim

tS ∞
 C1t2.

86. Drug concentration. A drug is administered to a patient 
through an injection. The drug concentration (in milligrams/
milliliter) in the bloodstream t hours after the injection is 

given by C1t2 =
5t1t + 502
t3 + 100

. Find and interpret lim
tS ∞

 C1t2.

87. Pollution. In Silicon Valley, a number of computer-related 
manufacturing firms were contaminating underground water 
supplies with toxic chemicals stored in leaking underground 
containers. A water quality control agency ordered the com-
panies to take immediate corrective action and contribute to a 
monetary pool for the testing and cleanup of the underground 
contamination. Suppose that the monetary pool (in millions 
of dollars) for the testing and cleanup is given by

P1x2 =
2x

1 - x
  0 … x 6 1

where x is the percentage (expressed as a decimal) of the total 
contaminant removed.

(A) How much must be in the pool to remove 90% of the 
contaminant?

(B) How much must be in the pool to remove 95% of the 
contaminant?

(C) Find lim
xS1- P1x2 and discuss the implications of this limit.

88. Employee training. A company producing computer com-
ponents has established that, on average, a new employee can 
assemble N1t2 components per day after t days of on-the-job 
training, as given by

N1t2 =
100t
t + 9

  t Ú 0

(A) How many components per day can a new employee 
 assemble after 6 days of on-the-job training?

(B) How many days of on-the-job training will a new em-
ployee need to reach the level of 70 components per day?

(C) Find lim
tS ∞

 N1t2 and discuss the implications of this limit.

89. Biochemistry. In 1913, biochemists Leonor Michaelis and 
Maude Menten proposed the rational function model (see figure)

v1s2 =
Vmax  s

KM + s

for the velocity of the enzymatic reaction v, where s is the 
substrate concentration. The constants Vmax  and KM are deter-
mined from experimental data.

s

v

2

Michaelis–Menten function

Vmax s

Vmax

KM

Vmax
KM  s

v(s) 

(A) Show that lim
sS ∞

 v1s2 = Vmax .

(B) Show that v1KM2 =
Vmax 

2
.

(C) Table 8 (Source: Michaelis and Menten (1913) Biochem. 
Z. 49, 333–369) lists data for the substrate saccharose 
treated with an enzyme.

Table 8
s v

 5.2 0.866
10.4 1.466
20.8 2.114
41.6 2.666
83.3 3.236

167 3.636
333 3.636

Plot the points in Table 8 on graph paper and estimate 
Vmax  to the nearest integer. To estimate KM, add the 

horizontal line v =
Vmax 

2
 to your graph, connect succes-

sive points on the graph with straight-line segments, and 
estimate the value of s (to the nearest multiple of 10) that 

satisfies v1s2 =
Vmax 

2
.

(D) Use the constants Vmax  and KM from part (C) to form a 
Michaelis–Menten function for the data in Table 8.

(E) Use the function from part (D) to estimate the velocity 
of the enzyme reaction when the saccharose is 15 and to 
estimate the saccharose when the velocity is 3.

90. Biochemistry. Table 9 (Source: Institute of Chemistry, 
Macedonia) lists data for the substrate sucrose treated with 
the enzyme invertase. We want to model these data with a 
Michaelis–Menten function.
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Table 9
s v

 2.92 18.2
 5.84 26.5
 8.76 31.1
11.7 33
14.6 34.9
17.5 37.2
23.4 37.1

(A) Plot the points in Table 9 on graph paper and estimate 
Vmax  to the nearest integer. To estimate KM, add the hori-

zontal line v =
Vmax 

2
 to your graph, connect successive 

points on the graph with straight-line segments, and es-
timate the value of s (to the nearest integer) that satisfies 

v1s2 =
Vmax 

2
.

(B) Use the constants Vmax  and KM from part (A) to form a 
Michaelis–Menten function for the data in Table 9.

(C) Use the function from part (B) to estimate the velocity 
of the enzyme reaction when the sucrose is 9 and to esti-
mate the sucrose when the velocity is 32.

91. Physics. The coefficient of thermal expansion (CTE) is a 
measure of the expansion of an object subjected to extreme 
temperatures. To model this coefficient, we use a Michaelis–
Menten function of the form

 C1T2 =
C max  T

M + T
 (Problem 89)

where C = CTE, T is temperature in K (degrees Kelvin), and 
Cmax  and M are constants. Table 10 (Source: National Physical 
Laboratory) lists the coefficients of thermal expansion for nickel 
and for copper at various temperatures.

Table 10 Coefficients of Thermal  
Expansion

T (K) Nickel Copper

100  6.6 10.3
200 11.3 15.2
293 13.4 16.5
500 15.3 18.3
800 16.8 20.3

1,100 17.8 23.7

(A) Plot the points in columns 1 and 2 of Table 10 on graph 
paper and estimate Cmax  to the nearest integer. To esti-

mate M, add the horizontal line CTE =
Cmax 

2
 to your 

graph, connect successive points on the graph with 
straight-line segments, and estimate the value of T (to the 

nearest multiple of fifty) that satisfies C1T2 =
Cmax 

2
.

(B) Use the constants 
Cmax 

2
 and M from part (A) to form a 

Michaelis–Menten function for the CTE of nickel.

(C) Use the function from part (B) to estimate the CTE of 
nickel at 600 K and to estimate the temperature when the 
CTE of nickel is 12.

92. Physics. Repeat Problem 91 for the CTE of copper (column 3 
of Table 10).

Answers to Matched Problems
1. Vertical asymptote: x = 1; lim

xS1+ f1x2 = ∞ , lim
xS1- f1x2 = - ∞  

lim
xS3

 f1x2 = 1>2 so f does not have a vertical asymptote at 

x = 3

2. Vertical asymptote: x = -3; lim
xS -3+ f1x2 = lim

xS -3- f1x2 = - ∞

3. lim
xS ∞

 p1x2 = lim
xS -∞

 p1x2 = - ∞

4. (A) lim
xS ∞

 p1x2 = - ∞ , lim
xS -∞

 p1x2 = ∞

(B) lim
xS ∞

 p1x2 = ∞ , lim
xS -∞

 p1x2 = ∞

5. lim
tS ∞

 D1t2 = 0.8; Over time, the total number of downloads 
will approach 0.8 million.

6. (A) y = 0

(C) y = 1>2

(B) No horizontal asymptotes

7. Vertical asymptotes: x = -2, x = 2;  
horizontal asymptote: y = 1

Theorem 3 in Section 2.1 states that if f is a polynomial function or a rational  function 
with a nonzero denominator at x = c, then

 lim
xSc

 f1x2 = f1c2 (1)

Functions that satisfy equation (1) are said to be continuous at x = c. A firm 
 understanding of continuous functions is essential for sketching and analyzing 
graphs. We will also see that continuity properties provide a simple and efficient 
method for solving inequalities—a tool that we will use extensively in later sections.

2.3 Continuity
■■ Continuity
■■ Continuity Properties
■■ Solving Inequalities Using  
Continuity Properties
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Continuity
Compare the graphs shown in Figure 1. Notice that two of the graphs are broken; 
that is, they cannot be drawn without lifting a pen off the paper. Informally, a func-
tion is continuous over an interval if its graph over the interval can be drawn without 
removing a pen from the paper. A function whose graph is broken (disconnected) at 
x = c is said to be discontinuous at x = c. Function f (Fig. 1A) is continuous for 
all x. Function g (Fig. 1B) is discontinuous at x = 2 but is continuous over any in-
terval that does not include 2. Function h (Fig. 1C) is discontinuous at x = 0 but is 
continuous over any interval that does not include 0.

f (x)

x

25

525

f (x) 5 x 1 2

0 2

(A)  lim f (x) 5 4

f (2) 5 4

4

x S 2

Figure 1

x2 2 4
x 2 2

g(x) 5

(B)  lim g(x) 5 4

g(2) is not defined
x S 2

x

25

525 0 2

4

g(x)

uxu
xh(x) 5

x

21
222 21

1

1

(C)  lim h(x) does not exist

h(0) is not defined
x S 0

h(x)

Most graphs of natural phenomena are continuous, whereas many graphs in 
business and economics applications have discontinuities. Figure 2A illustrates 
temperature variation over a 24-hour period—a continuous phenomenon. Figure 2B 
illustrates warehouse inventory over a 1-week period—a discontinuous phenomenon.

3 6 9 12 15 18 21 24

70

40

50

60

T
em
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 (
8F

)

Hours after midnight

Continuous

0
t

T

(A)  Temperature for a 24-hour period

N
um

be
r 

of
 it

em
s

Days after the first of the week
10 2 3 4 5

100

200

300

400

500

Discontinuous

d

Q

(B)  Inventory in a warehouse during 1 week

(A) Write a brief verbal description of the temperature variation illustrated in 
Figure 2A, including estimates of the high and low temperatures during the 
period shown and the times at which they occurred.

(B) Write a brief verbal description of the changes in inventory illustrated in 
Figure 2B, including estimates of the changes in inventory and the times at 
which those changes occurred.

Explore and Discuss 1

Figure 2
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The preceding discussion leads to the following formal definition of continuity:

Reminder:
We use (a, b) to represent all points 
between x = a and x = b, not 
including a and b. See Table 3 in 
Section 1.3 for a review of interval 
notation.

DEFINITION Continuity
A function f is continuous at the point x ∙ c if

1. lim
xSc

 f1x2 exists 2. f1c2 exists 3. lim
xSc

 f1x2 = f1c2
A function is continuous on the open interval (a, b) if it is continuous at each 
point on the interval.

If one or more of the three conditions in the definition fails, then the function is 
discontinuous at x = c.

Continuity of a Function Defined by a Graph Use the definition of continuity to 
discuss the continuity of the function whose graph is shown in Figure 3.

SOLUTION We begin by identifying the points of discontinuity. Examining the 
graph, we see breaks or holes at x = -4, -2, 1, and 3. Now we must determine 
which conditions in the definition of continuity are not satisfied at each of these 
points. In each case, we find the value of the function and the limit of the function 
at the point in question.

Discontinuity at x ∙ ∙4:

 lim
xS -4- f1x2 = 2  Since the one-sided limits are different, 

the limit does not exist (Section 2.1).
 lim
xS -4+ f1x2 = 3

 lim
xS -4

 f1x2 does not exist

f1-42 = 3

So, f is not continuous at x = -4 because condition 1 is not satisfied.

Discontinuity at x ∙ ∙2:
 lim
xS -2- f1x2 = 5

 lim
xS -2+ f1x2 = 5

 lim
xS -2

 f1x2 = 5 

EXAMPLE 1

The hole at 1-2, 52 indicates that 5 is not the 
value of f at -2. Since there is no solid dot else-
where on the vertical line x = -2, f 1-22 is not 
defined.

 f1-22 does not exist

So even though the limit as x approaches -2 exists, f is not continuous at x = -2 
because condition 2 is not satisfied.

Discontinuity at x ∙ 1:

 lim
xS1- f1x2 = 4

 lim
xS1+ f1x2 = 1

 lim
xS1

 f1x2 does not exist

f112 does not exist

This time, f is not continuous at x = 1 because neither of conditions 1 and 2 is satisfied.

Discontinuity at x ∙ 3:
 lim
xS3- f1x2 = 3

 lim
xS3+ f1x2 = 3

 lim
xS3

 f1x2 = 3 The solid dot at (3, 1) indicates that f132 = 1.

 f132 = 1

f (x)

x
5

5

25

22

Figure 3
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Matched Problem 1 Use the definition of continuity to discuss the continuity 
of the function whose graph is shown in Figure 4.

f (x)

x
5

5

25

22

Figure 4

Rather than list the points where a function is discontinuous, sometimes it is use-
ful to state the intervals on which the function is continuous. Using the set opera-
tion union, denoted by ∪, we can express the set of points where the function in 
Example 1 is continuous as follows:

1- ∞ , -42 ∪ 1-4, -22 ∪ 1-2, 12 ∪ 11, 32 ∪ 13, ∞ 2

CONCEPTUAL INSIGHT

For functions defined by equations, it is important to be able to locate points of 
discontinuity by examining the equation.

Continuity of Functions Defined by Equations Using the definition of continuity, 
discuss the continuity of each function at the indicated point(s).

(A) f1x2 = x + 2 at x = 2

(B) g1x2 =
x2 - 4
x - 2

 at x = 2

(C) h1x2 =
0 x 0
x
 at x = 0 and at x = 1

SOLUTION
(A) f is continuous at x = 2, since

lim
xS2

 f1x2 = 4 = f122 See Figure 1A.

(B) g is not continuous at x = 2, since g122 = 0>0 is not defined.      See Figure 1B.

(C) h is not continuous at x = 0, since h102 = 0 0 0 >0 is not defined; also, lim
xS0

 h1x2 
does not exist.
h is continuous at x = 1, since

lim
xS1

 
0 x 0
x

= 1 = h112 See Figure 1C.

EXAMPLE 2

Conditions 1 and 2 are satisfied, but f is not continuous at x = 3 because condition 
3 is not satisfied.

Having identified and discussed all points of discontinuity, we can now conclude 
that f is continuous except at x = -4, -2, 1, and 3.
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Matched Problem 2 Using the definition of continuity, discuss the continuity 
of each function at the indicated point(s).

(A) f1x2 = x + 1 at x = 1

(B) g1x2 =
x2 - 1
x - 1

 at x = 1

(C) h1x2 =
x - 2

0 x - 2 0 at x = 2 and at x = 0

We can also talk about one-sided continuity, just as we talked about one-sided 
limits. For example, a function is said to be continuous on the right at x = c if 
limxSc+ f1x2 = f1c2 and continuous on the left at x = c if limxSc- f1x2 = f1c2. 
A function is continuous on the closed interval [a, b] if it is continuous on the open 
interval (a, b) and is continuous both on the right at a and on the left at b.

Figure 5A illustrates a function that is continuous on the closed interval 3-1, 14. 
Figure 5B illustrates a function that is continuous on the half-closed interval 30, ∞).

x

f (x)

1021

1

(A)  f is continuous on the
       closed interval [21, 1]

Ï1 2 x2f (x) 5

Figure 5 Continuity on closed and half-closed intervals

x

g(x)

10 2 3 4 5

1

2

3

(B)  g is continuous on the
       half-closed interval [0, `)

Ïxg(x) 5

Continuity Properties
Functions have some useful general continuity properties:

THEOREM 1 Continuity Properties of Some Specific Functions
(A) A constant function f1x2 = k, where k is a constant, is continuous for all x.

f 1x2 = 7 is continuous for all x.
(B) For n a positive integer, f1x2 = xn is continuous for all x.

f1x2 = x 5 is continuous for all x.

PROPERTIES General Continuity properties
If two functions are continuous on the same interval, then their sum, difference, 
product, and quotient are continuous on the same interval except for values of x that 
make a denominator 0.

These properties, along with Theorem 1, enable us to determine intervals of con-
tinuity for some important classes of functions without having to look at their graphs 
or use the three conditions in the definition.
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Parts (C) and (D) of Theorem 1 are the same as Theorem 3 in Section 2.1. They 
are repeated here to emphasize their importance.

(C) A polynomial function is continuous for all x.
2x 3 - 3x 2 + x - 5 is continuous for all x.

(D) A rational function is continuous for all x except those values that make a 
denominator 0.
x 2 + 1
x - 1

 is continuous for all x except x = 1, a value that makes the denominator 0.

(E) For n an odd positive integer greater than 1, 2n
f1x2 is continuous wherever 

f1x2 is continuous.23 x2 is continuous for all x.
(F) For n an even positive integer, 2n

f1x2 is continuous wherever f1x2 is con-
tinuous and nonnegative.24 x is continuous on the interval 30, ∞ ).

Using Continuity Properties Using Theorem 1 and the general properties of con-
tinuity, determine where each function is continuous.

(A) f1x2 = x2 - 2x + 1 (B) f1x2 =
x

1x + 221x - 32
(C) f1x2 = 32x2 - 4 (D) f1x2 = 1x - 2

SOLUTION
(A) Since f is a polynomial function, f is continuous for all x.

(B) Since f is a rational function, f is continuous for all x except -2 and 3 (values 
that make the denominator 0).

(C) The polynomial function x2 - 4 is continuous for all x. Since n = 3 is odd, f 
is continuous for all x.

(D) The polynomial function x - 2 is continuous for all x and nonnegative for 
x Ú 2. Since n = 2 is even, f is continuous for x Ú 2, or on the interval 32, ∞).

Matched Problem 3 Using Theorem 1 and the general properties of continuity, 
determine where each function is continuous.

(A) f1x2 = x4 + 2x2 + 1 (B) f1x2 =
x2

1x + 121x - 42
(C) f1x2 = 1x - 4 (D) f1x2 = 32x3 + 1

EXAMPLE 3

Solving Inequalities Using Continuity Properties
One of the basic tools for analyzing graphs in calculus is a special line graph called 
a sign chart. We will make extensive use of this type of chart in later sections. In the 
discussion that follows, we use continuity properties to develop a simple and efficient 
procedure for constructing sign charts.

Suppose that a function f is continuous over the interval (1, 8) and f1x2 ∙ 0 for 
any x in (1, 8). Suppose also that f122 = 5, a positive number. Is it possible for f1x2 
to be negative for any x in the interval (1, 8)? The answer is “no.” If f172 were -3, 
for example, as shown in Figure 6, then how would it be possible to join the points 
(2, 5) and (7, -3) with the graph of a continuous function without crossing the x axis 
between 1 and 8 at least once? [Crossing the x axis would violate our assumption 

5
x

f (x)

5

25

0

(7, 23)

(2, 5)

Figure 6
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that f1x2 ∙ 0 for any x in (1, 8).] We conclude that f1x2 must be positive for all x 
in (1, 8). If f122 were negative, then, using the same type of reasoning, f1x2 would 
have to be negative over the entire interval (1, 8).

In general, if f is continuous and f1x2 3 0 on the interval (a, b), then f1x2 
cannot change sign on (a, b). This is the essence of Theorem 2.

THEOREM 2 Sign Properties on an Interval (a, b)
If f is continuous on (a, b) and f1x2 ∙ 0 for all x in (a, b), then either f1x2 7 0 for 
all x in (a, b) or f1x2 6 0 for all x in (a, b).

Theorem 2 provides the basis for an effective method of solving many types of 
inequalities. Example 4 illustrates the process.

Solving an Inequality Solve 
x + 1
x - 2

7 0.

SOLUTION We start by using the left side of the inequality to form the function f.

f1x2 =
x + 1
x - 2

The denominator is equal to 0 if x = 2, and the numerator is equal to 0 if x = -1. So 
the rational function f is discontinuous at x = 2, and f1x2 = 0 for x = -1 (a fraction 
is 0 when the numerator is 0 and the denominator is not 0). We plot x = 2 and x = -1, 
which we call partition numbers, on a real number line (Fig. 7). (Note that the dot at 2 
is open because the function is not defined at x = 2.) The partition numbers 2 and -1 
determine three open intervals: 1- ∞ , -12, 1-1, 22, and 12, ∞ 2. The function f is 
continuous and nonzero on each of these intervals. From Theorem 2, we know that f1x2 
does not change sign on any of these intervals. We can find the sign of f1x2 on each 
of the intervals by selecting a test number in each interval and evaluating f1x2 at that 
number. Since any number in each subinterval will do, we choose test numbers that are 
easy to evaluate: -2, 0, and 3. The table in the margin shows the results.

The sign of f1x2 at each test number is the same as the sign of f1x2 over the 
interval containing that test number. Using this information, we construct a sign 
chart for f1x2 as shown in Figure 8.

1 1 1 1 1   2 2 2 2 2 2    1 1 1 1 f (x)

(2, `)(2`, 21) (21, 2)

Negative PositivePositive
21 2

x

Figure 8

EXAMPLE 4

2122 20 1 3
x

Figure 7

Test Numbers
x f 1x 2

-2 1
4  1+2

0 -  12  1-2
3 4 1+2

From the sign chart, we can easily write the solution of the given nonlinear inequality:

f1x2 7 0  for  
x 6 -1 or x 7 2
1- ∞ , -12 ∪ 12, ∞ 2  

Inequality notation
  

Interval notation

Matched Problem 4   Solve 
x2 - 1
x - 3

6 0.

Most of the inequalities we encounter will involve strict inequalities 17 or 6 2.  
If it is necessary to solve inequalities of the form Ú  or … , we simply include the 
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endpoint x of any interval if f is defined at x and f1x2 satisfies the given inequality. 
For example, from the sign chart in Figure 8, the solution of the inequality

x + 1
x - 2

Ú 0 is 
x … -1 or x 7 2
1- ∞ , -14 ∪ (2, ∞ 2 

 Inequality notation
 

Interval notation

Example 4 illustrates a general procedure for constructing sign charts.

DEFINITION
A real number x is a partition number for a function f if f is discontinuous at x or 
f1x2 = 0.

Suppose that p1 and p2 are consecutive partition numbers for f ; that is, there are 
no partition numbers in the open interval (p1, p2). Then f is continuous on (p1, p2) 
[since there are no points of discontinuity in that interval], so f does not change sign 
on (p1, p2) [since f1x2 ∙ 0 for x in that interval]. In other words, partition num-
bers determine open intervals on which f does not change sign. By using a test 
number from each interval, we can construct a sign chart for f on the real number 
line. It is then easy to solve the inequality f1x2 6 0 or the inequality f1x2 7 0.

We summarize the procedure for constructing sign charts in the following box.

PROCEDURE Constructing Sign Charts
Given a function f,

Step 1 Find all partition numbers of f:

(A)  Find all numbers x such that f is discontinuous at x. (Rational functions 
are discontinuous at values of x that make a denominator 0.)

(B)  Find all numbers x such that f1x2 = 0. (For a rational function, this oc-
curs where the numerator is 0 and the denominator is not 0.)

Step 2 Plot the numbers found in step 1 on a real number line, dividing the number 
line into intervals.

Step 3 Select a test number in each open interval determined in step 2 and evaluate 
f1x2 at each test number to determine whether f1x2 is positive 1+ 2 or nega-
tive 1- 2 in each interval.

Step 4  Construct a sign chart, using the real number line in step 2. This will show 
the sign of f1x2 on each open interval.

There is an alternative to step 3 in the procedure for constructing sign charts 
that may save time if the function f1x2 is written in factored form. The key is to 
determine the sign of each factor in the numerator and denominator of f1x2. We 
will illustrate with Example 4. The partition numbers -1 and 2 divide the x axis into 
three open intervals. If x 7 2, then both the numerator and denominator are positive, 
so f1x2 7 0. If -1 6 x 6 2, then the numerator is positive but the denominator 
is negative, so f1x2 6 0. If x 6 -1, then both the numerator and denominator are 
negative, so f1x2 7 0. Of course both approaches, the test number approach and the 
sign of factors approach, give the same sign chart.

Positive Profit A bakery estimates its annual profits from the production and sale of 
x loaves of bread per year to be P(x) dollars, where P1x2 = 6x - 0.001x2 - 5000. 
For which values of x does the bakery make a profit selling bread?

SOLUTION We follow the procedure for constructing a sign chart for P(x). Since 
P(x) is a polynomial, P(x) is continuous everywhere. To find where P1x2 = 0, we 
first factor P(x).

P1x2 = 6x - 0.001x2 - 5000 = -0.0011x - 100021x - 50002

EXAMPLE 5

M02_BARN6152_14_GE_C02.indd   161 16/11/18   1:36 PM
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Since x - 1000 = 0 when x = 1000 and x - 5000 = 0 when x = 5000, these 
are our two partition numbers.

We next plot x = 1000 and x = 5000 on the real number line and test the 
points x = 0, x = 2000, and x = 10000 to get the sign chart in Figure 9.

The annual profit from the sale of bread is positive if 1000 6 x 6 5000. 
The bakery should make more than 1000 loaves but less than 5000 loaves of 
bread each year.

Matched Problem 5   The bakery estimates its annual profits from raisin bread 
to be P1x2 = -0.001x2 + 7x - 6000. For which values of x does the bakery 
make a profit selling raisin bread?

2 2 2 22 2 2 2 1 1 1 1 1 1P(x)

(5000, `)(2`, 1000) (1000, 5000)

Positive NegativeNegative

x
1000 5000

Figure 9
Test Numbers

x P(x)

0 -5000 1- 2
2000 3000 1+ 2

10000 -45000 1- 2

Exercises 2.3
Skills Warm-up Exercises
In Problems 1–8, use interval notation to specify the given interval. 
(If necessary, review Table 3 in Section 1.3).

1. The set of all real numbers from -3 to 5, including -3  
and 5

2. The set of all real numbers from -8 to -4, excluding -8 but 
including -4

3. 5x ∙ -10 6 x 6 1006 4. 5x ∙ 0.1 … x … 0.36
5. 5x ∙ x2 7 256 6. 5x ∙ x2 Ú 166
7. 5x ∙ x … -3 or x 7 46
8. 5x ∙ x 6  6 or x Ú 96

In Problems 9–14, sketch a possible graph of a function that satis-
fies the given conditions at x = 1 and discuss the continuity of f 
at x = 1.

9. f112 = 2 and lim
xS1

 f1x2 = 2

10. f112 = -2 and lim
xS1

 f1x2 = 2

11. f112 = 2 and lim
xS1

 f1x2 = -2

12. f112 = -2 and lim
xS1

 f1x2 = -2

13. f112 = -2, lim
xS1- f1x2 = 2, and lim

xS1+ f1x2 = -2

14. f112 = 2, lim
xS1- f1x2 = 2, and lim

xS1+ f1x2 = -2

Problems 15–22 refer to the function f shown in the figure. Use 
the graph to estimate the indicated function values and limits.

f (x)

x
5

5

25

22

Figure for 15–22

W

A

15. f10.92 16. f1-2.12
17. f11.12 18. f1-1.92
19. (A) lim

xS1- f1x2 (B) lim
xS1+ f1x2

(C) lim
xS1

 f1x2 (D) f112
(E) Is f continuous at x = 1? Explain.

(A) lim
xS2- f1x2 (B) lim

xS2+ f1x2
(C) lim

xS2
 f1x2 (D) f122

(E) Is f continuous at x = 2? Explain.

20. 

(B) lim
xS -2+ f1x2

(C) lim
xS -2

 f1x2
(A) lim

xS -2- f1x221. 

(D) f1-22
(E) Is f continuous at x = -2? Explain.

(B) lim
xS -1+ f1x2

(C) lim
xS -1

 f1x2
(A) lim

xS -1- f1x222. 

(D) f1-12
(E) Is f continuous at x = -1? Explain.

Problems 23–30 refer to the function g shown in the figure. Use the 
graph to estimate the indicated function values and limits.

25 5

25

5

x

g(x)

Figure for 23–30

23. g1-3.12 24. g1-2.12
25. g1-2.92 26. g1-1.92
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Use Theorem 1 to determine where each function in Problems 
31–40 is continuous.

31. f1x2 = 3x - 4 32. h1x2 = 4 - 2x

33. g1x2 =
3x

x + 2
34. k1x2 =

7x
x - 8

35. m1x2 =
x + 1

x2 + 3x - 4
36. n1x2 =

x - 2

x2 - 2x - 3

37. F1x2 =
2x

x2 + 9
38. G1x2 =

1 - x2

x2 + 1

39. M1x2 =
x - 1

4x2 - 9
40. N1x2 =

x2 + 4

4 - 25x2

 In Problems 41–46, find all partition numbers of the function.

41. f1x2 =
3x + 8
x - 4

42. f1x2 =
2x + 7
5x - 1

43. f1x2 =
1 - x2

1 + x2 44. f1x2 =
x2 + 4

x2 - 9

45. f1x2 =
x2 - x - 56

x2 - 4x
46. f1x2 =

x3 + x

x2 - x - 42

In Problems 47–54, use a sign chart to solve each inequality. 
Express answers in inequality and interval notation.

47. x2 - x - 12 6 0 48. x2 - 2x - 8 6 0

49. x2 + 21 7 10x 50. x2 + 7x 7 -10

51. x3 6 4x 52. x4 - 36x2 7 0

53. 
x2 + 5x
x - 3

7 0 54. 
x - 4

x2 + 2x
6 0

B

55. Use the graph of f to determine where

(A) f1x2 7 0 (B) f1x2 6 0

Express answers in interval notation.

25 5

2150

x

f (x)

150

56. Use the graph of g to determine where

(A) g1x2 7 0 (B) g1x2 6 0

Express answers in interval notation.

25 5

2150

x

g(x)

150

In Problems 57–60, use a graphing calculator to approximate the 
partition numbers of each function f(x) to four decimal places. 
Then solve the following inequalities:

(B) lim
xS -4+ g1x2

(C) lim
xS -4

 g1x2
(A) lim

xS -4- g1x227. 

(D) g1-42
(E) Is g continuous at x = -4? Explain.

(B) lim
xS0+ g1x2

(C) lim
xS0

 g1x2
(A) lim

xS0- g1x228. 

(D) g102
(E) Is g continuous at x = 0? Explain.

(B) lim
xS1+ g1x2

(C) lim
xS1

 g1x2
(A) lim

xS1- g1x229. 

(D) g(1)

(E) Is g continuous at x = 1? Explain.

(B) lim
xS4+ g1x2

(C) lim
xS4

 g1x2
(A) lim

xS -4- g1x230. 

(D) g(4)

(E) Is g continuous at x = 4? Explain.

(A) f1x2 7 0 (B) f1x2 6 0

Express answers in interval notation.

57. f1x2 = x4 - 6x2 + 3x + 5

58. f1x2 = x4 - 4x2 - 2x + 2

59. f1x2 =
3 + 6x - x3

x2 - 1
60. f1x2 =

x3 - 5x + 1

x2 - 1

Use Theorem 1 to determine where each function in Problems 
61–68 is continuous. Express the answer in interval notation.

61. 1x - 6 62. 17 - x

63. 23 5 - x 64. 23 x - 8

65. 2x2 - 9 66. 24 - x2

67. 2x2 + 1 68. 23 x4 + 5

In Problems 69–74, graph f, locate all points of discontinuity, and 
discuss the behavior of f at these points.

69. f1x2 = e1 + x if x 6 1
5 - x if x Ú 1

70. f1x2 = e x2 if x … 1
2x if x 7 1
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164 CHAPTER 2 Limits and the Derivative 

71. f1x2 = e1 + x if x … 2
5 - x if x 7 2

72. f1x2 = e x2 if x … 2
2x if x 7 2

73. f1x2 = •
-x if x 6 0

1 if x = 0
x if x 7 0

74. f1x2 = •
1 if x 6 0
0 if x = 0
1 + x if x 7 0

Problems 75 and 76 refer to the greatest integer function, which 
is denoted by Œx œ  and is defined as

Œx œ = greatest integer … x

For example,

 Œ -3.6 œ = greatest integer … -3.6 = -4

 Œ2 œ = greatest integer … 2 = 2

 Œ2.5 œ = greatest integer … 2.5 = 2

The graph of f1x2 = Œx œ  is shown. There, we can see that

 Œx œ = -2  for  -  2 … x 6 -1

 Œx œ = -1  for -  1 … x 6 0

 Œx œ = 0  for  0 … x 6 1

 Œx œ = 1  for  1 … x 6 2

 Œx œ = 2  for  2 … x 6 3

and so on.

x

f (x)

25

525

5 f (x) 5 9x0

Figure for 75 and 76

75. (A) Is f continuous from the right at x = 0?

(B) Is f continuous from the left at x = 0?

(C) Is f continuous on the open interval (0, 1)?

(D) Is f continuous on the closed interval [0, 1]?

(E) Is f continuous on the half-closed interval [0, 1)?

76. (A) Is f continuous from the right at x = 2?

(B) Is f continuous from the left at x = 2?

(C) Is f continuous on the open interval (1, 2)?

(D) Is f continuous on the closed interval [1, 2]?

(E) Is f continuous on the half-closed interval [1, 2)?

C

In Problems 77–82, discuss the validity of each statement.  
If the statement is always true, explain why. If not, give a  
counterexample.

77. A polynomial function is continuous for all real numbers.

78. A rational function is continuous for all but finitely many real 
numbers.

79. If f is a function that is continuous at x = 0 and x = 2, then f 
is continuous at x = 1.

80. If f is a function that is continuous on the open interval (0, 2), 
then f is continuous at x = 1.

81. If f is a function that has no partition numbers in the interval 
(a, b), then f is continuous on (a, b).

82. The greatest integer function (see Problem 75) is a rational 
function.

In Problems 83–86, sketch a possible graph of a function f that is 
continuous for all real numbers and satisfies the given conditions. 
Find the x intercepts of f.

83. f1x2 6 0 on 1- ∞ , -52 and 12, ∞ 2; f1x2 7 0 on 1-5, 22
84. f1x2 7 0 on 1- ∞ , -42 and 13, ∞ 2; f1x2 6 0 on 1-4, 32
85. f1x2 6 0 on 1- ∞ , -62 and 1-1, 42; f1x2 7 0 on 1-6, -12 

and 14, ∞ 2
86. f1x2 7 0 on 1- ∞ , -32 and (2, 7); f1x2 6 0 on 1-3, 22 

and 17, ∞ 2
87. The function f1x2 = 2> 11 - x2 satisfies f102 = 2 

and f122 = -2. Is f equal to 0 anywhere on the interval 
1-1, 32? Does this contradict Theorem 2? Explain.

88. The function f1x2 = 8> 1x - 52 satisfies f112 = -2 and 
f172 = 4. Is f equal to 0 anywhere on the interval (-2, 8)? 
Does this contradict Theorem 2? Explain.

Applications
89. Postal rates. First-class postage in 2016 was $0.47 for 

the first ounce (or any fraction thereof) and $0.21 for each 
 additional ounce (or fraction thereof) up to a maximum 
weight of 3.5 ounces.

(A) Write a piecewise definition of the first-class postage 
P(x) for a letter weighing x ounces.

(B) Graph P(x) for 0 6 x … 3.5.

(C) Is P(x) continuous at x = 2.5? At x = 3? Explain.

90. Bike Rental. A bike rental service charges $15 for  
the first hour (or any fraction thereof) and $10 for each  
additional hour (or fraction thereof) up to a maximum of  
8 hours.

(A) Write a piecewise definition of the charge R(x) for a 
rental lasting x hours.

(B) Graph R(x) for 0 6 x … 8.

(C) Is R(x) continuous at x = 3.5? At x = 4? Explain.
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91. Postal rates. Discuss the differences between the function 
Q1x2 = 0.47 + 0.21 Œx œ  and the function P(x) defined in 
Problem 89. (The symbol Œx œ  is defined in problems  
75 and 76.)

92. Bike Rental. Discuss the differences between the function 
S1x2 = 15 + 10 Œx œ  and R(x) defined in Problem 90. (The 
symbol Œx œ  is defined in problems 75 and 76.)

93. Natural-gas rates. Table 1 shows the rates for natural gas 
charged by Origin Energy of the Australian Gas Networks for 
the Adelaide distribution zone. The daily supply charge is a fixed 
daily charge, independent of the amount of gas used per day.

Table 1 Adelaide Distribution Zone
Daily supply charge 71 cents
First 50 MJ 3.9 cents per MJ
Over 50 MJ 1.9 cents per MJ

(A) Write a piecewise definition of the daily charge S(x) for 
a customer who uses x MJ (megajoules).

(B) Graph S(x).

(C)  Is S(x) continuous at x = 50? Explain.

94. Natural-gas rates. Table 2 shows the rates for natural gas 
charged by Origin Energy of the Australian Gas Networks for 
the Brisbane distribution zone. The daily supply charge is a fixed 
daily charge, independent of the amount of gas used per day.

Table 2 Brisbane Distribution Zone
Daily supply charge 70 cents
First 8 MJ 5.5 cents per MJ
Next 19 MJ 3.9 cents per MJ
Over 27 MJ 2.8 cents per MJ

(A) Write a piecewise definition of the monthly charge S(x) 
for a customer who uses x MJ.

(B) Graph S(x).

(C) Is S(x) continuous at x = 8? At x = 27? Explain.

95. Income. A personal-computer salesperson receives a base 
salary of $1,000 per month and a commission of 5% of all 
sales over $10,000 during the month. If the monthly sales are 
$20,000 or more, then the salesperson is given an additional 
$500 bonus. Let E(s) represent the person’s earnings per 
month as a function of the monthly sales s.

(A) Graph E(s) for 0 … s … 30,000.

(B) Find lim
sS10,000

 E1s2 and E(10,000).

(C) Find lim
sS20,000

 E1s2 and E(20,000).

(D) Is E continuous at s = 10,000? At s = 20,000?

96. Equipment rental. An office equipment rental and  leasing 
company rents copiers for $10 per day (and any fraction 
thereof) or for $50 per 7-day week. Let C1x2 be the cost of 
renting a copier for x days.

(A) Graph C1x2 for 0 … x … 10.

(B) Find lim
xS4.5

 C1x2 and C14.52.

(C) Find lim
xS8

 C1x2 and C182.

(D) Is C continuous at x = 4.5? At x = 8?

97. Animal supply. A medical laboratory raises its own rabbits. 
The number of rabbits N1t2 available at any time t depends 
on the number of births and deaths. When a birth or death 
occurs, the function N generally has a discontinuity, as shown 
in the figure.

t
t1 t2 t3 t4 t5 t6 t7

N(t)

0

5

10

Time

N
um

be
r 

of
 r

ab
bi

ts

(A) Where is the function N discontinuous?

(B) lim
tS t5

 N1t2 = ?; N1t52 = ?

(C) lim
tS t3

 N1t2 = ?; N1t32 = ?

98. Learning. The graph shown represents the history of a 
person learning the material on limits and continuity in this 
book. At time t2, the student’s mind goes blank during a quiz. 
At time t4, the instructor explains a concept particularly well, 
then suddenly a big jump in understanding takes place.

(A) Where is the function p discontinuous?

(B) lim
tS t1

 p1t2 = ?; p1t12 = ?

(C) lim
tS t2

 p1t2 = ?; p1t22 = ?

(D) lim
tS t4

 p1t2 = ?; p1t42 = ?

t
t1 t2 t3 t4

p(t)

0

100

50

Time

Pe
rc

en
ta

ge
 o

f 
m

as
te

ry

*A British thermal unit (Btu) is the amount of heat required to raise the 
temperature of 1 pound of water 1 degree Fahrenheit, and a therm is 
100,000 Btu.

Answers to Matched Problems

1. f is not continuous at x = -3, -1, 2, and 4.

 x = -3: lim
xS -3

 f1x2 = 3,  but f1-32 does not exist

 x = -1: f1-12 = 1,  but lim
xS -1

 f1x2 does not exist

 x = 2: lim
xS2

  f1x2 = 5,  but f122 = 3

 x = 4: lim
xS4

 f1x2 does not exist, and f142 does not exist
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(C) The polynomial function x - 4 is continuous for all x 
and nonnegative for x Ú 4. Since n = 2 is even, f is 
continuous for x Ú 4, or on the interval 34, ∞ ).

(D) The polynomial function x3 + 1 is continuous for all x. 
Since n = 3 is odd, f is continuous for all x.

4. - ∞ 6 x 6 -1 or 1 6 x 6 3; 1- ∞ , -12 ∪ 11, 32
5. 1000 6 x 6 6000

2. (A) f is continuous at x = 1, since lim
xS1

 f1x2 = 2 = f112.

(B) g is not continuous at x = 1, since g(1) is not defined.

(C) h is not continuous at x = 2 for two reasons: h(2) does 
not exist and lim

xS2
 h1x2 does not exist.

h is continuous at x = 0, since lim
xS0

 h1x2 = -1 = h102.

3. (A) Since f is a polynomial function, f is continuous for all x.

(B) Since f is a rational function, f is continuous for all x 
except -1 and 4 (values that make the denominator 0).

We will now make use of the limit concepts developed in Sections 2.1, 2.2, and 2.3 to 
solve the two important problems illustrated in Figure 1. The solution of each of these 
apparently unrelated problems involves a common concept called the derivative.

x

y

Tangent line

(A) Find the equation of the
tangent line at (x1, y1)
given y 5 f (x)

(x1, y1)

y 5 f (x)

  

(B) Find the instantaneous
velocity of a falling
object

Velocity
here

Figure 1 Two basic problems of calculus

Rate of Change
If you pass mile marker 120 on the interstate highway at 9 a.m. and mile marker 
250 at 11 a.m., then the average rate of change of distance with respect to time, also 
known as average velocity, is

250 - 120
11 - 9

=
130

2
= 65 miles per hour

Of course your speedometer reading, that is, the instantaneous rate of change, or 
 instantaneous velocity, might well have been 75 mph at some moment between 
9 a.m. and 11 a.m.

We will define the concepts of average rate of change and instantaneous rate 
of change more generally, and will apply them in situations that are unrelated to 
velocity.

2.4 The Derivative
■■ Rate of Change
■■ Slope of the Tangent Line
■■ The Derivative
■■ Nonexistence of the Derivative

DEFINITION Average Rate of Change
For y = f1x2, the average rate of change from x ∙ a to x ∙ a ∙ h is

 
f1a + h2 - f1a2
1a + h2 - a

=
f1a + h2 - f1a2

h
  h ∙ 0 (1)
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Note that the numerator and denominator in (1) are differences, so (1) is a differ-
ence quotient (see Section 1.1).

Velocity A small steel ball dropped from a tower will fall a distance of y feet in x 
seconds, as given approximately by the formula

y = f1x2 = 16x2

Figure 3 shows the position of the ball on a coordinate line (positive direction 
down) at the end of 0, 1, 2, and 3 seconds.

y

y

Position at x 5 3 seconds [y 5 16(32) 5 144 feet]

Position at x 5 2 seconds [y 5 16(22) 5 64 feet]

Position at x 5 1 second [y 5 16(12) 5 16 feet]
Position at start (x 5 0 seconds)0

16

64

144

Ground

Figure 3

EXAMPLE 2

R(x) 5 20x 2 0.02x2

x
500 1,0000

1,000

2,000

3,000

4,000

5,000

R(x)

3,000

300

(400, 4,800)

(100, 1,800)

Figure 2  

Revenue Analysis The revenue (in dollars) from the sale of x plastic planter boxes 
is given by

R1x2 = 20x - 0.02x2  0 … x … 1,000

and is graphed in Figure 2.

(A) What is the change in revenue if production is changed from 100 planters to 
400 planters?

(B) What is the average rate of change in revenue for this change in production?

SOLUTION 
(A) The change in revenue is given by

 R14002 - R11002 = 2014002 - 0.0214002 2 - 32011002 - 0.0211002 24
 = 4,800 - 1,800 = $3,000

Increasing production from 100 planters to 400 planters will increase revenue 
by $3,000.

(B) To find the average rate of change in revenue, we divide the change in revenue 
by the change in production:

R14002 - R11002
400 - 100

=
3,000
300

= $10

The average rate of change in revenue is $10 per planter when production is 
increased from 100 to 400 planters.

Matched Problem 1   Refer to the revenue function in Example 1.

(A) What is the change in revenue if production is changed from 600 planters to 
800 planters?

(B) What is the average rate of change in revenue for this change in production?

EXAMPLE 1
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(A) Find the average velocity from x = 2 seconds to x = 3 seconds.

(B) Find and simplify the average velocity from x = 2 seconds to x = 2 + h 
 seconds, h ∙ 0.

(C) Find the limit of the expression from part (B) as h S 0 if that limit exists.

(D) Discuss possible interpretations of the limit from part (C).

SOLUTION 
(A) Recall the formula d = rt, which can be written in the form

r =
d
t

=
Distance covered

Elapsed time
= Average velocity

For example, if a person drives from San Francisco to Los Angeles (a distance 
of about 420 miles) in 7 hours, then the average velocity is

r =
d
t

=
420

7
= 60 miles per hour

Sometimes the person will be traveling faster and sometimes slower, but the 
average velocity is 60 miles per hour. In our present problem, the average  
velocity of the steel ball from x = 2 seconds to x = 3 seconds is

 Average velocity =
Distance covered

Elapsed time

 =
f132 - f122

3 - 2

 =
16132 2 - 16122 2

1
= 80 feet per second

We see that if y = f1x2 is the position of the falling ball, then the average 
velocity is simply the average rate of change of f(x) with respect to time x.

(B) Proceeding as in part (A), we have

 Average velocity =
Distance covered

Elapsed time

 =
f12 + h2 - f122

h
 Difference quotient

 =
1612 + h2 2 - 16122 2

h
  Simplify this 0>0  

indeterminate form.

 =
64 + 64h + 16h2 - 64

h

 =
h164 + 16h2

h
= 64 + 16h  h ∙ 0

Notice that if h = 1, the average velocity is 80 feet per second, which is the 
result in part (A).

(C) The limit of the average velocity expression from part (B) as h S 0 is

 lim  
hS0

f12 + h2 - f122
h

= lim
hS0

164 + 16h2
 = 64 feet per second

(D) The average velocity over smaller and smaller time intervals approaches 64 feet 
per second. This limit can be interpreted as the velocity of the ball at the instant 
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The ideas in Example 2 can be applied to the average rate of change of any 
function.

DEFINITION Instantaneous Rate of Change
For y = f1x2, the instantaneous rate of change at x ∙ a is

 lim
hS0

 
f1a + h2 - f1a2

h
 (2)

if the limit exists.

The adjective instantaneous is often omitted with the understanding that the phrase 
rate of change always refers to the instantaneous rate of change and not the average 
rate of change. Similarly, velocity always refers to the instantaneous rate of change 
of distance with respect to time.

Slope of the Tangent Line
So far, our interpretations of the difference quotient have been numerical in nature. 
Now we want to consider a geometric interpretation.

In geometry, a line that intersects a circle in two points is called a secant line, and 
a line that intersects a circle in exactly one point is called a tangent line (Fig. 4). If the 
point Q in Figure 4 is moved closer and closer to the point P, then the angle between 
the secant line through P and Q and the tangent line at P gets smaller and smaller. We 
will generalize the geometric concepts of secant line and tangent line of a circle and 
will use them to study graphs of functions.

P

Q

Tangent Line

Secant Line

Figure 4 Secant line and tangent line of a circle

A line through two points on the graph of a function is called a secant line. If 
1a, f1a22  and 1a + h, f1a + h22 are two points on the graph of y = f1x2, then we 

Reminder:
The slope of the line through the 
points (x1, y1) and (x2, y2) is the dif-
ference of the y coordinates divided 
by the difference of the x coordinates.

m =
y2 - y1

x2 - x1

that the ball has been falling for exactly 2 seconds. Therefore, 64 feet per sec-
ond is referred to as the instantaneous velocity at x = 2 seconds, and we have 
solved one of the basic problems of calculus (see Fig. 1B).

Matched Problem 2   For the falling steel ball in Example 2, find

(A) The average velocity from x = 1 second to x = 2 seconds

(B) The average velocity (in simplified form) from x = 1 second to x = 1 + h 
seconds, h ∙ 0

(C) The instantaneous velocity at x = 1 second
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Slope of a Secant Line Given f1x2 = x2,

(A) Find the slope of the secant line for a = 1 and h = 2 and 1, respectively. Graph 
y = f1x2 and the two secant lines.

(B) Find and simplify the slope of the secant line for a = 1 and h any nonzero number.

(C) Find the limit of the expression in part (B).

(D) Discuss possible interpretations of the limit in part (C).

SOLUTION 
(A) For a = 1 and h = 2, the secant line goes through 11, f1122 = 11, 12 and 

13, f1322 = 13, 92, and its slope is

f11 + 22 - f112
2

=
32 - 12

2
= 4

For a = 1 and h = 1, the secant line goes through 11, f1122 = 11, 12 and 
12, f1222 = 12, 42, and its slope is

f11 + 12 - f112
1

=
22 - 12

1
= 3

The graphs of y = f1x2 and the two secant lines are shown in Figure 6.

(B) For a = 1 and h any nonzero number, the secant line goes through 
11, f1122 = 11, 12 and 11 + h, f11 + h22 = 11 + h, 11 + h2 22, and its 
slope is

  
f11 + h2 - f112

h
=

11 + h2 2 - 12

h
   Square the binomial.

 =
1 + 2h + h2 - 1

h
  Combine like terms  

and factor the numerator.

 =
h12 + h2

h
 Cancel.

 = 2 + h  h ∙ 0

EXAMPLE 3

x

f (x)

21 1

5

10

222324

f (x) 5 x2

Secant line:
slope 5 4

Secant line:
slope 5 3

2 3 4 5

Figure 6 Secant lines

can use the slope formula from Section 1.3 to find the slope of the secant line through 
these points (Fig. 5).

 Slope of secant line =
y2 - y1

x2 - x1
=

f1a + h2 - f1a2
1a + h2 - a

 =
f1a + h2 - f1a2

h
 Difference quotient

The difference quotient can be interpreted as both the average rate of change and 
the slope of the secant line.

f (a 1 h) 2 f (a)

a 1 ha

(a 1 h, f (a 1 h))

(a, f (a))

x

y 5 f (x) 
f (x) 

Secant line

h

Figure 5 Secant line
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x

f (x)

21 1

5

10

222324

f (x) 5 x2

Secant line:
slope 5 4

Secant line:
slope 5 3

2 3 4 5

Tangent line:
slope 5 2

Figure 7 Tangent line

(C) The limit of the secant line slope from part (B) is

 lim
hS0

 
f11 + h2 - f112

h
= lim

hS0
12 + h2

 = 2

(D) In part (C), we saw that the limit of the slopes of the secant lines through the 
point (1, f(1)) is 2. If we graph the line through (1, f(1)) with slope 2 (Fig. 7), 
then this line is the limit of the secant lines. The slope obtained from the limit of 
slopes of secant lines is called the slope of the graph at x = 1. The line through 
the point (1, f(1)) with this slope is called the tangent line. We have solved an-
other basic problem of calculus (see Fig. 1A on page 166).

Matched Problem 3   Given f1x2 = x2,

(A) Find the slope of the secant line for a = 2 and h = 2 and 1, respectively.

(B) Find and simplify the slope of the secant line for a = 2 and h any nonzero 
number.

(C) Find the limit of the expression in part (B).

(D) Find the slope of the graph and the slope of the tangent line at a = 2.

The ideas introduced in the preceding example are summarized next:

DEFINITION Slope of a Graph and Tangent Line
Given y = f1x2, the slope of the graph at the point 1a, f1a22 is given by

 lim
hS0

 
f1a + h2 - f1a2

h
 (3)

provided the limit exists. In this case, the tangent line to the graph is the line  
through 1a, f1a22 with slope given by (3).

If the function f is continuous at a, then

lim
hS0

 f1a + h2 = f1a2
and limit (3) will be a 0>0 indeterminate form. As we saw in Examples 2 and 3, 
evaluating this type of limit typically involves algebraic simplification.

CONCEPTUAL  INSIGHT

The Derivative
We have seen that the limit of a difference quotient can be interpreted as a rate of 
change, as a velocity, or as the slope of a tangent line. In addition, this limit provides 
solutions to the two basic problems stated at the beginning of this section. We are 
now ready to introduce some terms that refer to that limit. To follow customary prac-
tice, we use x in place of a and think of the difference quotient

f1x + h2 - f1x2
h

as a function of h, with x held fixed as h tends to 0. This allows us to find a single 
general limit instead of finding many individual limits.
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DEFINITION The Derivative
For y = f1x2, we define the derivative of f at x, denoted f ∙ 1x 2 , by

f =1x2 = lim
hS0

 
f1x + h2 - f1x2

h
 if the limit exists.

If f =1x2 exists for each x in the open interval (a, b), then f is said to be differen-
tiable over (a, b).

SUMMARY Interpretations of the Derivative
The derivative of a function f is a new function f =. The domain of f = is a subset of 
the domain of f. The derivative has various applications and interpretations, includ-
ing the following:

1. Slope of the tangent line. For each x in the domain of f =, f =1x2 is the slope of 
the line tangent to the graph of f at the point 1x, f1x22.

2. Instantaneous rate of change. For each x in the domain of f =, f =1x2 is the 
 instantaneous rate of change of y = f1x2 with respect to x.

3. Velocity. If f1x2 is the position of a moving object at time x, then v = f =1x2 is 
the velocity of the object at that time.

Example 4 illustrates the four-step process that we use to find derivatives in this 
section. The four-step process makes it easier to compute the limit in the definition of 
the derivative by breaking the process into smaller steps. In subsequent sections, we 
develop rules for finding derivatives that do not involve limits. However, it is impor-
tant that you master the limit process in order to fully comprehend and appreciate the 
various applications we will consider.

Finding a Derivative Find f =1x2, the derivative of f at x, for f1x2 = 4x - x2.

SOLUTION To find f =1x2, we use a four-step process.

Step 1 Find f1x + h2.

 f1x + h2 = 41x + h2 - 1x + h2 2

 = 4x + 4h - x2 - 2xh - h2

Step 2 Find f1x + h2 - f1x2.

 f1x + h2 - f1x2 = 4x + 4h - x2 - 2xh - h2 - 14x - x22
 = 4h - 2xh - h2

Step 3 Find 
f1x + h2 - f1x2

h
.

 
f1x + h2 - f1x2

h
=

4h - 2xh - h2

h
=

h14 - 2x - h2
h

 = 4 - 2x - h, h ∙ 0

EXAMPLE 4

The process of finding the derivative of a function is called differentiation. The 
derivative of a function is obtained by differentiating the function.
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The four-step process used in Example 4 is summarized as follows for easy reference:

PROCEDURE The four-step process for finding the derivative of a function f :

Step 1 Find f1x + h2.

Step 2 Find f1x + h2 - f1x2.

Step 3 Find 
f1x + h2 - f1x2

h
.

Step 4 Find lim
hS0

 
f1x + h2 - f1x2

h
.

Step 4 Find  f =1x2 = lim
hS0

 
f1x + h2 - f1x2

h
.

 f =1x2 = lim
hS0

 
f1x + h2 - f1x2

h
= lim

hS0
14 - 2x - h2 = 4 - 2x

So if f1x2 = 4x - x2, then f =1x2 = 4 - 2x. The function f = is a new function 
derived from the function f.

Matched Problem 4   Find f =1x2, the derivative of f at x, for f1x2 = 8x - 2x2.

Finding Tangent Line Slopes In Example 4, we started with the function 
f1x2 = 4x - x2 and found the derivative of f at x to be f =1x2 = 4 - 2x. So the 
slope of a line tangent to the graph of f at any point (x, f(x)) on the graph is

m = f =1x2 = 4 - 2x

(A) Find the slope of the graph of f at x = 0, x = 2, and x = 3.

(B) Graph y = f1x2 = 4x - x2 and use the slopes found in part (A) to make a 
rough sketch of the lines tangent to the graph at x = 0, x = 2, and x = 3.

SOLUTION
(A) Using f =1x2 = 4 - 2x, we have

 f =102 = 4 - 2102 = 4   Slope at x = 0

 f =122 = 4 - 2122 = 0   Slope at x = 2

 f =132 = 4 - 2132 = -2 Slope at x = 3

(B) 
y

f (x) 5 4x 2 x2

x
523

5

Slope 5 0

Slope 5 4

Slope 5 22

(2, 4)

(3, 3)

(0, 0)

EXAMPLE 5
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Matched Problem 5 In Matched Problem 4, we started with the function 

f1x2 = 8x - 2x2. Using the derivative found there,

(A) Find the slope of the graph of f at x = 1, x = 2, and x = 4.

(B) Graph y = f1x2 = 8x - 2x2, and use the slopes from part (A) to make a rough 
sketch of the lines tangent to the graph at x = 1, x = 2, and x = 4.

In Example 4, we found that the derivative of f1x2 = 4x - x2 is f =1x2 = 4 - 2x. 
In Example 5, we graphed f(x) and several tangent lines.

(A) Graph f and f = on the same set of axes.

(B) The graph of f = is a straight line. Is it a tangent line for the graph of f ? Explain.

(C) Find the x intercept for the graph of f =. What is the slope of the line tangent to 
the graph of f for this value of x? Write a verbal description of the relationship 
between the slopes of the tangent lines of a function and the x intercepts of the 
derivative of the function.

Explore and Discuss 1

Finding a Derivative Find f =1x2, the derivative of f at x, for f1x2 =
1
x

.

SOLUTION
Step 1 Find f1x + h2.

f1x + h2 =
1

x + h

Step 2 Find f1x + h2 - f1x2.

 f1x + h2 - f1x2 =
1

x + h
-  

1
x
    Add fractions. (Section A.4)

 =
x - 1x + h2

x1x + h2     Simplify.

 =
-h

x1x + h2

Step 3 Find 
f1x + h2 - f1x2

h

 
f1x + h2 - f1x2

h
=

-h
x1x + h2

h
 Simplify.

 =
-1

x1x + h2 h ∙ 0

Step 4 Find lim
hS0

f1x + h2 - f1x2
h

.

 lim
hS0

f1x + h2 - f1x2
h

= lim
hS0

-1
x1x + h2

 =
-1

x2   x ∙ 0

EXAMPLE 6
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So the derivative of f1x2 =
1
x

 is f =1x2 =
-1

x2 , a new function. The domain of f 

is the set of all nonzero real numbers. The domain of f = is also the set of all nonzero 
real numbers.

Matched Problem 6 Find f =1x2 for f1x2 =
1

x + 2
.

Finding a Derivative Find f =1x2, the derivative of f at x, for f1x2 = 1x + 2.

SOLUTION We use the four-step process to find f =1x2.

Step 1 Find f1x + h2.

f1x + h2 = 1x + h + 2

Step 2 Find f1x + h2 - f1x2.

  f1x + h2 - f1x2 = 1x + h + 2 - 11x + 22 Combine like terms.

 = 1x + h - 1x

Step 3 Find 
f1x + h2 - f1x2

h
.

  
f1x + h2 - f1x2

h
=

1x + h - 1x
h

 =
1x + h - 1x

h
 # 1x + h + 1x1x + h + 1x

 =
x + h - x

h11x + h + 1x2

 =
h

h11x + h + 1x2

 =
11x + h + 1x

  h ∙ 0

EXAMPLE 7

Step 4 Find f =1x2 = lim
hS0

 
f1x + h2 - f1x2

h
.

 lim
hS0

 
f1x + h2 - f1x2

h
= lim

hS0
 

11x + h + 1x

 =
11x + 1x

=
1

21x
  x 7 0

So the derivative of f1x2 = 1x + 2 is f =1x2 = 1> 121x2, a new function. 
The domain of f is 30, ∞). Since f =102 is not defined, the domain of f = is 10, ∞2, a 
subset of the domain of f.

Matched Problem 7 Find f =1x2 for f1x2 = 1x + 4.

Sales Analysis A company’s total sales (in millions of dollars) t months from now 
are given by S1t2 = 1t + 2. Find and interpret S(25) and S′(25). Use these results 
to estimate the total sales after 26 months and after 27 months.

EXAMPLE 8

We rationalize  
the numerator  
(Appendix A,  
Section A.6) to 
change the  
form of this  
fraction.
Combine like 
terms.

Cancel.
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SOLUTION The total sales function S has the same form as the function f in 
 Example 7. Only the letters used to represent the function and the independent 
variable have been changed. It follows that S′ and f = also have the same form:

 S1t2 = 1t + 2   f1x2 = 1x + 2

 S′1t2 =
1

21t
   f ′1x2 =

1

21x

Evaluating S and S′ at t = 25, we have

S1252 = 125 + 2 = 7  S′1252 =
1

2125
= 0.1

So 25 months from now, the total sales will be $7 million and will be increasing at the 
rate of $0.1 million ($100,000) per month. If this instantaneous rate of change of sales 
remained constant, the sales would grow to $7.1 million after 26 months, $7.2 million 
after 27 months, and so on. Even though S′1t2 is not a constant function in this case, 
these values provide useful estimates of the total sales.

Matched Problem 8 A company’s total sales (in millions of dollars) t months 
from now are given by S1t2 = 1t + 4. Find and interpret S(12) and S′(12).  
Use these results to estimate the total sales after 13 months and after 14 months. 
(Use the derivative found in Matched Problem 7.)

In Example 8, we can compare the estimates of total sales obtained by using the 
derivative with the corresponding exact values of S(t):

Exact values Estimated values

 S1262 = 126 + 2 = 7.099 c ≈ 7.1

 S1272 = 127 + 2 = 7.196 c ≈ 7.2

For this function, the estimated values provide very good approximations to the exact 
values of S(t). For other functions, the approximation might not be as accurate.

Using the instantaneous rate of change of a function at a point to estimate values 
of the function at nearby points is an important application of the derivative.

Nonexistence of the Derivative
The existence of a derivative at x = a depends on the existence of a limit at x = a, 
that is, on the existence of

 f ′1a2 = lim
hS0

f1a + h2 - f1a2
h

 (4)

If the limit does not exist at x = a, we say that the function f is nondifferentiable at 
x ∙ a, or f ∙ 1a 2  does not exist.

Let f1x2 = 0 x - 1 0 .
(A) Graph f.

(B) Complete the following table:

h -0.1 -0.01 -0.001 S 0 d 0.001 0.01 0.1

f 11 ∙ h 2 ∙ f 11 2
h

? ? ? S ? d ? ? ?

Explore and Discuss 2
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(C) Find the following limit if it exists:

lim
hS0

 
f11 + h2 - f112

h

(D) Use the results of parts (A)–(C) to discuss the existence of f′112.

(E) Repeat parts (A)–(D) for 23 x - 1.

How can we recognize the points on the graph of f where f =1a2 does not exist? 
It is impossible to describe all the ways that the limit of a difference quotient can fail 
to  exist. However, we can illustrate some common situations where f =1a2 fails to 
 exist (see Fig. 8):

x

f (x)

(A) Not continuous at
x 5 a

a

Figure 8 The function f is nondifferentiable at x ∙ a.

a
x

f (x)

(B) Graph has sharp
corner at x 5 a  

(C) Vertical tangent
at x 5 a

a
x

f (x)

 
(D) Vertical tangent

at x 5 a

a
x

f (x)

 
(E) Vertical asymptote

at x 5 a

a
x

f (x)

1. If the graph of f has a hole or a break at x = a, then f =1a2 does not exist (Fig. 8A 
and Fig. 8E).

2. If the graph of f has a sharp corner at x = a, then f =1a2 does not exist, and the 
graph has no tangent line at x = a (Fig. 8B and Fig. 8D). (In Fig. 8B, the left- and 
right-hand derivatives exist but are not equal.)

3. If the graph of f has a vertical tangent line at x = a, then f =1a2 does not exist 
(Fig. 8C and Fig. 8D).

Exercises 2.4
Skills Warm-up Exercises
In Problems 1–4, find the slope of the line through the given 
points. Write the slope as a reduced fraction, and also give its 
decimal form. (If necessary, review Section 1.3.)

1. 12, 72 and 16, 162 2. 1-1, 112 and 11, 82
3. 110, 142 and 10, 682 4. 1-12,  -32 and 14, 32

In Problems 5–8, write the expression in the form a + b1n where 
a and b are reduced fractions and n is an integer. (If necessary, 
review Section A.6).

5. 
113

6. 
215

7. 
5

3 + 17
8. 

4 + 13

2 + 13

W

In Problems 9 and 10, find the indicated quantity for  
y = f1x2 = 5 - x2 and interpret that quantity in terms  
of the following graph.

f (x)

x

8

6

4

22

f (x) 5 5 2 x2

22 2

2

A
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9. (A) 
f122 - f112

2 - 1

(B) 
f11 + h2 - f112

h

(C) lim
hS0

 
f11 + h2 - f112

h

10. (A) 
f1-12 - f1-22

-1 - 1-22

(B) 
f1-2 + h2 - f1-22

h

(C) lim
hS0

 
f1-2 + h2 - f1-22

h

11. Find the indicated quantities for f1x2 = 3x2.

(A) The slope of the secant line through the points 11, f1122 
and 14, f1422 on the graph of y = f1x2.

(B) The slope of the secant line through the points 11, f1122 
and 11 + h, f11 + h22, h ∙ 0. Simplify your answer.

(C) The slope of the graph at 11, f1122.

12. Find the indicated quantities for f1x2 = 3x2.

(A) The slope of the secant line through the points 
1-1, f1-122 and 13, f1322 on the graph of y = f1x2.

(B) The slope of the secant line through the points 
1-1, f1-122 and 1-1 + h, f1-1 + h22, h ∙ 0. 
Simplify your answer.

(C) The slope of the graph at 1-1, f1-122.

13. Two hours after the start of a 100-kilometer bicycle race, a 
cyclist passes the 80-kilometer mark while riding at a velocity 
of 45 kilometers per hour.

(A) Find the cyclist’s average velocity during the first two 
hours of the race.

(B) Let f1x2 represent the distance traveled (in kilometers) 
from the start of the race 1x = 02 to time x (in hours). 
Find the slope of the secant line through the points 
10, f1022 and 12, f1222 on the graph of y = f1x2.

(C) Find the equation of the tangent line to the graph of 
y = f1x2 at the point 12, f1222.

14. Four hours after the start of a 600-mile auto race, a driver’s 
velocity is 150 miles per hour as she completes the 352nd lap 
on a 1.5-mile track.

(A) Find the driver’s average velocity during the first four 
hours of the race.

(B) Let f1x2 represent the distance traveled (in miles) from 
the start of the race 1x = 02 to time x (in hours). Find 
the slope of the secant line through the points 10,  f1022 
and 14,  f1422 on the graph of y = f1x2.

(C) Find the equation of the tangent line to the graph of 
y = f1x2 at the point 14,  f1422.

15. For f1x2 = 1
1 + x2, the slope of the graph of y = f1x2 is 

known to be -1
2 at the point with x coordinate 1. Find the 

equation of the tangent line at that point.

16. For f1x2 = 1
1 + x2, the slope of the graph of y = f1x2 is 

known to be -0.16 at the point with x coordinate 2. Find the 
equation of the tangent line at that point.

17. For f1x2 = x4, the instantaneous rate of change is known to 
be -32 at x = -2. Find the equation of the tangent line to 
the graph of y = f1x2 at the point with x coordinate -2.

18. For f1x2 = x4, the instantaneous rate of change is known to 
be -108 at x = -3. Find the equation of the tangent line to 
the graph of y = f1x2 at the point with x coordinate -3.

In Problems 19–44, use the four-step process to find f =1x2 and 
then find f =112, f =122, and f =132.

19. f1x2 = -5 20. f1x2 = 9

21. f1x2 = 3x - 7 22. f1x2 = 4 - 6x

23. f1x2 = 2 - 3x2 24. f1x2 = 7x2 + 11

25. f1x2 = x2 - 2x + 3 26. f1x2 = 3x2 + 2x - 10

27. f1x2 = 4x2 + 3x - 8 28. f1x2 = x2 - 4x + 7

29. f1x2 = -x2 + 5x + 1 30. f1x2 = 6x2 - 3x + 4

31. f1x2 = 10x2 - 9x + 5 32. f1x2 = -x2 + 3x + 2

33. f1x2 = 2x3 + 1 34. f1x2 = -2x3 + 5

35. f1x2 = 4 +
4
x

36. f1x2 =
6
x

- 2

37. f1x2 = 5 + 31x 38. f1x2 = 3 - 71x

39. f1x2 = 101x + 5 40. f1x2 = 161x + 9

41. f1x2 =
1

x - 4
42. f1x2 =

1
x + 4

43. f1x2 =
x

x + 1
44. f1x2 =

x
x - 4

Problems 45 and 46 refer to the graph of y = f1x2 = x2 + x 
shown.

f (x)
f (x) 5 x2 1 x

x

5

10

15

20

25 5

45. (A)  Find the slope of the secant line joining 11, f1122 and 
13, f1322.

(B) Find the slope of the secant line joining 11, f1122 and 
11 + h, f11 + h22.

B
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(C) Find the slope of the tangent line at 11, f1122.

(D) Find the equation of the tangent line at 11, f1122.

46. (A)  Find the slope of the secant line joining 13, f1322 and 
15, f1522.

(B) Find the slope of the secant line joining 13, f1322 and 
13 + h,  f13 + h22.

(C) Find the slope of the tangent line at 13, f1322.

(D) Find the equation of the tangent line at 13, f1322.

In Problems 47 and 48, suppose an object moves along the y axis 
so that its location is y = f1x2 = x2 + x at time x (y is in meters 
and x is in seconds). Find

47. (A)  The average velocity (the average rate of change of y 
with respect to x) for x changing from 1 to 3 seconds

(B) The average velocity for x changing from 1 to 1 + h 
seconds

(C) The instantaneous velocity at x = 1 second

48. (A)  The average velocity (the average rate of change of y 
with respect to x) for x changing from 2 to 4 seconds

(B) The average velocity for x changing from 2 to 2 + h 
seconds

(C) The instantaneous velocity at x = 2 seconds

Problems 49–56 refer to the function F in the graph shown. Use 
the graph to determine whether F =1x2 exists at each indicated 
value of x.

a b c d e f g h

F(x)

x

49. x = a 50. x = b

51. x = c 52. x = d

53. x = e 54. x = f

55. x = g 56. x = h

For Problems 57–58,

(A) Find f =1x2.

(B) Find the slopes of the lines tangent to the graph of f at 
x = 0, 2, and 4.

(C) Graph f and sketch in the tangent lines at x = 0, 2, and 4.

57. f1x2 = x2 - 4x

58. f1x2 = 4x - x2 + 1

59. If an object moves along a line so that it is at y = f1x2 =
4x2 - 2x at time x (in seconds), find the instantaneous 
velocity function v = f ′1x2 and find the velocity at times 
x = 1, 3, and 5 seconds ( y is measured in feet).

60. Repeat Problem 59 with f1x2 = 8x2 - 4x.

61. Let f1x2 = x2, g1x2 = x2 - 1, and h1x2 = x2 + 2.

(A) How are the graphs of these functions related? How 
would you expect the derivatives of these functions to be 
related?

(B) Use the four-step process to find the derivative of 
m1x2 = x2 + C, where C is any real constant.

62. Let f1x2 = -x2, g1x2 = -x2 - 1, and h1x2 = -x2 + 2.

(A) How are the graphs of these functions related? How would 
you expect the derivatives of these functions to be related?

(B) Use the four-step process to find the derivative of 
m1x2 = -x2 + C, where C is any real constant.

In Problems 63–68, discuss the validity of each statement. If the 
statement is always true, explain why. If not, give a counterexample.

63. If f1x2 = C is a constant function, then f =1x2 = 0.

64. If f1x2 = mx + b is a linear function, then f =1x2 = m.

65. If a function f is continuous on the interval (a, b), then f is 
differentiable on (a, b).

66. If a function f is differentiable on the interval (a, b), then f is 
continuous on (a, b).

67. The average rate of change of a function f from x = a to 
x = a + h is less than the instantaneous rate of change at 

x = a +
h
2

.

68. If the graph of f has a sharp corner at x = a, then f is not 
continuous at x = a.

In Problems 69–72, sketch the graph of f and determine where f is 
nondifferentiable.

69. f1x2 = e2x if x 6 1
2 if x Ú 1

70. f1x2 = e2x if x 6 2
6 - x if x Ú 2

71. f1x2 = e x2 + 1 if x 6 0
1 if x Ú 0

72. f1x2 = e2 - x2 if x … 0
2 if x 7 0

In Problems 73–78, determine whether f is differentiable at x = 0 
by considering

lim
hS0

 
f10 + h2 - f102

h

73. f1x2 = 0 x 0 74. f1x2 = 1 - 0 x 0
75. f1x2 = x1>3 76. f1x2 = x2>3

77. f1x2 = 21 - x2 78. f1x2 = 29 + x2

79. A ball dropped from a balloon falls y = 16x2 feet in x seconds. 
If the balloon is 576 feet above the ground when the ball 

C
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(A) Use the four-step process to find p′1t2.

(B) Find the annual production in 2020 and the instanta-
neous rate of change of consumption in 2020, and write 
a brief verbal interpretation of these results.

86. Mineral production. Spain’s production of tungsten (in tons) 
is given approximately by

p1t2 = 20t2 + 102t + 303

where t is time in years and t = 0 corresponds to 2010.

(A) Use the four-step process to find p′1t2.

(B) Find the annual production in 2020 and the instanta-
neous rate of change of consumption in 2020, and write 
a brief verbal interpretation of these results.

87. Electricity consumption. Table 1 gives the retail sales of 
electricity (in billions of kilowatt-hours) for the residential 
and commercial sectors in the United States. (Source: Energy 
Information Administration)

Table 1 Electricity Sales
Year Residential Commercial

2000 1,192 1,055
2003 1,276 1,199
2006 1,352 1,300
2009 1,365 1,307
2012 1,375 1,327
2015 1,400 1,358

(A) Let x represent time (in years) with x = 0 corresponding 
to 2000, and let y represent the corresponding residential 
sales. Enter the appropriate data set in a graphing cal-
culator and find a quadratic regression equation for the 
data.

(B) If y = R1x2 denotes the regression equation found in 
part (A), find R(30) and R′1302, and write a brief verbal 
interpretation of these results. Round answers to the 
nearest tenth of a billion.

88. Electricity consumption. Refer to the data in Table 1.

(A) Let x represent time (in years) with x = 0 corresponding 
to 2000, and let y represent the corresponding commercial 
sales. Enter the appropriate data set in a graphing calculator 
and find a quadratic regression equation for the data.

(B) If y = C1x2 denotes the regression equation found in 
part (A), find C(30) and C′1302, and write a brief ver-
bal interpretation of these results. Round answers to the 
nearest tenth of a billion.

89. Air pollution. The ozone level (in parts per billion) on a 
summer day in a metropolitan area is given by

P1t2 = 80 + 12t - t2

where t is time in hours and t = 0 corresponds to 9 a.m.

(A) Use the four-step process to find P′1t2.

(B) Find P(3) and P′(3). Write a brief verbal interpretation 
of these results.

is dropped, when does the ball hit the ground? What is the 
velocity of the ball at the instant it hits the ground?

80. Repeat Problem 79 if the balloon is 1,296 feet above the 
ground when the ball is dropped.

Applications
81. Revenue. The revenue (in dollars) from the sale of x infant 

car seats is given by

R1x2 = 60x - 0.025x2  0 … x … 2,400

(A) Find the average change in revenue if production is 
changed from 1,000 car seats to 1,050 car seats.

(B) Use the four-step process to find R′1x2.

(C) Find the revenue and the instantaneous rate of change 
of revenue at a production level of 1,000 car seats, and 
write a brief verbal interpretation of these results.

82. Profit. The profit (in dollars) from the sale of x infant car 
seats is given by

P1x2 = 45x - 0.025x2 - 5,000  0 … x … 2,400

(A) Find the average change in profit if production is 
changed from 800 car seats to 850 car seats.

(B) Use the four-step process to find P′1x2.

(C) Find the profit and the instantaneous rate of change of 
profit at a production level of 800 car seats, and write a 
brief verbal interpretation of these results.

83. Sales analysis. A company’s total sales (in millions of  
dollars) t months from now are given by

S1t2 = 1t + 4

(A) Use the four-step process to find S′1t2.

(B) Find S(4) and S′142. Write a brief verbal interpre - 
tation of these results.

(C) Use the results in part (B) to estimate the total sales  
after 5 months and after 6 months.

84. Sales analysis. A company’s total sales (in millions of  
dollars) t months from now are given by

S1t2 = 1t + 8

(A) Use the four-step process to find S′1t2.

(B) Find S(9) and S′(9). Write a brief verbal interpretation  
of these results.

(C) Use the results in part (B) to estimate the total sales after 
10 months and after 11 months.

85. Mineral production. Argentina’s production of zinc (in 
tons) is given approximately by

p1t2 = 317t2 + 4,067t + 32,600

where t is time in years and t = 0 corresponds to 2010.
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Answers to Matched Problems
1. (A) - $1,600 (B) - $8 per planter

2. (A) 48 ft/s (B) 32 + 16h

(C) 32 ft/s

3. (A) 6, 5 (B) 4 + h

(C) 4 (D) Both are 4

4. f′1x2 = 8 - 4x

5. (A) f =112 = 4, f =122 = 0, f =142 = -8

(B) f (x)

x

5

10

5321

6. f =1x2 = -1> 1x + 22 2, x ∙ -2

7. f =1x2 = 1> 121x + 42, x Ú -4
8. S1122 = 4, S′1122 = 0.125; 12 months from now, the total 

sales will be $4 million and will be increasing at the rate of 
$0.125 million ($125,000) per month. The estimated total 
sales are $4.125 million after 13 months and $4.25 million 
after 14 months.

In Section 2.4, we defined the derivative of f at x as

f =1x2 = lim
hS0

f1x + h2 - f1x2
h

if the limit exists, and we used this definition and a four-step process to find the de-
rivatives of several functions. Now we want to develop some rules of differentiation. 
These rules will enable us to find the derivative of many functions without using the 
four-step process.

Before exploring these rules, we list some symbols that are often used to repre-
sent derivatives.

2.5 Basic Differentiation Properties
■■ Constant Function Rule
■■ Power Rule
■■ Constant Multiple Property
■■ Sum and Difference Properties
■■ Applications

NOTATION The Derivative
If y = f1x2, then

f =1x2  y′  
dy

dx
  

d
dx

 f1x2

all represent the derivative of f at x.

Each of these derivative symbols has its particular advantage in certain situations. All 
of them will become familiar to you after a little experience.

Constant Function Rule
If f1x2 = C is a constant function, then the four-step process can be used to show 
that f =1x2 = 0. Therefore,

The derivative of any constant function is 0.

THEOREM 1 Constant Function Rule
If y = f1x2 = C, then

f =1x2 = 0

90. Medicine. The body temperature (in degrees Fahrenheit) of a 
patient t hours after taking a fever-reducing drug is given by

F1t2 = 98 +
4

t + 1

(A) Use the four-step process to find F =1t2.

(B) Find F(3) and F =132. Write a brief verbal interpretation 
of these results.
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Also, y′ = 0 and dy>dx = 0.

Note: When we write C′ = 0 or 
d
dx

 C = 0, we mean that y′ =
dy

dx
= 0 when y = C.

The graph of f1x2 = C is a horizontal line with slope 0 (Fig. 1), so we would 
expect that f =1x2 = 0.

x

f (x)

f (x) 5 C

0

C

Slope 5 0

Figure 1

CONCEPTUAL INSIGHT

Differentiating Constant Functions
(A) Find f =1x2 for f1x2 = 3. (B) Find y′ for y = -1.4.

(C) Find 
dy

dx
 for y = p. (D) Find 

d
dx

 23.

SOLUTION
(A) f =1x2 = 0 (B) y′ = 0

(C) 
dy

dx
= 0 (D) 

d
dx

 23 = 0

Matched Problem 1 Find

(A) f =1x2 for f1x2 = -24 (B) y′ for y = 12

(C) 
dy

dx
 for y = - 27 (D) 

d
dx

 1-p2

EXAMPLE 1

Power Rule
A function of the form f1x2 = xk, where k is a real number, is called a power function. 
The following elementary functions are examples of power functions:

 f1x2 = x    h1x2 = x2   m1x2 = x3  (1)

 n1x2 = 1x    p1x2 = 23 x    q1x2 = x - 3

(A) It is clear that the functions f, h, and m in (1) are power functions. Explain why 
the functions n, p, and q are also power functions.

(B) The domain of a power function depends on the power. Discuss the domain of 
each of the following power functions:

 r1x2 = x4   s1x2 = x-4   t1x2 = x1>4

 u1x2 = x-1>4   v1x2 = x1>5   w1x2 = x-1>5

Explore and Discuss 1
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The definition of the derivative and the four-step process introduced in 
Section 2.4 can be used to find the derivatives of many power functions. For example, 
it can be shown that

 If  f1x2 = x2,   then  f =1x2 = 2x.

 If  f1x2 = x3,   then  f =1x2 = 3x2.

 If  f1x2 = x4,   then  f =1x2 = 4x3.

 If  f1x2 = x5,   then  f =1x2 = 5x4.

Notice the pattern in these derivatives. In each case, the power in f becomes the coef-
ficient in f = and the power in f = is 1 less than the power in f. In general, for any positive 
integer n,

 If  f1x2 = xn,   then  f =1x2 = nxn - 1. (2)

In fact, more advanced techniques can be used to show that (2) holds for any real 
number n. We will assume this general result for the remainder of the book.

THEOREM 2 Power Rule
If y = f1x2 = xn, where n is a real number, then

f =1x2 = nxn - 1

Also, y′ = nxn - 1 and dy>dx = nxn - 1.

Differentiating Power Functions
(A) Find f =1x2 for f1x2 = x5. (B) Find y′ for y = x25.

(C) Find 
dy

dt
 for y = t - 3. (D) Find 

d
dx

 x5>3.

SOLUTION
(A) f =1x2 = 5x5 - 1 = 5x4 (B) y′ = 25x25 - 1 = 25x24

(C) 
dy

dt
= -3t - 3 - 1 = -3t - 4 (D) 

d
dx

x5>3 =
5
3

x15>32 - 1 =
5
3

x2>3

Matched Problem 2 Find

(A) f =1x2 for f1x2 = x6 (B) y′ for y = x30

(C) 
dy

dt
 for y = t-2 (D) 

d
dx

  x3>2

EXAMPLE 2

In some cases, properties of exponents must be used to rewrite an expression 
before the power rule is applied.

Differentiating Power Functions

(A) Find f =1x2 for f1x2 =
1

x4. (B) Find y′ for y = 1u.

(C) Find 
d
dx

 
123 x

.

EXAMPLE 3
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SOLUTION
(A) We can write f1x2 = x - 4 to get

f =1x2 = -4x-4 - 1 = -4x-5 = -
4

x5.

(B) We can write y = u1>2 to get

y′ =
1
2

 u11>22 - 1 =
1
2

 u-1>2 =
1

21u
.

(C) 
d
dx

 
123 x

=
d
dx

 x-1>3 = -  
1
3

 x1-1>32 - 1 = -  
1
3

 x-4>3, or 
-1

323 x4

Matched Problem 3   Find

(A) f =1x2 for f1x2 =
1
x

(B) y′ for y = 23 u2

(C) 
d
dx

 
11x

Constant Multiple Property
Let f1x2 = ku1x2, where k is a constant and u is differentiable at x. Using the four-
step process, we have the following:

Step 1 f1x + h2 = ku1x + h2
Step 2 f1x + h2 - f1x2 = ku1x + h2 - ku1x2 = k3u1x + h2 - u1x24

Step 3 
f1x + h2 - f1x2

h
=

k3u1x + h2 - u1x24
h

= k c u1x + h2 - u1x2
h

d

Step 4  f =1x2 = lim
hS0

f1x + h2 - f1x2
h

 = lim
hS0

 k c u1x + h2 - u1x2
h

d  lim
xSc

 kg1x2 = k lim
xSc

 g1x2

 = k lim
hS0

 c u1x + h2 - u1x2
h

d  Definition of u′1x2

 = ku′1x2
Therefore,

The derivative of a constant times a differentiable function is the constant 
times the derivative of the function.

THEOREM 3 Constant Multiple Property
If y = f1x2 = ku1x2, then

f =1x2 = ku′1x2
Also,

y′ = ku′  
dy

dx
= k  

du
dx
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Differentiating a Constant Times a Function

(A) Find f =1x2 for f1x2 = 3x2. (B) Find 
dy

dt
 for y =

t3

6
.

(C) Find y′ for y =
1

2x4. (D) Find 
d
dx

 
0.42x3

.

SOLUTION
(A) f =1x2 = 3 # 2x2 - 1 = 6x

(B) We can write y =
1
6

t3 to get 
dy

dt
=

1
6

# 3t3 - 1 =
1
2

t2.

(C) We can write y =
1
2

x-4 to get

y′ =
1
2

 (-4x-4 - 1) = -2x-5, or 
-2

x5 .

(D)  
d
dx

 
0.42x3

=
d
dx

 
0.4

x3>2 =
d
dx

 0.4x-3>2 = 0.4 c -  
3
2

 x1-3>22 - 1 d

 = -0.6x-5>2, or -  
0.62x5

Matched Problem 4 Find

(A) f =1x2 for f1x2 = 4x5 (B) 
dy

dt
 for y =

t4

12

(C) y′ for y =
1

3x3 (D) 
d
dx

 
0.923 x

EXAMPLE 4

Sum and Difference Properties
Let f1x2 = u1x2 + v1x2, where u′1x2 and v′1x2 exist. Using the four-step process 
(see Problems 87 and 88 in Exercises 2.5):

f =1x2 = u′1x2 + v′1x2
Therefore,

The derivative of the sum of two differentiable functions is the sum of 
the derivatives of the functions.

Similarly, we can show that

The derivative of the difference of two differentiable functions is the 
difference of the derivatives of the functions.

Together, we have the sum and difference property for differentiation:

THEOREM 4 Sum and Difference Property
If y = f1x2 = u1x2 { v1x2, then

f =1x2 = u′1x2 { v′1x2
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With Theorems 1 through 4, we can compute the derivatives of all polynomials 
and a variety of other functions.

Also,

y′ = u′ { v′  
dy

dx
=

du
dx

{ dv

dx

Note: This rule generalizes to the sum and difference of any given number of  
functions.

Differentiating Sums and Differences
(A) Find f =1x2 for f1x2 = 3x2 + 2x. (B) Find y′ for y = 4 + 2x3 - 3x-1.

(C) Find  
dy

dw

 for y = 23
w - 3w. (D) Find 

d
dx

 a 5

3x2 -  
2

x4 +
x3

9
b .

SOLUTION
(A) f =1x2 = 13x22′ + 12x2′ = 312x2 + 2112 = 6x + 2

(B) y′ = 142′ + 12x32′ - 13x-12′ = 0 + 213x22 - 31-12x-2 = 6x2 + 3x-2

(C) 
dy

dw

=
d

dw

 w1>3 -   
d

dw

 3w =
1
3

 w-2>3 - 3 =
1

3w

2>3 - 3

(D)  
d
dx

 a 5

3x2 -  
2

x4 +
x3

9
b  =

d
dx

 
5
3

  x-2 -
d
dx

  2x-4 +
d
dx

 
1
9

  x3

 =
5
3

 1-22x-3 - 21-42x-5 +
1
9

# 3x2

 = -  
10

3x3 +
8

x5 +
1
3

 x2

Matched Problem 5 Find

(A) f =1x2 for f1x2 = 3x4 - 2x3 + x2 - 5x + 7

(B) y′ for y = 3 - 7x-2

(C) 
dy

dv

 for y = 5v

3 - 24
v

(D) 
d
dx

 a -  
3
4x

+
4

x3 -  
x4

8
b

EXAMPLE 5

Some algebraic rewriting of a function is sometimes required before we can apply 
the rules for differentiation.

Rewrite before Differentiating Find the derivative of f1x2 =
1 + x2

x4 .

SOLUTION It is helpful to rewrite f1x2 =
1 + x2

x4 , expressing f1x2 as the sum of 

terms, each of which can be differentiated by applying the power rule.

EXAMPLE 6
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 f1x2 =
1 + x2

x4     Write as a sum of two terms

 =
1

x4 +
x2

x4  Write each term as a power of x

 = x - 4 + x - 2

Note that we have rewritten f1x2, but we have not used any rules of differentiation. 
Now, however, we can apply those rules to find the derivative:

f =1x2 = -4x-5 - 2x-3

Matched Problem 6 Find the derivative of f1x2 =
5 - 3x + 4x2

x
.

Applications
Instantaneous Velocity An object moves along the y axis (marked in feet) so that 
its position at time x (in seconds) is

f1x2 = x3 - 6x2 + 9x

(A) Find the instantaneous velocity function v.

(B) Find the velocity at x = 2 and x = 5 seconds.

(C) Find the time(s) when the velocity is 0.

SOLUTION
(A) v = f =1x2 = 1x32′ - 16x22′ + 19x2′ = 3x2 - 12x + 9

(B)  f =122 = 3122 2 - 12122 + 9 = -3 feet per second

 f =152 = 3152 2 - 12152 + 9 = 24 feet per second

(C)  v = f =1x2 = 3x2 - 12x + 9 = 0 Factor 3 out of each term.

 31x2 - 4x + 32 = 0 Factor the quadratic term.

 31x - 121x - 32 = 0 Use the zero property.

 x = 1, 3

So, v = 0 at x = 1 and x = 3 seconds.

Matched Problem 7 Repeat Example 7 for f1x2 = x3 - 15x2 + 72x.

EXAMPLE 7

Tangents Let f1x2 = x4 - 6x2 + 10.

(A) Find f =1x2.

(B) Find the equation of the tangent line at x = 1.

(C) Find the values of x where the tangent line is horizontal.

SOLUTION
(A)  f =1x2 = 1x42′ - 16x22′ + 1102′

 = 4x3 - 12x

(B) We use the point-slope form. (Section 1.3)

 y - y1 = m1x - x12  y1 = f1x12 = f112 = 112 4 - 6112 2 + 10 = 5

 y - 5 = -81x - 12 m = f =1x12 = f =112 = 4112 3 - 12112 = -8

 y = -8x + 13  Tangent line at x = 1

EXAMPLE 8
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(C) Since a horizontal line has 0 slope, we must solve f =1x2 = 0 for x:

 f =1x2 = 4x3 - 12x = 0  Factor 4x out of each term.

 4x1x2 - 32 = 0  Factor the difference of two squares.

 4x1x + 1321x - 132 = 0  Use the zero property.

 x = 0, - 13, 13

Matched Problem 8 Repeat Example 8 for f1x2 = x4 - 8x3 + 7.

Exercises 2.5
Skills Warm-up Exercises
In Problems 1–8, write the expression in the form xn. (If neces-
sary, review Section A.6).

1. 2x 2. 23 x 3. 
1

x5 4. 
1
x

5. 1x42 3 6. 
1

1x72 8 7. 
124 x

8. 
125 x

W
36. 

dy

dt
 if y = 2 + 5t - 8t3

37. y′ for y = 5x-2 + 9x-1

38. g′1x2 if g1x2 = 5x-7 - 2x-4

39. 
d
du

 15u0.3 - 4u2.22

40. 
d
du

 12u4.5 - 3.1u + 13.22

41. h′1t2 if h1t2 = 2.1 + 0.5t - 1.1t3

42. F =1t2 if F1t2 = 0.4t5 - 6.7t + 8.9

43. y′ if y =
2

5x4

44. w′ if w =
7

5u2

45. 
d
dx

 a3x2

2
-  

7

5x2 b

46. 
d
dx

 a3x4

5
-  

5

3x4 b

47. G′1w2 if G1w2 =
5

9w

4 + 523
w

48. H′1w2 if H1w2 =
5

w

6 - 22w

49. 
d
du

 13u2>3 - 5u1>32

50. 
d
du

 18u3>4 + 4u-1>42

51. h′1t2 if h1t2 =
3

t3>5 -  
6

t1>2

52. F =1t2 if F1t2 =
5

t1>5 -  
8

t3>2

53. y′ if y =
123 x

54. w′ if w =
2424 u

55. 
d
dx

 a 1.22x
- 3.2x-2 + xb

56. 
d
dx

 a2.8x-3-  
0.623 x2

+ 7b

 Find the indicated derivatives in Problems 9–26.

9. f =1x2 for f1x2 = 4 10. 
d
dx

 5

11. 
dy

dx
 for y = x7 12. y′ for y = x8

13. 
d
dx

 x4 14. g′1x2 for g1x2 = x9

15. y′ for y = x-3 16. 
dy

dx
 for y = x-9

17. g′1x2 for g1x2 = x4>3 18. f =1x2 for f1x2 = x5>2

19. 
dy

dx
 for y =

1

x9 20. y′ for y =
1

x7

21. f =1x2 for f1x2 = 2x3 22. 
d
dx

 1-3x22

23. y′ for y = 0.3x6 24. f =1x2 for f1x2 = 0.7x3

25. 
d
dx

 a x4

12
b 26. 

dy

dx
 for y =

x7

28

Problems 27–32 refer to functions f and g that satisfy f =122 = 3 
and g′122 = -1. In each problem, find h′122 for the indicated 
function h.

27. h1x2 = 4f1x2 28. h1x2 = 5g1x2
29. h1x2 = f1x2 + g1x2 30. h1x2 = g1x2 - f1x2
31. h1x2 = 4f1x2 - 5g1x2 + 6

32. h1x2 = -4f1x2 + 5g1x2 - 9

Find the indicated derivatives in Problems 33–56.

33. 
d
dx

 12x - 52

34. 
d
dx

 1-4x + 92

35. f =1t2 if f1t2 = 3t2 - 5t + 7

B

A
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For Problems 57–60, find

(A) f =1x2
(B) The slope of the graph of f at x = 2 and x = 4

(C) The equations of the tangent lines at x = 2 and x = 4

(D) The value(s) of x where the tangent line is horizontal

57. f1x2 = 6x - x2 58. f1x2 = 2x2 + 8x

59. f1x2 = 3x4 - 6x2 - 7 60. f1x2 = x4 - 32x2 + 10

If an object moves along the y axis (marked in feet) so that its 
position at time x (in seconds) is given by the indicated functions 
in Problems 61–64, find

(A) The instantaneous velocity function v = f =1x2
(B) The velocity when x = 0 and x = 3 seconds

(C) The time(s) when v = 0

61. f1x2 = 176x - 16x2

62. f1x2 = 80x - 10x2

63. f1x2 = x3 - 9x2 + 15x

64. f1x2 = x3 - 9x2 + 24x

Problems 65–72 require the use of a graphing calculator. For each 
problem, find f =1x2 and approximate (to four decimal places) the 
value(s) of x where the graph of f has a horizontal tangent line.

65. f1x2 = x2 - 3x - 41x

66. f1x2 = x2 + x - 101x

67. f1x2 = 323 x4 - 1.5x2 - 3x

68. f1x2 = 323 x4 - 2x2 + 4x

69. f1x2 = 0.05x4 + 0.1x3 - 1.5x2 - 1.6x + 3

70. f1x2 = 0.02x4 - 0.06x3 - 0.78x2 + 0.94x + 2.2

71. f1x2 = 0.2x4 - 3.12x3 + 16.25x2 - 28.25x + 7.5

72. f1x2 = 0.25x4 - 2.6x3 + 8.1x2 - 10x + 9

73. Let f1x2 = ax2 + bx + c, a ∙ 0. Recall that the graph of 
y = f1x2 is a parabola. Use the derivative f =1x2 to derive a 
formula for the x coordinate of the vertex of this parabola.

74. Now that you know how to find derivatives, explain why it is 
no longer necessary for you to memorize the formula for the 
x coordinate of the vertex of a parabola.

75. Give an example of a cubic polynomial function that has

(A) No horizontal tangents

(B) One horizontal tangent

(C) Two horizontal tangents

76. Can a cubic polynomial function have more than two hori-
zontal tangents? Explain.

 Find the indicated derivatives in Problems 77–82.

77. f =1x2 if f1x2 = 12x - 12 2

78. y′ if y = 14x - 32 2

C

79. 
d
dx

 
10x + 20

x

80. 
dy

dx
 if y =

x2 + 25

x2

81. 
dy

dx
 if y =

4x - 5

20x2

82. f =1x2 if f1x2 =
2x5 - 4x3 + 2x

x3

In Problems 83–86, discuss the validity of each statement.  
If the statement is always true, explain why. If not, give a  
counterexample.

83. The derivative of a product is the product of the derivatives.

84. The derivative of a quotient is the quotient of the derivatives.

85. The derivative of a constant is 0.

86. The derivative of a constant times a function is 0.

87. Let f1x2 = u1x2 + v1x2, where u′1x2 and v′1x2  
exist. Use the four-step process to show that 
f =1x2 = u′1x2 + v′1x2.

88. Let f1x2 = u1x2 - v1x2, where u′1x2 and v′1x2  
exist. Use the four-step process to show that 
f =1x2 = u′1x2 - v′1x2.

Applications
89. Sales analysis. A company’s total sales (in millions of  

dollars) t months from now are given by

S1t2 = 0.03t3 + 0.5t2 + 2t + 3

(A) Find S′1t2.

(B) Find S(5) and S′152 (to two decimal places). Write a 
brief verbal interpretation of these results.

(C) Find S(10) and S′1102 (to two decimal places). Write a 
brief verbal interpretation of these results.

90. Sales analysis. A company’s total sales (in millions of  
dollars) t months from now are given by

S1t2 = 0.015t4 + 0.4t3 + 3.4t2 + 10t - 3

(A) Find S′1t2.

(B) Find S(4) and S′142 (to two decimal places). Write a 
brief verbal interpretation of these results.

(C) Find S(8) and S′182 (to two decimal places). Write a 
brief verbal interpretation of these results.

91. Advertising. A marine manufacturer will sell N(x) power 
boats after spending $x thousand on advertising, as given by

N1x2 = 1,000 -  
3,780

x
  5 … x … 30

(see figure).
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N(x)

x

Thousands of advertising dollars

B
oa

ts
 s

ol
d

500

1,000

10 20 30

(A) Find N′1x2.

(B) Find N′1102 and N′1202. Write a brief verbal interpre-
tation of these results.

92. Price–demand equation. Suppose that, in a given gourmet 
food store, people are willing to buy x pounds of chocolate 
candy per day at $p per quarter pound, as given by the price–
demand equation

x = 10 +
180
p
  2 … p … 10

This function is graphed in the figure. Find the demand and 
the instantaneous rate of change of demand with respect to 
price when the price is $5. Write a brief verbal interpretation 
of these results.

x

p

Price (dollars)

D
em

an
d 

(p
ou

nd
s)

50

100

105

93. College enrollment. The percentages of male high school 
graduates who enrolled in college are given in the second 
column of Table 1. (Source: NCES)

Table 1 College enrollment  
percentages

Year Male Female

1970 41.0 25.5
1980 33.5 30.3
1990 40.0 38.3
2000 40.8 45.6
2010 45.9 50.5

(A) Let x represent time (in years) since 1970, and let y rep-
resent the corresponding percentage of male high school 
graduates who enrolled in college. Enter the data in a 
graphing calculator and find a cubic regression equation 
for the data.

(B) If y = M1x2 denotes the regression equation found in 
part (A), find M(55) and M′1552 (to the nearest tenth), 
and write a brief verbal interpretation of these results.

94. College enrollment. The percentages of female high school 
graduates who enrolled in college are given in the third column 
of Table 1.

(A) Let x represent time (in years) since 1970, and let y 
represent the corresponding percentage of female high 
school graduates who enrolled in college. Enter the 
data in a graphing calculator and find a cubic regression 
equation for the data.

(B) If y = F1x2 denotes the regression equation found in 
part (A), find F(55) and F′1552 (to the nearest tenth), 
and write a brief verbal interpretation of these results.

95. Medicine. A person x inches tall has a pulse rate of y beats 
per minute, as given approximately by

y = 590x-1>2  30 … x … 75

What is the instantaneous rate of change of pulse rate at the

(A) 36-inch level?

(B) 64-inch level?

96. Ecology. A coal-burning electrical generating plant emits 
sulfur dioxide into the surrounding air. The concentration 
C(x), in parts per million, is given approximately by

C1x2 =
0.1

x2

where x is the distance from the plant in miles. Find the 
instantaneous rate of change of concentration at

(A) x = 1 mile

(B) x = 2 miles

97. Learning. Suppose that a person learns y items in x hours, as 
given by

y = 501x  0 … x … 9

(see figure). Find the rate of learning at the end of

y

x

It
em

s 
le

ar
ne

d

100

150

50

Time (hours)
105

(A) 1 hour

(B) 9 hours

98. Learning. If a person learns y items in x hours, as given by

y = 2123 x2  0 … x … 8

find the rate of learning at the end of

(A) 1 hour

(B) 8 hours
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Answers to Matched Problems
1. All are 0.

2. (A) 6x5 (B) 30x29

(C) -2t-3 = -2>t3 (D) 3
2 x1>2

3. (A) -x-2, or -1>x2 (B) 2
3 u-1>3, or 2> 1323 u2

(C) -1
2 x-3>2, or -1> 122x32

4. (A) 20x4 (B) t3>3

(C) -x-4, or -1>x4 (D) -0.3x-4>3, or -0.3>23 x4

5. (A) 12x3 - 6x2 + 2x - 5 (B) 14x-3, or 14>x3

(C) 15v

2 - 1
4 v-3>4, or 15v

2 - 1> 14v

3>42
(D) 3> 14x22 - 112>x42 - 1x3>22

6. f =1x2 = -5x-2 + 4

7. (A) v = 3x2 - 30x + 72

(B) f =122 = 24 ft/s; f =152 = -3 ft/s

(C) x = 4 and x = 6 seconds

8. (A) f =1x2 = 4x3 - 24x2 (B) y = -20x + 20

(C) x = 0 and x = 6

In this section, we introduce increments and differentials. Increments are useful and 
they provide an alternative notation for defining the derivative. Differentials are often 
easier to compute than increments and can be used to approximate increments.

Increments
In Section 2.4, we defined the derivative of f at x as the limit of the difference quotient

f′1x2 = lim
hS0

f1x + h2 - f1x2
h

We considered various interpretations of this limit, including slope, velocity, and in-
stantaneous rate of change. Increment notation enables us to interpret the numerator 
and denominator of the difference quotient separately.

Given y = f1x2 = x3, if x changes from 2 to 2.1, then y will change from 
y = f122 = 23 = 8 to y = f12.12 = 2.13 = 9.261. The change in x is called the 
increment in x and is denoted by ∆x (read as “delta x”).* Similarly, the change in 
y is called the increment in y and is denoted by ∆y. In terms of the given example, 
 we write

 ∆x = 2.1 - 2 = 0.1  Change in x

 ∆y = f 12.12 - f 122 f1x2 = x3

 = 2.13 - 23  Use a calculator.

 = 9.261 - 8

 = 1.261  Corresponding change in y

2.6 Differentials
■■ Increments
■■ Differentials
■■ Approximations Using Differentials

*∆ is the uppercase Greek letter delta.

The symbol ∆x does not represent the product of ∆ and x but is the symbol for 
a single quantity: the change in x. Likewise, the symbol ∆y represents a single 
quantity: the change in y.

CONCEPTUAL INSIGHT
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DEFINITION Increments
For y = f1x2,  ∆x = x2 - x1, so  x2 = x1 + ∆x, and

 ∆y = y2 - y1

 = f1x22 - f1x12
 = f1x1 + ∆x2 - f1x12

x
x1

y 5 f (x)

f (x)

(x2, f (x2))

(x1, f (x1))

Dy 5 f (x2) 2 f (x1)
5 f (x1 1 Dx) 2 f (x1)

Dx

x2
 x1 1 Dx

∆y represents the change  
in y corresponding to a  
change ∆x in x.
∆x can be either positive  
or negative.

Note: ∆y depends on the function f, the input x1, and the increment ∆x.

Increments Given the function y = f1x2 =
x2

2
,

(A) Find ∆x, ∆y, and ∆y>∆x for x1 = 1 and x2 = 2.

(B) Find 
f1x1 + ∆x2 - f1x12

∆x
 for x1 = 1 and ∆x = 2.

SOLUTION
(A)  ∆x = x2 - x1 = 2 - 1 = 1

 ∆y = f 1x22 - f 1x12

 = f 122 - f 112 =
4
2

-  
1
2

=
3
2

 
∆y

∆x
=

f 1x22 - f 1x12
x2 - x1

=
3
2

1
=

3
2

(B)  
f 1x1 + ∆x2 - f 1x12

∆x
=

f 11 + 22 - f 112
2

 =
f 132 - f 112

2
=

9
2 - 1

2 

2
=

4
2

= 2

Matched Problem 1 Given the function y = f 1x2 = x2 + 1,

(A) Find ∆x, ∆y, and ∆y>∆x for x1 = 2 and x2 = 3.

(B) Find 
f 1x1 + ∆x2 - f 1x12

∆x
 for x1 = 1 and ∆x = 2.

EXAMPLE 1

In Example 1, we observe another notation for the difference quotient

 
f1x + h2 - f1x2

h
 (1)
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It is common to refer to h, the change in x, as ∆x. Then the difference quotient (1) 
takes on the form

f1x + ∆x2 - f1x2
∆x

  or  
∆y

∆x
 ∆y = f 1x + ∆x2 - f 1x2

and the derivative is defined by

f′1x2 = lim
∆xS0

f1x + ∆x2 - f1x2
∆x

or

 f′1x2 = lim
∆xS0

∆y

∆x
 (2)

if the limit exists.

Suppose that y = f 1x2 defines a function whose domain is the set of all real numbers. 
If every increment ∆y is equal to 0, then what is the range of f ?

Explore and Discuss 1

Differentials
Assume that the limit in equation (2) exists. Then, for small ∆x, the difference quo-
tient ∆y>∆x provides a good approximation for f′1x2. Also, f′1x2 provides a good 
approximation for ∆y>∆x. We write

 
∆y

∆x
≈ f =1x2     ∆x is small, but ∙ 0 (3)

Multiplying both sides of (3) by ∆x gives us

 ∆y ≈ f =1x2 ∆x ∆x is small, but ∙ 0 (4)

From equation (4), we see that f =1x2∆x provides a good approximation for ∆y when 
∆x is small.

Because of the practical and theoretical importance of f =1x2 ∆x, we give it the 
special name differential and represent it with the special symbol dy or df:

dy ∙ f =1x2∆x or df ∙ f =1x2∆x

For example,

 d12x32 = 12x32′ ∆x = 6x2 ∆x

 d1x2 = 1x2′ ∆x = 1 ∆x = ∆x

In the second example, we usually drop the parentheses in d1x2 and simply write

dx ∙ ∆x

In summary, we have the following:

DEFINITION Differentials
If y = f1x2 defines a differentiable function, then the differential dy, or df, is 
defined as the product of f′1x2 and dx, where dx = ∆x. Symbolically,

dy = f′1x2  dx, or df = f′1x2  dx
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where

dx = ∆x

Note: The differential dy 1or df2 is actually a function involving two independent 
variables, x and dx. A change in either one or both will affect dy 1or df2.

Differentials Find dy for f1x2 = x2 + 3x. Evaluate dy for

(A) x = 2 and dx = 0.1

(B) x = 3 and dx = 0.1

(C) x = 1 and dx = 0.02

SOLUTION
 dy = f′1x2 dx

 = 12x + 32 dx

(A) When x = 2 and dx = 0.1,
 dy = 32122 + 340.1 = 0.7

(B) When x = 3 and dx = 0.1,
 dy = 32132 + 340.1 = 0.9

(C) When x = 1 and dx = 0.02,
 dy = 32112 + 340.02 = 0.1

Matched Problem 2 Find dy for f 1x2 = 1x + 3. Evaluate dy for

(A) x = 4 and dx = 0.1

(B) x = 9 and dx = 0.12

(C) x = 1 and dx = 0.01

EXAMPLE 2

We now have two interpretations of the symbol dy>dx. Referring to the function 
y = f 1x2 = x2 + 3x in Example 2 with x = 2 and dx = 0.1, we have

dy

dx
= f′122 = 7 Derivative

and

dy

dx
=

0.7
0.1

= 7      Ratio of differentials

Approximations Using Differentials
Earlier, we noted that for small ∆x,

∆y

∆x
≈ f′1x2  and  ∆y ≈ f′1x2∆x

Also, since

dy = f′1x2 dx

it follows that

∆y ≈ dy

and dy can be used to approximate ∆y.
To interpret this result geometrically, we need to recall a basic property of the 

slope. The vertical change in a line is equal to the product of the slope and the hori-
zontal change, as shown in Figure 1.

a

bSlope = m

m = or b = ma
a
b

Figure 1
Now consider the line tangent to the graph of y = f 1x2, as shown in Figure 2 on 

page 195. Since f′1x2 is the slope of the tangent line and dx is the horizontal change 
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in the tangent line, it follows that the vertical change in the tangent line is given by 
dy = f′1x2 dx, as indicated in Figure 2.

x

f (x)

Tangent line at x

y 5 f (x)

Secant line

Dx 5 dx f(x)

dy

Dy

x 1 Dxx

Figure 2

Cost–Revenue A company manufactures and sells x microprocessors per week. If 
the weekly cost and revenue equations are

C1x2 = 5,000 + 2x  R1x2 = 10x -  
x2

1,000
  0 … x … 8,000

then use differentials to approximate the changes in revenue and profit if production 
is increased from 2,000 to 2,010 units per week.

SOLUTION We will approximate ∆R and ∆P with dR and dP, respectively, using 
x = 2,000 and dx = 2,010 - 2,000 = 10.

EXAMPLE 4

EXAMPLE 3 Comparing Increments and Differentials Let y = f1x2 = 6x - x2.

(A) Find ∆y and dy when x = 2.

(B) Compare ∆y and dy from part (A) for ∆x = 0.1, 0.2, and 0.3.

SOLUTION
(A)  ∆y = f12 + ∆x2 - f122

 = 612 + ∆x2 - 12 + ∆x2 2 - 16 # 2 - 222 Remove parentheses.

 = 12 + 6∆x - 4 - 4∆x - ∆x2 - 12 + 4  Collect like terms.

 = 2∆x - ∆x2

Since f′1x2 = 6 - 2x, f′122 = 2, and dx = ∆x, dy = f′122 dx = 2∆x

(B) Table 1 compares the values of ∆y and dy for the indicated values of ∆x.

Table 1
∆x ∆y dy

0.1 0.19 0.2
0.2 0.36 0.4
0.3 0.51 0.6

Matched Problem 3 Repeat Example 3 for x = 4 and ∆x = dx = -0.1, -0.2, 
and -0.3.
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 R1x2 = 10x -
x2

1,000
  P1x2 = R1x2 - C1x2 = 10x -

x2

1,000
- 5,000 - 2x

 dR = R′1x2 dx    = 8x -  
x2

1,000
- 5,000

 = a10 -  
x

500
bdx    dP = P′1x2 dx

 = a10 -  
2,000
500

b10    = a8 -  
x

500
b  dx

 = $60 per week    = a8 -  
2,000
500

b  10

   = $40 per week

Matched Problem 4  Repeat Example 4 with production increasing from 6,000 
to 6,010.

Comparing the results in Example 4 and Matched Problem 4, we see that an in-
crease in production results in a revenue and profit increase at the 2,000 production 
level but a revenue and profit loss at the 6,000 production level.

Exercises 2.6
Skills Warm-up Exercises
In Problems 1–4, let f1x2 = 0.1x + 3 and find the given values 
without using a calculator. (If necessary, review Section  1.1.)

1. f102; f10.12 2. f122; f12.12
3. f1-22; f  1-2.012 4. f1-102; f1-10.012

In Problems 5–8, let g1x2 = x2 and find the given values without 
using a calculator.

5. g102; g10.12 6. g112; g11.12
7. g1102; g110.12 8. g1-52; g1-5.12

In Problems 9–14, find the indicated quantities for 
y = f 1x2 = 5x2.

9. ∆x, ∆y, and ∆y>∆x; given x1 = 1 and x2 = 4

10. ∆x, ∆y, and ∆y>∆x; given x1 = 3 and x2 = 8

11. 
f 1x1 + ∆x2 - f 1x12

∆x
; given x1 = 1 and ∆x = 2

12. 
f 1x1 + ∆x2 - f 1x12

∆x
; given x1 = 2 and ∆x = 1

13. ∆y>∆x; given x1 = 1 and x2 = 3

14. ∆y>∆x; given x1 = 2 and x2 = 3

In Problems 15–20, find dy for each function.

15. y = 30 + 12x2 - x3 16. y = 200x -
x2

30

17. y = x2a1 -  
x
9
b 18. y = x41150 - x32

W

A

In Problems 21 and 22, find the indicated quantities for 
y = f 1x2 = 3x2.

21. (A) 
f 12 + ∆x2 - f 122

∆x
 (simplify)

(B) What does the quantity in part (A) approach as ∆x 
 approaches 0?

22. (A) 
f 15 + ∆x2 - f 152

∆x
 (simplify)

(B) What does the quantity in part (A) approach as ∆x  
approaches 0?

In Problems 23–26, find dy for each function.

23. y = 13x - 12 2 24. y = 12x + 32 2

25. y =
x2 - 9

x
26. y =

x2 - 9

x2

In Problems 27–30, evaluate dy and ∆y for each function for the 
indicated values.

27. y = f 1x2 = x2 - 3x + 2; x = 5, dx = ∆x = 0.2

28. y = f 1x2 = 30 + 12x2 - x3; x = 2, dx = ∆x = 0.1

29. y = f 1x2 = 125a1 -
8
x
b ; x = 5, dx = ∆x = -0.3

30. y = f 1x2 = 100ax -
4

x2 b ; x = 2, dx = ∆x = -0.1

B

19. y =
5901x 20. y = 84

32x
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47. Average cost. For a company that manufactures tennis rackets, 
the average cost per racket C is

C =
400

x
+ 5 +

1
2

x  x Ú 1

where x is the number of rackets produced per hour. What 
will the approximate change in average cost per racket be 
if production is increased from 20 per hour to 25 per hour? 
From 40 per hour to 45 per hour?

48. Revenue and profit. A company manufactures and sells x 
televisions per month. If the cost and revenue equations are

 C1x2 = 72,000 + 60x

 R1x2 = 200x -
x2

30
   0 … x … 6,000

what will the approximate changes in revenue and profit be if 
production is increased from 1,500 to 1,510? From 4,500 to 
4,510?

49. Pulse rate. The average pulse rate y (in beats per minute) of 
a healthy person x inches tall is given approximately by

y =
5901x
  30 … x … 75

Approximately how will the pulse rate change for a change in 
height from 36 to 37 inches? From 64 to 65 inches?

50. Measurement. An egg of a particular bird is nearly spheri-
cal. If the radius to the inside of the shell is 5 millimeters 
and the radius to the outside of the shell is 5.3 millimeters, 
approximately what is the volume of the shell? [Remember 
that V = 4

3pr3.]

51. Medicine. A drug is given to a patient to dilate her arteries. 
If the radius of an artery is increased from 2 to 2.1 millime-
ters, approximately how much is the cross-sectional area 
increased? 3Assume that the cross section of the artery is 
circular; that is, A = pr2.4

52. Drug sensitivity. One hour after x milligrams of a particular 
drug are given to a person, the change in body temperature T 
(in degrees Fahrenheit) is given by

T = x2a1 -
x
9
b  0 … x … 6

Approximate the changes in body temperature produced by 
the following changes in drug dosages:

(A) From 2 to 2.1 milligrams

(B) From 3 to 3.1 milligrams

(C) From 4 to 4.1 milligrams

53. Learning. A particular person learning to type has an 
achievement record given approximately by

N = 75a1 -
2
t
b  3 … t … 20

where N is the number of words per minute typed after t 
weeks of practice. What is the approximate improvement 
from 5 to 5.5 weeks of practice?

31. A cube with 10-inch sides is covered with a coat of fiberglass 
0.2 inch thick. Use differentials to estimate the volume of the 
fiberglass shell.

32. A sphere with a radius of 5 centimeters is coated with ice 0.1 
centimeter thick. Use differentials to estimate the volume of 
the ice. 3Recall that V = 4

3pr3.4
In Problems 33–36,

(A) Find ∆y and dy for the function f at the indicated value of x.

(B) Graph ∆y and dy from part (A) as functions of ∆x.

(C) Compare the values of ∆y and dy from part (A) at the indicated 
values of ∆x.

33. f 1x2 = x2 + 2x + 3; x = -0.5, ∆x = dx = 0.1, 0.2, 0.3

34. f 1x2 = x2 + 2x + 3; x = -2, ∆x = dx = -0.1, -0.2, -0.3

35. f 1x2 = x3 - 2x2; x = 1, ∆x = dx = 0.05, 0.10, 0.15

36. f 1x2 = x3 - 2x2; x = 2, ∆x = dx = -0.05, -0.10, -0.15

In Problems 37–40, discuss the validity of each statement. If the 
statement is always true, explain why. If not, give a counterexample.

37. If the graph of the function y = f 1x2 is a line, then the func-
tions ∆y and dy (of the independent variable ∆x = dx) for 
f 1x2 at x = 3 are identical.

38. If the graph of the function y = f 1x2 is a parabola, then the 
functions ∆y and dy (of the independent variable ∆x = dx) 
for f 1x2 at x = 0 are identical.

39. Suppose that y = f 1x2 defines a differentiable function whose 
domain is the set of all real numbers. If every differential dy at 
x = 2 is equal to 0, then f 1x2 is a constant function.

40. Suppose that y = f 1x2 defines a function whose domain is 
the set of all real numbers. If every increment at x = 2 is 
equal to 0, then f 1x2 is a constant function.

41. Find dy if y = 11 - 2x2 
32x2.

42. Find dy if y = 14x3 - 22   2x3.

43. Find dy and ∆y for y = 521x, x = 4, and ∆x = dx = 0.3.

44. Find dy and ∆y for y = 780>1x, x = 100, and ∆x = dx = 1.

Applications
Use differential approximations in the following problems.

45. Advertising. A company will sell N units of a product after 
spending $x thousand in advertising, as given by

N = 60x - x2  5 … x … 30

Approximately what increase in sales will result by increas-
ing the advertising budget from $10,000 to $11,000? From 
$20,000 to $21,000?

46. Price–demand. Suppose that the daily demand (in pounds) 
for chocolate candy at $x per pound is given by

D = 1,000 - 40x2  1 … x … 5

If the price is increased from $3.00 per pound to $3.20 per 
pound, what is the approximate change in demand?

C
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54. Learning. If a person learns y items in x hours, as given 
 approximately by

y = 521x  0 … x … 9

what is the approximate increase in the number of items 
learned when x changes from 1 to 1.1 hours? From 4 to 
4.1 hours?

55. Politics. In a new city, the voting population (in thousands) 
is given by

N1t2 = 30 + 12t2 - t3  0 … t … 8

where t is time in years. Find the approximate change in 
votes for the following changes in time:

(A) From 1 to 1.1 years

(B) From 4 to 4.1 years

(C) From 7 to 7.1 years

Answers to Matched Problems
1. (A) ∆x = 1, ∆y = 5, ∆y>∆x = 5 (B) 4

2. dy =
1

21x
 dx

(A) 0.025    

∆x ∆y dy

-0.1 0.19 0.2

-0.2 0.36 0.4

-0.3 0.51 0.6

4. dR = -$20>wk; dP = - $40>wk

(B) 0.02    (C) 0.005

3. 

(B) 

(A) ∆y = -2∆x - ∆x2; dy = -2∆x

Marginal Cost, Revenue, and Profit
One important application of calculus to business and economics involves marginal 
analysis. In economics, the word marginal refers to a rate of change—that is, to a 
derivative. Thus, if C1x2 is the total cost of producing x items, then C′1x2 is called 
the marginal cost and represents the instantaneous rate of change of total cost with 
respect to the number of items produced. Similarly, the marginal revenue is the de-
rivative of the total revenue function, and the marginal profit is the derivative of the 
total profit function.

2.7 Marginal Analysis in Business and Economics
■■ Marginal Cost, Revenue, and Profit
■■ Application
■■ Marginal Average Cost, Revenue, 
and Profit

DEFINITION Marginal Cost, Revenue, and Profit
If x is the number of units of a product produced in some time interval, then

 total cost = C1x2
 marginal cost = C′1x2

 total revenue = R1x2
 marginal revenue = R′1x2

 total profit = P1x2 = R1x2 - C1x2
 marginal profit = P′1x2 = R′1x2 - C′1x2

 = 1marginal revenue2 - 1marginal cost2
Marginal cost (or revenue or profit) is the instantaneous rate of change of cost (or 
revenue or profit) relative to production at a given production level.

To begin our discussion, we consider a cost function C1x2. It is important to 
remember that C1x2 represents the total cost of producing x items, not the cost of 
producing a single item. To find the cost of producing a single item, we use the differ-
ence of two successive values of C1x2:

 Total cost of producing x + 1 items = C1x + 12
 Total cost of producing x items = C1x2

 Exact cost of producing the 1x + 12 st item = C1x + 12 - C1x2
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In Example 1, we found that the cost of the 501st tank and the marginal cost at a 
production level of 500 tanks differ by only a nickel. Increments and differentials will 
help us understand the relationship between marginal cost and the cost of a single 
item. If C1x2 is any total cost function, then

 C′1x2 ≈
C1x + ∆x2 - C1x2

∆x
 See Section 2.6

 C′1x2 ≈ C1x + 12 - C1x2  ∆x = 1

We see that the marginal cost C′1x2 approximates C1x + 12 - C1x2, the exact cost 
of producing the 1x + 12st item. These observations are summarized next and are 
illustrated in Figure 1.

Cost Analysis A company manufactures fuel tanks for cars. The total weekly cost 
(in dollars) of producing x tanks is given by

C1x2 = 10,000 + 90x - 0.05x2

(A) Find the marginal cost function.

(B) Find the marginal cost at a production level of 500 tanks per week.

(C) Interpret the results of part (B).

(D) Find the exact cost of producing the 501st item.

SOLUTION 
(A) C′1x2 = 90 - 0.1x

(B) C′15002 = 90 - 0.115002 = $40 Marginal cost

(C) At a production level of 500 tanks per week, the total production costs are in-
creasing at the rate of $40 per tank. We expect the 501st tank to cost about $40.

(D)  C15012 = 10,000 + 9015012 - 0.0515012 2

 = $42,539.95 Total cost of producing 501 tanks per week

 C15002 = 10,000 + 9015002 - 0.0515002 2

 = $42,500.00 Total cost of producing 500 tanks per week

 C15012 - C15002 = 42,539.95 - 42,500.00

 = $39.95        Exact cost of producing the 501st tank

Matched Problem 1   A company manufactures automatic transmissions for 
cars. The total weekly cost (in dollars) of producing x transmissions is given by

C1x2 = 50,000 + 600x - 0.75x2

(A) Find the marginal cost function.

(B) Find the marginal cost at a production level of 200 transmissions per week.

(C) Interpret the results of part (B).

(D) Find the exact cost of producing the 201st transmission.

EXAMPLE 1

C

x

y 5 C(x)

Dx 5 1 C(x 1 1) 2 C(x)

C9(x)

Tangent line at x

x 1 1x

Figure 1 C∙ 1x 2 ? C 1x ∙12 ∙ C 1x 2

THEOREM 1 Marginal Cost and Exact Cost
If C1x2 is the total cost of producing x items, then the marginal cost function 
 approximates the exact cost of producing the 1x + 12st item:

Marginal cost    Exact cost

C′1x2 ≈ C1x + 12 - C1x2
Similar statements can be made for total revenue functions and total profit 
functions.
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Theorem 1 states that the marginal cost at a given production level x approximates 
the cost of producing the 1x + 12st, or next, item. In practice, the marginal cost is 
used more frequently than the exact cost. One reason for this is that the marginal 
cost is easily visualized when one is examining the graph of the total cost func-
tion. Figure 2 shows the graph of the cost function discussed in Example 1, with 
tangent lines added at x = 200 and x = 500. The graph clearly shows that as 
production increases, the slope of the tangent line decreases. Thus, the cost of pro-
ducing the next tank also decreases, a desirable characteristic of a total cost func-
tion. We will have much more to say about graphical analysis in Chapter 4.

CONCEPTUAL  INSIGHTC(x)

x

$50,000

$40,000

$30,000

Slope 5 C 9(500)
5 40

Slope 5 C 9(200)
5 70

$10,000

$20,000

200 400 600 800

C(x) 5 10,000 1 90x 2 0.05x2

Figure 2  

Exact Cost and Marginal Cost The total cost of producing x bicycles is given by 
the cost function

C1x2 = 10,000 + 150x - 0.2x2

(A) Find the exact cost of producing the 121st bicycle.

(B) Use marginal cost to approximate the cost of producing the 121st bicycle.

SOLUTION 
(A) The cost of producing 121 bicycles is

C11212 = 10,000 + 15011212 - 0.211212 2 = $25,221.80

and the cost of producing 120 bicycles is

C11202 = 10,000 + 15011202 - 0.211202 2 = $25,120.00

So the exact cost of producing the 121st bicycle is

C11212 - C11202 = $25,221.80 - 25,120.00 = $101.80

(B) By Theorem 1, the marginal cost function C′1x2, evaluated at x = 120,  
approximates the cost of producing the 121st bicycle:

 C′1x2 = 150 - 0.4x

 C′11202 = 150 - 0.411202 = $102.00

Note that the marginal cost, $102.00, at a production level of 120 bicycles, is a good 
approximation to the exact cost, $101.80, of producing the 121st bicycle.

Matched Problem 2   For the cost function C(x) in Example 2

(A) Find the exact cost of producing the 141st bicycle.

(B) Use marginal cost to approximate the cost of producing the 141st bicycle.

EXAMPLE 2

Application
Now we discuss how price, demand, revenue, cost, and profit are tied together in 
typical applications. Although either price or demand can be used as the independent 
variable in a price–demand equation, it is common to use demand as the independent 
variable when marginal revenue, cost, and profit are also involved.

Production Strategy A company’s market research department recommends the 
manufacture and marketing of a new headphone. After suitable test marketing, the 
research department presents the following price–demand equation:

 x = 10,000 - 1,000p x is demand at price p. (1)

EXAMPLE 3
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In the price–demand equation (1), the demand x is given as a function of price p. 
By solving (1) for p (add 1,000p to both sides of the equation, subtract x from both 
sides, and divide both sides by 1,000), we obtain equation (2), in which the price p 
is given as a function of demand x:

 p = 10 - 0.001x (2)

where x is the number of headphones that retailers are likely to buy at $p per set.
The financial department provides the cost function

 C1x2 = 7,000 + 2x (3)

where $7,000 is the estimate of fixed costs (tooling and overhead) and $2 is the es-
timate of variable costs per headphone (materials, labor, marketing, transportation, 
storage, etc.).

(A) Find the domain of the function defined by the price–demand equation (2).

(B) Find and interpret the marginal cost function C′1x2.

(C) Find the revenue function as a function of x and find its domain.

(D) Find the marginal revenue at x = 2,000, 5,000, and 7,000. Interpret these 
 results.

(E) Graph the cost function and the revenue function in the same coordinate system. 
Find the intersection points of these two graphs and interpret the results.

(F) Find the profit function and its domain and sketch the graph of the function.

(G) Find the marginal profit at x = 1,000, 4,000, and 6,000. Interpret these  results.

SOLUTION 
(A) Since price p and demand x must be nonnegative, we have x Ú 0 and

 p = 10 - 0.001x Ú 0

 10 Ú 0.001x

 10,000 Ú x

Thus, the permissible values of x are 0 … x … 10,000.

(B) The marginal cost is C′1x2 = 2. Since this is a constant, it costs an additional 
$2 to produce one more headphone at any production level.

(C) The revenue is the amount of money R received by the company for manufac-
turing and selling x headphones at $p per set and is given by

R = 1number of headphones sold21price per headphone2 = xp

In general, the revenue R can be expressed as a function of p using equation (1) 
or as a function of x using equation (2). As we mentioned earlier, when using 
marginal functions, we will always use the number of items x as the indepen-
dent variable. Thus, the revenue function is

  R1x2 = xp = x110 - 0.001x2 Using equation (2) (4)

 = 10x - 0.001x2

Since equation (2) is defined only for 0 … x … 10,000, it follows that the 
 domain of the revenue function is 0 … x … 10,000.

In order to sell an increasing number of headphones, the price per headphone 
must decrease. At x = 10,000 the price–demand equation (2) requires a price of 
p = $0 to sell 10,000 headphones. It is not possible to further increase demand 
without paying retailers to take the headphones.

CONCEPTUAL  INSIGHT
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(D) The marginal revenue is

R′1x2 = 10 - 0.002x

For production levels of x = 2,000, 5,000, and 7,000, we have

R′12,0002 = 6  R′15,0002 = 0  R′17,0002 = -4

This means that at production levels of 2,000, 5,000, and 7,000, the respec-
tive approximate changes in revenue per unit change in production are $6, $0, 
and - $4. That is, at the 2,000 output level, revenue increases as production 
increases; at the 5,000 output level, revenue does not change with a “small” 
change in production; and at the 7,000 output level, revenue decreases with an 
increase in production.

(E) Graphing R(x) and C(x) in the same coordinate system results in Figure 3 on 
page 203. The intersection points are called the break-even points, because 
revenue equals cost at these production levels. The company neither makes 
nor loses money, but just breaks even. The break-even points are obtained as 
follows:

 C1x2 = R1x2
 7,000 + 2x = 10x - 0.001x2

 0.001x2 - 8x + 7,000 = 0 Solve by the quadratic formula

 x2 - 8,000x + 7,000,000 = 0 (see Appendix A.7).

 x =
8,000 { 28,0002 - 417,000,0002

2

 =
8,000 { 136,000,000

2

 =
8,000 { 6,000

2

 = 1,000, 7,000

 R11,0002 = 1011,0002 - 0.00111,0002 2 = 9,000

 C11,0002 = 7,000 + 211,0002 = 9,000

 R17,0002 = 1017,0002 - 0.00117,0002 2 = 21,000

 C17,0002 = 7,000 + 217,0002 = 21,000

The break-even points are (1,000, 9,000) and (7,000, 21,000), as shown in 
Figure 3. Further examination of the figure shows that cost is greater than rev-
enue for production levels between 0 and 1,000 and also between 7,000 and 
10,000. Consequently, the company incurs a loss at these levels. By contrast, 
for production levels between 1,000 and 7,000, revenue is greater than cost, 
and the company makes a profit.

(F) The profit function is

 P1x2 = R1x2 - C1x2
 = 110x - 0.001x22 - 17,000 + 2x2
 = -0.001x2 + 8x - 7,000

The domain of the cost function is x Ú 0, and the domain of the revenue func-
tion is 0 … x … 10,000. The domain of the profit function is the set of x values 
for which both functions are defined—that is, 0 … x … 10,000. The graph of 
the profit function is shown in Figure 4 on page 203. Notice that the x coor-
dinates of the break-even points in Figure 3 are the x intercepts of the profit 
function. Furthermore, the intervals on which cost is greater than revenue and 
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on which revenue is greater than cost correspond, respectively, to the intervals 
on which profit is negative and on which profit is positive.

(G) The marginal profit is

P′1x2 = -0.002x + 8

For production levels of 1,000, 4,000, and 6,000, we have

P′11,0002 = 6  P′14,0002 = 0  P′16,0002 = -4

This means that at production levels of 1,000, 4,000, and 6,000, the respective 
approximate changes in profit per unit change in production are $6, $0, and - $4. 
That is, at the 1,000 output level, profit will be increased if production is increased; 
at the 4,000 output level, profit does not change for “small” changes in produc-
tion; and at the 6,000 output level, profits will decrease if production is increased. 
It seems that the best production level to produce a maximum profit is 4,000.

Example 3 requires careful study since a number of important ideas in econom-
ics and calculus are involved. In the next chapter, we will develop a systematic pro-
cedure for finding the production level (and, using the demand equation, the selling 
price) that will maximize profit.

Matched Problem 3   Refer to the revenue and profit functions in Example 3.

(A) Find R′13,0002 and R′16,0002. Interpret the results.

(B) Find P′12,0002 and P′17,0002. Interpret the results.

Marginal Average Cost, Revenue, and Profit
Sometimes it is desirable to carry out marginal analysis relative to average cost (cost 
per unit), average revenue (revenue per unit), and average profit (profit per unit).

R(x), C(x) 

5,000

10,000

15,000

20,000

25,000

30,000

5,000
Number of headphone sets produced and sold per week

R
ev

en
ue

 a
nd

 c
os

t (
do

lla
rs

)

10,000

Loss

Profit

Break-even
points

Revenue function

Loss

Cost function

x

Figure 3

5,000 10,000

Profit function

P

x

$10,000

2$30,000

2$10,000

2$20,000

Figure 4

DEFINITION Marginal Average Cost, Revenue, and Profit
If x is the number of units of a product produced in some time interval, then

Cost per unit:   average cost = C1x2 =
C1x2

x

marginal average cost = C′1x2 =
d
dx

 C1x2
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Revenue per unit: average revenue = R1x2 =
R1x2

x

marginal average revenue = R′1x2 =
d
dx

 R1x2

Profit per unit:       average profit = P1x2 =
P1x2

x

marginal average profit = P′1x2 =
d
dx

  P1x2

Cost Analysis A small machine shop manufactures drill bits used in the petro-
leum industry. The manager estimates that the total daily cost (in dollars) of produc-
ing x bits is

C1x2 = 1,000 + 25x - 0.1x2

(A) Find C1x2 and C′1x2.

(B) Find C1102 and C′1102. Interpret these quantities.

(C) Use the results in part (B) to estimate the average cost per bit at a production 
level of 11 bits per day.

SOLUTION 

(A) 

EXAMPLE 4

 =
1,000

x
+ 25 - 0.1x     Average cost function

C′1x2 =
d
dx

 C1x2 = -  
1,000

x2 - 0.1 Marginal average cost function

(B) C1102 =
1,000

10
+ 25 - 0.11102 = $124

C′1102 = -  
1,000

102 - 0.1 = - $10.10

At a production level of 10 bits per day, the average cost of producing a bit is 
$124. This cost is decreasing at the rate of $10.10 per bit.

(C) If production is increased by 1 bit, then the average cost per bit will decrease 
by approximately $10.10. So, the average cost per bit at a production level of 
11 bits per day is approximately $124 - $10.10 = $113.90.

Matched Problem 4   Consider the cost function for the production of headphones 
from Example 3:

C1x2 = 7,000 + 2x

(A) Find C1x2 and C′1x2.

(B) Find C11002 and C′11002. Interpret these quantities.

(C) Use the results in part (B) to estimate the average cost per headphone at a pro-
duction level of 101 headphones.

 C1x2 =
C1x2

x
=

1,000 + 25x - 0.1x2

x
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! CAUTION

1. The marginal average cost function is computed by first finding the average cost 
function and then finding its derivative. As Explore and Discuss 1 illustrates, re-
versing the order of these two steps produces a different function that does not 
have any useful economic interpretations.

2. Recall that the marginal cost function has two interpretations: the usual interpretation 
of any derivative as an instantaneous rate of change and the special interpretation as 
an approximation to the exact cost of the 1x + 12st item. This special interpretation 
does not apply to the marginal average cost function. Referring to Example 4, we 
would be incorrect to interpret C′1102 = - $10.10 to mean that the average cost of 
the next bit is approximately - $10.10. In fact, the phrase “average cost of the next 
bit” does not even make sense. Averaging is a concept applied to a collection of items, 
not to a single item.

These remarks also apply to revenue and profit functions. 

A student produced the following solution to Matched Problem 4:

 C1x2 = 7,000 + 2x Cost

 C′1x2 = 2  Marginal cost

 
C′1x2

x
=

2
x

 “Average” of the marginal cost

Explain why the last function is not the same as the marginal average cost function.

Explore and Discuss 1

Skills Warm-up Exercises
In Problems 1–8, let C1x2 = 10,000 + 150x - 0.2x2 be the 
total cost in dollars of producing x bicycles. (If necessary, review 
Section 1.1).

1. Find the total cost of producing 99 bicycles.

2. Find the total cost of producing 100 bicycles.

3. Find the cost of producing the 100th bicycle.

4. Find the total cost of producing 199 bicycles.

5. Find the total cost of producing 200 bicycles.

6. Find the cost of producing the 200th bicycle.

7. Find the average cost per bicycle of producing 100 bicycles.

8. Find the average cost per bicycle of producing 200 bicycles.

In Problems 9–12, find the marginal cost function.

9. C1x2 = 150 + 0.7x 10. C1x2 = 2,700 + 6x

11. C1x2 = - 10.1x - 232 2

12. C1x2 = 640 + 12x - 0.1x2

W

A

In Problems 13–16, find the marginal revenue function.

13. R1x2 = 4x - 0.01x2 14. R1x2 = 36x - 0.03x2

15. R1x2 = x112 - 0.04x2 16. R1x2 = x125 - 0.05x2
In Problems 17–20, find the marginal profit function if the cost 
and revenue, respectively, are those in the indicated problems.

17. Problem 9 and Problem 13

18. Problem 10 and Problem 14

19. Problem 11 and Problem 15

20. Problem 12 and Problem 16

In Problems 21–28, find the indicated function if cost and revenue 
are given by C1x2 = 408 + 1.5x and R1x2 = 9x - 0.03x2, 
respectively.

21. Average cost function

22. Average revenue function

23. Marginal average cost function

24. Marginal average revenue function

B

Exercises 2.7
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37. Profit analysis. The total profit (in dollars) from the sale of 
x skateboards is

P1x2 = 30x - 0.3x2 - 250  0 … x … 100

(A) Find the exact profit from the sale of the 26th 
skateboard.

(B) Use marginal profit to approximate the profit from the 
sale of the 26th skateboard.

38. Profit analysis. The total profit (in dollars) from the sale of 
x calendars is

P1x2 = 22x - 0.2x2 - 400  0 … x … 100

(A) Find the exact profit from the sale of the 41st calendar.

(B) Use the marginal profit to approximate the profit from 
the sale of the 41st calendar.

39. Profit analysis. The total profit (in dollars) from the sale of 
x sweatshirts is

P1x2 = 5x - 0.005x2 - 450  0 … x … 1,000

Evaluate the marginal profit at the given values of x, and 
interpret the results.

(A) x = 450 (B) x = 750

40. Profit analysis. The total profit (in dollars) from the sale of 
x cameras is

P1x2 = 12x - 0.02x2 - 1,000  0 … x … 600

Evaluate the marginal profit at the given values of x, and 
interpret the results.

(A) x = 200 (B) x = 350

41. Profit analysis. The total profit (in dollars) from the sale of 
x lawn mowers is

P1x2 = 30x - 0.03x2 - 750  0 … x … 1,000

(A) Find the average profit per mower if 50 mowers are 
produced.

(B) Find the marginal average profit at a production level of 
50 mowers and interpret the results.

(C) Use the results from parts (A) and (B) to estimate the  
average profit per mower if 51 mowers are produced.

42. Profit analysis. The total profit (in dollars) from the sale of 
x gas grills is

P1x2 = 20x - 0.02x2 - 320  0 … x … 1,000

(A) Find the average profit per grill if 40 grills are produced.

(B) Find the marginal average profit at a production level of 
40 grills and interpret the results.

(C) Use the results from parts (A) and (B) to estimate the 
average profit per grill if 41 grills are produced.

43. Revenue analysis. The price p (in dollars) and the demand x 
for a brand of running shoes are related by the equation

x = 4,000 - 40p

(A) Express the price p in terms of the demand x, and find 
the domain of this function.

25. Profit function

26. Marginal profit function

27. Average profit function

28. Marginal average profit function

In Problems 29–32, discuss the validity of each statement. If the 
statement is always true, explain why. If not, give a counterexample.

29. If a cost function is linear, then the marginal cost is a constant.

30. If a price–demand equation is linear, then the marginal rev-
enue function is linear.

31. Marginal profit is equal to marginal cost minus marginal 
revenue.

32. Marginal average cost is equal to average marginal cost.

Applications
33. Cost analysis. The total cost (in dollars) of producing x food 

processors is

C1x2 = 2,000 + 50x - 0.5x2

(A) Find the exact cost of producing the 21st food processor.

(B) Use marginal cost to approximate the cost of producing 
the 21st food processor.

34. Cost analysis. The total cost (in dollars) of producing x 
electric guitars is

C1x2 = 1,000 + 100x - 0.25x2

(A) Find the exact cost of producing the 51st guitar.

(B) Use marginal cost to approximate the cost of producing 
the 51st guitar.

35. Cost analysis. The total cost (in dollars) of manufacturing x 
auto body frames is

C1x2 = 60,000 + 300x

(A) Find the average cost per unit if 500 frames are 
produced.

(B) Find the marginal average cost at a production level of 
500 units and interpret the results.

(C) Use the results from parts (A) and (B) to estimate the  
average cost per frame if 501 frames are produced.

36. Cost analysis. The total cost (in dollars) of printing x board 
games is

C1x2 = 10,000 + 20x

(A) Find the average cost per unit if 1,000 board games are 
produced.

(B) Find the marginal average cost at a production level of 
1,000 units and interpret the results.

(C) Use the results from parts (A) and (B) to estimate the 
average cost per board game if 1,001 board games are 
produced.

C
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(C) Find the revenue function and state its domain.

(D) Find the marginal revenue.

(E) Find R′13,0002 and R′16,0002 and interpret these 
quantities.

(F) Graph the cost function and the revenue function on the 
same coordinate system for 0 … x … 9,000. Find the 
break-even points and indicate regions of loss and profit.

(G) Find the profit function in terms of x.

(H) Find the marginal profit.

(I) Find P′11,5002 and P′14,5002 and interpret these 
quantities.

47. Revenue, cost, and profit. A company is planning to manu-
facture and market a new two-speed electric mixer. After 
conducting extensive market surveys, the research depart-
ment provides the following estimates: a weekly demand of 
400 mixers at a price of $40 per mixer and a weekly demand 
of 600 mixers at a price of $35 per mixer. The financial de-
partment estimates that weekly fixed costs will be $7,000 and 
variable costs (cost per unit) will be $10.

(A) Assume that the relationship between price p and demand x 
is linear. Use the research department’s estimates to express 
p as a function of x and find the domain of this function.

(B) Find the revenue function in terms of x and state its domain.

(C) Assume that the cost function is linear. Use the financial 
department’s estimates to express the cost function in 
terms of x.

(D) Graph the cost function and revenue function on the 
same coordinate system for 0 … x … 2,000. Find the 
break-even points and indicate regions of loss and profit.

(E) Find the profit function in terms of x.

(F) Evaluate the marginal profit at x = 500 and x = 900 
and interpret the results.

48. Revenue, cost, and profit. The company in Problem 47 is 
also planning to manufacture and market a four-speed mixer. 
For this mixer, the research department’s estimates are a 
weekly demand of 200 mixers at a price of $80 per mixer and 
a weekly demand of 300 mixers at a price of $70. The finan-
cial department’s estimates are fixed weekly costs of $6,500 
and variable costs of $25 per mixer.

(A) Assume that the relationship between price p and de-
mand x is linear. Use the research department’s estimates 
to express p as a function of x and find the domain of 
this function.

(B) Find the revenue function in terms of x and state its domain.

(C) Assume that the cost function is linear. Use the financial 
department’s estimates to express the cost function in 
terms of x.

(D) Graph the cost function and revenue function on the 
same coordinate system for 0 … x … 1000. Find the 
break-even points and indicate regions of loss and profit.

(B) Find the revenue R(x) from the sale of x pairs of running 
shoes. What is the domain of R?

(C) Find the marginal revenue at a production level of 1,600 
pairs and interpret the results.

(D) Find the marginal revenue at a production level of 2,500 
pairs, and interpret the results.

44. Revenue analysis. The price p (in dollars) and the demand x 
for a particular steam iron are related by the equation

x = 1,000 - 20p

(A) Express the price p in terms of the demand x, and find 
the domain of this function.

(B) Find the revenue R(x) from the sale of x steam irons. 
What is the domain of R?

(C) Find the marginal revenue at a production level of 400 
steam irons and interpret the results.

(D) Find the marginal revenue at a production level of 650 
steam irons and interpret the results.

45. Revenue, cost, and profit. The price–demand equation and 
the cost function for the production of table saws are given, 
respectively, by

x = 6,000 - 30p  and  C1x2 = 72,000 + 60x

where x is the number of saws that can be sold at a price of 
$p per saw and C(x) is the total cost (in dollars) of producing 
x saws.

(A) Express the price p as a function of the demand x, and 
find the domain of this function.

(B) Find the marginal cost.

(C) Find the revenue function and state its domain.

(D) Find the marginal revenue.

(E) Find R′11,5002 and R′14,5002 and interpret these 
quantities.

(F) Graph the cost function and the revenue function on the 
same coordinate system for 0 … x … 6,000. Find the 
break-even points, and indicate regions of loss and profit.

(G) Find the profit function in terms of x.

(H) Find the marginal profit.

(I) Find P′11,5002 and P′13,0002 and interpret these 
quantities.

46. Revenue, cost, and profit. The price–demand equation and 
the cost function for the production of HDTVs are given, 
respectively, by

x = 9,000 - 30p  and  C1x2 = 150,000 + 30x

where x is the number of HDTVs that can be sold at a price 
of $p per TV and C(x) is the total cost (in dollars) of produc-
ing x TVs.

(A) Express the price p as a function of the demand x, and 
find the domain of this function.

(B) Find the marginal cost.
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(A) Express the revenue function in terms of x.

(B) Graph the cost function and the revenue function in the 
same viewing window for 0 … x … 900. Use approxi-
mation techniques to find the break-even points correct 
to the nearest unit.

53. Break-even analysis. Table 1 contains price–demand and 
total cost data for the production of projectors, where p is 
the wholesale price (in dollars) of a projector for an annual 
demand of x projectors and C is the total cost (in dollars) of 
producing x projectors.

Table 1
x p($) C($)

3,190 581 1,130,000
4,570 405 1,241,000
5,740 181 1,410,000
7,330 85 1,620,000

(A) Find a quadratic regression equation for the price–demand 
data, using x as the independent variable.

(B) Find a linear regression equation for the cost data, us-
ing x as the independent variable. Use this equation to 
estimate the fixed costs and variable costs per projector. 
Round answers to the nearest dollar.

(C) Find the break-even points. Round answers to the near-
est integer.

(D) Find the price range for which the company will make a 
profit. Round answers to the nearest dollar.

54. Break-even analysis. Table 2 contains price–demand and 
total cost data for the production of treadmills, where p is 
the wholesale price (in dollars) of a treadmill for an annual 
demand of x treadmills and C is the total cost (in dollars) of 
producing x treadmills.

Table 2
x p($) C($)

2,910 1,435 3,650,000
3,415 1,280 3,870,000
4,645 1,125 4,190,000
5,330 910 4,380,000

(A) Find a linear regression equation for the price–demand 
data, using x as the independent variable.

(B) Find a linear regression equation for the cost data,  using 
x as the independent variable. Use this equation to 
estimate the fixed costs and variable costs per treadmill. 
Round answers to the nearest dollar.

(C) Find the break-even points. Round answers to the near-
est integer.

(D) Find the price range for which the company will make a 
profit. Round answers to the nearest dollar.

(E) Find the profit function in terms of x.

(F) Evaluate the marginal profit at x = 320 and x = 420 
and interpret the results.

49. Revenue, cost, and profit. The total cost and the total rev-
enue (in dollars) for the production and sale of x ski jackets 
are given, respectively, by

C1x2 = 24x + 21,900 and R1x2 = 200x - 0.2x2

0 … x … 1,000

(A) Find the value of x where the graph of R(x) has a 
 horizontal tangent line.

(B) Find the profit function P(x).

(C) Find the value of x where the graph of P(x) has a 
 horizontal tangent line.

(D) Graph C(x), R(x), and P(x) on the same coordinate sys-
tem for 0 … x … 1,000. Find the break-even points. 
Find the x intercepts of the graph of P(x).

50. Revenue, cost, and profit. The total cost and the total rev-
enue (in dollars) for the production and sale of x hair dryers 
are given, respectively, by

C1x2 = 5x + 2,340 and R1x2 = 40x - 0.1x2

0 … x … 400

(A) Find the value of x where the graph of R(x) has a hori-
zontal tangent line.

(B) Find the profit function P(x).

(C) Find the value of x where the graph of P(x) has a 
 horizontal tangent line.

(D) Graph C(x), R(x), and P(x) on the same coordinate 
 system for 0 … x … 400. Find the break-even points. 
Find the x intercepts of the graph of P(x).

51. Break-even analysis. The price–demand equation and the 
cost function for the production of garden hoses are given, 
respectively, by

p = 20 - 1x  and  C1x2 = 500 + 2x

where x is the number of garden hoses that can be sold at a 
price of $p per unit and C(x) is the total cost (in dollars) of 
producing x garden hoses.

(A) Express the revenue function in terms of x.

(B) Graph the cost function and revenue function in the 
same viewing window for 0 … x … 400. Use approxi-
mation techniques to find the break-even points correct 
to the nearest unit.

52. Break-even analysis. The price–demand equation and the 
cost function for the production of handwoven silk scarves 
are given, respectively, by

p = 60 - 21x  and  C1x2 = 3,000 + 5x

where x is the number of scarves that can be sold at a price of 
$p per unit and C(x) is the total cost (in dollars) of producing 
x scarves.
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(B) P′12,0002 = 4. At a production level of 2,000, a unit 
increase in production will increase profit by approxi-
mately $4.
P′17,0002 = -6. At a production level of 7,000, a unit 
increase in production will decrease profit by approxi-
mately $6.

4. (A) C1x2 =
7,000

x
+ 2; C′1x2 = -

7,000

x2

(B) C11002 = $72; C′11002 = - $0.70. At a production 
level of 100 headphones, the average cost per headphone 
is $72. This average cost is decreasing at a rate of $0.70 
per headphone.

(C) Approx. $71.30.

Answers to Matched Problems
1. (A) C′1x2 = 600 - 1.5x

(B) C′12002 = 300.

(C) At a production level of 200 transmissions, total costs 
are increasing at the rate of $300 per transmission.

(D) C12012 - C12002 = $299.25

2. (A) $93.80   (B) $94.00

3. (A) R′13,0002 = 4. At a production level of 3,000, a unit 
increase in production will increase revenue by approxi-
mately $4.
R′16,0002 = -2. At a production level of 6,000, a unit 
increase in production will decrease revenue by approxi-
mately $2.

Chapter 2 Summary and Review
Important Terms, Symbols, and Concepts
2.1 Introduction to Limits EXAMPLES

• The graph of the function y = f1x2 is the graph of the set of all ordered pairs 1x, f1x22.

• The limit of the function y = f1x2 as x approaches c is L, written as lim
xSc

  f1x2 = L, if the functional 
value f1x2 is close to the single real number L whenever x is close, but not equal, to c (on either  
side of c).

• The limit of the function y = f1x2 as x approaches c from the left is K, written as lim
xSc-  f1x2 = K, if 

f1x2 is close to K whenever x is close to, but to the left of, c on the real-number line.

• The limit of the function y = f1x2 as x approaches c from the right is L, written as lim
xSc +   f1x2 = L, if 

f1x2 is close to L whenever x is close to, but to the right of, c on the real-number line.

• The limit of the difference quotient [f1a + h2 - f1a2]>h is often a 0>0 indeterminate form. Algebraic 
simplification is often required to evaluate this type of limit.

Ex. 1, p. 128
Ex. 2, p. 129
Ex. 3, p. 130
Ex. 4, p. 131
Ex. 5, p. 133
Ex. 6, p. 134
Ex. 7, p. 135
Ex. 8, p. 135
Ex. 9, p. 136

Ex. 10, p. 137

2.2 Infinite Limits and Limits at Infinity
• If f1x2 increases or decreases without bound as x approaches a from either side of a, then the line x = a 

is a vertical asymptote of the graph of y = f1x2.

• If f1x2 gets close to L as x increases without bound or decreases without bound, then L is called the limit 
of f at ∞  or - ∞ .

• The end behavior of a function is described by its limits at infinity.

• If f1x2 approaches L as x S ∞  or as x S - ∞ , then the line y = L is a horizontal asymptote of the 
graph of y = f1x2. Polynomial functions never have horizontal asymptotes. A rational function can have 
at most one.

Ex. 1, p. 143
Ex. 2, p. 144

Ex. 3, p. 146

Ex. 4, p. 147
Ex. 5, p. 148
Ex. 6, p. 149
Ex. 7, p. 150

2.3 Continuity
• Intuitively, the graph of a continuous function can be drawn without lifting a pen off the paper. By 

 definition, a function f is continuous at c if

1. lim
x S c f1x2 exists,     2.  f(c) exists, and     3.  lim

x S c f1x2 = f1c2
• Continuity properties are useful for determining where a function is continuous and where it is 

 discontinuous.

• Continuity properties are also useful for solving inequalities.

Ex. 1, p. 156
Ex. 2, p. 157

Ex. 3, p. 159

Ex. 4, p. 160
Ex. 5, p. 161
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2.4 The Derivative
• Given a function y = f1x2, the average rate of change is the ratio of the change in y to the change in x.

• The instantaneous rate of change is the limit of the average rate of change as the change in x  
approaches 0.

• The slope of the secant line through two points on the graph of a function y = f1x2 is the ratio of the 
change in y to the change in x. The slope of the graph at the point 1a, f1a22 is the limit of the slope 
of the secant line through the points 1a, f1a22 and 1a + h, f1a + h22 as h approaches 0, provided the 
limit exists. In this case, the tangent line to the graph is the line through 1a,  f1a22 with slope equal to 
the limit.

• The derivative of y ∙ f 1x 2  at x, denoted f =1x2, is the limit of the difference quotient 
[  f1x + h2 - f1x2]>h as h S 0 (if the limit exists).

• The four-step process is used to find derivatives.

• If the limit of the difference quotient does not exist at x = a, then f is nondifferentiable at a and f =1a2 
does not exist.

Ex. 1, p. 167
Ex. 2, p. 167
Ex. 3, p. 170

Ex. 4, p. 172

Ex. 5, p. 173
Ex. 6, p. 174
Ex. 7, p. 175
Ex. 8, p. 175

2.5 Basic Differentiation Properties
• The derivative of a constant function is 0.

• For any real number n, the derivative of f1x2 = xn is nxn - 1.

• If f is a differentiable function, then the derivative of k f1x2 is k f ′1x2.

• The derivative of the sum or difference of two differentiable functions is the sum or difference of the 
derivatives of the functions.

Ex. 1, p. 182
Ex. 2, p. 183
Ex. 3, p. 183
Ex. 4, p. 185
Ex. 5, p. 186
Ex. 6, p. 186
Ex. 7, p. 187
Ex. 8, p. 187

2.6 Differentials
• Given the function y = f1x2, the change in x is also called the increment of x and is denoted as ∆x. The 

corresponding change in y is called the increment of y and is given by ∆y = f1x + ∆x2 - f1x2.

• If y = f1x2 is differentiable at x, then the differential of x is dx = ∆x and the differential of 
y ∙ f 1x2 is dy = f′1x2dx, or df = f′1x2dx. In this context, x and dx are both independent variables.

Ex. 1, p. 192

Ex. 2, p. 194
Ex. 3, p. 195
Ex. 4, p. 195

2.7 Marginal Analysis in Business and Economics
• If y = C1x2 is the total cost of producing x items, then y = C′1x2 is the marginal cost and 

C1x + 12 - C1x2 is the exact cost of producing item x + 1. Furthermore, C′1x2 ≈ C1x + 12 - C1x2. 
Similar statements can be made regarding total revenue and total profit functions.

• If y = C1x2 is the total cost of producing x items, then the average cost, or cost per unit, is 

C1x2 =
C1x2

x
 and the marginal average cost is C′1x2 =

d
dx

 C1x2. Similar statements can be made 

regarding total revenue and total profit functions.

Ex. 1, p. 199
Ex. 2, p. 200
Ex. 3, p. 200

Ex. 4, p. 204

Work through all the problems in this chapter review, and check 
your answers in the back of the book. Answers to all review prob-
lems are there, along with section numbers in italics to indicate 
where each type of problem is discussed. Where weaknesses show 
up, review appropriate sections of the text.

Many of the problems in this exercise set ask you to find a 
 derivative. Most of the answers to these problems contain both 
an unsimplified form and a simplified form of the derivative. 
When checking your work, first check that you applied the rules 

 correctly, and then check that you performed the algebraic simpli-
fication correctly.

1. Find the indicated quantities for y = f1x2 = 2x2 - 3:

(A) The change in y if x changes from 2 to 5

(B)  The average rate of change of y with respect to x if x 
changes from 2 to 5

(C)  The slope of the secant line through the points 12, f1222 
and 15, f1522 on the graph of y = f1x2

Review Exercises
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(D)  The instantaneous rate of change of y with respect to x 
at x = 2

(E)  The slope of the line tangent to the graph of y = f1x2 at 
x = 2

(F) f′122
2. Use the four-step process to find f ′1x2 for f1x2 = 4x - 5.

3. If lim
xS2

  f1x2 = 4 and lim
xS2

 g1x2 = 11 find

(A) lim
xS2

1-3f (x2 + 7g1x22 (B) lim
xS2

1f1x2g1x22

(C) lim a
xS2

f1x2
g1x2 b (D) lim

xS2
110 - x + 8g1x22

In Problems 4–10, use the graph of f to estimate the indicated 
limits and function values.

f (x)

x
5

5

22

22

Figure for 4–10

4. f(1.5) 5. f(2.5) 6. f(2.75) 7. f(3.25)

8. (A) lim
xS1- f1x2 (B) lim

xS1+
 f1x2

(C) lim
xS1

 f1x2 (D) f112
9. (A) lim

xS2-
 f1x2 (B) lim

xS2+
 f1x2

(C) lim
xS2

 f1x2 (D) f122
10. (A) lim

xS3-
 f1x2 (B) lim

xS3+
 f1x2

(C) lim
xS3

  f1x2 (D) f132
In Problems 11–13, use the graph of the function f shown in the 
figure to answer each question.

x

f (x)

50

5

Figure for 11–13

11. (A) lim
xS1

  f1x2 = ? (B) f112 = ?

(C) Is f continuous at x = 1?

12. (A) lim
xS2

  f1x2 = ? (B) f122 = ?

(C) Is f continuous at x = 2?

13. (A) lim
xS3

  f1x2 = ? (B) f132 = ?

(C) Is f continuous at x = 3?

In Problems 14–23, refer to the following graph of y = f1x2:

x

f (x)

222 4 6 8 10

20

10

210

Figure for 14–23

14. lim
xS ∞  f1x2 = ? 15. lim

xS - ∞ 
 f1x2 = ?

16. lim
xS2+  f1x2 = ? 17. lim

xS2- 
 f1x2 = ?

18. lim
xS6-  f1x2 = ? 19. lim

xS6+  f1x2 = ?

20. lim
xS6 f1x2 = ?

21. Identify any vertical asymptotes.

22. Identify any horizontal asymptotes.

23. Where is y = f1x2 discontinuous?

24. Use the four-step process to find f′1x2 for f1x2 = 4x3.

25. If f132 = 2, f′132 = -3, g132 = 5, and g′132 = -1, 
then find h′132 for each of the following functions:

(A) h1x2 = -2f1x2
(B) h1x2 = 4g1x2
(C) h1x2 = 3f1x2 + 7

(D) h1x2 = -g1x2 + 5

(E) h1x2 = 5f1x2 - 3g1x2

In Problems 26–31, find f′1x2 and simplify.

26. f1x2 =
1
2

 x2 + 2x + 3 27. f1x2 = 3x1>3 + 4x + 7

28. f1x2 = 5 29. f1x2 =
3
2x

+
5x3

4

30. f1x2 =
0.5

x4 + 0.25x4

31. f1x2 = 13x3 - 221x + 12 [Hint: Multiply and then 
 differentiate.]

In Problems 32–35, find the indicated quantities for 
y = f1x2 = x2 + x.

32. ∆x, ∆y, and ∆y>∆x for x1 = 2 and x2 = 5.

33. 3f1x1 + ∆x2 - f1x124 >∆x for x1 = 2 and ∆x = 3.

34. dy for x1 = 2 and x2 = 5.

35. ∆y and dy for x = 2, and ∆x = dx = 0.1.

Problems 36–38 refer to the function.

f1x2 = e x2 if 0 … x 6 2
8 - x if x Ú 2

which is graphed in the figure.
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x

f(x)

50 10

5

10

Figure for 36–38

36. (A) lim
xS2-

  f1x2 = ? (B) lim
xS2+

  f1x2 = ?

(C) lim
xS2

  f1x2 = ? (D) f122 = ?

(E) Is f continuous at x = 2?

37. (A) lim
xS5-

  f1x2 = ? (B) lim
xS5+

  f1x2 = ?

(C) lim
xS5

  f1x2 = ? (D) f152 = ?

(E) Is f continuous at x = 5?

38. Solve each inequality. Express answers in interval notation.

(A) f1x2 6 0 (B) f1x2 Ú 0

In Problems 39–41, solve each inequality. Express the answer 
in interval notation. Use a graphing calculator in Problem 41 to 
 approximate partition numbers to four decimal places.

39. x2 - x 6 12

40. 
x - 5

x2 + 3x
7 0

41. x3 + x2 - 4x - 2 7 0

42. Let f1x2 = 0.5x2 - 5.

(A)  Find the slope of the secant line through 12, f1222 and 
14, f1422.

(B)  Find the slope of the secant line through 12, f1222 and 
12 + h, f12 + h22, h ∙ 0.

(C) Find the slope of the tangent line at x = 2.

In Problems 43–46, find the indicated derivative and simplify.

43. 
dy

dx
 for y =

x - 4

4
 - 2x-2 + 3

44. y′ for y =
31x

2
+

5

31x

45. g′1x2 for g1x2 = 1.8
32x +

0.9
31x

46. 
dy

dx
 for y =

6x4 + 5

7x4

47. For y = f1x2 = 5 + (x - 3)2, find

(A) The slope of the graph at x = 4

(B)  The equation of the tangent line at x = 4 in the form 
y = mx + b

In Problems 48 and 49, find the value(s) of x where the tangent 
line is horizontal.

48. f1x2 = 12 + 3x2

49. f1x2 =
2
3

 x3 - 5x2 - 12x + 101

In Problems 50 and 51, approximate (to four decimal places) 
the value(s) of x where the graph of f has a horizontal tangent 
line.

50. f1x2 = x4 - 2x3 - 5x2 + 7x

51. f1x2 = x5 - 10x3 - 5x + 10

52. If an object moves along the y axis (scale in feet) so that it is 
at y = f1t2 = 10 + 30t + 8t2 at time t (in seconds), find

(A) The instantaneous velocity function

(B) The velocity at time t = 2 seconds

53. A rat moves along a wall (scale in feet) so that at time x (in 
seconds) it is at height y = -3x2 + 50x + 10. Find

(A) The instantaneous velocity function

(B) The velocity at time x = 2 seconds

54. Let f1x2 = x3, g1x2 = 1x - 42 3, and h1x2 = x3 - 4.

(A) How are the graphs of f, g, and h related? Illustrate  
your conclusion by graphing f, g, and h on the same 
coordinate axes.

(B) How would you expect the graphs of the derivatives 
of these functions to be related? Illustrate your conclusion 
by graphing f =, g′, and h′ on the same coordinate axes.

In Problems 55–59, determine where f is continuous. Express the 
answer in interval notation.

55. f1x2 = x2 - 4 56. f1x2 =
x + 1
x - 2

57. f1x2 =
x + 4

x2 + 3x - 4
58. f1x2 = 324 - x2

59. f1x2 = 24 - x2

In Problems 60–69, evaluate the indicated limits if they exist.

60. Let f1x2 =
3x

x2 - 7x
. Find

(A) lim
xS2

  f1x2 (B) lim
xS7

  f1x2 (C) lim
xS0

  f1x2

61. Let f1x2 =
x + 1

13 - x2 2. Find

(A) lim
xS1

  f1x2 (B) lim
xS -1

  f1x2 (C) lim
xS3

  f1x2

62. Let f1x2 =
0 x - 4 0
x - 4

. Find

(A) lim
xS4-

  f1x2 (B) lim
xS4+

  f1x2 (C) lim
xS4

  f1x2

63. Let f1x2 =
x - 3

9 - x2. Find

(A) lim
xS3

  f1x2 (B) lim
xS -3

  f1x2 (C) lim
xS0

  f1x2
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64. Let f1x2 =
x2 - x - 2

x2 - 7x + 10
. Find

(A) lim
xS -1

  f1x2 (B) lim
xS2

  f1x2 (C) lim
xS5

  f1x2

65. Let f1x2 =
2x

3x - 6
. Find

(A) lim
xS ∞

  f1x2 (B) lim
xS -∞

  f1x2 (C) lim
xS2

  f1x2

66. Let f1x2 =
2x3

31x - 22 2. Find

(A) lim
xS ∞

  f1x2 (B) lim
xS -∞

  f1x2 (C) lim
xS2

  f1x2

67. Let f1x2 =
2x

31x - 22 3. Find

(A) lim
xS ∞

  f1x2 (B) lim
xS -∞

  f1x2 (C) lim
xS2

  f1x2

68. lim
hS0

 
f11 + h2 - f112

h
 for f1x2 = x2 - 1

69. lim
hS0

 
f1x + h2 - f1x2

h
 for f1x2 =

4x2 + 3

x2

In Problems 70 and 71, use the definition of the derivative and the 
four-step process to find f′1x2.

70. f1x2 = x2 - x 71. f1x2 = 1x - 3

Problems 72–77 refer to the function f in the figure. Determine 
whether f is differentiable at the indicated value of x.

f (x)

x
5

4

21
22

72. x = -1 73. x = 0 74. x = 1

75. x = 2 76. x = 3 77. x = 4

In Problems 78–82, find all horizontal and vertical asymptotes.

78. f1x2 =
11x

x - 5
79. f1x2 =

-2x + 5

1x - 42 2

80. f1x2 =
x2 + 9
x - 3

81. f1x2 =
x2 - 9

x2 + x - 2

82. f1x2 =
x3 - 1

x3 - x2 - x + 1

83. The domain of the power function f1x2 = x1/3 is the set of 
all real numbers. Find the domain of the derivative f =1x2. 
Discuss the nature of the graph of y = f1x2 for any x values 
excluded from the domain of f =1x2.

84. Let f be defined by

f1x2 = e x2 - m if x … 1
-x2 + m if x 7 1

where m is a constant.

(A) Graph f for m = 0, and find

lim
xS1-

  f1x2 and lim
xS1+

  f1x2
(B) Graph f for m = 2, and find

lim
xS1-

  f1x2 and lim
xS1+

  f1x2
(C) Find m so that

lim
xS1-

  f1x2 = lim
xS1+

  f1x2
and graph f for this value of m.

(D) Write a brief verbal description of each graph. How  
does the graph in part (C) differ from the graphs in parts 
(A) and (B)?

85. Let f1x2 = 1 - ∙ x - 1 ∙ , 0 … x … 2 (see figure).

f (x)

x

1

1 2

(A) lim
hS0-

 
f11 + h2 - f112

h
= ?

(B) lim
hS0+

 
f11 + h2 - f112

h
= ?

(C) lim
hS0

 
f11 + h2 - f112

h
= ?

(D) Does f ′112 exist?

Applications
86. Natural-gas rates. Table 1 shows the winter rates for 

natural gas charged by the Bay State Gas Company. The base 
charge is a fixed monthly charge, independent of the amount 
of gas used per month.

Table 1 Natural Gas Rates
Base charge $7.47
First 90 therms $0.4000 per therm
All usage over 90 therms $0.2076 per therm

(A) Write a piecewise definition of the monthly charge S1x2 
for a customer who uses x therms in a winter month.

(B) Graph S1x2.

(C) Is S1x2 continuous at x = 90? Explain.

87. Cost analysis. The total cost (in dollars) of producing 
x mobile phones is

C1x2 = 12,500 + 100x + x2

(A) Find the exact cost of producing the 11th mobile phone.

(B) Use the marginal cost to approximate the cost of produc-
ing the 11th mobile phone.
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214 CHAPTER 2 Limits and the Derivative 

88. Cost analysis. The total cost (in dollars) of producing 
x motorcycles is

C1x2 = 10,000 + 500x + 0.03x2

(A) Find the total cost and the marginal cost at a production 
level of 200 motorcycles and interpret the results.

(B) Find the average cost and the marginal average cost at 
a manufacturing level of 200 motorcycles and interpret 
the results.

89. Cost analysis. The total cost (in dollars) of producing x laser 
printers per week is shown in the figure. Which is greater, the 
approximate cost of producing the 201st printer or the approxi-
mate cost of producing the 601st printer? Does this graph rep-
resent a manufacturing process that is becoming more efficient 
or less efficient as production levels increase? Explain.

x
200 400 600 800 1,000

$20,000

$40,000

$60,000

$80,000

$100,000

C(x)

90. Cost analysis. Let

p = 25 - 0.01x and C1x2 = 2x + 9,000
0 … x … 2,500

be the price–demand equation and cost function,  
respectively, for the manufacture of umbrellas.

(A) Find the marginal cost, average cost, and marginal aver-
age cost functions.

(B) Express the revenue in terms of x, and find the marginal 
revenue, average revenue, and marginal average revenue 
functions.

(C) Find the profit, marginal profit, average profit, and mar-
ginal average profit functions.

(D) Find the break-even point(s).

(E) Evaluate the marginal profit at x = 1,000, 1,150, and 
1,400, and interpret the results.

(F) Graph R = R1x2 and C = C1x2 on the same coordi-
nate system, and locate regions of profit and loss.

91. Employee training. A company producing computer com-
ponents has established that, on average, a new employee can 
assemble N1t2 components per day after r t days of on-the-job 
training, as given by

N1t2 =
40t - 80

t
, t Ú 2

(A) Find the average rate of change of N1t2 from 2 days to 
5 days.

(B) Find the instantaneous rate of change of N1t2 at 
2 days.

92. Sales analysis. The total number of swimming pools, N (in 
thousands), sold during a year is given by

N1t2 = 2t +
1
3

 t3/2

where t is the number of months since the beginning of the 
year. Find N192 and N′192, and interpret these quantities.

93. Natural-gas consumption. The data in Table 2 give the 
U.S. consumption of natural gas in trillions of cubic feet. 
(Source: Energy Information Administration)

Table 2

Year
Natural-Gas 
Consumption

1960 12.0
1970 21.1
1980 19.9
1990 18.7
2000 21.9
2010 24.1

(A) Let x represent time (in years), with x = 0 correspond-
ing to 1960, and let y represent the corresponding U.S. 
consumption of natural gas. Enter the data set in a graph-
ing calculator and find a cubic regression equation for 
the data.

(B) If y = N1x2 denotes the regression equation found 
in part (A), find N1602 and N′1602, and write a brief 
verbal interpretation of these results.

94. Break-even analysis. Table 3 contains price–demand and 
total cost data from a bakery for the production of kringles (a 
Danish pastry), where p is the price (in dollars) of a kringle 
for a daily demand of x kringles and C is the total cost (in 
dollars) of producing x kringles.

Table 3
x p 1$ 2 C 1$ 2

125 9 740
140 8 785
170 7 850
200 6 900

(A) Find a linear regression equation for the price–demand 
data, using x as the independent variable.

(B) Find a linear regression equation for the cost data, using 
x as the independent variable. Use this equation to esti-
mate the fixed costs and variable costs per kringle.

(C) Find the break-even points.

(D) Find the price range for which the bakery will make a 
profit.

95. Pollution. A sewage treatment plant uses a pipeline that extends 
1 mile toward the center of a large lake. The concentration of 
sewage C1x2 in parts per million, x meters from the end of the 
pipe is given approximately by

C1x2 =
500

x2 , x Ú 1
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What is the instantaneous rate of change of concentration at 
10 meters? At 100 meters?

96. Medicine. The body temperature (in degrees Fahrenheit) of 
a patient t hours after taking a fever-reducing drug is given by

F1t2 = 0.16 t2 - 1.6 t + 102

Find F142 and F′142. Write a brief verbal interpretation of 
these quantities.

97. Learning. If a person learns N items in t hours, as given by

N1t2 = 201t

find the rate of learning after

(A) 1 hour (B) 4 hours

98. Physics. The coefficient of thermal expansion (CTE) is a 
measure of the expansion of an object subjected to extreme 
temperatures. We want to use a Michaelis–Menten function 
of the form

C1T2 =
CmaxT

M + T

where C = CTE, T is temperature in K (degrees  
Kelvin), and Cmax and M are constants. Table 4 lists the  
coefficients of thermal expansion for titanium at various 
temperatures.

Table 4 Coefficients of  
Thermal Expansion

T 1K 2 Titanium

100 4.5
200 7.4
293 8.6
500 9.9
800 11.1

1100 11.7

(A) Plot the points in columns 1 and 2 of Table 4 on graph 
paper and estimate Cmax to the nearest integer. To 

estimate M, add the horizontal line CTE =
Cmax

2
 to 

your graph, connect successive points on the graph with 
straight-line segments, and estimate the value of T (to the 
nearest multiple of fifty) that satisfies

C1T2 =
Cmax

2
.

(B) Use the constants 
Cmax

2
 and M from part (A) to form a 

Michaelis–Menten function for the CTE of titanium.

(C) Use the function from part (B) to estimate the CTE of 
titanium at 600 K and to estimate the temperature when 
the CTE of titanium is 10.
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3.1 The Constant e and 
Continuous Compound 
Interest

3.2 Derivatives of Exponential 
and Logarithmic Functions

3.3 Derivatives of 
Trigonometric Functions

3.4 Derivatives of Products 
and Quotients

3.5 The Chain Rule

3.6 Implicit Differentiation

3.7 Related Rates

3.8 Elasticity of Demand

Additional  
Derivative Topics

Introduction
In this chapter, we develop techniques for finding derivatives of a wide va-
riety of functions, including exponential and logarithmic functions. There are 
straightforward procedures—the product rule, quotient rule, and chain rule—
for writing down the derivative of any function that is the product, quotient, 
or composite of functions whose derivatives are known. With the ability to 
calculate derivatives easily, we consider a wealth of applications involving 
rates of change. For example, we apply the derivative to determine how the 
demand for bicycle helmets is affected by a change in price (see Problem 94 
in Section 3.5). Before starting this chapter, you may find it helpful to review 
the basic properties of exponential and logarithmic functions in Sections 1.5 
and 1.6.

3

216
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 SECTION 3.1   The Constant e and Continuous Compound Interest 217

In Chapter 1, both the exponential function with base e and continuous compound 
interest were introduced informally. Now, with an understanding of limit concepts, 
we can give precise definitions of e and continuous compound interest.

The Constant e
The irrational number e is a particularly suitable base for both exponential and loga-
rithmic functions. The reasons for choosing this number as a base will become clear 
as we develop differentiation formulas for the exponential function ex and the natural 
logarithmic function ln x.

In precalculus treatments (Chapter 1), the number e is defined informally as the 
irrational number that can be approximated by the expression 31 + 11>n24n for n 
sufficiently large. Now we will use the limit concept to formally define e as either of 
the following two limits. [Note: If s = 1>n, then as n S ∞ , s S 0.]

3.1 The Constant e and Continuous Compound Interest
■■ The Constant e
■■ Continuous Compound Interest

DEFINITION The Number e

e = lim
nS ∞

 a1 +
1
n
b

n

  or, alternatively,  e = lim
sS0

11 + s2 1>s

Both limits are equal to e ∙ 2.718 281 828 459 N

Proof that the indicated limits exist and represent an irrational number between 2 
and 3 is not easy and is omitted.

The two limits used to define e are unlike any we have encountered so far. Some 
people reason (incorrectly) that both limits are 1 because 1 + s S 1 as s S 0 and 
1 to any power is 1. An ordinary scientific calculator with a yx key can convince 
you otherwise. Consider the following table of values for s and f1s2 = 11 + s2 1>s 
and Figure 1 for s close to 0. Compute the table values with a calculator yourself, 
and try several values of s even closer to 0. Note that the function is discontinuous 
at s = 0.

f (s) 5 (1 1 s)1/s

s

f (s)

0.5020.5

1

2

3

4

Figure 1
s approaches 0 from the left S 0 d  s approaches 0 from the right

s -0.5 -0.2 -0.1 -0.01 S 0 d 0.01 0.1 0.2 0.5

11 ∙ s 21,s 4.0000 3.0518 2.8680 2.7320 S e d 2.7048 2.5937 2.4883 2.2500

CONCEPTUAL INSIGHT

Continuous Compound Interest
Now we can see how e appears quite naturally in the important application of com-
pound interest. Let us start with simple interest, move on to compound interest, and 
then proceed on to continuous compound interest.
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218 CHAPTER 3 Additional Derivative Topics 

On one hand, if a principal P is borrowed at an annual rate r, then after t years at 
simple interest, the borrower will owe the lender an amount A given by

 A = P + Prt = P11 + rt2 Simple interest (1)

If r is the interest rate written as a decimal, then 100r% is the rate in percent. For exam-
ple, if r = 0.12, then 100r% = 10010.122% = 12%. The expressions 0.12 and 12% 
are equivalent. Unless stated otherwise, all formulas in this book use r in decimal form.

On the other hand, if interest is compounded m times a year, then the borrower 
will owe the lender an amount A given by

 A = Pa1 +
r
m
b

mt

 Compound interest (2)

where r>m is the interest rate per compounding period and mt is the number of com-
pounding periods. Suppose that P, r, and t in equation (2) are held fixed and m is in-
creased. Will the amount A increase without bound, or will it tend to approach some 
limiting value?

Let us perform a calculator experiment before we attack the general limit 
 problem. If P = $100, r = 0.06, and t = 2 years, then

A = 100a1 +
0.06

m
b

2m

We compute A for several values of m in Table 1. The biggest gain appears in the first 
step, then the gains slow down as m increases. The amount A appears to approach 
$112.75 as m gets larger and larger.

Table 1

Compounding Frequency m
A ∙ 100a1 ∙

0.06
m

b
2m

Annually 1 $112.3600
Semiannually 2 112.5509
Quarterly 4 112.6493
Monthly 12 112.7160
Weekly 52 112.7419
Daily 365 112.7486
Hourly 8,760 112.7496

Keeping P, r, and t fixed in equation (2), we pull P outside the limit using a property 
of limits (see Theorem 2, property 5, Section 2.1):

 lim
mS ∞

 Pa1 +
r
m
b

mt

= P lim
mS ∞

 a1 +
r
m
b

mt   Let s = r>m, so mt = rt>s and  
s S 0 as m S ∞ .

 = P lim
sS0

11 + s2 rt>s  Use a new limit property.

 = P3 lim
sS0

11 + s2 1>s4rt Use the definition of e.

 = Pert

(The new limit property that is used in the derivation is: If lim
xSc

 f1x2 exists, then 
lim
xSc 

3f1x24p = 3 lim
xSc

  f1x24p, provided that the last expression names a real number.)

The resulting formula is called the continuous compound interest formula, a 
widely used formula in business and economics.
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THEOREM 1 Continuous Compound Interest Formula
If a principal P is invested at an annual rate r (expressed as a decimal) compounded  
continuously, then the amount A in the account at the end of t years is given by

A = Pert

Computing Continuously Compounded Interest If $100 is invested at 6% com-
pounded continuously, what amount will be in the account after 2 years? How much 
interest will be earned?

SOLUTION       A = Pert

 = 100e10.062122 6% is equivalent to r = 0.06.

 ≈ $112.7497

Compare this result with the values calculated in Table 1. The interest earned is 
$112.7497 - $100 = $12.7497.

Matched Problem 1 What amount (to the nearest cent) will be in an account 
after 5 years if $100 is invested at an annual nominal rate of 8% compounded an-
nually? Semiannually? Continuously?

EXAMPLE 1

Reminder
Following common usage, we will 
often write “at 6% compounded  
continuously,” understanding that  
this means “at an annual rate of  
6% compounded continuously.”

Graphing the Growth of an Investment Union Savings Bank offers a 5-year 
certificate of deposit (CD) that earns 5.75% compounded continuously. If $1,000 is 
invested in one of these CDs, graph the amount in the account as a function of time 
for a period of 5 years.

SOLUTION We want to graph

A = 1,000e0.0575t  0 … t … 5

If t = 2, then A = 1,000 e0.0575122 = 1,121.87, which we round to the nearest 
 dollar, 1,122. Similarly, using a calculator, we find A for t = 0, 1, 3, 4, and 5 (Table 2).  
Then we graph the points from the table and join the points with a smooth curve 
(Fig. 2).

EXAMPLE 2

Table 2
t A ($)

0 1,000
1 1,059
2 1,122
3 1,188
4 1,259
5 1,333 5

500

0

1000

1500

A

t

Figure 2

Depending on the domain, the graph of an exponential function can appear 
to be linear. Table 2 shows that the graph in Figure 2 is not linear. The slope 
 determined by the first two points (for t = 0 and t = 1) is 59 but the slope deter-
mined by the first and third points (for t = 0 and t = 2) is 61. For a linear graph, 
the slope determined by any two points is constant.

CONCEPTUAL INSIGHT
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220 CHAPTER 3 Additional Derivative Topics 

Matched Problem 2 If $5,000 is invested in a Union Savings Bank 4-year CD 
that earns 5.61% compounded continuously, graph the amount in the account as a 
function of time for a period of 4 years.

Computing Growth Time How long will it take an investment of $5,000 to grow 
to $8,000 if it is invested at 5% compounded continuously?

SOLUTION Starting with the continous compound interest formula A = Pert, we 
must solve for t:

 A = Pert

 8,000 = 5,000e0.05t  Divide both sides by 5,000 and  
reverse the equation. e0.05t = 1.6

 ln e0.05t = ln 1.6   Take the natural logarithm of both  
sides—recall that logb b

x = x.
 0.05t = ln 1.6

 t =
ln 1.6
0.05

 t ≈ 9.4 years

Figure 3 shows an alternative method for solving Example 3 on a graphing 
calculator.

0
0 12

10,000

Figure 3

 y1 ∙ 5,000e0.05x

 y2 ∙ 8,000

Matched Problem 3 How long will it take an investment of $10,000 to grow 
to $15,000 if it is invested at 9% compounded continuously?

EXAMPLE 3

Computing Doubling Time How long will it take money to double if it is invested 
at 6.5% compounded continuously?

SOLUTION Money has doubled when the amount A is twice the principal P, that 
is, when A = 2P. So we substitute A = 2P and r = 0.065 in the continuous com-
pound interest formula A = Pert, and solve for t:

 2P = Pe0.065t  Divide both sides by P and reverse the equation.

 e0.065t = 2  Take the natural logarithm of both sides.

 ln e0.065t = ln 2  Simplify.

 0.065t = ln 2  
 t =

ln 2
0.065

 t ≈ 10.66 years

Matched Problem 4 How long will it take money to triple if it is invested at 
5.5% compounded continuously?

EXAMPLE 4
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You are considering three options for investing $10,000: at 7% compounded annu-
ally, at 6% compounded monthly, and at 5% compounded continuously.

(A) Which option would be the best for investing $10,000 for 8 years?

(B) How long would you need to invest your money for the third option to be 
the best?

Explore and Discuss 1

Skills Warm-up Exercise
In Problems 1–8, solve for the variable to two decimal places.  
(If necessary, review Sections 1.5 and 1.6).

1. A = 1,200e0.04152 2. A = 3,000e0.071102

3. 9827.30 = Pe0.025132 4. 50,000 = Pe0.054172

5. 6,000 = 5,000e0.0325t 6. 10,000 = 7,500e0.085t

7. 956 = 900e1.5r 8. 4,660 = 3,450e3.75r

Use a calculator to evaluate A to the nearest cent in Problems 9 
and 10.

9. A = $10,000e0.1t for t = 1, 2, and 3

10. A = $10,000e0.1t for t = 10, 20, and 30

11. If $6,000 is invested at 10% compounded continuously, graph 
the amount in the account as a function of time for a period 
of 8 years.

12. If $4,000 is invested at 8% compounded continuously, graph 
the amount in the account as a function of time for a period 
of 6 years.

In Problems 13–20, solve for t or r to two decimal places.

13. 2 = e0.07t 14. 2 = e0.09t

15. 2 = e9r 16. 2 = e18r

17. 3 = e0.03t 18. 3 = e0.08t

19. 3 = e10r 20. 3 = e20r

In Problems 21 and 22, use a calculator to complete each table to 
five decimal places.

21. 

W

A

B

C

23. Use a calculator and a table of values to investigate

lim
nS ∞

11 + n2 1>n

Do you think this limit exists? If so, what do you think it is?

24. Use a calculator and a table of values to investigate

lim
sS0+ a1 +

1
s
b

s

Do you think this limit exists? If so, what do you think it is?

25. It can be shown that the number e satisfies the inequality

a1 +
1
n
b

n

6 e 6 a1 +
1
n
b

n + 1

  n Ú 1

Illustrate this condition by graphing

 y1 = 11 + 1>n2 n

 y2 = 2.718 281 828 ≈ e

 y3 = 11 + 1>n2 n + 1

in the same viewing window, for 1 … n … 20.

26. It can be shown that

es = lim
nS ∞

 a1 +
s
n
b

n

for any real number s. Illustrate this equation graphically for 
s = 2 by graphing

 y1 = 11 + 2>n2 n

 y2 = 7.389 056 099 ≈ e2

in the same viewing window, for 1 … n … 50.

Exercises 3.1

n 31 ∙ 11 ,n 2 4n
10 2.593 74

100

1,000

10,000

100,000

1,000,000

10,000,000

T T
∞ e = 2.718 281 828 459 c

s 11 ∙ s 21,s
0.01 2.704 81

-0.01

0.001

-0.001

0.000 1

-0.000 1

0.000 01

-0.000 01

T T
0 e = 2.718 281 828 459 c

22. 
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that earns 7.2% compounded continuously and $10,000 in an 
account that earns 8.4% compounded annually. Use graphical 
approximation methods to determine how long it will take for 
his total investment in the two accounts to grow to $35,000.

40. Growth time. A woman invests $5,000 in an account that 
earns 8.8% compounded continuously and $7,000 in an ac-
count that earns 9.6% compounded annually. Use graphical 
approximation methods to determine how long it will take for 
her total investment in the two accounts to grow to $20,000.

41. Doubling times. 

(A) Show that the doubling time t (in years) at an annual rate 
r compounded continuously is given by

t =
ln 2

r

(B) Graph the doubling-time equation from part (A) for 
0.02 … r … 0.30. Is this restriction on r reasonable? 
Explain.

(C) Determine the doubling times (in years, to two decimal 
places) for r = 5%, 10%, 15%, 20%, 25%, and 30%.

42. Doubling rates. 

(A) Show that the rate r that doubles an investment at con-
tinuously compounded interest in t years is given by

r =
ln 2

t

(B) Graph the doubling-rate equation from part (A) for 
1 … t … 20. Is this restriction on t reasonable? Explain.

(C) Determine the doubling rates for t = 2, 4, 6, 8, 10, and 
12 years.

43. Radioactive decay. A mathematical model for the decay of 
radioactive substances is given by

Q = Q0e
rt

where

 Q0 = amount of the substance at time t = 0

 r = continuous compound rate of decay

 t = time in years

 Q = amount of the substance at time t

If the continuous compound rate of decay of radium per year 
is r = -0.000 433 2, how long will it take a certain amount 
of radium to decay to half the original amount? (This period 
is the half-life of the substance.)

44. Radioactive decay. The continuous compound rate of 
decay of carbon-14 per year is r = -0.000 123 8. How long 
will it take a certain amount of carbon-14 to decay to half 
the original amount? (Use the radioactive decay model in 
Problem 43.)

45. Radioactive decay. A cesium isotope has a half-life of 30 
years. What is the continuous compound rate of decay? (Use 
the radioactive decay model in Problem 43.)

46. Radioactive decay. A strontium isotope has a half-life of 
90 years. What is the continuous compound rate of decay? 
(Use the radioactive decay model in Problem 43.)

Applications
27. Continuous compound interest. Provident Bank offers a 

10-year CD that earns 2.15% compounded continuously.

(A) If $10,000 is invested in this CD, how much will it be 
worth in 10 years?

(B) How long will it take for the account to be worth 
$18,000?

28. Continuous compound interest. Provident Bank also offers 
a 3-year CD that earns 1.64% compounded continuously.

(A) If $10,000 is invested in this CD, how much will it be 
worth in 3 years?

(B) How long will it take for the account to be worth 
$11,000?

29. Present value. A note will pay $25,000 at maturity 10 years 
from now. How much should you be willing to pay for the 
note now if money is worth 4.6% compounded continuously?

30. Present value. A note will pay $35,000 at maturity 5 years 
from now. How much should you be willing to pay for the 
note now if money is worth 5.7% compounded continuously?

31. Continuous compound interest. An investor bought stock 
for $20,000. Five years later, the stock was sold for $30,000. 
If interest is compounded continuously, what annual nominal 
rate of interest did the original $20,000 investment earn?

32. Continuous compound interest. A family paid $99,000 
cash for a house. Fifteen years later, the house was sold for 
$195,000. If interest is compounded continuously, what 
 annual nominal rate of interest did the original $99,000 
investment earn?

33. Present value. Solving A = Pert for P, we obtain

P = Ae-rt

which is the present value of the amount A due in t years if 
money earns interest at an annual nominal rate r compounded 
continuously.

(A) Graph P = 10,000e-0.08t, 0 … t … 50.

(B) lim
tS ∞

 10,000e-0.08t = ? [Guess, using part (A).]

[Conclusion: The longer the time until the amount A is due, 
the smaller is its present value, as we would expect.]

34. Present value. Referring to Problem 33, in how many years 
will the $10,000 be due in order for its present value to be 
$5,000?

35. Doubling time. How long will it take money to double if it 
is invested at 3.5% compounded continuously?

36. Doubling time. How long will it take money to double if it 
is invested at 7% compounded continuously?

37. Doubling rate. At what nominal rate compounded continu-
ously must money be invested to double in 14 years?

38. Doubling rate. At what nominal rate compounded continu-
ously must money be invested to double in 21 years?

39. Growth time. A man with $20,000 to invest decides to 
diversify his investments by placing $10,000 in an account 
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50. Population growth. Some developed nations have popula-
tion doubling times of 200 years. At what continuous com-
pound rate is the population growing? (Use the population 
growth model in Problem 47.)

Answers to Matched Problems
1. $146.93; $148.02; $149.18

2. A = 5,000e0.0561t

t A($)

0 5,000

1 5,289

2 5,594

3 5,916

4 6,258

3. 4.51 yr
4. 19.97 yr

47. World population. A mathematical model for world popula-
tion growth over short intervals is given by

P = P0e
rt

where

 P0 = population at time t = 0

 r = continuous compound rate of growth

 t = time in years

 P = population at time t

How long will it take the world population to double if it 
continues to grow at its current continuous compound rate of 
1.13% per year?

48. Australian population. In 2017, Australia’s population grew 
by 1.6%. If the rate of growth remains constant, how long 
will it take for the Australian population to double?

49. Population growth. Some underdeveloped nations have 
population doubling times of 50 years. At what continuous 
compound rate is the population growing? (Use the popula-
tion growth model in Problem 47.)

40

6000

5000

4000

3000

2000

1000

7000

t

A

In this section, we find formulas for the derivatives of logarithmic and exponential 
functions. A review of Sections 1.5 and 1.6 may prove helpful. In particular, recall 
that f1x2 = ex is the exponential function with base e ≈ 2.718, and the inverse of 
the function ex is the natural logarithm function ln x. More generally, if b is a positive 
real number, b ∙ 1, then the exponential function bx with base b, and the logarith-
mic function logb x with base b, are inverses of each other.

The Derivative of ex

In the process of finding the derivative of ex, we use (without proof) the fact that

 lim
hS0

eh - 1
h

= 1 (1)

3.2 Derivatives of Exponential and Logarithmic Functions
■■ The Derivative of ex

■■ The Derivative of ln x
■■ Other Logarithmic and Exponential 
Functions

■■ Exponential and Logarithmic Models

Complete Table 1.

Table 1
h -0.1 -0.01 -0.001 S  0 d 0.001 0.01 0.1

eh ∙ 1
h

Do your calculations make it reasonable to conclude that

lim
hS0

eh - 1
h

= 1?

Discuss.

Explore and Discuss 1

We now apply the four-step process (Section 2.4) to the exponential function 
f1x2 = e x.
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224 CHAPTER 3 Additional Derivative Topics 

Step 1 Find f1x + h2.

f1x + h2 = e x + h = e xe h See Section 1.4.

Step 2 Find f1x + h2 - f1x2.

  f1x + h2 - f1x2 = e xe h - e x Factor out ex.

 = e x1e h - 12

Step 3 Find 
f1x + h2 - f1x2

h
.

f1x + h2 - f1x2
h

=
ex1eh - 12

h
= ex a eh - 1

h
b

Step 4 Find f′1x2 = lim
hS0

f1x + h2 - f1x2
h

.

 f′1x2 = lim
hS0

f1x + h2 - f1x2
h

 = lim
hS0

 ex a eh - 1
h

b

 = ex lim
hS0

 a eh - 1
h

b         Use the limit in (1).

 = ex # 1 = ex

Therefore,

d
dx

 ex ∙ ex  The derivative of the exponential  
function is the exponential function.

Finding Derivatives Find f′1x2 for

(A) f1x2 = 5ex - 3x4 + 9x + 16 (B) f1x2 = -7xe + 2ex + e2

SOLUTION

(A) f ′1x2 = 5ex - 12x3 + 9 (B) f ′1x2 = -7exe - 1 + 2ex

Remember that e is a real number, so the power rule (Section 2.5) is used to find 
the derivative of xe. The derivative of the exponential function ex, however, is ex. 
Note that e2 ≈ 7.389 is a constant, so its derivative is 0.

Matched Problem 1 Find f  ′1x2 for

(A) f1x2 = 4ex + 8x2 + 7x - 14 (B) f1x2 = x7 - x5 + e3 - x + ex

EXAMPLE 1

! CAUTION  
d
dx

 ex ∙ xex - 1 d
dx

 ex = ex

The power rule cannot be used to differentiate the exponential function. The power 
rule applies to exponential forms xn, where the exponent is a constant and the base 
is a variable. In the exponential form ex, the base is a constant and the exponent is a 
variable. 

The Derivative of ln x
We summarize some important facts about logarithmic functions from Section 1.6:
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We are now ready to use the definition of the derivative and the four-step process 
discussed in Section 2.4 to find a formula for the derivative of ln x. Later we will ex-
tend this formula to include logb x for any base b.

Let f1x2 = ln x, x 7 0.

Step 1 Find f1x + h2.

f1x + h2 = ln1x + h2                   ln1x + h2 cannot be simplified.

Step 2 Find f1x + h2 - f1x2.

 f1x + h2 - f1x2 = ln1x + h2 - ln x Use ln A - ln B = ln 
A
B

.

 = ln 
x + h

x

Step 3 Find 
f1x + h2 - f1x2

h
.

 
f1x + h2 - f1x2

h
=

ln1x + h2 - ln x

h

 =
1
h

 ln 
x + h

x
 Multiply by 1 = x>x to change form.

 =
x
x
 #  

1
h

 ln 
x + h

x

 =
1
x

 c x
h

 lna1 +
h
x
b d  Use p ln A = ln A p.

 =
1
x

 lna1 +
h
x
b

x>h

SUMMARY
Recall that the inverse of an exponential function is called a logarithmic function. 
For b 7 0 and b ∙ 1,

Logarithmic form Exponential form

y = logb x is equivalent to x = by

Domain: 10, ∞ 2 Domain: 1- ∞ , ∞ 2
Range: 1- ∞ , ∞ 2 Range: 10, ∞ 2

The graphs of y = logb x and y = bx are symmetric with respect to the line 
y = x. (See Figure 1.)

y 5 x

y 5 logb x

x

y

525

5

10

10

25

y 5 bx

Figure 1

Of all the possible bases for logarithmic functions, the two most widely used are

 log x = log10 x Common logarithm (base 10)

 ln x = loge x  Natural logarithm (base e)
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226 CHAPTER 3 Additional Derivative Topics 

Step 4 Find  f′1x2 = lim
hS0

 
f1x + h2 - f1x2

h
.

 f′1x2 = lim
hS0

 
f1x + h2 - f1x2

h

 = lim
hS0

 c 1
x

 lna1 +
h
x
b

x>h
d  Let s = h>x. Note that h S 0 implies s S 0.

 =
1
x

 lim
sS0

 3ln11 + s2 1>s4  Use a new limit property.

 =
1
x

 ln c lim
sS0

11 + s2 1>s d  Use the definition of e.

 =
1
x

 ln e  ln e = loge e = 1.

 =
1
x

The new limit property used in the derivation is: If lim
xSc  

f1x2 exists and is positive, 
then lim

xSc
3ln f1x24 = ln3 lim

xSc
f1x24. Therefore,

d
dx

 ln x ∙
1
x

 1x + 02

In finding the derivative of ln x, we used the following properties of logarithms:

ln 
A
B

= ln A - ln B   ln Ap = p ln A

We also noted that there is no property that simplifies ln1A + B2. (See Theorem 
1 in Section 1.6 for a list of properties of logarithms.)

CONCEPTUAL INSIGHT

Finding Derivatives Find y′ for

(A) y = 3ex + 5 ln x (B) y = x4 - ln x4

SOLUTION

(A) y′ = 3ex +
5
x

(B) Before taking the derivative, we use a property of logarithms (see Theorem 1, 
Section 1.6) to rewrite y.

 y = x4 - ln x4  Use  ln Mp = p ln M.

 y = x4 - 4 ln x Now take the derivative of both sides.

 y′ = 4x3 -
4
x

Matched Problem 2 Find y′ for

(A) y = 10x3 - 100 ln x (B) y = ln x5 + ex - ln e2

EXAMPLE 2
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Other Logarithmic and Exponential Functions
In most applications involving logarithmic or exponential functions, the number e is 
the preferred base. However, in some situations it is convenient to use a base other 
than e. Derivatives of y = logb x and y = bx can be obtained by expressing these 
functions in terms of the natural logarithmic and exponential functions.

We begin by finding a relationship between logb x and ln x for any base 
b such that b 7 0 and b ∙ 1.

 y = logb x  Change to exponential form.

 by = x  Take the natural logarithm of both sides.

 ln by = ln x  Recall that ln by = y ln b.

 y ln b = ln x  Solve for y.

 y =
1

ln b
 ln x

Therefore,

     logb x =
1

ln b
 ln x Change-of-base formula for logarithms. (2)

Equation (2) is a special case of the general change-of-base formula for logarithms 
(which can be derived in the same way):

logb x = 1loga x2 > 1loga b2.

Similarly, we can find a relationship between bx and ex for any base b such that 
b 7 0, b ∙ 1.

 y = b  

x  Take the natural logarithm of both sides.

 ln y = ln b  

x  Recall that ln bx = x ln b.

 ln y = x ln b Take the exponential function of both sides.

 y = e  

x ln b 

Therefore,

 bx = ex ln b Change-of-base formula for exponential functions. (3)

Differentiating both sides of equation (2) gives

d
dx

 logb x ∙
1

ln b
 

d
dx

 ln x ∙
1

ln b
 a1

x
b 1x 7 02

It can be shown that the derivative of the function ecx, where c is a constant, is 
the function cecx (see Problems 65–66 in Exercise 3.2 or the more general results of 
Section 3.5). Therefore, differentiating both sides of equation (3), we have

d
dx

 bx ∙ ex ln b ln b ∙ bx ln b

For convenience, we list the derivative formulas for exponential and logarithmic functions:

Derivatives of Exponential and Logarithmic Functions
For b 7 0, b ∙ 1,

 
d
dx

 ex = ex   
d
dx

 bx = bx ln b

For b 7 0, b ∙ 1, and x 7 0,

 
d
dx

 ln x =
1
x
   

d
dx

 logb x =
1

ln b
 a1

x
b
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Exponential and Logarithmic Models

Finding Derivatives Find  g′1x2 for

(A)  g1x2 = 2x - 3x (B)  g1x2 = log4 x
5

SOLUTION
(A)  g′1x2 = 2x ln 2 - 3x ln 3
(B) First, use a property of logarithms to rewrite  g1x2.

 g1x2 = log4 x
5  Use logb M

p = p logb M.

 g1x2 = 5 log4 x  Take the derivative of both sides.

 g′1x2 =
5

ln 4
 a1

x
b

Matched Problem 3 Find g′1x2 for

(A)  g1x2 = x10 + 10x (B)  g1x2 = log2 x - 6 log5 x

EXAMPLE 3

(A) The graphs of f1x2 = log2 x and g1x2 = log4 x are shown in Figure 2. Which 
graph belongs to which function?

x

y

4

3

2

1

108642

Figure 2

(B) Sketch graphs of f  ′1x2 and g′1x2.

(C) The function f1x2 is related to  g1x2 in the same way that f ′1x2 is related to 
g′1x2. What is that relationship?

Explore and Discuss 2

Price–Demand Model An Internet store sells Australian wool blankets. If the 
store sells x blankets at a price of $p per blanket, then the price–demand equation 
is p = 35010.9992 x. Find the rate of change of price with respect to demand when 
the demand is 800 blankets and interpret the result.

SOLUTION

dp

dx
= 35010.9992 x ln 0.999

If x = 800, then

dp

dx
= 35010.9992 800 ln 0.999 ≈ -0.157, or - $0.16

When the demand is 800 blankets, the price is decreasing by $0.16 per blanket.

EXAMPLE 4
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Matched Problem 4 The store in Example 4 also sells a reversible 
fleece blanket. If the price–demand equation for reversible fleece blankets is 
p = 20010.9982 x, find the rate of change of price with respect to demand when 
the demand is 400 blankets and interpret the result.

Continuous Compound Interest An investment of $1,000 earns interest at an an-
nual rate of 4% compounded continuously.

(A) Find the instantaneous rate of change of the amount in the account after 2 years.

(B) Find the instantaneous rate of change of the amount in the account at the time 
the amount is equal to $2,000.

SOLUTION
(A) The amount A1t2 at time t (in years) is given by A1t2 = 1,000e0.04t. Note 

that A1t2 = 1,000bt, where b = e0.04. The instantaneous rate of change is the 
derivative A′1t2, which we find by using the formula for the derivative of the 
exponential function with base b:

A′1t2 = 1,000bt ln b = 1,000e0.04t 10.042 = 40e0.04t

After 2 years, A′122 = 40e0.04122 = $43.33 per year.
(B) From the calculation of the derivative in part (A), we note that A′1t2 = 10.042 

1,000e0.04t = 0.04A1t2. In other words, the instantaneous rate of change of the 
amount is always equal to 4% of the amount. So if the amount is $2,000, then 
the instantaneous rate of change is 10.042$2,000 = $80 per year.

Matched Problem 5 An investment of $5,000 earns interest at an annual rate 
of 6% compounded continuously.

(A) Find the instantaneous rate of change of the amount in the account after 3 years.

(B) Find the instantaneous rate of change of the amount in the account at the time 
the amount is equal to $8,000.

EXAMPLE 5

Franchise Locations A model for the growth of a sandwich shop franchise is

N1t2 = -765 + 482 ln t

where  N1t2 is the number of locations in year t (t = 0 corresponds to 1980). Use 
this model to estimate the number of locations in 2028 and the rate of change 
of the number of locations in 2028. Round both to the nearest integer. Interpret 
these results.

SOLUTION Because 2028 corresponds to t = 48, we must find  N1482 and  N′1482.

 N1482 = -765 + 482 ln 48 ≈ 1,101

 N′1t2 = 482
1
t

=
482

t

 N′1482 =
482
48

≈ 10

In 2028 there will be approximately 1,101 locations, and this number will be grow-
ing at the rate of 10 locations per year.

Matched Problem 6 A model for a newspaper’s circulation is

C1t2 = 83 - 9 ln t

where  C1t2 is the circulation (in thousands) in year t 1t = 0 corresponds to 19802.  
Use this model to estimate the circulation and the rate of change of circulation in 
2026. Round both to the nearest hundred. Interpret these results.

EXAMPLE 6
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230 CHAPTER 3 Additional Derivative Topics 

On most graphing calculators, exponential regression produces a function of the 
form y = a #  bx. Formula (3) on page 227 allows you to change the base b (cho-
sen by the graphing calculator) to the more familiar base e:

y = a # bx = a # ex ln b

On most graphing calculators, logarithmic regression produces a function of the 
form y = a + b ln x. Formula (2) on page 227 allows you to write the function in 
terms of logarithms to any base d that you may prefer:

y = a + b ln x = a + b1ln d2 logd x

CONCEPTUAL INSIGHT

Skills Warm-up Exercises
In Problems 1–6, solve for the variable without using a calculator. 
(If necessary, review Section 1.6).

1. y = log3 81 2. y = log4 64

3. log5 x = -1 4. log10 x = -3

5. y = ln 23 e 6. ln x = 4

In Problems 7–12, use logarithmic properties to write in simpler 
form. (If necessary, review Section 1.6).

7. ln 
x
y

8. ln ex

9. ln x5 10. ln xy

11. ln 
uv2

w
12. ln 

u4

v3w2

In Problems 13–30, find f ′1x2.

13. f1x2 = 5ex + 3x + 1 14. f1x2 = -7ex - 2x + 5

15. f1x2 = -2 ln x + x2 - 4 16. f1x2 = 6 ln x - x3 + 2

17. f1x2 = x3 - 6ex 18. f1x2 = 8ex + 7x6

19. f1x2 = ex + x - ln x 20. f1x2 = ln x + 2ex - 3x2

21. f1x2 = ln x3 22. f1x2 = ln x8

23. f1x2 = 5x - ln x5 24. f1x2 = 4 + ln x9

25. f1x2 = ln x2 + 4ex 26. f1x2 = ln x12 - 3 ln x

27. f1x2 = ex + xe 28. f1x2 = 3xe - 2ex

29. f1x2 = xxe 30. f1x2 = eex

In Problems 31–38, find the equation of the line tangent to the 
graph of f at the indicated value of x.

31. f1x2 = 3 + ln x; x = 1 32. f1x2 = 2 ln x; x = 1

33. f1x2 = 3ex; x = 0 34. f1x2 = ex + 1; x = 0

35. f1x2 = ln x3; x = e 36. f1x2 = 1 + ln x4; x = e

37. f1x2 = 4 + 3ex; x = 1 38. f1x2 = 5ex; x = 1

W

A

B

39. A student claims that the line tangent to the graph of 
f1x2 = ex at x = 3 passes through the point 12, 02 (see 
figure). Is she correct? Will the line tangent at x = 4 pass 
through 13, 02? Explain.

x
431 221

210

40

30

20

10

f (x)

40. Refer to Problem 39. Does the line tangent to the graph of 
f1x2 = ex at x = 1 pass through the origin? Are there any 
other lines tangent to the graph of f that pass through the 
origin? Explain.

41. A student claims that the line tangent to the graph of 
g1x2 = ln x at x = 3 passes through the origin (see figure). 
Is he correct? Will the line tangent at x = 4 pass through the 
origin? Explain.

x
632 41 521

g(x)

21

2

1

42. Refer to Problem 41. Does the line tangent to the graph of 
f1x2 = ln x at x = e pass through the origin? Are there any 
other lines tangent to the graph of f that pass through the 
origin? Explain.

Exercises 3.2
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A1t2 = 5,000 #  22t = 5,000 #  4t

bacteria. Find A′1t2, A′112, and A′152, and interpret the 
results.

70. Bacterial growth. Repeat Problem 69 for a starting colony 
of 2,000 bacteria such that a single bacterium divides every 
20 minutes.

71. Blood pressure. An experiment was set up to find a relation-
ship between weight and systolic blood pressure in children. Us-
ing hospital records for 5,000 children, the experimenters found 
that the systolic blood pressure was given approximately by

P1x2 = 17.511 + ln x2  10 … x … 100

where  P1x2 is measured in millimeters of mercury and x 
is measured in pounds. What is the rate of change of blood 
pressure with respect to weight at the 40-pound weight level? 
At the 90-pound weight level?

72. Blood pressure. Refer to Problem 71. Find the weight (to the 
nearest pound) at which the rate of change of blood pressure 
with respect to weight is 0.3 millimeter of mercury per pound.

73. Psychology: stimulus/response. In psychology, the Weber– 
Fechner law for the response to a stimulus is

R = k ln 
S
S0

where R is the response, S is the stimulus, and S0 is the lowest 
level of stimulus that can be detected. Find dR>dS.

74. Psychology: learning. A mathematical model for the aver-
age of a group of people learning to type is given by

N1t2 = 10 + 6 ln t  t Ú 1

where  N1t2 is the number of words per minute typed after t 
hours of instruction and practice (2 hours per day, 5 days per 
week). What is the rate of learning after 10 hours of instruc-
tion and practice? After 100 hours?

75. Continuous compound interest. An investment of $10,000 
earns interest at an annual rate of 7.5% compounded 
 continuously.

(A) Find the instantaneous rate of change of the amount in 
the account after 1 year.

(B) Find the instantaneous rate of change of the amount in 
the account at the time the amount is equal to $12,500.

76. Continuous compound interest. An investment of $25,000 
earns interest at an annual rate of 8.4% compounded con-
tinuously.

(A) Find the instantaneous rate of change of the amount in 
the account after 2 years.

(B) Find the instantaneous rate of change of the amount in 
the account at the time the amount is equal to $30,000.

Answers to Matched Problems
1. (A) 4ex + 16x + 7 (B) 7x6 - 5x4 - 1 + ex

2. (A) 30x2 -
100

x
(B) 

5
x

+ ex

In Problems 43–46, first use appropriate properties of logarithms 
to rewrite f1x2, and then find f ′1x2.

43. f1x2 = 10x + ln  10x 44. f1x2 = 2 + 3 ln 
1
x

45. f1x2 = ln  

4

x3 46. f1x2 = 8x - 7 ln 6x

In Problems 47–58, find 
dy

dx
 for the indicated function y.

47. y = log2 x 48. y = 3 log5 x

49. y = 3x 50. y = 4x

51. y = 2x - log x 52. y = log x + 4x2 + 1

53. y = 10 + x + 10x 54. y = 8x - x8

55. y = 3 ln x + 2 log3 x 56. y = - log2 x + 10 ln x

57. y = 2x + e2 58. y = e3 - 3x

In Problems 59–64, use graphical approximation methods to 
find the points of intersection of f1x2 and  g1x2 (to two decimal 
places).

59. f1x2 = ex; g1x2 = x4

[Note that there are three points of intersection and that ex is 
greater than x4 for large values of x.]

60. f1x2 = ex; g1x2 = x5

[Note that there are two points of intersection and that ex is 
greater than x5 for large values of x.]

61. f1x2 = 1ln x2 2; g1x2 = x 62. f1x2 = 1ln x2 4; g1x2 = 4x

63. f1x2 = ln x; g1x2 = x1>5 64. f1x2 = ln x; g1x2 = x1>3

65. Explain why lim
hS0

 
ech - 1

h
= c.

66. Use the result of Problem 65 and the four-step process to 
show that if f1x2 = ecx, then f ′1x2 = cecx.

Applications
67. Salvage value. The estimated salvage value S (in dollars) of 

a company airplane after t years is given by

 S1t2 = 300,00010.92 t

What is the rate of depreciation (in dollars per year) after 
1 year? 5 years? 10 years?

68. Resale value. The estimated resale value R (in dollars) of a 
company car after t years is given by

 R1t2 = 20,00010.862 t

What is the rate of depreciation (in dollars per year) after 
1 year? 2 years? 3 years?

69. Bacterial growth. A single cholera bacterium divides every 
0.5 hour to produce two complete cholera bacteria. If we start 
with a colony of 5,000 bacteria, then after t hours, there will be

C
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Derivative Formulas
In this section, we discuss derivative formulas for the sine and cosine functions. Once 
we have these formulas, we will automatically have integral formulas for the same 
functions, which we discuss in the next section.

From the definition of the derivative (Section 2.4),

d
dx

 sin x = lim
hS0

 
sin1x + h2 - sin x

h
On the basis of trigonometric identities and some special trigonometric limits, it can 
be shown that the limit on the right is cos x. Similarly, it can be shown that

d
dx

 cos x = -sin x

We now add the following important derivative formulas to our list of derivative 
formulas:

3.3 Derivatives of Trigonometric Functions
■■ Derivative Formulas
■■ Application

DERIVATIVE OF SINE AND COSINE
Basic Form

d
dx

 sin x = cos x  
d
dx

 cos x = -sin x

Generalized Form
For u = u1x2,

d
dx

 sin u = cos u 
du
dx
  

d
dx

 cos u = -sin u 
du
dx

CONCEPTUAL  INSIGHT
The derivative formula for the function y = sin x implies that each line tangent 
to the graph of the function has a slope between -1 and 1. Furthermore, the 
slope of the line tangent to y = sin x is equal to 1 if and only if cos x = 1—that 
is, at x = 0, {2p, {4p, c. Similarly, the derivative formula for y = cos x 
implies that each line tangent to the graph of the function has a slope between 
-1 and 1. The slope of the tangent line is equal to 1 if and only if -sin x = 1— 
that is, at x = 3p>2, 13p>22 { 2p, 13p>22{4p, c. Note that these ob-
servations are consistent with the graphs of y = sin x and y = cos x shown in 
Figure 6, Section 1.8.

3. (A) 10x9 + 10x ln 10 (B) a 1
ln 2

-
6

ln 5
b1

x

4. The price is decreasing at the rate of $0.18 per blanket.

5. (A) $359.17 per year (B) $480 per year

6. The circulation in 2026 is approximately 48,500 and is  
decreasing at the rate of 200 per year.
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Slope Find the slope of the graph of f1x2 = sin x at 1p>2, 12, and sketch in the 
line tangent to the graph at this point.

SOLUTION Slope at 1p>2, 12 = f ′1p>22 = cos1p>22 = 0. So when x =
p

2
, 

the tangent line has slope 0 and is horizontal (see Fig. 1).

x

f (x)

Tangent line
(Slope 5 0)

f (x) 5 sin x

p

1

0
2
p

2

Figure 1

Matched Problem 2 Find the slope of the graph of f1x2 = cos x at 

1p>6, 23>22.

EXAMPLE 2

Derivatives Involving Sine and Cosine

(A) 
d
dx

 sin x2 = 1cos x22  
d
dx

 x2 = 1cos x222x = 2x cos x2

(B) 
d
dx

 cos12x - 52 = -sin12x - 52  
d
dx

 12x - 52 = -2 sin12x - 52

(C) 
d
dx

 13x2 - x2 cos x = 13x2 - x2  
d
dx

 cos x + 1cos x2  
d
dx

 13x2 - x2
= - 13x2 - x2 sin x + 16x - 12 cos x

= 1x - 3x22 sin x + 16x - 12 cos x

Matched Problem 1 Find each of the following derivatives:

(A) 
d
dx

 cos x3 (B) 
d
dx

 sin15 - 3x2 (C) 
d
dx

 
sin x

x

EXAMPLE 1

From the graph of y = f ′1x2 shown in Figure 2, describe the shape of the graph 
of y = f1x2 relative to where it is increasing, where it is decreasing, its concavity, 
and the locations of local maxima and minima. Make a sketch of a possible graph of 
y = f1x2, 0 … x … 2p, given that it has x intercepts at 10, 02, 1p, 02, and 12p, 02. 
Can you identify f1x2 and f ′1x2 in terms of sine or cosine functions?

Explore and Discuss 1

p 2p

f 9(x)

x

1

21

0

Figure 2
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Derivative of Secant Find 
d
dx

 sec x.

SOLUTION      
d
dx

 sec x =
d
dx

 
1

cos x
         sec x =

1
cos x

 =
d
dx

 1cos x2 -1

 = - 1cos x2 -2 
d
dx

 cos x

 = - 1cos x2 -21-sin x2

 =
sin x

1cos x2 2

 = a sin x
cos x

b a 1
cos x

b     tan x =
sin x
cos x

 = tan x sec x

Matched Problem 3 Find 
d
dx

 csc x.

EXAMPLE 3

Application
Revenue Revenues from the sale of ski jackets are given approximately by

R1t2 = 1.55 + 1.45 cos
pt
26
  0 … t … 104

where R1t2 is revenue (in thousands of dollars) for a week of sales t weeks after 
January 1.

(A) What is the rate of change of revenue t weeks after the first of the year?

(B) What is the rate of change of revenue 10 weeks after the first of the year? 26 weeks 
after the first of the year? 40 weeks after the first of the year?

(C) Find all local maxima and minima for 0 6 t 6 104.

(D) Find the absolute maximum and minimum for 0 … t … 104.

(E) Illustrate the results from parts (A)–(D) by sketching a graph of y = R1t2 with 
the aid of a graphing calculator.

SOLUTION

(A) R′1t2 = -  
1.45p

26
  sin 

pt
26
  0 … t … 104

(B)  R′1102 ≈ - $0.164 thousand, or - $164 per week

R′1262 = $0 per week

R′1402 ≈ $0.174 thousand, or $174 per week

(C) Find the critical points:

 R′1t2 = -  
1.45p

26
 sin 

pt
26

= 0  0 6 t 6 104

 sin
pt
26

= 0

 
pt
26

= p, 2p, 3p Note: 0 6 t 6 104 implies that 0 6
pt
26

6 4p.

 t = 26, 52, 78

EXAMPLE 4
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(E) The results from parts (A)–(D) can be visualized as shown in Figure 3.

260 52 78 104R
ev

en
ue

 (
th

ou
sa

nd
 d

ol
la

rs
)

Time (weeks)

1.0

0.0

2.0

3.0

t

R(t)

Figure 3

Matched Problem 4 Suppose that revenues from the sale of ski jackets are 
given approximately by

R1t2 = 6.2 + 5.8 cos
pt
6
  0 … t … 24

where R1t2 is revenue (in thousands of dollars) for a month of sales t months after 
January 1.

(A) What is the rate of change of revenue t months after the first of the year?

(B) What is the rate of change of revenue 2 months after the first of the year? 
12 months after the first of the year? 23 months after the first of the year?

(C) Find all local maxima and minima for 0 6 t 6 24.

(D) Find the absolute maximum and minimum for 0 … t … 24.

(E) Illustrate the results from parts (A)–(D) by sketching a graph of y = R1t2 with 
the aid of a graphing calculator.

Differentiate R′1t2 to get R″1t2.

R″1t2 = -  
1.45p2

262  cos
pt
26

Use the second-derivative test to get the results shown in Table 1.

Table 1
t R″ 1 t 2 Graph of R

26 + Local minimum
52 - Local maximum
78 + Local minimum

(D) Evaluate R1t2 at endpoints t = 0 and t = 104 and at the critical points found 
in part (C), as listed in Table 2. The absolute maximum is 3,000 and it occurs at 
t = 0, 52, and 104; the absolute minimum is 100 at it occurs at t = 26 and 78.

Table 2
t R 1 t 2
0 $3,000
26 $100
52 $3,000
78 $100
104 $3,000

Absolute maximum
Absolute minimum
Absolute maximum
Absolute minimum
Absolute maximum
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Exercises 3.3
Skills Warm-up Exercises
In Problems 1–4, by inspecting a graph of y = sin x or y = cos x,  
determine whether the function is increasing or decreasing on the 
given interval.

1. y = cos x on 10, p2
2. y = sin x on 1p>2, 3p>22
3. y = sin x on 1-p>2, p>22
4. y = cos x on 1p, 2p2

In Problems 5–8, by inspecting a graph of y = sin x or y = cos x, 
determine whether the graph is concave up or concave down on the 
given interval.

5. y = sin x on 10, p2
6. y = cos x on 1p>2, 3p>22
7. y = cos x on 1-p>2, p>22
8. y = sin x on 1-p, 02

Find the indicated derivatives in Problems 9–26.

9. 
d
dx

 15 cos x2 10. 
d
dx

 112 sin x2

11. 
d
dx

  cos 15x2 12. 
d
dx

  sin 112x2

13. 
d
dx

  sin 1x2 + 12 14. 
d
dx

  cos 1x4 - 162

15. 
d

dw

  sin 1w + p2 16. 
d
dt

  cos apt
2
b

17. 
d
dt

 t sin t 18. 
d
du

 u cos u

19. 
d
dx

 sin x cos x 20. 
d
dx

 
cos x
sin x

21. 
d
dx

 1sin x2 5 22. 
d
dx

 1cos x2 9

23. 
d
dx

 2sin x 24. 
d
dx

 2cos x

25. 
d
dx

 cos2x 26. 
d
dx

 sin 2x

27. Find the slope of the graph of f1x2 = sin x at x = p>4.

28. Find the slope of the graph of f1x2 = cos x at x = p>3.

29. From the graph of y = f ′1x2 shown here, describe the shape 
of the graph of y = f1x2 relative to where it is increasing, 
where it is decreasing, its concavity, and the locations of lo-
cal maxima and minima. Make a sketch of a possible graph 
of y = f1x2, -p … x … p, given that it has x intercepts 
at 1-p>2, 02 and 1p>2, 02. Identify f1x2 and f ′1x2 as 
particular trigonometric functions.

W

A

B

x

f 9(x)

p2p 22

1

21

0
2
p

2
p

2

Figure for 29

30. From the graph of y = f ′1x2 shown here, describe the shape 
of the graph of y = f1x2 relative to where it is increasing, 
where it is decreasing, its concavity, and the locations of  
local maxima and minima. Make a sketch of a possible graph 
of y = f1x2, -p … x … p, given that it has x intercepts at 
1-p, 02 and 1p, 02. Identify f1x2 and f ′1x2 as particular 
trigonometric functions.

x

f 9(x)

p2p

1

21

0
2
p

2

Figure for 30

Find the indicated derivatives in Problems 31–38.

31. 
d
dx

 csc 1px2 32. 
d
dx

 sec 1x + p2

33. 
d
dx

 cot apx
2
b 34. 

d
dx

 tan 12px2

35. 
d
dx

 cos 1xex2 36. 
d
dx

 sin 1xex2

37. 
d
dx

 sec 1x32 38. 
d
dx

 cot 1x42

In Problems 39 and 40, find f ″1x2.

39. f1x2 = ex sin x 40. f1x2 = ex cos x

In Problems 41–46, graph each function on a graphing calculator.

41. y = x sin px; 0 … x … 9, -9 … y … 9

42. y = -x cos px; 0 … x … 9, -9 … y … 9

43. y =
cos px

x
; 0 … x … 8, -2 … y … 3

44. y =
sin px
0.5x

; 0 … x … 8, -2 … y … 3

45. y = e-0.3x sin px; 0 … x … 10, -1 … y … 1

46. y = e-0.2x cos px; 0 … x … 10, -1 … y … 1

C
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50. Pollution. In a large city, the amount of sulfur dioxide 
pollutant released into the atmosphere due to the burning of 
coal and oil for heating purposes varies seasonally. Sup-
pose that the number of tons of pollutant released into the 
atmosphere during the nth week after January 1 is given 
approximately by

P1n2 = 1 + cos
pn
26
  0 … n … 104

(A) What is the rate of change of pollutant n weeks after the 
first of the year?

(B) What is the rate of change of pollutant 13 weeks after 
the first of the year? 26 weeks after the first of the year? 
30 weeks after the first of the year?

(C) Find all local maxima and minima for 0 6 t 6 104.

(D) Find the absolute maximum and minimum for 
0 … t … 104.

(E) Repeat part (C), using a graphing calculator.

Answers to Matched Problems
1. (A) -3x2 sin x3    (B) -3 cos15 - 3x2
   (C) 

x cos x - sin x

x2

2. -  12
3. -cot x csc x

4. (A) R′1t2 = -  
5.8p

6
 sin

pt
6

, 0 6 t 6 24

   (B)  R′122 ≈ - $2.630 thousand, or - $2,630>month; 
R′1122 = $0>month; R′1232 ≈ $1.518 thousand,  
or $1,518 month

   (C)  Local minima at t = 6 and t = 18; local maximum at 
t = 12

Applications
47. Profit. Suppose that profits on the sale of swimming suits are 

given approximately by

P1t2 = 5 - 5 cos
pt
26
  0 … t … 104

where P1t2 is profit (in hundreds of dollars) for a week of 
sales t weeks after January 1.

(A) What is the rate of change of profit t weeks after the first 
of the year?

(B) What is the rate of change of profit 8 weeks after the 
first of the year? 26 weeks after the first of the year? 
50 weeks after the first of the year?

(C) Find all local maxima and minima for 0 6 t 6 104.

(D) Find the absolute maximum and minimum for 
0 … t … 104.

(E) Repeat part (C), using a graphing calculator.

48. Revenue. Revenues from sales of a soft drink over a 2-year 
period are given approximately by

R1t2 = 4 - 3 cos
pt
6
  0 … t … 24

where R1t2 is revenue (in millions of dollars) for a month of 
sales t months after February 1.

(A) What is the rate of change of revenue t months after 
February 1?

(B) What is the rate of change of revenue 1 month after 
February 1? 6 months after February 1? 11 months after 
February 1?

(C) Find all local maxima and minima for 0 6 t 6 24.

(D) Find the absolute maximum and minimum for 
0 … t … 24.

(E) Repeat part (C), using a graphing calculator.

49. Physiology. A normal seated adult inhales and exhales 
about 0.8 liter of air every 4 seconds. The volume of air 
V1t2 in the lungs t seconds after exhaling is given approxi-
mately by

V1t2 = 0.45 - 0.35 cos
pt
2
  0 … t … 8

(A) What is the rate of flow of air t seconds after exhaling?

(B) What is the rate of flow of air 3 seconds after exhaling? 
4 seconds after exhaling? 5 seconds after exhaling?

(C) Find all local maxima and minima for 0 6 t 6 8.

(D) Find the absolute maximum and minimum for 
0 … t … 8.

(E) Repeat part (C), using a graphing calculator.

t R(t)

0 $12,000

6 $400

12 $12,000

18 $400

24 $12,000

Absolute maximum

Absolute minimum

Absolute maximum

Absolute minimum

Absolute maximum

Endpoint

Endpoint

t

R(t)

12

60 241812

(E) 

(D) 
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Comparing the various expressions computed in Explore and Discuss 1, we see 
that the derivative of a product is not the product of the derivatives.

Using the definition of the derivative and the four-step process, we can show that

The derivative of the product of two functions is the first times the de-
rivative of the second, plus the second times the derivative of the first.

This product rule is expressed more compactly in Theorem 1, with notation chosen 
to aid memorization (F for “first”, S for “second”).

The derivative properties discussed in Section 2.5 add substantially to our ability to 
compute and apply derivatives to many practical problems. In this and the next two 
sections, we add a few more properties that will increase this ability even further.

Derivatives of Products
In Section 2.5, we found that the derivative of a sum is the sum of the derivatives. Is 
the derivative of a product the product of the derivatives?

3.4 Derivatives of Products and Quotients
■■ Derivatives of Products
■■ Derivatives of Quotients

Let F1x2 = x2, S1x2 = x3, and f1x2 = F1x2S1x2 = x5. Which of the following is 
f ′1x2?

(A) F′1x2S′1x2 (B) F1x2S′1x2
(C) F′1x2S1x2 (D) F1x2S′1x2 + F′1x2S1x2

Explore and Discuss 1

THEOREM 1 Product Rule
If

y = f1x2 = F1x2S1x2
and if F′1x2 and  S′1x2 exist, then

f ′1x2 = F1x2S′1x2 + S1x2F′1x2
Using simplified notation,

y′ = FS′ + SF′  or  
dy

dx
= F 

dS
dx

+ S 
dF
dx

Differentiating a Product Use two different methods to find f ′1x2 for

f1x2 = 2x213x4 - 22.

SOLUTION
Method 1. Use the product rule with F1x2 = 2x2 and  S1x2 = 3x4 - 2:

 f ′1x2 = 2x213x4 - 22′ + 13x4 - 2212x22′  First times derivative of  
second, plus second times  
derivative of first = 2x2112x32 + 13x4 - 2214x2

 = 24x5 + 12x5 - 8x

 = 36x5 - 8x

EXAMPLE 1
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Method 2. Multiply first; then find the derivative:

 f1x2 = 2x213x4 - 22 = 6x6 - 4x2

 f  ′1x2 = 36x5 - 8x

Matched Problem 1 Use two different methods to find f ′1x2 for 

f1x2 = 3x312x2 - 3x + 12.

Some products we encounter can be differentiated by either method illustrated 
in Example 1. In other situations, the product rule must be used. Unless instructed 
otherwise, you should use the product rule to differentiate all products in this section 
in order to gain experience with this important differentiation rule.

Tangent Lines Let f1x2 = 12x - 921x2 + 62.

(A) Find the equation of the line tangent to the graph of f(x) at x = 3.

(B) Find the value(s) of x where the tangent line is horizontal.

SOLUTION
(A) First, find f  ′1x2:

 f  ′1x2 = 12x - 921x2 + 62′ + 1x2 + 6212x - 92′

 = 12x - 9212x2 + 1x2 + 62122
Then, find f132 and f  ′132:

 f132 = 32132 - 94132 + 62 = 1-321152 = -45

 f ′132 = 32132 - 942132 + 132 + 62122 = -18 + 30 = 12

Now, find the equation of the tangent line at x = 3:

 y - y1 = m1x - x12 y1 = f1x12 = f132 = -45

 y - 1-452 = 121x - 32 m = f ′1x12 = f ′132 = 12

 y = 12x - 81  Tangent line at x = 3

(B) The tangent line is horizontal at any value of x such that f ′1x2 = 0, so

 f  ′1x2 = 12x - 922x + 1x2 + 622 = 0

 6x2 - 18x + 12 = 0

 x2 - 3x + 2 = 0

 1x - 121x - 22 = 0

 x = 1, 2

The tangent line is horizontal at x = 1 and at x = 2.

Matched Problem 2 Repeat Example 2 for f1x2 = 12x + 921x2 - 122.

EXAMPLE 2

As Example 2 illustrates, the way we write f  ′1x2 depends on what we want to 
do. If we are interested only in evaluating f  ′1x2 at specified values of x, then the 
form in part (A) is sufficient. However, if we want to solve f  ′1x2 = 0, we must 
multiply and collect like terms, as we did in part (B).

CONCEPTUAL INSIGHT
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Derivatives of Quotients
The derivative of a quotient of two functions is not the quotient of the derivatives of 
the two functions.

Finding Derivatives Find f  ′1x2 for

(A) f1x2 = 2x3ex (B) f1x2 = 6x4 ln x

SOLUTION
(A)  f ′1x2 = 2x31ex2′ + ex12x32′

 = 2x3ex + ex16x22
 = 2x2ex1x + 32

EXAMPLE 3

(B)  f ′1x2 = 6x4 1ln x2′ + 1ln x2 16x42′

 = 6x4 
1
x

+ 1ln x2124x32

 = 6x3 + 24x3 ln x

 = 6x311 + 4 ln x2
Matched Problem 3 Find f ′1x2 for

(A) f1x2 = 5x8 ex (B) f1x2 = x7 ln x

Let  T1x2 = x5, B1x2 = x2, and

f1x2 =
T1x2
B1x2 =

x5

x2 = x3

Which of the following is f ′1x2?

(A) 
T′1x2
B′1x2 (B) 

T′1x2B1x2
3B1x242 (C) 

T1x2B′1x2
3B1x242

(D) 
T′1x2B1x2
3B1x242 -

T1x2B′1x2
3B1x242 =

B1x2T′1x2 - T1x2B′1x2
3B1x242

Explore and Discuss 2

The expressions in Explore and Discuss 2 suggest that the derivative of a quo-
tient leads to a more complicated quotient than expected.

If  T1x2 and  B1x2 are any two differentiable functions and

f1x2 =
T1x2
B1x2

then

f  ′1x2 =
B1x2T′1x2 - T1x2B′1x2

3B1x242

Therefore,

The derivative of the quotient of two functions is the denominator times 
the derivative of the numerator, minus the numerator times the deriva-
tive of the denominator, divided by the denominator squared.

This quotient rule is expressed more compactly in Theorem 2, with notation 
chosen to aid memorization (T for “top”, B for “bottom”).
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THEOREM 2 Quotient Rule
If

y = f1x2 =
T1x2
B1x2

and if  T′1x2 and  B′1x2 exist, then

f′1x2 =
B1x2T′1x2 - T1x2B′1x2

3B1x242

Using simplified notation,

y′ =
BT′ - TB′

B2   or  
dy

dx
=

B 
dT
dx

- T 
dB
dx

B2

Differentiating Quotients

(A) If f1x2 =
x2

2x - 1
, find f ′1x2. (B) If y =

t2 - t

t3 + 1
, find y′.

(C) Find 
d
dx

 
x2 - 3

x2  by using the quotient rule and also by splitting the fraction into 

two fractions.

SOLUTION
(A) Use the quotient rule with  T1x2 = x2 and  B1x2 = 2x - 1;

 f ′1x2 =
12x - 121x22′ - x212x - 12′

12x - 12 2

  The denominator times the  
derivative of the numerator, minus 
the numerator times the derivative 
of the denominator, divided by the 
square of the denominator =

12x - 1212x2 - x2122
12x - 12 2

 =
4x2 - 2x - 2x2

12x - 12 2

 =
2x2 - 2x

12x - 12 2

(B)  y′ =
1t3 + 121t2 - t2′ - 1t2 - t21t3 + 12′

1t3 + 12 2

 =
1t3 + 1212t - 12 - 1t2 - t213t22

1t3 + 12 2

 =
2t4 - t3 + 2t - 1 - 3t4 + 3t3

1t3 + 12 2

 =
- t4 + 2t3 + 2t - 1

1t3 + 12 2

EXAMPLE 4
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(C) Method 1. Use the quotient rule:

 
d
dx

 
x2 - 3

x2 =
x2 

d
dx

 1x2 - 32 - 1x2 - 32  
d
dx

 x2

1x22 2

 =
x212x2 - 1x2 - 322x

x4

 =
2x3 - 2x3 + 6x

x4 =
6x

x4 =
6

x3

Method 2. Split into two fractions:

 
x2 - 3

x2 =
x2

x2 -
3

x2 = 1 - 3x-2

 
d
dx

 11 - 3x-22 = 0 - 31-22x-3 =
6

x3

Comparing methods 1 and 2, we see that it often pays to change an expression alge-
braically before choosing a differentiation formula.

Matched Problem 4 Find

(A) f ′1x2 for f1x2 =
2x

x2 + 3
(B) y′ for y =

t3 - 3t

t2 - 4

(C) 
d
dx

 
2 + x3

x3  in two ways

Finding Derivatives Find f ′1x2 for

(A) f1x2 =
3ex

1 + ex (B) f1x2 =
ln x

2x + 5

SOLUTION

(A)  f ′1x2 =
11 + ex213ex2′ - 3ex11 + ex2′

11 + ex2 2

  =
11 + ex23ex - 3exex

11 + ex2 2

  =
3ex

11 + ex2 2

(B)  f ′1x2 =
12x + 521ln x2′ - 1ln x212x + 52′

12x + 52 2

  =
12x + 52 # 1

x
- 1ln x2122

12x + 52 2  Multiply by 
x
x

  =
2x + 5 - 2x ln x

x12x + 52 2

EXAMPLE 5
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Matched Problem 5 Find f ′1x2 for

(A) f1x2 =
x3

ex + 2
(B) f1x2 =

4x
1 + ln x

Sales Analysis The total sales S (in thousands of games) of a video game t months 
after the game is introduced are given by

S1t2 =
125t2

t2 + 100

(A) Find S′1t2.

(B) Find  S1102 and S′1102. Write a brief interpretation of these results.

(C) Use the results from part (B) to estimate the total sales after 11 months.

SOLUTION

(A)  S′1t2 =
1t2 + 10021125t22′ - 125t21t2 + 1002′

1t2 + 1002 2

 =
1t2 + 10021250t2 - 125t212t2

1t2 + 1002 2

 =
250t3 + 25,000t - 250t3

1t2 + 1002 2

 =
25,000t

1t2 + 1002 2

(B)  S1102 =
1251102 2

102 + 100
= 62.5  and  S′1102 =

25,0001102
1102 + 1002 2 = 6.25.

Total sales after 10 months are 62,500 games, and sales are increasing at the 
rate of 6,250 games per month.

(C) Total sales will increase by approximately 6,250 games during the next month, so 
the estimated total sales after 11 months are 62,500 + 6,250 = 68,750 games.

Matched Problem 6 Refer to Example 6. Suppose that the total sales S (in 
thousands of games) t months after the game is introduced are given by

 S1t2 =
150t
t + 3

(A) Find  S′1t2.

(B) Find  S1122 and  S′1122. Write a brief interpretation of these results.

(C) Use the results from part (B) to estimate the total sales after 13 months.

EXAMPLE 6
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Skills Warm-up Exercises 
In Problems 1–4, find (A) the derivative of F1x2S1x2 without us-
ing the product rule, and (B) F′1x2S′1x2. Note that the answer to 
part (B) is different from the answer to part (A).

1. F1x2 = x4, S1x2 = x 2. F1x2 = x3, S1x2 = x3

3. F1x2 = x5, S1x2 = x10 4. F1x2 = x + 1, S1x2 = x8

In Problems 5–8, find (A) the derivative of  T1x2 >B1x2 without 
using the quotient rule, and (B)  T′1x2 >B′1x2. Note that the an-
swer to part (B) is different from the answer to part (A).

5.  T1x2 = x6, B1x2 = x3 6.  T1x2 = x8, B1x2 = x2

7.  T1x2 = x2, B1x2 = x7 8.  T1x2 = 1, B1x2 = x9

Answers to most of the following problems in this exercise set 
contain both an unsimplified form and a simplified form of the 
derivative. When checking your work, first check that you ap-
plied the rules correctly and then check that you performed the 
algebraic simplification correctly. Unless instructed otherwise, 
when differentiating a product, use the product rule rather than 
performing the multiplication first.

In Problems 9–34, find f ′1x2 and simplify.

9. f1x2 = 2x31x2 - 22 10. f1x2 = 5x21x3 + 22
11. f1x2 = 1x - 3212x - 12
12. f1x2 = 14x - 5216x + 72
13. f1x2 =

x
x - 3

14. f1x2 =
3x

2x + 1

15. f1x2 =
2x + 3
x - 2

16. f1x2 =
3x - 4
2x + 3

17. f1x2 = 3xex 18. f1x2 = x2ex

19. f1x2 = x3 ln x 20. f1x2 = 5x ln x

21. f1x2 = 1x2 + 1212x - 32
22. f1x2 = 13x + 521x2 - 32
23. f1x2 = 10.4x + 2210.5x - 52
24. f1x2 = 10.5x - 4210.2x + 12

25. f1x2 =
x2 + 1
2x - 3

26. f1x2 =
3x + 5

x2 - 3

27. f1x2 = 1x2 + 321x2 - 52
28. f1x2 = 1x2 - 421x2 + 52

29. f1x2 =
x2 + 3

x2 - 5
30. f1x2 =

x2 - 4

x2 + 5

31. f1x2 =
ex

x2 + 1
32. f1x2 =

1 - ex

1 + ex

33. f1x2 =
ln x

1 + x
34. f1x2 =

2x
1 + ln x

In Problems 35–46, find  h′1x2, where f1x2 is an unspecified dif-
ferentiable function.

35.  h1x2 = xf 1x2 36.  h1x2 = x2f 1x2

W

A

37.  h1x2 = x4f 1x2 38.  h1x2 =
f 1x2

x

39.  h1x2 =
f 1x2

x2 40.  h1x2 =
f 1x2

x4

41.  h1x2 =
x

f 1x2 42.  h1x2 =
x2

f 1x2

43.  h1x2 = exf1x2 44.  h1x2 =
ex

f1x2

45.  h1x2 =
ln x
f1x2 46.  h1x2 =

f1x2
ln x

In Problems 47–56, find the indicated derivatives and simplify.

47. f ′1x2 for f1x2 = 12x + 121x2 - 3x2
48. y′ for y = 1x3 + 2x2213x - 12

49. 
dy

dt
 for y = 11.5t - t2216t - 5.42

50. 
d
dt

 313 - 0.4t3210.5t2 - 2t24

51. y′ for y =
5x - 3

x2 + 2x

52. f ′1x2 for f1x2 =
3x2

2x - 1

53. 
d

dw

 
w

2 - 3w + 1

w

2 - 1

54. 
dy

dw

 for y =
w

4 - w

3

3w - 1

55. y′ for y = 13 - 2x + x22  ex

56. 
dy

dt
 for y = 11 + et2 ln t

In Problems 57–60:

(A) Find f ′1x2 using the quotient rule, and

(B) Explain how f ′1x2 can be found easily without using the 
quotient rule.

57. f  1x2 =
1
x

58. f  1x2 =
-1

x2

59. f  1x2 =
-3

x4 60. f  1x2 =
2

x3

In Problems 61–66, find f ′1x2 and find the equation of the line 
tangent to the graph of f at x = 2.

61. f1x2 = 11 + 3x215 - 2x2
62. f1x2 = 17 - 3x211 + 2x2

63. f1x2 =
x - 8
3x - 4

64. f1x2 =
2x - 5
2x - 3

65. f1x2 =
x
2x 66. f1x2 = 1x - 22 ln x

B

Exercises 3.4
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(A) Find  S′1t2.

(B) Find  S1102 and  S′1102. Write a brief interpretation of 
these results.

(C) Use the results from part (B) to estimate the total sales 
after 11 months.

94. Sales analysis. A communications company has installed a 
new cable television system in a city. The total number N (in 
thousands) of subscribers t months after the installation of the 
system is given by

 N1t2 =
180t
t + 4

(A) Find  N′1t2.

(B) Find  N1162 and  N′1162. Write a brief interpretation of 
these results.

(C) Use the results from part (B) to estimate the total num-
ber of subscribers after 17 months.

95. Price–demand equation. According to economic theory, 
the demand x for a quantity in a free market decreases as the 
price p increases (see figure). Suppose that the number x of 
DVD players people are willing to buy per week from a retail 
chain at a price of $p is given by

x =
4,000

0.1p + 1
  10 … p … 70

x

p
20 8040 60

Price (dollars)

Su
pp

ly
/D

em
an

d

400

800

1,200

2,000

1,600

x 5 0.1p 1 1
4,000

x 5 0.1p 1 1
100p

Figure for 95 and 96

(A) Find dx>dp.

(B) Find the demand and the instantaneous rate of change 
of demand with respect to price when the price is $40. 
Write a brief interpretation of these results.

(C) Use the results from part (B) to estimate the demand if 
the price is increased to $41.

96. Price–supply equation. According to economic theory, the 
supply x of a quantity in a free market increases as the price 
p increases (see figure). Suppose that the number x of DVD 
players a retail chain is willing to sell per week at a price of 
$p is given by

x =
100p

0.1p + 1
  10 … p … 70

(A) Find dx>dp.

In Problems 67–70, find f ′1x2 and find the value(s) of x where 
f ′1x2 = 0.

67. f1x2 = 12x - 1521x2 + 182
68. f1x2 = 12x + 921x2 - 542
69. f1x2 =

x

x2 + 1
70. f1x2 =

x

x2 + 9

In Problems 71–74, find f ′1x2 in two ways: (1) using the product 
or quotient rule and (2) simplifying first.

71. f1x2 = x31x4 - 12 72. f1x2 = x41x3 - 12

73. f1x2 =
x3 + 9

x3 74. f1x2 =
x4 + 4

x4

In Problems 75–92, find each indicated derivative and simplify.

75. f ′1w2 for f1w2 = 1w - 423w

76.  g′1w2 for  g1w2 = 1w - 52 log3 w

77. 
dy

dx
 for y = 9x1>31x3 + 52

78. 
d
dx

 314x1>2 - 1213x1>3 + 224

79. y′ for y =
log2 x

1 + x2 80. 
dy

dx
 for y =

10x

1 + x4

81. f ′1x2 for f1x2 =
632x

x2 - 3

82. y′ for y =
22x

x2 - 3x + 1

83.  g′1t2 if g1t2 =
0.2t

3t2 - 1

84.  h′1t2 if h1t2 =
-0.05t2

2t + 1

85. 
d
dx
 [4x log x5] 86. 

d
dt
 [10t log t]

87. 
dy

dx
 for y = 1x + 321x2 - 3x + 52

88. f ′1x2 for f1x2 = 1x4 + x2 + 121x2 - 12
89. y′ for y = 1x2 + x + 121x2 - x + 12
90.  g′1t2 for g1t2 = 1t + 121t4 - t3 + t2 - t + 12

91. 
dy

dt
 for y =

t ln t
et 92. 

dy

du
 for y =

u2 eu

1 + ln u

Applications
93. Sales analysis. The total sales S (in thousands) of a video 

game are given by

 S1t2 =
90t2

t2 + 50

where t is the number of months since the release of the 
game.

C
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Answers to Matched Problems
1. 30x4 - 36x3 + 9x2

2. (A) y = 84x - 297

(B) x = -4, x = 1
3. (A) 5x8ex + ex140 x72 = 5x71x + 82ex

(B) x7 # 1
x

+ ln x 17x62 = x6 11 + 7 ln x2

4. (A) 
1x2 + 322 - 12x212x2

1x2 + 32 2 =
6 - 2x2

1x2 + 32 2

(B) 
1t2 - 4213t2 - 32 - 1t3 - 3t212t2

1t2 - 42 2 =
t4 - 9t2 + 12

1t2 - 42 2

(C) -  
6

x4

5. (A) 
1ex + 22 3x2 - x3 ex

1ex + 22 2

(B) 
11 + ln x2 4 - 4x 

1
x

11 + ln x2 2
=

4 ln x

11 + ln x2 2

6. (A)  S′1t2 =
450

1t + 32 2

(B)  S1122 = 120; S′1122 = 2. After 12 months, the total 
sales are 120,000 games, and sales are increasing at the 
rate of 2,000 games per month.

(C) 122,000 games

(B) Find the supply and the instantaneous rate of change of 
supply with respect to price when the price is $40. Write 
a brief verbal interpretation of these results.

(C) Use the results from part (B) to estimate the supply if the 
price is increased to $41.

97. Medicine. A drug is injected into a patient’s bloodstream 
through her right arm. The drug concentration (in milligrams 
per cubic centimeter) in the bloodstream of the left arm t 
hours after the injection is given by

 C1t2 =
0.14t

t2 + 1

(A) Find  C′1t2.

(B) Find  C′10.52 and  C′132, and interpret the results.

98. Drug sensitivity. One hour after a dose of x milligrams of 
a particular drug is administered to a person, the change in 
body temperature  T1x2, in degrees Fahrenheit, is given ap-
proximately by

 T1x2 = x2 a1 -
x
9
b  0 … x … 7

The rate  T′1x2 at which T changes with respect to the size 
of the dosage x is called the sensitivity of the body to the 
dosage.

(A) Use the product rule to find  T′1x2.

(B) Find  T′112, T′132, and  T′162.

The word chain in the name “chain rule” comes from the fact that a function formed 
by composition involves a chain of functions—that is, a function of a function. The 
chain rule enables us to compute the derivative of a composite function in terms of 
the derivatives of the functions making up the composite. In this section, we review 
composite functions, introduce the chain rule by means of a special case known as 
the general power rule, and then discuss the chain rule itself.

Composite Functions
The function  m1x2 = 1x2 + 42 3 is a combination of a quadratic function and a cu-
bic function. To see this more clearly, let

y = f1u2 = u3  and  u = g1x2 = x2 + 4

We can express y as a function of x:

y = f1u2 = f 3g1x24 = 3x2 + 443 = m1x2

The function m is the composite of the two functions f and g.

3.5 The Chain Rule
■■ Composite Functions
■■ General Power Rule
■■ The Chain Rule
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The composite m of functions f and g is pictured in Figure 1. The domain of m 
is the shaded subset of the domain of g (Fig. 1); it consists of all numbers x such that 
x is in the domain of g and g1x2 is in the domain of f. Note that the functions f and 
g play different roles. The function g, which is on the inside or interior of the square 
brackets in f [g1x2], is applied first to x. Then function f, which appears on the out-
side or exterior of the square brackets, is applied to g1x2, provided g1x2 is in the 
domain of f. Because f and g play different roles, the composite of f and g is usually a 
different function than the composite of g and f, as illustrated by Example 1.

g(x)

m
Range
of m

Domain
of m

Domain
of g

Domain
of f

Range
of g

Range
of f

g f

x m(x) 5 f [g(x)]

Figure 1 The composite m of f and g

DEFINITION Composite Functions
A function m is a composite of functions f and g if

 m1x2 = f 3g1x24
The domain of m is the set of all numbers x such that x is in the domain of g, and 
 g1x2 is in the domain of f.

Composite Functions Write each function as a composite of two simpler 
functions.

(A) y = 100e0.04x (B) y = 24 - x2

SOLUTION
(A) Let

 y = f1u2  = 100eu

 u = g1x2 = 0.04x

Check: y = f 3g1x24 = f  10.04x2 = 100e0.04x

EXAMPLE 2

Composite Functions Let f1u2 = eu and  g1x2 = -3x. Find f 3g1x24 and g3  f1u24.

SOLUTION

 f 3g1x24 = f1-3x2 = e-3x

 g3  f1u24 = g1eu2 = -3eu

Matched Problem 1 Let f1u2 = 2u and  g1x2 = ex. Find f [g1x2] and 
g [  f1u2].

EXAMPLE 1
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There can be more than one way to express a function as a composite of simpler 
functions. Choosing y = f1u2 = 100u and u = g1x2 = e0.04x in Example 2A 
produces the same result:

y = f 3g1x24 = 100g1x2 = 100e0.04x

Since we will be using composition as a means to an end (finding a derivative), 
usually it will not matter which functions you choose for the composition.

CONCEPTUAL INSIGHT

General Power Rule
We have already made extensive use of the power rule,

 
d
dx

 xn = nxn - 1 (1)

Can we apply rule (1) to find the derivative of the composite function m1x2 =
p[u1x2] = [u1x2]n, where p is the power function p1u2 = un and u1x2 is a differ-
entiable function? In other words, is rule (1) valid if x is replaced by u1x2?

Let  u1x2 = 2x2 and  m1x2 = 3u1x243 = 8x6. Which of the following is  m′1x2?

(A) 33u1x242 (B) 33u′1x242 (C) 33u1x242u′1x2

Explore and Discuss 1

The calculations in Explore and Discuss 1 show that we cannot find the deriva-
tive of [u1x2]n simply by replacing x with  u1x2 in equation (1).

How can we find a formula for the derivative of 3u1x24n, where  u1x2 is an ar-
bitrary differentiable function? Let’s begin by considering the derivatives of 3u1x242 
and 3u1x243 to see if a general pattern emerges. Since 3u1x242 = u1x2u1x2, we use 
the product rule to write

 
d
dx

 3u1x242 =
d
dx

 3u1x2u1x24

 = u1x2u′1x2 + u1x2u′1x2
  = 2u1x2u′1x2  (2)

(B) Let

 y = f1u2  = 1u

 u = g1x2 = 4 - x2

Check: y = f 3g1x24 = f 14 - x22 = 24 - x2

Matched Problem 2 Write each function as a composite of two simpler 
functions.

(A) y = 50e-2x (B) y = 23 1 + x3
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Because 3u1x243 = 3u1x242u1x2, we use the product rule and the result in equation 
(2) to write

 
d
dx

 3u1x243 =
d
dx

 53u1x242u1x26   Use equation (2) to  
substitute for

 = 3u1x242 
d
dx

 u1x2 + u1x2  
d
dx

 3u1x242  d
dx

 3u1x242.

 = 3u1x242u′1x2 + u1x232u1x2u′1x24
 = 33u1x242u′1x2

Continuing in this fashion, we can show that

 
d
dx

 3u1x24n = n3u1x24n - 1u′1x2  n a positive integer (3)

Using more advanced techniques, we can establish formula (3) for all real numbers n, 
obtaining the general power rule.

THEOREM 1 General Power Rule
If  u1x2 is a differentiable function, n is any real number, and

y = f1x2 = 3u1x24n

then

f ′1x2 = n3u1x24n - 1u′1x2
Using simplified notation,

y′ = nun-1u′  or  
d
dx

 un = nun-1 
du
dx
  where u = u1x2

Using the General Power Rule Find the indicated derivatives:

(A) f ′1x2 if f  1x2 = 13x + 12 4 (B) y′ if y = 1x3 + 42 7

(C) 
d
dt

 
1

1t2 + t + 42 3 (D) 
dh
dw

 if  h1w2 = 13 - w

SOLUTION

(A)  f1x2 = 13x + 12 4  Apply general power rule.

  f ′1x2 = 413x + 12 313x + 12′ Substitute 13x + 12 ′ = 3.

 = 413x + 12 3 3  Simplify.

 = 1213x + 12 3

(B) y  = 1x3 + 42 7  Apply general power rule.

 y′ = 71x3 + 42 61x3 + 42′ Substitute 1x3 + 42 ′ = 3x2.

 = 71x3 + 42 6 3x2  Simplify.

 = 21x21x3 + 42 6

EXAMPLE 3
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(C) 
d
dt

 
1

1t2 + t + 42 3

 =
d
dt

 1t2 + t + 42 -3 Apply general power rule.

 = -31t2 + t + 42 -41t2 + t + 42′  Substitute 1t2 + t + 42′ =  
2t + 1.

 = -31t2 + t + 42 -412t + 12  Simplify.

 =
-312t + 12
1t2 + t + 42 4

(D)  h1w2 = 13 - w = 13 - w2 1>2 Apply general power rule.

 
dh
dw

 =
1
2

 13 - w2 -1>213 - w2′ Substitute 13 - w2′ = -1.

 =
1
2

 13 - w2 -1>21-12 Simplify.

 = -  
1

213 - w2 1>2  or  -  
1

223 - w

Matched Problem 3 Find the indicated derivatives:

(A)  h′1x2 if h1x2 = 15x + 22 3

(B) y′ if y = 1x4 - 52 5

(C) 
d
dt

 
1

1t2 + 42 2

(D) 
dg

dw

 if  g1w2 = 24 - w

Notice that we used two steps to differentiate each function in Example 3. First, 
we applied the general power rule, and then we found du>dx. As you gain experience 
with the general power rule, you may want to combine these two steps. If you do this, 
be certain to multiply by du>dx. For example,

 
d
dx

 1x5 + 12 4 = 41x5 + 12 35x4 Correct

 
d
dx

 1x5 + 12 4 ∙ 41x5 + 12 3  du>dx = 5x4 is missing

If we let  u1x2 = x, then du>dx = 1, and the general power rule reduces to the 
(ordinary) power rule discussed in Section 2.5. Compare the following:

 
d
dx

 xn = nxn - 1  Yes—power rule

 
d
dx

 un = nun - 1 
du
dx

 Yes—general power rule

 
d
dx

 un ∙ nun - 1  Unless u1x2 = x + k, so that du>dx = 1

CONCEPTUAL INSIGHT
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The Chain Rule
We have used the general power rule to find derivatives of composite functions of the 
form f 3g1x24, where f  1u2 = un is a power function. But what if f is not a power 
function? Then a more general rule, the chain rule, enables us to compute the deriva-
tives of many composite functions of the form f 3g1x24.

Suppose that

y = m1x2 = f 3g1x24
is a composite of f and g, where

y = f  1u2  and  u = g1x2
To express the derivative dy>dx in terms of the derivatives of f and g, we use the defi-
nition of a derivative (see Section 2.4).

 m′1x2 = lim
hS0

  
m1x + h2 - m1x2

h

         Substitute m1x + h2 = f  3g1x + h24  
and m1x2 = f 3g1x24.

 = lim
hS0

  
f 3g1x + h24 - f 3g1x24

h
 Multiply by 1 =

g1x + h2 - g1x2
g1x + h2 - g1x2 .

 = lim
hS0

 c f 3g1x + h24 - f 3g1x24
h

 #  
g1x + h2 - g1x2
g1x + h2 - g1x2 d

  = lim
hS0

 c f 3g1x + h24 - f 3g1x24
g1x + h2 - g1x2  #  

g1x + h2 - g1x2
h

d  (4)

We recognize the second factor in equation (4) as the difference quotient for 
 g1x2. To interpret the first factor as the difference quotient for f1u2, we let 
k = g1x + h2 - g1x2. Since u = g1x2, we write

u + k = g1x2 + g1x + h2 - g1x2 = g1x + h2
Substituting in equation (4), we have

  m′1x2 = lim
hS0

 c f1u + k2 - f1u2
k

 #  
g1x + h2 - g1x2

h
d  (5)

If we assume that k = 3g1x + h2 - g1x24 S 0 as h S 0, we can find the limit of 
each difference quotient in equation (5):

 m′1x2 = c lim
kS0

 
f1u + k2 - f1u2

k
d c lim

hS0
 
g1x + h2 - g1x2

h
d

 = f  ′1u2g′1x2
 = f  ′3g1x24g′1x2

Therefore, referring to f and g in the composite function f [g1x2] as the exterior func-
tion and interior function, respectively,

The derivative of the composite of two functions is the derivative of the 
exterior, evaluated at the interior, times the derivative of the interior.

This chain rule is expressed more compactly in Theorem 2, with notation chosen to 
aid memorization (E for “exterior”, I for “interior”).
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THEOREM 2 Chain Rule
If m1x2 = E [I1x2] is a composite function, then

m′1x2 = E′  [I1x2] I′1x2
provided that E′  [I1x2] and I′1x2 exist.
Equivalently, if y = E1u2 and u = I1x2, then

dy

dx
=

dy

du
 
du
dx

provided that 
dy

du
 and 

du
dx

 exist.

Using the Chain Rule Find the derivative m′1x2 of the composite function m1x2.

(A) m1x2 = 13x2 + 123>2  (B) m1x2 = e2x3 + 5  (C) m1x2 =  ln 1x2 - 4x + 22
SOLUTION
(A) The function m is the composite of  E1u2 = u3>2 and  I1x2 = 3x2 + 1. Then  

 E′1u2 = 3
2 u1>2 and  I′1x2 = 6x; so by the chain rule, 

 m′1x2 = 3
2 13x2 + 12 1>216x2 = 9x13x2 + 12 1>2.

(B) The function m is the composite of  E1u2 = eu and  I1x2 = 2x3 + 5. Then  
 E′1u2 = eu and  I′1x2 = 6x2; so by the chain rule, 
 m′1x2 = e2x3 + 516x22  = 6x2e2x3 + 5.

(C) The function m is the composite of  E1u2 = ln u and  I1x2 = x2 - 4x + 2.  
Then  E′1u2 = 1

u and  I′1x2 = 2x - 4; so by the chain rule, 
 m′1x2 = 1

x2 - 4x + 2
 12x - 42 = 2x - 4

x2 - 4x + 2
.

Matched Problem 4 Find the derivative  m′1x2 of the composite function  m1x2.

(A)  m1x2 = 12x3 + 42-5  (B)  m1x2 = e3x4 +6  (C)  m1x2 =  ln 1x2 + 9x + 42

EXAMPLE 4

Let  m1x2 = f 3g1x24. Use the chain rule and Figures 2 and 3 to find

Explore and Discuss 2

(A) f142 (B)  g162 (C)  m162
(D) f  ′142 (E)  g′162 (F)  m′162

u
105

y

30

20

10

y 5 f (u)

y 5 2u 1 4

(4, 12)

Figure 2

u 5 g(x)

u 5 0.4x 1 1.6

(6, 4)

6

4

2

x
105

u

Figure 3
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Using the Chain Rule For y = h1x2 = e1 + 1ln x22
, find dy>dx.

SOLUTION Note that h is of the form y = ew, where w = 1 + u2 and u = ln x.

 
dy

dx
 =

dy

dw

 
dw

du
 
du
dx

 = ew12u2 a1
x
b  Substitute w = 1 + u2.

 = e1 + u212u2 a1
x
b  Substitute u =  ln x (twice).

 = e1 + 1ln x2212 ln x2 a1
x
b  Simplify.

 =
2
x

 1ln x2e1 + 1ln x22

Matched Problem 5 For y = h1x2 = 3ln11 + ex243, find dy>dx.

The chain rule can be extended to compositions of three or more functions. For 
example, if y = f1w2, w = g1u2, and u = h1x2, then

dy

dx
∙

dy

dw

 
dw

du
 
du
dx

EXAMPLE 5

The chain rule generalizes basic derivative rules. We list three general derivative 
rules here for convenient reference [the first, equation (6), is the general power rule 
of Theorem 1].

General Derivative Rules

  
d
dx

 3  f1x24n = n3  f1x24n - 1f  ′1x2 (6)

  
d
dx

 ln3  f1x24 =
1

f1x2  f ′1x2  (7)

  
d
dx

 e f 1x2 = e f1x2f′1x2  (8)

Using General Derivative Rules Find the derivatives:EXAMPLE 6

Unless directed otherwise, you now have a choice between the chain rule and 
the general derivative rules. However, practicing with the chain rule will help 
prepare you for concepts that appear later in the text. Examples 4 and 5 illustrate 
the chain rule method, and the next example illustrates the general derivative rules 
method.

(A) 
d
dx

 e2x (B) 
d
dx

 ln 1x2 + 92 (C) 
d
dx

 11 + ex22 3
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SOLUTION

(A) 
d
dx

 e2x Apply equation (8).

 = e2x 
d
dx

  2x

 = e2x122 = 2e2x

(B) 
d
dx

 ln1x2 + 92 Apply equation (7).

 =
1

x2 + 9
  

d
dx

 1x2 + 92

 =
1

x2 + 9
 2x =

2x

x2 + 9

(C) 
d
dx

 11 + ex22 3 Apply equation (6).

 = 311 + ex22 2 
d
dx

 11 + ex22 Apply equation (8).

 = 311 + ex22 2ex2
 
d
dx

 x2

 = 311 + ex22 2ex212x2

 = 6xex211 + ex22 2

Matched Problem 6 Find

(A) 
d
dx

 ln1x3 + 2x2 (B) 
d
dx

 e3x2 + 2 (C) 
d
dx

 12 + e-x22 4

For many of the problems in this exercise set, the answers in the 
back of the book include both an unsimplified form and a simpli-
fied form. When checking your work, first check that you applied 
the rules correctly, and then check that you performed the alge-
braic simplification correctly.

Skills Warm-up Exercises
In Problems 1–8, find f ′1x2. (If necessary, review Sections 2.5 
and 3.2).

1. f1x2 = x9 + 10x 2. f1x2 = 5 - 6x5

3. f1x2 = 71x +
3

x2 4. f1x2 = 15x-3 + 423 x

5. f1x2 = 8ex + e 6. f1x2 = 12ex - 11xe

7. f1x2 = 4 ln x + 4x2 8. f1x2 = 5 ln x - x ln 5

W

In Problems 9–16, replace ? with an expression that will make the 
indicated equation valid.

9. 
d
dx

 13x + 42 4 = 413x + 42 3 ? 

10. 
d
dx

 15 - 2x2 6 = 615 - 2x2 5 ? 

11. 
d
dx

 14 - 5x62 7 = 714 - 5x62 6 ? 

12. 
d
dx

 13x2 + 72 5 = 513x2 + 72 4 ? 

13. 
d
dx

 ex2 + 1 = ex2 + 1 ? 14. 
d
dx

 e4x-2 = e4x-2 ? 

A

Exercises 3.5
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In Problems 57–62, find f ′1x2 and find the equation of the line 
tangent to the graph of f at the indicated value of x.

57. f1x2 = x14 - x2 3; x = 2

58. f1x2 = x211 - x2 4; x = 2

59. f1x2 =
x

14x - 72 5; x = 2

60. f1x2 =
x4

13x - 82 2; x = 4

61. f1x2 = 1ln x; x = e

62. f1x2 = e1x; x = 1

In Problems 63–68, find f ′1x2 and find the value(s) of x where the 
tangent line is horizontal.

63. f1x2 = x21x - 52 3 64. f1x2 = x31x - 72 4

65. f1x2 =
x

14x + 62 3 66. f1x2 =
x - 1

1x - 32 3

67. f1x2 = 2x2 - 8x + 20 68. f1x2 = 2x2 + 4x + 5

69. A student reasons that the functions f1x2 = ln351x2 + 32 44 
and  g1x2 = 4 ln1x2 + 32 must have the same derivative 
since he has entered f1x2,  g1x2, f  ′1x2, and  g′1x2 into a 
graphing calculator, but only three graphs appear (see  
figure). Is his reasoning correct? Are f ′1x2 and  g′1x2 the 
same function? Explain.

C
15. 

d
dx

 ln1x4 + 12 =
1

x4 + 1
  ? 

16. 
d
dx

 ln1x - x32 =
1

x - x3  ? 

In Problems 17–34, find f ′1x2 and simplify.

17. f1x2 = 15 - 2x2 4 18. f1x2 = 19 - 5x2 2

19. f1x2 = 14 + 0.2x2 5 20. f1x2 = 16 - 0.5x2 4

21. f1x2 = 13x2 + 52 5 22. f1x2 = 15x2 - 32 6

23. f1x2 = e5x 24. f1x2 = 18e-3x

25. f1x2 = 3e-6x 26. f1x2 = ex2 +  3x + 1

27. f1x2 = 12x - 52 1>2 28. f1x2 = 14x + 32 1>2

29. f1x2 = 1x4 + 12 -2 30. f1x2 = 1x5 + 22 -3

31. f1x2 = 3 ln11 + x22 32. f1x2 = 2 ln1x2 - 3x + 42
33. f1x2 = 11 + ln x2 3 34. f1x2 = 1x - 2 ln x2 4

In Problems 35–40, find f ′1x2 and the equation of the line 
 tangent to the graph of f at the indicated value of x. Find the 
value(s) of x where the tangent line is horizontal.

35. f1x2 = 12x - 12 3; x = 1

36. f1x2 = 17x + 62 5; x = -1

37. f1x2 = 14x - 32 1>2; x = 3

38. f1x2 = 12x + 82 1>2; x = 4

39. f1x2 = 5ex2 - 4x + 1; x = 0

40. f1x2 = ln11 - x2 + 2x42; x = 1

In Problems 41–56, find the indicated derivative and simplify.

41. y′ if y = 31x2 - 22 4 42. y′ if y = 21x3 + 62 5

43. 
d
dt

  21t2 + 3t2 -3 44. 
d
dt

  31t3 + t22 -2

45. 
dh
dw

 if h1w2 = 2w

2 + 8

46. 
dg

dw

 if g1w2 = 23 3w - 7

47.  g′1x2 if g1x2 = 6xe-7x

48.  h′1x2 if h1x2 =
e2x

x2 + 9

49. 
d
dx

 
ln11 + x22

3x
50. 

d
dx

 [x ln11 + ex2]

51. F′1t2 if F1t2 = 1et2 + 12 3

52.  G′1t2 if G1t2 = 11 - e2t2 2

53. y′ if y = ln1x2 + 32 3>2

54. y′ if y = 3ln1x2 + 3243>2

55. 
d

dw

  
1

1w

3 + 42 5 56. 
d

dw

  
1

1w

6 - 52 4

B

(A)  

21

(B)

0

20

10

Figure for 73

70. A student reasons that the functions 
f1x2 = 1x + 12ln 1x + 12 - x and  g1x2 = 1x + 12 1>3 
must have the same derivative since she has entered f1x2, 
 g1x2, f ′1x2, and  g′1x2 into a graphing calculator, but only 
three graphs appear (see figure). Is her reasoning correct? Are 
f ′1x2 and  g′1x2 the same function? Explain.

(A)  

1

(B)

1

2

4
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92. Cost function. The total cost (in hundreds of dollars) of 
producing x cameras per week is

 C1x2 = 6 + 14x + 4  0 … x … 30

(A) Find  C′1x2.

(B) Find  C′1152 and  C′1242. Interpret the results.

93. Price–supply equation. The number x of bicycle helmets a re-
tail chain is willing to sell per week at a price of $p is given by

x = 802p + 25 - 400  20 … p … 100

(see the figure).

(A) Find dx>dp.

(B) Find the supply and the instantaneous rate of change of 
supply with respect to price when the price is $75. Write 
a brief interpretation of these results.

x

p

Su
pp

ly
/D

em
an

d

200

400

600

800

20 40 60 80 100

Price (dollars)

x 5 1000 2 60Ïp 1 25

x 5 80Ïp 1 25 2 400

Figure for 93 and 94

94. Price–demand equation. The number x of bicycle helmets 
people are willing to buy per week from a retail chain at a 
price of $p is given by

x = 1,000 - 601p + 25  20 … p … 100

(see the figure).

(A) Find dx>dp.

(B) Find the demand and the instantaneous rate of change 
of demand with respect to price when the price is $75. 
Write a brief interpretation of these results.

95. Drug concentration. The drug concentration in the blood-
stream t hours after injection is given approximately by

 C1t2 = 4.35e-t  0 … t … 5

where  C1t2 is concentration in milligrams per milliliter.

(A) What is the rate of change of concentration after 1 hour? 
After 4 hours?

(B) Graph C.

96. Water pollution. The use of iodine crystals is a popular way 
of making small quantities of water safe to drink. Crystals 
placed in a 1-ounce bottle of water will dissolve until the solu-
tion is saturated. After saturation, half of the solution is poured 
into a quart container of water, and after about an hour, the 
water is usually safe to drink. The half-empty 1-ounce bottle 
is then refilled, to be used again in the same way. Suppose 
that the concentration of iodine in the 1-ounce bottle t minutes 
after the crystals are introduced can be approximated by

 C1t2 = 25011 - e-t2  t Ú 0

In Problems 71–78, give the domain of f, the domain of g, and the 
domain of m, where m1x2 = f [g1x2].

71. f1u2 = ln u; g1x2 = 1x

72. f1u2 = eu; g1x2 = 1x

73. f1u2 = 1u; g1x2 = ln x

74. f1u2 = 1u; g1x2 = ex

75. f1u2 =  ln u; g1x2 = 4 - x2

76. f1u2 =  ln u; g1x2 = 3x + 12

77. f1u2 =
1

u2 - 1
; g1x2 =  ln x

78. f1u2 =
1
u

; g1x2 = x2 - 9

In Problems 79–90, find each derivative and simplify.

79. 
d
dx

 33x1x2 + 12 34 80. 
d
dx

 32x21x3 - 32 44

81. 
d
dx

 
1x3 - 72 4

2x3 82. 
d
dx

 
3x2

1x2 + 52 3

83. 
d
dx

 log215x4 + 32 84. 
d
dx

 log1x3 - 12

85. 
d
dx

 10x2 + x 86. 
d
dx

 81 - 2x2

87. 
d
dx

 log314x3 + 5x + 72 88. 
d
dx

 log515x2 - 12

89. 
d
dx

 2x3 - x2 + 4x + 1 90. 
d
dx

 10ln x

Applications
91. Cost function. The total cost (in hundreds of dollars) of 

producing x cell phones per day is

 C1x2 = 10 + 22x + 16  0 … x … 50

(see the figure).

C(x)

x
10 20 30 40 50

Production

C
os

t (
hu

nd
re

d 
do

lla
rs

)

5

10

15

20

25

Figure for 91

(A) Find  C′1x2.

(B) Find  C′1242 and  C′1422. Interpret the results.
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Answers to Matched Problems
1. f 3g1x24 = 2ex, g3f1u24 = e2u

2. (A) f1u2 = 50eu, u = -2x

(B) f1u2 = 23 u, u = 1 + x3

[Note: There are other correct answers.]

3. (A) 1515x + 22 2

(B) 20x31x4 - 52 4

(C) -4t> 1t2 + 42 3

(D) -1> 1214 - w2
4. (A)  m′1x2 = -30x212x3 + 42 -6

(B)  m′1x2 = 12x3e3x4 + 6

(C)  m′1x2 =
2x + 9

x2 + 9x + 4

5. 
3ex3ln11 + ex242

1 + ex

6. (A) 
3x2 + 2

x3 + 2x
(B) 6xe3x2 + 2

(C) -8xe-x212 + e-x22 3

where  C1t2 is the concentration of iodine in micrograms per 
milliliter.

(A) What is the rate of change of the concentration after 
1 minute? After 4 minutes?

(B) Graph C for 0 … t … 5.

97. Blood pressure and age. A research group using hospital 
records developed the following mathematical model relating 
systolic blood pressure and age:

 P1x2 = 40 + 25 ln1x + 12  0 … x … 65

 P1x2 is pressure, measured in millimeters of mercury, and 
x is age in years. What is the rate of change of pressure at 
the end of 10 years? At the end of 30 years? At the end of 
60 years?

98. Biology. A yeast culture at room temperature (68°F) is 
placed in a refrigerator set at a constant temperature of 38°F. 
After t hours, the temperature T of the culture is given ap-
proximately by

T = 30e-0.58t + 38  t Ú 0

What is the rate of change of temperature of the culture at the 
end of 1 hour? At the end of 4 hours?

Special Function Notation
The equation

 y = 2 - 3x2 (1)

defines a function f with y as a dependent variable and x as an independent variable. 
Using function notation, we would write

y = f1x2  or  f1x2 = 2 - 3x2

In order to minimize the number of symbols, we will often write equation (1) in the 
form

y = 2 - 3x2 = y1x2
where y is both a dependent variable and a function symbol. This is a convenient notation, 
and no harm is done as long as one is aware of the double role of y. Other examples are

 x = 2t2 - 3t + 1 = x1t2

 z = 2u2 - 3u = z1u2

 r =
1

1s2 - 3s2 2>3 = r1s2

Until now, we have considered functions involving only one independent variable. 
There is no reason to stop there: The concept can be generalized to functions involving 
two or more independent variables, and this will be done in detail in Chapter 7. For 

3.6 Implicit Differentiation
■■ Special Function Notation
■■ Implicit Differentiation
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now, we will “borrow” the notation for a function involving two independent vari-
ables. For example,

f1x, y2 = x2 - 2xy + 3y2 - 5

specifies a function F involving two independent variables.

Implicit Differentiation
Consider the equation

 3x2 + y - 2 = 0 (2)

and the equation obtained by solving equation (2) for y in terms of x,

 y = 2 - 3x2 (3)

Both equations define the same function with x as the independent variable and y as 
the dependent variable. For equation (3), we write

y = f1x2
where

 f1x2 = 2 - 3x2 (4)

and we have an explicit (directly stated) rule that enables us to determine y for each 
value of x. On the other hand, the y in equation (2) is the same y as in equation (3), 
and equation (2) implicitly gives (implies, though does not directly express) y as a 
function of x. We say that equations (3) and (4) define the function f explicitly and 
equation (2) defines f implicitly.

Using an equation that defines a function implicitly to find the derivative of the 
function is called implicit differentiation. Let’s differentiate equation (2) implicitly 
and equation (3) directly, and compare results.

Starting with

3x2 + y - 2 = 0

we think of y as a function of x and write

3x2 + y1x2 - 2 = 0

Then we differentiate both sides with respect to x:

 
d
dx

 313x2 + y1x2 - 224 =
d
dx

 0  

 
d
dx

 3x2 +
d
dx

 y1x2 -
d
dx

 2 = 0  Since y is a function of x, but is not explicitly 
given, simply write y′ to denote d

dx
 y1x2. 

 6x + y′ - 0 = 0

Now we solve for y′:

y′ = -6x

Note that we get the same result if we start with equation (3) and differentiate directly:

 y = 2 - 3x2

 y′ = -6x

Why are we interested in implicit differentiation? Why not solve for y in terms of 
x and differentiate directly? The answer is that there are many equations of the form

 f1x, y2 = 0 (5)

that are either difficult or impossible to solve for y explicitly in terms of x (try it for 
x2y5 - 3xy + 5 = 0 or for ey - y = 3x, for example). But it can be shown that, 
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(A) How many tangent lines are there to the graph in Figure 1 when x = 0? When 
x = 1? When x = 2? When x = 4? When x = 6?

x

y

25

5

5

Figure 1

(B) Sketch the tangent lines referred to in part (A), and estimate each of their slopes.

(C) Explain why the graph in Figure 1 is not the graph of a function.

Explore and Discuss 1

Differentiating Implicitly Given

 f1x, y2 = x2 + y2 - 25 = 0 (6)

find y′ and the slope of the graph at x = 3.

SOLUTION We start with the graph of x2 + y2 - 25 = 0 (a circle, as shown in Fig. 2)  
so that we can interpret our results geometrically. From the graph, it is clear that equa-
tion (6) does not define a function. But with a suitable restriction on the variables, 
equation (6) can define two or more functions. For example, the upper half and the 
lower half of the circle each define a function. On each half-circle, a point that cor-
responds to x = 3 is found by substituting x = 3 into equation (6) and solving for y:

 x2 + y2 - 25 = 0

 132 2 + y2 = 25

 y2 = 16

 y = {4

The point (3, 4) is on the upper half-circle, and the point 13, -42 is on the lower 
half-circle. We will use these results in a moment. We now differentiate equation (6) 
implicitly, treating y as a function of x [i.e., y = y1x2]:

EXAMPLE 1

under fairly general conditions on F, equation (5) will define one or more functions 
in which y is a dependent variable and x is an independent variable. To find y′ under 
these conditions, we differentiate equation (5) implicitly.

x2 1 y2 5 25

x

y

24

4024

4

Figure 2
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 x2 + y2 - 25 = 0

 x2 + 3y1x242 - 25 = 0

 
d
dx

5x2 + 3y1x242 - 256 =
d
dx

 0

 
d
dx

 x2 +
d
dx

 3y1x242 -
d
dx

 25 = 0 Use the chain rule.

 2x + 23y1x242 - 1y′1x2 - 0 = 0

 2x + 2yy′ = 0  Solve for y ′ in terms of x and y.

 y′ = -  
2x
2y

 y′ = -  
x
y

 Leave the answer in terms of x and y.

We have found y′ without first solving x2 + y2 - 25 = 0 for y in terms of x. And 
by leaving y′ in terms of x and y, we can use y′ = -x>y to find y′ for any point on 
the graph of x2 + y2 - 25 = 0 (except where y = 0). In particular, for x = 3, we 
found that (3, 4) and 13, -42 are on the graph. The slope of the graph at (3, 4) is

y′ 0 13, 42 = -3
4 The slope of the graph at (3, 4)

and the slope at 13, -42 is

y′ 0 13, -42 = -  3
- 4 = 3

4 The slope of the graph at 13, -42

The symbol

y′ 0 1a, b2
is used to indicate that we are evaluating y′ at x = a and y = b.

The results are interpreted geometrically in Figure 3 on the original graph.

Matched Problem 1 Graph x2 + y2 - 169 = 0, find y′ by implicit differen-
tiation, and find the slope of the graph when x = 5.

x2 1 y2 5 25

x

y

24

4024

4

(3, 24)x
yy9 5 2

(3, 4)

Slope 5 22
3
4

Slope 5 2
3
4

Figure 3

When differentiating implicitly, the derivative of y2 is 2yy′, not just 2y. This is be-
cause y represents a function of x, so the chain rule applies. Suppose, for example, 
that y represents the function y = 5x + 4. Then

1y22′ = [15x + 42 2]′ = 215x + 42 # 5 = 2yy′
So, when differentiating implicitly, the derivative of y is y′, the derivative of 
y2 is 2yy′, the derivative of y3 is 3y2y′, and so on.

CONCEPTUAL INSIGHT

Differentiating Implicitly Find the equation(s) of the tangent line(s) to the 
graph of

 y - xy2 + x2 + 1 = 0 (7)

at the point(s) where x = 1.

EXAMPLE 2
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SOLUTION We first find y when x = 1:

 y - xy2 + x2 + 1 = 0

 y - 112y2 + 112 2 + 1 = 0

 y - y2 + 2 = 0

 y2 - y - 2 = 0

 1y - 221y + 12 = 0

 y = -1 or 2

So there are two points on the graph of (7) where x = 1, namely, 11, -12 and 
(1, 2). We next find the slope of the graph at these two points by differentiating 
equation (7) implicitly:

 y - xy2 + x2 + 1 = 0   Use the product rule and  

the chain rule for 
d
dx

 xy2.
 
d
dx

  y -
d
dx

  xy2 +
d
dx

  x2 +
d
dx

 1 =
d
dx

 0

 y′ - 1x #  2yy′ + y22 + 2x = 0

 y′ - 2xyy′ - y2 + 2x = 0   
Solve for y′ by getting all terms  
involving y′ on one side.

 y′ - 2xyy′ = y2 - 2x  Factor out y′.

 11 - 2xy2y′ = y2 - 2x

 y′ =
y2 - 2x

1 - 2xy

Now find the slope at each point:

 y′ ∙ 11, -12 =
1-12 2 - 2112
1 - 21121-12 =

1 - 2
1 + 2

=
-1
3

= -  
1
3

 y′ ∙ 11, 22 =
122 2 - 2112
1 - 2112122 =

4 - 2
1 - 4

=
2

-3
= -  

2
3

Equation of tangent line at 11, -12: Equation of tangent line at (1, 2):

 y - y1 = m1x - x12  y - y1 = m1x - x12
 y + 1 = -1

31x - 12  y - 2 = -2
31x - 12

 y + 1 = -1
3 x + 1

3  y - 2 = -2
3 x + 2

3

 y = -1
3 x - 2

3  y = -2
3 x + 8

3

Matched Problem 2 Repeat Example 2 for x2 + y2 - xy - 7 = 0 at x = 1.

Differentiating Implicitly Find x′ for x = x1t2 defined implicitly by

t ln x = xet - 1

and evaluate x′ at 1t, x2 = 10, 12.

SOLUTION It is important to remember that x is the dependent variable and t is 
the independent variable. Therefore, we differentiate both sides of the equation 

EXAMPLE 3
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Skills Warm-up Exercises
In Problems 1–8, if it is possible to solve for y in terms of x, do so. 
If not, write “Impossible.” (If necessary, review Section 1.1.)

1. 3x + 2y - 20 = 0 2. -4x2 + 3y + 12 = 0

3. 
x2

36
+

y2

25
= 1 4. 4y2 - x2 = 36

5. x2 + xy + y2 = 1 6. 2 ln y + y ln x = 3x

7. 5x + 3y = ey 8. y2 + exy + x3 = 0

In Problems 9–16, find y′ in two ways:

(A) Differentiate the given equation implicitly and then solve for y′.

(B) Solve the given equation for y and then differentiate directly.

9. -4x + 3y = 10 10. 2x + 9y = 12

11. 6x2 + y3 = 36 12. x5 + y5 = 1

13. 3x + ey = 7 14. 4x2 - ey = 10

15. x2 - ln y = 0 16. x3 + ln y = 2

W

A

In Problems 17–34, use implicit differentiation to find y′ and 
evaluate y′ at the indicated point.

17. y - 5x2 + 3 = 0; 11, 22
18. 5x3 - y - 1 = 0; 11, 42
19. x2 - y3 - 3 = 0; 12, 12
20. y2 + x3 + 4 = 0; 1-2, 22
21. y2 - 5y + 6x = 0; 11, 22
22. y2 - y - 4x = 0; 10, 12
23. xy - 6 = 0; 12, 32
24. 3xy - 2x - 2 = 0; 12, 12
25. 2xy + y + 2 = 0; 1-1, 22
26. 2y + xy - 1 = 0; 1-1, 12
27. x2y - 3x2 - 4 = 0; 12, 42
28. 4x4y - 3x4 - 5 = 0; 1-1, 22
29. ey = x2 + y2; 11, 02

B

Exercises 3.6

with respect to t (using product and chain rules where appropriate) and then 
solve for x′:

 t ln x = xet - 1  Differentiate implicitly with respect to t.

 
d
dt

 1t ln x2 =
d
dt

 1xet2-  
d
dt

 1  Use the product rule twice.

 t 
x′
x

+ ln x = xet + etx′  Clear fractions.

 x  #   t  
x′
x

+ x #  ln x = x #  xet + x #  etx′  x ∙ 0

 tx′ + x ln x = x2et + xetx′  Subtract to collect x′ terms.

 tx′ - xetx′ = x2et - x ln x  Factor out x′.

 1t - xet2x′ = x2et - x ln x  Solve for x′.

 x′ =
x2et - x ln x

t - xet

Now we evaluate x′ at 1t, x2 = 10, 12, as requested:

 x′ ∙ 10, 12 =
112 2e0 - 1 ln 1

0 - 1e0

 =
1

-1
= -1

Matched Problem 3 Find x′ for x = x1t2 defined implicitly by

1 + x ln t = tex

and evaluate x′ at 1t, x2 = 11, 02.
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53. Find the equation(s) of the tangent line(s) at the point(s) on 
the graph of the equation

y3 - xy - x3 = 2

where x = 1. Round all approximate values to two decimal 
places.

54. Refer to the equation in Problem 53. Find the equation(s) of 
the tangent line(s) at the point(s) on the graph where y = -1. 
Round all approximate values to two decimal places.

Applications
55. Price–supply equation. The number x of fitness watches 

that an online retailer is willing to sell per week at a price of 
$p is given by

x = 0.5p2 - 3p + 200

Use implicit differentiation to find dp>dx.

56. Price–demand equation. The number x of fitness watches 
that people are willing to buy per week from an online re-
tailer at a price of $p is given by

x = 5,000 - 0.1p2

Use implicit differentiation to find dp>dx.

57. Price–demand equation. The number x of compact refrig-
erators that people are willing to buy per week from an appli-
ance chain at a price of $p is given by

x = 900 - 302p + 25

Use implicit differentiation to find dp>dx.

58. Price–supply equation. The number x of compact refrigera-
tors that an appliance chain is willing to sell per week at a 
price of $p is given by

x = 602p + 50 - 300

Use implicit differentiation to find dp>dx.

59. Biophysics. In biophysics, the equation

1L + m21V + n2 = k

is called the fundamental equation of muscle contraction, 
where m, n, and k are constants and V is the velocity of the 
shortening of muscle fibers for a muscle subjected to a load L. 
Find dL>dV by implicit differentiation.

60. Biophysics. In Problem 59, find dV>dL by implicit 
 differentiation.

61. Speed of sound. The speed of sound in air is given by the 
formula

v = k2T

where v is the velocity of sound, T is the temperature of the 

air, and k is a constant. Use implicit differentiation to find 
dT
dv

.

62. Gravity. The equation

F = G 
m1m2

r2

is Newton’s law of universal gravitation. G is a constant 
and F is the gravitational force between two objects having 
masses m1 and m2 that are a distance r from each other.  

30. x2 - y = 4ey; 12, 02 31. x3 - y = ln y; 11, 12
32. ln y = 2y2 - x; 12, 12 33. x ln y + 3y = 3x4; 1-1, 12
34. xey - y = x2 - 2; 12, 02
In Problems 35 and 36, find x′ for x = x1t2 defined implicitly by 
the given equation. Evaluate x′ at the indicated point.

35. x2 - t2x + t3 + 11 = 0; 1-2, 12
36. x3 - tx2 - 4 = 0; 1-3, -22
Problems 37 and 38 refer to the equation and graph shown in the 
figure.

x

y

(x 2 1)2 1 (y 2 1)2 5 1

21

2

1

Figure for 37 and 38

37. Use implicit differentiation to find the slopes of the tangent lines 
at the points on the graph where x = 1.6. Check your answers 
by visually estimating the slopes on the graph in the figure.

38. Find the slopes of the tangent lines at the points on the graph 
where x = 0.2. Check your answers by visually estimating 
the slopes on the graph in the figure.

In Problems 39–42, find the equation(s) of the tangent line(s) to 
the graphs of the indicated equations at the point(s) with the given 
value of x.

39. xy - 2x - 9 = 0; x = -3 40. 3x + xy + 1 = 0; x = -1

41. y2 - xy - 6 = 0; x = 1 42. xy2 - y - 2 = 0; x = 1

43. If xey = 1, find y′ in two ways, first by differentiating 
implicitly and then by solving for y explicitly in terms of x. 
Which method do you prefer? Explain.

44. Explain the difficulty that arises in solving x3 + y + xey = 1 
for y as an explicit function of x. Find the slope of the tangent 
line to the graph of the equation at the point (0, 1).

In Problems 45–52, find y′ and the slope of the tangent line to the 
graph of each equation at the indicated point.

45. 11 + y2 3 + y = x + 7; 12, 12
46. 1y - 32 4 - x = y; 1-3, 42
47. 1x - 3y2 3 = 4y3 - 5; 12, 12
48. 12x - y2 4 - y3 = 8; 1-1, -22
49. 27 + y2 - x3 + 4 = 0; 12, 32
50. 62y3 + 1 - 2x3>2 - 2 = 0; 14, 22
51. ln1xy2 = y2 - 1; 11, 12
52. exy - 6x = 2y - 5; 11, 02

C
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Answers to Matched Problems

1. y′ = -x>y. When x = 5, y = {12; thus, y′ ∙ 15,122 = - 5
12 

and y′ ∙ 15,-122 = 5
12

2. y′ =
y - 2x

2y - x
; y = 4

5 x - 14
5 , y = 1

5 x + 14
5

3. x′ =
tex - x

t ln t - t2ex; x′ 0 11, 02 = -1

Use implicit differentiation to find 
dr
dF

. Assume that m1 and 
m2 are constant.

63. Speed of sound. Refer to Problem 61. Find 
dv

dT
 and discuss 

the connection between 
dv

dT
 and 

dT
dv

.

64. Gravity. Refer to Problem 62. Find 
dF
dr

 and discuss the con-

nection between 
dF
dr

 and 
dr
dF

.

Union workers are concerned that the rate at which wages are increasing is lagging 
behind the rate of increase in the company’s profits. An automobile dealer wants to 
predict how much an anticipated increase in interest rates will decrease his rate of sales. 
An investor is studying the connection between the rate of increase in the Dow Jones 
average and the rate of increase in the gross domestic product over the past 50 years.

In each of these situations, there are two quantities—wages and profits, for 
 example—that are changing with respect to time. We would like to discover the pre-
cise relationship between the rates of increase (or decrease) of the two quantities. We 
begin our discussion of such related rates by considering familiar situations in which 
the two quantities are distances and the two rates are velocities.

3.7 Related Rates

Related Rates and Motion A 26-foot ladder is placed against a wall (Fig. 1). If 
the top of the ladder is sliding down the wall at 2 feet per second, at what rate is the 
bottom of the ladder moving away from the wall when the bottom of the ladder is 
10 feet away from the wall?

SOLUTION Many people think that since the ladder is a constant length, the bottom 
of the ladder will move away from the wall at the rate that the top of the ladder is 
moving down the wall. This is not the case, however.

At any moment in time, let x be the distance of the bottom of the ladder from the 
wall and let y be the distance of the top of the ladder from the ground (see Fig. 1). Both 
x and y are changing with respect to time and can be thought of as functions of time; 
that is, x = x1t2 and y = y1t2. Furthermore, x and y are related by the Pythagorean 
relationship:

 x2 + y2 = 262 (1)

Differentiating equation (1) implicitly with respect to time t and using the chain rule 
where appropriate, we obtain

 2x 
dx
dt

+ 2y 
dy

dt
= 0 (2)

The rates dx>dt and dy>dt are related by equation (2). This is a related-rates problem.
Our problem is to find dx>dt when x = 10 feet, given that dy>dt = -2 (y is 

decreasing at a constant rate of 2 feet per second). We have all the quantities we 
need in equation (2) to solve for dx>dt, except y. When x = 10, y can be found from 
equation (1):

 102 + y2 = 262

 y = 2262 - 102 = 24 feet

EXAMPLE 1

x

yyyyy 26 ft

Figure 1
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(A) For which values of x and y in Example 1 is dx>dt equal to 2 (i.e., the same rate 
that the ladder is sliding down the wall)?

(B) When is dx>dt greater than 2? Less than 2?

Explore and Discuss 1

DEFINITION Suggestions for Solving Related-Rates Problems
Step 1 Sketch a figure if helpful.

Step 2  Identify all relevant variables, including those whose rates are given and 
those whose rates are to be found.

Step 3 Express all given rates and rates to be found as derivatives.

Step 4 Find an equation connecting the variables identified in step 2.

Step 5  Implicitly differentiate the equation found in step 4, using the chain rule 
where appropriate, and substitute in all given values.

Step 6 Solve for the derivative that will give the unknown rate.

Related Rates and Motion Suppose that two motorboats leave from the same point 
at the same time. If one travels north at 15 miles per hour and the other travels east at 
20 miles per hour, how fast will the distance between them be changing after 2 hours?

SOLUTION First, draw a picture, as shown in Figure 2.
All variables, x, y, and z, are changing with time. They can be considered as func-

tions of time: x = x1t2, y = y1t2, and z = z1t2, given implicitly. It now makes 

EXAMPLE 2

Substitute dy>dt = -2, x = 10, and y = 24 into (2). Then solve for dx>dt:

 21102  
dx
dt

+ 212421-22 = 0

 
dx
dt

=
-212421-22

21102 = 4.8 feet per second

The bottom of the ladder is moving away from the wall at a rate of 4.8 feet per second.

In the solution to Example 1, we used equation (1) in two ways: first, to find 
an equation relating dy>dt and dx>dt, and second, to find the value of y when 
x = 10. These steps must be done in this order. Substituting x = 10 and then dif-
ferentiating does not produce any useful results:

 x2 + y2 = 262

 100 + y2 = 262 
 Substituting 10 for x has the  
effect of stopping the ladder.

 0 + 2yy′ = 0

 y′ = 0  
 The rate of change of a stationary object  
is always 0, but that is not the rate of  
change of the moving ladder.

.

CONCEPTUAL INSIGHT

Matched Problem 1 Again, a 26-foot ladder is placed against a wall (Fig. 1). If 
the bottom of the ladder is moving away from the wall at 3 feet per second, at what 
rate is the top moving down when the top of the ladder is 24 feet above ground?
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sense to find derivatives of each variable with respect to time. From the Pythagorean 
theorem,

 z2 = x2 + y2 (3)

We also know that

dx
dt

= 20 miles per hour  and  
dy

dt
= 15 miles per hour

We want to find dz>dt at the end of 2 hours—that is, when x = 40 miles and y = 30 
miles. To do this, we differentiate both sides of equation (3) with respect to t and 
solve for dz>dt:

 2z 
dz
dt

= 2x 
dx
dt

+ 2y 
dy

dt
 (4)

We have everything we need except z. From equation (3), when x = 40 and y = 30, 
we find z to be 50. Substituting the known quantities into equation (4), we obtain

 21502  
dz
dt

= 214021202 + 213021152

 
dz
dt

= 25 miles per hour

The boats will be separating at a rate of 25 miles per hour.

Matched Problem 2 Repeat Example 2 for the same situation at the end of  
3 hours.

x

zy

N

E

Figure 2

Matched Problem 3 A point is moving on the graph of y3 = x2. When the 
point is at 1-8, 42, its y coordinate is decreasing by 2 units per second. How fast 
is the x coordinate changing at that moment?

x2 1 y2 5 25

x

y

24

4024

4
(23, 4)

Figure 3

Related Rates and Motion Suppose that a point is moving along the graph of 
x2 + y2 = 25 (Fig. 3). When the point is at 1-3, 42, its x coordinate is increasing at 
the rate of 0.4 unit per second. How fast is the y coordinate changing at that moment?

SOLUTION Since both x and y are changing with respect to time, we can consider 
each as a function of time, namely,

x = x1t2  and  y = y1t2
but restricted so that

 x2 + y2 = 25 (5)

We want to find dy>dt, given x = -3, y = 4, and dx>dt = 0.4. Implicitly differen-
tiating both sides of equation (5) with respect to t, we have

 x2 + y2 = 25

 2x 
dx
dt

+ 2y 
dy

dt
= 0  Divide both sides by 2.

 x 
dx
dt

+ y 
dy

dt
= 0   Substitute x = -3, y = 4,  

and dx>dt = 0.4,  
and solve for dy>dt.

EXAMPLE 3

 1-3210.42 + 4 
dy

dt
= 0

 
dy

dt
= 0.3 unit per second
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Related Rates and Business Suppose that for a company manufacturing flash 
drives, the cost, revenue, and profit equations are given by

 C = 5,000 + 2x  Cost equation

 R = 10x - 0.001x2 Revenue equation

 P = R - C  Profit equation

where the production output in 1 week is x flash drives. If production is increasing 
at the rate of 500 flash drives per week when production is 2,000 flash drives, find 
the rate of increase in

(A) Cost (B) Revenue (C) Profit

SOLUTION If production x is a function of time (it must be, since it is changing 
with respect to time), then C, R, and P must also be functions of time. These func-
tions are given implicitly (rather than explicitly). Letting t represent time in weeks, 
we differentiate both sides of each of the preceding three equations with respect to 
t and then substitute x = 2,000 and dx>dt = 500 to find the desired rates.

(A)   C = 5,000 + 2x  Think: C = C1t2 and x = x1t2.

 
dC
dt

=
d
dt

 15,0002 +
d
dt

 12x2 Differentiate both sides with respect to t.

 
dC
dt

= 0 + 2 
dx
dt

= 2 
dx
dt

Since dx>dt = 500 when x = 2,000,

dC
dt

= 215002 = $1,000 per week

Cost is increasing at a rate of $1,000 per week.

(B)  R = 10x - 0.001x2

 
dR
dt

=
d
dt

 110x2-  
d
dt

 0.001x2

 
dR
dt

= 10 
dx
dt

- 0.002x 
dx
dt

 
dR
dt

= 110 - 0.002x2  
dx
dt

Since dx>dt = 500 when x = 2,000,

dR
dt

= 310 - 0.00212,0002415002 = $3,000 per week

Revenue is increasing at a rate of $3,000 per week.

(C)  P = R - C

 
dP
dt

=
dR
dt

-
dC
dt

 Results from parts (A) and (B)

 = $3,000 - $1,000

 = $2,000 per week

Profit is increasing at a rate of $2,000 per week.

Matched Problem 4 Repeat Example 4 for a production level of 6,000 flash 
drives per week.

EXAMPLE 4
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Skills Warm-up Exercises
For Problems 1–8, review the geometric formulas in the references 
at the back of the book, if necessary.

1. A circular flower bed has an area of 300 square feet. Find its 
diameter to the nearest tenth of a foot.

2. A central pivot irrigation system covers a circle of radius 
400 meters. Find the area of the circle to the nearest square 
meter.

3. The hypotenuse of a right triangle has length 60 meters, and 
another side has length 30 meters. Find the length of the third 
side to the nearest meter.

4. The legs of a right triangle have lengths 54 feet and  
69 feet. Find the length of the hypotenuse to the  
nearest foot.

5. A person 69 inches tall stands 40 feet from the base of a 
streetlight. The streetlight casts a shadow of length 96 inches. 
How far above the ground is the streetlight?

6. The radius of a spherical balloon is 3 meters. Find its volume 
to the nearest tenth of a cubic meter.

7. A right circular cylinder and a sphere both have radius 
12 feet. If the volume of the cylinder is twice the volume 
of the sphere, find the height of the cylinder.

8. The radius of a right circular cylinder is twice its height. If 
the volume is 375 cubic meters, find the radius and height to 
the nearest hundredth of a meter.

In Problems 9–14, assume that x = x1t2 and y = y1t2. Find the 
indicated rate, given the other information.

9. y = x2 + 2; dx>dt = 3 when x = 5; find dy>dt

10. y = x3 - 5; dx>dt = -1 when x = 4; find dy>dt

11. x2 + y2 = 1; dy>dt = -4 when x = -0.6 and y = 0.8; 
find dx>dt

12. x2 + y2 = 4; dy>dt = 5 when x = 1.2 and y = -1.6; find 
dx>dt

13. x2 + 3xy + y2 = 11; dx>dt = 2 when x = 1 and y = 2; 
find dy>dt

14. x2 - 4xy - y2 = 4; dy>dt = -2 when x = 1 and y = -3; 
find dx>dt

15. A point is moving on the graph of xy = 24. When the point 
is at (4, 6), its x coordinate is increasing by 2 units per sec-
ond. How fast is the y coordinate changing at that moment?

16. A point is moving on the graph of 16x2 + 9y2 = 160. 
When the point is at (1, 4), its x coordinate is decreasing by 
18 units per second. How fast is its y coordinate changing at 
that moment?

17. A boat is being pulled toward a dock as shown in the figure. 
If the rope is being pulled in at 3 feet per second, how fast is 

W

A

B

the distance between the dock and the boat decreasing when 
it is 30 feet from the dock?

4 ft
Rope

Figure for 17 and 18

18. Refer to Problem 17. Suppose that the distance between the boat 
and the dock is decreasing by 3.05 feet per second. How fast is 
the rope being pulled in when the boat is 10 feet from the dock?

19. A rock thrown into a still pond causes a circular ripple. If the 
radius of the ripple is increasing by 2 feet per second, how 
fast is the area changing when the radius is 10 feet?

20. Refer to Problem 19. How fast is the circumference of a 
circular ripple changing when the radius is 10 feet?

21. The radius of a spherical balloon is increasing at the rate of 
6 centimeters per minute. How fast is the volume changing 
when the radius is 25 centimeters?

22. Refer to Problem 21. How fast is the surface area of the 
sphere increasing when the radius is 25 centimeters?

23. Boyle’s law for enclosed gases states that if the volume is kept 
constant, the pressure P and temperature T are related by the 
equation

P
T

= k

where k is a constant. If the temperature is increasing at 
3 kelvins per hour, what is the rate of change of pressure 
when the temperature is 250 kelvins and the pressure is 
500 pounds per square inch?

24. Boyle’s law for enclosed gases states that if the temperature 
is kept constant, the pressure P and volume V of a gas are 
related by the equation

VP = k

where k is a constant. If the volume is decreasing by 5 cubic 
inches per second, what is the rate of change of pressure 
when the volume is 1,000 cubic inches and the pressure is 
40 pounds per square inch?

25. A 10-foot ladder is placed against a vertical wall. Suppose that 
the bottom of the ladder slides away from the wall at a constant 
rate of 3 feet per second. How fast is the top of the ladder slid-
ing down the wall when the bottom is 6 feet from the wall?

26. A weather balloon is rising vertically at the rate of 5 meters 
per second. An observer is standing on the ground 300 meters 
from where the balloon was released. At what rate is the  

Exercises 3.7
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36. Advertising. Repeat Problem 35 for

s = 50,000 - 20,000e-0.0004x

37. Price–demand. The price p (in dollars) and demand x for 
wireless headphones are related by

x = 6,000 - 0.15p2

If the current price of $110 is decreasing at a rate of $5 per week, 
find the rate of change (in headphones per week) of the demand.

38. Price–demand. The price p (in dollars) and demand x for 
microwave ovens are related by

x = 800 - 362p + 20

If the current price of $124 is increasing at a rate of $3 per week, 
find the rate of change (in ovens per week) of the demand.

39. Revenue. Refer to Problem 37. Find the associated revenue 
function R(p) and the rate of change (in dollars per week) of 
the revenue.

40. Revenue. Refer to Problem 38. Find the associated revenue 
function R(p) and the rate of change (in dollars per week) of 
the revenue.

41. Price–supply equation. The price p (in dollars per pound) 
and demand x (in pounds) for almonds are related by

x = 5,6002p + 10 - 3,000

If the current price of $2.25 per pound is increasing at a rate 
of $0.20 per week, find the rate of change (in pounds per 
week) of the supply.

42. Price–supply equation. The price p (in dollars) and demand 
x (in bushels) for peaches are related by

x = 3p2 - 2p + 500

If the current price of $38 per bushel is decreasing at a rate of 
$1.50 per week, find the rate of change (in bushels per week) 
of the supply.

43. Political campaign. A political campaign estimates that the 
candidate’s polling percentage y and the amount x (in millions 
of dollars) that is spent on television advertising are related by

y = 20 + 5 ln x

If $10 million has been spent on television advertising, find 
the rate of spending (in millions of dollars per week) that will 
increase the polling percentage by 1 percentage point per week.

44. Political campaign. Refer to Problem 43. If $12 million has 
been spent on television advertising and the rate of spending 
is $3 million per week, at what rate (in percentage points per 
week) will the polling percentage increase?

45. Price–demand. The price p (in dollars) and demand x for a 
product are related by

2x2 + 5xp + 50p2 = 80,000

(A) If the price is increasing at a rate of $2 per month when 
the price is $30, find the rate of change of the demand.

(B) If the demand is decreasing at a rate of 6 units per month 
when the demand is 150 units, find the rate of change of 
the price.

46. Price–demand. Repeat Problem 45 for

x2 + 2xp + 25p2 = 74,500

distance between the observer and the balloon changing when 
the balloon is 400 meters high?

27. A streetlight is on top of a 20-foot pole. A person who is  
5 feet tall walks away from the pole at the rate of 5 feet per 
second. At what rate is the tip of the person’s shadow moving 
away from the pole when he is 20 feet from the pole?

28. Refer to Problem 27. At what rate is the person’s shadow 
growing when he is 20 feet from the pole?

29. Helium is pumped into a spherical balloon at a constant rate 
of 4 cubic feet per second. How fast is the radius increasing 
after 1 minute? After 2 minutes? Is there any time at which 
the radius is increasing at a rate of 100 feet per second? 
Explain.

30. A point is moving along the x axis at a constant rate of 5 units 
per second. At which point is its distance from (0, 1) increas-
ing at a rate of 2 units per second? At 4 units per second? 
At 5 units per second? At 10 units per second? Explain.

31. A point is moving on the graph of y = ex + x + 1 in such 
a way that its x coordinate is always increasing at a rate of 3 
units per second. How fast is the y coordinate changing when 
the point crosses the x axis?

32. A point is moving on the graph of x3 + y2 = 1 in such a way 
that its y coordinate is always increasing at a rate of 2 units 
per second. At which point(s) is the x coordinate increasing at 
a rate of 1 unit per second?

Applications
33. Cost, revenue, and profit rates. Suppose that for a com-

pany manufacturing calculators, the cost, revenue, and profit 
equations are given by

 C = 90,000 + 30x  R = 300x -
x2

30

 P = R - C

where the production output in 1 week is x calculators. If 
production is increasing at a rate of 500 calculators per week 
when production output is 6,000 calculators, find the rate of 
increase (decrease) in

(A) Cost (B) Revenue (C) Profit

34. Cost, revenue, and profit rates. Repeat Problem 33 for

 C = 72,000 + 60x  R = 200x -
x2

30

 P = R - C

where production is increasing at a rate of 500 calculators per 
week at a production level of 1,500 calculators.

35. Advertising. A retail store estimates that weekly sales s and 
weekly advertising costs x (both in dollars) are related by

s = 60,000 - 40,000e-0.0005x

The current weekly advertising costs are $2,000, and these 
costs are increasing at the rate of $300 per week. Find the 
current rate of change of sales.

C
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48. Learning. A person who is new on an assembly line per-
forms an operation in T minutes after x performances of the 
operation, as given by

T = 6a1 +
11x

b

If dx>dt = 6 operations per hours, where t is time in hours, 
find dT>dt after 36 performances of the operation.

Answers to Matched Problems
1. dy>dt = -1.25 ft>sec

2. dz>dt = 25 mi>hr

3. dx>dt = 6 units>sec

4. (A) dC>dt = $1,000>wk

(B) dR>dt = - $1,000>wk

(C) dP>dt = - $2,000>wk

47. Pollution. An oil tanker aground on a reef is forming a 
circular oil slick about 0.1 foot thick (see figure). To estimate 
the rate dV>dt (in cubic feet per minute) at which the oil is 
leaking from the tanker, it was found that the radius of the 
slick was increasing at 0.32 foot per minute 1dR>dt = 0.322 
when the radius R was 500 feet. Find dV>dt.

A 5 pR2

R
V 5 0.1A

Tanker

When will a price increase lead to an increase in revenue? To answer this question 
and study relationships among price, demand, and revenue, economists use the no-
tion of elasticity of demand. In this section, we define the concepts of relative rate of 
change, percentage rate of change, and elasticity of demand.

Relative Rate of Change

3.8 Elasticity of Demand
■■ Relative Rate of Change
■■ Elasticity of Demand

A broker is trying to sell you two stocks: Biotech and Comstat. The broker estimates 
that Biotech’s price per share will increase $2 per year over the next several years, 
while Comstat’s price per share will increase only $1 per year. Is this sufficient infor-
mation for you to choose between the two stocks? What other information might you 
request from the broker to help you decide?

Explore and Discuss 1

Interpreting rates of change is a fundamental application of calculus. In Explore and 
Discuss 1, Biotech’s price per share is increasing at twice the rate of Comstat’s, but 
that does not automatically make Biotech the better buy. The obvious information that 
is missing is the current price of each stock. If Biotech costs $100 a share and Comstat 
costs $25 a share, then which stock is the better buy? To answer this question, we intro-
duce two new concepts: relative rate of change and percentage rate of change.

DEFINITION Relative and Percentage Rates of Change

The relative rate of change of a function f1x2 is 
f ′1x2
f1x2 , or equivalently, 

d
dx

 ln f1x2.

The percentage rate of change is 100 *
f  ′1x2
f1x2 , or equivalently, 100 *

d
dx

 ln f1x2.
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The alternative form for the relative rate of change, 
d
dx

 ln f1x2, is called the logarithmic  
derivative of f1x2.

Note that

d
dx

 ln f1x2 =
f ′1x2
f1x2

by the chain rule. So the relative rate of change of a function f1x2 is its logarithmic 
derivative, and the percentage rate of change is 100 times the logarithmic derivative.

Returning to Explore and Discuss 1, the table shows the relative rate of change 
and percentage rate of change for Biotech and Comstat. We conclude that Comstat is 
the better buy.

Relative rate of change Percentage rate of change

Biotech
2

100
= 0.02 2%

Comstat
1
25

= 0.04 4%

Percentage Rate of Change Table 1 lists the GDP (gross domestic product ex-
pressed in billions of 2005 dollars) and U.S. population from 2000 to 2012. A model 
for the GDP is

f1t2 = 209.5t + 11,361

where t is years since 2000. Find and graph the percentage rate of change of f1t2 
for 0 … t … 12.

EXAMPLE 1

t

p(t)

4 8 12

1

2

3

Figure 1

Matched Problem 1 A model for the population data in Table 1 is

f1t2 = 2.7t + 282

where t is years since 2000. Find and graph  p1t2, the percentage rate of change of 
f1t2 for 0 … t … 12.

Table 1

Year
Real GDP (billions  

of 2005 dollars)
Population  
(in millions)

2000 $11,226 282.2
2004 $12,264 292.9
2008 $13,312 304.1
2012 $13,670 313.9

SOLUTION If  p1t2 is the percentage rate of change of f1t2, then

  p1t2 = 100 *
d
dt

 ln 1209.5t + 11,3612

 =
20,950

209.5t + 11,361

The graph of  p1t2 is shown in Figure 1 (graphing details omitted). Notice that  p1t2 
is decreasing, even though the GDP is increasing.
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Elasticity of Demand

If $10,000 is invested at an annual rate of 4.5% compounded continuously, what 
is the relative rate of change of the amount in the account? The answer is the loga-
rithmic derivative of  A1t2 = 10,000e0.045t, namely

d
dx

 ln 110,000e0.045t2 =
10,000e0.045t10.0452

10,000e0.045t = 0.045

So the relative rate of change of  A1t2 is 0.045, and the percentage rate of change 
is just the annual interest rate, 4.5%.

CONCEPTUAL INSIGHT

In both parts below, assume that increasing the price per unit by $1 will decrease the 
demand by 500 units. If your objective is to increase revenue, should you increase the 
price by $1 per unit?
(A) At the current price of $8.00 per baseball cap, there is a demand for 6,000 caps.

(B) At the current price of $12.00 per baseball cap, there is a demand for 4,000 caps.

Explore and Discuss 2

In Explore and Discuss 2, the rate of change of demand with respect to price was 
assumed to be -500 units per dollar. But in one case, part (A), you should increase 
the price, and in the other, part (B), you should not. Economists use the concept of 
elasticity of demand to answer the question “When does an increase in price lead to 
an increase in revenue?”

Using the definition of relative rate of change, we can find a formula for  E1p2:

 E1p2 = -  
relative rate of change of demand

relative rate of change of price
= -   

d
dp

 ln f1p2
d

dp
 ln p

 = -  

f ′1p2
f1p2

1
p

 = -  
pf ′1p2
f1p2

DEFINITION Elasticity of Demand
Let the price p and demand x for a product be related by a price–demand equa-
tion of the form x = f1p2. Then the elasticity of demand at price p, denoted by 
 E1p2, is

 E1p2 = -  
relative rate of change of demand

relative rate of change of price
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THEOREM 1 Elasticity of Demand
If price and demand are related by x = f1p2, then the elasticity of demand is 
given by

 E1p2 = -  
pf ′1p2
f1p2

Since p and f1p2 are nonnegative and f ′1p2 is negative (demand is usually a 
decreasing function of price),  E1p2 is nonnegative. This is why elasticity of de-
mand is defined as the negative of a ratio.

CONCEPTUAL INSIGHT

Elasticity of Demand The price p and the demand x for a product are related by 
the price–demand equation

 x + 500p = 10,000 (1)

Find the elasticity of demand,  E1p2, and interpret each of the following:

(A)  E142 (B)  E1162 (C)  E1102
SOLUTION To find  E1p2, we first express the demand x as a function of the price 
p by solving (1) for x:

 x = 10,000 - 500p

 = 500120 - p2  Demand as a function of price

or

 x = f1p2 = 500120 - p2  0 … p … 20 (2)

Since x and p both represent nonnegative quantities, we must restrict p so that 
0 … p … 20. Note that the demand is a decreasing function of price. That is, a price 
increase results in lower demand, and a price decrease results in higher demand (see 
Figure 2).

p
2010

x

10,000
Price
increases

Price
decreases

Demand
decreases

Demand
increases

x 5 f (p)
 5 500(20 2 p)

D
em

an
d

Price

Figure 2

 E1p2 = -  
pf ′1p2
f1p2 = -  

p1-5002
500120 - p2 =

p

20 - p

In order to interpret values of  E1p2, we must recall the definition of elasticity:

 E1p2 = -  
relative rate of change of demand

relative rate of change of price

EXAMPLE 2
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or

- a relative rate of
change of demand

b ≈ E1p2 a relative rate of
change of price

b

(A)  E142 = 4
16 = 0.25 6 1. If the $4 price changes by 10%, then the demand 

will change by approximately 0.25110%2 = 2.5%.

(B)  E1162 = 16
4 = 4 7 1. If the $16 price changes by 10%, then the demand 

will change by approximately 4110%2 = 40%.

(C)  E1102 = 10
10 = 1. If the $10 price changes by 10%, then the demand will 

also change by approximately 10%.

Matched Problem 2 Find  E1p2 for the price–demand equation

x = f1p2 = 1,000140 - p2
Find and interpret each of the following:

(A)  E182 (B)  E1302 (C)  E1202

The three cases illustrated in the solution to Example 2 are referred to as  inelastic 
demand, elastic demand, and unit elasticity, as indicated in Table 2.

Table 2
E 1p 2 Demand Interpretation Revenue

0 6 E1p2 6 1 Inelastic Demand is not sensitive to changes in 
price; that is, percentage change in price 
produces a smaller percentage change 
in demand.

A price increase 
will increase 
revenue.

 E1p2 7 1 Elastic Demand is sensitive to changes in price; 
that is, a percentage change in price 
produces a larger percentage change in 
demand.

A price increase 
will decrease 
revenue.

 E1p2 = 1 Unit A percentage change in price produces 
the same percentage change in demand.

To justify the connection between elasticity of demand and revenue as given in 
the fourth column of Table 2, we recall that revenue R is the demand x (number of 
items sold) multiplied by p (price per item). Assume that the price–demand equation 
is written in the form x = f1p2. Then

 R1p2 = xp = f1p2p  Use the product rule.

 R′1p2 = f1p2 # 1 + pf ′1p2   Multiply and divide by f1p2.

 R′1p2 = f1p2 + pf ′1p2  
f1p2
f1p2  Factor out f1p2.

 R′1p2 = f1p2 c 1 +
pf ′1p2
f1p2 d  Use Theorem 1.

 R′1p2 = f1p231 - E1p24
Since x = f1p2 7 0, it follows that  R′1p2 and 1 - E1p2 have the same sign. So 
if  E1p2 6 1, then  R′1p2 is positive and revenue is increasing (Fig. 3). Similarly, if 
 E1p2 7 1, then  R′1p2 is negative, and revenue is decreasing (Fig. 3).
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p

R(p)

Inelastic demand E(p) , 1
Increasing revenue R9(p) . 0

Elastic demand E(p) . 1
Decreasing revenue R9(p) , 0

Price
decreases

Price
increases

Revenue
decreases

Revenue
decreases

Price
increases

Price
decreases

Revenue
increases

Revenue
increases

Figure 3 Revenue and elasticity

In summary, if demand is inelastic, then a price increase will increase revenue. 
But if demand is elastic, then a price increase will decrease revenue.

Skills Warm-up Exercises
In Problems 1–8, use the given equation, which expresses price p 
as a function of demand x, to find a function f1p2 that expresses 
demand x as a function of price p. Give the domain of f1p2. (If 
necessary, review Section 1.6).

1. p = 42 - 0.4x, 0 … x … 105

2. p = 125 - 0.02x, 0 … x … 6,250

3. p = 50 - 0.5x2, 0 … x … 10

4. p = 180 - 0.8x2, 0 … x … 15

5. p = 25e-x>20, 0 … x … 20

W
6. p = 45 - e x>4, 0 … x … 12

7. p = 80 - 10 ln x, 1 … x … 30

8. p = ln 1500 - 5x2, 0 … x … 90

In Problems 9–14, find the relative rate of change of f1x2.

9. f1x2 = 35x - 0.4x2 10. f1x2 = 60x - 1.2x2

11. f1x2 = 9 + 8e-x 12. f1x2 = 15 - 3e-0.5x

13. f1x2 = 12 + 5 ln x 14. f1x2 = 25 - 2 ln x

A

Exercises 3.8

Elasticity and Revenue A manufacturer of sunglasses currently sells one type for 
$15 a pair. The price p and the demand x for these glasses are related by

x = f1p2 = 9,500 - 250p

If the current price is increased, will revenue increase or decrease?

SOLUTION   E1p2 = -  
pf ′1p2
f1p2

 = -  
p1-2502

9,500 - 250p

 =
p

38 - p

 E1152 =
15
23

≈ 0.65

At the $15 price level, demand is inelastic and a price increase will increase revenue.

Matched Problem 3 Repeat Example 3 if the current price for sunglasses is 
$21 a pair.

EXAMPLE 3
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49. x = f1p2 = 950 - 2p - 0.1p2

(A) p = 30 (B) p = 50 (C) p = 70

50. x = f1p2 = 875 - p - 0.05p2

(A) p = 50 (B) p = 70 (C) p = 100

In Problems 51–58, use the price–demand equation 
p + 0.004x = 32, 0 … p … 32.

51. Find the elasticity of demand when p = $12. If the $12 
price is increased by 4%, what is the approximate percentage 
change in demand?

52. Find the elasticity of demand when p = $28. If the $28 
price is decreased by 6%, what is the approximate percentage 
change in demand?

53. Find the elasticity of demand when p = $22. If the $22 
price is decreased by 5%, what is the approximate percentage 
change in demand?

54. Find the elasticity of demand when p = $16. If the $16 
price is increased by 9%, what is the approximate percentage 
change in demand?

55. Find all values of p for which demand is elastic.

56. Find all values of p for which demand is inelastic.

57. If p = $14 and the price is increased, will revenue increase 
or decrease?

58. If p = $21 and the price is decreased, will revenue increase 
or decrease?

In Problems 59–66, use the price–demand equation to find the 
values of p for which demand is elastic and the values for which de-
mand is inelastic. Assume that price and demand are both positive.

59. x = f1p2 = 210 - 30p 60. x = f1p2 = 480 - 8p

61. x = f1p2 = 3,125 - 5p2 62. x = f1p2 = 2,400 - 6p2

63. x = f1p2 = 2144 - 2p 64. x = f1p2 = 2324 - 2p

65. x = f1p2 = 22,500 - 2p2

66. x = f1p2 = 23,600 - 2p2

In Problems 67–72, use the demand equation to find the revenue 
function. Sketch the graph of the revenue function, and indicate 
the regions of inelastic and elastic demand on the graph.

67. x = f1p2 = 20110 - p2 68. x = f1p2 = 10116 - p2
69. x = f1p2 = 401p - 152 2 70. x = f1p2 = 101p - 92 2

71. x = f1p2 = 30 - 102p 72. x = f1p2 = 30 - 52p

If a price–demand equation is solved for p, then price is expressed 
as p = g1x2 and x becomes the independent variable. In this 
case, it can be shown that the elasticity of demand is given by

 E1x2 = -  
g1x2

xg′1x2
In Problems 73–76, use the price–demand equation to find  E1x2 
at the indicated value of x.

73. p = g1x2 = 50 - 0.1x, x = 200

74. p = g1x2 = 70 - 0.2x, x = 250

C

In Problems 15–24, find the relative rate of change of f1x2 at the 
indicated value of x. Round to three decimal places.

15. f1x2 = 45; x = 100

16. f1x2 = 580; x = 300

17. f1x2 = 420 - 5x; x = 25

18. f1x2 = 500 - 6x; x = 40

19. f1x2 = 420 - 5x; x = 55

20. f1x2 = 500 - 6x; x = 75

21. f1x2 = 4x2 - ln x; x = 2

22. f1x2 = 5x3 - 4 ln x; x = 4

23. f1x2 = 4x2 - ln x; x = 5

24. f1x2 = 5x3 - 4 ln x; x = 10

In Problems 25–32, find the percentage rate of change of f1x2 at 
the indicated value of x. Round to the nearest tenth of a percent.

25. f1x2 = 225 + 65x; x = 5

26. f1x2 = 75 + 110x; x = 4

27. f1x2 = 225 + 65x; x = 15

28. f1x2 = 75 + 110x; x = 16

29. f1x2 = 5,100 - 3x2; x = 35

30. f1x2 = 3,000 - 8x2; x = 12

31. f1x2 = 5,100 - 3x2; x = 41

32. f1x2 = 3,000 - 8x2; x = 18

In Problems 33–38, use the price–demand equation to find  E1p2, 
the elasticity of demand.

33. x = f1p2 = 25,000 - 450p

34. x = f1p2 = 10,000 - 190p

35. x = f1p2 = 4,800 - 4p2

36. x = f1p2 = 8,400 - 7p2

37. x = f1p2 = 98 - 0.6ep

38. x = f1p2 = 160 - 35 ln p

In Problems 39–46, find the logarithmic derivative.

39.  A1t2 = 500e0.07t 40.  A1t2 = 2,000e0.052t

41.  A1t2 = 3,500e0.15t 42.  A1t2 = 900e0.24t

43. f1x2 = xex 44. f1x2 = x3ex

45. f1x2 = ln x 46. f1x2 = x ln x

In Problems 47–50, use the price–demand equation to determine 
whether demand is elastic, is inelastic, or has unit elasticity at the 
indicated values of p.

47. x = f1p2 = 12,000 - 10p2

(A) p = 10 (B) p = 20 (C) p = 30

48. x = f1p2 = 1,875 - p2

(A) p = 15 (B) p = 25 (C) p = 40

B
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92. Population growth. A model for Vietnam’s population 
(Table 3) is

f1t2 = 1.14t + 32.4

where t is years since 1960. Find and graph the percentage 
rate of change of f1t2 for 0 … t … 50.

93. Crime. A model for the number of robberies of personal 
properties in England and Wales (Table 4) is

 p1t2 = 138.7 - 31.3 ln t

where t is years since the financial year 1999/00. Find the 
relative rate of change for robberies of personal properties in 
the financial year 2019/20.

75. p = g1x2 = 50 - 22x, x = 400

76. p = g1x2 = 20 - 2x, x = 100

In Problems 77–80, use the price–demand equation to find the 
values of x for which demand is elastic and for which demand is 
inelastic.

77. p = g1x2 = 180 - 0.3x 78. p = g1x2 = 640 - 0.4x

79. p = g1x2 = 90 - 0.1x2 80. p = g1x2 = 540 - 0.2x2

81. Find  E1p2 for x = f1p2 = Ap-k, where A and k are positive 
constants.

82. Find  E1p2 for x = f1p2 = Ae-kp, where A and k are positive 
constants.

Applications
83. Rate of change of cost. A fast-food restaurant can produce 

a hamburger for $2.50. If the restaurant’s daily sales are 
increasing at the rate of 30 hamburgers per day, how fast is its 
daily cost for hamburgers increasing?

84. Rate of change of cost. The fast-food restaurant in Problem 
83 can produce an order of fries for $0.80. If the restaurant’s 
daily sales are increasing at the rate of 45 orders of fries per 
day, how fast is its daily cost for fries increasing?

85. Revenue and elasticity. The price–demand equation for 
hamburgers at a fast-food restaurant is

x + 400p = 3,000

Currently, the price of a hamburger is $3.00. If the  
price is increased by 10%, will revenue increase or  
decrease?

86. Revenue and elasticity. Refer to Problem 85. If the current 
price of a hamburger is $4.00, will a 10% price increase 
cause revenue to increase or decrease?

87. Revenue and elasticity. The price–demand equation for an 
order of fries at a fast-food restaurant is

x + 1,000p = 2,500

Currently, the price of an order of fries is $0.99. If the  
price is decreased by 10%, will revenue increase or  
decrease?

88. Revenue and elasticity. Refer to Problem 87. If the current 
price of an order of fries is $1.49, will a 10% price decrease 
cause revenue to increase or decrease?

89. Maximum revenue. Refer to Problem 85. What price will 
maximize the revenue from selling hamburgers?

90. Maximum revenue. Refer to Problem 87. What price will 
maximize the revenue from selling fries?

91. Population growth. A model for Australia’s population 
(Table 3) is

f1t2 = 0.23t + 10.3

where t is years since 1960. Find and graph the percentage 
rate of change of f1t2 for 0 … t … 50.

Table 3 Population
Year Australia (millions) Vietnam (millions)

1960 10 33
1970 13 43
1980 15 54
1990 17 68
2000 19 80
2010 22 88

Personal Property Business Property

2002/03 99.21 11.07
2005/06 89.44  8.76
2008/09 70.78  9.35
2011/12 67.92  6.77
2014/15 44.48  5.75

Table 4  Number of Robberies (thousands)

Source: Home Office Crime and Policing Analysis

94. Crime. A model for the number of robberies of business 
properties in England and Wales (Table 4) is

 b1t2 = 14.63 - 3.06 ln t

where t is years since the financial year 1999/00. Find the 
relative rate of change for robberies of business properties in 
the financial year 2019/20.

Answers to Matched Problems

1.  p1t2 =
270

2.7t + 282
p(t)

t
4 8 12

1

2.  E1p2 =
p

40 - p

(A)  E182 = 0.25; demand is inelastic.

(B)  E1302 = 3; demand is elastic.

(C)  E1202 = 1; demand has unit elasticity.

3.  E1212 =
21
17

≈ 1.2; demand is elastic. Increasing price will 

decrease revenue.
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Important Terms, Symbols, and Concepts
3.1   The Constant e and Continuous Compound Interest EXAMPLES

• The number e is defined as

lim
xS ∞

 a1 +
1
n
b

n

= lim
xS0

 11 + s2 1>s = 2.718 281 828 459 c

• If a principal P is invested at an annual rate r (expressed as a decimal) compounded continuously, then 
the amount A in the account at the end of t years is given by the compound interest formula

A = Pert

Ex. 1, p. 219
Ex. 2, p. 219
Ex. 3, p. 220
Ex. 4, p. 220

3.2   Derivatives of Exponential and Logarithmic Functions
• For b 7 0, b ∙ 1,

 
d
dx

 ex = ex   
d
dx

 bx = bx ln b

For b 7 0, b ∙ 1, and x 7 0,

 
d
dx

 ln x =
1
x
   

d
dx

 logb x =
1

ln b
 a1

x
b

• The change-of-base formulas allow conversion from base e to any base b, b 7 0, b ∙ 1:

bx = ex ln b  logb x =
ln x
ln b

 

Ex. 1, p. 224
Ex. 2, p. 226
Ex. 3, p. 228
Ex. 4, p. 228
Ex. 5, p. 229
Ex. 6, p. 229

3.3 Derivatives of Trigonometric Functions
• The derivatives of the functions sin x and cos x are

d
dx

 sin x = cos x  
d
dx

 cos x = -sin x

For u = u1x2,

d
dx

 sin u = cos u 
du
dx

   
d
du

 cos u = -sin u 
du
dx

Ex. 1, p. 233
Ex. 2, p. 233
Ex. 3, p. 234
Ex. 4, p. 234

3.4   Derivatives of Products and Quotients
• Product rule. If y = f1x2 = F1x2 S1x2, then f ′1x2 = F1x2S′1x2 + S1x2F′1x2, provided that both 

F′1x2 and S′1x2 exist.

• Quotient rule. If y = f1x2 =
T1x2
B1x2 , then f ′1x2 =

B1x2 T′1x2 - T1x2 B′1x2
3B1x2 4 2

 provided that both 

 T′1x2 and  B′1x2 exist.

Ex. 1, p. 238
Ex. 2, p. 239
Ex. 3, p. 240

Ex. 4, p. 241
Ex. 5, p. 242
Ex. 6, p. 243

3.5   The Chain Rule
• A function m is a composite of functions f and g if  m1x2 = f [g1x2].

• The chain rule gives a formula for the derivative of the composite function  m1x2 = E[I1x2]:

 m′1x2 = E′[I1x2]I′1x2

Ex. 1, p. 247
Ex. 2, p. 247
Ex. 3, p. 249
Ex. 4, p. 252

Chapter 3 Summary and Review
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• A special case of the chain rule is called the general power rule:

d
dx

 [ f1x2]n = n[ f1x2]n - 1f ′1x2

• Other special cases of the chain rule are the following general derivative rules:

 
d
dx

 ln [ f1x2] =
1

f1x2  f ′1x2

 
d
dx

 ef1x2 = ef1x2f ′1x2

Ex. 5, p. 253

Ex. 6, p. 253

3.6   Implicit Differentiation
• If y = y1x2 is a function defined implicitly by the equation f1x, y2 = 0, then we use implicit differen-

tiation to find an equation in x, y, and y′.
Ex. 1, p. 259
Ex. 2, p. 260
Ex. 3, p. 261

3.7   Related Rates
• If x and y represent quantities that are changing with respect to time and are related by the equation 

F1x, y2 = 0, then implicit differentiation produces an equation that relates x, y, dy>dt, and dx>dt. Prob-
lems of this type are called related-rates problems.

• Suggestions for solving related-rates problems are given on page 265.

Ex. 1, p. 264
Ex. 2, p. 265
Ex. 3, p. 266
Ex. 4, p. 267

3.8   Elasticity of Demand
• The relative rate of change, or the logarithmic derivative, of a function f1x2 is f ′1x2 >f1x2, and the 

percentage rate of change is 100 * 3 f ′1x2 >f1x24.

• If price and demand are related by x = f1p2, then the elasticity of demand is given by

 E1p2 = -  
p f ′1p2

f1p2 = -  
relative rate of change of demand

relative rate of change of price

• Demand is inelastic if 0 6 E1p2 6 1. (Demand is not sensitive to changes in price; a percentage 
change in price produces a smaller percentage change in demand.) Demand is elastic if  E1p2 7 1. (De-
mand is sensitive to changes in price; a percentage change in price produces a larger percentage change 
in demand.) Demand has unit elasticity if  E1p2 = 1. (A percentage change in price produces the same 
percentage change in demand.)

• If  R1p2 = pf1p2 is the revenue function, then  R′1p2 and 31 - E1p24 always have the same sign. If 
demand is inelastic, then a price increase will increase revenue. If demand is elastic, then a price increase 
will decrease revenue.

Ex. 1, p. 271

Ex. 2, p. 273

Ex. 3, p. 275

 Review Exercises 279

Work through all the problems in this chapter review, and check 
your answers in the back of the book. Answers to all review prob-
lems are there, along with section numbers in italics to indicate 
where each type of problem is discussed. Where weaknesses show 
up, review appropriate sections of the text.

1. Use a calculator to evaluate A = 2,000e0.09t to the nearest 
cent for t = 5, 10, and 20.

In Problems 2–5, find the indicated derivative.

2. 
d
dx

 1ln x3 + 2e-x2 3. 
d
dx

 e2x - 3

4. y′ for y = ln13x + 42

A

5. f ′1x2 for f1x2 =  ln 1e2x + ex + 42
In Problems 6–8, find each derivative.

6. 
d

dm
 cos m 7. 

d
du

 sin u

8. 
d
dx

 sin 1x2 - 2x + 12

9. Find y′ for y = y1x2 defined implicity by the equation 
y4 - ln x + 2x + 8 = 0, and evaluate at 1x, y2 = 11, 12.

10. For y = 4x3 + 5, where x = x1t2 and y = y1t2, find 
dy/dt if dx>dt = 3 when x = 4.

Review Exercises
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280 CHAPTER 3 Additional Derivative Topics 

fast is the top of the ladder rising when the foot is 8 feet from 
the wall?

38. Water is leaking onto a floor. The resulting circular pool has 
an area that is increasing at a rate of 30 square inches per 
minute. How fast is the circumference C of the pool increas-
ing when the radius R is 10 inches?

39. Find the values of p for which demand is elastic and the values 
for which demand is inelastic if the price–demand equation is

x = f1p2 = 201p - 152 2  0 … p … 15

40. Graph the revenue function as a function of price p, and 
indicate the regions of inelastic and elastic demand if the 
price–demand equation is

x = f1p2 = 5120 - p2  0 … p … 20

41. Let y = w

2, w = e2u, and u = ln x.

(A) Express y in terms of x.

(B) Use the chain rule to find 
dy

dx
.

In Problems 42 and 43, find each derivative.

42. 
d
du

 tan u 43. 
d
dx

 ecos x 2

Find the indicated derivatives in Problems 44–46.

44. y′ for y = 72x2 + 4

45. 
d
dx

 log51x2 - x2

46. 
d
dx

2ln1e2x + 4x2 + 32

47. Find y′ for y = y1x2 defined implicitly by the equation 
exy = x2 + y + 1, and evaluate at 10, 02.

48. A rock thrown into a still pond causes a circular ripple. The  
radius is increasing at a constant rate of 3 feet per second. Show 
that the area does not increase at a constant rate. When is the 
rate of increase of the area the smallest? The largest? Explain.

49. An ant moves along a hillock given by the equation y = 4x1/2 
(where the x and y axes are along the horizontal and vertical 
directions, respectively) in such a way that its y coordinate is 
increasing at a constant rate of 3 units per second. Does the 
horizontal distance (x) ever increase at a faster rate than the 
height (y)? Explain.

Applications
50. Doubling time. How long will it take money to double if it 

is invested at 5% interest compounded

(A) Annually? (B) Continuously?

51. Continuous compound interest. If $100 is invested at 10% 
interest compounded continuously, then the amount (in dol-
lars) at the end of t years is given by

A = 100e0.1t

Find  A′1t2, A′112, and  A′1102.

B

In Problems 11–15, use the price–demand equation 
2p + 0.0lx = 50, 0 … p … 25.

11. Express the demand x as a function of the price p.

12. Find the elasticity of demand E(p).

13. Find the elasticity of demand when p = $15. If the $15 
price is increased by 5%, what is the approximate percentage 
change in demand?

14. Find all values of p for which demand is elastic.

15. If p = $9 and the price is increased, will revenue increase or 
decrease?

16. Find the slope of the line tangent to y = ln x5 when x = 1.

17. Use a calculator and a table of values to investigate

lim
nS ∞

 a1 +
2
n
b

n

Do you think the limit exists? If so, what do you think it is?

Find the indicated derivatives in Problems 18–23.

18. 
d
dz

 31ln z2 7 + ln z74 19. 
d
dx

1x6 ln x2

20. 
d
dx

 
ex

x6 21. y′ for y = ln12x6 + ex2
22. f ′1x2 for f1x2 = ex3 - x2

23. dy/dx for y = e-2x ln 5x

24. Find the equation of the line tangent to the graph of 
y = f1x2 = 1 + e-x at x = 0. At x = -1.

25. Find the slope of the cosine curve y = cos x at x = p>4.

26. Find y′ for y = y1x2 defined implicitly by the equation 
x2 - 3xy + 4y2 = 23, and find the slope of the graph at 
1-1, 22.

27. Find x′ for x1t2  defined implicitly by 4t2 
x2 - x2 + 100 = 0, and evaluate at 1t, x2 = 1-1, -12.

28. Find y′ for y = y1x2 defined implicitly by x - y2 = ey, and 
evaluate at 11, 02.

29. Find y′ for y = y1x2 defined implicitly by ln y = x2 - y2, 
and evaluate at 11, 12.

In Problems 30–32, find each derivative.

30. 
d
dx

 1x2 - 12 sin x 31. 
d
dx

 1sin x2 6

32. 
d
dx

 23 sin x

In Problems 33–35, find the logarithmic derivatives.

33.  A1t2 = 400e0.049t

34. f1p2 = 100 - 3p

35. f1x2 = 4 + x2 + ex

36. A point is moving on the graph of 3y2 + 40x2 = 16 so 
that its y coordinate is increasing by 2 units per second 
when1x, y2 = 12, 22. Find the rate of change of the x 
 coordinate.

37. A 17-foot ladder is placed against a wall. If the foot of the 
ladder is pushed toward the wall at 0.5 foot per second, how 

B
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58. Drug concentration. The drug concentration in the blood-
stream t hours after injection is given approximately by

 C1t2 = 5e-0.3t

where C(t) is concentration in milligrams per milliliter.  
What is the rate of change of concentration after 1 hour? 
After 5 hours?

59. Wound healing. A circular wound on an arm is healing 
at the rate of 45 square millimeters per day (the area of the 
wound is decreasing at this rate). How fast is the radius R of 
the wound decreasing when R = 15 millimeters?

60. Learning. A new secretary types a 10-page document in T 
minutes after typing x similar documents, as given by

 T = 4a2 +
12x

b

If, after typing 10 similar documents, the rate of improve-
ment is dx/dt = 2 documents per hour, find the rate of 
improvement in time dT/dt in typing each document.

61. Learning. A new worker on the production line performs an 
operation in T minutes after x performances of the operation, 
as given by

T = 2a1 +
1

x3>2 b

If, after performing the operation 9 times, the rate of improve-
ment is dx>dt = 3 operations per hour, find the rate of im-
provement in time dT/dt in performing each operation.

52. Continuous compound interest. If $12,000 is invested in 
an account that earns 3.95% compounded continuously, find 
the instantaneous rate of change of the amount when the ac-
count is worth $25,000.

53. Marginal analysis. The price–demand equation for 32-inch 
LCD televisions at an appliance store is

 p1x2 = 3,00010.9982 x

where x is the daily demand and p is the price in dollars. 
Find the marginal revenue equation.

54. Demand equation. Given the demand equation

 x = 13,000 - 4p52 1/2

find the rate of change of p with respect to x by implicit 
differentiation (x is the number of items that can be sold at a 
price of $p per item).

55. Rate of change of revenue. A company is manufacturing 
kayaks and can sell all that it manufactures. The revenue (in 
dollars) is given by

R = 750x -
x2

30

where the production output in 1 day is x kayaks. If produc-
tion is increasing at 3 kayaks per day when production is 
40 kayaks per day, find the rate of increase in revenue.

56. Revenue and elasticity. The price–demand equation for 
home-delivered large pizzas is

p = 38.2 - 0.002x

where x is the number of pizzas delivered weekly. The cur-
rent price of one pizza is $21. In order to generate additional 
revenue from the sale of large pizzas, would you recommend 
a price increase or a price decrease? Explain.

57. Average income. A model for the average income per 
household before taxes are paid is

f1t2 = 1,700t + 20,500

where t is years since 1980. Find the relative rate of change 
of household income in 2015.

 Review Exercises 281
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Introduction
Since the derivative is associated with the slope of the graph of a function at a 
point, we might expect that it is also related to other properties of a graph. As we 
will see in this chapter, the derivative can tell us a great deal about the shape of 
the graph of a function. In particular, we will study methods for  finding absolute 
maximum and minimum values. These methods have many applications. For ex-
ample, a company that manufactures backpacks can use them to calculate the 
price per backpack that should be charged to realize the maximum profit (see 
Problems 23 and 24 in Section 4.6). A pharmacologist can use them to deter-
mine drug dosages that produce maximum sensitivity, and advertisers can use 
them to find the number of ads that will maximize the rate of change of sales.

4.1 First Derivative and Graphs

4.2 Second Derivative and 
Graphs

4.3 L’ Hôpital’s Rule

4.4 Curve-Sketching Techniques

4.5 Absolute Maxima and 
Minima

4.6 Optimization

Graphing and 
Optimization4

282
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 SECTION 4.1   First Derivative and Graphs 283

Increasing and Decreasing Functions
Sign charts will be used throughout this chapter. You may find it helpful to review the 
terminology and techniques for constructing sign charts in Section 2.3.

4.1 First Derivative and Graphs
■■ Increasing and Decreasing Functions
■■ Local Extrema
■■ First-Derivative Test
■■ Economics Applications

Figure 1 shows the graph of y = f1x2 and a sign chart for  f ′1x2, where

Explore and Discuss 1

(21, 1) (1, `)(2`, 21)

00

x

    

x
21

2

1

  

f (x)

f 9(x) 1 1 1 1 1 12 2 2

21 1

22 21

21

22

Figure 1

 f1x2 = x3 - 3x

and

 f ′1x2 = 3x2 - 3 = 31x + 121x - 12

Discuss the relationship between the graph of f and the sign of  f ′1x2 over each inter-
val on which  f ′1x2 has a constant sign. Also, describe the behavior of the graph of f 
at each partition number for f ′.

As they are scanned from left to right, graphs of functions generally have rising 
and falling sections. If you scan the graph of  f1x2 = x3 - 3x in Figure 1 from left to 
right, you will observe the following:Reminder

We say that the function f is increasing 
on an interval 1a, b2 if  f1x22 7 f1x12 
whenever a 6 x1 6 x2 6 b, and f is 
decreasing on 1a, b2 if  f1x22 6 f1x12 
whenever a 6 x1 6 x2 6 b.

• On the interval 1- ∞ , -12, the graph of f is rising,  f1x2 is increasing, and 
 tangent lines have positive slope 3 f ′1x2 7 04.

• On the interval 1-1, 12, the graph of f is falling,  f1x2 is decreasing, and 
 tangent lines have negative slope 3 f ′1x2 6 04.

• On the interval 11, ∞ 2, the graph of f is rising,  f1x2 is increasing, and tangent 
lines have positive slope 3 f ′1x2 7 04.

• At x = -1 and x = 1, the slope of the graph is 0 3 f ′1x2 = 04.

If  f ′1x2 7 0 (is positive) on the interval 1a, b2  (Fig. 2), then  f1x2 increases 
1Q2 and the graph of f rises as we move from left to right over the interval. If 
 f ′1x2 6 0 (is negative) on an interval 1a, b2, then  f1x2 decreases 1R2 and the 
graph of f falls as we move from left to right over the interval. We summarize these 
important results in Theorem 1.

x

y

Slope 0
Slope

positive Slope
negative

a b c

f

Figure 2
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284 CHAPTER 4 Graphing and Optimization

THEOREM 1 Increasing and Decreasing Functions
For the interval 1a, b2, if f ′ 7 0, then f is increasing, and if f ′ 6 0, then f is 
decreasing.

f ′ 1x 2 f 1x 2 Graph of f Examples

+ Increases Q Rises Q

- Decreases R Falls R

Finding Intervals on Which a Function Is Increasing or Decreasing Given the 
function  f1x2 = 8x - x2,

(A) Which values of x correspond to horizontal tangent lines?

(B) For which values of x is  f1x2 increasing? Decreasing?

(C) Sketch a graph of f. Add any horizontal tangent lines.

SOLUTION
(A)  f ′1x2 = 8 - 2x = 0

 x = 4

So a horizontal tangent line exists at x = 4 only.

(B) We will construct a sign chart for  f ′1x2 to determine which values of x make 
 f ′1x2 7 0 and which values make  f ′1x2 6 0. Recall from Section 2.3 that 
the partition numbers for a function are the numbers at which the function is 0 
or discontinuous. When constructing a sign chart for  f ′1x2, we must locate all 
points where  f ′1x2 = 0 or  f ′1x2 is discontinuous. From part (A), we know 
that  f ′1x2 = 8 - 2x = 0 at x = 4. Since  f ′1x2 = 8 - 2x is a polynomial, 
it is continuous for all x. So 4 is the only partition number for f ′. We construct 
a sign chart for the intervals 1-∞ , 42 and 14, ∞ 2, using test numbers 3 and 5:

EXAMPLE 1

DecreasingIncreasing

4
x

0

(4, `)(2`, 4)

f 9(x)

f (x)

1111 2 2 2 2

Test Numbers

x f ∙ 1x 2
3 2 1+ 2
5 -2 1- 2

Therefore,  f1x2 is increasing on 1- ∞ , 42 and decreasing on 14, ∞ 2.

x f ∙ 1x 2
0  0

2 12

4 16

6 12

8  0

(C) f (x)

x
1050

15

10

5 f (x)
increasing

f (x)
decreasing

Horizontal
tangent line

Matched Problem 1 Repeat Example 1 for  f1x2 = x2 - 6x + 10.
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 SECTION 4.1   First Derivative and Graphs 285

As Example 1 illustrates, the construction of a sign chart will play an important 
role in using the derivative to analyze and sketch the graph of a function f. The partition 
numbers for f ′ are central to the construction of these sign charts and also to the analy-
sis of the graph of y = f1x2. The partition numbers for f ′ that belong to the domain 
of f are called critical numbers of f. We are assuming that  f ′1c2 does not exist at any 
point of discontinuity of f ′. There do exist functions f such that f ′ is discontinuous at 
x = c, yet  f ′1c2 exists. However, we do not consider such functions in this book.

DEFINITION Critical Numbers
A real number x in the domain of f such that  f ′1x2 = 0 or  f ′1x2 does not exist 
is called a critical number of f.

The critical numbers of f belong to the domain of f and are partition numbers for 
f ′. But f ′ may have partition numbers that do not belong to the domain of f so 
are not critical numbers of f. We need all partition numbers of f ′ when building  
a sign chart for f ′.

If f is a polynomial, then both the partition numbers for f ′ and the critical 
numbers of f are the solutions of  f ′1x2 = 0.

CONCEPTUAL INSIGHT

Partition Numbers for f ∙  and Critical Numbers of f Find the critical numbers 
of f, the intervals on which f is increasing, and those on which f is decreasing, for 
 f1x2 = 1 + x3.

SOLUTION Begin by finding the partition numbers for  f ′1x2 [since  f ′1x2 = 3x2 
is continuous we just need to solve  f ′1x2 = 0]

 f ′1x2 = 3x2 = 0 only if x = 0

The partition number 0 for f ′ is in the domain of f, so 0 is the only critical number of f.
The sign chart for  f ′1x2 = 3x2 (partition number is 0) is

EXAMPLE 2

     

0

0

x

Increasing Increasing

(0, `)(2`, 0)

f 9(x)

f (x)

11111 11111

Test Numbers

x f ∙ 1x 2
-1 3 1+ 2

1 3 1+ 2

The sign chart indicates that  f1x2 is increasing on 1- ∞ , 02 and 10, ∞ 2. Since f 
is continuous at x = 0, it follows that  f1x2 is increasing for all x. The graph of f is 
shown in Figure 3.

x

f (x)

121

2

1

Figure 3

Matched Problem 2 Find the critical numbers of f, the intervals on which f is 
increasing, and those on which f is decreasing, for  f1x2 = 1 - x3.

Partition Numbers for f ∙  and Critical Numbers of f Find the critical numbers 
of f, the intervals on which f is increasing, and those on which f is decreasing, for 
 f1x2 = 11 - x2 1>3.

SOLUTION  f ′1x2 = -  
1
3

 11 - x2 -2>3 =
-1

311 - x2 2>3

EXAMPLE 3
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286 CHAPTER 4 Graphing and Optimization

To find the partition numbers for f ′, we note that f ′ is continuous for all x, except for 
values of x for which the denominator is 0; that is, f ′112 does not exist and f ′ is dis-
continuous at x = 1. Since the numerator of f ′ is the constant -1, f ′1x2 ∙ 0 for any 
value of x. Thus, x = 1 is the only partition number for f ′. Since 1 is in the domain of 
f, x = 1 is also the only critical number of f. When constructing the sign chart for f ′ 
we use the abbreviation ND to note the fact that  f ′1x2 is not defined at x = 1.

The sign chart for  f ′1x2 = -1> 3311 - x2 2>34 (partition number for f ′ is 1) 
is as follows:

f 9(x)

f (x)

1

ND

x

DecreasingDecreasing

 2 2 2 22 2 2 2

(1, `)(2`, 1)
Test Numbers

x f ∙ 1x 2
0 -  13 1- 2
2 -  13 1- 2

The sign chart indicates that f is decreasing on 1- ∞ , 12 and 11, ∞ 2. Since f is con-
tinuous at x = 1, it follows that  f1x2 is decreasing for all x. A continuous function 
can be decreasing (or increasing) on an interval containing values of x where 
f ′ 1x 2  does not exist. The graph of f is shown in Figure 4. Notice that the undefined 
derivative at x = 1 results in a vertical tangent line at x = 1. A vertical tangent 
will occur at x ∙ c if f is continuous at x ∙ c and if ∣ f ′ 1x 2 ∣  becomes larger 
and larger as x approaches c.

x

f (x)

210

1

21

Figure 4

Matched Problem 3 Find the critical numbers of f, the intervals on which f is 
increasing, and those on which f is decreasing, for  f1x2 = 11 + x2 1>3.

Partition Numbers for f ∙  and Critical Numbers of f Find the critical numbers 
of f, the intervals on which f is increasing, and those on which f is decreasing, for 

 f1x2 =
1

x - 2
.

SOLUTION    f1x2 =
1

x - 2
= 1x - 22 -1

  f ′1x2 = - 1x - 22 -2 =
-1

1x - 22 2

To find the partition numbers for f ′, note that  f ′1x2 ∙ 0 for any x and f ′ is not defined 
at x = 2. Thus, x = 2 is the only partition number for f ′. However, x = 2 is not in 
the domain of f. Consequently, x = 2 is not a critical number of f. The function f has no 
critical numbers.

The sign chart for  f ′1x2 = -1>1x - 222 (partition number for f ′ is 2) is as follows:

EXAMPLE 4

f 9(x)

f (x)

2

ND

x

DecreasingDecreasing

 2 2 2 22 2 2 2

(2, `)(2`, 2)
Test Numbers

x f ∙ 1x 2
1 -1 1- 2
3 -1 1- 2

Therefore, f is decreasing on 1- ∞ , 22 and 12, ∞ 2. The graph of f is shown in 
Figure 5.

x

f (x)

25

525

5

Figure 5

Matched Problem 4 Find the critical numbers of f, the intervals on which f is

increasing, and those on which f is decreasing, for  f1x2 =
1
x

.
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 SECTION 4.1   First Derivative and Graphs 287

Partition Numbers for f ′ and Critical Numbers of f Find the critical numbers 
of f, the intervals on which f is increasing, and those on which f is decreasing, for 
 f1x2 = 8 ln x - x2.

SOLUTION The natural logarithm function ln x is defined on 10, ∞ 2, or x 7 0, so 
 f1x2 is defined only for x 7 0.

 f1x2 = 8 ln x - x2, x 7 0

 f ′1x2 =
8
x

- 2x  Find a common denominator.

 =
8
x

-
2x2

x
      Subtract numerators.

 =
8 - 2x2

x
 Factor numerator.

 =
212 - x212 + x2

x
, x 7 0

The only partition number for f ′ that is positive, and therefore belongs to the  domain 
of f, is 2. So 2 is the only critical number of f.

The sign chart for  f ′1x2 =
212 - x212 + x2

x
, x 7 0 (partition number for 

f ′ is 2), is as follows:

EXAMPLE 5

DecreasingIncreasing

20
x

0

(2, `)(0, 2)

f 9(x)

f (x)

1111 2 2 2 2

Test Numbers

x f ∙ 1x 2
1    6 1+ 2
4 -6 1- 2

Therefore, f is increasing on 10, 22 and decreasing on 12, ∞ 2. The graph of f is 
shown in Figure 6.

x

f (x)

4321

2

1

21

22

Figure 6

Matched Problem 5 Find the critical numbers of f, the intervals on which f is 
increasing, and those on which f is decreasing, for  f1x2 = 5 ln x - x.

Examples 4 and 5 illustrate two important ideas:

1. Do not assume that all partition numbers for the derivative f ′ are critical numbers 
of the function f. To be a critical number of f, a partition number for f ′ must also 
be in the domain of f.

2. The intervals on which a function f is increasing or decreasing must always be 
expressed in terms of open intervals that are subsets of the domain of f.

CONCEPTUAL INSIGHT

Local Extrema
When the graph of a continuous function changes from rising to falling, a high point, 
or local maximum, occurs. When the graph changes from falling to rising, a low 
point, or local minimum, occurs. In Figure 7, high points occur at c3 and c6, and low 
points occur at c2 and c4. In general, we call  f1c2 a local maximum if there exists an 
interval 1m, n2 containing c such that

f 1x2 … f 1c2  for all x in 1m, n2
Note that this inequality need hold only for numbers x near c, which is why we use 
the term local. So the y coordinate of the high point 1c3, f1c322 in Figure 7 is a local 
maximum, as is the y coordinate of 1c6, f1c622.
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The value  f1c2 is called a local minimum if there exists an interval 1m, n2 con-
taining c such that

 f1x2 Ú f1c2  for all x in 1m, n2
The value  f1c2 is called a local extremum if it is either a local maximum or a local 

minimum. A point on a graph where a local extremum occurs is also called a turning 
point. In Figure 7 we see that local maxima occur at c3 and c6, local minima occur at c2 
and c4, and all four values produce local extrema. The points c1, c5, and c7 are critical 
numbers but do not produce local extrema. Also, the local maximum  f1c32 is not the 
largest y coordinate of points on the graph in Figure 7. Later in this chapter, we consider 
the problem of finding absolute extrema, the y coordinates of the highest and lowest 
points on a graph. For now, we are concerned only with locating local extrema.

x

y 5 f (x)

c1 c2 c3 c4 c5 c6 c7

Figure 7

Analyzing a Graph Use the graph of  f  in Figure 8 to find the intervals on which  f  is 
increasing, those on which f is decreasing, any local maxima, and any local minima.

f (x)

x

25

25

5

5

Figure 8

SOLUTION The function f is increasing (the graph is rising) on 1- ∞ , -12 and 
on 13, ∞ 2 and is decreasing (the graph is falling) on 1-1, 32. Because the graph 
changes from rising to falling at x = -1, f1-12 = 3 is a local maximum. Because 
the graph changes from falling to rising at x = 3, f132 = -5 is a local minimum.

Matched Problem 6 Use the graph of g in Figure 9 to find the intervals on 
which g is increasing, those on which g is decreasing, any local maxima, and any 
local minima.

g(x)

x

25

25

5

5

Figure 9

EXAMPLE 6
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How can we locate local maxima and minima if we are given the equation of a 
function and not its graph? The key is to examine the critical numbers of the function. 
The local extrema of the function f in Figure 7 occur either at points where the deriva-
tive is 0 1c2 and c32 or at points where the derivative does not exist 1c4 and c62. In other 
words, local extrema occur only at critical numbers of f.

THEOREM 2 Local Extrema and Critical Numbers
If  f1c2 is a local extremum of the function f, then c is a critical number of f.

Suppose that f is a function such that  f ′1c2 = 2. Explain why f does not have a local 
extremum at x = c. What if  f ′1c2 = -1?

Explore and Discuss 1

Theorem 2 states that a local extremum can occur only at a critical number, but 
it does not imply that every critical number produces a local extremum. In Figure 7, 
c1 and c5 are critical numbers (the slope is 0), but the function does not have a local 
maximum or local minimum at either of these numbers.

Our strategy for finding local extrema is now clear: We find all critical numbers of 
f and test each one to see if it produces a local maximum, a local minimum, or neither.

First-Derivative Test
If  f ′1x2 exists on both sides of a critical number c, the sign of  f ′1x2 can be used to 
determine whether the point 1c, f1c22 is a local maximum, a local minimum, or nei-
ther. The various possibilities are summarized in the following box and are illustrated 
in Figure 10:

PROCEDURE First-Derivative Test for Local Extrema
Let c be a critical number of f  3f1c2 is defined and either  f ′1c2 = 0 or  f ′1c2 is
not defined4. Construct a sign chart for  f ′1x2 close to and on either side of c.

Sign Chart f 1c 2

Decreasing Increasing

x

x

1 1 1 2 2 2 

m n

DecreasingIncreasing

Increasing

1 1 1 2 2 2 

m c n

x

DecreasingDecreasing

2 2 2 2 2 2 

m c n

x
m c n

1 1 1 1 1 1 

Increasing Increasing

( (

( (

( (

( (

c

f 9(x)

f (x)

f 9(x)

f (x)

f 9(x)

f (x)

f 9(x)

f (x)

 f1c2 is a local minimum.
If  f ′1x2 changes from negative to positive at c, then 
 f1c2 is a local minimum.

 f1c2 is a local maximum.
If  f ′1x2 changes from positive to negative at c, then 
 f1c2 is a local maximum.

 f1c2 is not a local extremum.
If  f ′1x2 does not change sign at c, then  f1c2 is neither a 
local maximum nor a local minimum.

 f1c2 is not a local extremum.
If  f ′1x2 does not change sign at c, then  f1c2 is neither a 
local maximum nor a local minimum.
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Figure 10 Local extrema

f (c)

f (x)

(A)  f (c) is a
local minimum

x
c

f 9(x) 2 2 2 2 1 1 1 10

(B)  f (c) is a
local maximum

f (c)

f (x)

x
c

f 9(x) 1 1 1 1 2 2 2 20

(C)  f (c) is neither
a local maximum
nor a local minimum

f (c)

f (x)

x
c

f 9(x) 1 1 1 1 1 1 1 10

(D)  f (c) is neither
a local maximum
nor a local minimum

f (c)

f (x)

x
c

f 9(x) 2 2 2 2 2 2 2 20

(E)  f (c) is a local
minimum

f (c)

f (x)

x
c

f 9(x) 2 2 2  1 1 1ND

(F)  f (c) is a local
maximum

f (c)

f (x)

x
c

f 9(x) 1 1 1  2 2 2ND

(G)  f (c) is neither
a local maximum
nor a local minimum

f (c)

f (x)

x
c

f 9(x) 1 1 1  1 1 1ND

(H)  f (c) is neither
a local maximum
nor a local minimum

f (c)

f (x)

x
c

f 9(x) 2 2 2  2 2 2ND

f ∙ 1c 2 ∙ 0: Horizontal tangent

f ∙ 1c 2  is not defined but f 1c 2  is defined

Locating Local Extrema Given  f1x2 = x3 - 6x2 + 9x + 1,

(A) Find the critical numbers of f.

(B) Find the local maxima and local minima of f.

(C) Sketch the graph of f.

SOLUTION
(A) Find all numbers x in the domain of f where  f ′1x2 = 0 or  f ′1x2 does not exist.

 f ′1x2 = 3x2 - 12x + 9 = 0

 31x2 - 4x + 32 = 0

 31x - 121x - 32 = 0

 x = 1   or   x = 3

 f ′1x2 exists for all x; the critical numbers of f are x = 1 and x = 3.

(B) The easiest way to apply the first-derivative test for local maxima and minima 
is to construct a sign chart for  f ′1x2 for all x. Partition numbers for  f ′1x2 are 
x = 1 and x = 3 (which also happen to be critical numbers of f).

Sign chart for  f ′1x2 = 31x - 121x - 32:

EXAMPLE 7

        

1 3

00

x

DecreasingIncreasing

Local
maximum

Local
maximum

Increasing

(3, `)(1, 3)(2`, 1)

f 9(x)

f (x)

2 2 2 2 21 1 1 1 1 1 1 1 1 12

Test Numbers

x f ∙ 1x 2
0 9 1∙ 2
2 -3 1∙ 2
4 9 1∙ 2
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The sign chart indicates that f increases on 1-∞, 12, has a local maximum at 
x = 1, decreases on 11, 32, has a local minimum at x = 3, and increases on 
13, ∞ 2. These facts are summarized in the following table:

x f ′ 1x 2 f 1x 2 Graph of f

1-∞ , 12 + Increasing Rising

x = 1 0 Local maximum Horizontal tangent

11, 32 - Decreasing Falling

x = 3 0 Local minimum Horizontal tangent

13, ∞ 2 + Increasing Rising

The local maximum is f112 = 5; the local minimum is f132 = 1.

(C) We sketch a graph of f, using the information from part (B) and point-by-point 
plotting.

x f 1x 2
0 1

1 5

2 3

3 1

4 5

x

f (x)

4321

6

5

4

3

2

1

Local
maximum

Local
minimum

Matched Problem 7 Given  f1x2 = x3 - 9x2 + 24x - 10,

(A) Find the critical numbers of f.

(B) Find the local maxima and local minima of f.

(C) Sketch a graph of f.

How can you tell if you have found all the local extrema of a function? In gen-
eral, this can be a difficult question to answer. However, in the case of a polynomial 
function, there is an easily determined upper limit on the number of local extrema. 
Since the local extrema are the x intercepts of the derivative, this limit is a conse-
quence of the number of x intercepts of a polynomial. The relevant information is 
summarized in the following theorem, which is stated without proof:

THEOREM 3 Intercepts and Local Extrema of Polynomial Functions
If  f1x2 = anx n + an - 1x

n - 1 + g+ a1x + a0, an ∙ 0, is a polynomial function 
of degree n Ú 1, then  f  has at most n x intercepts and at most n - 1 local extrema.

Theorem 3 does not guarantee that every nth-degree polynomial has exactly n - 1 
local extrema; it says only that there can never be more than n - 1 local extrema. For 
example, the third-degree polynomial in Example 7 has two local extrema, while the 
third-degree polynomial in Example 2 does not have any.

Economics Applications
In addition to providing information for hand-sketching graphs, the derivative is an im-
portant tool for analyzing graphs and discussing the interplay between a function and its 
rate of change. The next two examples illustrate this process in the context of economics.
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Agricultural Exports and Imports Over the past few decades, the United States 
has exported more agricultural products than it has imported, maintaining a positive 
balance of trade in this area. However, the trade balance fluctuated considerably 
during that period. The graph in Figure 11 approximates the rate of change of the 
balance of trade over a 15-year period, where  B1t2 is the balance of trade (in billions 
of dollars) and t is time (in years).

t
10

Years

B
ill

io
ns

 p
er

 y
ea

r

15

B9(t)

0

5

25

10

Figure 11 Rate of change of the balance of trade

(A) Write a brief description of the graph of y = B1t2, including a discussion of 
any local extrema.

(B) Sketch a possible graph of y = B1t2.

SOLUTION
(A) The graph of the derivative y = B′1t2 contains the same essential information 

as a sign chart. That is, we see that  B′1t2 is positive on 10, 42, 0 at t = 4, 
negative on 14, 122, 0 at t = 12, and positive on 112, 152. The trade balance 
increases for the first 4 years to a local maximum, decreases for the next 8 years 
to a local minimum, and then increases for the final 3 years.

(B) Without additional information concerning the actual values of y = B1t2, 
we cannot produce an accurate graph. However, we can sketch a possible graph 
that illustrates the important features, as shown in Figure 12. The absence of a 
scale on the vertical axis is a consequence of the lack of information about the 
values of  B1t2.

t
50 10

Years
15

B(t)

Figure 12 Balance of trade

Matched Problem 8 The graph in Figure 13 approximates the rate of change 
of the U.S. share of the total world production of motor vehicles over a 20-year 
period, where  S1t2 is the U.S. share (as a percentage) and t is time (in years).

EXAMPLE 8

t
10

Years

Pe
rc

en
t p

er
 y

ea
r

2015

S9(t)

0

25

3

Figure 13

(A) Write a brief description of the graph of y = S1t2, including a discussion of 
any local extrema.

(B) Sketch a possible graph of y = S1t2.
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Revenue Analysis The graph of the total revenue  R1x2 (in dollars) from the sale 
of x bookcases is shown in Figure 14.

5000 1,000

R(x)

$40,000

$20,000

x

Figure 14 Revenue

(A) Write a brief description of the graph of the marginal revenue function 
y = R′1x2, including a discussion of any x intercepts.

(B) Sketch a possible graph of y = R′1x2.

SOLUTION
(A) The graph of y = R1x2 indicates that  R1x2 increases on 10, 5502, has a local 

maximum at x = 550, and decreases on 1550, 1,0002. Consequently, the mar-
ginal revenue function  R′1x2 must be positive on 10, 5502, 0 at x = 550, and 
negative on 1550, 1,0002.

(B) A possible graph of y = R′1x2 illustrating the information summarized in 
part (A) is shown in Figure 15.

x
1,000500

R9(x)

Figure 15 Marginal revenue

Matched Problem 9 The graph of the total revenue  R1x2 (in dollars) from the 
sale of x desks is shown in Figure 16.

x

R(x)

200 400 600 800 1,000

$20,000

$40,000

$60,000

Figure 16

(A) Write a brief description of the graph of the marginal revenue function 
y = R′1x2, including a discussion of any x intercepts.

(B) Sketch a possible graph of y = R′1x2.

EXAMPLE 9
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Comparing Examples 8 and 9, we see that we were able to obtain more informa-
tion about the function from the graph of its derivative (Example 8) than we were 
when the process was reversed (Example 9). In the next section, we introduce some 
ideas that will help us obtain additional information about the derivative from the 
graph of the function.

Skills Warm-up Exercises
In Problems 1–8, inspect the graph of the function to determine 
whether it is increasing or decreasing on the given interval. 
(If necessary, review Section 1.2).

1. g1x2 = ∙ x ∙  on 1- ∞ , 02 2. m1x2 = x3 on 10, ∞ 2
3.   f1x2 = x on 1- ∞ , ∞ 2 4. k1x2 = -x2 on 10, ∞ 2
5. p1x2 = 23 x on 1- ∞ , 02
6. h1x2 = x3 on 1- ∞ , 02
7. r1x2 = 4 - 1x on 10, ∞ 2
8. g1x2 = ∙ x ∙  on 10, ∞ 2

Problems 9–16 refer to the following graph of y = f1x2:

x

f (x)

a

b c

d

e f g h

Figure for 9–16

9. Identify the intervals on which   f1x2 is increasing.

10. Identify the intervals on which   f1x2 is decreasing.

11. Identify the intervals on which  f ′1x2 6 0.

12. Identify the intervals on which  f ′1x2 7 0.

13. Identify the x coordinates of the points where  f ′1x2 = 0.

14. Identify the x coordinates of the points where  f ′1x2 does not 
exist.

15. Identify the x coordinates of the points where   f1x2 has a lo-
cal maximum.

16. Identify the x coordinates of the points where   f1x2 has a lo-
cal minimum.

In Problems 17 and 18,   f1x2 is continuous on 1- ∞ , ∞ 2 and 
has critical numbers at x = a, b, c, and d. Use the sign chart for 
 f ′1x2 to determine whether f has a local maximum, a local mini-
mum, or neither at each critical number.

17. 
 NDND 0

a b c d
x

0f 9(x) 1 1 1 1 1 1 1 1 12 2 22 2 2

W

A

18. 

 ND0 ND

a b c d
x

0f 9(x) 1 1 1 1 1 1 2 2 22 2 22 2 2

In Problems 19–26, give the local extrema of f and match the graph 
of f with one of the sign charts a–h in the figure on page 295.

19. 

x

f (x)

60

6

20. 

x

f (x)

60

6

21. 

x

f (x)

60

6

22. 

x

f (x)

60

6

23. 

x

f (x)

60

6

24. 

x

f (x)

0 6

6

25. 

x

f (x)

60

6

0

26. 

x

f (x)

60

6

Exercises 4.1
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43.   f1x2 = x4 + 4x3 + 30 44.   f1x2 = x4 - 8x3 + 32

45.   f1x2 = 1x + 32ex 46. f1x2 = 1x - 32ex

47.   f1x2 = 1x2 - 422>3 48.   f1x2 = 1x2 - 421>3

In Problems 49–56, find the intervals on which   f1x2 is increasing 
and the intervals on which   f1x2 is decreasing. Then sketch the 
graph. Add horizontal tangent lines.

49.    f1x2 = 4 + 8x - x2

50.   f1x2 = 2x2 - 8x + 9

51.   f1x2 = x3 - 3x + 1

52.   f1x2 = x3 - 12x + 2

53.   f1x2 = 10 - 12x + 6x2 - x3

54.   f1x2 = x3 + 3x2 + 3x

55.   f1x2 = x4 - 18x2

56.   f1x2 = -x4 + 50x2

In Problems 57–60, use a graphing calculator to approximate the 
critical numbers of   f1x2 to two decimal places. Find the inter-
vals on which   f1x2 is increasing, the intervals on which   f1x2 is 
decreasing, and the local extrema.

57.   f1x2 = x4 - 4x3 + 9x 58.   f1x2 = x4 + 5x3 - 15x

59.   f1x2 = e-x - 3x2 60.   f1x2 = ex - 2x2

In Problems 61–68,   f1x2 is continuous on 1- ∞ , ∞ 2. Use the 
given information to sketch the graph of f.

61. 
0

21 1
x

01 1 1 1 1 1 222f 9(x)

x -2 -1 0 1 2

f 1x 2 -1 1 2 3 1

62. 
0

x

01 1 1 222 222

21 1

f 9(x)

x -2 -1 0 1    2

f 1x 2 1 3 2 1 -1

63. 
0ND

x

0 1 1 1 2222 2 2 2 2 2 2222

21 0 2

f 9(x)

x -2 -1 0 2 4

f 1x 2 2 1 2 1 0

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

f 9(x)

3
x

0 1 1 1 1 1 1 1 122222222

f 9(x)

3
x

ND 1 1 1 1 1 1 1 122222222

f 9(x)

3
x

0 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1

f 9(x)

3
x

ND 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1

f 9(x)

3
x

01 1 1 1 1 1 1 1 22222222

3

ND 22222222f 9(x)

x

f 9(x)

3
x

ND22222222

f 9(x)

3
x

022222222

22222222

22222222

1 1 1 1 1 1 1 1

 In Problems 27–32, find (A)  f ′1x2, (B) the partition numbers for 
f ′, and (C) the critical numbers of f .

27. f1x2 = x3 - 3x + 5

28. f1x2 = x3 - 48x + 96

29. f1x2 =
4

x + 3
30. f1x2 =

8
x - 9

31. f1x2 = x1>4 32. f1x2 = x3>4

In Problems 33–48, find the intervals on which   f1x2 is increasing, 
the intervals on which   f1x2 is decreasing, and the local extrema.

33.   f1x2 = 3x2 - 12x + 2

34.   f1x2 = 5x2 - 10x - 3

35.   f1x2 = -2x2 - 16x - 25

36.   f1x2 = -3x2 + 12x - 5

37.   f1x2 = x3 + 5x + 2

38.   f1x2 = -x3 - 2x - 5

39.   f1x2 = x3 - 3x + 5

40.   f1x2 = -x3 + 3x + 7

41.   f1x2 = -3x3 - 9x2 + 72x + 20

42.   f1x2 = 3x3 + 9x2 - 720x - 15

B
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x

f5(x)

25

525

5

x

f6(x)

25

525

5

Figure (A) for 69–74

x

g1(x)

25

525

5

x

g2(x)

25

525

5

x

g3(x)

25

525

5

x

g4(x)

25

525

5

x

g5(x)

25

525

5

x

g6(x)

25

525

5

Figure (B) for 69–74

In Problems 75–80, use the given graph of y = f ′1x2 to find 
the intervals on which f is increasing, the intervals on which f is 
decreasing, and the x coordinates of the local extrema of f. Sketch 
a possible graph of y = f1x2.

75. 

x

f 9(x)

25

525

5

76. 

x

f 9(x)

25

525

5

C

64. 
00

x

ND 1 1 1 1 1 11 1 1 2 2 2 2 2 2 2

21 0 2

f 9(x)

x -2 -1 0 2 3

f 1x 2 -3 0 2 -1 0

65. f1-22 = 4, f102 = 0, f122 = -4;

f ′1-22 = 0, f ′102 = 0, f ′122 = 0;

 f ′1x2 7 0 on 1- ∞ , -22 and 12, ∞ 2;

 f ′1x2 6 0 on 1-2, 02 and 10, 22
66. f1-22 = -1, f102 = 0, f122 = 1;

f ′1-22 = 0, f ′122 = 0;

 f ′1x2 7 0 on 1- ∞ , -22, 1-2, 22, and 12, ∞ 2
67. f1-12 = 2, f102 = 0, f112 = -2;

f ′1-12 = 0, f ′112 = 0, f ′102 is not defined;

 f ′1x2 7 0 on 1- ∞ , -12 and 11, ∞ 2;

 f ′1x2 6 0 on 1-1, 02 and 10, 12
68. f1-12 = 2, f102 = 0, f112 = 2;

f ′1-12 = 0, f ′112 = 0, f ′102 is not defined;

 f ′1x2 7 0 on 1- ∞ , -12 and 10, 12;

 f ′1x2 6 0 on 1-1, 02 and 11, ∞ 2
Problems 69–74 involve functions f19f6 and their derivatives, 
g19g6. Use the graphs shown in figures (A) and (B) to match each 
function fi with its derivative gj.

69. f1 70. f2 71. f3

72. f4 73. f5 74. f6

x

25

525

5

f1(x)

x

f2(x)

25

525

5

x

f3(x)

25

525

5

x

f4(x)

25

525

5

M04_BARN6152_14_GE_C04.indd   296 20/11/18   6:41 PM



 SECTION 4.1   First Derivative and Graphs 297

Applications
91. Profit analysis. The graph of the total profit  P1x2 (in 

dollars) from the sale of x cordless electric screwdrivers is 
shown in the figure.

0
x

1,000

500

P(x)

40,000

20,000

220,000

240,000

(A) Write a brief description of the graph of the marginal 
profit function y = P′1x2, including a discussion of any 
x intercepts.

(B) Sketch a possible graph of y = P′1x2.

92. Revenue analysis. The graph of the total revenue  R1x2  
(in dollars) from the sale of x cordless electric screwdrivers  
is shown in the figure.

x
1,000500

R(x)

40,000

20,000

220,000

240,000

(A) Write a brief description of the graph of the marginal 
revenue function y = R′ 1x2, including a discussion of 
any x intercepts.

(B) Sketch a possible graph of y = R′1x2.

93. Price analysis. The figure approximates the rate of change 
of the price of beetroot over a 60-month period, where  B1t2 
is the price of a pound of beetroots (in dollars) and t is time 
(in months).

B9(t)

20.06

20.01

0.01
0.02
0.03
0.04

20.02
20.03
20.04
20.05

t
30 60

(A) Write a brief description of the graph of y = B1t2, 
 including a discussion of any local extrema.

(B) Sketch a possible graph of y = B1t2.

94. Price analysis. The figure approximates the rate of change of 
the price of carrots over a 60-month period, where  C1t2 is the 
price of a pound of carrots (in dollars) and t is time (in months).

77. 

x

f 9(x)

25

525

5

78. 

x

f 9(x)

25

525

5

79. 

x

f 9(x)

25

525

5

80. 

x

f 9(x)

25

525

5

In Problems 81–84, use the given graph of y = f1x2 to find the 
intervals on which  f ′1x2 7 0, the intervals on which  f ′1x2 6 0, 
and the values of x for which  f ′1x2 = 0. Sketch a possible graph 
of y = f ′1x2.

81. 

x

f (x)

25

525

5

82. 

x

f (x)

25

525

5

83. 

x

f (x)

25

525

5

84. 

x

f (x)

25

525

5

In Problems 85–90, find the critical numbers, the intervals on 
which   f1x2 is increasing, the intervals on which   f1x2 is  
decreasing, and the local extrema. Do not graph.

85.   f1x2 = x +
4
x

86.   f1x2 =
9
x

+ x

87.   f1x2 = ln 1x2 + 12 88. f1x2 = ln1x4 + 52

89.   f1x2 =
x2

x - 2
90.   f1x2 =

x2

x + 1
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the drug concentration is increasing, the intervals on which 
the drug concentration is decreasing, and the local extrema. 
Do not graph.

Answers to Matched Problems

1.      (A)     Horizontal tangent line at x = 3.

(B) Decreasing on 1- ∞ , 32; increasing on 13, ∞ 2
(C) 

50

10

5

x

f (x)

2. Partition number for f ′: x = 0; critical number of f: x = 0; 
decreasing for all x

3. Partition number for f ′: x = -1; critical number of f: 
x = -1; increasing for all x

4. Partition number for f ′: x = 0; no critical number of f; 
 decreasing on 1- ∞ , 02 and 10, ∞ 2

5. Partition number for f ′: x = 5; critical number of f: x = 5; 
increasing on 10, 52; decreasing on 15, ∞ 2

6. Increasing on 1-3, 12; decreasing on 1- ∞ , -32 and 
11, ∞ 2; f112 = 5 is a local maximum; f1-32 = -3 is a 
local minimum

7.      (A)    Critical numbers of f: x = 2, x = 4

(B) f122 = 10 is a local maximum; f142 = 6 is a local 
minimum

(C) 

x

f (x)

50

5

10

8.      (A)     The U.S. share of the world market decreases for 6 years 
to a local minimum, increases for the next 10 years to a 
local maximum, and then decreases for the final 4 years.

(B) 

t

S(t)

1050 15 20

9.      (A)    The marginal revenue is positive on 10, 4502, 0 at 
x = 450, and negative on 1450, 1,0002.

(B) 

x
1,000

R9(x)

C9(t)

20.01

0.01
0.02

20.02
20.03
20.04
20.05
20.06

t
30 60

(A) Write a brief description of the graph of y = C(t),  
including a discussion of any local extrema.

(B) Sketch a possible graph of y = C(t).

95. Average cost. A manufacturer incurs the following costs 
in producing x water ski vests in one day, for 0 6 x 6 150: 
fixed costs, $320; unit production cost, $20 per vest; equip-
ment maintenance and repairs, 0.05x2 dollars. So the cost of 
manufacturing x vests in one day is given by

 C1x2 = 0.05x2 + 20x + 320  0 6 x 6 150

(A) What is the average cost C1x2 per vest if x vests are pro-
duced in one day?

(B) Find the critical numbers of C1x2, the intervals on 
which the average cost per vest is decreasing, the inter-
vals on which the average cost per vest is increasing, and 
the local extrema. Do not graph.

96. Average cost. A manufacturer incurs the following costs in 
producing x rain jackets in one day for 0 6 x 6 200: fixed 
costs, $450; unit production cost, $30 per jacket; equipment 
maintenance and repairs, 0.08x2 dollars.

(A) What is the average cost C1x2 per jacket if x jackets are 
produced in one day?

(B) Find the critical numbers of C1x2, the intervals on 
which the average cost per jacket is decreasing, the inter-
vals on which the average cost per jacket is increasing, 
and the local extrema. Do not graph.

97. Medicine. A drug is injected into the bloodstream of a 
patient through the right arm. The drug concentration in the 
bloodstream of the left arm t hours after the injection is ap-
proximated by

 C1t2 =
0.28t

t2 + 4
  0 6 t 6 24

Find the critical numbers of  C1t2, the intervals on which 
the drug concentration is increasing, the intervals on which 
the concentration of the drug is decreasing, and the local 
extrema. Do not graph.

98. Medicine. The concentration  C1t2, in milligrams per cubic 
centimeter, of a particular drug in a patient’s bloodstream is 
given by

 C1t2 =
0.3t

t2 + 6t + 9
  0 6 t 6 12

where t is the number of hours after the drug is taken orally. 
Find the critical numbers of  C1t2, the intervals on which 
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4.2 Second Derivative and Graphs
In Section 4.1, we saw that the derivative can be used to determine when a graph is 
rising or falling. Now we want to see what the second derivative (the derivative of the 
derivative) can tell us about the shape of a graph.

Using Concavity as a Graphing Tool
Consider the functions

f1x2 = x2  and  g1x2 = 2x

for x in the interval 10, ∞ 2. Since

f ′1x2 = 2x 7 0  for 0 6 x 6 ∞

and

g′1x2 =
1

22x
7 0  for 0 6 x 6 ∞

both functions are increasing on 10, ∞ 2.

■■ Using Concavity as a Graphing Tool
■■ Finding Inflection Points
■■ Analyzing Graphs
■■ Curve Sketching
■■ Point of Diminishing Returns

(A) Discuss the difference in the shapes of the graphs of f and g shown in Figure 1.

Explore and Discuss 1

(1, 1)

(A)  f (x) 5 x2

x

f (x)

1

1

Figure 1

(1, 1)

(B)  g(x) 5     x

x

g(x)

1

1

(B) Complete the following table, and discuss the relationship between the values of 
the derivatives of f and g and the shapes of their graphs:

x 0.25 0.5 0.75 1

f ∙ 1x 2
g∙ 1x 2

We use the term concave upward to describe a graph that opens upward and 
concave downward to describe a graph that opens downward. Thus, the graph of f in 
Figure 1A is concave upward, and the graph of g in Figure 1B is concave downward. 
Finding a mathematical formulation of concavity will help us sketch and analyze 
graphs.

We examine the slopes of f and g at various points on their graphs (see Fig. 2) 
and make two observations about each graph:

1. Looking at the graph of f in Figure 2A, we see that f ′1x2 (the slope of the tangent 
line) is increasing and that the graph lies above each tangent line.

2. Looking at Figure 2B, we see that g′1x2 is decreasing and that the graph lies 
below each tangent line.
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300 CHAPTER 4 Graphing and Optimization

Geometrically, the graph is concave upward on 1a, b2 if it lies above its tangent 
lines in 1a, b2 and is concave downward on 1a, b2 if it lies below its tangent lines 
in 1a, b2.

How can we determine when f ′1x2 is increasing or decreasing? In Section 4.1, 
we used the derivative to determine when a function is increasing or decreasing. To 
determine when the function f ′1x2 is increasing or decreasing, we use the derivative of 
f ′1x2. The derivative of the derivative of a function is called the second derivative of 
the function. Various notations for the second derivative are given in the following box:

f 9(1) 5 2

f 9(.75) 5 1.5

(A)  f (x) 5 x2

 f (x)

.25 .50 .75 1
x

1

f 9(.50) 5 1

f 9(.25) 5 .5

Figure 2

g9(1) 5 .5

g9(.75) 5 .6

g9(.5) 5 .7

g9(.25) 5 1

x

1

g(x)

(B)  g(x) 5     x

.25 .50 .75 1

DEFINITION Concavity
The graph of a function f is concave upward on the interval 1a, b2 if f ′1x2 is 
increasing on 1a, b2 and is concave downward on the interval 1a, b2 if f ′1x2 is 
decreasing on 1a, b2.

NOTATION Second Derivative
For y = f1x2, the second derivative of f, provided that it exists, is

f ″1x2 =
d
dx

  f ′1x2

Other notations for f ″1x2 are

d2y

dx2 and y″

Returning to the functions f and g discussed at the beginning of this section, 
we have

 f1x2 = x2     g1x2 = 2x = x1>2

  f ′1x2 = 2x     g′1x2 =
1
2

 x-1>2 =
1

22x

  f ″1x2 =
d
dx

 2x = 2   g″1x2 =
d
dx

 
1
2

 x-1>2 = -  
1
4

 x-3>2 = -  
1

42x3

For x 7 0, we see that f ″1x2 7 0; so f ′1x2 is increasing, and the graph of f is 
concave upward (see Fig. 2A). For x 7 0, we also see that g″1x2 6 0; so g′1x2 is 
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decreasing, and the graph of g is concave downward (see Fig. 2B). These ideas are 
summarized in the following box:

SUMMARY Concavity
For the interval 1a, b2, if f ″ 7 0, then f is concave upward, and if f ″ 6 0, then f is 
concave downward.

f ∙ 1x 2 f ∙ 1x 2 Graph of y ∙ f 1x 2 Examples

+

-

Increasing

Decreasing

Concave upward

Concave downward

Be careful not to confuse concavity with falling and rising. A graph that is concave 
upward on an interval may be falling, rising, or both falling and rising on that interval. 
A similar statement holds for a graph that is concave downward. See Figure 3.

CONCEPTUAL INSIGHT

Figure 3 Concavity

(A)  f 9(x) is negative
and increasing.
Graph of f is falling.

f

a b

(B)  f 9(x) increases from
negative to positive.
Graph of f falls, then rises.

f

a b

(C)  f 9(x) is positive
and increasing.
Graph of f is rising.

f

a b

f ∙ 1x 2 + 0 on (a, b)
Concave upward

f ∙ 1x 2 * 0 on (a, b)
Concave downward

(D)  f 9(x) is positive
and decreasing.
Graph of f is rising.

f

a b
(E)  f 9(x) decreases from

positive to negative.
Graph of f rises, then falls.

f

a b

(F)  f 9(x) is negative
and decreasing.
Graph of f is falling.

f

a b

Concavity of Graphs Determine the intervals on which the graph of each func-
tion is concave upward and the intervals on which it is concave downward. Sketch 
a graph of each function.

(A) f1x2 = ex

(B) g1x2 = ln x

(C) h1x2 = x3

EXAMPLE 1
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x

f (x)

2

4

22

f (x) 5 exConcave
upward

(A)  Concave upward
for all x.

SOLUTION
(A)  f1x2 = ex

 f′1x2 = ex

   f ″1x2 = ex

(B)  g1x2 = ln x

 g′1x2 =
1
x

 g″1x2 = -  
1

x2

(C)  h1x2 = x3

 h′1x2 = 3x2

 h″1x2 = 6x

Since f ″1x2 7 0 on 
1- ∞ , ∞ 2, the graph of 
f1x2 = ex [Fig. 4(A)] 
is concave upward on 
1- ∞ , ∞ 2.

The domain of 
g1x2 = ln x is 10, ∞ 2 
and g″1x2 6 0 on this 
interval, so the graph of 
g1x2 = ln x [Fig. 4(B)] 
is concave downward 
on 10, ∞ 2.

Since h″1x2 6 0 when 
x 6 0 and h″1x2 7 0  
when x 7 0, the graph of 
h1x2 = x3 [Fig. 4(C)] is  
concave downward on 
1- ∞ , 02 and concave  
upward on 10, ∞ 2.

Figure 4

g(x) 5 ln x

Concave
downward

4

2

22

g(x)

x

(B)  Concave downward
for x . 0.

Concave
downward

Concave
upwardh(x) 5 x3

x

h(x)

21

121

1

(C)  Concavity changes
at the origin.

Matched Problem 1 Determine the intervals on which the graph of each func-
tion is concave upward and the intervals on which it is concave downward. Sketch 
a graph of each function.

(A) f1x2 = -e-x (B) g1x2 = ln 
1
x

(C) h1x2 = x1>3

THEOREM 1 Inflection Points
If 1c, f1c22 is an inflection point of f, then c is a partition number for f ″.

Refer to Example 1. The graphs of f1x2 = ex and g1x2 = ln x never change 
concavity. But the graph of h1x2 = x3 changes concavity at 10, 02. This point is 
called an inflection point.

Finding Inflection Points
An inflection point is a point on the graph of a function where the function is con-
tinuous and the concavity changes (from upward to downward or from downward 
to upward). For the concavity to change at a point, f ″1x2 must change sign at that 
point. But in Section 2.2, we saw that the partition numbers identify the points where 
a function can change sign.

If f is continuous at a partition number c of f ″1x2 and f ″1x2 exists on both sides of 
c, the sign chart of f ″1x2 can be used to determine whether the point 1c, f1c22 is an 
inflection point. The procedure is summarized in the following box and illustrated in 
Figure 5:
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(A)  f 9(c) . 0

c

1 1 1 1 2 2 2 20f 99(x)

Figure 5 Inflection points

(B)  f 9(c) , 0

c

1 1 1 12 2 2 2 0f 99(x)

(C)  f 9(c) 5 0

c

1 1 1 1 2 2 2 20f 99(x)

(D)  f 9(c) is not defined

c

 1 1 12 2 2 NDf 99(x)

PROCEDURE Testing for Inflection Points
Step 1 Find all partition numbers c of f ″ such that f is continuous at c.

Step 2 For each of these partition numbers c, construct a sign chart of f ″ near x = c.

Step 3  If the sign chart of f ″ changes sign at c, then 1c, f1c22 is an inflection point 
of f. If the sign chart does not change sign at c, then there is no inflection 
point at x = c.

If f ′1c2 exists and f ″1x2 changes sign at x = c, then the tangent line at an inflec-
tion point 1c, f1c22 will always lie below the graph on the side that is concave upward 
and above the graph on the side that is concave downward (see Fig. 5A, B, and C).

Locating Inflection Points Find the inflection point(s) of

f1x2 = x3 - 6x2 + 9x + 1

SOLUTION Since inflection points occur at values of x where f ″1x2 changes sign, 
we construct a sign chart for f ″1x2.

 f1x2 = x3 - 6x2 + 9x + 1

  f ′1x2 = 3x2 - 12x + 9

  f ″1x2 = 6x - 12 = 61x - 22
The sign chart for f ″1x2 = 61x - 22 (partition number is 2) is as follows:

EXAMPLE 2

f 99(x)

2
x

0

(2, `)(2`, 2)

2 2 2 1 1 1 12

Graph of f
Concave
downward

Concave
upward

Inflection
point

Test Numbers

x f ″ 1x 2
1 -6 1- 2
3 6 1+ 2

From the sign chart, we see that the graph of f has an inflection point at x = 2. That 
is, the point

12, f1222 = 12, 32 f122 = 23 - 6 # 22 + 9 # 2 + 1 = 3

is an inflection point on the graph of f.

Matched Problem 2 Find the inflection point(s) of

f1x2 = x3 - 9x2 + 24x - 10
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Locating Inflection Points Find the inflection point(s) of

f1x2 = ln 1x2 - 4x + 52
SOLUTION First we find the domain of f. Since ln x is defined only for x 7 0, f  is 
defined only for

 x2 - 4x + 5 7 0 Complete the square (Section A.7).
 1x - 22 2 + 1 7 0 True for all x (the square of any number is Ú 0).

So the domain of f is 1- ∞ , ∞ 2. Now we find f ″1x2 and construct a sign chart for it.

 f1x2 = ln1x2 - 4x + 52
 f′1x2 =

2x - 4

x2 - 4x + 5

 f ″1x2 =
1x2 - 4x + 5212x - 42′ - 12x - 421x2 - 4x + 52′

1x2 - 4x + 52 2

 =
1x2 - 4x + 522 - 12x - 4212x - 42

1x2 - 4x + 52 2

 =
2x2 - 8x + 10 - 4x2 + 16x - 16

1x2 - 4x + 52 2

 =
-2x2 + 8x - 6

1x2 - 4x + 52 2

 =
-21x - 121x - 32
1x2 - 4x + 52 2

The partition numbers for f ″1x2 are x = 1 and x = 3.
Sign chart for f ″1x2:

EXAMPLE 3

The sign chart shows that the graph of f has inflection points at x = 1 and x = 3.
Since f112 = ln 2 and f132 = ln 2, the inflection points are 11, ln 22 and 13, ln 22.

Matched Problem 3 Find the inflection point(s) of

f1x2 = ln 1x2 - 2x + 52

f 99(x)

1
x

(1, 3)

3

(3, `)(2`, 1)

0 02 2 2 1 1 1 12 2 2 2 2

Concave
downward

Concave
downward

Concave
upward

Inflection
point

Inflection
point

Test Numbers

x f ∙ 1x 2
0

-  
6
25
 1∙ 2

2       2 1∙ 2
4

-  
6
25
 1∙ 2

It is important to remember that the partition numbers for f ″ are only candidates 
for inflection points. The function f must be defined at x = c, and the second 
derivative must change sign at x = c in order for the graph to have an inflection 
point at x = c. For example, consider

 f1x2 = x4   g1x2 =
1
x

 f ′1x2 = 4x3   g′1x2 = -  
1

x2

  f ″1x2 = 12x2   g″1x2 =
2

x3

CONCEPTUAL INSIGHT
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In each case, x = 0 is a partition number for the second derivative, but nei-
ther the graph of f1x2 nor the graph of g1x2 has an inflection point at x = 0. 
Function f does not have an inflection point at x = 0 because f ″1x2 does not 
change sign at x = 0 (see Fig. 6A). Function g does not have an inflection point 
at x = 0  because g102 is not defined (see Fig. 6B).

Figure 6

x

g(x)

222

2

22

(B)  g(x) 5 2
1
x

f (x)

x
222

2

22

(A)  f (x) 5 x4

Analyzing Graphs
In the next example, we combine increasing/decreasing properties with concavity 
properties to analyze the graph of a function.

Analyzing a Graph Figure 7 shows the graph of the derivative of a function f. 
Use this graph to discuss the graph of f. Include a sketch of a possible graph of f.

x

f 9(x)

25

525

5

Figure 7

SOLUTION The sign of the derivative determines where the original function is increas-
ing and decreasing, and the increasing/decreasing properties of the derivative  determine 
the concavity of the original function. The relevant information obtained from the graph 
of f ′ is summarized in Table 1, and a possible graph of f is shown in Figure 8.

EXAMPLE 4

f (x)

x
525

5

Figure 8

Table 1
x f ∙ 1x 2  (Fig. 7) f 1x 2  (Fig. 8)

- ∞ 6 x 6 -2 Negative and increasing Decreasing and concave upward
x = -2 Local maximum Inflection point
-2 6 x 6 0 Negative and decreasing Decreasing and concave downward
x = 0 Local minimum Inflection point
0 6 x 6 1 Negative and increasing Decreasing and concave upward
x = 1 x intercept Local minimum
1 6 x 6 ∞ Positive and increasing Increasing and concave upward
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Curve Sketching
Graphing calculators and computers produce the graph of a function by plotting many 
points. However, key points on a plot many be difficult to identify. Using information 
gained from the function f1x2 and its derivatives, and plotting the key points—intercepts, 
local extrema, and inflection points—we can sketch by hand a very good representation 
of the graph of f1x2. This graphing process is called curve sketching.

Matched Problem 4 Figure 9 shows the graph of the derivative of a function f.  
Use this graph to discuss the graph of f. Include a sketch of a possible graph of f.

f 9(x)

x
525

5

Figure 9

*We will modify this summary in Section 4.4 to include additional information about the graph of f.

PROCEDURE Graphing Strategy (First Version)*
Step 1  Analyze f1x2. Find the domain and the intercepts. The x intercepts are the 

solutions of f1x2 = 0, and the y intercept is f102.

Step 2  Analyze f′1x2. Find the partition numbers for f ′ and the critical numbers 
of f. Construct a sign chart for f ′1x2, determine the intervals on which f is 
increasing and decreasing, and find the local maxima and minima of f.

Step 3  Analyze f >1x2. Find the partition numbers for f ″1x2. Construct a sign chart 
for f >1x2, determine the intervals on which the graph of f is concave  upward 
and concave downward, and find the inflection points of f.

Step 4  Sketch the graph of f. Locate intercepts, local maxima and minima, and 
inflection points. Sketch in what you know from steps 1–3. Plot additional 
points as needed and complete the sketch.

Using the Graphing Strategy Follow the graphing strategy and analyze the function

f1x2 = x4 - 2x3

State all the pertinent information and sketch the graph of f.

SOLUTION
Step 1 Analyze f1x2. Since f is a polynomial, its domain is 1- ∞ , ∞ 2.

 x intercept: f1x2 = 0

 x4 - 2x3 = 0

 x31x - 22 = 0

 x = 0, 2

 y intercept: f102 = 0

EXAMPLE 5
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Step 2  Analyze f ′1x2. f ′1x2 = 4x3 - 6x2 = 4x21x - 3
22 

Partition numbers for f ′1x2: 0 and 32 
Critical numbers of f1x2: 0 and 32 
Sign chart for f ′1x2:

So f1x2 is decreasing on 1- ∞ , 322, is increasing on 13
2, ∞ 2, and has a local 

minimum at x = 3
2. The local minimum is f13

22 = -  27
16.

Step 3  Analyze f ″1x2. f ″1x2 = 12x2 - 12x = 12x1x - 12 
Partition numbers for f ″1x2: 0 and 1 
Sign chart for f ″1x2:

f 99(x)

f (x)

x

(2`, 0)

0

(2, `)3
2

2
3
2

(0, 2)3
2

2 2 2 1 1 1 1202 2 2 2

1

Local
minimum

Decreasing Decreasing Increasing

Test Numbers

x f 1x 2
-1 -10 1∙2

1 -2 1∙2
2 8 1∙2

f 99(x)

Graph of f

(0, 1) (1, `)(2`, 0)

1
x

3

Concave
downward

Concave
upward

Concave
upward

Inflection
point

Inflection
point

02 2 2 1 1 1 1202 2 2 2

Test Numbers

x f ∙ 1x 2
-1 24 1∙ 2

1
2

-3 1∙ 2
2 24 1∙ 2

So the graph of f is concave upward on 1- ∞ , 02 and 11, ∞ 2, is concave 
downward on 10, 12, and has inflection points at x = 0 and x = 1. Since 
f102 = 0 and f112 = -1, the inflection points are 10, 02 and 11, -12.

Step 4 Sketch the graph of f.

Key Points

x f 1x 2
0 0

1 -1

3
2 -  27

16

2 0

f(x)

x

22

21 1 2

21

1

Matched Problem 5 Follow the graphing strategy and analyze the function 
f1x2 = x4 + 4x3. State all the pertinent information and sketch the graph of f.
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Refer to the solution of Example 5. Combining the sign charts for f′1x2  and 
f ″1x2  (Fig. 10) partitions the real-number line into intervals on which nei-
ther f ′1x2  nor f ″1x2  changes sign. On each of these intervals, the graph of 
f1x2 must have one of four basic shapes (see also Fig. 3, parts A, C, D, and 
F on page 301). This reduces sketching the graph of a function to plotting the 
points identified in the graphing strategy and connecting them with one of 
the basic shapes.

f 99(x)

f 9(x)

(0, 1) (1, 1.5) (1.5, `)(2`, 0)

2 2 2 2 2 2 2

2 2 2 2 2 2 21 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1

2 2

Basic shape

0

0

1

0

1.5

0 0

x

Graph of f (x) Decreasing,
concave upward

Decreasing,
concave downward

Decreasing,
concave upward

Increasing,
concave upward

Figure 10

CONCEPTUAL INSIGHT

Using the Graphing Strategy Follow the graphing strategy and analyze the function

f1x2 = 3x5>3 - 20x

State all the pertinent information and sketch the graph of f. Round any decimal 
values to two decimal places.

SOLUTION
Step 1 Analyze f1x2. f1x2 = 3x5>3 - 20x

Since x p is defined for any x and any positive p, the domain of f is 1- ∞ , ∞ 2.

 x intercepts: Solve f1x2 = 0

 3x5>3 - 20x = 0

 3xax2>3-  
20
3
b = 0 1a2 - b22 = 1a - b21a + b2

 3xax1>3 - A20
3

 b ax1>3 + A20
3

 b = 0

The x intercepts of f are

x = 0, x = aA20
3

 b
3

≈ 17.21, x = a - A20
3

 b
3

≈ -17.21

y intercept: f102 = 0.

Step 2 Analyze f ′1x2.

 f ′1x2 = 5x 2>3 - 20

 = 51x2>3 - 42  Again, a2 - b2 = 1a - b21a + b2
 = 51x1>3 - 221x1>3 + 22

Partition numbers for f ′: x = 23 = 8 and x = 1-22 3 = -8.
Critical numbers of f: -8, 8

EXAMPLE 6
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So f is increasing on 1- ∞ , -82 and 18, ∞ 2 and decreasing on 1-8, 82.  
Therefore, f1-82 = 64 is a local maximum, and f182 = -64 is a local 
minimum.

Step 3 Analyze f ″1x2.

 f ′1x2 = 5x2>3 - 20

 f ″1x2 =
10
3

 x-1>3 =
10

3x1>3

Partition number for f ″: 0
Sign chart for f ″1x2:

Sign chart for f ′1x2:

f 9(x)

x

(2`, 28) (28, 8)

0

(8, `)

2 2 2 1 1 1 1202 2 2 2

28 8

Local
minimum

Local
minimum

Decreasing Decreasing Increasing

Test Numbers

x f ∙ 1x 2
-12 6.21 1+ 2

0 -20 1- 2
12 6.21 1+ 2

0
x

NDf 99(x)

(0, `)(2`, 0)

Concave
downward

Concave
upward

Inflection
point

1 1 1 12 2 2 2

Test Numbers

x f ∙ 1x 2
-8 -1.67 1- 2

8 1.67 1+ 2

So f is concave downward on 1- ∞ , 02, is concave upward on 10, ∞ 2, and has 
an inflection point at x = 0. Since f102 = 0, the inflection point is 10, 02.

Step 4 Sketch the graph of f.

x

f (x)

2010210220

60

260

f (x) 5 3x5/3 2 20x x f 1x 2
-17.21 0

-8 64

0 0

8 -64

17.21 0

Matched Problem 6 Follow the graphing strategy and analyze the function 
f1x2 = 3x2>3 - x. State all the pertinent information and sketch the graph of f. 
Round any decimal values to two decimal places.

Point of Diminishing Returns
If a company decides to increase spending on advertising, it would expect sales 
to increase. At first, sales will increase at an increasing rate and then increase at a 
decreasing rate. The dollar amount x at which the rate of change of sales goes from 
increasing to decreasing is called the point of diminishing returns. This is also the 
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amount at which the rate of change has a maximum value. Money spent beyond this 
amount may increase sales but at a lower rate.

Maximum Rate of Change Currently, a discount appliance store is selling 200 
large-screen TVs monthly. If the store invests $x thousand in an advertising cam-
paign, the ad company estimates that monthly sales will be given by

N1x2 = 3x3 - 0.25x4 + 200  0 … x … 9

When is the rate of change of sales increasing and when is it decreasing? What is 
the point of diminishing returns and the maximum rate of change of sales? Graph 
N and N′ on the same coordinate system.

SOLUTION The rate of change of sales with respect to advertising expenditures is

N′1x2 = 9x2 - x3 = x219 - x2
To determine when N′1x2 is increasing and decreasing, we find N″1x2, the derivative 
of N′1x2:

N″1x2 = 18x - 3x2 = 3x16 - x2
The information obtained by analyzing the signs of N′1x2 and N″1x2 is summa-
rized in Table 2 (sign charts are omitted).

Table 2
x N″ 1x 2 N′ 1x 2 N′ 1x 2 N 1x 2
0 6 x 6 6 + + Increasing Increasing, concave upward

x = 6 0 + Local maximum Inflection point

6 6 x 6 9 - + Decreasing Increasing, concave downward

Examining Table 2, we see that N′1x2 is increasing on 10, 62 and decreasing on 
16, 92. The point of diminishing returns is x = 6 and the maximum rate of change 
is N′162 = 108. Note that N′1x2 has a local maximum and N1x2 has an inflection 
point at x = 6 [the inflection point of N1x2 is 16, 5242].

So if the store spends $6,000 on advertising, monthly sales are expected to be 
524 TVs, and sales are expected to increase at a rate of 108 TVs per thousand dol-
lars spent on advertising. Money spent beyond the $6,000 would increase sales, but 
at a lower rate.

x
61

y

N99(x) . 0 N99(x) , 0

y 5 N(x)

y 5 N9(x)
N9(x) N9(x)

Point of diminishing returns

200

400

600

800

2 3 4 5 7 8 9

Matched Problem 7 Repeat Example 7 for

N1x2 = 4x3 - 0.25x4 + 500  0 … x … 12

EXAMPLE 7
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Skills Warm-up Exercises
In Problems 1–8, inspect the graph of the function to determine 
whether it is concave up, concave down, or neither, on the given 
interval. (If necessary, review Section 1.2).

1. The square function, h1x2 = x2, on 1- ∞ , ∞ 2
2. The identity function, f1x2 = x, on 1- ∞ , ∞ 2
3. The cube function, m1x2 = x3, on 1- ∞ , 02
4. The cube function, m1x2 = x3, on 10, ∞ 2
5. The square root function, n1x2 = 1x, on 10, ∞ 2
6. The cube root function, p1x2 = 23 x, on 1- ∞ , 02
7. The absolute value function, g1x2 = ∙ x ∙ , on 1- ∞ , 02
8. The cube root function, p1x2 = 23 x, on 10, ∞ 2
9.  Use the graph of y = f1x2, assuming f ″1x2 7 0 if 

x = b or f, to identify

(A) Intervals on which the graph of f is concave upward

(B) Intervals on which the graph of f is concave downward

(C) Intervals on which f ″1x2 6 0

(D) Intervals on which f ″1x2 7 0

(E) Intervals on which f ′1x2 is increasing

(F) Intervals on which f ′1x2 is decreasing

a b c d

e f

g h

f (x)

x

10. Use the graph of y = g1x2, assuming g″1x2 7 0 if 
x = c or g, to identify

(A) Intervals on which the graph of g is concave upward

(B) Intervals on which the graph of g is concave downward

(C) Intervals on which g″1x2 6 0

(D) Intervals on which g″1x2 7 0

(E) Intervals on which g′1x2 is increasing

(F) Intervals on which g′1x2 is decreasing

e f ha

b dc g

g(x)

x

W

A

11. Use the graph of y = f1x2 to identify

(A) The local extrema of f1x2.

(B) The inflection points of f1x2.

(C) The numbers u for which f ′1u2 is a local extremum of 
f ′1x2.

Exercises 4.2

x

f (x)

25

525

5

Figure for 11

x

f (x)

25

525

5

Figure for 12

12. Use the graph of y = f1x2 to identify

(A) The local extrema of f1x2.

(B) The inflection points of f1x2.

(C) The numbers u for which f ′1u2 is a local extremum of 
f ′1x2.

In Problems 13–16, match the indicated conditions with one of the 
graphs (A)–(D) shown in the figure.

13. f ′1x2 7 0 and f ″1x2 7 0 on 1a, b2
14. f ′1x2 7 0 and f ″1x2 6 0 on 1a, b2
15. f ′1x2 6 0 and f ″1x2 7 0 on 1a, b2
16. f ′1x2 6 0 and f ″1x2 6 0 on 1a, b2

f (x)

x
a b

(A)  

f (x)

x
a b

(B)  

f (x)

x
a b

(C)  

f (x)

x
a b

(D)

In Problems 17–24, find the indicated derivative for each function.

17. f ″1x2 for f1x2 = 2x3 - 4x2 + 5x - 6

18. g″1x2 for g1x2 = -4x3 + 3x2 - 2x + 1

19. h″1x2 for h1x2 = 2x-1 - 3x-2

20. k″1x2 for k1x2 = -6x-2 + 12x-3

21. d2y>dx2 for y = x2 - 18x1>2

22. d2y>dx2 for y = x4 - 32x1>4

23. y″ for y = 1x2 + 92 4 24. y″ for y = 1x2 - 252 6

In Problems 25–30, find the x and y coordinates of all inflection 
points.

25. f1x2 = x3 + 30x2 26. f1x2 = x3 - 36x2

27. f1x2 = x5>3 + 2 28. f1x2 = 5 - x4>3
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46. 29. f1x2 = 1 + x + x2>5

30. f1x2 = x5>6 + 7x - 8

In Problems 31–40, find the intervals on which the graph of f is 
concave upward, the intervals on which the graph of f is concave 
downward, and the x, y coordinates of the inflection points.

31. f1x2 = x4 - 24x2

32. f1x2 = 3x4 - 18x2

33. f1x2 = x3 - 3x2 + 7x + 2

34. f1x2 = -x3 + 3x2 + 5x - 4

35. f1x2 = -x4 + 12x3 - 7x + 10

36. f1x2 = x4 - 2x3 - 5x + 3

37. f1x2 = ln 1x2 + 4x + 52 38. f1x2 = ln (x2 - 6x + 10)

39. f1x2 = 4e3x - 9e2x 40. f1x2 = 36e4x - 16e6x

In Problems 41–44, use the given sign chart to sketch a possible 
graph of f.

41. 

2

0

4

0f 9(x)

x

1 1 1 1 1 11 1 1 1 1 1 2222

42. 

1

0

5

0f 9(x)

x

1 1 1 1 1 11 1 1 222222

43. 
1 1 1 1 1

x

ND 1 111 1 1 1 1 1 1

2

f 99(x)

44. 

x

ND 1 1 1 1 1 1 1 122222222

3

f 99(x)

In Problems 45–52, f1x2 is continuous on 1- ∞ , ∞ 2. Use the 
given information to sketch the graph of f.

45. 

B

x -4 -2 -1 0 2 4

f 1x 2 0 3 1.5 0 -1 -3

x

0 0

x

0 0

1 1 1

1 1 1

222 222

222

22222

22222222

22 2

21 2

f 9(x)

f 99(x)

x -4 -2 -1 0 2 4

f 1x 2 0 -2 -1 0 1 3

x

0 0

x

0 0

2 2 2

2 2 2

111 111

111

11111

11111111

22 2

21 2

f 9(x)

f 99(x)

47. x -3 0 1 2 4 5

f 1x 2 -4 0 2 1 -1 0

0
x

ND

1

0

0
x

ND

2

0

4

0 1 1 11 1 1

1 1 1

1 1 1 22222222

22222222 11111111

f 9(x)

f 99(x)

48. x -4 -2 0 2 4 6

f 1x 2 0 3 0 -2 0 3

x

0

0

ND

0
x

ND

4

0

2

01 1 1

222

222 222

22222222 11111111

11111111f 9(x)

f 99(x)

22

49.   f102 = 2, f112 = 0, f122 = -2;

  f ′102 = 0, f ′122 = 0;

  f ′1x2 7 0 on 1- ∞ , 02 and 12, ∞ 2;

  f ′1x2 6 0 on 10, 22;

  f ″112 = 0;

  f ″1x2 7 0 on 11, ∞ 2;

  f ″1x2 6 0 on 1- ∞ , 12
50.   f1-22 = -2, f102 = 1, f122 = 4;

  f ′1-22 = 0, f ′122 = 0;

  f ′1x2 7 0 on 1-2, 22;

  f ′1x2 6 0 on 1- ∞ ,-22 and 12, ∞ 2;

  f ″102 = 0;

  f ″1x2 7 0 on 1- ∞ , 02;

  f ″1x2 6 0 on 10, ∞ 2
51.   f1-12 = 0, f102 = -2, f112 = 0;

  f ′102 = 0, f ′1-12 and f ′112 are not defined;

  f ′1x2 7 0 on 10, 12 and 11, ∞ 2;
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77. 

x

f9(x)

25

25 5

5

78. 

x

f9(x)

25

25 5

5

 In Problems 79–82, apply steps 1–3 of the graphing strategy to f1x2.  
Use a graphing calculator to approximate (to two decimal places) x 
intercepts, critical numbers, and inflection points.  Summarize all the 
pertinent information.

79. f1x2 = x4 - 5x3 + 3x2 + 8x - 5

80. f1x2 = x4 + 4x3 - 3x2 - 2x + 1

81. f1x2 = -x4 - x3 + 2x2 - 2x + 3

82. f1x2 = -x4 + 4x3 + 3x2 + 2

Applications
83. Inflation. One commonly used measure of inflation is the 

annual rate of change of the Consumer Price Index (CPI). 
A TV news story says that the annual rate of change of the 
CPI is increasing. What does this say about the shape of  
the graph of the CPI?

84. Inflation. Another commonly used measure of inflation is 
the annual rate of change of the Producer Price Index (PPI). 
A government report states that the annual rate of change of 
the PPI is decreasing. What does this say about the shape of 
the graph of the PPI?

85. Cost analysis. A company manufactures a variety of camp 
stoves at different locations. The total cost C1x2 (in dollars) 
of producing x camp stoves per week at plant A is shown 
in the figure. Discuss the graph of the marginal cost func-
tion C′1x2 and interpret the graph of C′1x2 in terms of the 
 efficiency of the production process at this plant.

C(x)

x

$100,000

$50,000

500 1,000

Production costs at plant A

86. Cost analysis. The company in Problem 85 produces the 
same camp stove at another plant. The total cost C1x2 (in 
dollars) of producing x camp stoves per week at plant B is 
shown in the figure. Discuss the graph of the marginal cost 
function C′1x2 and interpret the graph of C′1x2 in terms of 
the efficiency of the production process at plant B. Compare 
the production processes at the two plants.

  f ′1x2 6 0 on 1- ∞ , -12 and 1-1, 02;

  f ″1-12 and f ″112 are not defined;

  f ″1x2 7 0 on 1-1, 12;

  f ″1x2 6 0 on 1- ∞ , -12 and 11, ∞ 2
52.   f102 = -2, f112 = 0, f122 = 4;

  f ′102 = 0, f ′122 = 0, f ′112 is not defined;

  f ′1x2 7 0 on 10, 12 and 11, 22;

  f ′1x2 6 0 on 1- ∞ , 02 and 12, ∞ 2;

  f ″112 is not defined;

  f ″1x2 7 0 on 1- ∞ , 12;

  f ″1x2 6 0 on 11, ∞ 2

In Problems 53–74, summarize the pertinent information obtained 
by applying the graphing strategy and sketch the graph of y = f1x2.

53. f1x2 = 1x - 221x2 - 4x - 82
54. f1x2 = 1x - 321x2 - 6x - 32
55. f1x2 = 1x + 121x2 - x + 22
56. f1x2 = 11 - x21x2 + x + 42
57. f1x2 = -0.25x4 + x3

58. f1x2 = 0.25x4 - 2x3

59. f1x2 = 16x1x - 12 3

60. f1x2 = -4x1x + 22 3

61. f1x2 = 1x2 + 3219 - x22
62. f1x2 = 1x2 + 321x2 - 12
63. f1x2 = 1x2 - 42 2

64. f1x2 = 1x2 - 121x2 - 52
65. f1x2 = 2x6 - 3x5

66. f1x2 = 3x5 - 5x4

67. f1x2 = 1 - e-x 68. f1x2 = 2 - 3e-2x

69. f1x2 = e0.5x + 4e-0.5x 70. f1x2 = 2e0.5x + e-0.5x

71. f1x2 = -4 + 2 ln x 72. f1x2 = 5 - 3 ln x

73. f1x2 = ln1x + 42 - 2 74. f1x2 = 1 - ln1x - 32

In Problems 75–78, use the graph of y = f ′1x2 to discuss the 
graph of y = f1x2. Organize your conclusions in a table (see 
Example 4), and sketch a possible graph of y = f1x2.

75. 

x

f9(x)

25

25 5

5

76. 

x

f9(x)

25

25 5

5

C
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the number of T-shirts produced by hiring x new workers is 
given by

T1x2 = -0.25x4 + 5x3  0 … x … 15

When is the rate of change of T-shirt production increasing 
and when is it decreasing? What is the point of diminishing 
returns and the maximum rate of change of T-shirt produc-
tion? Graph T and T ′ on the same coordinate system.

92. Production: point of diminishing returns. A soccer ball 
manufacturer is planning to expand its workforce. It esti-
mates that the number of soccer balls produced by hiring x 
new workers is given by

T1x2 = -0.25x4 + 4x3  0 … x … 12

When is the rate of change of soccer ball production increas-
ing and when is it decreasing? What is the point of diminish-
ing returns and the maximum rate of change of soccer ball 
production? Graph T and T′ on the same coordinate system.

93. Advertising: point of diminishing returns. A company es-
timates that it will sell N1x2 units of a product after spending 
$x thousand on advertising, as given by

N1x2 = -0.5x4 + 46x3 - 1,080x2 + 160,000  24 … x … 45

When is the rate of change of sales increasing and when is it 
decreasing? What is the point of diminishing returns and the 
maximum rate of change of sales? Graph N and N′ on the 
same coordinate system.

94. Advertising: point of diminishing returns. A company es-
timates that it will sell N1x2 units of a product after spending 
$x thousand on advertising, as given by

N1x2 = -0.5x4 + 26x3 - 360x2 + 20,000  15 … x … 24

When is the rate of change of sales increasing and when is it 
decreasing? What is the point of diminishing returns and the 
maximum rate of change of sales? Graph N and N′ on the 
same coordinate system.

95. Advertising. An automobile dealer uses TV advertising to 
promote car sales. On the basis of past records, the dealer 
arrived at the following data, where x is the number of ads 
placed monthly and y is the number of cars sold that month:

Number of Ads Number of Cars
x y

10 325

12 339

20 417

30 546

35 615

40 682

50 795

(A) Enter the data in a graphing calculator and find a cubic 
regression equation for the number of cars sold monthly 
as a function of the number of ads.

(B) How many ads should the dealer place each month to 
maximize the rate of change of sales with respect to the 
number of ads, and how many cars can the dealer expect 
to sell with this number of ads? Round answers to the 
nearest integer.

$100,000

$50,000

500 1,000

C(x)

x

Production costs at plant B

87. Revenue. The marketing research department of a computer 
company used a large city to test market the firm’s new lap-
top. The department found that the relationship between price 
p (dollars per unit) and the demand x (units per week) was 
given approximately by

p = 1,296 - 0.12x2  0 6 x 6 80

So weekly revenue can be approximated by

R1x2 = xp = 1,296x - 0.12x3  0 6 x 6 80

(A) Find the local extrema for the revenue function.

(B) On which intervals is the graph of the revenue function 
concave upward? Concave downward?

88. Profit. Suppose that the cost equation for the company in 
Problem 87 is

C1x2 = 830 + 396x

(A) Find the local extrema for the profit function.

(B) On which intervals is the graph of the profit function 
concave upward? Concave downward?

89. Revenue. A dairy is planning to introduce and promote a 
new line of organic ice cream. After test marketing the new 
line in a large city, the marketing research department found 
that the demand in that city is given approximately by

p = 10e-x  0 … x … 5

where x thousand quarts were sold per week at a price of 
$p each.

(A) Find the local extrema for the revenue function.

(B) On which intervals is the graph of the revenue function 
concave upward? Concave downward?

90. Revenue. A national food service runs food concessions  
for sporting events throughout the country. The company’s  
marketing research department chose a particular football  
stadium to test market a new jumbo hot dog. It was found that 
the demand for the new hot dog is given approximately by

p = 8 - 2 ln x  5 … x … 50

where x is the number of hot dogs (in thousands) that can be 
sold during one game at a price of $p.

(A) Find the local extrema for the revenue function.

(B) On which intervals is the graph of the revenue function 
concave upward? Concave downward?

91. Production: point of diminishing returns. A T-shirt manu-
facturer is planning to expand its workforce. It estimates that 
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(B) Where does the graph of T have inflection points?

(C) Graph T and T ′ on the same coordinate system.

(D) What is the minimum value of T ′1n2?

Answers to Matched Problems

1. (A) Concave downward on 1- ∞ , ∞ 2
f (x)

x
222

23

f (x) 5 2e2x

(B) Concave upward on 10, ∞ 2
g(x)

x
3

22

1
x

g(x) 5 ln 2
2

(C)  Concave upward on 1- ∞ , 02 and concave downward  
on 10, ∞ 2

h(x) 5 x1/3

222

h(x)

x

2

22

2. The only inflection point is 13, f1322 = 13, 82.
3.  The inflection points are 1-1, f1-122 = 1-1, ln 82 and 

13, f1322 = 13, ln 82.

96. Advertising. A sporting goods chain places TV ads to 
promote golf club sales. The marketing director used past re-
cords to determine the following data, where x is the number 
of ads placed monthly and y is the number of golf clubs sold 
that month.

Number of Ads Number of Golf Clubs
x y

10 345

14 488

20 746

30 1,228

40 1,671

50 1,955

(A) Enter the data in a graphing calculator and find a cubic 
regression equation for the number of golf clubs sold 
monthly as a function of the number of ads.

(B) How many ads should the store manager place each 
month to maximize the rate of change of sales with 
respect to the number of ads, and how many golf clubs 
can the manager expect to sell with this number of ads? 
Round answers to the nearest integer.

97. Population growth: bacteria. A drug that stimulates 
reproduction is introduced into a colony of bacteria. After t 
minutes, the number of bacteria is given approximately by

N1t2 = 1,000 + 30t2 - t3  0 … t … 20

(A) When is the rate of growth, N′1t2, increasing? 
Decreasing?

(B) Find the inflection points for the graph of N.

(C) Sketch the graphs of N and N′ on the same coordinate 
system.

(D) What is the maximum rate of growth?

98. Drug sensitivity. One hour after x milligrams of a particular 
drug are given to a person, the change in body temperature 
T1x2, in degrees Fahrenheit, is given by

T1x2 = x2 a1 -  
x
9
b  0 … x … 6

The rate T′1x2 at which T1x2 changes with respect to the 
size of the dosage x is called the sensitivity of the body to the 
dosage.

(A) When is T′1x2 increasing? Decreasing?

(B) Where does the graph of T have inflection points?

(C) Sketch the graphs of T and T ′ on the same coordinate 
system.

(D) What is the maximum value of T′1x2?

99. Learning. The time T (in minutes) it takes a person to learn a 
list of length n is

T1n2 = 0.08n3 - 1.2n2 + 6n  n Ú 0

(A) When is the rate of change of T with respect to the 
length of the list increasing? Decreasing?

4. x f ′ 1x 2 f 1x 2
- ∞ 6 x 6 -1 Positive and 

decreasing
Increasing and 
concave downward

x = -1 Local minimum Inflection point

-1 6 x 6 1 Positive and 
increasing

Increasing and 
concave upward

x = 1 Local maximum Inflection point

1 6 x 6 2 Positive and 
decreasing

Increasing and 
concave downward

x = 2 x intercept Local maximum

2 6 x 6 ∞ Negative and 
decreasing

Decreasing and 
 concave downward

f (x)

25

x
525

5
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x

y

3

3

23

23

y 5 x

xS`
lim x 5 0
xS0

lim x 5 `

lim x 5 2`
xS2`

(A)  y 5 x

0

  

x

y

3

5

23

y 5 x2

xS`
lim x2 5 0
xS0

lim x2 5 `

lim x2 5 `
xS2`

(B)  y 5 x2

0

  

x

y

30

3

23

y 5
1
x

1
x

xS`
lim

xS01

lim
xS02

lim
xS0

xS2`

(C)  y 5

 5 `
1
x lim  5 0

1
x

lim  5 0
1
x 5 2`

1
x

Does not exist
1
x

  

x

y

323

y 5
1
x2

1

1
x2

xS`
lim

xS01

lim
xS02

lim
xS0

xS2`

(D)  y 5

 5 ` lim  5 0

lim  5 0 5 `

1
x2

1
x2

 5 `
1
x2

1
x2

1
x2

0

Figure 1 Limits involving powers of x

5.  Domain: All real numbers  
x intercepts: -4, 0; y intercept: f102 = 0
Decreasing on 1- ∞ , -32; increasing on 1-3, ∞ 2; local 
minimum: f1-32 = -27
Concave upward on 1- ∞ , -22 and 10, ∞ 2; concave down-
ward on 1-2, 02
Inflection points: 1-2, -162, 10, 02

x f 1x 2
-4 0

-3 -27

-2 -16

0 0

x

f(x)

21222325

10

220
230

20
30

6.  Domain: All real numbers  
x intercepts: 0, 27; y intercept: f102 = 0
Decreasing on 1- ∞ , 02 and 18, ∞ 2; increasing on 10, 82; 
local minimum: f102 = 0; local maximum: f182 = 4
Concave downward on 1- ∞ , 02 and 10, ∞ 2; no inflection 
points

x f 1x 2
0 0

8 4

27 0

f (x)

210

x
20

30

7.  N′1x2 is increasing on 10, 82 and decreasing on 18, 122. The 
point of diminishing returns is x = 8 and the maximum rate 
of change is N′182 = 256.

x
8 12

y

N99(x) . 0 N99(x) , 0

y 5 N(x)

y 5 N9(x)
400

800

1200

1600

2000

2400

N9(x) N9(x)

Point of diminishing returns

Introduction
The ability to evaluate a wide variety of different types of limits is one of the skills 
that are necessary to apply the techniques of calculus successfully. Limits play a 
fundamental role in the development of the derivative and are an important graphing 
tool. In order to deal effectively with graphs, we need to develop some more methods 
for evaluating limits.

In this section, we discuss a powerful technique for evaluating limits of quotients 
called L’Hôpital’s rule. The rule is named after a French mathematician, the Marquis 
de L’Hôpital (1661–1704). To use L’Hôpital’s rule, it is necessary to be familiar with 
the limit properties of some basic functions. Figure 1 reviews some limits involving 
powers of x that were discussed earlier.

4.3 L’Hôpital’s Rule
■■ Introduction
■■ L’Hôpital’s Rule and the Indeterminate 
Form 0>0

■■ One-Sided Limits and Limits at ∞
■■ L’Hôpital’s Rule and the Indeterminate 
Form ∞>∞
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 SECTION 4.3   L’Hôpital’s Rule 317

The limits in Figure 1 are easily extended to functions of the form f  1x2= 1x - c2 n 
and g1x2 = 1> 1x - c2 n. In general, if n is an odd integer, then limits involving 
1x - c2 n or 1> 1x - c2 n as x approaches c 1or {∞2 behave, respectively, like the limits 
of x and 1>x as x approaches 0 1or {∞2. If n is an even integer, then limits involving these 
expressions behave, respectively, like the limits of x2 and 1>x2 as x approaches 0 1or {∞2.

Limits Involving Powers of x - c

(A) lim
xS2

 
5

1x -  22 4 = ∞  Compare with lim
x S 0

1

x2 in Figure 1.

(B) lim
xS -1- 

4

1x + 12 3 = - ∞ Compare with lim
x S 0- 

1
x

 in Figure 1.

(C) lim
xS ∞

 
4

1x - 92 6 = 0  Compare with lim
x S ∞ 

1

x2 in Figure 1.

(D) lim
xS -∞

 3x3 = - ∞  Compare with lim
x S -∞

x in Figure 1.

Matched Problem 1 Evaluate each limit.

(A) lim
xS3+

7

1x - 32 5 (B) lim
xS -4

6

1x + 42 6

(C) lim
xS -∞

3

1x + 22 3 (D) lim
xS ∞

 5x4

EXAMPLE 1

Figure 2 reviews limits of exponential and logarithmic functions.

x

y

3

5

23

y 5 ex

xS`
lim ex 5 1
xS0

lim ex 5 `

lim ex 5 0
xS2`

(A)  y 5 ex

0

   

x

y

3

5

23

y 5 e2x

xS`
lim e2x 5 1
xS0

lim e2x 5 0

lim e2x 5 `
xS2`

(B)  y 5 e2x

0

  

x

y

5

3

0

23

y 5 ln x

xS`
lim ln x 5 2` lim ln x 5 `

(C)  y 5 ln x

xS01

Figure 2 Limits involving exponential and logarithmic functions

The limits in Figure 2 also generalize to other simple exponential and logarith-
mic forms.

Limits Involving Exponential and Logarithmic Forms
(A) lim

xS ∞  2e3x = ∞  Compare with lim
xS ∞

 ex in Figure 2.

(B) lim
xS ∞  4e-5x = 0  Compare with lim

xS ∞
 e-x in Figure 2.

(C) lim
xS ∞  ln1x + 42 = ∞  Compare with lim

xS ∞
 ln x in Figure 2.

(D) lim
xS2+  ln1x - 22 = - ∞  Compare with lim

xS0+ ln x in Figure 2.

EXAMPLE 2
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Matched Problem 2 Evaluate each limit.

(A) lim
xS - ∞

 2e-6x (B) lim
xS -∞

 3e2x

(C) lim
xS - 4 +  ln1x + 42 (D) lim

xS ∞  ln 1x - 102

Now that we have reviewed the limit properties of some basic functions, we are 
ready to consider the main topic of this section: L’Hôpital’s rule.

L’Hôpital’s Rule and the Indeterminate Form 0 ,0
Recall that the limit

lim
xSc

 
f1x2
g1x2

is a 0>0 indeterminate form if

lim
xSc

 f  1x2 = 0  and  lim
xSc

 g1x2 = 0

The quotient property for limits in Section 2.1 does not apply since lim
xSc

 g1x2 = 0.
If we are dealing with a 0>0 indeterminate form, the limit may or may not exist, 

and we cannot tell which is true without further investigation.
Each of the following is a 0>0 indeterminate form:

 lim
xS2

 
x2 - 4
x - 2

  and  lim
xS1

 
ex - e
x - 1

 (1)

The first limit can be evaluated by performing an algebraic simplification:

lim
xS2

 
x2 - 4
x - 2

= lim
xS2

 
1x - 221x + 22

x - 2
= lim

xS2
1x + 22 = 4

The second cannot. Instead, we turn to the powerful L’Hôpital’s rule, which we state 
without proof. This rule can be used whenever a limit is a 0>0 indeterminate form, so 
it can be used to evaluate both of the limits in (1).

THEOREM 1 L’Hôpital’s Rule for 0 ,0 Indeterminate Forms:
For c a real number,
if lim

xSc f1x2 = 0 and lim
xSc

g1x2 = 0, then

lim
xSc

 
f 1x2
g1x2 = lim

xSc
 
f ′1x2
g′1x2

provided that the second limit exists or is ∞  or - ∞ . The theorem remains valid if the 
symbol x S c is replaced everywhere it occurs with one of the following symbols:

x S c-  x S c+  x S ∞  x S - ∞

By L’Hôpital’s rule,

 lim
xS2

x2 - 4
x - 2

= lim
xS2

2x
1

= 4

which agrees with the result obtained by algebraic simplification.

L’Hôpital’s Rule Evaluate lim
xS1

 
ex - e
x - 1

.

SOLUTION
Step 1 Check to see if L’Hôpital’s rule applies:

lim
xS1

1ex - e2 = e1 - e = 0 and lim
xS1

1x - 12 = 1 - 1 = 0

L’Hôpital’s rule does apply.

EXAMPLE 3
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Step 2 Apply L’Hôpital’s rule:

0>0 form

 lim
xS1

 
ex - e
x - 1

 = lim 
xS1

d
dx

1ex - e2
d
dx

1x - 12

 = lim
xS1

 
ex

1
 ex is continuous at x = 1.

 =
e1

1
= e  

Matched Problem 3 Evaluate lim
xS4

 
ex - e4

x - 4
.

! CAUTION In L’Hôpital’s rule, the symbol f ′1x2 >g′1x2 represents the 
deriv ative of f1x2 divided by the derivative of g1x2, not the de-
rivative of the quotient f1x2 >g1x2.

 When applying L’Hôpital’s rule to a 0>0 indeterminate form, do not use the 
quotient rule. Instead, evaluate the limit of the derivative of the numerator 
divided by the derivative of the denominator. 

The functions

y1 =
ex - e
x - 1

 and y2 =
ex

1

of Example 3 are different functions (see Fig. 3), but both functions have the same 
limit e as x approaches 1. Although y1 is undefined at x = 1, the graph of y1 provides 
a check of the answer to Example 3.

2

4

22

y

y2
y1

x

Figure 3

L’Hôpital’s Rule Evaluate lim
xS0

 
ln11 + x22

x4 .

SOLUTION
Step 1 Check to see if L’Hôpital’s rule applies:

lim
xS0

 ln11 + x22 = ln 1 = 0  and  lim
xS0

 x4 = 0

L’Hôpital’s rule does apply.

Step 2 Apply L’Hôpital’s rule:
0>0 form

  lim
xS0

 
ln11 + x22

x4   = lim
xS0

d
dx

 ln11 + x22
d
dx

x4

  

  lim
xS0

 
ln11 + x22

x4 = lim
xS0

2x

1 + x2

4x3  

   Multiply numerator and denominator 
by 1>4x3.

 

 = lim
xS0

 

2x

1 + x2

4x3  

1

4x3

1

4x3

 Simplify.

EXAMPLE 4
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EXAMPLE 5 L’Hôpital’s Rule May Not Be Applicable Evaluate lim
xS1

 
ln x

x
.

SOLUTION
Step 1 Check to see if L’Hôpital’s rule applies:

lim
xS1

 ln x = ln 1 = 0,  but  lim
xS1

 x = 1 ∙ 0

L’Hôpital’s rule does not apply.

Step 2  Evaluate by another method. The quotient property for limits from  
Section 2.1 does apply, and we have

lim
xS1

 
ln x

x
=

lim
xS1

 ln x

lim
xS1

 x
=

ln 1
1

=
0
1

= 0

Note that applying L’Hôpital’s rule would give us an incorrect result:

lim
xS1

 
ln x

x
∙ lim 

xS1

d
dx

 ln x

d
dx

 x
= lim

xS1
 
1>x

1
= 1

Matched Problem 5 Evaluate lim
xS0

 
x
ex.

! CAUTION As Example 5 illustrates, some limits involving quotients are not 0>0 

indeterminate forms.

You must always check to see if L’Hôpital’s rule applies before you use it. 

 = lim
xS0

 
1

2x211 + x22   Apply Theorem 1 in Section 2.2 and 
compare with Fig. 1(D).

 =  ∞

Matched Problem 4 Evaluate lim
xS1

ln x

1x - 12 3.

EXAMPLE 6 Repeated Application of L’Hôpital’s Rule Evaluate

lim
xS0

 
x2

ex - 1 - x
SOLUTION
Step 1 Check to see if L’Hôpital’s rule applies:

lim
xS0

 x2 = 0  and  lim
xS0

1ex - 1 - x2 = 0

L’Hôpital’s rule does apply.

Step 2 Apply L’Hôpital’s rule:
0>0 form

 lim
xS0

 
x2

ex - 1 - x
 = lim

xS0

d
dx

 x2

d
dx

 1ex - 1 - x2
= lim

xS0
 

2x
ex - 1

Since lim
xS0

2x = 0 and lim
xS0

1ex - 12 = 0, the new limit obtained is also a 0>0 

indeterminate form, and L’Hôpital’s rule can be applied again.
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Step 3 Apply L’Hôpital’s rule again:

0>0 form

 lim
xS0

 
2x

ex - 1
 = lim

xS0

d
dx

 2x

d
dx

 1ex - 12
= lim

xS0
 
2
ex =

2

e0 = 2

Therefore,

 lim
xS0

 
x2

ex - 1 - x
= lim

xS0 

2x
ex - 1

= lim
xS0

 
2
ex = 2

Matched Problem 6 Evaluate lim
xS0

 
e2x - 1 - 2x

x2

One-Sided Limits and Limits at H
In addition to examining the limit as x approaches c, we have discussed one-sided 
limits and limits at ∞  in Chapter 3. L’Hôpital’s rule is valid in these cases also.

EXAMPLE 7 L’Hôpital’s Rule for One-Sided Limits Evaluate lim
xS1+ 

ln x

1x - 12 2.

SOLUTION
Step 1 Check to see if L’Hôpital’s rule applies:

lim
xS1+  ln x = 0  and  lim

xS1+1x - 12 2 = 0

 L’Hôpital’s rule does apply.

Step 2 Apply L’Hôpital’s rule:

0>0 form

 lim
xS1+ 

ln x

1x - 12 2 =  lim
xS1+ 

d
dx

1ln x2
d
dx

1x - 12 2

 = lim
xS1+ 

1>x

21x - 12  Simplify.

 = lim
xS1+ 

1
2x1x - 12

 = ∞
The limit as x S 1+ is ∞  because 1>2x1x - 12 has a vertical asymptote  
at x = 1 (Theorem 1, Section 2.2) and x1x - 12 7 0 for x 7 1.

Matched Problem 7 Evaluate lim
xS1- 

ln x

1x - 12 2.

EXAMPLE 8 L’Hôpital’s Rule for Limits at Infinity Evaluate lim
xS ∞

 
ln 11 + e - x2

e - x .

SOLUTION
Step 1 Check to see if L’Hôpital’s rule applies:

lim
xS ∞

 ln11 + e-x2 = ln11 + 02 = ln 1 = 0 and lim
xS ∞

e-x = 0

L’Hôpital’s rule does apply.
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Step 2 Apply L’Hôpital’s rule:

0>0 form

 lim
xS ∞

 
ln 11 + e-x2

e-x  = lim
xS ∞

 

d
dx

 3ln 11 + e-x24
d
dx

 e-x

 = lim
xS ∞

 
-e-x> 11 + e-x2

-e-x    Multiply numerator and 
denominator by -ex.

= lim
xS ∞

 
1

1 + e-x      lim
xS ∞

 e-x = 0

 =
1

1 + 0
= 1

Matched Problem 8 Evaluate lim
xS -∞ 

ln11 + 2ex2
ex .

L’Hôpital’s Rule and the Indeterminate Form H , H
In Section 2.2, we discussed techniques for evaluating limits of rational functions 
such as

 lim
xS ∞

 
2x2

x3 + 3
  lim

xS ∞
 

4x3

2x2 + 5
  lim

xS ∞
 

3x3

5x3 + 6
 (2)

Each of these limits is an ∞ >∞  indeterminate form. In general, if lim
xSc

f  1x2 = {∞  
and lim

xSc
g1x2 = { ∞ , then

lim
xSc

 
f 1x2
g1x2

is called an H , H  indeterminate form. Furthermore, x S c can be replaced in all 
three limits above with x S c+, x S c-, x S ∞ , or x S - ∞ . It can be shown that 
L’Hôpital’s rule also applies to these ∞ >∞  indeterminate forms.

THEOREM 2 L’Hôpital’s Rule for the Indeterminate Form H , H
L’Hôpital’s rule for the indeterminate form 0>0 is also valid if the limit of f and 
the limit of g are both infinite; that is, both + ∞  and - ∞  are permissible for 
either limit.

For example, if lim
xSc+ f1x2 = ∞  and lim

xSc+ g1x2 = - ∞ , then L’Hôpital’s rule can 

be applied to lim
xSc+ 3  f1x2 >g1x24.

Evaluate each of the limits in (2) in two ways:

1. Use Theorem 4 in Section 2.2.
2. Use L’Hôpital’s rule.

Given a choice, which method would you choose? Why?

Explore and Discuss 1
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L’Hôpital’s Rule for the Indeterminate Form H , H  Evaluate lim
xS ∞

 
ln x

x2 .

SOLUTION
Step 1 Check to see if L’Hôpital’s rule applies:

lim
xS ∞

ln x = ∞  and  lim
xS ∞  x

2 = ∞

 L’Hôpital’s rule does apply.

Step 2 Apply L’Hôpital’s rule:

∞>∞  form

 lim
xS ∞

 
ln x

x2  = lim
xS ∞

 

d
dx

 1ln x2
d
dx

 x2

  Apply L’Hôpital’s rule.

 = lim
xS ∞

1>x

2x
  Simplify.

lim
xS ∞

 
ln x

x2  = lim
xS ∞

 
1

2x2   See Figure 1(D).

 = 0

Matched Problem 9 Evaluate lim
xS ∞

 
ln x

x
.

EXAMPLE 9

EXAMPLE 10 Horizontal Asymptotes and L’Hôpital’s Rule Find all horizontal  

asymptotes of f1x2 =
x2

ex .

SOLUTION
Step 1 Consider the limit at - ∞:

Since lim
xS -∞

x2 = ∞  and lim
xS -∞

ex = 0, L’Hôpital’s rule does not apply. Rewriting f as 

f1x2 = x2e-x we see that as x S - ∞ , x2 S ∞  and e-x S ∞ , so lim
xS -∞

f1x2 = ∞ , 
which does not give a horizontal asymptote.

Step 2 Consider the limit at ∞:
Since lim

xS ∞
x2 = ∞  and lim

xS ∞
ex = ∞ , we may apply L’Hôpital’s rule to get

∞ >∞  form

 lim
xS ∞

 
x2

ex  = lim
xS ∞ 

d
dx

 x2

d
dx

 ex

= lim
xS ∞  

 
2x
ex   

∞
∞

 form: Apply L’Hôpital’s 

Rule again

 = lim
xS ∞ 

d
dx

 2x

d
dx

 ex

= lim
xS ∞  

 
2
ex = 0.

This gives a horizontal asymptote of y = 0.

Matched Problem 10 Find all horizontal asymptotes of f1x2 =
x2

e-x.
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CONCEPTUAL INSIGHT
Theorems 1 and 2 on L’Hôpital’s rule cover a multitude of limits—far too many 
to remember case by case. Instead, we suggest you use the following pattern, 
common to both theorems, as a memory aid:

1. All cases involve three limits: lim 3 f 1x2 >g1x24, lim f1x2, and lim g1x2.
2. The independent variable x must behave the same way in all three limits. The 

acceptable behaviors are x S c, x S c+, x S c-, x S ∞ , or x S - ∞ .
3. The form of lim 3 f1x2>g1x24 must be 00 or {∞

{∞  and both lim f1x2 and lim g1x2 
must approach 0 or both must approach {∞ .

Exercises 4.3
Skills Warm-up Exercises
In Problems 1–8, round each expression to the nearest integer 
without using a calculator. (If necessary, review Section A.1).

1. 
5

0.01
2. 

8
0.002

3. 
3

1,000

4. 
28

8
5. 

1
211.01 - 12 6. 

47
106

7. 
ln 100

100
8. 

5e6

e6 + 32

In Problems 9–16, even though the limit can be found using  
algebraic simplification as in Section 2.1, use L’Hôpital’s rule  
to find the limit.

9. lim
xS3

x2 - 9
x - 3

10. lim
xS - 3

 
x2 - 9
x + 3

11. lim
xS - 5

 
x + 5

x2 - 25
12. lim

x S7
 

x - 7

x 2 - 4 9

13. lim
xS1

x2 + 5x - 6
x - 1

14. lim
xS10

x2 - 5x - 50
x - 10

15. lim
xS - 8

 
x + 8

x2 + 14x + 48
16. lim

xS - 1

x + 1

x2 - 7x - 8

In Problems 17–24, even though the limit can be found using 
Theorem 4 of Section 2.2, use L’Hôpital’s rule to find the limit.

17. lim
xS ∞

2x + 3
5x - 1

18. lim
xS ∞

6x - 7
7x - 6

19. lim
xS ∞

3x2 - 1

x3 + 4
20. lim

xS ∞

5x2 + 10x + 1

x4 + x2 + 1

21. lim
xS - ∞

x2 - 9
x - 3

22. lim
xS - ∞

x4 - 16

x2 + 4

23. lim
xS ∞

 
3x2 + 4x - 5

4x2 - 3x + 2
24. lim

xS ∞

5 - 4x3

1 + 7x3

W

A

In Problems 25–32, use L’Hôpital’s rule to find the limit. Note 
that in these problems, neither algebraic simplification nor Theo-
rem 4 of Section 2.2 provides an alternative to L’Hôpital’s rule.

25. lim
xS0

ex - 1
4x

26. lim
xS1

x - 1

ln x3

27. lim
x S1

x - 1

ln  x 5
28. lim

xS0

3x
ex - 1

29. lim
xS ∞

ex

x2 30. lim
xS ∞

 
x2

ln x

31. lim
xS ∞

x

ln x2 32. lim
xS ∞

e2x

x2

In Problems 33–36, explain why L’Hôpital’s rule does not apply. 
If the limit exists, find it by other means.

33. lim
xS - 2

x2 + 8x - 20

x3 - 8
34. lim

xS ∞

e-x

ln x

35. lim
xS2

x + 2

1x - 22 4 36. lim
xS -3

x2

1x + 32 5

Find each limit in Problems 37–60. Note that L’Hôpital’s rule 
does not apply to every problem, and some problems will require 
more than one application of L’Hôpital’s rule.

37. lim
xS0

e4x - 1 - 4x

x2 38. lim
xS0

 
6x - 1 + e-6x

x2

39. lim
xS2

ln1x - 12
x - 1

40. lim
xS -1

ln1x + 22
x + 2

41. lim
xS0+

ln11 + x22
x3  42. lim

xS0 -

ln11 + 2x2
x2

43. lim
xS0+

ln11 + 1x2
x

44. lim
xS0 +

ln11 + x21x

45. lim
xS -2

 
x2 + 2x + 1

x2 + x + 1
46. lim

xS1

2x3 - 3x2 + 1

x3 - 3x + 2

B
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47. lim
xS -1

x3 + x2 - x - 1

x3 + 4x2 + 5x + 2
48. lim

xS -2

x3 - 4x2 - 5x + 6

x2 - 7x - 8

49. lim
xS2-

x3 - 12x + 16

x3 - 6x2 + 12x - 8
50. lim

xS1 +

x3 + x2 - x + 1

x3 + 3x2 + 3x - 1

51. lim
xS ∞

3x2 + 5x

4x3 + 7
52. lim

xS ∞

4x2 + 9x

5x2 + 8

53. lim
xS ∞

x2

e2x 54. lim
xS ∞

e3x

x3

55. lim
xS ∞

1 + e-x

1 + x2 56. lim
xS -∞

1 + e-x

1 + x2

57. lim
xS ∞

e-x

ln 11 + 4e-x2 58. lim
xS ∞

ln 11 + 2e-x2
ln 11 + e-x2

59. lim
xS0

ex - e-x - 2x

x3 60. lim
xS0

 
e2x - 1 - 2x - 2x2

x3

61.  Find lim
xS0+1x ln x2.

[Hint: Write x ln x = 1ln x2 >x-1.4
62. Find lim

xS0+11x ln x2.

[Hint: Write 1x ln x = 1ln x2 >x-1>2.4

C

In Problems 63–66, n is a positive integer. Find each limit.

63. lim
xS ∞

ln x
xn 64. lim

xS ∞

xn

ln x

65. lim
xS ∞

ex

xn 66. lim
xS ∞

xn

ex

Find all horizontal asymptotes for each function in  
Problems 67–70.

67. f1x2 =
e2x + 10
ex - 1

68. f1x2 =
12 + e-x

4 + e-3x

69. f1x2 =
3ex + 1
5ex - 1

70. f1x2 =
9ex - 12
3ex + 4

Answers to Matched Problems

1. (A) ∞ (B) ∞ (C) 0 (D) ∞

2. (A) ∞ (B) 0 (C) - ∞ (D) ∞

3. e4 4. ∞ 5. 0 6. 2

7. - ∞ 8. 2 9. 0 10. y = 0

When we summarized the graphing strategy in Section 4.2, we omitted one important 
topic: asymptotes. Polynomial functions do not have any asymptotes. Asymptotes of 
rational functions were discussed in Section 2.2, but what about all the other func-
tions, such as logarithmic and exponential functions? Since investigating asymptotes 
always involves limits, we can now use L’Hôpital’s rule (Section 4.3) as a tool for 
finding asymptotes of many different types of functions.

Modifying the Graphing Strategy
The first version of the graphing strategy in Section 4.2 made no mention of asymp-
totes. Including information about asymptotes produces the following (and final) 
version of the graphing strategy.

4.4 Curve-Sketching Techniques
■■ Modifying the Graphing Strategy
■■ Using the Graphing Strategy
■■ Modeling Average Cost

PROCEDURE Graphing Strategy (Final Version)
Step 1 Analyze f1x2.

(A) Find the domain of f.
(B) Find the intercepts.
(C) Find asymptotes.

Step 2  Analyze f ′1x2. Find the partition numbers for f ′ and the critical numbers 
of f. Construct a sign chart for f ′1x2, determine the intervals on which f 
is  increasing and decreasing, and find local maxima and minima of f.
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Using the Graphing Strategy
We will illustrate the graphing strategy with several examples. From now on, you 
should always use the final version of the graphing strategy. If a function does not 
have any asymptotes, simply state this fact.

Step 3  Analyze f ″1x2. Find the partition numbers for f ″1x2. Construct a sign 
chart for  f ″1x2, determine the intervals on which the graph of f is concave 
upward and concave downward, and find the inflection points of f.

Step 4  Sketch the graph of f. Draw asymptotes and locate intercepts, local maxima 
and minima, and inflection points. Sketch in what you know from steps 
1–3. Plot additional points as needed and complete the sketch.

Using the Graphing Strategy Use the graphing strategy to analyze the function 
f1x2 = 1x - 12>1x - 22. State all the pertinent information and sketch the graph of f.

SOLUTION

Step 1 Analyze f1x2. f1x2 =
x - 1
x - 2

(A) Domain: All real x, except x = 2

(B) y intercept: f102 =
0 - 1
0 - 2

=
1
2

x intercepts: Since a fraction is 0 when its numerator is 0 and its 
 denominator is not 0, the x intercept is x = 1.

(C) Horizontal asymptote: 
amxm

bnxn =
x
x

= 1

So the line y = 1 is a horizontal asymptote.
Vertical asymptote: The denominator is 0 for x = 2, and the numerator 
is not 0 for this value. Therefore, the line x = 2 is a vertical asymptote.

Step 2 Analyze f ′1x2. f ′1x2 =
1x - 22112 - 1x - 12112

1x - 22 2 =
-1

1x - 22 2

Partition number for f ′1x2: x = 2
Critical numbers of f1x2: None
Sign chart for f ′1x2:

EXAMPLE 1

     

2
x

DecreasingDecreasing

f 9(x)

f (x)

(2, `)(2`, 2)

ND 2 2 2 22 2 2 2

Test Numbers

x f ∙ 1x 2
1 -1 1∙ 2
3 -1 1∙ 2

So f1x2 is decreasing on 1- ∞ , 22 and 12, ∞ 2. There are no local extrema.

Step 3 Analyze f ″1x2. f ″1x2 =
2

1x - 22 3

Partition number for f ″1x2: x = 2
Sign chart for f ″1x2:
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2
x

f 99(x)

Concave
downward

Concave
upward

(2, `)(2`, 2)

ND 2 2 2 22 2 2 2

Graph of f

Test Numbers

x f ″ 1x 2
1 -2 1- 2
3 2 1+ 2

The graph of f is concave downward on 1- ∞ , 22 and concave upward on 
12, ∞ 2. Since f122 is not defined, there is no inflection point at x = 2, 
even though f ″1x2 changes sign at x = 2.

Step 4  Sketch the graph of f. Insert intercepts and asymptotes, and plot a few 
 additional points (for functions with asymptotes, plotting additional points 
is often helpful). Then sketch the graph.

x

f 9(x)

0 2 5

5

x f 1x 2
-2 3

4

0 1
2

1 0

3
2

-1

5
2

3

3 2

4 3
2

Matched Problem 1 Follow the graphing strategy and analyze the function 
f1x2 = 2x> 11 - x2. State all the pertinent information and sketch the graph of f.

Using the Graphing Strategy Use the graphing strategy to analyze the function

g1x2 =
2x - 1

x2

State all pertinent information and sketch the graph of g.

SOLUTION
Step 1 Analyze g1x2.

(A) Domain: All real x, except x = 0

(B) x intercept: x =
1
2

= 0.5

y intercept: Since 0 is not in the domain of g, there is no y intercept.
(C) Horizontal asymptote: y = 0 (the x axis)

Vertical asymptote: The denominator of g1x2 is 0 at x = 0 and the 
 numerator is not. So the line x = 0 (the y axis) is a vertical asymptote.

Step 2 Analyze g′1x2.

 g1x2 =
2x - 1

x2 =
2
x

-
1

x2 = 2x-1 - x-2

 g′1x2 = -2x-2 + 2x-3 = -  
2

x2 +
2

x3 =
-2x + 2

x3

 =
211 - x2

x3

EXAMPLE 2
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Partition numbers for g′1x2: x = 0, x = 1
Critical number of g1x2: x = 1
Sign chart for g′1x2:

x
0

x
1

g9(x)

(1, `)(0, 1)(2`, 0)

ND 01 1 1 12222 2222

Function f1x2 is decreasing on 1- ∞ , 02 and 11, ∞ 2, is increasing on (0, 1), 
and has a local maximum at x = 1. The local maximum is g112 = 1.

Step 3 Analyze g″1x2.

 g′1x2 = -2x-2 + 2x-3

 g″1x2 = 4x-3 - 6x-4 =
4

x3 -  
6

x4 =
4x - 6

x4 =
212x - 32

x4

Partition numbers for g″1x2: x = 0, x =
3
2

= 1.5

Sign chart for g″1x2:

x
0

x

0

1.5

g99(x)

(1.5, `)(0, 1.5)(2`, 0)

1 1 1 1ND2222 2 2 2222

Function g1x2 is concave downward on 1- ∞ , 02 and (0, 1.5), is con-
cave upward on 11.5, ∞ 2, and has an inflection point at x = 1.5. Since 
g11.52 = 0.89, the inflection point is 11.5, 0.892.

Step 4  Sketch the graph of g. Plot key points, note that the coordinate axes are 
 asymptotes, and sketch the graph.

x

g(x)

1

25210 5 10

Horizontal
asymptote

Vertical
asymptote

21

22

23

x g 1x 2
-10 -0.21

-1 -3

0.5 0

1 1

1.5 0.89

10 0.19

Matched Problem 2 Use the graphing strategy to analyze the function

h1x2 =
4x + 3

x2

State all pertinent information and sketch the graph of h.

Graphing Strategy Follow the steps of the graphing strategy and analyze  
the function f1x2 = xex. State all the pertinent information and sketch the graph 
of f.

EXAMPLE 3
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SOLUTION
Step 1 Analyze f1x2: f1x2 = xex.

(A) Domain: All real numbers
(B) y intercept: f102 = 0

x intercept: xex = 0 for x = 0 only, since ex 7 0 for all x.
(C) Vertical asymptotes: None
(D) Horizontal asymptotes: We use tables to determine the nature of the 

graph of f as x S ∞  and x S - ∞ :

x 1 5 10 S ∞

f 1x 2 2.72 742.07 220,264.66 S ∞

x -1 -5 -10 S - ∞

f 1x 2 -0.37 -0.03 -0.000 45 S 0

Step 2 Analyze f ′1x2:

 f ′1x2 = x 
d
dx

 ex + ex 
d
dx

 x

 = xex + ex = ex1x + 12
Partition number for f ′1x2: -1
Critical number of f1x2: -1
Sign chart for f ′1x2:

x

Decreasing Increasing

f 9(x)

f (x)

(2`, 21) (21, `)

02 2 2 1 1 1 12

28

Test Numbers

x f ∙ 1x 2
-2 -e-2 1- 2

0 1  1+ 2

So f1x2 decreases on 1- ∞ , -12, has a local minimum at x = -1, and  
increases on 1-1, ∞ 2. The local minimum is f1-12 = -0.37.

Step 3 Analyze f ″1x2:

 f ″1x2 = ex 
d
dx

 1x + 12 + 1x + 12  
d
dx

 ex

 = ex + 1x + 12ex = ex1x + 22
Sign chart for f ″1x2 (partition number is -2):

x

(2`, 21) (21, `)

02 2 2 1 1 1 12f 99(x)

Concave
downward

Concave
upward

Inflection

28
Graph of f

Test Numbers

x f ∙ 1x 2
-3 -e-3 1- 2
-1 e-1 1+ 2

The graph of f is concave downward on 1- ∞ , -22, has an inflection point 
at x = -2, and is concave upward on 1-2, ∞ 2. Since f1-22 = -0.27, 
the inflection point is 1-2, -0.272.
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Step 4 Sketch the graph of f, using the information from steps 1 to 3:

f (x)

x
124

3

2

1

x f 1x 2
-2 -0.27

-1 -0.37

0 0

Matched Problem 3 Analyze the function f1x2 = xe-0.5x. State all the pertinent 
information and sketch the graph of f.

Refer to the discussion of asymptotes in the solution of Example 3. We used tables 
of values to estimate limits at infinity and determine horizontal asymptotes. In some 
cases, the functions involved in these limits can be written in a form that allows us to 
use L’Hôpital’s rule. 

- ∞ # 0 form
 lim
xS -∞

f1x2 = lim
xS -∞

 xex  Rewrite as a fraction.

- ∞ >∞  form

 = lim
xS -∞

 
x

e-x  Apply L’Hôpital’s rule.

 = lim
xS -∞

 
1

-e-x  Simplify.

 = lim
xS -∞

 1-ex2 Property of ex

 = 0

Use algebraic manipulation and L’Hôpital’s rule to verify the value of each of the 
following limits:

(A) lim
xS ∞

xe-0.5x = 0

(B) lim
xS0+x

21ln x - 0.52 = 0

(C) lim
xS0+x

 ln x = 0

Explore and Discuss 1

Graphing Strategy Let f1x2 = x2 ln x - 0.5x2. Follow the steps in the graphing 
strategy and analyze this function. State all the pertinent information and sketch the 
graph of f.

SOLUTION
Step 1 Analyze f1x2: f1x2 = x2 ln x - 0.5x2 = x21ln x - 0.52.

(A) Domain: 10, ∞ 2
(B) y intercept: None [ f102 is not defined.]

x intercept: Solve x21ln x - 0.52 = 0

 ln x - 0.5 = 0 or x2 = 0  Discard, since 0 is not in the domain of f.

 ln x = 0.5  ln x = a if and only if x = ea.

 x = e0.5  x intercept

EXAMPLE 4
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(C) Asymptotes: None. The following tables suggest the nature of the 
graph as x S 0+ and as x S ∞ :

x 0.1 0.01 0.001 S 0+

f1x2 -0.0280 -0.00051 -0.000007 S 0

x 10 100 1,000 S ∞

f1x2 180 41,000 6,400,000 S ∞

Step 2 Analyze f ′1x2:

 f ′1x2 = x2 
d
dx

 ln x + 1ln x2  
d
dx

 x2 - 0.5 
d
dx

 x2

 = x2 
1
x

+ 1ln x2 2x - 0.512x2
 = x + 2x ln x - x

 = 2x ln x

Partition number for f ′1x2: 1
Critical number of f1x2: 1
Sign chart for f ′1x2:

See Explore and 
Discuss 1(B).

x

Decreasing Increasing

f 9(x)

(0, 21) (1, `)

02 2 2 1 1 1 12

1

Test Numbers

x f ∙ 1x 2
0.5 -0.6931 1- 2
2 2.7726 1+ 2

The function f1x2 decreases on (0, 1), has a local minimum at x = 1, and 
increases on 11, ∞ 2. The local minimum is f112 = -0.5.

Step 3 Analyze f ″1x2:

 f ″1x2 = 2x 
d
dx

 1ln x2 + 1ln x2  
d
dx

 12x2

 = 2x 
1
x

+ 1ln x2 2

 = 2 + 2 ln x = 0
 2 ln x = -2

 ln x = -1
 x = e-1 ≈ 0.3679

Sign chart for f ″1x2 (partition number is e-1):

x

(0, e21) (e21, `)

02 2 2 1 1 1 12f 99(x)

Concave
downward

Concave
upward

e21

Test Numbers

x f ″ 1x 2
0.2 -1.2189 1- 2
1 2            1+ 2

The graph of f1x2 is concave downward on 10, e-12, has an inflection point 
at x = e-1, and is concave upward on 1e-1, ∞ 2. Since f1e-12  = -1.5e-2

≈  -0.20, the inflection point is 10.37, -0.202.
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Step 4 Sketch the graph of f, using the information from steps 1 to 3:

f (x)

x
1 2

0.5

20.5

x f 1x 2
e-1 -1.5e-2

1 -0.5

e0.5 0

Matched Problem 4 Analyze the function f1x2 = x ln x. State all pertinent 
information and sketch the graph of f.

Modeling Average Cost
When functions approach a horizontal line as x approaches ∞  or - ∞ , that line is a 
horizontal asymptote. Average cost functions often approach a nonvertical line as x 
approaches ∞  or - ∞ .

DEFINITION Oblique Asymptote
If a graph approaches a line that is neither horizontal nor vertical as x approaches ∞  
or - ∞ , then that line is called an oblique asymptote.

If f1x2 = n1x2 >d1x2 is a rational function for which the degree of n1x2 is 1 
more than the degree of d1x2, then we can use polynomial long division to write 
f1x2 = mx + b + r1x2 >d1x2, where the degree of r1x2 is less than the degree of 
d1x2. The line y = mx + b is then an oblique asymptote for the graph of y = f1x2.

EXAMPLE 5 Average Cost Given the cost function C1x2 = 5,000 + 0.5x2, where x is the 
number of items produced, use the graphing strategy to analyze the graph of the 
average cost function. State all the pertinent information and sketch the graph of  
the average cost function. Find the marginal cost function and graph it on the same 
set of coordinate axes.

SOLUTION The average cost function is

C1x2 =
5,000 + 0.5x2

x
=

5,000
x

+ 0.5x

Step 1 Analyze C1x2.
(A) Domain: Since we cannot produce a negative number of items and 

C102 is not defined, the domain is the set of positive real numbers.
(B) Intercepts: None

(C) Horizontal asymptote: 
amxm

bnxn =
0.5x2

x
= 0.5x

So there is no horizontal asymptote.

Vertical asymptote: The line x = 0 is a vertical asymptote since the 
denominator is 0 and the numerator is not 0 for x = 0.

Oblique asymptote: If x is a large positive number, then 5,000/x is  
very small and

C1x2 =
5,000

x
+ 0.5x ≈ 0.5x
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That is,

lim
xS ∞

3C1x2 - 0.5x4 = lim
xS ∞

 
5,000

x
= 0

This implies that the graph of y = C1x2 approaches the line y = 0.5x as x 
approaches ∞ . That line is an oblique asymptote for the graph of y = C1x2.

Step 2 Analyze C′1x2.

 C′1x2 = -  
5,000

x2 + 0.5

 =
0.5x2 - 5,000

x2

 =
0.51x - 10021x + 1002

x2

Partition numbers for C′1x2: 0 and 100
Critical number of C1x2: 100
Sign chart for C′1x2:

x

Decreasing IncreasingC(x)

C9(x)

(0, 100) (100, `)

02 2 2 1 1 1 12

1000

Local
minimum

Test Numbers

x C′ 1x 2
50 -1.5  1∙ 2

125 0.18 1∙ 2

So C1x2 is decreasing on (0, 100), is increasing on 1100, ∞ 2, and has a local 
minimum at x = 100. The local minimum is C11002 = 100.

Step 3 Analyze C″1x2: C″1x2 =
10,000

x3 .

C″1x2 is positive for all positive x, so the graph of y = C1x2 is concave 
upward on 10, ∞ 2.

Step 4 Sketch the graph of C. The graph of C is shown in Figure 1.

x

y

100 200 300 400

100

200

C9(x) 5 x

Minimum average cost

5,000
x

C(x) 5 1 0.5x

y 5 0.5x
(oblique asymptote)

Figure 1

The marginal cost function is C′1x2 = x. The graph of this linear function is also 
shown in Figure 1.

Figure 1 illustrates an important principle in economics:

The minimum average cost occurs when the average cost is equal to the 
marginal cost.
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Matched Problem 5 Given the cost function C1x2 = 1,600 + 0.25x2, where 
x is the number of items produced,

(A) Use the graphing strategy to analyze the graph of the average cost function. 
State all the pertinent information and sketch the graph of the average cost 
function. Find the marginal cost function and graph it on the same set of coor-
dinate axes. Include any oblique asymptotes.

(B) Find the minimum average cost.

Skills Warm-up Exercises
In Problems 1–8, find the domain of the function and all x or y 
intercepts. (If necessary, review Section 1.1).

1. f1x2 = 3x + 36 2. f1x2 = -4x - 28

3. f1x2 = 125 - x 4. f1x2 = 29 - x2

5. f1x2 =
x + 1
x - 2

6. f1x2 =
x2 - 9
x + 9

7. f1x2 =
3

x2 - 1
8. f1x2 =

x - 6

x2 - 5x + 6

9. Use the graph of f in the figure to identify the following  
1assume that f ″102 6 0, f ″1b2 7 0, and f ″1g2 7 02:

x

f(x)

b ca

d e

f g h

M

L

(A) the intervals on which f ′1x2 6 0

(B) the intervals on which f ′1x2 7 0

(C) the intervals on which f1x2 is increasing

(D) the intervals on which f1x2 is decreasing

(E) the x coordinate(s) of the point(s) where f1x2 has a local 
maximum

(F) the x coordinate(s) of the point(s) where f1x2 has a local 
minimum

(G) the intervals on which f ″1x2 6 0

(H) the intervals on which f ″1x2 7 0

(I) the intervals on which the graph of f is concave  
upward

(J) the intervals on which the graph of f is concave 
 downward

(K) the x coordinate(s) of the inflection point(s)

(L) the horizontal asymptote(s)

(M) the vertical asymptote(s)

W

A

10. Repeat Problem 9 for the following graph of f (assume that 
f ″1d2 6 0):

f (x)

x
c d eba

L

In Problems 11–14, use the given information to sketch a possible 
graph of f.

11. Domain: All real x, except x = 2;

lim
x S2 -  f(x ) = ∞ ;  lim

x S2 +  f(x ) = - ∞ ;  lim
x S ∞

 f(x ) = 4

12. Domain: All real x, except x = 4;

lim
x S4 -  f(x ) = - ∞ ;  lim

x S4 +  f(x ) = - ∞ ;  lim
x S - ∞

 f(x ) = 3

13. Domain: All real x, except x = -1;

lim
xS -1- f1x2 = - ∞ ; lim

xS -1 +  f1x2 = - ∞ ;

f 9(x)

x

0

2123

2 2 2 22 2 111111ND111111

14. Domain: All real x, except x = 7;

lim
xS7- f1x2 = ∞ ; lim

xS7 +  f1x2 = - ∞ ;

2 2 2 2 22 2f 9(x)

x

0

107

ND111111 111111

In Problems 15–22, use the given information to sketch the graph 
of f. Assume that f is continuous on its domain and that all inter-
cepts are included in the table of values.

15. Domain: All real x; lim
xS{∞

 f1x2 = 2

x -4 -2 0 2 4

f 1x 2 0 -2 0 -2 0

Exercises 4.4
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f 99(x)

f 9(x)

x

0 0

x

ND

0

ND

0

2

0

4

22

0

24

2 2 2

2 2 22 2 2

11111111 1

111111 111111

12222222

16. Domain: All real x;  
lim

xS -∞
 f1x2 = -3; lim

xS ∞
 f1x2 = 3

x -2 -1 0 1 2

f 1x 2 0 2 0 -2 0

f 99(x)

f 9(x)

x

0 0

x

ND

0

ND

0

1

0

2

21

0

22

2 2 22 2 2

2 2 2

11111

111

1

111111

11111111

222222

17. Domain: All real x, except x = -2;  
lim

xS - 2-  f1x2 = ∞ ; lim
xS - 2+  f1x2 = - ∞ ; lim

xS ∞
 f1x2 = 1

x -4 0 4 6

f 1x 2 0 0 3 2

x

x

 

2 2 2111111 22222

2 2 222222f 99(x)

f 9(x) ND

22

111 111ND

22

0

4

0

6

18. Domain: All real x, except x = 1;  
lim

xS1-  f1x2 = ∞ ; lim
xS1+

 f1x2 = ∞ ; lim
xS ∞

 f1x2 = -2

x -4 -2 0 2

f 1x 2 0 -2 0 0

x

x

 

2 2 2 2 2 2

f 99(x)

f 9(x) 0

22

111111111 11

111 ND

1

ND

1

19. Domain: All real x, except x = -1;

f1-32 = 2, f1-22 = 3, f102 = -1, f112 = 0;

f ′1x2 7 0 on 1- ∞ , -12 and 1-1, ∞ 2;

f ″1x2 7 0 on 1- ∞ , -12; f ″1x2 6 0 on 1-1, ∞ 2;

vertical asymptote: x = -1;

horizontal asymptote: y = 1

20. Domain: All real x, except x = 1;

f102 = -2, f122 = 0;

f ′1x2 6 0 on 1- ∞ , 12 and 11, ∞ 2;

f ″1x2 6 0 on 1- ∞ , 12;

f ″1x2 7 0 on 11, ∞ 2;

vertical asymptote: x = 1;

horizontal asymptote: y = -1

21. Domain: All real x, except x = -2 and x = 2;

f1-32 = -1, f102 = 0, f132 = 1;

f ′1x2 6 0 on 1- ∞ , -22 and 12, ∞ 2;

f ′1x2 7 0 on 1-2, 22;

f ″1x2 6 0 on 1- ∞ , -22 and 1-2, 02;

f ″1x2 7 0 on 10, 22 and 12, ∞ 2;

vertical asymptotes: x = -2 and x = 2;

horizontal asymptote: y = 0

22. Domain: All real x, except x = -1 and x = 1;

f1-22 = 1, f102 = 0, f122 = 1;

f ′1x2 7 0 on 1- ∞ , -12 and 10, 12;

f ′1x2 6 0 on 1-1, 02 and 11, ∞ 2;

f ″1x2 7 0 on 1- ∞ , -12, 1-1, 12, and 11, ∞ 2;

vertical asymptotes: x = -1 and x = 1;

horizontal asymptote: y = 0

In Problems 23–62, summarize the pertinent information ob-
tained by applying the graphing strategy and sketch the graph of 
y = f1x2.

23. f1x2 =
x + 3
x - 3

24. f1x2 =
2x - 4
x + 2

25. f1x2 =
x

x - 2
26. f1x2 =

2 + x
3 - x

27. f1x2 = 5 + 5e-0.1x 28. f1x2 =  4 + 5e-0.3x

29. f1x2 = 5xe-0.2x 30. f1x2 = 10xe-0.1x

31. f1x2 = ln11 - x2 32. f1x2 = ln12x + 42
33. f1x2 = x - ln x 34. f1x2 = ln1x2 + 42
35. f1x2 =

x

x2 - 4
36. f1x2 =

1

x2 - 4

37. f1x2 =
1

1 + x2 38. f1x2 =
x2

1 + x2

39. f1x2 =
2x

1 - x2 40. f1x2 =
2x

x2 - 9

41. f1x2 =
-5x

1x - 12 2 42. f1x2 =
x

1x - 22 2

43. f1x2 =
x2 + x - 2

x2 44. f1x2 =
x2 - 5x - 6

x2

45. f1x2 =
x2

x - 1
46. f1x2 =

x2

2 + x

47. f1x2 =
3x2 + 2

x2 - 9
48. f1x2 =

2x2 + 5

4 - x2

49. f1x2 =
x3

x - 2
50. f1x2 =

x3

4 - x

51. f1x2 = 13 - x2ex 52. f1x2 = 1x - 22ex

53. f1x2 = e-0.5x2
54. f1x2 = e-2x2

55. f1x2 = x2 ln x 56. f1x2 =
ln x

x

B
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57. f1x2 = 1ln x2 2
58. f1x2 =

x
ln x

59. f1x2 =
1

x2 + 2x - 8
60. f1x2 =

1

3 - 2x - x2

61. f1x2 =
x3

3 - x2 62. f1x2 =
x3

x2 - 12

In Problems 63–66, show that the line y = x is an oblique 
 asymptote for the graph of y = f1x2, summarize all pertinent  
information obtained by applying the graphing strategy, and 
sketch the graph of y = f1x2.

63. f1x2 = x +
4
x

64. f1x2 = x -  
9
x

65. f1x2 = x -  
4

x2 66. f1x2 = x +
32

x2

In Problems 67–70, for the given cost function C1x2, find the 
oblique asymptote of the average cost function C1x2.

67. C1x2 = 10,000 + 90x + 0.02x2

68. C1x2 = 15,000 + 125x + 0.03x2

69. C1x2 = 95,000 + 210x + 0.1x2

70. C1x2 = 125,000 + 325x + 0.5x2

In Problems 71–78, summarize all pertinent information ob-
tained by applying the graphing strategy and sketch the graph 
of y = f1x2. [Note: These rational functions are not reduced to 
lowest terms.]

71. f1x2 =
x2 - 1

x2 - x - 2
72. f1x2 =

x2 - 9

x2 + x - 6

73. f1x2 =
x2 + 3x + 2

x2 + 2x + 1
74. f1x2 =

x2 - x - 6

x2 + 4x + 4

75. f1x2 =
2x2 + 5x - 12

x2 + x - 12
76. f1x2 =

2x2 - 3x - 20

x2 - x - 12

77. f1x2 =
x3 + 4x2 - 21x

x2 - 2x - 3
78. f1x2 =

x3 + 7x2 - 18x

x2 + 8x - 9

Applications
79. Revenue. The marketing research department for a computer 

company used a large city to test market the firm’s new lap-
top. The department found that the relationship between price 
p (dollars per unit) and demand x (units sold per week) was 
given approximately by

p = 1,296 - 0.12x2  0 … x … 80

So, weekly revenue can be approximated by

R1x2 = xp = 1,296x - 0.12x3  0 … x … 80

Graph the revenue function R.

80. Profit. Suppose that the cost function C1x2 (in dollars) for 
the company in Problem 79 is

C1x2 = 830 + 396x

C

(A) Write an equation for the profit P1x2.

(B) Graph the profit function P.

81. Pollution. In Silicon Valley, a number of computer firms 
were found to be contaminating underground water supplies 
with toxic chemicals stored in leaking underground contain-
ers. A water quality control agency ordered the companies to 
take immediate corrective action and contribute to a monetary 
pool for the testing and cleanup of the underground contami-
nation. Suppose that the required monetary pool (in millions 
of dollars) is given by

P1x2 =
2x

1 - x
  0 … x 6 1

where x is the percentage (expressed as a decimal fraction) of 
the total contaminant removed.

(A) Where is P1x2 increasing? Decreasing?

(B) Where is the graph of P concave upward? Downward?

(C) Find any horizontal or vertical asymptotes.

(D) Find the x and y intercepts.

(E) Sketch a graph of P.

82. Employee training. A company producing dive watches has 
established that, on average, a new employee can assemble 
N1t2 dive watches per day after t days of on-the-job training, 
as given by

N1t2 =
100t
t + 9

  t Ú 0

(A) Where is N1t2 increasing? Decreasing?

(B) Where is the graph of N concave upward? Downward?

(C) Find any horizontal and vertical asymptotes.

(D) Find the intercepts.

(E) Sketch a graph of N.

83. Replacement time. An outboard motor has an initial price 
of $3,200. A service contract costs $300 for the first year 
and increases $100 per year thereafter. The total cost of the 
outboard motor (in dollars) after n years is given by

C1n2 = 3,200 + 250n + 50n2  n Ú 1

(A) Write an expression for the average cost per year, C1n2, 
for n years.

(B) Graph the average cost function found in part (A).

(C) When is the average cost per year at its minimum? (This 
time is frequently referred to as the replacement time 
for this piece of equipment.)

84. Construction costs. The management of a manufacturing 
plant wishes to add a fenced-in rectangular storage yard of 
20,000 square feet, using a building as one side of the yard 
(see figure). If x is the distance (in feet) from the building to 
the fence, show that the length of the fence required for the 
yard is given by

L1x2 = 2x +
20,000

x
  x 7 0
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Storage yard

x

(A) Graph L.

(B) What are the dimensions of the rectangle requiring the 
least amount of fencing?

85. Average and marginal costs. The total daily cost (in dollars) 
of producing x mountain bikes is given by

C1x2 = 1,000 + 5x + 0.1x2

(A) Sketch the graphs of the average cost function and the 
marginal cost function on the same set of coordinate 
axes. Include any oblique asymptotes.

(B) Find the minimum average cost.

86. Average and marginal costs. The total daily cost (in  
dollars) of producing x city bikes is given by

C1x2 = 500 + 2x + 0.2x2

(A) Sketch the graphs of the average cost function and the 
marginal cost function on the same set of coordinate 
axes. Include any oblique asymptotes.

(B) Find the minimum average cost.

87. Medicine. A doctor prescribes a 500 mg pill every eight 
hours. The concentration of the drug (in parts per million) in 
the bloodstream t hours after ingesting the pill is

C1t2 =
t

e0.75t.

(A) Graph C(t).

(B) What is the concentration after 8 hours?

(C) What is the maximum concentration?

88. Medicine. A doctor prescribes a 1,000 mg pill every twelve 
hours. The concentration of the drug (in parts per million) in 
the bloodstream t hours after ingesting the pill is

D1t2 =
0.9t

e0.5t.

(A) Graph D(t).

(B) What is the concentration after 12 hours?

(C) What is the maximum concentration?

89. Discuss the differences between the function C(t) defined 
in Problem 87 and the function D(t) defined in Problem 88. 
Under what circumstances might each prescription be the 
better option?

90. Physiology. In a study on the speed of muscle contraction in 
frogs under various loads, researchers found that the speed of 
contraction decreases with increasing loads. More precisely, 

they found that the relationship between speed of contraction, 
S (in centimeters per second), and load w, (in grams), is 
given approximately by

S1w2 =
26 + 0.06w

w

  w Ú 5

Graph S.

91. Psychology: retention. Each student in a psychology class 
is given one day to memorize the same list of 30 special 
characters. The lists are turned in at the end of the day, and 
for each succeeding day for 30 days, each student is asked 
to turn in a list of as many of the symbols as can be recalled. 
Averages are taken, and it is found that

N1t2 =
5t + 20

t
  t Ú 1

provides a good approximation of the average number N1t2 
of symbols retained after t days. Graph N.

Answers to Matched Problems

1. Domain: All real x, except x = 1
y intercept: f102 = 0; x intercept: 0
Horizontal asymptote: y = -2
Vertical asymptote: x = 1
Increasing on 1- ∞ , 12 and 11, ∞ 2
Concave upward on 1- ∞ , 12
Concave downward on 11, ∞ 2

x

f(x)

525

5

25

x f 1x 2
-1 -1

0 0

1
2

2

3
2

-6

2 -4

5 - 5
2

2. Domain: All real x, except x = 0

x intercept: = -
3
4

= -0.75

h(0) is not defined
Vertical asymptote: x = 0 (the y axis)
Horizontal asymptote: y = 0 (the x axis)
Increasing on 1-1.5, 02
Decreasing on 1- ∞ , -1.52 and 10, ∞ 2
Local minimum: f1-1.52 = -1.33
Concave upward on 1-2.25, 02 and 10, ∞ 2
Concave downward on 1- ∞ , -2.252
Inflection point: 1-2.25, -1.192

h(x)

x

5

210 10

x h 1x 2
-10 -0.37

-2.25 -1.19

-1.5 -1.33

-0.75 0

2 2.75

10 0.43
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3. Domain: 1- ∞ , ∞ 2
y intercept: f102 = 0
x intercept: x = 0
Horizontal asymptote: y = 0 (the x axis)
Increasing on 1- ∞ , 22
Decreasing on 12, ∞ 2
Local maximum: f122 = 2e-1 ≈ 0.736
Concave downward on 1- ∞ , 42
Concave upward on 14, ∞ 2
Inflection point: 14, 0.5412

x
82

1

4 622

21

f(x)

4. Domain: 10, ∞ 2
y intercept: None [f (0) is not defined]
x intercept: x = 1
Increasing on 1e-1, ∞ 2
Decreasing on 10, e-12
Local minimum: f1e-12 = -e-1 ≈ -0.368
Concave upward on 10, ∞ 2

x 5 10 100 S ∞

f 1x 2 8.05 23.03 460.52 S ∞

x 0.1 0.01 0.001 0.000 1 S 0

f 1x 2 -0.23 -0.046 -0.006 9 -0.000 92 S 0

x
2121

21

2

1

f(x)

5. (A) Domain: 10, ∞ 2
Intercepts: None
Vertical asymptote: x = 0; 
oblique asymptote: y = 0.25x
Decreasing on (0, 80);
increasing on 180, ∞ 2; 
local minimum at x = 80
Concave upward on 10, ∞ 2

x

y

80 160 240

40

80

120
C9(x) 5 0.5x

y 5 0.25x
(oblique asymptote)

1,600
x

C(x) 5            1 0.25x

(B) Minimum average cost is 40 at x = 80.

One of the most important applications of the derivative is to find the absolute maxi-
mum or minimum value of a function. An economist may be interested in the price 
or production level of a commodity that will bring a maximum profit, a doctor may 
be interested in the time it takes for a drug to reach its maximum concentration in the 
bloodstream after an injection, and a city planner might be interested in the location 
of heavy industry in a city in order to produce minimum pollution in residential and 
business areas. In this section, we develop the procedures needed to find the absolute 
maximum and absolute minimum values of a function.

Absolute Maxima and Minima
Recall that f1c2 is a local maximum if f1x2 … f1c2 for x near c and a local mini-
mum if f1x2 Ú f1c2 for x near c. Now we are interested in finding the largest and the 
smallest values of f1x2 throughout the domain of f.

4.5 Absolute Maxima and Minima
■■ Absolute Maxima and Minima
■■ Second Derivative and Extrema

DEFINITION Absolute Maxima and Minima
If f1c2 Ú f1x2 for all x in the domain of f, then f1c2 is called the absolute 
maximum of f. If f1c2 … f1x2 for all x in the domain of f, then f1c2 is called the 
absolute minimum of f. An absolute maximum or absolute minimum is called an 
absolute extremum.
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Figure 1 illustrates some typical examples.

Figure 1

f (22) 5       is a local maximum

f (2) 5 2      is a local minimum

x

f(x)

22

25

5

2

x3

3
f (x) 5 2 4x

(A)  No absolute maximum or minimum 
16
3

16
3

f(x)

x

25

25

5

5

f (x) 5 4 2 x2

(B)  f (0) 5 4 is the absolute maximum
       No absolute minimum

f(x)

x

25

25

5

5

f (x) 5 x2/3

(C)  f (0) 5 0 is the absolute minimum
       No absolute maximum

In many applications, the domain of a function is restricted because of practical 
or physical considerations. Prices and quantities cannot be negative. Factories cannot 
produce arbitrarily large numbers of goods. If the domain is restricted to some closed 
interval, as is often the case, then Theorem 1 applies.

THEOREM 1 Extreme Value Theorem
A function f that is continuous on a closed interval 3a, b4 has both an absolute 
maximum and an absolute minimum on that interval.

It is important to understand that the absolute maximum and absolute minimum 
depend on both the function f and the interval 3a, b4. Figure 2 illustrates four cases.

Figure 2 Absolute extrema for f 1x 2 ∙ x3 ∙ 21x2 ∙ 135x ∙ 170 on various closed intervals

f(x)

50

100

150

5 10

Absolute
maximum

f (12) 5 154

Absolute
minimum
f (2) 5 24

(A)  [a, b] 5 [2, 12]

x
a 5 2 b 5 12

x

f(x)

50

100

150

5 10

Absolute
maximum
f (5) 5 105

f (9) 5 73
Absolute
minimum

(B)  [a, b] 5 [4, 10]

a 5 4 b 5 10

5 10
x

f(x)

50

100

150
Absolute
maximum
f (5) 5 105

f (8) 5 78
Absolute
minimum

(C)  [a, b] 5 [4, 8]

a 5 4 b 5 8
x

f (x)

50

100

150

5 10

f (3) 5 73 5 f (9)
Absolute
minimum

(D)  [a, b] 5 [3, 11]

b 5 11a 5 3

Absolute
maximum

f (5) 5 105 5 f (11)

In all four cases illustrated in Figure 2, the absolute maximum and absolute 
minimum occur at a critical number or an endpoint. This property is generalized in 
Theorem 2. Note that both the absolute maximum and the absolute minimum are 
unique, but each can occur at more than one point in the interval (Fig. 2D).

Suppose that f is a function such that f ′1c2 = 1 for some number c in the interval 
[a, b]. Is it possible for f (c) to be an absolute extremum on [a, b]?

Explore and Discuss 1
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THEOREM 2 Locating Absolute Extrema
Absolute extrema (if they exist) must occur at critical numbers or at endpoints.

To find the absolute maximum and minimum of a continuous function on a 
closed interval, we simply identify the endpoints and critical numbers in the interval, 
evaluate the function at each, and choose the largest and smallest values.

PROCEDURE Finding Absolute Extrema on a Closed Interval
Step 1 Check to make certain that f is continuous over 3a, b4.
Step 2 Find the critical numbers in the interval 1a, b2.
Step 3  Evaluate f at the endpoints a and b and at the critical numbers found in step 2.
Step 4  The absolute maximum of f on 3a, b4 is the largest value found in step 3.
Step 5  The absolute minimum of f on 3a, b4 is the smallest value found in step 3.

Finding Absolute Extrema Find the absolute maximum and absolute minimum of

f1x2 = x3 + 3x2 - 9x - 7

on each of the following intervals:

(A) 3-6, 44 (B) 3-4, 24 (C) 3-2, 24
SOLUTION
(A) The function is continuous for all values of x.

f ′1x2 = 3x2 + 6x - 9 = 31x - 121x + 32
So x = -3 and x = 1 are the critical numbers in the interval 1-6, 42. Evaluate f 
at the endpoints and critical numbers 1-6, -3, 1, and 42, and choose the largest 
and smallest values.

  f1-62 = -61 Absolute minimum

  f1-32 = 20

 f112 = -12

 f142 = 69  Absolute maximum

The absolute maximum of f on 3-6, 44 is 69, and the absolute minimum is -61.

(B) Interval: 3-4, 24
x f 1x 2
-4 13

-3 20

1 -12

2 -5

EXAMPLE 1

Absolute maximum

Absolute minimum

The absolute maximum of f on 3-4, 24 is 20, and the absolute minimum is -12.

(C) Interval: 3-2, 24
x f 1x 2
-2 15

1 -12

2 -5

Absolute maximum

Absolute minimum

Reminder:

Critical numbers, if they exist, must 
lie in the domain of the function.  
If our function is restricted to  
[a, b], then a number c must satisfy 
a … c … b in order to be a critical 
number.
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Note that the critical number x = -3 is not included in the table, because it is 
not in the interval 3-2, 24. The absolute maximum of f on 3-2, 24 is 15, and 
the absolute minimum is -12.

Matched Problem 1 Find the absolute maximum and absolute minimum of

f1x2 = x3 - 12x

on each of the following intervals:

(A) 3-5, 54 (B) 3-3, 34 (C) 3-3, 14

Now, suppose that we want to find the absolute maximum or minimum of a func-
tion that is continuous on an interval that is not closed. Since Theorem 1 no longer 
applies, we cannot be certain that the absolute maximum or minimum value exists. 
Figure 3 illustrates several ways that functions can fail to have absolute extrema.

Figure 3 Functions with no absolute extrema

x

f (x)

21

1

1 2212223 3

x
f (x) 5

1 1 x2

(A)  No absolute extrema on (2`, `):
       21 , f (x) , 1 for all x
        f f (x) ? 1 or 21 for any xg

x

f (x)

1

0

2

3

4

5

1 2

f (x) 5 8x 2 2x2 2 3
1 , x , 2

(B)  No absolute extrema on (1, 2):
       3 , f (x) , 5 for x [ (1, 2)
       f f (x) ? 3 or 5 for any x [ (1, 2)g

x

f (x)

1

2 x
1 2 x2

f (x) 5

21 , x , 1

(C)  No absolute extrema on (21, 1):
       Graph has vertical asymptotes
       at x 5 21 and x 5 1

21

22

121

*Actually, we are assuming that f ″1x2 is continuous in an interval containing c. It is unlikely that we will 
encounter a function for which f ″1c2 exists but f ″1x2 is not continuous in an interval containing c.

In general, the best procedure to follow in searching for absolute extrema on an in-
terval that is not of the form 3a, b4 is to sketch a graph of the function. However, many 
applications can be solved with a new tool that does not require any graphing.

Second Derivative and Extrema
The second derivative can be used to classify the local extrema of a function. Suppose 
that f is a function satisfying f ′1c2 = 0 and f ″1c2 7 0. First, note that if f ″1c2 7 0, 
then it follows from the properties of limits* that f ″1x2 7 0 in some interval 1m, n2 
containing c. Thus, the graph of f must be concave upward in this interval. But this 
 implies that f ′1x2 is increasing in the interval. Since f ′1c2 = 0,  f ′1x2 must change 
from negative to positive at x = c, and f1c2 is a local minimum (see Fig. 4). Reasoning 
in the same fashion, we conclude that if f ′1c2 = 0 and f ″1c2 6 0, then f1c2 is a 
 local maximum. Of course, it is possible that both f ′1c2 = 0 and f ″1c2 = 0. In this 
case, the second derivative cannot be used to determine the shape of the graph around 
x = c; f1c2 may be a local minimum, a local maximum, or neither.

The sign of the second derivative provides a simple test for identifying local maxima 
and minima. This test is most useful when we do not want to draw the graph of the 
function. If we are interested in drawing the graph and have already constructed the sign 
chart for f ′1x2, then the first-derivative test can be used to identify the local extrema.
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f 99(c) . 0

f 9(x) , 0

f 9(c) 5 0

f 9(x) . 0

(A)  f 9(c) 5 0 and f 99(c) . 0
       implies f (c) is a local
       minimum

m c n

f 99(c) , 0

f 9(c) 5 0

f 9(x) , 0f 9(x) . 0

(B)  f 9(c) 5 0 and f 99(c) , 0
       implies f (c) is a local
       maximum

m c n

Figure 4 Second derivative and local extrema

RESULT Second-Derivative Test for Local Extrema
Let c be a critical number of f1x2 such that f ′1c2 = 0. If the second deriva-
tive f ″1c27  0, then f1c2 is a local minimum. If f ″1c2 6 0, then f1c2 is a local  
maximum.

f ∙ 1c 2 f > 1c 2 Graph of f is: f 1c 2 Example

0 + Concave upward Local minimum

0 - Concave downward Local maximum

0 0 ? Test does not apply

Testing Local Extrema Find the local maxima and minima for each function. Use 
the second-derivative test for local extrema when it applies.

(A) f1x2 = 4x3 + 9x2 - 12x + 3

(B) f1x2 = xe-0.2x

(C) f1x2 = 1
6 x6 - 4x5 + 25x4

SOLUTION
(A) Find first and second derivatives and determine critical numbers:

 f1x2 = 4x3 + 9x2 - 12x + 3
 f ′1x2 = 12x2 + 18x - 12 = 612x - 121x + 22
 f ″1x2 = 24x + 18 = 614x + 32

Critical numbers are x = -2 and x = 0.5.

  f ″1-22 = -30 6 0  f has a local maximum at x = -2.
  f ″10.52 = 30 7 0  f has a local minimum at x = 0.5.

Substituting x = -2 in the expression for f1x2 we find that f1-22 = 31 is a 
local maximum. Similarly, f10.52 = -0.25 is a local minimum.

(B)   f1x2 = xe-0.2x

 f ′1x2 = e-0.2x + xe-0.2x1-0.22
 = e-0.2x11 - 0.2x2

 f ″1x2 = e-0.2x1-0.2211 - 0.2x2 + e-0.2x1-0.22
 = e-0.2x10.04x - 0.42

Critical number: x = 1>0.2 = 5

f ″152 = e-11-0.22 6 0 f has a local maximum at x = 5.

So f152 = 5e-0.2152 ≈ 1.84 is a local maximum.

EXAMPLE 2
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(C)   f1x2 = 1
6 x6 - 4x5 + 25x4

 f ′1x2 = x5 - 20x4 + 100x3 = x31x - 102 2

  f ″1x2 = 5x4 - 80x3 + 300x2

Critical numbers are x = 0 and x = 10.

 f ″102 = 0
  f ″1102 = 0

The second-derivative test fails at both critical numbers, so 
the first-derivative test must be used.

Sign chart for f ′1x2 = x31x - 102 2 (partition numbers for f ′ are 0 and 10):

IncreasingDecreasing

x

Increasing

0

0

(10, `)(0, 10)(2`, 0)

f 9(x)

f (x)

2 2 2 2 1 1 1 1 1 1 1 1

10

0

Test Numbers

x f ′1x 2
-1 -121 1∙ 2

1 81 1∙ 2
11 1,331 1∙ 2

From the chart, we see that f1x2 has a local minimum at x = 0 and does not 
have a local extremum at x = 10. So f102 = 0 is a local minimum.

Matched Problem 2 Find the local maxima and minima for each function. 
Use the second-derivative test when it applies.

(A) f1x2 = x3 - 9x2 + 24x - 10

(B) f1x2 = ex - 5x

(C) f1x2 = 10x6 - 24x5 + 15x4

The second-derivative test for local extrema does not apply if f ″1c2 = 0 or if 
f ″1c2 is not defined. As Example 2C illustrates, if f ″1c2 = 0, then f1c2 may 
or may not be a local extremum. Some other method, such as the first-derivative 
test, must be used when f ″1c2 = 0 or f ″1c2 does not exist.

CONCEPTUAL INSIGHT

The solution of many optimization problems involves searching for an absolute 
extremum. If the function in question has only one critical number, then the second- 
derivative test for local extrema not only classifies the local extremum but also guarantees 
that the local extremum is, in fact, the absolute extremum.

THEOREM 3 Second-Derivative Test for Absolute Extrema on an Interval
Let f be continuous on an interval I from a to b with only one critical number c in (a, b).

If f ′1c2 = 0 and f ″1c2 7 0, then f1c2 is the absolute mini-
mum of f on I.

If f ′1c2 = 0 and f ″1c2 6 0, then f1c2 is the absolute maxi-
mum of f on I.

x
I

x
I

The function f may have additional critical numbers at one or both of a or b. 
Theorem 3 applies as long as I contains exactly one critical point that is not an end-
point of I. Since the second-derivative test for local extrema cannot be applied when 
f ″1c2 = 0 or f ″1c2 does not exist, Theorem 3 makes no mention of these cases.
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Finding Absolute Extrema on an Open Interval Find the absolute extrema of 
each function on 10, ∞ 2.

(A) f1x2 = x +
4
x

(B) f1x2 = 1ln x2 2 - 3 ln x

SOLUTION

(A)  f1x2 = x +
4
x

 f ′1x2 = 1 -  
4

x2 =
x2 - 4

x2 =
1x - 221x + 22

x2   Critical numbers are  
x = -2 and x = 2.

 f ″1x2 =
8

x3

The only critical number in the interval 10, ∞ 2 is x = 2. Since f ″122 = 1 7 0, 
f122 = 4 is the absolute minimum of f on 10, ∞ 2. Note that since lim

xS ∞  
f1x2 = ∞ ,  

f  has no maximum on 10, ∞ 2.

(B)  f1x2 = 1ln x2 2 - 3 ln x

 f ′1x2 = 12 ln x2  
1
x

-  
3
x

=
2 ln x - 3

x
 Critical number is x = e3>2.

 f ″1x2 =
x 

2
x

- 12 ln x - 32
x2 =

5 - 2 ln x

x2

The only critical number in the interval 10, ∞ 2 is x = e3>2. Since f ″1e3>22  =  
2>e3 7 0, f1e3>22 = -2.25 is the absolute minimum of f on 10, ∞ 2. Note that 
since lim

xS ∞
 ln 1x2 = ∞ , we have lim

xS ∞  
f1x2 = lim

xS ∞
 1ln x21ln x - 32 = ∞ , so 

f has no maximum on 10, ∞ 2.

Matched Problem 3 Find the absolute extrema of each function on 10, ∞ 2.

(A) f1x2 = 12 - x-  
5
x

(B) f1x2 = 5 ln x - x

EXAMPLE 3

Suppose that f ′1c2 = 0 and f ″1c2 7 0. What does a sign chart for f ′1x2 look like 
near c? What does the first-derivative test imply?

Explore and Discuss 2

Skills Warm-up Exercises 
In Problems 1–8, by inspecting the graph of the function, find the 
absolute maximum and absolute minimum on the given interval. 
(If necessary, review Section 1.2).

1. f1x2 = x on 3-2, 34 2. g1x2 = ∙ x ∙  on 3-1, 44
3. h1x2 = x2 on 3-5, 34 4. m1x2 = x3 on 3-3, 14
5. n1x2 = 1x on 33, 44 6. p1x2 = 23 x on 3-125, 2164
7. q1x2 = - 23 x on 327, 644 8. r1x2 = -x2 on 3-10, 114

Problems 9–18 refer to the graph of y = f1x2 shown here. 
Find the absolute minimum and the absolute maximum over the 
 indicated interval.

W

A
x

5 10

5

10

15

f (x)

Exercises 4.5
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48. Absolute minimum value on 30, ∞ 2 for

f1x2 = 12 - x21x + 12 2

49. Absolute maximum value on 10, ∞ 2 for

f1x2 = 2x4 - 8x3

50. Absolute maximum value on 10, ∞ 2 for

f1x2 = 4x3 - 8x4

51. Absolute maximum value on 10, ∞ 2 for

f1x2 = 20 - 3x -  
12
x

52. Absolute minimum value on 10, ∞ 2 for

f1x2 = 4 + x +
9
x

53. Absolute minimum value on 10, ∞ 2 for

f1x2 = 10 + 2x +
64

x2

54. Absolute maximum value on 30, ∞ 2 for

f1x2 = 65 - 5x -
540

x2

55. Absolute minimum value on 10, ∞ 2 for

f1x2 = x +
1
x

+
30

x3

56. Absolute minimum value on 10, ∞ 2 for

f1x2 = 2x +
5
x

+
4

x3

57. Absolute minimum value on 10, ∞ 2 for

f1x2 =
ex

x2

58. Absolute maximum value on 10, ∞ 2 for

f1x2 =
x4

ex

59. Absolute maximum value on 10, ∞ 2 for

f1x2 =
x3

ex

60. Absolute minimum value on 10, ∞ 2 for

f1x2 =
ex

x
61. Absolute maximum value on 10, ∞ 2 for

f1x2 = 5x - 2x ln x

62. Absolute minimum value on 10, ∞ 2 for

f1x2 = 4x ln x - 7x

63. Absolute maximum value on 10, ∞ 2 for

f1x2 = x213 - ln x2
64. Absolute minimum value on 10, ∞ 2 for

f1x2 = x31ln x - 22
65. Absolute maximum value on 10, ∞ 2 for

f1x2 = ln1xe-x2
66. Absolute maximum value on 10, ∞ 2 for

f1x2 = ln1x2e-x2

9. 30, 104 10. 32, 84 11. 30, 84 12. 32, 104
13. 31, 104 14. 30, 94 15. 31, 94 16. 30, 24
17. 32, 54 18. 35, 84
In Problems 19–22, find the absolute maximum and absolute 
minimum of each function on the indicated intervals.

19. f1x2 = 2x - 5

(A) 30, 44 (B) 30, 104 (C) 3-5, 104
20. f1x2 = 8 - x

(A) 30, 14 (B) 3-1, 14 (C) 3-1, 64
21. f1x2 = x2

(A) 3-1, 14 (B) 31, 54 (C) 3-5, 54
22. f1x2 = 36 - x2

(A) 3-6, 64 (B) 30, 64 (C) 34, 84
In Problems 23–26, find the absolute maximum and absolute 
minimum of each function on the given interval.

23. f1x2 = e-x on 3-1, 14 24. f1x2 =  ln x on 31, 24
25. f1x2 = 9 - x2 on 3-4, 44
26. f1x2 = x2 - 12x + 11 on 30, 104
In Problems 27–42, find the absolute extremum, if any, given by 
the second derivative test for each function.

27. f1x2 = x2 - 4x + 4 28. f1x2 = x2 + 2x + 1

29. f1x2 = -x2 - 4x + 6 30. f1x2 = -x2 + 6x + 1

31. f1x2 = x3 - 3 32. f1x2 = 6 - x3

33. f1x2 = x4 - 7 34. f1x2 = 8 - x4

35. f1x2 = x +
4
x

36. f1x2 = x +
9
x

37. f1x2 =
-3

x2 + 2
38. f1x2 =

x

x2 + 4

39. f1x2 =
1 - x

x2 - 4
40. f1x2 =

x - 1

x2 - 1

41. f1x2 =
-x2

x2 + 4
42. f1x2 =

x2

x2 + 1

In Problems 43–66, find the indicated extremum of each function 
on the given interval.

43. Absolute minimum value on 30, ∞ 2 for

f1x2 = 2x2 - 8x + 6

44. Absolute maximum value on 30, ∞ 2 for

f1x2 = 6x - x2 + 4

45. Absolute maximum value on 30, ∞ 2 for

f1x2 = 3x2 - x3

46. Absolute minimum value on 30, ∞ 2 for

f1x2 = 2x3 - 9x2

47. Absolute minimum value on 30, ∞ 2 for

f1x2 = 1x + 421x - 22 2

B
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75. 1-3,  f1-322 if f ′1-32 = 0 and f ″1-32 = 0

76. 1-1,  f1-122 if f ′1-12 = 0 and f ″1-12 6 0

77. 16,  f1622 if f ′162 = 1 and f ″162 does not exist

78. 15,  f1522 if f ′152 = 0 and f ″152 does not exist

79. (-4,  f  (-4)) if f ′(-4 ) = 0  and f ″(-4 ) 7 0

80. 11,  f1122 if f ′112 = 0 and f ″112 7 0

Answers to Matched Problems
1. (A)  Absolute maximum: f152 = 65; absolute minimum: 

f1-52 = -65
(B)  Absolute maximum: f1-22 = 16; absolute minimum: 

f122 = -16
(C)  Absolute maximum: f1-22 = 16; absolute minimum: 

f112 = -11
2. (A)  f122 = 10 is a local maximum; f142 = 6 is a local 

 minimum.
(B) f1ln 52 = 5 - 5 ln 5 is a local minimum.
(C)  f102 = 0 is a local minimum; there is no local extremum 

at x = 1.
3. (A) f1152 = 12 - 215

(B) f152 = 5 ln 5 - 5

In Problems 67–72, find the absolute maximum and minimum, if 
either exists, for each function on the indicated intervals.

67. f1x2 = x3 - 9x2 + 15x + 21

(A) 30, 64 (B) 3-2, 54 (C) 32, 74
68. f1x2 = 2x3 - 3x2 - 12x + 24

(A) 3-3, 44 (B) 3-2, 34 (C) 3-2, 14
69. f1x2 = 1x - 121x - 52 3 + 1

(A) 30, 34 (B) 31, 74 (C) 33, 64
70. f1x2 = x4 - 8x2 + 16

(A) 3-1, 34 (B) 30, 24 (C) 3-3, 44
71. f1x2 = x4 + 4x3 + 3

(A) 3-1, 14 (B) 30, 64 (C) 34, 84
72. f1x2 = x4 - 18x2 + 32

(A) 3-4, 44 (B) 3-1, 14 (C) 31, 34
In Problems 73–80, describe the graph of f at the given point 
relative to the existence of a local maximum or minimum with one 
of the following phrases: “Local maximum,” “Local minimum,” 
“Neither,” or “Unable to determine from the given information.” 
Assume that f(x) is continuous on 1- ∞ , ∞ 2.

73. 13,  f1322 if f ′132 = 0 and f ″13 2 6 0

74. 14,  f1422 if f ′142 = 1 and f ″142 6 0

C

Now we can use calculus to solve optimization problems—problems that involve 
finding the absolute maximum or the absolute minimum of a function. As you work 
through this section, note that the statement of the problem does not usually include 
the function to be optimized. Often, it is your responsibility to find the function and 
then to find the relevant absolute extremum.

Area and Perimeter
The techniques used to solve optimization problems are best illustrated through 
examples.

4.6 Optimization
■■ Area and Perimeter
■■ Maximizing Revenue and Profit
■■ Inventory Control

Maximizing Area A homeowner has $320 to spend on building a fence around a 
rectangular garden. Three sides of the fence will be constructed with wire fencing 
at a cost of $2 per linear foot. The fourth side will be constructed with wood fencing 
at a cost of $6 per linear foot. Find the dimensions and the area of the largest garden 
that can be enclosed with $320 worth of fencing.

SOLUTION To begin, we draw a figure (Fig. 1), introduce variables, and look for 
relationships among the variables.

EXAMPLE 1

x
y

$2

$2

$2

$6

Figure 1

Since we don’t know the dimensions of the garden, the lengths of fencing are 
represented by the variables x and y. The costs of the fencing materials are fixed and 
are represented by constants.

Now we look for relationships among the variables. The area of the garden is

A = xy

while the cost of the fencing is

 C = 2y + 2x + 2y + 6x
 = 8x + 4y
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The problem states that the homeowner has $320 to spend on fencing. We assume 
that enclosing the largest area will use all the money available for fencing. The 
problem has now been reduced to

Maximize A = xy subject to 8x + 4y = 320

Before we can use calculus to find the maximum area A, we must express A as a 
function of a single variable. We use the cost equation to eliminate one of the vari-
ables in the area expression (we choose to eliminate y—either will work).

 8x + 4y = 320
 4y = 320 - 8x

 y = 80 - 2x
 A = xy = x180 - 2x2 = 80x - 2x2

Now we consider the permissible values of x. Because x is one of the dimensions of 
a rectangle, x must satisfy

x Ú 0 Length is always nonnegative.

And because y = 80 - 2x is also a dimension of a rectangle, y must satisfy

 y = 80 - 2x Ú 0 Width is always nonnegative.
 80 Ú 2x
 40 Ú x  or  x … 40

We summarize the preceding discussion by stating the following model for this 
optimization problem:

Maximize A1x2 = 80x - 2x2 for 0 … x … 40

Next, we find any critical numbers of A:

 A′1x2 = 80 - 4x = 0
 80 = 4x

 x =
80
4

= 20 Critical number

Since A1x2 is continuous on [0, 40], the absolute maximum of A, if it exists, must 
occur at a critical number or an endpoint. Evaluating A at these numbers (Table 1), 
we see that the maximum area is 800 when

Table 1
x A 1x 2
0 0

20 800
40 0

x = 20  and  y = 80 - 21202 = 40

Finally, we must answer the questions posed in the problem. The dimensions of the 
garden with the maximum area of 800 square feet are 20 feet by 40 feet, with one 
20-foot side of wood fencing.

Matched Problem 1 Repeat Example 1 if the wood fencing costs $8 per linear 
foot and all other information remains the same.

We summarize the steps in the solution of Example 1 in the following box:

PROCEDURE Strategy for Solving Optimization Problems
Step 1  Introduce variables, look for relationships among the variables, and 

 construct a mathematical model of the form

Maximize 1or minimize2 f1x2 on the interval I

Step 2 Find the critical numbers of f1x2.
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Step 3  Use the procedures developed in Section 4.5 to find the absolute maximum 
(or minimum) of f1x2 on the interval I and the numbers x where this occurs.

Step 4  Use the solution to the mathematical model to answer all the questions 
asked in the problem.

Minimizing Perimeter Refer to Example 1. The homeowner judges that an area of 
800 square feet for the garden is too small and decides to increase the area to 1,250 
square feet. What is the minimum cost of building a fence that will enclose a garden 
with an area of 1,250 square feet? What are the dimensions of this garden? Assume 
that the cost of fencing remains unchanged.

SOLUTION Refer to Figure 1 and the solution of Example 1. This time we want to 
minimize the cost of the fencing that will enclose 1,250 square feet. The problem 
can be expressed as

Minimize C = 8x + 4y subject to xy = 1,250

Since x and y represent distances, we know that x Ú 0 and y Ú 0. But neither variable 
can equal 0 because their product must be 1,250.

 xy = 1,250  Solve the area equation for y.

 y =
1,250

x
 Substitute for y in the cost equation.

 C1x2 = 8x + 4  
1,250

x

 = 8x +
5,000

x
  x 7 0

The model for this problem is

 Minimize C1x2 = 8x +
5,000

x
  for x 7 0

 = 8x + 5,000x-1

 C′1x2 = 8 - 5,000x-2

 = 8 -  
5,000

x2 = 0

 8 =
5,000

x2

 x2 =
5,000

8
= 625

 x = 2625 = 25   The negative square  
root is discarded,  
since x 7 0.

We use the second derivative to determine the behavior at x = 25.

 C′1x2 = 8 - 5,000x-2

 C″1x2 = 0 + 10,000x-3 =
10,000

x3

 C″1252 =
10,000

253 = 0.64 7 0

EXAMPLE 2
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The second-derivative test for local extrema shows that C1x2 has a local  minimum 
at x = 25, and since x = 25 is the only critical number of C1x2 for x 7 0, then 
C1252 must be the absolute minimum for x 7 0. When x = 25, the cost is

C1252 = 81252 +
5,000

25
= 200 + 200 = $400

and

y =
1,250

25
= 50

The minimum cost for enclosing a 1,250-square-foot garden is $400, and the 
 dimensions are 25 feet by 50 feet, with one 25-foot side of wood fencing.

Matched Problem 2 Repeat Example 2 if the homeowner wants to enclose a 
1,800-square-foot garden and all other data remain unchanged.

! CAUTION We cannot as-
sume that a cri-

The restrictions on the variables in the solutions of Examples 1 and 2 are typical 
of problems involving areas or perimeters (or the cost of the perimeter):

 8x + 4y = 320  Cost of fencing (Example 1)

 xy = 1,250 Area of garden (Example 2)

The equation in Example 1 restricts the values of x to

0 … x … 40  or  30, 404
The endpoints are included in the interval for our convenience (a closed 

interval is easier to work with than an open one). The area function is defined at 
each endpoint, so it does no harm to include them.

The equation in Example 2 restricts the values of x to

x 7 0  or  10, ∞ 2
Neither endpoint can be included in this interval. We cannot include 0 because the area 
is not defined when x = 0, and we can never include ∞  as an endpoint. Remember, 
∞  is not a number; it is a symbol that indicates the interval is unbounded.

CONCEPTUAL INSIGHT

Maximizing Revenue and Profit
Maximizing Revenue An office supply company sells x permanent mark-
ers per year at $p per marker. The price–demand equation for these markers is 
p = 10 - 0.001x. What price should the company charge for the markers to maxi-
mize revenue? What is the maximum revenue?

SOLUTION  Revenue = price * demand
 R1x2 = 110 - 0.001x2x

 = 10x - 0.001x2

Both price and demand must be nonnegative, so

 x Ú 0 and p = 10 - 0.001x Ú 0
 10 Ú 0.001x

 10,000 Ú x

The mathematical model for this problem is

 Maximize R1x2 = 10x - 0.001x2  0 … x … 10,000
 R′1x2 = 10 - 0.002x

 10 - 0.002x = 0
 10 = 0.002x

 x =
10

0.002
= 5,000  Critical number

EXAMPLE 3

tical number gives the location of the 
minimum (or maximum). We still 
need to test the critical number. 
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Use the second-derivative test for absolute extrema:

 R″1x2 = -0.002 6 0 for all x
 Max R1x2 = R15,0002 = $25,000

When the demand is x = 5,000, the price is

10 - 0.00115,0002 = $5 p = 10 - 0.001x

The company will realize a maximum revenue of $25,000 when the price of a marker 
is $5.

Matched Problem 3 An office supply company sells x heavy-duty paper shred-
ders per year at $p per shredder. The price–demand equation for these shredders is

p = 300 -  
x

30

What price should the company charge for the shredders to maximize revenue? 
What is the maximum revenue?

Maximizing Profit The total annual cost of manufacturing x permanent markers 
for the office supply company in Example 3 is

C1x2 = 5,000 + 2x

What is the company’s maximum profit? What should the company charge for each 
marker, and how many markers should be produced?

SOLUTION Using the revenue model in Example 3, we have

 Profit = Revenue - Cost
 P1x2 = R1x2 - C1x2

 = 10x - 0.001x2 - 5,000 - 2x
 = 8x - 0.001x2 - 5,000

The mathematical model for profit is

Maximize P1x2 = 8x - 0.001x2 - 5,000  0 … x … 10,000

The restrictions on x come from the revenue model in Example 3.

 P′1x2 = 8 - 0.002x = 0

 8 = 0.002x

 x =
8

0.002
= 4,000 Critical number

 P″1x2 = -0.002 6 0 for all x

Since x = 4,000 is the only critical number and P″1x2 6 0,

Max P1x2 = P14,0002 = $11,000

Using the price–demand equation from Example 3 with x = 4,000, we find that

p = 10 - 0.00114,0002 = $6 p = 10 - 0.001x

A maximum profit of $11,000 is realized when 4,000 markers are manufactured 
annually and sold for $6 each.

EXAMPLE 4
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The results in Examples 3 and 4 are illustrated in Figure 2.

x

10,000

20,000

30,000
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t (
do
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)

5,0000 10,000

Loss

Loss

Production (number of markers per year)

Minimum
cost

Profit

Profit

Maximum
profit

Maximum
revenue

R(x), C(x) 

Revenue
Cost

210,000

220,000

10,000

Pr
ofi

t (
do

lla
rs

) 0

Profit

x

P

5,000 10,000

Production (number of markers per year)

Figure 2

Matched Problem 4 The annual cost of manufacturing x paper shredders for 
the office supply company in Matched Problem 3 is C1x2 = 90,000 + 30x. What 
is the company’s maximum profit? What should it charge for each shredder, and 
how many shredders should it produce?

In Figure 2, notice that the maximum revenue and the maximum profit occur at 
different production levels. The maximum profit occurs when

P′1x2 = R′1x2 - C′1x2 = 0

that is, when the marginal revenue is equal to the marginal cost. Notice that the 
slopes of the revenue function and the cost function are the same at this produc-
tion level.

CONCEPTUAL INSIGHT

Maximizing Profit The government decides to tax the company in Example 4 
$2 for each marker produced. Taking into account this additional cost, how many 
markers should the company manufacture annually to maximize its profit? What 
is the maximum profit? How much should the company charge for the markers to 
realize the maximum profit?

SOLUTION The tax of $2 per unit changes the company’s cost equation:

 C1x2 = original cost + tax
 = 5,000 + 2x + 2x
 = 5,000 + 4x

The new profit function is

 P1x2 = R1x2 - C1x2
 = 10x - 0.001x2 - 5,000 - 4x
 = 6x - 0.001x2 - 5,000

EXAMPLE 5
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So we must solve the following equation:

 Maximize P1x2 = 6x - 0.001x2 - 5,000  0 … x … 10,000

 P′1x2 = 6 - 0.002x

 6 - 0.002x = 0

 x = 3,000 Critical number

 P″1x2 = -0.002 6 0 for all x

 Max P1x2 = P13,0002 = $4,000

Using the price–demand equation (Example 3) with x = 3,000, we find that

p = 10 - 0.00113,0002 = $7 p = 10 - 0.001x

The company’s maximum profit is $4,000 when 3,000 markers are produced and 
sold annually at a price of $7.

Even though the tax caused the company’s cost to increase by $2 per marker, 
the price that the company should charge to maximize its profit increases by  
only $1. The company must absorb the other $1, with a resulting decrease of 
$7,000 in maximum profit.

Matched Problem 5 The government decides to tax the office supply company 
in Matched Problem 4 $20 for each shredder produced. Taking into account this 
additional cost, how many shredders should the company manufacture annually to 
maximize its profit? What is the maximum profit? How much should the company 
charge for the shredders to realize the maximum profit?

Maximizing Revenue When a management training company prices its semi-
nar on management techniques at $400 per person, 1,000 people will attend the 
seminar. The company estimates that for each $5 reduction in price, an additional 
20 people will attend the seminar. How much should the company charge for the 
seminar in order to maximize its revenue? What is the maximum revenue?

SOLUTION Let x represent the number of $5 price reductions.

 400 - 5x = price per customer
 1,000 + 20x = number of customers

 Revenue = 1price per customer21number of customers2
 R1x2 = 1400 - 5x2 * 11,000 + 20x2

Since price cannot be negative, we have

 400 - 5x Ú 0
 400 Ú 5x

 80 Ú x  or  x … 80

A negative value of x would result in a price increase. Since the problem is stated in 
terms of price reductions, we must restrict x so that x Ú 0. Putting all this together, 
we have the following model:

 Maximize R1x2 = 1400 - 5x211,000 + 20x2 for 0 … x … 80
 R1x2 = 400,000 + 3,000x - 100x2

 R′1x2 = 3,000 - 200x = 0
 3,000 = 200x

x = 15 Critical number

Since R1x2 is continuous on the interval [0, 80], we can determine the behavior 
of the graph by constructing a table. Table 2 shows that R1152 = $422,500 is 

EXAMPLE 6
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the absolute maximum revenue. The price of attending the seminar at x = 15 is 
400 - 51152 = $325. The company should charge $325 for the seminar in order 
to receive a maximum revenue of $422,500.

Table 2
x R 1x 2
0 400,000

15 422,500
80 0

Matched Problem 6 A walnut grower estimates from past records that if 20 
trees are planted per acre, then each tree will average 60 pounds of nuts per year. If, 
for each additional tree planted per acre, the average yield per tree drops 2 pounds, 
then how many trees should be planted to maximize the yield per acre? What is the 
maximum yield?

Maximizing Revenue After additional analysis, the management training company  
in Example 6 decides that its estimate of attendance was too high. Its new estimate is 
that only 10 additional people will attend the seminar for each $5 decrease in price. 
All other information remains the same. How much should the company charge for 
the seminar now in order to maximize revenue? What is the new maximum revenue?

SOLUTION Under the new assumption, the model becomes

 Maximize R1x2 = 1400 - 5x211,000 + 10x2  0 … x … 80
 = 400,000 - 1,000x - 50x2

 R′1x2 = -1,000 - 100x = 0
 -1,000 = 100x

 x = -10 Critical number

Note that x = -10 is not in the interval [0, 80]. Since R1x2 is continuous on [0, 80],  
we can use a table to find the absolute maximum revenue. Table 3 shows that the 
maximum revenue is R102 = $400,000. The company should leave the price at 
$400. Any $5 decreases in price will lower the revenue.

EXAMPLE 7

Matched Problem 7 After further analysis, the walnut grower in Matched 
Problem 6 determines that each additional tree planted will reduce the average 
yield by 4 pounds. All other information remains the same. How many additional 
trees per acre should the grower plant now in order to maximize the yield? What is 
the new maximum yield?

Table 3
x R 1x 2
0 400,000

80 0

The solution in Example 7 is called an endpoint solution because the optimal 
value occurs at the endpoint of an interval rather than at a critical number in the 
interior of the interval.

CONCEPTUAL INSIGHT

Inventory Control
Inventory Control A multimedia company anticipates that there will be a demand 
for 20,000 copies of a certain DVD during the next year. It costs the company $0.50 
to store a DVD for one year. Each time it must make additional DVDs, it costs $200 
to set up the equipment. How many DVDs should the company make during each 
production run to minimize its total storage and setup costs?

SOLUTION This type of problem is called an inventory control problem. One of 
the basic assumptions made in such problems is that the demand is uniform. For 
example, if there are 250 working days in a year, then the daily demand would 
be 20,000 , 250 = 80 DVDs. The company could decide to produce all 20,000 

EXAMPLE 8
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DVDs at the beginning of the year. This would certainly minimize the setup costs 
but would result in very large storage costs. At the other extreme, the company 
could produce 80 DVDs each day. This would minimize the storage costs but would 
result in very large setup costs. Somewhere between these two extremes is the opti-
mal solution that will minimize the total storage and setup costs. Let

 x = number of DVDs manufactured during each production run

 y = number of production runs

It is easy to see that the total setup cost for the year is 200y, but what is the total stor-
age cost? If the demand is uniform, then the number of DVDs in storage between 
production runs will decrease from x to 0, and the average number in storage each 
day is x>2. This result is illustrated in Figure 3.

Number in storage

Production run

x

0
First Second Third Fourth

Average
number in

storagex
2

Figure 3

Since it costs $0.50 to store a DVD for one year, the total storage cost is 
0.51x>22 = 0.25x and the total cost is

 total cost = setup cost + storage cost

 C = 200y + 0.25x

In order to write the total cost C as a function of one variable, we must find a rela-
tionship between x and y. If the company produces x DVDs in each of y production 
runs, then the total number of DVDs produced is xy.

 xy = 20,000

 y =
20,000

x

Certainly, x must be at least 1 and cannot exceed 20,000. We must solve the follow-
ing equation:

 Minimize C1x2 = 200a20,000
x

b + 0.25x  1 … x … 20,000

 C1x2 =
4,000,000

x
+ 0.25x

 C′1x2 = -
4,000,000

x2 + 0.25

 -  
4,000,000

x2 + 0.25 = 0

 x2 =
4,000,000

0.25
 x2 = 16,000,000 -4,000 is not a critical number, since
 x = 4,000    1 … x … 20,000.

 C″1x2 =
8,000,000

x3 7 0  for x ∊ 11, 20,0002
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Therefore,
 Min C1x2 = C14,0002 = 2,000

 y =
20,000
4,000

= 5

The company will minimize its total cost by making 4,000 DVDs five times during 
the year.

Matched Problem 8 Repeat Example 8 if it costs $250 to set up a production 
run and $0.40 to store a DVD for one year.

Skills Warm-up Exercises

In Problems 1–8, express the given quantity as a function f1x2 of 
one variable x. (If necessary, review Section 1.1).

1. The product of two numbers x and y whose sum is 28

2. The sum of two numbers x and y whose product is 54

3. The area of a circle of diameter x

4. The volume of a sphere of diameter x

5. The volume of a right circular cylinder of radius x and height 
equal to one-third of the diameter

6. The volume of a right circular cylinder of diameter x and 
height equal to one-third of the diameter

7. The area of a rectangle of length x and width y that has a 
perimeter of 120 feet

8. The perimeter of a rectangle of length x and width y that has 
an area of 200 square meters

9. Find two numbers whose sum is 13 and whose product is a 
maximum.

10. Find two numbers whose sum is 27 and whose product is a 
maximum.

11. Find two numbers whose difference is 13 and whose product 
is a minimum.

12. Find two numbers whose difference is 27 and whose product 
is a minimum.

13. Find two positive numbers whose product is 13 and whose 
sum is a minimum.

14. Find two positive numbers whose product is 27 and whose 
sum is a minimum.

15. Find the dimensions of a rectangle with an area of 200 square 
feet that has the minimum perimeter.

16. Find the dimensions of a rectangle with an area of 108 square 
feet that has the minimum perimeter.

17. Find the dimensions of a rectangle with a perimeter of 
148 feet that has the maximum area.

18. Find the dimensions of a rectangle with a perimeter of 92 feet 
that has the maximum area.

W

A

19. Maximum revenue and profit. A company manufactures 
and sells x smartphones per week. The weekly price–demand 
and cost equations are, respectively,

p = 500 - 0.4x  and  C1x2 = 20,000 + 20x

(A) What price should the company charge for the phones, 
and how many phones should be produced to maximize the 
weekly revenue? What is the maximum weekly revenue?

(B) What is the maximum weekly profit? How much should 
the company charge for the phones, and how many 
phones should be produced to realize the maximum 
weekly profit?

20. Maximum revenue and profit. A company manufactures 
and sells x cameras per week. The weekly price–demand and 
cost equations are, respectively,

p = 400 - 0.5x  and  C1x2 = 2,000 + 200x

(A) What price should the company charge for the cameras, 
and how many cameras should be produced to maximize 
the weekly revenue? What is the maximum revenue?

(B) What is the maximum weekly profit? How much should 
the company charge for the cameras, and how many 
cameras should be produced to realize the maximum 
weekly profit?

21. Maximum revenue and profit. A company manufactures 
and sells x television sets per month. The monthly cost and 
price–demand equations are

 C1x2 = 72,000 + 60x

 p = 200 -  
x

30
  0 … x … 6,000

(A) Find the maximum revenue.

(B) Find the maximum profit, the production level that will 
realize the maximum profit, and the price the company 
should charge for each television set.

(C) If the government decides to tax the company $5 for 
each set it produces, how many sets should the company 
manufacture each month to maximize its profit? What is 
the maximum profit? What should the company charge 
for each set?

B

Exercises 4.6
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22. Maximum revenue and profit. Repeat Problem 21 for

 C1x2 = 60,000 + 60x

 p = 200 -  
x

50
  0 … x … 10,000

23. Maximum profit. The following table contains price– 
demand and total cost data for the production of 70-litre 
expedition backpacks, where p is the wholesale price (in dol-
lars) of a backpack for an annual demand of x backpacks and 
C is the total cost (in dollars) of producing x backpacks:

(A) Find a quadratic regression equation for the price– 
demand data, using x as the independent variable.

x p C

900 280 115,000

1,050 260 135,000

1,400 200 165,000

1,750 140 195,000

(B) Find a linear regression equation for the cost data, using x 
as the independent variable.

(C) What is the maximum profit? What is the wholesale 
price per 70-litre expedition backpack that should be 
charged to realize the maximum profit? Round answers 
to the nearest dollar.

24. Maximum profit. The following table contains price– 
demand and total cost data for the production of lightweight 
backpacks, where p is the wholesale price (in dollars) of a 
backpack for an annual demand of x backpacks and C is the 
total cost (in dollars) of producing x backpacks:

x p C

3,100 69 115,000

4,300 59 145,000

5,400 49 160,000

6,500 29 180,000

(A) Find a quadratic regression equation for the price– 
demand data, using x as the independent variable.

(B) Find a linear regression equation for the cost data, using 
x as the independent variable.

(C) What is the maximum profit? What is the wholesale 
price per lightweight backpack that should be charged 
to realize the maximum profit? Round answers to the 
nearest dollar.

25. Maximum revenue. A deli sells 640 sandwiches per day at 
a price of $8 each.

(A) A market survey shows that for every $0.10 reduction 
in price, 40 more sandwiches will be sold. How much 
should the deli charge for a sandwich in order to maxi-
mize revenue?

(B) A different market survey shows that for every $0.20 
reduction in the original $8 price, 15 more sandwiches 
will be sold. Now how much should the deli charge for a 
sandwich in order to maximize revenue?

26. Maximum revenue. A university student center sells 1,600 
cups of coffee per day at a price of $2.40.

(A) A market survey shows that for every $0.05 reduction in 
price, 50 more cups of coffee will be sold. How much 
should the student center charge for a cup of coffee in 
order to maximize revenue?

(B) A different market survey shows that for every $0.10 
reduction in the original $2.40 price, 60 more cups of 
coffee will be sold. Now how much should the student 
center charge for a cup of coffee in order to maximize 
revenue?

27. Car rental. A car rental agency rents 200 cars per day at 
a rate of $30 per day. For each $1 increase in rate, 5 fewer 
cars are rented. At what rate should the cars be rented to 
produce the maximum income? What is the maximum 
income?

28. Rental income. A 250-room hotel in Paris is filled to capac-
ity every night at €100 a room. For each €1 increase in rent, 
2 fewer rooms are rented. If each rented room costs €9 to 
service per day, how much should the management charge for 
each room to maximize gross profit? What is the maximum 
gross profit?

29. Agriculture. A commercial cherry grower estimates from 
past records that if 30 trees are planted per acre, then each 
tree will yield an average of 50 pounds of cherries per season. 
If, for each additional tree planted per acre (up to 20), the 
average yield per tree is reduced by 1 pound, how many trees 
should be planted per acre to obtain the maximum yield per 
acre? What is the maximum yield?

30. Agriculture. A commercial pear grower must decide on 
the optimum time to have fruit picked and sold. If the 
pears are picked now, they will bring 30¢ per pound, with 
each tree yielding an average of 60 pounds of salable 
pears. If the average yield per tree increases 6 pounds per 
tree per week for the next 4 weeks, but the price drops  
2¢ per pound per week, when should the pears be picked  
to realize the maximum return per tree? What is the  
maximum return?

31. Manufacturing. A candy box is to be made out of a piece 
of cardboard that measures 8 by 12 inches. Squares of equal 
size will be cut out of each corner, and then the ends and 
sides will be folded up to form a rectangular box. What size 
square should be cut from each corner to obtain a maximum 
volume?

32. Packaging. A parcel delivery service will deliver a package 
only if the length plus girth (distance around) does not exceed 
108 inches.

(A) Find the dimensions of a rectangular box with square 
ends that satisfies the delivery service’s restriction 
and has maximum volume. What is the maximum 
volume?

(B) Find the dimensions (radius and height) of a cylin-
drical container that meets the delivery service’s 
requirement and has maximum volume. What is the 
maximum volume?

C
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Length

Girth

Figure for 32

33. Construction costs. A fence is to be built to enclose a rect-
angular area of 800 square feet. The fence along three sides 
is to be made of material that costs $6 per foot. The material 
for the fourth side costs $18 per foot. Find the dimensions of 
the rectangle that will allow for the most economical fence 
to be built.

34. Construction costs. If a builder has only $864 to spend on a 
fence, but wants to use both $6 and $18 per foot fencing as in 
Problem 33, what is the maximum area that can be enclosed? 
What are its dimensions?

35. Construction costs. The owner of a retail lumber store wants 
to construct a fence to enclose an outdoor storage area ad-
jacent to the store. The enclosure must use the full length of 
the store as part of one side of the area (see figure). Find the 
dimensions that will enclose the largest area if

(A) 240 feet of fencing material are used.

(B) 400 feet of fencing material are used.

100 ft

36. Construction costs. If the owner wants to enclose a rectan-
gular area of 12,100 square feet as in Problem 35, what are 
the dimensions of the area that requires the least fencing? 
How many feet of fencing are required?

37. Inventory control. A paint manufacturer has a uniform an-
nual demand for 16,000 cans of automobile primer. It costs 
$4 to store one can of paint for one year and $500 to set up 
the plant for production of the primer. How many times a 
year should the company produce this primer in order to 
minimize the total storage and setup costs?

38. Inventory control. A pharmacy has a uniform annual 
demand for 200 bottles of a certain antibiotic. It costs $10 

to store one bottle for one year and $40 to place an order. 
How many times during the year should the pharmacy order 
the antibiotic in order to minimize the total storage and 
reorder costs?

39. Inventory control. A publishing company sells 50,000 
copies of a certain book each year. It costs the company 
$1 to store a book for one year. Each time that it prints 
additional copies, it costs the company $1,000 to set up 
the presses. How many books should the company produce 
during each printing in order to minimize its total storage 
and setup costs?

40. Inventory control. A tool company has a uniform annual 
demand for 9,000 premium chainsaws. It costs $5 to store 
a chainsaw for a year and $2,500 to set up the plant for manu-
facture of the premium model. How many chainsaws should 
be manufactured in each production run in order to minimize 
the total storage and setup costs?

41. Operational costs. The cost per hour for fuel to run a train 
is v2>4 dollars, where v is the speed of the train in miles per 
hour. (Note that the cost goes up as the square of the speed.) 
Other costs, including labor, are $300 per hour. How fast 
should the train travel on a 360-mile trip to minimize the total 
cost for the trip?

42. Operational costs. The cost per hour for fuel to drive a 
rental truck from one city to another, a distance of 800 miles, 
is given by

f1v2 = 0.03v

2 - 2.2v + 72

where v is the speed of the truck in miles per hour. Other 
costs are $40 per hour. How fast should you drive to mini-
mize the total cost?

43. Construction costs. A freshwater pipeline is to be run from 
a source on the edge of a lake to a small resort community on 
an island 5 miles offshore, as indicated in the figure.

Island

5 mi

 

x
10 2 x

10 miles

(A) If it costs 1.4 times as much to lay the pipe in the lake as 
it does on land, what should x be (in miles) to minimize 
the total cost of the project?

(B) If it costs only 1.1 times as much to lay the pipe in the 
lake as it does on land, what should x be to minimize 
the total cost of the project? [Note: Compare with 
Problem 46.]
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44. Drug concentration. The concentration C(t), in milligrams 
per cubic centimeter, of a particular drug in a patient’s blood-
stream is given by

C1t2 =
0.16t

t2 + 4t + 4

where t is the number of hours after the drug is taken. How 
many hours after the drug is taken will the concentration be 
maximum? What is the maximum concentration?

45. Bacteria control. A lake used for recreational swimming 
is treated periodically to control harmful bacteria growth. 
Suppose that t days after a treatment, the concentration of 
bacteria per cubic centimeter is given by

C1t2 = 30t2 - 240t + 500  0 … t … 8

How many days after a treatment will the concentration be 
minimal? What is the minimum concentration?

46. Bird flights. Some birds tend to avoid flights over large 
bodies of water during daylight hours. Suppose that an adult 
bird with this tendency is taken from its nesting area on the 
edge of a large lake to an island 5 miles offshore and is then 
released (see figure).

Flight path

Nesting
area

Lake

Island

5 mi

 

x
10 2 x

10 miles

(A) If it takes 1.4 times as much energy to fly over water as 
land, how far up the shore (x, in miles) should the bird 
head to minimize the total energy expended in returning 
to the nesting area?

(B) If it takes only 1.1 times as much energy to fly over 
water as land, how far up the shore should the bird head 
to minimize the total energy expended in returning to the 
nesting area? [Note: Compare with Problem  43.]

47. Botany. If it is known from past experiments that the height 
(in feet) of a certain plant after t months is given approxi-
mately by

H1t2 = 4t1>2 - 2t  0 … t … 2

then how long, on average, will it take a plant to reach its 
maximum height? What is the maximum height?

48. Pollution. Two heavily industrial areas are located 10 
miles apart, as shown in the figure. If the concentration of 
 particulate matter (in parts per million) decreases as the 

reciprocal of the square of the distance from the source, and 
if area A1 emits eight times the particulate matter as A2, then 
the concentration of particulate matter at any point between 
the two areas is given by

C1x2 =
8k

x2 +
k

110 - x2 2  0.5 … x … 9.5, k 7 0

How far from A1 will the concentration of particulate matter 
between the two areas be at a minimum?

x 10 2 x

A1 A2

49. Politics. In a newly incorporated city, the voting population 
(in thousands) is estimated to be

N1t2 = 30 + 12t2 - t3  0 … t … 8

where t is time in years. When will the rate of increase of 
N1t2 be most rapid?

50. Learning. A large grocery chain found that, on average, a 
checker can recall P% of a given price list x hours after start-
ing work, as given approximately by

P1x2 = 96x - 24x2  0 … x … 3

At what time x does the checker recall a maximum percentage? 
What is the maximum?

Answers to Matched Problems
 1.  The dimensions of the garden with the maximum area of 

640 square feet are 16 feet by 40 feet, with one 16-foot side 
with wood fencing.

 2.  The minimum cost for enclosing a 1,800-square-foot garden 
is $480, and the dimensions are 30 feet by 60 feet, with one 
30-foot side with wood fencing.

 3.  The company will realize a maximum revenue of $675,000 
when the price of a shredder is $150.

 4.  A maximum profit of $456,750 is realized when 4,050 
shredders are manufactured annually and sold for $165 
each.

 5.  A maximum profit of $378,750 is realized when 3,750 
shredders are manufactured annually and sold for $175 
each.

 6.  The maximum yield is 1,250 pounds per acre when 5  
additional trees are planted on each acre.

 7.  The maximum yield is 1,200 pounds when no additional 
trees are planted.

 8.  The company should produce 5,000 DVDs four times a year.
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Chapter 4 Summary and Review
Important Terms, Symbols, and Concepts
4.1  First Derivative and Graphs EXAMPLES

• A function f is increasing on an interval (a, b) if f1x22  7 f1x12 whenever a 6 x1 6 x2 6 b, and f is 
decreasing on (a, b) if f1x22 6 f1x12 whenever a 6 x1 6 x2 6 b.

• For the interval 1a, b2, if f ′ 7 0, then f is increasing, and if f ′ 6 0, then f is decreasing. So a sign chart 
for f ′ can be used to tell where f is increasing or decreasing.

• A real number x in the domain of f such that f ′1x2 = 0 or f ′1x2 does not exist is called a critical 
 number of f. So a critical number of f is a partition number for f ′ that also belongs to the domain of f.

• A value f1c2 is a local maximum if there is an interval (m, n) containing c such that f1x2 … f1c2 for 
all x in (m, n). A value f1c2 is a local minimum if there is an interval (m, n) containing c such that 
f1x2 Ú f1c2 for all x in (m, n). A local maximum or local minimum is called a local extremum.

• If f1c2 is a local extremum, then c is a critical number of f.

• The first-derivative test for local extrema identifies local maxima and minima of f by means of a sign 
chart for f ′.

Ex. 1, p. 284
Ex. 2, p. 285
Ex. 3, p. 285
Ex. 4, p. 286
Ex. 5, p. 287
Ex. 6, p. 288
Ex. 7, p. 290
Ex. 8, p. 292
Ex. 9, p. 293

4.2  Second Derivative and Graphs
• The graph of f is concave upward on (a, b) if f ′ is increasing on (a, b), and is concave downward on 

(a, b) if f ′ is decreasing on (a, b).

• For the interval (a, b), if f ″ 7 0, then f is concave upward, and if f ″ 6 0, then f is concave downward. 
So a sign chart for f ″ can be used to tell where f is concave upward or concave downward.

• An inflection point of f is a point 1c, f1c22 on the graph of f where the concavity changes.

• The graphing strategy on page 306 is used to organize the information obtained from f ′ and f ″ in order 
to sketch the graph of f.

• If sales  N1x2 are expressed as a function of the amount x spent on advertising, then the dollar amount 
at which  N′1x2, the rate of change of sales, goes from increasing to decreasing is called the point of 
 diminishing returns. If d is the point of diminishing returns, then 1d, N1d22 is an inflection point of  N1x2.

Ex. 1, p. 301

Ex. 2, p. 303
Ex. 3, p. 304
Ex. 4, p. 305
Ex. 5, p. 306
Ex. 6, p. 308
Ex. 7, p. 310

4.3  L’Hôpital’s Rule
• L’Hôpital’s rule for 0>0 indeterminate forms: If lim

xSc f1x2 = 0 and lim
x S c

g1x2 = 0, then

lim
xSc

 
f1x2
g1x2 = lim

xSc
 
f ′1x2
g′1x2

provided the second limit exists or is ∞  or - ∞ .

• Always check to make sure that L’Hôpital’s rule is applicable before using it.

• L’Hôpital’s rule remains valid if the symbol x S c is replaced everywhere it occurs by one of

x S c+  x S c-  x S ∞  x S - ∞

• L’Hôpital’s rule is also valid for indeterminate forms 
{ ∞
{ ∞

.

Ex. 1, p. 317
Ex. 2, p. 317
Ex. 3, p. 318
Ex. 4, p. 319
Ex. 5, p. 320
Ex. 6, p. 320

Ex. 7, p. 321
Ex. 8, p. 321

Ex. 9, p. 323
Ex. 10, p. 323

4.4  Curve-Sketching Techniques
• The graphing strategy on pages 325 and 326 incorporates analyses of f, f ′, and f ″ in order to sketch a 

graph of f, including intercepts and asymptotes.

• If f1x2 = n1x2 >d1x2 is a rational function and the degree of  n1x2 is 1 more than the degree of  d1x2, 
then the graph of f1x2 has an oblique asymptote of the form y = mx + b.

Ex. 1, p. 326
Ex. 2, p. 327
Ex. 3, p. 328
Ex. 4, p. 330
Ex. 5, p. 332
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4.5  Absolute Maxima and Minima
• If f1c2 Ú f1x2 for all x in the domain of f, then f1c2 is called the absolute maximum of f. If 

f1c2 … f1x2 for all x in the domain of f, then f1c2 is called the absolute minimum of f. An absolute 
maximum or absolute minimum is called an absolute extremum.

• A function that is continuous on a closed interval [a, b] has both an absolute maximum and an absolute 
minimum on that interval.

• Absolute extrema, if they exist, must occur at critical numbers or endpoints.

• To find the absolute maximum and absolute minimum of a continuous function f on a closed interval, 
identify the endpoints and critical numbers in the interval, evaluate the function f at each of them, and 
choose the largest and smallest values of f.

• Second-derivative test for local extrema: If f ′1c2 = 0 and f ″1c2 7 0, then f1c2 is a local minimum. If 
f ′1c2 = 0 and f ″1c2 6 0, then f1c2 is a local maximum. No conclusion can be drawn if f ″1c2 = 0.

• The second-derivative test for absolute extrema on an interval is applicable when there is only one 
critical number c in the interior of an interval I and f ′1c2 = 0 and f ″1c2 ∙ 0.

Ex. 1, p. 340

Ex. 2, p. 342

Ex. 3, p. 344

4.6  Optimization
• The procedure on pages 347 and 348 for solving optimization problems involves finding the absolute 

maximum or absolute minimum of a function f1x2 on an interval I. If the absolute maximum or absolute 
minimum occurs at an endpoint, not at a critical number in the interior of I, the extremum is called an 
endpoint solution. The procedure is effective in solving problems in business, including inventory 
control problems, manufacturing, construction, engineering, and many other fields.

Ex. 1, p. 346
Ex. 2, p. 348
Ex. 3, p. 349
Ex. 4, p. 350
Ex. 5, p. 351
Ex. 6, p. 352
Ex. 7, p. 353
Ex. 8, p. 353

Work through all the problems in this chapter review, and check 
your answers in the back of the book. Answers to all review prob-
lems are there, along with section numbers in italics to indicate 
where each type of problem is discussed. Where weaknesses show 
up, review appropriate sections in the text.

Problems 1–8 refer to the following graph of y = f1x2. Identify the 
points or intervals on the x axis that produce the indicated behavior.

1. f1x2 is increasing. 2. f ′1x2 6 0

3. The graph of f is concave downward.

x

f (x)

a c1 c2

c3

c4 c5 c6 c7

b

Figure for 1–8

4. Local minima 5. Absolute maxima

6. f ′1x2 appears to be 0.

7. f ′1x2 does not exist.

8. Inflection points

In Problems 9 and 10, use the given information to sketch the 
graph of f. Assume that f is continuous on its domain and that all 
intercepts are included in the information given.

9. Domain: All real x
x -3 -2 -1 0 2 3

f 1x 2 0 3 2 0 -3 0

x

x

2

ND

1

ND

0

0

22

0

21

0

0

0

1 1 1 1 1 1

1 1 1

222 22222222

222 222 22222222

f 9(x)

f 99(x)

10. Domain: All real x

 f1-22 = 1, f102 = 0, f122 = 1;

 f ′102 = 0; f ′1x2 6 0 on 1- ∞ , 02;

 f ′1x2 7 0 on 10, ∞ 2;

 f ″1-22 = 0, f ″122 = 0;

 f ″1x2 6 0 on 1- ∞ , -22 and 12, ∞ 2;

 f ″1x2 7 0 on 1-2, 22;

 lim
xS -∞

  f1x2 = 2; lim
xS ∞

  f1x2 = 2

11. Find f ″1x2 for f1x2 = 3x2 + 1n x.

12. Find y″ for y = 3x +
4
x

.

In Problems 13 and 14, find the domain and intercepts.

13. f1x2 =
2 + x

1 - x2 14. f1x2 = ln1x + 22

In Problems 15 and 16, find the horizontal and vertical asymptotes.

15. f1x2 =
2x + 5

2x2 - 32
16. f1x2 =

2x - 7
3x + 10

Review Exercises
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In Problems 17 and 18, find the x and y coordinates of all inflection 
points.

17. f1x2 = x4 - 12x2 18. f1x2 = x4 - 16 x3 + 10

In Problems 19 and 20, find (A) f ′1x2, (B) the partition numbers 
for f ′, and (C) the critical numbers of f.

19. f1x2 = 2x1>3 - x  

2>3 20. f1x2 = x-1>5

In Problems 21–30, summarize all the pertinent information 
obtained by applying the final version of the graphing strategy 
(Section 4.4) to f, and sketch the graph of f.

21. f1x2 = x3 - 18x2 + 81x

22. f1x2 = 1x + 421x - 22 2

23. f1x2 = 8x3 - 2x4 24. f1x2 = 1x - 12 31x + 32

25. f1x2 =
3x

x + 2
26. f1x2 =

x2

x2 + 27

27. f1x2 =
x

1x + 22 2 28. f1x2 =
x3

x2 + 3

29. f1x2 = 5 - 5e-x 30. f1x2 = x3 ln x

Find each limit in Problems 31–40.

31. lim
xS0

 
x2 - x

e2x - 1
32. lim

xS4
 
x2 - 3x - 4

x2 - 5x + 4

33. lim
xS0 +  

ln11 + 4x2
x1>4 34. lim

xS0

ex - 1
x - 1

35. lim
xS ∞

 
1n (1 + x)

x3 36. lim
xS0

 
x3

ex - x - 1

37. lim
xS0+ 

1x
1n (1 + x)

38. lim
xS ∞

 
ex + e - x - 5

1n x

39. lim
xS ∞

 
ex - 1

e2x - 1
40. lim

xS0
 
ex - 1

e2x - 1

41. Use the graph of y = f ′1x2 shown here to discuss the graph 
of y = f1x2. Organize your conclusions in a table (see  
Example  4, Section 4.2). Sketch a possible graph of y = f1x2.

x

f 9(x)

25

525

5

Figure for 41 and 42

42. Refer to the above graph of y = f ′1x2. Which of the follow-
ing could be the graph of y = f ″1x2?

(A) 
f 0(x)

x

25

525

5
  (B) 

x

f 0(x)

25

525

5

(C) 

x

f 0(x)

25

525

5

43. Use the second-derivative test to find any local extrema for

f1x2 =
1
3

 x3 - 3x2 - 16x + 200

44. Find the absolute maximum and absolute minimum, if either 
exists, for

y = f1x2 = x3 - 12x + 12  -3 … x … 5

45. Find the absolute minimum, if it exists, for

f1x2 =
3x

(1 + x)2  x 7 0

46. Find the absolute maximum, if it exists, for

f1x2 = 11x - 2x ln x  x 7 0

47. Find the absolute maximum, if it exists, for

f1x2 = 10xe-2x  x 7 0

48. Let y = f1x2 be a polynomial function with local minima 
at x = a and x = b, a 6 b. Must f have at least one local 
maximum between a and b? Justify your answer.

49. The derivative of f1x2 = x-1 is f ′1x2 = -x-2. Since 
f ′1x2 6 0 for x ∙ 0, is it correct to say that f1x2 is 
 decreasing for all x except x = 0? Explain.

50. Discuss the difference between a partition number for  
f ′1x2 and a critical number of f1x2, and illustrate with 
examples.

51. Find the absolute maximum for f ′1x2 if

f1x2 = 6x2 - x3 + 8

Graph f and f ′ on the same coordinate system for 0 … x … 4.
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362 CHAPTER 4 Graphing and Optimization

52. Find two positive numbers whose product is 400 and whose 
sum is a minimum. What is the minimum sum?

In Problems 53 and 54, apply the graphing strategy and summa-
rize the pertinent information. Round any approximate values to 
two decimal places.

53. f1x2 = x4 + x3 - 4x2 - 3x + 4

54. f1x2 = 0.25x4 - 5x3 + 31x2 - 70x

55. Find the absolute maximum, if it exists, for

f1x2 = 3x - x2 + e-x x 7 0

56. Find the absolute maximum, if it exists, for

f1x2 =
ln x
ex  x 7 0

Applications
57. Price analysis. The graph in the figure approximates the rate 

of change of the price of tomatoes over a 60-month period, 
where p(t) is the price of a pound of tomatoes and t is time 
(in months).

(A) Write a brief description of the graph of y = p1t2, 
including a discussion of local extrema and inflection 
points.

(B) Sketch a possible graph of y = p1t2.

t

0.02

20.02

20.04

0.04

0.06

0.08

15 30 45 60

p9(t)

58. Maximum revenue and profit. A company manufactures 
and sells x cell phones per month. The monthly cost and 
price–demand equations are, respectively,

 C1x2 = 200x + 100,000

 p = 300 -
1
80

x  0 6 x … 24,000

(A) Find the maximum revenue.

(B) How many phones should the company manufacture 
each month to maximize its profit? What is the maxi-
mum monthly profit? How much should the company 
charge for each phone?

(C) If the government decides to give a tax incentive to the 
company of $10 for each phone it produces, how many 
phones should the company manufacture each month to 
maximize its profit? What is the maximum monthly profit? 
How much should the company charge for each phone?

59. Construction. A fence is to be built to enclose a rectangular 
area. The fence along three sides is to be made of material 
that costs $5 per foot. The material for the fourth side costs 
$15 per foot.

(A) If the area is 5,000 square feet, find the dimensions of the 
rectangle that will allow for the most economical fence.

(B) If $3,000 is available for the fencing, find the dimen-
sions of the rectangle that will enclose the most area.

60. Rental income. A 100-apartment building in a city is fully 
occupied every month when the rent per month is $500 per 
apartment. For each $40 increase in the monthly rent, 5 fewer 
apartments are rented. If each rented apartment costs $20 a 
month to service, how much should the management charge 
per apartment in order to maximize gross profit? What is the 
maximum gross profit?

61. Inventory control. A computer store sells 7,200 boxes of 
storage drives annually. It costs the store $0.20 to store a box 
of drives for one year. Each time it reorders drives, the store 
must pay a $5.00 service charge for processing the order. 
How many times during the year should the store order drives 
to minimize the total storage and reorder costs?

62. Average cost. The total cost of producing x dorm refrigera-
tors per day is given by

 C1x2 = 4,000 + 10x + 0.1x2

Find the minimum average cost. Graph the average cost and 
the marginal cost functions on the same coordinate system. 
Include any oblique asymptotes.

63. Average cost. The cost of producing x wheeled picnic cool-
ers is given by

 C1x2 = 200 + 50x - 50 ln x  x Ú 1

Find the minimum average cost.

64. Marginal analysis. The price–demand equation for a GPS 
device is

 p1x2 = 1,000e-0.02x

where x is the monthly demand and p is the price in dollars. 
Find the production level and price per unit that produce the 
maximum revenue. What is the maximum revenue?

65. Maximum revenue. Graph the revenue function from Prob-
lem 64 for 0 … x … 100.

66. Maximum profit. Refer to Problem 64. If the GPS devices 
cost the store $220 each, find the price (to the nearest cent) 
that maximizes the profit. What is the maximum profit (to the 
nearest dollar)?

67. Maximum profit. The data in the table show the daily demand 
x for cream puffs at a state fair at various price levels p. If it  
costs $1 to make a cream puff, use logarithmic regression 
1p = a + b ln x2 to find the price (to the nearest cent) that 
maximizes profit.

Demand Price per Cream Puff ($)

x p

3,125 1.99
3,879 1.89
5,263 1.79
5,792 1.69
6,748 1.59
8,120 1.49
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68. Construction costs. The ceiling supports in a new  
discount department store are 12 feet apart. Lights are to  
be hung from these supports by chains in the shape of a “Y.” 
If the lights are 10 feet below the ceiling, what is the shortest 
length of chain that can be used to support these lights?

12 feet

10 feet

69. Average cost. The table gives the total daily cost y (in dol-
lars) of producing x dozen chocolate chip cookies at various 
production levels.

Dozens of Cookies Total Cost

x y

 50 119
100 187
150 248
200 382
250 505
300 695

(A) Enter the data into a graphing calculator and find a 
 quadratic regression equation for the total cost.

(B) Use the regression equation from part (A) to find the 
minimum average cost (to the nearest cent) and the 
 corresponding production level (to the nearest integer).

70. Advertising: point of diminishing returns. A company 
 estimates that it will sell  N1x2 units of a product after 
 spending $x thousand on advertising, as given by

 N1x2 = -0.25x4 + 11x3 - 108x2 + 3,000
9 … x … 24

When is the rate of change of sales increasing and when is it 
decreasing? What is the point of diminishing returns and the 
maximum rate of change of sales? Graph N and N′ on the 
same coordinate system.

71. Advertising. A chain of appliance stores uses TV ads to 
promote its HDTV sales. Analyzing past records produced 
the data in the following table, where x is the number of 
ads placed monthly and y is the number of HDTVs sold 
that month:

Number of Ads Number of HDTVs

x y

10 271
20 427
25 526
30 629
45 887
48 917

(A) Enter the data into a graphing calculator, set the calcula-
tor to display two decimal places, and find a cubic re-
gression equation for the number of HDTVs sold month-
ly as a function of the number of ads.

(B) How many ads should be placed each month to maxi-
mize the rate of change of sales with respect to the 
number of ads, and how many HDTVs can be expected 
to be sold with that number of ads? Round answers to 
the nearest integer.

72. Bacteria control. If the bacteria count per cubic centimeter 
in a body of water t days after treatment is given by

 C1t2 = t3 - 15t2 + 48t + 200  3 … t … 11

then in how many days will the count be a minimum?

73. Politics. The number of registered voters in a town t years 
after the last election is estimated to be

 N1t2 = 20 + 24t2 - t4  0 … t … 4.5

where N is in thousands. When will the rate of increase of 
 N1t2 be at its maximum?
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5.1 Antiderivatives and 
Indefinite Integrals

5.2 Integration by Substitution

5.3 Differential Equations; 
Growth and Decay

5.4 The Definite Integral

5.5 The Fundamental 
Theorem of Calculus

5.6 Area Between Curves

Integration
Introduction
In the preceding three chapters, we studied the derivative and its applications. 
In Chapter 5, we introduce the integral, the second key concept of calculus. The 
integral can be used to calculate areas, volumes, the index of income concen-
tration, and consumers’ surplus. At first glance, the integral may appear to be 
unrelated to the derivative. There is, however, a close connection between these 
two concepts, which is made precise by the fundamental theorem of  calculus 
(Section 5.5). We consider many applications of integrals and differential 
equations in Chapter 5. See, for example, Problem 91 in Section 5.3, which 
explores how the age of an archaeological site or artifact can be estimated.

5

364
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 SECTION 5.1   Antiderivatives and Indefinite Integrals 365

Many operations in mathematics have reverses—addition and subtraction, multiplica-
tion and division, powers and roots. We now know how to find the derivatives of many 
functions. The reverse operation, antidifferentiation (the reconstruction of a function 
from its derivative), will receive our attention in this and the next two sections.

Antiderivatives
A function F is an antiderivative of a function f if F =1x2 = f1x2.

The function F1x2 =
x3

3
 is an antiderivative of the function f1x2 = x2 because

d
dx

 a x3

3
b = x2

However, F1x2 is not the only antiderivative of x2. Note also that

d
dx

 a x3

3
+ 2b = x2  

d
dx

 a x3

3
- pb = x2  

d
dx

 a x3

3
+ 25b = x2

Therefore,

x3

3
+ 2  

x3

3
- p  

x3

3
+ 25

are also antiderivatives of x2 because each has x2 as a derivative. In fact, it appears that

x3

3
+ C   for any real number C

is an antiderivative of x2 because

d
dx

 a x3

3
+ Cb = x2

Antidifferentiation of a given function does not give a unique function but an entire 
family of functions.

Does the expression

x3

3
+ C  with C any real number

include all antiderivatives of x2? Theorem 1 (stated without proof) indicates that the 
answer is yes.

5.1 Antiderivatives and Indefinite Integrals
■■ Antiderivatives
■■ Indefinite Integrals: Formulas and 
Properties

■■ Applications

THEOREM 1 Antiderivatives
If the derivatives of two functions are equal on an open interval 1a, b2, then the 
functions differ by at most a constant. Symbolically, if F and G are differentia-
ble functions on the interval 1a, b2 and F =1x2 = G′1x2 for all x in 1a, b2, then 
F1x2 = G1x2 + k for some constant k.

Suppose that F1x2 is an antiderivative of f1x2. If G1x2 is any other antideriva-
tive of f1x2, then by Theorem 1, the graph of G1x2 is a vertical translation of the 
graph of F1x2 (see Section 1.2).

CONCEPTUAL INSIGHT

M05_BARN6152_14_GE_C05.indd   365 22/11/18   11:01 PM



366 CHAPTER 5 Integration

Indefinite Integrals: Formulas and Properties
Theorem 1 states that if the derivatives of two functions are equal, then the functions 
differ by at most a constant. We use the symbol

L
 

 

f1x2 dx

called the indefinite integral, to represent the family of all antiderivatives of f1x2, 
and we write

L
 

 

f1x2 dx = F1x2 + C  if  F =1x2 = f1x2

The symbol 1  is called an integral sign, and the function f1x2 is called the 
 integrand. The symbol dx indicates that the antidifferentiation is performed with re-
spect to the variable x. (We will have more to say about the symbols 1  and dx later in 
the chapter.) The arbitrary constant C is called the constant of integration. Referring 
to the preceding discussion, we can write

L
 

 

x2 dx =
x3

3
+ C  since  

d
dx

 a x3

3
+ Cb = x2

x

y

3023

5

F1(x)

F0(x)

F2(x)

Figure 1

A Family of Antiderivatives Note that

d
dx

 a x2

2
b = x

(A) Find all antiderivatives of f1x2 = x.

(B) Graph the antiderivative of f1x2 = x that passes through the point 10, 02; 
through the point 10, 12; through the point 10, 22.

(C) How are the graphs of the three antiderivatives in part (B) related?

SOLUTION

(A) By Theorem 1, any antiderivative of f1x2 has the form

F1x2 =
x2

2
+ k

where k is a real number.

(B) Because F102 = 102>22 + k = k, the functions

F01x2 =
x2

2
, F11x2 =

x2

2
+ 1, and F21x2 =

x2

2
+ 2

pass through the points 10, 02, 10, 12, and 10, 22, respectively (see Fig. 1).

(C) The graphs of the three antiderivatives are vertical translations of each other.

Matched Problem 1 Note that

d
dx

 1x32 = 3x2

(A) Find all antiderivatives of f1x2 = 3x2.

(B) Graph the antiderivative of f1x2 = 3x2 that passes through the point 10, 02; 
through the point 10, 12; through the point 10, 22.

(C) How are the graphs of the three antiderivatives in part (B) related?

EXAMPLE 1
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 SECTION 5.1   Antiderivatives and Indefinite Integrals 367

Of course, variables other than x can be used in indefinite integrals. For example,

L
 

 

t2 dt =
t3

3
+ C  since  

d
dt

 a t3

3
+ Cb = t2

or

L
 

 

u2 du =
u3

3
+ C  since  

d
du

 au3

3
+ Cb = u2

The fact that indefinite integration and differentiation are reverse operations, ex-
cept for the addition of the constant of integration, can be expressed symbolically as

d
dx

 c L
 

 

f1x2 dx d = f1x2  The derivative of the indefinite integral of f1x2 is f1x2.

and

L
 

 

F =1x2 dx = F1x2 + C   The indefinite integral of the derivative of F1x2 is 
F1x2 + C.

We can develop formulas for the indefinite integrals of certain basic functions from 
the formulas for derivatives in Chapters 2 and 3.

FORMULAS Indefinite Integrals of Basic Functions
For C a constant,

1. L
 

 

xn dx =
xn + 1

n + 1
+ C,  n ∙ -1 2. L

 

 

ex dx = ex + C

3. L
 

 

1
x

 dx = ln ∙ x ∙ + C,  x ∙ 0

Reminder
We may always differentiate an 
antiderivative to check if it is 
correct.

Formula 3 involves the natural logarithm of the absolute value of x. Although the 
natural logarithm function is only defined for x 7 0, f1x2 = ln ∙ x ∙  is defined for all 
x ∙ 0. Its graph is shown in Figure 2A. Note that f1x2 is decreasing for x 6 0 but is 

increasing for x 7 0. Therefore the derivative of f, which by formula 3 is f =1x2 =
1
x

,  
is negative for x 6 0 and positive for x 7 0 (see Fig. 2B).

x

y

5

 f (x) 5 ln�x�

(A) f (x) 5 ln�x�

25

25

5

Figure 2

x

y

5

25

25

5

x

(B) f 9(x) 5 1
x

f 9(x) 5 1
x
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368 CHAPTER 5 Integration

To justify the three formulas, show that the derivative of the right-hand side is the 
integrand of the left-hand side (see Problems 75–78 in Exercise 5.1). Note that for-
mula 1 does not give the antiderivative of x-1 (because xn + 1> 1n + 12 is undefined 
when n = -1), but formula 3 does.

Formulas 1, 2, and 3 do not provide a formula for the indefinite integral of the func-
tion ln x. Show that if x 7 0, then

L
 

 

ln x dx = x ln x - x + C

by differentiating the right-hand side.

Explore and Discuss 1

We can obtain properties of the indefinite integral from derivative properties that 
were established in Chapter 2.

PROPERTIES Indefinite Integrals
For k a constant,

4. L
 

 

k f1x2 dx = kL
 

 

f1x2 dx

5. L
 

 

3f1x2 { g1x24 dx = L
 

 

f1x2 dx { L
 

 

g1x2 dx

Property 4 states that

The indefinite integral of a constant times a function is the constant 
times the indefinite integral of the function.

Property 5 states that

The indefinite integral of the sum of two functions is the sum of the 
indefinite integrals, and the indefinite integral of the difference of two 
functions is the difference of the indefinite integrals.

To establish property 4, let F be a function such that F =1x2 = f1x2. Then

k L
 

 

f1x2 dx = kL
 

 

F =1x2 dx = k3F1x2 + C14 = kF1x2 + kC1

and since 3kF1x24′ = kF =1x2 = kf1x2, we have

L
 

 

k f1x2 dx = L
 

 

kF =1x2 dx = kF1x2 + C2

But kF1x2 + kC1 and kF1x2 + C2 describe the same set of functions because C1 
and C2 are arbitrary real numbers. Property 4 is established. Property 5 can be estab-
lished in a similar manner (see Problems 79 and 80 in Exercises 5.1).

M05_BARN6152_14_GE_C05.indd   368 22/11/18   11:01 PM



 SECTION 5.1   Antiderivatives and Indefinite Integrals 369

! CAUTION
  Property 4 states that a constant factor can be moved across 
an integral sign. A variable factor cannot be moved across 
an integral sign:

Constant FaCtor                               Variable FaCtor

 L
 

 

5x1>2 dx = 5L
 

 

x1>2 dx    L
 

 

xx1>2 dx ∙ xL
 

 

x1>2 dx 

Indefinite integral formulas and properties can be used together to find indefinite 
integrals for many frequently encountered functions. If n = 0, then formula 1 gives

L
 

 

dx = x + C

Therefore, by property 4,

L
 

 

k dx = k1x + C2 = kx + kC

Because kC is a constant, we replace it with a single symbol that denotes an arbitrary 
constant (usually C), and write

L
 

 

k dx = kx + C

In words,

The indefinite integral of a constant function with value k is kx ∙ C.

Similarly, using property 5 and then formulas 2 and 3, we obtain

 L  aex +
1
x
b  dx = Lex dx + L  

1
x

  dx

 = ex + C1 + ln 0 x 0 + C2

Because C1 + C2 is a constant, we replace it with the symbol C and write

L aex +
1
x
b  dx = ex + ln 0 x 0 + C

Using Indefinite Integral Properties and Formulas

(A) L
 

 

5 dx = 5x + C

(B) L
 

 

9ex dx = 9L
 

 

ex dx = 9ex + C

(C) L
 

 

5t7 dt = 5L
 

 

t7 dt = 5 
t8

8
+ C =

5
8

 t8 + C

EXAMPLE 2
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370 CHAPTER 5 Integration

(D)  L
 

 

14x3 + 2x - 12 dx = L
 

 

4x3 dx + L
 

 

2x dx - L
 

 

dx

 = 4L
 

 

x3 dx + 2L
 

 

x dx - L
 

 

dx

 =
4x4

4
+

2x2

2
- x + C

 = x4 + x2 - x + C

Property 4 can be 
extended to the sum 
and difference of an 
arbitrary number of 
functions.

(E)  L  a2ex +
3
x
b  dx = 2Lex dx + 3L  

1
x

  dx

 = 2ex + 3 ln ∙ x ∙ + C  

To check any of the results in Example 2, we differentiate the final result 
to obtain the integrand in the original indefinite integral. When you evaluate an 
indefinite integral, do not forget to include the arbitrary constant C.

Matched Problem 2 Find each indefinite integral:

(A) L
 

 

2 dx (B) L
 

 

16et dt (C) L
 

 

3x4 dx

(D) L
 

 

12x5 - 3x2 + 12 dx (E) L
 

 

 a5
x

- 4exb  dx

Using Indefinite Integral Properties and Formulas

(A) L
 

 

 
4

x3  dx = L
 

 

4x-3 dx =
4x-3 + 1

-3 + 1
+ C = -2x-2 + C

(B)  L
 

 

523 u2 du = 5L
 

 

u2>3 du = 5 
u12>32 + 1

2
3 + 1

+ C

 = 5 
u5>3

5
3

+ C = 3u5>3 + C

(C)  L
 

 

 
x3 - 3

x2   dx = L
 

 

 a x3

x2 -
3

x2 b  dx

 = L
 

 

1x - 3x-22 dx

 = L
 

 

x dx - 3L
 

 

x-2 dx

 =
x1 + 1

1 + 1
- 3 

x-2 + 1

-2 + 1
+ C

 = 1
2 x2 + 3x-1 + C

EXAMPLE 3
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(D)  L
 

 

 a 223 x
- 62xb  dx = L

 

 

12x-1>3 - 6x1>22 dx

 = 2L
 

 

x-1>3 dx - 6L
 

 

x1>2 dx

 = 2 
x1-1>32 + 1

-1
3 + 1

- 6 
x11>22 + 1

1
2 + 1

+ C

 = 2 
x2>3

2
3

- 6 
x3>2

3
2

+ C

 = 3x2>3 - 4x3>2 + C

(E) L
 

 

x1x2 + 22 dx = L
 

 

1x3 + 2x2 dx =
x4

4
+ x2 + C

Matched Problem 3 Find each indefinite integral:

(A) L
 

 

 a2x2>3 -
3

x4 b  dx (B) L
 

 

425
w

3 dw

(C) L
 

 

 
x4 - 8x3

x2   dx (D) L
 

 

 a823 x -
62x

b  dx

(E) L
 

 

1x2 - 221x + 32 dx

! CAUTION

1. Note from Example 3C that

L
 

 

x3 - 3

x2  dx ∙
x4

4 - 3x
x3

3

+ C =
3
4

x - 9x - 2 + C.

In general, the indefinite integral of a quotient is not the quotient of the 
 indefinite integrals. (This is expected since the derivative of a quotient is not the 
quotient of the derivatives.)

2. Note from Example 3E that

L
 

 

x1x2 + 22 dx ∙
x2

2
 a x3

3
+ 2xb + C.

In general, the indefinite integral of a product is not the product of the indefi-
nite integrals. (This is expected because the derivative of a product is not the 
product of the derivatives.)

3.  L
 

 

ex dx ∙
ex + 1

x + 1
+ C

The power rule applies only to power functions of the form xn, where the   
exponent n is a real constant not equal to -1 and the base x is the variable.  

M05_BARN6152_14_GE_C05.indd   371 22/11/18   11:01 PM



372 CHAPTER 5 Integration

In certain situations, it is easier to determine the rate at which something happens 
than to determine how much of it has happened in a given length of time (for ex-
ample, population growth rates, business growth rates, the rate of healing of a wound, 
rates of learning or forgetting). If a rate function (derivative) is given and we know 
the value of the dependent variable for a given value of the independent variable, then 
we can often find the original function by integration.

The function ex is an exponential function with variable exponent x and constant 
base e. The correct form is

L
 

 

ex dx = ex + C.

4. Not all elementary functions have elementary antiderivatives. It is impossible, 
for example, to give a formula for the antiderivative of f1x2 = ex2

 in terms of 
elementary functions. Nevertheless, finding such a formula, when it exists, can 
markedly simplify the solution of certain problems. 

Applications
Let’s consider some applications of the indefinite integral.

x

y

3023

5

y 5 x2 1 3

y 5 x2 1 1

y 5 x2 2 1

(2, 5)

Figure 3 y ∙ x2 ∙ C

Particular Antiderivatives Find the equation of the curve that passes through 
12, 52 if the slope of the curve is given by dy>dx = 2x at any point x.

SOLUTION We want to find a function y = f1x2 such that

 
dy

dx
= 2x (1)

and

 y = 5  when  x = 2 (2)

If dy>dx = 2x, then

  y = L
 

 

2x dx (3)

 = x2 + C

Since y = 5 when x = 2, we determine the particular value of C so that

5 = 22 + C

So C = 1, and
y = x2 + 1

is the particular antiderivative out of all those possible from equation (3) that satis-
fies both equations (1) and (2) (see Fig. 3).

Matched Problem 4 Find the equation of the curve that passes through 12, 62 
if the slope of the curve is given by dy>dx = 3x2 at any point x.

EXAMPLE 4

Cost Function If the marginal cost of producing x units of a commodity is given by

C′1x2 = 0.3x2 + 2x

and the fixed cost is $2,000, find the cost function C1x2 and the cost of producing 
20 units.

EXAMPLE 5
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y 5 C(x)

$4,000

$3,200

$2,000

Units

0 10 20
x

y

Figure 4

SOLUTION Recall that marginal cost is the derivative of the cost function and that 
fixed cost is cost at a zero production level. So we want to find C1x2, given

C′1x2 = 0.3x2 + 2x  C102 = 2,000

We find the indefinite integral of 0.3x2 + 2x and determine the arbitrary integration 
constant using C102 = 2,000:

 C′1x2 = 0.3x2 + 2x

 C1x2 = L
 

 

10.3x2 + 2x2 dx

 = 0.1x3 + x2 + K    Since C represents the cost, we use  
K for the constant of integration.

But

C102 = 10.1203 + 02 + K = 2,000

So K = 2,000, and the cost function is

C1x2 = 0.1x3 + x2 + 2,000

We now find C1202, the cost of producing 20 units:

 C1202 = 10.12203 + 202 + 2,000

 = $3,200

See Figure 4 for a geometric representation.

Matched Problem 5 Find the revenue function R1x2 when the marginal revenue is

R′1x2 = 400 - 0.4x

and no revenue results at a zero production level. What is the revenue at a produc-
tion level of 1,000 units?

Advertising A satellite radio station launched an aggressive advertising campaign 
16 days ago in order to increase the number of daily listeners. The station currently 
has 27,000 daily listeners, and management expects the number of daily listeners, 
S1t2, to grow at the rate of

S′1t2 = 60t1>2

listeners per day, where t is the number of days since the campaign began. How 
much longer should the campaign last if the station wants the number of daily lis-
teners to grow to 41,000?

SOLUTION We must solve the equation S1t2 = 41,000 for t, given that

S′1t2 = 60t1>2  and  S1162 = 27,000

First, we use integration to find S1t2:

 S1t2 = L
 

 

60t1>2 dt

 = 60 
t3>2

3
2

+ C

 = 40t3>2 + C

EXAMPLE 6
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374 CHAPTER 5 Integration

Since

S1162 = 401162 3>2 + C = 27,000

we have

C = 27,000 - 401162 3>2 = 24,440.

Now we solve the equation S1t2 = 41,000 for t:

 40t3>2 + 24,440 = 41,000

 40t3>2 = 16,560

 t3>2 = 414

 t = 4142>3   Use a calculator

 ≈ 55.5478 c
The advertising campaign should last approximately 56 - 16 = 40 more days.

Matched Problem 6 There are currently 64,000 subscribers to an online fash-
ion magazine. Due to competition from an 8-month-old competing magazine, the 
number C1t2 of subscribers is expected to decrease at the rate of

C′1t2 = -600t1>3

subscribers per month, where t is the time in months since the competing maga-
zine began publication. How long will it take until the number of subscribers to 
the online fashion magazine drops to 46,000?

Skills Warm-up Exercises
In Problems 1–8, write each function as a sum of terms of the 
form axn, where a is a constant. (If necessary, review Section A.6).

1. f1x2 =
5

x4 2. f1x2 = -
6

x9

3. f1x2 =
3x - 2

x5 4. f1x2 =
x2 + 5x - 1

x3

5. f1x2 = 1x +
51x

6. f1x2 = 13 x -
413 x

7. f1x2 = 13 x 14 + x - 3x22 8. f1x2 = 1x 11 - 5x + x32
In Problems 9–24, find each indefinite integral. Check by  
differentiating.

9. L
 

 

7 dx 10. L
 

 

10 dx

11. L
 

 

8x dx 12. L
 

 

14x dx

13. L
 

 

9x2 dx 14. L
 

 

12x3 dx

15. L
 

 

x5 dx 16. L
 

 

x8 dx

W

A

17. L
 

 

x-3 dx 18. L
 

 

x-4 dx

19. L
 

 

10x3>2 dx 20. L
 

 

15x1>4 dx

21. L
 

 

3
z
 dz 22. L

 

 

7
z
 dz

23. L
 

 

16eu du 24. L
 

 

5eu du

25. Is F1x2 = 1x + 121x + 22 an antiderivative of 
f 1x2 = 2x + 3? Explain.

26. Is F1x2 = 12x + 521x - 62 an antiderivative of 
f 1x2 = 4x - 7? Explain.

27. Is F1x2 = 1 + x ln x an antiderivative of f 1x2 = 1 + ln x? 
Explain.

28. Is F1x2 = x  ln  x - x + e an antiderivative of f 1x2 = ln  x? 
Explain.

29. Is F1x2 =
12x + 123

3
 an antiderivative of f 1x2 = 12x + 122? 

Explain.

30. Is F1x2 =
13x - 224

4
 an antiderivative of f 1x2 = 13x - 223? 

Explain.

Exercises 5.1
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53. L
 

 

 a3x2 -
2

x2 b  dx 54. L
 

 

 a4x3 +
2

x3 b  dx

In Problems 55–62, find the particular antiderivative of each 
derivative that satisfies the given condition.

55. C′1x2 = 9x2 - 20x; C1102 = 2,500

56. R′1x2 = 500 - 0.4x; R102 = 0

57. 
dx
dt

=
101t

; x112 = 25 58. 
dR
dt

=
50

t3 ; R112 = 50

59. f ′1x2 = 4x-2 - 3x-1 + 2; f112 = 5

60. f ′1x2 = x-1 - 2x-2 + 1; f112 = 5

61. 
dy

dt
= 6et - 7; y102 = 0 62. 

dy

dt
= 8 - 9et; y102 = 7

63. Find the equation of the curve that passes through 12, 32 if 
its slope is given by

dy

dx
= 4x - 3

for each x.

64. Find the equation of the curve that passes through 12, 52 if 
its slope is given by

dy

dx
= 6x2 - 8x

for each x.

In Problems 65–70, find each indefinite integral.

65. L
 

 

2x4 - x

x3   dx 66. L
 

 

x-1 - x4

x2   dx

67. L
 

 

x5 - 2x

x4   dx 68. L
 

 

2 - 8x6

x3   dx

69. L
 

 

x2ex - 2x

x2   dx 70. L
 

 

1 - xex

x
  dx

In Problems 71–74, find the derivative or indefinite integral as 
indicated.

71. L
 

 

d
dx

 16x2 - 7x + 22 dx 72. L
 

 

d
dx

 14x2 - 3x + 52 dx

73. 
d
dt

 L
 

 

t2 - 2ln t

t2 + 9
 dt 74. 

d
dt

 L
 

 

1e2t3 - 7 + t2 dt

75. Use differentiation to justify the formula

L
 

 

xn dx =
xn + 1

n + 1
+ C

provided that n ∙ -1.

76. Use differentiation to justify the formula

L
 

 

ex dx = ex + C

C

31. Is F1x2 = ex3>3 an antiderivative of f 1x2 = ex2
? Explain.

32. Is F1x2 = 1ex - 421ex + 42 an antiderivative of 
f 1x2 = e2x? Explain.

In Problems 33–38, discuss the validity of each statement.  
If the statement is always true, explain why. If not, give a  
counterexample.

33. The constant function f1x2 = p is an antiderivative of the 
constant function k1x2 = 0.

34. The constant function k1x2 = 0 is an antiderivative of the 
constant function f1x2 = p.

35. If n is an integer, then xn + 1> 1n + 12 is an antiderivative of xn.

36. The constant function k1x2 = 0 is an antiderivative of itself.

37. The function h1x2 = 5ex is an antiderivative of itself.

38. The constant function g1x2 = 5ep is an antiderivative of itself.

In Problems 39–42, could the three graphs in each figure be anti-
derivatives of the same function? Explain.

39. 

x
40

4

24

y 40. 

x

y

4024

4

41. 

x

24

424

y

4

42. 

x

y

424

4

24

In Problems 43–54, find each indefinite integral. (Check by  
differentiation.)

43. L
 

 

5x11 - x2 dx 44. L
 

 

x211 + x32 dx

45. L
 

 

du2u
46. L

 

 

dt23 t

47. L
 

 

dx

3x5 48. L
 

 

6 dm

m2

49. L
 

 

2 + 3u
u

  du 50. L
 

 

1 - y2

3y
  dy

51. L
 

 

15ez + 42 dz 52. L
 

 

et - t
2

  dt

B
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(A) Using the graph shown, describe the shape of the graph 
of the cost function C1x2 as x increases from 0 to 8,000 
bottles per month.

(B) Given the equation of the marginal cost function,

C′1x2 = 3x2 - 24x + 53

find the cost function if monthly fixed costs at 0 output 
are $80,000. What is the cost of manufacturing 4,000 
bottles per month? 8,000 bottles per month?

(C) Graph the cost function for 0 … x … 8. [Check the 
shape of the graph relative to the analysis in part (A).]

84. Revenue. The graph of the marginal revenue function from 
the sale of x smart watches is given in the figure.

(A) Using the graph shown, describe the shape of the graph of 
the revenue function R1x2 as x increases from 0 to 1,000.

(B) Find the equation of the marginal revenue function (the 
linear function shown in the figure).

R9(x)

300

2300

0 500 1,000
x

(C) Find the equation of the revenue function that satisfies 
R102 = 0. Graph the revenue function over the interval 
30, 1,0004. [Check the shape of the graph relative to the 
analysis in part (A).]

85. Sales analysis. Monthly sales of an SUV model are expected 
to increase at the rate of

S′1t2 = -24t1>3

SUVs per month, where t is time in months and S1t2 is the 
number of SUVs sold each month. The company plans to 
stop manufacturing this model when monthly sales reach 
300 SUVs. If monthly sales now 1t = 02 are 1,200 SUVs, 
find S1t2. How long will the company continue to manufac-
ture this model?

86. Sales analysis. The rate of change of the monthly sales of a 
newly released football game is given by

S′1t2 = 500t1>4  S102 = 0

where t is the number of months since the game was released 
and S1t2 is the number of games sold each month. Find S1t2. 
When will monthly sales reach 20,000 games?

87. Sales analysis. Repeat Problem 85 if S′1t2 = -24t1>3 - 70 
and all other information remains the same. Use a graphing  
calculator to approximate the solution of the equation 
S1t2 = 300 to two decimal places.

88. Sales analysis. Repeat Problem 86 if S′1t2 = 500t1>4 + 300 
and all other information remains the same. Use a graphing  
calculator to approximate the solution of the equation 
S1t2 = 20,000 to two decimal places.

77. Assuming that x 7 0, use differentiation to justify the formula

L
 

 

1
x

  dx = ln ∙ x ∙ + C

78. Assuming that x 6 0, use differentiation to justify the formula

L
 

 

1
x

  dx = ln ∙ x ∙ + C

[Hint: Use the chain rule after noting that 
 ln ∙ x ∙ = ln 1-x2 for x 6 0.]

79. Show that the indefinite integral of the sum of two functions 
is the sum of the indefinite integrals.

[Hint: Assume that 1 f1x2 dx = F1x2 + C1 and 

1g1x2 dx = G1x2 + C2. Using differentiation, show that 
F1x2 + C1 + G1x2 + C2 is the indefinite integral of the 
function s1x2 = f1x2 + g1x2.]

80. Show that the indefinite integral of the difference of two 
functions is the difference of the indefinite integrals.

Applications
81. Cost function. The marginal average cost of producing x 

smart watches is given by

C′1x2 = -  
5,000

x2   C11002 = 250

where C1x2 is the average cost in dollars. Find the average 
cost function and the cost function. What are the fixed costs?

82. Renewable energy. In 2016, Germany’s consumption of 
renewable energy was 38.916 million tonnes of oil equivalent 
(TOE). Since the 2000s, consumption has been growing at a 
rate (in million TOE per year) given by

f ′1t2 = 0.003t + 1.97

where t is years after 2000. Find f1t2 and estimate 
 Germany’s consumption of renewable energy in 2030. 
(Source: Eurostat – European Commission)

83. Production costs. The graph of the marginal cost func-
tion from the production of x thousand bottles of sunscreen 
per month [where cost C1x2 is in thousands of dollars per 
month] is given in the figure.

x

C9(x)

T
ho

us
an

d 
do

lla
rs

/m
on

th

Thousand bottles

0

30

60

4 8
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94. Learning. A college language class was chosen for an ex-
periment in learning. Using a list of 50 words, the experiment 
involved measuring the rate of vocabulary memorization at 
different times during a continuous 5-hour study session. It 
was found that the average rate of learning for the entire class 
was inversely proportional to the time spent studying and was 
given approximately by

V′1t2 =
15
t
  1 … t … 5

If the average number of words memorized after 1 hour 
of study was 15 words, what was the average number of 
words memorized after t hours of study for 1 … t … 5? 
After 4 hours of study? Round answer to the nearest 
whole number.

Answers to Matched Problems
1. (A) x3 + C

(B) 

x

y

25

525

5

(C) The graphs are vertical translations of each other.

2. (A) 2x + C (B) 16et + C (C) 3
5 x5 + C

(D) 1
3 x6 - x3 + x + C (E) 5 ln ∙ x ∙ - 4ex + C

3. (A) 6
5 x5>3 + x-3 + C (B) 5

2 w8>5 + C

(C) 1
3 x3 - 4x2 + C (D) 6x4>3 - 12x1>2 + C

(E) 1
4 x4 + x3 - x2 - 6x + C

4. y = x3 - 2

5. R1x2 = 400x - 0.2x2; R11,0002 = $200,000

6. t = 1562 3>4 - 8 ≈ 12 mo

89. Labor costs. A defense contractor is starting production on 
a new missile control system. On the basis of data collected 
during the assembly of the first 16 control systems, the pro-
duction manager obtained the following function describing 
the rate of labor use:

L′1x2 = 2,400x-1>2

For example, after assembly of 16 units, the rate of assembly 
is 600 labor-hours per unit, and after assembly of 25 units, 
the rate of assembly is 480 labor-hours per unit. The more 
units assembled, the more efficient the process. If 19,200 
labor-hours are required to assemble the first 16 units, how 
many labor-hours L1x2 will be required to assemble the first 
x units? The first 25 units?

90. Labor costs. If the rate of labor use in Problem 89 is

L′1x2 = 2,000x-1>3

and if the first 8 control units require 12,000 labor-hours, 
how many labor-hours, L1x2, will be required for the first x 
control units? The first 27 control units?

91. Weight–height. For an average person, the rate of change of 
weight W (in pounds) with respect to height h (in inches) is 
given approximately by

dW
dh

= 0.0015h2

Find W1h2 if W1602 = 108 pounds. Find the weight of an 
average person who is 5 feet, 10 inches tall.

92. Wound healing. The area A of a healing wound changes at 
a rate given approximately by

dA
dt

= -4t-3  1 … t … 10

where t is time in days and A112 = 2 square centimeters. 
What will the area of the wound be in 10 days?

93. Urban growth. The rate of growth of the population N1t2 
of a new city t years after its incorporation is estimated to be

dN
dt

= 400 + 6001t  0 … t … 9

If the population was 5,000 at the time of incorporation, find 
the population 9 years later.

Many of the indefinite integral formulas introduced in the preceding section are 
based on corresponding derivative formulas studied earlier. We now consider indefi-
nite integral formulas and procedures based on the chain rule for differentiation.

Reversing the Chain Rule
Recall the chain rule:

d
dx

 f 3g1x24 = f =3g1x24g′1x2

5.2 Integration by Substitution
■■ Reversing the Chain Rule
■■ Integration by Substitution
■■ Additional Substitution Techniques
■■ Application
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The expression on the right is formed from the expression on the left by taking the 
derivative of the exterior function f and multiplying it by the derivative of the interior 
function g. If we recognize an integrand as a chain-rule form E =3I1x24I′1x2, we can 
easily find an antiderivative and its indefinite integral:

 LE∙ 3I 1x 2 4 I∙ 1x 2  dx ∙ E 3I 1x 2 4 ∙ C (1)

We are interested in finding the indefinite integral

Reminder

The interior of ex3 - 1 is x3 - 1.
 L3x2ex3 - 1 dx (2)

The integrand appears to be the chain-rule form eg1x2g′1x2, which is the derivative 
of eg1x2. Since

d
dx

 ex3 - 1 = 3x2ex3 - 1

it follows that

 L3x2ex3 - 1 dx = ex3 - 1 + C (3)

How does the following indefinite integral differ from integral (2)?

 Lx2ex3 - 1 dx (4)

It is missing the constant factor 3. That is, x2ex3 - 1 is within a constant factor of being the 
derivative of ex3 - 1. But because a constant factor can be moved across the integral sign, 
this causes us little trouble in finding the indefinite integral of x2ex3 - 1. We introduce the 
constant factor 3 and at the same time multiply by 1

3 and move the 1
3 factor outside the 

integral sign. This is equivalent to multiplying the integrand in integral (4) by 1:

  Lx2ex3 - 1 dx = L  
3
3

 x2ex3 - 1 dx  (5)

 =
1
3 L3x2ex3 - 1 dx =

1
3

 ex3 - 1 + C

The derivative of the rightmost side of equation (5) is the integrand of the indefinite 
integral (4). Check this.

How does the following indefinite integral differ from integral (2)?

 L3xex3 - 1 dx (6)

It is missing a variable factor x. This is more serious. As tempting as it might be, we 
cannot adjust integral (6) by introducing the variable factor x and moving 1/x outside 
the integral sign, as we did with the constant 3 in equation (5).

! CAUTION
  A constant factor can be moved across an integral sign, but a 
variable factor cannot. 

There is nothing wrong with educated guessing when you are looking for an an-
tiderivative of a given function. You have only to check the result by differentiation. If 
you are right, you go on your way; if you are wrong, you simply try another approach.

In Section 3.4, we saw that the chain rule extends the derivative formulas for 
xn, ex, and ln x to derivative formulas for 3f1x24n, ef1x2, and ln 3  f1x24. The chain rule 
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can also be used to extend the indefinite integral formulas discussed in Section 5.1. 
Some general formulas are summarized in the following box:

FORMULAS General Indefinite Integral Formulas

1. L
 

 

3  f1x24nf =1x2 dx =
3  f1x24n + 1

n + 1
+ C, n ∙ -1

2. L
 

 

e f1x2f =1x2 dx = e f1x2 + C

3. L
 

 

1
f1x2  f =1x2 dx = ln ∙ f1x2∙ + C

We can verify each formula by using the chain rule to show that the derivative of the 
function on the right is the integrand on the left. For example,

d
dx

 3e f1x2 + C4 = e f1x2f =1x2

verifies formula 2.

Reversing the Chain Rule

(A) L
 

 

13x + 42 10132 dx =
13x + 42 11

11
+ C   Formula 1 with f1x2 = 3x + 4 

and f ′1x2 = 3

Check:

d
dx

 
13x + 42 11

11
 = 11 

13x + 42 10

11
 
d
dx

 13x + 42 = 13x + 42 10132

(B) L
 

 

ex212x2 dx = ex2
+ C           Formula 2 with f1x2 = x2 and 

f ′1x2 = 2x

Check:

d
dx

 ex2  = ex2
 
d
dx

 x2 = ex212x2

(C) L
 

 

 
1

1 + x3 3x2 dx = ln 0 1 + x3 0 + C       Formula 3 with f1x2 = 1 + x3  
and f =1x2 = 3x2

Check:

d
dx

 ln 0 1 + x3 0  =
1

1 + x3 
d
dx

 11 + x32  =
1

1 + x3 3x2

Matched Problem 1 Find each indefinite integral.

(A) L
 

 

12x3 - 32 2016x22 dx (B) L
 

 

e5x152 dx (C) L
 

 

1

4 + x2 2x dx

EXAMPLE 1
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380 CHAPTER 5 Integration

Integration by Substitution
The key step in using formulas 1, 2, and 3 is recognizing the form of the integrand. 
Some people find it difficult to identify f1x2 and f =1x2 in these formulas and prefer 
to use a substitution to simplify the integrand. The method of substitution, which we 
now discuss, becomes increasingly useful as one progresses in studies of integration.

We start by recalling the definition of the differential (see Section 2.6, p. 191). We 
represent the derivative by the symbol dy/dx taken as a whole and now define dy and 
dx as two separate quantities with the property that their ratio is still equal to f =1x2:

DEFINITION Differentials
If y = f1x2 defines a differentiable function, then

1. The differential dx of the independent variable x is an arbitrary real number.
2. The differential dy of the dependent variable y is defined as the product of 

f =1x2 and dx:

dy = f =1x2 dx

Differentials involve mathematical subtleties that are treated carefully in 
 advanced mathematics courses. Here, we are interested in them mainly as a book-
keeping device to aid in the process of finding indefinite integrals. We can always 
check an indefinite integral by differentiating.

Differentials
(A) If y = f1x2 = x2, then

dy = f =1x2 dx = 2x dx

(B) If u = g1x2 = e3x, then

du = g′1x2 dx = 3e3x dx

(C) If w = h1t2 = ln14 + 5t2, then

dw = h′1t2 dt =
5

4 + 5t
 dt

Matched Problem 2
(A) Find dy for y = f1x2 = x3.

(B) Find du for u = h1x2 = ln12 + x22.

(C) Find dv for v = g1t2 = e-5t.

EXAMPLE 2

The method of substitution is developed through Examples 3–6.

Using Substitution Find 1 1x2 + 2x + 52 512x + 22 dx.

SOLUTION If

u = x2 + 2x + 5

then the differential of u is

du = 12x + 22 dx

EXAMPLE 3
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 SECTION 5.2   Integration by Substitution 381

Notice that du is one of the factors in the integrand. Substitute u for x2 + 2x + 5 
and du for 12x + 22 dx to obtain

 L
 

 

1x2 + 2x + 52 512x + 22 dx = L
 

 

u5 du

 =
u6

6
+ C

   Plug in 
u = x2 + 2x + 5.

 =
1
6

 1x2 + 2x + 52 6 + C

Check:

 
d
dx

 
1
6

 1x2 + 2x + 52 6 =
1
6

 1621x2 + 2x + 52 5 
d
dx

 1x2 + 2x + 52

 = 1x2 + 2x + 52 512x + 22

Matched Problem 3 Find 1 1x2 - 3x + 72 412x - 32 dx by substitution.

The substitution method is also called the change-of-variable method since u 
replaces the variable x in the process. Substituting u = f1x2 and du = f =1x2 dx in 
formulas 1, 2, and 3 produces the general indefinite integral formulas 4, 5, and 6:

FORMULAS General Indefinite Integral Formulas

4. L
 

 

un du =
un + 1

n + 1
+ C,  n ∙ -1

5. L
 

 

eu du = eu + C

6. L
 

 

1
u

  du = ln ∙ u ∙ + C

These formulas are valid if u is an independent variable, or if u is a function of an-
other variable and du is the differential of u with respect to that variable.

The substitution method for evaluating certain indefinite integrals is outlined as 
follows:

PROCEDURE Integration by Substitution
Step 1  Select a substitution that appears to simplify the integrand. In particular, try 

to select u so that du is a factor in the integrand.

Step 2  Express the integrand entirely in terms of u and du, completely eliminating 
the original variable and its differential.

Step 3 Evaluate the new integral if possible.

Step 4 Express the antiderivative found in step 3 in terms of the original variable.
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382 CHAPTER 5 Integration

Additional Substitution Techniques
In order to use the substitution method, the integrand must be expressed entirely 
in terms of u and du. In some cases, the integrand must be modified before making 
a substitution and using one of the integration formulas. Example 5 illustrates this 
process.

Using Substitution Use a substitution to find each indefinite integral.

(A) L
 

 

13x + 42 6132 dx (B) L
 

 

et212t2 dt

SOLUTION

(A) If we let u = 3x + 4, then du = 3 dx, and

 L
 

 

13x + 42 6132 dx = L
 

 

u6 du   Use formula 4.

 =
u7

7
+ C   Plug in u = 3x + 4.

 =
13x + 42 7

7
+ C

Check:

d
dx

 
13x + 42 7

7
=

713x + 42 6

7
 

d
dx

 13x + 42 = 13x + 42 6132

(B) If we let u = t2, then du = 2t dt, and

L
 

 

 et212t2 dt = Leu du  Use formula 5.

 = eu + C   Plug in u = t2.

 = et2 + C

Check:

d
dt

 et2 = et2 
d
dt

 t2 = et212t2

Matched Problem 4 Use a substitution to find each indefinite integral.

(A) L
 

 

12x3 - 32 416x22 dx (B) L
 

 

e5w152 dw

EXAMPLE 4

Substitution Techniques Integrate.

(A) L
 

 

1
4x + 7

 dx (B) L
 

 

te-t2 dt

(C) L
 

 

4x22x3 + 5 dx

EXAMPLE 5
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SOLUTION
(A) If u = 4x + 7, then du = 4 dx and, dividing both sides of the equation 

du = 4 dx by 4, we have dx = 1
4 du. In the integrand, replace 4x + 7 by u and 

replace dx by 14 du:

 L
 

 

1
4x + 7

 dx = L
 

 

1
u

 a1
4

 dub    Move constant factor across  
the integral sign.

 =
1
4 L

 

 

1
u

 du   Use formula 6.

 = 1
4 ln ∙ u ∙ + C   Plug in u = 4x + 7.

 = 1
4 ln ∙ 4x + 7 ∙ + C

Check:

d
dx

 
1
4

 ln ∙ 4x + 7 ∙ =
1
4

 
1

4x + 7
 

d
dx

  14x + 72 =
1
4

 
1

4x + 7
  4 =

1
4x + 7

(B) If u = - t2, then du = -2t dt and, dividing both sides by -2, -  12 du = t dt. 
In the integrand, replace - t2 by u and replace t dt by -1

2 du:

 L
 

 

te-t2dt = L
 

 

eu a-  
1
2

 dub    Move constant factor  
across the integral sign.

 = -  
1
2 L

 

 

eu du   Use formula 5.

 = -  12 eu + C   Plug in u = - t2.

 = -  12 e-t2 + C

Check:

d
dt

 1-  12 e-t22 = -  12 e-t2 d
dt

 1- t22 = -  12 e-t21-2t2 = te-t2

(C) If u = x3 + 5, then du = 3x2 dx and, dividing both sides by 3, 13 du = x2 dx. 
In the integrand, replace x3 + 5 by u and replace x2 dx by 13 du:

 L
 

 

4x22x3 + 5 dx = L
 

 

41u a1
3

 dub    Move constant factors  
across the integral sign.

 =
4
3 L

 

 

1u du

 =
4
3 L

 

 

u1>2 du   Use formula 4.

 =
4
3

# u3>2
3
2

+ C

 = 8
9 u3>2 + C   Plug in u = x3 + 5.

 = 8
91x3 + 52 3>2 + C
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384 CHAPTER 5 Integration

Check:

 
d
dx

 38
91x3 + 52 3>24 = 4

31x3 + 52 1>2 
d
dx

 1x3 + 52

 = 4
31x3 + 52 1>213x22 = 4x22x3 + 5

Matched Problem 5 Integrate.

(A) L
 

 

e-3x dx (B) L
 

 

x

x2 - 9
 dx (C) L

 

 

5t21t3 + 42 -2 dt

Even if it is not possible to find a substitution that makes an integrand match one 
of the integration formulas exactly, a substitution may simplify the integrand suffi-
ciently so that other techniques can be used.

Substitution Techniques Find L
 

 

x1x + 2
 dx.

SOLUTION Proceeding as before, if we let u = x + 2, then du = dx and

L
 

 

x1x + 2
 dx = L

 

 

x1u
 du

Notice that this substitution is not complete because we have not expressed the 
integrand entirely in terms of u and du. As we noted earlier, only a constant factor 
can be moved across an integral sign, so we cannot move x outside the integral sign. 
Instead, we must return to the original substitution, solve for x in terms of u, and use 
the resulting equation to complete the substitution:

 u = x + 2  Solve for x in terms of u.

 u - 2 = x   Substitute this expression for x.

Thus,

 L
 

 

x1x + 2
 dx = L

 

 

u - 21u
  du   Simplify the integrand.

 = L
 

 

u - 2

u1>2  du

 = L
 

 

1u1>2 - 2u-1>22 du

 = L
 

 

u1>2 du - 2L
 

 

u-1>2 du

 =
u3>2

3
2

- 2 
u1>2

1
2

+ C   Plug in u = x + 2.

 = 2
31x + 22 3>2 - 41x + 22 1>2 + C

EXAMPLE 6
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Check:

 
d
dx

 32
31x + 22 3>2 - 41x + 22 1>24 = 1x + 22 1>2 - 21x + 22 -1>2

 =
x + 2

1x + 22 1>2 -
2

1x + 22 1>2

 =
x

1x + 22 1>2

Matched Problem 6 Find 1x1x + 1 dx.

We can find the indefinite integral of some functions in more than one way. For  
example, we can use substitution to find

L
 

 

x11 + x22 2 dx

by letting u = 1 + x2. As a second approach, we can expand the integrand, obtaining

L
 

 

1x + 2x3 + x52 dx

for which we can easily calculate an antiderivative. In such a case, choose the  
approach that you prefer.

There are also some functions for which substitution is not an effective approach 
to finding the indefinite integral. For example, substitution is not helpful in finding

L
 

 

ex2
 dx  or  L

 

 

 ln x dx

Application

Price–Demand The market research department of a supermarket chain has deter-
mined that, for one store, the marginal price p′1x2 at x tubes per week for a certain 
brand of toothpaste is given by

p′1x2 = -0.015e-0.01x

Find the price–demand equation if the weekly demand is 50 tubes when the price 
of a tube is $4.35. Find the weekly demand when the price of a tube is $3.89.

SOLUTION

 p1x2 = L
 

 

-0.015e-0.01x dx

 = -0.015L
 

 

e-0.01x dx    Substitute u = -0.01x  
and dx = -100 du.

 = -0.015L
 

 

-100eu du

 = 1.5L
 

 

eu du

 = 1.5eu + C   Plug in u = -0.01x.

 = 1.5e-0.01x + C

EXAMPLE 7
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386 CHAPTER 5 Integration

We find C by noting that

 p1502 = 1.5e-0.011502 + C = $4.35

 C = $4.35 - 1.5e-0.5  Use a calculator.

 = $4.35 - 0.91

 = $3.44

So,

p1x2 = 1.5e-0.01x + 3.44

To find the demand when the price is $3.89, we solve p1x2 = $3.89 for x:

 1.5e-0.01x + 3.44 = 3.89

 1.5e-0.01x = 0.45

 e-0.01x = 0.3

 -0.01x = ln 0.3

 x = -100 ln 0.3 ≈ 120 tubes

Matched Problem 7 The marginal price p′1x2 at a supply level of x tubes per 
week for a certain brand of toothpaste is given by

p′1x2 = 0.001e0.01x

Find the price–supply equation if the supplier is willing to supply 100 tubes per 
week at a price of $3.65 each. How many tubes would the supplier be willing to 
supply at a price of $3.98 each?

We conclude with two final cautions. The first was stated earlier, but it is worth 
repeating.

! CAUTION
  1. A variable cannot be moved across an integral sign.

2. An integral must be expressed entirely in terms of u and 
du before applying integration formulas 4, 5, and 6. 

Skills Warm-up Exercises
In Problems 1–8, use the chain rule to find the derivative of each 
function. (If necessary, review Section 3.4).

1. f1x2=15x + 12 10 2. f1x2=14x - 32 6

3. f1x2=1x2 + 12 7 4. f1x2=1x3 - 42 5

5. f1x2 = ex2
6. f1x2 = 6ex3

7. f1x2 =  ln 1x4 - 102 8. f1x2 =  ln 1x2 + 5x + 42

In Problems 9–44, find each indefinite integral and check the 
result by differentiating.

9. L
 

 

13x + 52 2132 dx 10. L
 

 

16x - 12 3162 dx

W

A

11. L
 

 

1x2 - 12 512x2 dx 12. L
 

 

1x6 + 12 416x52 dx

13. L
 

 

15x3 + 12 -3115x22 dx 14. L
 

 

14x2 - 32 -618x2 dx

15. L
 

 

e8x182 dx 16. L
 

 

ex313x22 dx

17. L
 

 

1

1 + x2 12x2 dx 18. L
 

 

1
5x - 7

 152 dx

19. L
 

 

21 + x4 14x32dx 20. L
 

 

1x2 + 92 -1>212x2dx

Exercises 5.2
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54. Is F1x2 = 1x3 - 4250  an antiderivative of 
f1x2 = 50 1x3 - 42 49? Explain.

55. Is F1x2 = 2e4x + 3 an antiderivative of f1x2 = 8e4x? 
Explain.

56. Is F1x2 = 1 - 0.2e-5x an antiderivative of f1x2 = e-5x? 
Explain.

57. Is F1x2 = 0.51ln x2 2 + 10 an antiderivative of f1x2 =
ln x

x
?  

Explain.

58. Is F1x2 = ln 1ln x2 an antiderivative of f1x2 =
1

x ln x
? 

Explain.

 In Problems 59–70, find each indefinite integral and check the 
result by differentiating.

59. L
 

 

x1x2 + 32 3 dx 60. L
 

 

x1x2 + 52 3 dx

61. L
 

 

x22x3 - 5 dx 62. L
 

 

x22x3 - 3 dx

63. L
 

 

x213x - 52  dx 64. L
 

 

x617x + 82  dx

65. L
 

 

x322x4 - 2
  dx 66. L

 

 

x323x4 + 1
  dx

67. L
 

 

1ln x2 2

x
 dx 68. L

 

 

ex

2ex - 1
  dx

69. L
 

 

e1>x

x2  dx 70. L
 

 

4x ln 1x2 + 92
x2 + 9

  dx

In Problems 71–76, find the family of all antiderivatives of each 
derivative.

71. 
dx
dt

= 7t21t3 + 52 6 72. 
dm
dn

= 10n1n2 - 82 7

73. 
dy

dt
=

5t2t2 - 9
74. 

dy

dx
=

5x2

1x3 - 72 4

75. 
dp

dx
=

ex + e-x

1ex - e-x2 2 76. 
dm
dt

=
ln1t - 52

t - 5

Applications
77. Price–demand equation. The marginal price for a weekly 

demand of x bottles of shampoo in a drugstore is given by

p′1x2 =
-6,000

13x + 502 2

Find the price–demand equation if the weekly demand is 
150 when the price of a bottle of shampoo is $8. What is the 
weekly demand when the price is $6.50?

C

21. L
 

 

1x + 32 10 dx 22. L
 

 

1x - 32 -4 dx

23. L
 

 

15t - 42 -3 dt 24. L
 

 

15t + 12 3 dt

25. L
 

 

1t2 + 12 5 t dt 26. L
 

 

1t3 + 42 -2 t2 dt

27. L
 

 

xex2
 dx 28. L

 

 

e-0.01x dx

29. L
 

 

1
6x + 7

  dx 30. L
 

 

x

1 + x2 dx

31. L
 

 

e1 - t dt 32. L
 

 

3
2 - t

 dt

33. L
 

 

t

13t2 + 12 4  dt 34. L
 

 

t2

1t3 - 22 5  dt

35. L
 

 

x2x + 4 dx 36. L
 

 

x2x - 9 dx

37. L
 

 

x2x - 3
 dx 38. L

 

 

x2x + 5
 dx

39. L
 

 

x1x - 82 7 dx 40. L
 

 

x1x + 62 8 dx

41. L
 

 

e2x11 + e2x2 3 dx 42. L
 

 

e-x11 - e-x2 4 dx

43. L
 

 

1 + x

4 + 2x + x2 dx 44. L
 

 

x2 - 1

x3 - 3x + 7
 dx

In Problems 45–50, the indefinite integral can be found in more 
than one way. First use the substitution method to find the indefi-
nite integral. Then find it without using substitution. Check that 
your answers are equivalent.

45. L
 

 

515x + 32 dx 46. L
 

 

-714 - 7x2 dx

47. L
 

 

2x1x2 - 12 dx 48. L
 

 

3x21x3 + 12 dx

49. L
 

 

6x51x62 7 dx 50. L
 

 

8x71x82 3 dx

51. Is F1x2 = x2ex an antiderivative of f1x2 = 2xex? Explain.

52. Is F1x2 =
1
x

 an antiderivative of f1x2 =  ln x? Explain.

53. Is F1x2 = 1x2 + 42 6 an antiderivative of 
f1x2 = 12x 1x2 + 42 5? Explain.

B
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84. Oil production. Assume that the rate in Problem 83 is found 
to be

R1t2 =
120t

t2 + 1
+ 3  0 … t … 20

(A) When is the rate of production greatest?

(B) How many barrels of oil Q1t2 will the field produce in 
the first t years if Q102 = 0? How many barrels will be 
produced in the first 5 years?

(C) How long (to the nearest tenth of a year) will it  
take to produce a total of a quarter of a million barrels 
of oil?

85. Biology. A yeast culture is growing at the rate of 
W ′1t2 = 0.2e0.1t grams per hour. If the starting culture 
weighs 4 grams, what will be the weight of the culture W1t2 
after t hours? After 8 hours?

86. Medicine. The rate of healing for a skin wound (in square 
centimeters per day) is approximated by A′1t2 = -0.9e-0.1t. 
If the initial wound has an area of 7 square centimeters, what 
will its area A1t2 be after t days? After 5 days?

87. Pollution. A contaminated lake is treated with a bactericide. 
The rate of increase in harmful bacteria t days after the treat-
ment is given by

dN
dt

= -  
3,000t

1 + t2  0 … t … 10

where N1t2 is the number of bacteria per milliliter of water. 
Since dN/dt is negative, the count of harmful bacteria is 
decreasing.

(A) Find the minimum value of dN/dt.

(B) If the initial count was 5,000 bacteria per milliliter,  
find N1t2 and then find the bacteria count after  
5 days.

(C) When (to two decimal places) is the bacteria count 1,000 
bacteria per milliliter?

88. Pollution. An oil tanker aground on a reef is losing oil and 
producing an oil slick that is radiating outward at a rate given 
approximately by

dR
dt

=
502t + 9

  t Ú 0

where R is the radius (in feet) of the circular slick after  
t minutes. Find the radius of the slick after 16 minutes if the 
radius is 0 when t = 0.

89. Learning. An average student enrolled in an advanced  
typing class progressed at a rate of N′1t2 = 6e-0.1t words 
per minute per week t weeks after enrolling in a 15-week 
course. If, at the beginning of the course, a student could  
type 40 words per minute, how many words per minute  
N1t2 would the student be expected to type t weeks  
into the course? After completing the course?

78. Price–supply equation. The marginal price at a supply level 
of x bottles of laundry detergent per week is given by

p′1x2 =
300

13x + 252 2

Find the price–supply equation if the distributor of the deter-
gent is willing to supply 75 bottles a week at a price of $5.00 
per bottle. How many bottles would the supplier be willing to 
supply at a price of $5.15 per bottle?

79. Cost function. The weekly marginal cost of producing x 
pairs of tennis shoes is given by

C′1x2 = 12 +
500

x + 1

where C1x2 is cost in dollars. If the fixed costs are $2,000 per 
week, find the cost function. What is the average cost per pair 
of shoes if 1,000 pairs of shoes are produced each week?

80. Revenue function. The weekly marginal revenue from the 
sale of x pairs of tennis shoes is given by

R′1x2 = 40 - 0.02x +
200

x + 1
  R102 = 0

where R1x2 is revenue in dollars. Find the revenue function. 
Find the revenue from the sale of 1,000 pairs of shoes.

81. Marketing. An automobile company is ready to introduce 
a new line of hybrid cars through a national sales campaign. 
After test marketing the line in a carefully selected city, the 
marketing research department estimates that sales (in  
millions of dollars) will increase at the monthly rate of

S′1t2 = 10 - 10e-0.1t  0 … t … 24

t months after the campaign has started.

(A) What will be the total sales S1t2 t months after the be-
ginning of the national campaign if we assume no sales 
at the beginning of the campaign?

(B) What are the estimated total sales for the first 12 months 
of the campaign?

(C)  When will the estimated total sales reach $100 million? 
Use a graphing calculator to approximate the answer to 
two decimal places.

82. Marketing. Repeat Problem 81 if the monthly rate of in-
crease in sales is found to be approximated by

S′1t2 = 20 - 20e-0.05t  0 … t … 24

83. Oil production. Using production and geological data, the 
management of an oil company estimates that oil will be 
pumped from a field producing at a rate given by

R1t2 =
100

t + 1
+ 5  0 … t … 20

where R1t2 is the rate of production (in thousands of barrels 
per year) t years after pumping begins. How many barrels of oil 
Q1t2 will the field produce in the first t years if Q102 = 0? 
How many barrels will be produced in the first 9 years?
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Answers to Matched Problems

1. (A) 1
2112x3 - 32 21 + C (B) e5x + C

(C) ln ∙ 4 + x2 ∙ + C or ln14 + x22 + C, since 4 + x2 7 0

2. (A) dy = 3x2 dx

(B) du =
2x

2 + x2  dx

(C) dv = -5e-5t dt

3. 1
51x2 - 3x + 72 5 + C

4. (A) 1
512x3 - 32 5 + C (B) e5w + C

5. (A) -  13 e-3x + C (B) 1
2 ln ∙ x2 - 9 ∙ + C

(C) -  531t3 + 42 -1 + C

6. 2
51x + 12 5>2 - 2

31x + 12 3>2 + C

7. p1x2 = 0.1e0.01x + 3.38; 179 tubes

90. Learning. An average student enrolled in a stenotyping class 
progressed at a rate of N′1t2 = 12e-0.06t words per minute 
per week t weeks after enrolling in a 15-week course. If, at 
the beginning of the course, a student could stenotype at zero 
words per minute, how many words per minute N1t2 would 
the student be expected to handle t weeks into the course? 
After completing the course?

91. College enrollment. The projected rate of increase in enroll-
ment at a new college is estimated by

dE
dt

= 5,0001t + 12 -3>2  t Ú 0

where E1t2 is the projected enrollment in t years. If enroll-
ment is 2,000 now 1t = 02, find the projected enrollment 
15 years from now.

In the preceding section, we considered equations of the form

dy

dx
= 6x2 - 4x  y′ = -400e-0.04x

These are examples of differential equations. In general, an equation is a differential 
equation if it involves an unknown function and one or more of its derivatives. Other 
examples of differential equations are

dy

dx
= ky  y″ - xy′ + x2 = 5  

dy

dx
= 2xy

The first and third equations are called first-order (differential) equations because 
each involves a first derivative but no higher derivative. The second equation is called 
a second-order (differential) equation because it involves a second derivative but no 
higher derivative.

A solution of a differential equation is a function f1x2 which, when substituted 
for y, satisfies the equation; that is, the left side and right side of the equation are the 
same function. Finding a solution of a given differential equation may be very dif-
ficult. However, it is easy to determine whether or not a given function is a solution 
of a given differential equation. Just substitute and check whether both sides of the 
differential equation are equal as functions. For example, even if you have trouble 
finding a function y that satisfies the differential equation

 1x - 32dy

dx
= y + 4 (1)

it is easy to determine whether or not the function y = 5x - 19 is a solution: Since 
dy>dx = 5, the left side of (1) is 1x - 325 and the right side is 15x - 192 + 4, so 
the left and right sides are equal and y = 5x - 19 is a solution.

In this section, we emphasize a few special first-order differential equations 
that have immediate and significant applications. We start by looking at some 
first-order equations geometrically, in terms of slope fields. We then consider con-
tinuous compound interest as modeled by a first-order differential equation. From 
this treatment, we can generalize our approach to a wide variety of other types of 
growth phenomena.

5.3 Differential Equations; Growth and Decay
■■ Differential Equations and Slope 
Fields

■■ Continuous Compound Interest 
Revisited

■■ Exponential Growth Law
■■ Population Growth, Radioactive 
Decay, and Learning

■■ Comparison of Exponential  
Growth Phenomena
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Differential Equations and Slope Fields
We introduce the concept of slope field through an example. Consider the first-order 
differential equation

 
dy

dx
= 0.2y (2)

A function f is a solution of equation (2) if y = f1x2 satisfies equation (2) for 
all values of x in the domain of f. Geometrically interpreted, equation (2) gives us 
the slope of a solution curve that passes through the point 1x, y2. For example, if 
y = f1x2 is a solution of equation (2) that passes through the point 10, 22, then the 
slope of f at 10, 22 is given by

dy

dx
= 0.2122 = 0.4

We indicate this relationship by drawing a short segment of the tangent line at the 
point 10, 22, as shown in Figure 1A. The procedure is repeated for points 1-3, 12 
and 12, 32. We sketch a possible graph of f in Figure 1B.

(A)

x

y

5

25

25

5

 (B)

x

y

5

25

25

5

Figure 1

If we continue the process of drawing tangent line segments at each point grid in 
Figure 1—a task easily handled by computers, but not by hand—we obtain a slope 
field. A slope field for differential equation (2), drawn by a computer, is shown in 
Figure 2. In general, a slope field for a first-order differential equation is obtained 
by drawing tangent line segments determined by the equation at each point in a grid.

x

y

5

5

Figure 2

(A) In Figure 1A (or a copy), draw tangent line segments for a solution curve of dif-
ferential equation (2) that passes through 1-3, -12,10, -22, and 12, -32.

(B) In Figure 1B (or a copy), sketch an approximate graph of the solution curve that 
passes through the three points given in part (A). Repeat the tangent line segments 
first.

(C) What type of function, of all the elementary functions discussed in the first two 
chapters, appears to be a solution of differential equation (2)?

Explore and Discuss 1

In Explore and Discuss 1, if you guessed that all solutions of equation (2) are 
exponential functions, you are to be congratulated. We now show that

 y = Ce0.2x (3)
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is a solution of equation (2) for any real number C. We substitute y = Ce0.2x into 
equation (2) to see if the left side is equal to the right side for all real x:

 
dy

dx
= 0.2y

 Left side: 
dy

dx
=

d
dx

 1Ce0.2x2 = 0.2Ce0.2x

Right side: 0.2y = 0.2Ce0.2x

So equation (3) is a solution of equation (2) for C any real number. Which values of 
C will produce solution curves that pass through (0, 2) and 10, -22, respectively? 
Substituting the coordinates of each point into equation (3) and solving for C, we obtain

 y = 2e0.2x  and  y = -2e0.2x (4)

The graphs of equations (4) are shown in Figure 3, and they confirm the results 
shown in Figure 1B. We say that (3) is the general solution of the differential equa-
tion (2), and the functions in (4) are the particular solutions that satisfy y102 = 2 
and y102 = -2, respectively.

25

25

5

5

x

y

Figure 3

For a complicated first-order differential equation, say,

dy

dx
=

3 + 1xy

x2 - 5y4

it may be impossible to find a formula analogous to (3) for its solutions. 
Nevertheless, it is routine to evaluate the right-hand side at each point in a grid. 
The resulting slope field provides a graphical representation of the solutions of 
the differential equation.

CONCEPTUAL INSIGHT

Drawing slope fields by hand is not a task for human beings: A 20-by-20 grid 
would require drawing 400 tangent line segments! Repetitive tasks of this type are 
left for computers. A few problems in Exercises 5.3 involve interpreting slope fields, 
not drawing them.

Continuous Compound Interest Revisited
Let P be the initial amount of money deposited in an account, and let A be the amount 
in the account at any time t. Instead of assuming that the money in the account earns 
a particular rate of interest, suppose we say that the rate of growth of the amount of 
money in the account at any time t is proportional to the amount present at that time. 
Since dA>dt is the rate of growth of A with respect to t, we have

 
dA
dt

= rA  A102 = P  A, P 7 0 (5)

where r is an appropriate constant. We would like to find a function A = A1t2 that 
satisfies these conditions. Multiplying both sides of equation (5) by 1>A, we obtain

 
1
A

 
dA
dt

= r
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Now we integrate each side with respect to t:

 L
 

 

 
1
A

 
dA
dt

 dt = L
 

 
r dt  

dA
dt

 dt = A′1t2dt = dA

 L
 

 

 
1
A

 dA = L
 

 

r dt

 ln ∙ A ∙ = rt + C  ∙ A ∙ = A, since A 7 0

 ln A = rt + C

We convert this last equation into the equivalent exponential form using the definition 
of a logarithmic function: y = ln x if and only if x = e  

y.

 A = ert + C  Property of exponents: bmbn = bm + n

 = eCert

Since A102 = P, we evaluate A1t2 = eCert at t = 0 and set the result equal to P:

A102 = eCe0 = eC = P

Hence, eC = P, and we can rewrite A = eCert in the form

A = Pert

This is the same continuous compound interest formula obtained in Section 4.1, 
where the principal P is invested at an annual nominal rate r compounded continu-
ously for t years.

Exponential Growth Law
In general, if the rate of change of a quantity Q with respect to time is proportional to 
the amount of Q present and Q102 = Q0, then, proceeding in exactly the same way 
as we just did, we obtain the following theorem:

THEOREM 1 Exponential Growth Law

If 
dQ

dt
= rQ and Q102 = Q0, then Q = Q0e

rt,

where

 Q0 = amount of Q at t = 0

 r = relative growth rate 1expressed as a decimal2
 t = time

 Q = quantity at time t

The constant r in the exponential growth law is called the relative growth 
rate. If the relative growth rate is r = 0.02, then the quantity Q is growing at a 
rate dQ>dt = 0.02Q (that is, 2% of the quantity Q per unit of time t). Note the 
distinction between the relative growth rate r and the rate of growth dQ/dt of the 
quantity Q. If r 6 0, then dQ>dt 6 0 and Q is decreasing. This type of growth is 
called exponential decay.

Once we know that the rate of growth is proportional to the amount present, 
we recognize exponential growth and can use Theorem 1 without solving the 
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differential equation each time. The exponential growth law applies not only to 
money invested at interest compounded continuously but also to many other types 
of problems—population growth, radioactive decay, the depletion of a natural re-
source, and so on.

Population Growth, Radioactive Decay, and Learning
The world population passed 1 billion in 1804, 2 billion in 1927, 3 billion in 1960, 
4 billion in 1974, 5 billion in 1987, and 6 billion in 1999, as illustrated in Figure 4. 
Population growth over certain periods often can be approximated by the exponen-
tial growth law of Theorem 1.Year

6

5

4

3

2

1

18001700 1900 2000

B
ill

io
n 

pe
op

le

Figure 4 World population growth

Population Growth India had a population of about 1.2 billion in 2010 1t = 02. 
Let P represent the population (in billions) t years after 2010, and assume a growth 
rate of 1.5% compounded continuously.

(A) Find an equation that represents India’s population growth after 2010, assum-
ing that the 1.5% growth rate continues.

(B) What is the estimated population (to the nearest tenth of a billion) of India in 
the year 2030?

(C) Graph the equation found in part (A) from 2010 to 2030.

SOLUTION

(A) The exponential growth law applies, and we have

dP
dt

= 0.015P  P102 = 1.2

Therefore,

 P = 1.2e0.015t (6)

(B) Using equation (6), we can estimate the population in India in 2030 1t = 202:

P = 1.2e0.0151202 = 1.6 billion people

(C) The graph is shown in Figure 5.

Matched Problem 1 Assuming the same continuous compound growth rate as 
in Example 1, what will India’s population be (to the nearest tenth of a billion) in 
the year 2020?

EXAMPLE 1

t

P

1.6

1.2

0.8

0.4

0 2010

B
ill

io
n 

pe
op

le

Years after 2010

Figure 5 Population of India

Population Growth If the exponential growth law applies to Canada’s population 
growth, at what continuous compound growth rate will the population double over 
the next 100 years?

SOLUTION We must find r, given that P = 2P0 and t = 100:

 P = P0e
rt

 2P0 = P0e
100r

 2 = e100r
  Take the natural logarithm  

of both sides and reverse  
the equation. 100r = ln 2

 r =
ln 2
100

 ≈ 0.0069 or 0.69%

EXAMPLE 2
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Matched Problem 2 If the exponential growth law applies to population 
growth in Nigeria, find the doubling time (to the nearest year) of the population if 
it grows at 2.1% per year compounded continuously.

We now turn to another type of exponential growth: radioactive decay. In 1946, 
Willard Libby (who later received a Nobel Prize in chemistry) found that as long as a 
plant or animal is alive, radioactive carbon-14 is maintained at a constant level in its 
tissues. Once the plant or animal is dead, however, the radioactive carbon-14 dimin-
ishes by radioactive decay at a rate proportional to the amount present.

dQ

dt
= rQ  Q102 = Q0

This is another example of the exponential growth law. The continuous compound 
rate of decay for radioactive carbon-14 is 0.000 123 8, so r = -0.000 123 8, since 
decay implies a negative continuous compound growth rate.

Archaeology A human bone fragment was found at an archaeological site in 
 Africa. If 10% of the original amount of radioactive carbon-14 was present, esti-
mate the age of the bone (to the nearest 100 years).

SOLUTION By the exponential growth law for

dQ

dt
= -0.000 123 8Q  Q102 = Q0

we have

Q = Q0e
-0.0001238t

We must find t so that Q = 0.1Q0 (since the amount of carbon-14 present now is 
10% of the amount Q0 present at the death of the person).

 0.1Q0 = Q0e
-0.0001238t

 0.1 = e-0.0001238t

 ln 0.1 = ln e-0.0001238t

 t =
ln 0.1

-0.000 123 8
≈ 18,600 years

See Figure 6 for a graphical solution to Example 3.

Matched Problem 3 Estimate the age of the bone in Example 3 (to the nearest 
100 years) if 50% of the original amount of carbon-14 is present.

EXAMPLE 3

0

1

30,000
20.5

Figure 6  y1 = e-0.0001238x; 
y2 = 0.1

In learning certain skills, such as typing and swimming, one often assumes that 
there is a maximum skill attainable—say, M—and the rate of improvement is propor-
tional to the difference between what has been achieved y and the maximum attain-
able M. Mathematically,

dy

dt
= k1M - y2  y102 = 0

We solve this type of problem with the same technique used to obtain the exponential 
growth law. First, multiply both sides of the first equation by 1> 1M - y2 to get

1
M - y

 
dy

dt
= k
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and then integrate each side with respect to t:

 L
 

 

 
1

M - y
 
dy

dt
 dt = L

 

 

k dt

 - L
 

 

 
1

M - y
 a -

dy

dt
b  dt = L

 

 

k dt    Substitute u = M - y and  

du = -dy = -  
dy

dt
 dt.

 - L
 

 

 
1
u

 du = L
 

 

k dt

 - ln ∙ u ∙ = kt + C   Substitute M - y, which is 7 0, for u.

 - ln1M - y2 = kt + C   Multiply both sides by -1.

 ln1M - y2 = -kt - C

Change this last equation to an equivalent exponential form:

 M - y = e-kt - C

 M - y = e-Ce-kt

 y = M - e-Ce-kt

Now, y102 = 0; hence,

y102 = M - e-Ce0 = 0

Solving for e-C, we obtain

e-C = M

and our final solution is

y = M - Me-kt = M11 - e-kt2

Learning For a particular person learning to swim, the distance y (in feet) that the 
person is able to swim in 1 minute after t hours of practice is given approximately by

y = 5011 - e-0.04t2
What is the rate of improvement (to two decimal places) after 10 hours of practice?

SOLUTION

 y = 50 - 50e-0.04t

 y′1t2 = 2e-0.04t

 y′1102 = 2e-0.041102 ≈ 1.34 feet per hour of practice

Matched Problem 4 In Example 4, what is the rate of improvement (to two 
decimal places) after 50 hours of practice?

EXAMPLE 4

Comparison of Exponential Growth Phenomena
Table 1 compares four widely used growth models. Each model (column 2) consists 
of a first-order differential equation and an initial condition that specifies y102, the 
value of a solution y when x = 0. The differential equation has a family of solutions, 
but there is only one solution (the particular solution in column 3) that also satis-
fies the initial condition [just as there is a family, y = x2 + k, of antiderivatives of 
g1x2 = 2x, but only one antiderivative (the particular antiderivative y = x2 + 5) 
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that also satisfies the condition y102 = 5]. A graph of the model’s solution is shown 
in column 4 of Table 1, followed by a short (and necessarily incomplete) list of areas 
in which the model is used.

Table 1 Exponential Growth
Description Model Solution Graph Uses

Unlimited growth: Rate  
of growth is proportional  
to the amount present

dy

dt
= ky

k, t 7 0

y102 = c

y = cekt

c

0
t

y • Short-term population growth 
(people, bacteria, etc.)

• Growth of money at continuous 
compound interest

• Price–supply curves

Exponential decay: Rate  
of growth is proportional 
to the amount present

dy

dt
= -ky

k, t 7 0

y102 = c

y = ce-kt

0

c

t

y • Depletion of natural resources
• Radioactive decay
• Absorption of light in water
• Price–demand curves
• Atmospheric pressure (t is 

altitude)

Limited growth: Rate 
of growth is proportional 
to the difference between 
the amount present and a 
fixed limit

dy

dt
= k1M - y2

k, t 7 0

y102 = 0

y = M11 - e-kt2

0
t

y

M

• Sales fads (new phones, trending 
fashion)

• Depreciation of equipment
• Company growth
• Learning

Logistic growth: Rate of 
growth is proportional to 
the amount present and 
to the difference between 
the amount present and a 
fixed limit

dy

dt
= ky1M - y2

k, t 7 0

y102 =
M

1 + c

y =
M

1 + ce-kMt

0
t

y

M

• Long-term population growth
• Epidemics
• Sales of new products
• Spread of a rumor
• Company growth

Skills Warm-up Exercises
In Problems 1–8, express the relationship between f =1x2 and 
f1x2 in words, and write a differential equation that f1x2 
satisfies. For example, the derivative of f1x2 = e3x is 3 times 
f1x2; y= = 3y. (If necessary, review Section 3.4).

1. f1x2 = e5x 2. f1x2 = e-2x

3. f1x2 = 10e-x 4. f1x2 = 25e0.04x

5. f1x2 = 3.2ex2
6. f1x2 = e-x2

7. f1x2 = 1 - e-x 8. f1x2 = 3 - e-2x

In Problems 9–20, find the general or particular solution, as indi-
cated, for each first-order differential equation.

9. 
dy

dx
= 6x 10. 

dy

dx
= 3x-2

11. 
dy

dx
=

7
x

12. 
dy

dx
= e0.1x

13. 
dy

dx
= e0.05x 14. 

dy

dx
= 8x-1

W

A

15. 
dy

dx
= x2 - x; y102 = 0 16. 

dy

dx
= 2x; y102 = 0

17. 
dy

dx
= -2xe-x2

; y102 = 3 18. 
dy

dx
= ex - 4; y142 = -2

19. 
dy

dx
=

2
1 + x

 ; y102 = 5 20. 
dy

dx
=

1
413 - x2  ; y102 = 1

In Problems 21–24, give the order (first, second, third, etc.) of 
each differential equation, where y represents a function of the 
variable x.

21. y - 2y= + x3y> = 0 22. xy= + y4 = ex

23. y? - 3y> + 3y= - y = 0 24. y4y= + x5y>= = x3

25. Is y = 5x a solution of the differential equation

dy

dx
=

y

x
? Explain.

26. Is y = 8x + 8 a solution of the differential equation

dy

dx
=

y

x + 1
? Explain.

Exercises 5.3
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In Problems 47–50, does the given differential equation model 
unlimited growth, exponential decay, limited growth, or logistic 
growth?

47. y= = 2.5y1300 - y2
48. y= = -0.0152y

49. y= = 0.43y

50. y= = 10,000 - y

Problems 51–58 refer to the following slope fields:

x

y

5

25

25 5

(A)  

x

y

5

25

25 5

(B)

Figure for 51–58

51. Which slope field is associated with the differential equation 
dy>dx = 1 - y? Briefly justify your answer.

52. Which slope field is associated with the differential equation 
dy>dx = y + 1? Briefly justify your answer.

53. Show that y = 1 - Ce -x is a solution of the differential 
equation dy>dx = 1 - y for any real number C. Find the 
particular solution that passes through (0, 0).

54. Show that y = Ce x - 1 is a solution of the differential 
equation dy>dx = y + 1 for any real number C. Find the 
particular solution that passes through (0, 0).

55. Graph the particular solution found in Problem 53 in the ap-
propriate Figure A or B (or a copy).

56. Graph the particular solution found in Problem 54 in the ap-
propriate Figure A or B (or a copy).

57. Use a graphing calculator to graph y = 1 - Ce-x for 
C = -2, -1, 1, and 2, for -5 … x … 5, -5 … y … 5,  
all in the same viewing window. Observe how the 
 solution curves go with the flow of the tangent line  
segments in the corresponding slope field shown in  
Figure A or B.

58. Use a graphing calculator to graph y = Cex - 1 for 
C = -2, -1, 1, and 2, for -5 … x … 5, -5 … y … 5,  
all in the same viewing window. Observe how the solution 
curves go with the flow of the tangent line segments in  
the corresponding slope field shown in Figure A or  
Figure B.

59. Show that y = 2C - x2 is a solution of the differential 
equation dy>dx = -x>y for any positive real number C.  
Find the particular solution that passes through (3, 4).

60. Show that y = 2x2 + C is a solution of the differential 
equation dy>dx = x>y for any real number C. Find the par-
ticular solution that passes through 1-6, 72.

C

27. Is y = 29 + x2 a solution of the differential equation

y= =
x
y
? Explain.

28. Is y = 5ex2>2 a solution of the differential equation

y= = xy? Explain.

29. Is y = e - x a solution of the differential equation

y> - 4y= + 3y = 0? Explain.

30. Is y = -2ex a solution of the differential equation

y> - 4y= + 3y = 0? Explain.

31. Is y = 100e3x a solution of the differential equation

y> - 4y= + 3y = 0? Explain.

32. Is y = e-3x a solution of the differential equation

y> - 4y= + 3y = 0? Explain.

Problems 33–38 refer to the following slope fields:

x

y

(A)

5

25

25 5

 

x

y

5

25

25 5

(B)

Figure for 33–38

33. Which slope field is associated with the differential equation 
dy>dx = x - 1? Briefly justify your answer.

34. Which slope field is associated with the differential equation 
dy>dx = -x? Briefly justify your answer.

35. Solve the differential equation dy>dx = x - 1 and find the 
particular solution that passes through 10, -22.

36. Solve the differential equation dy>dx = -x and find the 
particular solution that passes through (0, 3).

37. Graph the particular solution found in Problem 35 in the 
 appropriate Figure A or B (or a copy).

38. Graph the particular solution found in Problem 36 in the  
 appropriate Figure A or B (or a copy).

In Problems 39–46, find the general or particular solution, as 
indicated, for each differential equation.

39. 
dy

dt
= 2y 40. 

dy

dt
= -3y

41. 
dy

dx
= -0.5y; y102 = 100 42. 

dy

dx
= 0.2y; y102 = -50

43. 
dx
dt

= -5x 44. 
dx
dt

= 6t

45. 
dx
dt

= -5t 46. 
dx
dt

= 6x

B

M05_BARN6152_14_GE_C05.indd   397 22/11/18   11:02 PM



398 CHAPTER 5 Integration

Applications
77. Continuous compound interest. Find the amount A in an 

account after t years if

dA
dt

= 0.02A  and  A102 = 1,000

78. Continuous compound interest. Find the amount A in an 
account after t years if

dA
dt

= 0.015A  and  A102 = 2,500

79. Continuous compound interest. Find the amount A in an 
account after t years if

dA
dt

= rA  A102 = 8,000  A122 = 8,161.61

80. Continuous compound interest. Find the amount A in an 
account after t years if

dA
dt

= rA  A102 = 5,000  A152 = 5,282.70

81. Price–demand. The marginal price dp/dx at x units of 
demand per week is proportional to the price p. There is no 
weekly demand at a price of $1000 per unit 3p102 = 10004, 
and there is a weekly demand of 10 units at a price of 
$367.88 per unit 3p1102 = 367.884.

(A) Find the price–demand equation.

(B) At a demand of 20 units per week, what is the price?

(C) Graph the price–demand equation for 0 … x … 25.

82. Price–supply. The marginal price dp/dx at x units of 
supply per day is proportional to the price p. There is no 
supply at a price of $20 per unit 3p102 = 204, and there 
is a daily supply of 40 units at a price of $23.47 per unit 
3p1402 = 23.474.

(A) Find the price–supply equation.

(B) At a supply of 100 units per day, what is the price?

(C) Graph the price–supply equation for 0 … x … 250.

83. Advertising. A company is trying to expose a new product 
to as many people as possible through TV ads. Suppose that 
the rate of exposure to new people is proportional to the num-
ber of those who have not seen the product out of L possible 
viewers (limited growth). No one is aware of the product at 
the start of the campaign, and after 10 days, 33% of L are 
aware of the product. Mathematically,

dN
dt

= k1L - N2 N102 = 0 N1102 = 0.33L

(A) Solve the differential equation.

(B) How many days will it take to expose 66% of L?

(C) Graph the solution found in part (A) for 0 … t … 90.

61. Show that y = Cx is a solution of the differential equation 
dy>dx = y>x for any real number C. Find the particular solu-
tion that passes through 1-8, 242.

62. Show that y = C>x is a solution of the differential equation 
dy>dx = -y>x for any real number C. Find the particular 
solution that passes through (2, 5).

63. Show that y = 1>11 + ce-t2 is a solution of the differential 
equation dy>dt = y11 - y2 for any real number c. Find the 
particular solution that passes through 10, -12.

64. Show that y = 2> 11 + ce-6t2 is a solution of the differential 
equation dy>dt = 3y12 - y2 for any real number c. Find the 
particular solution that passes through (0, 1).

In Problems 65–72, use a graphing calculator to graph the given 
examples of the various cases in Table 1 on page 396.

65. Unlimited growth:

 y = 1,000e0.08t

 0 … t … 15

 0 … y … 3,500

66. Unlimited growth:

 y = 5,250e0.12t

 0 … t … 10

 0 … y … 20,000

67. Exponential decay:

 p = 100e-0.05x

 0 … x … 30

 0 … p … 100

68. Exponential decay:

 p = 1,000e-0.08x

 0 … x … 40

 0 … p … 1,000

69. Limited growth:

 N = 10011 - e-0.05t2
 0 … t … 100

 0 … N … 100

70. Limited growth:

 N = 1,00011 - e-0.07t2
 0 … t … 70

 0 … N … 1,000

71. Logistic growth:

 N =
1,000

1 + 999e-0.4t

 0 … t … 40

 0 … N … 1,000

72. Logistic growth:

 N =
400

1 + 99e-0.4t

 0 … t … 30

 0 … N … 400

73. Show that the rate of logistic growth, dy>dt = ky1M - y2, 
has its maximum value when y = M>2.

74. Find the value of t for which the logistic function

y =
M

1 + ce-kMt

is equal to M>2.

75. Let Q(t) denote the population of the world at time t. In 1999, 
the world population was 6.0 billion and increasing at 1.3% 
per year; in 2009, it was 6.8 billion and increasing at 1.2% 
per year. In which year, 1999 or 2009, was dQ/dt (the rate of 
growth of Q with respect to t) greater? Explain.

76. Refer to Problem 75. Explain why the world population func-
tion Q(t) does not satisfy an exponential growth law.
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N1t2 =
10,000

1 + 9,999e-0.4t

(A) How many people have contracted influenza after  
1 week? After 2 weeks?

(B) How many days will it take until half the community has 
contracted influenza?

(C) Find lim
tS ∞

 N1t2.

(D) Graph N = N1t2 for 0 … t … 50.

89. Nuclear accident. One of the dangerous radioactive isotopes 
detected after the Chernobyl nuclear disaster in 1986 was 
cesium-137. If 50.2% of the cesium-137 emitted during the 
disaster was still present in 2016, find the continuous com-
pound rate of decay of this isotope.

90. Insecticides. Many countries have banned the use of the 
insecticide DDT because of its long-term adverse effects. 
Five years after a particular country stopped using DDT, the 
amount of DDT in the ecosystem had declined to 70% of the 
amount present at the time of the ban. Find the continuous 
compound rate of decay of DDT.

91. Archaeology. An artifact found in an excavation site has 
2% of the original amount of radioactive carbon-14 present. 
Estimate the age of the artifact. (See Example 3.)

92. Learning. For a person learning to type, the number N of 
words per minute that the person could type after t hours of 
practice was given by the limited growth function

N = 10011 - e-0.02t2
What is the rate of improvement after 10 hours of practice? 
After 40 hours of practice?

93. Small-group analysis. In a study on small-group dynamics,  
sociologists found that when 10 members of a discussion 
group were ranked according to the number of times each 
participated, the number N(k) of times that the kth-ranked 
person participated was given by

N1k2 = N1e
-0.111k - 12  1 … k … 10

where N1 is the number of times that the first-ranked person 
participated in the discussion. If N1 = 180, in a discussion 
group of 10 people, estimate how many times the sixth-
ranked person participated. How about the 10th-ranked 
person?

94. Perception. The Weber–Fechner law concerns a person’s 
sensed perception of various strengths of stimulation involv-
ing weights, sound, light, shock, taste, and so on. One form 
of the law states that the rate of change of sensed sensation 
S with respect to stimulus R is inversely proportional to the 
strength of the stimulus R. So

dS
dR

=
k
R

where k is a constant. If we let R0 be the threshold level at 
which the stimulus R can be detected (the least amount of 
sound, light, weight, and so on, that can be detected), then

S1R02 = 0

Find a function S in terms of R that satisfies these conditions.

84. Advertising. A company is trying to expose a new product 
to as many people as possible through online ads. Suppose 
that the rate of exposure to new people is proportional to 
the number of those who have not seen the product out of 
L possible viewers (limited growth). No one is aware of the 
product at the start of the campaign, and after 8 days, 33% of 
L are aware of the product. Mathematically

dN
dt

= k1L - N2 N102 = 0 N182 = 0.33L

(A) Solve the differential equation.

(B) How many days will it take to expose 66% of L?

(C) Graph the solution found in part (A) for 0 … t … 100.

85. Biology. For relatively clear bodies of water, the intensity of 
light is reduced according to

dI
dx

= -kI  I102 = I0

where I is the intensity of light at x feet below the surface. 
For the Sargasso Sea off the West Indies, k = 0.00942. Find I 
in terms of x, and find the depth at which the light is reduced 
to one third the surface light.

86. Blood pressure. Under certain assumptions, the blood 
pressure P in the largest artery in the human body (the aorta) 
changes between beats with respect to time t according to

dP
dt

= -aP  P102 = P0

where a is a constant. Find P = P1t2 that satisfies both 
conditions.

87. Drug concentration. A single injection of a drug is admin-
istered to a patient. The amount Q in the body then decreases 
at a rate proportional to the amount present. For a particular 
drug, the rate is 4% per hour. Thus,

dQ

dt
= -0.04Q  Q102 = Q0

where t is time in hours.

(A) If the initial injection is 5 milliliters 3Q102 = 54, find 
Q = Q1t2 satisfying both conditions.

(B) How many milliliters (to two decimal places) are in the 
body after 10 hours?

(C) How many hours (to two decimal places) will it take for 
only 1 milliliter of the drug to be left in the body?

88. Simple epidemic. A community of 10,000 people is homo-
geneously mixed. One person who has just returned from 
another community has influenza. Assume that the home 
community has not had influenza shots and all are suscep-
tible. One mathematical model assumes that influenza tends to 
spread at a rate in direct proportion to the number N who have 
the disease and to the number 10,000 - N who have not yet 
contracted the disease (logistic growth). Mathematically,

dN
dt

= kN110,000 - N2  N102 = 1

where N is the number of people who have contracted influ-
enza after t days. For k = 0.0004, N1t2 is the logistic growth 
function
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(A) How many people have heard the rumor after  
15 minutes?

(B) To the nearest minute, when will 100 people have heard 
the rumor?

(C) When is the rumor spreading the fastest?

96. Rumor propagation. The function x(t) in Problem 95 exhibits 
logistic growth. Why might the rate at which a rumor spreads 
initially increase, but eventually slow down?

Answers to Matched Problems
1. 1.4 billion people

2. 33 yr

3. 5,600 yr

4. 0.27 ft/hr

95. Rumor propagation. Sociologists have found that a rumor 
tends to spread at a rate in direct proportion to the number x 
who have heard it and to the number P - x who have not, 
where P is the total population (logistic growth). If a resident 
of a 400-student dormitory hears a rumor that there is a case 
of TB on campus, then P = 400 and

dx
dt

= 0.001x1400 - x2  x102 = 1

where t is time (in minutes). Use the slope field to answer the 
following questions.

  

0 30
t

x

400

0

The first three sections of this chapter focused on the indefinite integral. In this 
section, we introduce the definite integral. The definite integral is used to compute 
areas, probabilities, average values of functions, future values of continuous income 
streams, and many other quantities. Initially, the concept of the definite integral may 
seem unrelated to the notion of the indefinite integral. There is, however, a close con-
nection between the two integrals. The fundamental theorem of calculus, discussed in 
Section 5.5, makes that connection precise.

Approximating Areas by Left and Right Sums
How do we find the shaded area in Figure 1? That is, how do we find the area 
bounded by the graph of f1x2 = 0.25x2 + 1, the x axis, and the vertical lines x = 1 
and x = 5? [This cumbersome description is usually shortened to “the area under 
the graph of f1x2 = 0.25x2 + 1 from x = 1 to x = 5.”] Our standard geometric 
area formulas do not apply directly, but the formula for the area of a rectangle can be 
used indirectly. To see how, we look at a method of approximating the area under the 
graph by using rectangles. This method will give us any accuracy desired, which is 
quite different from finding the area exactly. Our first area approximation is made by 
dividing the interval [1, 5] on the x axis into four equal parts, each of length

∆x =
5 - 1

4
= 1*

We then place a left rectangle on each subinterval, that is, a rectangle whose base is 
the subinterval and whose height is the value of the function at the left endpoint of the 
subinterval (see Fig. 2).

5.4 The Definite Integral
■■ Approximating Areas by Left and 
Right Sums

■■ The Definite Integral as a Limit 
of Sums

■■ Properties of the Definite Integral

x
10 5

5

10

f (x)

f (x) 5 0.25x2 1 1

Figure 1 What is the shaded area?

*It is customary to denote the length of the subintervals by ∆x, which is read “delta x,” since ∆ is the Greek 
capital letter delta.
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Summing the areas of the left rectangles in Figure 2 results in a left sum of four 
rectangles, denoted by L4, as follows:

 L4 = f112 # 1 + f122 # 1 + f132 # 1 + f142 # 1

 = 1.25 + 2.00 + 3.25 + 5 = 11.5

From Figure 3, since f1x2 is increasing, we see that the left sum L4 underestimates 
the area, and we can write

11.5 = L4 6 Area

f (x)

f (x) 5 0.25x2 1 1

10 2 3 4 5

5

10

x

Figure 2 Left rectangles

f (x)

f (x) 5 0.25x2 1 1

10 2 3 4 5

5

10

x

Figure 3 Left and right rectangles

Similarly, we use the right endpoint of each subinterval to find the height of the 
right rectangle placed on the subinterval. Superimposing right rectangles on Figure 
2, we get Figure 3.

Summing the areas of the right rectangles in Figure 3 results in a right sum of 
four rectangles, denoted by R4, as follows (compare R4 with L4 and note that R4 can 
be obtained from L4 by deleting one rectangular area and adding one more):

 R4 = f122 # 1 + f132 # 1 + f142 # 1 + f152 # 1

 = 2.00 + 3.25 + 5.00 + 7.25 = 17.5

From Figure 3, since f1x2 is increasing, we see that the right sum R4 overestimates 
the area, and we conclude that the actual area is between 11.5 and 17.5. That is,

11.5 = L4 6 Area 6 R4 = 17.5

If f1x2 were decreasing over the interval 31, 54, would the left sum L4 over- or un-
derestimate the actual area under the curve? Explain.

Explore and Discuss 1

If f1x2 in Figure 3 were decreasing over the interval [1, 5], would the right sum R4 
overestimate or underestimate the actual area under the curve? Explain.

Explore and Discuss 2

The first approximation of the area under the curve in Figure 1 is fairly coarse, 
but the method outlined can be continued with increasingly accurate results by divid-
ing the interval [1, 5] into more and more subintervals of equal horizontal length. 
Of course, this is a job better suited to computers than to hand calculations. Figure 4 
shows left- and right-rectangle approximations for 16 equal subdivisions.

f (x)

f (x) 5 0.25x2 1 1

1 5

5

10

x
0

Figure 4
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402 CHAPTER 5 Integration

For this case,

 ∆x =
5 - 1

16
= 0.25

 L16 = f112 # ∆x + f11.252 # ∆x + g+ f14.752 # ∆x

 = 13.59

 R16 = f11.252 # ∆x + f11.502 # ∆x + g+ f152 # ∆x

 = 15.09

Now we know that the area under the curve is between 13.59 and 15.09. That is,

13.59 = L16 6 Area 6 R16 = 15.09

For 100 equal subdivisions, computer calculations give us

14.214 = L100 6 Area 6 R100 = 14.454

The error in an approximation is the absolute value of the difference between 
the approximation and the actual value. In general, neither the actual value nor the er-
ror in an approximation is known. However, it is often possible to calculate an error 
bound—a positive number such that the error is guaranteed to be less than or equal 
to that number.

The error in the approximation of the area under the graph of f from x = 1 to 
x = 5 by the left sum L16 (or the right sum R16) is less than the sum of the areas of 
the small rectangles in Figure 4. By stacking those rectangles (see Fig. 5), we see that

Error = ƒ  Area - L16 ƒ 6 ƒ   f152 - f112  ƒ # ∆x = 1.5

Therefore, 1.5 is an error bound for the approximation of the area under f by L16. We 
can apply the same stacking argument to any positive function that is increasing on 
3a, b4 or decreasing on 3a, b4, to obtain the error bound in Theorem 1.

f (x)

f (x) 5 0.25x2 1 1

1 5

5

10

x

f (5) 2 f(1)

Dx

0

Figure 5

THEOREM 1 Error Bounds for Approximations of Area by Left or Right 
Sums
If f1x2 7 0 and is either increasing on 3a, b4 or decreasing on 3a, b4, then

∙ f1b2 - f1a2 ∙ # b - a
n

is an error bound for the approximation of the area between the graph of f and the  
x axis, from x = a to x = b, by Ln or Rn.

M05_BARN6152_14_GE_C05.indd   402 22/11/18   11:03 PM



 SECTION 5.4   The Definite Integral 403

Because the error bound of Theorem 1 approaches 0 as n S ∞ , it can be shown that 
left and right sums, for certain functions, approach the same limit as n S ∞ .

THEOREM 2 Limits of Left and Right Sums
If f1x2 7 0 and is either increasing on 3a, b4 or decreasing on 3a, b4, then its 
left and right sums approach the same real number as n S ∞ .

The number approached as n S ∞  by the left and right sums in Theorem 2 is the area 
between the graph of f and the x axis from x = a to x = b.

Approximating Areas Given the function f1x2 = 9 - 0.25x2, we want to  
approximate the area under y = f1x2 from x = 2 to x = 5.

(A) Graph the function over the interval [0, 6]. Then draw left and right rectangles 
for the interval [2, 5] with n = 6.

(B) Calculate L6, R6, and error bounds for each.

(C) How large should n be in order for the approximation of the area by Ln or Rn to 
be within 0.05 of the true value?

SOLUTION

(A) ∆x = 0.5:

x
1

5

0

10

2 3 4 5 6

y 5 f (x)

f (x)

(B)  L6 = f122 # ∆x + f12.52 # ∆x + f132 # ∆x + f13.52 # ∆x + f142 # ∆x

         + f14.52 # ∆x = 18.53

 R6 = f12.52 # ∆x + f132 # ∆x + f13.52 # ∆x + f142 # ∆x

         + f14.52 # ∆x + f152 # ∆x = 15.91

The error bound for L6 and R6 is

error … 0 f152 - f122 0 5 - 2
6

= 0 2.75 - 8 0 10.52 = 2.625

(C) For Ln and Rn, find n such that error … 0.05:

 0  f1b2 - f1a2 0 b - a
n

… 0.05

 0 2.75 - 8 0  3
n

… 0.05

 0 -5.25 0  3
n

… 0.05

 15.75 … 0.05n

 n Ú
15.75
0.05

= 315

EXAMPLE 1
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Matched Problem 1 Given the function f1x2 = 8 - 0.5x2, we want to ap-
proximate the area under y = f1x2 from x = 1 to x = 3.

(A) Graph the function over the interval [0, 4]. Then draw left and right rectangles 
for the interval [1, 3] with n = 4.

(B) Calculate L4, R4, and error bounds for each.

(C) How large should n be in order for the approximation of the area by Ln or Rn 
to be within 0.5 of the true value?

*The term Riemann sum is often applied to more general sums in which the subintervals 3xk - 1, xk4 are not 
required to have the same length. Such sums are not considered in this book.

Note from Example 1C that a relatively large value of n 1n = 3152 is required 
to approximate the area by Ln or Rn to within 0.05. In other words, 315 rect-
angles must be used, and 315 terms must be summed, to guarantee that the error 
does not exceed 0.05. We can obtain a more efficient approximation of the area 
(fewer terms are summed to achieve a given accuracy) by replacing rectangles 
with trapezoids. The resulting trapezoidal rule and other methods for approxi-
mating areas are discussed in Section 6.2.

CONCEPTUAL INSIGHT

The Definite Integral as a Limit of Sums
Left and right sums are special cases of more general sums, called Riemann sums 
[named after the German mathematician Georg Riemann (1826–1866)], that are used 
to approximate areas by means of rectangles.

Let f be a function defined on the interval 3a, b4. We partition 3a, b4 into n sub-
intervals of equal length ∆x = 1b - a2 >n with endpoints

a = x0 6 x1 6 x2 6 g 6 xn = b

Then, using summation notation (see Appendix B.1), we have

Left sum: Ln = f1x02∆x + f1x12∆x + g+ f1xn - 12∆x = a
n

k = 1
  f1xk - 12∆x

Right sum: Rn = f1x12∆x + f1x22∆x + g+ f1xn2∆x = a
n

k = 1
 f1xk2∆x

Riemann sum: Sn = f1c12∆x + f1c22∆x + g + f1cn2∆x = a
n

k = 1
 f1ck2∆x

In a Riemann sum,* each ck is required to belong to the subinterval 3xk - 1, xk4. Left 
and right sums are the special cases of Riemann sums in which ck is the left endpoint 
or right endpoint, respectively, of the subinterval. Other types of Riemann sums exist 
where ck is chosen to be the location of the maximum, minimum, midpoint, or a num-
ber of other types of points in the interval. If f1x2 7 0, then each term of a Riemann 
sum Sn represents the area of a rectangle having height f1ck2 and width ∆x (see Fig. 6).  
If f1x2 has both positive and negative values, then some terms of Sn represent areas 
of rectangles, and others represent the negatives of areas of rectangles, depending on 
the sign of f1ck2 (see Fig. 7).
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By analyzing properties of a continuous function on a closed interval, it can be 
shown that the conclusion of Theorem 2 is valid if f is continuous. In that case, not 
just left and right sums, but Riemann sums, have the same limit as n S ∞ .

f (x)

0 a 5 x0
x

x1 x2 x3 x4 5 bc1 c2 c3 c4

Figure 6

f (x)

0 a 5 x0
x

x1

x2 x3 x4

c1 c2

c3 c4

Figure 7

Riemann Sums Consider the function f1x2 = 15 - x2 on 31, 54. Partition the  
interval 31, 54 into four subintervals of equal length. For each subinterval 3xk - 1, xk4, 
let ck be the midpoint. Calculate the corresponding Riemann sum S4. (Riemann sums 
for which the ck are the midpoints of the subintervals are called midpoint sums.)

SOLUTION  ∆x =
5 - 1

4
= 1

 S4 = f1c12 # ∆x + f1c22 # ∆x + f1c32 # ∆x + f1c42 # ∆x

 = f11.52 # 1 + f12.52 # 1 + f13.52 # 1 + f14.52 # 1

 = 12.75 + 8.75 + 2.75 - 5.25 = 19

Matched Problem 2 Consider the function f1x2 = x2 - 2x - 10 on 32, 84. 
Partition the interval 32, 84 into three subintervals of equal length. For each subinter-
val 3xk - 1, xk4, let ck be the midpoint. Calculate the corresponding Riemann sum S3.

EXAMPLE 2

Reminder:

Since each term has a ∆x, we may 
factor it out. This is particularly  
useful if ∆x is messy.

*The precise meaning of this limit statement is as follows: For each e 7 0, there exists some d 7 0 such 
that 0 Sn - I 0 6 e whenever Sn is a Riemann sum for f on 3a, b4 for which ∆x 6 d.

THEOREM 3 Limit of Riemann Sums
If f is a continuous function on 3a, b4, then the Riemann sums for f on 3a, b4 
 approach a real number limit I as n S ∞ .*

DEFINITION Definite Integral
Let f be a continuous function on 3a, b4. The limit I of Riemann sums for f on 
3a, b4, guaranteed to exist by Theorem 3, is called the definite integral of f from 
a to b and is denoted as

L
b

a
 f1x2 dx

The integrand is f1x2, the lower limit of integration is a, and the upper limit 
of integration is b.
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Because area is a positive quantity, the definite integral has the following geo-
metric interpretation:

L
b

a
 f1x2 dx

represents the cumulative sum of the signed areas between the graph 
of f and the x axis from x ∙ a to x ∙ b, where the areas above the  
x axis are counted positively and the areas below the x axis are counted 
negatively (see Fig.  8, where A and B are the actual areas of the indi-
cated regions).

f (x)
y 5 f (x)

a

b
x

A

B

Figure 8 L
b

a
f 1x 2  dx = -A + B

Definite Integrals Calculate the definite integrals by referring to Figure 9.

(A) L
b

a
f1x2 dx

(B) L
c

a
f1x2 dx

(C) L
c

b
f1x2 dx

SOLUTION

(A) L
b

a
f1x2 dx = -2.33 + 10.67 = 8.34

(B) L
c

a
f1x2 dx = -2.33 + 10.67 - 5.63 = 2.71

(C) L
c

b
f1x2 dx = -5.63

Matched Problem 3 Referring to the figure for Example 3, calculate the 
 definite integrals.

(A) L
0

a
f1x2 dx (B) L

c

0
f1x2 dx (C) L

b

0
f1x2 dx

EXAMPLE 3

Area A 5 2.33
Area B 5 10.67
Area C 5 5.63

y 5 f (x)

a

b

c

0

B

C
A

f (x)

x

Figure 9

Properties of the Definite Integral
Because the definite integral is defined as the limit of Riemann sums, many 
properties of sums are also properties of the definite integral. Note that proper-
ties 3 and 4 are similar to the indefinite integral properties given in Section 5.1. 
Property 5 is illustrated by Figure 9 in Example 3: 2.71 = 8.34 + 1-5.632. 
Property 1 follows from the special case of property 5 in which b and c are both 
replaced by a. Property 2 follows from the special case of property 5 in which c 
is replaced by a.
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PROPERTIES Properties of Definite Integrals

1. L
a

a
f1x2 dx = 0

2. L
b

a
f1x2 dx = -L

a

b
f1x2 dx

3. L
b

a
kf1x2 dx = kL

b

a
f1x2 dx, k a constant

4. L
b

a
3 f1x2 { g1x24 dx = L

b

a
f1x2 dx {L

b

a
g1x2 dx

5. L
c

a
f1x2 dx = L

b

a
f1x2 dx + L

c

b
f1x2 dx

The idea of signed area relates to the rectangles in the Riemann sum. Areas be-
low the x-axis are counted negatively since their rectangles have negative height. 
Integrals from b to a are counted negatively since a - b is the negative of b - a.

CONCEPTUAL INSIGHT

Using Properties of the Definite Integral If

L
2

0
x dx = 2  L

2

0
x2 dx =

8
3
  L

3

2
x2 dx =

19
3

then

(A) L
2

0
12x2 dx = 12L

2

0
x2 dx = 12a8

3
b = 32

(B) L
2

0
12x - 6x22 dx = 2L

2

0
x dx - 6L

2

0
x2 dx = 2122 - 6a8

3
b = -12

(C) L
2

3
x2 dx = - L

3

2
x2 dx = -  

19
3

(D) L
5

5
3x2 dx = 0

(E) L
3

0
3x2 dx = 3L

2

0
x2 dx + 3L

3

2
x2 dx = 3a8

3
b + 3a19

3
b = 27

Matched Problem 4 Using the same integral values given in Example 4, find

(A) L
3

2
6x2 dx (B) L

2

0
19x2 - 4x2 dx (C) L

0

2
3x dx

(D) L
-2

-2
3x dx (E) L

3

0
12x2 dx

EXAMPLE 4
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Skills Warm-up Exercises
In Problems 1–6, perform a mental calculation to find the answer 
and include the correct units. (If necessary, see the references at 
the back of the book.)

1. Find the total area enclosed by 5 non-overlapping rectangles, 
if each rectangle is 8 inches high and 2 inches wide.

2. Find the total area enclosed by 6 non-overlapping rectangles, if 
each rectangle is 10 centimeters high and 3 centimeters wide.

3. Find the total area enclosed by 4 non-overlapping rectangles, 
if each rectangle has width 2 meters and the heights of the 
rectangles are 3, 4, 5, and 6 meters, respectively.

4. Find the total area enclosed by 5 non-overlapping rectangles, 
if each rectangle has width 4 feet and the heights of the rect-
angles are 1, 3, 5, 7, and 9 feet, respectively.

5. A square is inscribed in a circle of radius 1 meter. Is the area 
inside the circle but outside the square less than 1 square meter?

6. A square is circumscribed around a circle of radius 1 foot. Is the 
area inside the square but outside the circle less than 1 square foot?

Problems 7–10 refer to the rectangles A, B, C, D, and E in the 
following figure.

0

5

10

15

EDCBA

5 10 15 20 25

7. Which rectangles are left rectangles?

8. Which rectangles are right rectangles?

9. Which rectangles are neither left nor right rectangles?

10. Which rectangles are both left and right rectangles?

Problems 11–14 refer to the rectangles F, G, H, I, and J in the 
following figure.

0

2

4

6

JIHGF

2 4 6 8 10

11. Which rectangles are right rectangles?

12. Which rectangles are left rectangles?

13. Which rectangles are both left and right rectangles?

14. Which rectangles are neither left nor right rectangles?

W

A

Problems 15–22 involve estimating the area under the curves in 
Figures A–D from x = 1 to x = 4. For each figure, divide the 
interval [1, 4] into three equal subintervals.

15. Draw in left and right rectangles for Figures A and B.

16. Draw in left and right rectangles for Figures C and D.

17. Using the results of Problem 15, compute L3 and R3 for  
Figure A and for Figure B.

18. Using the results of Problem 16, compute L3 and R3 for  
Figure C and for Figure D.

19. Replace the question marks with L3 and R3 as appropriate. 
Explain your choice.

? … L
4

1
f1x2 dx … ?  ? … L

4

1
g1x2 dx … ?

f (x)

10
9
8
7
6
5

5

4

4

3

3

2

2

1

10

(A)

x

y 5 f (x)

  

g(x)

10
9
8
7
6
5

5

4

4

3

3

2

2

1

10

(B)

x

y 5 g(x)

u(x)

10
9
8
7
6
5

5

4

4

3

3

2

2

1

10

(C)

x

y 5 u(x)

  

y(x)

10
9
8
7
6
5

5

4

4

3

3

2

2

1

10

(D)

x

y 5  y(x)

Figure for 15–22

20. Replace the question marks with L3 and R3 as appropriate. 
Explain your choice.

? … L
4

1
u1x2 dx … ?  ? … L

4

1
v1x2 dx … ?

21. Compute error bounds for L3 and R3 found in Problem 17 for 
both figures.

22. Compute error bounds for L3 and R3 found in Problem 18 for 
both figures.

In Problems 23–26, calculate the indicated Riemann sum Sn for 
the function f1x2 = 25 - 3x2.

23. Partition 3-3, 74 into five subintervals of equal length, and 
for each subinterval 3xk - 1, xk4, let ck = 1xk - 1 + xk2 >2.

Exercises 5.4
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45. L
4

1
15x + x22 dx 46. L

4

1
17x - 2x22 dx

47. L
4

1
15x2 - 8x2 dx 48. L

4

1
14x2 - 9x2 dx

49. L
5

1
9x2 dx 50. L

5

1
-4x2 dx

51. L
4

4
17x - 22 2 dx 52. L

5

5
110 - 7x + x22 dx

53. L
4

5
15x2 dx 54. L

1

4
x11 - x2 dx

In Problems 55–60, discuss the validity of each statement. If the 
statement is always true, explain why. If it is not always true, give 
a counterexample.

55. If 1b
a  f1x2 dx = 0, then f1x2 = 0 for all x in 3a, b4.

56. If f1x2 = 0 for all x in 3a, b4, then 1b
a  f1x2 dx = 0.

57. If f1x2 = 2x on [0, 10], then there is a positive integer n for 
which the left sum Ln equals the exact area under the graph 
of f from x = 0 to x = 10.

58. If f1x2 = 2x on [0, 10] and n is a positive integer, then there 
is some Riemann sum Sn that equals the exact area under the 
graph of f from x = 0 to x = 10.

59. If the area under the graph of f on 3a, b4 is equal to both the 
left sum Ln and the right sum Rn for some positive integer n, 
then f is constant on 3a, b4.

60. If f is a decreasing function on 3a, b4, then the area under 
the graph of f is greater than the left sum Ln and less than the 
right sum Rn, for any positive integer n.

Problems 61 and 62 refer to the following figure showing two 
parcels of land along a river:

h(x)

 

x

1,000 ft

Parcel 1 Parcel 2
500 ft

River

Figure for 61 and 62

61. You want to purchase both parcels of land shown in the figure 
and make a quick check on their combined area. There is 
no equation for the river frontage, so you use the average of 
the left and right sums of rectangles covering the area. The 
1,000-foot baseline is divided into 10 equal parts. At the 
end of each subinterval, a measurement is made from the 
baseline to the river, and the results are tabulated. Let x be 
the distance from the left end of the baseline and let h1x2 

B

24. Partition 30, 124 into four subintervals of equal length, and 
for each subinterval 3xk - 1, xk4, let ck = 1xk - 1 + 2xk2 >3.

25. Partition 30, 124 into four subintervals of equal length, and 
for each subinterval 3xk - 1, xk4, let ck = 12xk - 1 + xk2 >3.

26. Partition 3-5, 54 into five subintervals of equal length, and 
for each subinterval 3xk - 1, xk4, let ck = 1xk - 1 + xk2 >2.

In Problems 27–30, calculate the indicated Riemann sum Sn for 
the function f1x2 = x2 - 5x - 6.

27. Partition 30, 34 into three subintervals of equal length, and let 
c1 = 0.7, c2 = 1.8, and c3 = 2.4.

28. Partition 30, 34 into three subintervals of equal length, and let 
c1 = 0.2, c2 = 1.5, and c3 = 2.8.

29. Partition 32, 84 into six subintervals of equal length, and let 
c1 = 2, c2 = 4, c3 = 4, c4 = 6, c5 = 6, and c6 = 8.

30. Partition 32, 84 into six subintervals of equal length, and let 
c1 = 3, c2 = 3, c3 = 5, c4 = 5, c5 = 7, and c6 = 7.

In Problems 31–42, calculate the definite integral by referring to 
the figure with the indicated areas.

Area A 5 2.817
Area B 5 4.951
Area C 5 10.667
Area D 5 3.584

y 5 f (x)

x

y

a c

C

B
A

D
b d

Figure for 31–42

31. L
0

b
f1x2 dx 32. L

c

0
f1x2 dx

33. L
c

a
f1x2 dx 34. L

d

b
f1x2 dx

35. L
d

a
f1x2 dx 36. L

d

0
f1x2 dx

37. L
0

c
f1x2 dx 38. L

a

d
f1x2 dx

39. L
0

d
f1x2 dx 40. L

a

c
f1x2 dx

41. L
b

d
f1x2 dx 42. L

b

c
f1x2 dx

In Problems 43–54, calculate the definite integral, given that

L
4

1
x dx = 7.5  L

4

1
x2 dx = 21  L

5

4
x2 dx =

61
3

43. L
4

1
2x dx 44. L

4

1
3x2 dx

M05_BARN6152_14_GE_C05.indd   409 22/11/18   11:03 PM



410 CHAPTER 5 Integration

70. L
10

0
ln1x2 + 12 dx = Ln { 0.5

71. L
3

1
xx dx = Ln { 0.5

72. L
4

1
xx dx = Rn { 0.5

Applications
73. Employee training. A company producing electric motors 

has established that, on the average, a new employee can 
assemble N(t) components per day after t days of on-the-job 
training, as shown in the following table (a new employee’s 
productivity increases continuously with time on the job):

t  0 20 40 60 80 100 120

N1t2 10 51 68 76 81  84  86

Use left and right sums to estimate the area under the graph 
of N(t) from t = 0 to t = 60. Use three subintervals of equal 
length for each. Calculate an error bound for each estimate.

74. Employee training. For a new employee in Problem 73, use 
left and right sums to estimate the area under the graph of 
N(t) from t = 20 to t = 100. Use four equal subintervals for 
each. Replace the question marks with the values of L4 or R4 
as appropriate:

? … L
100

20
N1t2 dt … ?

75. Medicine. The rate of healing, A′1t2 (in square centimeters 
per day), for a certain type of skin wound is given approxi-
mately by the following table:

t 0 1 2 3 4 5

A′1t2 0.90 0.81 0.74 0.67 0.60 0.55

t 6 7 8 9 10

A′1t2 0.49 0.45 0.40 0.36 0.33

(A) Use left and right sums over five equal subintervals to 
approximate the area under the graph of A′1t2 from 
t = 0 to t = 5.

(B) Replace the question marks with values of L5 and R5 as 
appropriate:

? … L
5

0
A′1t2 dt … ?

76. Medicine. Refer to Problem 75. Use left and right sums 
over five equal subintervals to approximate the area under 
the graph of A′1t2 from t = 5 to t = 10. Calculate an error 
bound for this estimate.

77. Learning. A psychologist found that, on average, the rate of 
learning a list of special symbols in a code N′1x2 after x days 

be the distance from the baseline to the river at x. Use L10 to 
estimate the combined area of both parcels, and calculate an 
error bound for this estimate. How many subdivisions of the 
baseline would be required so that the error incurred in using 
Ln would not exceed 2,500 square feet?

x 0 100 200 300 400 500

h1x2 0 183 235 245 260 286

x 600 700 800 900 1,000

h1x2 322 388 453 489   500

62. Refer to Problem 61. Use R10 to estimate the combined 
area of both parcels, and calculate an error bound for this 
estimate. How many subdivisions of the baseline would be 
required so that the error incurred in using Rn would not 
exceed 1,000 square feet?

Problems 63 and 64 refer to the following figure:

x

f (x)

25

5

5

f (x) 5 0.25x2 2 4

Figure for 63 and 64

63. Use L6 and R6 to approximate 15
2 10.25x2 - 42 dx. Com-

pute error bounds for each. (Round answers to two decimal 
places.) Describe in geometric terms what the definite inte-
gral over the interval [2, 5] represents.

64. Use L5 and R5 to approximate 16
1 10.25x2 - 42 dx. Com-

pute error bounds for each. (Round answers to two decimal 
places.) Describe in geometric terms what the definite inte-
gral over the interval [1, 6] represents.

For Problems 65–68, use derivatives to determine whether f is 
increasing or decreasing on the given interval. Use L4 or R4,  
whichever is appropriate, to give an overestimate of the signed 
area on the given interval.

65. f1x2 = 4ex2
 on [0, 1]

66. f1x2 = 2 - 3ex2
 on [0, 3]

67. f1x2 = lna 1
x + 1

b  on [0, 8]

68. f1x2 = ln1x + 52 on [0, 6]

In Problems 69–72, the left sum Ln or the right sum Rn is used to 
approximate the definite integral to the indicated accuracy. How 
large must n be chosen in each case? (Each function is increasing 
over the indicated interval.)

69. L
3

1
ln x dx = Rn { 0.1

C
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 SECTION 5.5   The Fundamental Theorem of Calculus 411

Answers to Matched Problems
1. (A) ∆x = 0.5:

f (x)

x
1 2 3 40

5

10

y 5 f (x)

(B) L4 = 12.625, R4 = 10.625; error for L4 and R4 = 2

(C) n Ú 16 for Ln and Rn

2. S3 = 46

3. (A) -2.33 (B) 5.04 (C) 10.67

4. (A) 38 (B) 16 (C) -6

(D) 0 (E) 108

of practice was given approximately by the following table 
values:

x  0  2  4  6  8 10 12

N′1x2 29 26 23 21 19 17 15

Use left and right sums over three equal subintervals to ap-
proximate the area under the graph of N′1x2 from x = 6 to 
x = 12. Calculate an error bound for this estimate.

78. Learning. For the data in Problem 77, use left and right 
sums over three equal subintervals to approximate the area 
under the graph of N′1x2 from x = 0 to x = 6. Replace the 
question marks with values of L3 and R3 as appropriate:

? … L
6

0
N′1x2 dx … ?

The definite integral of a function f on an interval [a, b] is a number, the area (if 
f1x2 7 0) between the graph of f and the x axis from x = a to x = b. The indefinite 
integral of a function is a family of antiderivatives. In this section, we explain the 
connection between these two integrals, a connection made precise by the fundamen-
tal theorem of calculus.

Introduction to the Fundamental Theorem
Suppose that the daily cost function for a small manufacturing firm is given (in dol-
lars) by

C1x2 = 180x + 200  0 … x … 20

Then the marginal cost function is given (in dollars per unit) by

C′1x2 = 180

What is the change in cost as production is increased from x = 5 units to x = 10 
units? That change is equal to

 C1102 - C152 = 1180 # 10 + 2002 - 1180 # 5 + 2002
 = 180110 - 52
 = $900

Notice that 180110 - 52 is equal to the area between the graph of C′1x2 and the x 
axis from x = 5 to x = 10. Therefore,

C1102 - C152 = L
10

5
180 dx

In other words, the change in cost from x = 5 to x = 10 is equal to the area between 
the marginal cost function and the x axis from x = 5 to x = 10 (see Fig. 1).

5.5 The Fundamental Theorem of Calculus
■■ Introduction to the Fundamental 
Theorem

■■ Evaluating Definite Integrals
■■ Recognizing a Definite Integral: 
Average Value

x
5 10 15 20

50

100

150

200

0

C9(x) 5 180

Area 5 180(10 2 5)
 5 900

C9(x)

x

C(x)

5 10 15 20

1000

2000

3000

4000

0

C(x) 5 180x 1 200

C(10) 2 C(5) 5 900

Figure 1
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412 CHAPTER 5 Integration

Consider the formula for the slope of a line:

m =
y2 - y1

x2 - x1

Multiplying both sides of this equation by x2 - x1 gives

y2 - y1 = m1x2 - x12
The right-hand side, m1x2 - x12, is equal to the area of a rectangle of height m 
and width x2 - x1. So the change in y coordinates is equal to the area under the 
constant function with value m from x = x1 to x = x2.

CONCEPTUAL INSIGHT

Change in Cost vs Area under Marginal Cost The daily cost function for a com-
pany (in dollars) is given by

C1x2 = -5x2 + 210x + 400  0 … x … 20

(A) Graph C1x2 for 0 … x … 20, calculate the change in cost from x = 5 to 
x = 10, and indicate that change in cost on the graph.

(B) Graph the marginal cost function C′1x2 for 0 … x … 20, and use geomet-
ric formulas (see the references at the back of the book) to calculate the area 
 between C′1x2 and the x axis from x = 5 to x = 10.

(C) Compare the results of the calculations in parts (A) and (B).

SOLUTION

(A) C1102 - C152 = 2,000 - 1,325 = 675, and this change in cost is indicated 
in Figure 2A.

EXAMPLE 1

x

C(x)

5 10 15 200

C(x) 5 25x2 1 210x 1 400

C(10) 2 C(5) 5 675

1000

2000

3000

Figure 2A

C9(x) 5 210x 1 210

Area 5 675

C9(x)

x
5 10 15 20

50

100

150

200

250

0

Figure 2B

(B) C′1x2 = -10x + 210, so the area between C′1x2 and the x axis from x = 5 
to x = 10 (see Fig. 2B) is the area of a trapezoid (geometric formulas are given 
in the references at the back of the book):

Area =
C′152 + C′1102

2
 110 - 52 =

160 + 110
2

 152 = 675
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 SECTION 5.5   The Fundamental Theorem of Calculus 413

(C) The change in cost from x = 5 to x = 10 is equal to the area between the mar-
ginal cost function and the x axis from x = 5 to x = 10.

Matched Problem 1 Repeat Example 1 for the daily cost function

C1x2 = -7.5x2 + 305x + 625

The connection illustrated in Example 1, between the change in a function from 
x = a to x = b and the area under the derivative of the function, provides the link 
between antiderivatives (or indefinite integrals) and the definite integral. This link is 
known as the fundamental theorem of calculus. (See Problems 67 and 68 in Exercises 
5.5 for an outline of its proof.)

THEOREM 1 Fundamental Theorem of Calculus
If f is a continuous function on [a, b], and F is any antiderivative of f, then

L
b

a
f1x2 dx = F1b2 - F1a2

Because a definite integral is the limit of Riemann sums, we expect that it would 
be difficult to calculate definite integrals exactly. The fundamental theorem, 
however, gives us an easy method for evaluating definite integrals, provided 
that we can find an antiderivative F1x2 of f1x2: Simply calculate the difference 
F1b2 - F1a2. But what if we are unable to find an antiderivative of f1x2? In 
that case, we must resort to left sums, right sums, or other approximation meth-
ods to approximate the definite integral. However, it is often useful to remember 
that such an approximation is also an estimate of the change F1b2 - F1a2.

CONCEPTUAL INSIGHT

Evaluating Definite Integrals
By the fundamental theorem, we can evaluate 1b

a  f1x2 dx easily and exactly when-
ever we can find an antiderivative F1x2 of f1x2. We simply calculate the difference 
F1b2 - F1a2. If G1x2 is another antiderivative of f1x2, then G1x2 = F1x2 + C 
for some constant C. So

 G1b2 - G1a2 = F1b2 + C - 3F1a2 + C4
 = F1b2 - F1a2

In other words:

Any antiderivative of f 1x 2  can be used in the fundamental theorem. One 
generally chooses the simplest antiderivative by letting C ∙ 0, since any 
other value of C will drop out in computing the difference F 1b 2 ∙ F 1a 2 .
Now you know why we studied techniques of indefinite integration before this 

section—so that we would have methods of finding antiderivatives of large classes of 
elementary functions for use with the fundamental theorem.

In evaluating definite integrals by the fundamental theorem, it is convenient to 
use the notation F1x2 ∙ a

b, which represents the change in F1x2 from x = a to x = b, 
as an intermediate step in the calculation. This technique is illustrated in the follow-
ing examples.
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414 CHAPTER 5 Integration

The evaluation of a definite integral is a two-step process: First, find an antide-
rivative. Then find the change in that antiderivative. If substitution techniques are 
required to find the antiderivative, there are two different ways to proceed. The next 
example illustrates both methods.

Evaluating Definite Integrals Evaluate L
2

1
 a2x + 3ex -

4
x
b  dx.

SOLUTION We begin by finding an antiderivative F1x2  of  f1x2 = 2x + 3ex - 4
x.

 F1x2 = L a2x + 3ex -
4
x
b  dx

 = 2L x dx + 3L exdx - 4L
1
x

 dx

 = 2 
x2

2
+ 3ex - 4 ln x + C   Let C = 0

 = x2 + 3ex - 4 ln x

We then use the Fundamental Theorem of Calculus to get

L
2

1
 a2x + 3ex -

4
x
b  dx = F122 - F112 ≈ 23.39 - 9.15 = 14.24.

Matched Problem 2 Evaluate L
3

1
 a4x - 2ex +

5
x
b  dx.

EXAMPLE 2

Definite Integrals and Substitution Techniques Evaluate

L
5

0
 

x

x2 + 10
 dx

SOLUTION We solve this problem using substitution in two different ways.

Method 1. Use substitution in an indefinite integral to find an antiderivative as a 
function of x. Then evaluate the definite integral.

 L  
x

x2 + 10
 dx =

1
2 L  

1

x2 + 10
 2x dx    Substitute u = x2 + 10  

and du = 2x dx.

 =
1
2 L  

1
u

 du

 = 1
2 ln ∙ u ∙ + C   Plug in u = x2 + 10.

 = 1
2 ln1x2 + 102 + C  Since u = x2 + 10 7 0

We choose C = 0 and use the antiderivative 12 ln1x2 + 102 to evaluate the definite 
integral.

 L
5

0
 

x

x2 + 10
 dx =

1
2

 ln1x2 + 102 `
0

5

 = 1
2 ln 35 - 1

2 ln 10 ≈ 0.626

EXAMPLE 3
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 SECTION 5.5   The Fundamental Theorem of Calculus 415

Method 2. Substitute directly into the definite integral, changing both the variable 
of integration and the limits of integration. In the definite integral

L
5

0
 

x

x2 + 10
 dx

the upper limit is x = 5 and the lower limit is x = 0. When we make the substitu-
tion u = x2 + 10 in this definite integral, we must change the limits of integration 
to the corresponding values of u:

x = 5 implies u = 52 + 10 = 35
x = 0 implies u = 02 + 10 = 10

   New upper limit 

New lower limit

We have

 L
5

0
 

x

x2 + 10
 dx =

1
2 L

5

0
 

1

x2 + 10
 2x dx

 =
1
2 L

35

10
 
1
u

 du

 =
1
2

 a ln ∙ u ∙ `
10

35

b

 = 1
21ln 35 - ln 102 ≈ 0.626

Matched Problem 3  Use both methods described in Example 3 to evaluate 

L
1

0
 

1
2x + 4

 dx.

Definite Integrals and Substitution Use method 2 described in Example 3 to 
evaluate

L
1

-4
25 - t dt

SOLUTION If u = 5 - t, then du = -dt, and

t = 1 implies u = 5 - 1 = 4
t = -4 implies u = 5 - 1-42 = 9

   New upper limit 
New lower limit

Notice that the lower limit for u is larger than the upper limit. Be careful not to re-
verse these two values when substituting into the definite integral:

 L
1

-4
25 - t dt = - L

1

-4
25 - t 1-dt2

 = - L
4

9
2u du

 = - L
4

9
u1>2 du

 = - au3>2
3
2

`
9

4

b

 = - 32
3142 3>2 - 2

3192 3>24
 = - 316

3 - 54
3 4 = 38

3 ≈ 12.667

EXAMPLE 4
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416 CHAPTER 5 Integration

Matched Problem 4  Use method 2 described in Example 3 to evaluate 

L
5

2
 

126 - t
 dt.

Change in Profit A company manufactures x HDTVs per month. The monthly 
marginal profit (in dollars) is given by

P′1x2 = 165 - 0.1x  0 … x … 4,000

The company is currently manufacturing 1,500 HDTVs per month but is planning 
to increase production. Find the change in the monthly profit if monthly production 
is increased to 1,600 HDTVs.

SOLUTION

 P11,6002 - P11,5002 = L
1,600

1,500
1165 - 0.1x2 dx

 = 1165x - 0.05x22 0 1,500
1,600

 = 316511,6002 - 0.0511,6002 24
            -  316511,5002 - 0.0511,5002 24

 = 136,000 - 135,000

 = 1,000

Increasing monthly production from 1,500 units to 1,600 units will increase the 
monthly profit by $1,000.

Matched Problem 5 Repeat Example 5 if

P′1x2 = 300 - 0.2x  0 … x … 3,000

and monthly production is increased from 1,400 to 1,500 HDTVs.

EXAMPLE 5

Useful Life An amusement company maintains records for each video game 
 installed in an arcade. Suppose that C1t2 and R1t2 represent the total accumulated 
costs and revenues (in thousands of dollars), respectively, t years after a particular 
game has been installed. Suppose also that

C′1t2 = 2  R′1t2 = 9e-0.5t

The value of t for which C′1t2 = R′1t2 is called the useful life of the game.

(A) Find the useful life of the game, to the nearest year.

(B) Find the total profit accumulated during the useful life of the game.

SOLUTION

(A)  R′1t2 = C′1t2
 9e-0.5t = 2

 e-0.5t = 2
9   Convert to equivalent logarithmic form.

 -0.5t = ln 29

 t = -2 ln 29 ≈ 3 years

Thus, the game has a useful life of 3 years. This is illustrated graphically in 
Figure 3.

EXAMPLE 6

3

y 5 R9(t)

y 5 C9(t)

10

2

0 5

y

t

Figure 3 Useful life
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(B) The total profit accumulated during the useful life of the game is

 P132 - P102 = L
3

0
P′1t2 dt

 = L
3

0
3R′1t2 - C′1t24 dt

 = L
3

0
19e-0.5t - 22 dt     Recall: Leax dx =

1
a

 eax + C

 = a 9
-0.5

 e-0.5t - 2tb `
0

3

 = 1-18e-0.5t - 2t2 0 03
 = 1-18e-1.5 - 62 - 1-18e0 - 02
 = 12 - 18e-1.5 ≈ 7.984 or $7,984

Matched Problem 6 Repeat Example 6 if C′1t2 = 1 and R′1t2 = 7.5e-0.5t.

Numerical Integration on a Graphing Calculator Evaluate L
2

-1
 e

-x2

 dx to three 
decimal places.

SOLUTION The integrand e-x2
 does not have an elementary antiderivative, so we 

are unable to use the fundamental theorem to evaluate the definite integral. Instead, 
we use a numerical integration routine that has been preprogrammed into a graph-
ing calculator. This can be found by pressing the math button on the TI-84 Plus CE. 
Such a routine is an approximation algorithm, more powerful than the left-sum and 
right-sum methods discussed in Section 5.4. From Figure 4,

L
2

-1
e-x2

 dx = 1.629

Matched Problem 7 Evaluate L
4.3

1.5
 

x
ln x

 dx to three decimal places.

EXAMPLE 7

Figure 4

Recognizing a Definite Integral: Average Value
Recall that the derivative of a function f was defined in Section 2.4 by

f =1x2 = lim
hS0

  
f1x + h2 - f1x2

h

This form is generally not easy to compute directly but is easy to recognize in certain 
practical problems (slope, instantaneous velocity, rates of change, and so on). Once 
we know that we are dealing with a derivative, we proceed to try to compute the de-
rivative with the use of derivative formulas and rules.

Similarly, evaluating a definite integral with the use of the definition

 L
b

a
f1x2 dx = lim

nS ∞
3  f1c12∆x1 + f1c22∆x2 + g + f1cn2∆xn4 (1)

is generally not easy, but the form on the right occurs naturally in many practical 
problems. We can use the fundamental theorem to evaluate the definite integral (once 
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418 CHAPTER 5 Integration

it is recognized) if an antiderivative can be found; otherwise, we will approximate it 
with a rectangle sum. We will now illustrate these points by finding the average value 
of a continuous function.

The area, A, of a rectangle with width w and height h is given by A = w * h. 
The height of a rectangle is then given by h = A

w. For the signed area under a continu-
ous curve f(x) on an interval [a, b], the width of the region is b  –  a and the (signed) 

area of the region is given by L
b

a
f1x2  dx. The height of the rectangle with the same 

width and area is then 1
b - a L

b

a
f1x2  dx. (See Fig 5.)

DEFINITION Average Value of a Continuous Function f over [a, b]

1
b - a L

b

a
f1x2 dx

f (x)

x

y 5 f (x)

a b

Figure 5

Matched Problem 8  Find the average value of g1t2 = 6t2 - 2t over the  
interval 3-2, 34.

Average Value of a Function Find the average value of f1x2 = x - 3x2 over the 
interval 3-1, 24.

SOLUTION

 
1

b - a L
b

a
f1x2 dx =

1
2 - 1-12L

2

-1
1x - 3x22 dx

 =
1
3

 a x2

2
- x3b `

-1

2

= -  
5
2
 (See Fig 6.)

EXAMPLE 8

We know that the average of a finite number of values a1, a2, c, an is given by

average =
a1 + a2 + g + an

n

and we know that a Riemann sum uses n rectangles to approximate the (signed) area 
under a curve. Explain how the fundamental theorem of calculus gives the formula for 
the average value of a continuous function.

Explore and Discuss 1

f (x)

x

210

25

21 1 2

f (x) 5 x 2 3x2

y 5 22
5
2

Figure 6
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Average Price Given the demand function

p = D1x2 = 100e-0.05x

find the average price (in dollars) over the demand interval [40, 60].

SOLUTION

 Average price =
1

b - a L
b

a
 D1x2 dx

 =
1

60 - 40 L
60

40
100e-0.05x dx

 =
100
20 L

60

40
e-0.05x dx   Use Leax dx =

1
a

 eax, a ∙ 0.

 = -  
5

0.05
 e-0.05x `

40

60

 = 1001e-2 - e-32 ≈ $8.55

Matched Problem 9 Given the supply equation

p = S1x2 = 10e0.05x

find the average price (in dollars) over the supply interval [20, 30].

EXAMPLE 9

Skills Warm-up Exercises
In Problems 1–8, use geometric formulas to find the unsigned area 
between the graph of y = f1x2 and the x axis over the indicated 
interval. (If necessary, see the references at the back of the book.)

1. f1x2 = 100; 31, 64
2. f1x2 = -50; 38, 124
3. f1x2 = x + 5; 30, 44
4. f1x2 = x - 2; 3-3, -14
5. f1x2 = 3x; 3-4, 44
6. f1x2 = -10x; 3-100, 504
7. f1x2 = 29 - x2; 3-3, 34
8. f1x2 = - 249 - x2; 3-7, 74

In Problems 9–12,

(A) Calculate the change in F1x2 from x = 10 to x = 15.

(B) Graph F ′1x2 and use geometric formulas (see the references 
at the back of the book) to calculate the area between the 
graph of F ′1x2 and the x axis from x = 10 to x = 15.

(C) Verify that your answers to (A) and (B) are equal, as is guar-
anteed by the fundamental theorem of calculus.

9. F1x2 = 3x2 + 160 10. F1x2 = 9x + 120

W

A

11. F1x2 = -x2 + 42x + 240

12. F1x2 = x2 + 30x + 210

Evaluate the integrals in Problems 13–32.

13. L
5

0
7 dx 14. L

4

0
2x dx

15. L
2

0
4x dx 16. L

3

0
5 dx

17. L
5

2
x2 dx 18. L

6

3
x2 dx

19. L
3

1
 
1
x

 dx 20. L
3

1
 
1

x2 dx

21. L
8

2
 
1

x2 dx 22. L
8

2
 
1
x

 dx

23. L
3

0
2ex dx 24. L

2

0
3ex dx

25. L
7

5
13x + 22 dx 26. L

8

3
13x2 - 4x2 dx

Exercises 5.5
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59. L
1

0
 

x - 1

x2 - 2x + 3
 dx 60. L

3

1
 

x + 2

3x2 + 12x-7
 dx

61. L
1

-1
 

e-x - ex

1e-x + ex2 2 dx 62. L
7

6
 
ln1t - 52

t - 5
 dt

Use a numerical integration routine to evaluate each definite 
integral in Problems 63–66 (to three decimal places).

63. L
3.5

1.7
x ln x dx 64. L

1

-1
ex2

 dx

65. L
2

-2
 

1

1 + x2 dx 66. L
3

0
29 - x2 dx

67. The mean value theorem states that if F1x2 is a differen-
tiable function on the interval [a, b], then there exists some 
number c between a and b such that

F ′1c2 =
F1b2 - F1a2

b - a

Explain why the mean value theorem implies that if a car 
averages 60 miles per hour in some 10-minute interval, then 
the car’s instantaneous velocity is 60 miles per hour at least 
once in that interval.

68. The fundamental theorem of calculus can be proved by show-
ing that, for every positive integer n, there is a Riemann sum 
for f on [a, b] that is equal to F1b2 - F1a2. By the mean 
value theorem (see Problem 67), within each subinterval 
3xk - 1, xk4 that belongs to a partition of [a, b], there is some 
ck such that

f1ck2 = F ′1ck2 =
F1xk2 - F1xk - 12

xk - xk - 1

Multiplying by the denominator xk - xk - 1, we get

f1ck21xk - xk - 12 = F1xk2 - F1xk - 12
Show that the Riemann sum

Sn = a
n

k = 1
f1ck21xk - xk - 12

is equal to F1b2 - F1a2.

Applications
69. Cost. A company manufactures mountain bikes. The re-

search department produced the marginal cost function

C′1x2 = 500 -
x
3
  0 … x … 900

where C′1x2 is in dollars and x is the number of bikes pro-
duced per month. Compute the increase in cost going from 
a production level of 300 bikes per month to 900 bikes per 
month. Set up a definite integral and evaluate it.

70. Cost. Referring to Problem 69, compute the increase in  
cost going from a production level of 0 bikes per month to  
600 bikes per month. Set up a definite integral and evaluate it.

27. L
5

7
13x + 22 dx 28. L

3

8
13x2 - 4x2 dx

29. L
3

-2
14x3 - 6x2 + 10x2 dx 30. L

4

-1
15x4 - 122 dx

31. L
3

3
14x3 - 6x2 + 10x2 8 dx 32. L

4

4
15x4 - 122 9 dx

 Evaluate the integrals in Problems 33–48.

33. L
2

1
12x-2 - 32 dx 34. L

3

1
17 - 81x-42 dx

35. L
4

1
32x dx 36. L

25

4
 

22x
 dx

37. L
3

2
121x2 - 42 5x dx 38. L

1

0
321x2 + 12 7x dx

39. L
9

3
 

1
x - 1

 dx 40. L
8

2
 

1
x + 1

 dx

41. L
10

-5
e-0.05x dx 42. L

75

-15
e-0.02x dx

43. L
e

1
 
ln t

t
 dt 44. L

e2

e
 
1ln t2 2

t
 dt

45. L
1

0
xe-x2

 dx 46. L
1

0
xex2

 dx

47. L
1

1
ex2 dx 48. L

-1

-1
e-x2 dx

In Problems 49–56,

(A) Find the average value of each function over the indicated 
interval.

(B) Use a graphing calculator to graph the function and its av-
erage value over the indicated interval in the same viewing 
window.

49. f1x2 = 500 - 50x; 30, 104
50. g1x2 = 2x + 7; 30, 54
51. f1t2 = 3t2 - 2t; 3-1, 24
52. g1t2 = 4t - 3t2; 3-2, 24
53. f1x2 = 23 x; 31, 84
54. g1x2 = 1x + 1; 33, 84
55. f1x2 = 4e-0.2x; 30, 104
56. f1x2 = 64e0.08x; 30, 104
Evaluate the integrals in Problems 57–62.

57. L
3

2
x22x2 - 3 dx 58. L

1

0
x23x2 + 2 dx

B

C
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 SECTION 5.5   The Fundamental Theorem of Calculus 421

where t is the number of years that the mine has been in 
operation. Find the useful life of the mine, to the nearest year. 
What is the total profit accumulated during the useful life of 
the mine?

77. Average cost. The total cost (in dollars) of manufacturing x 
auto body frames is C1x2 = 60,000 + 300x.

(A) Find the average cost per unit if 500 frames are produced. 
[Hint: Recall that C1x2 is the average cost per unit.]

(B) Find the average value of the cost function over the 
interval [0, 500].

(C) Discuss the difference between parts (A) and (B).

78. Average cost. The total cost (in dollars) of printing x dic-
tionaries is C1x2 = 20,000 + 10x.

(A) Find the average cost per unit if 1,000 dictionaries are 
produced.

(B) Find the average value of the cost function over the 
interval [0, 1,000].

(C) Discuss the difference between parts (A) and (B).

79. Sales. The rate at which the total number of sales is chang-
ing is given by S′1t2 where t is the number of months since 
the product’s release. What does

L
24

12
S′1t2 dt

represent?

80. Advertising. The rate at which the total amount of money 
put into an advertising campaign is changing is given by 
A′1t2 where t is the number of days since the campaign 
began. What does

L
7

0
A′1t2 dt

represent?

81. Supply function. Given the supply function

p = S1x2 = 101e0.02x - 12
find the average price (in dollars) over the supply interval 
[20, 30].

82. Demand function. Given the demand function

p = D1x2 =
1,000

x

find the average price (in dollars) over the demand interval 
[400, 600].

83. Labor costs and learning. A defense contractor is starting 
production on a new missile control system. On the basis of 
data collected during assembly of the first 16 control systems, 
the production manager obtained the following function for 
the rate of labor use:

L′1x2 = 2,400x-1>2

Approximately how many labor-hours will be required to 
assemble the 17th through the 25th control units? [Hint: Let 
a = 16 and b = 25.]

71. Salvage value. A new piece of industrial equipment will 
depreciate in value, rapidly at first and then less rapidly as 
time goes on. Suppose that the rate (in dollars per year) at 
which the book value of a new milling machine changes is 
given approximately by

V′1t2 = f1t2 = 5001t - 122  0 … t … 10

where V1t2 is the value of the machine after t years. What is 
the total loss in value of the machine in the first 5 years? In 
the second 5 years? Set up appropriate integrals and solve.

72. Maintenance costs. Maintenance costs for an apartment 
house generally increase as the building gets older. From 
past records, the rate of increase in maintenance costs (in 
dollars per year) for a particular apartment complex is given 
approximately by

M′1x2 = f1x2 = 90x2 + 5,000

where x is the age of the apartment complex in years and 
M1x2 is the total (accumulated) cost of maintenance for x 
years. Write a definite integral that will give the total mainte-
nance costs from the end of the second year to the end of the 
seventh year, and evaluate the integral.

73. Employee training. A company producing computer com-
ponents has established that, on the average, a new employee 
can assemble N1t2 components per day after t days of on-
the-job training, as indicated in the following table (a new 
employee’s productivity usually increases with time on the 
job, up to a leveling-off point):

t  0 20 40 60 80 100 120

N1t2 10 51 68 76 81  84  85

(A) Find a quadratic regression equation for the data, and 
graph it and the data set in the same viewing window.

(B) Use the regression equation and a numerical integra-
tion routine on a graphing calculator to approximate the 
number of units assembled by a new employee during 
the first 100 days on the job.

74. Employee training. Refer to Problem 73.

(A) Find a cubic regression equation for the data, and graph 
it and the data set in the same viewing window.

(B) Use the regression equation and a numerical integra-
tion routine on a graphing calculator to approximate the 
number of units assembled by a new employee during 
the second 60 days on the job.

75. Useful life. The total accumulated costs C1t2 and revenues 
R1t2 (in thousands of dollars), respectively, for a photocopy-
ing machine satisfy

C′1t2 = 1
11 t  and  R′1t2 = 5te-t2

where t is time in years. Find the useful life of the machine, 
to the nearest year. What is the total profit accumulated dur-
ing the useful life of the machine?

76. Useful life. The total accumulated costs C1t2 and revenues 
R1t2 (in thousands of dollars), respectively, for a coal mine 
satisfy

C′1t2 = 3  and  R′1t2 = 15e-0.1t
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422 CHAPTER 5 Integration

over a 2-hour period, what is the average temperature over 
this period?

92. Medicine. A drug is injected into the bloodstream of a patient 
through her right arm. The drug concentration in the blood-
stream of the left arm t hours after the injection is given by

C1t2 =
0.14t

t2 + 1

What is the average drug concentration in the bloodstream of 
the left arm during the first hour after the injection? During 
the first 2 hours after the injection?

93. Politics. Public awareness of a mayoral candidate before and 
after a successful campaign was approximated by

P1t2 =
5.4t

t2 + 36
+ 0.2  0 … t … 12

where t is time in months after the campaign started and P1t2 
is the fraction of the number of people in the city who could 
recall the candidate’s name. What is the average fraction of 
the number of people who could recall the candidate’s name 
during the first 6 months of the campaign? During the first 
year of the campaign?

94. Population composition. The number of children in a large 
city was found to increase and then decrease rather drasti-
cally. If the number of children (in millions) over a 6-year 
period was given by

N1t2 = -1
4 t2 + t + 4  0 … t … 6

N
um

be
r 

of
 c

hi
ld

re
n

(m
ill

io
ns

)

Years

t

N

5

5

0

what was the average number of children in the city over the 
6-year period? [Assume that N = N1t2 is continuous.]

Answers to Matched Problems

1. (A) 

x

C(x)

5 10 15 20

1000

2000

4000

3000

0

C(x) 5 27.5x2 1 305x 1 625

C(10) 2 C(5) 5 962.5

84. Labor costs and learning. If the rate of labor use in  
Problem 83 is

L′1x2 = 2,000x-1>3

then approximately how many labor-hours will be required to 
assemble the 9th through the 27th control units? [Hint: Let 
a = 8 and b = 27.]

85. Inventory. A store orders 600 units of a product every  
3 months. If the product is steadily depleted to 0 by the end 
of each 3 months, the inventory on hand I at any time t during 
the year is shown in the following figure. What is the average 
number of units on hand for a 3-month period?

In
ve

nt
or

y 
(u

ni
ts

 o
n 

ha
nd

)

Time (months)

0

600

t

I

3 6 9 12

86. Repeat Problem 85 with an order of 1,200 units every 
4 months. What is the average number of units on hand  
for a 4-month period?

87. Oil production. Using production and geological data, the 
management of an oil company estimates that oil will be 
pumped from a producing field at a rate given by

R1t2 =
100

t + 1
+ 5  0 … t … 20

where R1t2 is the rate of production (in thousands of barrels 
per year) t years after pumping begins. Approximately how 
many barrels of oil will the field produce during the first 
10 years of production? From the end of the 10th year to the 
end of the 20th year of production?

88. Oil production. In Problem 87, if the rate is found to be

R1t2 =
120t

t2 + 1
+ 3  0 … t … 20

then approximately how many barrels of oil will the field 
produce during the first 5 years of production? The second 
5 years of production?

89. Biology. A yeast culture weighing 6 grams is expected 
to grow at the rate of W′1t2 = 0.3e0.05t grams per hour at 
a higher controlled temperature. How much will the weight 
of the culture increase during the first 12 hours of growth? 
How much will the weight of the culture increase from the 
end of the 12th hour to the end of the 24th hour of growth?

90. Medicine. The rate at which the area of a skin wound 
is increasing is given (in square centimeters per day) by 
A′1t2 = -0.9e-0.1t. The initial wound has an area of  
9 square centimeters. How much will the area change  
during the first 5 days? The second 5 days?

91. Temperature. If the temperature in an aquarium (in degrees 
Celsius) is given by

C1t2 = t3 - 2t + 10  0 … t … 2
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 SECTION 5.6   Area Between Curves 423

So far we found that the definite integral 1b
a  f 1x 2 d x  represents the sum of the 

signed areas between the graph of y = f 1x 2 and the x axis from x = a to x = b , 
where the areas above the x axis are counted positively and the areas below the x axis 
are counted negatively (see Fig. 1). In this section, we are interested in using the defi-
nite integral to find the actual area between a curve and the x axis or the actual area 
between two curves. These areas are always nonnegative quantities—area measure 
is never negative.

Area Between Two Curves
Consider the area bounded by y = f 1x 2 and y = g 1x 2, where  f 1x 2 Ú g 1x 2 Ú 0 , 
for a … x … b, as shown in Figure 2.

 aArea A between
f1x2 and g1x2 b = a area

under f1x2 b - a area
under g1x2 b

    Areas are from x = a to 
x = b  above the x axis.

 = L
b

a
 f 1x 2 d x - L

b

a
 g 1x 2 d x

    Use definite integral  
property 4 (Section 5.4).

 = L
b

a
3

 

f 1x 2 - g 1x 24 d x

It can be shown that the preceding result does not require f(x) or g(x) to remain 
positive over the interval [a, b]. A more general result is stated in the following box:

5.6 Area Between Curves
■■ Area Between Two Curves
■■ Application: Income Distribution

f (x)

y 5 f (x)

A

B
a

bc
x

Figure 1 L
b

a
 f 1x2 dx = - A +  B

y
y 5 f (x)

y 5 g(x)

A

b
x

Figure 2

THEOREM 1 Area Between Two Curves
If f and g are continuous and  f 1x 2 Ú g 1x 2 over the interval [a, b], then the 
area bounded by y = f 1x 2 and y = g 1x 2 for a … x … b  (see Fig. 3) is given 
exactly by

A = L
b

a
 3f 1x 2 - g 1x 24 d x

y 5 f (x)

y 5 g(x)
x

A

y

a b

Figure 3

2. 16 + 2e - 2e3 + 5 ln 3 ≈ -13.241

3. 1
21ln 6 - ln 42 ≈ 0.203

4. 2

5. $1,000

6. (A) -2 ln 2
15 ≈ 4 yr (B) 11 - 15e-2 ≈ 8.970 or $8,970

7. 8.017

8. 13
9. $35.27

(B) 

x
5 10 15 200

100

200

300 C9(x) 5 215x 1 305

Area 5 962.5

C9(x)

(C) The change in cost from x = 5 to x = 10 is equal to the 
area between the marginal cost function and the x axis 
from x = 5 to x = 10.
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424 CHAPTER 5 Integration

Area Between a Curve and the x Axis Find the area bounded by  
 f 1x 2 = 6 x - x 2  and y = 0  for 1 … x … 4 .

SOLUTION We sketch a graph of the region first (Fig. 4). The solution of every area 
problem should begin with a sketch. Since  f 1x 2 Ú 0  on [1, 4],

 A = L
4

1
16x - x22 dx = a3x2 -   

x3

3
b `

1

4

 = c 31422 -   
1423

3
d - c 31122 -   

1123

3
d

 = 4 8 - 6 4
3 - 3 + 1

3

 = 4 8 - 2 1 - 3

 = 2 4

Matched Problem 1 Find the area bounded by  f 1x 2 = x 2 + 1  and y = 0  

for -1 … x … 3 .

EXAMPLE 1

x

y

10 2 3 4 5

5

10 y 5 f (x) 5 6x 2 x2

A

Figure 4

Area Between a Curve and the x Axis Find the area between the graph of 
 f 1x 2 = x 2 - 2 x  and the x axis over the indicated intervals:

(A) [1, 2] (B) 3-1 , 1 4
SOLUTION We begin by sketching the graph of f, as shown in Figure 5.
(A) From the graph, we see that  f 1x 2 … 0  for 1 … x … 2 , so we integrate - f 1x 2:

 A1 = L
2

1
 3- f1x24 dx

 = L
2

1
 12x - x22 dx

 = ax2-  
x3

3
b `

1

2

 = c 1222  -   
1223

3
d - c 1122  -   

1123

3
d

 = 4 - 8
3 - 1 + 1

3 = 2
3 ≈ 0.667

EXAMPLE 2

x

y

f (x) 5 x2 2 2x

A1

A2

A3
2 321

21

0

1

2

3

4

Figure 5

Theorem 1 requires the graph of f to be above (or equal to) the graph of g through-
out [a, b], but f and g can be either positive, negative, or 0. In Section 5.4, we con-
sidered the special cases of Theorem 1 in which (1) f is positive and g is the zero 
function on [a, b]; and (2) f is the zero function and g is negative on [a, b]:

Special case 1. If f is continuous and positive over [a, b], then the area bounded 
by the graph of f and the x axis for a … x … b  is given exactly by

L
b

a
 f 1x 2 d x

Special case 2. If g is continuous and negative over [a, b], then the area bounded 
by the graph of g and the x axis for a … x … b  is given exactly by

L
b

a
3-g 1x 24 d x

CONCEPTUAL INSIGHT
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 SECTION 5.6   Area Between Curves 425

Area Between Two Curves Find the area bounded by the graphs of 
 f 1x 2 = 1

2  x + 3 , g 1x 2 = -x 2 + 1 , x = -2 , and x = 1 .

SOLUTION We first sketch the area (Fig. 6) and then set up and evaluate an ap-
propriate definite integral. We observe from the graph that  f 1x 2 Ú g 1x 2 for 
-2 … x … 1 , so

 A = L
1

-2
3f1x2 - g1x24 dx = L

1

-2
c a x

2
+ 3b - 1-x2 + 12 d  dx

 = L
1

-2
ax2 +

x
2

+ 2b  dx

 = a x3

3
+

x2

4
+ 2xb `

-2

1

 = a1
3

+
1
4

+ 2b - a -8
3

+
4
4

- 4b =
33
4

= 8.25

Matched Problem 3 Find the area bounded by  f1x2 = x2 - 1, g1x2 =
 -1

2 x - 3, x = -1, and x = 2 .

EXAMPLE 3

y

x

A
2

4

3

1

2 310

g(x) 5 2x2 1 1 

x 5 22 

x 5 1 

f (x) 5 2x 1 31
2

24 23

Figure 6

g(x) 5 2 2 2x

f (x) 5 5 2 x2

22 20 4

2

4

24

22

y

x

A

(21, 4)

(3, 24)

Figure 7

Area Between Two Curves Find the area bounded by  f1x2 = 5 - x2 and 
 g 1x 2 = 2 - 2 x .

SOLUTION First, graph f and g on the same coordinate system, as shown in Figure 7.  
Since the statement of the problem does not include any limits on the values of x, we 
must determine the appropriate values from the graph. The graph of f is a parabola 
and the graph of g is a line. The area bounded by these two graphs extends from 
the intersection point on the left to the intersection point on the right. To find these 
intersection points, we solve the equation  f 1x 2 = g 1x 2 for x:

 f 1x 2 = g 1x 2
 5 - x 2 = 2 - 2 x

 x 2 - 2 x - 3 = 0

 x = -1 , 3

EXAMPLE 4

(B) Since the graph shows that  f 1x 2 Ú 0  on 3-1 , 0 4 and  f 1x 2 … 0  on [0, 1], 
the computation of this area will require two integrals:

 A = A2 + A3

 = L
0

-1
 f 1x 2 d x + L

1

0
3- f 1x 24 d x

 = L
0

-1
1x2 - 2x2 dx + L

1

0
12x - x22 dx

 = a x3

3
- x2b `

-1

0

+ ax2 -   
x3

3
b `

0

1

 = 4
3 + 2

3 = 2

Matched Problem 2 Find the area between the graph of  f1x2 = x2 - 9 and 
the x axis over the indicated intervals:

(A) [0, 2] (B) [2, 4]
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Area Between Two Curves Find the area bounded by  f1x2 =  x2 - x and 
 g 1x 2 = 2 x  for -2 … x … 3 .

SOLUTION The graphs of f and g are shown in Figure 8. Examining the graph, we 
see that  f 1x 2 Ú g 1x 2 on the interval [-2 , 0 ], but  g 1x 2 Ú f 1x 2 on the interval 
[0, 3]. Thus, two integrals are required to compute this area:

 A1 = L
0

-2
3f1x2 - g1x24 dx  f1x2 Ú g1x2 on 3-2, 04

 = L
0

-2
3x2 - x - 2x4 dx

 = L
0

-2
1x2 - 3x2 dx

 = a x3

3
  -   

3
2

 x2b `
-2

0

 = 102 - c 1-223

3
  -    

3
2

 1-222 d =
26
3

≈ 8.667

 A2 = L
3

0
3g1x2 - f1x24 dx  g1x2 Ú f1x2 on 30, 34

 = L
3

0
32x - 1x2 - x24 dx

 = L
3

0
13x - x22 dx

 = a3
2

 x2  -    
x3

3
b `

0

3

 = c 3
2

 1322   -    
1323

3
d - 102 =

9
2

= 4.5

EXAMPLE 5

x

y 5 g(x)

y 5 f (x)
A1

A2

(3, 6)

2 312122

2

4

6

24

22

y

Figure 8

You should check these values in the original equations. (Note that the area between 
the graphs for x 6 -1  is unbounded on the left, and the area between the graphs 
for x 7 3  is unbounded on the right.) Figure 7 shows that  f 1x 2 Ú g 1x 2 over the 
interval 3-1 , 3 4, so we have

 A = L
3

-1
3f1x2 - g1x24 dx = L

3

-1
35 - x2 - 12 - 2x24 dx

 = L
3

-1
13 + 2x - x22 dx

 = a3x + x2  -   
x3

3
b `

-1

3

 = c 3132 + 1322  -    
1323

3
d - c 31-12 + 1-122  -    

1-123

3
d =

32
3

≈ 10.667

Matched Problem 4 Find the area bounded by  f 1x 2 = 6 - x 2  and 

 g 1x 2 = x .
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Computing Areas with a Numerical Integration Routine Find the area (to three 
decimal places) bounded by  f1x2 = e-x2

 and  g1x2 = x2.

SOLUTION First, we use a graphing calculator to graph the functions f and g 
and find their intersection points (see Fig. 9A). We see that the graph of f is bell 
shaped and the graph of g is a parabola. We note that  f1x2 Ú g1x2 on the inter-
val 3-0.753, 0.7534 and compute the area A by a numerical integration command  
(see Fig. 9B):

A = L
0.753

-0.753
1e-x2

- x22 dx = 0.979

EXAMPLE 6

Matched Problem 6 Find the area (to three decimal places) bounded by the 

graphs of  f1x2 = x2 ln x and  g1x2 = 3x - 3.

By the definition of absolute value,

∙ f1x2 - g1x2 ∙ = e g1x2 - f1x2 if f1x2 6 g1x2
f1x2 - g1x2 if f1x2 Ú g1x2

So if f and g are continuous over the interval [a, b], then the area bounded by the 
graphs of y = f1x2 and y = g1x2 for a … x … b is given exactly by

A = L
b

a
∙ f1x2 - g1x2 ∙  dx

22

22

2

2

(A)

Figure 9
(B)

Reminder

The absolute value of x, denoted ∙ x ∙ , 
is defined by

∙ x ∙ = e -x if x 6 0
x if x Ú 0

Absolute Value and the Area Between Two Curves Use absolute value on a 
graphing calculator to find the area bounded by the graphs of  f1x2 = x3 + 1 and 
 g1x2 = 2x2 from x = -2 to x = 2.

SOLUTION We compute the area using absolute value and a numerical integration 
command (see Fig. 10):

A = L
2

-2
0 x3 + 1 - 2x2 0  dx = 9

Note that the use of absolute value makes it unnecessary to find the values of x at 
which the graphs of f and g intersect.

EXAMPLE 7

Figure 10

The total area between the two graphs is

A = A1 + A2 = 26
3 + 9

2 = 79
6 ≈ 13.167

Matched Problem 5 Find the area bounded by  f1x2 = 2x2 and  g1x2 = 4 - 2x 

for -2 … x … 2.
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Absolute equality of income would occur if the area between the Lorenz curve 
and y = x were 0. In this case, the Lorenz curve would be y = x and all families 
would receive equal shares of the total income. That is, 5% of the families would re-
ceive 5% of the income, 20% of the families would receive 20% of the income, 65% 
of the families would receive 65% of the income, and so on. The maximum possible 
area between a Lorenz curve and y = x is 12, the area of the triangle below y = x. In 
this case, we would have absolute inequality: All the income would be in the hands 
of one family and the rest would have none. In actuality, Lorenz curves lie between 
these two extremes. But as the shaded area increases, the greater is the inequality of 
income distribution.

We use a single number, the Gini index [named after the Italian sociologist 
Corrado Gini (1884–1965)], to measure income concentration. The Gini index is the 
ratio of two areas: the area between y = x and the Lorenz curve, and the area between 
y = x and the x axis, from x = 0 to x = 1. The first area equals 11

0 3x - f1x24 dx 
and the second (triangular) area equals 12, giving the following definition:

1.00

0.80

0.60

0.40

0.20

Pe
rc

en
t o

f 
in

co
m

e

Percent of families

x

y

1.000.800.600.400.20

(0.60, 0.26)

(0.40, 0.11)

Curve of
absolute

inequality

Curve of absolute
equality y 5 x

Lorenz curve:
Distribution

of U.S. family
income, 2014

y 5 f (x)

Figure 11 Lorenz curve

Table 1  Family Income Distribution 
in the United States, 2014

Source: U.S. Census Bureau

Income Level x y

Under $21,000 0.20 0.03
Under $41,000 0.40 0.11
Under $68,000 0.60 0.26
Under $112,000 0.80 0.49

Application: Income Distribution
The U.S. Census Bureau compiles and analyzes a great deal of data having to do with 
the distribution of income among families in the United States. For 2014, the Bureau 
reported that the lowest 20% of families received 3% of all family income and the top 
20% received 51%. Table 1 and Figure 11 give a detailed picture of the distribution of 
family income in 2014.

The graph of y = f1x2 in Figure 11 is called a Lorenz curve and is generally 
found by using regression analysis, a technique for fitting a function to a data set over 
a given interval. The variable x represents the cumulative percentage of families at 
or below a given income level, and y represents the cumulative percentage of  total 
family income received. For example, data point (0.40, 0.11) in Table 1 indicates that 
the bottom 40% of families (those with incomes under $41,000) received 11% of the 
total income for all families in 2014, data point (0.60, 0.26) indicates that the bottom 
60% of families received 26% of the total income for all families that year, and so on.

Matched Problem 7 Use absolute value on a graphing calculator to find the 
area (to two decimal places) bounded by the graphs of  f1x2 = x4 - 10x2 and 
 g1x2 = x3 - 5 from x = -4 to x = 4.
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DEFINITION Gini Index of Income Concentration
If y = f1x2 is the equation of a Lorenz curve, then

Gini index = 2L
1

0
3x - f1x24 dx

The Gini index is always a number between 0 and 1:

A Gini index of 0 indicates absolute equality—all people share equally 
in the income. A Gini index of 1 indicates absolute inequality—one 
person has all the income and the rest have none.

The closer the index is to 0, the closer the income is to being equally distributed. 
The closer the index is to 1, the closer the income is to being concentrated in a few 
hands. The Gini index of income concentration is used to compare income distribu-
tions at various points in time, between different groups of people, before and after 
taxes are paid, between different countries, and so on.

Distribution of Income The Lorenz curve for the distribution of income in a cer-
tain country in 2017 is given by  f1x2 = x2.6. Economists predict that the Lorenz 
curve for the country in the year 2030 will be given by  g1x2 = x1.8. Find the Gini 
index of income concentration for each curve, and interpret the results.

SOLUTION The Lorenz curves are shown in Figure 12.

EXAMPLE 8

(A)  Lorenz curve for 2017

x

y

10

1

y 5 f (x)
  5 x2.6

y 5 x

Figure 12

y 5 g(x)
   5 x1.8

(B)  Projected Lorenz curve

x

y

10

1

y 5 x

The Gini index in 2017 is (see Fig. 12A)

 2L
1

0
3x - f1x24 dx = 2L

1

0
3x - x2.64 dx = 2a1

2
 x2 -   

1
3.6

 x3.6b `
0

1

 = 2a1
2

  -    
1

3.6
b ≈ 0.444

The projected Gini index in 2030 is (see Fig. 12B)

 2L
1

0
3x - g1x24 dx = 2L

1

0
3x - x1.84 dx = 2a1

2
 x2 -   

1
2.8

 x2.8b `
0

1

 = 2a1
2

  -  
1

2.8
b ≈ 0.286

If this projection is correct, the Gini index will decrease, and income will be 
more equally distributed in the year 2030 than in 2017.

Matched Problem 8 Repeat Example 8 if the projected Lorenz curve in the 

year 2030 is given by  g1x2 = x3.8.
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Table 2

Source: The World Factbook, CIA

Country Gini Index
Per Capita Gross 
Domestic Product

Brazil 0.52 $15,800
Canada 0.32  45,900
China 0.47  14,300
Germany 0.27  47,400
India 0.34     6,300
Indonesia 0.37  11,300
Iran 0.45  17,800
Japan 0.38  38,200
Mexico 0.48  18,500
Russia 0.42  23,700
South Africa 0.63  13,400
United States 0.45  56,300

Skills Warm-up Exercises
In Problems 1–8, use geometric formulas to find the area between 
the graphs of y = f 1x2 and y = g1x2 over the indicated interval. 
(If necessary, see the references at the back of the book.)

1.  f1x2 = 60, g1x2 = 45; 32, 124
2.  f1x2 = -30, g1x2 = 20;  3-3, 64
3.  f1x2 = 6 + 2x, g1x2 =  6 - x;  30, 54
4.  f1x2 = 0.5x, g1x2 = 0.5x - 4;  30, 84
5.  f1x2 = -3 - x, g1x2 =  4 + 2x;  3-1, 24
6.  f1x2 = 30 -  4x, g1x2 =  20 + 5x;  34, 74
7.  f1x2 =  x, g1x2 =  24 - x2;  30, 224
8.  f1x2 =  216 - x2, g1x2 = ∙ x ∙ ; 3-212, 2124

Problems 9–14 refer to Figures A–D. Set up definite integrals in 
Problems 9–12 that represent the indicated shaded area.

9. Shaded area in Figure B

10. Shaded area in Figure A

11. Shaded area in Figure C

12. Shaded area in Figure D

13. Explain why 1b
a  h1x2 dx does not represent the area between 

the graph of y = h1x2 and the x axis from x = a to x = b in 
Figure C.

W

A

14. Explain why 1b
a  3-h1x24 dx represents the area between the 

graph of y = h1x2 and the x axis from x = a to x = b in 
Figure C.

y 5 f (x)

(A)

x

f (x)

ba

  

y 5 g(x)

(B)

g(x)

x
a b

y 5 h(x)

(C)

x

h(x)

a b

  

y 5 F(x)

b

(D)

F(x)

x
0

Figures for 9–14

Exercises 5.6

Do you agree or disagree with each of the following statements (explain your an-
swers by referring to the data in Table 2):

(A) In countries with a low Gini index, there is little incentive for individuals to 
strive for success, and therefore productivity is low.

(B) In countries with a high Gini index, it is almost impossible to rise out of poverty, 
and therefore productivity is low.

Explore and Discuss 1
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39. Referring to Figure B, explain how you would use definite 
integrals and the functions f and g to find the area bounded by 
the two functions from x = a to x = d.

40. Referring to Figure A, explain how you would use definite 
integrals to find the area between the graph of y = f1x2 and 
the x axis from x = a to x = d.

In Problems 41–56, find the area bounded by the graphs of the in-
dicated equations over the given intervals (when stated). Compute 
answers to three decimal places. [Hint: Area is always a positive 
quantity.]

41. y = 2 - x; y = 0; 0 … x … 4

42. y = 2x - 1; y = 0; 0 … x … 1

43. y = x2 - 4; y = 0; -2 … x … 4

44. y = x2 - 1; y = 0; -1 … x … 2

45. y = x2 - 4x; y = 0; -1 … x … 4

46. y = x2 - 6x; y = 0; -1 … x … 2

47. y = -2x + 8; y = 12; -1 … x … 2

48. y = 2x + 6; y = 3; -1 … x … 2

49. y = 3x2; y = 12

50. y = x2; y = 9

51. y = 4 - x2; y = -5

52. y = x2 - 1; y = 3

53. y = x2 + 1; y = 2x - 2; -1 … x … 2

54. y = x2 - 1; y = x - 2; -2 … x … 1

55. y = e0.5x; y = -  
1
x

; 1 … x … 2

56. y =
1
x

; y = -ex; 0.5 … x … 1

In Problems 57–62, set up a definite integral that represents the 
area bounded by the graphs of the indicated equations over the 
given interval. Find the areas to three decimal places. [Hint: 
A circle of radius r, with center at the origin, has equation 
x2 + y2 = r2 and area pr2].

57. y = 29 - x2; y = 0; -3 … x … 3

58. y = 225 - x2; y = 0; -5 … x … 5

59. y = - 216 - x2; y = 0; 0 … x … 4

60. y = - 236 - x2; y = 0; -6 … x … 0

61. y = - 225 - x2; y = 225 - x2; -5 … x … 5

62. y = - 2100 - x2; y = 2100 - x2; -10 … x … 10

In Problems 63–66, find the area bounded by the graphs of the in-
dicated equations over the given interval (when stated). Compute 
answers to three decimal places.

63. y = ex; y = e-x; 0 … x … 4

64. y = ex; y = -e-x; 1 … x … 2

65. y = x3 - 3x2 - 9x + 12; y = x + 12

66. y = x3 - 6x2 + 9x; y = x

C

In Problems 15–26, find the area bounded by the graphs of the 
indicated equations over the given interval. Compute answers to 
three decimal places.

15. y = x + 4; y = 0; 0 … x … 4

16. y = -x + 10; y = 0; -2 … x … 2

17. y = x2 - 20; y = 0; -3 … x … 0

18. y = x2 + 2; y = 0; 0 … x … 3

19. y = -x2 + 10; y = 0; -3 … x … 3

20. y = -2x2; y = 0; -6 … x … 0

21. y = x3 + 1; y = 0; 0 … x … 2

22. y = -x3 + 3; y = 0; -2 … x … 1

23. y = -ex; y = 0; -1 … x … 1

24. y = ex; y = 0; 0 … x … 1

25. y =
1
x

; y = 0; 1 … x … e

26. y = -  
1
x

; y = 0; -1 … x … -  
1
e

In Problems 27–30, base your answers on the Gini index of in-
come concentration (see Table 2, page 430).

27. In which of Brazil, Mexico, or South Africa is income most 
equally distributed? Most unequally distributed?

28. In which of China, India, or Iran is income most equally 
distributed? Most unequally distributed?

29. In which of Indonesia, Russia, or the United States is income 
most equally distributed? Most unequally distributed?

30. In which of Canada, Germany, or Japan is income most 
equally distributed? Most unequally distributed?

Problems 31–40 refer to Figures A and B. Set up definite integrals 
in Problems 31–38 that represent the indicated shaded areas over 
the given intervals.

y 5 f (x)

(A)

x
c da b

y

  

y 5 f (x)

y 5 g(x)

(B)

y

x
a b c d

Figures for 31–40

31. Over interval [a, b] in Figure A

32. Over interval [b, c] in Figure A

33. Over interval [b, d] in Figure A

34. Over interval [a, c] in Figure A

35. Over interval [b, c] in Figure B

36. Over interval [a, b] in Figure B

37. Over interval [a, c] in Figure B

38. Over interval [b, d] in Figure B

B
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82. Useful life. Repeat Problem 81 if

 C′1t2 = 2t  and  R′1t2 = 5te-0.1t2

83. Income distribution. In a study on the effects of the bilateral 
agreements between Switzerland and the European Union, 
an economist used data from the World Factbook to produce 
the following Lorenz curves for the distribution of income in 
Switzerland in 1992 and 2014:

 f1x2 = x1.99  Lorenz curve for 1992

 g1x2 = x1.84  Lorenz curve for 2014

Find the Gini index of income concentration for each Lorenz 
curve and interpret the results.

84. Income distribution. Using data from the World Factbook, 
an economist produced the following Lorenz curves for the 
distribution of income in Iceland in 2005 and 2006:

 f1x2 = 1
4 x + 3

4 x2  Lorenz curve for 2005

 g1x2 = 4
25 x + 21

25 x2    Lorenz curve for 2006

Find the Gini index of income concentration for each Lorenz 
curve and interpret the results.

85. Distribution of wealth. Lorenz curves also can provide a rela-
tive measure of the distribution of a country’s total assets. Using 
data in two reports by Credit Suisse, an economist produced the 
following Lorenz curves for the distribution of total Singapore 
assets in 2010 and in 2017:

 f1x2 = x17.7  Lorenz curve for 2010

 g1x2 = x6.5      Lorenz curve for 2017

Find the Gini index of income concentration for each Lorenz 
curve and interpret the results.

86. Income distribution. The government of a small country is 
planning sweeping changes in the tax structure in order to pro-
vide a more equitable distribution of income. The Lorenz curves 
for the current income distribution and for the projected income 
distribution after enactment of the tax changes are as follows:

 f1x2 = x2.3   Current Lorenz curve

 g1x2 = 0.4x + 0.6x2   Projected Lorenz curve after 
changes in tax laws

Find the Gini index of income concentration for each Lorenz 
curve. Will the proposed changes provide a more equitable 
income distribution? Explain.

87. Distribution of wealth. The data in the following table 
describe the distribution of wealth in a country:

x 0 0.20 0.40 0.60 0.80 1

y 0 0.12 0.31 0.54 0.78 1

(A) Use quadratic regression to find the equation of a Lorenz 
curve for the data.

(B) Use the regression equation and a numerical integra-
tion routine to approximate the Gini index of income 
concentration.

88. Distribution of wealth. Refer to Problem 87.

(A) Use cubic regression to find the equation of a Lorenz 
curve for the data.

 In Problems 67–70, use a graphing calculator to graph the 
equations and find relevant intersection points. Then find the area 
bounded by the curves. Compute answers to three decimal places.

67. y = x3 + x2 - 2x - 4; y = x2 + 2x - 4

68. y = x3 - 3x2 + x + 2; y = -x2 + 4x + 2

69. y = ex + 1; y = 2 - 3x - x2

70. y = ln x; y = x2 - 5x + 4

In Problems 71–74, use absolute value on a graphing calculator 
to find the area bounded by the graphs of the equations over the 
given interval. Compute answers to three decimal places.

71. y = x3 + 5x2 - 2x + 1; y = -x3 + x2 + 7x + 6; - 4 … x … 2

72. y = -x3 + 7x2 + 5x - 9; y = x3 - 4x2 + 10; - 2 … x … 6

73. y = e - x2
; y = 0.1x + 0.4; - 2 … x … 2

74. y = ln x; y = -1 + 2x; 1 … x … 20

In Problems 75–78, find the constant c (to two decimal places) 
such that the Lorenz curve f 1x2 = xc has the given Gini index of 
income concentration.

75. 0.63 76. 0.32

77. 0.16 78. 0.37

Applications
In the applications that follow, it is helpful to sketch graphs to get 
a clearer understanding of each problem and to interpret results. 
A graphing calculator will prove useful if you have one, but it is 
not necessary.
79. Oil production. Using production and geological data, the 

management of an oil company estimates that oil will be 
pumped from a producing field at a rate given by

 R1t2 =
100

t + 10
+ 10  0 … t … 15

where R(t) is the rate of production (in thousands of barrels 
per year) t years after pumping begins. Find the area between 
the graph of R and the t axis over the interval [5, 10] and 
interpret the results.

80. Oil production. In Problem 85, if the rate is found to be

 R1t2 =
100t

t2 + 25
+ 4  0 … t … 25

Find the area between the graph of R and the t axis over the 
interval [5, 15] and interpret the results.

81. Useful life. An amusement company maintains records for 
each video game it installs in an arcade. Suppose that C(t) 
and R(t) represent the total accumulated costs and revenues 
(in thousands of dollars), respectively, t years after a particu-
lar game has been installed. If

 C′1t2 = 2  and  R′1t2 = 9e-0.3t

then find the area between the graphs of C′ and R′ over the 
interval on the t axis from 0 to the useful life of the game  
and interpret the results.
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Find the area between the graph of V′ and the t axis over the 
interval [2, 4], and interpret the results.

92. Learning. Repeat Problem 91 if  V′1t2 = 13>t1>2 and the 
interval is changed to [1, 4].

Answers to Matched Problems

1. A = 13
-1 1x2 + 12 dx = 40

3 ≈ 13.333

2. (A) A = 12
0  19 - x22 dx = 46

3 ≈ 15.333

(B) A = 13
2  19 - x22 dx + 14

3  1x2 - 92 dx = 6

3. A = L
2

-1
 c 1x2 - 12 - a -  

x
2

- 3b d  dx =
39
4

= 9.75

4. A = 12
-3 316 - x22 - x4 dx = 125

6 ≈ 20.833

5. A = 11
-2 314 - 2x2 - 2x24 dx

+ 12
1  32x2 - 14 - 2x24 dx = 38

3 ≈ 12.667

6. 0.443

7. 170.64
8. Gini index of income concentration ≈  0.583; income will be 

less equally distributed in 2030.

(B) Use the cubic regression equation you found in part (A) 
and a numerical integration routine to approximate the 
Gini index of income concentration.

89. Biology. A yeast culture is growing at a rate of 
 W′1t2=0.3e0.1t grams per hour. Find the area between the 
graph of W′ and the t axis over the interval [0, 10] and inter-
pret the results.

90. Deforestation. The instantaneous rate of change of the 
Brazilian forest area since 1990 1t = 02, in percentage of 
land area per year, is given by

 Q′1t2 = 0.0096t - 0.39  0 … t … 25

Find the area between the graph of Q′ and the t axis over the 
interval [5,25], and interpret the results.

91. Learning. A college language class was chosen for a learn-
ing experiment. Using a list of 50 words, the experiment 
measured the rate of vocabulary memorization at different 
times during a continuous 5-hour study session. The average 
rate of learning for the entire class was inversely proportional 
to the time spent studying and was given approximately by

 V′1t2 =
15
t
  1 … t … 5

Important Terms, Symbols, and Concepts
5.1  Antiderivatives and Indefinite Integrals EXAMPLES

• A function F is an antiderivative of a function f if F =1x2 = f1x2.

• If F and G are both antiderivatives of f, then F and G differ by a constant; that is, F1x2 = G1x2 + k 
for some constant k.

• We use the symbol 1 f1x2 dx, called an indefinite integral, to represent the family of all antiderivatives 
of f, and we write

L
 

 

f1x2 dx = F1x2 + C

The symbol 1  is called an integral sign, f1x2 is the integrand, and C is the constant of integration.

• Indefinite integrals of basic functions are given by the formulas on page 367.

• Properties of indefinite integrals are given on page 368; in particular, a constant factor can be moved 
across an integral sign. However, a variable factor cannot be moved across an integral sign.

Ex. 1, p. 366

Ex. 2, p. 369
Ex. 3, p. 370
Ex. 4, p. 372
Ex. 5, p. 372
Ex. 6, p. 373

5.2  Integration by Substitution
• The method of substitution (also called the change-of-variable method) is a technique for finding 

indefinite integrals. It is based on the following formula, which is obtained by reversing the chain rule:

L
 

 

E =3I1x24I′1x2 dx = E 3I1x24 + C

• This formula implies the general indefinite integral formulas on page 379.

• When using the method of substitution, it is helpful to use differentials as a bookkeeping device:

1. The differential dx of the independent variable x is an arbitrary real number.

2. The differential dy of the dependent variable y is defined by dy = f =1x2 dx.

• Guidelines for using the substitution method are given by the procedure on page 381.

Ex. 1, p. 379

Ex. 2, p. 380
Ex. 3, p. 380
Ex. 4, p. 382
Ex. 5, p. 382
Ex. 6, p. 384
Ex. 7, p. 385
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434 CHAPTER 5 Integration

5.3  Differential Equations; Growth and Decay
• An equation is a differential equation if it involves an unknown function and one or more of the  

function’s derivatives.

• The equation

dy

dx
= 3x11 + xy22

is a first-order differential equation because it involves the first derivative of the unknown function y but 
no second or higher-order derivative.

• A slope field can be constructed for the preceding differential equation by drawing a tangent line seg-
ment with slope 3x11 + xy22 at each point (x, y) of a grid. The slope field gives a graphical representa-
tion of the functions that are solutions of the differential equation.

• The differential equation

dQ

dt
= rQ

(in words, the rate at which the unknown function Q increases is proportional to Q) is called the expo-
nential growth law. The constant r is called the relative growth rate. The solutions of the exponential 
growth law are the functions

Q1t2 = Q0e
rt

where Q0 denotes Q102, the amount present at time t = 0. These functions can be used to solve prob-
lems in population growth, continuous compound interest, radioactive decay, blood pressure, and light 
absorption.

• Table 1 on page 396 gives the solutions of other first-order differential equations that can be used to 
model the limited or logistic growth of epidemics, sales, and corporations.

Ex. 1, p. 393
Ex. 2, p. 393
Ex. 3, p. 394

Ex. 4, p. 395

5.4  The Definite Integral
• If the function f is positive on [a, b], then the area between the graph of f and the x axis from x = a 

to x = b can be approximated by partitioning [a, b] into n subintervals 3xk - 1, xk4 of equal length 
∆x = 1b - a2 >n and summing the areas of n rectangles. This can be done using left sums, right  
sums, or, more generally, Riemann sums:

Left sum:      Ln = a
n

k = 1
 f1xk - 12∆x

Right sum:    Rn = a
n

k = 1
 f1xk2∆x

Riemann sum: Sn = a
n

k = 1
 f1ck2∆x

In a Riemann sum, each ck is required to belong to the subinterval 3xk - 1, xk4. Left sums and right sums 
are the special cases of Riemann sums in which ck is the left endpoint and right endpoint, respectively,  
of the subinterval.

• The error in an approximation is the absolute value of the difference between the approximation and 
the actual value. An error bound is a positive number such that the error is guaranteed to be less than  
or equal to that number.

• Theorem 1 on page 402 gives error bounds for the approximation of the area between the graph of a positive 
function f and the x axis from x = a to x = b, by left sums or right sums, if f is either increasing or decreasing.

• If f1x2 7 0 and is either increasing on [a, b] or decreasing on [a, b], then the left and right sums of f1x2 
approach the same real number as n S ∞  (Theorem 2, page 403).

• If f is a continuous function on [a, b], then the Riemann sums for f on [a, b] approach a real-number limit 
I as n S ∞  (Theorem 3, page 405).

Ex. 1, p. 403
Ex. 2, p. 405
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• Let f be a continuous function on [a, b]. Then the limit I of Riemann sums for f on [a, b], guaranteed to 
exist by Theorem 3, is called the definite integral of f from a to b and is denoted

L
b

a
f1x2 dx

The integrand is f1x2, the lower limit of integration is a, and the upper limit of integration is b.

• Geometrically, the definite integral

L
b

a
f1x2 dx

represents the cumulative sum of the signed areas between the graph of f and the x axis from x = a to x = b.

• Properties of the definite integral are given on page 407.

Ex. 3, p. 406

Ex. 4, p. 407

5.5  The Fundamental Theorem of Calculus
• If f is a continuous function on [a, b} and F is any antiderivative of f, then

L
b

a
f1x2 dx = F1b2 - F1a2

This is the fundamental theorem of calculus (see page 413).

• The fundamental theorem gives an easy and exact method for evaluating definite integrals, provided that 
we can find an antiderivative F1x2 of f1x2. In practice, we first find an antiderivative F1x2 (when possi-
ble), using techniques for computing indefinite integrals. Then we calculate the difference F1b2 - F1a2.  
If it is impossible to find an antiderivative, we must resort to left or right sums, or other approximation 
methods, to evaluate the definite integral. Graphing calculators have a built-in numerical approximation 
routine, more powerful than left- or right-sum methods, for this purpose.

• If f is a continuous function on [a, b], then the average value of f over [a, b] is defined to be

1
b - a

 L
b

a
f1x2 dx

Ex. 1, p. 412

Ex. 2, p. 414
Ex. 3, p. 414
Ex. 4, p. 415
Ex. 5, p. 416
Ex. 6, p. 416
Ex. 7, p. 417

Ex. 8, p. 418
Ex. 9, p. 419

5.6 Area Between Curves
• If f and g are continuous and  f1x2 Ú g1x2 over the interval [a, b], then the area bounded by y = f1x2 

and y = g1x2 for a … x … b is given exactly by

A = L
b

a
3  f1x2 - g1x24 dx

• A graphical representation of the distribution of income among a population can be found by plotting 
data points (x, y), where x represents the cumulative percentage of families at or below a given 
income level and y represents the cumulative percentage of total family income received. Regression 
analysis can be used to find a particular function y = f1x2, called a Lorenz curve, that best fits the data.

• Given a Lorenz curve y =  f1x2, a single number, the Gini index, measures income concentration:

Gini index = 2L
1

0
3x - f1x24 dx

A Gini index of 0 indicates absolute equality: All families share equally in the income. A Gini index of 
1 indicates absolute inequality: One family has all of the income and the rest have none.

Ex. 1, p. 424
Ex. 2, p. 424
Ex. 3, p. 425
Ex. 4, p. 425
Ex. 5, p. 426
Ex. 6, p. 427
Ex. 7, p. 427

Ex. 8, p. 429
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436 CHAPTER 5 Integration

Work through all the problems in this chapter review and check 
your answers in the back of the book. Answers to all review prob-
lems are there, along with section numbers in italics to indicate 
where each type of problem is discussed. Where weaknesses show 
up, review appropriate sections of the text.

Find each integral in Problems 1–6.

1. L
 

 

16x + 32 dx 2. L
20

10
5 dx

3. L
9

0
14 - t22 dt 4. L

 

 

11 - t22 3t dt

5. L
 

 

1 + u4

u
 du 6. L

1

0
xe-2x2

 dx

In Problems 7–9, set up definite integrals that represent the 
shaded areas in the figure over the indicated intervals.

7. Interval [a, b] 8. Interval [b, c]

9. Interval [a, c]

y 5 f (x)

x

y

a b c

 Figure for 7–9

10. Sketch a graph of the area between the graphs of y = ln x 
and y = 0 over the interval [0.5, e] and find the area.

11. Is F1x2 = ln x2 an antiderivative of f1x2 = ln 12x2?  
Explain.

12. Is F1x2 = ln x2 an antiderivative of f1x2 =
2
x

? Explain.

13. Is F1x2 = 1ln x2 2 an antiderivative of f1x2 = 2 ln x? 
Explain.

14. Is F1x2 = 1ln x2 2 an antiderivative of f1x2 =
2 ln x

x
? 

Explain.

15. Is y = 3x + 17 a solution of the differential equation 
1x + 52y= = y - 2? Explain.

16. Is y = 4x3 + 7x2 - 5x + 2 a solution of the differential 
equation 1x + 22y=== - 24x = 48? Explain.

In Problems 17 and 18, find the derivative or indefinite integral as 
indicated.

17. 
d
dx

 aL
 

 

e-x2
 dxb 18. L

 

 

d
dx

 124 + 5x2  dx

19. Find a function y = f1x2 that satisfies both conditions:

dy

dx
= 3x2 - 2  f102 = 4

A

20. Find all antiderivatives of

(A) 
dy

dx
= 8x3 - 4x - 1 (B) 

dx
dt

= et - 4t-1

21. Approximate 15
1 1x2 + 12 dx, using a right sum with 

n = 2. Calculate an error bound for this approximation.

22. Evaluate the integral in Problem 21, using the fundamental 
theorem of calculus, and calculate the actual error ∙ I - R2 ∙  
produced by using R2.

23. Use the following table of values and a left sum with n = 4 
to approximate 117

1 f1x2 dx:

x 1 5 9 13 17

f1x2 1.2 3.4 2.6 0.5 0.1

24. Find the average value of f1x2 = 6x2 + 2x over the inter-
val 3-1, 24.

25. Describe a rectangle that has the same area as the area un-
der the graph of f1x2 = 6x2 + 2x from x = -1 to x = 2 
(see Problem 24).

In Problems 26 and 27, calculate the indicated Riemann sum Sn 
for the function f1x2 = 100 - x2.

26. Partition [3, 11] into four subintervals of equal length, and 
for each subinterval 3xi - 1, xi4, let ci = 1xi - 1 + xi2 >2.

27. Partition 3-5, 54 into five subintervals of equal length and 
let c1 = -4, c2 = -1, c3 = 1, c4 = 2, and c5 = 5.

Use the graph and actual areas of the indicated regions in the 
figure to evaluate the integrals in Problems 28–35:

Area A 5 1
Area B 5 2
Area C 5 2
Area D 5 0.6

y 5 f (x)

a b c d

A C

B D

x

f (x)

Figure for 28–35

28. L
b

a
5f1x2 dx 29. L

c

b
  

f1x2
5

 dx

30. L
d

b
f1x2 dx 31. L

c

a
f1x2 dx

32. L
d

0
f1x2 dx 33. L

a

b
f1x2 dx

34. L
b

c
f1x2 dx 35. L

0

d
f1x2 dx

Review Exercises
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54. Find the equation of the curve that passes through (2, 10) if 
its slope is given by

dy

dx
= 6x + 1

for each x.

55.  (A)  Find the average value of f1x2 = 31x over the interval 
[1, 9].

(B)  Graph f1x2 = 31x and its average over the interval  
[1, 9] in the same coordinate system.

Find each integral in Problems 56–60.

56. L
 

 

1ln x2 2

x
 dx 57. L

 

 

x1x3 - 12 2 dx

58. L
 

 

x26 - x
 dx 59. L

7

0
x216 - x dx

60. L
1

1
1x + 12 9dx

61. Find a function y = f1x2 that satisfies both conditions:

dy

dx
= 9x2ex3

  f102 = 2

62. Solve the differential equation

dN
dt

= 0.06N  N102 = 800  N 7 0

Graph Problems 63–66 on a graphing calculator, and iden-
tify each curve as unlimited growth, exponential decay, limited 
growth, or logistic growth:

63. N = 5011 - e-0.07t2; 0 … t … 80, 0 … N … 60

64. p = 500e-0.03x; 0 … x … 100, 0 … p … 500

65. A = 200e0.08t; 0 … t … 20, 0 … A … 1,000

66. N =
100

1 + 9e-0.3t; 0 … t … 25, 0 … N … 100

In Problems 67–72, find the area bounded by the graphs of the 
indicated equations over the given interval.

67. y = 5 - 2x - 6x2; y = 0, 1 … x … 2

68. y = 5x + 7; y = 12, -3 … x … 1

69. y = -x + 2; y = x2 + 3, -1 … x … 4

70. y =
1
x

; y = -e-x, 1 … x … 2

71. y = x; y = -x3, -2 … x … 2

72. y = x2; y = -x4; -2 … x … 2

73. The Gini indices of Colombia and Venezuela are 0.54 and 
0.39, respectively. In which country is income more equally 
distributed?

74. The Gini indices of Nicaragua and Honduras are 0.41 and 
0.58, respectively. In which country is income more equally 
distributed?

Problems 36–41 refer to the slope field shown in the figure:

x

y

5

25

25 5

Figure for 36–41

36. (A)  For dy>dx = 12y2 >x, what is the slope of a solution 
curve at (2, 1)? At 1-2, -12?

(B)  For dy>dx = 12x2 >y, what is the slope of a solution 
curve at (2, 1)? At 1-2, -12?

37. Is the slope field shown in the figure for dy>dx = 12x2 >y or 
for dy>dx = 12y2 >x? Explain.

38. Show that y = Cx2 is a solution of dy>dx = 12y2 >x for any 
real number C.

39. Referring to Problem 38, find the particular solution of 
dy>dx = 12y2>x that passes through (2, 1). Through 1-2, -12.

40. Graph the two particular solutions found in Problem 39 in the 
slope field shown (or a copy).

41. Use a graphing calculator to graph, in the same viewing 
window, graphs of y = Cx2 for C = -2, -1, 1, and 2 for 
-5 … x … 5 and -5 … y … 5.

Find each integral in Problems 42–52.

42. L
1

-1
21 + x dx 43. L

0

-1
x21x3 + 22 -2 dx

44. L
 

 

5e-t dt 45. L
e

1
 
1 + t2

t
 dt

46. L
 

 

xe3x2
 dx 47. L

1

-3
 

122 - x
 dx

48. L
3

0
 

x

1 + x2 dx 49. L
3

0
 

x

11 + x22 2 dx

50. L
 

 

x312x4 + 52 5 dx 51. L
 

 

e-x

e-x + 3
 dx

52. L
 

 

ex

1ex + 22 2 dx

53. Find a function y = f1x2 that satisfies both conditions:

dy

dx
= 3x-1 - x-2  f112 = 5
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438 CHAPTER 5 Integration

Use a numerical integration routine to evaluate each definite 
integral in Problems 75–77 (to three decimal places).

75. L
0.6

-0.5
 

121 - x2
 dx 76. L

3

-2
x2ex dx 77. L

2.5

0.5
 
ln x

x2  dx

In Problems 78–81, set up definite integrals that represent the 
shaded areas in the figure over the indicated intervals.

78. Interval [a, b] 79. Interval [b, c]

x

y

a
b

y 5 f (x)

y 5 g(x)

c d

Figure for 78–81

80. Interval [b, d]

81. Interval [a, d]

82. Sketch a graph of the area bounded by the graphs of 
y = x2 - 6x + 9 and y = 9 - x and find the area.

83. Sketch a graph of the area bounded by the indicated graphs, 
and find the area. In part (B), approximate intersection points 
and area to two decimal places.

(A) y = x3 - 6x2 + 9x; y = x
(B) y = x3 - 6x2 + 9x; y = x + 1

84. Use a numerical integration routine on a graphing calculator 
to find the area in the first quadrant that is below the graph of

y =
6

2 + 5e-x

and above the graph of y = 0.2x + 1.6.

Applications
85. Cost. A company manufactures downhill skis. The research 

department produced the marginal cost graph shown in the 
accompanying figure, where C′1x2 is in dollars and x is  
the number of pairs of skis produced per week. Estimate the 
increase in cost going from a production level of 200 to 600 
pairs of skis per week. Use left and right sums over two equal 
subintervals. Replace the question marks with the values of 
L2 and R2 as appropriate:

? … L
600

200
C′1x2 dx … ?

B

Barnett: Calculus 14e
Fig:  EX05_RE_66   pdf msp 61/61
2017-07-28

600

400

200

x

C (x)

2000 400 600

Figure for 85

86. Cost. Assuming that the marginal cost function in Problem 84  
is linear, find its equation and write a definite integral that 
represents the increase in costs going from a production level 
of 200 to 600 pairs of skis per week. Evaluate the definite 
integral.

87. Profit and production. The weekly marginal profit for an 
output of x units is given approximately by

P′1x2 = 150 -
x

10
  0 … x … 40

What is the total change in profit for a change in production 
from 10 units per week to 40 units? Set up a definite integral 
and evaluate it.

88. Profit function. If the marginal profit for producing x units 
per day is given by

P′1x2 = 100 - 0.02x  P102 = 0

where P1x2 is the profit in dollars, find the profit function P 
and the profit on 10 units of production per day.

89. Income distribution. An economist produced the following 
Lorenz curves for the current income distribution and the 
projected income distribution 10 years from now in a certain 
country:

 f1x2 = 0.1x + 0.9x2  Current Lorenz curve

 g1x2 = x1.5   Projected Lorenz curve

(A) Graph y = x and the current Lorenz curve on one set 
of coordinate axes for [0, 1] and graph y = x and the 
projected Lorenz curve on another set of coordinate axes 
over the same interval.

(B) Looking at the areas bounded by the Lorenz curves and 
y = x, can you say that the income will be more or less 
equitably distributed 10 years from now?

(C) Compute the Gini index of income concentration (to 
one decimal place) for the current and projected curves. 
What can you say about the distribution of income 10 
years from now? Is it more equitable or less?

90. Resource depletion. An oil well starts out producing oil at 
the rate of 60,000 barrels of oil per year, but the production 
rate is expected to decrease by 4,000 barrels per year. Thus, 
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where t is time in days and A112 = 5 square centimeters. 
What will be the area of the wound in 5 days?

96. Pollution. An environmental protection agency estimates 
that the rate of seepage of toxic chemicals from a waste dump 
(in gallons per year) is given by

R1t2 =
1,000

11 + t2 2

where t is the time in years since the discovery of the seep-
age. Find the total amount of toxic chemicals that seep from 
the dump during the first 4 years of its discovery.

97. Population. The population of Mexico was 116 million in 
2013 and was growing at a rate of 1.07% per year, com-
pounded continuously.

(A) Assuming that the population continues to grow at this 
rate, estimate the population of Mexico in the year 2025.

(B) At the growth rate indicated, how long will it take the 
population of Mexico to double?

98. Politics. The rate of change of the voting population of a city 
with respect to time t (in years) is estimated to be

 N′1t2 =
100t

11 + t22 2

where  N1t2 is in thousands. If  N102 is the current voting 
population, how much will this population increase during 
the next 3 years?

99. Archaeology. The continuous compound rate of decay for 
carbon-14 is r = -0.000 123 8. A piece of animal bone 
found at an archaeological site contains 4% of the original 
amount of carbon-14. Estimate the age of the bone.

100. Learning. An average student enrolled in a typing class pro-
gressed at a rate of N′1t2 = 7e-0.1t words per minute t weeks 
after enrolling in a 15-week course. If a student could type  
25 words per minute at the beginning of the course, 
how many words per minute N1t2 would the student be 
expected to type t weeks into the course? After completing 
the course?

if P1t2 is the total production (in thousands of barrels) in t 
years, then

P′1t2 = f1t2 = 60 - 4t  0 … t … 15

Write a definite integral that will give the total production 
after 15 years of operation, and evaluate the integral.

91. Inventory. Suppose that the inventory of a certain  
item t months after the first of the year is given  
approximately by

I1t2 = 10 + 36t - 3t2  0 … t … 12

What is the average inventory for the second quarter of the 
year?

92. Price–supply. Given the price–supply function

p = S1x2 = 81e0.05x - 12
find the average price (in dollars) over the supply interval 
[40, 50].

93. Useful life. The total accumulated costs C1t2 and revenues 
R1t2 (in thousands of dollars), respectively, for a coal mine 
satisfy

C′1t2 = 3  and  R′1t2 = 20e-0.1t

where t is the number of years that the mine has been in 
operation. Find the useful life of the mine, to the nearest year. 
What is the total profit accumulated during the useful life of 
the mine?

94. Marketing. The market research department for an automo-
bile company estimates that sales (in millions of dollars) of a 
new electric car will increase at the monthly rate of

S′1t2 = 4e-0.08t  0 … t … 24

t months after the introduction of the car. What will be the 
total sales S1t2 t months after the car is introduced if we 
assume that there were 0 sales at the time the car entered 
the marketplace? What are the estimated total sales during 
the first 12 months after the introduction of the car? How 
long will it take for the total sales to reach $40 million?

95. Wound healing. The area of a healing skin wound changes 
at a rate given approximately by

dA
dt

= -5t-2  1 … t … 5

 Review Exercises 439
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440

6.1 Integration by Parts

6.2 Other Integration 
Methods

6.3 Applications in Business 
and Economics

6.4 Integration of 
Trigonometric Functions

Introduction
In Chapter 6 we explore additional applications and techniques of integra-
tion. For example, we use the integral to determine the cost of manufacturing 
downhill skis, as a function of the production level, from the fixed costs and 
marginal cost (see Problem 75 in Section 6.2). We also use the integral to 
find probabilities and to calculate several quantities that are important in busi-
ness and economics: the total income and future value produced by a continu-
ous  income stream, consumers’ and producers’ surplus, and the Gini index of 
income concentration. The Gini index is a single number that measures the 
equality of a country’s income distribution.

6 Additional 
Integration Topics
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 SECTION 6.1   Integration by Parts 441

In Section 5.1, we promised to return later to the indefinite integral

L
 

 

 ln x dx

since none of the integration techniques considered up to that time could be used to 
find an antiderivative for ln x. We now develop a very useful technique, called inte-
gration by parts, that will enable us to find not only the preceding integral but also 
many others, including integrals such as

L
 

 

x ln x dx  and  L
 

 

xex dx

The method of integration by parts is based on the product formula for deriva-
tives. If f and g are differentiable functions, then

d
dx

 3  f1x2g1x24 = f1x2g′1x2 + g1x2f′1x2

which can be written in the equivalent form

 f1x2g′1x2 =
d
dx

 3  f1x2g1x24 - g1x2f′1x2

Integrating both sides, we obtain

L
 

 

f 1x2g′1x2 dx = L
 

 

 
d
dx

 3f 1x2g1x24 dx - L
 

 

g1x2f′1x2 dx

The first integral to the right of the equal sign is f 1x2g1x2 + C. Why? We will leave 
out the constant of integration for now, since we can add it after integrating the sec-
ond integral to the right of the equal sign. So

L
 

 

f1x2g′1x2 dx = f1x2g1x2 - L
 

 

g1x2f′1x2 dx

This equation can be transformed into a more convenient form by letting u = f 1x2 
and v = g1x2; then du = f′1x2 dx and dv = g′1x2 dx. Making these substitutions, 
we obtain the integration-by-parts formula:

6.1 Integration by Parts

INTEGRATION-BY-PARTS FORMULA

L
 

 

u dv ∙ uv ∙ L
 

 

v du

This formula can be very useful when the integral on the left is difficult or im-
possible to integrate with standard formulas. If u and dv are chosen with care—this 
is the crucial part of the process—then the integral on the right side may be easier to 
integrate than the one on the left. The formula provides us with another tool that is 
helpful in many, but not all, cases. We are able to easily check the results by differen-
tiating to get the original integrand, a good habit to develop.
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Integration by Parts Find 1xex dx, using integration by parts, and check the result.

SOLUTION First, write the integration-by-parts formula:

 L
 

 

u dv = uv - L
 

 

v du (1)

Now try to identify u and dv in 1xex dx so that 1v du on the right side of (1) is 
easier to integrate than 1u dv = 1xex dx on the left side. There are essentially two 
reasonable choices in selecting u and dv in 1xex dx: 

         Choice 1                Choice 2
            u       dv                 u        dv
        $%&  $%&             $%&    $%&

L
 

   
x      ex dx  L

 
  
ex       x dx

We pursue choice 1 and leave choice 2 for you to explore (see Explore and Discuss 1 
following this example).

From choice 1, u = x and dv = ex dx. Looking at formula (1), we need du and 
v to complete the right side. Let

u = x  dv = ex dx

Then,

 du = dx  L
 

 

 dv = L
 

 

ex dx

 v = ex

EXAMPLE 1

Any constant may be added to v, but we will always choose 0 for simplicity. 
The general arbitrary constant of integration will be added at the end of the 
process.

Substituting these results into formula (1), we obtain

 L
 

 

u dv = uv - L
 

 

v du

 L
 

 

xex dx = xex - L
 

 

ex dx  The right integral is easy to integrate.

 = xex - ex + C   Now add the arbitrary constant C.

Check:

d
dx

 1xex - ex + C2 = xex + ex - ex = xex

Pursue choice 2 in Example 1, using the integration-by-parts formula, and explain 
why this choice does not work out.

Explore and Discuss 1

Matched Problem 1 Find 1xe2x dx.
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Check:

d
dx

 a x2

2
 ln x -  

x2

4
+ Cb = x ln x + a x2

2
# 1
x
b -

x
2

= x ln x

Matched Problem 2 Find 1x ln 2x dx.

Integration by Parts Find 1x ln x dx.

SOLUTION As before, we have essentially two choices in choosing u and dv:

        Choice 1                   Choice 2
        u       dv                   u         dv       $%& $+%+&              $%&     $%&

L
 

 
  
x   ln x dx  L

 

 
  
ln x    x dx

Choice 1 is rejected since we do not yet know how to find an antiderivative of ln x. 
So we move to choice 2 and choose u = ln x and dv = x dx. Then we proceed as 
in Example 1. Let

u = ln x  dv = x dx

Then,

 du =
1
x

 dx  L
 

 

 dv = L
 

 

x dx

 v =
x2

2

Substitute these results into the integration-by-parts formula:

 L
 

 

u dv = uv - L
 

 

v du

 L
 

 

x ln x dx = 1ln x2 a x2

2
b - L

 

 

a x2

2
b a1

x
b  dx

 =
x2

2
 ln x - L

 

 

 
x
2

 dx  An easy integral to evaluate

 =
x2

2
 ln x -

x2

4
+ C

EXAMPLE 2

As you may have discovered in Explore and Discuss 1, some choices for u and dv 
will lead to integrals that are more complicated than the original integral. This does 
not mean that there is an error in either the calculations or the integration-by-parts 
formula. It simply means that the particular choice of u and dv does not change the 
problem into one we can solve. When this happens, we must look for a different 
choice of u and dv. In some problems, it is possible that no choice will work.

CONCEPTUAL INSIGHT

Guidelines for selecting u and dv for integration by parts are summarized in the 
following box:
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In some cases, repeated use of the integration-by-parts formula will lead to the 
evaluation of the original integral. The next example provides an illustration of such 
a case.

SUMMARY Integration by Parts: Selection of u and dv
For 1u dv = uv - 1v du,

1. The product u dv must equal the original integrand.
2. It must be possible to integrate dv (preferably by using standard formulas or 

simple substitutions).
3. The new integral 1  v du should not be more complicated than the original 

integral 1u dv.
4. For integrals involving xpeax, try

u = xp  and  dv = eax dx

5. For integrals involving xp1ln x2 q, try

u = 1ln x2 q  and  dv = xp dx

Repeated Use of Integration by Parts Find 1x2e-x dx.

SOLUTION Following suggestion 4 in the box, we choose

u = x2  dv = e-x dx

Then,

du = 2x dx  v = -e-x

and

  L
 

 

x2e-x dx = x21-e-x2 - L
 

 

1-e-x22x dx 

  = -x2e-x + 2L
 

 

xe-x dx  (2)

The new integral is not one we can evaluate by standard formulas, but it is simpler 
than the original integral. Applying the integration-by-parts formula to it will pro-
duce an even simpler integral. For the integral 1xe-x dx, we choose

u = x  dv = e-x dx

Then,

du = dx  v = -e-x

and

 L
 

 

xe-x dx = x1-e-x2 - L
 

 

1-e-x2 dx

 = -xe-x + L
 

 

e-x dx

 = -xe-x - e-x  Choose 0 for the constant. (3)

Substituting equation (3) into equation (2), we have

 L
 

 

x2e-x dx = -x2e-x + 21-xe-x - e-x2 + C Add an arbitrary constant here.

 = -x2e-x - 2xe-x - 2e-x + C

EXAMPLE 3
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The integral represents the area under the curve y = ln x from x = 1 to x = e, 
as shown in Figure 1.

Matched Problem 4 Find 1 2 
1 ln 3x dx.

Check:

 
d
dx

 1-x2e-x - 2xe-x - 2e-x + C2 = x2e-x - 2xe-x + 2xe-x - 2e-x + 2e-x

 = x2e-x

Matched Problem 3 Find 1x2e2x dx.

Using Integration by Parts Find 1 e
1  ln x dx and interpret the result geometrically.

SOLUTION First, we find 1 ln x dx. Then we return to the definite integral. Follow-
ing suggestion 5 in the box (with p = 0), we choose

u = ln x  dv = dx

Then,

 du =
1
x

 dx  v = x

 L
 

 

 ln x dx = 1ln x21x2 - L
 

 

1x2  
1
x

 dx

 = x ln x - x + C

This is the important result we mentioned at the beginning of this section. Now we have

 L
e

1
ln x dx = 1x ln x - x2 0 1e

 = 1e ln e - e2 - 11 ln 1 - 12
 = 1e - e2 - 10 - 12
 = 1

EXAMPLE 4

y

1 2 3e

y 5 ln x

1

0
x

Figure 1
Try using the integration-by-parts formula on 1ex2

 dx, and explain why it does not 
work.

Explore and Discuss 2

Skills Warm-up Exercises

In Problems 1–8, find the derivative of  f1x2 and the indefinite 
integral of  g1x2. (If necessary, review Sections 3.2 and 5.1.)

1. f 1x2 = 5x; g1x2 = x3 2. f 1x2 = x4; g1x2 = e3x

3. f 1x2 = x3; g1x2 = 5x 4. f 1x2 = e3x; g1x2 = x4

5. f 1x2 = e4x; g1x2 =
1
x

6. f 1x2 = 1x; g1x2 = e - 2x

W
7. f 1x2 =

1
x

; g1x2 = e4x 8. f 1x2 = e - 2x; g1x2 = 1x

In Problems 9–12, integrate by parts. Assume that x 7 0 when-
ever the natural logarithm function is involved.

9. L
 

 

xe3x dx 10. L
 

 

xe4x dx

A

Exercises 6.1
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11. L
 

 

x2 ln x dx 12. L
 

 

x5 ln x dx

13. If you want to use integration by parts to find 1 1x + 12 5 
1x + 22 dx, which is the better choice for u: u = 1x + 12 5 
or u = x + 2? Explain your choice and then integrate.

14. If you want to use integration by parts to find 

1 15x - 72  1x - 12 4 dx, which is the better choice for u: 
u = 5x - 7 or u = 1x - 12 4? Explain your choice and  
then integrate.

Problems 15–28 are mixed—some require integration by parts, 
and others can be solved with techniques considered earlier. 
Integrate as indicated, assuming x 7 0 whenever the natural 
logarithm function is involved.

15. L
 

 

xe-x dx 16. L
 

 

1x - 12e-x dx

17. L
 

 

xex2
 dx 18. L

 

 

x2e-x3
 dx

19. L
1

0
1x - 32ex dx 20. L

1

0
1x + 12ex dx

21. L
3

1
ln 2x dx 22. L

2

1
lna x

2
b  dx

23. L
 

 

 
2x

x2 + 1
 dx 24. L

 

 

 
x4

x5 + 6
 dx

25. L
 

 

 
ln x

x
 dx 26. L

 

 

 
ex

ex + 1
 dx

27. L
 

 

1x ln x dx 28. L
 

 

 
ln x1x

 dx

In Problems 29–34, the integral can be found in more than one 
way. First use integration by parts, then use a method that does 
not involve integration by parts. Which method do you prefer?

29. L
 

 

12x + 52x dx 30. L
 

 

14x - 32x dx

31. L
 

 

17x - 12x2 dx 32. L
 

 

19x + 82x3 dx

33. L
 

 

1x + 421x + 12 2 dx 34. L
 

 

13x - 221x - 12 2 dx

In Problems 35–38, illustrate each integral graphically and  
describe what the integral represents in terms of areas.

35. Problem 19 36. Problem 20

37. Problem 21 38. Problem 22

B

Problems 39–66 are mixed—some may require use of the integration-
by-parts formula along with techniques we have considered earlier; 
others may require repeated use of the integration-by-parts formula. 
Assume that g1x2 7 0 whenever ln g1x2 is involved.

39. L
 

 

x2ex dx 40. L
 

 

x3ex dx

41. L
 

 

xeax dx, a ∙ 0 42. L
 

 

ln 1ax2 dx, a 7 0

43. L
e

1
 
ln x

x2  dx 44. L
2

1
x3ex2

 dx

45. L
2

0
ln 1x + 42 dx 46. L

2

0
ln 14 - x2 dx

47. L
 

 

xex - 2 dx 48. L
 

 

1x - 22ex - 3 dx

49. L
 

 

x ln 11 + x22 dx 50. L
 

 

x ln 11 + x2 dx

51. L
 

 

ex ln 11 + ex2 dx 52. L
 

 

 
ln 11 + 1x21x

 dx

53. L
 

 

1ln x2 2 dx 54. L
 

 

x1ln x2 2 dx

55. L
 

 

1ln x2 3 dx 56. L
 

 

x1ln x2 3 dx

57. L
e

1
ln 1x22 dx 58. L

e

1
ln 1x52 dx

59. L
1

0
ln 1ex22 dx 60. L

2

1
ln 1xex2 dx

61. 1 1ln x2 4

x
 dx 62. 1 1ln x2 5

x
 dx

63. 1x2ln1ex2 dx 64. 1x3ln1ex2 dx

65. 1x3ln1x22 dx 66. 1x3ln1x42 dx

 In Problems 67–70, use absolute value on a graphing calculator 
to find the area between the curve and the x axis over the given 
interval. Find answers to two decimal places.

67. y = x5ex; - 2 … x … 2

68. y = x3 ln x; 0.1 … x … 3.1

69. y = 14 - x2 ln x; 1 … x … 7

70. y = 1x - 12ex2
; 0 … x … 2

C
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where t is the number of months since the game was released 
and  S1t2 is the number of games sold each month. Find  S1t2.  
When, to the nearest month, will monthly sales reach 15,000 
games?

83. Consumers’ surplus. Find the consumers’ surplus (to the 
nearest dollar) at a price level of p = $2.089 for the price–
demand equation

p = D1x2 = 9 - ln 1x + 42
Use x computed to the nearest higher unit.

84. Producers’ surplus. Find the producers’ surplus (to the near-
est dollar) at a price level of p = $26 for the price–supply 
equation

p = S1x2 = 5 ln 1x + 12
Use x computed to the nearest higher unit.

85. Consumers’ surplus. Interpret the results of Problem 83 
with both a graph and a description of the graph.

86. Producers’ surplus. Interpret the results of Problem 84 with 
both a graph and a description of the graph.

87. Pollution. The concentration of particulate matter (in parts 
per million) t hours after a factory ceases operation for the 
day is given by

 C1t2 =
72 ln 1t + 12
1t + 12 3

Find the average concentration for the period from t = 0 to 
t = 8.

88. Medicine. After a person takes a pill, the drug contained in 
the pill is assimilated into the bloodstream. The rate of as-
similation t minutes after taking the pill is

 R1t2 = te-0.25t

Find the total amount of the drug that is assimilated into 
the bloodstream during the first 15 minutes after the pill is 
taken.

89. Learning. A student enrolled in an advanced typing class 
progressed at a rate of

 N′1t2 = 1t + 62e-0.25t

words per minute per week t weeks after enrolling in a 15-
week course. If a student could type 40 words per minute at 
the beginning of the course, then how many words per minute 
 N1t2 would the student be expected to type t weeks into the 
course? How long, to the nearest week, should it take the 
student to achieve the 70-word-per-minute level? How many 
words per minute should the student be able to type by the 
end of the course?

90. Learning. A student enrolled in a stenotyping class pro-
gressed at a rate of

 N′1t2 = 1t + 102e-0.1t

words per minute per week t weeks after enrolling in a 15-
week course. If a student had no knowledge of stenotyping 
(that is, if the student could stenotype at 0 words per minute) 
at the beginning of the course, then how many words per 
minute  N1t2 would the student be expected to handle t weeks 

Applications
71. Profit. If the marginal profit (in millions of dollars per year) 

is given by

 P′1t2 = 2t - te-t

use an appropriate definite integral to find the total profit (to 
the nearest million dollars) earned over the first 5 years of 
operation.

72. Production. An oil field is estimated to produce oil at a rate 
of  R1t2 thousand barrels per month t months from now, as 
given by

 R1t2 = 10te-0.1t

Use an appropriate definite integral to find the total production 
(to the nearest thousand barrels) in the first year of operation.

73. Profit. Interpret the results of Problem 71 with both a graph 
and a description of the graph.

74. Production. Interpret the results of Problem 72 with both a 
graph and a description of the graph.

75. Continuous income stream. Find the future value at 3.95%, 
compounded continuously, for 5 years of a continuous in-
come stream with a rate of flow of

f 1t2 = 1,000 - 200t

76. Continuous income stream. Find the interest earned at 
4.15%, compounded continuously, for 4 years for a continu-
ous income stream with a rate of flow of

f 1t2 = 1,000 - 250t

77. Income distribution. Find the Gini index of income concen-
tration for the Lorenz curve with equation

y = xex - 1

78. Income distribution. Find the Gini index of income concen-
tration for the Lorenz curve with equation

y = x2ex - 1

79. Income distribution. Interpret the results of Problem 77 
with both a graph and a description of the graph.

80. Income distribution. Interpret the results of Problem 78 
with both a graph and a description of the graph.

81. Sales analysis. Monthly sales of a particular personal com-
puter are expected to increase at the rate of

 S′1t2 = -4te0.1t

computers per month, where t is time in months and  S1t2 
is the number of computers sold each month. The company 
plans to stop manufacturing this computer when monthly 
sales reach 800 computers. If monthly sales now 1t = 02 
are 2,000 computers, find  S1t2. How long, to the near-
est month, will the company continue to manufacture the 
computer?

82. Sales analysis. The rate of change of the monthly sales of a 
new basketball game is given by

 S′1t2 = 350 ln 1t + 12  S102 = 0
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Answers to Matched Problems

1. 
x
2

 e2x-  
1
4

 e2x + C

2. 
x2

2
 ln 2x-  

x2

4
+ C

3. 
x2

2
 e2x-  

x
2

 e2x +
1
4

 e2x + C

4. 2 ln 6 - ln 3 - 1 ≈ 1.4849

into the course? How long, to the nearest week, should it 
take the student to achieve 90 words per minute? How many 
words per minute should the student be able to handle by the 
end of the course?

91. Politics. The number of voters (in thousands) in a certain city 
is given by

 N1t2 = 20 + 4t - 5te-0.1t

where t is time in years. Find the average number of voters 
during the period from t = 0 to t = 5.

In Chapter 5 we used left and right sums to approximate the definite integral of a 
function, and, if an antiderivative could be found, calculated the exact value using the 
fundamental theorem of calculus. Now we discuss other methods for approximating 
definite integrals, and a procedure for finding exact values of definite integrals of 
many standard functions.

Approximation of definite integrals by left sums and right sums is instructive 
and important, but not efficient. A large number of rectangles must be used, and 
many terms must be summed, to get good approximations. The trapezoidal rule and 
Simpson’s rule provide more efficient approximations of definite integrals in the 
sense that fewer terms must be summed to achieve a given accuracy.

A table of integrals can be used to find antiderivatives of many standard func-
tions (see Table 1 in Appendix C). Definite integrals of such functions can therefore 
be found exactly by means of the fundamental theorem of calculus.

The Trapezoidal Rule
The trapezoid in Figure 1 is a more accurate approximation of the area under the 
graph of f and above the x axis than the left rectangle or the right rectangle. Using ∆x 
to denote x1 - x0,

6.2 Other Integration Methods
■■ The Trapezoidal Rule
■■ Simpson’s Rule
■■ Using a Table of Integrals
■■ Substitution and Integral Tables
■■ Reduction Formulas
■■ Application

Area of left rectangle: f1x02∆x

Area of right rectangle: f1x12∆x

 Area of trapezoid: 
f1x02 + f1x12

2
∆x (1)

Left
rectangle

x0 x1

f

Figure 1

f

Trapezoid

x0 x1

Right
rectangle

f

x0 x1

Reminder

If a and b are the lengths of the paral-
lel sides of a trapezoid, and h is the 
distance between them, then the area 
of the trapezoid is given by

A =
1
2

 1a + b2h

(see the references at the back of the 
book).
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Note that the area of the trapezoid in Figure 1 [also see formula (1)] is the average of 
the areas of the left and right rectangles. So the average T4 of the left sum L4 and the 
right sum R4 for a function f on an interval 3a, b4 is equal to the sum of the areas of 
four trapezoids (Fig. 2).

f (x)

x

T4 (shaded area)

x1 a 5 x0 x2 x3 x4 5 b

Figure 2

Adding L4 and R4 and dividing by 2 gives a formula for T4:

L4 = 3  f1x02 + f1x12 + f1x22 + f1x324∆x

R4 = 3  f1x12 + f1x22 + f1x32 + f1x424∆x

T4 = 3  f1x02 + 2f1x12 + 2f1x22 + 2f1x32 + f1x424∆x>2

The trapezoidal sum T4 is the case n = 4 of the trapezoidal rule.

TRAPEZOIDAL RULE
Let f be a function defined on an interval 3a, b4. Partition 3a, b4 into n subinter-
vals of equal length ∆x = 1b - a2 >n with endpoints

a = x0 6 x1 6 x2 6 g 6 xn = b.

Then

Tn = 3  f1x02 + 2 f1x12 + 2 f1x22 + g + 2 f1xn - 12 + f1xn24∆x>2

is an approximation of 1b
a f1x2 dx.

Trapezoidal rule Use the trapezoidal rule with n = 5 to approximate 

14
2  2100 + x2 dx. Round function values to four decimal places and the final an-

swer to two decimal places.

SOLUTION Partition 32, 44 into 5 equal subintervals of width 14 - 22 >5 = 0.4.  
The endpoints are x0 = 2, x1 = 2.4, x2 = 2.8, x3 = 3.2, x4 = 3.6, and x5 = 4. 

We calculate the value of the function  f1x2 = 2100 + x2 at each endpoint:

x f1x2
2.0 10.1980

2.4 10.2840

2.8 10.3846

3.2 10.4995

3.6 10.6283

4.0 10.7703

EXAMPLE 1
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By the trapezoidal rule,

 T5 = 3  f122 + 2 f12.42 + 2 f12.82 + 2 f13.22 + 2 f13.62 + f142410.4>22
 = 310.1980 + 2110.28402 + 2110.38462 + 2110.49952 + 2110.62832 + 10.7703410.22
 = 20.91

Matched Problem 1 Use the trapezoidal rule with n = 5 to approximate 

14
2 281 + x5 dx (round function values to four decimal places and the final an-

swer to two decimal places).

Simpson’s Rule
The trapezoidal sum provides a better approximation of the definite integral of a 
function that is increasing (or decreasing) than either the left or right sum. Similarly, 
the midpoint sum,

Mn = c f a x0 + x1

2
b + f a x1 + x2

2
b + g + f a xn - 1 + xn

2
b d ∆x

(see Example 2, Section 5.4) is a better approximation of the definite integral of a 
function that is increasing (or decreasing) than either the left or right sum. How do Tn 
and Mn compare? A midpoint sum rectangle has the same area as the corresponding 
tangent line trapezoid (the larger trapezoid in Fig. 3). It appears from Figure 3, and 
can be proved in general, that the trapezoidal sum error is about double the midpoint 
sum error when the graph of the function is concave up or concave down.

Tangent line

b

a
Tn # E  f (x) dx # Mn

f (x)

Tangent line

Tn underestimates

f (x)

Mn overestimates

Midpoint

Figure 3

This suggests that a weighted average of the two estimates, with the midpoint 
sum being counted double the trapezoidal sum, might be an even better estimate than 
either separately. This weighted average,

 S2n =
2Mn + Tn

3
 (2)

leads to a formula called Simpson’s rule. To simplify notation, we agree to divide 
the interval 3a, b4 into 2n equal subintervals when Simpson’s rule is applied. So, if 
n = 2, for example, then 3a, b4 is divided into 2n = 4 equal subintervals, of length 
∆x, with endpoints

a = x0 6  x1 6  x2 6  x3 6  x4 = b.

There are two equal subintervals for M2 and T2, each of length 2∆x, with endpoints

a = x0 6  x2 6  x4 = b.

Therefore,

M2 = 3  f1x12 + f1x32412∆x2
T2 = 3  f1x02 + 2 f1x22 + f1x42412∆x2 >2
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We use equation (2) to get a formula for S4:

S4 = 3  f1x02 + 4 f1x12 + 2 f1x22 + 4 f1x32 + f1x424∆x>3

The formula for S4 is the case n = 2 of Simpson’s rule.

SIMPSON’S RULE
Let f be a function defined on an interval 3a, b4. Partition 3a, b4 into 2n subinter-
vals of equal length ∆x = 1b - a2 >n with endpoints

a = x0 6 x1 6 x2 6 g 6 x2n = b.

Then

S2n = 3  f1x02+ 4 f1x12+ 2 f1x22+ 4 f1x32+ 2 f1x42 + g+ 4 f1x2n - 12 + f1x2n24∆x>3
is an approximation of 1b

a  f1x2dx.

! CAUTION
  Simpson’s rule always requires an even number of subintervals 
of 3a, b4. 

By Simpson’s rule,

Simpson’s rule Use Simpson’s rule with n = 2 to approximate 110
2

x4

ln x dx. Round 
function values to four decimal places and the final answer to two decimal places.

SOLUTION Partition the interval [2, 10] into 2n = 4 equal subintervals of width 
110 - 22 >4 = 2. The endpoints are x0 = 2, x1 = 4, x2 = 6, x3 = 8, and x4 = 10.  
We calculate the value of the function  f1x2 = x4

ln x at each endpoint:

x f1x2
 2 23.0831

 4 184.6650

 6 723.3114

 8 1,969.7596

10 4,342.9448

EXAMPLE 2

 S4 = 3  f122 + 4 f142 + 2 f162 + 4 f182 + f1102412>32
 = 323.0831 + 41184.66502 + 21723.31142 + 411,969.75962 + 4,342.9448412>32
 = 9,620.23

Matched Problem 2 Use Simpson’s rule with n = 2 to approximate 110
2

1
ln x  dx 

(round function values to four decimal places and the final answer to two decimal 
places).

The trapezoidal rule and Simpson’s rule require the values of a function at the 
endpoints of the subintervals of a partition, but neither requires a formula for the 
function. So either rule can be used on data that give the values of a function at 
the required points. It is not necessary to use regression techniques to find a for-
mula for the function.

CONCEPTUAL INSIGHT
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Let  f1x2 = x + 5 on the interval [0, 12].
(A) Use the trapezoidal rule to calculate T3 and T6. How good are these approxima-

tions to 112
0 1x + 52   dx? Explain.

(B) Use Simpson’s rule to calculate S4 and S6. How good are these approximations 

to 112
0 1x + 52   dx? Explain.

Explore and Discuss 1

A closer look at Figure 3 on page 450 reveals some interesting facts about Tn 
( trapezoidal rule) and S2n (Simpson’s rule). First, if f is a linear function, then the 
two trapezoids in Figure 3 coincide, so Tn, Mn, and therefore S2n are all equal to the 
exact value of the definite integral. Second, if f is a quadratic function, then a calcu-
lation (see Problem 65 in Exercises 6.2) shows that S2n is equal to the exact value 
of the definite integral. Third, if f is any function (or just data, as explained in the 
Conceptual Insight box), then S2n is equal to the sum of the areas of n regions, each 
bounded by a parabola. Figure 4 shows these three regions (shaded) when n = 3 and 
there are 6 subintervals: the first is the region from x0 to x2 whose top boundary is the 
parabola through 1x0, f1x022, 1x1, f1x122, and 1x2, f1x222; the second is the region 
from x2 to x4 whose top boundary is the parabola through 1x2, f1x222, 1x3, f1x322,  
and 1x4, f1x422; and the third is the region from x4 to x6 whose top boundary is the 
parabola through 1x4, f1x422, 1x5, f1x522, and 1x6, f1x622.

x1 a 5 x0 x2 x3 x6 5 bx4 x5

f (x)

x

(x0, f (x0))

(x1, f (x1)) (x2, f (x2))

Figure 4

Using a Table of Integrals
The formulas in Table 1 in Appendix C are organized by categories, such as “Integrals 
Involving a + bu,” “Integrals Involving 2u2 - a2,” and so on. The variable u is the 
variable of integration. All other symbols represent constants. To use a table to evaluate 
an integral, you must first find the category that most closely agrees with the form of 
the integrand and then find a formula in that category that you can make to match the 
integrand exactly by assigning values to the constants in the formula.

Integration Using Tables Use Table 1 to find

L
x

15 + 2x214 - 3x2  dx

SOLUTION Since the integrand

 f1x2 =
x

15 + 2x214 - 3x2
is a rational function involving terms of the form a + bu and c + du, we examine 
formulas 15 to 20 in Table 1 in Appendix C to see if any of the integrands in these 
formulas can be made to match  f1x2 exactly. Comparing the integrand in formula 16 

EXAMPLE 3
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So

 L
4

3
 

1

x225 - x2
 dx = -  

1
5

  ln ` 5 + 225 - x2

x
` `

3

4

 = -  
1
5

  ln ` 5 + 3
4

` +
1
5

  ln ` 5 + 4
3

`

 = -  15  ln 2 + 1
5  ln 3 = 1

5  ln 1.5 ≈ 0.0811

Matched Problem 4 Evaluate L
8

6
 

1

x22100 - x2
 dx.

Integration Using Tables Evaluate L
4

3
 

1

x225 - x2
 dx.

SOLUTION First, we use Table 1 to find

L  
1

x225 - x2
 dx

Since the integrand involves the expression 225 - x2, we examine formulas 29 
to 31 in Table 1 and select formula 29 with a2 = 25 and a = 5:

 L  
1

u2a2 - u2
 du = -  

1
a

  ln ` a + 2a2 - u2

u
`   Formula 29

 L  
1

x225 - x2
 dx = -  

1
5

  ln ` 5 + 225 - x2

x
` + C

EXAMPLE 4

Substitution and Integral Tables
As Examples 3 and 4 illustrate, if the integral we want to evaluate can be made to 
match one in the table exactly, then evaluating the indefinite integral consists simply 
of substituting the correct values of the constants into the formula. But what happens 
if we cannot match an integral with one of the formulas in the table? In many cases, a 
substitution will change the given integral into one that corresponds to a table entry.

 L  
u

1a + bu21c + du2  du =
1

ad - bc
 aa

b
 ln 0 a + bu 0 -  

c
d

 ln 0 c + du 0 b   Formula 16

 L  
x

15 + 2x214 - 3x2  dx =
1

5 # 1-32 - 2 # 4
 a5

2
 ln 0 5 + 2x 0 -  

4
-3

 ln 0 4 - 3x 0 b + C

      a       b c       d           a # d - b # c = 5 # 1-32 - 2 # 4 = -23

 = - 5
46 ln 0 5 + 2x 0 - 4

69 ln 0 4 - 3x 0 + C

Notice that the constant of integration, C, is not included in any of the formulas 
in Table 1. However, you must still include C in all antiderivatives.

Matched Problem 1 Use Table 1 to find L  
1

15 + 3x2 211 + x2  dx.

with  f1x2, we see that this integrand will match  f1x2 if we let a = 5, b = 2, c = 4, 
and d = -3. Letting u = x and substituting for a, b, c, and d in formula 16, we have
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Integration Using Substitution and Tables Find L 
x2216x2 - 25

  dx.

SOLUTION In order to relate this integral to one of the formulas involving 2u2 - a2 
(formulas 40 to 45 in Table 1), we observe that if u = 4x, then

u2 = 16x2  and  216x2 - 25 = 2u2 - 25

So we will use the substitution u = 4x to change this integral into one that appears 
in the table:

 L  
x2216x2 - 25

 dx =
1
4 L  

1
16 u22u2 - 25

 du
  Substitution:  

u = 4x, du = 4 dx, x = 1
4 u

 =
1

64 L  
u22u2 - 25

 du

This last integral can be evaluated with the aid of formula 44 in Table 1 with a = 5:

EXAMPLE 5

 L  
u22u2 - a2

 du =
1
2

 1u2u2 - a2 + a2 ln 0 u + 2u2 - a2 0 2   Formula 44

 L  
x2216x2 - 25

 dx =
1

64 L  
u22u2 - 25

 du   Use formula 44 with a = 5.

 = 1
1281u2u2 - 25 + 25 ln 0 u + 2u2 - 25 0 2 + C   Substitute u = 4x.

 = 1
12814x216x2 - 25 + 25 ln 0 4x + 216x2 - 25 0 2 + C

Matched Problem 5 Find 129x2 - 16 dx.

Integration Using Substitution and Tables Find L
 

 

 
x2x4 + 1

 dx.

SOLUTION None of the formulas in Table 1 involve fourth powers; however, if we 
let u = x2, then 2x4 + 1 = 2u2 + 1

and this form does appear in formulas 32 to 39. Thus, we substitute u = x2:

L
 

 

 
12x4 + 1

 x dx =
1
2 L  

12u2 + 1
 du Substitution: u = x2, du = 2x dx

We recognize the last integral as formula 36 with a = 1:

 L  
12u2 + a2

 du = ln 0 u + 2u2 + a2 0  Formula 36

 L
 

 

 
x2x4 + 1

 dx =
1
2 L  

12u2 + 1
 du  Use formula 36 with a = 1.

EXAMPLE 6
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Reduction Formulas

This last expression contains an integral that is easy to evaluate:

L
 

 

e3x dx = 1
3 e3x

After making a final substitution and adding a constant of integration, we have

L
 

 

x2e3x dx =
x2e3x

3
-  

2xe3x

9
+

2
27

 e3x + C

Matched Problem 7 Use Table 1 to find 1 1ln x2 2 dx.

Using Reduction Formulas Use Table 1 to find 1x2e3x dx.

SOLUTION Since the integrand involves the function e3x, we examine formulas  
46–48 and conclude that formula 47 can be used for this problem. Letting 
u = x, n = 2, and a = 3 in formula 47, we have

 L
 

 

uneau du =
uneau

a
-  

n
a Lun - 1eau du Formula 47

 L
 

 

x2e3x dx =
x2e3x

3
-  

2
3 Lxe3x dx

Notice that the expression on the right still contains an integral, but the exponent 
of x has been reduced by 1. Formulas of this type are called reduction formulas 
and are designed to be applied repeatedly until an integral that can be evaluated is 
obtained. Applying formula 47 to 1xe3x dx with n = 1, we have

 L
 

 

x2e3x dx =
x2e3x

3
-  

2
3

 a xe3x

3
-  

1
3 Le3x dxb

 =
x2e3x

3
-  

2xe3x

9
+

2
9 Le3x dx

EXAMPLE 7

 = 1
2 ln 0 u + 2u2 + 1 0 + C  Substitute u = x2.

 = 1
2 ln 0 x2 + 2x4 + 1 0 + C

Matched Problem 6 Find 1x2x4 + 1 dx.

Application

Producers’ Surplus Find the producers’ surplus at a price level of  $20 for the 
price–supply equation

p = S1x2 =
5x

500 - x

EXAMPLE 8
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456 CHAPTER 6 Additional Integration Topics

 PS = 125x + 2,500 ln 0 500 - x 0 2 0 400
0

 = 10,000 + 2,500 ln 0 100 0 - 2,500 ln 0 500 0
 ≈ $5,976

Matched Problem 8 Find the consumers’ surplus at a price level of $10 for 
the price–demand equation

p = D1x2 =
20x - 8,000

x - 500

SOLUTION
Step 1 Find x, the supply when the price is p = 20:

 p =
5x

500 - x

 20 =
5x

500 - x

 10,000 - 20x = 5x

 10,000 = 25x

 x = 400
Step 2 Sketch a graph, as shown in Figure 5.

x

p

40

 10

 30

 p 5 20

 0 100 200 300 400

PS

p 5 S(x) 5

x

5x
500 2 x

Figure 5
Step 3 Find the producers’ surplus (the shaded area of the graph):

 PS = L
x

0
3p - S1x24 dx

 = L
400

0
a20-  

5x
500 - x

b  dx

 = L
400

0
  
10,000 - 25x

500 - x
 dx

Use formula 20 with a = 10,000, b = -25, c = 500, and d = -1:

 L  
a + bu
c + du

 du =
bu
d

+
ad - bc

d2   ln 0 c + du 0   Formula 20
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In Problems 1–8, round function values to four decimal places 
and the final answer to two decimal places.

1. Use the trapezoidal rule with n = 3 to approximate

16
0 21 + x4 dx.

2. Use the trapezoidal rule with n = 2 to approximate

18
0 21 + x2 dx.

3. Use the trapezoidal rule with n = 6 to approximate

16
0 21 + x4 dx.

4. Use the trapezoidal rule with n = 4 to approximate

18
0 21 + x2 dx.

5. Use Simpson’s rule with n = 1 (so there are 2n = 2  

subintervals) to approximate L
3

1

1

1 + x2 dx.

6. Use Simpson’s rule with n = 1 (so there are 2n = 2  

subintervals) to approximate L
10

2

x2

ln x
 dx.

7. Use Simpson’s rule with n = 2 (so there are 2n = 4  

subintervals) to approximate L
3

1

1

1 + x2 dx.

8. Use Simpson’s rule with n = 2 (so there are 2n = 4  

subintervals) to approximate L
10

2

x2

ln x
 dx.

Use Table 1 on pages 725–728 to find each indefinite integral in 
Problems 9–22.

9. L
 

 

1
x11 + x2  dx 10. L

 

 

1

x211 + x2  dx

11. L
 

 

1

13 + x2 215 + 2x2  dx 12. L
 

 

x

15 + 2x2 212 + x2  dx

13. L
 

 

 
x225 + x

 dx 14. L
 

 

1

x225 + x
 dx

15. L
 

 

 
1

x21 - x2
 dx 16. L

 

 

29 - x2

x
 dx

17. L
 

 

1

x2x2 + 4
 dx 18. L

 

 

1

x22x2 - 16
 dx

19. L
 

 

x2 ln x dx 20. L
 

 

x5 ln x dx

21. L
 

 

1
1 + ex  dx 22. L

 

 

1

5 + 2e3x  dx

Evaluate each definite integral in Problems 23–28. Use Table 1  
on pages 725–728 to find the antiderivative.

A
23. L

3

1

x2

3 + x
 dx 24. L

12

2

x

18 + x2 2 dx

25. L
7

0

1
13 + x211 + x2  dx 26. L

7

0

x
13 + x211 + x2  dx

27. L
4

0

12x2 + 9
 dx 28. L

5

4
2x2 - 16 dx

29. Use the trapezoidal rule with n = 5 to approximate 113
3 x2dx 

and use the fundamental theorem of calculus to find the exact 
value of the definite integral.

30. Use the trapezoidal rule with n = 5 to approximate 111
1 x3dx 

and use the fundamental theorem of calculus to find the exact 
value of the definite integral.

31. Use Simpson’s rule with n = 4 (so there are 2n = 8 sub-

intervals) to approximate L
5

1

1
x

 dx and use the fundamental 

theorem of calculus to find the exact value of the definite 
integral.

32. Use Simpson’s rule with n = 4 (so there are 2n = 8 sub-
intervals) to approximate 15

1 x4dx and use the fundamental 
theorem of calculus to find the exact value of the definite 
integral.

33. Let  f1x2 = 2x + 5 and suppose that the interval [0, 10] is 
partitioned into 20 subintervals of length 0.5. Without calculat-
ing T20, explain why the trapezoidal rule gives the exact area 
between the graph of f and the x axis from x = 0 to x = 10.

34. Let  f1x2 = 10 - 3x and suppose that the interval [5, 75] is 
partitioned into 35 subintervals of length 2. Without calculating 
T35, explain why the trapezoidal rule gives the negative of the 
exact area between the graph of f and the x axis from x = 5 to 
x = 75.

35. Show that Simpson’s rule with n = 2 (so there are 4 subin-
tervals) gives the exact value of 110

2 14x + 32 dx.

36. Show that Simpson’s rule with n = 3 (so there are 6 subin-
tervals) gives the exact value of 15

-113 - 2x2 dx.

37. Show that Simpson’s rule with n = 1 (so there are 2 subin-
tervals) gives the exact value of 11

-11x2 + 3x + 52 dx.

38. Show that Simpson’s rule with n = 1 (so there are 2 subin-
tervals) gives the exact value of 15

1 13x2 - 4x + 72 dx.

In Problems 39–50, use substitution techniques and Table 1 to  
find each indefinite integral.

39. L
 

 

24x2 + 1

x2  dx 40. L
 

 

x229x2 - 1 dx

41. L
 

 

x2x4 - 49
 dx 42. L

 

 

x2x4 - 49 dx

B

Exercises 6.2
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68.  f1x2 = 21 + x2; g1x2 = 5x - x2

69.  f1x2 = x24 + x; g1x2 = 1 + x

70.  f1x2 =
x2x + 4

; g1x2 = x - 2

Applications
Use Table 1 to evaluate all integrals involved in any solutions of 
Problems 71–94.

71. Consumers’ surplus. Find the consumers’ surplus at a price 
level of p = $15 for the price–demand equation

p = D1x2 =
7,500 - 30x

300 - x

72. Producers’ surplus. Find the producers’ surplus at a price 
level of p = $20 for the price–supply equation

p = S1x2 =
10x

300 - x

73. Consumers’ surplus. Graph the price–demand equation and 
the price-level equation p = 15 of Problem 71 in the same 
coordinate system. What region represents the consumers’ 
surplus?

74. Producers’ surplus. Graph the price–supply equation and the 
price-level equation p = 20 of Problem 72 in the same coordi-
nate system. What region represents the producers’ surplus?

75. Cost. A company manufactures downhill skis. It has fixed 
costs of $25,000 and a marginal cost given by

C′1x2 =
250 + 10x
1 + 0.05x

where  C1x2 is the total cost at an output of x pairs of skis. 
Find the cost function  C1x2 and determine the production 
level (to the nearest unit) that produces a cost of $150,000. 
What is the cost (to the nearest dollar) for a production level 
of 850 pairs of skis?

76. Cost. A company manufactures a portable DVD player. 
It has fixed costs of $11,000 per week and a marginal cost 
given by

C′1x2 =
65 + 20x
1 + 0.4x

where  C1x2 is the total cost per week at an output of x play-
ers per week. Find the cost function  C1x2 and determine the 
production level (to the nearest unit) that produces a cost of 
$52,000 per week. What is the cost (to the nearest dollar) for 
a production level of 700 players per week?

77. Continuous income stream. Find the future value at 4.4%, 
compounded continuously, for 10 years for the continuous 
income stream with rate of flow f1t2 = 50t2.

78. Continuous income stream. Find the interest earned at 
3.7%, compounded continuously, for 5 years for the continu-
ous income stream with rate of flow f1t2 = 200t.

43. L
 

 

x22x6 + 4 dx 44. L
 

 

x22x6 + 4
 dx

45. L
 

 

1

x324 - x4
 dx 46. L

 

 

2x4 + 4
x

 dx

47. L
 

 

ex

12 + ex213 + 4ex2  dx 48. L
 

 

ex

14 + ex2 212 + ex2  dx

49. L
 

 

ln x

x24 + ln x
 dx 50. L

 

 

1

(x ln x)24 + ln x
 dx

In Problems 51–56, use Table 1 to find each indefinite integral.

51. L
 

 

x2e5x dx 52. L
 

 

x2e-4x dx

53. L
 

 

x3e-x dx 54. L
 

 

x3e2x dx

55. L
 

 

1ln x2 3 dx 56. L
 

 

1ln x2 4 dx

Problems 57–64 are mixed—some require the use of Table 1, and 
others can be solved with techniques considered earlier.

57. L
5

4
x2x2 - 16 dx 58. L

5

4
x22x2 - 16 dx

59. L
4

2

1

x2 - 1
 dx 60. L

4

2

x

1x2 - 12 2 dx

61. L
 

 

ln x

x2  dx 62. L
 

 

1ln x2 2

x
 dx

63. L
 

 

x2x2 - 1
 dx 64. L

 

 

x22x2 - 1
 dx

65. If  f1x2 = ax2 + bx + c, where a, b, and c are any real num-
bers, use Simpson’s rule with n = 1 (so there are 2n = 2 
subintervals) to show that

S2 = L
1

-1
f1x2  dx.

66. If  f1x2 = ax3 + bx2 + cx + d, where a, b, c, and d are any 
real numbers, use Simpson’s rule with n = 1 (so there are 
2n = 2 subintervals) to show that

S2 = L
1

-1
f1x2  dx.

In Problems 67–70, find the area bounded by the graphs of 
y = f1x2 and y = g1x2 to two decimal places. Use a graphing 
calculator to approximate intersection points to two decimal places.

67.  f1x2 =
102x2 + 1

; g1x2 = x2 + 3x

C
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where  R1x2 is the revenue in dollars. Find the revenue func-
tion and the number of calculators that must be sold (to the 
nearest unit) to produce $10,000 in revenue per week. How 
much weekly revenue (to the nearest dollar) will the company 
have if 1,000 calculators are sold per week?

89. Pollution. An oil tanker is producing an oil slick that is radi-
ating outward at a rate given approximately by

dR
dt

=
1002t2 + 9

  t Ú 0

where R is the radius (in feet) of the circular slick after t min-
utes. Find the radius of the slick after 4 minutes if the radius 
is 0 when t = 0.

90. Pollution. The concentration of particulate matter (in parts 
per million) during a 24-hour period is given approximately 
by

C1t2 = t224 - t  0 … t … 24

where t is time in hours. Find the average concentration dur-
ing the period from t = 0 to t = 24.

91. Learning. A person learns N items at a rate given approxi-
mately by

N′1t2 =
602t2 + 25

  t Ú 0

where t is the number of hours of continuous study.  
Determine the total number of items learned in the first 
12 hours of continuous study.

92. Politics. The number of voters (in thousands) in a metropoli-
tan area is given approximately by

f1t2 =
500

2 + 3e
-t  t Ú 0

where t is time in years. Find the average number of voters 
during the period from t = 0 to t = 10.

93. Learning. Interpret Problem 91 geometrically. Describe the 
geometric interpretation.

94. Politics. For the voters of Problem 92, graph y = f1t2 and the 
line representing the average number of voters over the interval 
[0, 10] in the same coordinate system. Describe how the areas 
under the two curves over the interval [0, 10] are related.

Answers to Matched Problems

1. 38.85 2. 5.20

3. 
1
2

 a 1
5 + 3x

b +
1
4

  ln ` 1 + x
5 + 3x

` + C

4. 7
1,200 ≈ 0.0058

5. 1
613x29x2 - 16 - 16 ln 0 3x + 29x2 - 16 0 2 + C

6. 1
41x22x4 + 1 + ln 0 x2 + 2x4 + 1 0 2 + C

7.  x1ln x2 2 - 2x ln x + 2x + C

8. 3,000 + 2,000 ln 200 - 2,000 ln 500 ≈ $1,167

79. Income distribution. Find the Gini index of income concen-
tration for the Lorenz curve with equation

y = 1
2 x21 + 3x

80. Income distribution. Find the Gini index of income concen-
tration for the Lorenz curve with equation

y = 1
2 x221 + 3x

81. Income distribution. Graph y = x and the Lorenz curve of 
Problem 79 over the interval [0, 1]. Discuss the effect of the 
area bounded by y = x and the Lorenz curve getting smaller 
relative to the equitable distribution of income.

82. Income distribution. Graph y = x and the Lorenz curve of 
Problem 80 over the interval [0, 1]. Discuss the effect of the 
area bounded by y = x and the Lorenz curve getting larger 
relative to the equitable distribution of income.

83. Marketing. After test marketing a new superfood, the 
market research department of a major retailer estimates 
that monthly sales (in millions of dollars) will grow at the 
monthly rate of

S′1t2 =
t2

13 + t2 2

t months after the superfood is introduced. If we assume 0 sales 
at the time the superfood is introduced, find S(t), the total 
sales t months after the superfood is introduced. Find the total 
sales during the first year that the superfood is on the market.

84. Average price. At a discount department store, the price–
demand equation for premium motor oil is given by

p = D1x2 =
502100 + 6x

where x is the number of cans of oil that can be sold at a price of 
$p. Find the average price over the demand interval [50, 250].

85. Marketing. For the superfood of Problem 83, show the sales 
over the first year geometrically, and describe the geometric 
representation.

86. Price–demand. For the motor oil of Problem 84, graph 
the price–demand equation and the line representing the aver-
age price in the same coordinate system over the interval [50, 
250]. Describe how the areas under the two curves over the 
interval [50, 250] are related.

87. Profit. The marginal profit for a small car agency that sells 
x cars per week is given by

P′1x2 = x22 + 3x

where  P1x2 is the profit in dollars. The agency’s profit on the 
sale of only 1 car per week is - $2,000. Find the profit func-
tion and the number of cars that must be sold (to the nearest 
unit) to produce a profit of $13,000 per week. How much 
weekly profit (to the nearest dollar) will the agency have if 
80 cars are sold per week?

88. Revenue. The marginal revenue for a company that manu-
factures and sells x graphing calculators per week is given by

R′1x2 =
x21 + 2x

  R102 = 0
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This section contains important applications of the definite integral to business and 
economics. Included are three independent topics: probability density functions, 
continuous income streams, and consumers’ and producers’ surplus. Any of the three 
may be covered in any order as time and interests dictate.

Probability Density Functions
We now take a brief, informal look at the use of the definite integral to determine 
probabilities. A more formal treatment of the subject requires the use of the special 
“improper” integral form 1∞

-∞  f1x2 dx, which we will not discuss.
Suppose that an experiment is designed in such a way that any real number x on 

the interval [c, d] is a possible outcome. For example, x may represent an IQ score, 
the height of a person in inches, or the life of a lightbulb in hours. Technically, we 
refer to x as a continuous random variable.

In certain situations, we can find a function f with x as an independent variable 
such that the function f can be used to determine Probability 1c … x … d2, that is, 
the probability that the outcome x of an experiment will be in the interval [c, d]. Such 
a function, called a probability density function, must satisfy the following three 
conditions (see Fig. 1):

6.3 Applications in Business and Economics
■■ Probability Density Functions
■■ Continuous Income Stream
■■ Future Value of a Continuous Income 
Stream

■■ Consumers’ and Producers’ Surplus

(A)

Area 5 1

y 5 f (x) $ 0

  (B)

d

c
 E  f (x) dx 5 Probability (c # x # d)

c d

Figure 1 Probability density function

1.  f1x2 Ú 0 for all real x.
2. The area under the graph of  f1x2 over the interval 1- ∞ , ∞ 2 is exactly 1.

3. If [c, d] is a subinterval of 1- ∞ , ∞ 2, then

Probability 1c … x … d2 = L
d

c
 f1x2 dx

Duration of Telephone Calls Suppose that the length of telephone calls (in min-
utes) is a continuous random variable with the probability density function shown 
in Figure 2:

 f1t2 = e
1
4 e-t>4 if t Ú 0
0 otherwise

(A) Determine the probability that a call selected at random will last between 2 and 
3 minutes.

(B) Find b (to two decimal places) so that the probability of a call selected at  
random lasting between 2 and b minutes is .5.

SOLUTION

(A)  Probability12 … t … 32 = L
3

2
 14 e-t>4 dt

 = 1-e-t>42 0 23
 = -e-3>4 + e-1>2 ≈ .13

EXAMPLE 1

t

f (t)

1
42

Figure 2
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One of the most important probability density functions, the normal probability 
density function, is defined as follows and graphed in Figure 3:

 f1x2 =
1

s22p
 e-1x - m22>2s2

  M is the mean.  
S is the standard deviation.

It can be shown (but not easily) that the area under the normal curve in Figure 3 
over the interval 1- ∞ , ∞ 2 is exactly 1. Since 1e-x2

 dx is nonintegrable in terms of 
elementary functions (that is, the antiderivative cannot be expressed as a finite com-
bination of simple functions), probabilities such as

 Probability 1c … x … d2 =
1

s22p
 L

d

c
 e-1x - m22>2s2

 dx (1)

can be computed by using a numerical integration command on a graphing calcula-
tor. Example 2 illustrates this approach.

The probability that a phone call in Example 1 lasts exactly 2 minutes (not 1.999 
minutes, not 1.999 999 minutes) is given by

 Probability 12 … t … 22 = L
2

2
 14 e-t>4 dt  Use Property 1, Section 5.4

 = 0

CONCEPTUAL INSIGHT

In fact, for any continuous random variable x with probability density function 
 f1x2, the probability that x is exactly equal to a constant c is equal to 0:

 Probability 1c … x … c2 = L
c

c
 f1x2 dx  Use Property 1, Section 5.4

 = 0

In this respect, a continuous random variable differs from a discrete random 
v ariable. If x, for example, is the discrete random variable that represents the 
 number of dots that appear on the top face when a fair die is rolled, then

Probability 12 … x … 22 = 1
6

m

sÏ2p
f (x) 5               e2(x2m)2/2s 21

Figure 3 Normal curve

(B) We want to find b such that Probability 12 … t … b2 = .5.

 L
b

2
 14 e-t>4 dt = .5

 -e-b>4 + e-1>2 = .5   Solve for b.

 e-b>4 = e-.5 - .5

 -  
b
4

= ln1e-.5 - .52

 b = 8.96 minutes

So the probability of a call selected at random lasting from 2 to 8.96 minutes is .5.

Matched Problem 1
(A) In Example 1, find the probability that a call selected at random will last 

4 minutes or less.

(B) Find b (to two decimal places) so that the probability of a call selected at 
random lasting b minutes or less is .9
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LED Life Expectancies A manufacturer produces LED flood lights with life ex-
pectancies, based on usage of 3 hours per day, that are normally distributed with a 
mean of 9 years and a standard deviation of 2 years. Determine the probability that 
an LED flood light selected at random will last between 6 and 9 years.

SOLUTION Substituting m = 9, s = 2 in formula (1) gives

Probability 16 … x … 92 =
1

222p
 L

9

6
 e-1x - 922>8 dx

We use a numerical integration command on a graphing calculator to evaluate the 
integral (see Fig. 4). The probability that an LED flood light lasts between 6 and 9 
years is equal to 0.43 or 43%.

Matched Problem 2 What percentage of the LED flood lights in Example 2 
can be expected to last between 7 and 11 years?

EXAMPLE 2

Figure 4

Continuous Income Stream
We start with a simple example having an obvious solution and generalize the con-
cept to examples having less obvious solutions.

Suppose that an aunt has established a trust that pays you $2,000 a year for  
10 years. What is the total amount you will receive from the trust by the end of the 
10th year? Since there are 10 payments of $2,000 each, you will receive

10 * $2,000 = $20,000

We now look at the same problem from a different point of view. Let’s as-
sume that the income stream is continuous at a rate of $2,000 per year. In Figure   
5, the area under the graph of  f1t2 = 2,000 from 0 to t represents the income ac-
cumulated t years after the start. For example, for t = 1

4 year, the income would 
be 1

412,0002 = $500; for t = 1
2 year, the income would be 1

212,0002 = $1,000; 
for t = 1 year, the income would be 112,0002 = $2,000; for t = 5.3 years, the 
income would be 5.312,0002 = $10,600; and for t = 10 years, the income would 
be 1012,0002 = $20,000. The total income over a 10-year period—that is, the area 
under the graph of  f1t2 = 2,000 from 0 to 10—is also given by the definite integral

L
10

0
2,000 dt = 2,000t 0 10

0 = 2,0001102 - 2,000102 = $20,000

y 5 f (x) 5 2,000

R
at

e 
(d

ol
la

rs
/y

ea
r)

2,000

109876542 310

Time (years)

t

f (t)

1
42

1
22

Figure 5 Continuous income stream

Continuous Income Stream The rate of change of the income produced by a 
vending machine is given by

 f1t2 = 5,000e0.04t

where t is time in years since the installation of the machine. Find the total income 
produced by the machine during the first 5 years of operation.

EXAMPLE 3
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SOLUTION The area under the graph of the rate-of-change function from 0 to 5 
represents the total income over the first 5 years (Fig. 6), and is given by a definite 
integral:

 Total income = L
5

0
5,000e0.04t dt

 = 125,000e0.04t 0 50
 = 125,000e0.04152 - 125,000e0.04102

 = 152,675 - 125,000

 = $27,675  Rounded to the nearest dollar

The vending machine produces a total income of $27,675 during the first 5 years 
of operation.

Matched Problem 3 Referring to Example 3, find the total income produced 
(to the nearest dollar) during the second 5 years of operation.

10,000

t

R
at

e 
(d

ol
la

rs
/y

ea
r)

Time (years)

5,000

0 5

y 5 f (t)

Total income

f (t)

Figure 6 Continuous income stream

In Example 3, we assumed that the rate of change of income was given by the 
continuous function f. The assumption is reasonable because income from a vend-
ing machine is often collected daily. In such situations, we assume that income is 
received in a continuous stream; that is, we assume that the rate at which income 
is received is a continuous function of time. The rate of change is called the rate of 
flow of the continuous income stream.

DEFINITION Total Income for a Continuous Income Stream
If  f1t2 is the rate of flow of a continuous income stream, then the total income 
produced during the period from t = a to t = b (see Fig. 7) is

Total income = L
b

a
f1t2 dt

ba

y 5 f (t)

y

t

Total income

Figure 7

Future Value of a Continuous Income Stream
In Section 3.1, we discussed the continuous compound interest formula

A = Pert

where P is the principal (or present value), A is the amount (or future value), r is the 
annual rate of continuous compounding (expressed as a decimal), and t is the time, 
in years, that the principal is invested. For example, if money earns 8% compounded 
continuously, then the future value of a $2,000 investment in 9 years is

A = 2,000e0.08192 = $4,108.87

We return to the trust, paying $2,000 per year, that your aunt set up for you. The 
total value of the trust after 10 years, $20,000, is equal to the area under the graph 
of  f1t2 = 2,000 from 0 to 10. If, at the end of each year, you invest the $2,000 you 
earned that year at 8% compounded continuously, the amount at the end of 10 years, 
to the nearest dollar, would be

 A = 2,000e0.08192 + 2,000e0.08182 + 2,000e0.08172 + c + 2,000e0.08102

 = 4,108.87 + 3,792.96 + 3,501.35 + c + 2,000

 = $29,429
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This amount underestimates the future value of the continuous income stream  
because deposits are made only once per year, not continuously. The future value of 
the continuous income stream is equal to the area under the graph of 2,000e0.08110-t2 
from 0 to 10:

 FV = L
10

0
2,000e0.08110-t2 dt = 2,000 

e0.08110-t2

-0.08
`
0

10

 = 2,000a 1
-0.08

+
e0.081102

0.08
b

 = $30,639

At the end of 10 years, you will have received $30,639, including interest. How much 
is interest? Since you received $20,000 in income from the trust, the interest is the 
difference between the future value and income. So

$30,639 - $20,000 = $10,639

is the interest earned by the income received from the trust over the 10-year period.
For the continuous income stream of the trust, the rate of flow function was 

 f1t2 = 2,000. Here is the definition of the future value of a continuous income 
stream for an arbitrary rate of flow function f:

DEFINITION Future Value of a Continuous Income Stream
If  f1t2 is the rate of flow of a continuous income stream, 0 … t … T, and if the 
income is continuously invested at a rate r, compounded continuously, then the 
future value FV at the end of T years is given by

FV = L
T

0
f1t2er1T - t2 dt = erTL

T

0
f1t2e-rt dt

The future value of a continuous income stream is the total value of all money pro-
duced by the continuous income stream (income and interest) at the end of T years.

Future Value of a Continuous Income Stream Using the continuous income rate 
of flow for the vending machine in Example 3, namely,

 f1t2 = 5,000e0.04t

find the future value of this income stream at 12%, compounded continuously for 
5 years, and find the total interest earned. Compute answers to the nearest dollar.

SOLUTION Using the formula

FV = erTL
T

0
f1t2e-rt dt

with r = 0.12, T = 5, and  f1t2 = 5,000e0.04t, we have

 FV = e0.12152L
5

0
5,000e0.04te-0.12t dt

 = 5,000e0.6L
5

0
 e-0.08t dt

EXAMPLE 4
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Matched Problem 4 Repeat Example 4 if the interest rate is 9%, compounded 
continuously.

Consumers’ and Producers’ Surplus
Let p = D1x2 be the price–demand equation for a product, where x is the num-
ber of units of the product that consumers will purchase at a price of $p per unit. 
Suppose that p is the current price and x is the number of units that can be sold 
at that price. Then the price–demand curve in Figure 8 shows that if the price is 
higher than p, the demand x is less than x, but some consumers are still willing 
to pay the higher price. Consumers who are willing to pay more than p, but who 
are still able to buy the product at p, have saved money. We want to determine 
the total amount saved by all the consumers who are willing to pay a price higher 
than p for the product.

To do this, consider the interval 3ck, ck + ∆x4, where ck + ∆x 6 x. If the price 
remained constant over that interval, the savings on each unit would be the difference 
between D1ck2, the price consumers are willing to pay, and p, the price they actually 
pay. Since ∆x represents the number of units purchased by consumers over the inter-
val, the total savings to consumers over this interval is approximately equal to

3D1ck2 - p4 ∆x (savings per unit) *  (number of units)

which is the area of the shaded rectangle shown in Figure 8. If we divide the interval 
30, x4 into n equal subintervals, then the total savings to consumers is approximately 
equal to

p

x
ck ck 1 Dx

Dx

p 5 D(x)

D(ck) 2 p

p

x

Figure 8

3D1c12 - p4 ∆x + 3D1c22 - p4 ∆x + g + 3D1cn2 - p4 ∆x = a
n

k = 1
3D1ck2 - p4 ∆x

which we recognize as a Riemann sum for the integral

L
x

0
3D1x2 - p4 dx

We define the consumers’ surplus to be this integral.

 = 5,000e0.6a e-0.08t

-0.08
b `

0

5

 = 5,000e0.61-12.5e-0.4 + 12.52
 = $37,545   Rounded to the nearest dollar

The future value of the income stream at 12% compounded continuously at the end 
of 5 years is $37,545.

In Example 3, we saw that the total income produced by this vending machine 
over a 5-year period was $27,675. The difference between future value and income 
is interest. So

$37,545 - $27,675 = $9,870

is the interest earned by the income produced by the vending machine during the 
5-year period.
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DEFINITION Consumers’ Surplus
If 1x, p2 is a point on the graph of the price–demand equation p = D1x2 for a 
particular product, then the consumers’ surplus CS at a price level of p is

CS = L
x

0
3D1x2 - p4 dx

which is the area between p = p and p = D1x2 from x = 0 to x = x, as shown 
in Figure 9.

The consumers’ surplus represents the total savings to consumers who are will-
ing to pay more than p for the product but are still able to buy the product for p.

p

x

p 5 D(x)

CS

x

p

Figure 9

Consumers’ Surplus Find the consumers’ surplus at a price level of $8 for the 
price–demand equation

p = D1x2 = 20 - 0.05x

SOLUTION
Step 1 Find x, the demand when the price is p = 8:

 p = 20 - 0.05x

 8 = 20 - 0.05x

 0.05x = 12

 x = 240

EXAMPLE 5

Step 2 Sketch a graph, as shown in Figure 10.
Step 3 Find the consumers’ surplus (the shaded area in the graph):

 CS = L
x

0
3D1x2 - p4 dx

 = L
240

0
120 - 0.05x - 82 dx

 = L
240

0
112 - 0.05x2 dx

 = 112x - 0.025x22 0 0240

 = 2,880 - 1,440 = $1,440
The total savings to consumers who are willing to pay a higher price for the product 
is $1,440.

Matched Problem 5 Repeat Example 5 for a price level of $4.

100 240 400

p 5 8

5

0

15

20

10

p 5 D(x) 5 20 2 0.05x

x

p

CS

x

Figure 10

If p = S1x2 is the price–supply equation for a product, p is the current price, 
and x is the current supply, then some suppliers are still willing to supply some units 
at a lower price than p. The additional money that these suppliers gain from the 
higher price is called the producers’ surplus and can be expressed in terms of a defi-
nite integral (proceeding as we did for the consumers’ surplus).
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DEFINITION Producers’ Surplus
If 1x, p2 is a point on the graph of the price–supply equation p = S1x2, then the 
producers’ surplus PS at a price level of p is

PS = L
x

0
3p - S1x24 dx

which is the area between p = p and p = S1x2 from x = 0 to x = x, as shown in 
Figure 11.

The producers’ surplus represents the total gain to producers who are willing 
to supply units at a lower price than p but are still able to supply units at p.

p 5 S(x)

PS

p

x
x

p

Figure 11

Producers’ Surplus Find the producers’ surplus at a price level of  $20 for the 
price–supply equation

p = S1x2 = 2 + 0.0002x2

SOLUTION
Step 1 Find x, the supply when the price is p = 20:

 p = 2 + 0.0002x2

 20 = 2 + 0.0002x2

 0.0002x2 = 18

 x2 = 90,000

 x = 300   There is only one solution, since x Ú 0.

EXAMPLE 6

Step 2 Sketch a graph, as shown in Figure 12.
Step 3 Find the producers’ surplus (the shaded area in the graph):

 PS = L
x

0
3p - S1x24 dx = L

300

0
320 - 12 + 0.0002x224 dx

 = L
300

0
118 - 0.0002x22 dx = a18x - 0.0002 

x3

3
b `

0

300

 = 5,400 - 1,800 = $3,600

The total gain to producers who are willing to supply units at a lower price is $3,600.

Matched Problem 6 Repeat Example 6 for a price level of $4.

PS

100 200 300 400

5

0

15

10

x

p 5 20

p 5 S(x)
p 5 2 1 0.0002x2

p

x

Figure 12

In a free competitive market, the price of a product is determined by the rela-
tionship between supply and demand. If p = D1x2 and p = S1x2 are the price–
demand and price–supply equations, respectively, for a product and if 1x, p2 is the 
point of intersection of these equations, then p is called the equilibrium price and 
x is called the equilibrium quantity. If the price stabilizes at the equilibrium price 
p, then this is the price level that will determine both the consumers’ surplus and the 
producers’ surplus.
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Equilibrium Price and Consumers’ and Producers’ Surplus Find the equilibrium 
price and then find the consumers’ surplus and producers’ surplus at the equilibrium 
price level, if

p = D1x2 = 20 - 0.05x  and  p = S1x2 = 2 + 0.0002x2

SOLUTION
Step 1 Find the equilibrium quantity. Set  D1x2 equal to  S1x2 and solve:

 D1x2 = S1x2
 20 - 0.05x = 2 + 0.0002x2

 0.0002x2 + 0.05x - 18 = 0

 x2 + 250x - 90,000 = 0

 x = 200, -450

Since x cannot be negative, the only solution is x = 200. The equilibrium price 
can be determined by using  D1x2 or  S1x2. We will use both to check our work:

 p = D12002    p = S12002
 = 20 - 0.0512002 = 10   = 2 + 0.000212002 2 = 10

The equilibrium price is p = 10, and the equilibrium quantity is x = 200.
Step 2 Sketch a graph, as shown in Figure 13.
Step 3 Find the consumers’ surplus:

 CS = L
x

0
3D1x2 - p4 dx = L

200

0
120 - 0.05x - 102 dx

 = L
200

0
110 - 0.05x2 dx

 = 110x - 0.025x22 0 0200

 = 2,000 - 1,000 = $1,000

EXAMPLE 7

PS

CS

100 200 300 400

5

0

15

20

p 5 10

p 5 S(x)
p 5 2 1 0.0002x2

p 5 D(x)
5 20 2 0.05x

x

p

x

Figure 13

Step 4 Find the producers’ surplus:

 PS = L
x

0
3p - S1x24 dx

 = L
200

0
310 - 12 + 0.0002x224 dx

 = L
200

0
18 - 0.0002x22 dx

 = a8x - 0.0002 
x3

3
b `

0

200

 = 1,600 - 1,600
3 ≈ $1,067   Rounded to the nearest dollar

A graphing calculator offers an alternative approach to finding the equilibrium 
point for Example 7 (Fig. 14A). A numerical integration command can then be 
used to find the consumers’ and producers’ surplus (Fig. 14B).

Matched Problem 7 Repeat Example 7 for

p = D1x2 = 25 - 0.001x2  and  p = S1x2 = 5 + 0.1x

(A)

4000
0

25

(B)

Figure 14
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Applications
Unless stated to the contrary, compute all monetary answers to 
the nearest dollar.

21. The life expectancy (in years) of a microwave oven is a con-
tinuous random variable with probability density function

 f1x2 = e2> 1x + 22 2 if x Ú 0
0 otherwise

(A) Find the probability that a randomly selected  
microwave oven lasts at most 6 years.

(B) Find the probability that a randomly selected microwave 
oven lasts from 6 to 12 years.

(C) Graph y = f1x2 for [0, 12] and show the shaded region 
for part (A).

22. The shelf life (in years) of a laser pointer battery is a continu-
ous random variable with probability density function

 f1x2 = e1> 1x + 12 2 if x Ú 0
0 otherwise

(A) Find the probability that a randomly selected laser 
pointer battery has a shelf life of 3 years or less.

(B) Find the probability that a randomly selected laser 
pointer battery has a shelf life of from 3 to 9 years.

(C) Graph y = f1x2 for [0, 10] and show the shaded region 
for part (A).

23. In Problem 21, find d so that the probability of a randomly 
selected microwave oven lasting d years or less is .8.

24. In Problem 22, find d so that the probability of a randomly 
selected laser pointer battery lasting d years or less is .5.

25. A manufacturer guarantees a product for 1 year. The time to 
failure of the product after it is sold is given by the probabil-
ity density function

 f1t2 = e .01e-.01t if t Ú 0
0 otherwise

where t is time in months. What is the probability that a buyer 
chosen at random will have a product failure

(A) During the warranty period?

(B) During the second year after purchase?

26. In a certain city, the daily use of water (in hundreds of gal-
lons) per household is a continuous random variable with 
probability density function

 f1x2 = e .15e-.15x if x Ú 0
0 otherwise

Find the probability that a household chosen at random will use

(A) At most 400 gallons of water per day

(B) Between 300 and 600 gallons of water per day

Skills Warm-up Exercises

In Problems 1–8, find real numbers b and c such that  f1t2 = ebect.  
(If necessary, review Section 1.5).

1.  f1t2 = e514 - t2 2.  f1t2 = e4121 - t2

3.  f1t2 = e0.0418 - t2 4.  f1t2 = e0.02112 - t2

5.  f1t2 = e0.05te0.08120 - t2 6.  f1t2 = e0.03te0.09130 - t2

7.  f1t2 = e0.09te0.07125 - t2 8.  f1t2 = e0.65te0.4312 - t2

In Problems 9–14, evaluate each definite integral to two  
decimal places.

9. L
9

0
e0.0819 - t2 dt 10. L

10

1
e0.07110 - t2 dt

11. L
20

0
e0.08te0.12120 - t2 dt 12. L

15

0
e0.05te0.06115 - t2 dt

13. L
20

0
250 e0.04te0.07120 - t2 dt 14. L

25

0
900 e0.03te0.04125 - t2 dt

In Problems 15 and 16, explain which of (A), (B), and (C) are 
equal before evaluating the expressions. Then evaluate each 
expression to two decimal places.

15. (A) L
8

0
e0.0718 - t2 dt

(B) L
8

0
1e0.56 - e0.07t2 dt

(C) e0.56L
8

0
e-0.07t dt

16. (A) L
10

0
2,000e0.05te0.12110 - t2 dt

(B) 2,000e1.2L
10

0
e-0.07t dt

(C) 2,000e0.05L
10

0
e0.12110 - t2 dt

In Problems 17–20, use a graphing calculator to graph the  
normal probability density function

 f1x2 =
1

s22p
 e-1x - m22>2s2

that has the given mean m and standard deviation s.

17. m = 0, s = 1 18. m = 20, s = 5

19. m = 500, s = 100 20. m = 300, s = 25

W

A

B

C

Exercises 6.3
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41. Find the total income produced by a continuous income stream 
in the first 3 years if the rate of flow is f1t2 = 400e0.05t.

42. Find the total income produced by a continuous income stream 
in the first 2 years if the rate of flow is f1t2 = 600e0.06t.

43. Interpret the results of Problem 41 with both a graph and a 
description of the graph.

44. Interpret the results of Problem 42 with both a graph and a 
description of the graph.

45. Starting at age 21, you deposit $1,900 a year into an IRA ac-
count. Treat the yearly deposits into the account as a continu-
ous income stream. If money in the account earns 6.25%, 
compounded continuously, how much will be in the account 
44 years later, when you retire at age 65? How much of the 
final amount is interest?

46. Suppose in Problem 45 that you start the IRA deposits at age 28, 
but the account earns 6.75%, compounded continuously. Treat 
the yearly deposits into the account as a continuous income 
stream. How much will be in the account 37 years later when 
you retire at age 65? How much of the final amount is interest?

47. Find the future value at 4.15% interest, compounded continu-
ously for 5 years, of the continuous income stream with rate 
of flow f1t2 = 1,350e-0.03t.

48. Find the future value at 3.45% interest, compounded continu-
ously for 8 years, of the continuous income stream with rate 
of flow f1t2 = 1,800e0.07t.

49. Compute the interest earned in Problem 47.

50. Compute the interest earned in Problem 48.

51. An investor is presented with a choice of two investments: 
an established clothing store and a new computer store. 
Each choice requires the same initial investment and each 
produces a continuous income stream of 4%, compounded 
continuously. The rate of flow of income from the clothing 
store is  f1t2 = 12,000, and the rate of flow of income from 
the computer store is expected to be  g1t2 = 10,000e0.05t. 
Compare the future values of these investments to determine 
which is the better choice over the next 5 years.

52. Refer to Problem 51. Which investment is the better choice 
over the next 10 years?

53. An investor has $10,000 to invest in either a bond that matures 
in 5 years or a business that will produce a continuous stream of 
income over the next 5 years with rate of flow  f1t2 = 2,150. 
If both the bond and the continuous income stream earn 3.75%, 
compounded continuously, which is the better investment?

54. Refer to Problem 53. Which is the better investment if the 
rate of the income from the business is  f1t2 = 2,250?

55. The rate of flow  f1t2 of a continuous income stream is a lin-
ear function, increasing from $2,000 per year when t = 0 to 
$4,000 per year when t = 5. Find the total income produced 
in the first 5 years.

56. The rate of flow  f1t2 of a continuous income stream is a lin-
ear function, increasing from $4,000 per year when t = 0 to 
$6,000 per year when t = 4. Find the total income produced 
in the first 4 years.

27. In Problem 25, what is the probability that the product will 
last at least 1 year? [Hint: Recall that the total area under the 
probability density function curve is 1.]

28. In Problem 26, what is the probability that a household will 
use more than 400 gallons of water per day? [See the hint in 
Problem 27.]

In Problems 29–36, use a numerical integration command on a 
graphing calculator to find the indicated probability or percentage.

29. The mean healing time for a certain type of incision is  
10 days with a standard deviation of 2 days. Determine the 
probability that the healing time for a person with this type of 
incision would be between 8 and 12 days. Assume a normal 
distribution.

30. The mean score on a math exam is 70 with a standard devia-
tion of 10. Determine the probability that a student chosen 
at random will score between 70 and 90. Assume a normal 
distribution.

31. The mean annual wage for firefighters is $50,000 with a 
standard deviation of $12,000. Determine the probability that 
a firefighter makes between $45,000 and $65,000 per year. 
Assume a normal distribution.

32. The mean height of a hay crop is 40 inches with a standard 
deviation of 3 inches. What percentage of the crop will be 
between 37 inches and 45 inches in height? Assume a normal 
distribution.

33. A manufacturing process produces a part with mean length 
80 millimeters and standard deviation 1 millimeter. A part 
must be rejected if it differs by more than 2 millimeters from 
the mean. What percentage of the parts must be rejected?  
Assume a normal distribution.

34. The mean life expectancy for a car battery is 48 months with 
a standard deviation of 8 months. If the manufacturer guaran-
tees the battery for 3 years, what percentage of the batteries 
will be expected to fail before the guarantee expires? Assume 
a normal distribution.

35. The mean home price in an urban area is $52,000 with a 
standard deviation of $9,000. Determine the probability that 
a home in the area sells for more than $70,000. Assume a 
normal distribution.

36. The mean weight in a population of 5-year-old boys was  
41 pounds with a standard deviation of 6 pounds. De-
termine the probability that a 5-year-old boy from the 
population weighs less than 30 pounds. Assume a normal 
distribution.

37. Find the total income produced by a continuous income 
stream in the first 5 years if the rate of flow is f1t2 = 2,500.

38. Find the total income produced by a continuous in-
come stream in the first 10 years if the rate of flow is 
f1t2 = 3,000.

39. Interpret the results of Problem 37 with both a graph and a 
description of the graph.

40. Interpret the results of Problem 38 with both a graph and a 
description of the graph.
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74. Find the producers’ surplus at a price level of p = $55 for 
the price–supply equation

p = S1x2 = 15 + 0.1x + 0.003x2

75. Interpret the results of Problem 73 with both a graph and a 
description of the graph.

76. Interpret the results of Problem 74 with both a graph and a 
description of the graph.

In Problems 77–84, find the consumers’ surplus and the produc-
ers’ surplus at the equilibrium price level for the given price– 
demand and price–supply equations. Include a graph that  
identifies the consumers’ surplus and the producers’ surplus. 
Round all values to the nearest integer.

77. p = D1x2 = 50 - 0.1x; p = S1x2 = 11 + 0.05x

78. p = D1x2 = 25 - 0.004x2; p = S1x2 = 5 + 0.004x2

79. p = D1x2 = 80e-0.001x; p = S1x2 = 30e0.001x

80. p = D1x2 = 185e-0.005x; p = S1x2 = 25e0.005x

81. p = D1x2 = 80 - 0.04x; p = S1x2 = 30e0.001x

82. p = D1x2 = 190 - 0.2x; p = S1x2 = 25e0.005x

83. p = D1x2 = 80e-0.001x; p = S1x2 = 15 + 0.0001x2

84. p = D1x2 = 185e-0.005x; p = S1x2 = 20 + 0.002x2

85. The following tables give price–demand and price–supply 
data for the sale of soybeans at a grain market, where x is 
the number of bushels of soybeans (in thousands of bushels) 
and p is the price per bushel (in dollars):

Tables for 85–86
Price–Demand Price–Supply

x p = D 1x 2 x p = S 1x 2
  0 6.70   0 6.43

10 6.59 10 6.45

20 6.52 20 6.48

30 6.47 30 6.53

40 6.45 40 6.62

Use quadratic regression to model the price–demand data and 
linear regression to model the price–supply data.

(A) Find the equilibrium quantity (to three decimal places) 
and equilibrium price (to the nearest cent).

(B) Use a numerical integration routine to find the consum-
ers’ surplus and producers’ surplus at the equilibrium 
price level.

86. Repeat Problem 85, using quadratic regression to model both 
sets of data.

Answers to Matched Problems
1. (A) .63 (B) 9.21 min

2. 68% 3. $33,803

4. FV = $34,691; interest = $7,016

5. $2,560 6. $133
7. p = 15; CS = $667; PS = $500

57. The rate of flow  f1t2 of a continuous income stream is a 
linear function, decreasing from $10,000 per year when 
t = 0 to $5,000 per year when t = 8. Find the total income 
produced in the first 8 years.

58. The rate of flow  f1t2 of a continuous income stream is a 
linear function, decreasing from $12,000 per year when 
t = 0 to $9,000 per year when t = 10. Find the total income 
produced in the first 10 years.

In Problems 59–62, use a numerical integration command on a 
graphing calculator.

59. Find the future value at 4.5% interest, compounded continu-
ously for 5 years, of the continuous income stream with the 
rate of flow function of Problem 55.

60. Find the future value at 6.25% interest, compounded continu-
ously for 4 years, of the continuous income stream with the 
rate of flow function of Problem 56.

61. Find the future value at 8.75% interest, compounded continu-
ously for 8 years, of the continuous income stream with the 
rate of flow function of Problem 57.

62. Find the future value at 3.5% interest, compounded continu-
ously for 10 years, of the continuous income stream with the 
rate of flow function of Problem 58.

63. Compute the interest earned in Problem 59.

64. Compute the interest earned in Problem 60.

65. Compute the interest earned in Problem 61.

66. Compute the interest earned in Problem 62.

67. A business is planning to purchase a piece of equipment that 
will produce a continuous stream of income for 8 years with 
rate of flow  f1t2 = 9,000. If the continuous income stream 
earns 6.95%, compounded continuously, what single deposit 
into an account earning the same interest rate will produce the 
same future value as the continuous income stream? (This de-
posit is called the present value of the continuous income 
stream.)

68. Refer to Problem 67. Find the present value of a continu-
ous income stream at 7.65%, compounded continuously for 
12 years, if the rate of flow is  f1t2 = 1,000e0.03t.

69. Find the consumers’ surplus at a price level of p = $150 for 
the price–demand equation

p = D1x2 = 400 - 0.05x

70. Find the consumers’ surplus at a price level of p = $120 for 
the price–demand equation

p = D1x2 = 200 - 0.02x

71. Interpret the results of Problem 69 with both a graph and a 
description of the graph.

72. Interpret the results of Problem 70 with both a graph and a 
description of the graph.

73. Find the producers’ surplus at a price level of p = $67 for 
the price–supply equation

p = S1x2 = 10 + 0.1x + 0.0003x2
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472 CHAPTER 6 Additional Integration Topics

Integral Formulas
Now that we know the derivative formulas

d
dx

 sin x = cos x and 
d
dx

 cos x = -sin x

we automatically have the two integral formulas from the definition of the indefinite 
integral of a function (Section 5.1):

L
 

 

cos x dx = sin x + C and Lsin x dx = -cos x + C

6.4 Integration of Trigonometric Functions
■■ Integral Formulas
■■ Application

Area Under a Sine Curve Find the area under the sine curve y = sin x from 0 to p,  
which is shaded in Figure 1.

x

y

y 5 sin x

p

1

0

Area

2
p

2

Figure 1

SOLUTION       Area = L
p

0
sin x dx = -cos x 0 p0

 = 1-cos p2 - 1-cos 02
 = 3- 1-124 - 3- 1124 = 2

Matched Problem 1 Find the area under the cosine curve y = cos x from  
0 to p>2.

EXAMPLE 1

From the general derivative formulas

d
dx

 sin u = cos u 
du
dx
 and 

d
dx

 cos u = -sin u 
du
dx

we obtain the following general integral formulas:

INDEFINITE INTEGRALS OF SINE AND COSINE
For u = u1x2,

L
 

 

sin u du = -cos u + C and Lcos u du = sin u + C
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Indefinite Integrals and Trigonometric Functions Find 1x sin x2 dx.

SOLUTION   L
 

 

x sin x2 dx =
1
2 L

 

 

2x sin x2 dx

 =
1
2 L

 

 

1sin x222x dx Let u = x2; then du = 2x dx.

 =
1
2 L

 

 

sin u du

 = -  
1
2

 cos u + C

 = -  
1
2

 cos x2 + C     Since u = x2

CHECK
To check, we differentiate the result to obtain the original integrand:

 
d
dx

 a-  
1
2

 cos x2b = -  
1
2

 
d
dx

 cos x2

 = -  
1
2
1-sin x22  

d
dx

 x2

 = -  
1
2
1-sin x2212x2

 = x sin x2

Matched Problem 2 Find 1  
 cos 20pt dt.

EXAMPLE 2

Indefinite Integrals and Trigonometric Functions Find 1 1sin x2 5 cos x dx.

SOLUTION This integrand is of the form 1u p du, where u = sin x and 
du = cos x dx. Thus,

L
 

 

1sin x2 5 cos x dx =
1sin x2 6

6
+ C

Matched Problem 3 Find 12sin x cos x dx.

EXAMPLE 3

Definite Integrals and Trigonometric Functions Evaluate 13.5
2  cos x dx.

SOLUTION   L
3.5

2
 cos x dx = sin x 0 3.5

2

 = sin 3.5 - sin 2    Use a calculator in radian mode.
 = -0.3508 - 0.9093 
 = -1.2601

Matched Problem 4 Use a calculator to evaluate 11.5
1  sin x dx.

EXAMPLE 4
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Application

Recall that y = sin x is a periodic function with period 2p, and let c be any real 
number. Then

L
c + 2p

c
 cos x dx = sin x 0 c + 2p

c = sin1c + 2p2 - sin c = 0

In other words, over any interval of the form 3c, c + 2p4, the area that is above 
the x axis, but below the graph of y = cos x, is equal to the area that is below the 
x axis, but above the graph of y = cos x (see Fig. 6, Section 1.8). Similarly, for 
any real number c,

L
c + 2p

c
 sin x dx = 0

CONCEPTUAL  INSIGHT

Total Revenue In Example 4 of Section 3.3, we were given the following revenue 
equation from the sale of ski jackets:

R1t2 = 1.55 + 1.45 cos
pt
26
  0 … t … 104

where R1t2 is revenue (in thousands of dollars) for a week of sales t weeks after 
January 1.

(A) Find the total revenue taken in over the 2-year period—that is, from t = 0 to 
t = 104.

(B) Find the total revenue taken in from t = 39 to t = 65.

SOLUTION
(A) The area under the graph of the revenue equation for the 2-year period approxi-

mates the total revenue taken in for that period (see Fig. 2):

260 52 78 104R
ev

en
ue

 (
th

ou
sa

nd
 d

ol
la

rs
)

Time (weeks)

1.0

0.0

2.0

3.0

Area
approximates
total revenue

t

R(t)

Figure 2

EXAMPLE 5

This area (and therefore the total revenue) is given by the following definite integral:

 Total revenue ≈ L
104

0
a1.55 + 1.45 cos

pt
26

b  dt

 = c 1.55t + 1.45a26
p

b  sin
pt
26

d `
0

104

 = $161.200 thousand, or $161,200

(B) The total revenue from t = 39 to t = 65 is approximated by the area under the 
curve from t = 39 to t = 65 (see Fig. 3):
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t
260 52

39 65
78 104R

ev
en

ue
 (

th
ou

sa
nd

 d
ol

la
rs

)

Time (weeks)

R(t)

1.0

0.0

2.0

3.0

Figure 3

 Total revenue ≈ L
65

39
a1.55 + 1.45 cos

pt
26

b  dt

 = c 1.55t + 1.45a26
p

bsin
pt
26

d `
39

65

 = $64.301 thousand, or $64,301

Matched Problem 5 Suppose that revenues from the sale of ski jackets are 
given approximately by

R1t2 = 6.2 + 5.8 cos
pt
6
 0 … t … 24

where R1t2 is revenue (in thousands of dollars) for a month of sales t months after 
January 1.

(A) Find the total revenue taken in over the 2 year-period—that is, from t = 0 to 
t = 24.

(B) Find the total revenue taken in from t = 4 to t = 8.

Exercises 6.4
Skills Warm-up Exercises

In Problems 1–8, by using only the unit circle definitions of the 
sine and cosine functions (see page 109), find the solution set of 
each equation or inequality on the given interval. (If necessary, 
review Section 1.3).

1. sin x Ú 0 on 30, 2p4 2. cos x Ú 0 on 30, 2p4

3. cos x 7
1
2

 on 30, 2p4 4. sin x 7
1
2

 on 30, 2p4

5. ∙ sin x ∙ =
23
2

 on 30, 2p4 6. ∙ cos x ∙ =
23
2

 on 30, 2p4
7. tan x … 1 on 

1-p>2, p>22
8. cot x Ú 1 on 10, p2

Find each of the indefinite integrals in Problems 9–18.

9. L
 

 

sin t dt 10. L
 

 

cos w dw

W

A

11. L
 

 

cos 3x dx 12. L
 

 

sin 5x dx

13. L
 

 

1cos x2 15 sin x dx 14. L
 

 

sin x cos x dx

15. L
 

 

23 cos x sin x dx 16. L
 

 

cos x2sin x
 dx

17. L
 

 

x3 sin x4 dx 18. L
 

 

1x + 12 sin1 x2 + 2x2 dx

Evaluate each of the definite integrals in Problems 19–22.

19. L
p>2

0
 cos x dx 20. L

p>6

0
 cos x dx

21. L
p

p>3
 sin x dx 22. L

2p>3

p>3
 sin x dx

B
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Applications
37. Seasonal business cycle. Suppose that profits on the sale 

of swimming suits in a department store are given approxi-
mately by

P1t2 = 5 - 5 cos
pt
26
 0 … t … 104

where P1t2 is profit (in hundreds of dollars) for a week of 
sales t weeks after January 1. Use definite integrals to ap-
proximate

(A) The total profit earned during the 2-year period

(B) The total profit earned from t = 13 to t = 26

(C) Illustrate part (B) graphically with an appropriate shaded 
region representing the total profit earned.

38. Seasonal business cycle. Revenues from sales of a soft 
drink over a 2-year period are given approximately by

R1t2 = 4 - 3 cos
pt
6
 0 … t … 24

where R1t2 is revenue (in millions of dollars) for a month 
of sales t months after February 1. Use definite integrals to 
approximate

(A) Total revenues taken in over the 2-year period

(B) Total revenues taken in from t = 8 to t = 14

(C) Illustrate part (B) graphically with an appropriate shaded 
region representing the total revenues taken in.

39. Pollution. In a large city, the amount of sulfur dioxide pol-
lutant released into the atmosphere due to the burning of coal 
and oil for heating purposes is given approximately by

P1n2 = 1 + cos
pn
26
 0 … n … 104

where P1n2 is the amount of sulfur dioxide (in tons) released 
during the nth week after January 1.

(A) How many tons of pollutants were emitted into the 
 atmosphere over the 2-year period?

(B) How many tons of pollutants were emitted into the 
atmosphere from n = 13 to n = 52?

(C) Illustrate part (B) graphically with an appropriate shaded 
region representing the total tons of pollutants emitted 
into the atmosphere.

Answers to Matched Problems

1. 1 2. 
1

20p
 sin 20pt + C

3. 
2
3

 1sin x2 3/2 + C 4. 0.4696

5. (A) $148.8 thousand, or $148,800

 (B) $5.614 thousand, or $5,614

23. Find the shaded area under the cosine curve in the figure:

x

y

1

0

y 5 cos x

2
p

22
p

32
p

6

24. Find the shaded area under the sine curve in the figure:

x

y

y 5 sin x
1

0 22
2p
3

p2
p

6

Use a calculator to evaluate the definite integrals in Problems 
25–28 after performing the indefinite integration. (Remember that 
the limits are real numbers, so radian mode must be used on the 
calculator.)

25. L
2

0
 sin x dx 26. L

0.25

0
 cos x dx

27. L
2

1
 cos x dx 28. L

4

2
 sin x dx

Find each of the indefinite integrals in Problems 29–34.

29. L
 

 

esin x cos x dx 30. L
 

 

ecos x sin x dx

31. L
 

 

cos x
sin x

 dx 32. L
 

 

sin x
cos x

 dx

33. L
 

 

tan x dx 34. L
 

 

cot x dx

35. Given the definite integral

I = L
3

0
e-x sin x dx

(A) Graph the integrand f1x2 = e-x sin x over [0, 3].

(B) Use the left sum L6 (see Section 5.5) to approximate I.

36. Given the definite integral

I = L
3

0
e-x cos x dx

(A) Graph the integrand f1x2 = e-x cos x over [0, 3].

(B) Use the right sum R6 (see Section 5.5) to approximate I.

C
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Important Terms, Symbols, and Concepts
6.1 Integration by Parts

• Some indefinite integrals, but not all, can be found by means of the integration-by-parts formula

L
 

 

u dv = uv - L
 

 

v du

• Select u and dv with the help of the guidelines in the summary on page 444.

Ex. 1, p. 442
Ex. 2, p. 443
Ex. 3, p. 444
Ex. 4, p. 445

6.2 Other Integration Methods
• The trapezoidal rule and Simpson’s rule provide approximations of the definite integral that are more 

efficient than approximations by left or right sums: Fewer terms must be summed to achieve a given ac-
curacy.

• Trapezoidal Rule Let f be a function defined on an interval 3a, b4. Partition 3a, b4 into n subintervals of 
equal length ∆x = 1b - a2 >n with endpoints

a = x0 6 x1 6 x2 6 g 6 xn = b.

Then

Tn = 3f1x02 + 2f1x12 + 2f1x22 + g + 2f1xn - 12 + f1xn24∆x>2

is an approximation of L
b

a
f1x2 dx.

• Simpson’s Rule Let f be a function defined on an interval 3a, b4. Partition 3a, b4 into 2n subintervals of 
equal length ∆x = 1b - a2 >n with endpoints

a = x0 6 x1 6 x2 6 g 6 x2n = b.

Then

S2n = 3f1x02 + 4f1x12 + 2f1x22 + 4f1x32 + 2f1x42 + g + 4f1x2n - 12 + f1x2n24  ∆x>3

is an approximation of L
b

a
f1x2 dx.

• A table of integrals is a list of integration formulas that can be used to find indefinite or definite  
integrals of frequently encountered functions. Such a list appears in Table 1 in Appendix C.

Ex. 1, p. 449

Ex. 2, p. 451

Ex. 3, p. 452
Ex. 4, p. 453
Ex. 5, p. 454
Ex. 6, p. 454
Ex. 7, p. 455
Ex. 8, p. 455

6.3 Applications in Business and Economics
• Probability Density Functions If any real number x in an interval is a possible outcome of an experi-

ment, then x is said to be a continuous random variable. The probability distribution of a continuous 
random variable is described by a probability density function f that satisfies the following conditions:

1.  f1x2 Ú 0 for all real x.
2. The area under the graph of  f1x2 over the interval 1- ∞ , ∞ 2 is exactly 1.
3. If [c, d] is a subinterval of 1- ∞ , ∞ 2, then

Probability 1c … x … d2 = L
d

c
f1x2 dx

• Continuous Income Stream If the rate at which income is received—its rate of flow—is a continuous 
function  f1t2 of time, then the income is said to be a continuous income stream. The total income 
produced by a continuous income stream from t = a to t = b is

Total income = L
b

a
f1t2 dt

Ex. 1, p. 460
Ex. 2, p. 462

Ex. 3, p. 462

Chapter 6 Summary and Review

 Summary and Review 477
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478 CHAPTER 6 Additional Integration Topics

6.3 Applications in Business and Economics (Continued)
• The future value of a continuous income stream that is invested at rate r, compounded continuously,  

for 0 … t … T, is

FV = L
T

0
f1t2er1T - t2 dt

• Consumers’ and Producers’ Surplus If 1x, p2 is a point on the graph of a price–demand equation 
p = D1x2, then the consumers’ surplus at a price level of p is

CS = L
x

0
3D1x2 - p4 dx

The consumers’ surplus represents the total savings to consumers who are willing to pay more than p  
but are still able to buy the product for p.

Similarly, for a point 1x, p2 on the graph of a price–supply equation p = S1x2, the producers’ 
surplus at a price level of p is

PS = L
x

0
3  p - S1x24 dx

The producers’ surplus represents the total gain to producers who are willing to supply units at a lower 
price p, but are still able to supply units at p.

If 1x, p2 is the intersection point of a price–demand equation p = D1x2 and a price–supply 
 equation p = S1x2, then p is called the equilibrium price and x is called the equilibrium quantity.

Ex. 4, p. 464

Ex. 5, p. 466

Ex. 6, p. 467

Ex. 7, p. 468

6.4 Integration of Trigonometric Functions
• Indefinite integrals of the functions sin x and cos x are

L
 

 

sin u du = -cos u + C and L
 

 

cos u du = sin u + C

Ex. 1, p. 472
Ex. 2, p. 473
Ex. 3, p. 473
Ex. 4, p. 473
Ex. 5, p. 474

Work through all the problems in this chapter review and check 
your answers in the back of the book. Answers to all review prob-
lems are there, along with section numbers in italics to indicate 
where each type of problem is discussed. Where weaknesses show 
up, review appropriate sections of the text.

In Problems 1–17 find each integral. 

1. L
 

 

t cos1t2 - 12 dt 2. L
p

0
sin u du

3. L
p>3

0
cos x dx 4. L

2.5

1
cos x dx

5. L
 

 

esin x cos x dx 6. L
 

 

tan x dx

7. L
5

2
15 + 2 cos 2x2 dx

In Problems 8–13, evaluate each integral.

8. L
 

 

xe-x dx 9. L
 

 

x ln x dx

10. L
 

 

1
x ln x

 dx 11. L
 

 

x

1 + x2 dx

12. L
 

 

1

x11 + x2 2 dx 13. L
 

 

1

x221 + x
 dx

14. Find the area under the sine curve y = sin x from x = p>4 
to x = 3p>4.

In Problems 15–20, evaluate each integral.

15. L
1

0
x2ex dx 16. L

3

0

x22x2 + 16
 dx

17. L
 

 

1

4x224x2 - 25
 dx 18. L

 

 

te-0.5t dt

19. L
 

 

x2 ln x dx 20. L
 

 

1
1 + 2ex dx

Review Exercises
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38. Product warranty. Graph the probability density function 
for Problem 37 over the interval [0, 3], interpret part (B) of 
Problem 37 geometrically, and describe the geometric repre-
sentation.

39. Revenue function. The weekly marginal revenue from the 
sale of x hair dryers is given by

 R′1x2 = 65 - 6 ln1x + 12  R102 = 0

where  R1x2 is the revenue in dollars. Find the revenue function 
and the production level (to the nearest unit) for a revenue of 
$20,000 per week. What is the weekly revenue (to the nearest 
dollar) at a production level of 1,000 hair dryers per week?

40. Continuous income stream. The rate of flow (in dollars per 
year) of a continuous income stream for a 5-year period is 
given by

 f1t2 = 2,500e0.05t  0 … t … 5

(A) Graph y = f1t2 over [0, 5] and shade the area that rep-
resents the total income received from the end of the first 
year to the end of the fourth year.

(B) Find the total income received, to the nearest dollar, from 
the end of the first year to the end of the fourth year.

41. Future value of a continuous income stream. The continu-
ous income stream in Problem 40 is invested at 4%, com-
pounded continuously.

(A) Find the future value (to the nearest dollar) at the end of 
the 5-year period.

(B) Find the interest earned (to the nearest dollar) during the 
5-year period.

42. Consumers’ and producers’ surplus. Find the consumers’ 
surplus and the producers’ surplus at the equilibrium price 
level for each pair of price–demand and price–supply equa-
tions. Include a graph that identifies the consumers’ surplus 
and the producers’ surplus. Round all values to the nearest 
integer.

(A) p = D1x2 = 70 - 0.2x;

p = S1x2 = 13 + 0.0012x2

(B) p = D1x2 = 70 - 0.2x;

p = S1x2 = 13e0.006x

43. Producers’ surplus. The accompainying table gives price–
supply data for the sale of hogs at a livestock market, where x 
is the number of pounds (in thousands) and p is the price per 
pound (in cents):

Price–Supply
x p = S1x2
0 43.50

10 46.74

20 50.05

30 54.72

40 59.18

(A) Using quadratic regression to model the data, find the 
demand at a price of 52.50 cents per pound.

In Problems 21–25, round function values to four decimal places 
and the final answer to two decimal places.

21. Use the trapezoidal rule with n = 3 to approximate 13
0 ex3>2

dx.

22. Use the trapezoidal rule with n = 5 to approximate 13
0 ex3>2

dx.

23. Use Simpson’s rule with n = 2 (so there are 2n = 4 subin-
tervals) to approximate 15

1 1ln x2 2dx.

24. Use Simpson’s rule with n = 4 (so there are 2n = 8 subin-
tervals) to approximate 15

1 1ln x2 2dx.

25. Given the definite integral

I = L
5

1

sin x
x

 dx

(A) Graph the integrand

f1x2 =
sin x

x

over [1, 5].

(B) Use the right sum R4 to approximate I.

In Problems 26–33, evaluate each integral.

26. L
 

 

1ln x2 5

x
 dx 27. L

 

 

x2e2x dx

28. L
 

 

x2x3 - 16
 dx 29. L

 

 

x2x4 - 36
 dx

30. L
4

0
x ln110 - x2 dx 31. L

 

 

1ln x2 2 dx

32. L
 

 

x2e-x3
 dx 33. L

 

 

x2e-2x dx

In Problems 34–36, graph each function on a graphing calculator 
set in radian mode.

34. y =
sin px
0.2x

; 1 … x … 8, -4 … y … 4

35. y = 0.5x cos px; 0 … x … 8, -5 … y … 5

36. y = 3 - 2 cos px; 0 … x … 6, 0 … y … 5

Applications
37. Product warranty. A manufacturer warrants a product for 

parts and labor for 1 year and for parts only for a second year. 
The time to a failure of the product after it is sold is given by 
the probability density function

 f1t2 = e0.21e-0.21t if t Ú 0
0 otherwise

What is the probability that a buyer chosen at random will 
have a product failure

(A) During the first year of warranty?

(B) During the second year of warranty?

C

 Review Exercises 479
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480 CHAPTER 6 Additional Integration Topics

(A) What is the probability that this doctor will spend less 
than 1 hour with a randomly selected patient?

(B) What is the probability that this doctor will spend more 
than 1 hour with a randomly selected patient?

47. Medicine. Illustrate part (B) in Problem 46 geometrically. 
Describe the geometric interpretation.

48. Psychology. Rats were trained to go through a maze by 
rewarding them with a food pellet upon successful comple-
tion of the run. After the fifth successful run, the probability 
density function for length of time (in minutes) until success 
on the sixth trial was given by

 f1t2 = e0.25e-0.25t if t Ú 0
0 otherwise

What is the probability that a rat selected at random after five 
successful runs will take 3 or more minutes to complete the 
sixth run successfully? [Recall that the area under a probabil-
ity density function curve from - ∞  to ∞  is 1.]

(B) Use a numerical integration routine to find the produc-
ers’ surplus (to the nearest dollar) at a price level of 
52.50 cents per pound.

44. Drug assimilation. The rate at which the body eliminates a 
certain drug (in milliliters per hour) is given by

 R1t2 =
60t

1t + 12 21t + 22
where t is the number of hours since the drug was adminis-
tered. How much of the drug is eliminated during the first 
hour after it was administered? During the fourth hour?

45. With the aid of a graphing calculator, illustrate Problem 44 
geometrically.

46. Medicine. For a particular doctor, the length of time (in 
hours) spent with a patient per office visit has the probability 
density function

 f1t2 = •
4
3

1t + 12 2 if 0 … t … 3

0 otherwise
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7.1 Functions of Several 
Variables

7.2 Partial Derivatives

7.3 Maxima and Minima

7.4 Maxima and Minima 
Using Lagrange 
Multipliers

7.5 Method of Least Squares

7.6 Double Integrals over 
Rectangular Regions

7.7 Double Integrals over 
More General Regions

Multivariable Calculus

Introduction
In previous chapters, we have applied the key concepts of calculus, the deriva-
tive and the integral, to functions with one independent variable. The graph 
of such a function is a curve in the plane. In Chapter 7, we extend the key 
concepts of calculus to functions with two independent variables. Graphs of 
such functions are surfaces in a three-dimensional coordinate system. We use 
functions with two independent variables to study how production depends on 
both labor and capital, how braking distance depends on both the weight and 
speed of a car, how resistance in a blood vessel depends on both its length 
and radius. In Section 7.5, we justify the method of least squares and use the 
method to construct linear models (see, for example, Problem 35 in Section 7.5 
on pole vaulting in the Olympic Games).

7
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482 CHAPTER 7 Multivariable Calculus

Functions of Two or More Independent Variables
In Section 1.1, we introduced the concept of a function with one independent vari-
able. Now we broaden the concept to include functions with more than one indepen-
dent variable.

A small manufacturing company produces a standard type of surfboard. If fixed 
costs are $500 per week and variable costs are $70 per board produced, the weekly 
cost function is given by

 C1x2 = 500 + 70x (1)

where x is the number of boards produced per week. The cost function is a function 
of a single independent variable x. For each value of x from the domain of C, there 
exists exactly one value of C1x2 in the range of C.

Now, suppose that the company decides to add a high-performance competition 
board to its line. If the fixed costs for the competition board are $200 per week and 
the variable costs are $100 per board, then the cost function (1) must be modified to

 C1x, y2 = 700 + 70x + 100y (2)

where C1x, y2 is the cost for a weekly output of x standard boards and y competition 
boards. Equation (2) is an example of a function with two independent variables x 
and y. Of course, as the company expands its product line even further, its weekly 
cost function must be modified to include more and more independent variables, one 
for each new product produced.

If the domain of a function is a set of ordered pairs, then it is a function of two 
independent variables. An equation of the form

z = f1x, y2
where f1x, y2, is an algebraic expression in the variables x and y, specifies a function. 
The variables x and y are independent variables, and the variable z is a dependent 
variable. The domain is the set of all ordered pairs (x, y) such that f (x, y) is a real 
number, and the set of all corresponding values f1x, y2 is the range of the function. 
It should be noted, however, that certain conditions in practical problems often lead 
to further restrictions on the domain of a function.

We can similarly define functions of three independent variables, w = f1x, y, z2, 
of four independent variables, u = f1w, x, y, z2, and so on. In this chapter, we con-
cern ourselves primarily with functions of two independent variables.

7.1 Functions of Several Variables
■■ Functions of Two or More 
Independent Variables

■■ Examples of Functions of Several 
Variables

■■ Three-Dimensional Coordinate 
Systems

Evaluating a Function of Two Independent Variables For the cost function 
C1x, y2 = 700 + 70x + 100y described earlier, find C110, 52.

SOLUTION

 C110, 52 = 700 + 701102 + 100152
 = $1,900

Matched Problem 1 Find C120, 102 for the cost function in Example 1.

EXAMPLE 1
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 SECTION 7.1   Functions of Several Variables 483

Evaluating a Function of Three Independent Variables For the function 
f1x, y, z2 = 2x2 - 3xy + 3z + 1, find f13, 0, -12.

SOLUTION
  f13, 0, -12 = 2132 2 - 3132102 + 31-12 + 1

 = 18 - 0 - 3 + 1 = 16

Matched Problem 2 Find f1-2, 2, 32 for f in Example 2.

EXAMPLE 2

Revenue, Cost, and Profit Functions Suppose the surfboard company discussed 
earlier has determined that the demand equations for its two types of boards are 
given by

  p = 210 - 4x + y

  q = 300 + x - 12y

where p is the price of the standard board, q is the price of the competition board, 
x is the weekly demand for standard boards, and y is the weekly demand for com-
petition boards.

(A) Find the weekly revenue function R1x, y2, and evaluate R120, 102.

(B) If the weekly cost function is

C1x, y2 = 700 + 70x + 100y

find the weekly profit function P1x, y2 and evaluate P120, 102.

SOLUTION

(A) 

 Revenue = £demand for
standard
boards

≥ * £price of a
standard

board
≥ + £demand for

competition
boards

≥ * £ price of a
competition

board
≥

 R1x, y2 = xp + yq

 = x1210 - 4x + y2 + y1300 + x - 12y2
 = 210x + 300y - 4x2 + 2xy - 12y2

 R120, 102 = 2101202 + 3001102 - 41202 2 + 212021102 - 121102 2

 = $4,800

(B) Profit = revenue - cost

 P1x, y2 = R1x, y2 - C1x, y2
 = 210x + 300y - 4x2 + 2xy - 12y2 - 700 - 70x - 100y

 = 140x + 200y - 4x2 + 2xy - 12y2 - 700

 P120, 102 = 1401202 + 2001102 - 412022 + 212021102 - 1211022 - 700

 = $1,700

Matched Problem 3 Repeat Example 3 if the demand and cost equations are 
given by

 p = 220 - 6x + y

 q = 300 + 3x - 10y

 C1x, y2 = 40x + 80y + 1,000

EXAMPLE 3
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484 CHAPTER 7 Multivariable Calculus

Examples of Functions of Several Variables
A number of concepts can be considered as functions of two or more variables.

Area of a rectangle A1x, y2 = xy
A 5 area y

x

Volume of a box V1x, y, z2 = xyz

x

z

y

V 5 volume

Volume of a right 
circular cylinder

V1r, h2 = pr2h
h

r

Simple interest A1P, r, t2 = P11 + rt2  A = amount
 P = principal
 r = annual rate
 t = time in years

Compound interest
A1P, r, t, n2 = Pa1 +

r
n
b

nt  A = amount
 P = principal
 r = annual rate
 t = time in years
 n = number of compounding 
   periods per year

IQ
Q1M, C2 =

M
C

 11002  Q = IQ = intelligence 
      quotient
 M = MA = mental age
 C = CA

 = chronological age

Resistance for blood flow in 
a vessel (Poiseuille’s law) R1L, r2 = k 

L

r4

 R = resistance
 L = length of vessel
 r = radius of vessel
 k = constant

Package Design A company uses a box with a square base and an open top for 
a bath assortment (see Fig. 1). If x is the length (in inches) of each side of the base 
and y is the height (in inches), find the total amount of material M1x, y2 required to 
construct one of these boxes, and evaluate M15, 102.

SOLUTION
 Area of base = x2

 Area of one side = xy

 Total material = 1area of base2 + 41area of one side2
 M1x, y2 = x2 + 4xy

 M15, 102 = 152 2 + 41521102
 = 225 square inches

Matched Problem 4 For the box in Example 4, find the volume V1x, y2 and 
evaluate V15, 102.

The next example concerns the Cobb–Douglas production function
f1x, y2 = kxmyn

where k, m, and n are positive constants with m + n = 1. Economists use this func-
tion to describe the number of units f1x, y2 produced from the utilization of x units 

EXAMPLE 4

x
x

y

Figure 1
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Three-Dimensional Coordinate Systems
We now take a brief look at graphs of functions of two independent variables. Since 
functions of the form z = f1x, y2 involve two independent variables x and y, and one 
dependent variable z, we need a three-dimensional coordinate system for their graphs. 
A three-dimensional coordinate system is formed by three mutually perpendicular 
number lines intersecting at their origins (see Fig. 2). In such a system, every ordered 
triplet of numbers (x, y, z) can be associated with a unique point, and conversely.

x

y
z

P(x, y, z)

z

x

y

Figure 2 Rectangular coordinate system

of labor and y units of capital (for equipment such as tools, machinery, buildings, and 
so on). Cobb–Douglas production functions are also used to describe the productivity 
of a single industry, of a group of industries producing the same product, or even of 
an entire country.

Productivity The productivity of a steel-manufacturing company is given approx-
imately by the function

f1x, y2 = 10x0.2y0.8

with the utilization of x units of labor and y units of capital. If the company uses 
3,000 units of labor and 1,000 units of capital, how many units of steel will be 
produced?

SOLUTION The number of units of steel produced is given by

  f13,000, 1,0002 = 1013,0002 0.211,0002 0.8 Use a calculator.

 ≈ 12,457 units

Matched Problem 5 Refer to Example 5. Find the steel production if the com-
pany uses 1,000 units of labor and 2,000 units of capital.

EXAMPLE 5

Three-Dimensional Coordinates Locate 1-3, 5, 22 in a rectangular coordinate 
system.

SOLUTION We sketch a three-dimensional coordinate system and locate the point 
1-3, 5, 22 (see Fig. 3).

z

(23, 5, 2)

5
2

5

5

25

x y

23

Figure 3

EXAMPLE 6

M07_BARN6152_14_GE_C07.indd   485 22/11/18   11:17 PM



486 CHAPTER 7 Multivariable Calculus

Matched Problem 6 Find the coordinates of the corners A, C, G, and D of the 
rectangular box shown in Figure 4:

A

B

F

C

D

H

G

E

z

5

5

5

25

x

y

Figure 4

Imagine that you are facing the front of a classroom whose rectangular walls meet at 
right angles. Suppose that the point of intersection of the floor, front wall, and left-side 
wall is the origin of a three-dimensional coordinate system in which every point in the 
room has nonnegative coordinates. Then the plane z = 0 (or, equivalently, the xy plane) 
can be described as “the floor,” and the plane z = 2 can be described as “the plane par-
allel to, but 2 units above, the floor.” Give similar descriptions of the following planes:

(A) x = 0 (B) x = 3 (C) y = 0 (D) y = 4 (E) x = -1

Explore and Discuss 1

What does the graph of z = x2 + y2 look like? If we let x = 0 and graph 
z = 02 + y2 = y2 in the yz plane, we obtain a parabola; if we let y = 0 and 
graph z = x2 + 02 = x2 in the xz plane, we obtain another parabola. The graph of 
z = x2 + y2 is either one of these parabolas rotated around the z axis (see Fig. 5). 
This cup-shaped figure is a surface and is called a paraboloid.

In general, the graph of any function of the form z = f1x, y2 is called a surface. 
The graph of such a function is the graph of all ordered triplets of numbers 1x, y, z2 
that satisfy the equation. Graphing functions of two independent variables is a dif-
ficult task, and the general process will not be dealt with in this book. We present 
only a few simple graphs to suggest extensions of earlier geometric interpreta-
tions of the derivative and local maxima and minima to functions of two variables. 
Note that z = f1x, y2 = x2 + y2 appears (see Fig. 5) to have a local minimum at 
1x, y2 = 10, 02. Figure 6 shows a local maximum at 1x, y2 = 10, 02.

z 5 x2

(y 5 0)

z 5 y2

(x 5 0)

z 5 f (x, y) 5 x2 1 y2

z

y

x

Figure 5 Paraboloid

z 5 f (x, y) 5 4 2 x2 2 y2
x

y

z

Figure 6 Local maximum: f 10, 0 2 ∙ 4
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 SECTION 7.1   Functions of Several Variables 487

Figure 7 shows a point at 1x, y2 = 10, 02, called a saddle point, that is neither a local 
minimum nor a local maximum. Note that in the cross section x = 0, the saddle point is a 
local minimum, and in the cross section y = 0, the saddle point is a local maximum.

Saddle point

z

z 5 y2 2 x2

x

y

Figure 7 Saddle point at (0, 0, 0)
Some graphing calculators are designed to draw graphs (like those of Figs. 5, 6, 

and 7) of functions of two independent variables. Others, such as the graphing cal-
culator used for the displays in this book, are designed to draw graphs of functions 
of one independent variable. When using the latter type of calculator, we can graph 
cross sections produced by cutting surfaces with planes parallel to the xz plane or yz 
plane to gain insight into the graph of a function of two independent variables.

Graphing Cross Sections
(A) Describe the cross sections of f1x, y2 = 2x2 + y2 in the planes y = 0,

y = 1, y = 2, y = 3, and y = 4.

(B) Describe the cross sections of f1x, y2 = 2x2 + y2 in the planes x = 0,
x = 1, x = 2, x = 3, and x = 4.

SOLUTION
(A) The cross section of f1x, y2 = 2x2 + y2 produced by cutting it with the plane 

y = 0 is the graph of the function f1x, 02 = 2x2 in this plane. We can examine 
the shape of this cross section by graphing y1 = 2x2 on a graphing calculator 
(Fig. 8).  Similarly, the graphs of y2 = f1x, 12 = 2x2 + 1, y3 = f1x, 22 =
2x2 + 4, y4 = f1x, 32 = 2x2 + 9, and y5 = f1x, 42 = 2x2 + 16 show the 
shapes of the other four cross sections (see Fig. 8). Each of these is a parabola 
that opens upward. Note the correspondence between the graphs in Figure 8 
and the actual cross sections of f1x, y2 = 2x2 + y2 shown in Figure 9.

z

x

y5

40

5

Figure 9

EXAMPLE 7

0
25

40

5

Figure 8
 y1 = 2x2

 y2 = 2x2 + 1
 y3 = 2x2 + 4

 y4 = 2x2 + 9
 y5 = 2x2 + 16
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488 CHAPTER 7 Multivariable Calculus

(B) The five cross sections are represented by the graphs of the functions 
f10, y2 = y2,  f11, y2 = 2 + y2,  f12, y2 = 8 + y2,  f13, y2 = 18 + y2, and 
f14, y2 = 32 + y2. These five functions are graphed in Figure 10. (Note that 
changing the name of the independent variable from y to x for graphing pur-
poses does not affect the graph displayed.) Each of the five cross sections is a 
parabola that opens upward.

Matched Problem 7
(A) Describe the cross sections of g1x, y2 = y2 - x2 in the planes y = 0,

y = 1, y = 2, y = 3, and y = 4.

(B) Describe the cross sections of g1x, y2 = y2 - x2 in the planes x = 0,
x = 1, x = 2, x = 3, and x = 4.

025

40

5

Figure 10

 y1 = x2

 y2 = 2 + x2

 y3 = 8 + x2

 y4 = 18 + x2

 y5 = 32 + x2

The graph of the equation

 x2 + y2 + z2 = 4 (3)

is the graph of all ordered triplets of numbers (x, y, z) that satisfy the equation. 
The Pythagorean theorem can be used to show that the distance from the point 
(x, y, z) to the origin (0, 0, 0) is equal to2x2 + y2 + z2

Therefore, the graph of (3) consists of all points that are at a distance 2 from the 
origin—that is, all points on the sphere of radius 2 and with center at the origin. 
Recall that a circle in the plane is not the graph of a function y = f1x2, because 
it fails the vertical-line test (Section 1.1). Similarly, a sphere is not the graph of a 
function z = f1x, y2 of two variables.

CONCEPTUAL  INSIGHT

Exercises 7.1
Skills Warm-up Exercises

 In Problems 1–8, find the indicated value of the function of two or 
three variables. (If necessary, review the basic geometric formulas 
in the references at the back of the book).

1. The height of a trapezoid is 3 feet and the lengths of its paral-
lel sides are 5 feet and 8 feet. Find the area.

2. The height of a trapezoid is 4 meters and the lengths of its 
parallel sides are 25 meters and 32 meters. Find the area.

3. The length, width, and height of a rectangular box are 12 inches, 
5 inches, and 4 inches, respectively. Find the volume.

4. The length, width, and height of a rectangular box are 30 
centimeters, 15 centimeters, and 10 centimeters, respectively. 
Find the volume.

5. The height of a right circular cylinder is 8 meters and the 
radius is 2 meters. Find the volume.

6. The height of a right circular cylinder is 6 feet and the diam-
eter is also 6 feet. Find the total surface area.

7. The height of a right circular cone is 48 centimeters and the 
radius is 20 centimeters. Find the total surface area.

8. The height of a right circular cone is 42 inches and the radius 
is 7 inches. Find the volume.

W

 In Problems 9–16, find the indicated values of the functions

f1x, y2 = 2x + 7y - 5  and  g1x, y2 =
88

x2 + 3y

9. f14, -12 10. f10, 102
11. f18, 02 12. f15, 62
13. g11, 72 14. g1-2, 02
15. g13, -32 16. g10, 02
In Problems 17–20, find the indicated values of

f1x, y, z2 = 2x - 3y2 + 5z3 - 1

17. f10, 0, 02 18. f10, 0, 22
19. f16, -5, 02 20. f1-10, 4, -32
 In Problems 21–30, find the indicated value of the given function.

21. P(13, 5) for P1n, r2 =
n!

1n - r2!

22. C(13, 5) for C1n, r2 =
n!

r!1n - r2!

23. V(4, 12) for V1R, h2 = pR2h

24. T(4, 12) for T1R, h2 = 2pR1R + h2

A

B
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48. Let F1x, y2 = 5x - 4y + 12. Find all values of x such that 
F1x, 02 = 0.

49. Let F1x, y2 = 2xy + 3x - 4y - 1. Find all values of x such 
that F1x, x2 = 0.

50. Let F1x, y2 = xy + 2x2 + y2 - 25. Find all values of y 
such that F1y, y2 = 0.

51. Let F1x, y2 = x2 + exy - y2. Find all values of x such that 
F1x, 22 = 0.

52. Let G1a, b, c2 = a3 + b3 + c3 - 1ab + ac + bc2 - 6. 
Find all values of b such that G12, b, 12 = 0.

53. For the function f1x, y2 = x2 + 2y2, find

f1x + h, y2 - f1x, y2
h

54. For the function f1x, y2 = x2 + 2y2, find

f1x, y + k2 - f1x, y2
k

55. For the function f1x, y2 = 2xy2, find

f1x + h, y2 - f1x, y2
h

56. For the function f1x, y2 = 2xy2, find

f1x, y + k2 - f1x, y2
k

57. Find the coordinates of E and F in the figure for Matched 
Problem 6 on page 486.

58. Find the coordinates of B and H in the figure for Matched 
Problem 6 on page 486.

In Problems 59–64, use a graphing calculator as necessary to 
explore the graphs of the indicated cross sections.

59. Let f1x, y2 = x2.

(A) Explain why the cross sections of the surface z = f1x, y2  
produced by cutting it with planes parallel to y = 0 are 
parabolas.

(B) Describe the cross sections of the surface in the planes 
x = 0, x = 1, and x = 2.

(C) Describe the surface z = f1x, y2.

60. Let f1x, y2 = 24 - y2.

(A) Explain why the cross sections of the surface z = f1x, y2 
produced by cutting it with planes parallel to x = 0 are 
semicircles of radius 2.

(B) Describe the cross sections of the surface in the planes 
y = 0, y = 2, and y = 3.

(C) Describe the surface z = f1x, y2.

61. Let f1x, y2 = 236 - x2 - y2.

(A) Describe the cross sections of the surface z = f1x, y2 
produced by cutting it with the planes y = 1, y = 2, 
y = 3, y = 4, and y = 5.

(B) Describe the cross sections of the surface in the planes 
x = 0, x = 1, x = 2, x = 3, x = 4, and x = 5.

(C) Describe the surface z = f1x, y2.

C

25. S(3, 10) for S1R, h2 = pR2R2 + h2

26. W(3, 10) for W1R, h2 =
1
3

 pR2h

27. A(100, 0.06, 3) for A1P, r, t2 = P + Prt

28. A(10, 0.04, 3, 2) for A1P, r, t, n2 = Pa1 +
r
n
b

tn

29. P(4, 2) for P1r, T2 = L
T

1
xr dx

30. F(1, e) for F1r, T2 = L
T

1
x-r dx

In Problems 31–36, find the indicated function f of a single variable.

31. f1x2 = G1x, 02 for G1x, y2 = x2 + 3xy + y2 - 7

32. f1y2 = H10, y2 for H1x, y2 = x2 - 5xy - y2 + 2

33. f1y2 = K14, y2 for K1x, y2 = 10xy + 3x - 2y + 8

34. f1x2 = L1x, -22 for L1x, y2 = 25 - x + 5y - 6xy

35. f1y2 = M1y, y2 for M1x, y2 = x2y - 3xy2 + 5

36. f1x2 = N1x, 2x2 for N1x, y2 = 3xy + x2 - y2 + 1

37. Find a formula for the function D(x, y) of two variables that 
gives the square of the distance from the point (x, y) to the 
origin (0, 0).

38. Find a formula for the function V(d, h) of two variables that 
gives the volume of a right circular cylinder of diameter d and 
height h.

39. Find a formula for the function C(n, w) of two variables that 
gives the number of calories in n cookies, each weighing w 
ounces, if there are 35 calories per ounce.

40. Find a formula for the function N( p, r) of two variables that 
gives the number of hot dogs sold at a baseball game, if p is 
the price per hot dog and r is the total amount received from 
the sale of hot dogs.

41. Find a formula for the function S(x, y, z) of three variables 
that gives the average of three test scores x, y, and z.

42. Find a formula for the function W(x1, x2, x3, x4) of four vari-
ables that gives the total volume of oil that can be carried in 
four oil tankers of capacities x1, x2, x3, and x4, respectively.

43. Find a formula for the function L(d, h) of two variables that 
gives the volume of a right circular cone of diameter d and 
height h.

44. Find a formula for the function T(x, y, z) of three variables 
that gives the square of the distance from the point (x, y, z) to 
the origin (0, 0, 0).

45. Find a formula for the function J(C, h) of two variables that 
gives the volume of a right circular cylinder of circumference 
C and height h.

46. Find a formula for the function K(C, h) of two variables that 
gives the volume of a right circular cone of circumference C 
and height h.

47. Let F1x, y2 = 2x + 3y - 6. Find all values of y such that 
F10, y2 = 0.
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62. Let f1x, y2 = 100 + 10x + 25y - x2 - 5y2.

(A) Describe the cross sections of the surface z = f1x, y2 
produced by cutting it with the planes y = 0, y = 1, 
y = 2, and y = 3.

(B) Describe the cross sections of the surface in the planes 
x = 0, x = 1, x = 2, and x = 3.

(C) Describe the surface z = f1x, y2.

63. Let f1x, y2 = e-1x2 + y22.
(A) Explain why f1a, b2 = f1c, d2 whenever 1a, b2 and 

1c, d2 are points on the same circle centered at the origin 
in the xy plane.

(B) Describe the cross sections of the surface z = f1x, y2 
produced by cutting it with the planes x = 0, y = 0, 
and x = y.

(C) Describe the surface z = f1x, y2.

64. Let f1x, y2 = 4 - 2x2 + y2.

(A) Explain why f1a, b2 = f1c, d2 whenever 1a, b2 and 
1c, d2 are points on the same circle with center at the 
origin in the xy plane.

(B) Describe the cross sections of the surface z = f1x, y2 
produced by cutting it with the planes x = 0, y = 0, 
and x = y.

(C) Describe the surface z = f1x, y2.

Applications
65. Cost function. A small manufacturing company produces 

two models of a surfboard: a standard model and a competi-
tion model. If the standard model is produced at a variable 
cost of $210 each and the competition model at a variable 
cost of $300 each, and if the total fixed costs per month are 
$6,000, then the monthly cost function is given by

C1x, y2 = 6,000 + 210x + 300y

where x and y are the numbers of standard and competition 
models produced per month, respectively. Find C(20, 10), 
C(50, 5), and C(30, 30).

66. Advertising and sales. A company spends $x thousand per 
week on online advertising and $y thousand per week on TV 
advertising. Its weekly sales are found to be given by

S1x, y2 = 5x2y3

Find S(3, 2) and S(2, 3).

67. Revenue function. A supermarket sells two brands of coffee: 
brand A at $p per pound and brand B at $q per pound. The 
daily demand equations for brands A and B are, respectively,

 x = 200 - 5p + 4q

 y = 300 + 2p - 4q

(both in pounds). Find the daily revenue function R(p, q). 
Evaluate R(2, 3) and R(3, 2).

68. Revenue, cost, and profit functions. A company manufac-
tures 10- and 3-speed bicycles. The weekly demand and cost 
equations are

 p = 230 - 9x + y

 q = 130 + x - 4y

 C1x, y2 = 200 + 80x + 30y

where $p is the price of a 10-speed bicycle, $q is the price 
of a 3-speed bicycle, x is the weekly demand for 10-speed 
bicycles, y is the weekly demand for 3-speed bicycles, and 
C(x, y) is the cost function. Find the weekly revenue function 
R(x, y) and the weekly profit function P(x, y). Evaluate  
R(10, 15) and P(10, 15).

69. Productivity. The Cobb–Douglas production function for a 
petroleum company is given by

f1x, y2 = 20x0.4y0.6

where x is the utilization of labor and y is the utilization of 
capital. If the company uses 1,250 units of labor and 1,700 
units of capital, how many units of petroleum will be pro-
duced?

70. Productivity. The petroleum company in Problem 69 is 
taken over by another company that decides to double 
both the units of labor and the units of capital utilized in the 
production of petroleum. Use the Cobb–Douglas production 
function given in Problem 69 to find the amount of petroleum 
that will be produced by this increased utilization of labor 
and capital. What is the effect on productivity of doubling 
both the units of labor and the units of capital?

71. Future value. At the end of each year, $5,000 is invested 
into an IRA earning 3% compounded annually.

(A) How much will be in the account at the end of 30 years? 
Use the annuity formula

F1P, i, n2 = P 
11 + i2 n - 1

i
where

 P = periodic payment

 i = rate per period

 n = number of payments 1periods2
 F = FV = future value

(B) Use graphical approximation methods to determine the 
rate of interest that would produce $300,000 in the  
account at the end of 30 years.

72. Package design. The packaging department in a company 
has been asked to design a rectangular box with no top and a 
partition down the middle (see figure). Let x, y, and z be the 
dimensions of the box (in inches). Ignore the thickness of the 
material from which the box will be made.

x

y

z
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(A) Explain why M1x, y, z2 = xy + 2xz + 3yz gives the 
total area of the material used in constructing one of 
the boxes.

(B) Evaluate M(10, 12, 6).

(C) Suppose that the box will have a square base and a vol-
ume of 720 cubic inches. Use graphical approximation 
methods to determine the dimensions that require the 
least material.

73. Marine biology. For a diver using scuba-diving gear, a ma-
rine biologist estimates the time (duration) of a dive accord-
ing to the equation

T1V, x2 =
33V

x + 33
where

T = time of dive in minutes
 V = volume of air, at sea level pressure, 
    compressed into tanks
x = depth of dive in feet

Find T(70, 47) and T(60, 27).

74. Blood flow. Poiseuille’s law states that the resistance R for 
blood flowing in a blood vessel varies directly as the length L 
of the vessel and inversely as the fourth power of its radius r. 
Stated as an equation,

R1L, r2 = k 
L

r4  k a constant

Find R(8, 1) and R(4, 0.2).

75. Physical anthropology. Anthropologists use an index called 
the cephalic index. The cephalic index C varies directly as the 
width W of the head and inversely as the length L of the head 
(both viewed from the top). In terms of an equation,

C1W, L2 = 100 
W
L

where

 W = width in inches

 L = length in inches

Find C(6, 8) and C(8.1, 9).

76. Safety research. Under ideal conditions, if a person driving 
a car slams on the brakes and skids to a stop, the length of the 
skid marks (in feet) is given by the formula

L1w, v2 = kwv

2

where

 k = constant

 w = weight of car in pounds

 v = speed of car in miles per hour

For k = 0.000 013 3, find L(2,000, 40) and L(3,000, 60).

77. Psychology. The intelligence quotient (IQ) is defined to be 
the ratio of mental age (MA), as determined by certain tests, 
to chronological age (CA), multiplied by 100. Stated as an 
equation,

Q1M, C2 =
M
C

 #  100

where
Q = IQ  M = MA  C = CA

Find Q(12, 10) and Q(10, 12).

78. Space travel. The force F of attraction between two masses 
m1 and m2 at distance r is given by Newton’s law of universal 
gravitation

F1m1, m2, r2 = G
m1m2

r2

where G is a constant. Evaluate F(50, 100, 20) and  
F(50, 100, 40).

Answers to Matched Problems
1. $3,100
2. 30
3. (A)  R1x, y2 = 220x + 300y - 6x2 + 4xy - 10y2; 

R120, 102 = $4,800

(B)  P1x, y2 = 180x + 220y - 6x2 + 4xy - 10y2 - 1,000; 
P120, 102 = $2,200

4. V1x, y2 = x2y; V15, 102 = 250 in.3

5. 17,411 units
6. A (0, 0, 0); C (2, 4, 0); G (2, 4, 3); D (0, 4, 0)
7. (A) Each cross section is a parabola that opens downward.

(B) Each cross section is a parabola that opens upward.

Partial Derivatives
We know how to differentiate many kinds of functions of one independent variable 
and how to interpret the derivatives that result. What about functions with two or 
more independent variables? Let’s return to the surfboard example considered at the 
beginning of Section 7.1 on page 482.

For the company producing only the standard board, the cost function was

C1x2 = 500 + 70x

Differentiating with respect to x, we obtain the marginal cost function

C′1x2 = 70

Since the marginal cost is constant, $70 is the change in cost for a 1-unit increase in 
production at any output level.

7.2 Partial Derivatives
■■ Partial Derivatives
■■ Second-Order Partial Derivatives

L

W
Top of
Head
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492 CHAPTER 7 Multivariable Calculus

For the company producing two types of boards—a standard model and a com-
petition model—the cost function was

C1x, y2 = 700 + 70x + 100y

Now suppose that we differentiate with respect to x, holding y fixed, and denote the 
resulting function by Cx1x, y2, or suppose we differentiate with respect to y, holding 
x fixed, and denote the resulting function by Cy1x, y2. Differentiating in this way, 
we obtain

Cx1x, y2 = 70  Cy1x, y2 = 100

Each of these functions is called a partial derivative, and, in this example, each 
represents marginal cost. The first is the change in cost due to a 1-unit increase in 
production of the standard board with the production of the competition model held 
fixed. The second is the change in cost due to a 1-unit increase in production of the 
competition board with the production of the standard board held fixed.

In general, if z = f1x, y2, then the partial derivative of f with respect to x, de-
noted 0z>0x, fx, or fx1x, y2, is defined by

ez
ex

∙ lim
hS0

 
f 1x ∙ h, y 2 ∙ f 1x, y 2

h

provided that the limit exists. We recognize this formula as the ordinary derivative of 
f with respect to x, holding y constant. We can continue to use all the derivative rules 
and properties discussed in Chapters 2 to 4 and apply them to partial derivatives.

Similarly, the partial derivative of f with respect to y, denoted 0z>0y, fy, or 
fy1x, y2, is defined by

ez
ey

∙ lim
kS0

 
f 1x, y ∙ k 2 ∙ f 1x, y 2

k

which is the ordinary derivative with respect to y, holding x constant.
Parallel definitions and interpretations hold for functions with three or more  

independent variables.

If y = f1x2 is a function of a single 
variable x, then

f ′1x2 = lim
hS0

 
f1x + h2 - f1x2

h
if the limit exists.

Reminder

Partial Derivatives For z = f1x, y2 = 2x2 - 3x2y + 5y + 1, find

(A) 0z>0x (B) fx12, 32
SOLUTION
(A) z = 2x2 - 3x2y + 5y + 1

Differentiating with respect to x, holding y constant (that is, treating y as a  
constant), we obtain

0z
0x

= 4x - 6xy

(B) f1x, y2 = 2x2 - 3x2y + 5y + 1
First, differentiate with respect to x. From part (A), we have

fx1x, y2 = 4x - 6xy

Then evaluate this equation at 12, 32:

fx12, 32 = 4122 - 6122132 = -28

EXAMPLE 1

In Example 1B, an alternative approach would be to substitute y = 3 into f (x, y) 
and graph the function f1x, 32 = -7x2 + 16, which represents the cross section of 
the surface z = f1x, y2 produced by cutting it with the plane y = 3. Then determine 
the slope of the tangent line when x = 2. Again, we conclude that fx12, 32 = -28 
(see Fig. 1).

240

0

40

4

Figure 1 y1 ∙ ∙7x2 ∙ 16
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Matched Problem 1 For f in Example 1, find

(A) 0z>0y (B) fy12, 32

Partial Derivatives Using the Chain Rule For z = f1x, y2 = ex2 + y2
, find

(A) 0z>0x (B) fy12, 12
SOLUTION
(A) Using the chain rule [thinking of z = eu, u = u1x2; y is held constant], we 

obtain

 
0z
0x

= ex2 + y2
 
01x2 + y22

0x

 = 2xex2 + y2

(B)  fy1x, y2 = ex2 + y2
 
01x2 + y22

0y
= 2yex2 + y2

  fy12, 12 = 2112e1222 + 1122

 = 2e5

Matched Problem 2 For z = f1x, y2 = 1x2 + 2xy2 5, find

(A) 0z>0y (B) fx11, 02

EXAMPLE 2

Profit The profit function for the surfboard company in Example 3 of Section 7.1 was

P1x, y2 = 140x + 200y - 4x2 + 2xy - 12y2 - 700

Find Px115, 102 and Px130, 102, and interpret the results.

SOLUTION
 Px1x, y2 = 140 - 8x + 2y

 Px115, 102 = 140 - 81152 + 21102 = 40

 Px130, 102 = 140 - 81302 + 21102 = -80

At a production level of 15 standard and 10 competition boards per week, increasing 
the production of standard boards by 1 unit and holding the production of competi-
tion boards fixed at 10 will increase profit by approximately $40. At a production 
level of 30 standard and 10 competition boards per week, increasing the production 
of standard boards by 1 unit and holding the production of competition boards fixed 
at 10 will decrease profit by approximately $80.

Matched Problem 3 For the profit function in Example 3, find Py125, 102 
and Py125, 152, and interpret the results.

EXAMPLE 3

Productivity The productivity of a major computer manufacturer is given approx-
imately by the Cobb–Douglas production function

f1x, y2 = 15x0.4 y0.6

with the utilization of x units of labor and y units of capital. The partial derivative 
fx1x, y2 represents the rate of change of productivity with respect to labor and is 

EXAMPLE 4
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called the marginal productivity of labor. The partial derivative fy1x, y2 represents 
the rate of change of productivity with respect to capital and is called the marginal 
productivity of capital. If the company is currently utilizing 4,000 units of labor and 
2,500 units of capital, find the marginal productivity of labor and the marginal pro-
ductivity of capital. For the greatest increase in productivity, should the management 
of the company encourage increased use of labor or increased use of capital?

SOLUTION
 fx1x, y2 = 6x-0.6y0.6

  fx14,000, 2,5002 = 614,0002 -0.612,5002 0.6

 ≈ 4.53   Marginal productivity of labor

 fy1x, y2 = 9x0.4y-0.4

  fy14,000, 2,5002 = 914,0002 0.412,5002 -0.4

 ≈ 10.86 Marginal productivity of capital

At the current level of utilization of 4,000 units of labor and 2,500 units of  capital, 
each 1-unit increase in labor utilization (keeping capital utilization fixed at 2,500 
units) will increase production by approximately 4.53 units, and each 1-unit  increase 
in capital utilization (keeping labor utilization fixed at 4,000 units) will increase 
production by approximately 10.86 units. The management of the company should 
encourage increased use of capital.

Matched Problem 4 The productivity of an airplane-manufacturing company 
is given approximately by the Cobb–Douglas production function

f1x, y2 = 40x0.3y0.7

(A) Find fx1x, y2 and fy1x, y2.

(B) If the company is currently using 1,500 units of labor and 4,500 units of 
capital, find the marginal productivity of labor and the marginal productivity 
of capital.

(C) For the greatest increase in productivity, should the management of the com-
pany encourage increased use of labor or increased use of capital?

Partial derivatives have simple geometric interpretations, as shown in Figure 2. 
If we hold x fixed at x = a, then fy1a, y2 is the slope of the curve obtained by inter-
secting the surface z = f1x, y2 with the plane x = a. A similar interpretation is given 
to fx1x, b2.

x

y

z

Slope of tangent
line 5 f x(a, b)

Slope of tangent
line 5 f y(a, b)

Curve
z 5 f (a, y)

Curve
z 5 f (x, b)

(a, b, 0)

Surface
z 5 f (x, y)

a
b

Figure 2
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Second-Order Partial Derivatives
The function

z = f1x, y2 = x4 y7

has two first-order partial derivatives:
0z
0x

= fx = fx1x, y2 = 4x3y7  and  
0z
0y

= fy = fy1x, y2 = 7x4y6

Each of these partial derivatives, in turn, has two partial derivatives called second-
order partial derivatives of z = f1x, y2. Generalizing the various notations we have 
for first-order partial derivatives, we write the four second-order partial derivatives of 
z = f1x, y2 = x4y7 as 

Equivalent notations$++++%++++&

  fxx = fxx1x, y2 =
02z

0x2 =
0
0x

 a 0z
0x
b =

0
0x

 14x3y72 = 12x2y7

  fxy = fxy1x, y2 =
02z

0y 0x
=

0
0y

 a 0z
0x
b =

0
0y

 14x3y72 = 28x3y6

  fyx = fyx1x, y2 =
02z

0x 0y
=

0
0x

 a 0z
0y
b =

0
0x

 17x4y62 = 28x3y6

  fyy = fyy1x, y2 =
02z

0y2 =
0
0y

 a 0z
0y
b =

0
0y

 17x4y62 = 42x4y5

In the mixed partial derivative 02z>0y 0x = fxy, we started with z = f1x, y2 and 
first differentiated with respect to x (holding y constant). Then we differentiated with 
respect to y (holding x constant). In the other mixed partial derivative, 02z>0x 0y = fyx, 
the order of differentiation was reversed; however, the final result was the same—that 
is, fxy = fyx. Although it is possible to find functions for which fxy ∙ fyx, such func-
tions rarely occur in applications involving partial derivatives. For all the functions in 
this book, we will assume that fxy = fyx.

In general, we have the following definitions:

DEFINITION Second-Order Partial Derivatives
If z = f1x, y2, then

  fxx = fxx1x, y2 =
02z

0x2 =
0
0x

 a 0z
0x
b

  fxy = fxy1x, y2 =
02z

0y 0x
=

0
0y

 a 0z
0x
b

  fyx = fyx1x, y2 =
02z

0x 0y
=

0
0x

 a 0z
0y
b

  fyy = fyy1x, y2 =
02z

0y2 =
0
0y

 a 0z
0y
b

Second-Order Partial Derivatives For z = f1x, y2 = 3x2 - 2xy3 + 1, find

(A) 
02z

0x 0y
, 

02z
0y 0x

(B) 
02z

0x2 (C) fyx12, 12
EXAMPLE 5
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SOLUTION
(A) First differentiate with respect to y and then with respect to x:

0z
0y

= -6xy2  
02z

0x 0y
=

0
0x

 a 0z
0y
b =

0
0x

 1-6xy22 = -6y2

Now differentiate with respect to x and then with respect to y:

0z
0x

= 6x - 2y3  
02z

0y 0x
=

0
0y

 a 0z
0x
b =

0
0y

 16x - 2y32 = -6y2

(B) Differentiate with respect to x twice:

0z
0x

= 6x - 2y3  
02z

0x2 =
0
0x

 a 0z
0x
b = 6

(C) First find fyx1x, y2; then evaluate the resulting equation at (2, 1). Again, re-
member that fyx signifies differentiation first with respect to y and then with 
respect to x.

fy1x, y2 = -6xy2  fyx1x, y2 = -6y2

and
fyx12, 12 = -6112 2 = -6

Matched Problem 5 For z = f1x, y2 = x3y - 2y4 + 3, find

(A) 
02z

0y 0x
(B) 

02z

0y2

(C) fxy12, 32 (D) fyx12, 32

Although the mixed second-order partial derivatives fxy and fyx are equal for all 
functions considered in this book, it is a good idea to compute both of them, as in 
Example 5A, as a check on your work. By contrast, the other two second-order 
partial derivatives, fxx and fyy, are generally not equal to each other. For example, 
for the function

f1x, y2 = 3x2 - 2xy3 + 1

of Example 5,

fxx = 6  and  fyy = -12xy

CONCEPTUAL  INSIGHT

Exercises 7.2
Skills Warm-up Exercises

 In Problems 1–16, find the indicated derivative. (If necessary, 
review Sections 3.4 and 3.5).

1. f ′1x2 if f1x2 = 6x - 7p + 2

2. f ′1x2 if f1x2 = 4p - 9x + 10

3. f ′1x2 if f1x2 = 2e2 - 5ex + 7x2

4. f ′1x2 if f1x2 = 3x2 + 4ex + e2

5. f ′1x2 if f1x2 = x3 - 8p2x + p3

6. f ′1x2 if f1x2 = 2p3 + px2 - 3x4

7. f ′1x2 if f1x2 = 1e2 + 5x22 7

W

8. f ′1x2 if f1x2 = 14x - 3e2 5

9. 
dz
dx
 if z = ex - 3ex + xe

10. 
dz
dx
 if z = x ln p - p ln x

11. 
dz
dx
 if z = ln1x2 + p22

12. 
dz
dx
 if z = epx2

13. 
dz
dx
 if z = 1x + e2ln x

14. 
dz
dx
 if z = exex
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15. 
dz
dx
 if z =

5x

x2 + p2

16. 
dz
dx
 if z =

px
1 + x

 In Problems 17–24, find the indicated first-order partial deriva-
tive for each function z = f1x, y2.

17. fx1x, y2 if  f1x, y2 = 4x - 3y + 6

18. fx1x, y2 if  f1x, y2 = 7x + 8y - 2

19. fy1x, y2 if  f1x, y2 = x2 - 3xy + 2y2

20. fy1x, y2 if  f1x, y2 = 3x2 + 2xy - 7y2

21. 
0z
0x
 if z = x3 + 4x2y + 2y3

22. 
0z
0y
 if z = 4x2y - 5xy2

23. 
0z
0y
 if z = 15x + 2y2 10

24. 
0z
0x
 if z = 12x - 3y2 8

In Problems 25–32, find the indicated value.

25. fx11, 32 if  f1x, y2 = 5x3y - 4xy2

26. fx14, 12 if  f1x, y2 = x2y2 - 5xy3

27. fy11, 02 if  f1x, y2 = 3xey

28. fy12, 42 if  f1x, y2 = x4 ln y

29. fy12, 12 if  f1x, y2 = ex2
- 4y

30. fy13, 32 if  f1x, y2 = e3x - y2

31. fx11, -12 if  f1x, y2 =
2xy

1 + x2y2

32. fx1-1, 22 if  f1x, y2 =
x2 - y2

1 + x2

In Problems 33–38, M1x, y2 = 68 + 0.3x - 0.8y gives the 
mileage (in mpg) of a new car as a function of tire pressure x (in 
psi) and speed (in mph). Find the indicated quantity (include the 
appropriate units) and explain what it means.

33. M(32, 40) 34. M(22, 40)

35. M(32, 50) 36. M(22, 50)

37. Mx(32, 50) 38. My (32, 50)

 In Problems 39–50, find the indicated second-order partial  
derivative for each function f1x, y2.

39. fxx1x, y2 if  f1x, y2 = 6x - 5y + 3

40. fyx1x, y2 if  f1x, y2 = -2x + y + 8

41. fxy1x, y2 if  f1x, y2 = 4x2 + 6y2 - 10

42. fyy1x, y2 if  f1x, y2 = x2 + 9y2 - 4

43. fxy1x, y2 if  f1x, y2 = exy2

44. fyx1x, y2 if  f1x, y2 = e3x + 2y

A

B

45. fyy1x, y2 if  f1x, y2 =
ln x

y

46. fxx1x, y2 if  f1x, y2 =
3 ln x

y2

47. fxx1x, y2 if  f1x, y2 = 12x + y2 5

48. fyx1x, y2 if  f1x, y2 = 13x - 8y2 6

49. fxy1x, y2 if  f1x, y2 = 1x2 + y42 10

50. fyy1x, y2 if  f1x, y2 = 11 + 2xy22 8

In Problems 51–60, find the indicated function or value if 
C1x, y2 = 3x2 + 10xy - 8y2 + 4x - 15y - 120.

51. Cx1x, y2 52. Cy1x, y2
53. Cx13, -22 54. Cy13, -22
55. Cxx1x, y2 56. Cyy1x, y2
57. Cxy1x, y2 58. Cyx1x, y2
59. Cxx13, -22 60. Cyy13, -22
 In Problems 61–66, S1T, r2 = 501T - 40215 - r2 gives an ice 
cream shop’s daily sales as a function of temperature T (in °F)  
and rain r (in inches). Find the indicated quantity (include the  
appropriate units) and explain what it means.

61. S(60, 2) 62. S(80, 0)

63. Sr (90, 1) 64. ST (90, 1)

65. STr (90, 1) 66. SrT (90, 1)

67. (A) Let f1x, y2 = y3 + 4y2 - 5y + 3. Show that 0f>0x = 0.

(B) Explain why there are an infinite number of functions 
g(x, y) such that 0g>0x = 0.

68. (A) Find an example of a function f(x, y) such that 0f>0x = 3 
and 0f>0y = 2.

(B) How many such functions are there? Explain.

In Problems 69–74, find fxx1x, y2,  fxy1x, y2,  fyx1x, y2, and 
fyy1x, y2 for each function f.

69. f1x, y2 = x2y2 + x3 + y

70. f1x, y2 = x3y3 + x + y2

71. f1x, y2 =
x
y

-
y

x
72. f1x, y2 =

x2

y
-

y2

x

73. f1x, y2 = xexy 74. f1x, y2 = x ln1xy2
75.  For

P1x, y2 = -x2 + 2xy - 2y2 - 4x + 12y - 5

find all values of x and y such that

Px1x, y2 = 0  and  Py1x, y2 = 0

simultaneously.

76. For

C1x, y2 = 2x2 + 2xy + 3y2 - 16x - 18y + 54

find all values of x and y such that

Cx1x, y2 = 0  and  Cy1x, y2 = 0

simultaneously.

C
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77. For

F1x, y2 = x3 - 2x2y2 - 2x - 4y + 10

find all values of x and y such that

Fx1x, y2 = 0  and  Fy1x, y2 = 0

simultaneously.

78. For
G1x, y2 = x2 ln y - 3x - 2y + 1

find all values of x and y such that

Gx1x, y2 = 0  and  Gy1x, y2 = 0

simultaneously.

79.  Let f1x, y2 = 3x2 + y2 - 4x - 6y + 2.

(A) Find the minimum value of f(x, y) when y = 1.

(B) Explain why the answer to part (A) is not the minimum 
value of the function f (x, y).

80.  Let f1x, y2 = 5 - 2x + 4y - 3x2 - y2.

(A) Find the maximum value of f (x, y) when x = 2.

(B) Explain why the answer to part (A) is not the maximum 
value of the function f (x, y).

81. Let f1x, y2 = 4 - x4y + 3xy2 + y5.

(A) Use graphical approximation methods to find c (to three 
decimal places) such that f (c, 2) is the maximum value 
of f (x, y) when y = 2.

(B) Find fx1c, 22 and fy1c, 22.

82.  Let f1x, y2 = ex + 2ey + 3xy2 + 1.

(A) Use graphical approximation methods to find d (to three 
decimal places) such that f (1, d) is the minimum value  
of f (x, y) when x = 1.

(B) Find fx11, d2 and fy11, d2.

83. For f1x, y2 = x2 + 2y2, find

(A) lim
hS0

 
f1x + h, y2 - f1x, y2

h

(B) lim
kS0

 
f1x, y + k2 - f1x, y2

k

84. For f1x, y2 = 2xy2, find

(A) lim
hS0

 
f1x + h, y2 - f1x, y2

h

(B) lim
kS0

 
f1x, y + k2 - f1x, y2

k

Applications
85. Profit function. A firm produces two types of calculators 

each week, x of type A and y of type B. The weekly revenue 
and cost functions (in dollars) are

 R1x, y2 = 80x + 90y + 0.04xy - 0.05x2 - 0.05y2

 C1x, y2 = 8x + 6y + 20,000

Find Px11,200, 1,8002 and Py11,200, 1,8002, and interpret 
the results.

86. Advertising and sales. A company spends $x per week on 
online advertising and $y per week on TV advertising. Its 
weekly sales were found to be given by

S1x, y2 = 10x0.4y0.8

Find Sx13,000, 2,0002 and Sy13,000, 2,0002, and interpret 
the results.

87. Demand equations. A supermarket sells two brands of 
coffee: brand A at $p per pound and brand B at $q per pound. 
The daily demands x and y (in pounds) for brands A and B, 
respectively, are given by

 x = 200 - 5p + 4q

 y = 300 + 2p - 4q

Find 0x>0p and 0y>0p, and interpret the results.

88. Revenue and profit functions. A company manufactures 
10- and 3-speed bicycles. The weekly demand and cost func-
tions are

 p = 230 - 9x + y

 q = 130 + x - 4y

 C1x, y2 = 200 + 80x + 30y

where $p is the price of a 10-speed bicycle, $q is the price 
of a 3-speed bicycle, x is the weekly demand for 10-speed 
bicycles, y is the weekly demand for 3-speed bicycles, and 
C(x, y) is the cost function. Find Rx110, 52 and Px110, 52, 
and interpret the results.

89. Productivity. The productivity of a certain third-world coun-
try is given approximately by the function

f1x, y2 = 10x0.75y0.25

with the utilization of x units of labor and y units of capital.

(A) Find fx1x, y2 and fy1x, y2.

(B) If the country is now using 600 units of labor and 
100 units of capital, find the marginal productivity of 
labor and the marginal productivity of capital.

(C) For the greatest increase in the country’s productivity, 
should the government encourage increased use of labor 
or increased use of capital?

90. Productivity. The productivity of an automobile- 
manufacturing company is given approximately by the  
function

f1x, y2 = 502xy = 50x0.5y0.5

with the utilization of x units of labor and y units of capital.

(A) Find fx1x, y2 and fy1x, y2.

(B) If the company is now using 250 units of labor and 
125 units of capital, find the marginal productivity of 
labor and the marginal productivity of capital.

(C) For the greatest increase in the company’s productivity, 
should the management encourage increased use of labor 
or increased use of capital?

Problems 91–94 refer to the following: If a decrease in demand 
for one product results in an increase in demand for another prod-
uct, the two products are said to be competitive, or substitute, 
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products. (Real whipping cream and imitation whipping cream 
are examples of competitive, or substitute, products.) If a decrease 
in demand for one product results in a decrease in demand for 
another product, the two products are said to be complementary 
products. (Fishing boats and outboard motors are examples of 
complementary products.) Partial derivatives can be used to test 
whether two products are competitive, complementary, or neither. 
We start with demand functions for two products such that the 
demand for either depends on the prices for both:

 x = f1p, q2  Demand function for product A

 y = g1p, q2 Demand function for product B

The variables x and y represent the number of units demanded of 
products A and B, respectively, at a price p for 1 unit of product 
A and a price q for 1 unit of product B. Normally, if the price of 
A increases while the price of B is held constant, then the de-
mand for A will decrease; that is, fp1p, q2 6 0. Then, if A and 
B are competitive products, the demand for B will increase; that 
is, gp1p, q2 7 0. Similarly, if the price of B increases while the 
price of A is held constant, the demand for B will decrease; that 
is, gq1p, q2 6 0. Then, if A and B are competitive products, the 
demand for A will increase; that is, fq1p, q2 7 0. Reasoning simi-
larly for complementary products, we arrive at the following test:

Test for Competitive and Complementary Products
Partial Derivatives Products A and B

fq1p, q2 7 0 and gp1p, q2 7 0 Competitive (substitute)

fq1p, q2 6 0 and gp1p, q2 6 0 Complementary

fq1p, q2 Ú 0 and gp1p, q2 … 0 Neither

fq1p, q2 … 0 and gp1p, q2 Ú 0 Neither

Use this test in Problems 91–94 to determine whether the indi-
cated products are competitive, complementary, or neither.

91. Product demand. The weekly demand equations for the sale 
of butter and margarine in a supermarket are

 x = f1p, q2 = 8,000 - 0.09p2 + 0.08q2  Butter

 y = g1p, q2 = 15,000 + 0.04p2 - 0.3q2 Margarine

92. Product demand. The daily demand equations for the sale of 
brand A coffee and brand B coffee in a supermarket are

 x = f1p, q2 = 200 - 5p + 4q  Brand A coffee

 y = g1p, q2 = 300 + 2p - 4q Brand B coffee

93. Product demand. The monthly demand equations for the 
sale of skis and ski boots in a sporting goods store are

 x = f1p, q2 = 800 - 0.004p2 - 0.003q2  Skis

 y = g1p, q2 = 600 - 0.003p2 - 0.002q2 Ski boots

94. Product demand. The monthly demand equations for the sale 
of tennis rackets and tennis balls in a sporting goods store are

 x = f1p, q2 = 500 - 0.5p - q2  Tennis rackets

 y = g1p, q2 = 10,000 - 8p - 100q2 Tennis balls (cans)

95. Medicine. The following empirical formula relates the sur-
face area A (in square inches) of an average human body to 
its weight w (in pounds) and its height h (in inches):

A = f1w, h2 = 15.64w

0.425h0.725

(A) Find f
w
1w, h2 and fh1w, h2.

(B) For a 65-pound child who is 57 inches tall, find 
f
w
165, 572 and fh165, 572, and interpret the results.

96. Blood flow. Poiseuille’s law states that the resistance R for 
blood flowing in a blood vessel varies directly as the length L 
of the vessel and inversely as the fourth power of its radius r. 
Stated as an equation,

R1L, r2 = k 
L

r4  k a constant

Find RL14, 0.22 and Rr14, 0.22, and interpret the results.

97. Physical anthropology. Anthropologists use the cephalic 
index C, which varies directly as the width W of the head and 
inversely as the length L of the head (both viewed from the 
top). In terms of an equation,

C1W, L2 = 100 
W
L

where

 W = width in inches

 L = length in inches

Find CW16, 82 and CL16, 82, and interpret the results.

L

W
Top of
Head

98. Safety research. Under ideal conditions, if a person driving 
a car slams on the brakes and skids to a stop, the length of the 
skid marks (in feet) is given by the formula

L1w, v2 = kwv

2

where
 k = constant

 w = weight of car in pounds

 v = speed of car in miles per hour

For k = 0.000 013 3, find L
w
12,500, 602 and L

v
12,500, 602, 

and interpret the results.

Answers to Matched Problems
1. (A) 0z>0y = -3x2 + 5 (B) fy12, 32 = -7

2. (A) 10x1x2 + 2xy2 4 (B) 10
3.  Py125, 102 = 10: At a production level of x = 25 and 

y = 10, increasing y by 1 unit and holding x fixed at 25 will  
increase profit by approximately $10; Py125, 152 = -110;  
at a production level of x = 25 and y = 15, increasing y by  
1 unit and holding x fixed at 25 will decrease profit by  
approximately $110

4. (A) fx1x, y2 = 12x-0.7y0.7; fy1x, y2 = 28x0.3y-0.3

(B)  Marginal productivity of labor ≈  25.89; marginal pro-
ductivity of capital ≈  20.14

(C) Labor
5. (A) 3x2 (B) -24y2 (C) 12 (D) 12
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In addition, we will not concern ourselves with boundary points or absolute 
maxima–minima theory. Despite these restrictions, the procedure we will describe 
will help us solve a large number of useful problems.

What does it mean for f1a, b2 to be a local maximum or a local minimum? We 
say that f1a, b2 is a local maximum if there exists a circular region in the domain of 
f with 1a, b2 as the center, such that

f1a, b2 Ú f1x, y2
for all 1x, y2 in the region. Similarly, we say that f 1a, b 2  is a local minimum if there 
exists a circular region in the domain of f with 1a, b2 as the center, such that

f1a, b2 … f1x, y2
for all 1x, y2 in the region. Figure 2A illustrates a local maximum, Figure 2B a local 
minimum, and Figure 2C a saddle point, which is neither a local maximum nor a lo-
cal minimum.

We are now ready to undertake a brief, but useful, analysis of local maxima and 
minima for functions of the type z = f1x, y2. We will extend the second-derivative 
test developed for functions of a single independent variable. We assume that all 
second-order partial derivatives exist for the function f in some circular region in the 
xy plane. This guarantees that the surface z = f1x, y2 has no sharp points, breaks, 
or ruptures. In other words, we are dealing only with smooth surfaces with no edges 
(like the edge of a box), breaks (like an earthquake fault), or sharp points (like the 
bottom point of a golf tee). (See Fig. 1.)

7.3 Maxima and Minima

YES

Figure 1
NO NO NO

(a, b, 0)

(A)

z

x
y

Figure 2
(B)

(a, b, 0)

z

x
y

(C)

(a, b, 0)

z

x
y

What happens to fx1a, b2 and fy1a, b2 if f1a, b2 is a local minimum or a local 
maximum and the partial derivatives of f exist in a circular region containing 1a, b2? 
Figure 2 suggests that fx1a, b2 = 0 and fy1a, b2 = 0, since the tangent lines to the 
given curves are horizontal. Theorem 1 indicates that our intuitive reasoning is correct.

If y = f1x2 is a function of a 
single variable x, then f1c2 is a 
local maximum if there exists an 
interval (m, n) containing c such that 
f1c2 Ú f1x2 for all x in (m, n).

Reminder
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The converse of this theorem is false. If fx1a, b2 = 0 and fy1a, b2 = 0, then 
f1a, b2 may or may not be a local extremum; for example, the point 1a, b, f1a, b22 
may be a saddle point (see Fig. 2C).

Theorem 1 gives us necessary (but not sufficient) conditions for f1a, b2 to be a 
local extremum. We find all points 1a, b2 such that fx1a, b2 = 0 and fy1a, b2 = 0 
and test these further to determine whether f1a, b2 is a local extremum or a saddle 
point. Points 1a, b2 such that conditions (1) hold are called critical points.

THEOREM 1 Local Extrema and Partial Derivatives
Let f1a, b2 be a local extremum (a local maximum or a local minimum) for the 
function f. If both fx and fy exist at 1a, b2, then

 fx1a, b2 = 0  and  fy1a, b2 = 0 (1)

(A) Let f1x, y2 = y2 + 1. Explain why f1x, y2 has a local minimum at every point 
on the x axis. Verify that every point on the x axis is a critical point. Explain why 
the graph of z = f1x, y2 could be described as a trough.

(B) Let g1x, y2 = x3. Show that every point on the y axis is a critical point. Ex-
plain why no point on the y axis is a local extremum. Explain why the graph of 
z = g1x, y2 could be described as a slide.

Explore and Discuss 1

The next theorem, using second-derivative tests, gives us sufficient conditions for 
a critical point to produce a local extremum or a saddle point.

THEOREM 2 Second-Derivative Test for Local Extrema
If

1. z = f1x, y2
2. fx1a, b2 = 0 and fy1a, b2 = 0 [1a, b2 is a critical point]
3. All second-order partial derivatives of f exist in some circular region containing 

1a, b2 as center.
4. A = fxx1a, b2, B = fxy1a, b2, C = fyy1a, b2

Then

Case 1. If AC - B2 7 0 and A 6 0, then f1a, b2 is a local maximum.

Case 2. If AC - B2 7 0 and A 7 0, then f1a, b2 is a local minimum.

Case 3. If AC - B2 6 0, then f has a saddle point at 1a, b2.

Case 4. If AC - B2 = 0, the test fails.

The condition A = fxx1a, b2 6 0 in case 1 of Theorem 2 is analogous to the condi-
tion f ″1c2 6 0 in the second-derivative test for local extrema for a function of one 
variable (Section 4.5), which implies that the function is concave downward and 
therefore has a local maximum. Similarly, the condition A = fxx1a, b2 7 0 in case 
2 is analogous to the condition f ″1c2 7 0 in the earlier second-derivative test, which 
implies that the function is concave upward and therefore has a local minimum.

CONCEPTUAL  INSIGHT
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To illustrate the use of Theorem 2, we find the local extremum for a very simple 
function whose solution is almost obvious: z = f1x, y2 = x2 + y2 + 2. From the 
function f itself and its graph (Fig. 3), it is clear that a local minimum is found at 
10, 02. Let us see how Theorem 2 confirms this observation.

Step 1  Find critical points: Find 1x, y2 such that fx1x, y2 = 0 and fy1x, y2 = 0  
simultaneously:

 fx1x, y2 = 2x = 0   fy1x, y2 = 2y = 0

 x = 0         y = 0

The only critical point is 1a, b2 = 10, 02.

Step 2 Compute A = fxx10, 02, B = fxy10, 02, and C = fyy10, 02:

 fxx1x, y2 = 2;   so   A = fxx10, 02 = 2

 fxy1x, y2 = 0;   so   B = fxy10, 02 = 0

 fyy1x, y2 = 2;   so   C = fyy10, 02 = 2

Step 3  Evaluate AC - B2 and try to classify the critical point 10, 02 by using  
Theorem 2:

AC - B2 = 122122 - 102 2 = 4 7 0  and  A = 2 7 0

Therefore, case 2 in Theorem 2 holds. That is, f10, 02 = 2 is a local  
minimum.

We will now use Theorem 2 to analyze extrema without the aid of graphs.

x

y

z

444444444

6

2
2

222222222222222222222222222222

Figure 3

Finding Local Extrema Use Theorem 2 to find local extrema of

f1x, y2 = -x2 - y2 + 6x + 8y - 21

SOLUTION
Step 1  Find critical points: Find 1x, y2 such that fx1x, y2 = 0 and fy1x, y2 = 0 

simultaneously:

 fx1x, y2 = -2x + 6 = 0   fy1x, y2 = -2y + 8 = 0
 x = 3           y = 4

The only critical point is 1a, b2 = 13, 42.
Step 2 Compute A = fxx13, 42, B = fxy13, 42, and C = fyy13, 42:

 fxx1x, y2 = -2;   so   A = fxx13, 42 = -2

 fxy1x, y2 = 0;    so   B = fxy13, 42 = 0

 fyy1x, y2 = -2;   so   C = fyy13, 42 = -2

Step 3  Evaluate AC - B2 and try to classify the critical point 13, 42 by using  
Theorem 2:

AC - B2 = 1-221-22 - 102 2 = 4 7 0  and  A = -2 6 0
Therefore, case 1 in Theorem 2 holds, and f13, 42 = 4 is a local maximum.

Matched Problem 1 Use Theorem 2 to find local extrema of

f1x, y2 = x2 + y2 - 10x - 2y + 36

EXAMPLE 1

Finding Local Extrema: Multiple Critical Points Use Theorem 2 to find local ex-
trema of

f1x, y2 = x3 + y3 - 6xy

EXAMPLE 2
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SOLUTION
Step 1 Find critical points of f1x, y2 = x3 + y3 - 6xy:

  fx1x, y2 = 3x2 - 6y = 0  Solve for y.

 6y = 3x2

 y = 1
2 x2  (2)

  fy1x, y2 = 3y2 - 6x = 0

 3y2 = 6x  Use equation (2) to eliminate y.

 311
2 x22 2 = 6x

 34x4 = 6x  Solve for x.

 3x4 - 24x = 0

 3x1x3 - 82 = 0

 x = 0  or  x = 2

 y = 0  or  y = 1
2122 2 = 2

The critical points are 10, 02 and 12, 22.
Since there are two critical points, steps 2 and 3 must be performed twice.

TEST (0, 0)
Step 2 Compute A = fxx10, 02, B = fxy10, 02, and C = fyy10, 02:

  fxx1x, y2 = 6x;   so   A = fxx10, 02 = 0

  fxy1x, y2 = -6;   so   B = fxy10, 02 = -6

  fyy1x, y2 = 6y;   so   C = fyy10, 02 = 0

Step 3  Evaluate AC - B2 and try to classify the critical point 10, 02 by using  
Theorem 2:

AC - B2 = 102102 - 1-62 2 = -36 6 0
Therefore, case 3 in Theorem 2 applies. That is, f has a saddle point at 10, 02.

Now we will consider the second critical point, 12, 22:

TEST (2, 2)
Step 2 Compute A = fxx12, 22, B = fxy12, 22, and C = fyy12, 22:

  fxx1x, y2 = 6x;   so   A = fxx12, 22 = 12

  fxy1x, y2 = -6;   so   B = fxy12, 22 = -6

  fyy1x, y2 = 6y;   so   C = fyy12, 22 = 12

Step 3  Evaluate AC - B2 and try to classify the critical point 12, 22 by using  
Theorem 2:

AC - B2 = 11221122 - 1-62 2 = 108 7 0  and  A = 12 7 0

So case 2 in Theorem 2 applies, and f12, 22 = -8 is a local minimum.

Our conclusions in Example 2 may be confirmed geometrically by graph-
ing cross sections of the function f. The cross sections of f in the planes y = 0, 
x = 0, y = x, and y = -x [each of these planes contains 10, 02] are represented by 
the graphs of the functions f1x, 02 = x3, f10, y2 = y3, f1x, x2 = 2x3 - 6x2, and 
f1x, -x2 = 6x2, respectively, as shown in Figure 4A (note that the first two func-
tions have the same graph). The cross sections of f in the planes y = 2, x = 2, y = x, 
and y = 4 - x [each of these planes contains 12, 22] are represented by the graphs 
of f1x, 22 = x3 - 12x + 8, f12, y2 = y3 - 12y + 8, f1x, x2 = 2x3 - 6x2, and 
f1x, 4 - x2 = x3 + 14 - x2 3 + 6x2 - 24x, respectively, as shown in Figure 4B 
(the first two functions have the same graph). Figure 4B illustrates the fact that since 
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f has a local minimum at 12, 22, each of the cross sections of f through 12, 22 has 
a local minimum of -8 at 12, 22. Figure 4A, by contrast, indicates that some cross 
sections of f through 10, 02 have a local minimum, some a local maximum, and some 
neither one, at 10, 02.

210

22

10

2

(A)  y1 5 x3

        y2 5 2x3 2 6x2

        y3 5 6x2

Figure 4

(B)  y1 5 x3 2 12x 1 8
        y2 5 2x3 2 6x2

        y3 5 x3 1 (4 2 x)3 1 6x2 2 24x

210

0

10

4

Profit Suppose that the surfboard company discussed earlier has developed the 
yearly profit equation

P1x, y2 = -22x2 + 22xy - 11y2 + 110x - 44y - 23

where x is the number (in thousands) of standard surfboards produced per year, y 
is the number (in thousands) of competition surfboards produced per year, and P 
is profit (in thousands of dollars). How many of each type of board should be pro-
duced per year to realize a maximum profit? What is the maximum profit?

SOLUTION
Step 1 Find critical points:

 Px1x, y2 = -44x + 22y + 110 = 0

 Py1x, y2 = 22x - 22y - 44 = 0

Solving this system, we obtain 13, 12 as the only critical point.

Step 2 Compute A = Pxx13, 12, B = Pxy13, 12, and C = Pyy13, 12:

 Pxx1x, y2 = -44;   so   A = Pxx13, 12 = -44

 Pxy1x, y2 = 22;   so   B = Pxy13, 12 = 22

 Pyy1x, y2 = -22;   so   C = Pyy13, 12 = -22

Step 3  Evaluate AC - B2 and try to classify the critical point 13, 12 by using  
Theorem 2:

AC - B2 = 1-4421-222 - 222 = 484 7 0  and  A = -44 6 0

Therefore, case 1 in Theorem 2 applies. That is, P13, 12 = 120 is a local 
maximum. A maximum profit of $120,000 is obtained by producing and 
selling 3,000 standard boards and 1,000 competition boards per year.

Matched Problem 3 Repeat Example 3 with

P1x, y2 = -66x2 + 132xy - 99y2 + 132x - 66y - 19

EXAMPLE 3

Matched Problem 2 Use Theorem 2 to find local extrema for 

f1x, y2 = x3 + y2 - 6xy.
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Package Design The packaging department in a company is to design a rectan-
gular box with no top and a partition down the middle. The box must have a volume 
of 48 cubic inches. Find the dimensions that will minimize the area of material used 
to construct the box.

SOLUTION Refer to Figure 5. The area of material used in constructing this box is

    M = xy + 2xz + 3yz (3)
The volume of the box is
    V = xyz = 48 (4)

Since Theorem 2 applies only to functions with two independent variables, we must 
use equation (4) to eliminate one of the variables in equation (3):

 M = xy + 2xz + 3yz  Substitute z = 48>xy.

 = xy + 2xa48
xy

b + 3ya48
xy

b

 = xy +
96
y

+
144

x

So we must find the minimum value of

M1x, y2 = xy +
96
y

+
144

x
  x 7 0  and  y 7 0

Step 1 Find critical points:

 Mx1x, y2 = y -
144

x2 = 0

 y =
144

x2  (5)

 My1x, y2 = x -
96

y2 = 0

 x =
96

y2  Solve for y  

2.

 y2 =
96
x

 
 Use equation (5) to eliminate  
y and solve for x.

 a144

x2 b
2

=
96
x

 
20,736

x4 =
96
x

  Multiply both sides by x4>96  
(recall that x 7 0).

 x3 =
20,736

96
= 216

 x = 6  Use equation (5) to find y.

 y =
144
36

= 4

Therefore, 16, 42 is the only critical point.

EXAMPLE 4

x y

z

Figure 5

Sides,  
partitionBase

Front,  
back
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Step 2 Compute A = Mxx16, 42, B = Mxy16, 42, and C = Myy16, 42:

 Mxx1x, y2 =
288

x3 ;   so   A = Mxx16, 42 = 288
216 = 4

3

 Mxy1x, y2 = 1;   so   B = Mxy16, 42 = 1

 Myy1x, y2 =
192

y3 ;   so   C = Myy16, 42 = 192
64 = 3

Step 3  Evaluate AC - B2 and try to classify the critical point 16, 42 by using  
Theorem 2:

AC - B2 = 14
32 132 - 112 2 = 3 7 0  and  A = 4

3 7 0

Case 2 in Theorem 2 applies, and M1x, y2 has a local minimum at 16, 42.  
If x = 6 and y = 4, then

z =
48
xy

=
48

162142 = 2

The dimensions that will require the least material are 6 inches by 4 inches 
by 2 inches (see Fig. 6).

Matched Problem 4 If the box in Example 4 must have a volume of 384 cubic 
inches, find the dimensions that will require the least material.

2 inches

6 inches
4 inches

Figure 6

Exercises 7.3
Skills Warm-up Exercises

 In Problems 1–8, find f ′(0), f ″(0), and determine whether f has a 
local minimum, local maximum, or neither at x = 0. (If neces-
sary, review the second derivative test for local extrema in Section 
4.5).

1. f1x2 = 2x3 - 9x2 + 4 2. f1x2 = 4x3 + 6x2 + 100

3. f1x2 =
1

1 - x2 4. f1x2 =
1

1 + x2

5. f1x2 = e-x2
6. f1x2 = ex2

7. f1x2 = x3 - x2 + x - 1 8. f1x2 = 13x + 12 2

 In Problems 9–16, find fx1x, y2 and fy1x, y2, and explain, using 
Theorem 1, why f1x, y2 has no local extrema.

9. f1x, y2 = 4x + 5y - 6

10. f1x, y2 = 10 - 2x - 3y + x2

11. f1x, y2 = 3.7 - 1.2x + 6.8y + 0.2y3 + x4

12. f1x, y2 = x3 - y2 + 7x + 3y + 1

13. f1x, y2 = -x2 + 2xy - y2 - 4x + 5y

14. f1x, y2 = 3x2 - 12xy + 12y2 + 8x + 9y - 15

15. f1x, y2 = yex - 3x + 4y

16. f1x, y2 = y + y2 ln x

In Problems 17–36, use Theorem 2 to find the local extrema.

17. f1x, y2 = x2 + 8x + y2 + 25

W

A

18. f1x, y2 = 15x2 - y2 - 10y

19. f1x, y2 = 8 - x2 + 12x - y2 - 2y

20. f1x, y2 = x2 + y2 + 6x - 8y + 10

21. f1x, y2 = x2 + 3xy + 2y2 + 5

22. f1x, y2 = 4x2 - xy + y2 + 12

23. f1x, y2 = 100 + 6xy - 4x2 - 3y2

24. f1x, y2 = 5x2 - y2 + 2y + 6

25. f1x, y2 = x2 + xy + y2 - 7x + 4y + 9

26. f1x, y2 = -x2 + 2xy - 2y2 - 20x + 34y + 40

27. f1x, y2 = exy

28. f1x, y2 = x2y - xy2

29. f1x, y2 = x3 + y3 - 3xy

30. f1x, y2 = 2y3 - 6xy - x2

31. f1x, y2 = 2x4 + y2 - 12xy

32. f1x, y2 = 16xy - x4 - 2y2

33. f1x, y2 = x3 - 3xy2 + 6y2

34. f1x, y2 = 2x2 - 2x2y + 6y3

35. f1x, y2 = xey + xy + 1

36. f1x, y2 = y ln x + 3xy

37.  Explain why f1x, y2 = x2 has a local extremum at infinitely 
many points.

C

B
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38. (A) Find the local extrema of the functions 
f1x, y2 = x + y, g1x, y2 = x2 + y2, and 
h1x, y2 = x3 + y3.

(B) Discuss the local extrema of the function 
k1x, y2 = xn + yn, where n is a positive integer.

39. (A) Show that (0, 0) is a critical point of the function 
f1x, y2 = x4ey + x2y4 + 1, but that the second-  
derivative test for local extrema fails.

(B) Use cross sections, as in Example 2, to decide whether 
f has a local maximum, a local minimum, or a saddle 
point at (0, 0).

40. (A) Show that (0, 0) is a critical point of the function 
g1x, y2 = exy2

+ x2y3 + 2, but that the second-  
derivative test for local extrema fails.

(B) Use cross sections, as in Example 2, to decide whether 
g has a local maximum, a local minimum, or a saddle 
point at (0, 0).

Applications
41. Product mix for maximum profit. A firm produces two 

types of earphones per year: x thousand of type A and y thou-
sand of type B. If the revenue and cost equations for the year 
are (in millions of dollars)

 R1x, y2 = 2x + 3y

 C1x, y2 = x2 - 2xy + 2y2 + 6x - 9y + 5

determine how many of each type of earphone should be 
produced per year to maximize profit. What is the maximum 
profit?

42. Automation–labor mix for minimum cost. The annual 
labor and automated equipment cost (in millions of dollars) 
for a company’s production of HDTVs is given by

C1x, y2 = 2x2 + 2xy + 3y2 - 16x - 18y + 54

where x is the amount spent per year on labor and y is the 
amount spent per year on automated equipment (both in mil-
lions of dollars). Determine how much should be spent on each 
per year to minimize this cost. What is the minimum cost?

43. Maximizing profit. A store sells two brands of camping 
chairs. The store pays $60 for each brand A chair and $80 for 
each brand B chair. The research department has estimated 
the weekly demand equations for these two competitive 
products to be

 x = 260 - 3p + q Demand equation for brand A

 y = 180 + p - 2q Demand equation for brand B

where p is the selling price for brand A and q is the selling 
price for brand B.

(A) Determine the demands x and y when p = $100 and 
q = $120; when p = $110 and q = $110.

(B) How should the store price each chair to maximize 
weekly profits? What is the maximum weekly profit? 
[Hint: C = 60x + 80y, R = px + qy, and P = R - C.]

44. Maximizing profit. A store sells two brands of laptop sleeves. 
The store pays $25 for each brand A sleeve and $30 for each 
brand B sleeve. A consulting firm has estimated the daily de-
mand equations for these two competitive products to be

 x = 130 - 4p + q   Demand equation for brand A

 y = 115 + 2p - 3q Demand equation for brand B

where p is the selling price for brand A and q is the selling 
price for brand B.

(A) Determine the demands x and y when p = $40 and 
q = $50; when p = $45 and q = $55.

(B) How should the store price each brand of sleeve to 
maximize daily profits? What is the maximum daily 
profit? [Hint: C = 25x + 30y, R = px + qy, and 
P = R - C.]

45. Minimizing cost. A satellite TV station is to be located at 
P1x, y2 so that the sum of the squares of the distances from 
P to the three towns A, B, and C is a minimum (see figure). 
Find the coordinates of P, the location that will minimize the 
cost of providing satellite TV for all three towns.

5

5

10

x

y

B(2, 6)

A(0, 0) C(10, 0)

P(x, y)

46. Minimizing cost. Repeat Problem 45, replacing the coordi-
nates of B with B16, 92 and the coordinates of C with C19, 02.

47. Minimum material. A rectangular box with no top and 
two parallel partitions (see figure) must hold a volume of 64 
cubic inches. Find the dimensions that will require the least 
material.

48. Minimum material. A rectangular box with no top and two 
intersecting partitions (see figure) must hold a volume of 72 
cubic inches. Find the dimensions that will require the least 
material.

M07_BARN6152_14_GE_C07.indd   507 22/11/18   11:19 PM
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49. Maximum volume. A mailing service states that a rectan-
gular package cannot have the sum of its length and girth 
exceed 120 inches (see figure). What are the dimensions of 
the largest (in volume) mailing carton that can be constructed 
to meet these restrictions?

Length

Girth

50. Maximum shipping volume. A shipping box is to be rein-
forced with steel bands in all three directions, as shown in the 
figure. A total of 150 inches of steel tape is to be used, with 6 
inches of waste because of a 2-inch overlap in each direction. 

Find the dimensions of the box with maximum volume that 
can be taped as described.

x

y

z

Answers to Matched Problems
1. f15, 12 = 10 is a local minimum
2.  f has a saddle point at (0, 0); f16, 182 = -108 is a local 

minimum
3.  Local maximum for x = 2 and y = 1; P12, 12 = 80; a 

maximum profit of $80,000 is obtained by producing and 
selling 2,000 standard boards and 1,000 competition boards

4. 12 in. by 8 in. by 4 in.

Functions of Two Independent Variables
We now consider a powerful method of solving a certain class of maxima–minima 
problems. Joseph Louis Lagrange (1736–1813), an eighteenth-century French math-
ematician, discovered this method, called the method of Lagrange multipliers. We 
introduce the method through an example.

A rancher wants to construct two feeding pens of the same size along an existing 
fence (see Fig. 1). If the rancher has 720 feet of fencing materials available, how long 
should x and y be in order to obtain the maximum total area? What is the maximum 
area?

The total area is given by

f1x, y2 = xy

which can be made as large as we like, provided that there are no restrictions on x and 
y. But there are restrictions on x and y, since we have only 720 feet of fencing. The 
variables x and y must be chosen so that

3x + y = 720

This restriction on x and y, called a constraint, leads to the following maxima– 
minima problem:

 Maximize f1x, y2 = xy  (1)

 subject to 3x + y = 720,  or  3x + y - 720 = 0 (2)

This problem is one of a general class of problems of the form

 Maximize 1or minimize2  z = f1x, y2  (3)

 subject to    g1x, y2 = 0 (4)

Of course, we could try to solve equation (4) for y in terms of x, or for x in terms of y, then 
substitute the result into equation (3), and use methods developed in Section 4.5 for func-
tions of a single variable. But what if equation (4) is more complicated than equation (2), 
and solving for one variable in terms of the other is either very difficult or impossible? In 

7.4 Maxima and Minima Using Lagrange Multipliers
■■ Functions of Two Independent 
Variables

■■ Functions of Three Independent 
Variables

x

x

Existing
fence

y

Figure 1
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the method of Lagrange multipliers, we will work with g1x, y2 directly and avoid solving 
equation (4) for one variable in terms of the other. In addition, the method generalizes to 
functions of arbitrarily many variables subject to one or more constraints.

Now to the method: We form a new function F, using functions f and g in equa-
tions (3) and (4), as follows:

 F1x, y, l2 = f1x, y2 + lg1x, y2 (5)

Here, l (the Greek lowercase letter lambda) is called a Lagrange multiplier. 
Theorem 1 gives the basis for the method.

THEOREM 1 Method of Lagrange Multipliers for Functions of Two Variables
Any local maxima or minima of the function z = f1x, y2 subject to the constraint 
g1x, y2 = 0 will be among those points 1x0, y02 for which 1x0, y0, l02 is a solution 
of the system

 Fx1x, y, l2 = 0

 Fy1x, y, l2 = 0

 Fl1x, y, l2 = 0

where F1x, y, l2 = f1x, y2 + lg1x, y2, provided that all the partial derivatives exist.

We now use the method of Lagrange multipliers to solve the fence problem.

Step 1 Formulate the problem in the form of equations (3) and (4):

 Maximize f1x, y2 = xy

 subject to g1x, y2 = 3x + y - 720 = 0

Step 2 Form the function F, introducing the Lagrange multiplier l:

 F1x, y, l2 = f1x, y2 + lg1x, y2
 = xy + l13x + y - 7202

Step 3  Solve the system Fx = 0, Fy = 0, Fl = 0 (the solutions are critical  
points of F ):

 Fx = y + 3l = 0

 Fy = x + l = 0

 Fl = 3x + y - 720 = 0

From the first two equations, we see that

 y = -3l

 x = -l

Substitute these values for x and y into the third equation and solve for l:

 -3l - 3l = 720

 -6l = 720

 l = -120

So
 y = -31-1202 = 360 feet

 x = - 1-1202 = 120 feet

and 1x0, y0, l02 = 1120, 360, -1202 is the only critical point of F.

Step 4  According to Theorem 1, if the function f1x, y2, subject to the constraint 
g1x, y2 = 0, has a local maximum or minimum, that maximum or minimum 
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must occur at x = 120, y = 360. Although it is possible to develop a test 
similar to Theorem 2 in Section 7.3 to determine the nature of this local extre-
mum, we will not do so. [Note that Theorem 2 cannot be applied to f1x, y2 at 
(120, 360), since this point is not a critical point of the unconstrained function 
f1x, y2.] We simply assume that the maximum value of f1x, y2 must occur for 
x = 120, y = 360.

 Max f1x, y2 = f1120, 3602
 = 1120213602 = 43,200 square feet

The key steps in applying the method of Lagrange multipliers are as follows:

PROCEDURE Method of Lagrange Multipliers: Key Steps
Step 1 Write the problem in the form

 Maximize 1or minimize2 z = f1x, y2
subject to   g1x, y2 = 0

Step 2 Form the function F:

F1x, y, l2 = f1x, y2 + lg1x, y2
Step 3 Find the critical points of F; that is, solve the system

 Fx1x, y, l2 = 0

 Fy1x, y, l2 = 0

 Fl1x, y, l2 = 0

Step 4 If 1x0, y0, l02 is the only critical point of F, we assume that 1x0, y02 will 
always produce the solution to the problems we consider. If F has more than 
one critical point, we evaluate z = f1x, y2 at 1x0, y02 for each critical point 
1x0, y0, l02 of F. For the problems we consider, we assume that the largest 
of these values is the maximum value of f1x, y2, subject to the constraint 
g1x, y2 = 0, and the smallest is the minimum value of f1x, y2, subject to 
the constraint g1x, y2 = 0.

Minimization Subject to a Constraint Minimize f1x, y2 = x2 + y2 subject to 
x + y = 10.

SOLUTION
Step 1       Minimize  f1x, y2 = x2 + y2

 subject to g1x, y2 = x + y - 10 = 0

Step 2       F1x, y, l2 = x2 + y2 + l1x + y - 102
Step 3           Fx = 2x + l = 0

 Fy = 2y + l = 0
 Fl = x + y - 10 = 0

From the first two equations, x = -l>2 and y = -l>2. Substituting these 
values into the third equation, we obtain

 -  
l

2
-  

l

2
= 10

 -l = 10
 l = -10

The only critical point is 1x0, y0, l02 = 15, 5, -102.

EXAMPLE 1
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Step 4  Since 15, 5, -102 is the only critical point of F, we conclude that (see  
step 4 in the box)

Min f1x, y2 = f15, 52 = 152 2 + 152 2 = 50

 Since g1x, y2 in Example 1 has a relatively simple form, an alternative to the 
method of Lagrange multipliers is to solve g1x, y2 = 0 for y and then substitute 
into f1x, y2 to obtain the function h1x2 = f1x, 10 - x2 = x2 + 110 - x2 2 in the 
single variable x. Then we minimize h (see Fig. 2). From Figure 2, we conclude that 
min f1x, y2 = f15, 52 = 50. This technique depends on being able to solve the con-
straint for one of the two variables and so is not always available as an alternative to 
the method of Lagrange multipliers.

Matched Problem 1 Maximize f1x, y2 = 25 - x2 - y2 subject to x + y = 4.

0
0

100

8

Figure 2 h 1x 2 ∙ x2 ∙ 110 ∙ x 22

Figures 3 and 4 illustrate the results obtained in Example 1 and Matched 
Problem  1, respectively.

g(x, y) 5 x 1 y 2 10 5 0

z

x

y
(5, 5, 0)

f (x, y) 5 x2 2 y2

Figure 3
g(x, y) 5 x 1 y 2 4 5 0

z

x

y

f (x, y) 5 25 2 x2 2 y2

(2, 2, 0)

Figure 4

Consider the problem of minimizing f1x, y2 = 3x2 + 5y2 subject to the constraint 
g1x, y2 = 2x + 3y - 6 = 0.
(A) Compute the value of f1x, y2 when x and y are integers, 0 …  x …  3, 0 …  y …  2. 

Record your answers in the empty boxes next to the points (x, y) in Figure 5.

(B) Graph the constraint g1x, y2 = 0.

(C) Estimate the minimum value of f on the basis of your graph and the computa-
tions from part (A).

(D) Use the method of Lagrange multipliers to solve the minimization problem.

Explore and Discuss 1

x

y

2

1

10 2 3

47

32

27

Figure 5

Productivity The Cobb–Douglas production function for a new product is given by

N1x, y2 = 16x0.25y0.75

where x is the number of units of labor and y is the number of units of capital re-
quired to produce N1x, y2 units of the product. Each unit of labor costs $50 and each 
unit of capital costs $100. If $500,000 has been budgeted for the production of this 
product, how should that amount be allocated between labor and capital in order to 
maximize production? What is the maximum number of units that can be produced?

EXAMPLE 2
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SOLUTION The total cost of using x units of labor and y units of capital is 
50x + 100y. Thus, the constraint imposed by the $500,000 budget is

50x + 100y = 500,000

Step 1     Maximize N1x, y2 = 16x0.25y0.75

subject to g1x, y2  = 50x + 100y - 500,000 = 0

Step 2     F1x, y, l2 = 16x0.25y0.75 + l150x + 100y - 500,0002
Step 3         Fx = 4x-0.75y0.75 + 50l = 0

 Fy = 12x0.25y-0.25 + 100l = 0

 Fl = 50x + 100y - 500,000 = 0
From the first two equations,

l = -  2
25 x-0.75y0.75  and  l = -  3

25 x0.25y-0.25

Therefore,

 -  2
25 x-0.75y0.75 = -  3

25 x0.25y-0.25  Multiply both sides by x0.75 y0.25.

 - 2
25 y = -  3

25 x  (We can assume that x ∙ 0 and y ∙ 0.)

 y = 3
2 x

Now substitute for y in the third equation and solve for x:

 50x + 10013
2 x2 - 500,000 = 0

 200x = 500,000

 x = 2,500

So

y = 3
212,5002 = 3,750

and
l = -  2

2512,5002 -0.7513,7502 0.75 ≈ -0.1084

The only critical point of F is 12,500, 3,750, -0.10842.

Step 4  Since F has only one critical point, we conclude that maximum productivity 
occurs when 2,500 units of labor and 3,750 units of capital are used (see step 
4 in the method of Lagrange multipliers).

 Max N1x, y2 = N12,500, 3,7502
 = 1612,5002 0.2513,7502 0.75

 ≈ 54,216 units

The negative of the value of the Lagrange multiplier found in step 3 is called the 
marginal productivity of money and gives the approximate increase in production for 
each additional dollar spent on production. In Example 2, increasing the production bud-
get from $500,000 to $600,000 would result in an approximate increase in production of

0.10841100,0002 = 10,840 units

Note that simplifying the constraint equation

50x + 100y - 500,000 = 0
to

x + 2y - 10,000 = 0

before forming the function F1x, y, l2 would make it difficult to interpret -l cor-
rectly. In marginal productivity problems, the constraint equation should not be 
simplified.
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Matched Problem 2 The Cobb–Douglas production function for a new prod-
uct is given by

N1x, y2 = 20x0.5y0.5

where x is the number of units of labor and y is the number of units of capital 
required to produce N1x, y2 units of the product. Each unit of labor costs $40 and 
each unit of capital costs $120.

(A) If $300,000 has been budgeted for the production of this product, how should 
that amount be allocated in order to maximize production? What is the maxi-
mum production?

(B) Find the marginal productivity of money in this case, and estimate the increase 
in production if an additional $40,000 is budgeted for production.

Consider the problem of maximizing f1x, y2 = 4 - x2 - y2 subject to the con-
straint g1x, y2 = y - x2 + 1 = 0.
(A) Explain why f1x, y2 = 3 whenever 1x, y2 is a point on the circle of radius 1 

centered at the origin. What is the value of f1x, y2 when 1x, y2 is a point on the 
circle of radius 2 centered at the origin? On the circle of radius 3 centered at the 
origin? (See Fig. 6.)

(B) Explain why some points on the parabola y - x2 + 1 = 0 lie inside the circle 
x2 + y2 = 1.

(C) In light of part (B), would you guess that the maximum value of f1x, y2 subject 
to the constraint is greater than 3? Explain.

(D) Use Lagrange multipliers to solve the maximization problem.

Explore and Discuss 2
y

1212223 2 3
x

23

22

21

0

1

2

3

Figure 6

Functions of Three Independent Variables
The method of Lagrange multipliers can be extended to functions with arbitrarily 
many independent variables with one or more constraints. We now state a theorem 
for functions with three independent variables and one constraint, and we consider an 
example that demonstrates the advantage of the method of Lagrange multipliers over 
the method used in Section 7.3.

THEOREM 2 Method of Lagrange Multipliers for Functions of Three Variables
Any local maxima or minima of the function w = f1x, y, z2, subject to the constraint 
g1x, y, z2 = 0, will be among the set of points 1x0, y0, z02 for which 1x0, y0, z0, l02 
is a solution of the system

 Fx1x, y, z, l2 = 0

 Fy1x, y, z, l2 = 0

 Fz1x, y, z, l2 = 0

 Fl1x, y, z, l2 = 0

where F1x, y, z, l2 = f1x, y, z2 + lg1x, y, z2, provided that all the partial 
 derivatives exist.

Package Design A rectangular box with an open top and one partition is to be 
constructed from 162 square inches of cardboard (Fig. 7). Find the dimensions that 
result in a box with the largest possible volume.

EXAMPLE 3
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SOLUTION We must maximize

V1x, y, z2 = xyz

subject to the constraint that the amount of material used is 162 square inches. So 
x, y, and z must satisfy

xy + 2xz + 3yz = 162

Step 1    Maximize  V1x, y, z2 = xyz

subject to   g1x, y, z2 = xy + 2xz + 3yz - 162 = 0

Step 2    F1x, y, z, l2 = xyz + l1xy + 2xz + 3yz - 1622
Step 3         Fx = yz + l1y + 2z2 = 0

 Fy = xz + l1x + 3z2 = 0

 Fz = xy + l12x + 3y2 = 0
 Fl = xy + 2xz + 3yz - 162 = 0

From the first two equations, we can write

l =
-yz

y + 2z
  l =

-xz
x + 3z

Eliminating l, we have

 
-yz

y + 2z
=

-xz
x + 3z

    -xyz - 3yz2 = -xyz - 2xz2

3yz2 = 2xz2  We can assume that z ∙ 0.

 3y = 2x

 x = 3
2 y

From the second and third equations,

l =
-xz

x + 3z
  l =

-xy

2x + 3y

Eliminating l, we have

 
-xz

x + 3z
=

-xy

2x + 3y

 -2x2z - 3xyz = -x2y - 3xyz

 2x2z = x2y  We can assume that x ∙ 0.

 2z = y

 z = 1
2y

Substituting x = 3
2 y and z = 1

2 y into the fourth equation, we have

 13
2 y2y + 213

2 y2 11
2y2 + 3y11

2 y2 - 162 = 0

 32 y2 + 3
2 y2 + 3

2 y2 = 162

 y2 = 36 We can assume that y 7 0.

 y = 6

 x = 3
2162 = 9 Using x = 3

2 y

 z = 1
2162 = 3 Using z = 1

2 y
and finally,

l =
- 162132
6 + 2132 = -  

3
2

 Using l =
-yz

y + 2z

The only critical point of F with x, y, and z all positive is 19, 6, 3, -  322.

x y

z

Figure 7
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Step 4  The box with the maximum volume has dimensions 9 inches by 6 inches by 
3 inches (see Fig. 8).

Matched Problem 3 A box of the same type as in Example 3 is to be con-
structed from 288 square inches of cardboard. Find the dimensions that result in a 
box with the largest possible volume.

3 inches

9 inches
6 inches

Figure 8

An alternative to the method of Lagrange multipliers would be to solve Example 3 
by means of Theorem 2 (the second-derivative test for local extrema) in Section 7.3. 
That approach involves solving the material constraint for one of the variables, say, z:

z =
162 - xy

2x + 3y
Then we would eliminate z in the volume function to obtain a function of two 
variables:

V1x, y2 = xy
162 - xy

2x + 3y
The method of Lagrange multipliers allows us to avoid the formidable tasks of 
calculating the partial derivatives of V and finding the critical points of V in order 
to apply Theorem 2.

CONCEPTUAL  INSIGHT

Exercises 7.4
Skills Warm-up Exercises

 In Problems 1–6, maximize or minimize subject to the constraint 
without using the method of Lagrange multipliers; instead, solve 
the constraint for x or y and substitute into f(x, y). (If necessary, 
review Section 1.3).

1. Minimize f1x, y2 = x2 + xy + y2

subject to y = 4

2. Maximize f1x, y2 = 64 + x2 + 3xy - y2

subject to x = 6

3. Minimize f1x, y2 = 4xy

subject to x - y = 2

4. Maximize f1x, y2 = 3xy

subject to x + y = 1

5. Maximize f1x, y2 = 2x + y

subject to x2 + y = 1

6. Minimize  f1x, y2 = 10x - y2

subject to x2 + y2 = 25

 Use the method of Lagrange multipliers in Problems 7–10.

7.  Maximize f1x, y2 = 2xy

 subject to x + y = 6

8. Minimize f1x, y2 = 6xy

 subject to y - x = 6

9. Minimize f1x, y2 = x2 + y2

 subject to 3x + 4y = 25

W

A

10. Maximize f1x, y2 = 25 - x2 - y2

 subject to 2x + y = 10

In Problems 11 and 12, use Theorem 1 to explain why no maxima 
or minima exist.

11. Minimize f1x, y2 = 4y - 3x

 subject to 2x + 5y = 3

12. Maximize f1x, y2 = 6x + 5y + 24

 subject to 3x + 2y = 4

Use the method of Lagrange multipliers in Problems 13–24.

13. Find the maximum and minimum of f1x, y2 = 2xy subject to 
x2 + y2 = 18.

14. Find the maximum and minimum of f1x, y2 = x2 - y2 
subject to x2 + y2 = 25.

15. Maximize the product of two numbers if their sum must be 10.

16. Minimize the product of two numbers if their difference must 
be 10.

17. Minimize f1x, y, z2 = x2 + y2 + z2

subject to x + y + 3z = 55

18. Maximize f1x, y, z2 = 300 - x2 - 2y2 - z2

subject to 4x + y + z = 70

19. Maximize f1x, y, z2 = 900 - 5x2 - y2 - 2z2

subject to   x + y + z = 34

20. Minimize f1x, y, z2 = x2 + 4y2 + 2z2

subject to    x + 2y + z = 10

B

C
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516 CHAPTER 7 Multivariable Calculus

21. Maximize and minimize f1x, y, z2 = x + 10y + 2z

 subject to              x2 + y2 + z2 = 105

22. Maximize and minimize  f1x, y, z2 = 3x + y + 2z

subject to        2x2 + 3y2 + 4z2 = 210

23. Maximize and minimize f1x, y, z2 = x - 2y + z

subject to        x2 + y2 + z2 = 24

24. Maximize and minimize f1x, y, z2 = x - y - 3z

subject to        x2 + y2 + z2 = 99

In Problems 25 and 26, use Theorem 1 to explain why no maxima 
or minima exist.

25.  Maximize f1x, y2 = ex + 3ey

 subject to x - 2y = 6

26.  Minimize f1x, y2 = x3 + 2y3

 subject to 6x - 2y = 1

27. Consider the problem of maximizing f1x, y2 subject to 
g1x, y2 = 0, where g1x, y2 = y - 5. Explain how the max-
imization problem can be solved without using the method of 
Lagrange multipliers.

28. Consider the problem of minimizing f1x, y2 subject to 
g1x, y2 = 0, where g1x, y2 = 4x - y + 3. Explain how 
the minimization problem can be solved without using the 
method of Lagrange multipliers.

29. Consider the problem of maximizing f1x, y2 = e-1x2 + y22 
subject to the constraint g1x, y2 = x2 + y - 1 = 0.

(A) Solve the constraint equation for y, and then substitute 
into f1x, y2 to obtain a function h1x2 of the single 
variable x. Solve the original maximization problem by 
maximizing h (round answers to three decimal places).

(B) Confirm your answer by the method of Lagrange multi-
pliers.

30. Consider the problem of minimizing

f1x, y2 = x2 + 2y2

subject to the constraint g1x, y2 = yex2
- 1 = 0.

(A) Solve the constraint equation for y, and then substitute 
into f1x, y2 to obtain a function h1x2 of the single 
variable x. Solve the original minimization problem by 
minimizing h (round answers to three decimal places).

(B) Confirm your answer by the method of Lagrange multi-
pliers.

Applications
31. Budgeting for least cost. A manufacturing company pro-

duces two models of an HDTV per week, x units of model A 
and y units of model B at a cost (in dollars) of

C1x, y2 = 6x2 + 12y2

If it is necessary (because of shipping considerations) that

x + y = 90

how many of each type of set should be manufactured per 
week to minimize cost? What is the minimum cost?

32. Budgeting for maximum production. A manufacturing 
firm has budgeted $60,000 per month for labor and materials. 
If $x thousand is spent on labor and $y thousand is spent on 
materials, and if the monthly output (in units) is given by

N1x, y2 = 4xy - 8x

then how should the $60,000 be allocated to labor and mate-
rials in order to maximize N? What is the maximum N?

33. Productivity. A consulting firm for a manufacturing com-
pany arrived at the following Cobb–Douglas production 
function for a particular product:

N1x, y2 = 50x0.8y0.2

In this equation, x is the number of units of labor and y is the 
number of units of capital required to produce N1x, y2 units 
of the product. Each unit of labor costs $40 and each unit of 
capital costs $80.

(A) If $400,000 is budgeted for production of the product, 
determine how that amount should be allocated to maxi-
mize production, and find the maximum production.

(B) Find the marginal productivity of money in this case, 
and estimate the increase in production if an additional 
$50,000 is budgeted for the production of the product.

34. Productivity. The research department of a manufacturing 
company arrived at the following Cobb–Douglas production 
function for a particular product:

N1x, y2 = 10x0.6y0.4

In this equation, x is the number of units of labor and y is the 
number of units of capital required to produce N1x, y2 units 
of the product. Each unit of labor costs $30 and each unit of 
capital costs $60.

(A) If $300,000 is budgeted for production of the product, 
determine how that amount should be allocated to maxi-
mize production, and find the maximum production.

(B) Find the marginal productivity of money in this case, 
and estimate the increase in production if an additional 
$80,000 is budgeted for the production of the product.

35. Maximum volume. A rectangular box with no top and two 
intersecting partitions is to be constructed from 192 square 
inches of cardboard (see figure). Find the dimensions that 
will maximize the volume.

36. Maximum volume. A mailing service states that a rectan-
gular package shall have the sum of its length and girth not 
to exceed 120 inches (see figure on page 517). What are the 
dimensions of the largest (in volume) mailing carton that can 
be constructed to meet these restrictions?
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Length

Girth

Figure for 36

37. Agriculture. Three pens of the same size are to be built 
along an existing fence (see figure). If 400 feet of fencing is 
available, what length should x and y be to produce the maxi-
mum total area? What is the maximum area?

Existing
fence

x

x

y

38. Diet and minimum cost. A group of guinea pigs is to re-
ceive 25,600 calories per week. Two available foods produce 
200xy calories for a mixture of x kilograms of type M food 
and y kilograms of type N food. If type M costs $1 per kilo-
gram and type N costs $2 per kilogram, how much of each 
type of food should be used to minimize weekly food costs? 
What is the minimum cost?

Note: x Ú  0, y Ú  0

Answers to Matched Problems
1. Max f1x, y2 = f12, 22 = 17 (see Fig. 4)
2. (A)  3,750 units of labor and 1,250 units of capital; 

Max N1x, y2 = N13,750, 1,2502 ≈ 43,301 units
(B)  Marginal productivity of money ≈  0.1443; increase in 

production ≈  5,774 units
3. 12 in. by 8 in. by 4 in.

Least Squares Approximation
Regression analysis is the process of fitting an elementary function to a set of data 
points by the method of least squares. The mechanics of using regression tech-
niques were introduced in Chapter 1. Now, using the optimization techniques of 
Section 7.3, we can develop and explain the mathematical foundation of the method 
of least squares. We begin with linear regression, the process of finding the equation 
of the line that is the “best” approximation to a set of data points.

Suppose that a manufacturer wants to approximate the cost function for a prod-
uct. The value of the cost function has been determined for certain levels of produc-
tion, as listed in Table 1. Although these points do not all lie on a line (see Fig. 1), 
they are very close to being linear. The manufacturer would like to approximate the 
cost function by a linear function—that is, determine values a and b so that the line

y = ax + b
is, in some sense, the “best” approximation to the cost function.

7.5 Method of Least Squares
■■ Least Squares Approximation
■■ Applications

Table 1
Number of Units  

x (hundreds)
Cost  

y (thousand $)

2 4
5 6
6 7
9 8

C
os

t o
f 

pr
od

uc
tio

n 
(t

ho
us

an
d 

do
lla

rs
)

Number of units (hundreds)

1

0

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9
x

y

Figure 1
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518 CHAPTER 7 Multivariable Calculus

What do we mean by “best”? Since the line y = ax + b will not go through all 
four points, it is reasonable to examine the differences between the y coordinates of 
the points listed in the table and the y coordinates of the corresponding points on 
the line. Each of these differences is called the residual at that point (see Fig. 2). 
For example, at x = 2, the point from Table 1 is (2, 4) and the point on the line is 
12, 2a + b2, so the residual is

4 - 12a + b2 = 4 - 2a - b

All the residuals are listed in Table 2.

Residual

Residual

Residuals

y 5 ax 1 b

C
os

t o
f 

pr
od

uc
tio

n 
(t

ho
us

an
d 

do
lla

rs
)

Number of units (hundreds)

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9
x

y

0

Figure 2

Table 2
x y ax ∙ b Residual

2 4 2a + b 4 - 2a - b
5 6 5a + b 6 - 5a - b
6 7 6a + b 7 - 6a - b
9 8 9a + b 8 - 9a - b

Our criterion for the “best” approximation is the following: Determine the values 
of a and b that minimize the sum of the squares of the residuals. The resulting line is 
called the least squares line, or the regression line. To this end, we minimize

F1a, b2 = 14 - 2a - b2 2 + 16 - 5a - b2 2 + 17 - 6a - b2 2 + 18 - 9a - b2 2

Step 1 Find critical points:

 Fa1a, b2 = 214 - 2a - b21-22 + 216 - 5a - b21-52
 + 217 - 6a - b21-62 + 218 - 9a - b21-92

 = -304 + 292a + 44b = 0
 Fb1a, b2 = 214 - 2a - b21-12 + 216 - 5a - b21-12

 + 217 - 6a - b21-12 + 218 - 9a - b21-12
 = -50 + 44a + 8b = 0

After dividing each equation by 2, we solve the system

 146a + 22b = 152
  22a +    4b = 25

obtaining 1a, b2 = 10.58, 3.062 as the only critical point.

Step 2 Compute A = Faa1a, b2, B = Fab1a, b2, and C = Fbb1a, b2:

 Faa1a, b2 = 292;   so   A = Faa10.58, 3.062 = 292

 Fab1a, b2 = 44;   so   B = Fab10.58, 3.062 = 44

 Fbb1a, b2 = 8;   so   C = Fbb10.58, 3.062 = 8

Step 3  Evaluate AC - B2 and try to classify the critical point 1a, b2 by using  
Theorem 2 in Section 7.3:

AC - B2 = 12922182 - 1442 2 = 400 7 0  and  A = 292 7 0

Therefore, case 2 in Theorem 2 applies, and F1a, b2 has a local minimum at 
the critical point (0.58, 3.06).

M07_BARN6152_14_GE_C07.indd   518 22/11/18   11:20 PM



 SECTION 7.5   Method of Least Squares 519

So the least squares line for the given data is

y = 0.58x + 3.06 Least squares line

The sum of the squares of the residuals is minimized for this choice of a and b  
(see Fig. 3).

y 5 0.58x 1 3.06

C
os

t o
f 

pr
od

uc
tio

n 
(t

ho
us

an
d 

do
lla

rs
)

Number of units (hundreds)

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9
x

y

0

Figure 3

This linear function can now be used by the manufacturer to estimate any of 
the quantities normally associated with the cost function—such as costs, marginal 
costs, average costs, and so on. For example, the cost of producing 2,000 units is 
approximately

y = 10.5821202 + 3.06 = 14.66,  or  $14,660

The marginal cost function is
dy

dx
= 0.58

The average cost function is

y =
0.58x + 3.06

x

In general, if we are given a set of n points 1x1, y12, 1x2, y22, c, 1xn, yn2, we 
want to determine the line y = ax + b for which the sum of the squares of the re-
siduals is minimized. Using summation notation, we find that the sum of the squares 
of the residuals is given by

F1a, b2 = a
n

k = 1
1yk - axk - b2 2

Note that in this expression the variables are a and b, and the xk and yk are all known 
values. To minimize F(a, b), we thus compute the partial derivatives with respect to a 
and b and set them equal to 0:

 Fa1a, b2 = a
n

k = 1
21yk - axk - b21-xk2 = 0

 Fb1a, b2 = a
n

k = 1
21yk - axk - b21-12 = 0

Dividing each equation by 2 and simplifying, we see that the coefficients a and b of the 
least squares line y = ax + b must satisfy the following system of normal equations:

 a a
n

k = 1
xk

2ba + a a
n

k = 1
xkbb = a

n

k = 1
xkyk

 a a
n

k = 1
xkba + nb = a

n

k = 1
yk

Solving this system for a and b produces the formulas given in Theorem 1.
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520 CHAPTER 7 Multivariable Calculus

Now we return to the data in Table 1 and tabulate the sums required for the nor-
mal equations and their solution in Table 3.

Table 3
xk yk xk yk x2

k

 2  4   8   4
 5  6  30  25
 6  7  42  36
 9  8  72  81

Totals 22 25 152 146

The normal equations (1) are then

146a + 22b = 152

22a +    4b = 25

The solution of the normal equations given by equations (2) and (3) is

 a =
411522 - 12221252

411462 - 1222 2 = 0.58

 b =
25 - 0.581222

4
= 3.06

Compare these results with step 1 on page 518. Note that Table 3 provides a conve-
nient format for the computation of step 1.

 Many graphing calculators have a linear regression feature that solves the sys-
tem of normal equations obtained by setting the partial derivatives of the sum of 
squares of the residuals equal to 0. Therefore, in practice, we simply enter the given 
data points and use the linear regression feature to determine the line y = ax + b 
that best fits the data (see Fig. 4). There is no need to compute partial derivatives or 
even to tabulate sums (as in Table 3).

THEOREM 1 Least Squares Approximation
For a set of n points 1x1, y12, 1x2, y22, c, 1xn, yn2, the coefficients of the least 
squares line y = ax + b are the solutions of the system of normal equations

  a a
n

k = 1
x2

kba + a a
n

k = 1
xkbb = a

n

k = 1
xkyk (1)

 a a
n

k = 1
xkba + nb = a

n

k = 1
yk

and are given by the formulas

 a =
na a

n

k = 1
xkykb - a a

n

k = 1
xkb a a

n

k = 1
ykb

na a
n

k = 1
x2

kb - a a
n

k = 1
xkb

2  (2)

 b =
a

n

k = 1
yk - aa a

n

k = 1
xkb

n
 (3)
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(A)

Figure 4
(B)

1.3
3.6

8.4

9.7

(C)  y1 5 0.58x 1 3.06

(A) Plot the four points (0, 0), (0, 1), (10, 0), and (10, 1). Which line would you guess 
“best” fits these four points? Use formulas (2) and (3) to test your conjecture.

(B) Plot the four points (0, 0), (0, 10), (1, 0) and (1, 10). Which line would you guess 
“best” fits these four points? Use formulas (2) and (3) to test your conjecture.

(C) If either of your conjectures was wrong, explain how your reasoning was mistaken.

Explore and Discuss 1

Formula (2) for a is undefined if the denominator equals 0. When can this hap-
pen? Suppose n = 3. Then

 na a
n

k = 1
xk

2b - a a
n

k = 1
xkb

2

 = 31x1
2 + x2

2 + x3
22 - 1x1 + x2 + x32 2

 = 31x1
2 + x2

2 + x3
22 - 1x1

2 + x2
2 + x3

2 + 2x1x2 + 2x1x3 + 2x2x32
 = 21x1

2 + x2
2 + x3

22 - 12x1x2 + 2x1x3 + 2x2x32
 = 1x1

2 + x2
22 + 1x1

2 + x3
22 + 1x2

2 + x3
22 - 12x1x2 + 2x1x3 + 2x2x32

 = 1x1
2 - 2x1x2 + x2

22 + 1x1
2 - 2x1x3 + x3

22 + 1x2
2 - 2x2x3 + x3

22
 = 1x1 - x22 2 + 1x1 - x32 2 + 1x2 - x32 2

and the last expression is equal to 0 if and only if x1 = x2 = x3 (i.e., if and only 
if the three points all lie on the same vertical line). A similar algebraic manipula-
tion works for any integer n 7 1, showing that, in formula (2) for a, the denomi-
nator equals 0 if and only if all n points lie on the same vertical line.

CONCEPTUAL  INSIGHT

The method of least squares can also be applied to find the quadratic equation 
y = ax2 + bx + c that best fits a set of data points. In this case, the sum of the 
squares of the residuals is a function of three variables:

F1a, b, c2 = a
n

k = 1
1yk - axk

2 - bxk - c2 2

There are now three partial derivatives to compute and set equal to 0:

 Fa1a, b, c2 = a
n

k = 1
21yk - axk

2 - bxk - c21-xk
22 = 0

 Fb1a, b, c2 = a
n

k = 1
21yk - axk

2 - bxk - c21-xk2 = 0

 Fc1a, b, c2 = a
n

k = 1
21yk - axk

2 - bxk - c21-12 = 0
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The resulting set of three linear equations in the three variables a, b, and c is called 
the set of normal equations for quadratic regression.

 A quadratic regression feature on a calculator is designed to solve such normal 
equations after the given set of points has been entered. Figure 5 illustrates the com-
putation for the data of Table 1.

(A)

Figure 5
(B)

1.3 9.7
3.6

8.4

(C)  y1 5 20.0417x2 1 1.0383x 1 2.06

The method of least squares can also be applied to other regression equations—
for example, cubic, quartic, logarithmic, exponential, and power regression models. 
Details are explored in some of the exercises at the end of this section.

Applications

(A) Use the graphs in Figures 4 and 5 to predict which technique, linear regression 
or quadratic regression, yields the smaller sum of squares of the residuals for the 
data of Table 1. Explain.

(B) Confirm your prediction by computing the sum of squares of the residuals in 
each case.

Explore and Discuss 2

Exam Scores Table 4 lists the midterm and final examination scores of 10 stu-
dents in a calculus course.

Table 4
Midterm Final Midterm Final

49 61 78 77
53 47 83 81
67 72 85 79
71 76 91 93
74 68 99 99

(A) Use formulas (1), (2), and (3) to find the normal equations and the least squares 
line for the data given in Table 4.

(B) Use the linear regression feature on a graphing calculator to find and graph the 
least squares line.

(C) Use the least squares line to predict the final examination score of a student who 
scored 95 on the midterm examination.

SOLUTION
(A) Table 5 shows a convenient way to compute all the sums in the formulas for  

a and b.

EXAMPLE 1
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Table 5
xk yk xk yk x2

k

 49  61  2,989  2,401
 53  47  2,491  2,809
 67  72  4,824  4,489
 71  76  5,396  5,041
 74  68  5,032  5,476
 78  77  6,006  6,084
 83  81  6,723  6,889
 85  79  6,715  7,225
 91  93  8,463  8,281
 99  99  9,801  9,801

Totals 750 753 58,440 58,496

From the last line in Table 5, we have

a
10

k = 1
xk = 750  a

10

k = 1
yk = 753  a

10

k = 1
xkyk = 58,440  a

10

k = 1
x2

k = 58,496

and the normal equations are

 58,496a + 750b = 58,440

 750a + 10b = 753

Using formulas (2) and (3), we obtain

 a =
10158,4402 - 1750217532

10158,4962 - 17502 2 =
19,650
22,460

≈ 0.875

 b =
753 - 0.87517502

10
= 9.675

The least squares line is given (approximately) by

y = 0.875x + 9.675

(B) We enter the data and use the linear regression feature, as shown in Figure 6. 
[The discrepancy between values of a and b in the preceding calculations and 
those in Figure 6B is due to rounding in part (A).]

(A)

Figure 6
(B)

41.8
104

(C)

104.2

44

(C) If x = 95, then y = 0.8751952 + 9.675 ≈ 92.8 is the predicted score on the 
final exam. This is also indicated in Figure 6C. If we assume that the exam 
score must be an integer, then we would predict a score of 93.
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Matched Problem 1 Repeat Example 1 for the scores listed in Table 6.

Table 6
Midterm Final Midterm Final

54 50 84 80
60 66 88 95
75 80 89 85
76 68 97 94
78 71 99 86

Energy Consumption The use of fuel oil for home heating in the United States 
has declined steadily for several decades. Table 7 lists the percentage of occupied 
housing units in the United States that were heated by fuel oil for various years 
between 1960 and 2015. Use the data in the table and linear regression to estimate 
the percentage of occupied housing units in the United States that were heated by 
fuel oil in the year 1995.

Table 7 Occupied Housing Units Heated by Fuel Oil
Year Percent Year Percent

1960 32.4 1999 9.8
1970 26.0 2009 7.3
1979 19.5 2015 5.1
1989 13.3

SOLUTION We enter the data, with x = 0 representing 1960, x = 10 representing 
1970, and so on, and use linear regression as shown in Figure 7.

EXAMPLE 2

Source: U.S. Census Bureau

(A)

Figure 7
(B) (C)

25
25

45

60

Figure 7 indicates that the least squares line is y = -0.492x + 30.34. To estimate 
the percentage of occupied housing units heated by fuel oil in the year 1995 (cor-
responding to x = 35), we substitute x = 35 in the equation of the least squares 
line: -0.4921352 + 30.34 = 13.12. The estimated percentage for 1995 is 13.12%.

Matched Problem 2 In 1950, coal was still a major source of fuel for home 
energy consumption, and the percentage of occupied housing units heated by fuel 
oil was only 22.1%. Add the data for 1950 to the data for Example 2, and compute 
the new least squares line and the new estimate for the percentage of occupied 
housing units heated by fuel oil in the year 1995. Discuss the discrepancy between 
the two estimates. (As in Example 2, let x = 0 represent 1960.)
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Exercises 7.5
Skills Warm-up Exercises

Problems 1–6 refer to the n = 5 data points 1x1, y12 = 10, 42,  
1x2, y22 = 11, 52, 1x3, y32 = 12, 72, 1x4, y42 = 13, 92, and 
1x5, y52 = 14, 132. Calculate the indicated sum or product of 
sums. (If necessary, review Appendix B.1).

1. a
5

k = 1
xk 2. a

5

k = 1
yk 3. a

5

k = 1
xkyk

4. a
5

k = 1
x2

k 5. a
5

k = 1
xka

5

k = 1
yk 6. a a

5

k = 1
xkb

2

In Problems 7–12, find the least squares line. Graph the data and 
the least squares line.

W

A

21.  To find the coefficients of the parabola

y = ax2 + bx + c

that is the “best” fit to the points (1, 2), (2, 1), (3, 1), and  
(4, 3), minimize the sum of the squares of the residuals

 F 1a, b, c2 = 1a + b + c - 22 2

  + 14a + 2b + c - 12 2

  + 19a + 3b + c - 12 2

  + 116a + 4b + c - 32 2

by solving the system of normal equations

Fa1a, b, c2 = 0  Fb1a, b, c2 = 0  Fc1a, b, c2 = 0

for a, b, and c. Graph the points and the parabola.

22. Repeat Problem 21 for the points 1-1, -22, (0, 1), (1, 2), 
and (2, 0).

Problems 23 and 24 refer to the system of normal equations and 
the formulas for a and b given on page 520.

23. Verify formulas (2) and (3) by solving the system of normal 
equations (1) for a and b.

C

x y

1 1

2 3

3 4

4 3

7. 8. x y

1 -2

2 -1

3  3

4  5

9.  x y

1 8

2 5

3 4

4 0

10. x y

1 20

2 14

3 11

4  3

11. x y

1 3

2 4

3 5

4 6

12. x y

1 2

2 3

3 3

4 2

In Problems 13–20, find the least squares line and use it to esti-
mate y for the indicated value of x. Round answers to two decimal 
places.

B

13. x y

1 3

2 1

2 2

3 0

Estimate y when x = 2.5.

14. x y

1 0

3 1

3 6

3 4

Estimate y when x = 3.

15. x y

 0 10

 5 22

10 31

15 46

20 51

Estimate y when x = 25.

16. x y

-5 60

 0 50

 5 30

10 20

15 15

Estimate y when x = 20.

17. x y

-1 14

  1 12

  3  8

  5  6

  7  5

Estimate y when x = 2.

18. x y

 2 -4

 6   0

10   8

14  12

18  14

Estimate y when x = 15.

19. x y x y

0.5 25 9.5 12

2 22 11 11

3.5 21 12.5  8

5 21 14  5

6.5 18 15.5  1

Estimate y when x = 8.

20. x y x y

0 -15 12 11

2  -9 14 13

4  -7 16 19

6  -7 18 25

8  -1 20 33

Estimate y when x = 10.
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24. If x =
1
n

 a
n

k = 1
xk  and  y =

1
n a

n

k = 1
yk

are the averages of the x and y coordinates, respectively, show 
that the point 1x, y2 satisfies the equation of the least squares 
line, y = ax + b.

25. (A) Suppose that n = 5 and the x coordinates of the data 
points 1x1, y12, 1x2, y22, c, 1xn, yn2 are -2, - 1, 0,  
1, 2. Show that system (1) in the text implies that

a =
gxkykgx2

k

and that b is equal to the average of the values of yk.

(B) Show that the conclusion of part (A) holds whenever the 
average of the x coordinates of the data points is 0.

26. (A) Give an example of a set of six data points such that half 
of the points lie above the least squares line and half lie 
below.

(B) Give an example of a set of six data points such that just 
one of the points lies above the least squares line and five 
lie below.

27. (A) Find the linear and quadratic functions that best fit the 
data points (0, 1.3), (1, 0.6), (2, 1.5), (3, 3.6), and  
(4, 7.4). Round coefficients to two decimal places.

(B)  Which of the two functions best fits the data? Explain.

28. (A) Find the linear, quadratic, and logarithmic functions that 
best fit the data points (1, 3.2), (2, 4.2), (3, 4.7), (4, 5.0), 
and (5, 5.3). (Round coefficients to two decimal places.)

(B)  Which of the three functions best fits the data? Explain.

29. Describe the normal equations for cubic regression. How 
many equations are there? What are the variables? What 
techniques could be used to solve the equations?

30. Describe the normal equations for quartic regression. How 
many equations are there? What are the variables? What 
techniques could be used to solve the equations?

Applications
31. Crime rate. Data on U.S. property crimes (in number of 

crimes per 100,000 population) are given in the table for the 
years 2001 through 2015.

U.S. Property Crime Rates
Year Rate

2001 3,658

2003 3,591

2005 3,431

2007 3,276

2009 3,041

2011 2,905

2013 2,734

2015 2,487

(A) Find the least squares line for the data, using x = 0 for 
2000.

(B) Use the least squares line to predict the property crime 
rate in 2025.

32. U.S. honey production. Data for U.S. honey production are 
given in the table for the years 1990 through 2015.

U.S. Honey Production
Year Millions of Pounds

1990 197.8

1995 211.1

2000 220.3

2005 174.8

2010 176.5

2015 154.5

(A) Find the least squares line for the data, using x = 0 for 
1990.

(B) Use the least squares line to predict U.S. honey produc-
tion in 2030.

33. Maximizing profit. The market research department for a 
drugstore chain chose two summer resort areas to test-market 
a new sunscreen lotion packaged in 4-ounce plastic bottles. 
After a summer of varying the selling price and recording 
the monthly demand, the research department arrived at the 
following demand table, where y is the number of bottles 
purchased per month (in thousands) at x dollars per bottle:

x y

5.0 2.0

5.5 1.8

6.0 1.4

6.5 1.2

7.0 1.1

(A) Use the method of least squares to find a demand 
equation.

(B) If each bottle of sunscreen costs the drugstore chain $4, 
how should the sunscreen be priced to achieve a maxi-
mum monthly profit? [Hint: Use the result of part (A), 
with C = 4y, R = xy, and P = R - C.]

34. Maximizing profit. A market research consultant for a su-
permarket chain chose a large city to test-market a new brand 
of mixed nuts packaged in 8-ounce cans. After a year of 
varying the selling price and recording the monthly demand, 
the consultant arrived at the following demand table, where y 
is the number of cans purchased per month (in thousands) at 
x dollars per can:

x y

4.0 4.2

4.5 3.5

5.0 2.7

5.5 1.5

6.0 0.7Source: FBI

Source: USDA
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(A) Use the method of least squares to find a demand 
equation.

(B) If each can of nuts costs the supermarket chain $3, 
how should the nuts be priced to achieve a maximum 
monthly profit?

35. Olympic Games. The table gives the winning heights in the 
pole vault in the Olympic Games from 1980 to 2016.

Olympic Pole Vault Winning Height
Year Height (ft)

1980 18.96

1984 18.85

1988 19.35

1992 19.02

1996 19.42

2000 19.35

2004 19.52

2008 19.56

2012 19.59

2016 19.78

(A) Use a graphing calculator to find the least squares line 
for the data, letting x = 0 for 1980.

(B) Estimate the winning height in the pole vault in the 
Olympic Games of 2024.

36. Biology. In biology, there is an approximate rule, called the 
bioclimatic rule for temperate climates. This rule states that 
in spring and early summer, periodic phenomena such as the 
blossoming of flowers, the appearance of insects, and the 
ripening of fruit usually come about 4 days later for each 500 
feet of altitude. Stated as a formula, the rule becomes

d = 8h  0 … h … 4

where d is the change in days and h is the altitude (in thou-
sands of feet). To test this rule, an experiment was set up to 
record the difference in blossoming times of the same type of 
apple tree at different altitudes. A summary of the results is 
given in the following table:

h d

0  0

1  7

2 18

3 28

4 33

(A) Use the method of least squares to find a linear equation 
relating h and d. Does the bioclimatic rule d = 8h ap-
pear to be approximately correct?

(B) How much longer will it take this type of apple tree to 
blossom at 3.5 thousand feet than at sea level? [Use the 
linear equation found in part (A).]

37. Global warming. The global land–ocean temperature index, 
which measures the change in global surface temperature (in 
°C) relative to 1951–1980 average temperatures, is given in 
the table for the years 1955 through 2015.

Global Land–Ocean Temperature Index
Year °C

1955 -0.14

1965 -0.10

1975 -0 .01

1985  0.12

1995  0.46

2005  0.69

2015  0.87

(A) Find the least-squares line for the data using x = 0 for 
1950.

(B) Use the least-squares line to estimate the global land–
ocean temperature index in 2030.

38. Organic food sales. Data on U.S. organic food sales (in 
billions of dollars) are given in the table for the years 2005 
through 2015.

U.S. Organic Food Sales
Year Billions of Dollars

2005 13.3

2007 18.2

2009 22.5

2011 26.3

2013 32.3

2015 39.7

(A) Find the least-squares line for the data using x = 0 for 
2000.

(B) Use the least-squares line to estimate U.S. organic food 
sales in 2025.

Answers to Matched Problems
1. (A) y = 0.85x + 9.47

(B) 

(C) 90.3
2. y = -0.375x + 25.88; 12.76%

Source: www.olympic.org

Source: NASA/GISS

Source: Organic Trade Association
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Introduction
We have generalized the concept of differentiation to functions with two or more inde-
pendent variables. How can we do the same with integration, and how can we interpret 
the results? Let’s look first at the operation of antidifferentiation. We can antidif-
ferentiate a function of two or more variables with respect to one of the variables by 
treating all the other variables as though they were constants. Thus, this operation is 
the reverse operation of partial differentiation, just as ordinary antidifferentiation is the 
reverse operation of ordinary differentiation. We write 1 f1x, y2 dx to indicate that we 
are to antidifferentiate f1x, y2 with respect to x, holding y fixed; we write 1 f1x, y2 dy 
to indicate that we are to antidifferentiate f1x, y2 with respect to y, holding x fixed.

7.6 Double Integrals over Rectangular Regions
■■ Introduction
■■ Definition of the Double Integral
■■ Average Value over Rectangular 
Regions

■■ Volume and Double Integrals

Partial Antidifferentiation Evaluate

(A) L
 

 

16xy2 + 3x22 dy (B) L
 

 

16xy2 + 3x22 dx

SOLUTION
(A) Treating x as a constant and using the properties of antidifferentiation from 

Section 5.1, we have

 L
 

 

16xy2 + 3x22 dy = L
 

 

6xy2 dy + L
 

 

3x2 dy
 

 The dy tells us that we are  
looking for the antiderivative  
of 6xy 2 + 3x 2 with respect  
to y only, holding x constant.

 = 6xL
 

 

y2 dy + 3x2L
 

 

 dy

 = 6x a y3

3
b + 3x21y2 + C1x2

 = 2xy3 + 3x2y + C1x2
Note that the constant of integration can be any function of x alone since for 
any such function,

0
0y

 C1x2 = 0

CHECK
We can verify that our answer is correct by using partial differentiation:

 
0
0y

 32xy3 + 3x2y + C1x24 = 6xy2 + 3x2 + 0

 = 6xy2 + 3x2

(B) We treat y as a constant:

 L
 

 

16xy2 + 3x22 dx = L
 

 

6xy2 dx + L
 

 

3x2 dx

 = 6y2L
 

 

x dx + 3L
 

 

x2 dx

 = 6y2 a x2

2
b + 3a x3

3
b + E1y2

 = 3x2y2 + x3 + E1y2

EXAMPLE 1
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The antiderivative contains an arbitrary function E(y) of y alone.
CHECK

 
0
0x

 33x2y2 + x3 + E1y24 = 6xy2 + 3x2 + 0

 = 6xy2 + 3x2

Matched Problem 1 Evaluate

(A) L
 

 

14xy + 12x2y32 dy (B) L
 

 

14xy + 12x2y32 dx

Evaluating a Partial Antiderivative Evaluate, substituting the limits of integra-
tion in y if dy is used and in x if dx is used:

(A) L
2

0
16xy2 + 3x22 dy (B) L

1

0
16xy2 + 3x22 dx

SOLUTION
(A) From Example 1A, we know that

L
 

 

16xy2 + 3x22 dy = 2xy3 + 3x2y + C1x2
According to properties of the definite integral for a function of one variable, 
we can use any antiderivative to evaluate the definite integral. Thus, choosing 
C1x2 = 0, we have

 L
2

0
16xy2 + 3x22 dy = 12xy3 + 3x2y2 0 y = 0

y = 2

 = 32x122 3 + 3x21224 - 32x102 3 + 3x21024
 = 16x + 6x2

(B) From Example 1B, we know that

L
 

 

16xy2 + 3x22 dx = 3x2y2 + x3 + E1y2

Choosing E1y2 = 0, we have

 L
1

0
16xy2 + 3x22 dx = 13x2y2 + x32 ∙ x = 0

x = 1

 = 33y2112 2 + 112 34 - 33y2102 2 + 102 34
 = 3y2 + 1

Matched Problem 2 Evaluate

(A) L
1

0
14xy + 12x2y32 dy (B) L

3

0
14xy + 12x2y32 dx

EXAMPLE 2

Now that we have extended the concept of antidifferentiation to functions with 
two variables, we also can evaluate definite integrals of the form

L
b

a
f1x, y2 dx  or  L

d

c
f1x, y2 dy

Integrating and evaluating a definite integral with integrand f1x, y2 with respect 
to y produces a function of x alone (or a constant). Likewise, integrating and evaluat-
ing a definite integral with integrand f1x, y2 with respect to x produces a function of 
y alone (or a constant). Each of these results, involving at most one variable, can now 
be used as an integrand in a second definite integral.
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530 CHAPTER 7 Multivariable Calculus

Evaluating Integrals Evaluate

(A) L
1

0
 c L

2

0
16xy2 + 3x22 dy d  dx (B) L

2

0
 c L

1

0
16xy2 + 3x22 dx d  dy

SOLUTION
(A) Example 2A showed that

L
2

0
16xy2 + 3x22 dy = 16x + 6x2

Therefore,

 L
1

0
 cL

2

0
16xy2 + 3x22 dyd  dx = L

1

0
116x + 6x22 dx

 = 18x2 + 2x32 0 x = 0
x = 1

 = 38112 2 + 2112 34 - 38102 2 + 2102 34 = 10

(B) Example 2B showed that

L
1

0
16xy2 + 3x22 dx = 3y2 + 1

Therefore,

 L
2

0
 c L

1

0
16xy2 + 3x22 dx d  dy = L

2

0
13y2 + 12 dy

 = 1y3 + y2 0 y = 0
y = 2

 = 3122 3 + 24 - 3102 3 + 04 = 10

A numerical integration command can be used as an alternative to the funda-
mental theorem of calculus to evaluate the last integrals in Examples 3A and 3B, 

11
0 116x + 6x22 dx and 12

0 13y2 + 12 dy, since the integrand in each case is a 
function of a single variable (see Fig. 1).

Matched Problem 3 Evaluate

(A) L
3

0
 c L

1

0
14xy + 12x2y32 dy d  dx (B) L

1

0
 c L

3

0
14xy + 12x2y32 dx d  dy

Definition of the Double Integral
Notice that the answers in Examples 3A and 3B are identical. This is not an accident. 
In fact, it is this property that enables us to define the double integral, as follows:

EXAMPLE 3

Figure 1

DEFINITION Double Integral
The double integral of a function f1x, y2 over a rectangle

R = 51x, y2 0 a … x … b, c … y … d6
(see Fig. 2) is

 O
R 

f1x, y2 dA = L
b

a
 c L

d

c
f1x, y2 dy d  dx

 = L
d

c
 c L

b

a
f1x, y2 dx d  dy

R

a b
x

y

d

c

Figure 2
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In the double integral 4R f1x, y2 dA, f1x, y2 is called the integrand, and R is called 
the region of integration. The expression dA indicates that this is an integral over a 
two-dimensional region. The integrals

L
b

a
 c L

d

c
f1x, y2 dy d  dx  and  L

d

c
 c L

b

a
f1x, y2 dx d  dy

are referred to as iterated integrals (the brackets are often omitted), and the order 
in which dx and dy are written indicates the order of integration. This is not the most 
general definition of the double integral over a rectangular region; however, it is 
equivalent to the general definition for all the functions we will consider.

Evaluating a Double Integral Evaluate

O
 

R 

1x + y2 dA  over  R = 51x, y2 0 1 … x … 3, -1 … y … 26

SOLUTION Region R is illustrated in Figure 3. We can choose either order of itera-
tion. As a check, we will evaluate the integral both ways:

 O
R 

1x + y2 dA = L
3

1 L
2

-1
1x + y2 dy dx

 = L
3

1
 c axy +

y2

2
b `

y = -1

y = 2

d  dx

 = L
3

1
312x + 22 - 1 -x + 1

224  dx

 = L
3

1
13x + 3

22  dx

 = 13
2 x2 + 3

2 x2 0 x = 1
x = 3

 = 127
2 + 9

22 - 13
2 + 3

22 = 18 - 3 = 15

 O
R 

1x + y2 dA = L
2

-1L
3

1
1x + y2 dx dy

 = L
2

-1
 c a x2

2
+ xyb `

x = 1

x = 3

d  dy

 = L
2

-1
 319

2 + 3y2 - 11
2 + y24  dy

 = L
2

-1
14 + 2y2 dy

 = 14y + y22 0 y = -1
y = 2

 = 18 + 42 - 1-4 + 12 = 12 - 1-32 = 15

Matched Problem 4 Evaluate

O
 

R 

12x - y2 dA  over  R = 51x, y2 0  -1 … x … 5, 2 … y … 46

both ways.

EXAMPLE 4

x

y

R

21

20

1

2

Figure 3

M07_BARN6152_14_GE_C07.indd   531 22/11/18   11:20 PM
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Double Integral of an Exponential Function Evaluate

O
 

R 

2xex2 + y dA  over  R = 51x, y2 0 0 … x … 1, -1 … y … 16

SOLUTION Region R is illustrated in Figure 4.

 O
R 

2xex2 + y dA = L
1

-1L
1

0
2xex2 + y dx dy

 = L
1

-1
 c 1ex2 + y2 `

x = 0

x = 1

d  dy

 = L
1

-1
1e1 + y - ey2 dy

 = 1e1 + y - ey2 0 y = -1
y = 1

 = 1e2 - e2 - 1e0 - e-12
 = e2 - e - 1 + e-1

Matched Problem 5 Evaluate

O
 

R 

 
x

y2 ex>y dA  over  R = 51x, y2∙ 0 … x … 1, 1 … y … 26.

EXAMPLE 5

R

x

y

21

10

1

Figure 4

Average Value over Rectangular Regions
In Section 5.5, the average value of a function f1x2 over an interval [a, b] was de-
fined as

1
b - a L

b

a
f1x2 dx

This definition is easily extended to functions of two variables over rectangular re-
gions as follows (notice that the denominator 1b - a21d - c2 is simply the area of 
the rectangle R):

DEFINITION Average Value over Rectangular Regions
The average value of the function f1x, y2 over the rectangle

R = 51x, y2 0 a … x … b, c … y … d6
(see Fig. 5) is

1
1b - a21d - c2O

R 

f1x, y2 dA
x

y

a c

d

b

f (x, y)

(x, y)

z

R

Figure 5

Average Value Find the average value of f1x, y2 = 4 - 1
2 x - 1

2 y over the rect-
angle R = 51x, y2 0 0 … x … 2, 0 … y … 26.

SOLUTION Region R is illustrated in Figure 6. We have

 
1

1b - a21d - c2O
R 

 f1x, y2 dA =
1

12 - 0212 - 02O
R 

 a4 -  
1
2

  x -  
1
2

 yb  dA

EXAMPLE 6
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 = 1
4 L

2

0 L
2

0
14 - 1

2 x - 1
2 y2  dy dx

 = 1
4 L

2

0
 c 14y - 1

2 xy - 1
4 y22 `

y = 0

y = 2

d  dx

 = 1
4 L

2

0
17 - x2 dx

 = 1
417x - 1

2 x22 0 x = 0
x = 2

 = 1
41122 = 3

Figure 7 illustrates the surface z = f1x, y2, and our calculations show that 3 is 
the average of the z values over the region R.

Matched Problem 6 Find the average value of f1x, y2 = x + 2y over the 

rectangle R = 51x, y2 0 0 … x … 2, 0 … y … 16

x
2

y

2

0

R

Figure 6

z

x

yR

4 z 5 4 2 2x 2 2y1
2

1
2

2
2

Figure 7
(A) Which of the functions f1x, y2 = 4 - x2 - y2 and g1x, y2 =  4 - x - y 

would you guess has the greater average value over the rectangle 
R = 51x, y2 0 0 … x … 1, 0 … y … 16? Explain.

(B) Use double integrals to check the correctness of your guess in part (A).

Explore and Discuss 1

Volume and Double Integrals
One application of the definite integral of a function with one variable is the calcula-
tion of areas, so it is not surprising that the definite integral of a function of two vari-
ables can be used to calculate volumes of solids.

THEOREM 1 Volume under a Surface
If f1x, y2 Ú  0 over a rectangle R = 51x, y2 0 a … x … b, c … y … d6, then the 
volume of the solid formed by graphing f over the rectangle R (see Fig. 8) is given by

V = O
 

R 

f1x, y2 dA

z

x

y

z 5 f (x, y)

a

b
d

ccc

R

Figure 8

Volume Find the volume of the solid under the graph of f1x, y2 =  1 + x2 + y2 
over the rectangle R = 51x, y2 0 0 … x … 1, 0 … y … 16.

SOLUTION Figure 9 shows the region R, and Figure 10 illustrates the volume under 
consideration.

 V = O
 

R 

11 + x2 + y22 dA

 = L
1

0 L
1

0
11 + x2 + y22 dx dy

EXAMPLE 7

x

y

1

0

R

1

Figure 9
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 = L
1

0
 c 1x + 1

3 x3 + xy22 `
x = 0

x = 1

d  dy

 = L
1

0
14

3 + y22  dy

 = 14
3 y + 1

3 y32 0 y = 0
y = 1 = 5

3  cubic units

Matched Problem 7 Find the volume of the solid that is under the graph of

f1x, y2 = 1 + x + y

and over the rectangle R = 51x, y2 ∙ 0 … x … 1, 0 … y … 26.

z 5 1 1 x2 1 y2
z

y

x

1
1

R

(1, 1, 3)

(0, 1, 2)(1, 0, 2)

Figure 10
Double integrals can be defined over regions that are more general than rectangles. For 

example, let R 7 0. Then the function f1x, y2 = 2R2 - 1x2 + y22 can be integrated 

over the circular region C = 51x, y2 0 x2 + y2 … R26. In fact, it can be shown that

O
C 

2R2 - 1x2 + y22 dx dy =
2pR3

3

Because x2 + y2 + z2 = R2 is the equation of a sphere of radius R centered at 
the origin, the double integral over C represents the volume of the upper hemi-
sphere. Therefore, the volume of a sphere of radius R is given by

V =
4pR3

3
 Volume of sphere of radius R

Double integrals can also be used to obtain volume formulas for other geometric 
figures (see Table 1, Appendix C).

CONCEPTUAL  INSIGHT

Exercises 7.6
Skills Warm-up Exercises

 In Problems 1–6, find each antiderivative. (If necessary, review 
Sections 5.1 and 5.2).

1. L
 

 

1p + x2  dx 2. L
 

 

1xp2 + px22  dx

3. L
 

 

a1 +
p

x
b  dx 4. L

 

 

a1 +
x
p
b  dx

5. L
 

 

epxdx 6. L
 

 

ln x
px

 dx

In Problems 7–16, find each antiderivative. Then use the antide-
rivative to evaluate the definite integral.

7. (A) L
 

 

12x2y3 dy (B) L
1

0
12x2y3 dy

8. (A) L
 

 

12x2y3 dx (B) L
2

-1
12x2y3 dx

W

A

9. (A) L
 

 

14x + 6y + 52 dx (B) L
3

-2
14x + 6y + 52 dx

10. (A) L
 

 

14x + 6y + 52 dy (B) L
4

1
14x + 6y + 52 dy

11. (A) L
 

 

x2y + x2
  dx (B) L

2

0
 

x2y + x2
  dx

12. (A) L
 

 

x2y + x2
  dy (B) L

5

1

x2y + x2
  dy

13. (A) L
 

 

 
ln x
xy

 dy (B) L
e2

1
 
ln x
xy

 dy

14. (A) L
 

 

 
ln x
xy

 dx (B) L
e

1
 
ln x
xy

 dx

15. (A) L
 

 

 3y2ex + y3
 dx (B) L

1

0
 3y2ex + y3

 dx
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16. (A) L
 

 

 3y2ex + y3
 dy (B) L

2

0
 3y2ex + y3

 dy

 In Problems 17–26, evaluate each iterated integral. (See the indi-
cated problem for the evaluation of the inner integral.)

17. L
2

-1L
1

0
12x2y3 dy dx

(See Problem 7.)

18. L
1

0 L
2

-1
12x2y3 dx dy

(See Problem 8.)

19. L
4

1 L
3

-2
14x + 6y + 52 dx dy

(See Problem 9.)

20. L
3

-2L
4

1
14x + 6y + 52 dy dx

(See Problem 10.)

21. L
5

1 L
2

0
 

x2y + x2
 dx dy

(See Problem 11.)

22. L
2

0 L
5

1
 

x2y + x2
 dy dx

(See Problem 12.)

23. L
e

1 L
e2

1
 
ln x
xy

 dy dx

(See Problem 13.)

24. L
e2

1 L
e

1
 
ln x
xy

 dx dy

(See Problem 14.)

25. L
2

0 L
1

0
 3y2ex + y3

 dx dy

(See Problem 15.)

26. L
1

0 L
2

0
 3y2ex + y3

 dy dx

(See Problem 16.)

Use both orders of iteration to evaluate each double integral in 
Problems 27–30.

27. O
 

R 

xy dA; R = 51x, y2 ∙ 0 … x … 2, 0 … y … 46

28. O
 

R 

1xy dA; R = 51x, y2 0 1 … x … 4, 1 … y … 96

29. O
 

R 

1x + y2 5 dA; R = 51x, y2 0  -1 … x … 1, 1 … y … 26

B

30. O
 

R 

xey dA; R = 51x, y2 0  -2 … x … 3, 0 … y … 26

In Problems 31–34, find the average value of each function over 
the given rectangle.

31. f1x, y2 = 1x + y2 2; 

R = 51x, y2 ∙ 1 … x … 5, -1 … y … 16
32. f1x, y2 = x2 + y2; 

R = 51x, y2 ∙ -1 … x … 2, 1 … y … 46
33. f1x, y2 = x>y; R = 51x, y2 ∙ 1 … x … 4, 2 … y … 76
34. f1x, y2 = x2y3; R = 51x, y2 ∙ -1 … x … 1, 0 … y … 26
In Problems 35–38, find the volume of the solid under the graph 
of each function over the given rectangle.

35. f1x, y2 = 2 - x2 - y2; 

R = 51x, y2 ∙ 0 … x … 1, 0 … y … 16
36. f1x, y2 = 5 - x; R = 51x, y2 ∙ 0 … x … 5, 0 … y … 56
37. f1x, y2 = 4 - y2; R = 51x, y2 ∙ 0 … x … 2, 0 … y … 26
38. f1x, y2 = e-x - y; R = 51x, y2 ∙ 0 … x … 1, 0 … y … 16
Evaluate each double integral in Problems 39–42. Select the order 
of integration carefully; each problem is easy to do one way and 
difficult the other.

39. O
 

R 

xexy dA; R = 51x, y2 0 0 … x … 1, 1 … y … 26

40. O
 

R 

xyex2y dA; R = 51x, y2 0 0 … x … 1, 1 … y … 26

41. O
 

R 

 
2y + 3xy2

1 + x2  dA; 

R = 51x, y2 0 0 … x … 1, -1 … y … 16

42. O
 

R 

 
2x + 2y

1 + 4y + y2 dA; 

R = 51x, y2 0 1 … x … 3, 0 … y … 16

43.  Show that 12
0 12

0 11 - y2 dx dy = 0. Does the double inte-
gral represent the volume of a solid? Explain.

44. (A) Find the average values of the functions 
f1x, y2 = x + y, g1x, y2 = x2 + y2, and 
h1x, y2 = x3 + y3 over the rectangle

R = 51x, y2 0 0 … x … 1, 0 … y … 16
(B) Does the average value of k1x, y2 = xn + yn over the 

rectangle

R1 = 51x, y2 0 0 … x … 1, 0 … y … 16
increase or decrease as n increases? Explain.

(C) Does the average value of k1x, y2 = xn + yn over the 
rectangle

C
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R2 = 51x, y2 0 0 … x … 2, 0 … y … 26
increase or decrease as n increases? Explain.

45.  Let f1x, y2 = x3 + y2 - e-x - 1.

(A) Find the average value of f1x, y2 over the rectangle

R = 51x, y2 0 - 2 … x … 2, - 2 … y … 26.

(B) Graph the set of all points (x, y) in R for which 
f1x, y2 = 0.

(C) For which points 1x, y2 in R is f1x, y2 greater than 0? 
Less than 0? Explain.

46.  Find the dimensions of the square S centered at the origin 
for which the average value of f1x, y2 = x2ey over S is equal 
to 100.

Applications
47. Multiplier principle. Suppose that Congress enacts a one-

time-only 10% tax rebate that is expected to infuse $y billion, 
5 … y … 7, into the economy. If every person and every cor-
poration is expected to spend a proportion x, 0.6 … x … 0.8, 
of each dollar received, then, by the multiplier principle in 
economics, the total amount of spending S (in billions of dol-
lars) generated by this tax rebate is given by

S1x, y2 =
y

1 - x

What is the average total amount of spending for the indi-
cated ranges of the values of x and y? Set up a double integral 
and evaluate it.

48. Multiplier principle. Repeat Problem 47 if 6 … y … 10 and 
0.7 … x … 0.9.

49. Cobb–Douglas production function. If an industry invests 
x thousand labor-hours, 10 … x … 20, and $y million, 
1 … y … 2, in the production of N thousand units of a certain 
item, then N is given by

N1x, y2 = x0.75y0.25

What is the average number of units produced for the 
indicated ranges of x and y? Set up a double integral and 
evaluate it.

50. Cobb–Douglas production function. Repeat Problem 49 for

N1x, y2 = x0.5y0.5

where 10 … x … 30 and 1 … y … 3.

51. Population distribution. In order to study the population 
distribution of a certain species of insect, a biologist has 
constructed an artificial habitat in the shape of a rectangle 
16 feet long and 12 feet wide. The only food available to the 
insects in this habitat is located at its center. The biologist has 
determined that the concentration C of insects per square foot 
at a point d units from the food supply (see figure) is given 
approximately by

C = 10 - 1
10 d2

What is the average concentration of insects throughout the 
habitat? Express C as a function of x and y, set up a double 
integral, and evaluate it.

(x, y)

x

y6

26

8

Food supply

d

28

Figure for 51

52. Population distribution. Repeat Problem 51 for a square 
habitat that measures 12 feet on each side, where the insect 
concentration is given by

C = 8 - 1
10 d2

53. Air quality. A heavy industrial plant located in the center 
of a small town emits particulate matter into the atmosphere. 
Suppose that the concentration of fine particulate matter (in 
micrograms per cubic meter) at a point d miles from the plant 
(see figure) is given by

C = 50 - 9d2

If the boundaries of the town form a rectangle 4 miles long 
and 2 miles wide, what is the average concentration of fine 
particulate matter throughout the town? Express C as a func-
tion of x and y, set up a double integral, and evaluate it.

(x, y)
y

2

22

1
d

21

x

54. Air quality. Repeat Problem 53 if the boundaries of the 
town form a rectangle 8 miles long and 4 miles wide and the 
concentration of particulate matter is given by

C = 64 - 3d2

55. Safety research. Under ideal conditions, if a person driving 
a car slams on the brakes and skids to a stop, the length of the 
skid marks (in feet) is given by the formula

L = 0.000 013 3xy2

where x is the weight of the car (in pounds) and y is the speed 
of the car (in miles per hour). What is the average length of 
the skid marks for cars weighing between 2,000 and 3,000 
pounds and traveling at speeds between 50 and 60 miles per 
hour? Set up a double integral and evaluate it.

56. Safety research. Repeat Problem 55 for cars weighing 
between 2,000 and 2,500 pounds and traveling at speeds 
between 40 and 50 miles per hour.

57. Psychology. The intelligence quotient Q for a person with 
mental age x and chronological age y is given by

Q1x, y2 = 100 
x
y
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In a group of sixth-graders, the mental age varies between 8 
and 16 years and the chronological age varies between 10 and 
12 years. What is the average intelligence quotient for this 
group? Set up a double integral and evaluate it.

58. Psychology. Repeat Problem 57 for a group with mental 
ages between 6 and 14 years and chronological ages between 
8 and 10 years.

Answers to Matched Problems
1. (A) 2xy2 + 3x2y4 + C1x2

(B) 2x2y + 4x3y3 + E1y2
2. (A) 2x + 3x2

(B) 18y + 108y3

3. (A) 36
(B) 36

4. 12 5. e - 2e1>2 + 1 6. 2 7. 5 cubic units

In this section, we extend the concept of double integration discussed in Section 7.6 
to nonrectangular regions. We begin with an example and some new terminology.

Regular Regions
Let R be the region graphed in Figure 1. We can describe R with the following 
inequalities:

R = 51x, y2 0 x … y … 6x - x2, 0 … x … 56
The region R can be viewed as a union of vertical line segments. For each x in the 

interval 30, 54, the line segment from the point 1x, g1x22 to the point 1x, f 1x22 lies 
in the region R. Any region that can be covered by vertical line segments in this man-
ner is called a regular x region.

Now consider the region S in Figure 2. It can be described with the following 
inequalities:

S = 51x, y2 0  y2 … x … y + 2, -1 … y … 26
The region S can be viewed as a union of horizontal line segments going from the 

graph of h1y2 = y2 to the graph of k1y2 = y + 2 on the interval 3-1, 24. Regions 
that can be described in this manner are called regular y regions.

In general, regular regions are defined as follows:

7.7 Double Integrals over More General Regions
■■ Regular Regions
■■ Double Integrals over Regular 
Regions

■■ Reversing the Order of Integration
■■ Volume and Double Integrals

x

y

1 5x

5

10

1

(x, f (x))

(x, g(x))

f (x) 5 6x 2 x2

x # y # 6x 2 x2

0 # x # 5

g(x) 5 x

R

Figure 1

x

y

1
y

2

22

21

1

(y, h(y))

(y, k(y))

h(y) 5 y2

k(y) 5 y 1 2

y2 # x # y 1 2
21 # y # 2

S

Figure 2

DEFINITION Regular Regions
A region R in the xy plane is a regular x region if there exist functions f 1x2 and 
g 1x2 and numbers a and b such that

R = 51x, y2 0 g1x2 … y … f 1x2, a … x … b6
A region R in the xy plane is a regular y region if there exist functions h1y2 and 
k1y2 and numbers c and d such that

R = 51x, y2 0  h1 y2 … x … k1 y2, c … y … d6
See Figure 3 for a geometric interpretation.

If, for some region R, there is a horizontal line that has a nonempty intersection 
I with R, and if I is neither a closed interval nor a point, then R is not a regular 
y region. Similarly, if, for some region R, there is a vertical line that has a non-
empty intersection I with R, and if I is neither a closed interval nor a point, then 
R is not a regular x region (see Fig. 3).

CONCEPTUAL  INSIGHT
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x

y

y 5 f (x)

y 5 g(x)

Regular x region
ba

x

y

y 5 f (x)
or

x 5 h(y)

y 5 g(x)
or

x 5 k(y)

Both

d

c

ba

x

y

x 5 h(y)
x 5 k(y)

Regular y region

d

c

x

y

Neither

a b

d

c

Figure 3

Describing a Regular x Region The region R is bounded by the graphs of 
y = 4 - x2 and y = x - 2, x Ú 0, and the y axis. Graph R and use set notation 
with double inequalities to describe R as a regular x region.

SOLUTION As Figure 4 indicates, R can be covered by vertical line segments that 
go from the graph of y = x - 2 to the graph of y = 4 - x2. So R is a regular x 
region. In terms of set notation with double inequalities, we can write

R = 51x, y2 0  x - 2 … y … 4 - x2, 0 … x … 26

EXAMPLE 1

x

22

1

0

4

y

2 4

y 5 4 2 x2

y 5 x 2 2

R

Figure 4
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The region R of Example 1 is also a regular y region, since
R = 51x, y2 0  0 … x … k1y2, -2 … y … 46, where

k1y2 = e 2 + y14 - y
 

if -2 … y … 0
if 0 … y … 4

But because k1y2 is piecewise defined, this description is more complicated than 
the description of R in Example 1 as a regular x region.

CONCEPTUAL  INSIGHT

Matched Problem 1 Describe the region R bounded by the graphs of 

x = 6 - y and x = y2, y Ú 0, and the x axis as a regular y region (see Fig. 5).

y

1

0

2

2 4 6

x 5 y2
x 5 6 2 y

R

x

Figure 5

Describing Regular Regions The region R is bounded by the graphs of x + y2 = 9 
and x + 3y = 9. Graph R and describe R as a regular x region, a regular y region, 
both, or neither. Represent R in set notation with double inequalities.

SOLUTION We graph R in Figure 6.

x

y

5 10

3

0

R

x 1 y2 5 9

x 1 3y 5 9

Figure 6
Region R can be covered by vertical line segments that go from the graph of 
x + 3y = 9 to the graph of x + y2 = 9. Thus, R is a regular x region. In order to 
describe R with inequalities, we must solve each equation for y in terms of x:

 x + 3y = 9     x + y2 = 9

 3y = 9 - x     y2 = 9 - x

 y = 3 - 1
3x     y = 19 - x 

 We use the positive square  
root, since the graph is in the 
first quadrant.

So
R = 51x, y2 0 3 - 1

3x … y … 19 - x, 0 … x … 96
Since region R also can be covered by horizontal line segments (see Fig. 6) that go 
from the graph of x + 3y = 9 to the graph of x + y2 = 9, it is a regular y region. 
Now we must solve each equation for x in terms of y:

 x + 3y = 9     x + y2 = 9

 x = 9 - 3y     x = 9 - y2

Therefore,
R = 51x, y2 0 9 - 3y … x … 9 - y2, 0 … y … 36

EXAMPLE 2
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Matched Problem 2 Repeat Example 2 for the region bounded by the graphs 

of 2y - x = 4 and y2 - x = 4, as shown in Figure 7.

x

y

1

2

0

R

2224

y2 2 x 5 4

2y 2 x 5 4

Figure 7

Consider the vowels A, E, I, O, U, written in block letters as shown in the margin, 
to be regions of the plane. One of the vowels is a regular x region, but not a regular 
y region; one is a regular y region, but not a regular x region; one is both; two are 
neither. Explain.

Explore and Discuss 1

Double Integrals over Regular Regions
Now we want to extend the definition of double integration to include regular x re-
gions and regular y regions. The order of integration now depends on the nature of 
the region R. If R is a regular x region, we integrate with respect to y first, while if R 
is a regular y region, we integrate with respect to x first.

Note that the variable limits of integration (when present) are always on 
the inner integral, and the constant limits of integration are always on 
the outer integral.

DEFINITION Double Integration over Regular Regions
Regular x Region

If R = 51x, y2 0 g1x2 … y … f 1x2, a … x … b6 (see Fig. 8), 
then

O
R

F1x, y2 dA = L
b

a
 c L

f1x2

g 1x2
 F1x, y2 dy d  dx

Regular y Region

If R = 51x, y2 0 h1y2 … x … k1y2, c … y … d6 (see Fig. 9), 
then

O
R

F1x, y2 dA = L
d

c
 c L

k1y2

h 1y2
F1x, y2 dx d  dy

x

y

R

ba

y 5 f (x)

y 5 g(x)

Figure 8

R

x

y

d

c

x 5 h(y) x 5 k(y)

Figure 9

A   E   I   O   U
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Evaluating a Double Integral Evaluate 11
R

2xy dA, where R is the region bound-

ed by the graphs of y = -x and y = x2, x Ú 0, and the graph of x = 1.

SOLUTION From the graph (Fig. 10), we can see that R is a regular x region de-
scribed by

R = 51x, y2 0  -x … y … x2, 0 … x … 16

 O
R

2xy dA = L
1

0
c L

x2

-x
2xy dy d  dx

 = L
1

0

 c xy2 `
y = x2

y = -x
d  dx

 = L
1

0

 3x1x22 2 - x1-x2 24 dx

 = L
1

0

 1x5 - x32 dx

 = a x6

6
-

x4

4
b `

x = 1

x = 0

 = 11
6 - 1

42 - 10 - 02 = -  1
12

Matched Problem 3 Evaluate 11
R

3xy2 dA, where R is the region in Example 3.

EXAMPLE 3

x

y

1

21

1

0

R
x 5 1

y 5 2x

y 5 x2

Figure 10

Evaluating a Double Integral Evaluate 11
R
12x + y2 dA, where R is the region 

bounded by the graphs of y = 1x, x + y = 2, and y = 0.

SOLUTION From the graph (Fig. 11), we can see that R is a regular y region. After 
solving each equation for x, we can write

R = 51x, y2 0  y2 … x … 2 - y, 0 … y … 16

O
 

R

12x + y2dA = L
1

0
c L

2 - y

y2
12x + y2dx d  dy

 = L
1

0
 c 1x2 + yx2 `

x = 2 - y

x = y2
d  dy

 = L
1

0

5312 - y2 2 + y12 - y24 - 31y22 2 + y1y2246 dy

 = L
1

0

 14 - 2y - y3 - y42 dy

 = 14y - y2 - 1
4 y

4 - 1
5 y

52 ` y = 1

y = 0

 = 14 - 1 - 1
4 - 1

52 - 0 = 51
20

Matched Problem 4 Evaluate O
R

1y - 4x2dA, where R is the region in  
Example 4.

EXAMPLE 4

x

y

10

1

2

R
x 1 y 5 2

y 5 0

y 5 ÏxÏÏ

Figure 11
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Evaluating a Double Integral The region R is bounded by the graphs of y = 1x 

and y = 1
2 x. Evaluate 4

R
4xy3dA two different ways.

SOLUTION Region R (see Fig. 12) is both a regular x region and a regular y region:

 R = 51x, y2 0 12  x … y … 1x, 0 … x … 46 Regular x region

 R = 51x, y2 0  y2 … x … 2y, 0 … y … 26  Regular y region

Using the first representation (a regular x region), we obtain

 O
 

R

4xy3 dA = L
4

0
 c L

1x

x>2
4xy3 dy d  dx

 = L
4

0

c xy4 `
y = 1x

y = x>2
d  dx

 = L
4

0

3x11x2 4 - x1 1
2  x2 44  dx

 = L
4

0

1x3 - 1
16  x52  dx

 = 11
4  x4 - 1

96   x62 ` x = 4

x = 0

 = 164 - 128
3 2 - 0 = 64

3

Using the second representation (a regular y region), we obtain

 O
 

R

4xy3 dA = L
2

0
 c L

2y

y2

4xy3 dx d  dy

 = L
2

0
c 2x2y3 `

x = 2y

x = y2
d  dy

 = L
2

0
3212y2 2y3 - 21y22 2y34 dy

 = L
2

0
18y5 - 2y72 dy

 = 14
3 y6 - 1

4 y82 ` y = 2

y = 0

 = 1256
3 - 642 - 0 = 64

3

Matched Problem 5 The region R is bounded by the graphs of y = x and 

y =  1
2x2. Evaluate 4

R
4xy3dA two different ways.

EXAMPLE 5

y

1

1

0

2

2 3 4

R

x

y 5 Ïx
or

x 5 y2

y 5 2x
or

x 5 2y

1
2

Figure 12

Reversing the Order of Integration
Example 5 shows that

O
 

R

4xy3 dA = L
4

0
 cL

1x

x>2
4xy3 dy d  dx = L

2

0
 c L

2y

y2

 4xy3 dx d  dy

In general, if R is both a regular x region and a regular y region, then the two iterated 
integrals are equal. In rectangular regions, reversing the order of integration in an 
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iterated integral was a simple matter. As Example 5 illustrates, the process is more 
complicated in nonrectangular regions. The next example illustrates how to start with 
an iterated integral and reverse the order of integration. Since we are interested in 
the reversal process and not in the value of either integral, the integrand will not be 
specified.

Reversing the Order of Integration Reverse the order of integration in

L
3

1

 c L
x - 1

0
f 1x, y2 dy d  dx

SOLUTION The order of integration indicates that the region of integration is a 
regular x region:

R = 51x, y2 0  0 … y … x - 1, 1 … x … 36
Graph region R to determine whether it is also a regular y region. The graph (Fig. 13)  
shows that R is also a regular y region, and we can write

R = 51x, y2 0  y + 1 … x … 3, 0 … y … 26

L
3

1

 c L
x - 1

0

 f 1x, y2 dy d  dx = L
2

0
 c L

3

y + 1
 f 1x, y2 dx d  dy

Matched Problem 6 Reverse the order of integration in 14
2  314 - x

0  f 1x, y2 dy4 dx.

EXAMPLE 6

y

1

1

0

2

2 3 4

R

x

y 5 x 2 1
or

x 5 y 1 1
x 5 3

y 5 0

Figure 13

Explain the difficulty in evaluating 12
0 14

x2 xey2
dy dx and how it can be overcome by 

reversing the order of integration.

Explore and Discuss 2

Volume and Double Integrals
In Section 7.6, we used the double integral to calculate the volume of a solid with 
a rectangular base. In general, if a solid can be described by the graph of a positive 
function f 1x, y2 over a regular region R (not necessarily a rectangle), then the double 
integral of the function f over the region R still represents the volume of the corre-
sponding solid.

Volume The region R (see Fig. 14) is bounded by the graphs of x + y = 1, y = 0, 
and x = 0. Find the volume of the solid (see Fig. 15) under the graph of 
z = 1 - x - y over the region R.

EXAMPLE 7

x

y

10

1

R

x 1 y 5 1

x 5 0

y 5 0

Figure 14

1

1

1

z

z 5 1 2 x 2 y

x

y
R

Figure 15
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SOLUTION The graph of R (Fig. 14) shows that R is both a regular x region and a 
regular y region. We choose to use the regular x region:

R = 51x, y2 0 0 … y … 1 - x, 0 … x … 16
The volume of the solid is

 V = O
 

R

11 - x - y2 dA = L
1

0
 J L

1 - x

0
 11 - x - y2  dy R  dx

 = L
1

0

c1y - xy -  1
2  y22 ` y = 1 - x

y = 0
d dx

 = L
1

0

311 - x2 - x11 - x2 -  1
211 - x2 24 dx

 = L
1

0

1  1
2 - x +  1

2  x22  dx

 = 1  1
2 x -  1

2  x2 +  1
6  x32 ` x = 1

x = 0

 = 1  1
2 -  1

2 +  1
6 2 - 0 =  1

6

Matched Problem 7 The region R is bounded by the graphs of y + 2x = 2, 
y = 0, and x = 0. Find the volume of the solid under the graph of z = 2 - 2x - y 
over the region R. [Hint: Sketch the region first; the solid does not have to be 
sketched.]

Exercises 7.7
Skills Warm-up Exercises

 In Problems 1–6, evaluate each iterated integral. (If necessary, 
review Section 7.6).

1. L
2

0 L
3

0
4 dy dx 2. L

5

0 L
8

0
2 dx dy

3. L
1

0 L
2

-2
x dx dy 4. L

1

0 L
2

-2
y dx dy

5. L
1

0 L
1

0
1x + y2  dy dx 6. L

1

0 L
1

0
1x - y2  dy dx

 In Problems 7–12, graph the region R bounded by the graphs of 
the equations. Use set notation and double inequalities to describe 
R as a regular x region and a regular y region in Problems 7 and 
8, and as a regular x region or a regular y region, whichever is 
simpler, in Problems 9–12.

7. y = 4 - x2, y = 0, 0 … x … 2

8. y = x2, y = 9, 0 … x … 3

9. y = x3, y = 12 - 2x, x = 0

10. y = 5 - x, y = 1 + x, y = 0

11. y2 = 2x, y = x - 4

12. y = 4 + 3x - x2, x + y = 4

W

A

Evaluate each integral in Problems 13–16.

13. 11
0 1 x

0  1x + y2  dy dx 14. 12
0 1 y

0  xy dx dy

15. 11
0 11y

y3  12x + y2  dx dy 16. 14
1 1 x2

x  1x2 + 2y2  dy dx

 In Problems 17–20, give a verbal description of the region R and 
determine whether R is a regular x region, a regular y region, 
both, or neither.

17. R = 51x, y2 0 0 x 0 … 2, 0 y 0 … 36
18. R = 51x, y2 0 1 … x2 + y2 … 46
19. R = 51x, y2 0 x2 + y2 Ú 1,  0 x 0 … 2,  0 … y … 26
20. R = 51x, y2 0 0 x 0 + 0 y 0 … 16
In Problems 21–26, use the description of the region R to evaluate 
the indicated integral.

21. O
 

R

1x2 + y22  dA;  

R = 51x, y2 0 0 … y … 2x, 0 … x … 26

22. O
 

R

2x2y dA; 

R = 51x, y2 0 0 … y … 9 - x2, -3 … x … 36

B
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23. O
 

R

 1x + y - 22 3 dA;  

R = 51x, y2 0 0 … x … y + 2,  0 … y … 16

24. O
 

R

12x + 3y2 dA;  

R = 51x, y2 0 y2 - 4 … x … 4 - 2y,  0 … y … 26

25. O
 

R

ex + y dA;  

R = 51x, y2 0-x … y … x,  0 … x … 26

26. O
 

R

x2x2 + y2
 dA;  

R = 51x, y2 0 0 … x … 24y - y2,  0 … y … 26
In Problems 27–32, graph the region R bounded by the graphs of 
the indicated equations. Describe R in set notation with double 
inequalities, and evaluate the indicated integral.

27. y = x + 1, y = 0, x = 0, x = 1; O
 

R

 11 + x + y dA

28. y = x2,  y = 1x;  O
 

R

12xy dA

29. y = 4x - x2,  y = 0; O
 

R

 2y + x2 dA

30. x = 1 + 3y,  x = 1 - y,  y = 1; O
 

R

1x + y + 12 3 dA

31. y = 1 - 1x, y = 1 + 1x, x = 4; O
 

R

x1y - 12 2 dA

32. y =  1
2  x, y = 6 - x,  y = 1;  O

 

R

1
x + y

 dA

In Problems 33–38, evaluate each integral. Graph the region of 
integration, reverse the order of integration, and then evaluate the 
integral with the order reversed.

33. 13
0 13 - x

0  1x + 2y2  dy dx 34. 12
0 1 y

0  1y - x2 4 dx dy

35. 11
0 11 - x2

0  x1y dy dx 36. 12
0 14x

x3  11 + 2y2  dy dx

37. 14
0 11x>2

x>4
 x dy dx 38. 14

0 121y

y2>4
 11 + 2xy2  dx dy

In Problems 39–42, find the volume of the solid under the graph 
of f 1x, y2 over the region R bounded by the graphs of the indi-
cated equations. Sketch the region R; the solid does not have to be 
sketched.

39. f 1x, y2 = 4 - x - y; R is the region bounded by the graphs 
of x + y = 4, y = 0, x = 0

40. f 1x, y2 = 1x - y2 2; R is the region bounded by the graphs 
of y = x, y = 2, x = 0

41. f 1x, y2 = 4; R is the region bounded by the graphs of 
y = 1 - x2 and y = 0 for 0 … x … 1

42. f 1x, y2 = 4xy; R is the region bounded by the graphs of 

y = 21 - x2 and y = 0 for 0 … x … 1

 In Problems 43–46, reverse the order of integration for each inte-
gral. Evaluate the integral with the order reversed. Do not attempt 
to evaluate the integral in the original form.

43. L
2

0

 L
4

x2

4x

1 + y2 dy dx 44. L
1

0

 L
1

y

 21 - x2 dx dy

45. L
1

0

 L
1

y2

 4yex2
 dx dy 46. L

4

0

 L
21x

 23x + y2 dy dx

 In Problems 47– 52, use a graphing calculator to graph the 
region R bounded by the graphs of the indicated equations. Use 
approximation techniques to find intersection points correct to two 
decimal places. Describe R in set notation with double inequali-
ties, and evaluate the indicated integral correct to two decimal 
places.

47. y = 1 + 1x,  y = x2, x = 0; O
 

R

 x dA

48. y = 1 + 13 x, y = x, x = 0; O
 

R

 x dA

49. y = 13 x, y = 1 - x, y = 0; O
 

R

 24xy dA

50. y = x3, y = 1 - x, y = 0; O
 

R

 48xy dA

51. y = e-x,  y = 3 - x;  O
 

R

4y dA

52. y = ex,  y = 2 + x;  O
 

R

8y dA

Applications
53. Stadium construction. The floor of a glass-enclosed 

atrium at a football stadium is the region bounded by y = 0 
and y = 100 - 0.01x2. The ceiling lies on the graph of 
f1x, y2 = 90 - 0.5x. (Each unit on the x, y, and z axes repre-
sents one foot.) Find the volume of the atrium (in cubic feet).

54. Museum design. The floor of an art museum gallery is the 
region bounded by x = 0, x = 40, y = 0, and y = 50 - 0.3x.  
The ceiling lies on the graph of f1x, y2 = 25 - 0.125x. 
(Each unit on the x, y, and z axes represents one foot.) Find 
the volume of the atrium (in cubic feet).

55. Convention center expansion. A new exhibit 
hall at a convention center has a floor bounded by 
x = 0,  x = 200, y = -100 + 0.01x, and y = 100 - 0.01x. 
The ceiling lies on the graph of f1x, y2 = 50 - 0.12x. (Each 
unit on the x, y, and z axes represents one foot.) Find the 
volume of the exhibit hall (in cubic feet).

C
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56. Concert hall architecture. The floor of a concert hall is the 
region bounded by x = 0 and x = 100 - 0.04y2. The ceil-
ing lies on the graph of f1x, y2 = 50 - 0.0025x2. (Each unit 
on the x, y, and z axes represents one foot.) Find the volume 
of the concert hall (in cubic feet).

The average value of a function f(x, y) over a regular region R is 
defined to be

O
 

R

 f1x,y2dA

O
 

R

 dA

Use this definition of average value in Problems 57 and 58.

57. Air quality. An industrial plant is located on the lakefront 
of a city. Let (0, 0) be the coordinates of the plant. The 
city's residents live in the region R bounded by y = 0 and 
y = 10 - 0.1x2. (Each unit on the x and y axes represents 
1 mile.) Suppose that the concentration of fine particulate 

 matter (in micrograms per cubic meter) at a point d miles 
from the plant is given by

C = 60 - 0.5d2

Find the average concentration of fine particulate matter (to 
one decimal place) over the region R.

58. Air quality. Repeat Problem 57 for the region bounded by 
y = 0 and y = 5 - 0.2x2.

Answers to Matched Problems
1. R = 51x, y2 0 y2 … x … 6 - y, 0 … y … 26
2. R is both a regular x region and a regular y region:

R = 51x, y2 0  12  x + 2 … y … 1x + 4, - 4 … x … 06
R = 51x, y2 0 y2 - 4 … x … 2y - 4, 0 … y … 26

3.  13
40 4. -   77

20 5.  64
15

6. 12
0  314 - y

2  f 1x, y2  dx4 dy

7.  2
3

Chapter 7 Summary and Review

Important Terms, Symbols, and Concepts
7.1  Functions of Several Variables EXAMPLES

• An equation of the form z = f1x, y2 describes a function of two independent variables if, for each per-
missible ordered pair 1x, y2, there is one and only one value of z determined by f1x, y2. The variables x 
and y are independent variables, and z is a dependent variable. The set of all ordered pairs of permis-
sible values of x and y is the domain of the function, and the set of all corresponding values f1x, y2 is 
the range. Functions of more than two independent variables are defined similarly.

• The graph of z = f1x, y2 consists of all ordered triples 1x, y, z2 in a three-dimensional coordinate system 
that satisfy the equation. The graphs of the functions z = f1x, y2 = x2 + y2 and z = g1x, y2 = x2 - y2, 
for example, are surfaces; the first has a local minimum, and the second has a saddle point, at (0, 0).

Ex. 1, p. 482

Ex. 2, p. 483

Ex. 3, p. 483

Ex. 4, p. 484

Ex. 5, p. 485

Ex. 6, p. 485

Ex. 7, p. 487

7.2  Partial Derivatives
• If z = f1x, y2, then the partial derivative of f with respect to x, denoted as 0z>0x, fx, or fx1x, y2, is

0z
0x

= lim
hS0

 
f1x + h, y2 - f1x, y2

h
Similarly, the partial derivative of f with respect to y, denoted as 0z>0y, fy, or fy1x, y2, is

0z
0y

= lim
kS0

 
f1x, y + k2 - f1x, y2

k
The partial derivatives 0z>0x and 0z>0y are said to be first-order partial derivatives.

• There are four second-order partial derivatives of z = f1x, y2:

 fxx = fxx1x, y2 =
02z

0x2 =
0
0x

 a 0z
0x
b

 fxy = fxy1x, y2 =
02z

0y 0x
=

0
0y

 a 0z
0x
b

 fyx = fyx1x, y2 =
02z

0x 0y
=

0
0x

 a 0z
0y
b

 fyy = fyy1x, y2 =
02z

0y2 =
0
0y

 a 0z
0y
b

Ex. 1, p. 492

Ex. 2, p. 493

Ex. 3, p. 493

Ex. 4, p. 493

Ex. 5, p. 495
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7.3 Maxima and Minima
• If f1a, b2 Ú f1x, y2 for all 1x, y2 in a circular region in the domain of f with 1a, b2 as center, then f1a, b2 

is a local maximum. If f1a, b2 … f1x, y2 for all 1x, y2 in such a region, then f1a, b2 is a local minimum.

• If a function f1x, y2 has a local maximum or minimum at the point 1a, b2, and fx and fy exist at 1a, b2, 
then both first-order partial derivatives equal 0 at 1a, b2 [Theorem 1, p. 454].

• The second-derivative test for local extrema (Theorem 2, p. 454) gives conditions on the first- and 
second-order partial derivatives of f1x, y2, which guarantee that f1a, b2 is a local maximum, local mini-
mum, or saddle point.

Ex. 1, p. 502

Ex. 2, p. 502

Ex. 3, p. 504

Ex. 4, p. 505

7.4 Maxima and Minima Using Lagrange Multipliers
• The method of Lagrange multipliers can be used to find local extrema of a function z = f1x, y2 subject  

to the constraint g1x, y2 = 0. A procedure that lists the key steps in the method is given on page 510.

• The method of Lagrange multipliers can be extended to functions with arbitrarily many independent 
variables with one or more constraints (see Theorem 1, p. 509, and Theorem 2, p. 513, for the method 
when there are two and three independent variables, respectively).

Ex. 1, p. 510

Ex. 2, p. 511

Ex. 3, p. 513

7.5 Method of Least Squares
• Linear regression is the process of fitting a line y = ax + b to a set of data points 

1x1, y12, 1x2, y22,  c, 1xn, yn2 by using the method of least squares.

• We minimize F1a, b2 = a
n

k = 1
1yk - axk - b2 2, the sum of the squares of the residuals, by computing 

the first-order partial derivatives of F and setting them equal to 0. Solving for a and b gives the formulas

 a =
na a

n

k = 1
xkykb - a a

n

k = 1
xkb a a

n

k = 1
ykb

na a
n

k = 1
xk

2b - a a
n

k = 1
xkb

2

 b =
a

n

k = 1
yk - aa a

n

k = 1
xkb

n

• Graphing calculators have built-in routines to calculate linear—as well as quadratic, cubic, quartic,  
logarithmic, exponential, power, and trigonometric—regression equations.

Ex. 1, p. 522

Ex. 2, p. 524

7.6 Double Integrals over Rectangular Regions
• The double integral of a function f1x, y2 over a rectangle

R = 51x, y2 0 a … x … b, c … y … d6
is

 O
R 

f1x, y2 dA = L
b

a
 c L

d

c
f1x, y2 dy d  dx

 = L
d

c
 c L

b

a
f1x, y2 dx d  dy

• In the double integral 4R f1x, y2 dA, f1x, y2 is called the integrand and R is called the region of 
 integration. The expression dA indicates that this is an integral over a two-dimensional region. The 
integrals

L
b

a
 c L

d

c
f1x, y2 dy d  dx  and  L

d

c
 c L

b

a
f1x, y2 dx d  dy

are referred to as iterated integrals (the brackets are often omitted), and the order in which dx and dy 
are written indicates the order of integration.

Ex. 1, p. 528

Ex. 2, p. 529

Ex. 3, p. 530

Ex. 4, p. 531

Ex. 5, p. 532
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• The average value of the function f1x, y2 over the rectangle

R = 51x, y2 0 a … x … b, c … y … d6
is

1
1b - a21d - c2 O

R 

f1x, y2 dA

• If f1x, y2 Ú 0 over a rectangle R = 51x, y2 0 a … x … b, c … y … d6,  
then the volume of the solid formed by graphing f over the rectangle R  
is given by

V = O
R 

f1x, y2 dA

Ex. 6, p. 532

Ex. 7, p. 533

7.7 Double Integrals over More General Regions
• A region R in the xy plane is a regular x region if there exist functions f1x2 and g1x2 and numbers 

a and b such that

R = 51x, y2 0  g1x2 … y … f1x2, a … x … b6
• A region R in the xy plane is a regular y region if there exist functions h1y2 and k1y2 and numbers 

c and d such that

R = 51x, y2 0  h1y2 … x … k1y2, c … y … d6
• The double integral of a function F1x, y2 over a regular x region 

R = 51x, y2 0  g1x2 … y … f1x2, a … x … b6 is

O
R 

F1x, y2  dA = L
b

a
 c L

f1x2

g1x2
F1x, y2  dy d  dx

• The double integral of a function F1x, y2 over a regular y region 
R = 51x, y2 0  h1y2 … x … k1y2, c … y … d6 is

O
R 

F1x, y2  dA = L
d

c
 c L

k1y2

h1y2
F1x, y2  dx d  dy

Ex. 1, p. 538

Ex. 2, p. 539

Ex. 3, p. 541

Ex. 4, p. 541

Ex. 5, p. 542

Ex. 6, p. 543

Ex. 7, p. 543

Work through all the problems in this chapter review and check 
your answers in the back of the book. Answers to all review prob-
lems are there, along with section numbers in italics to indicate 
where each type of problem is discussed. Where weaknesses show 
up, review appropriate sections of the text.

1. For f1x, y2 = 450 + 4x - 3y, find f110, 52, fx1x, y2, and 
fy1x, y2.

2. For z = x3y2, find 02z>0x2 and 02z>0x 0y.

3. Evaluate 1 1x2 + 3y2 + 3xy + 42 dy.

4. Evaluate 1 1x2 + 3y2 + 3xy + 42 dx.

5. Evaluate 11
0 11

0  (2xy + 2) dx dy.

6.  For f1x, y2 = 6 + 5x - 2y + 3x2 + x3, find fx1x, y2, and 
fy1x, y2, and explain why f1x, y2 has no local extrema.

7. For f1x, y2 = 3x2 - 2xy + y2 - 2x + 3y - 7, find 
f12, 32  fy1x, y2, and fy12, 32.

8. For f1x, y2 = -4x2 + 4xy - 3y2 + 4x + 10y + 81, find 

3  fxx12, 3243  fyy12, 324 - 3  fxy12, 3242.

9. If f1x, y2 = x + 3y and g1x, y2 = x2 + y2 - 10, find the 
critical points of F1x, y, l2 = f1x, y2 + lg1x, y2.

10. Use the least squares line for the data in the following table to 
estimate y when x = 30.

x y

10 35
15 44
20 50
25 56

11. For R = 51x, y2 0 0 … x … 4, 2 … y … 36, evaluate the 
following in two ways:

O
R 

12x + 4y2 dA

12. For R = 51x, y2 0 y … x … 1y, 0 … y … 16, evaluate

O
R 

14x + 3y2 dA

Review Exercises

z

x

y

z 5 f (x, y)

a

b
d

ccc

R
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13. For f1x, y2 = ex2 + 2y, find fx, fy, and fxy.

14. For f1x, y2 = 1x2 + y22 5, find fx and fxy.

15. Find all critical points and test for extrema for

f1x, y2 = x3 - 12x + y2 - 6y

16. Use Lagrange multipliers to maximize f1x, y2 = x0.5y0.5 
subject to x + 2y = 6.

17. Use Lagrange multipliers to minimize f1x, y2 = 2x2 + y2 
subject to x + y = 1.

18. Find the least squares line for the data in the following table.

x y x y

10 50  60  80
20 45  70  85
30 50  80  90
40 55  90  90
50 65 100 110

19. Find the average value of f1x, y2 = x2y over the rectangle

R = 51x, y2 0 -1 … x … 1, 0 … y … 56
20. Find the volume of the solid under the graph of 

z = x2 + 6xy over the rectangle

R = 51x, y2 0  0 … x … 2, 0 … y … 16
21. Without doing any computation, predict the aver-

age value of f1x, y2 = x - y over the rectangle 
R = 51x, y2 0 -10 … x … 10, -10 … y … 106. Then 
check the accuracy of your prediction by evaluating a double 
integral.

22. (A)  Find the dimensions of the square S centered at the 
origin such that the average value of

f1x, y2 =
ex

y + 10

over S is equal to 5.
(B) Is there a square centered at the origin over which

f1x, y2 =
ex

y + 10

has average value 0.05? Explain.

23.  Explain why the function f1x, y2 = 4x3 - 5y3, subject to 
the constraint 3x + 2y = 7, has no maxima or minima.

24. Find the volume of the solid under the graph of 
F1x, y2 = 60x2y over the region R bounded by the graph of 
x + y = 1 and the coordinate axes.

Applications
25. Maximizing profit. A company produces x units of product 

A and y units of product B (both in hundreds per month). The 
monthly profit equation (in thousands of dollars) is given by

P1x, y2 = -4x2 + 4xy - 3y2 + 4x + 10y + 81

(A)  Find Px11, 32 and interpret the results.

(B) How many of each product should be produced each 
month to maximize profit? What is the maximum profit?

26. Minimizing material. A rectangular box with no top and six 
compartments (see figure) is to have a volume of 96 cubic 
inches. Find the dimensions that will require the least amount 
of material.

x
y

z

27. Profit. A company’s annual profits (in millions of  dollars) 
over a 5-year period are given in the following table. Use the 
least squares line to estimate the profit for the sixth year.

Year Profit

1 2
2 2.5
3 3.1
4 4.2
5 4.3

28. Productivity. The Cobb–Douglas production function for a 
product is

N1x, y2 = 10x0.8y0.2

where x is the number of units of labor and y is the number 
of units of capital required to produce N units of the product.

(A) Find the marginal productivity of labor and the marginal 
productivity of capital at x = 40 and y = 50. For the 
greatest increase in productivity, should management 
encourage increased use of labor or increased use of 
capital?

(B) If each unit of labor costs $100, each unit of capital 
costs $50, and $10,000 is budgeted for production of 
this product, use the method of Lagrange multipliers to 
determine the allocations of labor and capital that will 
maximize the number of units produced and find the 
maximum production. Find the marginal productivity of 
money and approximate the increase in production that 
would result from an increase of $2,000 in the amount 
budgeted for production.

(C) If 50 … x … 100 and 20 … y … 40, find the average 
number of units produced. Set up a double integral, and 
evaluate it.

29. Real estate. When evaluating the current market value of a 
property recently hit by a natural disaster, the function used 
to give the value of the property is

V1S, D2 =
1,000S
1 + D

where V is the value of the property (in dollars), S is the size 
of the property (in square feet), and D is the extent of damage 
(0  …  D  …  1). Find Vs (1,000, 0.5) and interpret the result.
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30. Air quality. A heavy industrial plant located in the center 
of a small town emits particulate matter into the atmo-
sphere. Suppose that the concentration of fine particulate 
matter (in parts per million) at a point d miles from the plant 
is given by

C = 65 - 6d2

If the boundaries of the town form a square 4 miles long 
and 4 miles wide, what is the average concentration of fine 
particulate matter throughout the town? Express C as a 
function of x and y, and set up a double integral and evalu-
ate it.

31. Trade. An economist found that the volume of trade T (in 
millions of dollars) between two cities in a given year varied 
(approximately) jointly as the GDPs M1 and M2 (in millions 
of dollars) of the two cities for the given year and varied 
inversely as the distance d (in thousands of kilometers) 
between them. The equation suggested by his model is

T1M1, M2, d2 = 0.005 
M1M2

d

Find T12, 9, 0.362.

32. Education. At the beginning of the semester, students in a 
foreign language course take a proficiency exam. The same 
exam is given at the end of the semester. The results for 
5 students are shown in the following table. Use the least 
squares line to estimate the second exam score of a student 
who scored 40 on the first exam.

First Exam Second Exam

30 60
50 75
60 80
70 85
90 90

33. Population density. The following table gives the U.S. 
population per square mile for the years 1960–2010:

U.S. Population Density

Year
Population  

(per square mile)

1960 50.6

1970 57.5

1980 64.1

1990 70.4

2000 79.7

2010 87.4

(A) Find the least squares line for the data, using x = 0 for 
1960.

(B) Use the least squares line to estimate the population 
density in the United States in the year 2025.

(C) Now use quadratic regression and exponential regression 
to obtain the estimate of part (B).

34. Life expectancy. The following table gives life expectan-
cies for males and females in a sample of Central and South 
American countries:

Life Expectancies for Central and South American Countries
Males Females Males Females

62.30 67.50 70.15 74.10

68.05 75.05 62.93 66.58

72.40 77.04 68.43 74.88

63.39 67.59 66.68 72.80

55.11 59.43

(A) Find the least squares line for the data.

(B) Use the least squares line to estimate the life expectancy 
of a female in a Central or South American country in 
which the life expectancy for males is 60 years.

(C) Now use quadratic regression and logarithmic regression 
to obtain the estimate of part (B).
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8 Differential Equations
8.1  Basic Concepts

8.2  Separation of Variables

8.3  First-Order Linear 
Differential Equations

Introduction
To develop a mathematical model for a bird population, we focus on the rate 
at which the population changes (see Problem 47 in the Chapter 8 Review 
Exercises). The rate of growth of a population may be proportional to the size of 
the population, proportional to the difference between the size and a fixed limit, 
or proportional to both the size and the difference between the size and a fixed 
limit. These  descriptions of the rate may be expressed succinctly by differential 
equations such as

dy
dt

= ky   
dy
dt

= k1M - y2   
dy
dt

= ky1M - y2

Solutions to these differential equations provide models for several types of 
exponential growth—unlimited, limited, and logistic (see Table 1, page 570). 
Unfortunately, there is no single method that will solve all the differential equations 
that may be encountered—even in very simple applications. In this chapter, after 
discussing some basic concepts in the first section, we will consider methods for 
solving several types of differential equations that have significant applications.
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552 CHAPTER 8  Differential Equations

In this section we review the basic concepts introduced in Section 5.3 and discuss in 
more detail what is meant by a solution to a differential equation, including explicit 
and implicit representations. Specific techniques for solving differential equations 
will be discussed in the next two sections.

Solutions of Differential Equations
A differential equation is an equation involving an unknown function, usually 
denoted by y, and one or more of its derivatives. For example,

 y′ = 0.2xy (1)

is a differential equation. Since only the first derivative of the unknown function y 
appears in this equation, it is called a first-order differential equation. In general, 
the order of a differential equation is the highest derivative of the unknown function 
present in the equation.

Notice that we used y9 rather than dy>dx to represent the derivative of y with 
respect to x in equation (1). This is customary practice in the study of differential 
equations. Unless indicated otherwise, we will assume that y is a function of the 
independent variable x and that y′ refers to the derivative of y with respect to x.

8.1 Basic Concepts
■■ Solutions of Differential Equations
■■ Implicit Solutions
■■ Application

Consider the differential equation

 y′ = 2x (2)

(A) Which of the following functions satisfy this equation?

y = x2  y = 2x2  y = x2 + 2

(B) Can you find other functions that satisfy equation (2)? What form do all these 
functions have?

(C) Discuss possible solution methods for any differential equation of the form

y′ = f1x2

Explore and Discuss 1

Figure 1A shows a slope field for equation (1). Recall from Section 5.3 that the 
slope field for a differential equation is obtained by drawing tangent line segments 
determined by the equation at each point in a grid. This provides a geometric inter-
pretation of the equation that indicates the general shape of solutions to the equation. 
Due to the large number of line segments, slope fields are usually generated by a 
computer or graphing calculator. Figure 1B shows the slope field for y′ = 0.2xy on 
a TI-84 Plus CE.

(A)

25

25

5

5

x

y

55

55

Figure 1 Slope field for y′ = 0.2xy

(B)

Now consider the function

y = 2e0.1x2

whose derivative is

y′ = 2e0.1x210.2x2 = 0.4xe0.1x2

Substituting for y and y′ in equation (1) gives

        y′ = 0.2xy  (1)

0.4xe0.1x2
= 0.2x12e0.1x22

0.4xe0.1x2
= 0.4xe0.1x2
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which is certainly true for all values of x. This shows that the function y = 2e0.1x2
 is  

a solution of equation (1). But this function is not the only solution. In fact, if C  
is any constant, substituting y = Ce0.1x2

 and y′ = 0.2xCe0.1x2
 in equation (1) yields 

the identity

 y′ = 0.2xy

 0.2xCe0.1x2
= 0.2xCe0.1x2

It turns out that all solutions of y′ = 0.2xy can be obtained from y = Ce0.1x2
 by 

assigning C appropriate values; y = Ce0.1x2
 is called the general solution of equa-

tion (1). The collection of all functions of the form y = Ce0.1x2
 is called the family 

of solutions of equation (1). The function y = 2e0.1x2
, obtained by letting C = 2 in 

the general solution, is called a particular solution of equation (1). Other particular 
solutions are

y = -2e0.1x2
  C = -2

y = -e0.1x2
  C = -1

y = 0  C = 0

y = e0.1x2
  C = 1

These particular solutions are graphed in Figure 2, along with the slope field for 
equation (1). Notice how the particular solutions conform to the shapes indicated by 
the slope field.

25

25

5

5

x

y

55

55

C 5 22 C 5 21

C 5 2 C 5 1

C 5 0

Figure 2  Particular solutions of 
y′ = 0.2xy

Verifying the Solution of a Differential Equation Show that

y = Cx2 + 1

is the general solution of the differential equation

xy′ = 2y - 2

On the same set of axes, graph the particular solutions obtained by letting C = -2, 
−1, 0, 1, and 2.

SOLUTION Substituting y = Cx2 + 1 and y′ = 2Cx in the differential equation, 
we have

 xy′ = 2y - 2

  x12Cx2 = 21Cx2 + 12 - 2

 2Cx2 = 2Cx2 + 2 - 2

 2Cx2 = 2Cx2

which shows that y = Cx2 + 1 is the general solution. The particular solutions cor-
responding to C = -2, -1, 0, 1, and 2 are graphed in Figure 3.

EXAMPLE 1 

Most, but not all, first-order differential equations have general solutions that 
 involve one arbitrary constant. Whenever we find a function, such as y = Ce0.1x2

,  
that satisfies a given differential equation for any value of the constant C, we 
will assume this function is the general solution.

CONCEPTUAL INSIGHT

x

y

10

5

25

2022

C 5 22

C 5 21

C 5 2

C 5 1

C 5 0

Figure 3  Particular solutions of 
xy′ = 2y - 2

Matched Problem 1 Show that

y = Cx + 1
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554 CHAPTER 8  Differential Equations

is the general solution of the differential equation

xy′ = y - 1

On the same set of axes, graph the particular solutions obtained by letting C = -2, 
-1, 0, 1, and 2.

In many applications, we will be interested in finding a particular solution y1x2 that 
satisfies an initial condition of the form  y1x02 = y0. The value of the constant C in the 
general solution must then be selected so that this initial condition is satisfied, that is, so 
that the solution curve (from the family of solution curves) passes through 1x0, y02.

Finding a Particular Solution Using the general solution in Example 1, find a 
particular solution of the differential equation xy′ = 2y - 2 that satisfies the indi-
cated initial condition, if such a solution exists.

(A)  y112 = 3 (B)  y102 = 3 (C)  y102 = 1

SOLUTION
(A) Initial condition  y112 = 3. From Example 1, the general solution of the 

 differential equation is

y = Cx2 + 1

Substituting x = 1 and y = 3 in this general solution yields

 3 = C112 2 + 1

 = C + 1

 C = 2

So, the particular solution satisfying the initial condition  y112 = 3 is

y = 2x2 + 1

See the graph labeled C = 2 in Figure 3.

(B) Initial condition  y102 = 3. Substituting x = 0 and y = 3 in the general solution 
yields

3 = C102 2 + 1

No matter what value of C we select,  C102 2 = 0 and this equation reduces to

3 = 1

which is never valid. We conclude that there is no particular solution of this 
 differential equation that will satisfy the initial condition  y102 = 3.

(C) Initial condition  y102 = 1. Substituting x = 0 and y = 1 in the general solution, 
we have

1 = C102 2 + 1

1 = 1

This equation is valid for all values of C. All solutions of this differential equation 
satisfy the initial condition  y102 = 1 (see Fig. 3).

EXAMPLE 2 

Example 2 shows that there may be exactly one particular solution, no particu-
lar solution, or many particular solutions that satisfy a given initial condition. 
The situation illustrated in Example 2A is the most common. Most first-order 
differential equations you will encounter will have exactly one particular solu-
tion that satisfies a given initial condition. However, we must always be aware 
of the possibility that a differential equation may not have any particular solu-
tions that satisfy a given initial condition, or the possibility that it may have 
many particular solutions satisfying a given initial condition.

CONCEPTUAL INSIGHT
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Matched Problem 2 Using the general solution in Matched Problem 1, find  
a particular solution of the differential equation xy′ = y - 1 that satisfies the 
 indicated initial condition, if such a solution exists.

(A)  y112 = 2 (B)  y102 = 2 (C)  y102 = 1

Implicit Solutions
The solution method we will discuss in the next section always produces an implic-
itly defined solution of a differential equation. In most of the differential equations 
we will consider, an explicit form of the solution can then be found by solving this 
implicit equation for the dependent variable in terms of the independent variable.

Verifying an Implicit Solution If y is defined implicitly by the equation

 y3 + ey - x4 = C (4)

show that y satisfies the differential equation

13y2 + ey2y′ = 4x3

SOLUTION We use implicit differentiation to show that y satisfies the given differ-
ential equation:

y3 + ey - x4 = C Take the derivative of both sides.

d
dx

 1y3 + ey - x42 =
d
dx

 C

d
dx

 y3 +
d
dx

 ey -
d
dx

 x4 = 0  
Simplify.3y2y′ + eyy′ - 4x3 = 0

13y2 + ey2y′ = 4x3

Since the last equation is the given differential equation, our calculations show that 
any function y defined implicitly by equation (4) is a solution of this differential 
equation. We cannot find an explicit formula for y, since none exists in terms of 
finite combinations of elementary functions.

Matched Problem 3 If y is defined implicitly by the equation

y + ey2
- x2 = C

show that y satisfies the differential equation

11 + 2yey22y′ = 2x

EXAMPLE 3 

Let y be a function defined implicitly by the equation

 xy = C where C is a constant (3)

(A) Differentiate equation (3) implicitly to obtain a differential equation involving y 
and y′.

(B) Solve equation (3) for y, and verify that the resulting function satisfies the differ-
ential equation you found in part (A).

Explore and Discuss 2

Reminder
d
dx

 xn = nxn - 1 but 
d
dx

 yn = nyn - 1 y′ 

because y is a function of x. Similarly,  
d
dx

 ex = ex but 
d
dx

 ey = ey y′.
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556 CHAPTER 8  Differential Equations

Finding an Explicit Solution If y is defined implicitly by the equation

y2 - x2 = C

show that y satisfies the differential equation

yy′ = x

Find an explicit expression for the particular solution that satisfies the initial condition 
 y102 = 2.

SOLUTION Using implicit differentiation, we have

 y2 - x2 = C

 
d
dx

 1y2 - x22 =
d
dx

 C

 2yy′ - 2x = 0

 2yy′ = 2x

 yy′ = x

which shows that y satisfies the given differential equation. Substituting x = 0 and 
y = 2 in y2 - x2 = C, we have

 y2 - x2 = C

 122 2 - 102 2 = C

 4 = C

So, the particular solution satisfying  y102 = 2 is a solution of the equation

y2 - x2 = 4

or

y2 = 4 + x2

Solving the last equation for y yields two explicit solutions,

y11x2 = 24 + x2  and  y21x2 = - 24 + x2

The first of these two solutions satisfies

y1102 = 24 + 102 2 = 14 = 2

whereas the second satisfies

y2102 = - 24 + 102 2 = - 14 = -2

The particular solution of the differential equation yy′ = x that satisfies the initial 
condition  y102 = 2 is

 y1x2 = 24 + x2

Check

  y′1x2 =
1
2

 14 + x22 -1>22x        yy′ = x

 =
x24 + x2

         24 + x2 a x24 + x2
 b =? x

x =✓ x

Matched Problem 4 If y is defined implicitly by the equation

y2 - x = C

EXAMPLE 4 
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show that y satisfies the differential equation

2yy′ = 1

Find an explicit expression for the particular solution that satisfies the initial condi-
tion  y102 = 3.

Application
The price of a product often changes over time, so it is natural to view price as a 
function of time. Let p(t) be the price of a particular product at time t. If p(t) ap-
proaches a limiting value p as t approaches infinity, then the price for this product is 
said to be dynamically stable and p is referred to as the equilibrium price. (Later 
in this chapter, this definition of equilibrium price will be related to the one given 
in Section 6.3.) In order to study the behavior of price as a function of time, econo-
mists often assume that the price satisfies a differential equation. This approach is 
illustrated in the next example.

Dynamic Price Stability The price p1t2 of a product is assumed to satisfy the 
differential equation

dp

dt
= 10 - 0.5p t Ú 0

(A) Show that

 p1t2 = 20 - Ce-0.5t

is the general solution of this differential equation, and evaluate

p = lim
tS ∞  

p1t2
(B) On the same set of axes, graph the three particular solutions that satisfy the initial 

conditions  p102 = 40,  p102 = 10, and  p102 = 20.

(C) Discuss the long-term behavior of the price of this product.

SOLUTION
(A)   p1t2 = 20 - Ce-0.5t 

 p′1t2 = 0.5Ce-0.5t

Substituting in the given differential equation, we have

 
dp

dt
= 10 - 0.5p

 0.5Ce-0.5t = 10 - 0.5120 - Ce-0.5t2
 = 10 - 10 + 0.5Ce-0.5t

 = 0.5Ce-0.5t

which shows that  p1t2 = 20 - Ce-0.5t is the general solution of this differen-
tial equation. To find the equilibrium price, we must evaluate lim

tS ∞
p1t2.

p = lim
tS ∞  

p1t2
= lim

tS ∞
120 - Ce-0.5t2

= 20 - C lim
tS ∞

e-0.5t  lim
tS ∞

e-0.5t = 0

 = 20 - C # 0
 = 20

EXAMPLE 5 

M08_BARN6152_14_GE_C08.indd   557 16/11/18   1:40 PM



558 CHAPTER 8  Differential Equations

(B) Before we can graph the three particular solutions, we must evaluate the con-
stant C for each of the indicated initial conditions. In each case, we will make 
use of the equation

 p102 = 20 - Ce0 = 20 - C

Case 1 Case 2 Case 3
  p102 = 40

 20 - C = 40
 C = -20

 p11t2 = 20 + 20e-0.5t

  p102 = 10
 20 - C = 10

 C = 10
 p21t2 = 20 - 10e-0.5t

  p102 = 20
 20 - C = 20

 C = 0
 p31t2 = 20

The graphs are shown in Figure 4.t

10

0

20

30

40

p

p1(t) 5 20 1 20e20.5t

p2(t) 5 20 2 10e20.5t

p3(t) 5 20 5 p

1 2 3 4 5

Figure 4  Particular solutions of 
dp
dt

= 10 - 0.5p

(C) From part (A), we know that  p′1t2 = 0.5Ce-0.5t and that the equilibrium price 
is p = 20. If

 p102 = 20 - C 7 p = 20 Add -20 to both sides.

-C 7 0  or C 6 0

then p′(t) is negative and the price decreases and approaches p as t S ∞   
[see the graph of p1(t) in Fig. 4]. On the other hand, if

 p102 = 20 - C 6 p = 20 Add -20 to both sides.

-C 6 0 or C 7 0

then p′(t) is positive and the price increases and approaches p as t S ∞  [see the 
graph of p2(t) in Fig. 4]. Finally, if

 p102 = 20 - C = p = 20 Add -20 to both sides.

-C = 0 or C = 0

then  p′1t2 = 0 and the price is constant for all t [see the graph of p3(t) in Fig. 4].

Matched Problem 5
(A) Show that the price function

 p1t2 = 25 - Ce-0.2t

is the general solution of the differential equation

dp

dt
= 5 - 0.2p t Ú 0

Find the equilibrium price p.

(B) On the same set of axes, graph the three particular solutions that satisfy the 
initial conditions  p102 = 40,  p102 = 5, and  p102 = 25.

(C) Discuss the long-term behavior of the price of this product.

Exercises 8.1
Skills Warm-up Exercises

In Problems 1–10, find the derivative. (If necessary, review 
Sections 3.4 and 3.5.)

1. y = x4 + 5x2 + 1 2. y = x3 - 7x + 2

3. y = 8x - x-1>2 4. y = 4 - x-5

5. y = 7x5ex 6. y = 3x2 ln x

7. y = 6ex2
8. y = 12e-x 

3

W

9. y =
ln x

1 + x 10. y =
x2 + 2

1 + ln x

In Problems 11–20, show that the given function is the general 
solution of the indicated differential equation.

11. y = Cx2; xy′ = 2y 12. y = Cx3; xy′ = 3y

13. y =
C
x

; xy′ = -y 14. y =
C

x4; xy′ = -4y

A
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15. y = C1x - 12 2; 1x - 12y′ = 2y

16. y =
C

x + 1
; 1x + 12y′ = -y

17. y = Cex2
; y′ = 2xy

18. y = Ce-x3
; y′ = -3x2y

19. y = 4 + Cex; y′ = y - 4

20. y = 3x - 0.6 + Ce-5x; y′ = 15x - 5y

In Problems 21–24, determine which of the slope fields (A)–(D) is 
associated with the indicated differential equation. Briefly justify 
your answer.

x

y

(A)

3

23

23 3

    

x

y

(B)

3

23

23 3

x

y

(C)

3

23

23 3

    

x

y

(D)

3

23

23 3

21. xy′ = 2y (From Problem 11)

22. 1x - 12y′ = 2y (From Problem 15)

23. xy′ = -y (From Problem 13)

24. 1x + 12y′ = -y (From Problem 16)

In Problems 25–28, use the appropriate slope field—(A),  
(B), (C), or (D), given for Problems 21–24 (or a copy)—to  
graph the particular solutions obtained by letting C = -2, -1,  
0, 1, and 2.

25. y = Cx2 (From Problem 11)

26. y = C1x - 12 2 (From Problem 15)

27. y =
C
x

 (From Problem 13)

28. y =
C

x + 1
 (From Problem 16)

In Problems 29–38, show that the given function y is the general 
solution of the indicated differential equation. Find a particular 
solution satisfying the given initial condition.

29. y = 3 + 3x + Cex; y′ = y - 3x; y102 = 4

30. y = -4 - 4x + Cex; y′ = y + 4x; y102 = 1

31. y = xe-x + Ce-x; y′ = -y + e-x; y102 = 0

32. y = xe2x + Ce2x; y′ = 2y + e2x; y102 = 0

33. y = 2x +
C
x

; xy′ = 4x - y; y112 = 1

34. y = -3x +
C
x

; xy′ + y = -6x; y112 = 2

35. y = 2 + Cx-3; xy′ + 3y = 6; y112 = 3

36. y = 3 + Cx-5; xy′ + 5y = 15; y112 = -4

37. y = x + Cx1>2; 2xy′ - y = x; y112 = 0

38. y = x3 + Cx1>3; 3xy′ - y = 8x3; y1-12 = -1

If y is defined implicitly by the given equation, use implicit differ-
entiation in Problems 39–42 to show that y satisfies the indicated 
differential equation.

39. y3 + xy - x3 = C; 13y2 + x2y′ = 3x2 - y

40. y + x4y4 - x3 = C; 11 + 4x4y32y′ = 3x2 - 4x3y4

41. xy + ey2
- x2 = C; 1x + 2yey22y′ = 2x - y

42. y + exy - x = C; 11 + xexy2y′ = 1 - yexy

If y is defined implicitly by the given equation, use implicit differ-
entiation in Problems 43–46 to show that y satisfies the indicated 
differential equation. Find an explicit expression for the particular 
solution that satisfies the given initial condition.

43. y2 + x2 = C; yy′ = -x; y102 = 3

44. y2 + 4x2 = C; yy′ = -4x; y102 = -5

45.  ln 12 - y2 = x + C; y′ = y - 2; y102 = 1

46.  ln 15 - y2 = 2x + C; y′ = 21y - 52; y102 = 2

In Problems 47–50, use the general solution y of the differential 
equation to find a particular solution that satisfies the indicated 
initial condition. Graph the particular solutions for x Ú 0.

47. y = 2 + Ce-x; y′ = 2 - y

(A)  y102 = 1 (B)  y102 = 2 (C)  y102 = 3

48. y = 4 + Ce-x; y′ = 4 - y

(A)  y102 = 2 (B)  y102 = 4 (C)  y102 = 5

49. y = 2 + Cex; y′ = y - 2

(A)  y102 = 1 (B)  y102 = 2 (C)  y102 = 3

50. y = 4 + Cex; y′ = y - 4
(A)  y102 = 2 (B)  y102 = 4 (C)  y102 = 5

B
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In Problems 51–54, write a differential equation that expresses 
the given description of a rate. Explain what each symbol in your 
differential equation represents.

51. The number of students of a university increases at a rate of 
500 students per year.

52. The blood pressure in the aorta decreases between heartbeats 
at a rate proportional to the blood pressure.

53. When a pizza is taken out of a hot oven, it cools off at a rate 
proportional to the difference between the temperature of the 
pizza and the room temperature of 72°F.

54. When a bag of frozen peas is taken out of a freezer, it warms 
up at a rate proportional to the difference between the room 
temperature of 68°F and the temperature of the bag.

In Problems 55 and 56, use the general solution y of the differen-
tial equation to find a particular solution that satisfies the indi-
cated initial condition. Graph the particular solutions for x Ú 0.

55. y =
10

1 + Ce-x; y′ = 0.1y110 - y2
(A)  y102 = 1 (B)  y102 = 10 (C)  y102 = 20

[Hint: The particular solution in part (A) has an inflection 
point at x =  ln  9.]

56. y =
5

1 + Ce-x; y′ = 0.2y15 - y2
(A)  y102 = 1 (B)  y102 = 5 (C)  y102 = 10

[Hint: The particular solution in part (A) has an inflection 
point at x =  ln  4.]

In Problems 57 and 58, use the general solution y of the dif-
ferential equation to find a particular solution that satisfies the 
indicated initial condition.

57. y = Cx3 + 2; xy′ = 3y - 6

(A)  y102 = 2

(B)  y102 = 0

(C)  y112 = 1

58. y = Cx6 + 3; xy′ = 6y - 18

(A)  y102 = 2

(B)  y102 = 3

(C)  y112 = 4

In Problems 59 and 60, use window dimensions Xmin = -5, 
Xmax = 5, Ymin = -5, and Ymax = 5.

59. Given that y = x + Ce-x is the general solution of the 
differential equation y′ + y = 1 + x:

(A) In the same viewing window, graph the particular 
solutions obtained by letting C = 0, 1, 2, and 3.

(B) What do the graphs of the solutions for C 7 0 have in 
common?

(C) In the same viewing window, graph the particular 
solutions obtained by letting C = 0, -1, -2, and -3.

(D) What do the graphs of the solutions for C 6 0 have in 
common?

C

60. Repeat Problem 59, given that y = x + 1C>x2  is the gen-
eral solution of the differential equation xy′ = 2x - y.

Applications
61. Price stability. The price p(t) of a product is assumed to 

satisfy the differential equation

dp

dt
= 0.5 - 0.1p

(A) Show that
 p1t2 = 5 - Ce-0.1t

is the general solution of this differential equation, and 
evaluate

p = lim
tS ∞

p1t2
(B) Graph the particular solutions that satisfy the initial 

conditions  p102 = 1 and  p102 = 10.

(C) Discuss the long-term behavior of the price of this 
product.

62. Price stability. The price p(t) of a product is assumed to 
satisfy the differential equation

dp

dt
= 0.8 - 0.2p

(A) Show that
 p1t2 = 4 - Ce-0.2t

is the general solution of this differential equation, and 
evaluate

p = lim
tS ∞

p1t2
(B) Graph the particular solutions that satisfy the initial 

conditions  p102 = 2 and  p102 = 8.

(C) Discuss the long-term behavior of the price of this 
product.

63. Continuous compound interest. If money is deposited at 
the continuous rate of $200 per year into an account earning 
8% compounded continuously, then the amount A in the ac-
count after t years satisfies the differential equation

dA
dt

= 0.08A + 200

(A) Show that
A = Ce0.08t - 2,500

is the general solution of this differential equation.

(B) Graph the particular solutions satisfying  A102 = 0 and 
 A102 = 1,000.

(C) Compare the long-term behavior of the two particular 
solutions in part (B). Discuss the effect of the value of 
A(0) on the amount in the account.

64. Continuous compound interest. If money is withdrawn at 
the continuous rate of $500 per year from an account earning 
10% compounded continuously, then the amount A in the ac-
count after t years satisfies the differential equation

dA
dt

= 0.1A - 500
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(A) Show that
A = 5,000 + Ce0.1t

is the general solution of this differential equation.

(B) Graph the particular solutions satisfying  A102 = 4,000 
and  A102 = 6,000.

(C) Compare the long-term behavior of the two particular 
solutions in part (B). Discuss the effect of the value of 
A(0) on the amount in the account.

65. Population growth—Verhulst growth model. The number 
N(t) of bacteria in a culture at time t is assumed to satisfy the 
Verhulst growth model

dN
dt

= 100 - 0.5N

(A) Show that
 N1t2 = 200 - Ce-0.5t

is the general solution of this differential equation, and 
evaluate

N = lim
tS ∞

N1t2
where N is the equilibrium size of the population.

(B) Graph the particular solutions that satisfy  N102 = 50 
and  N102 = 300.

(C) Discuss the long-term behavior of this population.

66. Population growth—logistic growth model. The popu-
lation N(t) of a certain species of animal in a controlled 
habitat at time t is assumed to satisfy the logistic growth 
model

dN
dt

=
1

500
 N11,000 - N2

(A) Show that

 N1t2 =
1,000

1 + Ce-2t

is the general solution of this differential equation, and 
evaluate N = lim

tS ∞
N1t2.

(B) Graph the particular solutions that satisfy  N102 = 200 
and  N102 = 2,000.

(C) Discuss the long-term behavior of this population.

67. Rumor spread—Gompertz growth model. The rate of 
propagation of a rumor is assumed to satisfy the Gompertz 
growth model

dN
dt

= Ne-0.5t

where N(t) is the number of individuals who have heard the 
rumor at time t.

(A) Show that  N1t2 = Ce-2e-0.5t
 is the general solution of 

this differential equation, and evaluate N = lim
tS ∞

N1t2.

(B) Graph the particular solutions that satisfy  N102 = 100 
and  N102 = 200.

(C) Discuss the effect of the value of N102 on the long-term 
propagation of this rumor.

Answers to Matched Problems

1. 

 

y

x

C 5 22
C 5 21

C 5 2

C 5 1

C 5 0

25

25

5

5

2.  (A)  y = x + 1 
(B)  No particular solution exists. 
(C)   y = Cx + 1 for any C

3.  
d
dx

 y +
d
dx

 ey2
-

d
dx

 x2 =
d
dx

 C 

     y′ + ey2
2yy′ - 2x = 0 

             11 + 2yey22y′ = 2x

4.  y1x2 = 19 + x

5.  (A) p = 25 
(B) 

t

p

5

10

15

20

25

30

35

40

151050

p(t) 5 25 1 15e20.2t

p(t) 5 25 2 20e20.2t

p(t) 5 25 5 p

(C)  If  p102 7 p, then the price decreases and approaches 
p as a limit. If  p102 6 p, then the price increases and 
approaches p as a limit. If  p102 = p, then the price 
remains constant for all t.
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562 CHAPTER 8  Differential Equations

Separation of Variables
In this section we will develop a technique called separation of variables, which can 
be used to solve differential equations that can be expressed in the form

  f1y2y′ = g1x2 (1)

We have already used this technique informally in Section 5.3 to derive some important 
exponential growth laws. We will now present a more formal development of this method.

8.2  Separation of Variables
■■ Separation of Variables
■■ Exponential Growth
■■ Limited Growth
■■ Logistic Growth
■■ Comparison of Exponential  
Growth Phenomena

Use algebraic manipulation to express each of the following equations in the form 
 f1y2y′ = g1x2, or explain why it is not possible to do so.

(A) y′ = x2y

(B) y′ = x2 + xy

(C) y′ = x2y + xy

Explore and Discuss 1

The solution of differential equations by the method of separating the variables 
is based on the substitution formula for indefinite integrals. If y = y1x2 is a differen-
tiable function of x, then

L f1y2dy = L f 3y1x24y′1x2  dx  Substitution formula 
(2)

 
for indefinite integrals

If y1x2 is also the solution of (1), then y1x2 and  y′1x2 must satisfy (1). That is,

f 3y1x24y′1x2 = g1x2
Substituting g1x2 for f 3y1x24y′1x2 in (2), we have

 L f1y2  dy = Lg1x2  dx (3)

The solution y1x2 of (1) is given implicitly by this equation. If both indefinite inte-
grals can be evaluated, and if the resulting equation can be solved for y in terms of x, 
then we have an explicit solution of the differential equation (1).

This discussion is summarized in Theorem 1:

THEOREM 1  Separation of Variables
The solution of the differential equation

  f1y2y′ = g1x2 (1)

is given implicitly by the equation

 L f1y2  dy = Lg1x2  dx (3)
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Differentials can be used to make the connection between equations (1) and (3) 
in Theorem 1:

  f1y2y′ = g1x2  Substitute y′ =
dy

dx
 in equation (1).

  f1y2dy

dx
= g1x2  Multiply both sides by dx.

  f1y2dy = g1x2dx  Integrate both sides.

 L f1y2dy = Lg1x2dx Equation (3)

CONCEPTUAL INSIGHT

Some prefer to go directly from equation (1) to equation (3). Others may want to 
switch to differential notation and multiply both sides by dx. The choice is up to you. 
We will illustrate both approaches in the following examples.

Using Separation of Variables Use separation of variables to solve y′ = 2xy2.

SOLUTION We choose to introduce differentials:

 y′ = 2xy2  Multiply by 1>y2 to separate the variables.

 
1

y2 y′ = 2x  Substitute y′ =
dy

dx
.

 
1

y2 
 dy

 dx
= 2x              Multiply both sides by dx and write 1>y2 as a power form.

 y-2dy = 2x dx  Integrate both sides.

 Ly-2dy = L2x dx  Use the power rule to evaluate each integral.

 
y-1

-1
+ C1 = 2

x2

2
+ C2

  Simplify each side algebraically and combine C1 and C2  
into a single arbitrary constant.

 -
1
y

= x2 + C  Solve for y.

 y = -
1

x2 + C
 General solution of y′ = 2xy2.

Check

 y′ =
d
dx

 a-  
1

x2 + C
 b =

2x

1x2 + C2 2

 y′ = 2xy2   Substitute y′ = 2x> 1x2 + C2 2 and 
y = -1> 1x2 + C2.

 
2x

1x2 + C2 2 =? 2x a-  
1

x2 + C
 b

2

 
2x

1x2 + C2 2 =✓
2x

1x2 + C2 2

This verifies that our general solution is correct. (You should develop the habit of 
checking the solution of each differential equation you solve, as we have done here. 
From now on, we leave it to you to check most of the examples worked in the text.)

Matched Problem 1 Solve: y′ = 4x3y2.

EXAMPLE 1 
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564 CHAPTER 8  Differential Equations

In some cases the general solution obtained by the technique of separation of 
variables does not include all the solutions to a differential equation. For example, 
the constant function y = 0 also satisfies the differential equation in Example 1. 
(Verify this.) Yet the solution y = 0 cannot be obtained from the expression

y = -
1

x2 + C

for any choice of the constant C. Solutions of this type are referred to as singular 
solutions and are usually discussed in more advanced courses. We will not attempt 
to find the singular solutions of any of the differential equations we consider.

CONCEPTUAL INSIGHT

Using Separation of Variables Find the general solution of

11 + x22y′ = 2x1y - 12
Then find the particular solution that satisfies the initial condition  y102 = 3.

SOLUTION First, we find the general solution:

 11 + x22y′ = 2x1y - 12   Multiply by 1> 11 + x22 and 1> 1y - 12 
to separate the variables.

 
y′

y - 1
=

2x

1 + x2
  Convert to an equation involving 

indefinite integrals (Theorem 1).

 L
dy

y - 1
= L

2x dx

1 + x2   Evaluate each indefinite integral.

  ln 0 y - 1 0 =  ln11 + x22 + C

where C is an arbitrary constant. Notice that the two constants of integration always 
can be combined to form a single arbitrary constant. Also note that we can use 
1 + x2 instead of 0 1 + x2 0 , since 1 + x2 is always positive. In order to solve for y, 
we convert this last equation to exponential form:

 0 y - 1 0 = e ln11 + x22 + C

 = eCe ln11 + x22 Use the property e ln  r = r.

 = eC11 + x22
If we replace eC with an arbitrary constant K, then we can omit the absolute value 
signs on the left side of the last equation. The resulting equation can then be used to 
find the general solution to the original differential equation.

 y - 1 = K11 + x22
 y = 1 + K11 + x22 General solution

To find the particular solution that satisfies  y102 = 3, we substitute x = 0 and 
y = 3 in the general solution and solve for K:

 3 = 1 + K11 + 02
 K = 2

 y = 1 + 211 + x22 = 3 + 2x2 Particular solution

Matched Problem 2 Find the general solution of

12 + x42y′ = 4x31y - 32
Then find the particular solution that satisfies the initial condition  y102 = 5.

EXAMPLE 2 
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Let y be a positive quantity that is changing with respect to time t, such as the price of 
a product, the amount of a drug in the bloodstream, or the population of a country. If 
y satisfies the differential equation

dy

dt
= ky k a constant

then we say that the rate of change of y with respect to time t is proportional to y. If 
k 7 0, y is increasing (growing); if k = 0, y is constant; and if k 6 0, y is decreas-
ing (declining or decaying). For each of the following differential equations, write a 
brief verbal description of the rate of change of y and discuss the possible increasing/
decreasing properties of y.

(A)  
dy

dt
= k  (B) 

dy

dt
= k1100 - y2  (C)  

dy

dt
= ky1100 - y2

Explore and Discuss 2

Exponential Growth
We now return to the study of exponential growth models first begun in Section 5.3. 
This time we will place more emphasis on determining the relevant model for a particu-
lar application and on using separation of variables to solve the corresponding differ-
ential equation in each problem. We begin with the familiar exponential growth model.

DEFINITION  Exponential Growth Model
If the rate of change with respect to time t of a quantity y is proportional to the 
amount present, then y satisfies the differential equation

dy

dt
= ky

Exponential growth includes both the case where y is increasing and the case 
where y is decreasing (or decaying).

Product Analysis Mothballs of a certain brand evaporate at a rate proportional to 
their volume, losing half their volume every 4 weeks. If the volume of each moth-
ball is initially 15 cubic centimeters and a mothball becomes ineffective when its 
volume reaches 1 cubic centimeter, how long will these mothballs be effective?

SOLUTION The volume of each mothball is decaying at a rate proportional to its 
volume. This indicates that an exponential growth model is appropriate for this 
problem. If V is the volume of a mothball after t weeks, then

dV
dt

= kV  Exponential growth model

Since the initial volume is 15 cubic centimeters, we know that  V102 = 15. After  
4 weeks, the volume will be half the original volume, so  V142 = 7.5. Summarizing 
these requirements, we have the following exponential decay model:

 
dV
dt

= kV

  V102 = 15 V142 = 7.5

EXAMPLE 3 
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566 CHAPTER 8  Differential Equations

We want to determine the value of t that satisfies the equation  V1t2 = 1. First, we 
use separation of variables to find the general solution of the differential equation:

 
dV
dt

= kV

 
1
V

 
dV
dt

= k

 L
dV
V

= Lk dt

  ln  V = kt + C  We can write ln V in place of ln 0V 0 , since V 7 0.

 V = ekt + C = eCekt = Aekt General solution

where A = eC is a positive constant. Now we use the initial condition to determine 
the value of the constant A:

  V102 = Ae0 = A = 15

  V1t2 = 15ekt

Next, we apply the condition  V142 = 7.5 to determine the constant k:

  V142 = 15e4k = 7.5

 e4k =
7.5
15

= 0.5

 4k =  ln  0.5

 k =
 ln  0.5

4
 ≈ -0.1733

  V1t2 = 15e1t>42 ln  0.5 Particular solution

The graph of V1t2 is shown in Figure 1. To determine how long the mothballs will 
be effective, we find t when V = 1:

t

V

4

7.5

15

1

0 15.6

V(t) 5 15e (t /4) ln 0.5

Figure 1 Exponential decay

  V1t2 = 1

 15e1t>42 ln  0.5 = 1

 e1t>42 ln  0.5 =
1

15

 
t
4

 ln  0.5 = ln 
1

15

 t =
4 ln 1

15

 ln  0.5
 ≈ 15.6 weeks

Matched Problem 3 Repeat Example 3 if the mothballs lose half their 
volume every 5 weeks.

Limited Growth
In certain situations there is an upper limit (or a lower limit), say, M, on the values a 
variable can assume. This limiting value leads to the limited growth model.

DEFINITION  Limited Growth Model
If the rate of change with respect to time t of a quantity y is proportional to the dif-
ference between y and a limiting value M, then y satisfies the differential equation

dy

dt
= k1M - y2
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When we speak of limited growth, we will include both the case where y 
increases and approaches M from below and the case where y decreases and 
 approaches M from above.

Sales Growth The annual sales S of a new company are expected to grow at a rate 
proportional to the difference between the sales and an upper limit of $20 million. 
The sales are $0 initially and $4 million for the second year of operation.

(A) Find the sales S during year t.

(B) Find S(10) and  S′1102 and interpret.

(C) In what year should the sales be expected to reach $15 million?

SOLUTION
(A) The description of the sales growth indicates that a limited growth model is 

 appropriate for this problem. That is,

 
dS
dt

= k120 - S2  Limited growth model

  S102 = 0 S122 = 4

Separating the variables in the limited growth model, we have

 
dS
dt

= k120 - S2   Multiply both sides by dt  
and 1> 120 - S2.

 
1

20 - S
 dS = k dt  Integrate both sides.

 L
1

20 - S
 dS = Lk dt  Evaluate both integrals.

  - ln120 - S2 = kt + C   We can write - ln120 - S2 in place  
of - ln  ∙ 20 - S ∙, since 0 6 S 6 20.

   ln120 - S2 = -kt - C

 20 - S = e-kt - C = e-Ce-kt = Ae-kt A = e-C

 S = 20 - Ae-kt  General solution

Now we use the conditions  S102 = 0 and  S122 = 4 to determine the con-
stants A and k:

  S102 = 20 - Ae0

 = 20 - A = 0

 A = 20

  S1t2 = 20 - 20e-kt

  S122 = 20 - 20e-2k = 4

 20e-2k = 16

 e-2k =
16
20

= 0.8

 -2k =  ln  0.8

 k = -
 ln  0.8

2
 ≈ 0.1116

 S1t2 = 20 - 20e1t>22  ln  0.8 Particular solution

The graph of S1t2 is shown in Figure 2. Notice that the upper limit of $20 million 
is a horizontal asymptote.

EXAMPLE 4 

t

S

4

13.45
15

20

20 10 12.42

S(t) 5 20 2 20e(t /2)ln 0.8

Figure 2 Limited growth
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(B)   S′1t2 = -20 a1
2

  ln  0.8be1t>22 ln  0.8

  S1102 = 20 - 20e5  ln  0.8 ≈ $13.45 million

  S′1102 = -20 a1
2

  ln  0.8be5  ln  0.8 ≈ $0.7312 million

During the tenth year, the sales are approximately $13.45 million and are 
increasing at the rate of $0.7312 million per year.

(C)        S1t2 = 20 - 20e1t>22 ln  0.8 = 15

 20e1t>22 ln  0.8 = 5

 e1t>22 ln  0.8 =
5

20
= 0.25

 
t
2

  ln  0.8 =  ln  0.25

 t =
2  ln  0.25

 ln  0.8
≈ 12.43 years

The annual sales will exceed $15 million in the thirteenth year.

Matched Problem 4 Repeat Example 4 if the sales during the second year are 
$3 million.

Logistic Growth
If a quantity first begins to grow exponentially but then starts to approach a limiting 
value, it is said to exhibit logistic growth. More formally, we have:

DEFINITION  Logistic Growth Model
If the rate of change with respect to time t of a quantity y is proportional to both 
the amount present and the difference between y and a limiting value M, then y 
satisfies the differential equation

dy

dt
= ky1M - y2

Theoretically, functions satisfying logistic growth models can be increasing 
or decreasing, just as was the case for the exponential and limited growth models. 
However, decreasing functions are seldom encountered in actual practice.

Population Growth In a study of ciliate protozoans, it has been shown that the 
rate of growth of the number of Paramecium caudatum in a medium with fixed 
volume is proportional to the product of the number present and the difference be-
tween an upper limit of 375 and the number present. Suppose the medium initially 
contains 25 paramecia. After 1 hour there are 125 paramecia. How many paramecia 
are present after 2 hours?

SOLUTION If P is the number of paramecia in the medium at time t, then the model 
for this problem is the following logistic growth model:

 
dP
dt

= kP1375 - P2
  P102 = 25 P112 = 125

EXAMPLE 5 
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We want to find P(2). First, we separate the variables and convert to an equation 
involving indefinite integrals:

    
1

P1375 - P2  
dP
dt

= k

 L
1

P1375 - P2  dP = Lk dt (4)

The integral on the left side of (4) can be evaluated by using formula 9 in Table 1 of 
Appendix C. We will use formula 9 with u = P, a = 375, and b = -1:

 L
1

u1a + bu2  du =
1
a

  ln ` u
a + bu

 `  Formula 9

 L
1

P1375 - P2  dP =
1

375
  ln ` P

375 - P
 `   Since 0 6 P 6 375, the absolute  

value signs can be omitted.

 =
1

375
  ln a P

375 - P
 b

Returning to equation (4), we have

 
1

375
  ln a P

375 - P
 b = Lk dt = kt + D D is a constant.

  ln a P
375 - P

 b = 375kt + 375D

 
P

375 - P
= e375kt + 375D = eBteC B = 375k, C = 375D

 P = 375eBteC - PeBteC

  P1eBteC + 12 = 375eBteC

 P =
375eBteC

eBteC + 1
  Multiply numerator and denominator  

by e-Bte-C and let A = e-C.

 =
375

1 + Ae-Bt  General solution

Now we use the conditions  P102 = 25 and  P112 = 125 to evaluate the constants 
A and B:

  P102 =
375

1 + A
= 25

 375 = 25 + 25A
 A = 14

 P1t2 =
375

1 + 14e-Bt

  P112 =
375

1 + 14e-B = 125

 375 = 125 + 1,750e-B

 e-B =
250

1,750
=

1
7

 -B =  ln 
1
7

= - ln  7

 B =  ln  7

 P1t2 =
375

1 + 14e-t  ln  7 Particular solution
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To determine the population after 2 hours, we evaluate P(2):

 P122 =
375

1 + 14e-2  ln  7 ≈ 292 paramecia

The graph of P(t) is shown in Figure 3. This S-shaped curve is typical of logistic 
growth functions. Notice that the upper limit of 375 is a horizontal asymptote.

t

P

125

25

292

375

3210 4

P(t) 5
375 

1 1 14e2t ln 7

Figure 3 Logistic growth

Matched Problem 5 Repeat Example 5 for 15 paramecia initially and 150 
paramecia after 1 hour.

Comparison of Exponential Growth Phenomena
The graphs and equations given in Table 1 compare several widely used growth 
models. These are divided basically into two groups: unlimited growth and limited 
growth. Following each equation and graph is a short (and necessarily incomplete) 
list of areas in which each model is used.

Table 1 Exponential Growth
Description Model Solution Graph Uses

Unlimited growth:
Rate of growth is proportional 
to the amount present

dy

dt
= ky 

k, t 7 0 
 y102 = c

y = cekt

c

0
t

y • Short-term population growth 
(people, bacteria, etc.)

• Growth of money at continuous 
compound interest

• Price–supply curves

Exponential decay:
Rate of growth is proportional 
to the amount present

dy

dt
= -ky 

k, t 7 0

 y102 = c

y = ce-kt

c

t

y

0

• Depletion of natural resources
• Radioactive decay
• Light absorption in water
• Price–demand curves
• Atmospheric pressure  

(t is altitude)

Limited growth:
Rate of growth is proportional 
to the difference between the 
amount present and a fixed 
limit

dy

dt
= k1M - y2

k, t 7 0

 y102 = 0

y = M11 - e-kt2

t

y

M

0

• Sales fads
• Depreciation of equipment
• Company growth
• Learning

Logistic growth:
Rate of growth is proportional 
to the amount present and to 
the difference between the 
amount present and a fixed 
limit

dy

dt
= ky1M - y2

k, t 7 0

 y102 =
M

1 + c

y =
M

1 + ce-kMt

t

y

M

0

• Long-term population growth
• Epidemics
• Sales of new products
• Rumor spread
• Company growth

Exercises 8.2
Skills Warm-up Exercises

In Problems 1–8, find the most general antiderivative. (If necessary, 
review Sections 5.1 and 5.2.) Assume x 7 0.

1. Lx-2dx 2. Lx-1>2dx

3. L
4
x

 dx 4. L
5

x + 1
 dx

5. Le-2xdx 6. Le5xdx

W

7. L
x21 + x2

 dx 8. Lx11 + x dx

In Problems 9–12, write a differential equation that describes the 
rate of change of the indicated quantity.

9. The annual sales y of a company are increasing at the rate of 
$100,000 per year.

10. The annual sales y of a company are increasing at a rate 
proportional to the annual sales.

A

M08_BARN6152_14_GE_C08.indd   570 16/11/18   1:42 PM



 SECTION 8.2    Separation of Variables 571

11. The fish population y in a lake is growing at a rate propor-
tional to the difference between the population and an upper 
limit of 10,000 fish.

12. In a community of 100,000, the number of people y who 
have contracted an infectious disease is growing at a rate 
proportional to the product of the number of people who have 
contracted the disease and the number who have not.

In Problems 13–16, write a verbal description of the rate of 
change of the given quantity satisfying the indicated differential 
equation, and discuss the increasing/decreasing properties of the 
quantity.

13. The annual sales y (in millions of dollars) of a company 
satisfy dy>dt = 0.1y and  y102 = 2.

14. The annual sales y (in millions of dollars) of a company 
satisfy dy>dt = 0.118 - y2 and  y102 = 2.

15. The number of people y who have heard a rumor satisfies 
dy>dt = 0.2y15,000 - y2 and  y102 = 1.

16. The amount of a drug y (in milliliters) in a patient’s blood-
stream satisfies dy>dt = -0.2y and  y102 = 5.

In Problems 17–20, show that the technique of separation of  
variables is applicable by writing each differential equation in  
the form  f1y2y′ = g1x2.

17. xy′ = y2

18. y′ + xy = 2x

19. xy′ + xy = 3y

20. y′ +
x3

y2 =
x

y2

In Problems 21–30, find the general solution for each differential 
equation. Then find the particular solution satisfying the initial 
condition.

21. y′ = 3x2;  y102 = -1

22. y′ = 2e2x;  y102 = 5

23. y′ =
2
x

;  y112 = 2

24. y′ =
213 x

;  y112 = 2

25. y′ = y;  y102 = 10

26. y′ = y - 10;  y102 = 15

27. y′ = 25 - y;  y102 = 5

28. y′ = 3x2y;  y102 =
1
2

29. y′ =
y

x
;  y112 = 5;  x 7 0

30. y′ =
y

x2;  y1-12 = 2e

In Problems 31–40, find the general solution for each differential 
equation. Then find the particular solution satisfying the initial 
condition.

31. y′ =
1

y2;  y112 = 3

32. y′ =
x2

y2;  y102 = 2

33. y′ = yex;  y102 = 3e

34. y′ = -y2ex;  y102 =
1
2

35. y′ =
ex

ey;  y102 =  ln  2

36. y′ = y212x + 12;  y102 = -
1
5

37. y′ = xy + x;  y102 = 2

38. y′ = 14x - 521y + 62;  y102 = 3

39. y′ = 12 - y2 2ex;  y102 = 1

40. y′ =
x1>2

1y - 52 2;  y112 = 7

In Problems 41–46, find the general solution for each differential 
equation. Do not attempt to find an explicit expression for the 
solution.

41. y′ =
1 + x2

1 + y2

42. y′ =
4x3 - 15x4

3y2 + 4x

43. xyy′ = 11 + x2211 + y22
44. 1xy2 - x2y′ = x2y - x2

45. x2eyy′ = x3 + x3ey

46. y′ =
xex

 ln y

In Problems 47–52, find an explicit expression for the particular 
solution for each differential equation.

47. xyy′ =  ln x;  y112 = 1

48. y′ =
xex2

y
;  y102 = 2

49. xy′ = x1y + 21y;  y112 = 4

50. y′ = x1x - 12 1>21y - 12 1>2;  y112 = 1

51. y2y′ = x2e-y3
;  y102 = 1

52. yy′ = x11 + y22;  y102 = 1

In Problems 53–56, discuss why the technique of separation of 
variables does not produce an explicit solution y = h1x2 of the 
differential equation.

53. y′ + xy = 2

54. y′ - 5x2y = ex

B

C
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55. 3yy′ = ex2
+ y

56. y′ =
9x2 + 2

5y4 - 6

57. In many applications involving limited growth, the limiting 
value M is not known in advance and must be determined 
from data. Suppose that the rate of change with respect to 
time t of a quantity y is proportional to the difference between 
y and an unknown upper limit M, and that y = 0 when t = 0. 
Using the limited growth model, it follows that

y = M11 - e-kt2 M 7 0, k 7 0

(A) Using the data given in the table, find two equations that 
M and k must satisfy, and solve each equation for M.

t 1 1.5

y 3 4

(B) Use a graphing calculator and the equations from part 
(A) to approximate M to one decimal place.

58. Refer to Problem 57. Suppose that the rate of change with 
respect to time of a quantity y is proportional to the difference 
between y and an unknown lower limit M, and that y = 10 
when t = 0. Using the limited growth model, it follows that

y = M + 110 - M2e-kt M 7 0, k 7 0

(A) Using the data given in the table, find two equations that 
M and k must satisfy, and solve each equation for M.

t 1 3

y 7 6

(B) Use a graphing calculator and the equations from part 
(A) to approximate M to one decimal place.

Applications
59. Continuous compound interest. Bank of Melbourne offers 

a CD (certificate of deposit) that earns 2.8% compounded 
continuously. How much will a $10,000 investment be worth 
in 5 years?

60. Continuous compound interest. Commonwealth Bank of 
Australia offers a CD that earns 2.5% compounded continuously. 
How much will a $12,000 investment be worth in 3 years?

61. Advertising.  A company is using radio advertising to 
introduce a new product to a community of 100,000 people. 
Suppose the rate at which people learn about the new product 
is proportional to the number who have not yet heard of it.

(A) If no one is aware of the product at the start of the ad-
vertising campaign and after 7 days 20,000 people are 
aware of the product, how long will it take for 50,000 
people to become aware of the product?

(B) Suppose the company is dissatisfied with the result in 
part (A) and wants to decrease to 14 days the amount of 
time it takes for 50,000 people to become aware of their 
product. For this to happen, how many people must be-
come aware of the product during the first 7 days?

62. Advertising. Prior to the beginning of an advertising 
campaign, 10% of the potential users of a certain brand 
are aware of the brand name. After the first week of the 
campaign, 20% of the consumers are aware of the brand 
name. Assume that the percentage of informed consum-
ers is growing at a rate proportional to the product of the 
percentage of informed consumers and the percentage of 
uninformed consumers.

(A) What percentage of consumers will be aware of the 
brand name after 5 weeks of advertising?

(B) Suppose the company is dissatisfied with the result 
in part (A) and increases the intensity of the adver-
tising campaign so that 25% of the consumers are 
aware of the brand name after the first week. What 
effect does this have on the percentage of consumers 
that will be aware of the brand name after 5 weeks of 
advertising?

63. Product analysis.  A company wishes to analyze a new 
room deodorizer. The active ingredient evaporates at a rate 
proportional to the amount present. Half of the ingredient 
evaporates in the first 30 days after the deodorizer is in-
stalled. If the deodorizer becomes ineffective after 90% of the 
active ingredient has evaporated, how long will one of these 
deodorizers remain effective?

64. Product analysis.  A chlorine-based pool disinfectant con-
tains an active ingredient with a half-life of 4 days. How often 
should this disinfectant be added to a pool to ensure that at 
least 30% of the active ingredient is present?

65. Personal income. According to Eurostat, the statistical of-
fice of the European Union, Austria’s total personal income 
was :173.8 billion in 2010 and :193.2 billion in 2015. If 
personal income is increasing at a rate proportional to total 
personal income, find the total personal income and the rate 
of change of total personal income in 2025 and interpret.

66. Corporate profits. According to the Australian Bureau of 
Statistics, total corporate profits before tax were $195.95 billion 
in 2010 and $233.38 billion in 2017. If corporate profits are in-
creasing at a rate proportional to total corporate profits, find the 
total corporate profits and the rate of change of total corporate 
profits in 2025 and interpret.

67. Sales analysis. The annual sales of a new company are 
expected to grow at a rate proportional to the difference 
between the sales and an upper limit of $5 million. If the 
sales are $0 initially and $1 million during the fourth year 
of operation, find the sales and the rate of change of the 
sales during the fifteenth year and interpret. How long (to 
the nearest year) will it take for the sales to grow to  
$4 million?

68. Sales analysis. The annual sales of a company have 
 declined from $8 million 2 years ago to $6 million today. If 
the annual sales continue to decline at a rate proportional to 
the difference between the annual sales and a lower limit of 
$3 million, find the sales and the rate of change of the sales  
3 years from now and interpret. How long (to the nearest 
year) will it take for the sales to decline to $3.5 million?
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69. Sales analysis.  A new company has $0 sales initially, sales 
of $2 million during the first year, and sales of $5 million 
during the third year. If the annual sales S are assumed to 
be growing at a rate proportional to the difference between 
the sales and an unknown upper limit M, then by the limited 
growth model,

 S1t2 = M11 - e-kt2 M 7 0, k 7 0

where t is time (in years) and S1t2 represents sales (in millions 
of dollars). Use approximation techniques to find k to one deci-
mal place and M to the nearest million. (See Problem 57.)

70. Sales analysis. Refer to Problem 69. Approximate k to one 
decimal place and M to the nearest million if the sales dur-
ing the third year are $4 million and all other information is 
unchanged.

Newton’s law of cooling states that the rate of change of the tem-
perature of an object is proportional to the difference between the 
temperature of the object and the temperature of the surrounding 
medium. Use this law to formulate models for Problems 71–74, 
and then solve using the techniques discussed in this section.

71. Manufacturing. As part of a manufacturing process, a metal 
bar is to be heated in an oven until its temperature reaches 
500°F. The oven is maintained at a constant temperature of 
800°F. The temperature of the bar before it is placed in the 
oven is 80°F. After 2 minutes in the oven, the temperature of 
the bar is 200°F. How long should the bar be left in the oven?

72. Manufacturing. The next step in the manufacturing process 
described in Problem 71 calls for the heated bar to be cooled 
in a vat of water until its temperature reaches 100°F. The  water 
in the vat is maintained at a constant temperature of 50°F. If 
the temperature of the bar is 500°F when it is first placed in 
the water and the bar has cooled to 400°F after 5 minutes in the 
water, how long should the bar be left in the water?

73. Food preparation. A cake is removed from an oven where 
the temperature is 350°F and placed to rest on the kitchen 
table where the room temperature is 70°F. After 1 hour on the 
kitchen table, the temperature of the cake is 280°F. What is 
the temperature of the cake after 2 hours on the kitchen table?

74. Food preparation.  A frozen piece of meat is taken from a 
freezer where the temperature is −4°F and placed to defrost 
on the kitchen table where the room temperature is 68°F. 
After 1 hour on the kitchen table, the temperature of the meat 
is 38°F. What is the temperature of the meat after 2 hours on 
the kitchen table?

75. Population growth. A culture of bacteria is growing at a rate 
proportional to the number present. The culture initially contains 
100 bacteria. After 1 hour there are 140 bacteria in the culture.

(A) How many bacteria will be present after 5 hours?

(B) When will the culture contain 1,000 bacteria?

76. Population growth. A culture of bacteria is growing in a 
medium that can support a maximum of 1,100 bacteria. The 
rate of change of the number of bacteria is proportional to 
the product of the number present and the difference between 
1,100 and the number present. The culture initially contains 
100 bacteria. After 1 hour there are 140 bacteria.

(A) How many bacteria are present after 5 hours?

(B) When will the culture contain 1,000 bacteria?

77. Simple epidemic. An influenza epidemic has spread 
throughout a community of 50,000 people at a rate propor-
tional to the product of the number of people who have been 
infected and the number who have not been infected. If 100 
individuals were infected initially and 500 were infected  
10 days later:

(A) How many people will be infected after 20 days?

(B) When will half the community be infected?

78. Ecology. A fish population in a large lake is declining at a 
rate proportional to the difference between the population and 
a lower limit of 5,000 fish.

(A) If the population has declined from 15,000 fish 3 years 
ago to 10,000 today, find the population 6 years  
from now.

(B) Suppose the fish population 6 years from now turns out 
to be 8,000, indicating that the lake might be able to 
support more than the original lower limit of 5,000 fish. 
Assuming that the rate of change of the population is 
still proportional to the difference between the popula-
tion and an unknown lower limit M, approximate M to 
the nearest hundred.

Body temperature is one factor that crime scene investigators 
use to estimate time of death. Use Newton’s law of cooling in 
 Problems 79 and 80 and assume that the body temperature at the 
time of death is 98.6°F.

79. Crime scene investigation.  A body was found in an alley 
at 1:00 a.m. The temperature that night was a constant 50°F 
and the temperature of the body at the time of discovery was 
75°F. The investigator left the body in the alley while she 
looked for other evidence. She checked the body temperature 
again at 2:00 a.m. and found that the temperature of the body 
had dropped to 70°F What was the time of death (to the  
nearest hour)?

80. Crime scene investigation.  A body was found stashed in 
a freezer at 3:00 p.m. The temperature in the freezer was a 
constant 0°F. A crime scene investigator determined that the 
temperature of the body at the time of discovery was 55°F. 
Evidence suggested that death occurred in the freezer. Leav-
ing the body in the freezer, the investigator checked the body 
temperature again at 4:00 p.m. and found that the temperature 
had dropped to 50°F. What was the time of death (to the near-
est hour)?

81. Sensory perception.  A person is subjected to a physical 
stimulus that has a measurable magnitude, but the intensity 
of the resulting sensation is difficult to measure. If s is the 
magnitude of the stimulus and I(s) is the intensity of sensa-
tion, experimental evidence suggests that

dI
ds

= k 
I
s

for some constant k. Express I as a function of s.
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82. Learning. The number of words per minute, N, a person can 
type increases with practice. Suppose the rate of change of  
N is proportional to the difference between N and an upper 
limit of 140. It is reasonable to assume that a beginner cannot 
type at all. Thus, N = 0 when t = 0. If a person can type  
35 words per minute after 10 hours of practice:

(A) How many words per minute can that individual type 
after 20 hours of practice?

(B) How many hours must that individual practice to be  
able to type 105 words per minute?

83. Rumor spread. A rumor spreads through a population of 
1,000 people at a rate proportional to the product of the num-
ber who have heard it and the number who have not heard it. 
If 5 people initiated a rumor and 10 people had heard it after 
1 day:

(A) How many people will have heard the rumor after 7 days?

(B) How long will it take for 850 people to hear the rumor?

Answers to Matched Problems
1. y = -1> 1x4 + C2
2.  General solution: y = 3 + K12 + x42; particular solution: 

y = 5 + x4

3. 19.5 weeks

4.  (A)  S1t2 = 20 - 20e1t>22 ln  0.85 
(B)  S1102 = $11.13 million;  S′1102 = $0.7211 million;  
during the tenth year, the sales are approximately  
$11.13 million and are increasing at the rate of  
$0.7211 million per year. 
(C) t ≈ 17.06 yr; annual sales will exceed $15 million near 
the beginning of the eighteenth year.

5. 343 paramecia

The Product Rule Revisited
The solution method we will discuss in this section is based in part on the product 
rule. Recall that if F and S are two differentiable functions, then

1FS2′ = FS′ + F′S

In Chapter 2, we started with F and S and used the product rule to find 1FS2′. Now 
we want to use the rule in the reverse direction. That is, we want to be able to recog-
nize when a sum of two terms is the derivative of a product.

8.3 First-Order Linear Differential Equations
■■ The Product Rule Revisited
■■ Solution of First-Order Linear 
Differential Equations

■■ Applications

Match each sum on the left with the derivative of a product on the right, where y is an 
unknown differentiable function of x.

(A) x2y′ + 2xy

(B) e-2xy′ - 2e-2xy

(C) 
1

x2 y′ -
2

x3 y

(D) ex2
y′ + 2xex2

y

Explore and Discuss 1

(1) 1ex2
y2′

(2) a 1

x2 yb′

(3) 1e-2xy2′

(4) 1x2y2′
In general, if  m1x2y′ + n1x2y is the derivative of a product, how must m1x2 and 

n1x2 be related?

Solution of First-Order Linear Differential Equations
A differential equation that can be expressed in the form

y′ + f1x2y = g1x2
is called a first-order linear differential equation.
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For example,

 y′ +
2
x

 y = x (1)

is a first-order linear differential equation with  f1x2 = 2>x and  g1x2 = x. This 
equation cannot be solved by the method of separation of variables. (Try to separate 
the variables to convince yourself that this is true.) Instead, we will change the form 
of the equation by multiplying both sides by x2:

 x2y′ + 2xy = x3 (2)

How was x2 chosen? We will discuss that shortly. Let us first see how this choice 
leads to a solution of the problem.

Since 1x22′ = 2x, the left side of (2) is the derivative of a product:

x2y′ + 2xy = 1x2y2′
So, we can write equation (2) as

1x2y2′ = x3

Now we can integrate both sides:

 L 1x2y2′ dx = Lx3dx

 x2y =
x4

4
+ C

Solving for y, we obtain the general solution

y =
x2

4
+

C

x2

The function x2, which we used to transform the original equation into one we could 
solve as illustrated, is called an integrating factor. It turns out that there is a specific for-
mula for determining the integrating factor for any first-order linear differential equation. 
Furthermore, this integrating factor can then be used to find the solution of the differential 
equation, just as we used x2 to find the solution to (1). The formula for the integrating fac-
tor and a step-by-step summary of the solution process are given in the box that follows.

PROCEDURE  Solving First-Order Linear Differential Equations
Step 1. Write the equation in the standard form:

y′ + f1x2y = g1x2
Step 2. Compute the integrating factor:

 I1x2 = e1f1x 2dx

[When evaluating Lf1x2  dx, choose 0 for the constant of integration.]
Step 3. Multiply both sides of the standard form by the integrating factor I(x). The 

left side should now be in the form [I1x2y]′:

3I1x2y4′ = I1x2g1x2
Step 4. Integrate both sides:

 I1x2y = L I1x2g1x2 dx

[When evaluating LI1x2g1x2  dx, include an arbitrary constant of integration.]
Step 5. Solve for y to obtain the general solution:

y =
1

I1x2  L I1x2g1x2  dx
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Using an Integrating Factor Solve: 2xy′ + y = 10x2.

SOLUTION
Step 1. Multiply both sides by 1> 12x2 to obtain the standard form:

y′ +
1
2x

 y = 5x f1x2 =
1
2x

  and  g1x2 = 5x

Step 2. Find the integrating factor:

  I1x2 = e1f1x2 dx

 = e131>12x24 dx   Assume x 7 0 and choose 0  
for the constant of integration.

 = e11>22 ln x  Rewrite, using r ln t =  ln tr

 = e ln x1>2   Simplify.

 = x1>2     Integrating factor.

Step 3. Multiply both sides of the standard form by the integrating factor:

 x1>2ay′ +
1
2x

 yb = x1>215x2

 x1>2y′ +
1
2

 x-1>2y = 5x3>2   The left side should have the form 3I1x2y4′.

 1x1>2y2′ = 5x3>2

Step 4. Integrate both sides:

 L 1x1>2y2′  dx = L5x3>2 dx  Include an arbitrary constant 
of integration on the right side.

 x1>2y = 2x5>2 + C

Step 5. Solve for y:

 y =
1

x1>2 12x5>2 + C2 Simplify.

 = 2x2 +
C

x1>2  General solution

Matched Problem 1 Solve: xy′ + 3y = 4x.

EXAMPLE 1 

The requirement that a differential equation be written in standard form is essential. 
To see why, consider the following equation, which is not written in standard form:

 2y′ + 4y = 8 (3)

If we proceed without first converting (3) to standard form, the integrating factor 
formula gives us

 I1x2 = e14 dx = e4x

Notice that we chose 0 for the constant of integration when computing I(x). This 
is not a requirement but a recommendation. Ignoring this recommendation will 
not result in an error, but it will complicate the subsequent calculations.

Returning to the differential equation in (3) and multiplying both sides by I(x), 
we have:

 2e4xy′ + 4e4xy = 8e4x (4)

CONCEPTUAL INSIGHT
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In Example 1, notice that we assumed x 7 0 to avoid introducing absolute value 
signs in the integrating factor. Many of the problems in this section will require the 
evaluation of expressions of the form e13h′1x2>h1x24dx. In order to avoid the complications 
caused by the introduction of absolute value signs, we will assume that the domain of 
h(x) has been restricted so that  h1x2 7 0. This will simplify the solution process. We 
state the following familiar formulas for convenient reference (in the first formula the 
constant of integration is 0, in accordance with Step 2):

The left side of (4) is supposed to be [e4xy]′. But

 3e4xy4′ = e4xy′ + 4e4xy (5)

Since the left side of (4) does not equal [e4xy]′ (the coefficients of the y′ terms are 
different), we cannot integrate both sides of (4) to find the solution to (3). In other 
words,  I1x2 = e4x is not an integrating factor for (3).

Whenever you use an integrating factor, you should check that

3I1x2y4′ = I1x2y′ + I′1x2y

as we did in (5), before proceeding to solve for y.
As an exercise, you should provide a correct solution to equation (3).

SUMMARY  Basic Formulas Involving the Natural Logarithm Function
If the domain of  h1x2 is restricted so that  h1x2 7 0, then

L
h′1x2
h1x2   dx =  ln  h1x2  and  eln h1x2 = h1x2

If a first-order linear differential equation is written in standard form, then multi-
plying both sides of the equation by its integrating factor will always convert the 
left side of the equation into the derivative of I1x2y. So, it is possible to omit Steps 3  
and 4, and proceed directly to Step 5. This approach is illustrated in the next 
example. You decide which is easier to use—the step-by-step procedure or the 
formula in Step 5.

CONCEPTUAL INSIGHT

Using an Integrating Factor Find the particular solution of the equation

y′ + 2xy = 4x

satisfying the initial condition  y102 = 5.

SOLUTION Since the equation is already in standard form, we begin by finding the 
integrating factor:

 I1x2 = e12x dx = ex2

Proceeding directly to Step 5, we have

 y =
1

I1x2  L I1x2g1x2  dx Substitute g1x2 = 4x

 =
1

ex2 Lex214x2  dx  Simplify.

 = e-x2

L4xex2
dx  Let u = x2, du = 2x dx.

EXAMPLE 2
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 = e-x212ex2
+ C2

 = 2 + Ce-x2
 General solution

Substituting x = 0 and y = 5 in the general solution, we have

 5 = 2 + C
 C = 3

 y = 2 + 3e-x2
 Particular solution

Matched Problem 2 Find the particular solution of y′ + 3x2y = 9x2 satisfying 
the initial condition  y102 = 7.

! CAUTION

1. When integrating both sides of an equation such as

1x1>2y2′ = 5x3>2

remember that

x1>2y = L5x3>2 dx ∙ 2x5>2 ′′ + C′′ is missing in the antiderivative.

Remember: A constant of integration must be included when evaluating 

LI1x2g1x2  dx.

If you omit this constant, you will not be able to find the general solution of the 
differential equation. See Step 4 of Example 1 for the correct procedure.

2. 
1

ex2 L4xex2
dx ∙

1

ex2 L4xex2
dx = L4x dx

Just as a variable factor cannot be moved across the integral sign, a variable 
factor outside the integral sign cannot be used to cancel a factor inside the 
integral sign. See Example 2 for the correct procedure. 

Applications
If P is the initial amount deposited into an account earning 100r% compounded con-
tinuously, and A is the amount in the account after t years, then we saw in Section 5.3 
that A satisfies the exponential growth equation

dA
dt

= rA A102 = P

Now suppose that money is continuously withdrawn from this account at a rate of $m 
per year. Then the amount A in the account at time t must satisfy

aRate of change
 of amount A b = °

 Rate of growth
from continouus

  compounding
¢ - a    Rate of

withdrawalb

 
dA
dt

  =  rA -  m 

or

 
dA
dt

- rA = -m (6)
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Continuous Compound Interest An initial deposit of $10,000 is made into an 
account earning 8% compounded continuously. Money is then continuously with-
drawn at a constant rate of $1,000 a year until the account is depleted. Find the 
amount in the account at any time t. When will the amount be $0? What is the total 
amount withdrawn from this account?

SOLUTION The amount A in the account at any time t must satisfy [see equation (6)]

dA
dt

- 0.08A = -1,000 A102 = 10,000

The integrating factor for this equation is

 I1t2 = e1-0.08 dt = e-0.08t f1t2 = -0.08

Multiplying both sides of the differential equation by I(t) and following the step-by-
step procedure, we have

 e-0.08t 
dA
dt

- 0.08e-0.08tA = -1,000e-0.08t

 1e-0.08tA2′ = -1,000e-0.08t

 e-0.08tA = L -1,000e-0.08t dt

 = 12,500e-0.08t + C

 A = 12,500 + Ce0.08t  General solution

Applying the initial condition  A102 = 10,000 yields

  A102 = 12,500 + C = 10,000

 C = -2,500

  A1t2 = 12,500 - 2,500e0.08t  Amount in the account at any time t

To determine when the amount in the account is $0, we solve  A1t2 = 0 for t:

  A1t2 = 0

 12,500 - 2,500e0.08t = 0

 12,500 = 2,500e0.08t

 5 = e0.08t

 t =
 ln  5
0.08

 ≈ 20.118 years

The account is depleted after 20.118 years, and the total amount withdrawn is 
$20,118 ($1,000 per year times 20.118 years).

Matched Problem 3 Repeat Example 3 if the account earns 5% compounded 
continuously.

How does equation (6) change if, instead of making continuous withdrawals, money 
is continuously deposited into the account at the rate of $m per year?

Explore and Discuss 2

EXAMPLE 3 
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Equilibrium Price In economics, the supply S and the demand D for a commodity 
often can be considered as functions of both the price, p1t2, and the rate of change 
of the price,  p′1t2. (Thus, S and D are ultimately functions of time t.) The equilib-
rium price at time t is the solution of the equation S = D. If p1t2 is the solution 
of this equation, then the long-range equilibrium price is

p = lim
tS ∞

p1t2
For example, if

D = 50 - 2p1t2 + 2p′1t2 S = 20 + 4p1t2 + 5p′1t2
and  p102 = 15, then the equilibrium price at time t is the solution of the equation

50 - 2p1t2 + 2p′1t2 = 20 + 4p1t2 + 5p′1t2
This simplifies to

 p′1t2 + 2p1t2 = 10 f1t2 = 2 and g1t2 = 10

which is a first-order linear equation with integrating factor

 I1t2 = e12 dt = e2t

Proceeding directly to Step 5, we have

  p1t2 =
1

e2t L10e2t dt

 = e-2t15e2t + C2
  p1t2 = 5 + Ce-2t         General solution

  p102 = 5 + C = 15

 C = 10

  p1t2 = 5 + 10e-2t        Equilibrium price at time t (see Fig. 1)

p = lim
tS ∞

15 + 10e-2t2 = 5 Long-range equilibrium prices

EXAMPLE 4 

t

15

10

21

p 5 5

p(t) 5 5 1 10e22 t

p(t)

Figure 1

Matched Problem 4 If D = 70 + 2p1t2 + 2p′1t2, S = 30 + 6p1t2 + 3p′1t2,  
and  p102 = 25, find the equilibrium price at time t, and find the long-range 
 equilibrium price.

Pollution Control A company has a 1,000-gallon holding tank that is used to con-
trol the release of pollutants into a sewage system. Initially, the tank contains 500 
gallons of water. Each gallon of water contains 2 pounds of pollutants. Additional 
polluted water containing 5 pounds of pollutants per gallon is pumped into the tank 
at the rate of 100 gallons per hour and is thoroughly mixed with the water already 
present in the tank. At the same time, the uniformly mixed water in the tank is re-
leased into the sewage system at a rate of 50 gallons per hour (Fig. 2). This process 
continues for 5 hours. At the end of this 5-hour period, determine

EXAMPLE 5 

Water leaves tank at
50 gallons per hour

Water enters tank at
100 gallons per hour

Water level
is rising

Figure 2

(A) The total amount of pollutants in the tank

(B) The rate (in pounds per gallon) at which pollutants are being released into the 
sewage system

SOLUTION Let p(t) be the total amount (in pounds) of pollutants in the tank t hours 
after this process begins. Since the tank initially contains 500 gallons of water and 
each gallon of water contains 2 pounds of pollutants,

 P102 = 2 # 500 = 1,000 Initial amount of pollutants in the tank
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Since polluted water is entering and leaving the tank at different rates and with dif-
ferent concentrations of pollutants, the rate of change of the amount of pollutants 
in the tank will depend on the rate at which pollutants enter the tank and the rate at 
which they leave the tank:

aRate of change
  of pollutants b = aRate pollutants

 enter the tank b - aRate pollutants
 leave the tank b

Finding expressions for the two rates on the right side of this equation will produce 
a differential equation involving  p′1t2.

Since water containing 5 pounds of pollutants per gallon is entering the tank at a 
constant rate of 100 gallons per hour, pollutants are entering the tank at a constant rate of

a  5 pounds
per gallonb * a100 gallons

 per hour b = 500 pounds per hour

How fast are the pollutants leaving the tank? Since the total amount of pollut-
ants in the tank is increasing, the rate at which the pollutants leave the tank will 
depend on the amount of pollutants in the tank at time t and the amount of water 
in the tank at time t. Since 100 gallons of water enter the tank each hour and only 
50 gallons leave each hour, the amount of water in the tank increases at the rate of 
50 gallons per hour. Thus, the amount of water in the tank at time t is

aInitial amount
 of water b + a  Gallons

per hourb * a  Number
of hours b

500   +  50t

The amount of pollutants in each gallon of water at any time t is

p1t2
500 + 50t

  

aTotal amount
of pollutants b

aTotal amount
 of water b

= Pollutants per gallon

Since water is leaving the tank at the rate of 50 gallons per hour, the rate at which 
the pollutants are leaving the tank is

50p1t2
500 + 50t

=
p1t2

10 + t

So, the rate of change of p(t) must satisfy

aRate of change
 of pollutants b = aRate pollutants

 enter the tank b - aRate pollutants
 leave the tank b

 p′1t2 =        500        -       
p1t2

10 + t

This gives the following model for this problem:

 p′1t2 = 500 -  
p1t2

10 + t
 p102 = 1,000

or

 p′1t2 +
1

10 + t
 p1t2 = 500       First-order linear equation 

with f1t2 = 1> 110 + t2  
and g1t2 = 500

 I1t2 = e1dt>110 + t2 = e ln 110 + t2 = 10 + t Integrating factor
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 p1t2 =
1

10 + t
 L500110 + t2 dt        Proceeding directly to Step 5,  

integrate.

=
1

10 + t
 3250110 + t2 2 + C4 Simplify.

 p1t2 = 250110 + t2 +
C

10 + t
    General solution

1,000 = 2501102 +
C
10

    Initial condition: p102 = 1,000

C
10

= -1,500

C = -15,000

 p1t2 = 250110 + t2-  
15,000
10 + t

    Particular solution (see Fig. 3)

(A) To find the total amount of pollutants after 5 hours, we evaluate p(5):

 p152 = 2501152-  
15,000

15
= 2,750 pounds

(B) After 5 hours, the tank contains 750 gallons of water. The rate at which pollut-
ants are being released into the sewage system is

2,750
750

 ≈ 3.67 pounds per gallon

Matched Problem 5 Repeat Example 5 if water is released from the tank at 
the rate of 75 gallons per hour.

t

2,750

5,000

1050

1,000

p(t) 5 250(10 1 t) 2
15,000
10 1 t

p(t)

Figure 3

Exercises 8.3

1. L6xe-x2
 dx 2. L5x2ex3

 dx

3. L
ln x

x
 dx 4. L

1ln x2 2

x
 dx

5. L
4

1x + 12 2 dx 6. L
x

x2 + 1
 dx

7. Lxexdx 8. L
5

12x + 12 2 dx

9. Lx2ex3
 dx 10. L ln x dx

In Problems 11–14, is the differential equation first-order linear? 
If so, find f(x) and g(x) so that the equation can be expressed in 
the form y′ + f1x2y = g1x2.

11. y′ = ky

12. y′ = k1M - y2
13. y′ = ky1M - y2
14. y′ = kx21M - y2
In Problems 15–22, replace each ? with a function of x that will 
make the integrand equal to the derivative of a product, and then 
find the antiderivative. Choose 0 for the constant of integration.

15. L 1x3y′ + ?y2  dx 16. L 1e2xy′ + ?y2  dx

17. L 1e-7xy′ + ?y2  dx 18. L 1x1>2y′ + ?y2  dx

A

Skills Warm-up Exercises

In all problems, assume  h1x2 7 0 whenever In h(x) is involved.

In Problems 1–10, find the most general antiderivative.W
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19. L 1?y′ + 4x3y2  dx 20. L 1?y′ + 0.2e0.2xy2  dx

21. L 1?y′ - 0.5e-0.5xy2  dx 22. L a?y′-  
1

x3 yb  dx

In Problems 23–34, find the integrating factor, the general solu-
tion, and the particular solution satisfying the given initial  
condition.

23. y′ + 2y = 4;  y102 = 1

24. y′ - 4y = 8;  y102 = -2

25. y′ + y = e-2x;  y102 = 3

26. y′ - 2y = e3x;  y102 = 2

27. y′ - y = 2ex;  y102 = -4

28. y′ + 4y = 3e-4x;  y102 = 5

29. y′ + y = 9x2e-x;  y102 = 2

30. y′ - 3y = 61x e3x;  y102 = -2

31. xy′ + y = 2x;  y112 = 1

32. xy′ - 5y = 12x;  y112 = 5

33. xy′ + 2y = 10x3;  y122 = 8

34. xy′ - 4y =
6

x2;  y122 = 5

In Problems 35–44, find the integrating factor I(x) for each equa-
tion, and then find the general solution.

35. y′ + xy = 5x 36. y′ - 3x2y = 6x2

37. y′ - 2y = 4x 38. y′ + y = x2

39. xy′ + y = xex 40. xy′ + 2y = xe3x

41. xy′ + y = x ln x 42. xy′ - y = x ln x

43. 2xy′ + 3y = 20x 44. 3xy′ - 2y = 21x3

In Problems 45–48, suppose that the indicated “solutions” 
were given to you by a student whom you are tutoring in  
this class.

(A) How would you have the student check each  
solution?

(B) Is the solution right or wrong? If the solution is wrong, 
explain what is wrong and how it can be corrected.

(C) Show a correct solution for each incorrect solution, and 
check the result.

45. Equation: y′ +
1
x

 y = 1x + 12 2

Solution: y =
1
x

 Lx1x + 12 2 dx

=
1
3

 1x + 12 3 + C

B

46. Equation: y′ +
2
x

 y = x - 1

Solution: y =
1

x2 Lx21x - 12 dx

=
1
2

 1x - 12 2 + C

47. Equation: y′ + 3y = e-x

Solution: y =
1

e3x Le2x dx

=
1
2

 e-x

48. Equation: y′ - 2y = ex

Solution: y = e2xLe-x dx

= -ex

In Problems 49–54, find the general solution two ways. First use 
an integrating factor and then use separation of variables.

49. y′ =
1 - y

x
50. y′ =

y + 2

x + 1

51. y′ =
2x + 2xy

1 + x2 52. y′ =
4x + 2xy

4 + x2

53. y′ = 2x1y + 12 54. y′ = 3x21y + 22
55. Use an integrating factor to find the general solution of the 

unlimited growth model,

dy

dt
= ky

[Hint:  Remember, the antiderivative of the constant function 
0 is an arbitrary constant C.]

56. Use an integrating factor to find the general solution of the 
limited growth model,

dy

dt
= k1L - y2

57. Discuss how the solution process for

y′ + f1x2y = g1x2
simplifies if f(x) and g(x) are constants a ∙ 0 and b, respec-
tively, and find the general solution.

58. Discuss how the solution process for

y′ + f1x2y = g1x2
simplifies if  g1x2 = 0 for all x, and find the general solution.

Applications
59. Continuous compound interest. An initial deposit of 

$20,000 is made into an account that earns 4.8%  compounded 
continuously. Money is then withdrawn at a constant rate of 
$3,000 a year until the amount in the account is 0. Find the 
amount in the account at any time t. When is the amount 0? 
What is the total amount withdrawn from the account?

C
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60. Continuous compound interest. An initial deposit of 
$50,000 is made into an account that earns 4.5%  compounded 
continuously. Money is then withdrawn at a constant rate of 
$5,400 a year until the amount in the account is 0. Find the 
amount in the account at any time t. When is the amount 0? 
What is the total amount withdrawn from the account?

61. Continuous compound interest. An initial deposit of $P is 
made into an account that earns 4.75% compounded continu-
ously. Money is then withdrawn at a constant rate of $1,900 a 
year. After 10 years of continuous withdrawals, the amount in 
the account is 0. Find the initial deposit P.

62. Continuous compound interest. An initial deposit of $P is 
made into an account that earns 4.25% compounded continu-
ously. Money is then withdrawn at a constant rate of $3,400 a 
year. After 5 years of continuous withdrawals, the amount in 
the account is 0. Find the initial deposit P.

63. Continuous compound interest. An initial deposit of $5,000 
is made into an account earning 7% compounded continu-
ously. Thereafter, money is deposited into the account at a 
constant rate of $2,100 per year. Find the amount in this ac-
count at any time t. How much is in this account after 5 years?

64. Continuous compound interest. An initial deposit of $10,000 
is made into an account earning 6.25% compounded continu-
ously. Thereafter, money is deposited into the account at a con-
stant rate of $5,000 per year. Find the amount in this account at 
any time t. How much is in this account after 10 years?

65. Continuous compound interest. An initial investment of 
$10,000 is made in a mutual fund. Additional investments are 
made at the rate of $1,000 per year. After 10 years the fund has 
a value of $30,000. What continuous compound rate of inter-
est has this fund earned over this 10-year period? Express the 
answer as a percentage, correct to two decimal places.

66. Continuous compound interest. A trust fund is established 
by depositing $100,000 into an account. Withdrawals are 
made at the rate of $20,000 per year. After 5 years, the trust 
fund contains $15,000. What continuous compound rate of 
interest has this fund earned over this 5-year period? Express 
the answer as a percentage, correct to two decimal places.

67. Supply-demand. The supply S and demand D for a certain 
commodity satisfy the equations

 S = 45 - 3p1t2 + 4p′1t2 and

 D = 95 - 5p1t2 + 3p′1t2
If  p102 = 40, find the equilibrium price at time t and the 
long-range equilibrium price.

68. Supply-demand. The supply S and demand D for a certain 
commodity satisfy the equations

 S =  60 - 2p1t2 + 3p′1t2 and

 D = 100 - 6p1t2 + 2p′1t2
If  p102 = 5, find the equilibrium price at time t and the 
long-range equilibrium price.

69. Pollution. A 1,000-gallon holding tank contains 200 gal-
lons of water. Initially, each gallon of water in the tank 

contains 2 pounds of pollutants. Water containing 3 pounds 
of  pollutants per gallon enters the tank at a rate of 75 gal-
lons per hour, and the uniformly mixed water is released 
from the tank at a rate of 50 gallons per hour. How many 
pounds of pollutants are in the tank after 2 hours? At what 
rate (in pounds per gallon) are the pollutants being released 
after 2 hours?

Water leaves tank at
50 gallons per hour

Water enters tank at
75 gallons per hour

70. Pollution. Rework Problem 69 if water is entering the tank at 
the rate of 100 gallons per hour.

71. Pollution. Rework Problem 69 if water is entering the tank at 
the rate of 50 gallons per hour.

72. Pollution. Rework Problem 69 if water is entering the tank at 
the rate of 150 gallons per hour.

73. Pollution. Refer to Problem 69. When will the tank contain 
1,000 pounds of pollutants? Round answer to one decimal 
place.

74. Pollution. Refer to Problem 72. When will the tank contain 
1,500 pounds of pollutants? Round answer to one decimal 
place.

In an article in the College Mathematics Journal (Jan. 1987, 
18:1), Arthur Segal proposed the following model for weight loss 
or gain:

dw
dt

+ 0.005w =
1

3,500
 C

where w(t) is a person’s weight (in pounds) after t days of 
consuming exactly C calories per day. Use this model to solve 
Problems 75–78.

75. Weight loss. A person weighing 160 pounds goes on a diet 
of 2,100 calories per day. How much will this person weigh 
after 30 days on this diet? How long will it take this person to 
lose 10 pounds? Find lim

tS ∞  
w1t2 and interpret the results.

76. Weight loss. A person weighing 200 pounds goes on a diet 
of 2,800 calories per day. How much will this person weigh 
after 90 days on this diet? How long will it take this person to 
lose 25 pounds? Find lim

tS ∞  
w1t2 and interpret the results.

77. Weight loss. A person weighing 130 pounds would like to 
lose 5 pounds during a 30-day period. How many calories per 
day should this person consume to reach this goal?

78. Weight loss. A person weighing 175 pounds would like to 
lose 10 pounds during a 45-day period. How many calories 
per day should this person consume to reach this goal?
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In 1960, William K. Estes proposed the following model for mea-
suring a student’s performance in the classroom:

dk
dt

+ /k = l/

where k(t) is the student’s knowledge after t weeks (expressed as 
a percentage and measured by performance on examinations), / 
is a constant called the coefficient of learning and representing 
the student’s ability to learn (expressed as a percentage and de-
termined by IQ or some similar general intelligence predictor), 
and l is a constant representing the fraction of available time 
the student spends performing helpful acts that should increase 
knowledge of the subject (studying, going to class, and so on). 
Use this model to solve Problems 79 and 80.

79. Learning theory. Students enrolled in a beginning Spanish 
class are given a pretest the first day of class to determine 
their knowledge of the subject. The results of the pretest, 
the coefficient of learning, and the fraction of time spent 
performing helpful acts for two students in the class are given 
in the table. Use the Estes model to predict the knowledge of 
each student after 6 weeks in the class.

Score on 
Pretest

Coefficient 
of Learning

Fraction of 
Helpful Acts

Student A 0.1(10%) 0.8 0.9

Student B 0.4(40%) 0.8 0.7

80. Learning theory. Refer to Problem 79. When will both 
students have the same level of knowledge? Round answer to 
one decimal place.

Answers to Matched Problems

1.  I1x2 = x3; y = x + 1C>x32 
2.  I1x2 = ex3

; y = 3 + 4e-x3
 

3.  A1t2 = 20,000 - 10,000e0.05t; A = 0 when 
    t = 1 ln 22 >0.05 ≈ 13.863 yr; total withdrawals = $13,863
4.  p1t2 = 10 + 15e-4t; p = 10 

5.  p1t2 = 125120 + t2 -
12,000,000

120 + t2 3  

     (A)  2,357 lb   (B)  Approx. 3.77 lb/gal

Chapter 8  Summary and Review

Important Terms, Symbols, and Concepts

8.1  Basic Concepts EXAMPLES
A differential equation is an equation involving an unknown function, usually denoted by y, and one or more 
of its derivatives. The order of a differential equation is the highest derivative of the unknown function present 
in the equation. We only consider first-order differential equations. The slope field for a differential equation 
is obtained by drawing tangent line segments determined by the equation at each point in a grid. The solution 
of a differential equation is a function y with the property that substituting y and y′ into the equation produces a 
statement that is true for all values of x. A solution of a differential equation that involves an arbitrary constant 
is called the general solution, and collectively is referred to as the family of solutions. Each member of the 
family of solutions is called a particular solution. A condition of the form  y1x02 = y0 is called an initial 
condition and is often used to specify a particular solution. 

Ex. 1, p. 553
Ex. 2, p. 554
Ex. 3, p. 555
Ex. 4, p. 556
Ex. 5, p. 557

Ex. 1, p. 563
Ex. 2, p. 564

8.2  Separation of Variables
The solution of a differential equation that can be written in the form

 f1y2y′ = g1x2
is given implicitly by the equation

L f 1y2  dy = Lg 1x2  dx

If both integrals can be evaluated and if the resulting equation can be solved for y in terms of x, 
then we have an explicit solution for the differential equation. A solution to a differential equation 
that cannot be obtained from the general solution is referred to as a singular solution. The basic 
exponential growth models and their solutions are as follows:

 Summary and Review 585
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Exponential Growth
Description Model Solution

Unlimited growth:
Rate of growth is proportional 
to the amount present

dy

dt
= ky

k, t 7 0
 y102 = c

y = cekt

Exponential decay:
Rate of growth is proportional 
to the amount present

dy

dt
= -ky

k, t 7 0
 y102 = c

y = ce-kt

Limited growth:
Rate of growth is proportional 
to the difference between the 
amount present and a fixed limit

dy

dt
= k1M - y2

k, t 7 0
 y102 = 0

y = M11 - e-kt2

Logistic growth:
Rate of growth is proportional 
to the amount present and to the 
difference between the amount 
present and a fixed limit

dy

dt
= ky 1M - y2

k, t 7 0

 y102 =
M

1 + c

y =
M

1 + ce-kMt

8.3  First-Order Linear Differential Equations
A differential equation that can be expressed in the form

y′ + f1x2y = g1x2
is called a first-order linear differential equation. Equations in this form can be solved by the 
following procedure: 

EXAMPLES

Ex. 3, p. 565

Ex. 4, p. 567

Ex. 5, p. 568

Ex. 1, p. 576
Ex. 2, p. 577
Ex. 3, p. 579
Ex. 4, p. 580
Ex. 5, p. 580

PROCEDURE   Solving First-Order Linear Differential Equations
Step 1. Write the equation in the standard form:

y′ + f1x2y = g1x2
Step 2. Compute the integrating factor:

 I1x2 = e1f1x2dx

[When evaluating 1 f1x2dx, choose 0 for the constant of integration.]

Step 3.  Multiply both sides of the standard form by the integrating factor I(x). 
The left side should now be in the form [I1x2y]′:

3I1x2y4′ = I1x2g1x2
Step 4. Integrate both sides:

 I1x2y = L I1x2g1x2dx

[When evaluating 1 I1x2g1x2 dx, include an arbitrary constant of integration.]

Step 5. Solve for y to obtain the general solution:

y =
1

I1x2  L I1x2g1x2dx
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Work through all the problems in this chapter review and check 
your answers in the back of this book. Answers to all review prob-
lems are there along with section numbers in italics to indicate 
where each type of problem is discussed. Where weaknesses show 
up, review appropriate sections in the text.

In Problems 1 and 2, show that the given function is the general 
solution of the indicated differential equation.

1. y = C1x; 2xy′ = y

2. y = 1 + Ce-x>3; 3y′ + y = 1

In Problems 3 and 4, determine which of the following slope  
fields is associated with the indicated differential equation.  
Briefly justify your answer.

x

y

(A)

3

0

23

6

  

x

y

(B)

3

0

23

6

3. 2xy′ = y (From Problem 1)

4. 3y′ + y = 1 (From Problem 2)

In Problems 5 and 6, use the appropriate slope field—(A) or (B), 
given for Problems 3 and 4 (or a copy)—to graph the particular 
solutions obtained by letting C = -2, -1, 0, 1, and 2.

5. y = C1x (From Problem 1)

6. y = 1 + Ce-x>3 (From Problem 2)

In Problems 7 and 8, write a differential equation that describes 
the rate of change of the indicated quantity.

7. The price y of a product is decreasing at a rate proportional to 
the difference between the price and a lower limit of $5.

8. The price y of a product is increasing at a rate proportional to 
the price.

In Problems 9 and 10, describe in words the rate of change of the 
given quantity satisfying the indicated differential equation and 
discuss the increasing/decreasing properties of the quantity.

9. The number of people y who have contracted an infectious 
disease satisfies dy>dt = 0.2y150,000 - y2 and  y102 = 1.

10. The amount of radioactive material y (in grams) at the 
site of a nuclear accident satisfies dy>dt = -0.001y and 
 y102 = 100.

In Problems 11–16, determine whether the differential equation 
can be written in the separation of variables form  f1y2y′ = g1x2,  
the first-order linear form y′ + f1x2y = g1x2, both forms, or 
neither form.

A

Review Exercises
11. y′ + 3x2y + 9 = ex11 - x + y2
12. y′ + 10y + 25 = 5xy2

13. y′ + 3y = xy + 2x - 6

14. y2y′ = 4xex - y

15. 
y′
y

=
1
x

+
1
y

16. 
y′
x

=
1
x

+
1
y

In Problems 17–24, find the general solution.

17. y′ = 3y + 2

18. y′ = 3y2

19. y′ = -
4y

x

20. y′ = -
4y

x
+ x

21. y′ = 3x2y2

22. y′ = 2y - ex

23. y′ =
5
x

 y + x6

24. y′ =
3 + y

2 + x
 , x 7 -2

In Problems, 25–32, find the particular solution that satisfies the 
given condition.

25. y′ = 10 - y;  y102 = 6

26. y′ + y = x;  y102 = 10

27. y′ = 2ye-x;  y102 = 1

28. y′ =
2x - y

x + 4
;  y102 = 1

29. y′ =
x

y + 4
;  y102 = 0

30. y′ +
2
x

 y =  ln x;  y112 = 2

31. yy′ =
x11 + y22

1 + x2 ;  y122 = 3

32. y′ + 2xy = 2e-x2
;  y102 = 5

33. Solve the following differential equation two ways. First use 
an integrating factor and then use separation of variables.

xy′ - 4y = 8

34. Give an example of an equation that can be solved using an 
integrating factor but cannot be solved using separation of 
variables. Solve the equation.

35. Give an example of an equation that can be solved using 
separation of variables but cannot be solved using an integrat-
ing factor. Solve the equation.

B

C

 Review Exercises 587
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588 CHAPTER 8  Differential Equations

36. Find the general solution of the following differential equa-
tion and then find the particular solutions satisfying the 
indicated initial conditions.

xy′ - 5y = -10

(A)  y102 = 2 (B)  y102 = 0 (C)  y112 = 1

37. Find an explicit expression for the particular solution of the 
differential equation yy′ = x satisfying the initial condition 
 y102 = 4.

38. Given that y = x3 + Cx is the general solution of the dif-
ferential equation xy′ - y = 2x3:

(A)  In the same viewing window, graph the particular solu-
tions obtained by letting C = 0, 1, 2, and 3.

(B)  What do the graphs of the solutions for C 7 0 have in 
common ?

(C)  In the same viewing window, graph the particular solu-
tions obtained by letting C = 0, -1, -2, and -3.

(D)  What do the graphs of the solutions for C 6 0 have in 
common?

39. The rate of change with respect to time t of a quantity y is 
proportional to the difference between y and an unknown up-
per limit M, and y = 0 when t = 0. Using the limited growth 
law, it follows that

y = M11 - e-kt2 M 7 0, k 7 0

(A)  Using the data given in the table, find two equations that 
M and k must satisfy, and solve each equation for M.

t 2 5

y 4 7

(B)  Use a graphing calculator and the equations from part 
(A) to approximate M to one decimal place.

Applications
40. Depreciation. A refrigerator costs $1,400 when it is new. 

The value of the refrigerator depreciates to $100 over a  
20-year period. If the rate of change of the value is propor-
tional to the value, find the value of the refrigerator 5 years 
after it was purchased.

41. Sales growth. The rate of growth of the annual sales of a 
new company is proportional to the difference between the 
annual sales S and an upper limit of $200,000. Assume that 
 S102 = 0.

(A) If the sales are $50,000 for the first year, how long will 
it take for the annual sales to reach $150,000? Round 
answer to the nearest year.

(B) Suppose the company is dissatisfied with the results in 
part (A) and wants the annual sales to reach $150,000 
after just 3 years. In order for this to happen, what must 
the sales be for the first year? Round answer to the near-
est thousand dollars.

42. Price stability. The supply S and the demand D for a certain 
commodity satisfy the equations

S = 100 + p + p′ and D = 200 - p - p′

(A) Find the equilibrium price p at any time t.

(B) Find the long-range equilibrium price p.

(C) Graph the particular solutions that satisfy the initial 
conditions  p102 = 75 and  p102 = 25.

(D) Discuss the long-term behavior of the price of this  
commodity.

43. Continuous compound interest. An initial deposit of 
$60,000 is made into an account that earns 5% compounded 
continuously. Money is then withdrawn at a constant rate of 
$5,000 per year until the amount in the account is 0. Find the 
amount in the account at any time t. When is the amount 0? 
What is the total amount withdrawn from the account?

44. Continuous compound interest. An initial investment of 
$15,000 is made in a mutual fund. Additional investments are 
made at the rate of $2,000 per year. After 10 years the fund has 
a value of $50,000. What continuous compound rate of inter-
est has this fund earned over this 10-year period? Express the 
answer as a percentage, correct to two decimal places.

45. Crop yield. The yield y(t) (in bushels per acre) of a corn 
crop satisfies the equation

dy

dt
= 100 + e-t - y

If  y102 = 0, find y at any time t.

46. Pollution. A 1,000-gallon holding tank contains 100 gallons 
of unpolluted water. Water containing 2 pounds of pollutant 
per gallon is pumped into the tank at the rate of 75 gallons 
per hour. The uniformly mixed water is released from the 
tank at 50 gallons per hour.

(A) Find the total amount of pollutants in the tank after  
2 hours. Round answer to one decimal place.

(B) When will the tank contain 700 pounds of pollutants? 
Round answer to one decimal place.

47. Ecology. A bird population on an island is declining at a rate 
proportional to the difference between the population and a 
lower limit of 200 birds.

(A) If the population has declined from 1,000 birds 5 years 
ago to 500 today, find the population 4 years from now.

(B) Suppose the bird population 4 years from now turns out 
to be 400, indicating that the island might be able to 
support more than the original lower limit of 200 birds. 
Assuming that the rate of change of the population is 
still proportional to the difference between the popula-
tion and an unknown lower limit M, approximate M to 
the nearest integer.

48. Rumor spread. A single individual starts a rumor in a com-
munity of 200 people. The rumor spreads at a rate propor-
tional to the number of people who have not yet heard the 
rumor. After 2 days, 10 people have heard the rumor.

(A) How many people will have heard the rumor after 5 days?

(B) How long will it take for the rumor to spread to  
100 people?
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Introduction
The circuits inside a calculator are capable only of performing the basic opera-
tions of addition, subtraction, multiplication, and division. Yet many calculators 
have keys that allow you to evaluate functions such as ex, In x, and sin x. How 
is this done? In most cases, the values of these functions are approximated by 
using a carefully selected polynomial, and polynomials can be evaluated by 
using the basic arithmetic operations. Approximating polynomials give the cal-
culator the capability of evaluating nonpolynomial functions. In this chapter we 
will study one type of approximating polynomial, called a Taylor polynomial  
after the English mathematician Brook Taylor (1685–1731). We will also con-
sider various applications involving Taylor polynomials, including an approxima-
tion of an oil well’s production during a specified time period (see Problem 86 
in Section 9.1).

9.1 Taylor Polynomials

9.2 Taylor Series

9.3 Operations on Taylor 
Series

9.4 Approximations Using 
Taylor Series

Taylor Polynomials 
and Infinite Series9
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590 CHAPTER 9 Taylor Polynomials and Infinite Series

Higher-Order Derivatives
Up to this point, we have considered only the first and second derivatives of a 
 function. In the work that follows, we will need to find higher-order derivatives. For 
example, if we start with the function f defined by

 f1x2 = x-1

then the first derivative of f is

f ′1x2 = -x-2

and the second derivative of f is

f ″1x2 =
d
dx

 f′1x2 =
d
dx

1-x-22 = 2x-3

Additional higher-order derivatives are found by successive differentiation. Thus, the 
third derivative is

f 1321x2 =
d
dx

 f ″1x2 =
d
dx

 12x-32 = -6x-4

the fourth derivative is

f 1421x2 =
d
dx

 f 1321x2 =
d
dx

 1-6x-42 = 24x-5

and so on.
In general, the symbol f (n) is used to represent the nth derivative of the function f. 

When stating formulas involving a function and its higher-order derivatives, it is con-
venient to let f (0) represent the function f (that is, the zeroth derivative of a function is 
just the function itself).

The order of the derivative must be enclosed in parentheses because, in most 
contexts, f n(x) is interpreted to mean the nth power of f, not the nth derivative. Thus, 
f 21x2 = 3f1x242 = f1x2f1x2, while f 1221x2 = f ″1x2.

Finding a particular higher-order derivative is a routine calculation. However, 
finding a formula for the nth derivative for arbitrary n requires careful observation 
of the patterns that develop as each successive derivative is found. Study the next 
 example carefully. Many problems in this chapter will involve similar concepts.

9.1 Taylor Polynomials
■■ Higher-Order Derivatives
■■ Approximating ex with Polynomials
■■ Taylor Polynomials at 0
■■ Taylor Polynomials at a
■■ Application

EXAMPLE 1 Finding nth Derivatives Find the nth derivative of

 f1x2 =
1

1 + x
= 11 + x2 -1

SOLUTION We begin by finding the first four derivatives of f:

 f1x2 = 11 + x2 -1

 f ′1x2 = 1-1211 + x2 -2

 f ″1x2 = 1-121-2211 + x2 -3

 f 1321x2 = 1-121-221-3211 + x2 -4

 f 1421x2 = 1-121-221-321-4211 + x2 -5
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Notice that we did not multiply out the coefficient of 11 + x2 -k in each derivative. 
Our objective is to look for a pattern in the form of each derivative. Multiplying out 
these coefficients would tend to obscure any pattern that is developing. Instead, we 
observe that each coefficient is a product of successive negative integers that can be 
written as follows:

 1-1 2 = 1-1 2 1 11 2
 1-121-22 = 1-12 2112122

 1-121-221-32 = 1-12 3112122132
 1-121-221-321-42 = 1-12 4112122132142

Next we note that the product of natural numbers in each expression on the right can 
be written in terms of a factorial:

 1-12 = 1-12 11! 1! = 1

 1-121-22 = 1-12 22! 2! = 1 # 2

 1-121-221-32 = 1-12 33! 3! = 1 # 2 # 3

 1-121-221-321-42 = 1-12 44! 4! = 1 # 2 # 3 # 4

Substituting these last expressions in the derivatives of f, we have

 f ′1x2 = 1-12 11!11 + x2 -2     n = 1

 f ″1x2 = 1-12 22!11 + x2 -3     n = 2

 f 1321x2 = 1-12 33!11 + x2 -4     n = 3

 f 1421x2 = 1-12 44!11 + x2 -5     n = 4

This suggests that

f 1n21x2 = 1-12 nn!11 + x2 -1n + 12 Arbitrary n

Matched Problem 1 Find the nth derivative of  f1x2 = ln x.

Reminder
Five factorial, denoted 5!, is the 
product of the natural numbers from 
1 to 5:

5! = 5 # 4 # 3 # 2 # 1 = 120

If n is any natural number,

n! = n1n - 121n - 22 # g # 2 # 1

We define 0! to be equal to 1.

Approximating ex with Polynomials
We have already seen that the irrational number e and the exponential function ex 
play important roles in many applications, including continuous compound interest, 
population growth, and exponential decay, to name a few. Now, given the function

 f1x2 = ex

we would like to construct a polynomial function p whose values are close to the val-
ues of f, at least for some values of x. If we are successful, then we can use the values 
of p (which are easily computed) to approximate the values of f. We begin by trying 
to approximate f for numbers x near 0 with a first-degree polynomial of the form

 p11x2 = a0 + a1x (1)

(A) Compute the first six derivatives of the polynomial function 
 p1x2 = 7x3 - 9x2 + 4x - 15.

(B) Let q(x) be a polynomial of degree n. For which orders are the higher-order 
derivatives of q(x) equal to the constant function  f1x2 = 0?

Explore and Discuss 1
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592 CHAPTER 9 Taylor Polynomials and Infinite Series

We want to place conditions on p1 that will enable us to determine the unknown coef-
ficients a0 and a1. Since we want to approximate f for numbers near 0, it is reasonable 
to require that f and p1 agree at 0. Thus,

a0 = p1102 = f102 = e0 = 1

This determines the value of a0. To determine the value of a1, we require that both func-
tions have the same slope at 0. Since p′11x2 = a1 and f′1x2 = ex, this implies that

a1 = p′1102 = f ′102 = e0 = 1

After substituting a0 = 1 and a1 = 1 into (1), we obtain

p11x2 = 1 + x

which is a first-degree polynomial satisfying

p1102 = f102 and p′1102 = f′102
How well does 1 + x approximate ex? Examining the graph in Figure 1, it appears 
that 1 + x is a good approximation to ex for x very close to 0. However, as x moves 
away from 0, in either direction, the distance between the values of 1 + x and ex 
 increases and the accuracy of the approximation decreases.

Now we will try to improve this approximation by using a second-degree poly-
nomial of the form

 p21x2 = a0 + a1x + a2x
2 (2)

We need three conditions to determine the coefficients a0, a1, and a2. We still require 
that p2102 = f102 and p′2102 = f′102, and add the condition that p″2102 = f ″102. 
This ensures that the graphs of p2 and f have the same concavity at x = 0. Proceeding as 
 before, we compute the first and second derivatives of p2 and f and apply these conditions:

 p21x2 = a0 + a1x + a2x
2  f1x2 = ex

 p′21x2 = a1 + 2a2x  f′1x2 = ex

 p″21x2 = 2a2  f ″1x2 = ex

 a0 = p2102  = f102   = e0 = 1 implies a0 = 1

 a1 = p′2102 = f′102  = e0 = 1 implies a1 = 1

 2a2 = p″2102 = f ″102  = e0 = 1 implies a2 = 1
2

Substituting in (2), we obtain

p21x2 = 1 + x + 1
2 x

2

The graph is shown in Figure 2.
Comparing Figures 1 and 2, we see that for numbers x near 0, the graph of 

p21x2 = 1 + x + 1
2 x

2 is closer to the graph of  f1x2 = ex than was the graph of 
p11x2 = 1 + x. So the polynomial 1 + x + 1

2 x
2 can be used to approximate ex over 

a larger interval of numbers than the polynomial 1 + x.
It seems reasonable to assume that a third-degree polynomial would yield a still 

better approximation. Using the notation for higher-order derivatives discussed ear-
lier in this section, we can state the required condition as

Find

 p31x2 = a0 + a1x + a2x
2 + a3x

3 (3)

Satisfying

p1k2
3 102 = f 1k2102 k = 0, 1, 2, 3

As before, we obtain the value of the additional coefficient a3 by adding the require-
ment that

p132
3 102 = f 132102

p1(x) 5 1 1 x

f (x) 5 ex

x

y

1

2

3

4

2102122

Figure 1

f (x) 5 ex

x

y

1

2

3

4

2102122

p2(x) 5 1 1 x 1 2x21
2

Figure 2
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p31x2  = a0 + a1x + a2x
2  + a3x

3  f1x2 = ex

p′31x2  = a1 + 2a2x  + 3a3x
2  f ′1x2 = ex

p″31x2  = 2a2   + 6a3x  f ″1x2 = ex

p132
3 1x2 = 6a3   f

1321x2 = ex

Applying the conditions p1k2
3 102 = f 1k2102, we have

 a0 = p3102  = f102  = e0 = 1 implies a0 = 1

 a1 = p′3 102  = f ′102  = e0 = 1 implies a1 = 1

 2a2 = p″3 102  = f ″102  = e0 = 1 implies a2  = 1
2

 6a3 = p
132
3 102 = f 132102 = e0 = 1 implies a3  = 1

6

Substituting in (3), we obtain

p31x2 = 1 + x + 1
2 x

2 + 1
6 x

3

Figure 3 indicates that the approximations provided by p3 are an improvement 
over those provided by p2 and p1.

In order to compare all three approximations, Table 1 lists the values of p1, p2, 
p3, and ex at selected numbers x, and Table 2 lists the absolute value of the difference 
between these polynomials and ex for the same numbers x. The values of ex were 
obtained by using a calculator and are rounded to six decimal places. Comparing the 
columns in Table 2, we see that increasing the degree of the approximating polyno-
mial decreases the difference between the polynomial and ex. So p2 provides a better 
approximation than p1, and p3 provides a better approximation than p2. We will have 
more to say about the accuracy of these approximations later in this chapter.

Table 1 p11x2 = 1 + x, p21x2 = 1 + x + 1
2 x2, p31x2 = 1 + x + 1

2 x2 + 1
6 x3

x p1(x) p2(x) p3(x) ex

-0.2 0.8 0.820 0.818 667 0.818 731
-0.1 0.9 0.905 0.904 833 0.904 837
   0 1 1 1 1

0.1 1.1 1.105 1.105 167 1.105 171
0.2 1.2 1.220 1.221 333 1 221 403

Table 2
x ∙ p11x2 - ex ∙ ∙ p21x2 - ex ∙ ∙ p31x2 - ex ∙

-0.2 0.018 731 0.001 269 0.000 064
-0.1 0.004 837 0.000 163 0.000 004
   0     0     0     0

0.1 0.005 171 0.000 171 0.000 004
0.2 0.021 403 0.001 403 0.000 069

f (x) 5 ex

x

y

1

2

3

4

2102122

p3(x) 5 1 1 x 1 2x2 1 2x31
6

1
2

Figure 3

(A) Let p(x) be a polynomial of degree n Ú 1. Explain why each of the following is true:
(1) The graph of p(x) intersects any vertical line in exactly one point.
(2) The graph of p(x) intersects any horizontal line in at most n points.
(3) The graph of p(x) has neither horizontal nor vertical asymptotes.

(B) Discuss the graphs of

 f1x2 = ex g1x2 =
5x2 - 3x + 1

2x2 + 3
 h1x2 =

1
x - 2

 k1x2 = e-x2

Use part (A) to explain why none of the graphs of f, g, h, or k is the graph of a 
polynomial function.

Explore and Discuss 2
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594 CHAPTER 9 Taylor Polynomials and Infinite Series

Taylor Polynomials at 0
The process we have used to determine p1, p2, and p3 can be continued. Given any 
positive integer n, we define

pn1x2 = a0 + a1x + a2x
2 + g + anxn

and require that

p1k2
n 102 = f 1k2102 k = 0, 1, 2, c , n

The polynomial pn is called a Taylor polynomial. Before determining pn for 
 f1x2 = ex, it will be convenient to make some general statements concerning the 
relationship between ak, p

1k2
n 102, and f 1k2102 for an arbitrary function f. First, pn(x) 

is differentiated n times to obtain the following relationships:

 pn1x2 = a0 +  a1x + a2x
2  + a3x

3 + g  + anx
n

 p′n1x2 =  a1  + 2a2x + 3a3x
2 + g  + nanx

n - 1

 p″n 1x2 =  2a2  +  132122a3x + g  + n1n - 12anx
n - 2

 p132
n 1x2 =   132122a3  + g  + n1n - 121n - 22anx

n - 3

 f

 p1n2
n 1x2 = n1n - 121n - 22 #  g  #  112an = n!an

Evaluating each derivative at 0 and applying the requirement that 
p1k2

n 102 = f 1k2102 leads to the following equations:

 a0 = pn102  = f102
 a1 = p′n102  = f′102

 2a2 = p″n102  = f ″102
 132122a3 = p132

n 102 = f 132102
 f    f

 n!an = p1n2
n 102 = f 1n2102

Solving each equation for ak, we have

ak =
p1k2

n 102
k!

=
f 1k2102

k!

This relationship enables us to state the general definition of a Taylor polynomial.

DEFINITION Taylor Polynomial at 0
If f has n derivatives at 0, then the nth-degree Taylor polynomial for f at 0 is

pn1x2 = a0 + a1x + a2x
2 + g + anx

n = a
n

k = 0
akx

k

where

p1k2
n 102 = f 1k2102 and ak =

f 1k2102
k!

 k = 0, 1, 2, c , n
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DEFINITION Taylor Polynomial at 0: Concise Form
The nth-degree Taylor polynomial for f at 0 is

pn1x2 = f102 + f ′102x +
f ″102

2!
x2 + g +

f 1n2102
n!

 xn = a
n

k = 0
  
f 1k2102

k!
 xk

provided f has n derivatives at 0.

This result can be stated in a form that is more readily remembered as follows:

In each of the preceding definitions, notice that we have used both the expanded 
notation

 pn1x2 = a0 + a1x + a2x
2 + g + anx

n

 = f102 + f ′102x +
f ″102

2!
 x2 + g +

f 1n2102
n!

 xn

and the more compact summation notation

pn1x2 = a
n

k = 0
akx

k = a
n

k = 0

f 1k2102
k!

 xk

to represent a finite sum. Recall that we used summation notation earlier in Chapters 5  
and 6. In this chapter we will place more emphasis on the expanded notation, since 
it is usually easier to visualize a polynomial written in this notation, but we will con-
tinue to include the summation notation where appropriate.

The nth-degree Taylor polynomial for f at 0 is always a polynomial, but it does not 
necessarily have degree n, because it is possible that f 1n2102 = 0. For example, 
if  g1x2 = x3 + 2x + 1, then g′1x2 = 3x2 + 2 and g″1x2 = 6x, so  g102 = 1, 
g′102 = 2, and g″102 = 0. Therefore, for this function g at 0, the second-degree 
Taylor polynomial is p21x2 = 1 + 2x, which actually has degree 1, not 2.

CONCEPTUAL  INSIGHT

Returning to our original function  f1x2 = ex, it is now an easy matter to find the 
nth-degree Taylor polynomial for this function. Since 1d>dx2ex = ex, it follows that

f 1k21x2 = ex f 1k2102 = e0 = 1 ak =
f 1k2102

k!
=

1
k!

for all values of k. So, for any n, the nth-degree Taylor polynomial for ex is

pn1x2 = 1 + x +
1
2!

 x2 +
1
3!

 x3 + g +
1
n!

 xn = a
n

k = 0
  

1
k!

 xk

EXAMPLE 2 Approximation Using a Taylor Polynomial Find the third-degree Taylor polyno-

mial at 0 for  f1x2 = 2x + 4. Use p3 to approximate 25.

SOLUTION 
Step 1. Find the derivatives:

 f1x2 = 1x + 42 1>2

 f ′1x2 = 1
21x + 42 -1>2

 f ″1x2 = -1
41x + 42 -3>2

 f 1321x2 = 3
81x + 42 -5>2
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596 CHAPTER 9 Taylor Polynomials and Infinite Series

Step 2. Evaluate the derivatives at 0:

 f102 = 41>2 = 2

 f ′102 = 1
214-1>22 = 1

4

 f ″102 = -1
414-3>22 = - 1

32

 f 132102 = 3
814-5>22 = 3

256

Step 3. Find the coefficients of the Taylor polynomial:

 a0 =
f102

0!
= f102 = 2

 a1 =
f ′102

1!
= f ′102 =

1
4

 a2 =
f ″102

2!
=

- 1
32

2
= -

1
64

 a3 =
f 132102

3!
=

3
256

6
=

1
512

Step 4. Write down the Taylor polynomial:

p31x2 = 2 + 1
4 x - 1

64 x
2 + 1

512 x
3 Taylor polynomial.

To use p3 to approximate 25, we must first determine the appropriate value of x:

 f1x2 = 2x + 4 = 25    Square both sides.

 x + 4 = 5      Solve for x.

 x = 1
So, 25 = f112 ≈ p3112 = 2 + 1

4 - 1
64 + 1

512 ≈  2.236 3281

[Note: The value of 25 obtained by using a calculator is, to six decimal 
places, 2.236 068.]

Compare the evaluation of p3(1) shown in Figure 4 to the value obtained in 
Example 2. The figure illustrates graphically that p3(x) is a good approximation to 
f(x) for numbers x near 0.

Matched Problem 2 Find the second-degree Taylor polynomial at 0 for 

 f1x2 = 2x + 9. Use p2(x) to approximate 210.

Figure 4 Graphs of 
 f1x2 = 2x + 4 and p3(x)

Many of the problems in this section involve approximating the values of func-
tions that also can be evaluated with the use of a calculator. In such problems you 
should compare the Taylor polynomial approximation with the calculator value 
(which is also an approximation). This will give you some indication of the accuracy 
of the Taylor polynomial approximation. Later in this chapter we will discuss meth-
ods for determining the accuracy of any Taylor polynomial approximation.

EXAMPLE 3 Taylor Polynomials at 0 Find the nth-degree Taylor polynomial at 0 for 
 f1x2 = e2x.

SOLUTION Step 1 

 f1x2 = e2x

 f ′1x2 = 2e2x

Step 2 
 f102 = 1

 f′102 = 2

Step 3 
 a0 = f102  = 1

 a1 = f′102 = 2
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Step 4. Write down the Taylor polynomial:

pn1x2 = 1 + 2x +
22

2!
 x2 +

23

3!
 x3 + g +

2n

n!
 xn = a

n

k = 0
  
2k

k!
 xk

Matched Problem 3 Find the nth-degree Taylor polynomial at 0 for  f1x2 = ex>3.

  f ″1x2 = 22e2x

 f 1321x2 = 23e2x

 f

 f 1n21x2 = 2ne2x

  f ″102 = 22

 f 132102 = 23

 f

 f 1n2102 = 2n

 a2 =
f ″102

2!
 =

22

2!

 a3 =
f 132102

3!
 =

23

3!
 f            f

 an =
f 1n2102

n!
 =

2n

n!

Taylor Polynomials at a
Suppose we want to approximate the function  f1x2 = 24 x with a polynomial. Since 
f 1k2102 is undefined for k = 1, 2, c , this function does not have a Taylor polyno-
mial at 0. However, all the derivatives of f exist at any x 7 0. How can we generalize 
the definition of the Taylor polynomial to approximate functions such as this one? 
Before answering this question, we need to review a basic property of polynomials.

We are used to expressing polynomials in powers of x. However, it is also pos-
sible to express any polynomial in powers of x - a for an arbitrary number a. For 
example, the following three expressions all represent the same polynomial:

 p1x2 = 3 + 2x            + x2  Powers of x.

 = 6 + 41x - 12 + 1x - 12 2 Powers of x - 1.

 = 3 - 21x + 22 + 1x + 22 2 Powers of x + 2.

To verify this statement, we expand the second and third expressions:

 6 + 41x - 12 + 1x - 12 2 = 6 + 4x - 4 + x2 - 2x + 1
 = 3 + 2x + x2

 3 - 21x + 22 + 1x + 22 2 = 3 - 2x - 4 + x2 + 4x + 4
 = 3 + 2x + x2

Now we return to the problem of generalizing the definition of the Taylor poly-
nomial. Proceeding as we did before, given a function f with n derivatives at a num-
ber a, we want to find an nth-degree polynomial pn with the property that

p1k21a2 = f 1k21a2 k = 0, 1, c , n

That is, we require that pn and its first n derivatives agree with f and its first n deriva-
tives at the number a. It turns out that it is much easier to find pn when it is expressed 
in powers of x - a. The general expression for an nth-degree polynomial in powers 
of x - a and its first n derivatives are as follows:

 pn1x2 = a0 + a11x - a2 + a21x - a2 2 + a31x - a2 3  + g  + an1x - a2 n

 p′n 1x2 = a1  + 2a21x - a2  + 3a31x - a2 2  + g  + nan1x - a2 n - 1

 p″n 1x2 = 2a2 + 132122a31x - a2 + g  + n1n - 12an1x - a2 n - 2

 p132
n 1x2 = 132122112a3      + g  + n1n - 121n - 22an1x - a2 n - 3

 f
 p1n2

n 1x2 = n1n - 12 # g #  112an = n!an
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598 CHAPTER 9 Taylor Polynomials and Infinite Series

Now we evaluate each function at a and apply the appropriate condition:

 a0 = pn1a2  = f1a2  k = 0

 a1 = p′n1a2  = f′1a2  k = 1

 2a2 = p″n1a2  = f ″1a2  k = 2

 132122112a3 = p132
n 1a2 = f 1321a2 k = 3

 f                f        f
 n!an = p1n2

n 1a2 = f 1n21a2 k = n

So each coefficient of pn satisfies

ak =
f 1k21a2

k!
 k = 0, 1, 2, c , n

DEFINITION Taylor Polynomial at a
The nth-degree Taylor polynomial at a for a function f is

 pn1x2 = f1a2 + f ′1a21x - a2 +
f ″1a2

2!
1x - a2 2 + g +

f 1n21a2
n!

1x - a2 n

 = a
n

k = 0
  
f 1k21a2

k!
1x - a2 k

provided f has n derivatives at a.

Theoretically, a function f has an nth-degree Taylor polynomial at any number a 
where it has n derivatives. In practice, we usually choose a so that f and its derivatives 
are easy to evaluate at x = a. For example, if  f1x2 = 2x, then good choices for a 
are 1, 4, 9, 16, and so on.

Taylor Polynomials at a Find the third-degree Taylor polynomial at a = 1 for 

 f1x2 = 24 x. Use p3(x) to approximate 24 2.

SOLUTION 
Step 1. Find the derivatives:

 f1x2 = x1>4

 f ′1x2 = 1
4 x

-3>4

 f ″1x2 = - 3
16 x

-7>4

 f 1321x2 = 21
64 x

-11>4

Step 2. Evaluate the derivatives at a = 1:

 f112 = 1

 f ′112 = 1
4

 f ″112 = - 3
16

 f 132112 = 21
64

Step 3. Find the coefficients of the Taylor polynomial:

 a0 = f112 = 1

 a1 = f ′112 = 1
4

 a2 =
f ″112

2!
=

- 3
16

2
= -

3
32

 a3 =
f 132112

3!
=

21
64

6
=

7
128

EXAMPLE 4
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 SECTION 9.1   Taylor Polynomials 599

Step 4. Write down the Taylor polynomial:

p31x2 = 1 + 1
41x - 12 - 3

321x - 12 2 + 7
1281x - 12 3

Now we use the Taylor polynomial to approximate 24 2:24 2 = f122 ≈ p3122 = 1 + 1
4 - 3

32 + 7
128 = 1.2109375

[Note: The value obtained by using a calculator is 24 2 ≈ 1.1892071.]

Matched Problem 4 Find the second-degree Taylor polynomial at a = 8 for 

 f1x2 = 23 x. Use p21x2 to approximate 23 9.

Average Price Given the demand function

p = D1x2 = 22,500 - x2

use the second-degree Taylor polynomial at 0 to approximate the average price (in 
dollars) over the demand interval [10, 40].

SOLUTION The average price over the demand interval [10, 40] is given by

Average    price =
1

30 L
40

10
22,500 - x2dx

This integral cannot be evaluated by any of the techniques we have discussed. 
 However, we can use a Taylor polynomial to approximate the value of the integral. 
Omitting the details (which you should supply), the second-degree Taylor polyno-

mial at 0 for  D1x2 = 22,500 - x2 is

p21x2 = 50 - 1
100x2

Assuming that  D1x2 ≈ p21x2 for 10 … x … 40 (see Fig. 5), we have

 Average price ≈
1

30 L
40

10
a50 -

1
100

x2bdx

 =
1

30
a50x -

1
300

x3b  `
40

10

 = $43

Matched Problem 5 Given the demand function

p = D1x2 = 2400 - x2

use the second-degree Taylor polynomial at 0 to approximate the average price (in 
dollars) over the demand interval [5, 15].

Application

EXAMPLE 5

y 5 p2(x)

y 5 D(x)

y

10

20

30

40

50

40302010

Pr
ic

e 
($

)

Demand

50
x

Figure 5

Example 5 illustrates the convenience of using Taylor polynomials to approxi-
mate more complicated functions, but it also raises several important questions. 
First, how can we determine whether it is reasonable to use the Taylor polynomial 
to approximate a function on a given interval? Second, is it possible to find the 
Taylor polynomial without resorting to successive differentiation of the function? 
Finally, can we determine the accuracy of an approximation such as the approxi-
mate average price found in Example 5? These questions will be discussed in the 
next three sections.
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600 CHAPTER 9 Taylor Polynomials and Infinite Series

Exercises 9.1
Skills Warm-up Exercises

In Problems 1–4, write the polynomial in expanded notation.  
(If necessary, review Appendix B.1)

1. a
3

k = 0
1k + 12xk 2. a

4

k = 1

1
k

 xk

3. a
4

k = 1

1-12 k

k1k + 12  x2k 4. a
7

k = 3
 1-12 k1k - 32! xk

In Problems 5–8, write the polynomial in summation notation with 
summing index k starting at 0. (If necessary, review Appendix B.1)

5. 1 + 2x + 4x2 + 8x3 + 16x4

6. 5x + 10x2 + 15x3 + 20x4

7. 3x2 - 3x3 + 3x4 - 3x5

8. 1 - x +
1
2!

 x2 -
1
3!

 x3 +
1
4!

 x4

In Problems 9–12, find f ″1x2. (If necessary, review Section 4.2).

9.  f1x2 = x3 - x

10.  f1x2 = x4 + 3x2 + 1

11.  f1x2 = 12x + 12 10

12.  f1x2 = 17x - 82 9

In Problems 13–16, find f 1321x2.

13.  f1x2 =
1
x

14.  f1x2 = ln11 + x2
15.  f1x2 = e-x

16.  f1x2 = 2x

In Problems 17–20, find f 41x2.

17.  f1x2 = ln11 + 3x2
18.  f1x2 = e-7x

19.  f1x2 = 21 + x

20.  f1x2 =
1

2 + x

In Problems 21–28, find the indicated Taylor polynomial at 0.

21.  f1x2 = e-x; p41x2
22.  f1x2 = e4x; p31x2
23.  f1x2 = 1x + 12 3; p41x2
24.  f1x2 = 11 - x2 4; p31x2
25.  f1x2 = ln11 + 2x2; p31x2
26.  f1x2 = ln11 + 1

2 x2; p41x2
27.  f1x2 = 23 x + 1; p31x2
28.  f1x2 = 24 x + 16; p21x2

W

A

29. (A)  Find the third-degree Taylor polynomial p31x2 
for  f1x2 = x4 - 1 at 0. For which numbers x is 
∙ p31x2 - f1x2 ∙  6 0.1?

 (B) Find the fourth-degree Taylor polynomial p41x2 
for  f1x2 = x4 - 1 at 0. For which numbers x is 
∙ p41x2 - f1x2 ∙  6 0.1?

30. (A)  Find the fourth-degree Taylor polynomial p41x2 
for  f1x2 = x5 at 0. For which numbers x is 
∙ p41x2 - f1x2 ∙  6 0.01?

 (B) Find the fifth-degree Taylor polynomial p51x2 
for  f1x2 = x5 at 0. For which numbers x is 
∙ p51x2 - f1x2 ∙  6 0.01?

In Problems 31–36, find the indicated Taylor polynomial at the 
given value of a.

31.  f1x2 = ex - 1; p41x2  at a = 1

32.  f1x2 = e2x; p31x2  at a = 1
2

33.  f1x2 = x3; p31x2  at a = 1

34.  f1x2 = x2 - 10x + 27; p21x2  at  a = 5

35.  f1x2 = ln13x2; p31x2  at a = 1
3

36.  f1x2 = ln12 - x2; p41x2  at a = 1

37. Use the third-degree Taylor polynomial at 0 for  f1x2 = e-2x 
and x = 0.25 to approximate e-0.5.

38. Use the fourth-degree Taylor polynomial at 0 for 
f1x2 = ln11 - x2 and x = 0.1 to approximate ln 0.9.

39. Use the second-degree Taylor polynomial at 0 for 

 f1x2 = 2x + 16 and x = 1 to approximate 217.

40. Use the third-degree Taylor polynomial at 0 for 

 f1x2 = 21x + 42 3 and x = 1 to approximate 2125.

41. Use the fourth-degree Taylor polynomial at 1 for 

 f1x2 = 2x and x = 1.2 to approximate 21.2.

42. Use the third-degree Taylor polynomial at 4 for  

 f1x2 = 2x and x = 3.95 to approximate 23.95.

 In Problems 43–48, find f 1n21x2.

43.  f1x2 =
1

4 - x

44.  f1x2 =
4

1 + x
45.  f1x2 = e3x

46.  f1x2 = ln12x + 12
47.  f1x2 = ln19 - x2
48.  f1x2 = ex>5

In Problems 49–54, find the nth-degree Taylor polynomial at 0. 
Write the answer in expanded notation.

49.  f1x2 =
1

4 - x
50.  f1x2 =

4
1 + x

B
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51.  f1x2 = e3x 52.  f1x2 = ln12x + 12
53.  f1x2 = ln19 - x2 54.  f1x2 = e x>5

In Problems 55–62, find the nth-degree Taylor polynomial at the 
indicated number a. Write the answer in expanded notation.

55.  f1x2 =
1
x

; at a = -1 56. f1x2 =
2
x

; at a =  1

57.  f1x2 = ln x; at a = 1 58.  f1x2 = ex; at a = -2

59.  f1x2 = e-x ; at a = 2 60.  f1x2 = ln12 - x2; at a = -1

61.  f1x2 = x ln x; at a = 3 62.  f1x2 = xex; at a = 1

63. Let f1x2 = x4 - 5x2 + 6x + 7.

(A) Find the third-degree Taylor polynomial p31x2 for f at 0.

(B) What is the degree of the polynomial p31x2?

64. Let  f1x2 = x5 + 2x3 + 8x2 + 1.

(A) Find the fourth-degree Taylor polynomial p41x2 for f at 0.

(B) What is the degree of the polynomial p41x2?

65. Let  f1x2 = x6 + 2x3 + 1. For which values of n doespn1x2, 
the nth-degree Taylor polynomial for f at 0, have degree n?

66. Let f1x2 = x4 - 1. For which values of n does pn1x2, the 
nth-degree Taylor polynomial for f at 0, have degree n?

67.  Find the first three Taylor polynomials at 0 for 
 f1x2 = ln11 + x2, and use these polynomials to complete 
the following two tables. Round all table entries to six deci-
mal places.

x p1(x) p2(x) p3(x) f(x)

-0.2

-0.1

0

0.1

0.2

x ∙ p11x2 - f1x2 ∙ ∙ p21x2 - f1x2 ∙ ∙ p31x2 - f1x2 ∙
-0.2

-0.1

0

0.1

0.2

68. Repeat Problem 67 for  f1x2 = 21 + x.

69. Refer to Problem 67. Graph  f1x2 = ln11 + x2 and its first 
three Taylor polynomials in the same viewing window. Use 
[-3, 3] for both the x range and the y range.

70. Refer to Problem 68. Graph  f1x2 = 21 + x and its first 
three Taylor polynomials in the same viewing window. Use 
[-3, 3] for both the x range and the y range.

71. Consider  f1x2 = ex and its third-degree Taylor polynomial 
p3(x) at 0. Use graphical approximation techniques to find all 
numbers x such that ∙ p31x2 - ex ∙  6  0.1.

72. Consider  f1x2 = ln11 + x2 and its third-degree Taylor 
polynomial p3(x) at 0. Use graphical approximation tech-
niques to find all numbers x such that

∙ p31x2 - ln11 + x2 ∙  6 0.1

C

Problems 73–76 require a basic knowledge of the sine and cosine 
functions. In Problems 73–76, find the indicated Taylor polyno-
mial at the given number a.

73.  f1x2 = sin x; p51x2 at a = 0

74.  f1x2 = cos x;  p61x2 at a = 0

75.  f1x2 = cos x;  p61x2 at a = p>2

76.  f1x2 = sin x;  p51x2 at a = p>2

77. Let f(x) be a polynomial. For which values of n is the  
nth-degree Taylor polynomial for f at 0 equal to f(x)? Explain.

78. Explain how any polynomial expressed in powers of x may 
be rewritten in powers of x - 1 using Taylor polynomials. 
Illustrate your method for  f1x2 = 1 + x2 + x4.

79. Let p10(x) be the tenth-degree Taylor polynomial 
for  f1x2 = ex at 0. Do numbers x exist for which 
∙ p101x2 - f1x2 ∙  Ú 100? Explain.

80. Let p12(x) be the twelfth-degree Taylor polynomial for 
 f1x2 = 1>x at 1. Do numbers x ∙ 0 exist for which 
∙ p121x2 - f1x2 ∙  Ú 100? Explain.

Applications
81. Average price. Given the demand equation

p = D1x2 = 1
10210,000 - x2

use the second-degree Taylor polynomial at 0 to approximate 
the average price (in dollars) over the demand interval [0, 30].

82. Average price. Given the demand equation

p = D1x2 = 1
521,600 - x2

use the second-degree Taylor polynomial at 0 to approximate 
the average price (in dollars) over the demand interval [0, 15].

83. Average price. Refer to Problem 81. Use the second-degree 
Taylor polynomial at a = 60 to approximate the average 
price over the demand interval [60, 80].

84. Average price. Refer to Problen 82. Use the second-degree 
Taylor polynomial at a = 24 to approximate the average 
price over the demand interval [24, 32].

85. Production. The rate of production of a mine (in millions of 
dollars per year) is given by

 R1t2 = 2 + 8e-0.1t2

Use the second-degree Taylor polynomial at 0 to approximate the 
total production during the first 2 years of operation of the mine.

86. Production. The rate of production of an oil well (in millions 
of dollars per year) is given by

 R1t2 = 5 + 10e-0.05t2

Use the second-degree Taylor polynomial at 0 to approximate the 
total production during the first 3 years of operation of the well.

87. Medicine. The rate of healing for a skin wound (in square 
centimeters per day) is given by

A′1t2 =
-75

t2 + 25
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602 CHAPTER 9 Taylor Polynomials and Infinite Series

The initial wound has an area of 12 square centimeters. Use 
the second-degree Taylor polynomial at 0 for A′(t) to  
approximate the area of the wound after 2 days.

88. Medicine. Rework Problem 87 for A′1t2 =
-60

t2 + 20
.

89. Pollution. On an average summer day in a particular large 
city the air pollution level (in parts per million) is given by

 P1x2 = 2023x2 + 25 - 80

where x is the number of hours elapsed since 8:00 a.m. Use 
the second-degree Taylor polynomial for P(x) at a = 5 to 
approximate the average pollution level during the 10-hour 
period from 8:00 a.m. to 6:00 p.m.

90. Pollution. On an average summer day in another large city 
the air pollution level (in parts per million) is given by

 P1x2 = 1024x2 + 36 - 50

where x is the number of hours elapsed since 8:00 a.m. Use 
the second-degree Taylor polynomial for P(x) at a = 4 to 
approximate the average pollution level during the 8-hour 
period from 8:00 a.m. to 4:00 p.m.

91. Learning. In a particular business college, it was found 
that an average student enrolled in an advanced typing class 
progresses at a rate of N′1t2 = 4e - 0.003t2 words per minute 
per week, t weeks after enrolling in a 15-week course. At 
the beginning of the course an average student could type 35 
words per minute. Use the second-degree Taylor polynomial 
at 0 for N′(t) to approximate the improvement in typing after 
5 weeks in the course.

92. Learning. In the same business college, it was also found 
that an average student enrolled in a beginning shorthand 
class progressed at a rate of N′1t2 = 8e - 0.0015t2

 words per 
minute per week, t weeks after enrolling in a 15-week course. 
At the beginning of the course none of the students could take 
any dictation by shorthand. Use the second-degree  Taylor 
polynomial at 0 for N′(t) to approximate the  improvement 
after 5 weeks in the course.

In Problems 93–98, use a graphing calculator to graph the given 
function and its second-degree Taylor polynomial at a in the indi-
cated viewing window.

93. Average price. From Problem 81,

 p = D1x2 = 1
10210,000 - x2

 a = 0

x range: 30, 1004
p range: 30, 104

94. Average price. From Problem 82,

 p = D1x2 = 1
521,600 - x2

 a = 0

x range: 30, 404
p range: 30, 84

95. Production. From Problem 85,

 y = R1t2 = 2 + 8e - 0.1t2

 a = 0

t range: 30, 54
y range: 30, 104

96. Production. From Problem 86,

 y = R1t2 = 5 + 10e - 0.05t2

 a = 0

t range: 30, 54
y range: 30, 154

97. Pollution. From Problem 89,

 y = P1x2 = 2023x2 + 25 - 80

 a = 5

x  range: 30, 104
y range: 30, 3004

98. Pollution. From Problem 90,

 y = P1x2 = 1024x2 + 36 - 50

 a = 4

x range: 30, 104
y range: 30, 2004

Answers to Matched Problems
1. f 1n21x2 = 1-12 n - 11n - 12! x-n

2. p21x2 = 3 + 1
6 x - 1

216 x
2; 210 ≈ 3.162 037

3. pn1x2 = 1 +
1
3

 x +
1

32 
1
2!

 x2 +
1

33 
1
3!

 x3 + g +
1
3n 

1
n!

 xn 

   = a
n

k = 0
 
1

3k 
1
3!

 xk

4. p21x2 = 2 + 1
121x - 82 - 1

2881x - 82 2; 23 9 ≈ 2.079 8611

5. 
1
10 L

15

5
a20 -

x2

40
b  dx =

415
24

≈ $17.29
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9.2 Taylor Series
■■ Introduction
■■ Taylor Series
■■ Representation of Functions  
by Taylor Series

Introduction
If f is a function with derivatives of all order at a point a, then we can construct the 
Taylor polynomial pn at a for any integer n. Now we are interested in the relation-
ship between the original function f and the corresponding Taylor polynomial pn as n  
assumes larger and larger values. If the Taylor polynomial is to be a useful tool for  
approximating functions, then the accuracy of the approximation should improve as 
we increase the size of n. Indeed, Figures 1, 2, and 3 and Tables 1 and 2 in the preceding 
section indicate that this is the case for the function e x.

For a given number x, we would like to know whether we can make pn(x) arbitrarily 
close to f (x) by making n sufficiently large. In other words, we want to know whether

 lim
nS ∞

pn1x2 = f1x2 (1)

It turns out that for most functions with derivatives of all order at a point, there is a 
set of numbers x for which equation (1) is valid. We will begin by considering a spe-
cific example to illustrate this.

Let

 f1x2 =
1

1 - x
 and a = 0

First, we find pn:

Step 1 

 f1x2 = 11 - x2 - 1

 f ′1x2 = 1-1211 - x2 - 21-12 = 11 - x2 -2

 f ″1x2 = 1-2211 - x2 - 31-12 = 211 - x2 - 3

  f 1321x2 = 1-3212211 - x2 - 41-12 = 3!11 - x2 - 4

 f

 f 1n21x2 = n!11 - x2 - n - 1

Step 2 

 f102 = 1

 f ′102 = 1

 f ″102 = 2

  f 132102 = 3!

              f

  f 1n2102 = n!

Step 3 

 a0 = f102 = 1

 a1 = f ′102 = 1

 a2 =
f ″102

2!
=

2
2!

= 1

 a3 =
f 132102

3!
=

3
3!

= 1

    f

 an =
f 1n2102

n!
=

n!
n!

= 1

Step 4. Write down the Taylor polynomial:

  pn1x2 = 1 + x + x2 + x3 + g + xn (2)

 = a
n

k = 0
xk

Now we want to evaluate

lim
nS ∞

pn1x2 = lim
nS ∞ a

n

k = 0
xk

As we saw in Chapter 5, it is not possible to evaluate limits written in this form. The 
difficulty lies in the fact that the number of terms is increasing as n increases. First, 
we must find a closed form for the summation that does not involve a sum of n terms. 
[You may recognize that pn1x2 is a finite geometric series with common ratio x. See 
Appendix B-2].

If we multiply both sides of (2) by x and subtract this new equation from the 
original, we obtain an equation that we can solve for pn1x2. Notice how many terms 
drop out when the subtraction is performed.
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 pn1x2 = 1 + x + x2 + g + xn - 1 + xn

 xpn1x2 =       x + x2 + g + xn - 1 + xn + xn + 1

  pn1x2 - xpn1x2 = 1                                    - xn + 1

 pn1x211 - x2 = 1 - x n + 1

 pn1x2 =
1 - x n + 1

1 - x
    x ∙ 1

Since we had to exclude x = 1 to avoid division by 0, we must consider x = 1 
as a special case: 

n + 1 terms$++11+%+11++&
 pn112 = 1 + 1 + 12 + g 1n

 = n + 1

Therefore,

pn1x2 = •
1 - xn + 1

1 - x
if x ∙ 1 

n + 1 if x = 1

If x = 1, it is clear that

lim
nS ∞

pn112 = lim
nS ∞

1n + 12 = ∞

That is, lim
nS ∞

pn112 does not exist. What happens to this limit for other numbers x? It 

can be shown that

lim
nS ∞

xn + 1 = •
0 if - 1 < x 6 1
1 if x = 1

Does not exist if x … -1 or x 7 1

Experimenting with a calculator for various numbers x and large values of n should 
convince you that this statement is valid.

So

lim
nS ∞

pn1x2 = µ
1

1 - x
if - 1 6 x 6 1 

Does not exist if x = 1 
Does not exist if x … - 1 or x 7 1

  lim
nS ∞

 xn + 1 = 0  
lim

nS ∞
 1n + 12 does not exist 

lim
nS ∞

 xn + 1 does not exist

(A) Construct a table with eight rows labeled with values of n from 1 to 8, and seven 
columns labeled with the following numbers x: -1.5, -1, -0.5, 0, 0.5, 1 and 
1.5. Complete the table by computing each entry pn(x).

(B) Explain how the table from part (A) provides supporting evidence for the state-
ment that lim

nS ∞
pn1x2 equals 1> 11 - x2 if - 1 6 x 6 1, but does not exist if 

x … - 1 or x Ú 1.

We can now conclude that

  f1x2 =
1

1 - x
 = lim

nS ∞
pn1x2 -1 6 x 6 1

 = lim
nS ∞ a

n

k = 0
xk

Explore and Discuss 1
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 SECTION 9.2   Taylor Series 605

and that the limit does not exist for any other values of x. This is often abbreviated by writing

  
1

1 - x
= 1 + x + x2 + g + xn + g -1 6 x 6 1 (3)

 = a
∞

k = 0
xk

Equation (3) is often described in words as follows: The sum of an infinite geo-
metric series, having first term 1 and common ratio x, is equal to 1> 11 - x2, 
provided that the absolute value of the common ratio is less than 1.

CONCEPTUAL  INSIGHT

The expression a
∞

k = 0
xk is called the Taylor series for f at 0, and the expanded notation

1 + x + x2 + g + xn + g
is just another way to write this series. The Taylor series is said to converge at x 

if lim
nS ∞

pn1x2 exists and to diverge at x if this limit fails to exist. So, a
∞

k = 0
xk con-

verges for - 1 6 x 6 1 and diverges for x … - 1 and x Ú 1. The set of numbers 
5x ∙ - 1 6 x 6 16 = 1-1, 12 at which this Taylor series converges is called the inter-
val of convergence. Since f(x) is equal to the Taylor series for any x in the interval of conver-
gence, we say that f is represented by its Taylor series throughout this interval. That is,

 f1x2 =
1

1 - x

 = 1 + x + x2 + g+ xn + g       -1 6 x 6 1

There can be no relationship between f and its Taylor series outside the interval of 
convergence since the series is not defined there (see Fig. 1).

y

10

5

30 1
x

42122

25

210

2

(A)  f (x) 5

       Defined for x Þ 1

1
1 2 x

Figure 1

y

10

5

30 1
x

42122

25

210

2

(B)  1 1 x 1 x2 1 . . . 1 xn 1 . . .

        Defined for 21 , x , 1 

Figure 2

(A) The six functions pn1x2 = 1 + x + g + xn, n = 1, 2, c , 6, are graphed 
in Figure 2. Which graph belongs to which function?

(B) Based solely on the graphs, would you conjecture that the interval of conver-
gence of the Taylor series representation

1
1 - x

= 1 + x + x2 + g + xn + g

is - 1 6 x 6 1? Explain.

Explore and Discuss 2
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606 CHAPTER 9 Taylor Polynomials and Infinite Series

Taylor Series
We now generalize the concepts introduced in the preceding discussion to arbitrary 
functions.

DEFINITION Taylor Series
If f is a function with derivatives of all order at a point a, pn(x) is the nth-degree 
Taylor polynomial for f at a, and an = f 1n21a2 >n!, n = 0, 1, 2, c , then

a
∞

k = 0
ak1x - a2 k = a0 + a11x - a2 + a21x - a2 2 + g + an - 1x - a2 n + g

is the Taylor series for f at a. The Taylor series converges at x if

lim
nS ∞

pn1x2 = lim
nS ∞ a

n

k = 0
ak1x - a2 k

exists and diverges at x if this limit does not exist. The set of numbers x for which 
this limit exists is called the interval of convergence.

We must emphasize that we are not really adding up an infinite number of terms 
in a Taylor series, nor is a Taylor series an “infinite” polynomial. Rather, for x in the 
interval of convergence,

a
∞

k = 0
ak1x - a2 k = lim

nS ∞ a
n

k = 0
ak1x - a2 k

So when we write

1
1 - x

= 1 + x + x2 + g + xn + g -1 6 x 6 1

we mean

1
1 - x

= lim
nS ∞

11 + x + x2 + g + xn2 -1 6 x 6 1

In general, it is very difficult to find the interval of convergence by directly 
evaluating

lim
nS ∞ a

n

k = 0
ak1x - a2 k

For many Taylor series, the following theorem can be used to find the interval of 
convergence.

THEOREM 1 Interval of Convergence
Let f be a function with derivatives of all order at a number a, let an = f 1n21a2 >n!,  
n = 0, 1, 2, . . ., and let

a
∞

k = 0
ak1x - a2 k = a0 + a11x - a2 + a21x - a2 2 + g + an1x - a2 n + g

be the Taylor series for f at a. If an ∙ 0 for n Ú n0, then:
Case 1. If

lim
nS ∞

` an + 1

an
` = L 7 0 and R =

1
L

then the series converges for ∙ x - a ∙ 6 R and diverges for ∙ x - a ∙ 7 R.
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The various possibilities for the interval of convergence are illustrated in Figure 3.  
In case 1, the series may or may not converge at the end points x = a - R and 
x = a + R. (Determination of the behavior of a series at the end points of the inter-
val of convergence requires techniques that we will not discuss.)

x

x
a

Converges

x
Diverges Diverges

Diverges Diverges

    

ux 2 au . R ux 2 au . Rux 2 au , R
a 2 R a 1 Ra

Converges

x 5 a

a

ConvergesConverges

2` , x , `

Figure 3 Intervals of convergence

Notice that the set of numbers at which a series converges can be expressed in 
interval notation as 1a - R, a + R2 in case 1 and as (- ∞, ∞) in case 2. We were 
anticipating this result when we used the term interval of convergence to describe the 
set of numbers at which a Taylor series converges.

The requirement that all the coefficients be nonzero from some point on ensures 
that the ratio an + 1>an is well defined. It is possible that

lim
nS ∞

` an + 1

an
`

fails to exist so that none of the cases in Theorem 1 hold. In that event, the interval 
of convergence will still have one of the forms illustrated by Figure 3, but other tech-
niques are required to determine which one.

Case 2. If

lim
nS ∞

` an + 1

an
` = 0

then the series converges for all numbers x.
Case 3. If

lim
nS ∞

` an + 1

an
` = ∞

then the series converges only at x = a.

Case 1. lim
nS ∞

` an + 1

an
` = L 7 0

 R = 1>L

Case 2. lim
nS ∞

` an + 1

an
` = 0

Case 3. lim
nS ∞

` an + 1

an
` = ∞

Assume that an ∙ 0 for n Ú n0 and consider case 1 of Theorem 1. The ratio of 
consecutive terms of the Taylor series is equal to

an + 11x - a2 n + 1

an1x - a2 n

The absolute value of this ratio for large n, by the limit in case 1, is approximately 
L ∙ x - a ∙ . Therefore, the Taylor series is approximately an infinite geometric 
 series with common ratio having absolute value L ∙ x - a ∙ . Such a series con-
verges if L ∙ x - a ∙ 6 1, or equivalently, if ∙ x - a ∙ 6 1>L = R.

CONCEPTUAL  INSIGHT
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608 CHAPTER 9 Taylor Polynomials and Infinite Series

The next two examples illustrate the application of Theorem 1. The details of 
finding the Taylor series are omitted. In the next section we will discuss methods that 
greatly simplify the process of finding Taylor series. For now, we want to concentrate 
on understanding the significance of the interval of convergence.

EXAMPLE 1 Finding the Interval of Convergence The Taylor series at 0 for  f1x2 = e2x is

1 + 2x +
22

2!
 x2 + g +

2n

n!
 xn + g

Find the interval of convergence.

SOLUTION       an =
2n

n!
       Notice that an 7 0 for n Ú 0.

 an + 1 =
2n + 1

1n + 12!
  Form the ratio an + 1>an.

 
an + 1

an
=

2n + 1

1n + 12!

2n

n!

  Simplify.

 =
2n + 1

1n + 12!
 #  

n!
2n Use 

n!
1n + 12!

=
n!

1n + 12n!
=

1
n + 1

.

 =
2

n + 1

 lim
nS ∞

` an + 1

an
` = lim

nS ∞
` 2
n + 1

`   Absolute value signs can be dropped 
since an + 1>an 7 0.

 = lim
nS ∞

2
n + 1

= 0    See the Conceptual Insight.

Case 2 in Theorem 1 applies, and the series converges for all values of x.

The limit expressions lim
xS ∞

g1x2 and lim
nS ∞

g1n2 are very similar. If lim
xS ∞

g1x2 = L 

[that is, g(x) can be made arbitrarily close to L by making the real number x suf-
ficiently large], then lim

nS ∞
g1n2 = L [that is, g(n) can be made arbitrarily close to 

L by making the integer n sufficiently large]. In particular,

lim
nS ∞

2
n + 1

= lim
xS ∞

2
x + 1

= 0

So the results of Section 2.2 on limits at infinity for rational functions can be 
helpful in evaluating limits of the form lim

nS ∞
g1n2.

CONCEPTUAL  INSIGHT

Matched Problem 1 The Taylor series at 0 for  f1x2 = ex>3 is

1 +
1
3

 x +
1

322!
 x2 + g +

1
3nn!

 xn + g

Find the interval of convergence.
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 SECTION 9.2   Taylor Series 609

Finding the Interval of Convergence The Taylor series at 0 for 
 f1x2 = 1> 11 + 5x2 2 is

1 - 2 # 5x + 3 # 52x2 - g + 1-12 n1n + 125nxn + g
Find the interval of convergence.

SOLUTION  an = 1-12 n1n + 125n  Notice that an ∙ 0 for n Ú 0.

 an + 1 = 1-12 n + 11n + 225n + 1

 
an + 1

an
=

1-12 n + 11n + 225n + 1

1-12 n1n + 125n

 =
-51n + 22

n + 1

 lim
nS ∞

` an + 1

an
` = lim

nS ∞
` -51n + 22

n + 1
`

 = lim
nS ∞

51n + 22
n + 1

 = lim
nS ∞

5n + 10
n + 1

  Divide numerator and  
denominator by n.

 = lim
nS ∞

5 +
10
n

1 +
1
n

= 5

Applying case 1 in Theorem 1, we have L = 5, R = 1
5, and the series converges for 

-1
5 6 x 6 1

5.

Matched Problem 2 The Taylor series at 0 for  f1x2 = 4> 12 + x2 2 is

1 -
2
2

 x +
3

22 x2 - g +
1-12 n1n + 12

2n  xn + g

Find the interval of convergence.

EXAMPLE 2

Representation of Functions by Taylor Series
Referring to the function  f1x2 = 1> 11 - x2 discussed earlier in this section, our 
calculations showed that the Taylor series at 0 for f is

lim
nS ∞

pn1x2 = 1 + x + x2 + g + xn + g
with interval of convergence (−1, 1). Furthermore, we showed that f is represented by 
its Taylor series throughout the interval of convergence. That is,

 f1x2 =
1

1 - x
= lim

nS ∞
pn1x2

 = 1 + x + x2 + g + xn + g -1 6 x 6 1

A similar statement can be made for most functions that have derivatives of 
all order at a number a, but not for all. For example, the absolute value function 
 g1x2 = ∙ x ∙  has Taylor series (verify this)

1 + 1x - 12 = x
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610 CHAPTER 9 Taylor Polynomials and Infinite Series

at the point a = 1. Clearly, this very simple Taylor series converges for all x, but 
 g1x2 = x only for x Ú 0. So g is not represented by its Taylor series throughout the in-
terval of convergence of the series. The problem with g is that it is not differentiable at 0. 
Even if we require that a function f has derivatives of all order at every point in the interval 
of convergence of its Taylor series, it is still possible that f is not represented by its Taylor 
series. Since we will not consider such functions, we will make the following assumption.

AGREEMENT Assumption on the Representation of Functions by Taylor Series
If f is a function with derivatives of all order throughout the interval of convergence 
of its Taylor series at a, then f is represented by its Taylor series throughout the 
interval of convergence. So, if pn(x) is the nth-degree Taylor polynomial at a for 
 f and an = f 1n21a2 >n!, n = 0, 1, 2, …, then

 f1x2 = lim
nS ∞

pn1x2 = a
∞

k = 0
ak1x - a2 k

for any x in the interval of convergence of the Taylor series at a for f.

Consequently, the interval of convergence determines the numbers x  
for which the Taylor polynomials pn(x) can be used to approximate the 
values of the function f.

Referring to Examples 1 and 2, we can now write

e2x = 1 + 2x +
22

2!
 x2 + g +

2n

n!
 xn + g - ∞ 6 x 6 ∞

and
1

11 + 5x2 2 = 1 - 2 # 5x + 3 # 52x2 - g + 1-12 n1n + 125nxn + g -1
5 6 x 6 1

5

EXAMPLE 3 Representation of a Function by Its Taylor Series Let f1x2 = ln x.

(A) Find the nth-degree Taylor polynomial at a = 1 for f.

(B) Find the Taylor series at a = 1 for f.

(C) Determine the numbers x for which  f1x2 = lim
nS ∞

pn1x2.

SOLUTION
(A) We use the four-step process from the preceding section to find the nth-degree 

Taylor polynomial:

Step 1 
 f1x2 = ln x

 f ′1x2 =
1
x

= x - 1

 f ″1x2 = 1-12x - 2

 f 132 = 1-121-22x - 3

= 1-12 22!x - 3

 f 1421x2 = 1-121-221-32x-4

= 1-12 33!x - 4

f
 f 1n21x2 = 1-12 n - 11n - 12!x - n

Step 2 
   f112 = ln 1 = 0

   f ′112 = 1

  f ″112 = -1

 f 132112 = 1-12 22!

 f 142112 = 1-12 33!

f

  f 1n2112 = 1-12 n - 11n - 12!

Step 3 
 a0 = f112 = 0
 a1 = f′112 = 1

 a2 =
f ″112

2!
= -

1
2

 a3 =
f 132112

3!
=

1-12 22!

3!
=

1
3

 a4 =
f 142112

4!
=

1-12 33!

4!
=

- 1
4

f

 an =
f 1n2112

n!
=

1-12 n - 11n - 12!

n!
=

1-12 n - 1

n
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 SECTION 9.2   Taylor Series 611

Step 4. The nth-degree Taylor polynomial at a = 1 for  f1x2 = ln x is

pn1x2 = 1x - 12 -
1
2
1x - 12 2 +

1
3
1x - 12 3 - g +

1-12 n - 1

n
1x - 12 n

(B) Once the nth-degree Taylor polynomial for a function has been determined, 
finding the Taylor series is simply a matter of using the notation correctly. 
Using the Taylor polynomial from part (A), the Taylor series at a = 1 for 
 f1x2 = ln x can be written as

lim
nS ∞

pn1x2 = 1x - 12 -
1
2
1x - 12 2 +

1
3
1x - 12 3 - g +

1-12 n - 1

n
1x - 12 n + g

or, using summation notation, as

lim
nS ∞

pn1x2 = a
∞

k = 0

1-12 k - 1

k
 1x - 12 k

(C) To determine the numbers x for which  f1x2 = lim
nS ∞

pn1x2, we use Theorem 1 
to find the interval of convergence of the Taylor series in part (B):

 an =
1-12 n - 1

n

 an + 1 =
1-12 n

n + 1

 
an + 1

an
=

1-12 n

n + 1

1-12 n - 1

n

=
1-12 n

n + 1
# n

1-12 n - 1 =
-n

n + 1

 lim
nS ∞

` an + 1

an
` = lim

nS ∞
` -n
n + 1

`

 = lim
nS ∞

n
n + 1

 Divide numerator and denominator by n.

 = lim
nS ∞

1

1 +
1
n

= 1

From case 1 of Theorem 1, L = 1, R = 1>L = 1, and the series converges for 
∙ x - 1 ∙ 6 1. Converting this to double inequalities, we have

 ∙ x - 1 ∙ 6 1 ∙ y ∙ 6 c is equivalent to -c 6 y 6 c.

    -1 6 x - 1 6 1 Add to each side.

 0 6  x 6 2 Interval of convergence.

So  f1x2 = lim
nS ∞

pn1x2 for 0 6 x 6 2 or, equivalently,

ln x = 1x - 12 -
1
2

 1x - 12 2 +
1
3

 1x - 12 3 - g+
1-12 n - 1

n
 1x - 12 n + g 0 6 x 6 2

Matched Problem 3 Repeat Example 3 for  f1x2 = 1>x.

Table 1 displays the values of the Taylor polynomials for  f1x2 = ln x at x = 1.5 
and at x = 3 for n = 1, 2, …, 10 (see Example 3). Notice that x = 1.5 is in the in-
terval of convergence of the Taylor series at 1 for f(x) and that the values of pn(1.5) 
are approaching In 1.5 as n increases. On the other hand, x = 3 is not in the interval 
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612 CHAPTER 9 Taylor Polynomials and Infinite Series

of convergence and the values of pn(3) do not approach ln 3. These calculations  
illustrate the importance of the interval of convergence:

x must be in the interval of convergence in order to use Taylor  
polynomials to approximate the value f (x).

Table 1
 f1x2 = ln x

pn1x2 = 1x - 12 -
1
2

 1x - 122 +
1
3

 1x - 123 - g +
1-12 n - 1

n  1x - 12 n

n Pn(1.5) Pn(3)

 1 0.5 2
 2 0.375 0
 3 0.416 667 2.666 667
 4 0.401 042 -1.333 333
 5 0.407 292 5.066 667
 6 0.404 688 -5.6
 7 0.405 804 12.685 714
 8 0.405 315 -19.314 286
 9 0.405 532 37.574 603
10 0.405 435 -64.825 397

ln 1.5 = 0.405 465 ln 3 = 1.098 397

Exercises 9.2
Skills Warm-up Exercises

In Problems 1–8, evaluate the limits where x denotes a real num-
ber and n denotes an integer. (If necessary, review Section 2.2)

1. lim
xS ∞

2x + 1

x2 + 5

2. lim
xS ∞

3x1x + 22
1x + 121x + 42

3. lim
xS ∞

6x3 - 5x2 + 4

7x3 + 8x - 9

4. lim
xS ∞

x2 + 1
10x + 100

5. lim
nS ∞

12n + 1212n + 32
n1n + 22

6. lim
nS ∞

1n + 12!

1n + 22!

7. lim
nS ∞

n1n + 121n + 22
1n + 1021n + 202

8. lim
nS ∞

1n + 221n + 32
14n - 5214n + 52

In Problems 9–20, find the interval of convergence of the given 
Taylor series representation.

9. 
4

1 - x
= 4 + 4x + 4x2 + g + 4xn + g

W

A

10. 
3

1 - x
= 3 + 3x + 3x2 + g + 3xn + g

11. 
1

1 + 7x
= 1 - 7x + 72x2 - g + 1-12 n7nxn + g

12. 
1

1 + 2x
= 1 - 2x + 22x2 - g + 1-12 n2nxn + g

13. 
1

5 - x
=

1
5

+
1

52 x +
1

53 x2 + g +
1

5n + 1 xn + g

14. 
2

3 + x
=

2
3

-
2

32 x +
2

33 x2 - g +
21-12 n

3n + 1  xn + g

15. ln 11 + x2 = x -
1
2

 x2 +
1
3

 x3 - g +
1-12 n - 1

n
 xn + g

16. ln 11 - x2 = -x -
1
2

 x2 -
1
3

 x3 - g -
1
n

 xn - g

17. 
1

11 + x2 2 = 1 - 2x + 3x2 - g

+ 1-12 n1n + 12xn + g

18. 
x

11 - x2 2 = x + 2x2 + 3x3 + g + nxn + g

19. ex = 1 + x +
1
2!

 x2 + g +
1
n!

 xn + g

20. e - x = 1 - x +
1
2!

 x2 - g +
1-12 n

n!
 xn + g
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21.  The Taylor series for ex at 0 is

ex = 1 + x +
1
2!

 x2 +
1
3!

 x3 + g +
1
n!

 xn + g

(A) Find the smallest value of n such that

∙ pn122 - e2 ∙ 6 0.1

(B) Does a value of n exist such that

∙ pn11002 - e100 ∙ 6 0.1? Explain.

22. Suppose the function f has the following Taylor series repre-
sentation at 0:

 f1x2 = 1 + x + 2!x2 + 3!x3 + g + n!xn + g
(A) Find the interval of convergence.

(B) Compute pn(0.2) for n = 1, 2, 3, …, 10, where pn(x) is 
the nth-degree Taylor polynomial for f at 0. Explain why 
your computations are consistent with your answer to 
part (A).

In Problems 23–30, find the interval of convergence of the given 
Taylor series representation.

23.  ln 17 + x2 = 1x + 62 -
1
2
1x + 62 2

 +
1
3
1x + 62 3 - g+

1-12 n + 1

n
1x + 62 n + g

24.  ln 19 - 2x2 = - 21x - 42 -
22

2
1x - 42 2

 -
23

3
1x - 42 3 - g-

2n

n
1x - 42 n - g

25. e2x = 1 + 2x +
22

2!
 x2 + g +

2n

n!
 xn + g

26. e - x/3 = 1 -
1
3

 x +
1

2!32 x2 - g +
1-12 n

n!3n  xn + g

27.  
1

5 - x
=

1
3

+
1

321x - 22 +
1

331x - 22 2 + g

 +
1

3n + 11x - 22 n + g

28.  
3

2 + 3x
= - 3 - 321x + 12 - 331x + 12 2 - g

 - 3n + 11x + 12 n - g

29.  
1

5 - x
= -  

1
4

+
1

42 1x - 92 -
1

43 1x - 92 2

 + g +
1-12 n

4n + 1  1x - 92 n + g

30.  
3

2 + 3x
=

3
5

-
32

52 1x - 12 +
33

53 1x - 12 2 - g

 +
1-12 n3n + 1

5n + 1  1x - 12 n + g

B

31. (A)  Graph the nth-degree Taylor polynomials at 0 for 
 f1x2 = ex, n = 1, 2, 3, 4, 5. Use the viewing window 
Xmin = -3, Xmax = 3, Ymin = -5, and Ymax = 15.  
Based solely on the graphs, what would you conjecture 
the interval of convergence to be? Explain.

 (B) What is the actual interval of convergence?

32. (A)  Graph the nth-degree Taylor polynomials at 0 for 
 f1x2 = ln 11 + x2, n = 1, 2, 3, 4, 5. Use the viewing 
window Xmin = -3, Xmax = 3, Ymin = -15, and 
Ymax = 15. Based solely on the graphs, what would you 
conjecture the interval of convergence to be? Explain.

 (B) What is the actual interval of convergence?

In Problems 33–38, find the nth-degree Taylor polynomial at 0 for 
f, find the Taylor series at 0 for f, and determine the numbers x for 
which f1x2 = lim

nS ∞
pn1x2.

33.  f1x2 = e4x

34.  f1x2 = e - x>2

35.  f1x2 = ln 11 + 2x2
36.  f1x2 = ln 11 - 4x2

37.  f1x2 =
6

6 - x

38.  f1x2 =
7

7 + x

In Problems 39–42, find the nth-degree Taylor polynomial at the 
indicated value of a for f, find the Taylor series at a for f, and 
determine the numbers x for which f1x2 = lim

nS ∞
pn1x2.

39.  f1x2 = ln 12 - x2; a = 1

40.  f1x2 = ln 12 + x2; a = -1

41.  f1x2 =
1

8 - x
; a = 9

42.  f1x2 =
1

9 - x
; a = 8

43. (A)  Find the interval of convergence of the Taylor series 
representation

1
4 - x

=
1
4

+
1

42x +
1

43x2 + g +
1

4n + 1xn + g

 (B) Explain why Theorem 1 is not directly applicable to the 
Taylor series representation

1

4 - x2 =
1
4

+
1

42 x2 +
1

43 x4 + g +
1

4n + 1 x2n + g

(C) Use part (A) to find the interval of convergence of the 
Taylor series of part (B).

44. (A)  Explain why Theorem 1 is not directly applicable to the 
Taylor series representation

ex2
= 1 + x2 +

1
2!

 x4 +
1
3!

 x6 + g +
1
n!

 x2n + g

 (B) Use the Taylor series for ex at 0 to find the interval of 
convergence of the Taylor series of part (A).

C
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45. (A)  Explain why the interval of convergence of the Taylor 
series

 
1

1 - x
+

1

1 - x2 = 2 + x + 2x2 + x3

 + 2x4 + x5 + g
cannot be determined by applying Theorem 1.

 (B) If two Taylor series have the same interval of conver-
gence, then so does their term-by-term sum. Use this fact 
to find the interval of convergence of the Taylor series of 
part (A).

46. (A)  Explain why the interval of convergence of the Taylor 
series

 ex - ex2
= x + a 1

2!
- 1b  x2 +

1
3!

 x3

 + a 1
4!

-
1
2!
b  x4 +

1
5!

 x5 + g

cannot be determined by applying Theorem 1.

 (B) If two Taylor series have the same interval of conver-
gence, then so does their term-by-term difference. Use 
this fact to find the interval of convergence of the Taylor 
series of part (A).

Problems 47–50 require a basic knowledge of the sine and cosine 
functions.

47. Find the Taylor polynomial of degree 2n + 1 at 0 for 
 f1x2 = sin x.

48. Find the Taylor polynomial of degree 2n at 0 for 
 g1x2 = cos x.

49. Find the Taylor series at 0 for  f1x2 = sin x (although Theo-
rem 1 is not applicable, other techniques can be used to show 
that the Taylor series at 0 for  f1x2 = sin x converges for all 
values of x).

50. Find the Taylor series at 0 for  g1x2 = cos x (although Theo-
rem 1 is not applicable, other techniques can be used to show 
that the Taylor series at 0 for  g1x2 = cos x converges for all 
values of x).

Answer to Matched Problems
1. - ∞ 6 x 6 ∞
2. - 2 6 x 6 2
3. (A) 1 - 1x - 12 + 1x - 12 2 - g + 1-12 n1x - 12 n

  (B) 1 - 1x -12 + 1x - 12 2 - g + 1-12 n1x - 12 n +  g
  (C) 0 6 x 6 2

Basic Taylor Series
In the preceding sections, we used repeated differentiation and the formula 
an = f 1n21a2 >n! to find Taylor polynomials and Taylor series for a variety of simple 
functions. In this section we will see how to use the series for these simple functions 
and some basic properties of Taylor series to find the Taylor series for more com-
plicated functions. Table 1 lists the series we will use in this process for convenient 
reference.

Most of the discussion in this section involves Taylor series at 0. At the end of 
the section we will see that Taylor series at points other than 0 can be obtained from 
Taylor series at 0 by using a simple substitution process.

Table 1 Basic Taylor Series

Function f(x) Taylor Series at 0 Interval of Convergence

1
1 - x

= 1 + x + x2 + g + xn + g -1 6 x 6 1

1
1 + x

= 1 - x + x2 - g + 1-12 nxn + g -1 6 x 6 1

ln11 - x2 = -x -
1
2

 x2 -
1
3

 x3 - g -
1
n

 xn - g
-1 6 x 6 1

ln11 + x2 = x -
1
2

 x2 +
1
3

 x3 - g +
1-12 n - 1

n
 xn + g

-1 6 x 6 1

ex = 1 + x +
1
2!

 x2 + g +
1
n!

 xn + g
- ∞ 6 x 6 ∞

e-x = 1 - x +
1
2!

 x2 - g +
1-12 n

n!
 xn + g

- ∞ 6 x 6 ∞

9.3 Operations on Taylor Series
■■ Basic Taylor Series
■■ Addition and Multiplication
■■ Differentiation and Integration
■■ Substitution

M09_BARN6152_14_GE_C09.indd   614 16/11/18   1:57 PM



 SECTION 9.3   Operations on Taylor Series 615

Addition of Taylor Series Find the Taylor series at 0 for  f1x2 = ex + ln11 + x2,  
and find the interval of convergence.

SOLUTION From Table 1,

ex = 1 + x +
1
2!

 x2 +
1
3!

 x3 + g +
1
n!

 xn + g -∞ 6  x 6  ∞

and

ln11 + x2 = x -
1
2

 x2 +
1
3

 x3 - g +
1-12 n - 1

n
 xn + g -1 6 x 6 1

Adding the coefficients of corresponding powers of x, we have

 f1x2 = ex + ln11 + x2

 = 1 + 2x + a 1
2!

-
1
2
b  x2 + a 1

3!
+

1
3
b  x3 + g

+ c 1
n!

+
1-12 n - 1

n
d  xn + g

The series for ex converges for all x; however, the series for ln11 + x2 converges 
only for -1 6 x 6 1. Thus, the combined series converges for -1 6 x 6 1, the 
intersection of these two intervals of convergence.

Matched Problem 1 Find the Taylor series at 0 for  f1x2 = ex + 1> 11 - x2,  
and find the interval of convergence.

Addition and Multiplication

PROPERTY 1 Addition
Two Taylor series at 0 can be added term by term:
If

 f1x2 = a0 + a1x + a2x
2 + g + anx

n + g
and

 g1x2 = b0 + b1x + b2x
2 + g + bnx

n + g
then

 f1x2 + g1x2 = 1a0 + b02 + 1a1 + b12x + 1a2 + b22x2 + g

+ 1an + bn2xn + g
This operation is valid in the intersection of the intervals of convergence of the 
series for f and g.

EXAMPLE 1

PROPERTY 2 Multiplication
A Taylor series at 0 can be multiplied term by term by an expression of the form cxr. 
where c is a nonzero constant and r is a nonnegative integer:
If

 f1x2 = a0 + a1x + a2x
2 + g + anx

n + g
then

cxrf1x2 = ca0x
r + ca1x

r + 1 + ca2x
r + 2 + g + canxr + n + g

The Taylor series for cxrf(x) has the same interval of convergence as the Taylor 
series for f.
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Multiplication of Taylor Series Find the Taylor series at 0 for  f1x2 = 2x2e-x, and 
find the interval of convergence.

SOLUTION From Table 1,

e-x = 1 - x +
1
2!

 x2 - g +
1-12 n

n!
 xn + g - ∞ 6 x 6 ∞

Multiplying each term of this series by 2x2, the series for f(x) is

 f1x2 = 2x2e-x

 = 2x2 c 1 - x +
1
2!

 x2 - g +
1-12 n

n!
 xn + g d

 = 2x2 - 2x3 +
2
2!

 x4 - g +
21-12 n

n!
 xn + 2 + g

Since the series for e-x converges for all x, the series for f(x) also converges for 
-∞ 6 x 6 ∞ .

Matched Problem 2 Find the Taylor series at 0 for  f1x2 = 3x3 ln11 - x2, 
and find the interval of convergence.

EXAMPLE 2

PROPERTY 3 Differentiation
A Taylor series at 0 can be differentiated term by term:
If

 f1x2 = a0 + a1x + a2x
2 + a3x

3 + g + anx
n + g

then

f ′1x2 = a1 + 2a2x + 3a3x
2 + g + nanx

n - 1 + g
The Taylor series for f ′ has the same interval of convergence as the Taylor series 
for f.

Assume that an ∙ 0 for n Ú n0. Then the ratio of consecutive coefficients in the 
Taylor series for f ′ is

1n + 12an + 1

nan

and

lim
nS ∞

` 1n + 12an + 1

nan
` = lim

nS ∞
` an + 1

an
`  lim

nS ∞

n + 1
n

= 1

So, by Theorem 1 of Section 9.2, the Taylor series for f and f ′ have the same in-
terval of convergence.

CONCEPTUAL  INSIGHT

Differentiation and Integration
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Differentiation of Taylor Series Find the Taylor series at 0 for  f1x2 = 1> 11 - x2 2,  
and find the interval of convergence.

SOLUTION We want to relate f to the derivative of one of the functions in Table 1 
so that we can apply property 3. Since

 
d
dx

 a 1
1 - x

b =
d
dx

 11 - x2 -1

 = - 11 - x2 -21-12

 =
1

11 - x2 2

 = f1x2
we can apply property 3 to the series for 1> 11 - x2. From Table 1,

1
1 - x

= 1 + x + x2 + x3 + g + xn + g -1 6 x 6 1

Differentiating both sides of this equation,

 
d
dx

 a 1
1 - x

b =
d
dx

11 + x + x2 + x3 + g + xn + g 2

 
1

11 - x2 2 =
d
dx

1 +
d
dx

 x +
d
dx

 x2 +
d
dx

 x3 + g +
d
dx

 xn + g

 f1x2 = 1 + 2x + 3x2 + g + nxn - 1 + g

Since the series for 1> 11 - x2 converges for -1 6 x 6 1, the series for f(x) also 
converges for -1 6 x 6 1. [Verify this statement by applying Theorem 1 in the 
preceding section to the series for f(x).]

Matched Problem 3 Find the Taylor series at 0 for  f1x2 = 1> 11 + x2 2, and 
find the interval of convergence.

EXAMPLE 3

The Taylor series representation for a function f at 0 is

 f1x2 = x -
1
3!

 x3 +
1
5!

 x5 -
1
7!

 x7 + g

+
1-12 n

12n + 12!
 x2n + 1 + g - ∞ 6 x 6 ∞

(A) Find the Taylor series for f ′1x2.

(B) Find the Taylor series for f ″1x2. How are f and f ″ related?

Explore and Discuss 1

PROPERTY 4 Integration
A Taylor series at 0 can be integrated term by term:
If

 f1x2 = a0 + a1x + a2x
2 + g + anx

n + g
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then

L f1x2dx = C + a0x +
1
2

a1x
2 +

1
3

a2x
3 + g +

1
n + 1

anx
n + 1 + g

where C is the constant of integration. The Taylor series for L f1x2  dx has the same 
interval of convergence as the Taylor series for f.

EXAMPLE 4 Integration of Taylor Series If f is a function that satisfies f ′1x2 = x2ex and 
 f102 = 2, find the Taylor series at 0 for f. Find the interval of convergence.

SOLUTION Using the series for ex from Table 1 and property 2, the series for f ′ is

 f ′1x2 = x2ex

      = x2a1 + x +
1
2!

 x2 + g +
1
n!

 xn + g b - ∞ 6 x 6 ∞

 = x2 + x3 +
1
2!

 x4 + g +
1
n!

 xn + 2 + g

Integrating term by term produces a series for f:

 f1x2 = L f ′1x2  dx

 = L ax2 + x3 +
1
2!

 x4 + g +
1
n!

 xn + 2 + g b  dx

 = Lx2 dx +   Lx3 dx +
1
2!

  Lx4 dx + g +
1
n!

  Lxn + 2 dx + g

 = C +
1
3

 x3 +
1
4

 x4 +
1

1522!
 x5 + g +

1
1n + 32n!

 xn + 3 + g

Now we use the condition  f102 = 2 to evaluate the constant of integration C:

 2 = f102
 = C + 0 + 0 + g + 0 + g
 = C

So

 f1x2 = 2 +
1
3

 x3 +
1
4

 x4 + g +
1

1n + 32n!
 xn + 3 + g

Since the series for f ′ converges for - ∞ 6 x 6 ∞ , the series for f also converges 
for -∞ 6 x 6 ∞ .

Matched Problem 4 If f is a function that satisfies f ′1x2 = x ln11 + x2 and 
 f102 = 4, find the Taylor series at 0 for f. Find the interval of convergence.

Substitution

EXAMPLE 5 Using Substitution to Find Taylor Series Find the Taylor series at 0 for  f1x2 = e-x2
,  

and find the interval of convergence.

M09_BARN6152_14_GE_C09.indd   618 16/11/18   1:57 PM



 SECTION 9.3   Operations on Taylor Series 619

SOLUTION Suppose we try to solve this problem by finding the general form of the 
nth derivative of f:

 f1x2 = e-x2

 f ′1x2 = -2xe-x2

 f ″1x2 = -2e-x2
+ 4x2e-x2

  f 1321x2 = 4xe-x2
+ 8xe-x2

- 8x3e-x2

 = 12xe-x2
- 8x3e-x2

  f 1421x2 = 12e-x2
- 24x2e-x2

- 24x2e-x2
+ 16x4e-x2

 = 12e-x2
- 48x2e-x2

+ 16x2e-x2

Since the higher-order derivatives are becoming very complicated and no general 
pattern is emerging, we will try another approach. How can we relate f to one of the 
functions in Table 1? If we let  g1x2 = e-x, then f and g are related by

 f1x2 = e-x2
= g1x22

From Table 1,

 g1x2 = e-x

 = 1 - x +
1
2!

 x2 -
1
3!

 x3 + g +
1-12 n

n!
 xn + g -∞ 6 x 6 ∞

Substituting x2 for x in the series for g, we have

  f1x2 = g1x22

 = 1 - x2 +
1
2!

 1x22 2 -
1
3!

 1x22 3 + g +
1-12 n

n!
 1x22 n + g

 = 1 - x2 +
1
2!

 x4 -
1
3!

 x6 + g +
1-12 n

n!
 x2n + g

Since the series for g converges for all values of x, the series for f must also converge 
for all values of x.

Matched Problem 5 Find the Taylor series at 0 for  f1x2 = ex3
, and find the 

interval of convergence.

Making a substitution in a known Taylor series to obtain a new series is a very useful 
technique. Since there are many different substitutions that can be used, it is difficult to 
make a general statement concerning the effect of a substitution on the interval of conver-
gence. The following examples illustrate some of the possibilities that may occur.

(A) The function  f1x2 = e-x2
 and the Taylor polynomials

1 - x2 +
1
2!

 x4 - g +
1-12 n

n!
 x2n

are graphed for n = 1, 2, 3, 4, 5 in Figure 1. Which curve belongs to which 
function?

(B) Does Figure 1 provide supporting evidence for the statement that the Taylor 
series for f at 0 converges for all values of x? Explain.

Explore and Discus 2

Figure 1
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Using Substitution to Find Taylor Series Find the Taylor series at 0 for 
 f1x2 = 1> 14 - x2, and find the interval of convergence.

SOLUTION If we factor a 4 out of the denominator of f, we can establish a relation-
ship between  f1x2 and  g1x2 = 1> 11 - x2. Thus,

 f1x2 =
1

4 - x

 = a1
4
b 1

1 - 1x>42 g1x2 =
1

1 - x

 =
1
4

g a x
4
b

From Table 1,

 g1x2 =
1

1 - x

 = 1 + x + x2 + g + xn + g -1 6 x 6 1

Substituting x/4 for x in this series and multiplying by 14, we have

 f1x2 =
1
4

ga x
4
b

 =
1
4

 c 1 + a x
4
b + a x

4
b

2

+ g + a x
4
b

n

+ g d

 =
1
4

+
1

42x +
1

43x2 + g +
1

4n + 1xn + g

Since the original series for g converges for -1 6 x 6 1 and we substituted x/4 for 
x in that series, the series for f converges for

 -1 6
x
4

6 1 Multiply each member by 4.

 -4 6 x 6 4

Matched Problem 6 Find the Taylor series at 0 for  f1x2 = 1> 13 + x2, and 
find the interval of convergence.

EXAMPLE 6

EXAMPLE 7 Using Substitution to Find Taylor Series Find the Taylor series at 0 for 
 f1x2 = ln11 + 4x22, and find the interval of convergence.

SOLUTION If we let  g1x2 = ln11 + x2, then

 f1x2 = ln11 + 4x22
   = g14x22

From Table 1, the series for g is

 g1x2 = x -
1
2

 x2 +
1
3

 x3 - g +
1-12 n - 1

n
 xn + g -1 6 x 6 1

Substituting 4x2 for x in this series, we have
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  f1x2 = g14x22

 = 4x2 -
1
2
14x22 2 +

1
3
14x22 3 - g +

1-12 n - 1

n
14x22 n + g

 = 4x2 -
42

2
 x4 +

43

3
 x6 - g +

1-12 n - 14n

n
 x2n + g

The series for g converges for -1 6 x 6 1. Since we substituted 4x2 for x, the 
series for f converges for

-1 6 4x2 6 1

Inequalities of this type are easier to solve if we use absolute value notation:

 -1 6 4x2 6 1 Change to absolute value notation.

 ∙ 4x2 ∙ 6 1 Multiply by 14

 ∙ x2 ∙ 6 1
4

 ∙ x ∙2 6 1
4

 ∙ x ∙ 6 1
2  Convert to double inequalities.

 -1
2 6 x 6 1

2  See Figure 2 for a graphical solution.

So the series for f converges for -1
2 6 x 6 1

2.

Matched Problem 7 Find the Taylor series at 0 for  f1x2 = 1> 11 + 9x22, 
and find the interval of convergence.

Figure 2 Graphical solution of 
-1 6 4x2 6 1

Up to this point in this section we have restricted our attention to Taylor series at 0. 
How can we use the techniques discussed to find a Taylor series at a number a ∙ 0? 
Properties 1–4 could be stated in terms of Taylor series at an arbitrary number a; how-
ever, there is an easier way to proceed. The method of substitution allows us to use 
Taylor series at 0 to find Taylor series at other numbers. The following example illus-
trates this technique.

EXAMPLE 8 Using Substitution to Find Taylor Series Find the Taylor series at 1 for 
 f1x2 = 1> 12 - x2, and find the interval of convergence.

SOLUTION In order to find a Taylor series for f in powers of x - 1, we will use the 
substitution t = x - 1 to express f as a function of t. If we find the Taylor series 
at 0 for this new function and then replace t with x - 1, we will have obtained the 
Taylor series at 1 for f.

 t = x - 1      Solve for x.

 x = t + 1      Substitute for x in f1x2 = 1>12 - x2.

 
1

2 - x
=

1
2 - 1t + 12     Simplify.

 =
1

1 - t
           

 Find the Taylor series at 0  
for this function of t.

 = 1 + t + t2 + g + tn + g  Substitute x - 1 for t.
-1 6 t 6 1

 = 1 + 1x - 12 + 1x - 12 2 + g + 1x - 12 n + g
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Since t = x - 1 and the series in powers of t converges for -1 6 t 6 1, the series 
in powers of x - 1 converges for

-1 6 x - 1 6 1 Add 1 to each member.

   0 6  x  6 2

Matched Problem 8 Find the Taylor series at 1 for  f1x2 = 1>x, and find the 
interval of convergence.

Exercises 9.3
Skills Warm-up Exercises

In Problems 1–8, write the indicated polynomial in ex-
panded form, where  p1x2 = 1 - 2x + 3x2 - 4x3 and 

 q1x2 = 1 -
1
2

 x2 +
1
24

 x4. (If necessary, review Appendix A.2 

and Section 1.1).

1.  p1x2 + q1x2 2.  p1x2 - q1x2
3.  p1x22 4.  q1x52
5. x2p′1x2 6. x3q ″1x2

7. Lq1x2dx 8. Lp1x2dx

Solve the problems by performing operations on the Taylor series in 
Table 1. State the interval of convergence for each series you find.

In Problems 9–20, find the Taylor series at 0.

9.  f1x2 =
1

1 - x
+

1
1 + x

10.  f1x2 = ex + e-x

11.  f1x2 =
1

1 - x
+ e-x

12.  f1x2 =
1

1 + x
+ ln11 + x2

13.  f1x2 =
x6

1 - x

14.  f1x2 = xex

15.  f1x2 = x2 ln11 - x2

16.  f1x2 =
7x8

1 + x

17.  f1x2 = ex2

18.  f1x2 = ln11 - x32
19.  f1x2 = ln11 + 3x2
20.  f1x2 =

x

1 + x2

In Problems 21–30, find the Taylor series at 0.

21.  f1x2 =
1

2 - x

22.  f1x2 =
1

5 + x

23.  f1x2 =
1

1 - 8x3

24.  f1x2 = ln11 + 25x22
25.  f1x2 = 10x

26.  f1x2 = log11 + x2
27.  f1x2 = log211 - x2
28.  f1x2 = 5x

29.  f1x2 =
1

4 + x2

30.  f1x2 =
1

9 - x2

31. Substituting 2x for x in the Taylor series at 0 for ex gives the 
formula

e2x = 1 + x1>2 +
1
2!

 x +
1
3!

 x3>2 + g +
1
n!

 xn>2 + g

(A) For which numbers x is the formula valid?

(B) Is the formula a Taylor series at 0 for e2x? Explain.

32. Substituting 1/x for x in the Taylor series at 0 for 1> 11 - x2 
gives the formula

1

1 -
1
x

= 1 + x-1 + x-2 + g + x-n + g

(A) For which numbers x is the formula valid?

(B) Explain why the formula is not a Taylor series at 0 for

 f1x2 =
1

1 -
1
x

(C) Find a Taylor series at 0 that equals
1

1 -
1
x

for all x ∙ 0 in the interval -1 6 x 6 1.

W

A

B
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33. Find the Taylor series at 0 for

(A)  f1x2 =
1

1 + x2

(B)  g1x2 =
2x

11 + x22 2

[Hint: Compare f ′1x2 and g(x).]

34. Find the Taylor series at 0 for

(A)  f1x2 =
x

1 - x2

(B)  g1x2 =
1 + x2

11 - x22 2

[Hint: Compare f ′1x2 and g(x).]

35. If f(x) satisfies f ′1x2 = 1> 11 + x22 and  f102 = 0, find the 
Taylor series at 0 for f(x).

36. If f(x) satisfies f ′1x2 = ln11 + x22 and  f102 = 1, find the 
Taylor series at 0 for f(x).

37. If f(x) satisfies f ′1x2 = x2 ln11 - x2 and  f102 = 5, find 
the Taylor series at 0 for f(x).

38. If f(x) satisfies f ′1x2 = xex and  f102 = -3, find the Taylor 
series at 0 for f(x).

39. Most graphing calculators include the hyperbolic sine func-
tion,  f1x2 = sinh x, as a built-in function. The Taylor series 
for the hyperbolic sine at 0 is

sinh x = x +
1
3!

x3 +
1
5!

x5 + g

+
1

12n + 12!
x2n + 1 + g - ∞ 6 x 6 ∞

(A) Graph f and its Taylor polynomials p1(x), p3(x), and p5(x) 
in the viewing window -5 … x … 5, -30 … y … 30.

(B) Explain why 
d2

dx21sinh x2 = sinh x.

40. Most graphing calculators include the hyperbolic cosine 
function,  g1x2 = cosh x, as a built-in function. The Taylor 
series for the hyperbolic cosine at 0 is

cosh x = 1 +
1
2!

 x2 +
1
4!

 x4 +
1
6!

 x6 + g

+
1

12n2!
x2n + g - ∞ 6 x 6 ∞

(A) Graph g and its Taylor polynomials p2(x), p4(x), and p6 
(x) in the viewing window -5 … x … 5, 0 … y … 60.

(B) Explain why 
d2

dx21cosh x2 = cosh x.

In Problems 41–46, use the substitution t = x - a to find the 
Taylor series at the indicated number a.

41.  f1x2 =
1

4 - x
; at a = 3

42.  f1x2 =
1

6 + x
; at a = -5

43.  f1x2 = ln x; at a = 1

44.  f1x2 = ln13 - x2; at a = 2

45.  f1x2 =
1

4 - 3x
; at a = 1

46.  f1x2 =
1

5 - 2x
; at a = 2

47.  Use the Taylor series at 0 for 1> 11 - x2 and repeated 
 applications of property 3 to find the Taylor series at 0 for

 f1x2 =
1

11 - x2 3

48. Use the Taylor series at 0 for 1> 11 + x2 and repeated appli-
cations of property 3 to find the Taylor series at 0 for

 f1x2 =
1

11 + x2 4

49. Suppose that the Taylor series for f at 0 is

 f1x2 = x +
1
3

 x3 +
1
5

 x5 + g

+
1

2n + 1
 x2n + 1 + g -1 6 x 6 1

(A) Find the Taylor series for f ′.

(B) Explain why f ′1x2 =
1

1 - x2 for -1 6 x 6 1.

50. Suppose that the Taylor series for g at 0 is

 g1x2 = x -
1
3

 x3 +
1
5

 x5 - g

+
1-12 n

2n + 1
 x2n + 1 + g -1 6 x 6 1

(A) Find the Taylor series for g′.

(B) Explain why g′1x2 =
1

1 + x2 for -1 6 x 6 1.

51. Find the Taylor series at 0 for  f1x2 =
1 + x
1 - x

.

cNote: 
1 + x
1 - x

=
1

1 - x
+

x
1 - x

d

52. Find the Taylor series at 0 for  f1x2 =
1 + 5x
1 + x

.

cNote: 
1 + 5x
1 + x

=
1

1 + x
+

5x
1 + x

d

53. Find the Taylor series at 0 for  f1x2 =
1
2

 lna1 + x
1 - x

b .

cNote: lna1 + x
1 - x

b = ln11 + x2 - ln11 - x2 d

54. Find the Taylor series at 0 for  f1x2 = ln11 + 2x + x22.

55. Find the Taylor series at 0 for  f1x2 =
ex + e-x

2
.

C
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624 CHAPTER 9 Taylor Polynomials and Infinite Series

56. Find the Taylor series at 0 for  f1x2 =
ex - e-x

2
.

57. If f(x) satisfies f ″1x2 = ln11 + x2, f ′102 = 3, and 
 f102 = -2, find the Taylor series at 0 for f(x).

58. If f(x) satisfies f ″1x2 =
1

1 - x2, f ′102 = 4, and  f102 = 5, 

find the Taylor series at 0 for f(x).

59. Find the Taylor series at any a 7 0 for  f1x2 = ln x.

60. Find the Taylor series at any a for  f1x2 = ex.

61. If a and b are constants 1b ∙ 0, a ∙ b-12, find the Taylor 
series at a for

 f1x2 =
1

1 - bx

62. If a and b are constants 1a ∙ b2, find the Taylor series at a for

 f1x2 =
1

b - x

In Problems 63–66, use the following facts about the Taylor series 
at 0 for the sine and cosine functions:

 sin x = x -
1
3!

 x3 +
1
5!

 x5 - c+
1-12 n

12n + 12!
 x2n + 1 + c; - ∞ 6 x 6 ∞

 cos x = 1 -
1
2!

 x2 +
1
4!

 x4 - c +
1-12 n

12n2!
 x2n + c; - ∞ 6 x 6 ∞

63. Use the Taylor series for  f1x2 = sin x at 0 to find the Taylor 
series for f ′1x2 at 0.

64. Use the Taylor series for  g1x2 = cos x at 0 to find the Taylor 
series for g′1x2 at 0.

65. If  F1x2 satisfies F′1x2 = sin x and  F102 = -1, find the 
Taylor series at 0 for  F1x2.

66. If  G1x2 satisfies G′1x2 = cos x and  G102 = 0, find the 
Taylor series at 0 for  G1x2.

Answers to Matched Problems

1.  2 + 2x + a 1
2!

+ 1bx2 + g + a 1
n!

+ 1bxn + g , 

 -1 6 x 6 1

2. -3x4 -
3
2

x5 - x6 - g -
3
n

xn + 3 - g , -1 6 x 6 1

3.  1 - 2x + 3x2 - g + 1-12 n + 1nxn - 1 + g , 

 -1 6 x 6 1

4.  4 +
1
3

x3 -
1
8

 x4 +
1
15

 x5 - g +
1-12 n - 1

n1n + 22  xn + 2 + g, 

-1 6 x 6 1

5. 1 + x3 +
1
2!

 x6 + g +
1
n!

 x3n + g , - ∞ 6 x 6 ∞

6.  1
3

-
1

32 x +
1

33 x2 - g +
1-12 n

3n + 1  xn + g , 

-3 6 x 6 3

7.  1 - 9x2 + 92x4 - g + 1-12 n9nx2n + g , 
-1

3 6 x 6 1
3

8. 1 - 1x - 12 + 1x - 12 2 - g + 1-12 n1x - 12 n + g ,

0 6 x 6 2

The Remainder
Now that we can find Taylor series for a variety of functions, we return to our original 
goal: approximating the values of a function.

If x is in the interval of convergence of the Taylor series for a function f and pn(x) 
is the nth-degree Taylor polynomial, then

 f1x2 = lim
nS ∞

pn1x2
and pn(x) can be used to approximate f(x). We want to consider two questions:

1. If we select a particular value of n, how accurate is the approximation 
 f1x2 ≈ pn1x2?

2. If we want the approximation  f1x2 ≈ pn1x2 to have a specified accuracy, how 
do we select the proper value of n?

It turns out that both of these questions can be answered by examining the difference 
between f(x) and pn(x). This difference is called the remainder and is defined in the 
following box.

9.4 Approximations Using Taylor Series
■■ The Remainder
■■ Taylor’s Formula for the Remainder
■■ Taylor Series with Alternating Terms
■■ Approximating Definite Integrals
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 SECTION 9.4   Approximations Using Taylor Series 625

DEFINITION The Remainder of a Taylor Series
If pn is the nth-degree Taylor polynomial for f, then the remainder is

Rn1x2 = f1x2 - pn1x2
The error in the approximation  f1x2 ≈ pn1x2 is

∙ f1x2 - pn1x2 ∙ = ∙ Rn1x2 ∙

If the Taylor series at 0 for f is 
pn1x2                                   Rn1x2

7  6
 f1x2 = a0 + a1x + a2x

2 + g + anx
n + an + 1x

n - 1 + g
then

pn1x2 = a0 + a1x + a2x
2 + g + anx

n

and
Rn1x2 = an + 1x

n + 1 + an + 2x
n + 2 + g

Similar statements can be made for Taylor series at a.
It follows from our basic assumption (see page 610) for the functions we con-

sider that

lim
nS ∞

Rn1x2 = lim
nS ∞

3f1x2 - pn1x24 = f1x2 - f1x2 = 0

if and only if x is in the interval of convergence of f.
In general, it is difficult to find the exact value of Rn(x). In fact, since 

 f1x2 = pn1x2 + Rn1x2, this is equivalent to finding the exact value of f(x). Instead, 
we will discuss two methods for estimating the value of Rn(x). The first method 
works in all cases, but can be difficult to apply, while the second method is easy to 
apply, but does not work in all cases.

Taylor’s Formula for the Remainder
The first method for estimating the remainder of a Taylor series is based on Taylor’s 
formula for the remainder.

Let p1(x), p2(x), and p3(x) be Taylor polynomials for  f1x2 = ex at 0. The correspond-
ing remainder functions R1(x), R2(x), and R3(x) are graphed in Figure 1.
(A) Which curve belongs to which function?

(B) Use graphical approximation techniques to estimate those values of x for which 
the error in each of the approximations  f1x2 ≈ pn1x2 is less than 0.01.

Explore and Discuss 1

Figure 1

Formula Taylor’s Formula for the Remainder 
If f has derivatives of all order at 0, then

Rn1x2 =
f 1n + 121t2xn + 1

1n + 12!

for some number t between 0 and x.
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626 CHAPTER 9 Taylor Polynomials and Infinite Series

A similar formula can be stated for the remainder of a Taylor series at an arbi-
trary point a. (We will not use this formula in this text.)

In most applications of the remainder formula, it is not possible to find the value 
of t. However, if we can find a number M satisfying

∙ f 1n + 121t2 ∙ 6 M for all t between 0 and x

then we can estimate Rn(x) as follows:

∙ Rn1x2 ∙ = ` f
1n + 121t2xn + 1

1n + 12!
` 6

M ∙ x ∙n + 1

1n + 12!

This technique is illustrated in the next example.

EXAMPLE 1 Taylor’s Formula for the Remainder Use the second-degree Taylor polynomial 
at 0 for  f1x2 = ex to approximate e0.1. Use Taylor’s formula for the remainder to 
estimate the error in this approximation.

SOLUTION Since f 1n21x2 = ex for any n, we can write

 f1x2 = ex = p21x2 + R21x2 
p21x2     R21x2

4   2

 = 1 + x +
1
2!

 x2 +
etx3

3!
 f 1321t2 = et

for some number t between 0 and x. Thus,

 f10.12 = e0.1

 = p210.12 + R210.12
 ≈ p210.12
 = 1 + 0.1 + 1

210.12 2

 = 1.105

g(t) 5 x t

x

y

3

2

1

1021

Figure 2

To estimate the error in this approximation, we must estimate

∙ R210.12 ∙ = ` e
t10.12 3

3!
` =

et

6,000

where 0 … t … 0.1. In order to estimate ∙ R210.12 ∙ , we must estimate  g1t2 = et 
for 0 … t … 0.1. Since et is always increasing, et … e0.1 for 0 … t … 0.1. How-
ever, e0.1 is the number we are trying to approximate. We do not want to use this 
number in our estimate of the error. (This situation occurs frequently in approxima-
tion problems involving the exponential function.) Instead, we will use the follow-
ing rough estimate for et (see Fig. 2):

 If t … 1, then et … 3. (1)

Since estimate (1) holds for t … 1, it certainly holds for 0 … t … 0.1. Thus,

∙ R210.12 ∙ =
et

6,000
…

3
6,000

= 0.0005

and we can conclude that the approximate value 1.105 is within { 0.0005 of the 
exact value of e0.1.

Matched Problem 1 Use the second-degree Taylor polynomial at 0 for 
 f1x2 = ex to approximate e0.2. Use Taylor’s formula for the remainder to estimate 
the error in the approximation.
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 SECTION 9.4   Approximations Using Taylor Series 627

If f is a polynomial of degree n and k Ú n, then f 1k + 121t2 = 0 for all t. So by Taylor’s 
formula for the remainder, Rk1x2 = 0. Therefore, in the special case in which f is a 
polynomial of degree n, each Taylor polynomial pk, for k Ú n, is equal to f.

CONCEPTUAL  INSIGHT

Taylor Series with Alternating Terms
Taylor’s formula for the remainder can be difficult to apply for large values of n. For 
most functions, the formula for the nth derivative becomes very complicated as n  
increases. For a certain type of problem, there is another method that does not require 
estimation of the nth derivative. If the series of numbers that is formed by evaluat-
ing a Taylor series at a given number x0 alternates in sign and decreases in absolute 
value, then the remainder can be estimated by simply examining the numbers in the 
series. Series of numbers whose terms alternate in sign are called alternating series. 
The estimate for the remainder in an alternating series is given in Theorem 1.

THEOREM 1 Error Estimation for Alternating Series
If x0 is a number in the interval of convergence for

 f1x2 = a0 + a1x + a2x
2 + g+ akx

k + g
and the terms in the series

 f1x02 = a0 + a1x0 + a2x
2
0 + g + akx

k
0 + g

are alternating in sign and decreasing in absolute value, then the error in  
the approximation

 f1x02 ≈ a0 + a1x0 + a2x
2
0 + g + anx

n
0

is strictly less than the absolute value of the next term. That is,

∙ Rn1x02 ∙ 6 ∙ an + 1x
n + 1
0 ∙

Estimating the Remainder for Alternating Series Use the Taylor series at 0 for 
 f1x2 = e-x to approximate e-0.3 with an error of no more than 0.0005.

SOLUTION From Table 1 in Section 9.3, the Taylor series at 0 for  f1x2 = e - x is

e - x = 1 - x +
1
2!

 x2 -
1
3!

 x3 + g +
1-12 k

k!
 xk + g - ∞ 6 x 6 ∞

If we substitute x = 0.3 in this series, we obtain

 f10.32 = e - 0.3

 = 1 - 0.3 + 1
210.32 2 - 1

610.32 3 + 1
2410.32 4 - g

 = 1 - 0.3 + 0.045 - 0.0045 + 0.000 337 5 - g
Since the terms in this series are alternating in sign and decreasing in absolute value, 
Theorem 1 applies. If we use the first four terms in this series to approximate e-0.3, 
then the error in this approximation is less than the absolute value of the fifth term. 
That is,

∙ R310.32 ∙ 6 0.000 337 5 6 0.0005

Thus,
e - 0.3 ≈ 1 - 0.3 + 0.045 - 0.0045 = 0.7405

and the error in this approximation is less than the specified accuracy of 0.0005.

Matched Problem 2 Use the Taylor series at 0 for  f1x2 = e - x to approxi-

mate e-0.1 with an error of no more than 0.0005.

EXAMPLE 2
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628 CHAPTER 9 Taylor Polynomials and Infinite Series

As Example 2 illustrates, Theorem 1 is much easier to use than Taylor’s formula 
for the remainder. Notice that we did not have to find an estimate for f 1n + 121t2. 
However, it is very important to understand that Theorem 1 can be applied only if the 
terms in the series alternate in sign after they have been evaluated at x0. For example, if 
we try to use the series for e-x to approximate e0.3 by substituting x0 = -0.3, we have

 e0.3 = 1 - 1-0.32 + 1
21-0.32 2 - 1

61-0.32 3 + g

 = 1 + 0.3 + 1
210.32 2 + 1

610.32 3 + g
Since these numbers do not alternate in sign, Theorem 1 does not apply. Taylor’s for-
mula for the remainder would have to be used to estimate the error in approximations 
obtained from this series.

Approximating Definite Integrals
In order to find the exact value of a definite intergral 1b

a  f1x2 dx, we must first find an 
antiderivative of the function f. But suppose we cannot find an antiderivative of f (it 
may not even exist in a convenient form). In Section 5.5 we saw that Riemann sums can 
be used to approximate definite integrals. Taylor series techniques provide an alterna-
tive method for approximating definite integrals that is often more efficient, and, in the 
case of alternating series, automatically determines the accuracy of the approximation.

EXAMPLE 3 Using Taylor Series to Approximate Definite Integrals Approximate 11
0  e

- x2
 dx 

with a maximum error of 0.005.

SOLUTION If F(x) is an antiderivative of e - x2
, then

L
1

0
e - x2

 dx = F112 - F102

It is not possible to express F(x) as a finite combination of simple functions; however,  
it is possible to find a Taylor series for F. This series can be used to approximate the 
values of F and, consequently, of the definite integral.

Step 1. Find a Taylor series for the integrand: From Table 1 in Section 9.3,

ex = 1 + x +
1
2!

 x2 + g +
1
n!

 xn + g - ∞ 6 x 6 ∞
Thus,

 e - x2
= 1 + 1-x22 +

1
2!
1-x22 2 + g +

1
n!
1-x22 n + g

 = 1 - x2 +
1
2!

 x4 - g +
1-12 n

n!
 x2n + g - ∞ 6 x 6 ∞

Step 2. Find the Taylor series for the antiderivative: Integrating term by term, we have

 F1x2 = Le - x2
 dx

 = L c 1 - x2 +
1
2!

 x4 - g +
1-12 n

n!
 x2n + g d  dx

 = C + x -
1
3

 x3 +
1

10
 x5 - g +

1-12 n

n!12n + 12  x2n + 1 + g  - ∞ 6 x 6 ∞
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 SECTION 9.4   Approximations Using Taylor Series 629

Step 3. Approximate the definite integral: If we choose C = 0, then  F102 = 0 and

 L
1

0
e - x2

 dx = F112 - F102

 = c x -
1
3

 x3 +
1

10
 x5 - g +

1-12 n

n!12n + 12  x2n + 1 + g d  `
1

0

 = c 1 -
1
3

+
1

10
- g +

1-12 n

n!12n + 12 + g d - 0

 = 1 -
1
3

+
1

10
-

1
42

+
1

216
- g

 = 1 - 0.333 333 + 0.1 - 0.023 809 + 0.004 630 - g

Since the Taylor series for F(x) converges for all values of x, we can use this last 
series of numbers to approximate F(1). Notice that the terms in this series are alter-
nating in sign and decreasing in absolute value. Applying Theorem 1, we conclude 
that the error introduced by approximating F(1) with the first four terms of this 
 series will be no more than 0.004 630, the absolute value of the fifth term. Since this 
is less than the specified error of 0.005, we have

 L
1

0
e - x2

 dx = F112 - F102
 ≈ 1 - 0.333 333 + 0.1 - 0.023 809
 ≈ 0.743            Rounded to three decimal places.

Matched Problem 3 Approximate 10.5
0  e

- x2
 with a maximum error of 0.005.

Suppose you wish to use a Taylor series for

 f1x2 =
1

1 - x2 to approximate L
3

2

dx

1 - x2

(A) Explain why you would not use the Taylor series for f at 0.

(B) If you use the Taylor series for f at a, which value of a would you expect to yield 
the best approximation to the integral? Explain.

Explore and Discuss 2

Income Distribution Approximate the index of income concentration for the  
Lorenz curve given by

 f1x2 =
11x4

10 + x2

with an error of no more than 0.005.

SOLUTION Referring to Section 5.6, the index of income concentration for a  
Lorenz curve is twice the area between the graph of the Lorenz curve and the graph 
of the line y = x (see Fig. 3). We must evaluate the integral

 2L
1

0
3x - f1x24dx = 2L

1

0
x dx - 2L

1

0
f1x2dx

 = L
1

0
2x dx - L

1

0

22x4

10 + x2dx (2)

EXAMPLE 4
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The first integral in (2) is easy to evaluate:

L
1

0
2x dx = x2 †

1

0
= 1 - 0 = 1

Since the second integral in (2) cannot be evaluated by any of the techniques we 
have discussed, we will use a Taylor series to approximate this integral.

Step 1. Find a Taylor series for the integrand:

 
22x4

10 + x2 =
22x4

10
 c 1

1 + 1x2>102 d  Substitute x2>10 for x in the series for 1> 11 + x2.

 = 2.2x4 c1 -
x2

10
+ a x2

10
b

2

- g + 1-12 na x2

10
b

n

+ gd  -1 6
x2

10
6 1

 = 2.2x4 -
2.2
10

 x6 +
2.2

102 x8 - g +
2.21-12 n

10n  x2n + 4 + g

To find the interval of convergence, we solve -1 6 x2>10 6 1 for x:

 - 1 6
x2

10
6 1  Change to absolute value notation.

 ̀
x2

10
` 6 1  Multiply by 10.

 ∙ x2 ∙ 6 10  Take the square root of both sides.

 ∙ x ∙ 6 210 Convert to double inequalities.

 - 210 6 x 6 210 Interval of convergence.
Step 2. Find the Taylor series for the antiderivative: Using property 4,

L
22x4

10 + x2 dx = L c 2.2x4 -
2.2
10

x6 +
2.2

102 x8 - g +
2.21-12 n

10n x2n + 4 + gd  dx

= C +
2.2
5

 x5 -
2.2

7 # 10
 x7 +

2.2

9 # 102 x9 - g

+
2.21-12 n

12n + 5210n x2n + 5 + g

This series also converges for - 210 6 x 6 210.
Step 3.  Approximate the definite integral: Choosing C = 0 in the antiderivative, 

we have

 L
1

0

22x4

10 + x2 dx = c 2.2
5

 x5 -
2.2

7 # 10
 x7 +

2.2

9 # 102 x9 - g

+
2.21-12 n

12n + 5210n x2n + 5 + g S †
1

0

 = c2.2
5

-
2.2

7 # 10
+

2.2

9 # 102 - g+
2.21-12 n

12n + 5210n + gd - 0

 = 0.44 - 0.031  429 + 0.002 444 - g

Since the limits of integration, 0 and 1, are within the interval of convergence of the 
Taylor series for the antiderivative, we can use this series to approximate the value 
of the definite integral. Notice that the numbers in this series are alternating in sign 
and decreasing in absolute value. Since the absolute value of the third term is less 

y 5 f(x)

x

y

1

10

 y 5 x

Figure 3
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than 0.005, Theorem 1 implies that we can use the first two terms of this series to 
approximate the definite integral to the specified accuracy. So

 L
1

0

22x4

10 + x2 dx ≈ 0.44 - 0.031 429

 ≈ 0.409 Rounded to three decimal places.
Returning to (2), we have

 2L
1

0
3x - f1x24 dx = 2L

1

0
x dx - 2L

1

0
f1x2dx

 ≈ 1 - 0.409
 = 0.591 Index of income concentration.

Matched Problem 4 Repeat Example 4 for  f1x2 =
11x5

10 + x2.

Exercises 9.4
Skills Warm-up Exercises

In Problems 1–8, find the error in the approximation of 
 f1x2 = 4 - 3x + 2x2 + x3 by p11x2 = 4 - 3x [the first-degree 
Taylor polynomial for  f1x2 at 0] at the indicated value of x.

1. x = 2 2. x = 1

3. x = 0.5 4. x = 0.2

In Problems 5–8, find the error in the approximation of 
 f1x2 = 4 - 3x + 2x2 + x3 by p21x2 = 4 - 3x + 2x2 [the 
second-degree Taylor polynomial for  f1x2 at 0] at the indicated 
value of x.

5. x = 0.6 6. x = 0.3

7. x = 0.1 8. x = 0.4

In Problems 9–38, use Theorem 1 to perform the indicated error 
estimations.

Evaluating the Taylor series at 0 for  f1x2 = e- x at x = 0.6 pro-
duces the following series:

 e - 0.6 = 1 - 0.6 + 0.18 - 0.036 + 0.0054
 -0.000 648 + g

In Problems 9–12, use the indicated number of terms in this series 
to approximate e-0.6, and then estimate the error in this approxi-
mation.

9. Two terms 10. Three terms

11. Four terms 12. Five terms

Evaluating the Taylor series at 0 for  f1x2 = ln11 + x2 at 
x = 0.9 produces the following series:

 ln 1.9 = 0.9 - 0.405 + 0.243 - 0.164 025 + 0.118   098
  - 0.088 573 5 + g

W

A

In Problems 13–16, use the indicated number of terms in this 
series to approximate ln 1.9, and then estimate the error in this 
approximation.

13. Two terms 14. Three terms

15. Four terms 16. Five terms

In Problems 17–20, use the third-degree Taylor polynomial at 0 
for  f1x2 = e - x to approximate each expression, and then esti-
mate the error in the approximation.

17. e-0.2 18. e-0.5 19. e-0.03 20. e-0.06

In Problems 21–24, use the third-degree Taylor polynomial at 0 
for  f1x2 = ln11 + x2 to approximate each expression, and then 
estimate the error in the approximation.

21. ln 1.6 22. ln 1.8

23. ln 1.06 24. ln 1.08

 In Problems 25–32, use a Taylor polynomial at 0 to approximate 
each expression with an error of no more than 0.000 005. Select 
the polynomial of lowest degree that can be used to obtain this 
accuracy and state the degree of this polynomial.

25. e-0.1 26. e-0.2

27. e-0.01 28. e-0.02

29. ln 1.2 30. ln 1.1

31. ln 1.02 32. ln 1.01

In Problems 33–38, use a Taylor series at 0 to approximate each 
integral with an error of no more than 0.0005.

33. L
0.2

0

1

1 + x2 dx 34. L
0.5

0

x

1 + x4 dx

35. L
0.6

0
ln11 + x22dx 36. L

0.7

0
x ln11 + x42dx

B
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37. L
0.4

0
x2e - x2

dx 38. L
0.8

0
x4e - x2

dx

In Problems 39–42, assume that  f1x2 is a function such that 
∙ f 1n21x2 ∙ … 1 for all n and all x [the trigonometric functions 
 f1x2 = sin x and  f1x2 = cos x, for example, satisfy that prop-
erty] and let pn1x2 be the nth-degree Taylor polynomial for f at 0.

39. Use Taylor’s formula for the remainder to find the smallest 
value of n such that the error in the approximation of f(2) by 
pn(2) is guaranteed to be less than 0.001.

40. Use Taylor’s formula for the remainder to find the smallest 
value of n such that the error in the approximation of f(8) by 
pn(8) is guaranteed to be less than 0.001.

41. Use Taylor’s formula for the remainder to determine the 
values of x such that the error in the approximation of f(x) by 
p5(x) is guaranteed to be less than 0.05.

42. Use Taylor’s formula for the remainder to determine the 
values of x such that the error in the approximation of f(x) by 
p9(x) is guaranteed to be less than 0.05.

43. Let  f1x2 = xex and consider the third-degree Taylor polyno-
mial p3(x) for f at 0. Use graphical approximation techniques 
to determine those values of x for which the error in the ap-
proximation  f1x2 ≈ p31x2 is less than 0.005.

44. Let  f1x2 = 1> 14 - x22 and consider the fourth-degree 
 Taylor polynomial p4(x) for f at 0. Use graphical approxima-
tion techniques to determine those values of x for which the 
error in the approximation  f1x2 ≈ p41x2 is less than 0.0001.

 In Problems 45–48, use the second-degree Taylor polynomial at 0 
for  f1x2 = ex to approximate the given number. Use Taylor’s for-
mula for the remainder to estimate the error in each approximation.

45. e-0.3 46. e-0.4 47. e0.05 48. e0.01

49. The Taylor series at 0 for  f1x2 = 216 + x converges for 
-16 6 x 6 16. Use the second-degree Taylor polynomial 

at 0 to approximate 217. Use Taylor’s formula for the re-
mainder to estimate the error in this approximation.

50. The Taylor series at 0 for  f1x2 = 214 + x2 3 converges for 
- 4 6 x 6 4. Use the third-degree Taylor polynomial at 0 

to approximate 2125. Use Taylor’s formula for the remain-
der to estimate the error in this approximation.

51. To estimate

L
0

- 2

1
1 - x

dx

a student takes the first five terms of the Taylor series for 
 f1x2 = 1> 11 - x2 at 0 and integrates term by term. He ob-
tains the estimate 5.067. A second student estimates the inte-
gral by noting that  F1x2 = - ln11 - x2 is an antiderivative 
for f(x). She evaluates F(x) between -2 and 0 to obtain the 
estimate 1.099. Is either computation correct? How do you 
account for the large discrepancy between the two estimates?

52. To estimate

L
1.5

0

1

1 + x2 dx

C

a student takes the first five nonzero terms of the Taylor series 
for  f1x2 = 1> 11 + x22 at 0 and integrates term by term. He 
obtains the estimate 3.724. A second student doubts the esti-
mate. She claims that since 1> 11 + x22 … 1 for 0 … x … 1.5,  
the value of the integral must be less than 1.5. Is either student 
correct? How do you account for the large discrepancy be-
tween their estimates?

There are different ways to approximate a function f by polyno-
mials. If, for example,  f1a2, f ′1a2, and f ″1a2 are known, then 
we can construct the second-degree Taylor polynomial p21x2 at 
a for  f1x2; p21x2 and  f1x2 will have the same value at a and 
the same first and second derivatives at a. If, on the other hand, 
 f1x12,  f1x22, and  f1x32 are known, then we can compute the qua-
dratic regression polynomial q21x2 for the points 1x1,  f1x122,  
1x2,  f1x222, 1x3,  f1x322; q21x2 and  f1x2 will have the same 
values at x1,  x2,  x3. Problems 53 and 54 concern these contrasting 
methods of approximation by polynomials.

53. (A)  Find the second-degree Taylor polynomial p2(x) at 0 for 
 f1x2 = ex, and use a graphing calculator to compute 
the quadratic regression polynomial q2(x) for the points 
1-0.1,  e-0.12, 10,  e02, and 10.1,  e0.12.

 (B) Use graphical approximation techniques to find the 
maximum error for -0.1 … x … 0.1 in approximating 
 f1x2 = ex by p2(x) and by q2(x).

 (C) Which polynomial, p2(x) or q2(x), gives the better  
approximation to

L
0.1

- 0.1
exdx?

54. (A)  Find the fourth-degree Taylor polynomial p4(x) 0 for 
 f1x2 = ln11 + x2, and use a graphing calculator to 
compute the quartic regression polynomial q4(x) for the 
points (0, ln 1),

1-1
2, ln11 - 1

222,1-3
4, ln11 - 3

422,

1-7
8, ln11 - 7

822,1-15
16, ln11 - 15

1622.

 (B) Use graphical approximation techniques to find the 
maximum error for -15

16 … x … 0 in approximating 
 f1x2 = ln11 + x2 by p4(x) and by q4(x).

(C) Which polynomial, p4(x) or q4(x), gives the better ap-
proximation to

L
0

- 15>16
ln11 + x2dx?

Applications
In Problems 55–66, use Theorem 1 to perform the indicated error 
estimations.

55. Income distribution. The income distribution for a certain 
country is represented by the Lorenz curve with the equation

 f1x2 =
5x6

4 + x2

Approximate the index of income concentration to within 
{0.005.
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56. Income distribution. Repeat Problem 55 for

 f1x2 =
10x4

9 + x2

57. Marketing. A soft drink manufacturer is ready to introduce a 
new diet soda by a national sales campaign. After test market-
ing the soda in a carefully selected city, the market research 
department estimates that sales (in millions of dollars) will 
increase at the monthly rate of

S″1t2 = 10 - 10e-0.01t2 0 … t … 12

t months after the national campaign is started. Use the 
fourth-degree Taylor polynomial at 0 for S′1t2 to approxi-
mate the total sales during the first 4 months of the campaign, 
and estimate the error in this approximation.

58. Marketing. Repeat Problem 57 if the monthly rate of in-
crease in sales is given by

S′1t2 = 10 - 10e-0.005t2 0 … t … 12

59. Useful life. A computer store rents time on desktop publish-
ing systems. The total accumulated costs C(t) and revenues 
R(t) (in thousands of dollars) from a particular system satisfy

C′1t2 = 4 and R′1t2 =
80

16 + t2

where t is the time in years that the system has been available 
for rental. Find the useful life of the system, and approximate 
the total profit during the useful life to within {0.005.

60. Average price. Given the demand equation

p = D1x2 = 10 - 20 lna1 +
x2

2,500
b 0 … x … 40

approximate the average price (in dollars) over the demand 
interval [0, 20] to within {0.005.

61. Temperature. The temperature (in degrees Celsius) in an 
artificial habitat is made to change according to the equation

 C1t2 = 20 + 800 lna1 +
t2

100
b 0 … t … 2

Use a Taylor series at 0 to approximate the average tempera-
ture over the time interval [0, 2] to within {0.005.

62. Temperature. Repeat Problem 61 for

 C1t2 = 10 + 200 lna1 +
t2

50
b 0 … t … 2

63. Medicine. The rate of healing for a skin wound (in square 
centimeters per day) is given by

A′1t2 =
-75

t2 + 25
The initial wound has an area of 12 square centimeters. 
Use the second-degree Taylor polynomial at 0 for A′1t2 to 
 approximate the area of the wound after 2 days, and estimate 
the error in this approximation.

64. Medicine. Repeat Problem 63 for

A′1t2 =
-60

t2 + 20
65. Learning. In a particular business college, it was found 

that an average student enrolled in an advanced typing class 
progresses at a rate of N′1t2 = 4e-0.003t2 words per minute 
per week, t weeks after enrolling in a 15-week course. At 
the beginning of the course an average student could type 35 
words per minute. Use the second-degree Taylor polynomial 
at 0 for N′1t2 to approximate the improvement in typing 
after 5 weeks in the course, and estimate the error in this 
approximation.

66. Learning. In the same business college, it was also found 
that an average student enrolled in a beginning shorthand 
class progressed at a rate of N′1t2 = 8e-0.0015t2

 words 
per minute per week, t weeks after enrolling in a 15-week 
course. At the beginning of the course none of the students 
could take any dictation by shorthand. Use the second-
degree Taylor polynomial at 0 for N′1t2 to approximate the 
improvement after 5 weeks in the course, and estimate the 
error in this approximation.

Answers to Matched Problems

1. e0.2 ≈ 1 + 0.2 + 1
210.22 2 = 1.22; ∙ R210.22 ∙ 6 0.004

2. e - 0.1 ≈ 1 - 0.1 + 0.005 = 0.905 within { 0.000 167

3. L
0.5

0
e - x2

dx ≈ 0.5 - 1
310.52 3 ≈ 0.458 within { 0.003 125

4. L
1

0

22x5

10 + x2 dx ≈
2.2
6

-
2.2
80

≈ 0.339 within { 0.0022;

index of income concentration ≈ 0.661

Chapter 9 Summary and Review

Important Terms, Symbols, and Concepts
9.1 Taylor Polynomials

• If f is a function that has n derivatives at 0, then the nth-degree Taylor polynomial for f at 0 is

pn1x2 = f102 + f ′102x +
f ″102

2!
 x2 + g +

f 1n2102
n!

 xn

EXAMPLES
Ex. 1, p. 590
Ex. 2, p. 595
Ex. 3, p. 596

 Summary and Review 633
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634 CHAPTER 9 Taylor Polynomials and Infinite Series

• If f has n derivatives at a, then the nth-degree Taylor polynomial for f at a is

 pn1x2 = f1a2 + f ′1a21x - a2 +
f ″ 1a2

2!
1x - a2 2 + g

 +
f 1n21a2

n!
1x - a2 n

Ex. 4, p. 598

9.2 Taylor Series
• If f is a function that has derivatives of all order at a point a and pn(x) is the nth-degree Taylor polynomial 

for f at a, then the Taylor series for f at a is

 f1a2 + f′1a21x - a2 +
f″1a2

2!
1x - a2 2 + g

 +
f 1n21a2

n!
1x - a2 n + g

• The Taylor series converges at x if lim
nS ∞

pn1x2 exists, and diverges at x if the limit does not exist. The 

set of numbers x for which this limit exists is called the interval of convergence.

• Theorem 1 Interval of Convergence Let f be a function with derivatives of all order at a point a,  
let an = f 1n21a2 >n! for n = 0, 1, 2, c , and let a0 + a11x - a2 + a21x - a2 2 + g +
an1x - a2 n + g  be the Taylor series for f at a. If an ∙ 0 for n Ú n0, then:

Case 1. If lim
nS ∞

∙
an + 1

an
∙ = L 7 0 and R =

1
L

, then the series converges for ∙ x - a ∙ 6 R and diverges 

for ∙ x - a ∙ 7 R.

Case 2. If lim
nS ∞

∙
an + 1

an
∙ = 0, then the series converges for all numbers x.

Case 3. If lim
nS ∞

∙
an + 1

an
∙ = ∞ , then the series converges only at x = a.

• We assume that functions are represented by their Taylor series throughout the interval of convergence 
(there exist functions that do not satisfy this condition, but they are not considered in this book).

Ex. 1, p. 608

Ex. 2, p. 609

Ex. 3, p. 610

9.3 Operations on Taylor Series
• Property 1. Two Taylor series can be added term by term. This operation is valid in the intersection of 

the intervals of convergence of the series for f and g.

• Property 2. A Taylor series for f at 0 can be multiplied term by term by an expression of the form cx′,  
where c is a nonzero constant and r is a non-negative integer. The resulting series has the same interval 
of convergence as the Taylor series for f.

• Property 3. A Taylor series for f at 0 can be differentiated term by term to obtain a Taylor series for f ′. 
Both series have the same interval of convergence.

• Property 4. A Taylor series at 0 can be integrated term by term to obtain a Taylor series for 1 f1x2dx. 
Both series have the same interval of convergence.

• Making a substitution in a known Taylor series to obtain a new series is a useful technique. A series for 
ex2

, for example, can be obtained by substituting x2 for x in the Taylor series for ex at 0.

Ex. 1, p. 615

Ex. 2, p. 616

Ex. 3, p. 617

Ex. 4, p. 618

Ex. 5, p. 618
Ex. 6, p. 620
Ex. 7, p. 620
Ex. 8, p. 621

9.4 Approximations Using Taylor Series
• If pn(x) is the nth-degree Taylor polynomial for f, then the remainder is Rn1x2 = f1x2 - pn1x2.  

The error in the approximation  f1x2 ≈ pn1x2 is ∙ f1x2 - pn1x2 ∙ = ∙ Rn1x2 ∙ .

• Taylor’s Formula for the Remainder If f has derivatives of all order at 0, then

Rn1x2 =
f 1n + 121t2xn + 1

1n + 12!
 for some number t between 0 and x.

Ex. 1, p. 626
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Work through all the problems in this chapter review and check 
your answers in the back of the book. Answers to all review prob-
lems are there along with section numbers in italics to indicate 
where each type of problem is discussed. Where weaknesses show 
up, review appropriate sections in the text.

Unless directed otherwise, use Theorem 1 of Section 9.4 in all 
problems involving error estimation.

1.  Find f 1421x2 for  f1x2 = ln1x + 52.

2. Use the third-degree Taylor polynomial at 0 for 

 f1x2 = 23 1 + x and x = 0.01 to approximate 23 1.01.

3. Use the third-degree Taylor polynomial at a = 3 for 

 f1x2 = 21 + x and x = 2.9 to approximate 23.9.

4. Use the second-degree Taylor polynomial at 0 for 

 f1x2 = 29 + x2 and x = 0.1 to approximate 29.01.

Use Theorem 1 of Section 9.2 to find the interval of convergence 
of each Taylor series representation given in Problems 5–8.

5. 
1

1 - 4x
= 1 + 4x + 42x2 + g + 4nxn + g

6.  
5

x - 1
= 1 -

1
5
1x - 62 +

1

521x - 62 2 - g

 +
1-12 n

5n 1x - 62 n + g

7.  
2x

11 - x2 3 = 1 # 2x + 2 # 3x2 + 3 # 4x3 + g

 + n1n + 12xn + g

8. e10x = 1 + 10x +
102

2!
x2 + g +

10n

n!
xn + g

9. Find the nth derivative of  f1x2 = e-9x.

In Problems 10 and 11, use the formula an = f 1n21a2 >n! to find 
the Taylor series at the indicated value of a. Use Theorem 1 of 
Section 9.2 to find the interval of convergence.

10.  f1x2 =
1

7 - x
; at a = 0 11.  f1x2 = ln x; at a =  2

A

B

In Problems 12–16, use Table 1 of Section 9.3 and the properties 
of Taylor series to find the Taylor series of each function at the 
indicated value of a. Find the interval of convergence.

12.  f1x2 =
1

10 + x
; at a = 0 13.  f1x2 =

x2

4 - x2; at a = 0

14.  f1x2 = x2e3x; at a = 0 15.  f1x2 = x ln1e + x2; at a = 0

16.  f1x2 =
1

4 - x
; at a = 2

17. (A)  Explain why Theorem 1 of Section 9.2 is not directly 
applicable to the Taylor series representation

ln11 - 5x22 = -5x2 -
52

2
 x4 -

53

3
 x6 - g -

5n

n
 x2n - g

(B)  Use another method to find the interval of convergence 
of the Taylor series in part (A).

18. Substituting 2x for x in the Taylor series at 0 for 1> 11 + x2 
gives the formula

1

1 + 2x
= 1 - x1>2 + x - x3>2 + g + 1-12 nxn>2 + g

(A) For which values of x is the formula valid?

(B)  Is the formula a Taylor series at 0 for 1> 11 + 2x2? Explain.

In Problems 19 and 20, find the Taylor series at 0 for  f1x2 and 
use the relationship  g1x2 = f ′1x2 to find the Taylor series at 0 
for  g1x2. Find the interval of convergence for both series.

19.  f1x2 =
1

2 - x
;  g1x2 =

1

12 - x2 2

20.  f1x2 =
x2

1 + x2;  g1x2 =
2x

11 + x22 2

In Problems 21 and 22, find the Taylor series at 0, and find the 
interval of convergence.

21.  f1x2 = L
x

0

t2

9 + t2 dt 22.  f1x2 = L
x

0

t4

16 - t2 dt

23. (A)  Compute the Taylor series for

 f1x2 = x3 - 3x2 + 4 at a = 1 and at a = -1.
(B) Explain how the two series are related.

Review Exercises

• Theorem 1 Error Estimation for Alternating Series If x0 is a number in the interval of convergence for

 f1x2 = a0 + a1x + a2x
2 + g + akx

k + g
and the terms in the series

 f1x02 = a0 + a1x0 + a2x
2
0 + g + akx

k
0 + g

are alternating in sign and decreasing in absolute value, then

∙ Rn1x02 ∙ 6 ∙ an + 1x
n + 1
0 ∙

• Taylor series techniques provide a method for approximating definite integrals that, in the case of alter-
nating series, automatically determines the accuracy of the approximation.

Ex. 2, p. 627

Ex. 3, p. 628
Ex. 4, p. 629

 Review Exercises 635
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636 CHAPTER 9 Taylor Polynomials and Infinite Series

24. (A)  Explain why  f1x2 = ∙ x ∙  does not have any Taylor poly-
nomials at 0.

(B) If a ∙ 0, find the Taylor polynomials for  f1x2 = ∙ x ∙  at a.

In Problems 25 and 26, use the second-degree Taylor polynomial at 
0 for  f1x2 = ex to approximate the indicated quantity. Use Taylor’s 
formula for the remainder to estimate the error in the approximation.

25. e0.6 26. e0.06

In Problems 27 and 28, use a Taylor polynomial at 0 for 
 f1x2 = ln11 + x2 to estimate the indicated quantity to within 
{0.0005. Give the degree of the Taylor polynomial of lowest 

degree that will provide this accuracy.

27. In 1.3 28. In 1.03

29. If f(x) satisfies f ′1x2 = x ln11 - x2 and  f102 = 5, find the 
Taylor series at 0 for f(x).

30. If f(x) satisfies f ″1x2 = xe-x, f ′102 = -4, and  f102 = 3, 
find the Taylor series at 0 for f(x).

 In Problems 31 and 32, approximate the integral to within 
{0.0005.

31. L
1

0

1

16 + x2 dx 32. L
1

0
x2e-0.1x2

dx

In Problems 33 and 34, assume that  f1x2 is a function such that 
∙ f 1n21x2 ∙ … 10 for all n and all x, and let pn1x2 be the nth-
degree Taylor polynomial for f at 0.

33. Use Taylor’s formula for the remainder to find the smallest 
value of n such that the error in the approximation of f(0.5) 
by pn(0.5) is guaranteed to be less than 10-6.

34. Use Taylor’s formula for the remainder to determine the 
values of x such that the error in the approximation of f(x) by 
p8(x) is guaranteed to be less than 10-6.

35. Let  f1x2 = ex2
 and consider the fourth-degree Taylor polyno-

mial p4(x) for f at 0. Use graphical approximation techniques 
to determine those values of x for which the error in the ap-
proximation  f1x2 ≈ p41x2 is less than 0.01.

36. Let  f1x2 = ln11 - x22 and consider the sixth-degree Taylor 
polynomial p6(x) for f at 0. Use graphical approximation 
techniques to determine those values of x for which the error 
in the approximation  f1x2 ≈ p61x2 is less than 0.001.

Applicatons
37. Average price. Given the demand equation

p = D1x2 = 1
1022,500 - x2

use the second-degree Taylor polynomial at 0 to approximate 
the average price (in dollars) over the demand interval [0, 15].

C

38. Production. The rate of production of an oil well (in thou-
sands of dollars per year) is given by

 R1t2 = 6 + 3e-0.01t2

Use the second-degree Taylor polynomial at 0 to approximate 
the total production during the first 10 years of operation of 
the well.

39. Income distribution. The income distribution for a certain 
country is represented by the Lorenz curve with the equation

 f1x2 =
9x3

8 + x2

Approximate the index of income concentration to within 
{0.005.

40. Marketing. A cereal manufacturer is ready to introduce a 
new high-fiber cereal by a national sales campaign. After 
test-marketing the cereal in a carefully selected city, the 
market research department estimates that sales (in millions 
of dollars) will increase at the monthly rate of

S′1t2 = 20 - 20e-0.001t2 0 … t … 12

t months after the national campaign is started. Use the 
fourth-degree Taylor polynomial at 0 for S′1t2 to approxi-
mate the total sales during the first 8 months of the campaign, 
and estimate the error in this approximation.

41. Medicine. The rate of healing for a skin wound (in square 
centimeters per day) is given by

A′1t2 =
-100

t2 + 40

The initial wound has an area of 15 square centimeters. Use 
the second-degree Taylor polynomial at 0 for A′1t2 to ap-
proximate the area of the wound after 2 days, and estimate 
the error in this approximation.

42. Medicine. A large injection of insulin is administered to a 
patient. The level of insulin in the bloodstream t minutes after 
the injection is given approximately by

 L1t2 =
5,000t2

10,000 + t4

Express the average insulin level over the time interval [0, 5] 
as a definite integral, and use a Taylor series at 0 to approxi-
mate this integral to within {0.005.

43. Politics. In a newly incorporated city, the number of voters 
(in thousands) t years after incorporation is given by

 N1t2 = 10 + 2t - 5e-0.01t2 0 … t … 5

Express the average number of voters over the time interval 
[0, 5] as a definite integral, and use a Taylor series at 0 to  
approximate this integral to within {0.05.
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Introduction
What is the probability that the daily demand for electricity in a large metro 
area will exceed 5 gigawatt hours (see Problem 55 in Section 10.2)? This is 
one of many questions that can be answered by applying calculus to probabil-
ity. Chapter 10 expands the brief consideration of probability in Section 6.3. 
The concepts of limit and definite integral are combined in Section 10.1 to de-
fine a new type of integral called the improper integral. Improper integrals are 
used in Section 10.3 to define the mean, median, variance, and standard de-
viation of a continuous random variable. Properties and applications of uniform, 
exponential, and normal probability distributions are studied in Section 10.4.

10.1 Improper Integrals

10.2 Continuous Random 
Variables

10.3 Expected Value, 
Standard Deviation, 
and Median

10.4 Special Probability 
Distributions

Probability  
and Calculus10
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638 CHAPTER 10 Probability and Calculus 

Improper Integrals
We are now going to consider an integral form that has wide application in probabil-
ity studies as well as other areas. Earlier, when we introduced the idea of a definite 
integral,

 L
b

a
f1x2  dx (1)

we required f to be continuous over a closed interval [a, b]. Now we are going to ex-
tend the meaning of (1) so that the interval [a, b] may become infinite in length.

10.1 Improper Integrals
■■ Improper Integrals
■■ Application: Capital Value

For each of the following functions, find the area under the graph from x = 1, to 
x = b, b 7 1 (see Fig. 1). Discuss the behavior of this area as b assumes larger and 
larger values.

(A) f1x2 =
1

x5>4 = x-5>4 (B)  g1x2 =
1

x4>5 = x-4>5

Explore and Discuss 1

y

1

1 b
x

(A)

f (x) 5
1

x5/4

Figure 1

y

1

1 b
x

(B)

g (x) 5
1

x4/5

Let us investigate a particular example that will motivate several general defini-
tions. What would be a reasonable interpretation for the following expression?

L
∞

1

dx

x2

Sketching a graph of  f1x2 = 1>x2, x Ú 1 (see Fig. 2), we note that for any fixed 
b 7 1, 1b

1
f1x2 dx is the area between the graph of y = 1>x2, the x axis, x = 1, and 

x = b.
Let us see what happens when we let b S ∞ ; that is, when we compute the fol-

lowing limit:

 lim
bS ∞ L

b

1

dx

x2 = lim
bS ∞

c 1-x-12 `
b

1
d

 = lim
bS ∞

a -  
1
b

+ 1b = 1

Did you expect this result? No matter how large b is taken, the area under the graph 
from x = 1 to x = b never exceeds 1, and in the limit it is 1 (see Fig. 3). This sug-
gests that we write

L
∞

1

dx

x2 = lim
bS ∞ L

b

1

dx

x2 = 1

This integral is an example of an improper integral. In general, the forms

x

y

1

1 b

f (x) 5
1
x2

b

1
Area 5

dx
x2

Figure 2

y

x

1

1

f (x) 5
1
x2

`

1

Area 5 5 1
dx
x2

Figure 3
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 SECTION 10.1   Improper Integrals 639

L
b

-∞
f1x2  dx      L

∞

a
f1x2  dx    L

∞

-∞
f1x2   dx

where ƒ is continuous over the indicated interval, are called improper integrals. 
(These integrals are “improper” because the interval of integration is unbounded, as 
indicated by the use of ∞ for one or both limits of integration. There are other types 
of improper integrals involving certain types of points of discontinuity within the 
interval of integration, but these will not be considered here.) Each type of improper 
integral above is formally defined in the following box:

DEFINITION Improper Integrals
If ƒ is continuous over the indicated interval and the limit exists, then

1. L
∞

a
f1x2  dx = lim

bS ∞ L
b

a
f1x2  dx

2. L
b

-∞
f1x2  dx = lim

aS -∞ L
b

a
f1x2  dx

3. L
∞

-∞
f1x2  dx = L

c

-∞
f1x2  dx + L

∞

c
f1x2  dx

where c is any point on 1-∞ , ∞2, provided both improper integrals on the right exist.

If the indicated limit exists, then the improper integral is said to exist or to 
 converge; if the limit does not exist, then the improper integral is said not to exist or 
to diverge (and no value is assigned to it).

Evaluating an Improper Integral Evaluate the following, if it converges:

L
∞

2

dx
x

SOLUTION    L
∞

2

dx
x

= lim
bS ∞ L

b

2

dx
x

 = lim
bS ∞

c 1ln  x2 `
b

2
d

 = lim
bS ∞

1ln b - ln 22
Since ln b S ∞  as b S ∞ , the limit does not exist. Hence, the improper integral 
diverges.

Matched Problem 1 Evaluate the following, if it converges:

L
∞

3

dx

1x - 12 2.

EXAMPLE 1

Evaluating an Improper Integral Evaluate the following, if it converges:

L
2

-∞
ex dx

EXAMPLE 2
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SOLUTION  L
2

-∞
ex dx = lim

aS -∞ L
2

a
ex dx

 = lim
aS -∞

c ex `
2

a
d

 = lim
aS -∞

1e2 - ea2 = e2 - 0 = e2 The integral converges.

Matched Problem 2 Evaluate the following, if it converges:

L
-1

-∞
x-2 dx

Evaluating an Improper Integral Evaluate the following, if it converges:

L
∞

-∞

2x

11 + x22 2 dx

SOLUTION

 L
∞

-∞

2x

11 + x22 2  dx = L
0

-∞
11 + x22 -22x  dx + L

∞

0
11 + x22 -22x  dx

 = lim
aS -∞ L

0

a
11 + x22 -22x dx + lim

bS ∞ L
b

0
11 + x22 -22x dx

 = lim
aS -∞

c 11 + x22 -1

-1
`
0

a
d + lim

bS ∞
c 11 + x22 -1

-1
`
b

0
d

 = lim
aS -∞

c -1 +
1

1 + a2 d + lim
bS ∞

c -  
1

1 + b2 + 1 d

 = -1 + 1 = 0 The integral converges.

Matched Problem 3 Evaluate the following, if it converges:

L
∞

-∞

dx
ex

EXAMPLE 3

It is generally impossible, solely by inspecting the graph of the function, to deter-
mine whether an improper integral converges or diverges. For example, the functions

 f1x2 =
1
x
 and g1x2 =

1

x1.001

have graphs that are nearly indistinguishable on 31, ∞2. But by evaluating the appro-

priate limits, it can be shown that 1 ∞
0   f1x2 dx diverges and 1 ∞

0   g1x2 dx converges.

CONCEPTUAL  INSIGHT

Let

 f1x2 = e 2 - x if 0 … x … 1 
0 otherwise

(A) Graph y = f1x2 and explain why ƒ is not continuous at x = 0 and at x = 1.

Explore and Discuss 2
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In probability studies, we frequently encounter functions that are 0 over one or 
more intervals on the real axis. An improper integral involving such a function can be 
simplified by deleting the intervals where the function is 0 and considering the inte-
gral over the remaining intervals. The next example illustrates this process.

(B) Find 11
0  f1x2 dx.

(C) Discuss possible interpretations of the improper integral 1∞
-∞   f1x2 dx.

Evaluating an Improper Integral Evaluate L
∞

-∞
f1x2dx for

 f1x2 = •
4

1x + 22 2 if x Ú 0  

0 Otherwise

SOLUTION The function ƒ is discontinuous at x = 0 (see Fig. 4). However, since 
 f1x2 = 0 for x 6 0, we can proceed as follows:

 L
∞

-∞
f1x2  dx = L

∞

0
f1x2  dx  f1x2 = 0 for x 6 0.

 = L
∞

0

4

1x + 22 2 dx

 = lim
bS ∞ L

b

0

4

1x + 22 2 dx

 = lim
bS ∞

c -41x + 22 -1 `
b

0
d

 = lim
bS ∞

a -4
b + 2

+ 2b

 = 2  The integral converges.

Matched Problem 4 Evaluate L
∞

-∞
f1x2  dx for  f1x2 = e 4x - x2 if 0 … x … 4 

0 otherwise .

EXAMPLE 4

x

1

525

f (x)

Figure 4

Oil Production It is estimated that an oil well will produce oil at a rate of R(t) mil-
lion barrels per year t years from now, as given by

 R1t2 = 8e-0.05t - 8e-0.1t

Estimate the total amount of oil that will be produced by this well.

SOLUTION The total amount of oil produced in T years of operation is 1T
0  R1t2 dt 

(see Fig. 5). At some point in the future, the annual production rate will become 
so low that it will no longer be economically feasible to operate the well. However, 
since we do not know when this will occur, it is convenient to assume that the well 
is operated indefinitely so we can use an improper integral. Thus, the total amount 
of oil produced is approximately

EXAMPLE 5

2

1

10 30 50 70

 

M
ill

io
ns

 o
f 

ba
rr

el
s

Time (years)

T

T

0
R(t) dt

R(t)

Figure 5
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 L
∞

0
R1t2  dt = lim

TS ∞ L
T

0
R1t2  dt

 = lim
TS ∞ L

T

0
18e-0.05t - 8e-0.1t2  dt

 = lim
TS ∞

c 1-160e-0.05t + 80e-0.1t2 `
T

0
d

 = lim
TS ∞

1-160e-0.05T + 80e-0.1T + 802

 = 80 or 80,000,000 barrels

The total production over any finite time period [0, T ] is less than 80,000,000 
barrels, and the larger T is, the closer the total production will be to 80,000,000 bar-
rels. Figure 6 displays the total production over [0, T ] for values of  T1= X2 from 
50 to 150 years.

Matched Problem 5 The annual production rate (in millions of barrels) for an 
oil well is given by

 R1t2 = 4e-0.1t - e-0.2t

Assuming that the well is operated indefinitely, find the total production.

Figure 6 Total production over 
[0, x]

Application: Capital Value
Recall that if money is invested at a rate r compounded continuously for T years, then 
the present value, PV, and the future value, FV, are related by the continuous com-
pound interest formula (see Section 4.1)

FV = PVerT

which also can be written as

PV = e-rΤFV

This relationship is valid for both single deposits and amounts generated by con-
tinuous income streams. So, if ƒ(t) is a continuous income stream, the future value is 
given by (see Section 6.3)

FV = erTL
T

0
f1t2e-rt dt Future value

and, using the compound interest formula, the present value is given by

PV = e-rTFV = e-rTerTL
T

0
f1t2e-rtdt

Since e-rTerT = 1, we have

PV = L
T

0
f1t2e-rt dt Present value

If we let T approach ∞ in this formula for present value, we obtain an improper inte-
gral that represents the capital value of the income stream.
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DEFINITION Capital Value of a Perpetual Income Stream
A continuous income stream is called perpetual if it never stops producing income. 
The capital value, CV, of a perpetual income stream f (t) at a rate r compounded 
continuously is the present value over the time interval 30, ∞2. That is,

CV = L
∞

0
f1t2e-rt dt

Capital value provides a method for expressing the worth (in terms of today’s 
dollars) of an investment that will produce income for an indefinite period of time.

Capital Value A family has leased the oil rights of a property to a petroleum com-
pany in return for a perpetual annual payment of $1,200. Find the capital value of 
this lease at 5% compounded continuously.

SOLUTION The annual payments from the oil company produce a continuous in-
come stream with rate of flow  f 1t2 = 1,200 that continues indefinitely. (It is com-
mon practice to treat a sequence of equal periodic payments as a continuous income 
stream with a constant rate of flow, even if the income is received only at the end of 
each period.) Thus, the capital value is

 CV = L
∞

0
f1t2e-rt dt

 CV = L
∞

0
1,200e-0.05t dt

 = lim
TS ∞ L

T

0
1,200e-0.05t dt

 = lim
TS ∞

c -24,000e-0.05t `
T

0
d

 = lim
TS ∞

1-24,000e-0.05T + 24,0002 = $24,000

Matched Problem 6 Repeat Example 6 if the interest rate is 6% compounded 
continuously.

EXAMPLE 6

Exercises 10.1
Skills Warm-up Exercises
In Problems 1–8, find the limit. (If necessary, review Section 4.3.)

1. lim
xS ∞

a8 -  
5
x
b 2. lim

xS ∞
a12 +

3

x4 b

3. lim
xS ∞

a4x2 + 3x - 7

5x2 + 6
b 4. lim

xS ∞
a x3 + 9x + 10

8x2 + 100
b

5. lim
xS -∞

11 + ex2 6. lim
xS ∞

a ln x
x

b

W
7. lim

xS ∞
a ln x

900
b 8. lim

xS -∞
13 + xex2

In Problems 9–28, find the value of each improper integral that 
converges.

9. L
∞

1

dx

x3 10. L
∞

1
x dx

11. L
∞

1
x2 dx 12. L

∞

1

dx

x4

A
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13. L
0

-∞
ex>2 dx 14. L

-1

-∞

dx
x

15. L
∞

4

dx

1002x
16. L

∞

1
e-2x dx

17. L
∞

9

dx

x2x
18. L

∞

8

dx23 x

19. L
∞

0

dx

1x + 12 2>3 20. L
∞

0

dx2x + 1

21. L
∞

1

dx

x1.1 22. L
∞

1

dx

x0.9

23. 4 L
∞

0
e-0.4x dx 24. 0.01 L

∞

0
e-0.1x dx

25. L
∞

-∞

5
1 + ∙ x ∙

 dx 26. L
∞

-∞
 

3

11 + ∙ x ∙ 2 2 dx

27. L
∞

-∞   
8e- ∙x∙ dx 28. L

∞

-∞
 

1

e100x dx

In Problems 29–34, graph y = f1x2 and find the value of 

1∞
-∞ f1x2  dx if it converges.

29.  f1x2 = e1 + x2 if 0 … x … 2 
0 otherwise

30.  f1x2 = e2 + x if 0 … x … 3 
0 otherwise

31.  f1x2 = e e-0.5x if x Ú 0 
0 otherwise

32.  f1x2 = e2 - e-0.2x if x Ú 0 
0 otherwise

33.  f1x2 = e4> 1x + 22 if x Ú 2 
0 otherwise

34.  f1x2 = e9> 1x + 22 2 if x Ú 1 
0 otherwise

In Problems 35–38, discuss the validity of each statement.  
If the statement is always true, explain why. If not, give a  
counterexample.

35. If ƒ is a continuous increasing function on 30, ∞2 such that 
 f1x2 7 0 for all x, then 1 ∞

0 f1x2 dx diverges.

36. If ƒ is a continuous decreasing function on 30, ∞2 such that 
 f1x2 7 0 for all x, then 1 ∞

0 f1x2 dx converges.

B

37. If ƒ is a continuous function on 31, ∞2 such that  
 f1x2 7 0 for all x and  f1x2 Ú 10 for 1 … x … 1,000,  

then 1 ∞
1 f1x2 dx diverges.

38. If ƒ is a continuous decreasing function on 31, ∞2  

such that 0 6 f1x2 … 0.001 for all x, then 1∞
1

f1x2 dx 
converges.

In Problems 39–48, find F(b); use a graphing calculator to graph 
F(b); and use the graph to estimate lim

bS ∞
F1b2 or, in Problems 43 

and 44, lim
bS -∞

F1b2.

39. From Problem 9,  F1b2 = L
b

1

dx

x3

40. From Problem 10,  F1b2 = L
b

1
x dx

41. From Problem 11,  F1b2 = L
b

1
x2 dx

42. From Problem 12,  F1b2 = L
b

1

dx

x4

43. From Problem 13,  F1b2 = L
0

b
ex>2 dx

44. From Problem 14,  F1b2 = L
-1

b

dx
x

45. From Problem 15,  F1b2 = L
b

4

dx

1002x

46. From Problem 16,  F1b2 = L
b

1
e-2x dx

47. From Problem 17,  F1b2 = L
b

9

dx

x2x

48. From Problem 18,  F1b2 = L
b

8

dx23 x

49. If ƒ is continuous on 30, ∞2 and 1 ∞
0 f1x2 dx converges, does 

1 ∞
1 f1x2 dx converge? Explain.

50. If ƒ is continuous on 30, ∞2 and 1 ∞
0 f1x2 dx diverges, does 

1 ∞
1 f1x2 dx diverge? Explain.

In Problems 51–69, find the value of each improper integral that 
converges.

51. L
∞

0

1
k

 e-x>k dx, k 7 0 52. L
∞

1

1
xp   dx, p 7 1

C
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53. L
∞

-∞

x

1 + x2  dx 54. L
∞

-∞
xe-x2

dx

55. L
∞

0
1e-2x - e-3x2dx 56. L

∞

0
1e-x + 2ex2dx

57. L
0

-∞

121 - x
 dx 58. L

0

-∞

124 11 - x2 5
 dx

59. L
∞

1

ln x
x

 dx 60. L
∞

0

e-x

1 + e-x  dx

Applications
61. Capital value. The perpetual annual rent for a property is 

$30,000. Find the capital value at 5% compounded continuously.

62. Capital value. The perpetual annual rent for a property is 
$39,000. Find the capital value at 3% compounded continuously.

63. Capital value. A trust fund produces a perpetual stream of 
income with rate of flow

 f1t2 = 1,500e0.04t

Find the capital value at 7% compounded continuously.

64. Capital value. A trust fund produces a perpetual stream of 
income with rate of flow

 f1t2 = 1,000e0.02t

Find the capital value at 6% compounded continuously.

65. Capital value. Refer to Problem 61. Discuss the effect on 
the capital value if the interest rate is increased to 6%, and 
then if decreased to 4%. Interpret these results.

66. Capital value. Refer to Problem 62. Discuss the effect on 
the capital value if the interest rate is increased to 4%, and 
then if decreased to 1.5%. Interpret these results.

67. Production. The rate of production of a natural gas  
well (in billions of cubic feet per year) is given by (see 
figure)

t

1

5 10 15

B
ill

io
ns

 o
f 

cu
bi

c 
fe

et

Time (years)

R(t)

R(t) 5 3e20.2t 2 3e20.4t

(A) Assuming that the well is operated indefinitely, find the 
total production.

(B) When will the output from the well reach 50% of the  
total production? Round answer to two decimal places.

68. Production. The rate of production of an oil well (in millions 
of barrels per year) is given by

 R1t2 =
1,000t

150 + t22 2

(A) Assuming that the well is operated indefinitely, find the 
total production.

(B) When will the output from the well reach 50% of the  
total production? Round answer to two decimal places.

69. Pollution. It has been estimated that the rate of seepage of 
toxic chemicals from a waste dump is R(t) gallons per year  
t years from now, where

 R1t2 =
500

11 + t2 2

Assuming that this seepage continues indefinitely, find  
the total amount of toxic chemicals that seep from the 
dump.

70. Drug assimilation. When a person takes a drug, the  
body does not assimilate all of the drug. One way to  
determine the amount of the drug assimilated is to measure 
the rate at which the drug is eliminated from the body.  
If the rate of elimination of the drug (in milliliters per 
minute) is given by

 R1t2 = 3e-0.1t - 3e-0.3t

where t is the time in minutes since the drug was adminis-
tered, how much of the drug is eliminated from the body?

71. Immigration. In order to control rising population, a country 
is planning to institute a new policy for immigration. Analysts 
estimate that the rate of immigration into the country t years 
after the policy is instituted (in millions of immigrants per 
year) will be given by

 R1t2 =
400

15 + t2 3

Find the total number of immigrants that will enter the 
country under this policy, assuming that the policy is applied 
indefinitely.

72. Repeat Problem 71 if

 R1t2 =
400

15 + t2 2.5

Round the answer to the nearest million.

Answers to Matched Problems

1. 1
2

2. 1

3. Diverges

4. 32
3

5. 35,000,000 barrels

6. $20,000
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646 CHAPTER 10 Probability and Calculus 

The term continuous is not used in the same sense here as it was used in Section 2.3. 
In the present case, it refers to the fact that the values of the random variable form a con-
tinuous set of real numbers, such as 30, ∞2, rather than a discrete set, such as {0, 1, 2, 3} 
or {2, 4, 8, …}.

Continuous Random Variables
Probability theory is concerned with determining the long-run frequency of the out-
comes of an experiment when the outcome each time the experiment is performed is 
uncertain. For example, when a fair coin is tossed, it is uncertain whether it will turn 
up heads or tails. However, probability theory enables us to predict that the coin will 
turn up heads approximately 50% of the time.

Assigning a value to each outcome of an experiment defines a function called a 
random variable. For example, consider the experiment of tossing three coins and 
the function X whose values are the number of heads. The possible outcomes of the 
experiment and the corresponding values of X are shown in Table 1. Since the set of 
possible outcomes for this experiment is a finite set, X is called a discrete random 
variable.

Things are more complicated if an experiment has an infinite number of out-
comes. For example, consider the experiment of turning on lightbulbs and letting 
them remain lit until they burn out. One bulb may be defective and not light at all. 
Another may still be lit 50 or 100 years from now. Let X be the function whose val-
ues (in hours) are the life expectancies of the lightbulbs.. Theoretically, there is no 
reason to exclude any of the values in the interval 30, ∞2 as a possibility for the life 
expectancy of the bulb. So we assume that the range of X is 30, ∞2, and we call X a 
continuous random variable.

10.2 Continuous Random Variables
■■ Continuous Random Variables
■■ Probability Density Functions
■■ Cumulative Distribution Functions

Table 1  Number of Heads  
in the Toss of  
Three Coins

Sample  
Space S

Number of  
Heads X(ef)

e1: TTT 0
e2: TTH 1
e3: THT 1
e4. HTT 1
e5: THH 2
e6: HTH 2
e7: HHT 2
e8: HHH 3

DEFINITION Continuous Random Variable
A continuous random variable X is a function that assigns a numeric value to each 
outcome of an experiment. The set of possible values of X is an interval of real num-
bers. This interval may be open or closed, and it may be bounded or unbounded.

For each of the following experiments, determine whether the indicated random vari-
able is discrete or continuous.
(A) Two dice are rolled, and X is the sum of the dots on the upturned faces of the 

dice.

(B) A dart is thrown at a circular dart board, and X is the distance from the dart to 
the center of the board.

(C) The drive-up window of a bank is open 10 hours a day, and X is the number of 
customers served in one day.

(D) The drive-up window of a bank is open 10 hours a day, and X is the time (in 
minutes) each customer must wait for service.

Explore and Discuss 1
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 SECTION 10.2   Continuous Random Variables 647

Probability Density Functions
If X is a discrete random variable, then the probability that X lies in a given interval can 
be computed by addition. For example, consider the experiment of tossing three coins, 
and let X represent the number of heads. The probability distribution for X is shown in 
Table 2 and illustrated in the histogram in Figure 1. We denote the probability that X is 
between 0 and 2, inclusively, by  P10 … X … 22 and compute it by addition:

 P10 … X … 22 = P1X = 02 + P1X = 12 + P1X = 22
 = 1

8 + 3
8 + 3

8 = 7
8

If X is a continuous random variable, the same approach will not work. Since 
X can now assume any real number in the interval [0, 2], it is impossible to write 
 P10 … X … 22 as a finite or even an infinite sum. (What would be the second term 
in such a sum? That is, what is the “next” real number after 0? Think about this.) 
Instead, we introduce a new type of function, called a probability density function, 
and use integrals involving this function to compute the probability that a continuous 
random variable X lies in a given interval. For example, we might use a probability 
density function to find the probability that the actual amount of soda in a 12-ounce 
can is between 11.9 and 12.1 ounces, or that the speed of a car involved in an acci-
dent was between 60 and 65 miles per hour.

For convenience in stating definitions and formulas, we will assume that the value 
of a continuous random variable can be any real number; that is, the range is 1-∞ , ∞2.

3
82

2
82

1
82

0 1 2 3
0 x

p(x) 5 P(X 5 x)

Number of heads

1
82

1
82

3
82

3
82

Figure 1  Histogram for a probability 
distribution

Table 2 Probability Distribution

Number of Heads x 0 1 2 3

Probability p(x) 1
8

3
8

3
8

1
8

DEFINITION Probability Density Function
The function f(x) is a probability density function for a continuous random  
variable X if

1.  f1x2 Ú 0 for all x H 1-∞ , ∞2

2. L
∞

-∞
f1x2 dx = 1

3. The probability that X lies in the interval [c, d ] is given by

 P1c … X … d2 = L
d

c
f1x2dx

x

y 5 f (x) $ 0 

Area 5 1

f (x) dx 5 1
`

2`

  
x

dc

f (x) dx 5 Probability(c # X # d)
d

c

Range of X = 1-∞,∞2 = Domain of f

Using a Probability Density Function Let

 f1x2 = e 12x2 - 12x3 if 0 … x … 1 
0 otherwise

Graph ƒ and verify that ƒ satisfies the first two conditions for a probability density 
function. Then find each of the following probabilities and illustrate graphically:

(A)  P1.4 … X … .72 (B)  P1X … .52
(C)  P1X Ú .62 (D)  P1X = .32

EXAMPLE 1
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SOLUTION The graph of ƒ (Fig. 2) shows that  f1x2 Ú 0 for all x. Also,

L
∞

-∞
f1x2dx = L

1

0
112x2 - 12x32dx = 14x3 - 3x42 `

1

0
= 1

(A)  P1.4 … X … .72 = L
.7

.4
f1x2dx

 = L
.7

.4
112x2 - 12x32dx = 14x3 - 3x42 `

.7

.4
= .4725

x

2

1

1

 f (x) dx 5 1
`

2`

f (x)

Figure 2

x

2

1

1.7.4

f (x)

P(.4 # X # .7)

x

2

1

1.3

f (x)

P(X 5 .3) 5 0

(B)  P1X … .52 = L
.5

0
f1x2dx Note that f1x2 = 0 for x 6 0.

 = L
.5

0
112x2 - 12x32dx = 14x3 - 3x42 `

.5

0
= .3125

x

2

1

1.5

f (x)

P(X # .5)

(C)  P1X Ú .62 = L
1

.6
f1x2dx Note that f1x2 = 0 for x 7 1.

 = L
1

.6
112x2 - 12x32dx = 14x3 - 3x42 `

1

.6
= .5248

x

2

1

1.6

f (x)

P(X $ .6)

(D)  P1X = .32 = L
.3

.3
f1x2dx = 0 Definite integral property 1 (Section 6.2)
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Matched Problem 1 Let

 f1x2 = e 6x - 6x2 if  0 … x … 1 
0 otherwise

Graph ƒ and verify that ƒ satisfies the first two conditions for a probability density 
function. Then find each of the following probabilities and illustrate graphically:

(A)  P1.3 … X … .82 (B)  P1X … .72
(C)  P1X Ú .42 (D)  P1X = .52

There is a fundamental difference between discrete and continuous random  
variables. In the discrete case, there is a probability distribution P(x) that gives 
the probability of each possible value of the random variable. The probability, for  
example, that a roll of a fair die will give a 5, is equal to 16. In the continuous 
case, the probability that an outcome is exactly 5 (not 5.01, not 4.999) is equal  
to 0. For in the continuous case it is the integral of the probability density  
function f(x) that gives the probability that the outcome lies in a certain interval:

 P1X = 52 = P15 … X … 52 = L
5

5
f1x2dx = 0

CONCEPTUAL  INSIGHT

If X is a continuous random variable and c is any real number, then the probabil-
ity that the outcome is exactly c is

 P1X = c2 = P1c … X … c2 = L
c

c
f1x2dx = 0

The fact that  P1X = c2 = 0 also implies that excluding either end point from an inter-
val does not change the probability that the random variable lies in that interval; that is,

 P1a 6 X 6 b2 = P1a 6 X … b2 = P1a … X 6 b2 = P1a … X … b2

 = L
b

a
f1x2dx

Using a Probability Density Function Use the probability density function in 
Example 1 to compute  P1.1 6 X … .22 and  P1X 7 .92.

SOLUTION  P1.1 6 X … .22 = L
.2

.1
f1x2dx f1x2 = e12x2 - 12x3 if  0 … x … 1 

0 otherwise

 = L
.2

.1
112x2 - 12x32  dx 

                   = 14x3 - 3x42 `
.2

.1

 = .0272 - .0037 = .0235

 P1X 7 .92 = L
∞

.9
f1x2 dx

 = L
1

.9
112x2 - 12x32  dx

EXAMPLE 2
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                  = 14x3 - 3x42 `
1

.9
 = 1 - .9477 = .0523

Matched Problem 2 Use the probability density function in Matched Prob-
lem 1 to compute the probabilities  P1.2 … X 6 .42 and  P1X 6 .82.

Shelf Life The shelf life (in months) of a certain drug is a continuous random vari-
able with probability density function (see Fig. 3)

 f1x2 = e 50> 1x + 502 2 if  x Ú 0 
0 otherwise

Find the probability that the drug has a shelf life of

(A) Between 10 and 20 months

(B) At most 30 months

(C) More than 25 months

SOLUTION

(A)  P110 … X … 202 = L
20

10
f1x2dx = L

20

10

50

1x + 502 2 dx =
-50

x + 50
`
20

10

 = 1-50
702 - 1-50

602 = 5
42

(B)  P1X … 302 = L
30

-∞
f1x2dx = L

30

0

50

1x + 502 2 dx =  
-50

x + 50
`
30

0

 = 1-50
802 - 1-12 = 3

8

(C)  P1X 7 252 = L
∞

25
f1x2dx = L

∞

25

50

1x + 502 2 dx

This improper integral can be evaluated directly using the techniques discussed in 
Section 10.1. However, there is another method that does not involve evaluation of 
any improper integrals. Since ƒ is a probability density function, we can write

 1 = L
∞

-∞
f1x2dx

 = L
∞

0

50

1x + 502 2 dx L
b

a
f1x2 dx = L

c

a
f1x2 dx + L

b

c
f1x2 dx

 = L
25

0

50

1x + 502 2 dx + L
∞

25

50

1x + 502 2 dx

Solving this last equation for L
∞

25
350> 1x + 502 24 dx, we have

 L
∞

25

50

1x + 502 2 dx = 1 - L
25

0

50

1x + 502 2 dx

 = 1 -  
-50

x + 50
`
25

0

 = 1 - 1 - 50
75 2 - 1 = 2

3

Thus,  P1X 7 252 = 2
3.

EXAMPLE 3

.020

.010

.001

20015010050

Shelf life (months)

x

f (x)

Figure 3
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Matched Problem 3 In Example 3, find the probability that the drug has a 
shelf life of

(A) Between 50 and 100 months

(B) At most 20 months

(C) More than 10 months

Let

 f1x2 =   e
1
2

if  0 … x … 2 

0 otherwise
 and F1x2 = •

0 if  x 6 0 
1
2 x if  0 … x … 2 
1 if  x 7 2

(A) Graph each function.

(B) Is ƒ a probability density function? Is F?

(C) Is there any relationship between ƒ and F?

(D) Evaluate L
1.5

.5
f1x2 dx.

(E) Can you use F to evaluate the integral in part (D)?

Explore and Discuss 2

Cumulative Distribution Functions

Each time we compute the probability for a continuous random variable, we must 
find the antiderivative of the probability density function. This antiderivative is used 
so often that it is convenient to give it a name.

x t
a

(A)  Cumulative distribution
        function

(B)  Probability density
        function

1

x
c d

(C)

1

y 5 F(x) y 5 F(x)y 5 f (t)a

2`

a2`

F(a) 5 P(X # a) 5 f (t) dt
F(d) 2 F(c) 5 P(c # X # d)

Figure 4

DEFINITION Cumulative Distribution Function
If ƒ is a probability density function, then the associated cumulative distribution 
function F is defined by

 F1x2 = P1X … x2 = L
x

-∞
f1t2dt

Furthermore,

 P1c … X … d2 = F1d2 - F1c2
Figure 4 gives a geometric interpretation of these ideas.
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Notice that  F1x2 = 1x

-∞
  f1t2 dt is a function of x, the upper limit of integration, 

not t, the variable in the integrand. We state some important properties of cumulative 
distribution functions in the next box. These properties follow directly from the fact 
that F(x) can be interpreted geometrically as the area under the graph of y = f1t2 
from -∞  to x (see Fig. 4B).

PROPERTIES Cumulative Distribution Functions
If ƒ is a probability density function and

 F1x2 = L
x

-∞
  f1t2dt

is the associated cumulative distribution function, then

1. F′1x2 = f1x2 wherever ƒ is continuous
2. 0 … F1x2 … 1, -∞ 6 x 6 ∞
3. F(x) is nondecreasing on 1-∞, ∞2

A function F(x) is nondecreasing 
on (a, b) if  F1x12 … F1x22 for 
a 6 x1 6 x2 6 b.

Reminder

Using a Cumulative Distribution Function Find the cumulative distribution 
function for the probability density function in Example 1, and use it to compute 
 P1.1 … X … .92.

SOLUTION If x 6 0, then

 F1x2 = L
x

-∞
f1t2 dt f1x2 = e12x2 - 12x3 if  0 … x … 1 

0 otherwise

 = L
x

-∞
0 dt = 0

If 0 … x … 1, then

 F1x2 = L
x

-∞
  f1t2 dt = L

0

-∞
f1t2 dt + L

x

0
f1t2 dt

 = 0 + L
x

0
112t2 - 12t32 dt = 14t3 - 3t42 `

x

0

 = 4x3 - 3x4

If x 7 1, then

 F1x2 = L
x

-∞
f1t2 dt = L

0

-∞
f1t2 dt + L

1

0
f1t2 dt + L

x

1
f1t2 dt

 = 0 + 1 + 0 = 1
Thus,

 F1x2 = •
0 if  x 6 0 

4x3 - 3x4 if 0 … x … 1 
1 if  x 7 1

And
 P1.1 … X … .92 = F1.92 - F1.12 = .9477 - .0037 = .944

EXAMPLE 4
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Matched Problem 4 Find the cumulative distribution function for the 
probability density function in Matched Problem 1, and use it to compute 
 P1.3 … X … .72.

x

1

1.1 .90

(A)

y 5 f (x)

.9

.1

f (x) dx 5 P(.1 # X # .9)
f (x)

Figure 5

0
x

1

1.9.1

(B)

y 5 F(x)

F(.9) 2 F(.1) 5 P(.1 # X # .9)

F(x)

See Figure 5.

Shelf Life Returning to the discussion of the shelf life of a drug in Example 3, sup-
pose a pharmacist wants to be 95% certain that the drug is still good when it is sold. 
How long is it safe to leave the drug on the shelf?

SOLUTION Let x be the number of months the drug has been on the shelf when it is 
sold. The probability that the shelf life of the drug is less than the number of months 
it has been sitting on the shelf is  P10 … X … x2. The pharmacist wants this prob-
ability to be .05. Thus, we must solve the equation  P10 … X … x2 = .05 for x.  
First, we will find the cumulative distribution function F. For x 6 0, we see that 
 F1x2 = 0. For x Ú 0,

 F1x2 = L
x

0

50

150 + t2 2 dt =
-50

50 + t
`
x

0
=

-50
50 + x

- 1-12 = 1 -  
50

50 + x

 =
x

50 + x

Thus,

 F1x2 = e 0 if  x 6 0 
x> 150 + x2 if  x Ú 0

Now, to solve the equation  P10 … X … x2 = .05, we solve

 F1x2 - F102 = .05  F102 = 0

 
x

50 + x
= .05

 x = 2.5 + .05x

 .95x = 2.5

 x ≈ 2.6

If the drug is sold during the first 2.6 months it is on the shelf, then the probability 
that it is still good is .95.

EXAMPLE 5
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Matched Problem 5 Repeat Example 5 if the pharmacist wants the probabil-
ity that the drug is still good to be .99.

Figure 6

0 12

0.2

20.1

Figure 6 shows an alternative method for solving Example 5 on a graphing 
calculator.

Exercises 10.2

W

Skills Warm-up Exercises
In Problems 1–8, evaluate the integrals. (If necessary, review Sec-
tion 5.5.)

1. L
1

0
13 - 2x2 dx 2. L

2

1
1x - x22 dx

3. L
1

-1
1x - 12 2x   dx 4. L

2

1

x2 - 1

x2   dx

5. L
5

0
2x + 4  dx 6. L

10

5

12x - 1
  dx

7. L
1

0
e2x dx 8. L

1

-1
xex2

 dx

In Problems 9 and 10, graph f, and show that f satisfies the first 
two conditions for a probability density function.

9.  f1x2 = e
1
8 x if  0 … x … 4 
0 otherwise

10.  f1x2 = e
1
9 x2 if  0 … x … 3 
0 otherwise

In Problems 11–14, is f a probability density function? Explain.

11.  f1x2 = e2 + 2x if  -1 … x … 0 
0 otherwise

12.  f1x2 = e e-x if  0 … x … 4 
0 otherwise

13.  f1x2 = e0.2 if  1 … x … 5 
0 otherwise

A

14.  f1x2 = •
3x2 -

1
2

if -1 … x … 1  

0 otherwise

15. Use the function in Problem 9 to find the indicated probabili-
ties. Illustrate each probability with a graph.

(A)  P11 … X … 32
(B)  P1X … 22
(C)  P1X 7 32

16. Use the function in Problem 10 to find the indicated prob-
abilities. Illustrate each probability with a graph.

(A)  P11 … X … 22
(B)  P1X Ú 12
(C)  P1X 6 22

17. Use the function in Problem 9 to find the indicated  
probabilities.

(A)  P1X = 12
(B)  P1X 7 52
(C)  P1X 6 52

18. Use the function in Problem 10 to find the indicated  
probabilities.

(A)  P1X = 22
(B)  P1X 7 42
(C)  P1X 6 42

19. Find and graph the cumulative distribution function associ-
ated with the function in Problem 9.

20. Find and graph the cumulative distribution function associ-
ated with the function in Problem 10.

21. Use the cumulative distribution function from Problem 19 to 
find the indicated probabilities.

(A)  P11 … X … 32 (B)  P13 6 X 6 52
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22. Use the cumulative distribution function from Problem 20 to 
find the indicated probabilities.

(A)  P10 … X … 12 (B)  P12 6 X 6 32
23. Use the cumulative distribution function from Problem 19 to 

find the value of x that satisfies each equation.

(A)  P10 … X … x2 = 1
4 (B)  P10 … X … x2 = 1

9

24. Use the cumulative distribution function from Problem 20 to 
find the value of x that satisfies each equation.

(A)  P10 … X … x2 = 1
27 (B)  P10 … X … x2 = 1

125

In Problems 25 and 26, graph f, and show that f satisfies the first 
two conditions for a probability density function.

25.  f1x2 = e2> 11 + x2 3 if  x Ú 0 
0 otherwise

26.  f1x2 = e4> 14 + x2 2      x Ú 0 
0 otherwise

27. Use the function in Problem 25 to find the indicated prob-
abilities.

(A)  P11 … X … 42
(B)  P1X 7 32
(C)  P1X … 22

28. Use the function in Problem 26 to find the indicated prob-
abilities.

(A)  P12 … X … 112
(B)  P1X Ú 12
(C)  P1X 6 62

29. Find and graph the cumulative distribution function associ-
ated with the function in Problem 25.

30. Find and graph the cumulative distribution function associ-
ated with the function in Problem 26.

31. Use the cumulative distribution function from Problem 29  
to find the value of x that satisfies each equation.

(A)  P10 … X … x2 = 3
4 (B)  P1X Ú x2 = 1

16

32. Use the cumulative distribution function from Problem 30 to 
find the value of x that satisfies each equation.

(A)  P10 … X … x2 = 2
3 (B)  P1X Ú x2 = 1

4

In Problems 33–36, find the associated cumulative distribution 
function. Graph both functions (on separate sets of axes).

33.  f1x2 = e
3
2 x - 3

4 x
2 if  0 … x … 2 

0 otherwise

34.  f1x2 = e
3
4 - 3

4 x
2 if -1 … x … 1  

0 otherwise

35.  f1x2 = e
1
2 + 1

2 x
3 if -1 … x … 1  

0 otherwise

36.  f1x2 = e
3
4 - 3

82x if  0 … x … 4 
0 otherwise

B

In Problems 37–40, use a graphing calculator to approximate (to 
two decimal places) the value of x that satisfies the given equation 
for the indicated cumulative distribution function  F1x2.

37.  P10 … X … x2 = .2 for F(x) from Problem 33

38.  P1-1 … X … x2 = .4 for F(x) from Problem 34

39.  P1-1 … X … x2 = .6 for F(x) from Problem 35

40.  P10 … X … x2 = .7 for F(x) from Problem 36

For each function f in Problems 41–44, find a constant k so that kf 
is a probability density function, or explain why no such constant 
exists.

41.  f1x2 = e e-x>3 if  x Ú 0 
0 otherwise

42.  f1x2 = e e-x>3 if  x … 0 
0 otherwise

43.  f1x2 = e1>x8 if  x Ú 1 
0 otherwise

44.  f1x2 = e x7 if  0 … x … 2 
0 otherwise

45. Can the function

 F1x2 = e2 - 2x if  0 … x … 1 
0 otherwise

be a cumulative distribution function? Explain.

46. Can the function

 F1x2 = e0.5 - 0.5x3 if  -1 … x … 1 
0 otherwise

be a cumulative distribution function? Explain.

In Problems 47 and 48, use a graphing calculator to graph f and 
compute the integrals 1N

-N  f1x2  dx for N = 1, 2, and 3. Discuss 
the evidence for concluding that f is a probability density function.

47.  f1x2 =
122p

 e-0.5x2

48.  f1x2 =
222p

 e-21x - 1.522

In Problems 49–52,  F1x2 is the cumulative distribution function 
for a continuous random variable X. Find the probability density 
function  f1x2 associated with each  F1x2.

49.  F1x2 = •
0 if  x 6 0 
x2 if  0 … x … 1 
1 if  x 7 1

50.  F1x2 = •
0 if  x 6 1 

1
2 x - 1

2 if  1 … x … 3 
1 if  x 7 3

51. F(x) = •
0 if  x 7 0

2x4 - 4x3 + 3x2 if  0 … x … 1
1 if  x 7 1

C
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52.  F1x2 = e1 - 11>x32 if  x Ú 1 
0 otherwise

In Problems 53 and 58, find the associated cumulative distribution 
function.

53.  f1x2 = •
x if  0 … x … 1 

2 - x if  1 < x … 2 
0 otherwise

54.  f1x2 = µ

1
4 if  0 … x … 1 
1
2 if  1 <  x … 2 
1
4 if  2 < x … 3 
0 otherwise

Applications
55. Electricity consumption. The daily demand for  

electricity (in millions of kilowatt-hours) in a large city  
is a continuous random variable with probability density 
function

 f1x2 = e .2 - .02x if  0 … x … 10 
0 otherwise

(A) Evaluate 16
2 f1x2 dx and interpret the results.

(B) What is the probability that the daily demand for elec-
tricity is less than 8 million kilowatt-hours?

(C) What is the probability that 5 million kilowatt-hours will 
not be sufficient to meet the daily demand?

56. Gasoline consumption. The daily demand for gasoline (in 
millions of gallons) in a large city is a continuous random 
variable with probability density function

 f1x2 = e .4 - .08x if  0 … x … 5 
0 otherwise

(A) Evaluate 14
1 f1x2 dx and interpret the results.

(B) What is the probability that the daily demand is less than 
2 million gallons?

(C) What is the probability that 3 million gallons will not be 
sufficient to meet the daily demand?

57. Time-sharing. In a computer time-sharing network, the  
time it takes (in seconds) to respond to a user’s request is a 
continuous random variable with probability density function 
given by

 f1x2 = e
1

10 e
-x>10 if  x Ú 0 
0 otherwise

(A) Evaluate 110
5 f1x2 dx and interpret the results.

(B) What is the probability that the computer responds 
within 1 second?

(C) What is the probability that a user must wait more than  
4 seconds for a response?

58. Waiting time. The time (in minutes) a customer must wait 
in line at a bank is a continuous random variable with prob-
ability density function given by

 f1x2 = e
1
2 e

-x>2 if  x Ú 0 
0 otherwise

(A) Evaluate 16
2 f1x2 dx and interpret the results.

(B) What is the probability that a customer waits less than  
3 minutes?

(C) What is the probability that a customer waits more than 
5 minutes?

59. Demand. The weekly demand for tomatoes (in thousands of 
pounds) for a chain of supermarkets is a continuous random 
variable with probability density function given by

 f1x2 = e .024x225 - x2 if  0 … x … 5 
0 otherwise

(A) What is the probability that more than 3,000 pounds of 
tomatoes are demanded?

(B) The manager of the vegetable department orders 4,000 
pounds of tomatoes. What is the probability that the 
demand will not exceed this amount?

(C) The manager wants the probability that the demand does 
not exceed the amount ordered to be .92. How many to-
matoes should be ordered?

60. Demand. The demand for a weekly sports magazine (in 
thousands of copies) in a certain city is a continuous random 
variable with probability density function given by

 f1x2 = e
3

125 x225 - x2 if  0 … x … 5 
0 otherwise

(A) The magazine’s distributor in this city orders 3,000 cop-
ies of the magazine. What is the probability that the de-
mand exceeds this number?

(B) What is the probability that the demand does not exceed 
4,000 copies?

(C) If the distributor wants to be 95% certain that the de-
mand does not exceed the number ordered, how many 
copies should be ordered?

61. Life expectancy. The life expectancy (in minutes) of a cer-
tain microscopic organism is a continuous random variable 
with probability density function given by

 f1x2 = e
1

5,000110x3 - x42 if  0 … x … 10 
0 otherwise

(A) What is the probability that an organism lives for at least 
7 minutes?

(B) What is the probability that an organism lives for at most 
5 minutes?

62. Life expectancy. The life expectancy (in months) of plants 
of a certain species is a continuous random variable with 
probability density function given by
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 f1x2 = e
1

3616x - x22 if  0 … x … 6 
0 otherwise

(A) What is the probability that one of these plants survives 
for at least 4 months?

(B) What is the probability that one of these plants survives 
for at most 5 months?

63. Shelf life. The shelf life (in days) of a perishable drug is a 
continuous random variable with probability density function 
given by

 f1x2 = e800x> 1400 + x22 2 if  x Ú 0 
0 otherwise

(A) What is the probability that the drug has a shelf life of at 
most 20 days?

(B) What is the probability that the shelf life exceeds 15 days?

(C) If the user wants the probability that the drug is still 
good to be .8, when is the last time it should be used?

64. Shelf life. Repeat Problem 63 if

 f1x2 = e200x> 1100 + x22 2 if  x Ú 0 
0 otherwise

65. Learning. The number of words per minute a beginner can 
type after 1 week of practice is a continuous random variable 
with probability density function given by

 f1x2 = e
1

20 e
-x>20 if  x Ú 0 
0 otherwise

(A) What is the probability that a beginner can type at least 
30 words per minute after 1 week of practice?

(B) What is the probability that a beginner can type at least 
80 words per minute after 1 week of practice?

66. Learning. The number of hours it takes a chimpanzee to 
learn a new task is a continuous random variable with prob-
ability density function given by

 f1x2 = e
4
9 x

2 - 4
27 x

3 if  0 … x … 3 
0 otherwise

(A) What is the probability that the chimpanzee learns the 
task in the first hour?

(B) What is the probability that the chimpanzee does not 
learn the task in the first 2 hours?

Answers to Matched Problems

1. 

x

1

2

1

`

2`

f (x) dx 5 1

f (x)   

P(.3 # X # .8)

x

1

2

1.8.3

f (x)

P(X # .7)

x

1

2

1.7

f (x)
(B) .784

P(X $ .4)

x

1

2

1.8.3

f (x)
(C) .648

10.3 Expected Value, Standard Deviation, and Median
■■ Expected Value (or Mean) and 
Standard Deviation

■■ Alternative Formula for Variance
■■ Median

Expected Value (or Mean) and Standard Deviation
Statisticians use a measure of central tendency called the mean and a measure of 
dispersion called the standard deviation to help describe sets of data. These same 
terms are used to describe both discrete and continuous random variables. For 
example, if X is the discrete random variable representing the number of heads 
when three coins are tossed (Table 1), then the mean and standard deviation are 
computed as follows:

(A) .68

2. .248; .896 3. (A) 1
6 (B) 2

7 (C) 5
6

4. 
 F1x2 = •

0 if  x 6 0 
3x2 - 2x3 if  0 … x … 1; 

1 if  x 7 1
 P1.3 … X … .72 = .568

5. Approx. 12 month, or 15 days

P(X 5 .5) 5 0

x

1

2

1.5

f (x)

(D) 0
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 Mean = 0 # 1
8 + 1 # 3

8 + 2 # 3
8 + 3 # 1

8 = 3
2

 Variance = 10 - 3
22 2 # 1

8 + 11 - 3
22 2 # 3

8 + 12 - 3
22 2 # 3

8 + 13 - 3
22 2 # 1

8

 = 3
4

Standard deviation = 2Variance = 23
4 ≈ .8660

Notice that these quantities were computed using finite sums and the probabilities in 
Table 1.

The extension of these ideas to continuous random variables makes use of inte-
gration and the probability density function.

Table 1
x 0 1 2 3

p(x)
1
8

3
8

3
8

1
8

DEFINITION Expected Value (or Mean) and Standard Deviation for a 
Continuous Random Variable
Let f(x) be the probability density function for a continuous random variable X. 
The expected value, or mean, of X is

m = E1X2 = L
∞

-∞
xf1x2  dx

The variance is

 V1X2 = L
∞

-∞
1x - m2 2f1x2  dx

and the standard deviation is
s = 2V1X2

Just as in the discrete case, the mean of a continuous random variable is a mea-
sure of central tendency for the variable, and the standard deviation is a measure of 
the dispersion of the variable about the mean. This is illustrated in Figure 1. The 
probability density function in Figure 1A has a standard deviation of 1. Most of the 
area under the curve is near the mean. In Figure 1B, the standard deviation is four 
times as large, and the area under the graph is much more spread out.

x
m

x
m

(B)  s 5 4

(A)  s 5 1

Figure 1

Computing Expected Value (Mean), Variance, and Standard Deviation Find 
the expected value (mean), variance, and standard deviation for

 f1x2 = e 12x2 - 12x3 if  0 … x … 1 
0 otherwise

SOLUTION 

 m = E1X2 = L
∞

-∞
xf1x2 dx = L

1

0
x112x2 - 12x32 dx

 = L
1

0
112x3 - 12x42 dx

 = 13x4 - 12
5 x52 `

1

0
= 3

5 Expected value (mean)

 V1X2 = L
∞

-∞
1x - m2 2f1x2 dx = L

1

0
1x - 3

52 2112x2 - 12x32 dx

EXAMPLE 1

M10_BARN6152_14_GE_C10.indd   658 16/11/18   1:59 PM



 SECTION 10.3   Expected Value, Standard Deviation, and Median 659

 = L
1

0
1x2 - 6

5x + 9
252112x2 - 12x32 dx

 = L
1

0
1108

25  x
2 - 468

25  x
3 + 132

5  x
4 - 12x52 dx

 = 136
25 x

3 - 117
25  x

4 + 132
25  x

5 - 2x62 `
1

0
= 1

25 Variance

 s = 2V1X2 = 2 1
25 = 1

5      Standard deviation

Matched Problem 1 Find the expected value (mean), variance, and standard 
deviation for

 f1x2 = e 6x - 6x2 if 0 … x … 1 
0 otherwise

Consider the probability density function

 f1x2 = e
1
2 x if 0 … x … 2 
0 otherwise

(A) Find the mean µ.

(B) The vertical line x = m divides the area under the graph of y = f1x2 into 
two regions. Do these regions have equal areas? If not, find a number m with 
the property that the vertical line x = m divides the area under the graph of 
y = f1x2 into two regions with equal areas.

Explore and Discuss 1

The graph of the probability density function considered in Example 1 is shown 
in Figure 2A, with the areas to the left and right of the mean indicated (computations 
omitted). As you discovered in the preceding Explore and Discuss 1, the vertical line 
through the mean does not divide the region under the graph of ƒ into two regions 
with equal areas. The value of x that accomplishes this is the median, which we will 
discuss later in this section. However, the mean does have a geometric interpreta-
tion. If the shaded region in Figure 2A were drawn on a piece of wood of uniform 
thickness and the wood cut around the outside of the region, then the resulting object 
would balance on a wedge placed at the mean m = .6 (see Fig. 2B). For this reason, 
the mean m is often referred to as a measure of central tendency.

y 5 f (x)

f (x)

1

2

10
x

(A)

m 5 .6

Area 5
.4752

Area 5
.5248

Figure 2
(B)

m 5 .6
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Life Expectancy The life expectancy (in hours) for a particular brand of lightbulb 
is a continuous random variable with probability density function

 f1x2 = e
1

100 - 1
20,000 x if 0 … x … 200 
0 otherwise

(A) What is the average life expectancy of one of these lightbulbs?

(B) What is the probability that a bulb will last longer than this average?

SOLUTION
(A) Since the value of this random variable is the number of hours a bulb lasts, the 

average life expectancy is just the expected value of the random variable. Thus,

 E1X2 = L
∞

-∞
xf1x2 dx = L

200

0
x1 1

100 - 1
20,000 x2 dx

 = L
200

0
1 1

100 x - 1
20,000 x22 dx = 1 1

200 x2 - 1
60,000 x32 `

200

0

 = 200
3 ≈ 66.67 hours

(B) The probability that a bulb lasts longer than 2 0 0
3  hours is

 P1X 7 200
3 2 = L

∞

200>3
f1x2 dx = L

200

200>3
1 1

100 - 1
20,000 x2 dx

 = 1 1
100 x - 1

40,000 x22 `
200

200>3

 = 1 - 5
9 = 4

9 ≈ .44

Matched Problem 2 Repeat Example 2 if the probability density function is

 f1x2 = e
1

200 - 1
90,000 x if 0 … x … 300 

0 otherwise

EXAMPLE 2

Alternative Formula for Variance
The term 1x - m2 2  in the formula for V(X) introduces some complicated algebraic 
manipulations in the evaluation of the integral. We can use the properties of the defi-
nite integral to simplify this formula.

  V1X2 = L
∞

-∞
1x - m2 2f1x2 dx  Expand.

 = L
∞

-∞
1x2 - 2xm + m22f1x2 dx  Distribute.

 = L
∞

-∞
3x2f1x2 - 2xmf1x2 + m2f1x24 dx  Use a definite integral property.

 = L
∞

-∞
x2f1x2 dx - L

∞

-∞
2xmf1x2 dx + L

∞

-∞
m2f1x2 dx  Use a definite integral property.

 = L
∞

-∞
x2f1x2 dx - 2mL

∞

-∞
xf1x2 dx + m2L

∞

-∞
f1x2 dx  Use the definition of m.
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 = L
∞

-∞
x2f1x2 dx - 2m1m2 + m2112  Simplify.

 = L
∞

-∞
x2f1x2 dx - m2

In general, it will be easier to evaluate 1∞
-∞  x

2f1x2 dx than to evaluate 

1∞
-∞ 1x - m2 2f1x2 dx.

THEOREM 1 Alternative Formula for Variance

 V1X2 = L
∞

-∞
x2f1x2dx - m2

Computing Variance Use the alternative formula for variance (Theorem 1) to 
compute the variance in Example 1.

SOLUTION From Example 1, we have m = 1∞
-∞  xf1x2 dx = 3

5.

 L
∞

-∞
x2f1x2 dx = L

1

0
x2112x2 - 12x32 dx f1x2 = e12x2 - 12x3 if 0 … x … 1 

0 otherwise

 = L
1

0
112x4 - 12x52 dx

 = 112
5  x

5 - 12
6  x

62 `
1

0
= 2

5 = .4

 V1X2 = L
∞

-∞
x2f1x2 dx - m2 = 2

5 - 13
52 2 = 1

25 = .04

Matched Problem 3 Use the alternative formula for variance (Theorem 1) to 
compute the variance in Matched Problem 1.

EXAMPLE 3

Computing Expected Value (Mean), Variance, and Standard Deviation Find 
the expected value (mean), variance, and standard deviation for

 f1x2 = e 3>x4 if x Ú 1 
0 otherwise

SOLUTION

 m = L
∞

-∞
xf1x2 dx = L

∞

1
x

3

x4  dx = lim
RS ∞ L

R

1

3

x3  dx

 = lim
RS ∞

c -  
3
2
a 1

x2 b `
R

1
d = lim

RS ∞
c -  

3
2
a 1

R2 b +
3
2
d =

3
2

= 1.5

EXAMPLE 4
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 L
∞

-∞
x2f1x2 dx = L

∞

1
x2 3

x4  dx = lim
RS ∞ L

R

1

3

x2  dx = lim
RS ∞

a -  
3
x
b `

R

1

                                                       = lim
RS ∞

a -  
3
R

+ 3b = 3

 V1X2 = L
∞

-∞
x2f1x2 dx - m2 = 3 - a3

2
b

2

=
3
4

= .75

 s = 2V1X2 = A3
4

=
23
2

≈ .8660

Matched Problem 4 Find the expected value (mean), variance, and standard 
deviation for

 f1x2 = e 24>x4 if x Ú 2 
0 otherwise

Median
Another measurement often used to describe the properties of a random variable is 
the median. A median is a value of the random variable that divides the area under 
the graph of the probability density function into two equal parts (see Fig. 3). If m is 
a median, then m must satisfy

x
m

1
2Area 5 2

1
2Area 5 2

Figure 3

 P1X … m 2 = 1
2

Generally, this equation is solved by first finding the cumulative distribution function.

Finding the Median Find the median of the continuous random variable with 
probability density function

 f1x2 = e 3>x4 if x Ú 1 
0 otherwise

SOLUTION
Step 1. Find the cumulative distribution function: For x 6 1 , we have  F1x2 = 0.  
If x Ú 1 , then

 F1x2 = L
x

-∞
f1t2 dt = L

x

1

3

t4  dt = -
1

t3 `
x

1
= -

1

x3 + 1 = 1 -  
1

x3

Step 2. Solve the equation  P1X … m 2 = 1
2   for m:

 F1m 2 = P1X … m 2

 1 -  
1

m 3 =
1
2

 
1
2

=
1

m 3

 m 3 = 2

 m = 23 2

Thus, the median is 23 2 ≈ 1.26.

EXAMPLE 5

M10_BARN6152_14_GE_C10.indd   662 16/11/18   2:00 PM



 SECTION 10.3   Expected Value, Standard Deviation, and Median 663

Figure 4 shows an alternative method for solving Example 5 on a graphing 
calculator.

Figure 4

1

21

1 3

Matched Problem 5 Find the median of the continuous random variable with 
probability density function

 f1x2 = e 24>x4 if x Ú 2 
0 otherwise

Consider the probability density function f defined by the graph in Figure 5. Does a 
median exist? Is it unique? Explain.

x
21 1 20 3 4 5

f (x)

.5

1

Figure 5

Explore and Discuss 2

Life Expectancy In Example 2, find the median life expectancy of a lightbulb.

SOLUTION
Step 1. Find the cumulative distribution function: If x 6 0 , we have  F1x 2 = 0 . 
If 0 … x … 200, then

 F1x2 = L
x

-∞
f1t2 dt f1x2 = e

1
100 - 1

20,000 x if 0 … x … 200 
0 otherwise

 = L
x

0
1 1

100 - 1
20,000 t2 dt

 = 1 1
100 t - 1

40,000 t
22 `

x

0

 = 1
100 x - 1

40,000 x
2

If x 7 200, then

 F1x2 = L
x

-∞
f1t2 dt = L

0

-∞
f1t2 dt + L

200

0
f1t2 dt + L

x

200
f1t2 dt

 = 0 + 1 + 0 = 1

EXAMPLE 6
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Thus,

 F1x2 = •
0 if x 6 0 

1
100 x - 1

40,000 x
2 if 0 … x … 200 

1 if x 7 200

Step 2. Solve the equation  P1X … m2 = 1
2  for m:

 F1m2 = P1X … m2 = 1
2

 1
100 m - 1

40,000 m
2 = 1

2

 m2 - 400m + 20,000 = 0 The solution must occur for 0 … m … 200.

This quadratic equation has two solutions, 200 + 10022 and 200 - 10022. 
Since m must lie in the interval [0, 200], the second solution is the correct answer.

The median life expectancy is 200 - 10022 ≈ 58.58 hours.

Matched Problem 6 In Matched Problem 2, find the median life expectancy 
of a lightbulb.

Figure 6 shows the mean and the median for two of the probability density func-
tions discussed in this section (see Examples 2, 4, 5, and 6). As we noted earlier, the 
mean and the median generally are not equal.

f (x)

 
x

0 200

(A)

1
100

m 5 
200
3

m 5 200 2 100Ï2 ø 58.58

Figure 6

f (x) 5
3
x4

f (x)

3

 

x

3

0 21

(B)

 m 5 2 
3
2

m 5 Ï2 ø 1.26

The median is smaller than the mean for the probability distributions of Figure 6. 
To obtain examples of distributions for which the median is larger than the mean, 
simply reflect the graphs of Figure 6 in the y axis. We will study some distribu-
tions for which the median is equal to the mean in Section 10.4.

CONCEPTUAL INSIGHT

Exercises 10.3
In Problems 1–6, find the mean, variance, and standard deviation.

1.  f1x2 = e2 if 0 … x … 0.5 
0 otherwise

2.  f1x2 = e
1
6 if -4 … x … 2 
0 otherwise

A
3.  f1x2 = e

1
8x if 0 … x … 4 
0 otherwise

4.  f1x2 = e18x if 0 … x … 1
3 

0 otherwise

5.  f1x2 = e4 - 2x if 1 … x … 2 
0 otherwise
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6.  f1x2 = e2 - 1
2 x if 2 … x … 4 

0 otherwise

In Problems 7–12, find the median.

7.  f1x2 = e0.25 if -3.5 … x … 0.5 
0 otherwise

8.  f1x2 = e10 if 2.5 … x … 2.6 
0 otherwise

9.  f1x2 = e
1
6  x if 2 … x … 4 
0 otherwise

10.  f1x2 = e
1
8  x if 3 … x … 5 
0 otherwise

11.  f1x2 = e
1
2 - 1

8 x if 0 … x … 4 
0 otherwise

12.  f1x2 = e2 - 2x if 0 … x … 1 
0 otherwise

Problems 13 and 14 refer to random variables X1 and X2 with 
probability density functions ƒ1 and f2, respectively, where

  f11x2 = e0.5 if 0 … x … 2 
0 otherwise

f21x2 = e0.25 if -2 … x … 2 
0 otherwise

13. Explain how you can predict from the graphs of f1 and f2 
which random variable, X1 or X2, has the greater mean. 
Check your prediction by computing the mean of each.

14. Explain how you can predict from the graphs of ƒ1 and f2 
which random variable, X1 or X2, has the greater variance. 
Check your prediction by computing the variance of each.

Problems 15 and 16 refer to random variables X1 and X2 with 
probability density functions g1 and g2, respectively, where

g11x2 = •
0.5 if 0 … x 6 1 
0.25 if 1 … x … 3 
0 otherwise

g21x2 = •
0.5 if 0 … x 6 1 
0.125 if 1 … x … 5 
0 otherwise

15. Explain how you can predict from the graphs of g1 and g2 
which random variable, X1 or X2, has the greater median. 
Check your prediction by computing the median of each.

16. Explain how you can predict from the graphs of g1 and g2 
which random variable, X1 or X2, has the greater mean. 
Check your prediction by computing the mean of each.

In Problems 17–20, find the mean, variance, and standard deviation.

17.  f1x2 = e4>x5 if x Ú 1 
0 otherwise

18.  f1x2 = e6>x7 if x Ú 1 
0 otherwise

B

19.  f1x2 = e64>x5 if x Ú 2 
0 otherwise

20.  f1x2 = e81>x4 if x Ú 3 
0 otherwise

In Problems 21 and 22, use a graphing calculator to approximate 
the mean, variance, and standard deviation by replacing integrals 
over 1-∞ , ∞2 by integrals over 3-1 0 , 1 0 4.

21.  f1x2 =
222p

e-21x - 122

22.  f1x2 =
1

1.722p
e-1x + 1.222>5.78

In Problems 23–30, find the median.

23.  f1x2 = e1>x if 1 … x … e 
0 otherwise

24.  f1x2 = e1> 12x2 if 1 … x … e2 
0 otherwise

25.  f1x2 = e4> 12 + x2 2 if 0 … x … 2 
0 otherwise

26.  f1x2 = e2> 11 + x2 2 if 0 … x … 1 
0 otherwise

27.  f1x2 = e1> 11 + x2 2 if x Ú 0 
0 otherwise

28.  f1x2 = e4> 14 + x2 2 if x Ú 0 
0 otherwise

29.  f1x2 = e2e-2x if x Ú 0 
0 otherwise

30.  f1x2 = e6e-6x if x Ú 0 
0 otherwise

In Problems 31 and 32, use the graph of the cumulative distribution 
function F to find the median. (Assume each portion of the graph of  
F is a straight line segment.) Is the median unique? Explain.

31.  

x
21 1 2 3 4 5

F(x)

.5

.75

.25

1

 32.  

x
21 1 2 3 4 5

F(x)

.5

.75

.25

1

In Problems 33 and 34, use the graph of the probability density  
function f to find the cumulative distribution function F. (Assume 
each portion of the graph of f is a straight line segment.) Find the 
median. Is the median unique? Explain.

33. 

x
21 1 2 3 4 5

F(x)

1

1.5

.5

2

 34. 

x
21 1 2 3 4 5

F(x)

1

1.5

.5

2
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In Problems 35 and 36, f(x) is a continuous probability density 
function with mean m and standard deviation s; a and b are 
constants. Evaluate each integral, expressing the result in terms of 
a,  b ,  m, and s.

35. L
∞

-∞
1ax + b2f1x2 dx

36. L
∞

-∞
1x - a2 2f1x2 dx

The quartile points for a probability density function are the val-
ues x1, x2, x3 that divide the area under the graph of the function 
into four equal parts. Find the quartile points for the probability 
density functions in Problems 37–40.

37.  f1x2 = e
1
2 x if 0 … x … 2 
0 otherwise

38.  f1x2 = e3x2 if 0 … x … 1 
0 otherwise

39.  f1x2 = e3> 13 + x2 2 if x Ú 0 
0 otherwise

40.  f1x2 = e5> 15 + x2 2 if x Ú 0 
0 otherwise

In Problems 41–44, use a graphing calculator to approximate 
the median of the indicated probability density function f (to two 
decimal places).

41.  f1x2 = e4x - 4x3 if 0 … x … 1 
0 otherwise

42.  f1x2 = e3x - 3x5 if 0 … x … 1 
0 otherwise

43.  f1x2 = •
1

2x2 +
3

2x4 if x Ú 1 

0 otherwise

44.  f1x2 = •
2

3x3 +
2

x4 if x Ú 1 

0 otherwise

Applications
45. Profit. A building contractor’s profit (in thousands of dollars) 

on each unit in a subdivision is a continuous random variable 
with probability density function given by

 f1x2 = e0.08120 - x2 if 15 … x … 20 
0 otherwise

(A) Find the contractor’s expected profit.

(B) Find the median profit.

46. Electricity consumption. The daily consumption of electric-
ity (in millions of kilowatt-hours) in a large city is a continu-
ous random variable with probability density function

C
 f1x2 = e .2 - .02x if 0 … x … 10 

0 otherwise

(A) Find the expected daily consumption of electricity.

(B) Find the median daily consumption of electricity.

47. Waiting time. The time (in minutes) a customer must wait 
in line at a counter in a supermarket is a continuous random 
variable with probability density function given by

 f1x2 = e
1
5 e

-x>5 if x Ú 0 
0 otherwise

Find the median waiting time.

48. Product life. The life expectancy (in years) of an automo-
bile battery is a continuous random variable with probability 
density function given by

 f1x2 = e
1
2 e

-x>2 if x Ú 0 
0 otherwise

Find the median life expectancy.

49. Water consumption. The daily consumption of water (in 
millions of gallons) in a small city is a continuous random 
variable with probability density function given by

 f1x2 = e1> 11 + x22 3>2 if x Ú 0 
0 otherwise

Find the expected daily consumption.

50. Gasoline consumption. The daily consumption of gasoline 
(in millions of gallons) in a large city is a continuous random 
variable with probability density function

 f1x2 = e3> 13 + x22 3>2 if x Ú 0 
0 otherwise

Find the expected daily consumption of gasoline.

51. Life expectancy. The life expectancy of a certain micro-
scopic organism (in minutes) is a continuous random variable 
with probability density function given by

 f1x2 = e
1

5,000110x3 - x42 if 0 … x … 10 
0 otherwise

Find the mean life expectancy of one of these organisms.

52. Life expectancy. The life expectancy (in months) of plants 
of a certain species is a continuous random variable with 
probability density function given by

 f1x2 = e
1

3616x - x22 if 0 … x … 6 
0 otherwise

Find the mean life expectancy of one of these plants.

53. Shelf life. The shelf life (in days) of a perishable drug is a 
continuous random variable with probability density function 
given by

 f1x2 = e800x> 1400 + x22 2 if x Ú 0 
0 otherwise

Find the median shelf life.
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54. Shelf life. Repeat Problem 53 if

 f1x2 = e200x> 1100 + x22 2 if x Ú 0 
0 otherwise

55. Learning. The number of hours it takes a chimpanzee to 
learn a new task is a continuous random variable with prob-
ability density function given by

 f1x2 = e
4
9 x2 - 4

27 x3 if 0 … x … 3 
0 otherwise

What is the expected number of hours it will take a chimpan-
zee to learn the task?

56. Voter turnout. The number of registered voters (in thousands) 
who vote in an off-year election in a small town is a continuous 
random variable with probability density function given by

 f1x2 = e1 - 1
8 x if 4 … x … 8 

0 otherwise

(A) Find the expected voter turnout.

(B) Find the median voter turnout.

Answers to Matched Problems

1. m = 1
2 ;  V1X2 = 1

2 0 ; s ≈ .2236

2. (A) 125 hr (B) 1 3 3
2 8 8

3. 1
2 0

4. m = 3 ;  V1X2 = 3 ; s = 23 ≈ 1.732

5. m = 23 1 6 = 2 23 2 ≈ 2 .5 2

6. m = 450 - 15025 ≈ 114.59 hr

Now that we have developed some general properties of probability density functions, 
we can examine some specific functions that are used extensively in applications.

10.4 Special Probability Distributions
■■ Uniform Distributions
■■ Exponential Distributions
■■ Normal Distributions Uniform Distributions

Consider a random variable X with probability density function

 f1x2 = e
1

10 if 0 … x … 10 
0 otherwise

Graph f and use the graph to find the indicated probabilities.

(A) Find  P10 … X … 12, and  P12 … X … 32,  P16 … X … 72,  P19 … X … 102.

(B) If a Ú 0 , n Ú 0 , and a + n … 1 0 , find  P1a … X … a + n 2.

(C) If I is an interval of length n that lies in the interval [0, 10], what is the probability 
that the random variable X lies in I? Does this probability depend on the location 
of the interval I? Explain.

Explore and Discuss 1

Simple probability density functions like the example given in Explore and 
Discuss 1 turn out to be quite useful. The next example will lead to some general 
observations about functions of this form.

Waiting Time A bus arrives every 30 minutes at a particular bus stop. If an indi-
vidual arrives at the bus stop at a random time (that is, with no knowledge of the bus 
schedule), then the random variable X, representing the time this individual must spend 
waiting for the next bus, is said to be uniformly distributed on the interval [0, 30]. The 
probability density function for this uniformly distributed random variable is

 f1x2 = e
1

30 if 0 … x … 30 
0 otherwise

EXAMPLE 1
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Find the probability that the individual waits:

(A) Between 0 and 5 minutes

(B) Between 5 and 10 minutes

(C) Between 18 and 23 minutes

SOLUTION

(A)  P10 … X … 52 = L
5

0

1
30

  dx =
x

30
`
5

0
=

5
30

-
0

30
=

1
6

(B)  P15 … X … 102 = L
10

5

1
30

  dx =
x

30
`
10

5
=

10
30

-
5

30
=

1
6

(C)  P118 … X … 232 = L
23

18

1
30

  dx =
x

30
`
23

18
=

23
30

-
18
30

=
1
6

So all three probabilities are equal.
Each of these probabilities is represented as an area under the graph of f in 

Figure 1.

x

y

y 5 f(x)
1
30

210 5 10 18 23 30

Figure 1

Matched Problem 1 Use the probability density function given in Example 1 
to find the probability that the individual waits:

(A) Between 0 and 10 minutes

(B) Between 10 and 20 minutes

(C) Between 17 and 27 minutes

In general, if the outcomes of an experiment lie in an interval [a, b] and if the 
probability of the outcome lying in a small interval of fixed length is independent of 
the location of this small interval within [a, b], then we say that the continuous ran-
dom variable for this experiment is uniformly distributed on the interval [a, b]. The 
uniform probability density function is

 f1x2 = •
1

b - a
if a … x … b 

0 otherwise

See Figure 2. Since  f 1x 2 Ú 0  and

x

y

a b

y 5 f (x)1
b 2 a

Figure 2

L
∞

-∞
f 1x 2  d x = L

b

a

1
b - a

 d x =
x

b - a
`
b

a
=

b
b - a

-
a

b - a
= 1

f satisfies the necessary conditions for a probability density function.
If F is the associated cumulative distribution function, then for x 6 a, 

 F1x 2 = 0 . For a … x … b , we have

 F1x2 = L
x

-∞
   f1t2dt = L

x

a

1
b - a

 dt =
t

b - a
`
x

a

 =
x

b - a
-

a
b - a

=
x - a
b - a

For x 7 b ,  F1x 2 = 1 .
Using the techniques discussed in the preceding section, it can be shown that (see 

Problems 59–62 in Exercise 10.4)
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m = m =
1
2
1a + b2 and s =

1212
1b - a2

These properties are summarized in the next box.

SUMMARY Uniform Probability Density Function

 f1x2 = •
1

b - a
if a … x … b 

0 otherwise
 F1x2 = µ

0 if x 6 a 
x - a
b - a

if a … x … b 

1 if x 7 b

x

y

a b

y 5 f (x)1
b 2 a

  

1

x

y

a b

y 5 F(x)

Mean m = 1
2 1a + b 2  Median m = 1

2 1a + b 2

Standard deviation s =
121 2

1b - a2

Electrical Current Standard electrical current is uniformly distributed between 110 
and 120 volts. What is the probability that the current is between 113 and 118 volts?

SOLUTION Since we are told that the current is uniformly distributed on the interval 
[110, 120], we choose the uniform probability density function

 f1x2 = e
1

10 if 110 … x … 120 
0 otherwise

Then

 P1113 … X … 1182 = L
118

113

1
10

  dx =
x

10
`
118

113
=

118
10

-
113
10

=
1
2

Matched Problem 2 In Example 2, what is the probability that the current is 
at least 116 volts?

EXAMPLE 2

Exponential Distributions

Determine a relationship between the positive constants a and b that will make the 
following function a probability density function.

 f1x2 = e ae-bx if x Ú 0 
0 otherwise

Explore and Discuss 2
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A continuous random variable has an exponential distribution and is referred 
to as an exponential random variable if its probability density function is the expo-
nential probability density function,

 f1x2 = e 11>l2e-x>l if x Ú 0 
0 otherwise

 

where l is a positive constant (Fig. 3). Exponential random variables are used in 
a variety of applications, including studies of the length of telephone conversa-
tions, the time customers spend waiting in line at a bank, and the life expectancy 
of machine parts.

x

y

y 5 f (x)

1
l
2

Figure 3

Since  f 1x 2 Ú 0  and

 L
∞

-∞
f1x2 dx = L

∞

0

1
l

 e-x>l  dx

 = lim
RS ∞ L

R

0

1
l

 e-x>l  dx

 = lim
RS ∞

1-e-x>l2 `
R

0

 = lim
RS ∞

1-e-R>l + 12 = 1

f satisfies the conditions for a probability density function. If F is the cumulative 
 distribution function, we see that  F1x 2 = 0  for x 6 0 . For x Ú 0 , we have

 F1x2 = L
x

-∞
f1t2dt = L

x

0

1
l

e-t>l dt

 = -e -t >l `
x

0
= 1 - e -x >l

To find the median, we solve

 F1m2 = P1X … m2 =
1
2

 1 - e -m >l =
1
2

 
1
2

= e -m >l

  ln 
1
2

= -
m
l

   m = -l ln 
1
2

= l ln 2 Note: ln 12 = - ln 2

Integration by parts can be used to show that m = l and s = l. The calculations are 
not included here. These results are summarized in the next box.

SUMMARY Exponential Probability Density Function

 f1x2 = e 11>l2e-x>l if x Ú 0 
0 otherwise

 F1x2 = e 1 - e-x>l if x Ú 0 
0 otherwise
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x

y

y 5 f (x)

1
l
2

  x

1

y

y 5 F(x)

Mean m = l  Median m = l ln 2
Standard deviation s = l

Arrival Rates The length of time between calls received by the switchboard in 
a large legal firm is an exponential random variable. The average length of time 
between calls is 20 seconds. If a call has just been received, what is the probability 
that no calls are received in the next 30 seconds?

SOLUTION Let X be the random variable that represents the length of time between 
calls received (in seconds). Since the average length of time is 20 seconds, we have 
m = l = 20. Thus, the probability density function for X is

 f1x2 = e
1

20 e-x>20 if x Ú 0 
0 otherwise

and

 P1X Ú 302 = L
∞

30

1
20 e

-x>20 dx L
30

0
f1x2dx +L

∞

30
f1x2dx = 1

 = 1 - L
30

0

1
20 e

-x>20 dx

 = 1 - 1-e-x>202 `
30

0
= e-1.5 ≈ .223

Matched Problem 3 In Example 3, if a call has just been received, what is the 
probability that no calls are received in the next 10 seconds?

EXAMPLE 3

Normal Distributions
We now consider the most important of all the probability density functions, the nor-
mal probability density function. This function is at the heart of a great deal of statis-
tical theory, and it is also a useful tool in its own right for solving problems.

A continuous random variable X has a normal distribution and is referred 
to as a normal random variable if its probability density function is the normal 
 probability density function

  f1x2 =
1

p22p
e-1x - m22>12s22 (1)

where m is any constant and s is any positive constant. It can be shown, but not easily, that

L
∞

-∞
f1x2 dx = 1

M10_BARN6152_14_GE_C10.indd   671 16/11/18   2:01 PM



672 CHAPTER 10 Probability and Calculus 

and

 E1X2 = L
∞

-∞
xf1x2dx = m  V1X2 = L

∞

-∞
1x - m2 2f1x2dx = s2

Thus, m is the mean of the normal probability density function and s is the 
standard deviation. The graph of f (x) is always a bell-shaped curve called a normal 
curve. Figure 4 illustrates three normal curves for different values of m and s.

m

x

m 5 50
s 5 4

m 5 20
s 5 1

m 5 15
s 5 3

0 10 20 30 40 50 60 70

Figure 4 Normal probability distributions

Equation (1) for the normal probability density function is fairly complicated and 
involves both p ≈ 3.1416 and e ≈ 2.7183. Given values of m and s, however, 
the function is completely specified, and we could plot points or use a graphing 
calculator to produce its graph. Substituting x + h for x in equation (1) produces 
an equation of the same form but with a different value of m. Therefore, in the 
terminology of Section 1.2, any horizontal translation of a normal curve is also a 
normal curve.

CONCEPTUAL INSIGHT

The standard deviation measures the dispersion of the normal probability density 
function about the mean. A small standard deviation indicates a tight clustering about 
the mean and thus a tall, narrow curve; a large standard deviation indicates a large 
deviation from the mean and thus a broad, flat curve. Notice that each of the normal 
curves in Figure 4 is symmetric about a vertical line through the mean. This is true for 
any normal curve. Thus, the line x = m divides the region under a normal curve into 
two regions with equal areas. Since the total area under a normal curve is always 1,  
the area of each of these regions is .5. This implies that the median of a normal 
 random variable is always equal to the mean (see Fig. 5).

x

Area 5 .5Area 5 .5

m 5 m

Figure 5 The mean and median of a normal random variable
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The properties of the normal probability density function are summarized in the 
next box for ease of reference.

SUMMARY Normal Probability Density Function

 f1x2 =
1

s22p
e-1x - m22>12s22 s 7 0

Mean m

Median m

Standard deviation s
m

x

y 5 f (x)

The cumulative distribution function for a normal random variable is given 
 formally by

 F1x2 =
1

s22pL
x

-∞
e-1t - m22>12s22 dt

It is not possible to express F(x) as a finite combination of the functions with which 
we are familiar. Furthermore, we cannot use antidifferentiation to evaluate probabili-
ties such as

 P1c … X … d2 =
1

s22pL
d

c
  e

-1x - m22>12s22 dx

However, numerical integration can be used to approximate probabilities of this  
type, as illustrated in Figure 6, where we use a graphing calculator to approximate 
 P10 … X …  1.52 for the normal probability density function with m = 0 and s = 1.Figure 6

It is also possible to use a table to approximate probabilities involving the normal 
probability density function. Remarkably, the area under a normal curve between a 
mean m and a given number of standard deviations to the right (or left) of m is the same, 
regardless of the shape of the normal curve. For example, the area under the normal 
curve with m = 3, s = 5 from m = 3 to m + 1.5s = 10.5 is equal to the area under 
the normal curve with m = 15, s = 2 from m = 15 to m + 1.5s = 18 (see Fig. 7, 
noting that the shaded regions have the same areas on, equivalently, the same numbers 
of pixels). Therefore, such areas for any normal curve can be easily determined from 
the areas for the standard normal curve, that is, the normal curve with mean 0 and 
standard deviation 1. In fact, if z represents the number of standard deviations that a 
measurement x is from a mean m, then the area under a normal curve from m to m + zs 
equals the area under the standard normal curve from 0 to z (see Fig. 8). Table 2 in 
Appendix C lists those areas for the standard normal curve.

Figure 7

Area
corresponding

to z

f (x)

x
z

m 1 zs
z

m

0

Figure 8 Areas and z values

The graph of f(x) is symmetric with respect to the line x = m.
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In the discussion that follows we will concentrate on using Table 2 in Appendix C  
to approximate areas under the normal curve. If desired, numerical integration on a 
graphing calculator can be used to obtain the same results.

Finding Probabilities for a Normal Distribution A manufacturing process pro-
duces lightbulbs with life expectancies that are normally distributed with a mean of 
500 hours and a standard deviation of 100 hours. What percentage of the lightbulbs 
can be expected to last between 500 and 670 hours?

SOLUTION To answer this question, we first determine how many standard devia-
tions 670 is from 500, the mean. This is easily done by dividing the distance be-
tween 500 and 670 by 100, the standard deviation. Thus,

z =
670 - 500

100
=

170
100

= 1.70

That is, 670 is 1.7 standard deviations from 500, the mean. Referring to Table 2 in 
Appendix C, we see that .4554 corresponds to z = 1.70. Also, because the total 
area under a normal curve is 1, we conclude that 45.54% of the lightbulbs produced 
will last between 500 and 670 hours (see Fig. 9).

670
1.7

500
0

.4554
or

45.54%

f (x)

x
z

Figure 9 Lightbulb life expectancy—positive z

Matched Problem 4 In Example 4, what percentage of the lightbulbs can be 
expected to last between 500 and 750 hours?

In general, to find how many standard deviations a measurement x is from  
a mean m, first determine the distance between x and m, and then divide by s:

z =
Distance between x and m

Standard deviation
=

x - m

s

EXAMPLE 4

Finding Probabilities for a Normal Distribution From all lightbulbs produced 
(see Example 4), what is the probability of a lightbulb chosen at random lasting 
between 380 and 500 hours?

SOLUTION To answer this, we first find z:

z =
x - m

s
=

380 - 500
100

= -1.20

It is usually a good idea to draw a rough sketch of a normal curve and insert relevant 
data (see Fig. 10).

EXAMPLE 5
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.3849
or

38.49%

f (x)

x
z

   380
21.20

500
0

Figure 10 Lightbulb life expectancy—negative z

Table 2 in Appendix C does not include negative values for z, but because 
normal curves are symmetrical with respect to a vertical line through the mean, 
we simply use the absolute value (positive value) of z for the table. The area corre-
sponding to z = -1.20 is the same as the area corresponding to z = 1.20, which 
is .3849, so the probability of a lightbulb chosen at random lasting between 380 
and 500 hours is .3849.

Matched Problem 5 In Example 5, what is the probability of a lightbulb 
chosen at random lasting between 400 and 500 hours?

Exercises 10.4
In Problems 1–4, find the probability density function f and the 
associated cumulative distribution function F for the continuous 
random variable X if

1. X is uniformly distributed on [0, 2].

2. X is uniformly distributed on [3, 6].

3. X is an exponential random variable with l = 1
2.

4. X is an exponential random variable with l = 1
4.

In Problems 5–8, find the mean, median, and standard deviation 
of the continuous random variable X if

5. X is uniformly distributed on [1, 5].

6. X is uniformly distributed on [2, 8].

7. X is an exponential random variable with l = 5.

8. X is an exponential random variable with l = 7.

In Problems 9–14, use Table 2 in Appendix C to find the area under 
the standard normal curve from 0 to the indicated value of z.

9. 1.14 10. 0.38

11. 0.83 12. 2.09

13. -2.35 14. -1.56

In Problems 15–20, use Table 2 in Appendix C to find the area 
under the standard normal curve and above the given interval  
on the horizontal axis.

15. [-1.82, 1.82] 16. [-1.07, 1.07]

17. [-2.50, 1.95] 18. [-0.67, 0.89]

A 19. 3-0.76, ∞ 2 20. 1-∞, 1.364
In Problems 21–26, given a normal distribution with mean 40 and 
standard deviation 8, find the number of standard deviations each 
measurement is from the mean. Express the answer as a positive 
number.

21. 42 22. 37

23. 51 24. 25

25. 19 26. 55

In Problems 27–32, given a normal distribution with mean -10 
and standard deviation 5, use Table 2 in Appendix C to find the 
area under the normal curve and above the given interval on the 
horizontal axis.

27. 3-15, -104 28. 3-10,  04
29. 3-4,  44 30. 3-18, -124
31. 1- ∞ , -144 32. 3-6, ∞2
Problems 33 and 34 refer to random variables X1 and X2 with 
probability density functions f1 and f2, respectively, where

 f11x2 =
122p

 e-x2>2

 f21x2 = e0.4 if -1.25 … x … 1.25 
0 otherwise

33. Explain how you can predict from the graphs of f1 and f2 
which random variable, X1 or X2, has the greater standard 
deviation. Check your prediction by finding the standard 
deviation of each.

B
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34. Explain how you can predict from the graphs of f1 and f2 
which random variable, X1 or X2, has the greater median. 
Check your prediction by finding the median of each.

Problems 35 and 36 refer to random variables X1 and X2 with 
probability density functions g1 and g2, respectively, where

 g11x2 =
122p

e-1x - 122>2

 g21x2 = e e-x if x Ú 0 
0 otherwise

35. Explain how you can predict from the graphs of g1 and g2 
which random variable, X1 or X2, has the greater median. 
Check your prediction by finding the median of each.

36. Explain how you can predict from the graphs of g1 and g2 
which random variable, X1 or X2, has the greater mean. 
Check your prediction by finding the mean of each.

In Problems 37–40, X is a continuous random variable with mean m.  
Find m, and then find  P1X … m2 if

37. X is uniformly distributed on [0, 4].

38. X is uniformly distributed on [0, 10].

39. X is an exponential random variable with l = 1.

40. X is an exponential random variable with l = 5.

In Problems 41–44, X is a continuous random variable with 
mean m and standard deviation s. Find m and s, and then find 
 P1m - s … X … m + s2 if

41. X is uniformly distributed on 3-5,  54.

42. X is uniformly distributed on 3-2,  24.

43. X is an exponential random variable with m = 6  ln  2.

44. X is an exponential random variable with m = 9  ln  2.

In Problems 45–54, given a normal distribution with mean 150 
and standard deviation 25, find the indicated probabilities.

45.  P1140 … X … 1602 46.  P1120 … X … 1802
47.  P1130 … X … 1852 48.  P1145 … X … 1952
49.  P1155 … X … 1752 50.  P1123 … X … 1452
51.  P1X Ú 1152 52.  P1X … 1722
53.  P1X … 902 54.  P1X Ú 2102
Problems 55–58 refer to the normal random variable X with mean 
m and standard deviation s. Use a graphing calculator to com-
pute the indicated probabilities.

55. Approximate  P1m - s … X … m + s2 to four decimal 
places for m = 0 and

(A) s = .5 (B) s = 1 (C) s = 2

Write a brief explanation of the result indicated by these 
calculations.

56. Approximate  P1m - 2s … X … m + 2s2 to four decimal 
places for m = 0 and

(A) s = .5 (B) s = 1 (C) s = 2

Write a brief explanation of the result indicated by these 
calculations.

57. Approximate  P1m - 3s … X … m + 3s2 to four decimal 
places for m = 0 and

(A) s = .5 (B) s = 1 (C) s = 2

Write a brief explanation of the result indicated by these 
calculations.

58. In Problems 55–57, if m is changed from 0 to 5, will any of 
the probabilities change? Explain.

Problems 59–62 refer to the uniformly distributed random vari-
able X with probability density function

 f1x2 = •
1

b - a
if  a … x … b 

    0 otherwise

59. Show that m = 1a + b2 >2.

60. Show that m = 1a + b2 >2.

61. Show that 1 ∞
-∞x 2 f 1x 2d x = 1b 2 + ab + a2 2 >3 .

62. Show that  V1X2 = 1b - a2 2>12.

63. Use numerical integration on a graphing calculator to ap-
proximate the mean, median, and standard deviation of the 
probability density function

 f1x2 = e5e-5x if  x Ú 0 
0 otherwise

Explain why it is reasonable to replace integrals over the 
interval 1-∞, ∞ 2 by integrals over the interval [0, 10]. Verify 
that your answers agree with the results expected for expo-
nential probability density functions.

64. Use numerical integration on a graphing calculator to ap-
proximate the mean, median, and standard deviation of the 
probability density function

 f1x2 = e0.64e-0.64x if  x Ú 0 
0 otherwise

Explain why it is reasonable to replace integrals over the 
interval 1-∞, ∞2 by integrals over the interval [0,50]. Verify 
that your answers agree with the results expected for expo-
nential probability density functions.

Problems 65–68 refer to a random variable X with probability 
density function

 f1x2 = ep>x p + 1 if  x Ú 1 
0 otherwise

where p is a positive constant. This random variable is often 
referred to as a Pareto* random variable.

C

*Named after Vilfredo Pareto (1848–1923), an Italian scociologist and economist. Although best known for his theories on political behavior, Pareto also  
developed new applications of mathematics to economics.
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65. Verify that f satisfies the necessary conditions for a probability 
density function and find the mean, if it exists. What restric-
tions must you place on p to ensure that the mean exists?

66. Find the standard deviation, if it exists. What restrictions must 
you place on p to ensure that the standard deviation exists?

67. Find the median.

68. The mean and the median for a uniformly distributed random 
variable are equal, as are the mean and standard deviation for 
an exponentially distributed random variable. Use a graph 
to illustrate the relationship between the mean, median, and 
standard deviation for a Pareto random variable. Approximate 
abscissas of intersection points to two decimal places.

Applications
69. Waiting time. The time (in minutes) applicants must wait to 

receive a driver’s examination is uniformly distributed on the 
interval [0, 40]. What is the probability that an applicant must 
wait more than 25 minutes?

70. Waiting time. The time (in minutes) passengers must wait 
for a commuter plane in a large airport is uniformly distrib-
uted on the interval [0, 60]. What is the probability that a 
passenger waits less than 20 minutes?

71. Communications. The length of time for telephone conver-
sations (in minutes) is exponentially distributed. The average 
(mean) length of a conversation is 3 minutes. What is the 
probability that a conversation lasts less than 2 minutes?

72. Waiting time. The waiting time (in minutes) for custom-
ers at a drive-in bank is an exponential random variable. The 
average (mean) time a customer waits is 4 minutes. What is 
the probability that a customer waits more than 5 minutes?

73. Service time. The time between failures of a photocopier is an 
exponential random variable. Half the copiers require service 
during the first 2 years of operation. What is the probability 
that a copier requires service during the first year of operation?

74. Component failure. The life expectancy (in years) of a compo-
nent in a computer is an exponential random variable. Half the 
components fail in the first 3 years. The company that manufac-
tures the component offers a 1-year warranty. What is the prob-
ability that a component will fail during the warranty period?

75. Sales. The annual sales for salespeople at a business 
machine company are normally distributed. The average 
(mean)  annual sales are $200,000 with a standard deviation 
of $20,000. What percentage of the salespeople would be 
expected to make annual sales of $240,000 or more?

76. Guarantees. The life expectancy of a car battery is normally 
distributed. The average (mean) lifetime is 170 weeks with a 
standard deviation of 10 weeks. If the company guarantees the  
battery for 3 years, what percentage of the batteries sold would 
be expected to be returned before the end of the warranty period?

77. Quality control. A manufacturing process produces a preci-
sion part whose length is a normal random variable with 
mean 100 millimeters and standard deviation 2 millimeters. 
All parts deviating by more than 5 millimeters from the mean 

must be rejected. On average, what percentage of the parts 
must be rejected?

78. Quality control. An automated manufacturing process  
produces a component whose width is a normal random  
variable with mean 7.55 centimeters and standard deviation 
0.02 centimeter. All components deviating by more than  
0.05 centimeter from the mean must be rejected. On average, 
what percentage of the parts must be rejected?

79. Survival time. The time of death (in years) after patients 
have contracted a certain disease is exponentially distributed. 
The probability that a patient dies within 1 year is .3.

(A) What is the expected time of death?

(B) What is the probability that a patient survives longer 
than the expected time of death?

80. Survival time. Repeat Problem 79 if the probability that a 
patient dies within 1 year is .5.

81. Medicine. The healing time of a certain type of incision is 
normally distributed with an average healing time of 240 hours 
and a standard deviation of 20 hours. What percentage of the 
people having this incision would heal in 8 days or less?

82. Agriculture. The height of a hay crop is normally distributed 
with an average height of 38 inches and a standard deviation 
of 1.5 inches. What percentage of the crop will be 40 inches 
or more?

83. Learning. The time (in minutes) it takes an adult to memorize 
a sequence of random digits is an exponential random vari-
able. The average time is 2 minutes. What is the probability 
that it takes an adult over 5 minutes to memorize the digits?

84. Psychology. The time (in seconds) it takes rats to find their 
way through a maze is exponentially distributed. The average 
time is 30 seconds. What is the probability that it takes a rat 
over 1 minute to find a path through the maze?

85. Grading on a curve. An instructor grades on a curve by 
 assuming the grades on a test are normally distributed. If the 
average grade is 70 and the standard deviation is 8, find the 
test scores for each grade interval if the instructor wishes to 
assign grades as follows: 10% A’s, 20% B’s, 40% C’s, 20% D’s,  
and 10% F’s. Round answers to one decimal place.

86. Psychology. A test devised to measure aggressive–passive 
personalities was standardized on a large group of people. The 
scores were normally distributed with a mean of 50 and a stan-
dard deviation of 10. If we want to designate the highest 10% as 
aggressive, the next 20% as moderately aggressive, the middle 
40% as average, the next 20% as moderately passive, and the 
lowest 10% as passive, what range of scores will be covered by 
these five designations? Round answers to one decimal place.

Answers to Matched Problems

1. (A) 1
3 (B) 1

3 (C) 1
3

2. 2
5

3. e-0.5 ≈ .607

4. 49.38%

5. .3413
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Chapter 10 Summary and Review
Important Terms, Symbols, and Concepts
10.1  Improper Integrals EXAMPLES

• If f is continuous over the indicated interval and the limit exists, then the improper integral on the left in 
each of the following equations is defined by

1. L
∞

a
f1x2  dx = lim

bS ∞ L
b

a
f1x2  dx

2. L
b

-∞
f1x2  dx = lim

aS -∞ L
b

a
f1x2  dx

3. L
∞

-∞
f1x2  dx = L

c

-∞
f1x2  dx + L

∞

c
f1x2  dx

where c is any point on 1-∞, ∞2, provided both integrals on the right exist. The improper integral  
converges if the limit exists; otherwise it diverges (and no value is assigned to it).

• A continuous income stream is perpetual if it never stops producing income. The capital value, CV, of a 
perpetual income stream f (t), at a rate r compounded continuously, is defined by

CV = L
∞

0
f1t2e-rt  dt

Capital value provides a method for expressing the worth (in terms of today’s dollars) of an investment that will 
produce income indefinitely.

Ex. 1, p. 639
Ex. 2, p. 639
Ex. 3, p. 640
Ex. 4, p. 641
Ex. 5, p. 641

Ex. 6, p. 643

10.2  Continuous Random Variables
• A continuous random variable X is a function that assigns a numeric value to each outcome of an 

experiment. The set of possible values of X is an interval of real numbers. This interval may be open or 
closed, bounded or unbounded

• The function f (x) is a probability density function for a continuous random variable X if:

1.  f1x2 Ú 0 for all x in 1-∞ , ∞2

2. L
∞

-∞
f1x2  dx = 1

3. The probability that X lies in the interval [c. d] is:

 P1c … X … d2 = L
d

c
f1x2  dx

• If f is a probability density function, then the associated cumulative distribution function F is:

 F1x2 = P1X … x2 = L
x

-∞
f1t2  dt

• The cumulative distribution function F has the properties

1. F′1x2 = f1x2 wherever f is continuous
2. 0 … F1x2 … 1 for x in 1-∞ , ∞2
3. F(x) is nondecreasing on 1-∞ , ∞2

Ex. 1, p. 647
Ex. 2, p. 649
Ex. 3, p. 650

Ex. 4, p. 652
Ex. 5, p. 653

678
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10.3  Expected Value, Standard Deviation, and Median
• Let f(x) be the probability density function for a continuous random variable X. The expected value, or 

mean, of X is

m = E1X2 = L
∞

-∞
x f1x2  dx

The variance is:

 V1X2 = L
∞

-∞
1x - m2 2f1x2  dx = L

∞

-∞
x2 f1x2  dx - m2

Ex. 1, p. 658
Ex. 2, p. 660
Ex. 3, p. 661
Ex. 4, p. 661

and the standard deviation is s = 2V1X2
• The median is a value of the random variable that divides the area under the graph of the probability 

density function into two equal parts, each of area 12.
Ex. 5, p. 662
Ex. 6, p. 663

10.4  Special Probability Distributions
• A continuous random variable has a uniform distribution on [a, b], and a uniform probability density 

function, if

 f1x2 = •
1

b - a
if a … x … b 

0 otherwise

• A continuous random variable has an exponential distribution, and an exponential probability density 
function, if

 f1x2 = e 11>l2e-x>l if x Ú 0 
0 otherwise

• A continuous random variable has a normal distribution, and a normal probability density function, if

 f1x2 =
1

s22p
e-1x - m22>12s22

where m (the mean) is any constant and s (the standard deviation) is any positive constant. The graph of 
a normal probability density function is called a normal curve. The standard normal curve has mean 0  
and standard deviation l. The area under any normal curve from m to x = m + zs is equal to the area 

under the standard normal curve from 0 to z, where z =
x - m

s
.

Ex. 1, p. 667
Ex. 2, p. 669

Ex. 3, p. 671

Ex. 4, p. 674
Ex. 5, p. 674

Review Exercises
Work through all the problems in this chapter review and check 
your answers in the back of the book. Answers to all review prob-
lems are there along with section numbers in italics to indicate 
where each type of problem is discussed. Where weaknesses show 
up, review appropriate sections in the text.

In Problems 1–3, evaluate each improper integral, if it converges.

1. L
∞

0
e-2x dx

2. L
∞

0

1
x + 1

  dx

3. L
∞

1

16

x3   dx

A

Problems 4–7 refer to the continuous random variable X with 
probability density function

 f1x2 = e1 - 1
2x if  0 … x … 2 

0 otherwise

4. Find  P10 … X … 12 and illustrate with a graph.

5. Find the mean, variance, and standard deviation.

6. Find and graph the associated cumulative distribution function.

7. Find the median.

8. If X is a normal random variable with a mean of 100 and a 
standard deviation of 10, find  P1100 … X … 1182.

 Review Exercises 679
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680 CHAPTER 10 Probability and Calculus 

In Problems 9 and 10, find the probability density function f and 
the associated cumulative distribution function F for the continu-
ous random variable X if

9. X is uniformly distributed on [5, 15].

10. X is an exponential random variable with l = 1
5.

In Problems 11 and 12, is f a probability density function?  
Explain.

11.  f1x2 = e-x2

12.  f1x2 = e0.751x2 - 4x + 32 if  0 … x … 4 
0 otherwise

Problems 13–16 refer to the continuous random variable X with 
probability density function

 f1x2 = e
5
2x-7>2 if x Ú 1 

0 otherwise

13. Find  P11 … X … 42 and illustrate with a graph.

14. Find the mean, variance, and standard deviation.

15. Find and graph the associated cumulative distribution function.

16. Find the median.

Problems 17–20 refer to an exponentially distributed random 
variable X.

17. If  P14 … X2 = e-2, find the probability density function.

18. Find  P10 … X … 22.

19. Find the associated cumulative distribution function.

20. Find the mean, standard deviation, and median.

21. Given a normal distribution with mean 50 and standard  
deviation 6, find the area under the normal curve:

(A) Between 41 and 62

(B) From 59 on

22. Given a normal random variable X with mean 82 and  
standard deviation 8, find:

(A)  P184 … X … 942
(B)  P1X Ú 602

In Problems 23 and 24, evaluate each improper integral, if it 
converges.

23. L
0

-∞
 e

x dx 24. L
∞

0

1

1x + 32 2  dx

25. If ƒ is continuous on 3-1, ∞2 and 1 ∞
-1  f1x2  dx converges, 

does 1 ∞
1 f1x2  dx converge? Explain.

In Problems 26 and 27, find a constant k so that kf is a probability 
density function, or explain why no such k exists.

26.  f1x2 = e e-10x if x Ú 0 
0 otherwise

27.  f1x2 = e e10x if x Ú 0 
0 otherwise

28. If X is an exponentially distributed random variable with 
median m = 3 ln 2 and mean m, find  P1X … m2.

B

29. Find the mean and the median of the continuous random  
variable with probability density function

 f1x2 = e50> 1x + 52 3 if x Ú 0 
0 otherwise

30. Use a graphing calculator to approximate (to two decimal 
places) the median of the continuous random variable with 
probability density function

 f1x2 = •
.8

x2 +
.8

x5 if x Ú 1 

0 otherwise

31. Find L
∞

-∞

ex

11 + ex2 2  dx, if it converges.

32. If ƒ is a continuous probability density function with mean m and 
standard deviation s and a, b, and c are constants, evaluate the 
following integral. Express the result in terms of m, s, a, b, and c.

L
∞

-∞
1ax2 + bx + c2f1x2  dx

Problems 33–36 refer to random variables X1 and X2 with  
probability density functions f1 and f2, respectively, where

 f11x2 = e0.25xe-x>2 if x Ú 0 
0 otherwise

 f21x2 = e0.0625x2e-x>2 if x Ú 0 
0 otherwise

33. Explain how you can predict from the graphs of f1  
and f2 which random variable, X1 or X2, has the greater  
mean.

34. Explain how you can predict from the graphs of f1 and f2 
which random variable, X1 or X2, has the greater variance.

35. Check your prediction in Problem 33 by using numerical 
integration to approximate the means of X1 and X2.

36. Check your prediction in Problem 34 by using numerical 
integration to approximate the variances of X1 and X2.

Applications
37. Production. The rate of production of an oil well (in millions 

of barrels per year) is given by (see figure)

 R1t2 = 12e-0.3t - 12e-0.6t

t

2

1

3

105

M
ill

io
ns

 o
f 

ba
rr

el
s

Time (years)

R(t)

C
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(A) Assuming that the well is operated indefinitely, find the 
total production.

(B) When will the output from the well reach 50% of the 
total production? Round answer to two decimal places.

38. Demand. The manager of a movie theater has determined 
that the weekly demand for popcorn (in pounds) is a continu-
ous random variable with probability density function

 f1x2 = e .0211 - .01x2 if  0 … x … 100 
0 otherwise

(A) Evaluate 1100
40 f1x2  dx and interpret.

(B) If the manager has 50 pounds of popcorn on hand at the 
beginning of the week, what is the probability that this 
will be enough to meet the weekly demand?

(C) If the manager wants the probability that the supply  
on hand exceeds the weekly demand to be .96, how 
much popcorn must be on hand at the beginning of  
the week?

39. Capital value. The perpetual annual rent for a property is 
$2,400. Find the capital value at 6% compounded continu-
ously.

40. Credit applications. The percentage of applications  
(expressed as a decimal between 0 and 1) for a national credit 
card processed on the same day the applications are received 
is a continuous random variable with probability density 
function

 f1x2 = e6x11 - x2 if  0 … x … 1 
0 otherwise

(A) What is the probability that at least 20% of the applica-
tions received are processed the same day they arrive?

(B) What is the expected percentage of applications pro-
cessed the same day they arrive?

(C) What is the median percentage of applications processed 
the same day they arrive?

41. Computer failure. A computer manufacturer has determined 
that the time between failures for its computer is an exponen-
tially distributed random variable with a mean failure time 
of 4,000 hours. Suppose a particular computer has just been 
repaired.

(A) What is the probability that the computer operates for the 
next 4,000 hours without failure?

(B) What is the probability that the computer fails in the next 
1,000 hours?

42. Radial tire failure. The life expectancy (in miles) of a 
certain brand of radial tires is a normal random variable with 
a mean of 35,000 miles and a standard deviation of 5,000 
miles. What is the probability that a tire fails during the first 
25,000 miles of use?

43. Personnel screening. The scores on a screening test for 
new technicians are normally distributed with mean 100 and 
standard deviation 10. Find the approximate percentage of 
applicants taking the test who score

(A) Between 92 and 108

(B) 115 or higher

44. Medicine. The shelf life (in months) of a certain drug is  
a continuous random variable with probability density  
function

 f1x2 = e10> 1x + 102 2 if  x Ú 0 
0 otherwise

(A) Evaluate 18
2 f1x2  dx and interpret.

(B) What is the probability that the drug is still usable after 
5 months?

(C) What is the median shelf life?

45. Life expectancy. The life expectancy (in months) after dogs 
have contracted a certain disease is an exponentially distrib-
uted random variable. The probability of surviving more than 
1 month is e-2. After contracting the disease,

(A) What is the probability of the dog surviving more than  
2 months?

(B) What is the mean life expectancy?

46. Drug assimilation. The rate at which the body eliminates a 
drug (in milliliters per hour) is given by

 R1t2 = 15e-0.2t - 15e-0.3t

where t is the number of hours since the drug was  
administered.

(A) What is the total amount of the drug that is eliminated by 
the body?

(B) How long will it take for 50% of the total amount to be 
eliminated? Round answer to two decimal places.

47. Testing. The IQ scores for 6-year-old children in a certain 
area are normally distributed with a mean of 108 and a stan-
dard deviation of 12. What percentage of the children can be 
expected to have IQ scores of 135 or more?

48. Politics. The rate of change of the voting population of a city 
with respect to time t (in years) is estimated to be

N′1t2 =
100t

11 + t22 2

where N(t) is in thousands. If N(0) is the current voting 
population, how much will this population increase dur-
ing the next 3 years? If the population continues to grow at 
this rate indefinitely, what is the total increase in the voting 
population?

 Review Exercises 681
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682

A.1 Real Numbers

A.2 Operations on Polynomials

A.3 Factoring Polynomials

A.4 Operations on Rational  
Expressions

A.5 Integer Exponents and  
Scientific Notation

A.6 Rational Exponents and  
Radicals

A.7 Quadratic Equations

Appendix A reviews some important basic algebra concepts usually studied 
in earlier courses. The material may be studied systematically before begin-
ning the rest of the book or reviewed as needed.

Appendix

Basic Algebra 
Review

■■ Set of Real Numbers
■■ Real Number Line
■■ Basic Real Number Properties
■■ Further Properties
■■ Fraction Properties

A.1 Real Numbers
The rules for manipulating and reasoning with symbols in algebra depend, in large mea-
sure, on properties of the real numbers. In this section we look at some of the important 
properties of this number system. To make our discussions here and elsewhere in the book 
clearer and more precise, we occasionally make use of simple set concepts and notation.

Set of Real Numbers
Informally, a real number is any number that has a decimal representation. The 
decimal representation may be terminating or repeating or neither. The decimal rep-
resentation 4.713 516 94 is terminating (the space after every third decimal place is 
used to help keep track of the number of decimal places). The decimal representation 
5.254 747 is repeating (the overbar indicates that the block “47” repeats indefinitely). 
The decimal representation 3.141 592 653 c  of the number p, the ratio of the cir-
cumference to the diameter of a circle, is neither terminating nor repeating. Table 1 
describes the set of real numbers and some of its important subsets. Figure 1 illustrates 
how these sets of numbers are related.

A

Table 1 Set of Real Numbers

Symbol Name Description Examples

N Natural numbers Counting numbers (also called positive integers) 1, 2, 3, c
Z Integers Natural numbers, their negatives, and 0 c , -2, -1, 0, 1, 2, c
Q Rational 

numbers
Numbers that can be represented as a/b, where a 
and b are integers and b ∙ 0; decimal represen-
tations are repeating or terminating

-4, 0, 1, 25, - 3
5 , 23, 3.67, -0.333, 5.272 727

I Irrational 
numbers

Numbers that can be represented as nonrepeating 
and nonterminating decimal numbers

22, p, 23 7, 1.414 213 c , 2.718 281 82 . .

R Real numbers Rational and irrational numbers
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 SECTION A.1   Real Numbers 683

The set of integers contains all the natural numbers and something else—their 
negatives and 0. The set of rational numbers contains all the integers and something 
else—noninteger ratios of integers. And the set of real numbers contains all the ratio-
nal numbers and something else—irrational numbers.

Real Number Line
A one-to-one correspondence exists between the set of real numbers and the set of points 
on a line. That is, each real number corresponds to exactly one point, and each point 
corresponds to exactly one real number. A line with a real number associated with each 
point, and vice versa, as shown in Figure 2, is called a real number line, or simply a 
real line. Each number associated with a point is called the coordinate of the point.

The point with coordinate 0 is called the origin. The arrow on the right end of 
the line indicates a positive direction. The coordinates of all points to the right of the 
origin are called positive real numbers, and those to the left of the origin are called 
negative real numbers. The real number 0 is neither positive nor negative.

Basic Real Number Properties
We now take a look at some of the basic properties of the real number system that 
 enable us to convert algebraic expressions into equivalent forms.

Natural
numbers (N)

Negatives
of natural
numbers

Zero

Noninteger
ratios of
integers

Integers (Z)

Rational
numbers (Q)

Irrational
numbers (I)

Real
numbers (R)

Figure 1 Real numbers and important subsets

0 525210 10

Origin

22 Ï7328.34
p17

4

Figure 2 Real number line

SUMMARY Basic Properties of the Set of Real Numbers
Let a, b, and c be arbitrary elements in the set of real numbers R.

Addition Properties

Associative:  1a + b2 + c = a + 1b + c2
Commutative: a + b = b + a
Identity:      0 is the additive identity; that is, 0 + a = a + 0 = a for all a in 

R, and 0 is the only element in R with this property.
Inverse:       For each a in R, -a, is its unique additive inverse; that is, 

a + 1-a2 = 1-a2 + a = 0 and -a is the only element in R 
relative to a with this property.

Multiplication Properties

Associative:  1ab2c = a1bc2
Commutative: ab = ba
Identity:     1 is the multiplicative identity; that is, 112a = a112 = a for all a 

in R, and 1 is the only element in R with this property.
Inverse:      For each a in R, a ∙ 0, 1>a is its unique multiplicative inverse; 

that is, a11>a2 = 11>a2a = 1, and 1>a is the only element in R 
relative to a with this property.

Distributive Properties
a1b + c2 = ab + ac 1a + b2c = ac + bc
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684 APPENDIX A Basic Algebra Review

You are already familiar with the commutative properties for addition and mul-
tiplication. They indicate that the order in which the addition or multiplication of two 
numbers is performed does not matter. For example,

7 + 2 = 2 + 7 and 3 # 5 = 5 # 3

Is there a commutative property relative to subtraction or division? That is, does 
a - b = b - a or does a , b = b , a for all real numbers a and b (division by 0 
excluded)? The answer is no, since, for example,

8 - 6 ∙ 6 - 8 and 10 , 5 ∙ 5 , 10

When computing

3 + 2 + 6 or 3 # 2 # 6

why don’t we need parentheses to indicate which two numbers are to be added or 
multiplied first? The answer is to be found in the associative properties. These prop-
erties allow us to write

13 + 22 + 6 = 3 + 12 + 62 and 13 # 22 # 6 = 3 # 12 # 62
so it does not matter how we group numbers relative to either operation. Is there an 
associative property for subtraction or division? The answer is no, since, for example,

112 - 62 - 2 ∙ 12 - 16 - 22 and 112 , 62 , 2 ∙ 12 , 16 , 22
Evaluate each side of each equation to see why.

What number added to a given number will give that number back again? What 
number times a given number will give that number back again? The answers are 0 
and 1, respectively. Because of this, 0 and 1 are called the identity elements for the 
real numbers. Hence, for any real numbers a and b,

 0 + 5 = 5 and 1a + b2 + 0 = a + b

 1 # 4 = 4 and 1a + b2 # 1 = a + b

We now consider inverses. For each real number a, there is a unique real number 
-a such that a + 1-a2 = 0. The number -a is called the additive inverse of a, or 
the negative of a. For example, the additive inverse (or negative) of 7 is -7, since 
7 + 1-72 = 0. The additive inverse (or negative) of -7 is - 1-72 = 7, since 
-7 + 3- 1-724 = 0.

Do not confuse negation with the sign of a number. If a is a real number, -a is 
the negative of a and may be positive or negative. Specifically, if a is negative, 
then -a is positive and if a is positive, then -a is negative.

CONCEPTUAL  INSIGHT

For each nonzero real number a, there is a unique real number 1>a such that 
a11>a2 = 1. The number 1>a is called the multiplicative inverse of a, or the 
 reciprocal of a. For example, the multiplicative inverse (or reciprocal) of 4 is 14, since 
411

42 = 1. (Also note that 4 is the multiplicative inverse of 14.) The number 0 has no 
multiplicative inverse.

We now turn to the distributive properties, which involve both multiplication 
and addition. Consider the following two computations:

513 + 42 = 5 # 7 = 35  5 # 3 + 5 # 4 = 15 + 20 = 35

Thus,

513 + 42 = 5 # 3 + 5 # 4

and we say that multiplication by 5 distributes over the sum 13 + 42. In general, 
multiplication distributes over addition in the real number system. Two more 
 illustrations are

91m + n2 = 9m + 9n  17 + 22u = 7u + 2u
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 SECTION A.1   Real Numbers 685

EXAMPLE 1 Real Number Properties State the real number property that justifies the indi-
cated statement.

Statement Property Illustrated

(A) x1y + z2 = 1y + z2x Commutative ( # )

(B) 512y2 = 15 # 22y Associative ( # )

(C) 2 + 1y + 72 = 2 + 17 + y2 Commutative (+ )

(D) 4z + 6z = 14 + 62z Distributive

(E) If m + n = 0, then n = -m. Inverse (+ )

MATCHED PROBLEM 1 State the real number property that justifies the indicated 
statement.

(A) 8 + 13 + y2 = 18 + 32 + y

(B) 1x + y2 + z = z + 1x + y2
(C) 1a + b21x + y2 = a1x + y2 + b1x + y2
(D) 5xy + 0 = 5xy

(E) If xy = 1, x ∙ 0, then y = 1>x.

Further Properties
Subtraction and division can be defined in terms of addition and multiplication, 
respectively:

DEFINITION Subtraction and Division
For all real numbers a and b,
Subtraction:    a - b = a + 1-b2     7 - 1-52 = 7 + 3- 1-524  

     = 7 + 5 = 12

Division:      a , b = aa1
b
b , b ∙ 0 9 , 4 = 9a1

4
b =

9
4

To subtract b from a, add the negative (the additive inverse) of b to a. To divide a 
by b, multiply a by the reciprocal (the multiplicative inverse) of b. Note that division by 
0 is not defined, since 0 does not have a reciprocal. 0 can never be used as a divisor!

The following properties of negatives can be proved using the preceding  assumed 
properties and definitions.

THEOREM 1 Negative Properties
For all real numbers a and b,

1. - 1-a2 = a
2. 1-a2b = - 1ab2

= a1-b2 = -ab
3. 1-a21-b2 = ab
4. 1-12a = -a

5. 
-a
b

= -  
a
b

=
a

-b
, b ∙ 0

6. 
-a
-b

= -  
-a
b

= -  
a

-b
=

a
b

, b ∙ 0

We now state two important properties involving 0.

THEOREM 2 Zero Properties
For all real numbers a and b,

1. a # 0 = 0 0 # 0 = 0 1-352102 = 0
2. ab = 0   if and only if a = 0 or b = 0

If 13x + 221x - 72 = 0, then either 3x + 2 = 0 or x - 7 = 0.
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686 APPENDIX A Basic Algebra Review

A fraction is a quotient, not just a pair of numbers. So if a and b are real numbers 
with b ∙ 0, then a

b corresponds to a point on the real number line. For example, 17
2  

corresponds to the point halfway between 16
2 = 8 and 18

2 = 9. Similarly, -  21
5  corre-

sponds to the point that is 15 unit to the left of -4.

Fraction Properties
Recall that the quotient a , b1b ∙ 02 written in the form a>b is called a fraction. 
The quantity a is called the numerator, and the quantity b is called the denominator.

THEOREM 3 Fraction Properties
For all real numbers a, b, c, d, and k (division by 0 excluded):

1. 
a
b

=
c
d

 if and only if ad = bc 
4
6

=
6
9

 since 4 # 9 = 6 # 6

2. 
ka
kb

=
a
b

 

7 # 3
7 # 5

=
3
5

3. 
a
b

# c
d

=
ac
bd

 

3
5

# 7
8

=
3 # 7
5 # 8

4. 
a
b

,
c
d

=
a
b

# d
c

 

2
3

,
5
7

=
2
3

# 7
5

5. 
a
b

+
c
b

=
a + c

b
 

3
6

+
5
6

=
3 + 5

6

6. 
a
b

-
c
b

=
a - c

b
 

7
8

-
3
8

=
7 - 3

8

7. 
a
b

+
c
d

=
ad + bc

bd
 

2
3

+
3
5

=
2 # 5 + 3 # 3

3 # 5

Estimation Round 22
7 + 18

19 to the nearest integer.

SOLUTION Note that a calculator is not required: 22
7  is a little greater than 3, and 18

19 
is a little less than 1. Therefore the sum, rounded to the nearest integer, is 4.

MATCHED PROBLEM 2 Round 6
93 to the nearest integer.

Fractions with denominator 100 are called percentages. They are used so often 
that they have their own notation:

3
100

= 3% 
7.5
100

= 7.5% 
110
100

= 110%

So 3% is equivalent to 0.03, 7.5% is equivalent to 0.075, and so on.

EXAMPLE 2

State Sales Tax Find the sales tax that is owed on a purchase of $947.69 if the tax 
rate is 6.5%.

SOLUTION 6.5%1$947.692 = 0.0651947.692 = $61.60

MATCHED PROBLEM 3 You intend to give a 20% tip, rounded to the nearest dol-
lar, on a restaurant bill of $78.47. How much is the tip?

EXAMPLE 3

Exercises A.1
All variables represent real numbers.

 In Problems 1–6, replace each question mark with an appropriate 
expression that will illustrate the use of the indicated real number 
property.

1. Commutative property 1 # 2: uv = ?

2. Commutative property 1+ 2: x + 7 = ?

A

3. Associative property 1+ 2: 3 + 17 + y2 = ?

4. Associative property 1 # 2: x1yz2 = ?

5. Identity property 1 # 2: 11u + v2 = ?

6. Identity property 1+ 2: 0 + 9m = ?
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In Problems 7–26, indicate true (T) or false (F).

7. 518m2 = 15 # 82m

8. a + cb = a + bc

9. 5x + 7x = 15 + 72x

10. uv1w + x2 = uvw + uvx

11. -21-a212x - y2 = 2a1-4x + y2

12. 8 , 1-52 = 8a 1
-5

b
13. 1x + 32 + 2x = 2x + 1x + 32

14. 
x
3y

,
5y

x
=

15y2

x2

15. 
2x

- 1x + 32 = -  
2x

x + 3

16. -  
2x

- 1x - 32 =
2x

x - 3

17. 1-32 a 1
-3

b = 1

18. 1-0.52 + 10.52 = 0

19. -x2y2 = 1-12x2y2

20. 3- 1x + 2241-x2 = 1x + 22x

21. 
a
b

+
c
d

=
a + c
b + d

22. 
k

k + b
=

1
1 + b

23. 1x + 821x + 62 = 1x + 82x + 1x + 826

24. u1u - 2v2 + v1u - 2v2 = 1u + v21u - 2v2
25. If 1x - 2212x + 32 = 0, then either x - 2 = 0 or 

2x + 3 = 0.

26. If either x - 2 = 0 or 2x + 3 = 0, then 
1x - 2212x + 32 = 0.

27.  If uv = 1, does either u or v have to be 1? Explain.

28.  If uv = 0, does either u or v have to be 0? Explain.

29. Indicate whether the following are true (T) or false (F):

(A) All integers are natural numbers.

(B) All rational numbers are real numbers.

(C) All natural numbers are rational numbers.

30. Indicate whether the following are true (T) or false (F):

(A) All natural numbers are integers.

(B) All real numbers are irrational.

(C) All rational numbers are real numbers.

31. Give an example of a real number that is not a rational  
number.

32. Give an example of a rational number that is not an  
integer.

B

33. Given the sets of numbers N (natural numbers), Z (integers), 
Q (rational numbers), and R (real numbers), indicate to which 
set(s) each of the following numbers belongs:

(A) 8 (B) 12 (C) -1.414 (D) - 5
2

34. Given the sets of numbers N, Z, Q, and R (see Problem 33), in-
dicate to which set(s) each of the following numbers belongs:

(A) -3 (B) 3.14 (C) p (D) 2
3

35. Indicate true (T) or false (F), and for each false statement find 
real number replacements for a, b, and c that will provide a 
counterexample. For all real numbers a, b, and c,

(A) a1b - c2 = ab - c

(B) 1a - b2 - c = a - 1b - c2
(C) a1bc2 = 1ab2c

(D) 1a , b2 , c = a , 1b , c2
36. Indicate true (T) or false (F), and for each false statement 

find real number replacements for a and b that will provide a 
counterexample. For all real numbers a and b,

(A) a + b = b + a

(B) a - b = b - a

(C) ab = ba

(D) a , b = b , a

37.  If c = 0.151515 c , then 100c = 15.1515 c  and

 100c - c = 15.1515 c -0.151515 c
 99c = 15

 c =
15
99

=
5
33

Proceeding similarly, convert the repeating decimal 
0.090909 c  into a fraction. (All repeating decimals are 
rational numbers, and all rational numbers have repeating 
decimal representations.)

38. Repeat Problem 37 for 0.181818 c.

Use a calculator to express each number in Problems 39 and 
40 as a decimal to the capacity of your calculator. Observe 
the repeating decimal representation of the rational numbers 
and the nonrepeating decimal representation of the irrational 
numbers.

39. (A) 13
6 (B) 121 (C) 7

16 (D) 29
111

40. (A) 8
9 (B) 3

11 (C) 15 (D) 11
8

In Problems 41–44, without using a calculator, round to the near-
est integer.

41. (A) 43
13 (B) 37

19

42. (A) 9
17 (B) -  12

25

43. (A) 7
8 + 11

12 (B) 55
9 - 7

55

44. (A) 5
6 - 18

19 (B) 13
5 + 44

21

C
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Applications
45. Sales tax. Find the tax owed on a purchase of $182.39 if the 

state sales tax rate is 9%. (Round to the nearest cent).

46. Sales tax. If you paid $29.86 in tax on a purchase of 
$533.19, what was the sales tax rate? (Write as a percentage, 
rounded to one decimal place).

47. Gasoline prices. If the price per gallon of gas jumped from 
$4.25 to $4.37, what was the percentage increase? (Round to 
one decimal place).

48. Gasoline prices. The price of gas increased 4% in one 
week. If the price last week was $4.30 per gallon, what is the 
price now? (Round to the nearest cent).

Answers to Matched Problems
1. (A) Associative 1+ 2 (B) Commutative 1+ 2
  (C) Distributive (D) Identity 1+ 2
  (E) Inverse 1 # 2
2. 0   3. $16

A.2 Operations on Polynomials
■■ Natural Number Exponents
■■ Polynomials
■■ Combining Like Terms
■■ Addition and Subtraction
■■ Multiplication
■■ Combined Operations

This section covers basic operations on polynomials. Our discussion starts with a 
brief review of natural number exponents. Integer and rational exponents and their 
properties will be discussed in detail in subsequent sections. (Natural numbers, inte-
gers, and rational numbers are important parts of the real number system; see Table 1 
and Figure 1 in Appendix A.1.)

Natural Number Exponents
We define a natural number exponent as follows:

DEFINITION Natural Number Exponent
For n a natural number and b any real number,

bn = b # b # g # b n factors of b 
35 = 3 # 3 # 3 # 3 # 3  5 factors of 3

where n is called the exponent and b is called the base.

Along with this definition, we state the first property of exponents:

THEOREM 1 First Property of Exponents
For any natural numbers m and n, and any real number b:

bmbn = bm + n 12t4215t32 = 2 # 5t4 + 3 = 10t7

Polynomials
Algebraic expressions are formed by using constants and variables and the algebraic 
operations of addition, subtraction, multiplication, division, raising to powers, and 
taking roots. Special types of algebraic expressions are called polynomials. A poly-
nomial in one variable x is constructed by adding or subtracting constants and terms 
of the form axn, where a is a real number and n is a natural number. A polynomial 
in two variables x and y is constructed by adding and subtracting constants and 
terms of the form axmyn, where a is a real number and m and n are natural numbers. 
Polynomials in three and more variables are defined in a similar manner.

Polynomials Not Polynomials

8 0
1
x

x - y

x2 + y2

3x3 - 6x + 7 6x + 3

2x2 - 7xy - 8y2 9y3 + 4y2 - y + 4 2x3 - 2x 2x-2 - 3x-1

2x - 3y + 2 u5 - 3u3
v

2 + 2uv

4 - v4
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In addition to classifying polynomials by degree, we also call a single-term poly-
nomial a monomial, a two-term polynomial a binomial, and a three-term polynomial 
a trinomial.

Combining Like Terms
The concept of coefficient plays a central role in the process of combining like terms. 
A constant in a term of a polynomial, including the sign that precedes it, is called the 
numerical coefficient, or simply, the coefficient, of the term. If a constant does not 
appear, or only a +  sign appears, the coefficient is understood to be 1. If only a -  
sign appears, the coefficient is understood to be -1. Given the polynomial

5x4 - x3 - 3x2 + x - 7 = 5x4 + 1-12x3 + 1-32x2 + 1x + 1-72
the coefficient of the first term is 5, the coefficient of the second term is -1, the 
 coefficient of the third term is -3, the coefficient of the fourth term is 1, and the coef-
ficient of the fifth term is -7.

The following distributive properties are fundamental to the process of combin-
ing like terms.

Polynomial forms are encountered frequently in mathematics. For the efficient 
study of polynomials, it is useful to classify them according to their degree. If a term 
in a polynomial has only one variable as a factor, then the degree of the term is the 
power of the variable. If two or more variables are present in a term as factors, then 
the degree of the term is the sum of the powers of the variables. The degree of a 
polynomial is the degree of the nonzero term with the highest degree in the polyno-
mial. Any nonzero constant is defined to be a polynomial of degree 0. The number 0 
is also a polynomial but is not assigned a degree.

Degree
(A) The degree of the first term in 5x3 + 13x - 1

2 is 3, the degree of the second 
term is 1, the degree of the third term is 0, and the degree of the whole polyno-
mial is 3 (the same as the degree of the term with the highest degree).

(B) The degree of the first term in 8u3
v

2 - 17uv

2 is 5, the degree of the second 
term is 3, and the degree of the whole polynomial is 5.

Matched Problem 1
(A) Given the polynomial 6x5 + 7x3 - 2, what is the degree of the first term? The 

second term? The third term? The whole polynomial?

(B) Given the polynomial 2u4
v

2 - 5uv

3, what is the degree of the first term? The 
second term? The whole polynomial?

EXAMPLE 1

THEOREM 2 Distributive Properties of Real Numbers
1. a1b + c2 = 1b + c2a = ab + ac
2. a1b - c2 = 1b - c2a = ab - ac
3. a1b + c + g+ f2 = ab + ac + g+ af

Two terms in a polynomial are called like terms if they have exactly the same 
variable factors to the same powers. The numerical coefficients may or may not be 
the same. Since constant terms involve no variables, all constant terms are like terms. 
If a polynomial contains two or more like terms, these terms can be combined into 
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a single term by making use of distributive properties. The following example illus-
trates the reasoning behind the process:

 3x2y - 5xy2 + x2y - 2x2y = 3x2y + x2y - 2x2y - 5xy2

 = 13x2y + 1x2y - 2x2y2 - 5xy2 

 = 13 + 1 - 22x2y - 5xy2

 = 2x2y - 5xy2

Free use is made of the real number properties discussed in Appendix A.1.
How can we simplify expressions such as 41x - 2y2 - 312x - 7y2? We clear 

the expression of parentheses using distributive properties, and combine like terms:

 41x - 2y2 - 312x - 7y2 = 4x - 8y - 6x + 21y

 = -2x + 13y

 Note the use 
of distributive 
properties.

Removing Parentheses Remove parentheses and simplify:

(A)  213x2 - 2x + 52 + 1x2 + 3x - 72 = 213x2 - 2x + 52 + 11x2 + 3x - 72
 = 6x2 - 4x + 10 + x2 + 3x - 7

 = 7x2 - x + 3

(B) 1x3 - 2x - 62 - 12x3 - x2 + 2x - 32
 = 11x3 - 2x - 62 + 1-1212x3 - x2 + 2x - 32  Be careful with the  

sign here
 = x3 - 2x - 6 - 2x3 + x2 - 2x + 3

 = -x3 + x2 - 4x - 3

(C)  33x2 - 12x + 124 - 1x2 - 12 = 33x2 - 2x - 14 - 1x2 - 12
 = 3x2 - 2x - 1 - x2 + 1

 = 2x2 - 2x
MATCHED PROBLEM 2 Remove parentheses and simplify:

(A) 31u2 - 2v

22 + 1u2 + 5v

22
(B) 1m3 - 3m2 + m - 12 - 12m3 - m + 32
(C) 1x3 - 22 - 32x3 - 13x + 424

EXAMPLE 2

Addition and Subtraction
Addition and subtraction of polynomials can be thought of in terms of removing 
 parentheses and combining like terms, as illustrated in Example 2. Horizontal and 
vertical arrangements are illustrated in the next two examples. You should be able to 
work either way, letting the situation dictate your choice.

Adding Polynomials Add horizontally and vertically:

x4 - 3x3 + x2,  -x3 - 2x2 + 3x,  and 3x2 - 4x - 5

SOLUTION Add horizontally:

1x4 - 3x3 + x22 + 1-x3 - 2x2 + 3x2 + 13x2 - 4x - 52
 = x4 - 3x3 + x2 - x3 - 2x2 + 3x + 3x2 - 4x - 5

 = x4 - 4x3 + 2x2 - x - 5

Or vertically, by lining up like terms and adding their coefficients:

x4 - 3x3 + x2

- x3 - 2x2 + 3x
3x2 - 4x - 5

x4 - 4x3 + 2x2 - x - 5

EXAMPLE 3
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MATCHED PROBLEM 3 Add horizontally and vertically:

3x4 - 2x3 - 4x2,  x3 - 2x2 - 5x,  and x2 + 7x - 2

Subtracting Polynomials Subtract 4x2 - 3x + 5 from x2 - 8, both horizontally 
and vertically.

SOLUTION 1x2 - 82 - 14x2 - 3x + 52 or  x2 - 8

 = x2 - 8 - 4x2 + 3x - 5   -4x2 + 3x - 5

 = -3x2 + 3x - 13    -3x2 + 3x - 13 

d   Change  
signs and  
add.

MATCHED PROBLEM 4 Subtract 2x2 - 5x + 4 from 5x2 - 6, both horizontally 
and vertically.

Multiplication
Multiplication of algebraic expressions involves the extensive use of distributive 
properties for real numbers, as well as other real number properties.

EXAMPLE 4

Multiplying Polynomials Multiply: 12x - 3213x2 - 2x + 32
SOLUTION

 12x - 3213x2 - 2x + 32 = 2x13x2 - 2x + 32 - 313x2 - 2x + 32
 = 6x3 - 4x2 + 6x - 9x2 + 6x - 9

 = 6x3 - 13x2 + 12x - 9
Or, using a vertical arrangement,

3x2 - 2x + 3

2x - 3

6x3 - 4x2 + 6x

- 9x2 + 6x - 9

6x3 - 13x2 + 12x - 9

MATCHED PROBLEM 5 Multiply: 12x - 3212x2 + 3x - 22

EXAMPLE 5

Thus, to multiply two polynomials, multiply each term of one by each term of 
the other, and combine like terms.

Products of binomial factors occur frequently, so it is useful to develop proce-
dures that will enable us to write down their products by inspection. To find the pro-
duct 12x - 1213x + 22 we proceed as follows:

 12x - 1213x + 22 = 6x2 + 4x - 3x - 2

 = 6x2 + x - 2

To speed the process, we do the step in the dashed box mentally.
Products of certain binomial factors occur so frequently that it is useful to learn 

formulas for their products. The following formulas are easily verified by multiplying 
the factors on the left.

  The inner and outer products  
are like terms, so combine into  
a single term.

THEOREM 3 Special Products
1. 1a - b21a + b2 = a2 - b2

2. 1a + b2 2 = a2 + 2ab + b2

3. 1a - b2 2 = a2 - 2ab + b2
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Combined Operations
We complete this section by considering several examples that use all the operations 
just discussed. Note that in simplifying, we usually remove grouping symbols start-
ing from the inside. That is, we remove parentheses 12 first, then brackets 34, and 
finally braces 56, if present. Also, we observe the following order of operations.

Special Products Multiply mentally, where possible.

(A) 12x - 3y215x + 2y2 (B) 13a - 2b213a + 2b2
(C) 15x - 32 2 (D) 1m + 2n2 3

SOLUTION
(A)  12x - 3y215x + 2y2 = 10x2 + 4xy - 15xy - 6y2

 = 10x2 - 11xy - 6y2

(B)  13a - 2b213a + 2b2 = 13a2 2 - 12b2 2

 = 9a2 - 4b2

(C)  15x - 32 2 = 15x2 2 - 215x2132 + 32

 = 25x2 - 30x + 9

(D)  1m + 2n2 3 = 1m + 2n2 21m + 2n2
 = 1m2 + 4mn + 4n221m + 2n2
 = m21m + 2n2 + 4mn1m + 2n2 + 4n21m + 2n2
 = m3 + 2m2n + 4m2n + 8mn2 + 4mn2 + 8n3

 = m3 + 6m2n + 12mn2 + 8n3

MATCHED PROBLEM 6 Multiply mentally, where possible.

(A) 14u - 3v212u + v2 (B) 12xy + 3212xy - 32
(C) 1m + 4n21m - 4n2 (D) 12u - 3v2 2

(E) 12x - y2 3

EXAMPLE 6

DEFINITION Order of Operations
Multiplication and division precede addition and subtraction, and taking powers 
precedes multiplication and division. 

2 # 3 + 4 = 6 + 4 = 10, not 2 # 7 = 14
102

2
=

100
2

= 50, not 52 = 25

Combined Operations Perform the indicated operations and simplify:

(A)  3x - 55 - 33x - x13 - x246 = 3x - 55 - 33x - 3x + x246
 = 3x - 55 - 3x + 9x - 3x26
 = 3x - 5 + 3x - 9x + 3x2

 = 3x2 - 3x - 5
(B)  1x - 2y212x + 3y2 - 12x + y2 2 = 2x2 - xy - 6y2 - 14x2 + 4xy + y22

 = 2x2 - xy - 6y2 - 4x2 - 4xy - y2

 = -2x2 - 5xy - 7y2

MATCHED PROBLEM 7 Perform the indicated operations and simplify:

(A) 2t - 57 - 23t - t14 + t246
(B) 1u - 3v2 2 - 12u - v212u + v2

EXAMPLE 7
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Exercises A.2
Problems 1–8 refer to the following polynomials:

(A) 2x - 3 (B) 2x2 - x + 2 (C) x3 + 2x2 - x + 3

1. What is the degree of (C)?

2. What is the degree of (A)?

3. Add (B) and (C).

4. Add (A) and (B).

5. Subtract (B) from (C).

6. Subtract (A) from (B).

7. Multiply (B) and (C).

8. Multiply (A) and (C).

In Problems 9–30, perform the indicated operations and simplify.

9. 21u - 12 - 13u + 22 - 212u - 32
10. 21x - 12 + 312x - 32 - 14x - 52
11. 4a - 2a35 - 31a + 224
12. 2y - 3y34 - 21y - 124
13. 1a + b21a - b2
14. 1m - n21m + n2
15. 13x - 5212x + 12
16. 14t - 321t - 22
17. 12x - 3y21x + 2y2
18. 13x + 2y21x - 3y2
19. 13y + 2213y - 22
20. 12m - 7212m + 72
21. - 12x - 32 2

22. - 15 - 3x2 2

23. 14m + 3n214m - 3n2
24. 13x - 2y213x + 2y2
25. 13u + 4v2 2

26. 14x - y2 2

27. 1a - b21a2 + ab + b22
28. 1a + b21a2 - ab + b22
29. 31x - y2 + 3z431x - y2 - 3z4
30. 3a - 12b - c243a + 12b - c24
In Problems 31–44, perform the indicated operations and simplify.

31. m - 5m - 3m - 1m - 1246
32. 2x - 35x + 23x - 1x + 524 + 16
33. 1x2 - 2xy + y221x2 + 2xy + y22
34. 13x - 2y2 212x + 5y2
35. 15a - 2b2 2 - 12b + 5a2 2

36. 12x - 12 2 - 13x + 2213x - 22

A

B

37. 1m - 22 2 - 1m - 221m + 22
38. 1x - 321x + 32 - 1x - 32 2

39. 1x - 2y212x + y2 - 1x + 2y212x - y2
40. 13m + n21m - 3n2 - 1m + 3n213m - n2
41. 1u + v2 3

42. 1x - y2 3

43. 1x - 2y2 3

44. 12m - n2 3

45. Subtract the sum of the last two polynomials from the sum 
of the first two: 2x2 - 4xy + y2, 3xy - y2, x2 - 2xy - y2, 
-x2 + 3xy - 2y2

46. Subtract the sum of the first two polynomials from the sum 
of the last two: 3m2 - 2m + 5, 4m2 - m, 3m2 - 3m - 2, 
m3 + m2 + 2

In Problems 47–50, perform the indicated operations and simplify.

47. 312x - 12 2 - x13x + 1242

48. 35x13x + 12 - 512x - 12 242

49. 251x - 321x2 - 2x + 12 - x33 - x1x - 2246
50. -3x5x3x - x12 - x24 - 1x + 221x2 - 326
51. If you are given two polynomials, one of degree m and the 

other of degree n, where m is greater than n, what is the 
degree of their product?

52. What is the degree of the sum of the two polynomials in 
Problem 51?

53. How does the answer to Problem 51 change if the two poly-
nomials can have the same degree?

54. How does the answer to Problem 52 change if the two poly-
nomials can have the same degree?

55. Show by example that, in general, 1a + b2 2 ∙ a2 + b2. 
Discuss possible conditions on a and b that would make this 
a valid equation.

56. Show by example that, in general, 1a - b2 2 ∙ a2 - b2. 
Discuss possible conditions on a and b that would make this 
a valid equation.

Applications
57. Investment. You have $10,000 to invest, part at 9% and the 

rest at 12%. If x is the amount invested at 9%, write an alge-
braic expression that represents the total annual income from 
both investments. Simplify the expression.

58. Investment. A person has $100,000 to invest. If $x are 
invested in a money market account yielding 7% and twice 
that amount in certificates of deposit yielding 9%, and if the 
rest is invested in high-grade bonds yielding 11%, write an 
algebraic expression that represents the total annual income 
from all three investments. Simplify the expression.

C
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59. Gross receipts. Four thousand tickets are to be sold for a 
musical show. If x tickets are to be sold for $20 each and 
three times that number for $30 each, and if the rest are sold 
for $50 each, write an algebraic expression that represents the 
gross receipts from ticket sales, assuming all tickets are sold. 
Simplify the expression.

60. Gross receipts. Six thousand tickets are to be sold for a 
concert, some for $20 each and the rest for $35 each. If x is 
the number of $20 tickets sold, write an algebraic expression 
that represents the gross receipts from ticket sales, assuming 
all tickets are sold. Simplify the expression.

61. Nutrition. Food mix A contains 2% fat, and food mix B 
contains 6% fat. A 10-kilogram diet mix of foods A and B is 
formed. If x kilograms of food A are used, write an algebraic 
expression that represents the total number of kilograms of 
fat in the final food mix. Simplify the expression.

62. Nutrition. Each ounce of food M contains 8 units of calcium, 
and each ounce of food N contains 5 units of calcium. A 
160-ounce diet mix is formed using foods M and N. If x is the 
number of ounces of food M used, write an algebraic expres-
sion that represents the total number of units of calcium in 
the diet mix. Simplify the expression.

Answers to Matched Problems
1. (A) 5, 3, 0, 5 (B) 6, 4, 6
2. (A) 4u2 - v

2 (B) -m3 - 3m2 + 2m - 4
   (C) -x3 + 3x + 2

3. 3x4 - x3 - 5x2 + 2x - 2
4. 3x2 + 5x - 10      5. 4x3 - 13x + 6
6. (A) 8u2 - 2uv - 3v

2 (B) 4x2y2 - 9 (C) m2 - 16n2

(D) 4u2 - 12uv + 9v

2 (E) 8x3 - 12x2y + 6xy2 - y3

7. (A) -2t2 - 4t - 7 (B) -3u2 - 6uv + 10v

2

A.3 Factoring Polynomials
■■ Common Factors
■■ Factoring by Grouping
■■ Factoring Second-Degree 
Polynomials

■■ Special Factoring Formulas
■■ Combined Factoring Techniques

A positive integer is written in factored form if it is written as the product of two 
or more positive integers; for example, 120 = 10 # 12. A positive integer is factored 
completely if each factor is prime; for example, 120 = 2 # 2 # 2 # 3 # 5. (Recall that an 
integer p 7 1 is prime if p cannot be factored as the product of two smaller positive 
integers. So the first ten primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29). A tree dia-
gram is a helpful way to visualize a factorization (Fig 1).

120

2

5

2
2
3

10

12

Figure 1

A polynomial is written in factored form if it is written as the product of two or 
more polynomials. The following polynomials are written in factored form:

 4x2y - 6xy2 = 2xy12x - 3y2  2x3 - 8x = 2x1x - 221x + 22
 x2 - x - 6 = 1x - 321x + 22  5m2 + 20 = 51m2 + 42

Unless stated to the contrary, we will limit our discussion of factoring 
polynomials to polynomials with integer coefficients.

A polynomial with integer coefficients is said to be factored completely if each 
factor cannot be expressed as the product of two or more polynomials with integer 
coefficients, other than itself or 1. All the polynomials above, as we will see by the 
conclusion of this section, are factored completely.

Writing polynomials in completely factored form is often a difficult task. But 
 accomplishing it can lead to the simplification of certain algebraic expressions and to 
the solution of certain types of equations and inequalities. The distributive properties 
for real numbers are central to the factoring process.

Common Factors
Generally, a first step in any factoring procedure is to factor out all factors common 
to all terms.
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Factoring by Grouping
Occasionally, polynomials can be factored by grouping terms in such a way that  
we obtain results that look like Example 1B. We can then complete the factoring 
following the steps used in that example. This process will prove useful in the next 
subsection, where an efficient method is developed for factoring a second-degree 
polynomial as the product of two first-degree polynomials, if such factors exist.

Common Factors Factor out all factors common to all terms.

(A) 3x3y - 6x2y2 - 3xy3

(B) 3y12y + 52 + 212y + 52
SOLUTION
(A)  3x3y - 6x2y2 - 3xy3 = 13xy2x2 - 13xy22xy - 13xy2y2

 = 3xy1x2 - 2xy - y22
(B)  3y12y + 52 + 212y + 52 = 3y12y ∙ 52 + 212y ∙ 52

 = 13y + 2212y + 52
MATCHED PROBLEM 1 Factor out all factors common to all terms.

(A) 2x3y - 8x2y2 - 6xy3 (B) 2x13x - 22 - 713x - 22

EXAMPLE 1

Factoring by Grouping Factor by grouping.

(A) 3x2 - 3x - x + 1

(B) 4x2 - 2xy - 6xy + 3y2

(C) y2 + xz + xy + yz

SOLUTION
(A)  3x2 - 3x - x + 1      Group the first two and the last two terms.

 = 13x2 - 3x2 - 1x - 12  
 = 3x1x ∙ 12 - 1x ∙ 12
 = 1x ∙ 1213x - 12

(B)  4x2 - 2xy - 6xy + 3y2 = 14x2 - 2xy2 - 16xy - 3y22
 = 2x12x ∙ y2 - 3y12x ∙ y2
 = 12x ∙ y212x - 3y2

(C) If, as in parts (A) and (B), we group the first two terms and the last two terms 
of y2 + xz + xy + yz, no common factor can be taken out of each group to 
complete the factoring. However, if the two middle terms are reversed, we can 
proceed as before:

 y2 + xz + xy + yz = y2 + xy + xz + yz

 = 1y2 + xy2 + 1xz + yz2
 = y1y + x2 + z1x + y2
 = y1x ∙ y2 + z1x ∙ y2
 = 1x ∙ y21y + z2

MATCHED PROBLEM 2 Factor by grouping.

(A) 6x2 + 2x + 9x + 3

(B) 2u2 + 6uv - 3uv - 9v

2

(C) ac + bd + bc + ad

EXAMPLE 2

Factor out any common factors from each  
group. The common factor 1x - 12 can be 
taken out, and the factoring is complete.
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Factoring Second-Degree Polynomials
We now turn our attention to factoring second-degree polynomials of the form

2x2 - 5x - 3  and  2x2 + 3xy - 2y2

into the product of two first-degree polynomials with integer coefficients. Since many 
second-degree polynomials with integer coefficients cannot be factored in this way, 
it would be useful to know ahead of time that the factors we are seeking actually ex-
ist. The factoring approach we use, involving the ac test, determines at the beginning 
whether first-degree factors with integer coefficients do exist. Then, if they exist, the 
test provides a simple method for finding them.

THEOREM 1 ac Test for Factorability
If in polynomials of the form

 ax2 + bx + c  or  ax2 + bxy + cy2 (1)

the product ac has two integer factors p and q whose sum is the coefficient b of the 
middle term; that is, if integers p and q exist so that

 pq = ac  and  p + q = b (2)

then the polynomials have first-degree factors with integer coefficients. If no inte-
gers p and q exist that satisfy equations (2), then the polynomials in equations (1) 
will not have first-degree factors with integer coefficients.

If integers p and q exist that satisfy equations (2) in the ac test, the factoring 
 always can be completed as follows: Using b = p + q, split the middle terms in 
equations (1) to obtain

 ax2 + bx + c = ax2 + px + qx + c

 ax2 + bxy + cy2 = ax2 + pxy + qxy + cy2

Complete the factoring by grouping the first two terms and the last two terms as in 
Example 2. This process always works, and it does not matter if the two middle terms 
on the right are interchanged.

Several examples should make the process clear. After a little practice, you will 
perform many of the steps mentally and will find the process fast and efficient.

Factoring Second-Degree Polynomials Factor, if possible, using integer 
 coefficients.

(A) 4x2 - 4x - 3 (B) 2x2 - 3x - 4 (C) 6x2 - 25xy + 4y2

SOLUTION
(A) 4x2 - 4x - 3

Step 1  Use the ac test to test for factorability. Comparing 4x2 - 4x - 3 with 
ax2 + bx + c, we see that a = 4, b = -4, and c = -3. Multiply a and  
c to obtain

ac = 1421-32 = -12

EXAMPLE 3

pq

1121-122
1-121122
1221-62
1-22162
1321-42
1-32142

All factor pairs of  
-12 = ac List all pairs of integers whose product is -12, as shown in the margin. 

These are called factor pairs of -12. Then try to find a factor pair that 
sums to b = -4, the coefficient of the middle term in 4x2 - 4x - 3. (In 
practice, this part of Step 1 is often done mentally and can be done rather 
quickly.) Notice that the factor pair 2 and -6 sums to -4. By the ac test, 
4x2 - 4x - 3 has first-degree factors with integer coefficients.
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Step 2  Split the middle term, using b = p + q, and complete the factoring by group-
ing. Using -4 = 2 + 1-62, we split the middle term in 4x2 - 4x - 3 and 
complete the factoring by grouping:

 4x2 - 4x - 3 = 4x2 + 2x - 6x - 3

 = 14x2 + 2x2 - 16x + 32
 = 2x12x ∙ 12 - 312x ∙ 12
 = 12x ∙ 1212x - 32

The result can be checked by multiplying the two factors to obtain the origi-
nal polynomial.

(B) 2x2 - 3x - 4
Step 1 Use the ac test to test for factorability:

ac = 1221-42 = -8

Does -8 have a factor pair whose sum is -3? None of the factor pairs 
listed in the margin sums to -3 = b, the coefficient of the middle term in 
2x2 - 3x - 4. According to the ac test, we can conclude that 2x2 - 3x - 4 
does not have first-degree factors with integer coefficients, and we say that 
the polynomial is not factorable.

pq

1-12182
1121-82
1-22142
1221-42

All factor pairs of 
-8 = ac

(C) 6x2 - 25xy + 4y2

Step 1 Use the ac test to test for factorability:

ac = 162142 = 24

Mentally checking through the factor pairs of 24, keeping in mind that their 
sum must be -25 = b, we see that if p = -1 and q = -24, then

pq = 1-121-242 = 24 = ac
and

p + q = 1-12 + 1-242 = -25 = b

So the polynomial is factorable.
Step 2  Split the middle term, using b = p + q, and complete the factoring by 

grouping. Using -25 = 1-12 + 1-242, we split the middle term in 
6x2 - 25xy + 4y2 and complete the factoring by grouping:

 6x2 - 25xy + 4y2 = 6x2 - xy - 24xy + 4y2

 = 16x2 - xy2 - 124xy - 4y22
 = x16x - y2 - 4y16x - y2
 = 16x - y21x - 4y2

The check is left to the reader.

MATCHED PROBLEM 3 Factor, if possible, using integer coefficients.

(A) 2x2 + 11x - 6

(B) 4x2 + 11x - 6

(C) 6x2 + 5xy - 4y2

Special Factoring Formulas
The factoring formulas listed in the following box will enable us to factor certain 
polynomial forms that occur frequently. These formulas can be established by multi-
plying the factors on the right.
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! CAUTION   Notice that u2 + v

2 is not included in the list of special factoring 
formulas. In fact,

u2 + v

2 ∙ 1au + bv21cu + dv2
for any choice of real number coefficients a, b, c, and d. 

THEOREM 2 Special Factoring Formulas
Perfect square: 1. u2 + 2uv + v

2 = 1u + v2 2

Perfect square: 2. u2 - 2uv + v

2 = 1u - v2 2

Difference of squares: 3. u2 - v

2 = 1u - v21u + v2
Difference of cubes: 4. u3 - v

3 = 1u - v21u2 + uv + v

22
Sum of cubes: 5. u3 + v

3 = 1u + v21u2 - uv + v

22

Factoring Factor completely.

(A) 4m2 - 12mn + 9n2 (B) x2 - 16y2 (C) z3 - 1

(D) m3 + n3 (E) a2 - 41b + 22 2

SOLUTION
(A) 4m2 - 12mn + 9n2 = 12m - 3n2 2

(B) x2 - 16y2 = x2 - 14y2  2   = 1x - 4y21x + 4y2
(C) z3 - 1 = 1z - 121z2 + z + 12     Use the ac test to verify that z2 + z + 1  

cannot be factored.

(D) m3 + n3 = 1m + n21m2 - mn + n22  Use the ac test to verify that 
m2 - mn + n2 cannot be factored.

(E) a2 - 41b + 22 2 = 3a - 21b + 2243a + 21b + 224

MATCHED PROBLEM 4 Factor completely:

(A) x2 + 6xy + 9y2 (B) 9x2 - 4y2 (C) 8m3 - 1

(D) x3 + y3z3 (E) 91m - 32 2 - 4n2

EXAMPLE 4

Combined Factoring Techniques
We complete this section by considering several factoring problems that involve 
combinations of the preceding techniques.

PROCEDURE Factoring Polynomials
Step 1 Take out any factors common to all terms.
Step 2 Use any of the special formulas listed in Theorem 2 that are applicable.
Step 3 Apply the ac test to any remaining second-degree polynomial factors.

Note: It may be necessary to perform some of these steps more than once. Furthermore, 
the order of applying these steps can vary.

Combined Factoring Techniques Factor completely.

(A) 3x3 - 48x (B) 3u4 - 3u3
v - 9u2

v

2

(C) 3m2 - 24mn3 (D) 3x4 - 5x2 + 2

SOLUTION
(A) 3x3 - 48x = 3x1x2 - 162 = 3x1x - 421x + 42
(B) 3u4 - 3u3

v - 9u2
v

2 = 3u21u2 - uv - 3v

22

EXAMPLE 5
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(C) 3m4 - 24mn3 = 3m1m3 - 8n32 = 3m1m - 2n21m2 + 2mn + 4n22
(D) 3x4 - 5x2 + 2 = 13x2 - 221x2 - 12 = 13x2 - 221x - 121x + 12

MATCHED PROBLEM 5 Factor completely.

(A) 18x3 - 8x

(B) 4m3n - 2m2n2 + 2mn3

(C) 2t4 - 16t

(D) 2y4 - 5y2 - 12

Exercises A.3
 In Problems 1–8, factor out all factors common to all terms.

1. 6m4 - 9m3 - 3m2 2. 6x4 - 8x3 - 2x2

3. 8u3
v - 6u2

v

2 + 4uv

3 4. 10x3y + 20x2y2 - 15xy3

5. 7m12m - 32 + 512m - 32
6. 5x1x + 12 - 31x + 12
7. 4ab12c + d2 - 12c + d2
8. 12a1b - 2c2 - 15b1b - 2c2

In Problems 9–18, factor by grouping.

9. 2x2 - x + 4x - 2 10. x2 - 3x + 2x - 6

11. 3y2 - 3y + 2y - 2 12. 2x2 - x + 6x - 3

13. 2x2 + 8x - x - 4 14. 6x2 + 9x - 2x - 3

15. wy - wz + xy - xz 16. ac + ad + bc + bd

17. am - 3bm + 2na - 6bn 18. ab + 6 + 2a + 3b

 In Problems 19–56, factor completely. If a polynomial cannot be 
factored, say so.

19. 3y2 - y - 2 20. 2x2 + 5x - 3

21. u2 - 2uv - 15v

2 22. x2 - 4xy - 12y2

23. m2 - 6m - 3 24. x2 + x - 4

25. w

2x2 - y2 26. 25m2 - 16n2

27. 9m2 - 6mn + n2 28. x2 + 10xy + 25y2

29. y2 + 16 30. u2 + 81

31. 4z2 - 28z + 48 32. 6x2 + 48x + 72

33. 2x4 - 24x3 + 40x2 34. 2y3 - 22y2 + 48y

35. 4xy2 - 12xy + 9x 36. 16x2y - 8xy + y

37. 6m2 - mn - 12n2 38. 6s2 + 7st - 3t2

39. 4u3
v - uv

3 40. x3y - 9xy3

41. 2x3 - 2x2 + 8x 42. 3m3 - 6m2 + 15m

43. 8x3 - 27y3 44. 5x3 + 40y3

45. x4y + 8xy 46. 8a3 - 1

47. 1x + 22 2 - 9y2 48. 1a - b2 2 - 41c - d2 2

A

B

C

49. 5u2 + 4uv - 2v

2 50. 3x2 - 2xy - 4y2

51. 61x - y2 2 + 231x - y2 - 4

52. 41A + B2 2 - 51A + B2 - 6

53. y4 - 3y2 - 4

54. m4 - n4

55. 15y1x - y2 3 + 12x1x - y2 2

56. 15x213x - 12 4 + 60x313x - 12 3

In Problems 57–60, discuss the validity of each statement. If the 
statement is true, explain why. If not, give a counterexample.

57. If n is a positive integer greater than 1, then un - v

n can be 
factored.

58. If m and n are positive integers and m ∙ n, then um - v

n is 
not factorable.

59. If n is a positive integer greater than 1, then un + v

n can be 
factored.

60. If k is a positive integer, then u2k + 1 + v

2k + 1 can be factored.

Answers to Matched Problems

1. (A) 2xy1x2 - 4xy - 3y22 (B) 12x - 7213x - 22
2. (A) 13x + 1212x + 32 (B) 1u + 3v212u - 3v2
   (C) 1a + b21c + d2
3. (A) 12x - 121x + 62 (B) Not factorable

   (C) 13x + 4y212x - y2
4. (A) 1x + 3y2 2 (B) 13x - 2y213x + 2y2
   (C) 12m - 1214m2 + 2m + 12
   (D) 1x + yz21x2 - xyz + y2z22
    (E) 331m - 32 - 2n4331m - 32 + 2n4
5. (A) 2x13x - 2213x + 22 (B) 2mn12m2 - mn + n22
   (C) 2t1t - 221t2 + 2t + 42
   (D) 12y2 + 321y - 221y + 22
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For example, given the rational expression

2x + 5
x1x + 221x - 32

the variable x is understood to be restricted from being 0, -2, or 3, since these values 
would cause the denominator to be 0.

Reducing to Lowest Terms
Central to the process of reducing rational expressions to lowest terms is the funda-
mental property of fractions, which we restate here for convenient reference:

We now turn our attention to fractional forms. A quotient of two algebraic expres-
sions (division by 0 excluded) is called a fractional expression. If both the numerator 
and the denominator are polynomials, the fractional expression is called a rational 
 expression. Some examples of rational expressions are

1

x3 + 2x
  

5
x
  

x + 7

3x2 - 5x + 1
  

x2 - 2x + 4
1

In this section, we discuss basic operations on rational expressions. Since variables 
represent real numbers in the rational expressions we will consider, the properties of 
real number fractions summarized in Appendix A.1 will play a central role.

A.4 Operations on Rational Expressions
■■ Reducing to Lowest Terms
■■ Multiplication and Division
■■ Addition and Subtraction
■■ Compound Fractions

AGREEMENT Variable Restriction
Even though not always explicitly stated, we always assume that variables are 
 restricted so that division by 0 is excluded.

THEOREM 1 Fundamental Property of Fractions
If a, b, and k are real numbers with b, k ∙ 0, then

ka
kb

=
a
b

 
5 # 2
5 # 7

=
2
7
  

x1x + 42
21x + 42 =

x
2

# x ∙ -4

Using this property from left to right to eliminate all common factors from the 
numerator and the denominator of a given fraction is referred to as reducing a frac-
tion to lowest terms. We are actually dividing the numerator and denominator by the 
same nonzero common factor.

Using the property from right to left—that is, multiplying the numerator and de-
nominator by the same nonzero factor—is referred to as raising a fraction to higher 
terms. We will use the property in both directions in the material that follows.

Reducing to Lowest Terms Reduce each fraction to lowest terms.

(A) 
1 # 2 # 3 # 4

1 # 2 # 3 # 4 # 5 # 6
=

1 # 2 # 3 # 4
1 # 2 # 3 # 4 # 5 # 6

=
1

5 # 6
=

1
30

(B) 
2 # 4 # 6 # 8
1 # 2 # 3 # 4

=
2
2 # 4

2 # 6
2 # 8

2

1 # 2 # 3 # 4
= 2 # 2 # 2 # 2 = 16

MATCHED PROBLEM 1 Reduce each fraction to lowest terms.

(A) 
1 # 2 # 3 # 4 # 5
1 # 2 # 1 # 2 # 3

(B) 
1 # 4 # 9 # 16
1 # 2 # 3 # 4

EXAMPLE 1
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Using Theorem 1 to divide the numerator and denominator of a fraction by a common 
factor is often referred to as canceling. This operation can be denoted by drawing a 
slanted line through each common factor and writing any remaining factors above or 
below the common factor. Canceling is often incorrectly applied to individual terms in 
the numerator or denominator, instead of to common factors. For example,

 
14 - 5

2
=

9
2

 
 Theorem 1 does not apply. There are no common  
factors in the numerator.

 
14 - 5

2
∙

14
7

- 5
2
1

= 2 
 Incorrect use of Theorem 1. To cancel 2  
in the denominator, 2 must be a factor of  
each term in the numerator.

CONCEPTUAL  INSIGHT

Reducing to Lowest Terms Reduce each rational expression to lowest terms.

(A)  
6x2 + x - 1

2x2 - x - 1
=

12x + 1213x - 12
12x + 121x - 12   Factor numerator and denominator  

completely.

 =
3x - 1
x - 1

  Divide numerator and denominator by  
the common factor 12x + 12.

(B)  
x4 - 8x

3x3 - 2x2 - 8x
=

x1x - 221x2 + 2x + 42
x1x - 2213x + 42

 =
x2 + 2x + 4

3x + 4
MATCHED PROBLEM 2 Reduce each rational expression to lowest terms.

(A) 
x2 - 6x + 9

x2 - 9
(B) 

x3 - 1

x2 - 1

EXAMPLE 2

Multiplication and Division
Since we are restricting variable replacements to real numbers, multiplication and 
division of rational expressions follow the rules for multiplying and dividing real 
number fractions summarized in Appendix A.1.

THEOREM 2 Multiplication and Division
If a, b, c, and d are real numbers, then

1. 
a
b

# c
d

=
ac
bd

,  b, d ∙ 0    
3
5

# x
x + 5

=
3x

51x + 52

2. 
a
b

,
c
d

=
a
b

# d
c

,  b, c, d ∙ 0 
3
5

,
x

x + 5
=

3
5

# x + 5
x

Multiplication and Division Perform the indicated operations and reduce to 
 lowest terms.

(A) 
10x3y

3xy + 9y
# x2 - 9

4x2 - 12x
 

 Factor numerators and denominators. Then divide  
any numerator and any denominator with a like  
common factor.

 =
10x3

5x2

y

3y1x + 32
3 # 1

# 1x - 321x + 321 # 1

4x1x - 32
2 # 1

 =
5x2

6

EXAMPLE 3
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(B) 
4 - 2x

4
, 1x - 22 =

2
112 - x2

4
2

# 1
x - 2

 x - 2 =
x - 2

1

=
2 - x

21x - 22 =
- 1x - 22-1

21x - 22
1

       b - a = - 1a - b2, a useful 
change in some problems

= -  
1
2

MATCHED PROBLEM 3 Perform the indicated operations and reduce to lowest terms.

(A) 
12x2y3

2xy2 + 6xy
# y2 + 6y + 9

3y3 + 9y2 (B) 14 - x2 ,
x2 - 16

5

Addition and Subtraction
Again, because we are restricting variable replacements to real numbers, addition and 
subtraction of rational expressions follow the rules for adding and subtracting real 
number fractions.

THEOREM 3 Addition and Subtraction
For a, b, and c real numbers,

1. 
a
b

+
c
b

=
a + c

b
,  b ∙ 0 

x
x + 5

+
8

x + 5
=

x + 8
x + 5

2. 
a
b

-
c
b

=
a - c

b
,  b ∙ 0 

x

3x2y2 -
x + 7

3x2y2 =
x - 1x + 72

3x2y2

We add rational expressions with the same denominators by adding or subtract-
ing their numerators and placing the result over the common denominator. If the 
denominators are not the same, we raise the fractions to higher terms, using the fun-
damental property of fractions to obtain common denominators, and then proceed as 
described.

Even though any common denominator will do, our work will be simplified if the 
least common denominator (LCD) is used. Often, the LCD is obvious, but if it is not, 
the steps in the next box describe how to find it.

PROCEDURE Least Common Denominator
The least common denominator (LCD) of two or more rational expressions is found 
as follows:

1. Factor each denominator completely, including integer factors.
2. Identify each different factor from all the denominators.
3. Form a product using each different factor to the highest power that occurs in any 

one denominator. This product is the LCD.

Addition and Subtraction Combine into a single fraction and reduce to lowest 
terms.

(A) 
3

10
+

5
6

-
11
45

(B) 
4
9x

-
5x

6y2 + 1 (C) 
1

x - 1
-

1
x

-
2

x2 - 1

EXAMPLE 4
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SOLUTION
(A) To find the LCD, factor each denominator completely:

10 = 2 # 5
6 = 2 # 3

45 = 32 # 5
s  LCD = 2 # 32 # 5 = 90

Now use the fundamental property of fractions to make each denominator 90:

 
3

10
+

5
6

-
11
45

=
9 # 3

9 # 10
+

15 # 5
15 # 6

-
2 # 11
2 # 45

 =
27
90

+
75
90

-
22
90

 =
27 + 75 - 22

90
=

80
90

=
8
9

(B) 
9x = 32x

6y2 = 2 # 3y2 f  LCD = 2 # 32xy2 = 18xy2

 
4
9x

-
5x

6y2 + 1 =
2y2 # 4

2y2 # 9x
-

3x # 5x

3x # 6y2 +
18xy2

18xy2

 =
8y2 - 15x2 + 18xy2

18xy2

(C) 
1

x - 1
-

1
x

-
2

x2 - 1

=
1

x - 1
-

1
x

-
2

1x - 121x + 12    LCD = x1x - 121x + 12

=
x1x + 12 - 1x - 121x + 12 - 2x

x1x - 121x + 12

=
x2 + x - x2 + 1 - 2x

x1x - 121x + 12
=

1 - x
x1x - 121x + 12

=
- 1x - 12-1

x1x - 121x + 12
1

=
-1

x1x + 12

MATCHED PROBLEM 4 Combine into a single fraction and reduce to lowest terms.

(A) 
5

28
-

1
10

+
6

35
(B) 

1

4x2 -
2x + 1

3x3 +
3

12x

(C) 
2

x2 - 4x + 4
+

1
x

-
1

x - 2

Compound Fractions
A fractional expression with fractions in its numerator, denominator, or both is called 
a compound fraction. It is often necessary to represent a compound fraction as a 
simple fraction—that is (in all cases we will consider), as the quotient of two poly-
nomials. The process does not involve any new concepts. It is a matter of applying 
old concepts and processes in the correct sequence.
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Simplifying Compound Fractions Express as a simple fraction reduced to lowest 
terms:

(A) 

1
5 + h

-
1
5

h
(B) 

y

x2 -
x

y2

y
x

-
x
y

SOLUTION We will simplify the expressions in parts (A) and (B) using two differ-
ent methods—each is suited to the particular type of problem.

(A) We simplify this expression by combining the numerator into a single fraction 
and using division of rational forms.

 

1
5 + h

-
1
5

h
= c 1

5 + h
-

1
5
d ,

h
1

 =
5 - 5 - h
515 + h2  ~ 

1
h

 =
-h

515 + h2h
=

-1
515 + h2

(B) The method used here makes effective use of the fundamental property of 
fractions in the form

a
b

=
ka
kb
  b, k ∙ 0

Multiply the numerator and denominator by the LCD of all fractions in the 
 numerator and denominator—in this case, x2y2:

 

x2y2a y

x2 -
x

y2 b

x2y2a y
x

-
x
y
b

=
x2y2 

y

x2 - x2y2 
x

y2

x2y2 
y
x

- x2y2  
x
y

=
y3 - x3

xy3 - x3y

 =
1y - x21 1y2 + xy + x22

xy1y - x21y + x2
1

 =
y2 + xy + x2

xy1y + x2   or  
x2 + xy + y2

xy1x + y2

MATCHED PROBLEM 5 Express as a simple fraction reduced to lowest terms:

(A) 

1
2 + h

-
1
2

h
(B) 

a
b

-
b
a

a
b

+ 2 +
b
a

EXAMPLE 5

Exercises A.4
 In Problems 1–22, perform the indicated operations and reduce 
answers to lowest terms.

1. 
5 # 9 # 13
3 # 5 # 7

2. 
10 # 9 # 8
3 # 2 # 1

A 3. 
12 # 11 # 10 # 9

4 # 3 # 2 # 1
4. 

15 # 10 # 5
20 # 15 # 10

5. 
d5

3a
, a d2

6a2
# a

4d3 b 6. a d5

3a
,

d2

6a2 b # a

4d3
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7. 
x2

12
+

x
18

-
1
30

8. 
2y

18
-

-1
28

-
y

42

9. 
4m - 3

18m3 +
3

4m
-

2m - 1

6m2

10. 
3x + 8

4x2 -
2x - 1

x3 -
5
8x

11. 
x2 - 9

x2 - 3x
, 1x2 - x - 122

12. 
2x2 + 7x + 3

4x2 - 1
, 1x + 32

13. 
2
x

-
1

x - 3
14. 

5
m - 2

-
3

2m + 1

15. 
2

1x + 12 2 -
5

x2 - x - 2

16. 
3

x2 - 5x + 6
-

5

1x - 22 2

17. 
x + 1
x - 1

- 1 18. m - 3 -
m - 1
m - 2

19. 
3

a - 1
-

2
1 - a

20. 
5

x - 3
-

2
3 - x

21. 
2x

x2 - 16
-

x - 4

x2 + 4x
22. 

m + 2

m2 - 2m
-

m

m2 - 4

 In Problems 23–34, perform the indicated operations and  
reduce answers to lowest terms. Represent any compound 
 fractions as simple fractions reduced to lowest terms.

23. 
x2

x2 + 2x + 1
+

x - 1
3x + 3

-
1
6

24. 
y

y2 - y - 2
-

1

y2 + 5y - 14
-

2

y2 + 8y + 7

25. 
1 -

x
y

2 -
y

x

B

In Problems 35–42, imagine that the indicated “solutions” were 
given to you by a student whom you were tutoring in this class.

(A) Is the solution correct? If the solution is incorrect, explain 
what is wrong and how it can be corrected.

(B) Show a correct solution for each incorrect solution.

35. 
x2 + 4x + 3

x + 3
=

x2 + 4x
x

= x + 4

36. 
x2 - 3x - 4

x - 4
=

x2 - 3x
x

= x - 3

37. 
1x + h2 2 - x2

h
= 1x + 12 2 - x2 = 2x + 1

38. 
1x + h2 3 - x3

h
= 1x + 12 3 - x3 = 3x2 + 3x + 1

39. 
x2 - 3x

x2 - 2x - 3
+ x - 3 =

x2 - 3x + x - 3

x2 - 2x - 3
= 1

40. 
2

x - 1
-

x + 3

x2 - 1
=

2x + 2 - x - 3

x2 - 1
=

1
x + 1

41. 
2x2

x2 - 4
-

x
x - 2

=
2x2 - x2 - 2x

x2 - 4
=

x
x + 2

42. x +
x - 2

x2 - 3x + 2
=

x + x - 2

x2 - 3x + 2
=

2
x - 2

 Represent the compound fractions in Problems 43–46 as simple 
fractions reduced to lowest terms.

43. 

1

31x + h2 2 -
1

3x2

h

44. 

1

1x + h2 2 -
1

x2

h

45. x -
2

1 -
1
x

46. 2 -
1

1 -
2

a + 2

Answers to Matched Problems

1. (A) 10 (B) 24

2. (A) 
x - 3
x + 3

(B) 
x2 + x + 1

x + 1

3. (A) 2x (B) 
-5

x + 4

4. (A) 
1
4

(B) 
3x2 - 5x - 4

12x3 (C) 
4

x1x - 22 2

5. (A) 
-1

212 + h2 (B) 
a - b
a + b

C

26. 
2

5 -
3

4x + 1

27. 
c + 2
5c - 5

-
c - 2
3c - 3

+
c

1 - c

28. 
x + 7

ax - bx
+

y + 9

by - ay

29. 
1 +

3
x

x -
9
x

30. 
1 -

y2

x2

1 -
y

x

31. 

1
21x + h2 -

1
2x

h
32. 

1
x + h

-
1
x

h

33. 

x
y

- 2 +
y

x

x
y

-
y

x

34. 
1 +

2
x

-
15

x2

1 +
4
x

-
5

x2
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706 APPENDIX A Basic Algebra Review

We now review basic operations on integer exponents and scientific notation.

Integer Exponents

A.5 Integer Exponents and Scientific Notation
■■ Integer Exponents
■■ Scientific Notation

THEOREM 1 Exponent Properties
For n and m integers and a and b real numbers,

1. aman = am + n        a8a-3 = a8 + 1-32 = a5

2. 1an2m = amn        1a-22 3 = a31-22 = a-6

3. 1ab2m = ambm       1ab2 -2 = a-2b-2

4. aa
b
b

m

=
am

bm b ∙ 0     aa
b
b

5

=
a5

b5

5. 
am

an = am - n =
1

an - m a ∙ 0 
a-3

a7 =
1

a7 - 1-32 =
1

a10

Exponents are frequently encountered in algebraic applications. You should 
sharpen your skills in using exponents by reviewing the preceding basic definitions 
and properties and the examples that follow.

Simplifying Exponent Forms Simplify, and express the answers using positive 
exponents only.

(A) 12x3213x52 = 2 # 3x3 + 5 = 6x8

(B) x5x-9 = x-4 =
1

x4

(C) 
x5

x7 = x5 - 7 = x-2 =
1

x2 or 
x5

x7 =
1

x7 - 5 =
1

x2

EXAMPLE 1

DEFINITION Integer Exponents
For n an integer and a a real number:

1. For n a positive integer,

an = a # a # g # a n factors of a 54 = 5 # 5 # 5 # 5

2. For n = 0,
a0 = 1 a ∙ 0 120 = 1

00 is not defined.

3. For n a negative integer,

an =
1

a-n a ∙ 0 a-3 =
1

a-1-32 =
1

a3

[If n is negative, then 1-n2 is positive.]

Note: It can be shown that for all integers n,

a-n =
1
an and an =

1
a-n a ∙ 0 a5 =

1

a-5′ a-5 =
1

a5

The following properties are very useful in working with integer exponents.
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(D) 
x-3

y-4 =
y4

x3

(E) 1u-3
v

22 -2 = 1u-32 -21v

22 -2 = u6
v

-4 =
u6

v

4

(F) a y-5

y-2 b
-2

=
1y-52 -2

1y-22 -2 =
y10

y4 = y6

(G) 
4m-3n-5

6m-4n3 =
2m-3 - 1-42

3n3 - 1-52 =
2m

3n8

MATCHED PROBLEM 1 Simplify, and express the answers using positive expo-
nents only.

(A) 13y4212y32 (B) m2m-6 (C) 1u3
v

-22 -2

(D) a y-6

y-2 b
-1

(E) 
8x-2y-4

6x-5y2

Converting to a Simple Fraction Write 
1 - x

x-1 - 1
 as a simple fraction with posi-

tive exponents.

SOLUTION First note that

1 - x

x-1 - 1
∙

x11 - x2
-1

 A common error

The original expression is a compound fraction, and we proceed to simplify it as 
follows:

1 - x

x-1 - 1
=

1 - x
1
x

- 1
  Multiply numerator and denominator  

by x to clear internal fractions.

=
x11 - x2
xa1

x
- 1b

=
x11 - x2

1 - x
= x

MATCHED PROBLEM 2 Write 
1 + x-1

1 - x-2 as a simple fraction with positive exponents.

EXAMPLE 2

Scientific Notation
In the real world, one often encounters very large and very small numbers. For 
example,

• The public debt in the United States in 2016, to the nearest billion dollars, was

$19,573,000,000,000

• The world population in the year 2025, to the nearest million, is projected to be

7,947,000,000

•  The sound intensity of a normal conversation is

0.000 000 000 316 watt per square centimeter
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708 APPENDIX A Basic Algebra Review

It is generally troublesome to write and work with numbers of this type in stan-
dard decimal form. The first and last example cannot even be entered into many cal-
culators as they are written. But with exponents defined for all integers, we can now 
express any finite decimal form as the product of a number between 1 and 10 and an 
integer power of 10, that is, in the form

a * 10n  1 … a 6 10, a in decimal form, n an integer

A number expressed in this form is said to be in scientific notation. The follow-
ing are some examples of numbers in standard decimal notation and in scientific 
notation:

Decimal and Scientific Notation

7 = 7 * 100 0.5 = 5 * 10-1

67 = 6.7 * 10 0.45 = 4.5 * 10-1

580 = 5.8 * 102 0.0032 = 3.2 * 10-3

43,000 = 4.3 * 104 0.000 045 = 4.5 * 10-5

73,400,000 = 7.34 * 107 0.000 000 391 = 3.91 * 10-7

Note that the power of 10 used corresponds to the number of places we move the 
decimal to form a number between 1 and 10. The power is positive if the decimal is 
moved to the left and negative if it is moved to the right. Positive exponents are as-
sociated with numbers greater than or equal to 10, negative exponents are associated 
with positive numbers less than 1, and a zero exponent is associated with a number 
that is 1 or greater but less than 10.

Scientific Notation
(A) Write each number in scientific notation:

 7,320,000 and 0.000 000 54

(B) Write each number in standard decimal form:

4.32 * 106 and 4.32 * 10-5

SOLUTION
(A) 7,320,000 = 7.320 000. * 106   = 7.32 * 106

6 places left
Positive exponent

0.000 000 54 = 0.000 000 5.4 * 10-7  = 5.4 * 10-7

7 places right
Negative exponent

(B) 4.32 * 106 = 4,320,000  4.32 * 10-5 =
4.32

105 = 0.000 043 2
6 places right

5 places left
Positive exponent 6 Negative exponent -5

Matched Problem 3
(A) Write each number in scientific notation: 47,100; 2,443,000,000; 1.45

(B) Write each number in standard decimal form: 3.07 * 108; 5.98 * 10-6

EXAMPLE 3
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Exercises A.5
 In Problems 1–14, simplify and express answers using positive 
exponents only. Variables are restricted to avoid division by 0.

1. 2x-9 2. 3y-5 3. 
3

2w

-7

4. 
5

4x-9
5. 2x-8x5 6. 3c-9c4

7. 
w

-8

w

-3 8. 
m-11

m-5 9. 12a-32 2

10. 7d-4d4 11. 1a-32 2 12. 15b-22 2

13. 12x42 -3 14. 1a-3b42 -3

In Problems 15–20, write each number in scientific notation.

15. 82,300,000,000 16. 5,380,000

17. 0.783 18. 0.019

19. 0.000 034 20. 0.000 000 007 832

In Problems 21–28, write each number in standard decimal 
 notation.

21. 4 * 104 22. 9 * 106

23. 7 * 10-3 24. 2 * 10-5

25. 6.171 * 107 26. 3.044 * 103

27. 8.08 * 10-4 28. 1.13 * 10-2

 In Problems 29–38, simplify and express answers using positive 
exponents only. Assume that variables are nonzero.

29. 122 + 312 0 30. 12x3y42 0

31. 
10-3 # 104

10-11 # 10-2 32. 
10-17 # 10-5

10-3 # 10-14

33. 15x2y-32 -2 34. 12m-3n22 -3

35. a -5

2x3 b
-2

36. a 2a

3b2 b
-3

37. 
8x-3y-1

6x2y-4 38. 
9m-4n3

12m-1n-1

In Problems 39–42, write each expression in the form axp + bxq 
or axp + bxq + cxr, where a, b, and c are real numbers and p, q, 
and r are integers. For example,

2x4 - 3x2 + 1

2x3  =
2x4

2x3 -
3x2

2x3 +
1

2x3 = x -
3
2

x-1 +
1
2

x-3

39. 
7x5 - x2

4x5 40. 
5x3 - 2

3x2

41. 
5x4 - 3x2 + 8

2x2 42. 
2x3 - 3x2 + x

2x2

Write each expression in Problems 43–46 with positive exponents 
only, and as a single fraction reduced to lowest terms.

43. 
3x21x - 12 2 - 2x31x - 12

1x - 12 4

44. 
5x41x + 32 2 - 2x51x + 32

1x + 32 4

A

B

45. 2x-21x - 12 - 2x-31x - 12 2

46. 2x1x + 32 -1 - x21x + 32 -2

In Problems 47–50, convert each number to scientific notation 
and simplify. Express the answer in both scientific notation and in 
standard decimal form.

47. 
9,600,000,000

11,600,000210.000 000 252

48. 
160,000210.000 0032
10.0004211,500,0002

49. 
11,250,000210.000 382

0.0152

50. 
10.000 000 8221230,0002

1625,000210.00822
51. What is the result of entering 232

 on a calculator?

52. Refer to Problem 51. What is the difference between 21322 and 
1232 2? Which agrees with the value of 232

 obtained with a 
calculator?

53. If n = 0, then property 1 in Theorem 1 implies that 
ama0 = am + 0 = am. Explain how this helps motivate the 
definition of a0.

54. If m = -n, then property 1 in Theorem 1 implies that 
a-nan = a0 = 1. Explain how this helps motivate the defini-
tion of a-n.

 Write the fractions in Problems 55–58 as simple fractions 
 reduced to lowest terms.

55. 
u + v

u-1 + v

-1 56. 
x-2 - y-2

x-1 + y-1

57. 
b-2 - c-2

b-3 - c-3 58. 
xy-2 - yx-2

y-1 - x-1

Applications
Problems 59 and 60 refer to Table 1.

Table 1 U.S. Public Debt, Interest on Debt, and Population

Year Public Debt ($) Interest on Debt ($) Population

2000 5,674,000,000,000 362,000,000,000 281,000,000
2016 19,573,000,000,000 433,000,000,000 323,000,000

59. Public debt. Carry out the following computations using scien-
tific notation, and write final answers in standard decimal form.

(A) What was the per capita debt in 2016 (to the nearest 
dollar)?

(B) What was the per capita interest paid on the debt in 2016 
(to the nearest dollar)?

(C) What was the percentage interest paid on the debt in 
2016 (to two decimal places)?

C
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60. Public debt. Carry out the following computations using sci-
entific notation, and write final answers in standard decimal 
form.

(A) What was the per capita debt in 2000 (to the nearest 
dollar)?

(B) What was the per capita interest paid on the debt in 2000 
(to the nearest dollar)?

(C) What was the percentage interest paid on the debt in 
2000 (to two decimal places)?

Air pollution. Air quality standards establish maximum amounts 
of pollutants considered acceptable in the air. The amounts are 
frequently given in parts per million (ppm). A standard of 30 ppm 
also can be expressed as follows:

 30 ppm =
30

1,000,000
=

3 * 10

106

 = 3 * 10-5 = 0.000 03 = 0.003%

In Problems 61 and 62, express the given standard:

(A) In scientific notation

(B) In standard decimal notation

(C) As a percent

61. 9 ppm, the standard for carbon monoxide, when averaged 
over a period of 8 hours

62. 0.03 ppm, the standard for sulfur oxides, when averaged over 
a year

63. Crime. In 2015, the United States had a violent crime rate of 
373 per 100,000 people and a population of 320 million peo-
ple. How many violent crimes occurred that year? Compute 
the answer using scientific notation and convert the answer to 
standard decimal form (to the nearest thousand).

64. Population density. The United States had a 2016 popu-
lation of 323 million people and a land area of 3,539,000 
square miles. What was the population density? Compute the 
answer using scientific notation and convert the answer to 
standard decimal form (to one decimal place).

Answers to Matched Problems

1.  (A) 6y7 (B) 
1

m4 (C) 
v

4

u6

     (D) y4 (E) 
4x3

3y6

2.   
x

x - 1

3.  (A) 4.7 * 104; 2.443 * 109; 1.45 * 100

    (B) 307,000,000; 0.000 005 98

Square roots may now be generalized to nth roots, and the meaning of exponent may 
be generalized to include all rational numbers.

nth Roots of Real Numbers
Consider a square of side r with area 36 square inches. We can write

r2 = 36

and conclude that side r is a number whose square is 36. We say that r is a square 
root of b if r2 = b. Similarly, we say that r is a cube root of b if r3 = b. And, in 
general,

A.6 Rational Exponents and Radicals
■■ nth Roots of Real Numbers
■■ Rational Exponents and Radicals
■■ Properties of Radicals

DEFINITION nth Root
For any natural number n,

r is an nth root of b if rn = b

So 4 is a square root of 16, since 42 = 16; -2 is a cube root of -8, since 
1-22 3 = -8. Since 1-42 2 = 16, we see that -4 is also a square root of 16. It can 
be shown that any positive number has two real square roots; two real 4th roots; and, 
in general, two real nth roots if n is even. Negative numbers have no real square roots; 
no real 4th roots; and, in general, no real nth roots if n is even. The reason is that no 
real number raised to an even power can be negative. For odd roots, the situation is 
simpler. Every real number has exactly one real cube root; one real 5th root; and, in 
general, one real nth root if n is odd.
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Additional roots can be considered in the complex number system. In this book, 
we restrict our interest to real roots of real numbers, and root will always be inter-
preted to mean “real root.”

Rational Exponents and Radicals
We now turn to the question of what symbols to use to represent nth roots. For n a 
natural number greater than 1, we use

b1>n or 2n
b

to represent a real nth root of b. The exponent form is motivated by the fact that 
1b1>n2 n = b if exponent laws are to continue to hold for rational exponents. The 
other form is called an nth root radical. In the expression below, the symbol 2  is 
called a radical, n is the index of the radical, and b is the radicand:2n

b 

When the index is 2, it is usually omitted. That is, when dealing with square roots, 
we simply use 1b rather than 22 b. If there are two real nth roots, both b1>n and 2n

b 
denote the positive root, called the principal nth root.

Index  Radical  

Radicand

Finding nth Roots Evaluate each of the following:

(A) 41>2 and 24 (B) -41>2 and - 24 (C) 1-42 1>2 and 1-4

(D) 81>3 and 23 8 (E) 1-82 1>3 and 23 -8 (F) -81>3 and - 23 8

SOLUTION
(A) 41>2 = 14 = 2 114 ∙ {22 (B) -41>2 = - 14 = -2

(C) 1-42 1>2 and 1-4 are not real numbers

(D) 81>3 = 23 8 = 2 (E) 1-82 1>3 = 23 -8 = -2

(F) -81>3 = - 23 8 = -2

MATCHED PROBLEM 1 Evaluate each of the following:

(A) 161>2 (B) - 116 (C) 23 -27 (D) 1-92 1>2 (E) 124 812 3

EXAMPLE 1

! CAUTION
 The symbol 24 represents the single number 2, not {2. Do not 
confuse 24 with the solutions of the equation x2 = 4, which are 

usually written in the form x = {14 = {2. 

We now define br for any rational number r = m>n. 

DEFINITION Rational Exponents
If m and n are natural numbers without common prime factors, b is a real number, 
and b is nonnegative when n is even, then

bm>n = e 1b1>n2 m = 12n
b2m

1bm2 1>n = 2n
bm  

82>3 = 181>32 2 = (23 8)2 = 22 = 4
82>3 = 1822 1>3 = 23 82 = 23 64 = 4

and

b - m>n =
1

bm>n b ∙ 0 8 - 2>3 =
1

82>3 =
1
4

Note that the two definitions of bm>n are equivalent under the indicated restrictions  
on m, n, and b.
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All the properties for integer exponents listed in Theorem 1 in Section A.5 also 
hold for rational exponents, provided that b is nonnegative when n is even. This 
restriction on b is necessary to avoid nonreal results. For example,

1-42 3>2 = 21-42 3 = 2-64 Not a real number

To avoid nonreal results, all variables in the remainder of this discussion represent 
positive real numbers.

CONCEPTUAL  INSIGHT

From Rational Exponent Form to Radical Form and Vice Versa Change rational 
exponent form to radical form.

(A) x1>7 = 27 x

(B) 13u2
v

32 3>5 = 25 13u2
v

32 3 or 125 3u2
v

32 3 The first is usually preferred.

(C) y - 2>3 =
1

y2>3 =
123 y2

 or 23 y - 2 or A3 1

y2

Change radical form to rational exponent form.

(D) 25 6 = 61>5 (E) - 23 x2 = -x2>3

(F) 2x2 + y2 = 1x2 + y22 1>2 Note that 1x2 + y22 1>2 ∙ x + y. Why?

MATCHED PROBLEM 2 Convert to radical form.

(A) u1>5 (B) 16x2y52 2>9 (C) 13xy2 - 3>5

Convert to rational exponent form.

(D) 24 9u (E) - 27 12x2 4 (F) 23 x3 + y3

EXAMPLE 2

Working with Rational Exponents Simplify each and express answers using 
positive exponents only. If rational exponents appear in final answers, convert to 
radical form.

(A) 13x1>3212x1>22 = 6x1>3 + 1>2 = 6x5>6 = 626 x5

(B) 1-82 5>3 = 31-82 1>345 = 1-22 5 = -32

(C) 12x1>3y - 2>32 3 = 8xy - 2 =
8x

y2

(D) a4x1>3

x1>2 b
1>2

=
41>2x1>6

x1>4 =
2

x1>4 - 1>6 =
2

x1>12
=

2212
x

MATCHED PROBLEM 3 Simplify each and express answers using positive expo-
nents only. If rational exponents appear in final answers, convert to radical form.

(A) 93>2 (B) 1-272 4>3 (C) 15y1>4212y1>32
(D) 12x - 3>4y1>42 4

(E) a8x1>2

x2>3 b
1>3

EXAMPLE 3

Working with Rational Exponents Multiply, and express answers using positive 
exponents only.

(A) 3y2>312y1>3 - y22 (B) 12u1>2 + v

1>221u1>2 - 3v

1>22
SOLUTION
(A)  3y2>312y1>3 - y22 = 6y2>3 + 1>3 - 3y2>3 + 2

 = 6y - 3y8>3

(B) 12u1>2 + v

1>221u1>2 - 3v

1>22 = 2u - 5u1>2
v

1>2 - 3v

EXAMPLE 4
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MATCHED PROBLEM 4 Multiply, and express answers using positive exponents only.

(A) 2c1>415c3 - c3>42 (B) 17x1>2 - y1>2212x1>2 + 3y1>22

Working with Rational Exponents Write the following expression in the form 
axp + bxq, where a and b are real numbers and p and q are rational numbers:

22x - 323 x2

223 x

SOLUTION  
22x - 323 x2

223 x
=

2x1>2 - 3x2>3

2x1>3  Change to rational exponent form.

 =
2x1>2

2x1>3 -
3x2>3

2x1>3 Separate into two fractions.

 = x1>6 - 1.5x1>3

MATCHED PROBLEM 5 Write the following expression in the form axp + bxq, 
where a and b are real numbers and p and q are rational numbers:

523 x - 42x

22x3

Properties of Radicals
Changing or simplifying radical expressions is aided by several properties of radicals 
that follow directly from the properties of exponents considered earlier.

EXAMPLE 5

THEOREM 1 Properties of Radicals
If n is a natural number greater than or equal to 2, and if x and y are positive real 
numbers, then

1. 2n
xn = x    23 x3 = x

2. 1n xy = 1n x1n y 25 xy = 25 x 25 y

3. 7n x
y

=
1n x1n y

  A4 x
y

=
24 x24 y

Applying Properties of Radicals Simplify using properties of radicals.

(A) 24 13x4y32 4 (B) 24 8 24 2 (C) A3 xy

27

SOLUTION

(A) 24 13x4y32 4 = 3x4y3        Property 1

(B) 24 824 2 = 24 16 = 24 24 = 2    Properties 2 and 1

(C) A3 xy

27
=

13 xy13 27
=

13 xy

3
 or 

1
3
13 xy Properties 3 and 1

MATCHED PROBLEM 6 Simplify using properties of radicals.

(A) 27 1x3 + y32 7 (B) 23 8y3 (C) 
23 16x4y23 2xy

EXAMPLE 6

What is the best form for a radical expression? There are many answers, depend-
ing on what use we wish to make of the expression. In deriving certain formulas, it 
is sometimes useful to clear either a denominator or a numerator of radicals. The 
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process is referred to as rationalizing the denominator or numerator. Examples 7 and 
8 illustrate the rationalizing process.

Rationalizing Denominators Rationalize each denominator.

(A) 
6x12x

(B) 
617 - 15

(C) 
x - 41x + 2

SOLUTION

(A) 
6x12x

=
6x12x

# 12x12x
=

6x12x
2x

= 312x

(B)  
617 - 15

=
617 - 15

# 17 + 1517 + 15

 =
6117 + 152

2
= 3117 + 152

(C)  
x - 41x + 2

=
x - 41x + 2

# 1x - 21x - 2

 =
1x - 42(1x - 2)

x - 4
= 1x - 2

MATCHED PROBLEM 7 Rationalize each denominator.

(A) 
12ab213ab

(B) 
916 + 13

(C) 
x2 - y21x - 1y

EXAMPLE 7

Rationalizing Numerators Rationalize each numerator.

(A) 
12

213
(B) 

3 + 1m
9 - m

(C) 
12 + h - 12

h

SOLUTION

(A) 
12

213
=

12

213
# 1212

=
2

216
=

116

(B) 
3 + 1m
9 - m

=
3 + 1m
9 - m

# 3 - 1m

3 - 1m
=

9 - m

19 - m213 - 1m2 =
1

3 - 1m

(C) 
 12 + h - 12

h
=

12 + h - 12
h

# 12 + h + 1212 + h + 12

 =
h

h112 + h + 122 =
112 + h + 12

MATCHED PROBLEM 8 Rationalize each numerator.

(A) 
13

312
(B) 

2 - 1n
4 - n

(C) 
13 + h - 13

h

EXAMPLE 8

Exercises A.6
 Change each expression in Problems 1–6 to radical form. Do not 
simplify.

1. 6x3>5 2. 7y2>5 3. 132x2y32 3>5

4. 17x2y2 5>7 5. 1x2 + y22 1>2 6. x1>2 + y1>2

A Change each expression in Problems 7–12 to rational exponent 
form. Do not simplify.

7. 524 x3 8. 7m25 n2 9. 25 12x2y2 3

10. 27 18x4y2 3 11. 23 x + 23 y 12. 23 x2 + y3
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In Problems 13–24, find rational number representations for each, 
if they exist.

13. 251>2 14. 641>3 15. 163>2

16. 163>4 17. -491>2 18. 1-492 1>2

19. -642>3 20. 1-642 2>3 21. a 4
25

b
3>2

22. a 8
27

b
2>3

23. 9-3>2 24. 8-2>3

In Problems 25–34, simplify each expression and write answers 
using positive exponents only. All variables represent positive real 
numbers.

25. x4>5x-2>5 26. y-3>7y4>7 27. 
m2>3

m-1>3

28. 
x1>4

x3>4 29. 18x3y-62 1>3 30. 14u-2
v

42 1>2

31. a4x-2

y4 b
-1>2

32. a w

4

9x-2 b
-1>2

33. 
18x2 -1>3

12x1>4 34. 
6a3>4

15a-1>3

Simplify each expression in Problems 35–40 using properties of 
radicals. All variables represent positive real numbers.

35. 25 12x + 32 5 36. 23 17 + 2y2 3

37. 26x215x3230x7 38. 25 16a425 4a225 8a3

39. 
16x 110115x

40. 
18 112y16y

 In Problems 41–48, multiply, and express answers using positive 
exponents only.

41. 3x3>414x1>4 - 2x82
42. 2m1>313m2>3 - m62
43. 13u1>2 - v

1>221u1>2 - 4v

1>22
44. 1a1>2 + 2b1>221a1>2 - 3b1>22
45. 16m1>2 + n- 1>2216m - n- 1>22
46. 12x - 3y1>3212x1>3 + 12
47. 13x1>2 - y1>22 2

48. 1x1>2 + 2y1>22 2

Write each expression in Problems 49–54 in the form axp + bxq, 
where a and b are real numbers and p and q are rational numbers.

49. 
23 x2 + 2

223 x
50. 

121x - 3

41x
51. 

224 x3 + 23 x
3x

52. 
323 x2 + 1x

5x
53. 

223 x - 1x

41x
54. 

x2 - 41x

213 x

Rationalize the denominators in Problems 55–60.

55. 
12mn213mn

56. 
14x217x

57. 
21x + 321x - 2

B

58. 
31x + 121x + 4

59. 
71x - y2 21x - 1y

60. 
3a - 3b1a + 1b

Rationalize the numerators in Problems 61–66.

61. 
15xy

5x2y2 62. 
13mn
3mn

63. 
1x + h - 1x

h
64. 

121a + h2 - 12a

h

65. 
1t - 1x

t2 - x2 66. 
1x - 1y1x + 1y

Problems 67–70 illustrate common errors involving rational ex-
ponents. In each case, find numerical examples that show that the 
left side is not always equal to the right side.

67. 1x + y2 1>2 ∙ x1>2 + y1>2 68. 1x3 + y32 1>3 ∙ x + y

69. 1x + y2 1>3 ∙
1

1x + y2 3 70. 1x + y2 -1>2 ∙
1

1x + y2 2

In Problems 71–82, discuss the validity of each statement. If the 
statement is true, explain why. If not, give a counterexample.

71. 2x2 = x for all real numbers x

72. 2x2 = ∙ x ∙ for all real numbers x

73. 23 x3 = ∙ x ∙ for all real numbers x

74. 23 x3 = x for all real numbers x

75. If r 6 0, then r has no cube roots.

76. If r 6 0, then r has no square roots.

77. If r 7 0, then r has two square roots.

78. If r 7 0, then r has three cube roots.

79. The fourth roots of 100 are 110 and - 110.

80. The square roots of 216 - 5 are 13 - 12 and 12 - 13.

81. 2355 - 60135 = 517 - 615

82. 23 7 - 512 = 1 - 12

In Problems 83–88, simplify by writing each expression as a 
simple or single fraction reduced to lowest terms and without 
negative exponents.

83. -  
1
2
1x - 221x + 32 -3>2 + 1x + 32-1>2

84. 21x - 22 -1>2 -
1
2
12x + 321x - 22-3>2

85. 
1x - 12 1>2 - x11

221x - 12 -1>2

x - 1

86. 
12x - 12 1>2 - 1x + 2211

2212x - 12-1>2122
2x - 1

87. 
1x + 22 2>3 - x12

32 1x + 22 -1>3

1x + 22 4>3

88. 
213x - 12 1>3 - 12x + 12 11

32 13x - 12 -2>3132
13x - 12 2>3

C
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In Problems 89–94, evaluate using a calculator. (Refer to the 
instruction book for your calculator to see how exponential forms 
are evaluated.)

89. 223>2

90. 155>4

91. 827-3>8

92. 103-3>4

93. 37.097>3

94. 2.8768>5

In Problems 95 and 96, evaluate each expression on a calcula-
tor and determine which pairs have the same value. Verify these 
results algebraically.

95. (A) 13 + 15 (B) 22 + 13 + 22 - 13

(C) 1 + 13 (D) 23 10 + 613

(E) 28 + 160 (F) 16

96. (A) 223 2 + 15 (B) 18

(C) 13 + 17 (D) 23 + 18 + 23 - 18

(E) 210 + 184 (F) 1 + 15

Answers to Matched Problems

1. (A) 4 (B) -4
(C) -3 (D) Not a real number
(E) 27

2. (A) 25 u       (B) 29 16x2y52 2 or 129 16x2y52 2 2

   (C) 1>25 13xy2 3    (D) 19u2 1>4

   (E) - 12x2 4>7     (F) 1x3 + y32 1>3 (not x + y)

3. (A) 27          (B) 81
   (C) 10y7>12 = 10212 y7   (D) 16y>x3

   (E) 2>x1>18 = 2>218 x

4. (A) 10c13>4 - 2c     (B) 14x + 19x1>2y1>2 - 3y

5. 2.5x-7>6 - 2x-1

6. (A) x3 + y3       (B) 2y    (C) 2x

7. (A) 4b13ab      (B) 3116 - 132
   (C) 1x + y211x + 1y2

8. (A) 
116

    (B) 
1

2 + 1n
   (C) 

113 + h + 13

In this section we consider equations involving second-degree polynomials.

A.7 Quadratic Equations
■■ Solution by Square Root
■■ Solution by Factoring
■■ Quadratic Formula
■■ Quadratic Formula and Factoring
■■ Other Polynomial Equations
■■ Application: Supply and Demand

DEFINITION Quadratic Equation
A quadratic equation in one variable is any equation that can be written in the form

ax2 + bx + c = 0  a ∙ 0 Standard form
where x is a variable and a, b, and c are constants.

The equations

5x2 - 3x + 7 = 0  and  18 = 32t2 - 12t

are both quadratic equations, since they are either in the standard form or can be 
transformed into this form.

We restrict our review to finding real solutions to quadratic equations.

Solution by Square Root
The easiest type of quadratic equation to solve is the special form where the first-
degree term is missing:

ax2 ∙ c ∙ 0  a 3 0

The method of solution of this special form makes direct use of the square-root 
property:

THEOREM 1 Square-Root Property
If a2 = b, then a = {1b.
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Solution by Factoring
If the left side of a quadratic equation when written in standard form can be factored, 
the equation can be solved very quickly. The method of solution by factoring rests on 
a basic property of real numbers, first mentioned in Section A.1.

Square-Root Method Use the square-root property to solve each equation.

(A) x2 - 7 = 0 (B) 2x2 - 10 = 0

(C) 3x2 + 27 = 0 (D) 1x - 82 2 = 9

SOLUTION
(A)  x2 - 7 = 0

 x2 = 7     What real number squared is 7?

 x = {27   Short for 27 or - 27

(B)  2x2 - 10 = 0
 2x2 = 10

 x2 = 5    What real number squared is 5?

 x = {25

(C)  3x2 + 27 = 0
 3x2 = -27

 x2 = -9   What real number squared is -9?

No real solution, since no real number squared is negative.

(D)  1x - 82 2 = 9

 x - 8 = {29
 x - 8 = {3

 x = 8 { 3 = 5 or 11

MATCHED PROBLEM 1 Use the square-root property to solve each equation.

(A) x2 - 6 = 0 (B) 3x2 - 12 = 0

(C) x2 + 4 = 0 (D) 1x + 52 2 = 1

EXAMPLE 1

Theorem 2 in Section A.1 states that if a and b are real numbers, then ab = 0 if 
and only if a = 0 or b = 0. To see that this property is useful for solving qua-
dratic equations, consider the following:

 x2 - 4x + 3 = 0  (1)
 1x - 121x - 32 = 0

 x - 1 = 0  or  x - 3 = 0
 x = 1  or  x = 3

You should check these solutions in equation (1).
If one side of the equation is not 0, then this method cannot be used. For 

example, consider

 x2 - 4x + 3 = 8  (2)
 1x - 121x - 32 = 8

 x - 1 ∙ 8   or   x - 3 ∙ 8  ab = 8 does not imply  
that a = 8 or b = 8. x = 9    or               x = 11

Verify that neither x = 9 nor x = 11 is a solution for equation (2).

CONCEPTUAL  INSIGHT
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Note that an equation such as x2 = 25 can be solved by either the square-root 
or the factoring method, and the results are the same (as they should be). Solve this 
equation both ways and compare.

Also, note that the factoring method can be extended to higher-degree polyno-
mial equations. Consider the following:

 x3 - x = 0

 x1x2 - 12 = 0

 x1x - 121x + 12 = 0

 x = 0 or x - 1 = 0 or x + 1 = 0
Solution: x = 0, 1, -1

Check these solutions in the original equation.
The factoring and square-root methods are fast and easy to use when they  apply. 

However, there are quadratic equations that look simple but cannot be solved by 
 either method. For example, as was noted in Example 2C, the polynomial in

x2 - 2x - 1 = 0

cannot be factored using integer coefficients. This brings us to the well-known and 
widely used quadratic formula.

Quadratic Formula
There is a method called completing the square that will work for all quadratic equa-
tions. After briefly reviewing this method, we will use it to develop the quadratic 
formula, which can be used to solve any quadratic equation.

Factoring Method Solve by factoring using integer coefficients, if possible.

(A) 3x2 - 6x - 24 = 0 (B) 3y2 = 2y (C) x2 - 2x - 1 = 0

SOLUTION
(A)  3x2 - 6x - 24 = 0  Divide both sides by 3, since 3 is a factor  

of each coefficient.

 x2 - 2x - 8 = 0 Factor the left side, if possible.

 1x - 421x + 22 = 0

 x - 4 = 0  or  x + 2 = 0
 x = 4 or  x = -2

(B)  3y2 = 2y

 3y2 - 2y = 0  We lose the solution y = 0 if both sides are divided by y 
(3y2 = 2y and 3y = 2 are not equivalent). y13y - 22 = 0

 y = 0 or 3y - 2 = 0

 3y = 2

 y =
2
3

(C) x2 - 2x - 1 = 0

This equation cannot be factored using integer coefficients. We will solve this 
type of equation by another method, considered below.

MATCHED PROBLEM 2 Solve by factoring using integer coefficients, if possible.

(A) 2x2 + 4x - 30 = 0   (B) 2x2 = 3x   (C) 2x2 - 8x + 3 = 0

EXAMPLE 2
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The method of completing the square is based on the process of transforming a 
quadratic equation in standard form,

ax2 + bx + c = 0

into the form

1x + A2 2 = B

where A and B are constants. Then, this last equation can be solved easily (if it has a 
real solution) by the square-root method discussed above.

Consider the equation from Example 2C:

 x2 - 2x - 1 = 0 (3)

Since the left side does not factor using integer coefficients, we add 1 to each side to 
remove the constant term from the left side:

 x2 - 2x = 1 (4)

Now we try to find a number that we can add to each side to make the left side a 
square of a first-degree polynomial. Note the following square of a binomial:

1x + m2 2 = x2 + 2mx + m2

We see that the third term on the right is the square of one-half the coefficient of x 
in the second term on the right. To complete the square in equation (4), we add the 
square of one-half the coefficient of x, 1-2

22 2 = 1, to each side. (This rule works 
only when the coefficient of x2 is 1, that is, a = 1.) Thus,

x2 - 2x ∙ 1 = 1 ∙ 1

The left side is the square of x - 1, and we write

1x - 12 2 = 2

What number squared is 2?

 x - 1 = {22

 x = 1 { 22

And equation (3) is solved!
Let us try the method on the general quadratic equation

 ax2 + bx + c = 0  a ∙ 0 (5)

and solve it once and for all for x in terms of the coefficients a, b, and c. We start by 
multiplying both sides of equation (5) by 1/a to obtain

x2 +
b
a

x +
c
a

= 0

Add -c>a to both sides:

x2 +
b
a

x = -  
c
a

Now we complete the square on the left side by adding the square of one-half the 
coefficient of x, that is, 1b>2a2 2 = b2>4a2 to each side:

x2 +
b
a

 x +
b2

4a2 =
b2

4a2 -
c
a

Writing the left side as a square and combining the right side into a single fraction, 
we obtain

ax +
b

2a
b

2

=
b2 - 4ac

4a2
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Now we solve by the square-root method:

 x +
b

2a
= {B b2 - 4ac

4a2

 x = -
b

2a
{ 2b2 - 4ac

2a
 

 Since {24a2 = {2a for  
any real number a

When this is written as a single fraction, it becomes the quadratic formula:

Quadratic Formula

If ax2 + bx + c = 0, a ∙ 0, then

x =
-b { 2b2 - 4ac

2a

This formula is generally used to solve quadratic equations when the square-root 
or factoring methods do not work. The quantity b2 - 4ac under the radical is called 
the  discriminant, and it gives us the useful information about solutions listed in 
Table 1.

Table 1

b2 - 4ac ax2 + bx + c = 0

Positive Two real solutions
Zero One real solution
Negative No real solutions

Quadratic Formula Method Solve x2 - 2x - 1 = 0 using the quadratic  
formula.

SOLUTION

 x2 - 2x - 1 = 0

     x =
-b { 2b2 - 4ac

2a
     a = 1, b = -2,

           =
- 1-22 { 21-22 2 - 41121-12

2112  

      =
2 { 18

2
=

2 { 212
2

= 1 { 12 ≈ -0.414 or 2.414

CHECK

x2 - 2x - 1 = 0

When x = 1 + 22,

11 + 122 2 - 211 + 122 - 1 = 1 + 212 + 2 - 2 - 212 - 1 = 0

When x = 1 - 12,

11 - 122 2 - 211 - 122 - 1 = 1 - 212 + 2 - 2 + 212 - 1 = 0

MATCHED PROBLEM 3 Solve 2x2 - 4x - 3 = 0 using the quadratic formula.

If we try to solve x2 - 6x + 11 = 0 using the quadratic formula, we obtain

x =
6 { 1-8

2

which is not a real number. (Why?)

c = -1

EXAMPLE 3
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Quadratic Formula and Factoring
As in Section A.3, we restrict our interest in factoring to polynomials with integer 
coefficients. If a polynomial cannot be factored as a product of lower-degree polyno-
mials with integer coefficients, we say that the polynomial is not factorable in the 
integers.

How can you factor the quadratic polynomial x2 - 13x - 2,310? We start by 
solving the corresponding quadratic equation using the quadratic formula:

 x2 - 13x - 2,310 = 0

 x =
- 1-132 { 21-132 3 - 41121-2,3102

2

 x =
- 1-132 { 29,409

2

 =
13 { 97

2
= 55 or -42

Now we write

x2 - 13x - 2,310 = 3x - 5543x - 1-4224 = 1x - 5521x + 422
Multiplying the two factors on the right produces the second-degree polynomial on 
the left.

What is behind this procedure? The following two theorems justify and general-
ize the process:

THEOREM 2 Factorability Theorem
A second-degree polynomial, ax2 + bx + c, with integer coefficients can be 
expressed as the product of two first-degree polynomials with integer coefficients 

if and only if 2b2 - 4ac is an integer.

THEOREM 3 Factor Theorem
If r1 and r2 are solutions to the second-degree equation ax2 + bx + c = 0, then

ax2 + bx + c = a1x - r121x - r22

Factoring with the Aid of the Discriminant Factor, if possible, using integer 
 coefficients.
(A) 4x2 - 65x + 264 (B) 2x2 - 33x - 306

SOLUTION (A) 4x2 - 65x + 264

Step 1 Test for factorability:2b2 - 4ac = 21-652 2 - 414212642 = 1

Since the result is an integer, the polynomial has first-degree factors with 
integer coefficients.

Step 2  Factor, using the factor theorem. Find the solutions to the corresponding 
quadratic equation using the quadratic formula:

 4x2 - 65x + 264 = 0

 x =
- 1-652 { 1

2 # 4
=

33
4
 or 8

 From step 1

EXAMPLE 4
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Thus,

 4x2 - 65x + 264 = 4ax -
33
4
b 1x - 82

 = 14x - 3321x - 82
(B) 2x2 - 33x - 306

Step 1 Test for factorability:2b2 - 4ac = 21-332 2 - 41221-3062 = 13,537

Since 13,537 is not an integer, the polynomial is not factorable in the integers.

MATCHED PROBLEM 4 Factor, if possible, using integer coefficients.

(A) 3x2 - 28x - 464 (B) 9x2 + 320x - 144

Other Polynomial Equations
There are formulas that are analogous to the quadratic formula, but considerably 
more complicated, that can be used to solve any cubic (degree 3) or quartic (degree 4) 
polynomial equation. It can be shown that no such general formula exists for solving 
quintic (degree 5) or polynomial equations of degree greater than five. Certain poly-
nomial equations, however, can be solved easily by taking roots.

Solving a Quartic Equation Find all real solutions to 6x4 - 486 = 0.

SOLUTION

 6x4 - 486 = 0  Add 486 to both sides

 6x4 = 486 Divide both sides by 6

 x4 = 81  Take the 4th root of both sides

 x = {3

MATCHED PROBLEM 5 Find all real solutions to 6x5 + 192 = 0.

EXAMPLE 5

Application: Supply and Demand
Supply-and-demand analysis is a very important part of business and economics. 
In general, producers are willing to supply more of an item as the price of an item in-
creases and less of an item as the price decreases. Similarly, buyers are willing to buy 
less of an item as the price increases, and more of an item as the price decreases. We 
have a dynamic situation where the price, supply, and demand fluctuate until a price 
is reached at which the supply is equal to the demand. In economic theory, this point 
is called the equilibrium point. If the price increases from this point, the supply will 
increase and the demand will decrease; if the price decreases from this point, the sup-
ply will decrease and the demand will increase.

Supply and Demand At a large summer beach resort, the weekly supply-and-
demand equations for folding beach chairs are

 p =
x

140
+

3
4

 Supply equation

 p =
5,670

x
 Demand equation

EXAMPLE 6
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The supply equation indicates that the supplier is willing to sell x units at a price of 
p dollars per unit. The demand equation indicates that consumers are willing to buy 
x units at a price of p dollars per unit. How many units are required for supply to 
equal demand? At what price will supply equal demand?

SOLUTION Set the right side of the supply equation equal to the right side of the 
demand equation and solve for x.

 
x

140
+

3
4

=
5,670

x
 Multiply by 140x, the LCD.

 x2 + 105x = 793,800 Write in standard form.

 x2 + 105x - 793,800 = 0  Use the quadratic formula.

 x =
-105 { 21052 - 41121-793,8002

2
 x = 840 units

The negative root is discarded since a negative number of units cannot be produced 
or sold. Substitute x = 840 back into either the supply equation or the demand 
equation to find the equilibrium price (we use the demand equation).

p =
5,670

x
=

5,670
840

= $6.75

At a price of $6.75 the supplier is willing to supply 840 chairs and consumers are 
willing to buy 840 chairs during a week.

MATCHED PROBLEM 6 Repeat Example 6 if near the end of summer, the supply-
and-demand equations are

 p =
x

80
-

1
20

 Supply equation

 p =
1,264

x
 Demand equation

Exercises A.7
Find only real solutions in the problems below. If there are no real 
solutions, say so.

Solve Problems 1–4 by the square-root method.

1. 2x2 - 22 = 0 2. 3m2 - 21 = 0

3. 13x - 12 2 = 25 4. 12x + 12 2 = 16

Solve Problems 5–8 by factoring.

5. 2u2 - 8u - 24 = 0 6. 3x2 - 18x + 15 = 0

7. x2 = 2x 8. n2 = 3n

Solve Problems 9–12 by using the quadratic formula.

9. x2 - 6x - 3 = 0 10. m2 + 8m + 3 = 0

11. 3u2 + 12u + 6 = 0 12. 2x2 - 20x - 6 = 0

Solve Problems 13–30 by using any method.

13. 
2x2

3
= 5x 14. x2 = -  

3
4

x

15. 4u2 - 9 = 0 16. 9y2 - 25 = 0

A

B

17. 8x2 + 20x = 12 18. 9x2 - 6 = 15x

19. x2 = 1 - x 20. m2 = 1 - 3m

21. 2x2 = 6x - 3 22. 2x2 = 4x - 1

23. y2 - 4y = -8 24. x2 - 2x = -3

25. 12x + 32 2 = 11 26. 15x - 22 2 = 7

27. 
3
p

= p 28. x -
7
x

= 0

29. 2 -
2

m2 =
3
m

30. 2 +
5
u

=
3

u2

In Problems 31–38, factor, if possible, as the product of two first-
degree polynomials with integer coefficients. Use the quadratic 
formula and the factor theorem.

31. x2 + 40x - 84 32. x2 - 28x - 128

33. x2 - 32x + 144 34. x2 + 52x + 208

35. 2x2 + 15x - 108 36. 3x2 - 32x - 140

37. 4x2 + 241x - 434 38. 6x2 - 427x - 360
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39. Solve A = P11 + r2 2 for r in terms of A and P; that is, 
isolate r on the left side of the equation (with coefficient 1) 
and end up with an algebraic expression on the right side 
involving A and P but not r. Write the answer using positive 
square roots only.

40. Solve x2 + 3mx - 3n = 0 for x in terms of m and n.

41. Consider the quadratic equation

x2 + 4x + c = 0

where c is a real number. Discuss the relationship between 
the values of c and the three types of roots listed in Table 1 on 
page 720.

42. Consider the quadratic equation

x2 - 2x + c = 0

where c is a real number. Discuss the relationship between the 
values of c and the three types of roots listed in Table 1 on 
page 720.

In Problems 43–48, find all real solutions.

43. x3 + 8 = 0

44. x3 - 8 = 0

45. 5x4 - 500 = 0

46. 2x3 + 250 = 0

47. x4 - 8x2 + 15 = 0

48. x4 - 12x2 + 32 = 0

Applications
49. Supply and demand. A company wholesales shampoo in a 

particular city. Their marketing research department estab-
lished the following weekly supply-and-demand equations:

 p =
x

450
+

1
2

 Supply equation

 p =
6,300

x
    Demand equation

How many units are required for supply to equal demand? 
At what price per bottle will supply equal demand?

C 50. Supply and demand. An importer sells an automatic cam-
era to outlets in a large city. During the summer, the weekly 
supply-and-demand equations are

 p =
x
6

+ 9 Supply equation

 p =
24,840

x
 Demand equation

How many units are required for supply to equal demand? At 
what price will supply equal demand?

51. Interest rate. If P dollars are invested at 100r percent 
compounded annually, at the end of 2 years it will grow to 
A = P11 + r2 2. At what interest rate will $484 grow to 
$625 in 2 years? (Note: If A = 625 and P = 484, find r.)

52. Interest rate. Using the formula in Problem 51, determine the 
interest rate that will make $1,000 grow to $1,210 in 2 years.

53. Ecology. To measure the velocity v (in feet per second) of 
a stream, we position a hollow L-shaped tube with one end 
under the water pointing upstream and the other end point-
ing straight up a couple of feet out of the water. The water 
will then be pushed up the tube a certain distance h (in feet) 
above the surface of the stream. Physicists have shown that 
v

2 = 64h. Approximately how fast is a stream flowing if 
h = 1 foot? If h = 0.5 foot?

54. Safety research. It is of considerable importance to know 
the least number of feet d in which a car can be stopped, 
including reaction time of the driver, at various speeds v (in 
miles per hour). Safety research has produced the formula 
d = 0.044v

2 + 1.1v. If it took a car 550 feet to stop, estimate 
the car’s speed at the moment the stopping process was started.

Answers to Matched Problems

1. (A) {16         (B) {2

   (C) No real solution     (D) -6, -4

2. (A) -5, 3          (B) 0, 32
   (C) Cannot be factored using integer coefficients

3. 12 { 1102 >2

4. (A) Cannot be factored using integer coefficients

  (B) 19x - 421x + 362
5. -2

6. 320 chairs at $3.95 each

Z01_BARN6152_14_GE_APPA.indd   724 16/11/18   2:05 PM



A1

B.1 Sequences, Series, and  
Summation Notation

B.2 Arithmetic and Geometric 
Sequences

B.3 Binomial Theorem

B.4 Interpolating Polynomials and 
Divided Differences

Appendix

Special Topics

■■ Sequences
■■ Series and Summation Notation

B.1 Sequences, Series, and Summation Notation
If someone asked you to list all natural numbers that are perfect squares, you might 
begin by writing

1, 4, 9, 16, 25, 36

But you would soon realize that it is impossible to actually list all the perfect squares, 
since there are an infinite number of them. However, you could represent this collec-
tion of numbers in several different ways. One common method is to write

1, 4, 9, c, n2, c n ∊ N

where N is the set of natural numbers. A list of numbers such as this is generally 
called a sequence.

Sequences
Consider the function f given by

  f1n2 = 2n + 1 (1)

where the domain of f is the set of natural numbers N. Note that

 f112 = 3, f122 = 5, f132 = 7,  c
The function f is an example of a sequence. In general, a sequence is a function with 
domain a set of successive integers. Instead of the standard function notation used in 
equation (1), sequences are usually defined in terms of a special notation.

The range value  f1n2 is usually symbolized more compactly with a symbol such 
as an. Thus, in place of equation (1), we write

an = 2n + 1

and the domain is understood to be the set of natural numbers unless something is 
said to the contrary or the context indicates otherwise. The elements in the range are 

B
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A2 APPENDIX B Special Topics

called terms of the sequence; a1 is the first term, a2 is the second term, and an is the 
nth term, or general term.

 a1 = 2112 + 1 = 3 First term

 a2 = 2122 + 1 = 5 Second term

 a3 = 2132 + 1 = 7 Third term

 f
an = 2n + 1  General term

The ordered list of elements

3, 5, 7, c, 2n + 1, c
obtained by writing the terms of the sequence in their natural order with respect to the 
domain values is often informally referred to as a sequence. A sequence also may be 
represented in the abbreviated form 5an6, where a symbol for the nth term is written 
within braces. For example, we could refer to the sequence 3, 5, 7, c, 2n + 1, c 
as the sequence 52n + 16.

If the domain of a sequence is a finite set of successive integers, then the 
 sequence is called a finite sequence. If the domain is an infinite set of successive 
integers, then the sequence is called an infinite sequence. The sequence 52n + 16 
discussed above is an infinite sequence.

Writing the Terms of a Sequence Write the first four terms of each sequence:

(A) an = 3n - 2 (B) e 1-12 n

n
f

SOLUTION

(A) 1, 4, 7, 10 (B) -1, 
1
2

, 
-1
3

, 
1
4

MATCHED PROBLEM 1 Write the first four terms of each sequence:

(A) an = -n + 3 (B) e 1-12 n

2n f

EXAMPLE 1

Now that we have seen how to use the general term to find the first few terms in 
a sequence, we consider the reverse problem. That is, can a sequence be defined just 
by listing the first three or four terms of the sequence? And can we then use these 
initial terms to find a formula for the nth term? In general, without other information, 
the answer to the first question is no. Many different sequences may start off with the 
same terms. Simply listing the first three terms (or any other finite number of terms) 
does not specify a particular sequence.

What about the second question? That is, given a few terms, can we find the 
general formula for at least one sequence whose first few terms agree with the given 
terms? The answer to this question is a qualified yes. If we can observe a simple pat-
tern in the given terms, we usually can construct a general term that will produce that 
pattern. The next example illustrates this approach.

Finding the General Term of a Sequence Find the general term of a sequence 
whose first four terms are

(A) 3, 4, 5, 6, c (B) 5, -25, 125, -625, c
SOLUTION
(A) Since these terms are consecutive integers, one solution is an = n, n Ú 3. If 

we want the domain of the sequence to be all natural numbers, another solution 
is bn = n + 2.

EXAMPLE 2
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 SECTION B.1   Sequences, Series, and Summation Notation A3

(B) Each of these terms can be written as the product of a power of 5 and a power 
of -1:

 5 = 1-12 051 = a1

 -25 = 1-12 152 = a2

 125 = 1-12 253 = a3

 -625 = 1-12 354 = a4

If we choose the domain to be all natural numbers, a solution is

an = 1-12 n - 15n

MATCHED PROBLEM 2 Find the general term of a sequence whose first four terms are

(A) 3, 6, 9, 12, c (B) 1, -2, 4, -8, c

In general, there is usually more than one way of representing the nth term of 
a given sequence (see the solution of Example 2A). However, unless something is 
stated to the contrary, we assume that the domain of the sequence is the set of natural 
numbers N.

Series and Summation Notation
If a1, a2, a3, c, an, c is a sequence, the expression

a1 + a2 + a3 + g+  an + g
is called a series. If the sequence is finite, the corresponding series is a finite series. 
If the sequence is infinite, the corresponding series is an infinite series. We consider 
only finite series in this section. For example,

1, 3, 5, 7, 9  Finite sequence

1 + 3 + 5 + 7 + 9 Finite series

Notice that we can easily evaluate this series by adding the five terms:

1 + 3 + 5 + 7 + 9 = 25

Series are often represented in a compact form called summation notation. 
Consider the following examples:

 a
6

k = 3
k2 = 32 + 42 + 52 + 62

 = 9 + 16 + 25 + 36 = 86

 a
2

k = 0
14k + 12 = 14 #  0 + 12 + 14 #  1 + 12 + 14 #  2 + 12

 = 1 + 5 + 9 = 15

In each case, the terms of the series on the right are obtained from the expression on 
the left by successively replacing the summing index k with integers, starting with 
the number indicated below the summation sign g  and ending with the number that 
appears above g . The summing index may be represented by letters other than k and 
may start at any integer and end at any integer greater than or equal to the starting 
integer. If we are given the finite sequence

1
2

, 
1
4

, 
1
8

, c, 
1
2n

the corresponding series is

1
2

+
1
4

+
1
8

+ g +
1
2n = a

n

j = 1
 
1

2 

j

where we have used j for the summing index.
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A4 APPENDIX B Special Topics

using summation notation with

(A) The summing index k starting at 1

(B) The summing index j starting at 0

Summation notation provides a compact notation for the sum of any list of num-
bers, even if the numbers are not generated by a formula. For example, suppose that 
the results of an examination taken by a class of 10 students are given in the follow-
ing list:

87, 77, 95, 83, 86, 73, 95, 68, 75, 86

Summation Notation Write

a
5

k = 1
 

k

k2 + 1

without summation notation. Do not evaluate the sum.

SOLUTION

 a
5

k = 1
 

k

k2 + 1
=

1

12 + 1
+

2

22 + 1
+

3

32 + 1
+

4

42 + 1
+

5

52 + 1

=
1
2

+
2
5

+
3

10
+

4
17

+
5

26

MATCHED PROBLEM 3 Write

a
5

k = 1
 
k + 1

k

without summation notation. Do not evaluate the sum.

EXAMPLE 3

If the terms of a series are alternately positive and negative, we call the series an 
alternating series. The next example deals with the representation of such a series.

Summation Notation Write the alternating series

1
2

-
1
4

+
1
6

-
1
8

+
1

10
-

1
12

using summation notation with

(A) The summing index k starting at 1

(B) The summing index j starting at 0

SOLUTION
(A) 1-12 k + 1 provides the alternation of sign, and 1> 12k2 provides the other part 

of each term. So, we can write

1
2

-
1
4

+
1
6

-
1
8

+
1

10
-

1
12

= a
6

k = 1
 
1-12 k + 1

2k

(B) 1-12 j provides the alternation of sign, and 1> 321j + 124 provides the other 
part of each term. So, we can write

1
2

-
1
4

+
1
6

-
1
8

+
1

10
-

1
12

= a
5

j = 0
 
1-12 j

21j + 12
MATCHED PROBLEM 4 Write the alternating series

1 -  
1
3

+
1
9

-
1

27
+

1
81

EXAMPLE 4

Z02_BARN6152_14_GE_APPB.indd   4 16/11/18   2:11 PM



 SECTION B.1   Sequences, Series, and Summation Notation A5

If we let a1, a2, a3, c, a10 represent these 10 scores, then the average test score is 
given by

 
1

10 a
10

k = 1
ak =

1
10

 187 + 77 + 95 + 83 + 86 + 73 + 95 + 68 + 75 + 862

 =
1

10
 18252 = 82.5

More generally, in statistics, the arithmetic mean a of a list of n numbers 
a1, a2, c, an is defined as

a =
1
n a

n

k = 1
ak

Arithmetic Mean Find the arithmetic mean of 3, 5, 4, 7, 4, 2, 3, and 6.

SOLUTION

a =
1
8 a

8

k = 1
ak =

1
8

 13 + 5 + 4 + 7 + 4 + 2 + 3 + 62 =
1
8

 1342 = 4.25

MATCHED PROBLEM 5 Find the arithmetic mean of 9, 3, 8, 4, 3, and 6.

EXAMPLE 5

Exercises B.1
Write the first four terms for each sequence in Problems 1–6.

1. an = 2n + 3 2. an = 4n - 3

3. an =
n + 2
n + 1

4. an =
2n + 1

2n

5. an = 1-32 n + 1 6. an = 1-  142 n - 1

7. Write the 10th term of the sequence in Problem 1.

8. Write the 15th term of the sequence in Problem 2.

9. Write the 99th term of the sequence in Problem 3.

10. Write the 200th term of the sequence in Problem 4.

In Problems 11–16, write each series in expanded form without 
summation notation, and evaluate.

11. a
6

k = 1
k 12. a

5

k = 1
k2

13. a
7

k = 4
12k - 32 14. a

4

k = 0
1-22 k

15. a
3

k = 0
 

1

10k 16. a
4

k = 1
 
1

2k

Find the arithmetic mean of each list of numbers in Problems 
17–20.

17. 5, 4, 2, 1, and 6

18. 7, 9, 9, 2, and 4

A 19. 96, 65, 82, 74, 91, 88, 87, 91, 77, and 74

20. 100, 62, 95, 91, 82, 87, 70, 75, 87, and 82

Write the first five terms of each sequence in Problems 21–26.

21. an =
1-12 n + 1

2n

22. an = 1-12 n1n - 12 2

23. an = n31 + 1-12 n4

24. an =
1 - 1-12 n

n

25. an = a -  
3
2
b

n - 1

26. an = a -  
1
2
b

n + 1

In Problems 27–42, find the general term of a sequence whose 
first four terms agree with the given terms.

27. -2, -1, 0, 1, c 28. 4, 5, 6, 7, c
29. 4, 8, 12, 16, c 30. -3, -6, -9, -12, c
31. 1

2, 34, 56, 78, c 32. 1
2, 23, 34, 45, c

33. 1, -2, 3, -4, c 34. -2, 4, -8, 16, c
35. 1, -3, 5, -7, c 36. 3, -6, 9, -12, c
37. 1, 25, 4

25, 8
125, c 38. 4

3, 16
9 , 64

27, 256
81 , c

39. x, x2, x3, x4, c 40. 1, 2x, 3x2, 4x3, c

41. x, -x3, x5, -x7, c 42. x, 
x2

2
, 

x3

3
, 

x4

4
, c

B
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Write each series in Problems 43–50 in expanded form without 
summation notation. Do not evaluate.

43. a
5

k = 1
1-12 k + 112k - 12 2 44. a

4

k = 1
 
1-22 k + 1

2k + 1

45. a
5

k = 2
 

2k

2k + 3
46. a

7

k = 3
 
1-12 k

k2 - k

47. a
5

k = 1
xk - 1 48. a

3

k = 1
 
1
k

 xk + 1

49. a
4

k = 0
 
1-12 kx2k + 1

2k + 1
50. a

4

k = 0
 
1-12 kx2k

2k + 2

Write each series in Problems 51–54 using summation notation 
with

(A) The summing index k starting at k = 1

(B) The summing index j starting at j = 0

51. 2 + 3 + 4 + 5 + 6

52. 12 + 22 + 32 + 42

53. 1 - 1
2 + 1

3 - 1
4

54. 1 - 1
3 + 1

5 - 1
7 + 1

9

Write each series in Problems 55–58 using summation notation 
with the summing index k starting at k = 1.

55. 2 +
3
2

+
4
3

+ g +
n + 1

n

56. 1 +
1

22 +
1

32 + g +
1

n2

57. 
1
2

-
1
4

+
1
8

- g +
1-12 n + 1

2n

58. 1 - 4 + 9 - g + 1-12 n + 1n2

 In Problems 59–62, discuss the validity of each statement. If the 
statement is true, explain why. If not, give a counterexample.

59. For each positive integer n, the sum of the series 

1 +
1
2

+
1
3

+ g +
1
n

 is less than 4.

60. For each positive integer n, the sum of the series 

1
2

+
1
4

+
1
8

+ g +
1
2n is less than 1.

61. For each positive integer n, the sum of the series 

1
2

-
1
4

+
1
8

- g +
1-12 n + 1

2n  is greater than or  

equal to 
1
4

.

C

62. For each positive integer n, the sum of the series 

1-  
1
2

+
1
3

-
1
4

+ g +
1-12 n + 1

n
 is greater than or  

equal to 
1
2

.

Some sequences are defined by a recursion formula—that is, a 
formula that defines each term of the sequence in terms of one or 
more of the preceding terms. For example, if 5an6 is defined by

a1 = 1 and an = 2an - 1 + 1 for n Ú 2

then
 a2 = 2a1 + 1 = 2 # 1 + 1 = 3

 a3 = 2a2 + 1 = 2 # 3 + 1 = 7

 a4 = 2a3 + 1 = 2 # 7 + 1 = 15

and so on. In Problems 63–66, write the first five terms of each 
sequence.

63. a1 = 2 and an = 3an - 1 + 2 for n Ú 2

64. a1 = 3 and an = 2an - 1 - 2 for n Ú 2

65. a1 = 1 and an = 2an - 1 for n Ú 2

66. a1 = 1 and an = -1
3 an - 1 for n Ú 2

If A is a positive real number, the terms of the sequence defined by

a1 =
A
2
 and an =

1
2

 aan - 1 +
A

an - 1
b for n Ú 2

can be used to approximate 1A to any decimal place accuracy 
desired. In Problems 67 and 68, compute the first four terms of 
this sequence for the indicated value of A, and compare the fourth 
term with the value of 1A obtained from a calculator.

67. A = 2 68. A = 6

69. The sequence defined recursively by a1 = 1, a2 = 1,  
an = an - 1 + an - 2 for n Ú 3 is called the Fibonacci  
sequence. Find the first ten terms of the Fibonacci sequence.

70. The sequence defined by bn =
15
5

 a1 + 15
2

b
n

 is related 

to the Fibonacci sequence. Find the first ten terms (to three 
decimal places) of the sequence 5bn6 and describe the rela-
tionship.

Answers to Matched Problems

1. (A) 2, 1, 0, -1 (B) - 1
2 , 14, - 1

8 , 1
16

2. (A) an = 3n (B) an = 1-22 n - 1

3. 2 + 3
2 + 4

3 + 5
4 + 6

5

4. (A) a
5

k = 1
 
1-12 k - 1

3k - 1 (B) a
4

j = 0
 
1-12 j

3 j

5. 5.5
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 SECTION B.2   Arithmetic and Geometric Sequences A7

For most sequences, it is difficult to sum an arbitrary number of terms of the 
 sequence without adding term by term. But particular types of sequences— arithmetic  
sequences and geometric sequences—have certain properties that lead to convenient 
and useful formulas for the sums of the corresponding arithmetic series and geometric 
series.

Arithmetic and Geometric Sequences
The sequence 5, 7, 9, 11, 13, c, 5 + 21n - 12, c, where each term after the 
first is obtained by adding 2 to the preceding term, is an example of an arithmetic 
sequence. The sequence 5, 10, 20, 40, 80, c, 5122 n - 1, c, where each term after 
the first is obtained by multiplying the preceding term by 2, is an example of a geo-
metric sequence.

B.2 Arithmetic and Geometric Sequences
■■ Arithmetic and Geometric Sequences
■■ nth-Term Formulas
■■ Sum Formulas for Finite Arithmetic 
Series

■■ Sum Formulas for Finite Geometric 
Series

■■ Sum Formula for Infinite Geometric 
Series

■■ Applications

DEFINITION Arithmetic Sequence
A sequence of numbers

a1, a2, a3, c, an, c
is called an arithmetic sequence if there is a constant d, called the common 
difference, such that

an - an - 1 = d
That is,

an = an - 1 + d  for every n 7 1

DEFINITION Geometric Sequence
A sequence of numbers

a1, a2, a3, c, an, c
is called a geometric sequence if there exists a nonzero constant r, called a  common 
ratio, such that

an

an - 1
= r

That is,
an = ran - 1 for every n 7 1

Recognizing Arithmetic and Geometric Sequences Which of the following can 
be the first four terms of an arithmetic sequence? Of a geometric sequence?

(A) 1, 2, 3, 5, c (B) -1, 3, -9, 27, c
(C) 3, 3, 3, 3, c (D) 10, 8.5, 7, 5.5, c
SOLUTION
(A) Since 2 - 1 ∙ 5 - 3, there is no common difference, so the sequence is not 

an arithmetic sequence. Since 2>1 ∙ 3>2, there is no common ratio, so the 
sequence is not geometric either.

(B) The sequence is geometric with common ratio -3. It is not arithmetic.

(C) The sequence is arithmetic with common difference 0, and is also geometric 
with common ratio 1.

(D) The sequence is arithmetic with common difference -1.5. It is not geometric.

EXAMPLE 1
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MATCHED PROBLEM 1 Which of the following can be the first four terms of an 
arithmetic sequence? Of a geometric sequence?

(A) 8, 2, 0.5, 0.125, c (B) -7, -2, 3, 8, c (C) 1, 5, 25, 100, c

nth-Term Formulas
If 5an6 is an arithmetic sequence with common difference d, then

 a2 = a1 + d

 a3 = a2 + d = a1 + 2d

 a4 = a3 + d = a1 + 3d
This suggests that

THEOREM 1 nth Term of an Arithmetic Sequence
an = a1 + 1n - 12d for all n 7 1 (1)

Similarly, if 5an6 is a geometric sequence with common ratio r, then

 a2 = a1r

 a3 = a2r = a1r
2

 a4 = a3r = a1r
3

This suggests that

THEOREM 2 nth Term of a Geometric Sequence
  an = a1r

n - 1 for all n 7 1 (2)

Finding Terms in Arithmetic and Geometric Sequences
(A) If the 1st and 10th terms of an arithmetic sequence are 3 and 30, respectively, 

find the 40th term of the sequence.

(B) If the 1st and 10th terms of a geometric sequence are 3 and 30, find the 40th 
term to three decimal places.

SOLUTION
(A) First use formula (1) with a1 = 3 and a10 = 30 to find d:

 an = a1 + 1n - 12d

 a10 = a1 + 110 - 12d

 30 = 3 + 9d

 d = 3
Now find a40:

a40 = 3 + 39 #  3 = 120

(B) First use formula (2) with a1 = 3 and a10 = 30 to find r:

 an = a1r
n - 1

 a10 = a1r
10 - 1

 30 = 3r9

 r9 = 10

 r = 101>9

Now find a40:

a40 = 31101>92 39 = 311039>92 = 64,633.041

EXAMPLE 2
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MATCHED PROBLEM 2
(A) If the 1st and 15th terms of an arithmetic sequence are -5 and 23, respec-

tively, find the 73rd term of the sequence.

(B) Find the 8th term of the geometric sequence
1

64
, 

-1
32

, 
1

16
, c

Sum Formulas for Finite Arithmetic Series
If a1, a2, a3, c, an is a finite arithmetic sequence, then the corresponding series 
a1 + a2 + a3 + g + an is called a finite arithmetic series. We will derive two 
simple and very useful formulas for the sum of a finite arithmetic series. Let d be the 
common difference of the arithmetic sequence a1, a2, a3, c, an and let Sn denote the 
sum of the series a1 + a2 + a3 + g + an. Then

Sn = a1 + 1a1 + d2 + g + 3a1 + 1n - 22d4 + 3a1 + 1n - 12d4
Reversing the order of the sum, we obtain

Sn = 3a1 + 1n - 12d4 + 3a1 + 1n - 22d4 + g + 1a1 + d2 + a1

Something interesting happens if we combine these last two equations by addition 
(adding corresponding terms on the right sides):

2Sn = 32a1 + 1n - 12d4 + 32a1 + 1n - 12d4 + g + 32a1 + 1n - 12d4 + 32a1 + 1n - 12d4
All the terms on the right side are the same, and there are n of them. Thus,

2Sn = n32a1 + 1n - 12d4
and we have the following general formula:

THEOREM 3 Sum of a Finite Arithmetic Series: First Form

Sn =
n
2

 32a1 + 1n - 12d4 (3)

Replacing

3a1 + 1n - 12d4 in 
n
2

 3a1 + a1 + 1n - 12d4
by an from equation (1), we obtain a second useful formula for the sum:

THEOREM 4 Sum of a Finite Arithmetic Series: Second Form

Sn =
n
2

 1a1 + an2 (4)

Finding a Sum Find the sum of the first 30 terms in the arithmetic sequence:

3, 8, 13, 18, c
SOLUTION Use formula (3) with n = 30, a1 = 3, and d = 5:

S30 =
30
2

 32 #  3 + 130 - 1254 = 2,265

MATCHED PROBLEM 3 Find the sum of the first 40 terms in the arithmetic sequence:

15, 13, 11, 9, c

EXAMPLE 3
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Sum Formulas for Finite Geometric Series
If a1, a2, a3,c, an is a finite geometric sequence, then the corresponding series 
a1 + a2 + a3 + g + an is called a finite geometric series. As with arithmetic 
series, we can derive two simple and very useful formulas for the sum of a finite geo-
metric series. Let r be the common ratio of the geometric sequence a1, a2, a3, c, an 
and let Sn denote the sum of the series a1 + a2 + a3 + g + an. Then

Sn = a1 + a1r + a1r
2 + g + a1r

n - 2 + a1r
n - 1

If we multiply both sides by r, we obtain

rSn = a1r + a1r
2 + a1r

3 + g + a1r
n - 1 + a1r

n

Now combine these last two equations by subtraction to obtain

Finding a Sum Find the sum of all the even numbers between 31 and 87.

SOLUTION First, find n using equation (1):

 an = a1 + 1n - 12d

 86 = 32 + 1n - 122

 n = 28
Now find S28 using formula (4):

 Sn =
n
2

 1a1 + an2

 S28 =
28
2

 132 + 862 = 1,652

MATCHED PROBLEM 4 Find the sum of all the odd numbers between 24 and 208.

EXAMPLE 4

 rSn - Sn = 1a1r + a1r
2 + a1r

3 + g + a1r
n - 1 + a1r

n2 - 1a1 + a1r + a1r
2 + g + a1r

n - 2 + a1r
n - 12

 1r - 12Sn = a1r
n - a1

THEOREM 5 Sum of a Finite Geometric Series: First Form

Sn =
a11rn - 12

r - 1
  r ∙ 1 (5)

Notice how many terms drop out on the right side. Solving for Sn, we have

Since an = a1r
n - 1, or ran = a1r

n, formula (5) also can be written in the form

THEOREM 6 Sum of a Finite Geometric Series: Second Form

Sn =
ran - a1

r - 1
  r ∙ 1 (6)

Finding a Sum Find the sum (to 2 decimal places) of the first ten terms of the 
geometric sequence:

1, 1.05, 1.052, c

EXAMPLE 5
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SOLUTION Use formula (5) with a1 = 1, r = 1.05, and n = 10:

 Sn =
a11rn - 12

r - 1

 S10 =
111.0510 - 12

1.05 - 1

 ≈
0.6289

0.05
≈ 12.58

MATCHED PROBLEM 5 Find the sum of the first eight terms of the geometric 
sequence:

100, 10011.082, 10011.082 2, c

Sum Formula for Infinite Geometric Series
Given a geometric series, what happens to the sum Sn of the first n terms as n in-
creases without stopping? To answer this question, let us write formula (5) in the 
form

Sn =
a1r

n

r - 1
-

a1

r - 1

It is possible to show that if -1 6 r 6 1, then rn will approach 0 as n increases. 
The first term above will approach 0 and Sn can be made as close as we please to the 
second term, -a1> 1r - 12 [which can be written as a1> 11 - r2], by taking n suf-
ficiently large. So, if the common ratio r is between -1 and 1, we conclude that the 
sum of an infinite geometric series is

THEOREM 7 Sum of an Infinite Geometric Series

S∞ =
a1

1 - r
  -1 6 r 6 1 (7)

If r … -1 or r Ú 1, then an infinite geometric series has no sum.

Applications

Loan Repayment A person borrows $3,600 and agrees to repay the loan in 
monthly installments over 3 years. The agreement is to pay 1% of the unpaid bal-
ance each month for using the money and $100 each month to reduce the loan. What 
is the total cost of the loan over the 3 years?

SOLUTION Let us look at the problem relative to a time line:

EXAMPLE 6

35 36 Months343210

0.01(3,600)
5 36

0.01(3,500)
5 35

0.01(3,400)
5 34

0.01(300)
5 3

0.01(200)
5 2

0.01(100)
5 1

1% of
unpaid balance

Unpaid balance$3,600 $3,500 $3,400 $200 $100? ? ?

? ? ?

? ? ?

The total cost of the loan is

1 + 2 + g + 34 + 35 + 36
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The terms form a finite arithmetic series with n = 36, a1 = 1, and a36 = 36, so we 
can use formula (4):

 Sn =
n
2

 1a1 + an2

 S36 =
36
2

 11 + 362 = $666

We conclude that the total cost of the loan over 3 years is $666.

MATCHED PROBLEM 6 Repeat Example 6 with a loan of $6,000 over 5 years.

Economy Stimulation The government has decided on a tax rebate program to 
stimulate the economy. Suppose that you receive $1,200 and you spend 80% of this, 
and each of the people who receive what you spend also spend 80% of what they re-
ceive, and this process continues without end. According to the multiplier principle  
in economics, the effect of your $1,200 tax rebate on the economy is multiplied 
many times. What is the total amount spent if the process continues as indicated?

SOLUTION We need to find the sum of an infinite geometric series with the first 
amount spent being a1 = 10.821$1,2002 = $960 and r = 0.8. Using formula (7), 
we obtain

 S∞ =
a1

1 - r

 =
$960

1 - 0.8
= $4,800

Assuming the process continues as indicated, we would expect the $1,200 tax re-
bate to result in about $4,800 of spending.

MATCHED PROBLEM 7 Repeat Example 7 with a tax rebate of $2,000.

EXAMPLE 7

Exercises B.2
 In Problems 1 and 2, determine whether the indicated sequence 
can be the first three terms of an arithmetic or geometric se-
quence, and, if so, find the common difference or common ratio 
and the next two terms of the sequence.

1. (A) -11, -16, -21, c (B) 2, -4, 8, c
(C) 1, 4, 9, c (D) 1

2, 16, 1
18, c

2. (A) 5, 20, 100, c (B) -5, -5, -5, c

(C) 7, 6.5, 6, c (D) 512, 256, 128, c

In Problems 3–8, determine whether the finite series is arithmetic, 
geometric, both, or neither. If the series is arithmetic or geomet-
ric, find its sum.

3. a
101

k = 1
1-12 k + 1 4. a

200

k = 1
3

5. 1 +
1
2

+
1
3

+ g +
1
50

6. 3 - 9 + 27 - g - 320

A 7. 5 + 4.9 + 4.8 + g + 0.1

8. 1 -  
1
4

+
1
9

- g -  
1

1002

 Let a1, a2, a3, c, an, cbe an arithmetic sequence. In Problems 
9–14, find the indicated quantities.

9. a1 = 7; d = 4; a2 = ?; a3 = ?

10. a1 = -2; d = -3; a2 = ?; a3 = ?

11. a1 = 2; d = 4; a21 = ?; S31 = ?

12. a1 = 8; d = -10; a15 = ?; S23 = ?

13. a1 = 18; a20 = 75; S20 = ?

14. a1 = 203; a30 = 261; S30 = ?

Let a1, a2, a3, c, an, c be a geometric sequence. In Problems 
15–24, find the indicated quantities.

15. a1 = 3; r = -2; a2 = ?; a3 = ?; a4 = ?

16. a1 = 32; r = -  12; a2 = ?; a3 = ?; a4 = ?

B
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17. a1 = 1; a7 = 729; r = -3; S7 = ?

18. a1 = 3; a7 = 2,187; r = 3; S7 = ?

19. a1 = 100; r = 1.08; a10 = ?

20. a1 = 240; r = 1.06; a12 = ?

21. a1 = 100; a9 = 200; r = ?

22. a1 = 100; a10 = 300; r = ?

23. a1 = 500; r = 0.6; S10 = ?; S∞ = ?

24. a1 = 8,000; r = 0.4; S10 = ?; S∞ = ?

25. S41 = a
41

k = 1
13k + 32 = ? 26. S50 = a

50

k = 1
12k - 32 = ?

27. S8 = a
8

k = 1
1-22 k - 1 = ? 28. S8 = a

8

k = 1
2k = ?

29. Find the sum of all the odd integers between 12 and 68.

30. Find the sum of all the even integers between 23 and 97.

31. Find the sum of each infinite geometric sequence (if it exists).

(A) 2, 4, 8, c (B) 2, -1
2, 18, c

32. Repeat Problem 31 for:

(A) 16, 4, 1, c (B) 1, -3, 9, c

33.  Find  f112 + f122 + f132 + g + f1502 if 
 f1x2 = 2x - 3.

34. Find  g112 + g122 + g132 + g + g11002 if 
 g1t2 = 18 - 3t.

35. Find  f112 + f122 + g + f1102 if  f1x2 = 11
22 x.

36. Find  g112 + g122 + g + g1102 if  g1x2 = 2x.

37. Show that the sum of the first n odd positive integers is n2, 
using appropriate formulas from this section.

38. Show that the sum of the first n even positive integers is 
n + n2, using formulas in this section.

39. If r = 1, neither the first form nor the second form for the 
sum of a finite geometric series is valid. Find a formula for 
the sum of a finite geometric series if r = 1.

40. If all of the terms of an infinite geometric series are less than 
1, could the sum be greater than 1,000? Explain.

41. Does there exist a finite arithmetic series with a1 = 1 and 
an = 1.1 that has sum equal to 100? Explain.

42. Does there exist a finite arithmetic series with a1 = 1 and 
an = 1.1 that has sum equal to 105? Explain.

C

43. Does there exist an infinite geometric series with a1 = 10 
that has sum equal to 6? Explain.

44. Does there exist an infinite geometric series with a1 = 10 
that has sum equal to 5? Explain.

Applications
45. Loan repayment. If you borrow $4,800 and repay the loan 

by paying $200 per month to reduce the loan and 1% of the 
unpaid balance each month for the use of the money, what is 
the total cost of the loan over 24 months?

46. Loan repayment. If you borrow $5,400 and repay the loan 
by paying $300 per month to reduce the loan and 1.5% of the 
unpaid balance each month for the use of the money, what is 
the total cost of the loan over 18 months?

47. Economy stimulation. The government, through a subsidy 
program, distributes $5,000,000. If we assume that each per-
son or agency spends 70% of what is received, and 70% of 
this is spent, and so on, how much total increase in spending 
results from this government action? (Let a1 = $3,500,000.)

48. Economy stimulation. Due to reduced taxes, a person has 
an extra $1,200 in spendable income. If we assume that the 
person spends 65% of this on consumer goods, and the pro-
ducers of these goods in turn spend 65% on consumer goods, 
and that this process continues indefinitely, what is the total 
amount spent (to the nearest dollar) on consumer goods?

49. Compound interest. If $1,000 is invested at 5% com-
pounded annually, the amount A present after n years forms 
a geometric sequence with common ratio 1 + 0.05 = 1.05. 
Use a geometric sequence formula to find the amount A 
in the account (to the nearest cent) after 10 years. After 20 
years. (Hint: Use a time line.)

50. Compound interest. If $P is invested at 100r% compounded 
annually, the amount A present after n years forms a geomet-
ric sequence with common ratio 1 + r. Write a formula for 
the amount present after n years. (Hint: Use a time line.)

Answers to Matched Problems

1. (A) The sequence is geometric with r = 1
4. It is not arithmetic.

  (B) The sequence is arithmetic with d = 5. It is not geometric.
  (C) The sequence is neither arithmetic nor geometric.

2. (A) 139   (B) -2
3. -960 4. 10,672 5. 1,063.66 6. $1,830 7. $8,000

The binomial form
1a + b2 n

where n is a natural number, appears more frequently than you might expect. The co-
efficients in the expansion play an important role in probability studies. The binomial 
formula, which we will derive informally, enables us to expand 1a + b2 n directly for 

B.3 Binomial Theorem
■■ Factorial
■■ Development of the Binomial 
Theorem
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n any natural number. Since the formula involves factorials, we digress for a moment 
here to introduce this important concept.

Factorial
For n a natural number, n factorial, denoted by n!, is the product of the first n natural 
numbers. Zero factorial is defined to be 1. That is,

DEFINITION n Factorial

 n! = n #  1n - 12 #  g #  2 #  1

 1! = 1

 0! = 1

It is also useful to note that n! can be defined recursively.

DEFINITION n Factorial—Recursive Definition

n! = n #  1n - 12! n Ú 1

Factorial Forms Evaluate.

(A) 5! = 5 #  4 #  3 #  2 #  1 = 120

(B) 
8!
7!

=
8 #  7!

7!
= 8

(C) 
10!
7!

=
10 #  9 #  8 #  7!

7!
= 720

MATCHED PROBLEM 1 Evaluate.

(A) 4! (B) 
7!
6!

(C) 
8!
5!

EXAMPLE 1

The following formula involving factorials has applications in many areas of 
mathematics and statistics. We will use this formula to provide a more concise form 
for the expressions encountered later in this discussion.

THEOREM 1 For n and r integers satisfying 0 " r " n,

nCr =
n!

r!1n - r2!

Evaluating nCr

(A) 9C2 =
9!

2!19 - 22!
=

9!
2!7!

=
9 #  8 #  7!

2 #  7!
= 36

(B) 5C5 =
5!

5!15 - 52!
=

5!
5!0!

=
5!
5!

= 1

MATCHED PROBLEM 2 Find

(A) 5C2 (B) 6C0

EXAMPLE 2
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Development of the Binomial Theorem
Let us expand 1a + b2 n for several values of n to see if we can observe a pattern that 
leads to a general formula for the expansion for any natural number n:

 1a + b2 1 = a + b

 1a + b2 2 = a2 + 2ab + b2

 1a + b2 3 = a3 + 3a2b + 3ab2 + b3

 1a + b2 4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

 1a + b2 5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

1. The expansion of 1a + b2 n has 1n + 12 terms.
2. The power of a decreases by 1 for each term as we move from left to right.
3. The power of b increases by 1 for each term as we move from left to right.
4. In each term, the sum of the powers of a and b always equals n.
5. Starting with a given term, we can get the coefficient of the next term by mul-

tiplying the coefficient of the given term by the exponent of a and dividing by 
the number that represents the position of the term in the series of terms. For 
example, in the expansion of 1a + b2 4 above, the coefficient of the third term 
is found from the second term by multiplying 4 and 3, and then dividing by 2 
[that is, the coefficient of the third term = 14 # 32 >2 = 6].

CONCEPTUAL  INSIGHT

 1a + b2 n = an +
n
1

 an - 1b +
n1n - 12

1 #  2
 an - 2b2 +

n1n - 121n - 22
1 #  2 #  3

 an - 3b3 + g + bn

 =
n!

0!1n - 02!
 an +

n!
1!1n - 12!

 an - 1b +
n!

2!1n - 22!
 an - 2b2 +

n!
3!1n - 32!

 an - 3b3 + g +
n!

n!1n - n2!
 bn

 = nC0 an + nC1a
n - 1b + nC2a

n - 2b2 + nC3a
n - 3b3 + g + nCnb

n

And we are led to the formula in the binomial theorem:

THEOREM 2 Binomial Theorem
For all natural numbers n,

1a + b2 n = nC0a
n + nC1a

n - 1b + nC2a
n - 2b2 + nC3a

n - 3b3 + g + nCnb
n

Using the Binomial Theorem Use the binomial theorem to expand 1u + v2 6.

SOLUTION

 1u + v2 6 = 6C0u
6 + 6C1u

5
v + 6C2u

4
v

2 + 6C3u
3
v

3 + 6C4u
2
v

4 + 6C5uv

5 + 6C6v
6

 = u6 + 6u5
v + 15u4

v

2 + 20u3
v

3 + 15u2
v

4 + 6uv

5 + v

6

MATCHED PROBLEM 3 Use the binomial theorem to expand 1x + 22 5.

EXAMPLE 3

We now postulate these same properties for the general case:
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Using the Binomial Theorem Use the binomial theorem to find the sixth term in 
the expansion of 1x - 12 18.

SOLUTION   Sixth term = 18C5x
131-12 5 =

18!
5!118 - 52!

 x131-12

 = -8,568x13

MATCHED PROBLEM 4 Use the binomial theorem to find the fourth term in the 

expansion of 1x - 22 20.

EXAMPLE 4

Exercises B.3
In Problems 1–20, evaluate each expression.

1. 6! 2. 7! 3. 
10!
9!

4. 
20!
19!

5. 
12!
9!

6. 
10!
6!

7. 
5!

2!3!
8. 

7!
3!4!

9. 
6!

5!16 - 52!

10. 
7!

4!17 - 42!
11. 

20!
3!17!

12. 
52!

50!2!

13. 5C3 14. 7C3 15. 6C5 16. 7C4

17. 5C0 18. 5C5 19. 18C15 20. 18C3

Expand each expression in Problems 21–26 using the binomial 
theorem.

21. 1a + b2 4 22. 1m + n2 5

23. 1x - 12 6 24. 1u - 22 5

25. 12a - b2 5 26. 1x - 2y2 5

Find the indicated term in each expansion in Problems 27–32.

27. 1x - 12 18; 5th term 28. 1x - 32 20; 3rd term

29. 1p + q2 15; 7th term 30. 1p + q2 15; 13th term

31. 12x + y2 12; 11th term 32. 12x + y2 12; 3rd term

A

B

33. Show that nC0 = nCn for n Ú 0.

34. Show that nCr = nCn - r for n Ú r Ú 0.

35. The triangle shown here is called Pascal’s triangle. Can you 
guess what the next two rows at the bottom are? Compare 
these numbers with the coefficients of binomial expansions.

  1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

36. Explain why the sum of the entries in each row of Pascal’s 
triangle is a power of 2. (Hint: Let a = b = 1 in the bino-
mial theorem.)

37. Explain why the alternating sum of the entries in each row of 
Pascal’s triangle (e.g., 1 - 4 + 6 - 4 + 1) is equal to 0.

38. Show that nCr = n - r + 1
r  n Cr - 1 for n Ú r Ú 1.

39. Show that nCr - 1 + n Cr = n + 1Cr for n Ú r Ú 1.

Answers to Matched Problems
1. (A) 24 (B) 7 (C) 336
2. (A) 10 (B) 1
3. x5 + 10x4 + 40x3 + 80x2 + 80x + 32
4. -9,120x17

C

Given two points in the plane with distinct x coordinates, we can use the point-slope 
form of the equation of a line to find a polynomial whose graph passes through these 
two points. If we are given a set of three, four, or more points with distinct x coordi-
nates, is there a polynomial whose graph will pass through all the given points? In 
this section, we will see that the answer to this question is yes, and we will discuss 
several methods for finding this polynomial, called the interpolating polynomial. 
The principal use of interpolating polynomials is to approximate y coordinates for 
points not in the given set. For example, a retail sales firm may have obtained a table 
of prices at various demands by examining past sales records. Prices for demands 
not in the table can be approximated by an interpolating polynomial. Interpolating 

B.4 Interpolating Polynomials and Divided Differences
■■ Introduction
■■ The Interpolating Polynomial
■■ Divided Difference Tables
■■ Application
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polynomials also have applications to computer graphics. If a computer user selects 
a set of points on a drawing, the interpolating polynomial can be used to produce a 
smooth curve that passes through the selected points.

Introduction
We usually write polynomials in standard form using either increasing or decreasing 
powers of x. Both of the following polynomials are written in standard form:

 p1x2 = 1 + x2 - 2x3 q1x2 = -3x5 + 2x4 - 5x

In this section, we will find it convenient to write polynomials in a different form. 
The following activity will give you some experience with this new form.

Table 1
x 1 2 3 4
y 4 7 4 1

Consider the points in Table 1.

(A) Let p11x2 = a0 + a11x - 12. Determine a0 and a1 so that the graph of 
y = p11x2 passes through the first two points in Table 1.

(B) Let p21x2 = a0 + a11x - 12 + a21x - 121x - 22. Determine a0, a1, and 
a2 so that the graph of y = p21x2 passes through the first three points in Table 1.

(C) Let

 p31x2 = a0 + a11x - 12 + a21x - 121x - 22
 + a31x - 121x - 221x - 32.

Determine a0, a1, a2, and a3 so that the graph of y = p31x2 passes through all four 
points in Table 1.

Explore and Discuss 1

Approximating Revenue A manufacturing company has defined the revenue 
function for one of its products by examining past records and listing the revenue 
(in thousands of dollars) for certain levels of production (in thousands of units). Use 
the revenue function defined by Table 2 to estimate the revenue if 3,000 units are 
produced and if 7,000 units are produced.

SOLUTION 
One way to approximate values of a function defined by a table is to use a piecewise 
linear approximation. To form the piecewise linear approximation for Table 2, we 
simply use the point-slope formula to find the equation of the line joining each suc-
cessive pair of points in the table (see Fig. 1).

x

y

0

50

100

1 2 3 4 5 6 7 8

L(x) 5
60 1 5x if 1 # x # 4

160 2 20x if 4 , x # 6
112 2 12x if 6 , x # 8

Figure 1  L1x2 is the piecewise linear approximation for  R1x2.

This type of approximation is very useful in certain applications, but it has 
several disadvantages. First, the piecewise linear approximation usually has a 

EXAMPLE 1

Table 2 Revenue R Defined as a 
Function of Production x by a Table

x 1 4 6 8

 R1x2 65 80 40 16

The following example will illustrate basic concepts.
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sharp corner at each point in the table and thus is not differentiable at these points. 
Second, the piecewise linear approximation requires the use of a different formula 
between each successive pair of points in the table (see Fig. 1).

Instead of using the piecewise linear approximation, we will outline a method 
that will produce a polynomial whose values agree with  R1x2 at each point in 
 Table 2. This will provide us with a differentiable function given by a single 
 formula that can be used to approximate  R1x2 for any value of x between 1 and 8.

Suppose  p1x2 is a polynomial whose values agree with the values of  R1x2 at 
the four x values given in Table 2. Instead of expressing  p1x2 in terms of powers 
of x, the standard method for writing polynomial forms, we use the first three  
x values in the table to write

 p1x2 = a0 + a11x - 12 + a21x - 121x - 42 + a31x - 121x - 421x - 62
As we will see, writing  p1x2 in this special form will greatly simplify our work.

Since  p1x2 is to agree with  R1x2 at each x value in Table 2, we can write the 
following equations involving the coefficients a0, a1, a2, and a3:

 65 = R112 = p112 = a0  (1)

 80 = R142 = p142 = a0 + 3a1  (2)

 40 = R162 = p162 = a0 + 5a1 + 10a2  (3)

 16 = R182 = p182 = a0 + 7a1 + 28a2 + 56a3 (4)

From equation (1), we see that a0 = 65. Solving equation (2) for a1 and substituting 
for a0, we have

a1 =
1
3
180 - a02 =

1
3
180 - 652 = 5

Proceeding the same way with equations (3) and (4), we have

 a2 =
1

10
140 - a0 - 5a12 =

1
10

140 - 65 - 252 = -5

 a3 =
1

56
116 - a0 - 7a1 - 28a22 =

1
56

116 - 65 - 35 + 1402 = 1

Therefore,

 p1x2 = 65 + 51x - 12 - 51x - 121x - 42 + 1x - 121x - 421x - 62
The polynomial  p1x2 agrees with  R1x2 at each x value in Table 2 (verify this) and 
can be used to approximate  R1x2 for values of x between 1 and 8 (see Fig. 2).

x

y

0

50

100

1 2 3 4 5 6 7 8

Figure 2  p1x2 = 65 + 51x - 12 - 51x - 121x - 42 + 1x - 121x - 421x - 62

If 3,000 units are produced, then the revenue can be approximated by evaluating  p132:

 R132 ≈ p132 = 65 + 5122 - 51221-12 + 1221-121-32
 = 91 or $91,000

Table 2
x 1 4 6 8

 R1x2 65 80 40 16
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If 7,000 units are produced, then

 R172 ≈ p172 = 65 + 5162 - 5162132 + 162132112
 = 23 or $23,000

MATCHED PROBLEM 1 Refer to Example 1. Approximate the revenue if 2,000 
units are produced and if 5,000 units are produced.

Since the revenue function in Example 1 was defined by a table, we have no 
information about this function for any value of x other than those listed in the table. 
So, we cannot say anything about the accuracy of the approximations obtained by us-
ing  p1x2. As we mentioned earlier, the piecewise linear approximation might provide 
a better approximation in some cases. The primary advantage of using  p1x2 is that 
we have a differentiable function that is defined by a single equation and agrees with 
the revenue function at every value of x in the table.

The Interpolating Polynomial
The procedure we used to find a polynomial approximation for the revenue function 
in Example 1 can be applied to any function that is defined by a table. The polyno-
mial that is obtained in this way is referred to as the interpolating polynomial. The 
basic concepts are summarized in the next box.

DEFINITION The Interpolating Polynomial
If  f1x2 is the function defined by the following table of n + 1 points,

x x0 x1 g xn

 f1x2 y0 y1 g yn

then the interpolating polynomial for  f1x2 is the polynomial  p1x2 of degree less 
than or equal to n that satisfies

 p1x02 = y0 = f1x02
 p1x12 = y1 = f1x12

 f  f
 p1xn2 = yn = f1xn2

Newton’s form for the interpolating polynomial is

 p1x2 = a0 + a11x - x02 + a21x - x021x - x12 + g
 +  an1x - x021x - x12 

. . . . . 1x - xn - 12

Notice that if we graph the points in the defining table and the interpolating poly-
nomial  p1x2 on the same set of axes, then the graph of  p1x2 will pass through every 
point given in the table (see Fig. 2). Is it possible to find a polynomial that is differ-
ent from  p1x2 and also has a graph that passes through all the points in the table? In 
more advanced texts, it is shown that

The interpolating polynomial is the only polynomial of degree less than 
or equal to n whose graph will pass through every point in the table.

Any other polynomial whose graph goes through all these points must be of 
degree greater than n. The steps we used in finding the interpolating polynomial are 
summarized in the following box.
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PROCEDURE Steps for Finding the Interpolating Polynomial
Step 1. Write Newton’s form for  p1x2.

Step 2. Use the conditions  p1xi2 = yi, i = 0, 1, c , n to write n + 1 linear equa-
tions for the coefficients. Do not change the order of these equations. This 
system of equations is called a lower triangular system.

Step 3. Starting with the first and proceeding down the list, solve each equation for 
the coefficient with the largest subscript and substitute all the previously 
determined coefficients. This method of solving for the coefficients is called 
forward substitution.

Finding the Interpolating Polynomial Find the interpolating polynomial for the 
function defined by the following table:

x 0 1   2   3

 f1x2 5 4 -3 -4

SOLUTION
Step 1. Newton’s form for  p1x2 is

 p1x2 = a0 + a1x + a2x1x - 12 + a3x1x - 121x - 22
Step 2. The lower triangular system is

a0     = 5 p1O2 = f1O2 = 5

a0 + a1     = 4 p112 = f112 = 4

a0 + 2a1 + 2a2    = -3 p122 = f122 = -3

a0 + 3a1 + 6a2 + 6a3 = -4 p132 = f132 = -4

Step 3. Solving this system by forward substitution, we have

 a0 = 5

 a1 = 4 - a0 = 4 - 5 = -1

 a2 =
1
2
1-3 - a0 - 2a12 =

1
2
1-3 - 5 + 22 = -3

 a3 =
1
6
1-4 - a0 - 3a1 - 6a22 =

1
6
1-4 - 5 + 3 + 182 = 2 

Newton’s form for the interpolating polynomial is

 p1x2 = 5 - x - 3x1x - 12 + 2x1x - 121x - 22
This form of  p1x2 is suitable for evaluating the polynomial. For other operations, 
such as differentiation, integration, or graphing, it may be preferable to perform the 
indicated operations, collect like terms, and express  p1x2 in the standard polyno-
mial form

 p1x2 = 2x3 - 9x2 + 6x + 5

The graph of  p1x2 is shown in Figure 3.

MATCHED PROBLEM 2 Find the interpolating polynomial for the function defined 
by the following table:

x -1 0 1 2

 f1x2 5 3 3 11

EXAMPLE 2

x

y

1 2 3

25

5

0

y 5 p(x)

Figure 3  p1x2 = 2x3 - 9x2 + 6x + 5
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(A) Show that the graph of  p1x2 passes through each point in the table.

(B) Is  p1x2 the interpolating polynomial for this table? If not, what is the interpolat-
ing polynomial for this table?

(C) Discuss the relationship between the number of points in a table and the degree 
of the interpolating polynomial for that table.

Given the following polynomial and table,

 p1x2 = x3 - 10x2 + 29x - 17

Explore and Discuss 2

x 1 3 6

y 3 7 13

Divided Difference Tables
We now present a simple computational procedure for finding the coefficients 
a0, a1, c , an in Newton’s form for an interpolating polynomial. To introduce this 
method, we return to Table 2 in Example 1, which we restate here.

The coefficients in Newton’s form for the interpolating polynomial for this table 
were a0 = 65, a1 = 5, a2 = -5, and a3 = 1. We will now construct a table, called 
a divided difference table, which will produce these coefficients with a minimum of 
computation. To begin, we place the x and y values in the first two columns of a new 
table. Then we compute the ratio of the change in y to the change in x for each suc-
cessive pair of points in the table, and place the result on the line between the two 
points (see Table 3). These ratios are called the first divided differences.

To form the next column in the table, we repeat this process, using the change in 
the first divided differences in the numerator and the change in two successive values 
of x in the denominator. These ratios are called the second divided differences and are 
placed on the line between the corresponding first divided differences (see Table 4).

Table 2
x 1 4 6 8

 f1x2 65 80 40 16

Table 3 First Divided Differences

xk yk First Divided Difference

1 65

80 - 65
4 - 1

=
15
3

= 5

4 80
40 - 80
6 - 4

=
-40

2
= -20

6 40

16 - 40
8 - 6

=
-24

2
= -12

8 16

Table 4 Second Divided Differences

xk yk

First Divided 
Difference Second Divided Difference

1 65
5

4 80 -20 - 5
6 - 1

=
-25

5
= -5

-20
6 40 -12 - 1-202

8 - 4
=

8
4

= 2

-12
8 16

To form the next column of the table, we form the ratio of the change in the 
second divided differences to the change in three successive values of x. These ratios 
are called the third divided differences and are placed on the line between the cor-
responding second divided differences (see Table 5). Since our table has only two 
second divided differences, there is only one third divided difference and this process 
is now complete.
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Table 5 Third Divided Differences

xk yk

First Divided 
Difference

Second Divided 
Difference

Third Divided 
Difference

1 65
5

4 80 -5
-20 2 - 1-52

8 - 1
=

7
7

= 1

6 40 2
-12

8 16

We have presented each step in constructing the divided difference table here in a 
separate table to clearly illustrate this process. In applications of this technique, these 
steps are combined into a single table. With a little practice, you should be able to 
proceed quickly from the defining table for the function (Table 2) to the final form of 
the divided difference table (Table 6).

Table 6 Divided Difference Table—Final Form

xk yk

First Divided 
Difference

Second Divided 
Difference

Third Divided 
Difference

1 65

80 - 65
4 - 1

=  5

4 80 -20 - 5
6 - 1

=  -5

40 - 80
6 - 4

=  -20
2 - 1-52

8 - 1
=  1

6 40 -12 - 1-202
8 - 4

=  2

16 - 40
8 - 6

=  -12

8 16

Now that we have computed the divided difference table, how do we use it? If we 
write the first number from each column of the divided difference table, beginning 
with the second column:

65 5 -5 1
we see that these numbers are the coefficients of the interpolating polynomial for 
Table 2 (see Example 1). Thus, Table 6 contains all the information we need to write 
the interpolating polynomial:

 p1x2 = 65 + 51x - 12 - 51x - 121x - 42 + 1x - 121x - 421x - 62
The divided difference table provides an alternate method for finding interpolating 
polynomials that generally requires fewer computations and can be implemented eas-
ily on a computer. The ideas introduced in the preceding discussion are summarized 
in the following box.

PROCEDURE Divided Difference Tables and Interpolating Polynomials
Given the defining table for a function  f1x2 with n + 1 points,

x x0 x1 g xn

 f1x2 y0 y1 g yn
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where x0 6 x1 6 g6 xn, then the divided difference table is computed as  
follows:

Column 1: x values from the defining table

Column 2: y values from the defining table

Column 3: First divided differences computed using columns 1 and 2

Column 4: Second divided differences computed using columns 1 and 3
f
Column n + 2: nth divided differences computed using columns 1 and n + 1

The coefficients in Newton’s form for the interpolating polynomial,

 p1x2 = a0 + a11x - x02 + a21x - x021x - x12 + g
 + an1x - x021x - x12 

. . . . . 1x - xn - 12
are the first numbers in each column of the divided difference table, beginning with 
column 2.

1. The points in the defining table must be arranged with increasing x values 
before computing the divided difference table. If the x values are out of order, 
then the divided difference table will not contain the coefficients of Newton’s 
form for the interpolating polynomial.

2. Since each column in the divided difference table uses all the values in the 
preceding column, it is necessary to compute all the numbers in every column, 
even though we are interested only in the first number in each column.

3. Other methods can be used to find interpolating polynomials. Referring to 
Table 1, we could write  p1x2 in standard polynomial notation

 p1x2 = b3x
3 + b2x

2 + b1x + b0

and use the points in the table to write the following system of linear equations:

 p112 =   b3 + b2 +    b1  +    b0 = 65

 p142 = 64b3  + 16b2 + 4b1 +  b0  = 80

 p162 = 216b3  + 36b2 + 6b1 +  b0  = 40

 p182 = 512b3  + 64b2 + 8b1 +  b0  = 16

The computations required to solve this system of equations are far more com-
plicated than those involved in finding the divided difference table.

CONCEPTUAL  INSIGHT

Using a Divided Difference TableEXAMPLE 3

Table 7
x 0 1 2 3 4

 f1x2 35 25 19 -7 -29

(A) Find the divided difference table for the points in Table 7.

(B) Use the divided difference table to find the interpolating polynomial.
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SOLUTION
(A) The divided difference table is as follows.

xk yk

First Divided 
Difference

Second Divided 
Difference

Third Divided 
Difference

Fourth Divided 
Difference

0 35

25 - 35
1 - 0

=   -10

1 25 -6 - 1-102
2 - 0

=   2

19 - 25
2 - 1

=   -6
-10 - 2

3 - 0
=   -4

2 19 -26 - 1-62
3 - 1

=   -10
4 - 1-42

4 - 0
=   2

-7 - 19
3 - 2

=   -26
2 - 1-102

4 - 1
=   4

3 -7 -22 - 1-262
4 - 2

=   2

-29 - 1-72
4 - 3

=   -22

4 -29

(B) Newton’s form for the interpolating polynomial is

 p1x2 = a0 + a1x + a2x1x - 12 + a3x1x - 121x - 22
 + a4x1x - 121x - 221x - 32

Substituting the values from the divided difference table for the coefficients in 
Newton’s form, we have

 p1x2 = 35 - 10x + 2x1x - 12 - 4x1x - 121x - 22
 + 2x1x - 121x - 221x - 32

 = 35 - 32x + 36x2 - 16x3 + 2x4 Standard form

Multiplication details for the standard form are omitted. Figure 4 verifies that 
the values of the interpolating polynomial agree with the values in Table 7.

Figure 4
Table 8

x 0 1 2 3 4
 f1x2 5 1 -1 -7 1

Matched Problem 3
(A) Find the divided difference table for the points in Table 8.

(B) Use the divided difference table to find the interpolating polynomial.

A graphing calculator can be used to calculate a divided difference table. Figure 5A 
shows a program on a TI-84 Plus CE that calculates divided difference tables and 
Figure 5B shows the input and output generated when we use this program to solve 
Example 3.

Explore and Discuss 3
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Enter this program into your graphing calculator and use it to solve Matched Problem 3.

Application

(A) Program

Figure 5
(B) Input and output

Inventory A store orders 8,000 units of a new product. The inventory I on hand t 
weeks after the order arrived is given in the following table:

Inventory

t 0 2 4 6 8

 I1t2 8,000 5,952 3,744 1,568 0

Use the interpolating polynomial to approximate the inventory after 5 weeks and the 
average inventory during the first 5 weeks after the order arrived.

SOLUTION The divided difference table is as follows:

tk yk

First Divided 
Difference

Second Divided 
Difference

Third Divided 
Difference

Fourth Divided 
Difference

0 8,000

-1,024

2 5,952 -20

-1,104 4

4 3,744 4 1

-1,088 12

6 1,568 76

-784

8 0

The interpolating polynomial is

 p1t2 = 8,000 - 1,024t - 20t1t - 22 + 4t1t - 221t - 42
 + t1t - 221t - 421t - 62

or, after simplifying,

 p1t2 = t4 - 8t3 - 1,000t + 8,000

The inventory after 5 weeks is given approximately by

 p152 = 54 - 8152 3 - 1,000152 + 8,000 = 2,625 units

The average inventory during the first 5 weeks is given approximately by

EXAMPLE 4
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1
5 L

5

0
p1t2dt =

1
5 L

5

0
1t4 - 8t3 - 1,000t + 8,0002dt

 =
1
5
a1

5
t5 - 2t4 - 500t2 + 8,000tb `

5

0

 =
1
5
1625 - 1,250 - 12,500 + 40,0002 -  

1
5
102

 = 5,375 units

MATCHED PROBLEM 4 Refer to Example 4. Approximate the inventory after 7 
weeks and the average inventory during the first 7 weeks.

Exercises B.4
 In Problems 1–4,

(A) Write Newton’s form for the interpolating polynomial.

(B) Write the associated lower triangular system for the 
coefficients.

(C) Use forward substitution to find the interpolating polynomial.

1. 

A

8. 

x 1 3  4

 f1x2 2 6 11

2. x -1 1 2

 f1x2  1 3 7

3. x -1 0  2 4

 f1x2 6 5 15 -39

4. x -1 0 2 3

 f1x2  5 1 5 1

In Problems 5–10, find the divided difference table and then find 
the interpolating polynomial.

5. x 1 2  3

 f1x2 4 8 14

6. x 1 2 3

 f1x2 1 3 7

7. x -1 0 1 2

 f1x2 -3 1 3 9

x -1 0 1 2

 f1x2  5 6 3 2

9. x -2  1  2  4

 f1x2 25 10 17 13

10. x -1  0  3 5

 f1x2 17 10 25 5

11. Can a table with three points have a linear interpolating 
polynomial? A quadratic interpolating polynomial? A cubic 
interpolating polynomial? Explain.

12. Can a table with four points have a linear interpolating 
polynomial? A quadratic interpolating polynomial? A cubic 
interpolating polynomial? A quartic interpolating polyno-
mial? Explain.

In Problems 13–20, use the interpolating polynomial to approxi-
mate the value of the function defined by the table at the indicated 
values of x.

13. 

B

x -4  0 4   8

 f1x2 -64 32 0 224

(A)  f122 ≈ ?  (B)  f162 ≈ ?

14. x -5  0   5 10

 f1x2 250 50 100 -350

(A)  f1-32 ≈ ?  (B)  f182 ≈ ?

15. x -1 0 1  4

 f1x2 0 0 0 15

(A)  f122 ≈ ?  (B)  f132 ≈ ?

16. x -2 0 2 6

 f1x2 0 0 0 -96

(A)  f112 ≈ ?  (B)  f142 ≈ ?

17. x -4 -2 0 2 4

 f1x2 24 2 0 -6 8

(A)  f1-32 ≈ ?  (B)  f112 ≈ ?
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18. In Problems 31–34, use the quartic regression routine on a graph-
ing calculator to fit a fourth degree polynomial to the tables in the 
indicated problems. Compare this polynomial with the interpolat-
ing polynomial.

31. Problem 27 32. Problem 28

33. Problem 29 34. Problem 30

35.  The following table was obtained from the function 
 f1x2 = 2x:

x 1 4 9

 f1x2 1 2 3

Find the interpolating polynomial for this table. Compare the 
values of the interpolating polynomial  p1x2 and the original 
function  f1x2 = 2x by completing the table below. Use 
a calculator to evaluate 2x and round each value to one 
decimal place.

x 1 2 3 4 5 6 7 8 9

 p1x2 1 2 32x 1 2 3

36. The following table was obtained from the function 
 f1x2 = 6>2x:

x 1 4 9

 f1x2 6 3 2

Find the interpolating polynomial for this table. Compare the 
values of the interpolating polynomial  p1x2 and the original 
function  f1x2 = 6>2x by completing the table below. Use 
a calculator to evaluate 6>2x and round each value to one 
decimal place.

x 1 2 3 4 5 6 7 8 9

 p1x2 6 3 2

6>2x 6 3 2

37. The following table was obtained from the function 
 f1x2 = 10x> 11 + x22:

x -2 -1 0 1 2

 f1x2 -4 -5 0 5 4

Find the interpolating polynomial  p1x2 for this table. Graph 

 p1x2 and  f1x2 on the same set of axes.

38. The following table was obtained from the function 
 f1x2 = 19 - x22 >11 + x22:

x -2 -1 0 1 2

 f1x2 1 4 9 4 1
 
Find the interpolating polynomial  p1x2 for this table. Graph 
 p1x2 and  f1x2 on the same set of axes.

C

x -6 -2  0 2  6

 f1x2 19 3 10 3 19

(A)  f112 ≈ ?  (B)  f152 ≈ ?

19. x -3 -2 -1 1 2  3

 f1x2 -24 -6 0 0 6 24

(A)  f1-0.52 ≈ ?  (B)  f12.52 ≈ ?

20. x -3 -2 -1 0 1 2  3

 f1x2 40 0 0 4 0 0 40

(A)  f1-2.52 ≈ ?  (B)  f11.52 ≈ ?

In Problems 21–30, find the interpolating polynomial. Graph the 
interpolating polynomial and the points in the given table on the 
same set of axes.

21. x -2 0 2

 f1x2 2 0 2

22. x -2 0 2

 f1x2 2 0 -2

23. x 0 1 2

 f1x2 -4 -2 0

24. x 0 1 2

 f1x2 -4 -3 0

25. x -1 0 2 3

 f1x2 0 2 0 -4

26. x -3 -1 0 1

 f1x2 0 4 3 0

27. x -2 -1 0 1 2

 f1x2 1 5 3 1 5

28. x -2 -1 0 1 2

 f1x2 -8 0 2 4 12

29. x -2 -1 0 1 2

 f1x2 -3 0 5 0 -3

30. x -1 0 1 2 3

 f1x2 6 2 0 -6 2
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39. Find the equation of the parabola whose graph passes through 
the points 1-x1, y12, 10, y22, and 1x1, y12, where x1 7 0 and 
y1 ∙ y2.

40. Find the equation of the parabola whose graph passes through 
the points 10, 02, 1x1, y12, and 12x1, 02, where x1 7 0 and 
y1 ∙ 0.

Applications
41. Cash reserves. Suppose the cash reserves C (in thousands 

of dollars) for a small business are given by the following 
table, where t is the number of months after the first of the 
year.

t 0  4  8 12

 C1t2 2 32 38 20

(A) Find the interpolating polynomial for this table.

(B) Use the interpolating polynomial to approximate (to the 
nearest thousand dollars) the cash reserves after 6 months.

(C) Use the interpolating polynomial to approximate (to the 
nearest hundred dollars) the average cash reserves for 
the first quarter.

42. Inventory. A hardware store orders 147 lawn mowers. The 
inventory I of lawn mowers on hand t months after the order 
arrived is given in the table.

t   0  1  2 3

 I1t2 147 66 19 0

(A) Find the interpolating polynomial for this table.

(B) Use the interpolating polynomial to approximate (to the 
nearest integer) the average number of lawn mowers on 
hand for this three-month period.

43. Income distribution. The income distribution for the United 
States in 1999 is represented by the Lorenz curve y = f1x2, 
where  f1x2 is given in the table.

x 0  0.2  0.8 1

 f1x2 0 0.04 0.52 1

(A) Find the interpolating polynomial for this table.

(B) Use the interpolating polynomial to approximate (to four 
decimal places) the index of income concentration.

44. Income distribution. Refer to Problem 43. After making a 
series of adjustments for things like taxes, fringe benefits, 
and returns on home equity, the income distribution for the 
United States in 1999 is represented by the Lorenz curve 
y = g1x2, where  g1x2 is given in the table.

x 0  0.2  0.8 1

 g1x2 0 0.06 0.54 1

(A) Find the interpolating polynomial for this table.

(B) Use the interpolating polynomial to approximate (to four 
decimal places) the index of income concentration.

45. Maximum revenue. The revenue R (in thousands of dollars) 
from the sale of x thousand table lamps is given in the table.

x 2  4 6

 R1x2 24.4 36 34.8

(A) Find the interpolating polynomial for this table.

(B) Use the interpolating polynomial to approximate (to 
the nearest thousand dollars) the revenue if 5,000 table 
lamps are produced.

(C) Use the interpolating polynomial to approximate (to the 
nearest integer) the production level that will maximize 
the revenue.

46. Minimum average cost. The cost C (in thousands of dol-
lars) of producing x thousand microwave ovens is given in the 
table.

x   1   3     5

 C1x2 215 535 1,055

(A) Find the interpolating polynomial for this table.

(B) Use the interpolating polynomial to approximate (to the 
nearest thousand dollars) the cost of producing 4,000 
ovens.

(C) Use the interpolating polynomial to approximate (to the 
nearest integer) the production level that will minimize 
the average cost.

47. Temperature. The temperature C (in degrees celsius) in an 
artificial habitat after t hours is given in the table.

t  0  1  2  3  4

 C1t2 14 13 16 17 10

(A) Find the interpolating polynomial for this table.

(B) Use the interpolating polynomial to approximate (to the 
nearest tenth of a degree) the average temperature over 
this 4-hour period.

48. Drug concentration. The concentration C (in milligrams per 
cubic centimeter) of a particular drug in a patient’s blood-
stream t hours after the drug is taken is given in the table.

t 0 1 2 3 4

 C1t2 0 0.032 0.036 0.024 0.008

(A) Find the interpolating polynomial for this table.

(B) Use the interpolating polynomial to approximate (to two 
decimal places) the number of hours it will take for the 
drug concentration to reach its maximum level.

49. Bacteria control. A lake that is used for recreational swim-
ming is treated periodically to control harmful bacteria 
growth. The concentration C (in bacteria per cubic centime-
ter) t days after a treatment is given in the table.

t   0   2  4   6

 C1t2 450 190 90 150

(A) Find the interpolating polynomial for this table.

(B) Use the interpolating polynomial to approximate (to two 
decimal places) the number of days it will take for the 
bacteria concentration to reach its minimum level.
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50. Medicine respiration. Physiologists use a machine called a 
pneumotachograph to produce a graph of the rate of flow R 
on air into the lungs (inspiration) and out (expiration). The 
figure gives the graph of the inspiration phase of the breath-
ing cycle of an individual at rest.

(A) Use the values given by the graph at t = 0,1,2, and 3 to 
find the interpolating polynomial for R.

t

R(t)

1 2 30

0.1

0.2

0.3

0.4

0.5

Time (in seconds)

A
ir

 fl
ow

 (
lit

er
s/

se
co

nd
)

(B) Use the interpolating polynomial to approximate (to one 
decimal place) the total volume of air inhaled.

51. Voter registration. The number N of registered voters in a 
precinct over a 30-year period is given in the table.

t      0     10     20     30

 N1t2 10,000 13,500 20,000 23,500

(A) Find the interpolating polynomial for this table.

(B) Use the interpolating polynomial to approximate (to the 
nearest thousand) the average number of voters over the 
first 20 years of this period.

52. Voter registration. The number N of registered voters in a 
precinct over a 10-year period is given in the table.

t      0      4      6     10

 N1t2 15,000 18,800 22,200 26,000

(A) Find the interpolating polynomial for this table.

(B) Use the interpolating polynomial to approximate (to the 
nearest integer) the year t in which the rate of increase in 
the number of voters is most rapid.

Answers to Matched Problems
1.  p122 = 88 or $88,000; p152 = 61 or $61,000

2.  p1x2 = 5 - 21x + 12 + 1x + 12x + 1x + 12x1x - 12
3. (A) 

xk yk

First Divided 
Difference

Second Divided 
Difference

Third Divided 
Difference

Fourth Divided 
Difference

0 5

-4

1 1 1

-2 -1

2 -1 -2 1

-6 3

3 -7 7

8

4 1

(B)  p1x2 = 5 - 4x + x1x - 12 - x1x - 121x - 22 + x1x - 121x - 221x - 32
= 5 - 13x + 15x2 - 7x3 + x4 

4. 657 units; 4,294.2 units
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Table 1 Integration Formulas
Integrals Involving un

 1. Lun du =
un+1

n + 1
, n ≠ -1

 2. Lu-1 du = L
1
u

 du = ln 0 u 0
Integrals Involving a + bu, a 3 0 and b 3 0

 3. L
1

a + bu
 du =

1
b

 ln 0 a + bu 0

 4. L
u

a + bu
 du =

u
b

-
a

b2 ln 0 a + bu 0

 5. L
u2

a + bu
 du =

1a + bu2 2

2b3 -
2a1a + bu2

b3 +
a2

b3 ln 0 a + bu 0

 6. L
u

1a + bu2 2 du =
1

b2 a ln 0 a + bu 0 +
a

a + bu
b

 7. L
u2

1a + bu2 2 du =
1a + bu2

b3 -
a2

b31a + bu2 -
2a

b3  ln 0 a + bu 0

 8. Lu1a + bu2 n du =
1a + bu2 n+2

1n + 22b2 -
a1a + bu2 n+1

1n + 12b2 , n ≠ -1, -2

 9. L
1

u1a + bu2  du =
1
a

 ln ` u
a + bu

`

10. L
1

u21a + bu2  du = -
1
au

+
b

a2 ln ` a + bu
u

`

11. L
1

u1a + bu2 2 du =
1

a1a + bu2 +
1

a2 ln ` u
a + bu

`

12. L
1

u21a + bu2 2 du = -
a + 2bu

a2u1a + bu2 +
2b

a3  ln ` a + bu
u

`

Integrals Involving a2 - u2, a 7 0

13. L
1

u2 - a2 du =
1
2a

 ln ` u - a
u + a

`

14. L
1

a2 - u2 du =
1
2a

 ln ` u + a
u - a

`

Integrals Involving (a + bu) and (c + du), b 3 0, d 3 0, and ad − bc 3 0

15. L
1

1a + bu21c + du2  du =
1

ad - bc
 ln ` c + du

a + bu
`

16. L
u

1a + bu21c + du2  du =
1

ad - bc
 aa

b
 ln ` a + bu 0 -

c
d

 ln 0 c + du 0 b

17. L
u2

1a + bu21c + du2  du =
1
bd

 u -
1

ad - bc
 aa2

b2 ln 0 a + bu 0 -
c2

d2 ln 0 c + du 0 b

Appendix 

TablesC

[Note: The constant of integration is omitted for each integral, but must be included in any particular application of a formula. The variable u is 
the variable of integration; all other symbols represent constants.]
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726 APPENDIX C Tables

18. L
1

1a + bu2 21c + du2  du =
1

ad - bc
 

1
a + bu

+
d

1ad - bc2 2 ln ` c + du
a + bu

`

19. L
u

1a + bu2 21c + du2  du = -
a

b1ad - bc2  
1

a + bu
-

c

1ad - bc2 2 ln ` c + du
a + bu

`

20. L
a + bu
c + du

 du =
bu
d

+
ad - bc

d2  ln 0 c + du 0

Integrals Involving 2a + bu, a 3 0 and b 3 0

21. L2a + bu du =
221a + bu2 3

3b

22. Lu2a + bu du =
213bu - 2a2

15b2 21a + bu2 3

23. Lu22a + bu du =
2115b2u2 - 12abu + 8a22

105b3 21a + bu2 3

24. L
12a + bu

 du =
22a + bu

b

25. L
u2a + bu

 du =
21bu - 2a2

3b2 2a + bu

26. L
u22a + bu

 du =
213b2u2 - 4abu + 8a22

15b3 2a + bu

27. L
1

u2a + bu
 du =

12a
 ln ` 2a + bu - 2a2a + bu + 2a

` , a 7 0

28. L
1

u22a + bu
 du = -

2a + bu
au

-
b

2a2a
 ln ` 2a + bu - 2a2a + bu + 2a

` , a 7 0

Integrals Involving 2a2 − u2, a 7 0

29. L
1

u2a2 - u2
 du = -

1
a

 ln ` a + 2a2 - u2

u
`

30. L
1

u22a2 - u2
 du = -

2a2 - u2

a2u

31. L
2a2 - u2

u
 du = 2a2 - u2 - a ln ` a + 2a2 - u2

u
`

Integrals Involving 2u2 + a2, a 7 0

32. L2u2 + a2 du =
1
2

 1u2u2 + a2 + a2 ln 0 u + 2u2 + a2 0 2

33. Lu22u2 + a2 du =
1
8

 3u12u2 + a222u2 + a2 - a4 ln 0 u + 2u2 + a2 0 4

34. L
2u2 + a2

u
 du = 2u2 + a2 - a ln ` a + 2u2 + a2

u
`

35. L
2u2 + a2

u2  du = -
2u2 + a2

u
+ ln 0 u + 2u2 + a2 0

36. L
12u2 + a2

 du = ln 0 u + 2u2 + a2 0

37. L
1

u2u2 + a2
 du =

1
a

 ln ` u

a + 2u2 + a2
`

38. L
u22u2 + a2

 du =
1
2

 1u2u2 + a2 - a2 ln 0 u + 2u2 + a2 0 2

39. L
1

u22u2 + a2
 du = -

2u2 + a2

a2u

Table 1 Integration Formulas Continued

[Note: The constant of integration is omitted for each integral, but must be included in any particular application of a formula. The variable u is 
the variable of integration; all other symbols represent constants.]
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Integrals Involving 2u2 − a2, a 7 0

40. L2u2 - a2 du =
1
2

 1u2u2 - a2 - a2 ln 0 u + 2u2 - a2 0 2

41. Lu22u2 - a2 du =
1
8

 3u12u2 - a222u2 - a2 - a4 ln 0 u + 2u2 - a2 0 4

42. L
2u2 - a2

u2  du = -
2u2 - a2

u
+ ln 0 u + 2u2 - a2 0

43. L
12u2 - a2

 du = ln 0 u + 2u2 - a2 0

44. L
u22u2 - a2

 du =
1
2

 1u2u2 - a2 + a2 ln 0 u + 2u2 - a2 0 2

45. L
1

u22u2 - a2
 du =

2u2 - a2

a2u

Integrals Involving eau, a 3 0

46. Leau du =
eau

a

47. Luneau du =
uneau

a
-

n
a Lun - 1eau du

48. L
1

c + deau du =
u
c

-
1
ac

 ln 0 c + deau 0 , c ≠ 0

Integrals Involving ln u

49. L  ln u du = u ln u - u  50. L
ln u

u
 du =

1
2

 1ln u2 2

51. Lun ln u du =
un+1

n + 1
 ln u -

un+1

1n + 12 2, n ≠ -1 52. L  1ln u2 n du = u1ln u2 n - nL  1ln u2 n-1 du

Integrals Involving Trigonometric Functions of au, a 3 0

53. L  sin au du = -
1
a

 cos au 54. L  cos au du =
1
a

 sin au

55. L  tan au du = -
1
a

 ln 0 cos au 0  56. L  cot au du =
1
a

 ln 0 sin au 0

57. L  sec au du =
1
a

 ln 0 sec au + tan au 0  58. L  csc au du =
1
a

 ln 0 csc au - cot au 0

59. L 1sin au2 2 du =
u
2

-
1
4a

 sin 2au 60. L 1cos au2 2 du =
u
2

+
1
4a

 sin 2au

61. L 1sin au2 n du = -
1
an

 1sin au2 n - 1 cos au +
n - 1

n L 1sin au2 n - 2 du, n ≠ 0

62. L 1cos au2 n du =
1
an

 sin au1cos au2 n - 1 +
n - 1

n L 1cos au2 n - 2 du, n ≠ 0

[Note: The constant of integration is omitted for each integral, but must be included in any particular application of a formula. The variable u is 
the variable of integration; all other symbols represent constants.]

Table 1 Integration Formulas Continued
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Table 2 Area under the Standard Normal Curve

(Table Entries Represent the Area under the Standard Normal Curve from 0 to z, z # 0)
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993
3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995
3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997
3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998
3.5 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998
3.6 0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.7 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.8 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.9 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

Area
corresponding

to z

f (x)

x
z

m 1 zs
z

m

0
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Diagnostic Prerequisite Test
Section references are provided in parentheses following each answer 
to guide students to the specific content in the book where they can 
find help or remediation.
1. (A) (y + z)x (B) (2 + x) + y (C) 2x + 3x (A.1)  
2. x3 - 3x2 + 4x + 8 (A.2) 3. x3 + 3x2 - 2x + 12 (A.2)  
4. -3x5 + 2x3 - 24x2 + 16 (A.2) 5. (A) 1 (B) 1 (C) 2  
   (D) 3 (A.2) 6. (A) 3 (B) 1 (C) -3 (D) 1 (A.2) 7. 14x2 - 30x (A.2)  
8. 6x2 - 5xy - 4y2 (A.2) 9. 1x + 221x + 52 (A.3)  
10. x1x + 321x - 52 (A.3) 11. 7>20 (A.1) 12. 0.875 (A.1)  
13. (A) 4.065 * 1012 (B) 7.3 * 10-3 (A.5) 14. (A) 255,000,000  
   (B) 0,000 406 (A.5) 15. (A) T (B) F (A.1) 16. 0 and -3 are two  
   examples of infinitely many. (A.1) 17. 6x5y15 (A.5) 18. 3u4>v

2 (A.5)  
19. 6 * 102 (A.5) 20. x6/y4 (A.5) 21. u7>3 (A.6) 22. 3a2>b (A.6)  

23. 5
9 (A.5) 24. x + 2x1>2y1>2 + y (A.6) 25. 

a2 + b2

ab
 (A.4)  

26. 
a2 - c2

abc
 (A.4) 27. 

y5

x
 (A.4) 28. 

1

xy2
 (A.4) 29. 

-1
7(7 + h)

 (A.4)  

30. 
xy

y - x
 (A.6) 31. (A) Subtraction (B) Commutative (+ )  

       (C) Distributive (D) Associative ( # ) (E) Negatives (F) Identity (+ ) (A.1)  
32. (A) 6 (B) 0 (A.1) 33. 4x = x - 4; x = -4>3 (1.1) 34. -15>7 (1.2)  

35. (4/7, 0) (1.2) 36. (0, -4) (1.2) 37. 1x - 5y21x + 2y2 (A.3)  

38. 13x - y212x - 5y2 (A.3) 39. 3x-1 + 4y1>2 (A.6)  

40. 8x-2 - 5y-4 (A.5) 41. 
2
5

 x-3>4 -  
7
6

 y-2>3 (A.6) 42. 
1
3

 x-1>2 + 9y-1>3 

(A.6) 43. 
2
7

+
1

14
 12 (A.6) 44. 

14
11

-
5

11
 13 (A.6) 45. x = 0, 5 (A.7) 

46. x = {17 (A.7) 47. x = -4, 5 (A.7) 48. x = 1,  
1
6

 (A.7)  

49. x = -1 { 12 (A.7) 50. x = {1, {15 (A.7) 

Chapter 1
Exercises 1.1

 1. y

x

5

5

 3. y

x

5

10

 5. y

x

50

5

 7. y

x

4

3

 9. A function   11. Not a function
13. A function   15. A function
17. Not a function 19. A function
21. Linear     23. Linear
25. Neither    27. Constant

29. y

x

5

5

 31. y

x

10

5

 33. y

x

50

5

35. y

x

10

10

 37. y

x

5

5

 39. y = 0 41. y = -2
43. x = -5 45. x = -6
47. All real numbers
49. All real numbers except -4
51. x … 7 53. Yes; all real 
numbers 55. No; for example, 
when x = 0, y = {2

ANSWERS

A-1

87. (A) R(x) = (75 - 3x)x, 1 … x … 20 (B) x R(x)

 1  72

 4 252

 8 408

12 468

16 432

20 300

57. Yes; all real numbers except 0 59. No; when x = 1, y = {1
61. 25x2 - 4 63. x2 + 6x + 5 65. x4 - 4 67. x - 4 69. h2 - 4
71. 4h + h2 73. 4h + h2 75. (A) 4x + 4h - 3 (B) 4h (C) 4
77. (A) 4x2 + 8xh + 4h2 - 7x - 7h + 6 (B) 8xh + 4h2 - 7h
(C) 8x + 4h - 7 79. (A) 20x + 20h - x2 - 2xh - h2

(B) 20h - 2xh - h2 (C) 20 - 2x - h 81. P(w) = 2w +  
50
w

, w 7 0
83. A(l) = l(50 - l ), 0 6 l 6 50
85. (A)p(x)

x

$100

20

 (B) $54; $42

(C) R(x)

x

$500

20

 89. (A) P(x) = 59x - 3x2 - 125, 1 … x … 20
(B) x P(x)

 1    -69

 4     63

 8    155

12    151

16     51

20 -145

(C) P(x)
$200

2200

x15

 91. v =
75 - w
15 + w

 ; 1,9032 cm/sec

Exercises 1.2

 1.  Domain: all real numbers; range: [-4, ∞) 3. Domain: all real  
numbers; range: all real numbers 5. Domain: [0, ∞); range: (- ∞ , 8]

 7.  Domain: all real numbers; range: all real numbers 9. Domain: all real 
numbers; range: [9, ∞)

11. 

x

5

5

 13. 

x

5

5

15. 

x

5

2

17. 

x

5

5

 19. 

x

5

5

 21. 

x

5

5

23. 

x

5

5

 25. 

x

5

5
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A-2 Answers

43. g(x) = 1x + 3 + 2
g(x)

x

5

5

45. 
g(x)

x

5

5

g(x) = - � x + 3 � 47. g(x) = - (x - 2)3 - 1
g(x)

x

5

5

49. f(x)

x

5

5

 51. h(x)

x

30

20

 53. h(x)

x

100

80

27.  The graph of g(x) = - � x + 3 �   
is the graph of y = � x �  reflected  
in the x axis and shifted 3 units  
to the left.

g(x)

x

10

10

29.  The graph of f(x) = (x - 4)2 - 3  
is the graph of y = x2 shifted 4 units  
to the right and 3 units down.

f(x)

x

10

10

31.  The graph of f(x) = 7 - 1x 
is the graph of y = 1x reflected in 
the x axis and shifted 7 units up.

f(x)

x

10

10

33.  The graph of h(x) = - � 3x �  is  
the graph of y = � x �  reflected in the  
x axis and vertically stretched by a  
factor of 3.

h(x)

x

10

10

35.  The graph of the basic function y = x2 is shifted 2 units to the left and 3 
units down. Equation: y = (x + 2)2 - 3. 37. The graph of the basic 
function y = x2 is reflected in the x axis and shifted 3 units to the right 
and 2 units up. Equation: y = 2 - (x - 3)2. 39. The graph of the 
basic function y = 1x is reflected in the x axis and shifted 4 units up. 
Equation: y = 4 - 1x. 41. The graph of the basic function y = x3 is 
shifted 2 units to the left and 1 unit down. Equation: y = (x + 2)3 - 1.

55.  The graph of the basic function y = � x �  is reflected in the x axis and 
 vertically shrunk by a factor of 0.5. Equation: y = -0.5 � x � .

57.  The graph of the basic function y = x2 is reflected in the x axis and verti-
cally stretched by a factor of 2. Equation: y = -2x2.

59.  The graph of the basic function y = 13 x is reflected in the x axis and 
vertically stretched by a factor of 3. Equation: y = -313 x.

61.  Reversing the order does not change the result.
63. Reversing the order can change the result.
65. Reversing the order can change the result.
67.  (A) The graph of the basic function y = 1x is reflected in the x axis, 

vertically expanded by a factor of 4, and shifted up 115 units.

(B) p(x)

x

$100

$50

1000 200

69. (A) The graph of the basic function y = x3 is 
vertically contracted by a factor of 0.000 48 and 
shifted right 500 units and up 60,000 units.
(B) C(x)

x

$100,000

$50,000

5000 1000

71. (A) V(x) = e 1.34 + 0.32x if  0 … x … 11
1.01 + 0.35x if  x 7 11

 

(B) 

x20

V(x)
10

73. (A) T(x) = •
0.002x if  0 … x … 15
0.006x - 0.06 if  15 … x … 60
0.010x - 0.30 if  x 7 60

(B) 

x100

T(x)

0.8
 (C) 0.12 tax units; 0.60 tax units

75. (A)  The graph of the basic  
function y = x is  
vertically stretched by  
a factor of 5.5 and  
shifted down 220 units.

(B) w(x)

x

200
250

50
100
150

500 100

Exercises 1.3

1. y
5

5 x

 3. y

3

6 x

  5. Slope = 5; y intercept = -7

7. Slope = -
5
2

; y intercept = -9

9. Slope = 2;  x  intercept = -5
11. Slope = 8;  x  intercept = 5

13. Slope =
6
7

; x intercept = -7 15. y = 2x + 1 17. y = -
1
3

 x + 6

19. x int.: -1; y int.: -2; y = -2x - 2 21. x int.: -3; y int.: 1; y =
x
3

+ 1

23. (A) m (B) g (C) f (D) n 25. (A) x int.: 1, 3; y int.: -3 
(B) Vertex: (2, 1) (C) Max.: 1 (D) Range: y … 1 or (- ∞ , 1] 
27. (A) x int.: -3, -1; y int.: 3 (B) Vertex: (-2, -1) (C) Min.: -1 
(D) Range: y Ú -1  or  [-1, ∞) 29. (A) x int.: 3 { 12; y int.: -7 
(B) Vertex: (3, 2) (C) Max.: 2 (D) Range: y … 2  or  (- ∞ , 2) 
31. (A) x int.: -1 { 12; y int.: -1 (B) Vertex: (-1,  -2) 

(C) Min.: -2 (D) Range: y Ú -2  or  [-2, ∞) 33. (A) m =
2
3

  

(B) y - 5 =
2
3

 (x - 2) (C) y =
2
3

 x +
11
3

  (D) -2x + 3y = 11 

35. (A) m = -
5
4

  (B) y + 1 = -
5
4

 (x + 2) (C) y = -
5
4

 x -
7
2

  

(D) 5x + 4y = -14 37. (A) Not defined (B) None (C) None (D) x = 5
39. (A) m = 0 (B) y - 5 = 0 (C) y = 5 (D) y = 5 41. Vertex form: 
(x - 4)2 - 4 (A) x int.: 2, 6; y int.: 12 (B) Vertex: (4, -4) (C) Min.: -4 
(D) Range: y Ú -4  or  [-4, ∞) 43. Vertex form: -4(x - 2)2 + 1 
(A) x int.: 1.5, 2.5; y int.: -15 (B) Vertex: (2, 1) (C) Max.: 1 (D) Range: 
y … 1  or  (- ∞ , 1] 45. Vertex form: 0.5(x - 2)2 + 3 (A) x int.: none;  
y int.: 5 (B) Vertex: (2, 3) (C) Min.: 3 (D) Range: y Ú 3  or  [3, ∞)
47. [7, ∞) 49. (- ∞ , -14) 51. (- ∞ , -5) h  (3, ∞) 53. [-3, 2]

55. y

x

3,000

100

 57. (A) y
10

10 x

 (B) x int.: 3.5; y int.: -4.2

77.  (A) The graph of the basic function 
y = 1x is vertically stretched by a fac-
tor of 7.08. (B) v(x)

x

100

50

500 100
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 Answers A-3

Exercises 1.4

1. (A) 1 (B) -3 (C) 21 3. (A) 2 (B) -5, -4 (C) 20 5. (A) 6
(B) None (C) 15 7. (A) 5 (B) 0, -6 (C) 0 9. (A) 11 (B) -5,  
- 2, 5 (C) -12,800 11. (A) 4 (B) Negative 13. (A) 5  
(B) Negative 15. (A) 1 (B) Negative 17. (A) 6 (B) Positive
19. 10 21. 1 23. (A) x int.: -2; y int.: -1 (B) Domain: all real number 
except 2 (C) Vertical asymptote: x = 2; horizontal asymptote: y = 1
(D) f(x)

x

10

10

(C) 10

210 10

210

 (D) x int.: 3.5; y int.: -4.2
59. (A) -4.87, 8.21
(B) -3.44, 6.78
(C) No solution
61. 651.0417
 

65. (A) P = 0.445d + 14.7 (B) The rate of change of pressure with respect 
to depth is 0.445lb>in2 per foot. (C) 37 lb>in2 (D) 99 ft
67. (A) a = 2,880 - 24t (B) -24 ft>sec (C) 24 ft/sec 
69. (A) C = 75x + 1,647 
(B) C

x

5,000

10,000

15,000

100 150500

  (C)  The y intercept, $1,647, is the fixed cost and 
the slope, $75, is the cost per club.

73. (A) T = 70 - 3.6A
(B) 10,000 ft

79. (A)

x 28 30 32 34 36

Mileage 45 52 55 51 47

f (x) 45.3 51.8 54.2 52.4 46.5

(B) y

x

50
40
30
20
10

36280 32

  (C)  f(31) = 53.50 thousand miles;  
f(35) = 49.95 thousand miles  

83. (A) R(x)

x

500

20

 (B) 12.5 (12,500,000 chips); $468,750,000
(C) $37.50 85. (A) The rate of change  
of height with respect to Dbh is 1.37 ft/in.  
(B) Height increases by approximately 1.37 ft.  
(C) 18 ft (D) 20 in. 
87. Men: y = -0.070x + 49.058; Women: 
y = -0.085x + 54.858; yes 

89. 10.6 mph  

29. (A) 

 25. (A) x int.: 0; y int.: 0  
(B)  Domain: all real numbers 

except -2 (C) Vertical  
asymptote: x = -2;  
horizontal asymptote: y = 3

(D) f(x)

x

10

10

27.  (A) x int.: 2; y int.: -1  
(B) Domain: all real numbers 
except 4 (C) Vertical 
asymptote: x = 4; horizontal 
asymptote: y = -2

(D) f(x)

x

10

10

 

(B)  

31. (A)  

(B)  

33. y =
4
5

  35. y =
1
4

 37. y = 0 39. None 41. x = -1,  x = 1,   

x = -3, x = 3 43. x = 5 45. x = -7, x = 7 47. (A) x int.: 0; y int.: 0  
(B) Vertical asymptotes: x = -2, x = 3; horizontal asymtote: y = 2  
(C) f(x)

x

10

10

 (D) 

49. (A) x int.: {13; y int.: -
2
3

  (B) Vertical asymptotes: x = -3, x = 3; 
horizontal asymtote: y = -2

71. (A) V = -7,500t + 157,000
(B) $112,000
(C) During the 12th year

(D) V

t

$40,000

$80,000

$120,000

100 20
Years

(6, 112,000)

(11.6, 70,000)

75. (A) p = 0.000 225x + 0.5925
(B) p = -0.0009x + 9.39
(C) (7,820, 2,352)

(D) p

x

3

2.5

2

8,0007,2000

D
ol

la
rs

Millions of bushels

Equilibrium point

Demand

Supply

77. (A)

 

y

x

1

0.5

10.50

L
ic

en
se

d 
dr

iv
er

s
(m

ill
io

ns
)

Population (millions)

(B) 1,050,000 
(C) 1,359,000
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A-4 Answers

7. f(x)

x

230

424

 9. y

x

220

424

(C) f(x)

x

10

10

 (D) 10

210 10

210

51. (A) x int.: 6; y int.: -4 (B) Vertical asymptotes: x = -3, x = 2; 
 horizontal asymtote: y = 0
(C) f(x)

x

10

10

 (D) 10

210 10

210

53. f(x) = x2 + 2x - 3 55. f(x) = x3 + x2 - 2x 57. (A) C(x) = 180x + 200  

(B) CQ(x) =
180x + 200

x
  (C) 

n

1,500

200

C(n)  (D) $180 per board

59. (A) CQ(n) =
2,500 + 175n + 25n2

n
  (B) 

(C) 10 yr; $675.00 per year (D) 10 yr; $675.00 per year  

61. (A) CQ(x) =
0.00048(x - 500)3 + 60,000

x
 

(B)  (C) 750 cases per month; $90 per case

63. (A)  (B) 1.7 lb

65. (A) 0.06 cm/sec (B) V(x)

x

5

100

67. (A)  (B) 5.5

Exercises 1.5

1. (A) k (B) g (C) h (D) f 3. y

x

30

424

 5. y

x

30

424

11.  The graph of g is the graph of f 
reflected in the x axis.

13.  The graph of g is the graph of f 
shifted 1 unit to the left.

15.  The graph of g is the graph of f 
shifted 1 unit up.

17.  The graph of g is the graph of f vertically stretched by a factor of 2 and 
shifted to the left 2 units.

19. (A) y

x

5

5

 (B) y

x

5

5

 (C) y

x

5

5

(D) y

x

5

4

 21. f(t)

t

10

30230

 23. y

x

20

210

525

25. y

x

20

424

  27. a = 1, -1 29. x = 48 31. x = -3, 7 
33. x = -9 35. x = 3, 19 37. x = -3, -4 
39. x = -7 41. x = -2, 2 43. x = 1>4 
45. No solution 
47. h(x)

x

20.5

25

 49. N

t

100

5

51. $129,239.88 53. (A) $2,633.56 (B) $7,079.54  
55. $10,706 57. (A) $10,491.24 (B) $10,509.45 (C) $10,526.76  
59.  N approaches 2 as t increases  

without bound.

N

t

2

50

61. (A) 

(B) 9.94 billion 63. (A) 10% (B) 1%
65. (A) P = 12e0.0402x (B) 17.9 million
67. (A) P = 127e - 0.0016x (B) 124 million

Exercises 1.6

1. 27 = 33 3. 100 = 1 5. 8 = 43>2 7. log7 49 = 2 9. log4 8 =
3
2

11. logb A = u 13. 6 15. -5 17. 7 19. -3 21. Not defined
23. logb P - logb Q 25. 5 logb L 27. qp 29. x = 1>10 31. b = 4
33. y = -3 35. b = 1>3 37. x = 8 39. False 41. True 43. True
45. False 47. x = 2 49. x = 8 51. x = 7 53. No solution
55. y

x

5

10

57. The graph of y = log2 (x - 2) is the graph of  
y = log2 x shifted to the right 2 units. 59. Domain: 
(-1,  ∞); range: all real numbers 61. (A) 3.547 43
(B) -2.160 32 (C) 5.626 29 (D) -3.197 04
63. (A) 13.4431 (B) 0.0089 (C) 16.0595

(D) 0.1514 65. 1.0792 67. 1.6923 69. 18.3559
71. Increasing: (0, ∞) 
y

x

3

5

73. Decreasing: (0, 1]
Increasing: [1, ∞)
y

x

5

5

75. Increasing: (-4, ∞)

x10

y

10
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 Answers A-5

77. Increasing: (0, ∞)
y

10

10 x

79. Because b0 = 1 for any permissible base 
b(b 7 0, b ≠ 1). 81. x 7 1x 7  ln x for 1 
6  x … 16 83. 4 yr 85. 9.87 yr; 9.80 yr
87. 7.51 yr

89. (A) 5,373 (B) 7,220 93. 168 bushels/acre

Chapter 1 Review Exercises

1. y

x

10

5

 (1.1) 2. y

x

5

5

 (1.1) 3. 

x

5

5

y  (1.1)

4. (A) Not a function    (B) A function (C) A function (D) Not a function (1.1)

5. (A) -1 (B) 0 (C) -
1
3

 (D) -3 (1.1)

6. y

4

5 x

 (1.3) 7. p>12 (1.7) 8.  (A) -1 (B) - 23>2  

(C) -1
2 (1.8)

9. 2x + 3y = 12 (1.3) 10. x intercept = 9; 

y intercept = -6; slope =
2
3

 (1.3)

y
10

10 x

11. y = -
2
3

x + 6 (1.3) 12. Vertical line: x = - 6; horizontal line: y = 5 (1.3)

13. (A) y = -
2
3

x (B) y = 3 (1.3) 14. (A) 3x + 2y = 1 (B) y = 5

(C) x = -2 (1.3) 15. 10m = k  (1.6) 16. ek = m (1.6) 17. (A) p>6  
(B) p>4 (C) p>3 (D) p>2 (1.7) 18. (A) -1 (B) 0 (C) 1 (1.8)  
19. x = In k (1.6) 20. z = log m (1.6) 21. (A) 30° (B) 45°  
(C) 60° (D) 90° (1.7) 22. (A) 12 (B) 22>2 (C) 23>2 (1.7) 
23. (A) -0.6543 (B) 0.8308 (1.8)  
24. A = 53°; B = 37°; C = 90°; a = 12.2; b = 9.2; c = 15.3 (1.7)
25. A = 67°; B = 23°; C = 90°; a = 12.6; b = 5.4; c = 13.7 (1.7)
26. x = 64 (1.6) 27. z = 7 (1.6)  
28. x = 3 (1.6) 29. x = 2.116 (1.6) 30. y = 5.298 (1.6)  
31. z = 141.254 (1.6) 32. m = 0.289 (1.6) 33. (A) y = 4 (B) 
x = 0 (C) y = 1 (D) x = -1 or 1 (E) y = -2 (F) x = -5 or 5 (1.1)
34. (A) 

x

5

5

y  (B) 

x

5

5

y  (C) 

x

5

5

y

(D) 

x

5

5

y  (1.2) 35. f(x) = - (x - 2)2 + 4. The graph of 
f(x) is the graph of y = x2 reflected in the  
x axis, then shifted right 2 units and up  
4 units. (1.2)
36. (A) g (B) m (C) n (D) f (1.2, 1.3)

37. (A) x int.: -4, 0; y int.: 0 (B) Vertex: (-2, -4) (C) Min.: -4  
(D) Range: y Ú -4 or [-4, ∞) (1.3) 38. Quadratic (1.3) 39. Linear (1.1)
40. None (1.1, 1.3) 41. Constant (1.1) 42. x = 8 (1.6) 43. x = 3 (1.6)
44. x = 0, 13 (1.5) 45. x = -2 (1.6) 46. x = 1.4650 (1.6)  
47. x = 230.2609 (1.6) 48. x = 9.0065 (1.6) 49. x = 2.1081 (1.6)
50. (A) All real numbers except x = -2 and 3 (B) x 6 5 (1.1)

51. Vertex form: 4ax +
1
2
b

2

-4; x int.: -3
2 and 12; y int.: -3; vertex: (-1

2, -4); min.: 

-4; range: y Ú -4 or [-4, ∞) (1.3) 52. (0.99, 0.69); (-0.79, -1.54) (1.5, 1.6)

53. y

x

50

5

 (1.1) 54. y

x

10
5

 (1.1) 55. 6 (1.1)
56. -19 (1.1)
57. 10x - 4 (1.1)
58. 21 - 5x (1.1)

95. 912 yr

Exercises 1.7

1. 
p

3
  rad 3. 

3p
4

  rad 5. -45° 7. 270° 9. 
4
5

 11. 
4
3

 13. 
5
4

 15. 
4
3

17. 
213

 19. 
112

 21. 
1
2

 23. 2 25. 3.7321 27. 1.1395 29. 1.9648

31. 0.8572 33. 1.0515 35. 0.7833 37. 79° 39. 42° 41. 37°
43. A = 71°; B = 19°; C = 90°; a = 24.1; b = 8.3; c = 25.5
45. A = 29°; B = 61°; C = 90°; a = 7.6; b = 13.6; c = 15.6
47. A = 57°; B = 33°; C = 90°; a = 14.5; b = 9.4; c = 17.3
49. A = 55°; B = 35°; C = 90°; a = 11.0; b = 7.7; c = 13.4
51. A = 39°; B = 51°; C = 90°; a = 9.2; b = 11.5; c = 14.7
53. 4° 55. x = 41.3 ft; y = 19.7 ft 57. 17 mi 59. 2,800 ft

Exercises 1.8

1. 23 3. 
23
2

 5. 1 7. 
223

 9. -1 11. -1>22 13. 1 15. 0

17. -1>22 19. -1>2 21. -1 23. 23>2 27. -1 29. -2

31. Not defined 33. 23 35. -2 37. -1 39. -
123

 41. - 23

43. 0.1736 45. 0.6157 47. 1.5574 49. -108.6538 51. 57.2987

53. 3.0777 55. 
2

0 2

22

57. 
8

0 8
0

59. e x � x ≠ {p

2
, {3p

2
, {5p

2
, cf 61. e x � x ≠ {p

2
, {3p

2
, {5p

2
, cf

67. (A)  P1132 = 5,  P1262 = 10,  P1392 = 5,  P1522 = 0  
(B)  P1302 ≈ 9.43,  P11002 ≈ 0.57; 30 weeks after January 1 the profit on a 
week’s sales of bathing suits is $943, and 100 weeks after January 1 the profit 

on a week’s sales of bathing suits is $57. (C) 10

0 104
0

69. (A)  V102 = 0.10,  V112 = 0.45,  
 V122 = 0.80,  V132 = 0.45,  
 V172 = 0.45 (B)  V13.52 ≈ 0.20,  
 V15.72 ≈ 0.76; the volume of air in  
the lungs of a normal seated adult 3.5 sec  
after exhaling is approximately 0.20 L  

and 5.7 sec after exhaling is approx. 0.76 L. (C) 
0.8

0 8
0

71. (A) -5.6° (B) -4.7°
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(C) A(x)

x

30,000

300

(D) There are two solutions to the equation 
A(x) = 25,000, one near 90 and another  
near 190. (E) 86 ft; 194 ft  
(F) Maximum combined area is 29,400 ft2. 
This occurs for x = 140 ft and  
y = 105 ft. (1.3)

96. (A) 2,833 sets (B) 4,836

(C) Price is likely to decrease 
(D)  Equilibrium price $131.59; equilibrium quantity: 3,587 cookware  

sets (1.3)
97. (A) (B) 4976 (1.4) 98. (A) N = 22t or 

N = 4t (B) 15 days (1.5) 
99. k = 0.009 42; 489 ft (1.6) 

100. (A) 6,134,000 (1.6) 101. 23.1 yr (1.5)
102. (A) $1,319 billion

(B) 2031 (1.5) 

Chapter 2
Exercises 2.1

1. 1x - 921x + 92 3. 1x - 721x + 32 5. x1x - 321x - 42
7. 12x - 1213x + 12 9. 2 11. 1.25 13. (A) 2 (B) 2 (C) 2 (D) 2
15. (A) 1 (B) 2 (C) Does not exist (D) 2 17. 2 19. 0.5
21. (A) 1 (B) 2 (C) Does not exist (D) Does not exist
23. (A) 1 (B) 1 (C) 1 (D) 3 25. (A) -2 (B) -2 (C) -2 (D) 1
27. (A) 2 (B) 2 (C) 2 (D) Does not exist 29. 12 31. 1 33. -4

35. -1.5 37. 3 39. 15 41. -6 43. 
7
5

 45. 3

47. f(x)

x

5

5

 49. f(x)

x

5

5

 51. (A) 1 (B) 1 (C) 1 (D) 1

53. (A) 2 (B) 1 (C) Does not exist (D) Does not exist 55. (A) -6
(B) Does not exist (C) 6 57. (A) 1 (B) -1 (C) Does not exist 

(D) Does not exist 59. (A) Does not exist (B) 
1
2

 (C) 
1
4

 61. (A) -5

(B) -3 (C) 0 63. (A) 0 (B) -1 (C) Does not exist 65. (A) 1 (B) 
1
3

(C) 
3
4

 67. False 69. False 71. True 73. Yes; 2 75. No; Does not exist

89. (A) 
lim
xS1 - f1x2 = 2
lim
xS1+  f1x2 = 3

f(x)

x

5

5

 (B) 
lim
xS1 - f1x2 = 3
lim
xS1+  f1x2 = 2

f(x)

x

5

5

 (C) m = 1.5
f(x)

x

5

5

92. (A) V = 224,000 - 15,500t (B) $38,000 (1.3)
93. (A) The dropout rate is decreasing at a rate of 0.308 percentage points per year.
(B) r

t

20

10

40200

D
ro

po
ut

 r
at

e 
(%

)

Years since 1990

(C) 2026 (1.3)
94. (A)  The CPI is increasing at a rate of 4.295 units 

per year. (B) 276.6 (1.3) 
95. (A)  A(x) = -3

2x2 + 420x (B) Domain: 
0 … x … 280

103. 2,700 ft (1.7) 104. (A)  R102 = $5 thousand;  R122 = $4 thousand; 
 R132 = $3 thousand;  R162 = $1 thousand (B)  R112 = $4.732 thousand;  
 R1222 = $4 thousand; the revenue is $4,732 for a month of sportswear sales 
1 month after January 1, and $4,000 for a month of sportswear sales 
22 months after January 1. (1.8)

77. Yes; 7>5 79. No; 0 81. 3 83. 4 85. -7 87. 1

59. (A) -5 (B) -5 - 3h (C) -3h (D) -3 (1.1) 60. The graph of 
function m is the graph of y = 0 x 0  reflected in the x axis and shifted to the 
right 6 units. (1.2) 61. The graph of function g is the graph of y = x3 verti-
cally shrunk by a factor of 0.6 and shifted up 5 units. (1.2) 62. y = 0 (1.4)

63. y =
3
4

 (1.4) 64. None (1.4) 65. x = -10, x = 10 (1.4)  

66. x = -2 (1.4) 67. True (1.3) 68. False (1.3) 69. False (1.3)  
70. True (1.3) 
71. y

x

15

40

 (1.2) 72. y

x

80

50

 (1.2)

73. y = - (x - 4)2 + 3 (1.2, 1.3) 74. f(x) = -0.4(x - 4)2 + 7.6  
(A) x int.: -0.4, 8.4; y int.: 1.2 (B) Vertex: (4.0, 7.6) (C) Max.: 7.6  
(D) Range: y … 7.6 or (- ∞ , 7.6] (1.3) 

75. (A) x int.: -0.4, 8.4; y int.: 1.2
(B) Vertex: (4.0, 7.6)
(C) Max.: 7.6
(D) Range: y … 7.6 or (- ∞ , 7.6] (1.3)
76. log 10p = p and 10log 22 = 22; 
ln ep = p and eln 22 = 22 (1.6)

77. x = 4 (1.6) 78. x = 2 (1.6) 79. x = 6

7
 (1.6) 80. x = 300 (1.6)  

81. y = be - 7t (1.6) 82. The function y = 1x is not one-to-one, so has no 
inverse (1.6) 83. The graph of y = 23 x is vertically expanded by a factor 
of 2, reflected in the x axis, and shifted 1 unit left and 1 unit down. Equation: 
y = - 223 x + 1 - 1. (1.2)

84. G(x) = 0.4(x + 2)2 - 8.1 (A) x int.: -6.527, 2.527; y int.: -6.5 (B) 
Vertex: (-2, -8.1) (C) Min.: -8.1 (D) Range: y Ú -8.1 or [-8.1, ∞) (1.3)

85. (A) x int.: -7.2, 3.2; y int.: -6.9
(B)  Vertex: (-2, -8.1) (C) Min.: 

-8.1 (D) Range: y Ú -8.1 or 
[-8.1, ∞) (1.3)

86. (A) S1x2 = d 3 if 0 … x … 20
0.057x + 1.86 if 20 6 x … 200
0.0346x + 6.34 if 200 6 x … 1,000
0.0217x + 19.24 if x 7 1,000

(B) S(x)

x

50

1,500

 (1.2) 87. $5,321.95 (1.5) 88. $5,269.51 (1.5)
89. 201 months (≈16.7 years) (1.5)
90. 9.38 yr (1.5) 91. (A) m = 132 -
0.6x (B) M = 187 - 0.85x  
(C) Between 120 and 170 beats per minute
(D) Between 102 and 144.5 beats per 
minute (1.3)

(D) The graph in (A) is broken when it jumps from 11,  22 up to 11, 32. The 
graph in (B) is also broken when it jumps down from 11, 32 to 11, 22. The 
graph in (C) is one continuous piece, with no breaks or jumps.
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 Answers A-7

51. Horizontal asymptote: y = 2; vertical asymptote: x = -2
53. Horizontal asymptote: y = 1; vertical asymptotes: x = -1 and x = 1
55. No horizontal asymptotes; no vertical asymptotes
57. Horizontal asymptote: y = 0; no vertical asymptotes
59. No horizontal asymptotes; vertical asymptote: x = 3
61. Horizontal asymptote: y = 2; vertical asymptotes: x = -1 and x = 2
63. Horizontal asymptote: y = 3; vertical asymptote: x = 4

65. lim
xS ∞

f(x) = 0 67. lim
xS ∞

f(x) = ∞  69. lim
xS - ∞

f(x) = -
1
4

71. lim
xS - ∞

f(x) = ∞  73. False 75. False 77. True

79.  If n Ú 1 and an 7 0, then the limit is ∞ . If n Ú 1 and an 6 0, then the 
limit is -∞ .

81. (A) C1x2 = 40x + 300 (B) C 1x2 =
40x + 300

x
 

91. (A) F1x2 = e 50           if 0 … x … 10
9x - 40 if x 7 10

 (B) 
F(x)

x

150

20

(C) All 3 limits are 50.

95. (A) D1x2 = e x        if 0 … x 6 300
0.97x if 300 … x 6 1,000
0.95x if 1,000 … x 6 3,000
0.93x if 3,000 … x 6 5,000
0.9x   if x Ú 5,000

(B) lim
xS1,000

 D1x2 does not exist because
lim

xS1,000 -  D(x) = 970 and lim
xS1,000 +  D(x) = 950;

lim
xS3,000 -  D(x) does not exist because

lim
xS3,000 -  D(x) = 2,850 and lim

xS3,000 +  D(x) = 2,790

97. F1x2 = e 20x         if 0 6 x … 4,000
80,000 if x Ú 4,000

lim
xS4,000

 F(x) = 80,000;  lim
xS8,000

 F(x) = 80,000

99. lim
xS5

 f(x) does not exist;  lim
xS10

f(x) = 0;
lim
xS5

g(x) = 0; lim
xS10

g(x) = 1

Exercises 2.2

1. y = 4 3. x = -6 5. 2x - y = -13 7. 7x + 9y = 63 9. -2
11. -∞  13. Does not exist 15. 0 17. (A) -∞  (B) ∞
(C) Does not exist 19. (A) - ∞  (B) - ∞  (C) - ∞  21. (A) 3
(B) 3 (C) 3 23. (A) -∞  (B) ∞  (C) Does not exist
25. (A) -5x3 (B) -∞  (C) ∞  27. (A) -6x4 (B) -∞  (C) -∞
29. (A) x2 (B) ∞  (C) ∞  31. (A) 2x5 (B) ∞  (C) -∞

33. (A) 
47
41

≈ 1.146 (B) 
407
491

≈ 0.829 (C) 
4
5

= 0.8

35. (A) 
2,011

138
≈ 14.572 (B) 

12,511

348
≈ 35.951 (C) ∞

37. (A) -
8,568

46,653
≈ -0.184 (B) -

143,136

1,492,989
≈ -0.096 (C) 0

39. (A) -
7,010

996
≈ -7.038 (B) -

56,010

7,996
≈ -7.005 (C) -7

41. lim
xS2 -  f (x) = -∞ ;  lim

xS2 +  f (x) = ∞ ; x = 2 is a vertical asymptote

43.   lim
xS - 1

 f(x) = -0.5;  lim
xS1 -  f(x) = - ∞ ; lim

xS1 +  f(x) = ∞ ;  x = 1 is a vertical 
asymptote

45. No zeros of denominator; no vertical asymptotes
47.    lim

xS -2 -  f (x) = -∞ ;  lim
xS -2 +  f (x) = ∞ ;   lim

xS5 -  f (x) = ∞ ; lim
xS5 + f(x) = -∞ ; 

x = -2 and x = 5 are vertical asymptotes

49.    lim
xS - 2

 f (x) = -
2
3

; lim
xS0 -  f (x) = -∞ ;  lim

xS0 +  f (x) = ∞ ; 

lim
xS1- f(x) = ∞ ;  lim

xS1 +  f(x) = -∞ ;  x = 0 and x = 1 are vertical 

 asymptotes

83. (A) 20%; 50%; 80% (B) P(t) S 100%
85. The long-term drug concentration is 5 mg/ml.
87. (A) $18 million (B) $38 million (C)  lim 

xS1- P(x) = ∞

89. (C) V max = 4, KM = 20
V

s

5

3
4

1
2

600

V
el

oc
it

y

Concentration

vmax 5 4

vmax 5 22

KM 5 20

180 300

(D)  y(s) =
4s

20 + s

(E)  y =
12
7

 when s = 15; s = 60 

when y = 3

91. (A) C max = 18, M = 150 

C

T

20

12
16

4
8

3000

C
T

E

Kelvin
M 5 150

600 1000

Cmax 5 18

Cmax 5 92

 (B) C1T2 =
18T

150 + T
 (C)  C = 14.4 when T = 600 K; 

T = 300 K when C = 12

Exercises 2.3

1. 3-3, 54 3. 1-10, 1002 5. (- ∞ , -5) h  
 (5, ∞) 7. (- ∞ , -34 h  (4, ∞)

9.  f is continuous at x = 1, 
since lim

xS1
 f1x2 = f112.

f(x)

x

5

5

11.  f is discontinuous at x = 1, 
since lim

xS1
 f1x2 ≠ f112.

f(x)

x

5

5

13. f is discontinuous at x = 1, since 
lim
xS1

 f1x2 does not exist.
f(x)

x

5

5

15. 1.9 17. 1.01 19. (A) 2 (B) 1
(C) Does not exist (D) 1 (E) No
21. (A) 1 (B) 1 (C) 1 (D) 3
(E) No 23. -0.1 25. 0.1
27. (A) 0 (B) 0 (C) 0 (D) 2
(E) No 29. (A) 1 (B) -2
(C) Does not exist (D) 1 (E) No

31. All x 33. All x, except x = -2 35. All x, except x = -4 and x = 1

37. All x 39. All x, except x = {3
2

 41. -  
8
3

, 4 43. -1, 1 

45. -7, 0, 4, 8 47. -3 6 x 6 4; 1-3, 42 49. x 6 3 or x 7 7; 
1- ∞ , 32 h  17, ∞ 2 51. x 6 -2 or 0 6 x 6 2; 1- ∞ , -22  h  10, 22
53. -5 6 x 6 0 or x 7 3; 1-5, 02  h  13, ∞ 2
55. (A) 1-4, -22  h 10, 22  h 14, ∞ 2 (B) 1- ∞ , -42  h 1-2, 02h  12, 42
57. (A) 1- ∞ , -2.53082  h  1-0.7198, ∞ 2 (B) 1-2.5308, -0.71982
59. (A) 1- ∞ , -2.14512  h  1-1, -0.52402  h  11, 2.66912
    (B) 1-2.1451, -12  h  1-0.5240, 12  h  12.6691, ∞ 2
61. 36, ∞ 2 63. 1-∞ , ∞ 2 65. 1-∞ , -34  h  33, ∞2 67. 1-∞ ,∞ 2
69. Since lim

xS1 -   f1x2 = 2 and 
lim

xS1 +  f1x2 = 4, lim
xS1

 f1x2 does not exist 
and f is not continuous at x = 1.
f(x)

x

4

4

71. This function is continuous for 
all x.
f(x)

x

4

4

(C) 

0

C(x)

x40

200
 (D) $40 per chair
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A-8 Answers

or 
517

7
, f′132 =

5

212
 or 

512
4

 41. f′1x2 = -
1

1x - 42 2
; f′112 = -

1
9

; 

f′122 = -
1
4

; f′132 = -1 43. f′1x2 =
1

1x + 12 2
; f′112 =

1
4

; 

f′122 =
1
9

; f′132 =
1

16
 45. (A) 5 (B) 3 + h (C) 3 (D) y = 3x - 1

47. (A) 5 m/s (B) 3 + h m>s (C) 3 m/s 49. Yes 51. No 53. Yes
55. Yes 57. (A) f′1x2 = 2x - 4 (B) -4, 0, 4 

59. y = f′1x2 = 8x - 2; 6 ft/s, 22 ft/s, 38 ft/s
61. (A) The graphs of g and h are vertical translations of the graph of f. All 
three functions should have the same derivative. (B) 2x 63. True 
65. False 67. False 
69. f is nondifferentiable at x = 1

f(x)

x

5

5

71. f is differentiable for all real numbers
f(x)

x

5

2

(C) f(x)

x

5

5

73. No 75. No 77. f′102 = 0 79. 6 s; 192 ft/s 81. (A) $8.75
(B) R′1x2 = 60 - 0.05x (C) R11,0002 = 35,000; R′11,0002 = 10;  
At a production level of 1,000 car seats, the revenue is $35,000 and  
is increasing at the rate of $10 per seat. 83. (A) S′1t2 = 1> 121t2
(B) S142 = 6; S′142 = 0.25; After 4 months, the total sales are $6 million 
and are increasing at the rate of $0.25 million per month. (C) $6.25 million; 
$6.5 million 85. (A) p′1t2 = 634t + 4,067 (B) p1102 = 104,970,  
p′1102 = 10,407; In 2020, 104,970 tons of zinc are produced and this quan-
tity is increasing at the rate of 10,407 tonnes per year.

(B) R1302 ≈ 1083.6 billion kilowatts, 
R′1302 ≈ -37.1 billion kilowatts  
per year. In 2030, 1083.6 billion  
kilowatts will be sold and the amount 
sold is decreasing at the rate of  
37.1 billion kilowatts per year.

87. (A) 

87. No, but this does not contradict Theorem 2, since f is discontinuous at x = 1.

89. (A) P1x2 = µ
0.47 if 0 6 x … 1 
0.68 if 1 6 x … 2 
0.89 if 2 6 x … 3 
1.10 if 3 6 x … 3.5 

 (B) P(x)

x

$2.00

$0.40
$0.80
$1.20
$1.60

1 2 3 4 5

73. Since lim
xS0

 f1x2 = 0 and f102 = 1, 
lim
xS0

 f1x2 ≠ f102 and f is not  
continuous at x = 0.

f(x)

x

4

2.5

75.  (A) Yes (B) No (C) Yes 
(D) No (E) Yes 

77. True 79. False 81. True

83. x int.: -5, 2
f(x)

x

10

10

85. x int.: x = -6, -1, 4
f(x)

x

10

10

 (C) Yes; no

93. (A) S1x2 = e   71 + 3.9x if 0 … x … 50 
171 + 1.9x if x 7 50 

(B) S(x)

x

400

100

 (C) Yes 95. (A) E(s)

s

$2,500

20,000

 (B) lim
xS10,000

 E1s2 = $1,000; E110,0002 = $1,000
 (C) lim

xS20,000
 E1s2 does not exist; E120,0002 = $2,000

 (D) Yes; no
97. (A) t2, t3, t4, t6, t7 (B) lim

tS t5
 N1t2 = 7; N1t52 = 7 (C) lim

tS t3
 N1t2 does 

not exist; N1t32 = 4

Exercises 2.4

1. 
9
4

= 2.25 3. -
27
5

= -5.4 5. 
1
3

 13 7. 
15
2

-  
5
2

 17

9. (A) -3; slope of the secant line through 11, f1122 and 12, f1222
(B) -2 - h; slope of the secant line through 11, f1122 and 
11 + h, f11 + h22 (C) -2; slope of the tangent line at 11, f1122
11. (A) 15 (B) 6 + 3h (C) 6
13. (A) 40 km/hr (B) 40 (C) y - 80 = 451x - 22 or y = 45x - 10

15. y -  
1
2

= -
1
2

 (x - 1) or y = -
x
2

+ 1

17. y - 16 = -321x + 22 or y = -32x - 48
19. f ′1x2 = 0; f ′112 = 0, f ′122 = 0, f ′132 = 0
21. f′1x2 = 3; f′112 = 3, f′122 = 3, f′132 = 3
23. f′1x2 = -6x; f′112 = -6, f′122 = -12, f′132 = -18
25. f′1x2 = 2x - 2; f′112 = 0, f′122 = 2, f′132 = 4
27. f′1x2 = 8x + 3; f′112 = 11, f′122 = 19, f′132 = 27
29. f′1x2 = -2x + 5; f′112 = 3, f′122 = 1, f′132 = -1
31. f′1x2 = 20x - 9; f′112 = 11, f′122 = 31, f′132 = 51
33. f′1x2 = 6x2; f′112 = 6, f′122 = 24, f′132 = 54

35. f′1x2 = -
4

x2
; f′112 = -4, f′122 = -1, f′132 = -

4
9

37. f′1x2 =
3

21x
; f′112 =

3
2

, f′122 =
3

212
 or 

312
4

, f′132 =
3

213
 

or 
13
2

 39. f′1x2 =
51x + 5

; f′112 =
516

 or 
516

6
, f′122 =

517
 

89. (A) P′1t2 = 12 - 2t (B) P132 = 107; P′132 = 6. After 3 hours, the 
ozone level is 107 ppb and is increasing at the rate of 6 ppb per hour.

Exercises 2.5

1. x1>2 3. x - 5 5. x12 7. x - 1>4 9. 0 11. 7x6 13. 4x3 15. -3x - 4

17. 
4
3

 x1>3 19. -
9

x10
 21. 6x2 23. 1.8x5 25. 

x3

3
 27. 12 29. 2

31. 17 33. 2 35. 6t - 5 37. -10x - 3 - 9x - 2 39. 1.5u - 0.7 - 8.8u1.2

41. 0.5 - 3.3t2 43. -
8
5

 x - 5 45. 3x +
14
5

 x - 3 47. -
20
9

 v- 5 +
5
3

 v- 2>3

49. 2u - 1>3 -  
5
3

 u - 2>3 51. -
9
5

 t - 8>5 + 3t - 3>2 53. -
1
3

 x - 4>3

55. -0.6x - 3>2 + 6.4x - 3 + 1 57. (A) f′1x2 = 6 - 2x (B) f′122 = 2;  
f′142 = -2 (C) y = 2x + 4; y = -2x + 16 (D) x = 3
59. (A) f′1x2 = 12x3 - 12x (B) f′122 = 72; f′142 = 720
(C) y = 72x - 127; y = 720x - 2,215 (D) x = -1, 0, 1
61. (A) y = f′1x2 = 176 - 32x (B) f′102 = 176 ft>s; 
f′132 = 80 ft>s (C) 5.5 s 63. (A) y = f′1x2 = 3x2 - 18x + 15
(B) f′102 = 15 ft>s; f′132 = -12 ft>s (C) x = 1 s, x = 5 s

65. f′1x2 = 2x - 3 - 2x-1>2 = 2x - 3 -  
2

x1>2; x = 2.1777

67. f′1x2 = 413 x - 3x - 3; x = -2.9018
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 Answers A-9

19. P′(x) = 7.4 - 0.06x 21. C (x) = 1.5 +
408

x
 23. C′(x) = -

408

x2

25. P(x) = 7.5x - 0.03x2 - 408 27. P(x) = 7.5 - 0.03x -
408

x
29. True 31. False 33. (A) $29.50 (B) $30 35. (A) $420
(B) C′(500) = -0.24. At a production level of 500 frames, average cost is 
decreasing at the rate of 24¢ per frame. (C) Approximately $419.76
37. (A) $14.70 (B) $15 39. (A) P′(450) = 0.5. At a production level of 
450 sweatshirts, profit is increasing at the rate of 50¢ per sweatshirt.
(B) P′(750) = -2.5. At a production level of 750 sweatshirts, profit is  
decreasing at the rate of $2.50 per sweatshirt. 41. (A) $13.50
(B) P′(50) = $0.27. At a production level of 50 mowers, the average profit 
per mower is increasing at the rate of $0.27 per mower. (C) Approximately 
$13.77 43. (A) p = 100 - 0.025x, domain: 0 … x … 4,000
(B) R(x) = 100x - 0.025x2, domain: 0 … x … 4,000
(C)  R′(1,600) = 20. At a production level of 1,600 pairs of running shoes, 

revenue is increasing at the rate of $20 per pair.
(D)  R′(2,500) = -25. At a production level of 2,500 pairs of running shoes, 

revenue is decreasing at the rate of $25 per pair.

45. (A) p = 200 -  
1

30
 x, domain: 0 … x … 6,000 (B) C′(x) = 60 

(C) R(x) = 200x - (x2>30), domain: 0 … x … 6,000
(D) R′(x) = 200 - (x>15) (E) R′(1,500) = 100. At a production 
level of 1,500 saws, revenue is increasing at the rate of $100 per saw. 
R′(4,500) = -100. At a production level of 4,500 saws, revenue is  
decreasing at the rate of $100 per saw. (F) Break-even points: (600, 108,000) 
and (3,600, 288,000) RC

x

$450,000

5,000

R

Pro�t

Loss

C

(G) P(x) = - (x2>30) + 140x - 72,000
(H) P′(x) = - (x>15) + 140
(I) P′(1,500) = 40. At a production level of 1,500 saws, profit is increasing 
at the rate of $40 per saw. P′(3,000) = -60. At a production level of 3,000 
saws, profit is decreasing at the rate of $60 per saw.
47. (A) p = 50 - 0.025x; domain: 0 … x … 2,000

(B) R(x) = 50x - 0.025x2, domain: 0 … x … 2,000
(C) C(x) = 10x + 7,000 

R

C

Loss

Pro�t

RC

x

$30,000

2,000

(D) Break-even points: 1200, 9,0002 and 11,400,  21,0002
(E) P1x2 = 40x - 0.025x2 - 7,000
(F) P′15002 = 15. At a production level of 500 mixers, profit is increasing 
at the rate of $15 per mixer. P′19002 = -5. At a production level of  
900 mixers, profit is decreasing at the rate of $5 per mixer.

49. (A) x = 500 (B) P1x2 = 176x - 0.2x2 - 21,900 (C) x = 440
(D) Break-even points: 1150,  25, 5002 and 1730,  39, 4202; x intercepts 
for P1x2:  x = 150 and x = 730

y

x

$50,000

600

C(x)

R(x)

P(x)

69. f′1x2 = 0.2x3 + 0.3x2 - 3x - 1.6; x = -4.4607, -0.5159, 3.4765
71. f′1x2 = 0.8x3 - 9.36x2 + 32.5x - 28.25; x = 1.3050

77. 8x - 4 79. -20x- 2 81. -
1
5

 x-2 +
1
2

 x- 3 83. False

85. True 89. (A) S′1t2 = 0.09t2 + t + 2 (B) S152 = 29.25, 
S′152 = 9.25. After 5 months, sales are $29.25 million and are increasing 
at the rate of $9.25 million per month. (C) S1102 = 103, S′1102 = 21. 
After 10 months, sales are $103 million and are increasing at the rate of $21 
million per month. 91. (A) N′1x2 = 3,780>x2 (B) N′1102 = 37.8. At 
the $10,000 level of advertising, sales are increasing at the rate of 37.8 boats 
per $1,000 spent on advertising. N′1202 = 9.45. At the $20,000 level of 
advertising, sales are increasing at the rate of 9.45 boats per $1,000 spent on 
advertising.

93. (A) (B)  In 2025, 35.5% of male high 
school graduates enroll in college 
and the percentage is decreasing 
at the rate of 1.5% per year.

95. (A) -1.37 beats>min
(B) -0.58 beats>min

97. (A) 25 items/hr (B) 8.33 items/hr

Exercises 2.6

1. 3; 3.01 3. 2.8; 2.799 5. 0; 0.01 7. 100; 102.01  
9. ∆x = 3; ∆y = 75; ∆y>∆x = 25 11. 20 13. 20 

15. dy = 124x - 3x22dx 17. dy = a2x-  
x2

3
 bdx

19. dy = -
295

x3>2 dx 21. (A) 12 + 3∆x (B) 12 

23. dy = 613x - 12dx 25. dy = a x2 + 9

x2
 bdx

27. dy = 1.4; ∆y = 1.44 29. dy = -12; ∆y = -12.77

31. 120 in.3 33. (A) ∆y = ∆x + 1∆x2 2; dy = ∆x

(B) 1

21 1

21

Dy

dy

 (C) dyDyDx

35. (A) ∆y = - ∆x + 1∆x2 2 + 1∆x2 3; dy = - ∆x

(B) 0.5

20.5 0.5

20.5

Dy
dy

 (C) dyDyDx

37. True 39. False 41. dy = a 2
3

 x - 1>3 -  
10
3

 x2>3bdx

43. dy = 3.9; ∆y = 3.83 45. 40-unit increase; 20-unit increase
47. - $2.50; $1.25 49. -1.37 beats>min; -0.58 beats>min
51. 1.26 mm2 53. 3 wpm 55. (A) 2,100 increase
(B) 4,800 increase (C) 2,100 increase

Exercises 2.7

1. $22,889.80 3. $110.20 5. $32,000.00 7. $230.00 9. C′(x) = 0.7
11. C′(x) = -0.2(0.1x - 23) 13. R′(x) = 4 - 0.02x 
15. R′(x) = 12 - 0.08x 17. P′(x) = 3.3 - 0.02x 
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54.  (A) The graph of g is the graph of f 
shifted 4 units to the right, and the 
graph of h is the graph of f shifted 4 
units down:

f(x)

x

4

5

f
h

g

(B)  The graph of g′ is the graph of 
f′ shifted 4 units to the right, and 
the graph of h′ is the graph of f′:

f(x)

x

6

5

f 9 5 h9 g9

55. 1- ∞ , ∞2 (2.3) 56. 1-∞ ,  22h  12, ∞2 (2.3) 
57. 1-∞ , - 42h  1-4, 12h  11, ∞ 2 (2.3) 58. 1-∞, ∞2 (2.3)

59. 3-2,  24 (2.3) 60. (A) -
3
5

 (B) Does not exist (C) -
3
7

 (2.1)

61. (A) 
1
2

 (B) 0 (C) Does not exist (2.1) 62. (A) -1 (B) 1

(C) Does not exist (2.1)

63. (A) -
1
6

 (B) Does not exist (C) -
1
3

 (2.1) 64. (A) 0 (B) -1 

(C) Does not exist (2.1) 65. (A) 
2
3

 (B) 
2
3

 (C) Does not exist (2.3)

66. (A) ∞  (B) -∞  (C) ∞  (2.3) 67. (A) 0 (B) 0 

(C) Does not exist (2.2) 68. 2 (2.1) 69. 
-6

x3
  (2.1)

70. 2x - 1 (2.4) 71. 1>(21x) (2.4) 72. Yes (2.4) 73. No (2.4)

74. No (2.4) 75. No (2.4) 76. Yes (2.4) 77. Yes (2.4)
78. Horizontal asymptote: y = 11; vertical asymptote: x = 5 (2.2)
79. Horizontal asymptote: y = 0; vertical asymptote: x = 4 (2.2)
80. No horizontal asymptote; vertical asymptote: x = 3 (2.2)
81. Horizontal asymptote: y = 1; vertical asymptotes: x = -2, x = 1 (2.2)
82. Horizontal asymptote: y = 1; vertical asymptotes: x = -1, x = 1 (2.2)
83. The domain of f′1x2 is all real numbers except x = 0. At x = 0, the 
graph of y = f1x2 is smooth, but it has a vertical tangent. (2.4)
84. (A) lim

xS1-  f1x2 = 1; 

lim
xS1-  f1x2 = -1

f(x)

x

5

5

(B) lim
xS1-  f1x2 = -1; 

lim
xS1+  f1x2 = 1

f(x)

x

5

5

(C) m = 1
f(x)

x

5

5

(D) The graphs in (A) and (B) have 
discontinuities at x = 1; the graph in 
(C) does not. (2.2)
85. (A) 1 (B) -1 (C) Does not exist
   (D) No (2.4)

86. (A) S1x2 = e 7.47 + 0.4x       if 0 … x … 90
24.786 + 0.2076x if 90 6 x

    (B) S(x)

x

$80

180

 (C) Yes (2.2)

87. (A) $121.00 (B) $120.00 (2.7) 88. (A) C12002 = 111,200; 
C′12002 = 512. At a production level of 200 motorcycles, the total cost is 
$111,200, and cost is increasing at the rate of $512 per motorcycle.

(B) C12002 = 556; C′12002 = -0.22. At a production level of 200 mo-
torcycles, the average cost is $556, and average cost is decreasing at a rate of 
$0.22 per bicycle. (2.7)

51. (A) R1x2 = 20x - x3>2

(B) Break-even points: 144, 5882, 1258, 1,0162 

1200

0 400
0

53. (A) 

(B) Fixed costs ≈ $721,680 ; variable costs ≈ $121

(C) 1713,  807,7032, 15,423,  1,376,2272 (D) $254 … p … $1,133

Chapter 2 Review Exercises

1. (A) 234 (B) 78 (C) 78 (D) 24 (E) 24 (F) 24 (2.2) 2. f′1x2 = 4 (2.2)

3. (A) 65 (B) 44 (C) 
4

11
 (D) 96 (2.1) 4. 1.5 (2.1) 5. 3.5 (2.1)

6. 3.75 (2.1) 7. 3.75 (2.1) 8. (A) 1 (B) 1 (C) 1 (D) 1 (2.1)
9. (A) 2 (B) 3 (C) Does not exist (D) 3 (2.1) 10. (A) 4 (B) 4
(C) 4 (D) Does not exist (2.1) 11. (A) Does not exist (B) 3
(C) No (2.3) 12. (A) 2 (B) Not defined (C) No (2.3) 13. (A) 1
(B) 1 (C) Yes (2.3) 14. 10 (2.2) 15. 5 (2.2) 16. ∞  (2.2) 17. - ∞  (2.2)
18. ∞  (2.2) 19. ∞  (2.2) 20. ∞  (2.2) 21. x = 2;  x = 6 (2.2)
22. y = 5; y = 10 (2.2) 23. x = 2; x = 6 (2.3) 24. f′1x2 = 12x2 (2.4)
25. (A) 6 (B) -4 (C) -9 (D) 1 (E) -12 26. x + 2 (2.5)

27. x - 2>3 + 4 (2.5) 28. 0 (2.5)

29. -
3
2

 x - 2 +
15
4

 x2 =
- 3

2x2
+

15x2

4
 (2.5)

30. -2x - 5 + x3 =
- 2

x5
+ x3 (2.5)

31. f′1x2 = 12x3 + 9x2 - 2 (2.5) 32. ∆x = 3, ∆y = 57, ∆y>∆x = 19 (2.6)
33. 19 (2.6) 34. 39 (2.6) 35. ∆y = 1.32; dy = 1.3 (2.6)
36. (A) 4 (B) 6 (C) Does not exist (D) 6 (E) No (2.3)
37. (A) 3 (B) 3 (C) 3 (D) 3 (E) Yes (2.3) 38. (A) 18, ∞ 2
(B) 30, 84 (2.3) 39. 1-3,  42 (2.3) 40. 1-3,  02h  15, ∞ 2 (2.3)
41. 1-2.3429, - 0.47072h  11.8136, ∞2 (2.3) 42. (A) 3 
(B) 2 + 0.5h (C) 2 (2.4) 43. -x - 5 + 4x - 3 (2.4) 

44. 
3
4

 x - 1>2 -  
5
6

 x - 3>2 =
3

41x
-

5

62x3
 (2.5)

45. 0.6x - 2>3 - 0.3x - 4>3 =
0.6

x2>3 -  
0.3

x4>3 (2.4)

46. -
20
7

 1-32x =
9

5x4
 (2.5) 47. (A) m = f′142 = 2

(B) y = 2x - 2 (2.4, 2.5) 48. x = 0 (2.4) 49. x = -5, x = -1 (2.5)
50. x = -1.3401, 0.5771, 2.2630 (2.4) 51. {2.4824 (2.5)
52. (A) y = f′1y2 = 30 + 16t (B) 62 ft /sec (2.5)
53. (A) y = f′1x2 = -6x + 50 (B) y(2) = 38 ft /s (2.5)
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 Answers A-11

(F) 
R C

Pro�t

Loss

RC

x

$16,000

2,000

 

In 2020, natural-gas consumption is 
36.9 trillion cubic feet and is increas-
ing at the rate of 1.7 trillion cubic 
feet per year (2.4)

94. (A)  (B) Fixed costs: $484.21; variable costs 

91. (A) 8 (B) 20 (2.5) 
92. N192 = 27; N′192 = 3.5; After  
9 months, 27,000 pools have been sold and 
the total sales are increasing at the rate of 
3,500 pools per month. (2.5)

93. (A)  (B) N1602 = 36.9; N′1602 = 1.7.  

per kringle: $2.11

 (C) (51, 591.15), (248, 1,007.62) (D) $4.07 6 p 6 $11.64 (2.7)
95. C′1102 = -1; C′11002 = -0.00112.52 
96. F142 = 98.16; F′142 = -0.32; After 4 hours the patient’s temperature 
is 98.16°F and is decreasing at the rate of 0.32°F per hour. (2.5)
97. (A) 10 items/h (B) 5 items/h (2.5)
98. (A) C

T

20

12
16

4
8

3000

C
T

E

Kelvin
M 5 150

600 1000

Cmax 5 12
Cmax 5 62

 (B) C1T2 =
12T

150 + T

 (C) C = 9.6 at T = 600 K; T = 750 K when C = 10 (2.3)

Chapter 3
Exercises 3.1

1. A = 1,465.68 3. P = 9,117.21 5. t = 5.61 7. r = 0.04
9. $11,051.71; $12,214.03; $13,498.59

11. A

t

$15,000

8

A 5 6,000e0.1t
  13. t = 9.90 15. r = 0.08 17. t = 36.62 

19. r = 0.11

n 31 + 11 ,n24n

10 2.593 74

100 2.704 81

1,000 2.716 92

10,000 2.718 15

100,000 2.718 27

1,000,000 2.718 28

10,000,000 2.718 28

T T
∞ e = 2.718 281 828 459 c

25. 

4

0 20
0

y2

n

y1 5
1
n1 1

n 1 1

y3 5
1
n1 1

 27. (A) $12,398.62  (B) 27.34 yr
29. $15,782.10 31. 8.11% 

33. (A) P

t

10,000

50

 (B)  lim tS ∞ 10,000e-0.08t = 0

35. 19.80 yr 37. 4.95% 39. 7.3 yr 

 (B) 
t 5

t

r

35

0.3

ln 2
r

  Although r could be any 
positive number, the restric-
tions on r are reasonable in 
the sense that most invest-
ments would be expected 
to earn a return of between 
2% and 30%.

41. (A)   A = Pert  
 2P = Pert  

 2 = ert  
 rt =  ln 2  

 t =
 ln 2

r

89.  The approximate cost of producing the 201st printer is greater than that of 
the 601st printer. Since these marginal costs are decreasing, the manufac-
turing process is becoming more efficient. (2.7)

90. (A) C′1x2 = 2; C1x2 = 2 +
9,000

x
; C′1x2 =

- 9,000

x2

(B)  R1x2 = xp = 25x - 0.01x2; R′1x2 = 25 - 0.02x; R1x2 = 25 - 0.01x;  
R′1x2 = -0.01 (C) P1x2 = R1x2 - C1x2 = 23x - 0.01x2 - 9,000; 

P′1x2 = 23 - 0.02x; P1x2 = 23 - 0.01x-  
9,000

x
;  

P′1x2 = -0.01 +
9,000

x2

(D) (500, 10,000) and (1,800, 12,600)
(E)  P′11,0002 = 3. Profit is increasing at the rate of $3 per umbrella.

P′11,1502 = 0. Profit is flat.
P′11,4002 = -5. Profit is decreasing at the rate of $5 per umbrella.

21.

23.  lim
nS ∞

11 + n2 1>n = 1

(C)  The doubling times (in years) are 13.86, 6.93, 4.62, 3.47, 2.77, and 2.31, 
respectively.

43. t = - 1ln  0.52 >0.000  433 2 ≈ 1,600 yr 
45. r = 1ln  0.52 >30 ≈ -0.0231 47. 61.3 yr 49. 1.39%

Exercises 3.2

1. y = 4 3. x = 1>5 5. y = 1>3 7. ln x - ln y 9. 5 ln x 

11. ln u + 2 ln v - ln w 13. 5ex + 3 15. -
2
x

+ 2x 17. 3x2 - 6ex

19. ex + 1 -
1
x

 21. 
3
x

 23. 5-  
5
x

 25. 
2
x

+ 4ex 27.  f′1x2 = ex + exe - 1

29. f′1x2 = 1e + 12xe 31.  f′1x2 =
1
x

; y = x + 2 

33.  f′1x2 = 3ex; y = 3x + 3 35.  f′1x2 =
3
x

; y =
3x
e

37.  f′1x2 = 3ex; y = 3ex + 4 39. Yes; yes 41. No; no

43.  f1x2 = 10x +  ln 10 +  ln x; f′1x2 = 10 +
1
x

45.  f1x2 =  ln 4 - 3 ln x; f′1x2 = -  
3
x

 47. 
1

x ln 2
 49. 3x ln 3

51. 2 -
1

x ln 10
 53. 1 + 10x ln 10 55. 

3
x

 +
2

x ln 3
 57. 2x ln 2

59. 1-0.82, 0.442, 11.43, 4.182, 18.61, 5503.662 61. (0.49, 0.49)
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A-12 Answers

Exercises 3.4

1. (A) 5x4 (B) 4x3 3. (A) 15x14 (B) 50x13 5. (A) 3x2 (B) 2x3

7. (A) -5x - 6  (B) 
2
7

 x - 5 9. 2x312x2 + 1x2 - 2216x22 = 10x4 - 12x2

11. 1x - 32122 + 12x - 12112 = 4x - 7 

13. 
1x - 32112 - x112

1x - 32 2
=

-3

1x - 32 2
 

15. 
1x - 22122 - 12x + 32112

1x - 22 2
=

-7

1x - 22 2

17. 3xex + 3ex = 31x + 12ex 19. x3a 1
x
b + 3x2 ln x = x211 + 3 ln x2

21. 1x2 + 12122 + 12x - 3212x2 = 6x2 - 6x + 2
23. 10.4x + 2210.52 + 10.5x - 5210.42 = 0.4x - 1

25. 
12x - 3212x2 - 1x2 + 12122

12x - 32 2
=

2x2 - 6x - 2

12x - 32 2

27. 1x2 + 322x + 1x2 - 522x = 4x3 - 4x

29. 
1x2 - 522x - 1x2 + 322x

1x2 - 52 2
=

-16x

1x2 - 52 2

31. 
1x2 + 12ex - ex12x2

1x2 + 12 2
=

1x - 12 2ex

1x2 + 12 2

33. 
11 + x2 a 1

x
b - ln x

11 + x2 2
=

1 + x - x ln x

x11 + x2 2

35. x f′1x2 + f1x2 37. x4f′1x2 + 4x3f1x2 39. 
x2f ′1x2 - 2 x f1x2

x4

41. 
f1x2 - x f ′1x2

3 f1x2 42
 43. exf′1x2 + f1x2ex = ex3 f′1x2 + f1x2 4

45. 
f1x2 a 1

x
b - 1ln x2 f′1x2

f1x2 2
=

f1x2 - 1x ln x2 f′1x2
x f1x2 2

47. 12x + 1212x - 32 + 1x2 - 3x2122 = 6x2 - 10x - 3

49. 11.5t - t22162 + 16t - 5.4211.5 - 2t2 = -18t2 + 28.8t - 8.1

51. 
1x2 + 2x2152 - 15x - 3212x + 22

1x2 + 2x2 2
=

-5x2 + 6x + 6

1x2 + 2x2 2

53. 
1w

2 - 1212w - 32 - 1w

2 - 3w + 1212w2
1w

2 - 12 2
=

3w

2 - 4w + 3

1w

2 - 12 2

55. 13 - 2x + x22ex + ex1-2 + 2x2 = 11 + x22ex

57. (A)  f′1x2 =
x # 0 - 1 # 1

x2
= -  

1

x2
 (B) Note that  f1x2 = x-1 and  

use the power rule: f′1x2 = -x-2 = -  
1

x2
 

59. (A)  f′1x2 =
x4 # 0 - 1-32 # 4x3

x8
=

12

x5
 (B) Note that  f1x2 = -3x-4 

and use the power rule:  f′1x2 = 12x-5 =
12

x5

61.  f′1x2 = 11 + 3x21-22 + 15 - 2x2132; y = -11x + 29

63.  f′1x2 =
13x - 42112 - 1x - 82132

13x - 42 2
; y = 5x - 13

63. (3.65, 1.30), (332,105.11, 12.71) 67. $28,447/yr; $18,664/yr; $11,021/yr  
69.  A′1t2 = 5,0001ln 424t;  A′112 = 27,726 bacteria/hr (rate of change at 
the end of the first hour);  A′152 = 7,097,827 bacteria/hr (rate of change at 
the end of the fifth hour) 71. At the 40-lb weight level, blood pressure would 
increase at the rate of 0.44 mm of mercury per pound of weight gain. At the 
90-lb weight level, blood pressure would increase at the rate of 0.19 mm of 
mercury per pound of weight gain. 73. dR>dS = k>S  
75. (A) $808.41 per year (B) $937.50 per year

Exercises 3.3

1. Decreasing 3. Increasing
5. Concave down 7. Concave down
9. -5 sin x 11. -5 sin 15x2
13. 2x cos 1x2 + 12 15. cos  1w + p2 17. t cos t + sin t

19. 1cos x2 2 - 1sin x2 2 21. 51sin x2 4cos x 23. 
cos x

22sin x

25. -  
x-1>2

2
 sin  2x =

-sin 2x

22x
 27. f′ap

4
b = cos 

p

4
=

22
2

29. Increasing on 3-p, 04; decreasing on 30, p4; concave upward on 
3-p, -p>24 and 3p>2, p4; concave downward on 3-p>2, p>24; local 

maximum at x = 0;  f1x2 = cos x;  f′1x2 = -sin x 

xp

1
f(x)

31. -p csc1px2cot 1px2 33. -  
p

2
 csc2apx

2
b

35. - 1x + 12ex sin 1xex2
37. 3x2 tan21x32sec1x32
39. 2ex cos x 41. 

9

0 9

29

43. 3

0 8

22

45. 

1

0 10

21

 47.  (A) P′1t2 =
5p
26

 sin
pt
26

,  

0 6 t 6 104 (B) P′182 = $0.50 
hundred, or $50 per week; 
P′1262 = $0 per week; 
P′1502 = - $0.14 hundred, or - $14 
per week 

(C) t P 1t 2
26 $1,000

52 $0

78 $1,000

Local maximum

Local minimum

Local maximum 

(D) t P 1t 2
0 $0

26 $1,000

52 $0

78 $1,000

104 $0

Absolute minimum

Absolute maximum

Absolute minimum

Absolute maximum

Absolute minimum 

(E) Same answer as for part (C) 49. (A) V′1t2 =
0.35p

2
 sin 

pt
2

,  

0 … t … 8 (B) V′132 = -0.55 L>sec; V′142 = 0.00 L>sec; 

V′152 = 0.55 L>sec 

(C) t V 1t 2
2 0.80

4 0.10

6 0.80

Local maximum

Local minimum

Local maximum 

(D) t V 1t 2
0 0.10

2 0.80

4 0.10

6 0.80

8 0.10

Absolute minimum

Absolute maximum

Absolute minimum

Absolute maximum

Absolute minimum  

(E) Same answer as for part (C)
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 Answers A-13

47. 6e - 7x - 42xe - 7x = 6(1 - 7x)e - 7x

49. 
3xa 1

1 + x2
b2x - 3 ln 11 + x22

9x2
=

2x2 - 11 + x22 ln 11 + x22
3x211 + x22

51. 6te31t2 + 12 53. 
3x

x2 + 3
 55. -51w

3 + 42 -613w

22 =
-15w

2

1w

3 + 42 6

57.  f′1x2 = 14 - x2 3 - 3x14 - x2 2 = 414 - x2 211 - x2; y = -16x + 48

59.  f′1x2 =
14x - 72 5 - 20x14x - 72 4

14x - 72 10
=

-16x - 7

14x - 72 6
; y = -39x + 80

61.  f′1x2 =
1

2x1ln x
; y =

x
2e

+
1
2

63.  f′1x2 = 2x1x - 52 3 + 3x21x - 52 2 = 5x1x - 52 21x - 22; x = 0, 2, 5

65.  f′1x2 =
14x + 62 3 - 12x14x + 62 2

14x + 62 6
=

6 - 8x

14x + 62 4
 ; x =

3
4

67.  f′1x2 = 1x2 - 8x + 202 -1>21x - 42 =
x - 4

1x2 - 8x + 202 1>2 ; x = 4

69. No; yes 71. Domain of f: 10, ∞ 2; domain of g: 30, ∞ 2; domain of 
m: 10, ∞ 2 73. Domain of f: 30, ∞ 2; domain of g: 10, ∞ 2; domain of m: 
31, ∞ 2 75. Domain of f: 10, ∞ 2; domain of g: 1- ∞ , ∞ 2; domain of m: 
1-2, 22 77. Domain of f: all real numbers except {1; domain of g: 10, ∞ 2; 
domain of m: all positive real numbers except e and 1e
79. 18x21x2 + 12 2 + 31x2 + 12 3 = 31x2 + 12 217x2 + 12

81. 
24x51x3 - 72 3 - 1x3 - 72 46x2

4x6
=

31x3 - 72 313x3 + 72
2x4

83. 
1

ln 2
 a 20x3

5x4 + 3
b 85. 12x + 12110x2 + x21ln 102 87. 

12x2 + 5

14x3 + 5x + 72 ln 3

89. 2x3 - x2 + 4x + 113x2 - 2x + 42 ln 2 

91. (A)  C′1x2 = 12x + 162 -1>2 =
1

12x + 162 1>2 (B)  C′1242 = 1
8, or 

$12.50. At a production level of 24 cell phones, total cost is increasing at the 
rate of $12.50 per cell phone and the cost of producing the 25th cell phone is 
approximately $12.50.  C′1422 = 1

10, or $10.00. At a production level of 42 
cell phones, total cost is increasing at the rate of $10.00 per cell phone and the 
cost of producing the 43rd cell phone is approximately $10.00.

93. (A) 
dx
dp

= 401p + 252 -1>2 =
40

1p + 252 1>2 (B) x = 400 and 

dx>dp = 4. At a price of $75, the supply is 400 bicycle helmets per week,  
and supply is increasing at the rate of 4 bicycle helmets per dollar.  
95. (A) After 1 hr, the concentration is decreasing at the rate of 1.60 mg/mL 
per hour; after 4 hr, the concentration is decreasing at the rate of 0.08 mg/mL 
per hour.
(B) C(t)

t

5.00

5

  97. 2.27 mm of mercury/yr; 0.81 mm of  
mercury/yr; 0.41 mm of mercury/yr

Exercises 3.6

1. y = -  
3
2

 x + 10 3. y = {5
6

 236 - x2 5. y =
-x { 24 - 3x2

2

7. Impossible 9. y′ = 4>3 11. y′ = -
4x

y2
 13. y′ = -

3
ey

15. y′ = 2xy 17. y′ = 10x; 10 19. y′ =
2x

3y2
 ;
4
3

 21. y′ = -  
6

2y - 5
 ; 6

23. y′ = -  
y

x
 ; -  

3
2

 25. y′ = -  
2y

2x + 1
 ; 4 27. y′ =

6 - 2y

x
 ; -1

29. y′ =
2x

ey - 2y
 ; 2 31. y′ =

3x2y

y + 1
 ;
3
2

 33. y′ =
12x3y - y  ln  y

x + 3y
 ; -6

65. f′1x2 =
2x - x12x ln 22

22x
; y = a 1 - 2 ln 2

4
b x + ln 2

67.  f′1x2 = 12x - 15212x2 + 1x2 + 182122 = 61x - 221x - 32; x = 2,

 x = 3 69.  f′1x2 =
1x2 + 12112 - x12x2

1x2 + 12 2
=

1 - x2

1x2 + 12 2
; x = -1, x = 1

71. 7x6 - 3x2 73. -27x-4 = -  
27

x4
 75. 1w - 423w ln 3 + 3w =  

31w - 42 ln 3 + 143w 77. 9x1>313x22 + 1x3 + 5213x-2>32 =
30x3 + 15

x2>3

79. 
11 + x22 1

x ln 2
 - 2x log2 x

11 + x22 2
=

1 + x2 - 2x2 ln x

x11 + x22 2 ln 2

81. 
1x2 - 3212x-2>32 - 6x1>312x2

1x2 - 32 2
=

-10x2 - 6

1x2 - 32 2x2>3

83.  g′1t2 =
13t2 - 1210.22 - 10.2t216t2

13t2 - 12 2
=

-0.6t2 - 0.2

13t2 - 12 2

85. 120x2 1
x ln 10

+ 20 log x =
2011 + ln x2

ln 10

87. 1x + 3212x - 32 + 1x2 - 3x + 52112 = 3x2 - 4
89. 1x2 + x + 1212x - 12 + 1x2 - x + 1212x + 12 = 4x3 + 2x

91. 
et11 + ln t2 - 1t ln t2et

e2t
=

1 + ln t - t ln t

et

93. (A)  S′1t2 =
1t2 + 5021180t2 - 90t212t2

1t2 + 502 2
=

9,000t

1t2 + 502 2

(B)  S1102 = 60; S′1102 = 4. After 10 months, the total sales are 60,000 
video games, and sales are increasing at the rate of 4,000 video games per 
month. (C) Approximately 64,000 video games

95. (A) 
dx
dp

=
10.1p + 12102 - 4,00010.12

10.1p + 12 2
=

-400

10.1p + 12 2

(B) x = 800; dx>dp = -16. At a price level of $40, the demand is 800 
DVD players per week, and demand is decreasing at the rate of 16 players 
per dollar. (C) Approximately 784 DVD players

97. (A)  C′1t2 =
1t2 + 1210.142 - 0.14t12t2

1t2 + 12 2
=

0.14 - 0.14t2

1t2 + 12 2

(B)  C′10.52 = 0.0672. After 0.5 hr, concentration is increasing at the 
rate of 0.0672 mg/cm3 per hour.  C′132 = -0.0112. After 3 hr, concen-
tration is decreasing at the rate of 0.0112 mg/cm3 per hour.

Exercises 3.5

1.  f′1x2 = 9x8 + 10 3.  f′1x2 =
7
2

x - 1>2 - 6x - 3 5.  f′1x2 = 8ex

7.  f′1x2 =
4
x

+ 8x 9. 3 11. -30x5 13. 2x 15. 4x3 

17. -815 - 2x2 3 19. 514 + 0.2x2 410.22 = 14 + 0.2x2 4 

21. 30x13x2 + 52 4 23. 5e5x 25. -18e-6x 27. 12x - 52 -1>2 =
1

12x - 52 1>2

29. -8x31x4 + 12 -3 =
-8x3

1x4 + 12 3
 31. 

6x

1 + x2
 33. 

311 + ln x2 2

x

35.  f′1x2 = 612x - 12 2; y = 6x - 5; x = 1
2

37.  f′1x2 = 214x - 32 -1>2 =
2

14x - 32 1>2 ; y =
2
3

 x + 1; none

39.  f′1x2 = 101x - 22ex2 - 4x + 1; y = -20ex + 5e; x = 2
41. 121x2 - 22 312x2 = 24x1x2 - 22 3

43. -61t2 + 3t2 -412t + 32 =
-612t + 32
1t2 + 3t2 4

45. 
1
2

 1w

2 + 82 -1>212w2 =
w2w

2 + 8
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71.  R1p2 = 30p - 10p1p 

R(p)

p

40

Inelastic

Elastic

9

73. 
3
2

 75. 
1
2

 77. Elastic on 10, 3002; 

inelastic on 1300, 6002 79. Elastic on 
10, 10132; inelastic on 11013, 302 81. k 
83. $75 per day 85. Increase 87. Decrease  
89. $3.75 

91.  p1t2 =
23

0.23t + 10.3

t50

p(t)

3

93. -0.035

Chapter 3 Review Exercises

1. $3,136.62; $4,919.21; $12,099.29 (3.1) 2. 
3
x

- 2e - x (3.2) 3. 2e2x - 3 (3.5)

4. 
3

3x + 4
 (3.5) 5. 

2e2x + ex

e2x + ex + 4
 (3.5) 6. -sin m (3.3) 7. cos u (3.3)  

8. 12x - 22cos 1x2 - 2x + 12 (3.3) 9. y′ =
1 - 2x

4xy3
; -

1
4

 (3.6)  

10. dy>dt = 576 (3.7) 11. x = 5,000 - 200p (3.8)  

12.  E1p2 =
p

25 - p
 (3.8) 13.  E1152 = 1.5;  7.5% decrease (3.8)  

14. Elastic on (12.5, 25) (3.8) 15. Increase (3.8) 16. 5 (3.2)  

17. lim
nS ∞

a1 +
2
n

 b
n

= e2 ≈ 7.389 06 (3.1) 18. 
7[1 ln z2 6 + 1]

z
 (3.5)  

19. x511 + 6  ln x2 (3.4) 20. 
ex1x - 62

x7
 (3.4) 21. 

12x5 + ex

2x6 + ex
 (3.5)  

22. 13x2 - 2x2ex3 - x2
 (3.5) 23. 

1 - 2x ln 5x

xe2x
 (3.5)

24. y = -x + 2; y = -ex + 1 (3.5) 25. - 22>2 (3.3)  

26. y′ =
3y - 2x

8y - 3x
;

8
19

 (3.6) 27. x′ =
6t2x

1 - 4t3
; 

6
5

 (3.6)  

28. y′ =
1

ey + 2y
; 1 (3.6) 29. y′ =

2xy

1 + 2y2
;
2
3

 (3.6)  

30. 1x2 - 12cos x + 2x sin x (3.3) 31. 61sin x2 5cos x (3.3)

32. 1cos x2 > 331sin x2 2>34 (3.3) 33. 0.049 (3.8) 34. -  
3

100 - 3p
 (3.8)

35. 
2x + ex

4 + x2 + ex
 (3.8) 36. dx>dt = -

3
20

 units>sec (3.7) 37. 0.27 ft/sec (3.7)

38. dC>dt ≈ 3 in.2>min (3.7) 39. Elastic for 5 6 p 6 15; 

inelastic for 0 6 p 6 5 (3.8) 40. 
R(p)

p

500

Inelastic

Elastic

20

41. (A) y = x4 (B) 
dy

dx
= 4x3 (3.5)

42. 1> 1cos u2 2 = 1sec u2 2 (3.3) 43. -2x1sin x22ecos x2
 (3.3)

44. 4x172x2 + 421ln 72 (3.5) 45. a 1
ln 5

b 2x - 1

x2 - x
 (3.5)

46. 
e2x + 4x

(e2x + 4x2 + 3)3ln 1e2x + 4x2 + 32
 (3.5) 47. y′ =

2x - exyy

xexy - 1
; 0 (3.6)

48. The rate of increase of area is proportional to the radius R, so the rate is 
smallest when R = 0, and has no largest value. (3.7) 49. Yes, for x 7 4 (3.7)  

35. x′ =
2tx - 3t2

2x - t2
 ; 8 37. y′ � 11.6,1.82 = -  

3
4

 ; y′ � 11.6,0.22 =
3
4

39. y = -x - 4 41. y = 2
5 x - 12

5  ; y = 3
5 x + 12

5  43. y′ = -  
1
x

45. y′ =
1

311 + y2 2 + 1
 ;

1
13

 47. y′ =
1x - 3y2 2

31x - 3y2 2 + 4y2
 ; 

1
7

49. y′ =
3x217 + y22 1>2

y
 ; 16 51. y′ =

y

2xy2 - x
 ; 1 53. y = 0.63x + 1.04

55. 
dp

dx
=

1
p - 3

 57. 
dp

dx
= -

2p + 25

15
 59. 

dL
dV

=
- 1L + m2

V + n

61. 
dT
dv

=
2
k

 1T  63. 
dv

dT
=

k

21T

Exercises 3.7

1. 19.5 ft 3. 52 m 5. 34.5 ft 7. 32 ft 9. 30 11. -  
16
3

 13. -  
16
7

15. Decreasing at 3 units/sec 17. Approx. 3.03 ft/sec 19. Approx. 126 ft2/sec

21. 47,124 cm3/min 23. 6 lb/in.2/hr 25. 
9
4

 ft>sec 27. 
20
3

 ft>sec

29. 0.0214 ft/sec; 0.0135 ft/sec; yes, at t = 0.000 19 sec  

31. 3.835 units/sec 33. (A) 
dC
dt

= $15,000>wk (B) 
dR
dt

= - $50,000>wk 

(C)  
dP
dt

= - $65,000>wk 35. 
ds
dt

= $2,207>wk 

37. 
dx
dt

= 165 headphones>wk 39.  R1p2 = p16,000-0.15p22;

 
dR
dt

= - $2,775>wk 41. 
dx
dt

= 160 lbs>wk 43. 
dx
dt

= $2 million>wk

45. (A) 
dx
dt

= -12.73 units>month (B) 
dp

dt
= $1.53>month 

47. Approx. 100 ft3/min

Exercises 3.8

1. x = f1p2 = 105 - 2.5p, 0 … p … 42
3. x = f1p2 = 1100 - 2p, 0 … p … 50
5. x = f1p2 = 201ln 25 - ln p2, 25>e ≈ 9.2 … p … 25
7. x = f1p2 = e8 - 0.1p, 80 - 10 ln 30 ≈ 46.0 … p … 80

9. 
35 - 0.8x

35x - 0.4x2
 11. -  

8e-x

9 + 8e-x 13. 
5

x112 + 5 ln x2  15. 0 17. -0.017

19. -0.034 21. 1.013 23. 0.405 25. 11.8% 27. 5.4% 29. -14.7%

31. -431.6% 33.  E1p2 =
450p

25,000 - 450p
 35.  E1p2 =

8p2

4,800 - 4p2

37.  E1p2 =
0.6pep

98 - 0.6ep 39. 0.07 41. 0.15 43. 
x + 1

x
 45. 

1
x ln x

47. (A) Inelastic (B) Unit elasticity (C) Elastic 49. (A) Inelastic 
(B) Unit elasticity (C) Elastic 51.  E1122 = 0.6; 2.4% decrease
53.  E1222 = 2.2; 11% increase 55. Elastic on 116, 322 57. Increase
59. Elastic on 13.5, 72; inelastic on 10, 3.52 61. Elastic on 125>13, 252; 
inelastic on 10, 25>132 63. Elastic on 148, 722; inelastic on 10, 482
65. Elastic on 125, 25122; inelastic on 10, 252 
67.  R1p2 = 20p110 - p2

R(p)

p

500

Inelastic

Elastic

10

69.  R1p2 = 40p1p - 152 2

R(p)

p

20,000

Inelastic

Elastic

15
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50. (A) 14.2 yr (B) 13.9 yr (3.1)
51.  A′1t2 = 10e0.1t; A′112 = $11.05>yr; A′1102 = $27.18>yr (3.1)
52. $987.50/yr (3.2) 53.  R′1x2 = 3,000(0.998) x (1 + x 1n 0.998) (3.5)

54. -
23,000 - 4p5

10p4
 (3.6) 55. dR>dt = $2,242>day (3.7)

56. Decrease price (3.8) 57. 0.02125 (3.8) 58. -1.111 mg>mL per hour; 
-0.335 mg>mL per hour (3.5) 59. dR>dt = -3> 12p2; approx.  
0.477 mm/day (3.7) 60. (A) Increasing at the rate of 2.68 units/ day at the 
end of 1 day of training; increasing at the rate of 0.54 unit/day after 5 days of 
training (B) 7 days (3.5) 61. dT>dt = -1>27 ≈ -0.037 min>hr (3.7)

Chapter 4
Exercises 4.1

1. Decreasing 3. Increasing 5. Increasing 7. Decreasing
9. 1a, b2; 1d, f2; 1g, h2 11. 1b, c2; 1c, d2; 1f, g2 13. c, d, f 15. b, f
17. Local maximum at x = a; local minimum at x = c; no local extrema 
at x = b and x = d 19. f132 = 5 is a local maximum; e 21. No local 
 extremum; d 23. f132 = 5 is a local maximum; f 25. No local extremum; c
27. (A)  f ′1x2 = 3x2 - 3 (B) -1, 1 (C) -1, 1 

29. (A)  f ′1x2 =
- 4

1x + 322
  (B) -3 (C) none 31. (A)  f ′1x2 =

1
4

 x- 3>4 

(B) 0 (C) 0 33. Decreasing on 1- ∞ , 22; increasing on 12, ∞2;  
f122 = -10 is a local minimum 35. Increasing on 1- ∞ , -42; decreas-
ing on 1-4, ∞2; f1-42 = 7 is a local maximum 37. Increasing for all x; 
no local extrema 39. Increasing on 1- ∞ , -12 and 11, ∞2; decreasing on 
1-1, 12; f1-12 = 7 is a local maximum, f112 = 3 is a local minimum
41. Decreasing on 1- ∞ , -42and 12, ∞2; increasing on 1-4, 22; 
f1-42 = -220 is a local minimum and f122 = 104 is a local maximum
43. Decreasing on 1- ∞ , -32; increasing on 1-3, ∞2;  f1-32 = 3 is a 
local minimum 45. Decreasing on 1- ∞ , -42; increasing on 1-4, ∞2; 
f1-42 = -e - 4 ≈ - 0.0183 is a local minimum 47. Decreasing on 
1- ∞ , -22 and 10, 22; increasing on 1-2, 02 and 12, ∞2; f1-22 = 0 and 
f122 = 0 are local minima; f102 = 13 16 ≈ 2.5198 is a local maximum
49. Increasing on 1- ∞ , 42
Decreasing on 14, ∞2
Horizontal tangent at x = 4

10

f(x)

x

20

51. Increasing on 1- ∞ , -12, 11, ∞2
Decreasing on 1-1, 12
Horizontal tangents at x = -1, 1

f(x)

x

5

5

53. Decreasing for all x
Horizontal tangent at x = 2

f(x)

x

25

5

55. Decreasing on 1- ∞ , -32 and  
10, 32; increasing on 1-3, 02 and 
13, ∞2 Horizontal tangents at  
x = -3, 0, 3

f(x)

x

100

5

57. Critical numbers: x = -0.77, 1.08, 2.69; decreasing on 1- ∞ , -0.772 
and 11.08, 2.692; increasing on 1-0.77, 1.082 and 12.69, ∞2; 
f1-0.772 = -4.75 and f12.692 = -1.29 are local minima; f11.082 = 6.04 
is a local maximum 59. Critical numbers: x = -2.83, -0.20;  decreasing 
on 1- ∞ , -2.832 and 1-0.20, ∞2; increasing on 1-2.83, -0.202; 
f1-2.832 = -7.08 is a local minimum; f1-0.202 = 1.10 is a local  
maximum

61. f(x)

x

3

3

63. f(x)

x

3

5

65. f(x)

x

5

5

67. f(x)

x

5

5

69. g4 71. g6 73. g2  
75. Increasing on 1-1, 22; 
decreasing on 1- ∞ , -12 and 
12, ∞2; local  minimum at 
x = -1; local maximum at x = 2

f(x)

x

5

5

77. Increasing on 1-1, 22 
and 12, ∞2; decreasing on 
1- ∞ , -12; local minimum 
at x = -1

f(x)

x

5

5

79. Increasing on 1-2, 02 
and 13, ∞2; decreasing 
on 1- ∞ , -22 and 10, 32; 
local minima at x = -2 
and x = 3; local maximum 
at x = 0

f(x)

x

5

5

81.  f ′1x2 7 0 on 1- ∞ , -12 
and 13, ∞2; f ′1x2 6 0 
on 1-1, 32; f ′1x2 = 0 at 
x = -1 and x = 3

f 9(x)

x

5

5

83.  f ′1x2 7 0 on 1-2, 12 
and 13, ∞2; f ′1x2 6 0 
on 1- ∞ , -22 and 
11, 32; f ′1x2 = 0 at 
x = -2, x = 1, and x = 3

f 9(x)

x

5

5

85. Critical numbers: 
x = -2, x = 2; increasing 
on 1- ∞ , -22 and 12, ∞2; 
decreasing on 1-2, 02 and 
10, 22; f1-22 = -4 is a 
local maximum; f122 = 4 is 
a local minimum

87. Critical numbers: x = 0; increasing on 10, ∞2; decreasing on 1- ∞ , 02; 
f102 = 0 is a local minimum 89. Critical numbers: x = 0, x = 4; increas-
ing on 1- ∞ , 02 and 14, ∞2; decreasing on 10, 22 and 12, 42; f102 = 0 is a 
local maximum; f142 = 8 is a local minimum 

(B) P9(x)

x900

93. (A) The price decreases for the 
first 12 months to a local minimum, 
increases for the next 36 months to a 
local maximum, and then decreases 
for the remaining 12 months. 

95. (A) C1x2 = 0.05x + 20 +
320

x
  (B) Critical number: x = 80;  

decreasing for 0 6 x 6 80;  increasing for 80 6 x 6 150; C1802 = 28  
is a  local minimum 97. Critical number: t = 2; increasing on 10, 22; 
decreasing on 12, 242; C122 = 0.07 is a local maximum.

Exercises 4.2

1. Concave up 3. Concave down 5. Concave down 7. Neither
9. (A) (a, c), (c, d), (e, g) (B) (d, e), (g, h) (C) (d, e), (g, h) (D) (a, c),  
(c, d), (e, g) (E) (a, c), (c, d), (e, g) (F) (d, e), (g, h) 11. (A) f1-22 = 3 
is a local maximum of f; f122 = -1 is a local minimum of f. (B) (0, 1) (C) 0

13. (C) 15. (D) 17. 12x - 8 19. 4x - 3 - 18x - 4 21. 2 +
9
2

  x - 3>2

91. (A) The marginal profit is  
positive on 10, 6002, 0 at x = 600, 
and negative on 1600, 1,0002. 

(B) B(t)

t60
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63. Domain: All real numbers
y int.: 16; x int.: -2, 2
Decreasing on 1- ∞ , -22 and (0, 2)
Increasing on 1-2, 02 and 12, ∞2
Local minima: f1-22 = 0,  f122 = 0
Local maximum: f102 = 16

f(x)

x

30

5

65. Domain: All real numbers
y int.: 0; x int.: 0, 1.5
Decreasing on 1- ∞ , 02 and (0, 1.25)
Increasing on 11.25, ∞2
Local minimum: f11.252 = -1.53
Concave upward on 1- ∞ , 02 and 11, ∞2
Concave downward on 10, 12
Inflection points: 10, 02, 11, -12

f(x)

x

2.5

1

67. Domain: All real numbers
y int.: 0; x int.: 0
Increasing on 1- ∞ , ∞2
Concave downward on 1- ∞ , ∞2

x  f′ 1x 2  f 1x 2
- ∞ 6 x 6 -1 Positive and 

decreasing
Increasing and 
 concave downward

x = -1 x intercept Local maximum

-1 6 x 6 0 Negative and 
decreasing

Decreasing and 
 concave downward

x = 0 Local minimum Inflection point

0 6 x 6 2 Negative and 
increasing

Decreasing and 
 concave upward

x = 2 Local max., x 
intercept

Inflection point, 
horiz. tangent

2 6 x 6 ∞ Negative and 
decreasing

Decreasing and 
 concave downward

f(x)

x

5

7

69. Domain: All real numbers
y int.: 5
Decreasing on 1- ∞ , ln  42
Increasing on 1 ln  4, ∞2
Local minimum: f1ln 42 = 4
Concave upward on 1- ∞ , ∞2

 

f(x)

x

8

5

71. Domain: 10, ∞2
x int.: e2

Increasing on 1- ∞ , ∞2
Concave downward on 1- ∞ , ∞2

f(x)

x

5

20

73. Domain: 1-4, ∞ 2
y int.: -2 +  ln  4; x int.: e2 - 4
Increasing on 1-4, ∞2
Concave downward on 1-4, ∞2

f(x)

x

5

16

75. 

f(x)

x

5

5

Concave upward on 1- ∞ , -213>32 and 1213>3, ∞2
Concave downward on 1-213>3, 213>32
Inflection points: 1-1.15, 7.112, 11.15, 7.112 

33. Concave downward on 1- ∞ , 12; concave upward on 11, ∞2; inflection  
point at 11, 72 35. Concave upward on 10, 62; concave downward on 1- ∞ , 02 
and 16, ∞ 2; inflection points at 10, 102 and 16, 12642 37. Concave upward 
on 1-3, -12; concave downward on 1- ∞ , -32 and 1-1, ∞2; inflection 
points at 1-3, 0.69312 and 1-1, 0.69312 39. Concave upward on 10, ∞2; 
concave downward on 1- ∞ , 02; inflection point at 10, -52
41. 

x82 4

f(x) 43. f(x)

x42

45. f(x)

x

5

5

47. f(x)

x

5

5

49. f(x)

x

5

5

51. f(x)

x

5

5

53. Domain: All real numbers
y int.: 16; x int.: 2 - 213, 2, 2 + 213
Increasing on 1- ∞ , 02 and 14, ∞2
Decreasing on (0, 4)
Local maximum: f102 = 16; local 
minimum: f142 = -16
Concave downward on 1- ∞ , 22
Concave upward on 12, ∞2
Inflection point: 12, 02

f(x)

x

25

7

55. Domain: All real numbers
y int.: 2; x int.: -1
Increasing on 1- ∞ , ∞2
Concave downward on 1- ∞ , 02
Concave upward on 10, ∞2
Inflection point: 10, 22

f(x)

x

10

2.5

57. Domain: All real numbers
y int.: 0; x int.: 0, 4
Increasing on 1- ∞ , 32
Decreasing on 13, ∞2
Local maximum: f132 = 6.75
Concave upward on 10, 22
Concave downward on 1- ∞ , 02 and 12, ∞2
Inflection points: 10, 02, 12, 42

f(x)

x

10

5

59. Domain: All real numbers;
y int.: 0; x int.: 0, 1
Increasing on 10.25, ∞2
Decreasing on 1- ∞ , 0.252
Local minimum: f10.252 = -1.6875
Concave upward on 1- ∞ , 0.52 and 11, ∞2
Concave downward on 10.5, 12
Inflection points: 10.5, -12, 11, 02

f(x)

x

2.5

1.5

61. Domain: All real numbers
y int.: 27; x int.: -3, 3
Increasing on 1- ∞ , - 132 and 10, 132 
Decreasing on 1- 13, 02 and 113, ∞2
Local maxima: f1- 132 = 36, f1132 = 36
Local minimum: f102 = 27
Concave upward on 1-1, 12
Concave downward on 1- ∞ , -12 and 11, ∞2
Inflection points: 1-1, 322, 11, 322

f(x)

x

50

1.5

23. 48x21x2 + 92 2 + 81x2 + 92 3 = 81x2 + 92 217x2 + 92
25. 1-10, 2,0002 27. (0, 2) 29. None 31. Concave upward on 
1- ∞ , -22 and 12, ∞2; concave downward on 1-2, 22; inflection  
points at 1-2, -802 and 12, -802 
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Exercises 4.3

1. 500 3. 0 5. 50 7. 0 9. 6 11. -
1

10
  13. 7 15. -

1
2

  17.  
2
5

 

19. 0 21. - ∞  23.  
3
4

  25.  
1
4

  27.  
1
5

  29. ∞  31. ∞  33. 2

35. ∞  37. 8 39. 0 41. ∞  43. ∞  45.  
1
3

  47. -2 49. - ∞

51. 0 53. 0 55. 0 57.  
1
4

  59.  
1
3

  61. 0 63. 0 65. ∞  67. y = -10

69. y = -1 and y =
3
5

  

Exercises 4.4

1. Domain: All real numbers; x int.: -12; y int.: 36 3. Domain: 1- ∞ , 25]; 

x int.: 25; y int.: 5 5. Domain: All real numbers except 2; x int.: -1; y int.: -   
1
2

   
7. Domain: All real numbers except -1 and 1; no x intercept; y int.: - 3
9. (A) 1- ∞ , b2, 10, e2, 1e, g2 (B) 1b, d2, 1d, 02, 1g, ∞2  
(C) 1b, d2, 1d, 02, 1g, ∞2 (D) 1- ∞ , b2, 10, e2, 1e, g2 (E) x = 0  
(F) x = b, x = g (G) 1- ∞ , a2, 1d, e2, 1h, ∞2 (H) 1a, d2, 1e, h2  
(I) 1a, d2, 1e, h2 (J) 1- ∞ , a2, 1d, e2, 1h, ∞2 (K) x = a, x = h  
(L) y = L (M) x = d, x = e

11. f(x)

x2

4

13. 

x2123

f(x) 15. f(x)

x

2.5

10

17. f(x)

x

7.5

10

19. f(x)

x

5

5

21. f(x)

x

5

5

23. Domain: All real numbers, except 3
y int.: -1; x int.: -3
Horizontal asymptote: y = 1
Vertical asymptote: x = 3
Decreasing on 1- ∞ , 32 and 13, ∞2
Concave upward on 13, ∞2
Concave downward on 1- ∞ , 32

f(x)

x

7.5

7.5

25. Domain: All real numbers, except 2; y int.: 0; x int.: 0
Horizontal asymptote: y = 1
Vertical asymptote: x = 2
Decreasing on 1- ∞ , 22 and 12, ∞2
Concave downward on 1- ∞ , 22
Concave upward on 12, ∞2  

f(x)

x

5

5

27. Domain: 1- ∞ , ∞2
y int.: 10
Horizontal asymptote: y = 5
Decreasing on 1- ∞ , ∞2
Concave upward on 1- ∞ , ∞ 2

f(x)

x

20

25

29. Domain: 1- ∞ , ∞2; y int.: 0; x int.: 0; Horizontal asymptote: y = 0
Increasing on 1- ∞ , 52; Decreasing on 15, ∞2
Local maximum: f152 = 9.20
Concave upward on 110, ∞2
Concave downward on 1- ∞ , 102
Inflection point: 110, 6.772

f(x)

x

10

20

31. Domain: 1- ∞ , 12
y int.: 0; x int.: 0
Vertical asymptote: x = 1
Decreasing on 1- ∞ , 12
Concave downward on 1- ∞ , 12

f(x)

x

2

2

79. Domain: All real numbers x int.: -1.18, 0.61, 1.87, 3.71; y int.: -5;
Decreasing on 1- ∞ , -0.532 and (1.24, 3.04); Increasing on 1-0.53, 1.242 
and 13.04, ∞ 2; Local minima: f1-0.532 = -7.57, f13.042 = -8.02;
Local maximum: f11.242 = 2.36; Concave upward on 1- ∞ , 0.222 
and 12.28, ∞2; Concave downward on (0.22, 2.28); Inflection points: 
10.22, -3.152, 12.28, -3.412 81. Domain: All real numbers;
x int.: -2.40,1.16; y int.: 3 Increasing on 1- ∞ , -1.582; Decreasing on 
1-1.58, ∞2; Local maximum: f1-1.582 = 8.87; Concave downward on 
1- ∞ , -0.882 and 10.38, ∞2; Concave upward on 1-0.88, 0.382;
Inflection points: 1-0.88, 6.392, 10.38, 2.452  83. The graph of the CPI is 
concave upward. 85. The graph of y = C′1x2 is positive and decreasing. 
Since marginal costs are decreasing, the production process is becoming more 
efficient as production increases. 87. (A) Local maximum at x = 60  
(B) Concave downward on the whole interval 10, 802 89. (A) Local maximum 
at x = 1 (B) Concave downward on 1- ∞ , 22; concave upward on 12, ∞2
91. Increasing on 10, 102;  
decreasing on 110, 152;  
point of diminishing returns is x = 10;  
max  T′1x2 = T′1102 = 500

y

x15

4,500

y 5 T(x)

y 5 T 9(x)

93. Increasing on (24, 36);  
decreasing on 136, 452;  
point of diminishing returns is x = 36;  
max  N′1x2 = N′1362 = 7,776

y

x45

60,000

y 5 N(x)

y 5 N9(x)

95. (A) (B) 32 ads to sell 574 cars per month
97. (A) Increasing on 10, 102; 
 decreasing on 110, 202 (B) Inflection 
point: 110, 30002 

(C) y

t20

5,000
y 5 N(t)

y 5 N9(t)

  (D) N′1102 = 300 99. (A) Increasing  
on 15, ∞2; decreasing on (0, 5)  
(B) Inflection point: 15, 102 

(C) y

n10

20
y 5 T(n)

y 5 T9(n)

 (D) T′152 = 0

77. x  f′ 1x 2  f 1x 2
- ∞ 6 x 6 -2 Negative and 

increasing
Decreasing and 
 concave upward

x = -2 Local max., x 
intercept

Inflection point, 
horiz. tangent

-2 6 x 6 0 Negative and 
decreasing

Decreasing and 
 concave downward

x = 0 Local minimum Inflection point

0 6 x 6 2 Negative and 
increasing

Decreasing and 
 concave upward

x = 2 Local max., x 
intercept

Inflection point, 
horiz. tangent

2 6 x 6 ∞ Negative and 
decreasing

Decreasing and 
 concave downward

f(x)

x

5

5
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Increasing on 1- ∞ , -32 and 1-3, 02
Decreasing on (0, 3) and 13, ∞2
Local maximum: f102 = -0.22
Concave upward on 1- ∞ , -32 and 13, ∞2
Concave downward on 1-3, 32

f(x)

x

8

10

49. Domain: All real numbers except 2
y int.: 0; x int.: 0
Vertical asymptote: x = 2
Increasing on 13, ∞2
Decreasing on 1- ∞ , 22 and 12, 32
Local minimum: f132 = 27
Concave upward on 1- ∞ , 02 and 12, ∞2
Concave downward on 10, 22
Inflection point: 10, 02

f(x)

x

70

10

51. Domain: All real numbers
y int.: 3; x int.: 3
Horizontal asymptote: y = 0
Increasing on 1- ∞ , 22
Decreasing on 12, ∞2
Local maximum: f122 = 7.39
Concave upward on 1- ∞ , 12
Concave downward on 11, ∞2
Inflection point: 11, 5.442

f(x)

x

8

5

53. Domain: 1- ∞ , ∞2
y int.: 1
Horizontal asymptote: y = 0
Increasing on 1- ∞ , 02
Decreasing on 10, ∞2
Local maximum: f102 = 1
Concave upward on 1- ∞ , -12 and 11, ∞2
Concave downward on 1-1, 12
Inflection points: 1-1, 0.612, 11, 0.612

f(x)

x

1.2

2.5

55. Domain: 10, ∞2
x int.: 1
Increasing on 1e - 1>2, ∞2
Decreasing on 10, e - 1>22
Local minimum:  f1e - 1>22 = -0.18
Concave upward on 1e - 3>2, ∞2
Concave downward on 10, e - 3>22
Inflection point: 1e - 3>2, -0.072

f(x)

x

1

1.8

57. Domain: 10, ∞2
x int.: 1
Vertical asymptote: x = 0
Increasing on 11, ∞2
Decreasing on 10, 12
Local minimum: f112 = 0
Concave upward on 10, e2
Concave downward on 1e, ∞2
Inflection point: 1e, 12

f(x)

x

10

10

59. Domain: All real numbers except -4, 2

y int.: -  
1
8

 

Horizontal asymptote: y = 0
Vertical asymptote: x = -4, x = 2
Increasing on 1- ∞ , -42 and 1-4, -12
Decreasing on 1-1, 22 and 12, ∞2
Local maximum: f1-12 = -0.11
Concave upward on 1- ∞ , -42 and 12, ∞2
Concave downward on 1-4, 22

f(x)

x

0.2

10

33. Domain: 10, ∞2
Vertical asymptote: x = 0
Increasing on 11, ∞2
Decreasing on 10, 12
Local minimum: f112 = 1
Concave upward on 10, ∞2

f(x)

x

4

4

35. Domain: All real numbers, except {2; y int.: 0; x int.: 0; Horizontal 
asymptote: y = 0; Vertical asymptotes: x = -2, x = 2
Decreasing on 1- ∞ , -22, 1-2, 22, and 12, ∞2
Concave upward on 1-2, 02 and 12, ∞2
Concave downward on 1- ∞ , -22 and 10, 22
Inflection point: 10, 02

f(x)

x

5

5

37. Domain: All real numbers; y int.: 1; Horizontal asymptote: y = 0
Increasing on 1- ∞ , 02; Decreasing on 10, ∞2
Local maximum: f102 = 1
Concave upward on 1- ∞ , - 13>32 and 113>3, ∞2
Concave downward on 1- 13>3, 13>32
Inflection points: 1- 13>3, 0.752, 113>3, 0.752

f(x)

x

1.2

2.5

39. Domain: All real numbers except -1 and 1
y int.: 0; x int.: 0
Horizontal asymptote: y = 0
Vertical asymptote: x = -1 and x = 1
Increasing on 1- ∞ , -12, 1-1, 12, and 11, ∞2
Concave upward on 1- ∞ , -12 and 10, 12
Concave downward on 1-1, 02 and 11, ∞2
Inflection point: 10, 02

f(x)

x

8

5

41. Domain: All real numbers except 1
y int.: 0; x int.: 0
Horizontal asymptote: y = 0
Vertical asymptote: x = 1
Increasing on 1- ∞ , -12 and 11, ∞2
Decreasing on 1-1, 12
Local maximum: f1-12 = 1.25
Concave upward on 1- ∞ , -22
Concave downward on 1-2, 12 and 11, ∞2
Inflection point: 1-2, 1.112

f(x)

x

2

5

43. Domain: All real numbers except 0
Horizontal asymptote: y = 1
Vertical asymptote: x = 0
Increasing on (0, 4)
Decreasing on 1- ∞ , 02 and 14, ∞2
Local maximum: f142 = 1.125
Concave upward on 16, ∞2
Concave downward on 1- ∞ , 02 and 10, 62
Inflection point: 16, 1.112

f(x)

x

1.2

7

45. Domain: All real numbers except 1
y int.: 0; x int.: 0
Vertical asymptote: x = 1
Oblique asymptote: y = x + 1
Increasing on 1- ∞ , 02 and 12, ∞2
Decreasing on 10, 12 and 11, 22
Local maximum: f102 = 0
Local minimum: f122 = 4
Concave upward on 11, ∞2
Concave downward on 1- ∞ , 12

f(x)

x

10.5

5

47. Domain: All real numbers except -3, 3

y int.: -   
2
9

 

Horizontal asymptote: y = 3
Vertical asymptotes: x = -3, x = 3
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13. Min f1x2 = f112 = f172 = 5; Max f1x2 = f1102 = 14
15. Min f1x2 = f112 = f172 = 5; Max f1x2 = f132 = f192 = 9
17. Min f1x2 = f152 = 7; Max f1x2 = f132 = 9
19. (A) Max f1x2 = f142 = 3; Min f1x2 = f102 = -5  
(B) Max f1x2 = f1102 = 15; Min f1x2 = f102 = -5  
(C) Max f1x2 = f1102 = 15; Min f1x2 = f1-52 = -15
21. (A) Max f1x2 = f1-12 = f112 = 1; Min f1x2 = f102 = 0  
(B) Max f1x2 = f152 = 25; Min f1x2 = f112 = 1  
(C) Max f1x2 = f1-52 = f152 = 25; Min f1x2 = f102 = 0
23. Max f1x2 = f1-12 = e ≈ 2.718; Min f1x2 = e - 1 ≈ 0.368
25. Max f1x2 = f102 = 9; Min f1x2 = f1{42 = -7
27. Min f1x2 = f122 = 0 29. Max f1x2 = f1-22 = 10 31. None
33. None 35. None 37. Min f1x2 = f102 = -1.5 39. None
41. Max f1x2 = f102 = 0 43. Min f1x2 = f122 = -2
45. Max f1x2 = f122 = 4 47. Min f1x2 = f122 = 0 49. No maximum 
51. Max f1x2 = f122 = 8 53. Min f1x2 = f142 = 22 

55. Min f1x2 = f11102 = 14>110 57. Min f1x2 = f122 =
e2

4
  ≈ 1.847

59. Max f1x2 = f132 =
27

e3
  ≈ 1.344 

61. Max f1x2 = f1e1.52 = 2e1.5 ≈ 8.963

63. Max f1x2 = f1e2.52 =
e5

2
  ≈ 74.207 65. Max f1x2 = f112 = -1

67. (A) Max f1x2 = f112 = 28; Min f1x2 = f152 = -4  
(B) Max f1x2 = f112 = 28; Min f1x2 = f1-22 = -53  
(C) Max f1x2 = f172 = 28; Min f1x2 = f152 = -4
69. (A) Max f1x2 = f102 = 126; Min f1x2 = f122 = -26  
(B) Max f1x2 = f172 = 49; Min f1x2 = f122 = -26  
(C) Max f1x2 = f162 = 6; Min f1x2 = f132 = -15
71. (A) Max f1x2 = f112 = 8; Min f1x2 = f1-12 = 0  
(B) Max f1x2 = f112 = 8; Min f1x2 = f1-32 = -24  
(C) Max f1x2 = f1-42 = 3; Min f1x2 = f1-32 = -24
73. Local maximum 75. Unable to determine 77. Neither 
79. Local minimum

83. (A) C1n2 =
3,200

n
+ 250 + 50n (B) 

n20

3,500
C(n)  (C) 8 yr

85. (A) 

x150

50
y C(x)

y 5 5 1 0.1x 

C9(x)

 (B)  $25 at 
x = 100

87. (A) y

x0 2 4 6 8 10
0.0

0.75

0.50

0.25

  (B) C182 =
8

e6
 ≈ 0.01983 ppm  

(C) C14>32 ≈ 0.4905

91. 

t30

25
N(t)

Exercises 4.5

1. Max f1x2 = f132 = 3; Min f1x2 = f1-22 = -2
3. Max h1x2 = h1-52 = 25; Min h1x2 = h102 = 0
5. Max n1x2 = n142 = 2; Min n1x2 = n132 = 13
7. Max q1x2 = q1272 = -3; Min q1x2 = q1642 = -4
9. Min f1x2 = f102 = 0; Max f1x2 = f1102 = 14
11. Min f1x2 = f102 = 0; Max f1x2 = f132 = 967. y = 90 + 0.02x 69. y = 210 + 0.1x 71. Domain: All real numbers 

except -1, 2 y; int.: 1/2; x int.: 1; Vertical asymptote: x = 2
Horizontal asymptote: y = 1
Decreasing on 1- ∞ , -12, 1-1, 22, and 12, ∞2
Concave upward on 12, ∞2
Concave downward on 1- ∞ , -12 and 1-1, 22

f(x)

x8

6

73. Domain: All real numbers except -1
y int.: 2; x int.: -2
Vertical asymptote: x = -1
Horizontal asymptote: y = 1
Decreasing on 1- ∞ , -12, and 1-1, ∞2
Concave upward on 1-1, ∞2
Concave downward on 1- ∞ , -12

y

x5

5

75. Domain: All real numbers except -4, 3

y int.: 1; x int.:  
3
2

 

Vertical asymptote: x = 3
Horizontal asymptote: y = 2
Decreasing on 1- ∞ , -42, 1-4, 32, and 13, ∞2
Concave upward on 13, ∞2
Concave downward on 1- ∞ , -42 and 1-4, 32

y

x10

10

77. Domain: All real numbers except -1, 3
y int.: 0; x int.: 0, -7
Vertical asymptote: x = -1
Oblique asymptote: y = x + 6
Increasing on 1- ∞ , -12, 1-1, 32, and 13, ∞2
Concave upward on 1- ∞ , -12
Concave downward on 1-1, 32 and 13, ∞2

y

x10

10

79. R(x)

x80

60,000
81. (A) Increasing on (0, 1) (B) Concave upward  
on (0, 1) (C) x = 1 is a vertical asymptote  
(D) The origin is both an x and a y intercept 

P(x)

x1.00

40.00

M
il

li
on

 d
ol

la
rs

(E)

61. Domain: All real numbers except - 13, 13
y int.: 0; x int.: 0
Vertical asymptote: x = - 13, x = 13
Oblique asymptote: y = -x
Increasing on 1-3, - 132, 1- 13, 132, and 113, 32
Decreasing on 1- ∞ , -32 and 13, ∞2
Local maximum: f132 = -4.5
Local minimum: f1-32 = 4.5
Concave upward on 1- ∞ , - 132 and 10, 132
Concave downward on 1- 13, 02 and 113, ∞2
Inflection point: 10, 02
63. Domain: All real numbers except 0
Vertical asymptote: x = 0
Oblique asymptote: y = x
Increasing on 1- ∞ , -22 and 12, ∞2
Decreasing on 1-2, 02 and 10, 22
Local maximum: f1-22 = -4
Local minimum: f122 = 4
Concave upward on 10, ∞2
Concave downward on 1- ∞ , 02

f(x)

x

8

5

65. Domain: All real numbers except 0; x int.: 13 4
Vertical asymptote: x = 0; Oblique asymptote: y = x
Increasing on 1- ∞ , -22 and 10, ∞2
Local maximum: f1-22 = -3
Decreasing on 1-2, 02
Concave downward on 1- ∞ , 02 and 10, ∞2

f(x)

x

10

10

f(x)

x

5

5
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23. Domain: All real numbers
y int.: 0; x int.: 0, 4
Increasing on 1- ∞ , 32
Decreasing on 13, ∞2
Local maximum: f132 = 54
Concave upward on 10, 22
Concave downward on 1- ∞ , 02 and 12, ∞2
Inflection points: 10, 02, 12, 322 (4.4)

f(x)

x

50

5

24. Domain: all real numbers
y int.: -3; x int.: -3, 1
No vertical or horizontal asymptotes
Increasing on 1-2, ∞2
Decreasing on 1- ∞ , -22
Local minimum: f1-22 = -27
Concave upward on 1- ∞ , -12 and 11, ∞2
Concave downward on 1-1, 12
Inflection points: 1-1, -162, 11, 02 (4.4)

f(x)

x

25

5

25. Domain: All real numbers, except -2
y int.: 0; x int.: 0
Horizontal asymptote: y = 3
Vertical asymptote: x = -2
Increasing on 1- ∞ , -22 and 1-2, ∞2
Concave upward on 1- ∞ , -22
Concave downward on 1-2, ∞2 (4.4)

f(x)

x

14

6

26. Domain: All real numbers; y int.: 0; x int.: 0; Horizontal asymptote: y = 1
Increasing on 10, ∞2; Decreasing on 1- ∞ , 02
Local minimum: f102 = 0
Concave upward on 1-3, 32
Concave downward on 1- ∞ , -32 and 13, ∞2
Inflection points: 1-3, 0.252, 13, 0.252 (4.4)

f(x)

x

1.2

10

27. Domain: All real numbers except x = -2
y int.: 0; x int.: 0
Horizontal asymptote: y = 0
Vertical asymptote: x = -2
Increasing on 1-2, 22
Decreasing on 1- ∞ , -22 and 12, ∞2
Local maximum: f122 = 0.125
Concave upward on 14, ∞2
Concave downward on 1- ∞ , -22 and 1-2, 42
Inflection point: 14, 0.1112 (4.4)

f(x)

x

0.5

20

28. Domain: All real numbers
y int.: 0; x int.: 0
Oblique asymptote: y = x
Increasing on 1- ∞ , ∞2
Concave upward on 1- ∞ , -32 and (0, 3)
Concave downward on 1-3, 02 and 13, ∞2
Inflection points: 1-3, -2.252, 10, 02, 13, 2.252 (4.4)

f(x)

x

5

5

29. Domain: All real numbers
y int.: 0; x int.: 0
Horizontal asymptote: y = 5
Increasing on 1- ∞ , ∞2
Concave downward on 1- ∞ , ∞2 (4.4)

f(x)

x

4

4.5

30. Domain: 10, ∞2
x int.: 1
Increasing on 1e - 1>3, ∞2
Decreasing on 10, e - 1>32
Local minimum:  f1e - 1>32 = -0.123
Concave upward on 1e - 5>6, ∞2
Concave downward on 10, e - 5>62
Inflection point: 1e - 5>6, -0.0682 (4.4)

f(x)

x

0.4

1.25

7. c4, c6 (4.1) 8. c2, c4, c5, c7 (4.2)
9. (4.2) f(x)

x

5

5

 10. (4.2) f(x)

x

1.8

5

11. f ″1x2 = 6 -
1

x2
 (4.2) 12. y″ = 8>x3 (4.2) 13. Domain: All real 

numbers, except 1 and -1; y int.: 2; x int.: -2 (4.2) 14. Domain: 1-2, ∞2;  

y int.: ln 2; x int.: -1 (4.2) 15. Horizontal asymptote: y = 0; vertical  

asymptotes: x = -4, x = 4 (4.4) 16. Horizontal asymptote: y =
2
3

 ; 

 vertical asymptote: x = -
10
3

  (4.4) 17. 1- 12, -202, 112, -202 (4.2)

18. (0,10), (8,-4086) (4.2)  

19. (A)  f′1x2 = a 2
3
b   x - 2>3 - a 2

3
b   x - 1>3 (B) 0, 1 (C) 0, 1 (4.1)

20. (A)  f′1x2 = -
1
5

  x - 6>5 (B) 0 (C) None (4.1) 21. Domain: All real 

numbers; y int.: 0; x int.: 0, 9; Increasing on 1- ∞ , 32 and 19, ∞2
Decreasing on 13, 92
Local maximum: f132 = 108
Local minimum: f192 = 0
Concave upward on 16, ∞2
Concave downward on 1- ∞ , 62
Inflection point: 16, 542 (4.4)

f(x)

x

120

12

22. Domain: All real numbers
y int.: 16; x int.: -4, 2
Increasing on 1- ∞ , -22 and 12, ∞2
Decreasing on 1-2, 22
Local maximum: f1-22 = 32
Local minimum: f122 = 0
Concave upward on 10, ∞2
Concave downward on 1- ∞ , 02
Inflection point: 10, 162 (4.4)

f(x)

x

35

5

Exercises 4.6

1.  f1x2 = x128 - x2 3.  f1x2 = px2>4 5.  f1x2 = px3 
7.  f1x2 = x160 - x2 9. 6.5 and 6.5 11. 6.5 and -6.5 
13. 113 and 113 15. 1012 ft by 1012 ft 17. 37 ft by 37 ft
19. (A) Maximum revenue is $156,250 when 625 phones are produced and 
sold for $250 each. (B) Maximum profit is $124,000 when 600 phones are 
produced and sold for $260 each. 21. (A) Max  R1x2 = R13,0002 = + 300,000  
(B) Maximum profit is $75,000 when 2,100 sets are manufactured and sold  
for $130 each. (C) Maximum profit is $64,687.50 when 2,025 sets are  
manufactured and sold for $132.50 each.
23. (A)  (B) 

(C) The maximum profit is $139,179 when the price per backpack is $257.
25. (A) $4.80 (B) $8 27. $35; $6,125 29. 40 trees; 1,600 lb 
31. 110 - 2172 >3 = 1.57 in. squares 33. 20 ft by 40 ft (with the 
 expensive side being one of the short sides) 35. (A) 70 ft by 100 ft  
(B) 125 ft by 125 ft 37. 8 production runs per year 39. 10,000 books in  
5 printings 41. 34.64 mph 43. (A) x = 5.1 mi (B) x = 10 mi  
45. 4 days; 20 bacteria/cm3 47. 1 month; 2 ft 49. 4 yr from now

Chapter 4 Review Exercises

1. (a, c1), (c3, c6) (4.1, 4.2) 2. (c1, c3), (c6, b) (4.1, 4.2) 3. (a, c2),  
(c4, c5), (c7, b) (4.1, 4.2) 4. c3 (4.1) 5. c1, c6 (4.1) 6. c1, c3, c5 (4.1)

31. 
-1
2

 (4.3) 32. 
5
3

 (4.3) 33. 0 (4.3) 34. 0 (4.3) 35. 0 (4.3)
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51.  Max f ′1x2 = f ′122 = 12 (4.2, 4.5)  
y

x

40

4

y 5 f 9(x)

y 5 f(x)

52. Each number is 20; minimum sum is 40 
(4.6) 53. Domain: All real numbers; x int.: 0.79, 
1.64; y int.: 4; Increasing on 1-1.68, -0.352 
and 11.28, ∞2; Decreasing on 1- ∞ , -1.682 
and 1-0.35, 1.282; Local minima: 
f1-1.682 = 0.97,   f11.282 = -1.61

Local maximum: f1-0.352 = 4.53; Concave downward on 1-1.10, 0.602
Concave upward on 1- ∞ , -1.102 and 10.60, ∞2; Inflection points: 
1-1.10, 2.582, 10.60, 1.082 54. Domain: All real numbers
x int.: 0, 11.10; y int.: 0; Increasing on (1.87, 4.19) and 18.94, ∞2
Decreasing on 1- ∞, 1.872 and 14.19, 8.942; Local maximum: f14.192 = -39.81 
Local minima: f11.872 = -52.14, f18.942 = -123.81
Concave upward on 1- ∞ , 2.922 and 17.08, ∞2
Concave downward on (2.92, 7.08) 
Inflection points: 12.92, -46.412, 17.08, -88.042 (4.4)
55. Max f1x2 = f11.3732 = 2.487 (4.5)
56. Max f1x2 = f11.7632 = 0.097 (4.5)
57. (A) For the first 15 months, the graph of the price is increasing and concave 
downward, with a local maximum at t = 15. For the next 15 months, the graph 
of the price is decreasing and concave downward, with an inflection point at 
t = 30. For the next 15 months, the graph of the price is decreasing and con-
cave upward, with a local minimum at t = 45. For the remaining  
15 months, the graph of the price is increasing and concave upward. 
(B) p(t)

t60  

 (4.2)  58. (A) Max R1x2 = R112,0002 = $1,800,000  
(B) Maximum profit is $100,000 when 4,000 
phones are manufactured and sold for $250 
each. (C) Maximum profit is $142,000 
when 4,400 phones are manufactured and sold 
for $245 each. (4.6)

36. 0 (4.3) 37. ∞  (4.3) 38. ∞ (4.3) 39. 0 (4.3) 40. 
1
2

 (4.3)

41. x  f′ 1x 2  f 1x 2
- ∞ 6 x 6 -2 Negative and 

increasing
Decreasing and 
 concave upward

x = -2 x intercept Local minimum

-2 6 x 6 -1 Positive and 
increasing

Increasing and 
 concave upward

x = -1 Local maximum Inflection point

-1 6 x 6 1 Positive and 
decreasing

Increasing and 
 concave downward

x = 1 Local min., x 
intercept

Inflection point, 
horiz. tangent

1 6 x 6 ∞ Positive and 
increasing

Increasing and 
 concave upward

42. (C) (4.2) 43. Local maximum: f1-22 =
476

3
; 

local minimum f182 = 50.67 (4.5)
44. Max f1x2 = f152 = 77; 
Min f1x2 = f122 = -4 (4.5)

45. Min f1x2 = f112 =
3
4

 (4.5)

(4.2) f(x)

x

5

5

46. Max f1x2 = f1e4.52 = 2e4.5 ≈ 180.03 (4.5)
47. Max f1x2 = f10.52 = 5e - 1 ≈ 1.84 (4.5)
48. Yes. Since f is continuous on 3a, b4, f  has an absolute maximum on 3a, b4.  
But neither  f1a2 nor  f1b2 is an absolute maximum, so the absolute maximum 
must occur between a and b. (4.5) 49. No, increasing/decreasing properties 
apply to intervals in the domain of f. It is correct to say that  f1x2 is decreasing 
on 1- ∞ , 02 and 10, ∞2. (4.1) 50. A critical number of  f1x2 is a partition 
number for  f ′1x2 that is also in the domain of f. For example, if  f1x2 = x - 1,  
then 0 is a partition number for  f ′1x2 = -x - 2, but 0 is not a critical number 
of  f1x2 since 0 is not in the domain of f. (4.1)

59. (A) The expensive side is 50 ft; the other side is 100 ft. (B) The expen-
sive side is 75 ft; the other side is 150 ft. (4.6) 60. $660; $51,200 (4.6)  
61. 12 orders/yr (4.6)
62.  Min C1x2 = C12002 = $50 (4.4) 

y

x

110

400

y 5 C9(x)

y 5 C(x)

y 5 0.1x 1 10

63. Min C1x2 = C1e52 ≈ $49.66 
(4.4) 64. A maximum revenue of 
$18,394 is realized at a production 
level of 50 units at $367.88 each. (4.6)

65. R(x)

x

20,000

100

 (4.6) 66. $549.15; $9,864 (4.6)
67. $1.52 (4.6)
68. 20.39 ft (4.6)

69. (A)   (B) Min C1x2 = C11292 = $1.71 (4.4)

70. Increasing on (0, 18); 
decreasing on (18, 24); point of 
diminishing returns is x = 18;  
max  N′1x2 = N′1182 = 972 
(4.2)

y

x

10,000

279

y 5 N9(x)

y 5 N(x)

71. (A)   (B) 28 ads to sell 588 refrigerators per 
month (4.2) 72. 8 days (4.1) 
73. 2 yr from now (4.1)

Chapter 5
Exercises 5.1

1. f(x) = 5x - 4 3. f(x) = 3x - 4 - 2x - 5 5. f(x) = x1>2 + 5x - 1>2

7. f(x) = 4x1>3 + x4>3 - 3x7>3 9. 7x + C 11. 4x2 + C 13. 3x3 + C 
15. (x6>6) + C 17. (-x - 2>2) + C 19. 4x5>2 + C 21. 3  ln 0 z 0 + C 
23. 16eu + C 25. Yes 27. Yes 29. No 31. No 33. True 35. False  
37. True 39. No, since one graph cannot be obtained from another by a  
vertical translation. 41. Yes, since one graph can be obtained from another by a 
vertical translation. 43. (5x2>2) - (5x3>3) + C 45. 21u + C  
47. - (x - 4>12) + C 49. 2 ln  0 u 0 + 3u + C 51. 5ez + 4z + C 
53. x3 + 2x - 1 + C 55. C(x) = 3x3 - 10x2 + 500 57. x = 201t + 5 
59. f(x) = -4x - 1 - 3 ln  0 x 0 + 2x + 7 61. y = 6et - 7t - 6 

63. y = 2x2 - 3x + 1 65. x2 + x - 1 + C 67. 
1
2

 x2 + x - 2 + C 

69. ex - 2  ln 0 x 0 + C 71. 6x2 - 7x + C 73. 
t3 -  2ln t

t2 + 9
 

81. C(x) = 200 +
5,000

x
; C(x) = 200x + 5,000; C(0) = $5,000 

83. (A) The cost function increases from 0 to 8, is concave downward from 0 
to 4, and is concave upward from 4 to 8. There is an inflection point at x = 4.  
(B) C(x) = x3 - 12x2 + 53x + 80; C(4) = $164,000; C(8) = $248,000  
(C) C(x)

x

200

8

  85. S(t) = 1,200 - 18t4>3; 503>4 ≈ 19 mo
 87. S(t) = 1,200 - 18t4>3 - 70t; t ≈ 8.44 mo
 89. L(x) = 4,800x1>2; 24,000 labor-hours
 91. W(h) = 0.0005h3; 171.5 lb 93. 19,400
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59. y = 225 - x2 61. y = -3x 63. y = 1> 11 - 2e - t2 

65. 3500

0 15
0

 67. 100

0 30
0

69. 100

0 100
0

 71. 1000

0 40
0

73. Apply the second-derivative test to f (y) = ky(M - y). 75. 2009 
77. A = 1,000e0.02t 79. A = 8,000e0.01t 81. (A) p(x) = 1000e - 0.1x 

(B) $135.34 per unit (C) p

x

1000

25

83. (A) N = L11 - e - 0.04t2 (B) 27 days 

(C) N

t

L

90

 85. I = I0e
- 0.00942x; x ≈ 117 ft 

87. (A) Q = 5e - 0.04t (B) Q(10) = 3.35 mL 
(C) 40.24 hr 89. 0.022 972 91. Approx. 31,600 yr  
93. 104 times; 67 times 95. (A) Approx 200 people  
(B) 12 minutes (C) After 15 minutes

Exercises 5.4

1. 80 in.2 3. 36 m2 5. No, p - 2 7 1 m2 7. C, E 9. B 
11. H, I 13. H 

15. 
10

6

f(x)

y 5 f(x)

x

10

6

g(x)

y 5 g(x)

x

17. Figure A: L3 = 13, R3 = 20; Figure B: L3 = 14, R3 = 7 

19. L3 … L
4

1
f (x) dx … R3; R3 … L

4

1
g (x) dx … L3; since f(x) is increasing, 

L3 underestimates the area and R3 overestimates the area; since g(x) is decreasing, 
the reverse is true. 21. In both figures, the error bound for L3 and R3 is 7. 
23. S5 = -110 25. S4 = -1,194 27. S3 = -33.01 29. S6 = -14 
31. -4.951 33. 8.533 35. 4.949 37. -10.667 39. -7.083 41. -2.132 
43. 15 45. 58.5 47. 45 49. 372 51. 0 53. -305 55. False 
57. False 59. False 61. L10 = 286,100 ft2; error bound is 
50,000 ft2; n Ú 200 63. L6 = -3.53, R6 = -0.91; error bound for L6 and 
R6 is 2.63. Geometrically, the definite integral over the interval [2, 5] is the sum of 
the areas between the curve and the x axis from x = 2 to x = 5, with the areas 
below the x axis counted negatively and those above the x axis counted positively. 
65. Increasing; R4 ≈ 6.822 67. Decreasing; L4 ≈ - 9.308  
69. n Ú 22 71. n Ú 104 73. L3 = 2,580, R3 = 3,900; error bound  
for L3 and R3 is 1,320 75. (A) L5 = 3.72; R5 = 3.37 

(B) R5 = 3.37 … L
5

0
A′(t) dt … 3.72 = L5 

77. L3 = 114, R3 = 102; error bound for L3 and R3 is 12

Exercises 5.2

1. f ′(x) = 50(5x + 1)9 3. f ′(x) = 14x(x2 + 1)6 5. f ′(x) = 2xex2

7. f ′(x) =
4x3

x4 - 10
  9. 

1
3

 (3x + 5)3 + C 11. 
1
6

 (x2 - 1)6 + C

13. -
1
2

 (5x3 + 1) - 2 + C 15. e8x + C 17. ln � 1 + x2 � + C 

19. 
2
3

 (1 + x4)3>2 + C 21. 
1

11
 (x + 3)11 + C 23. -

1
10

 (5t - 4) - 2 + C 

25. 
1

12
 (t2 + 1)6 + C 27. 

1
2

  ex2
+ C 29. 

1
6

 ln � 6x + 7 � + C 

31. -e1 - t + C 33. -
1

18
 (3t2 + 1) - 3 + C 

35. 
2
5

 (x + 4)5>2-  
8
3

 (x + 4)3>2 + C 37. 
2
3

 (x - 3)3>2 + 6(x - 3)1>2 + C 

39. 
(x - 8)9

9
+ (x - 8)8 + C 41. 

1
8

 (1 + e2x)4 + C 

43. 
1
2

   ln  0 4 + 2x + x2 0 + C 45. 
1
2

 (5x + 3)2 + C 47. 
1
2

 (x2 - 1)2 + C 

49. 
1
8

 x48 + C 51. No 53. Yes 55. Yes 57. Yes 59. 
1
8

 (x2 + 3)4 + C

61. 
2
9

 (x3 - 5)3>2 + C 63. 
3
4

 x4-  
5
3

 x3 + C 65. 
1
4

 22x4 - 2 + C 

67. 
1
3

 ( ln  x)3 + C 69. -e1>x + C 71. x =
1
3

 (t3 + 5)7 + C 

73. y = 5(t2 - 9)1>2 + C 75. p = - (ex - e - x) - 1 + C 

77. p(x) =
2,000

3x + 50
+ 4; 250 bottles

79. C(x) = 12x + 500  ln  (x + 1) + 2,000; C(1,000) = $17.45
81. (A) S(t) = 10t + 100e - 0.1t - 100, 0 … t … 24 (B) $50 million  
(C) 18.41 mo 83. Q(t) = 100  ln  (t + 1) + 5t, 0 … t … 20; 275 thousand 
barrels 85. W(t) = 2e0.1t + 2; 6.45 g 87. (A) -1,500 bacteria>mL per day  
(B) N(t) = 5,000 - 1,500  ln  (1 + t2); 113 bacteria/mL (C) 3.66 days 
89. N(t) = 100 - 60e - 0.1t, 0 … t … 15; 87 words/min  
91. E(t) = 12,000 - 10,000(t + 1) - 1>2; 9,500 students

Exercises 5.3

1. The derivative of f(x) is 5 times f (x); y′ = 5y 3. The derivative of f(x) is 
-1 times f (x); y′ = -y 5. The derivative of f(x) is 2x times f (x); y′ = 2xy  
7. The derivative of f(x) is 1 minus f (x); y′ = 1 - y 9. y = 3x2 + C 

11. y = 7 ln 0 x 0 + C 13. y = 20e0.05x + C 15. y =
x3

3
-  

x2

2
  

17. y = e - x2
+ 2 19. y = 2  ln  0 1 + x 0 + 5 21. Second-order 

23. Third-order 25. Yes 27. Yes 29. No 31. Yes 33. Figure B. 
When x = 1, the slope dy>dx = 1 - 1 = 0 for any y. When x = 0, the 
slope dy>dx = 0 - 1 = -1 for any y. Both are consistent with the slope field 

shown in Figure B. 35. y =
x2

2
- x + C; y =

x2

2
- x - 2 

37. y

x

5

5

39. y = Ce2t 41. y = 100e - 0.5x 
43. x = Ce - 5t 45. x = - 15t2>22 + C 
47. Logistic growth 49. Unlimited growth 

51. Figure A. When y = 1, the slope dy>dx = 1 - 1 = 0 for any x. When 
y = 2, the slope dy>dx = 1 - 2 = -1 for any x. Both are consistent with 
the slope field shown in Figure A. 53. y = 1 - e - x 

55. y

x

5

5

 57. 5

25 5

25
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 Answers A-23

53. (A) Average f(x) =
45
28

 ≈ 1.61 (B) 
3

1 8
0

Ave f(x) 5 1.61

f(x) 5     x3

Exercises 5.5

1. 500 3. 28 5. 48 7. 4.5p ≈ 14.14 9. (A) F(15) - F(10) = 375 

(B) F9(x)
F9(x) 5 6x

Area 5 375

x

120

20

 11. (A) F(15) - F(10) = 85 

(B) F9(x)

F9(x) 5 22x 1 42

Area 5 85

x

50

20

 13. 35 15. 8 17. 39 

19. ln  3 ≈ 1.0986 21. 
3
8

  

23. 2e3 - 2 ≈ 38.171 25. 40 
27. -40 29. 20 31. 0 33. -2 35. 14 

37. 56 = 15,625 39. ln  4 ≈ 1.386 41. 201e0.25 - e - 0.52 ≈ 13.550 

43. 
1
2

  45. 
1
2

 11 - e - 12 ≈ 0.316 47. 0 49. (A) Average f(x) = 250 

(B) 
500

0 10
0

f(x) 5 500 2 50x

Ave f(x) 5 250 51. (A) Average f(t) = 2 

(B) 
10

21 2

22

f(t) 5 3t2 2 2t

Ave f(t) 5 2

 55. (A) Average f(x) = 2(1 - e - 2) ≈ 1.73 

(B) 
5

0 10
0

Ave f(x) 5 1.73

f(x) 5 4e20.2x 

 57. 
1
6

 1153>2 - 53>22 ≈ 7.819 

 59. 
1
2

 1ln 2 -  ln 32 ≈ -0.203 

 61. 0 63. 4.566 65. 2.214 

 69. L
900

300
a500 -  

x
3

 bdx = $180,000

71. L
5

0
500(t - 12) dt = - $23,750; L

10

5
500(t - 12) dt = - $11,250 

73. (A)

 

100

0
210 130

(B) 6,505 75. Useful life = 1 ln  55 ≈ 2 yr; total profit =
51
22

-
5
2

- e - 4 

≈  2.272 or $2,272 77. (A) $420 (B) $135,000 
79. The total number of sales in the second year. 
81. 50e0.6 - 50e0.4 - 10 ≈ $6.51 83. 4,800 labor-hours 

85. 
1
3

 L
3

0
(-200t + 600)dt = 300 87. 100 ln 11 + 50 ≈ 290 thousand 

barrels; 100 ln 21 - 100 ln 11 + 50 ≈  115 thousand barrels 
89. 6e0.6 - 6 ≈ 4.93 g; 6e1.2 - 6e0.6 ≈ 8.99 g 91. 10°C 
93. 0.45 ln 2 + 0.2 ≈ 0.512; 0.225 ln 5 + 0.2 ≈ 0.562

Chapter 5 Review Exercises

1. 3x2 + 3x + C (5.1) 2. 50 (5.5) 3. -207 (5.5) 

4. -
1
8

 (1 - t2)4 + C (5.2) 5. ln 0 u 0 +
1
4

  u4 + C (5.1) 6. 0.216 (5.5) 

7. 1b
a  f1x2  dx (5.6) 8. 1 c

b 3- f1x24  dx (5.6) 9. 1b
a  f1x2  dx + 1 c

b 3- f1x24  dx  

(5.6) 10. Area = 1.153 (5.6)  y

x

1

3
e

y 5 ln x

11. No (5.1) 12. Yes (5.1) 13. No (5.1) 14. Yes (5.1) 15. Yes (5.3) 
16. Yes (5.3) 17. e - x2

 (5.1) 18. 14 + 5x + C (5.1) 
19. y = f(x) = x3 - 2x + 4 (5.3) 20. (A) 2x4 - 2x2 - x + C 
(B) et - 4  ln 0 t 0 + C (5.1) 21. R2 = 72; error bound for R2 is 48 (5.4) 

22. L
5

1
(x2 + 1) dx =

136
3

 ≈ 45.33; actual error is 
80
3

 ≈ 26.67 (5.5) 

23. L4 = 30.8 (5.4) 24. 7 (5.5) 
25. Width = 2 - (-1) = 3; height = average f(x) = 7 (5.5) 
26. S4 = 368 (5.4) 27. S5 = 906 (5.4) 28. -10 (5.4) 29. 0.4 (5.4) 
30. 1.4 (5.4) 31. 0 (5.4) 32. 0.4 (5.4) 33. 2 (5.4) 34. -2 (5.4) 
35. -0.4 (5.4) 36. (A) 1; 1 (B) 4; 4 (5.3) 37. dy>dx = (2y)>x; at 
points on the x axis (y = 0) the slopes are 0. (5.3) 

38. y =
1
4

  x2; y = -
1
4

  x2 (5.3) 

39. (5.3)
y

x

5

5

 40. (5.3)
5

25

25 5

41. 
2
3

 (2)3>2 ≈ 1.886 (5.5) 42. 
1
6

 ≈ 0.167 (5.5) 43. -5e - t + C (5.1) 

44. 
1
2

 11 + e22 (5.1) 45. 
1
6

  e3x2
+ C (5.2) 46. 2115 - 12 ≈ 2.472 (5.5) 

47. 
1
2

  ln 10 ≈ 1.151 (5.5) 48. 0.45 (5.5) 49. 
1

48
 12x4 + 52 6 + C (5.2) 

Exercises 5.6

1. 150 3. 37.5 5. 25.5 7. p>2 9. 1b
a  g1x2  dx 11. 1b

a 3-h1x24  dx
13. Since the shaded region in Figure C is below the x axis,  h1x2 … 0; so, 

1b
a h1x2  dx represents the negative of the area. 15. 24 17. 51 19. 42

21. 6 23. 2.350 25. 1 27. Mexico; South Africa 29. Indonesia; 
United States 31. 1b

a 3- f1x24  dx 33. 1 c
b f1x2  dx + 1d

c 3- f1x24  dx
35. 1 c

b 3g1x2 - f1x24dx 37. 1b
a 3 f1x2 - g1x24dx + 1 c

b 3g1x2 - f1x24dx
39. Find the intersection points by solving  f1x2 = g1x2 on the inter-
val 3a, d4 to determine b and c. Then observe that  f1x2 Ú g1x2 over 
3a, b4, g1x2 Ú f1x2 over 3b, c4, and  f1x2 Ú g1x2 over 3c, d4. 
Area = 1b

a 3 f1x2 - g1x24dx + 1 c
b 3g1x2 - f1x24dx + 1d

c 3 f1x2 - g1x24dx.
41. 4 43. 21.333 45. 13 47. 15 49. 32 51. 36 53. 9 55. 2.832

57. 13
-329 - x2 dx; 14.137 59. 14

0 216 - x2 dx; 12.566  

61. 215
-5 225 - x2 dx; 78.540 63. 52.616 65. 101.75 67. 8 69. 6.693

71. 48.136 73. 1.251 75. 4.41 77. 1.38 79. Total production from the end 
of the fifth year to the end of the 10th year is 50 + 100 ln 20 - 100 ln 15 ≈ 79  
thousand barrels. 81. Total profit over the 5-yr useful life of the game is 
20 - 30e - 1.5 ≈ 13.306, or $13,306. 83. 1992: 0.331; 2014: 0.296; income 
was more equally distributed in 2014. 85. 2010: 0.893; 2017: 0.733; total 
assets were less equally distributed in 2010.  
87. (A)  f1x2 = 0.3125x2 + 0.7175x - 0.015 (B) 0.104 89. Total weight  
gain during the first 10 hr is 3e - 3 ≈ 5.15 g. 91. Average number of 
words learned from t = 2 hr to t = 4 hr is 15 ln 4 - 15 ln 2 ≈ 10.
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31. 
17x - 12x3

3
  -   

7x4

12
+ C or 

7x4

4
  -   

x3

3
+ C  

33. 
1x + 421x + 12 3

3
  -   

1x + 12 4

12
+ C or 

x4

4
+ 2x3 +

9x2

2
+ 4x + C 

35. The integral represents the negative of the area between the graph of 
y = 1x - 32ex and the x axis from x = 0 to x = 1.

y

x

10

4A

y 5 (x 2 3)ex

37. The integral represents the area between the graph of y = ln 2x and the  
x axis from x = 1 to x = 3.

y 5 ln 2x

A

y

x

3

4

39. 1x2 - 2x + 22ex + C 41. 
xeax

a
-  

eax

a2
+ C

43. a -  
ln x

x
-

1
x
b `

e

1
= -  

2
e

+ 1 ≈ 0.2642 45. 6 ln 6 - 4 ln 4 - 2 ≈ 3.205

47. xex - 2 - ex - 2 + C 49. 1
211 + x22 ln11 + x22 - 1

211 + x22 + C
51. 11 + ex2ln11 + ex2 - 11 + ex2 + C 53. x1ln x2 2 - 2x ln x + 2x + C

55. x1ln x2 3 -  3x1ln x2 2 +  6x ln x -  6x +  C 57. 2 59. 
1
3

 61. 
1ln x2 5

5
+ C

63. 
x4

4
+ C 65. 

x4 ln1x22
4

  -   
x4

8
+ C 67. 62.88 69. 10.87

15. -xe - x - e - x +  C 17. 
1
2

 ex2 
+  C 19. 1xex -  4ex2 � 1

0 =  -3e + 4 ≈  -4.1548

21. 1x ln 2x - x2 � 3
1 = 13 ln 6 - 32 - 1ln 2 - 12 ≈ 2.6821

23. ln1x2 + 12 + C 25. 1ln x2 2>2 + C 27. 2
3 x3>2 ln x - 4

9 x3>2 + C

29. 
12x + 52x2

2
  -   

x3

3
+ C or 

2x3

3
+

5x2

2
+ C  

Chapter 6
Exercises 6.1

1.  f ′1x2 = 5; Lg1x2  dx =
x4

4
+ C 3.  f ′1x2 = 3x2; 

Lg1x2  dx =
5x2

2
+ C 5.  f ′1x2 = 4e4x; 1g1x2  dx = ln � x � + C 

7.  f ′1x2 = -x - 2; Lg1x2  dx =
1
4

e4x + C 9. 1
3 xe3x - 1

9 e3x + C 

11. 
x3

3
 ln x -   

x3

9
+ C 13. u = x + 2; 

1x + 221x + 12 6

6
  -   

1x + 12 7

42
+ C

54. (A) Average f(x) = 6.5 (B) f(x)

x

10

10

f(x) 5 3    x

Ave f(x) 5 6.5

(5.5) 

55. 
1
3

 ( ln  x)3 + C (5.2) 56. 
1
8

  x8 -
2
5

  x5 +
1
2

  x2 + C (5.2) 

57. 
2
3

 (6 - x)3>2 - 12(6 - x)1>2 + C (5.2) 58. 
1,234

15
 ≈ 82.267 (5.5) 

59. 0 (5.5) 60. y = 3ex3
- 1 (5.3) 61. N = 800e0.06t (5.3) 

62. Limited growth
60

0
0 80

  

(5.3)

 

63. Exponential decay
500

0
0 100

  

(5.3)

 

64. Unlimited growth
1000

0
0 20

  

(5.3)

 

65. Logistic growth
100

0
0 25

  

(5.3)

 

66. 1.167 (5.5) 67. 12 (5.6) 68. 40 (5.6) 69. 34.167 (5.6)  
70. 0.926 (5.6) 71. 12 (5.6) 72. 18.133 (5.6) 73. Venezuela (5.6)  
74. Nicaragua (5.6) 75. 99.074  (5.5) 76. -0.153 (5.5) 

77. L2 = $180,000; R2 = $140,000 … L
600

200
C′(x)dx … $180,000 (5.4) 

78. 1b
a 3  f1x2 - g1x24dx (5.6) 79. 1 c

b 3g1x2 - f1x24dx (5.6)
80. 1 c

b 3g1x2 - f1x24dx + 1d
c 3  f1x2 - g1x24dx (5.6)

81. 1b
a 3   f1x2 - g1x24dx + 1 c

b 3g1x2 - f1x24dx + 1d
c 3   f1x2 - g1x24dx 

(5.6) 82. Area = 20.833 (5.6) y

x

5

5

(0, 9)

y 5 9 2 x

(5, 4)

y 5 x2 2  6x 1 9 
 

50. -  ln  1e - x + 32 + C (5.2) 51. - 1ex + 22 -1 + C (5.2) 
52. y = f(x) = 3 ln 0 x 0 + x - 1 + 4 (5.2, 5.3) 53. y = 3x2 + x - 4 (5.3) 

83.  (A) Area = 8  

y

x

y 5 x3 2 6x2 1 9x 

y 5 x
4

4

(2, 2)
(4, 4)

(0, 0)

 
(B)  Area = 8.38 (5.6)  

y 5 x3 2 6x2 1 9x 

y 5 x 1 1

y

x

6

4

(1.75, 2.75)
(4.11, 5.11)

(0.14, 1.14)

91. 109 items (5.5) 92. 16e2.5 - 16e2 - 8 ≈ $68.70 (5.5) 

93. Useful life = 10 ln 
20
3

 ≈ 19 yr; total profit = 143 - 200e - 1.9 ≈   

113.086 or $113,086 (5.5) 
94. S(t) = 50 - 50e - 0.08t; 50 - 50e - 0.96 ≈ $31 million;  
- ( ln  0.2)>0.08 ≈ 20 mo (5.3) 
95. 1 cm2 (5.3) 96. 800 gal (5.5) 97. (A) 132 million 

(B) About 65 years (5.3) 98. 45 thousand (5.5, 5.6)  

99. 
- ln  0.04

0.000 123 8
 ≈ 26,000 yr (5.3) 

100. N(t) = 95 - 70e - 0.1t; N(15) ≈ 79 words>min (5.3)

84. 1.703 (5.6) 85. L
600

200
a600 -

x
2

 bdx = $160,000 (5.5) 

85. L
40

10
a150 -

x
10

 bdx = $4,425 (5.5) 

86. 4.86 (6.2) 87. P(x) = 100x - 0.01x2; P(10) = $999 (5.3) 

88. L
15

0
(60 - 4t) dt = 450 thousand barrels (5.5) 

89. (A) 

y 5 x

y 5 f(x)

CURRENT
y

x

1

1

y 5 x

y 5 g(x)

PROJECTED
y

x

1

1
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 Answers A-25

49. 2
31ln x - 8214 + ln x + C 51. 1

5 x2e5x - 2
25 xe5x + 2

125 e5x + C

53. -x3e - x - 3x2e - x - 6xe - x - 6e - x + C

55. x1ln x2 3 - 3x1ln x2 2 + 6x ln x - 6x + C 57. 9 59. 1
2 ln9

5 ≈ 0.2939

61. 
-1 - ln x

x
+ C 63. 2x2 - 1 + C 

67. 31.38 69. 5.48 71. 3,000 + 1,500 ln
1
3

≈ $1,352 

73. p

x

30

250

p 5 15

x 5 200

CS

p 5 D(x)

 75.   C1x2 = 200x + 1,000 ln11 + 0.05x2 + 25,000;
608; $198,773 77. $18,673.95 79. 0.1407

81. As the area bounded by the two curves gets smaller, the Lorenz curve ap-
proaches y = x and the distribution of income approaches perfect equality—
all persons share equally in the income available.

Lorenz curve

y

x

1

1

y 5 x

83.  S1t2 = 3 + t -
9

3 + t
- 6 ln ` 1 +

t
3
` ; 14.4 - 6 ln 5 ≈ $4.74 million

85. The total sales, in millions of dollars, over the first yr (12 mo) is the area 
under the graph of y = S′1t2 from t = 0 to t = 12.

Months

R
at

e 
of

 s
al

es
(m

ill
io

n 
do

lla
rs

/m
on

th
)

Total sales
(millions of

dollars)

y

t

1

12

y 5 S9(t)

87.  P1x2 =
219x - 42

135
12 + 3x2 3>2 - 2,000.83; 54; $37,932

89. 100 ln 3 ≈ 110 ft 91. 60 ln 5 ≈ 97 items 
93. The area under the graph of y = N′1t2 from t = 0 to t = 12 represents 
the total number of items learned in that time interval.

Hours of study

R
at

e 
of

 le
ar

ni
ng

y 5 N9(t)

Total number of
items learned

y

t

12

12

Exercises 6.3

1. b = 20; c = -5 3. b = 0.32; c = -0.04 5. b = 1.6; c = -0.03
7. b = 1.75; c = 0.02 9. 13.18 11. 151.75 13. 15,247.16 15. (A) 10.72  

(B) 3.28 (C) 10.72 17. 0.5

5

20.2

25

19. 0.02

1000

20.01

2100

 

71. 15
0 12t - te - t2dt = $24 million 

73. The total profit for the first 5 yr (in millions of dollars) is the same as 
the area under the marginal profit function,  P′1t2 = 2t - te - t, from t = 0 
to t = 5.

P9(t) 5 2t 2 te2t P9(t)

Total
pro�t

t

10

5

75. $2,854.88 77. 0.264 79. The area bounded by y = x and the Lorenz 
curve y = xex - 1, divided by the area under the graph of y = x from x = 0 to 
x = 1, is the Gini index of income concentration. The closer this index is to 0, 
the more equally distributed the income; the closer the index is to 1, the more 
concentrated the income in a few hands.

y 5 xe x21 

y 5 x

y

x

1

1

81.  S1t2 = 1,600 + 400e0.1t - 40te0.1t; 15 mo 83. $977
85. The area bounded by the price–demand equation, p = 9 - ln1x + 42, 
and the price equation, y = p = 2.089, from x = 0 to x = x = 1,000, repre-
sents the consumers’ surplus. This is the amount consumers who are willing to 
pay more than $2.089 save.

p

x

8

2,000

p 5 2.089

x 5 1,000

CS

p 5 D(x)

87. 2.100 ppm 89.  N1t2 = -4te - 0.25t - 40e - 0.25t + 80; 8 wk;  
78 words/min 91. 20,980

Exercises 6.2

1. 77.32 3. 74.15 5. 0.47 7. 0.46 9. ln ` x
1 + x

` + C

11. 
1

3 + x
+ 2 ln ` 5 + 2x

3 + x
` + C 13. 

21x - 502
3

125 + x + C

15. - ln ` 1 + 21 - x2

x
` + C 17. 

1
2

 ln ` x

2 + 2x2 + 4
` + C

19. 1
3 x3 ln x - 1

9 x3 + C 21. x - ln 0 1 + ex 0 + C 23. 9 ln3
2 - 2 ≈ 1.6492

25. 1
2 ln12

5 ≈ 0.4377 27. ln 3 ≈ 1.0986 29. 730; 723
1
3

 

31. 1.61; ln 5 ≈ 1.61

35. S4 = 216 = L
10

2
14x + 32  dx

37. S2 =
32
3

= L
1

- 1
1x2 + 3x + 52  dx

39. -  
24x2 + 1

x
+ 2 ln � 2x + 24x2 + 1 � + C

41. 1
2 ln � x2 + 2x4 - 49 � + C

43. 1
61x32x6 + 4 + 4 ln � x3 + 2x6 + 4 � 2 + C

45. -  
24 - x4

8x2
+ C 47. 

1
5

 ln ` 3 + 4ex

2 + ex ` + C
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A-26 Answers

41.  8,0001e0.15 - 12 ≈ $1,295 43. If  f1t2 is the rate of flow of a continu-
ous income stream, then the total income produced from 0 to 3 yr is the 
area under the graph of y = f1t2 from t = 0 to t = 3.

f(t)

t

600

4

Total
Income

y 5 f(t)

45. $445,136; $361,536 47. $6,984 49. $716 51. Clothing store: 
$66,421; computer store: $62,623; the clothing store is the better investment.
53. Bond: $12,062 business: $11,824; the bond is the better investment.  
55. $15,000 57. $60,000 59. $16,611 61. $90,245 63. $1,611
65. $30,245 67. $55,230 69. $625,000 71. The shaded area is the con-
sumers’ surplus and represents the total savings to consumers who are willing to 
pay more than $150 for a product but are still able to buy the product for $150.

p

x

400

8,000
x 5 5,000

p 5 150
CS

p 5 D(x)

73. $9,900 75. The area of the region PS is the producers’ surplus and 
represents the total gain to producers who are willing to supply units at a lower 
price than $67 but are still able to supply the product at $67.

p

x

150

500
x 5 300

p 5 67
PS

p 5 S(x)

79.  CS = $6,980;  
PS = $5,041
p

x

80

800x 5 490

p 5 49 PS
CS

p 5 S(x)

p 5 D(x)

81.  CS = $7,810;  
PS = $8,336

p

x

80

800x 5 614

p 5 55
PS

CS

p 5 S(x)

p 5 D(x)

85.  (A) x = 21.457; p = $6.51  
(B)  CS = 1.774 or $1,774;  

PS = 1.087 or $1,087

Chapter 6 Review Exercises

1. 1
2 sin 1t2 - 12 + C (6.4) 2. 2 (6.4) 3. 23>2 (6.4) 4. -0.243 (6.4)

5. esin x + C (6.4) 6. - ln � cos x � + C (6.4) 7. 15.2128 (6.4)

8. - xe - 4x -  e - 4x + C (6.1, 6.2) 9. 1
2 x2 ln x - 1

4 x2 + C (6.1, 6.2)

10. ln � ln x � +  C  (6.3) 11. 
ln11 +  x22

2
 +  C (6.3) 12. 

1
1 +  x

 +   ln ` x
1 +  x

` + C (6.2) 

13. -  
11 + x

x
 -  

1
2

 ln ` 11 + x - 111 + x + 1
` + C (6.2) 14. 22 (6.4) 

15. 0.718 (6.1, 6.2) 16. 15
2 - 8 ln 8 + 8 ln 4 ≈ 1.955 (6.2)  

17. 1
100x124x2 - 252 + C  (6.2) 18. -2te - 0.5t - 4e - 0.5t + C (6.1, 6.2)  

19. 1
3 x3 ln x - 1

9 x3 + C (6.1, 6.2) 20. x - ln � 1 + 2ex � + C (6.2)
21. 110.425 (6.2) 22. 89.086 (6.2) 23. 4.87 (6.2) 24. 4.86 (6.2) 

25. (A) f(x)

x

1

5

 (B) R4 ≈ 0.121 (5.4, 6.4)

26. 
1ln x2 6

6 + C (5.2) 27. 1
4 12x2 - 2x + 12e2x + C (6.1, 6.2)

28. 2
32x3 - 16 + C (6.3) 29. 1

2 ln � x2 + 2x4 - 36 � + C (6.2)
30. 50 ln 10 - 42 ln 6 - 24 ≈ 15.875 (6.1, 6.2)
31. x1ln x2 2 - 2x ln x + 2x + C (6.1, 6.2) 32. -  13 e - x3

+ C (6.3)
33. -  12 x2e-2x - 1

2 xe-2x - 1
4e-2x + C (6.1, 6.2) 

Exercises 6.4

1. 30, p4 3. 30, p>32 ∪ 15p>3, 2p4 5. 5p>3, 2p>3, 4p>3, 5p>36
7. 1-p>2, p>44 9. -cos t + C 11. 1

3 sin 3x + C 13. - 1
161cos x2 16 + C

15. -3
41cos x2 4>3 + C 17. -1

4 cos x4 + C 19. 1 21. 3
2 23. 23>2 - 1

2 ≈ 0.366

25. 1.4161 27. 0.0678 29. esin x + C 31. ln � sin x � + C

33. - ln � cos x � + C 35. (A) f(x)

x

0.4

3

 (B) L6 ≈ 0.498
37. (A) $520 hundred,  
or $52,000 (B) $106.38  
hundred, or $10,638  

(C) 
P(t)

t

10

104

            

39. (A) 104 tons (B) 31 tons (C) P(n)

n

2

104

21. (A) .75 (B) .11 (C) f(x)

x

0.5

12

  

23. 8 yr 25. (A) .11 (B) .10  
27.  P1t Ú 122 = 1 - P10 … t … 122 = .89 
29. 0.68 31. 0.56 33. 5% 35. 0.02 37. $12,500 
39. If  f1t2 is the rate of flow of a continuous income stream, then the total 
income produced from 0 to 5 yr is the area under the graph of y = f1t2 from 
t = 0 to t = 5.

f(x)

t

3,000

5

Total Income

y 5 f(t)

34. (3.3, 6.4) 
4

1 8

24

35. (3.3, 6.4) 5

0 8

25

36. (3.3, 6.4) 5

0 6
0

77.  CS = $3,380;  
PS = $1,690
p

x

50

500x 5 260

p 5 24 PS

CS p 5 S(x)

p 5 D(x)

83.  CS = $8,544;  
PS = $11,507

p

x

80

800
x 5 556

p 5 46
PS

CS

p 5 S(x)

p 5 D(x)
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 Answers A-27

42. (A) CS = $2,250;
PS = $2,700 (B) CS = $2,890; (6.3) PS = $2,278

p 5 D(x)

p 5 S(x)

CS

PS

p

x

70

200

p 5 40

x 5 150  

p 5 D(x)

p 5 S(x)

CS

PS

p

x

70

200

p 5 36

x 5 170

43. (A) 25.403 or 25,403 lb (B) PS = 121.6 or $1,216 (6.3)
44. 4.522 mL; 1.899 mL (5.5, 6.2) 45. y

t

8

6

y 5 R(t)

 (5.5, 5.6)

46. .667; .333 (6.3)
47. The probability that the doctor will spend more than an hour with a 
randomly selected patient is the area under the probability density function 
y = f1t2 from t = 1 to t = 3. (6.3)

y

x

1.5

3

48. .472 (6.3)

Chapter 7
Exercises 7.1

1. 19.5 ft2 3. 240 in.3 5. 32p ≈ 100.5 m3 7. 1,440p ≈ 4,523.9 cm2

9. -4 11. 11 13. 4 15. Not defined 17. -1 19. -64 21. 154,440
23. 192p ≈ 603.2 25. 3p1109 ≈ 98.4 27. 118 29. 6.2
31. f1x2 = x2 - 7 33. f1y2 = 38y + 20 35. f1y2 = -2y3 + 5

37. D1x, y2 = x2 + y2 39. C1n, w2 = 35nw 41. S1x, y, z2 =
x + y + z

3

43. L1d, h2 =
p

12
 d2h 45. J1C, h2 =

C2h
4p

 47. y = 2 49. x = -
1
2

, 1

51. -1.926, 0.599 53. 2x + h 55. 2y2 57. E10, 0, 32; F12, 0, 32
59. (A) In the plane y = c, c any constant, z = x2. (B) The y axis; the line 
parallel to the y axis and passing through the point 11, 0, 12; the line parallel  
to the y axis and passing through the point 12, 0, 42 (C) A parabolic “trough”  
lying on top of the y axis 61. (A) Upper semicircles whose centers lie on the  
y axis (B) Upper semicircles whose centers lie on the x axis (C) The upper  
hemisphere of radius 6 with center at the origin 63. (A) a2 + b2 and c2 + d2  
both equal the square of the radius of the circle. (B) Bell-shaped curves 
with maximum values of 1 at the origin (C) A bell, with maximum value 

37. (A) .189 (B) .154 (6.3) 
38. The probability that the product will fail during the second year of war-
ranty is the area under the probability density function y = f1t2 from t = 1 to 
t = 2. (6.3)

y 5 f(t)

y

t

0.2

3

39.  R1x2 = 65x - 631x + 12ln1x + 12 - x4; 618/wk; $29,506 (6.3)

15. 
dz
dx

=
1x2 + p225 - 10x2

1x2 + p22 2
=

51p2 - x22
1x2 + p22 2

  17. fx1x, y2 = 4  

19. fy1x, y2 = -3x + 4y 21. 
0z
0x

= 3x2 + 8xy 23. 
0z
0y

= 2015x + 2y2 9  

25. 9 27. 3 29. -4 31. 0 33. 45.6 mpg; mileage is 45.6 mpg at a tire  
pressure of 32 psi and a speed of 40 mph 35. 37.6 mpg; mileage is 37.6 mpg  
at a tire pressure of 32 psi and a speed of 50 mph 37. 0.3 mpg per psi; mileage 
increases at a rate of 0.3 mpg per psi of tire pressure 39. fxx1x, y2 = 0  
41. fxy1x, y2 = 0 43. fxy1x, y2 = y2exy212xy2 + exy212y2 = 2y11 + xy22exy2

45. fyy1x, y2 =
2 ln x

y3
 47. fxx1x, y2 = 8012x + y2 3

49. fxy1x, y2 = 720xy31x2 + y42 8 51. Cx1x, y2 = 6x + 10y + 4 53. 2
55. Cxx1x, y2 = 6 57. Cxy1x, y2 = 10 59. 6 61. $3,000; daily sales are  
$3,000 when the temperature is 60° and the rainfall is 2 in. 63. -2,500 $ >in.;  
daily sales decrease at a rate of $2,500 per inch of rain when the temperature 
is 90° and rainfall is 1 in. 65. -50 $ >in. per °F; Sr decreases at a rate of 
50 $ >in. per degree of temperature 
69. fxx1x, y2 = 2y2 + 6x; fxy1x, y2 = 4xy = fyx1x, y2; fyy1x, y2 = 2x2

71. fxx1x, y2 = -2y>x3; fxy1x, y2 = 1-1>y22 + 11>x22
= fyx1x, y2; fyy1x, y2 = 2x>y3

73. fxx1x, y2 = 12y + xy22exy; fxy1x, y2 = 12x + x2y2exy

= fyx1x, y2; fyy1x, y2 = x3exy 75. x = 2 and y = 4 
77. x = 1.200 and y = -0.695 79. (A) -13

3  (B) The function f10, y2,  
for example, has values less than -13

3 . 81. (A) c = 1.145  
(B) fx1c, 22 = 0; fy1c, 22 = 92.021 83. (A) 2x (B) 4y 
85. Px11,200, 1,8002 = 24; profit will increase approx. $24 per unit  
increase in production of type A calculators at the 11,200, 1,8002  
output level; Py11,200, 1,8002 = -48; profit will decrease approx. $48 per unit  
increase in production of type B calculators at the 11,200, 1,8002 output level  
87. 0x>0p = -5: a $1 increase in the price of brand A will decrease the demand 
for brand A by 5 lb at any price level 1p, q2; 0y>0p = 2: a $1 increase in the price  
of brand A will increase the demand for brand B by 2 lb at any price level 1p, q2  
89. (A) fx1x, y2 = 7.5x-0.25y0.25; fy1x, y2 = 2.5x0.75y-0.75 (B) Marginal  
productivity of labor = fx1600, 1002 ≈ 4.79; marginal productivity of capital 
= fy1600, 1002 ≈ 9.58 (C) Capital 91. Competitive 93. Complementary

95. (A) f
w
1w, h2 = 6.65w

-0.575h0.725; fh1w, h2 = 11.34w

0.425h-0.275  
(B) f

w
165, 572 = 11.31: for a 65-lb child 57 in. tall, the rate of change in  

surface area is 11.31 in.2 for each pound gained in weight (height is held 
fixed); fh165, 572 = 21.99: for a child 57 in. tall, the rate of change in surface 
area is 21.99 in.2 for each inch gained in height (weight is held fixed)
97. CW16, 82 = 12.5: index increases approx. 12.5 units for a 1-in. increase  
in width of head (length held fixed) when W = 6 and L = 8; CL16, 82 = -9.38:  
index decreases approx. 9.38 units for a 1-in. increase in length (width held 
fixed) when W = 6 and L = 8.

Exercises 7.3

1. f ′102 = 0; f ″102 = -18; local maximum 3. f ′102 = 0; f ″102 = 2;  
local minimum 5. f ′102 = 0; f ″102 = -2; local maximum 7. f ′102 = 1; 
 f ″102 = -2; neither  

71. (A) $237,877.08 (B) 4.4%
73. T170, 472 ≈ 29 min; T160, 272 = 33 min
75. C16, 82 = 75; C18.1, 92 = 90
77. Q112, 102 = 120; Q110, 122 ≈ 83

Exercises 7.2

1. f ′1x2 = 6 3. f ′1x2 = -5e + 14x 5. f ′1x2 = 3x2 - 8p2

7. f ′1x2 = 70x1e2 + 5x22 6 9. 
dz
dx

= ex - 3e + exe - 1

11. 
dz
dx

=
2x

x2 + p2
  13. 

dz
dx

=
x + e

x
+ ln x

41. (A) $15,656 (B) $1,454 (6.3) 

1 at the origin, extending infinitely far in all directions. 65. $13,200; 
$18,000; $21,300 67. R1p, q2 = -5p2 + 6pq - 4q2 + 200p + 300q; 
R12, 32 = $1,280; R13, 22 = $1,175 69. 30,065 units

40. (A) y 5 f(t)

Total
income

y

t

3,000

5

 (B) $8,507 (6.3)
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A-28 Answers

27. 16 29. 49 31. 1
8 15

1 11
-11x + y2 2dy dx = 32

3

33. 1
15 14

1 17
2 1x>y2 dy dx = 1

2 ln 72 ≈ 0.6264 35. 4
3 cubic units

37. 32
3  cubic units 39. 11

0 12
1 xexy dy dx = 1

2 + 1
2e2 - e

41. 11
0 11

-1

2y + 3xy2

1 + x2
 dy dx = ln 2 45. (A) 

1
3

+
1
4

e-2-  
1
4

e2  

(B) 2

22 2

22

 (C)  Points to the right of the graph in 
part (B) are greater than 0; points to 
the left of the graph are less than 0.

47. 
1

0.4 10.8
0.6 17

5

y

1 - x
 dy dx = 30 ln 2 ≈ $20.8 billion

49. 1
10 120

10 12
1 x0.75y0.25dy dx = 8

175121.25 - 121201.75 - 101.752 

  ≈ 8.375 or 8,375 units

51. 
1

192 18
-816

-6310 - 1
101x2 + y224dy dx = 20

3  insects>ft2

53. 1
8 12

-211
-1350 - 91x2 + y224dy dx = 35 mg>m3

55. 1
10,000 13,000

2,000 160
50 0.000 013 3xy2dy dx ≈ 100.86 ft

57. 1
16 116

8 112
10 100

x
y
 dy dx = 600 ln 1.2 ≈ 109.4

Exercises 7.7

1. 24 3. 0 5. 1 7. R = 51x, y2 � 0 … y … 4 - x2, 0 … x … 26
R = 51x, y2 � 0 … x … 24 - y, 0 … y … 46

y 5 4 2 x2

R

y

x

5

5

9. R is a regular x region:
R = 51x, y2 � x3 … y … 12 - 2x, 0 … x … 26

x

14

5

y 5 12 2 2x

y 5 x3

R

y

11. R is a regular y region:
R = 51x, y2 � 1

2 y2 … x … y + 4, -2 … y … 46

x 5 y 1 4

x 5     y21
2

5
y

x10
R

saddle points at 12, 22 and 12, -22. 35. f has a saddle point at 10, -0.5672.
37. f1x, y2 is nonnegative and equals 0 when x = 0, so f has the local minimum 
0 at each point of the y axis. 39. (B) Local minimum 41. 2,000 type A and 
4,000 type B; max P = P12, 42 = $15 million 43. (A) When p = $100 and 
q = $120, x = 80 and y = 40; when p = $110 and q = $110, x = 40  
and y = 70 (B) A maximum weekly profit of $4,800 is realized for p = $100 
and q = $120. 45. P1x, y2 = P14, 22 47. 8 in. by 4 in. by 2 in.
49. 20 in. by 20 in. by 40 in.

Exercises 7.4

1. Min f1x, y2 = f1-2, 42 = 12 3. Min f1x, y2 = f11, -12 = -4
5. Max f1x, y2 = f11, 02 = 2 7. Max f1x, y2 = f13, 32 = 18
9. Min f1x, y2 = f13, 42 = 25 11. Fx = -3 + 2l = 0 and 
Fy = 4 + 5l = 0 have no simultaneous solution.
13. Max f1x, y2 = f13, 32 = f1-3, -32 = 18;  
min f1x, y2 = f13, -32 = f1-3, 32 = -18 15. Maximum product is  
25 when each number is 5. 17. Min f1x, y, z2 = f15, 5, 152 = 275
19. Max f1x, y, z2 = f14, 20, 102 = 220
21.  Max f1x, y, z2 = f11, 10, 22 = 105;

Min f1x, y, z2 = f1-1, -10, -22 = -105
23. Max f1x, y, z2 = f12, -4, 22 = 12;

Min f1x, y, z2 = f1-2, 4, -22 = -12
25. Fx = ex + l = 0 and Fy = 3ey - 2l = 0 have no simultaneous solu-
tion. 27. Maximize f1x, 52, a function of just one independent variable.
29. (A) Max f1x, y2 = f10.707, 0.52 = f1-0.707, 0.52 = 0.47
31. 60 of model A and 30 of model B will yield a minimum cost of $32,400 
per week. 33. (A) 8,000 units of labor and 1,000 units of capital; max 
N1x, y2 = N18,000, 1,0002 ≈ 263,902 units (B) Marginal productivity of 
money ≈ 0.6598; increase in production ≈ 32,990 units 35. 8 in. by 8 in. 
by 83 in. 37. x = 50 ft and y = 200 ft; maximum area is 10,000 ft2

Exercises 7.5

1. 10 3. 98 5. 380
7. y = 0.7x + 1

y

x

7

5

9. y = -2.5x + 10.5
y

x

12

7

11. y = x + 2
y

x5

7

13. y = -1.5x + 4.5; y = 0.75 when x = 2.5 15. y = 2.12x + 10.8; 
y = 63.8 when x = 25 17. y = -1.2x + 12.6; y = 10.2 when x = 2
19. y = -1.53x + 26.67; y = 14.4 when x = 8
21. y = 0.75x2 - 3.45x + 4.75  

  
y

x

8

7

27.  (A)  y = 1.52x - 0.16; 
y = 0.73x2 - 1.39x + 1.30 

    (B)  The quadratic function 
29. The normal equations form a system  
of 4 linear equations in the 4 variables a, b,  
c, and d, which can be solved by Gauss– 
Jordan elimination. 

31. (A) y = -85.089x + 3821.1 (B) 1,694 crimes per 100,000 population  
33. (A) y = -0.48x + 4.38 (B) $6.56 per bottle 35. (A) y = 0.0228x + 18.93  
(B) 19.93 ft 37. (A) y = 0.01814x - 0.365 (B) 1.09°C

Exercises 7.6

1. px +
x2

2
+ C 3. x + p ln � x � + C 5. 

epx

p
+ C 7. (A) 3x2y4 + C1x2  

(B) 3x2 9. (A) 2x2 + 6xy + 5x + E1y2 (B) 35 + 30y

11. (A) 2y + x2 + E1y2 (B) 2y + 4 - 2y 13. (A) 
ln x ln y

x
+ C1x2  

(B) 
2 ln x

x
 15. (A) 3y2ex + y3

+ E1y2 (B) 3y2e1 + y3
- 3y2ey3

 17. 9  

19. 330 21. 156 - 20252 >3 23. 1 25. e9 - e8 - e + 1 ≈ 5,120.41  

9. fx1x, y2 = 4; fy1x, y2 = 5; the functions fx1x, y2  
and fy1x, y2 never have the value 0. 11. fx1x, y2 = -1.2 + 4x3; 
fy1x, y2 = 6.8 + 0.6y2; the function fy1x, y2 never has the value 0.
13. fx1x, y2 = -2x + 2y - 4; fy1x, y2 = 2x - 2y + 5; the system  

of equations e -2x + 2y - 4 = 0
2x - 2y + 5 = 0

 has no solution

15. fx1x, y2 = yex - 3; fy1x, y2 = ex + 4; the function fy1x, y2 never has 
the value 0 17. f1-4, 02 = 9 is a local minimum. 19. f16, -12 = 45 is 
a local maximum. 21. f has a saddle point at 10, 02. 23. f10, 02 = 100 
is a local maximum. 25. f16, -52 = -22 is a local minimum. 27. f has 
a saddle point at 10, 02. 29. f has a saddle point at 10, 02; f11, 12 = -1 is 
a local minimum. 31. f has a saddle point at 10, 02; f13, 182 = -162 and 
f1-3, -182 = -162 are local minima. 33. The test fails at 10, 02; f has 
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14
0 11 + 2x

1 - 2x
x 1y - 12 2dy dx = 512

21

y 5 1 1    x

y 5 1 2     x

R

4
y

x5

33. 13
0 13 - y

0
1x + 2y2dx dy = 27

2

y 5 3 2 x
or

x 5 3 2 y

y

x

5

5

29. R = 51x, y2 � 0 … y … 4x - x2, 0 … x … 46
14

0 14x - x2

0
2y + x2 dy dx = 128

5

R

y 5 4x 2 x2

y

x

6

6

31. R = 51x, y2 � 1 - 2x … y … 1 + 2x, 0 … x … 46

35. 11
0 121 - y

0
x2y dx dy = 2

15

y 5 1 2 x2

or
x 5     1 2 y

y

x

2

2

 

37. 11
0 14y

4y2 x dx dy = 16
15

y 5     x
2

 or x 5 4y2

y 5 x
4

 or x 5 4y

y

x

3

5

39. 14
0 14 - x

0
14 - x - y2 dy dx = 32

3

y 5 4 2 x

y

x

6

6

41. 11
0 11 - x2

0
4 dy dx = 8

3

y 5 1 2 x2

y

x

2

2

43. L
4

0 L
2y

0

4x

1 + y2
 dx dy = ln 17

45. 11
0 12x

0
4yex2

 dy dx = e - 1
47. R = 51x, y2 � x2 … y … 1 + 2x, 0 … x … 1.496

11.49

0 11 + 2x

x2 x dy dx ≈ 0.96

51. R = 51x, y2 � e-x … y … 3 - x, -1.51 … x … 2.956; Regular x region
R = 51x, y2 � -  ln y … x … 3 - y, 0.05 … y … 4.516; Regular y region

12.95
- 1.5113 - x

e-x  4y dy dx = 14.51
0.05 13 - y

-ln y 4y dx dy ≈ 40.67

5

23 3

22

53. 1,200,000 ft3 55. 1,506,400 ft3 57. 38.6 mg>m3

Chapter 7 Review Exercises

1. f110, 52 = 475; fx1x, y2 = 4; fy1x, y2 = -3 (7.1, 7.2)

2. 02z>0x2 = 6xy2; 02z>0x 0y = 6x2y (7.2) 3. x2y + y3 +
3
2

 xy2 + 4y + C1x2  (7.6)

4. 
x3

3
+ 3xy2 +

3
2

 x2y + 4x + C1y2 (7.6) 5. 5
2 (7.6)

6. fx1x, y2 = 5 + 6x + 3x2; fy1x, y2 = -2; the function  
fy1x, y2 never has the value 0. (7.3)
7. f12, 32 = 7; fy1x, y2 = -2x + 2y + 3; fy12, 32 = 5 (7.1, 7.2)
8. 1-821-62 - 142 2 = 32 (7.2) 9. 11, 3, -1

22, 1-1, -3, 122 (7.4)
10. y = 1.38x + 22.1; y = 63.5  when x = 30 (7.5) 11. 56 (7.6) 12. 8

15 (7.7)
13. fx1x, y2 = 2xex2 + 2y; fy1x, y2 = 2ex2 + 2y; fxy1x, y2 = 4xex2 + 2y (7.2)

14. fx1x, y2 = 10x1x2 + y22 4; fxy1x, y2 = 80xy1x2 + y22 3 (7.2)
15. f12, 32 = -25 is a local minimum; f has a saddle point at 1-2, 32. (7.3)
16. Max f1x, y2 = f13, 1.52 = 2.12 (7.4) 17. Min f1x, y2 = f11

3, 132 = 2
3 

(7.4) 18. y = 116
165 x + 100

3  (7.5) 19. 5
6 (7.6) 20. 26

3  (7.6)
21. 0 (7.6) 22. (A) 12.56 (B) No (7.6) 23. Fx = 12x2 + 3l = 0,  
Fy = -15y2 + 2l = 0, and Fl = 3x + 2y - 7 = 0 have no simultane-
ous solution. (7.4) 24. 1 (7.7) 25. (A) Px11, 32 = 8; profit will increase 
$8,000 for a 100-unit increase in product A if the production of product B is 
held fixed at an output level of 11, 32. (B) For 200 units of A and 300 units 
of B, P12, 32 = $100 thousand is a local maximum. (7.2, 7.3)
26. x = 6 in., y = 8 in., z = 2 in. (7.3) 27. y = 0.63x + 1.33; profit 
in sixth year is $5.11 million (7.4) 28. (A) Marginal productivity of labor 
≈  8.37; marginal productivity of capital ≈  1.67; management should  
encourage increased use of labor. (B) 80 units of labor and 40 units of  
capital; max N1x, y2 = N180, 402 ≈ 696 units; marginal productivity of 
money ≈  0.0696; increase in production ≈  139 units  

(C) 
1

1,000 1100
50 140

20  10x0.8y0.2 dy dx =
1401.2 - 201.2211001.8 - 501.82

216
 

=  621 items (7.4) 29. Vs11,000, 0.52 = $666.667>ft2 increase in area 
when S = 1,000 ft2 and D = 0.5 (7.2)
30. 1

16 12
-212

-2365 - 61x2 + y224dy dx = 49 mg>m3 (7.6) 31. 0.250 (7.1)
32. y = 1

2x + 48; y = 68 when x = 40 (7.5) 33. (A) y = 0.734x + 49.93  
(B) 97.64 people>mi2 (C) 101.10 people>mi2; 103.70 people>mi2 (7.5)
34. (A) y = 1.069x + 0.522 (B) 64.68 yr (C) 64.78 yr; 64.80 yr (7.5)

3

0 2

21

49. R = 51x, y2 � y3 … x … 1 - y, 0 … y … 0.686
10.68

0 11 - y
y3 24xy dx dy ≈ 0.83

1

0 1

21

13. 1
2 15. 39

70 17. R consists of the points on or inside the rectangle with 
corners 1{2, {32; both 19. R is the arch-shaped region consisting of the 
points on or inside the rectangle with corners 1{2, 02 and 1{2, 22 that are 
not inside the circle of radius 1 centered at the origin; regular x region
21. 56

3  23. -3
4 25. 1

2e4 - 5
2

27. R = 51x, y2 � 0 … y … x + 1, 0 … x … 16
11

0 1 x + 1

0
21 + x + y dy dx = 168 - 24222 >15

y 5 x 1 1

R

y

x

3

3
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29. y = 3 + 3x + ex 31. y = xe-x 33. y = 2x -
1
x

35. y = 2 + x-3 37. y = x - x1>2 43. y = 29 - x2 45. y = 2 - ex

47. (A) y = 2 - e-x 
(B) y = 2 
(C) y = 2 + e-x

1

0

2

3

1 2 3
x

y

y  2 e x

y  2 e x

y  2=

= –+

= – –

49. (A) y = 2 - ex 
(B) y = 2 
(C) y = 2 + ex

25

y 5 2 1 ex

y 5 2 2 ex

y 5 2

21
x

y

10

5

51. dN>dt = 500, t = Time 1in years2, N = N1t2 = Number of students at 
time t, dN>dt = N′ =  Rate at which the number of students is changing
53. dT>dt = -k1T - 722; t = Time, T = T1t2 = Temperature of pizza 
at time t, k = Positive Constant of proportionality, dT>dt = T′ = Rate at 
which the temperature of the pizza is changing ( dT/dt is negative because the 
temperature of the pizza is decreasing)

55. (A) y =
10

1 + 9e-x 

(B) y = 10 

(C) y =
10

1 - 0.5e-x

10
1 2 0.5e2xy 5

10
1 1 9e2xy 5

y 5 10

54320 1

5

10

15

20

x

y

57. (A) y = Cx3 + 2 for any C (B)  No particular solution exists. 
(C) y = 2 - x3

59. (A) 

25

5

25

5

 (C) 

25

5

25

5

 

61. (A) p = 5 
(B)   p1t2 = 5 - 4e-0.1t

 p1t2 = 5 + 5e-0.1t

p 5 5 
p(t) 5 5 1 5e20.1t

p(t) 5 5 2 4e20.1t

2520151050

5

10

t

p

63. (B)  A1t2 = 2,500e0.08t - 2,500
 A1t2 = 3,500e0.08t - 2,500

A(t) 5 3,500e0.08t 2 2,500

A(t) 5 2,500e0.08t 2 2,500

151050

5,000

10,000

A(t)

x

65. (A) N = 200 
(B)  N1t2 = 200 - 150e-0.5t

 N1t2 = 200 + 100e-0.5t

N 5 200 

543210

100

200

300 N(t) 5 200 1 100e20.5t

N(t) 5 200 2 150e20.5t

N

t

67. (A) N = C 
(B)  N1t2 = 100e2 - 2e-0.5t

 N1t2 = 200e2 - 2e-0.5t

N 5 200e2 < 1478

N 5 100e2 < 739

1050

1500

N

t

N(t) 5 100e222e20.5t

N(t) 5 200e222e20.5t

Exercises 8.2

1. -
1
x

+ C 3. 4 ln x + C 5. -
1
2

 e-2x + C 7. 11 + x22 1>2 + C

9. dy>dt = 100,000 11. dy>dt = k110,000 - y2 13. The annual sales 
now are $2 million, and sales are increasing at a rate proportional to the annual 
sales. 15. In a community of 5,000 people, a single person began the spread 
of a rumor that is spreading at a rate proportional to the product of the number 
of people who have heard the rumor and the number who have not. 

17. 
1

y2
 y′ =

1
x

 19. 
1
y

 y′ =
3 - x

x
 21. General solution: y = x3 + C;  

particular solution: y = x3 - 1 23. General solution: y = 2 ln 0 x 0 + C;  
particular solution: y = 2 ln 0 x 0 + 2 25. General solution: y = Cex; particular 
solution: y = 10ex 27. General solution: y = 25 - Ce-x; particular solution: 
y = 25 - 20e-x 29. General solution: y = Cx; particular solution: y = 5x
31. General solution: y = 13x + C2 1>3; particular solution: y = 13x + 242 1>3

33. General solution: y = Ceex
; particular solution: y = 3eex

35. General solution: y =  ln 0 ex + C 0 ; particular solution: y = ln1ex + 12
37. General solution: y = Cex2>2 - 1; particular solution: y = 3ex2>2 - 1
39. General solution: y = 2 - 1> 1ex + C2; particular solution: y = 2 - e-x

41. y +
1
3

 y3 = x +
1
3

 x3 + C 43. 
1
2

 ln 0 1 + y2 0 = ln 0 x 0 + 1x2>22 + C 

or ln 11 + y22 = ln 1x22 + x2 + C 45. ln11 + ey2 =
1
2

 x2 + C

47. y = 21 + 1ln x2 2 49. y =
1
4

 [x +  ln1x22 + 3]2

51. General solution: y = 23  ln 1x3 + A2; particular solution: 
y = 23  ln 1x3 + e2 53. The differential equation cannot be written in the 
form  f1y2y′ = g1x2. 55. The integrand ex2

 does not have an elementary 
antiderivative. 57. (A) M = 3> 11 - e-k2; M = 4> 11 - e-1.5k2 (B) 7.3
59. $11,502.74 61. (A) 22 days (B) 29,300 people 63. 100 days
65. In 2025 total personal income is about € 238.7 billion and this amount is 
increasing at the rate of €5.05 billion per year. 67. After 15 years, the total 
sales are about $2.8 million and this amount is increasing at the rate of $0.12 
million per year. It will take 29 years for the sales to grow to $4 million.
69. k = 0.2; M = $11 million 71. 9.6 min 73. 227.5°F
75. (A) 538 bacteria (B) 6.8 hr 77. (A) 2,422 people (B) 38.4 days
79. 10 p.m. 81. I = Ask 83. (A) 400 people (B) 10 days

Exercises 8.3

1. -3e-x2
+ C 3. 

1ln x2 2

2
+ C 5. -

4
x + 1

+ C 7. xex - ex + C

9. 
ex3

3
+ C 11. Yes;  f1x2 = -k,  g1x2 = 0 13. No; the equation has a y2 

term, so it is not first-order linear. 15. 1 1x3y′ + 3x2y2  dx = x3y

17. 1 1e-7xy′ - 7e-7xy2  dx = e-7xy 19. 1 1x4y′ + 4x3y2dx = x4y

21. 1 1e-0.5xy′ - 0.5e-0.5xy2  dx = e-0.5xy 

23.  I1x2 = e2x; y = 2 + Ce-2x; y = 2 - e-2x

25.  I1x2 = ex; y = -e-2x + Ce-x; y = -e-2x + 4e-x

27.  I1x2 = e-x; y = 2xex + Cex; y = 2xex - 4ex

Chapter 8
Exercises 8.1

1. y′ = 4x3 + 10x 3. y′ = 8 +
1
2

 x-3>2 5. y′ = 7x5ex +35x4ex

7. y′ = 12xex2
 9. y′ =

1 + x - x ln x

x11 + x2 2
 21. (C) 23. (A)

25. C 5 2

C 5 0

C 5 1

C 5 21
C 5 22

23

3

23 3
x

y  27. 

C 5 2
C 5 1

C 5 0

C 5 21
C 5 22

C 5 2
C 5 1

C 5 21
C 5 22

x

y

23

3
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45. (B) The solution is wrong. The term 1/x in front of the integral and the term x 

inside the integral cannot be canceled. (C) y =
1
4

 x3 +
2
3

 x2 +
1
2

 x + 1C>x2
47. (B) The solution is wrong. A constant of integration is omitted. 

(C) y =
1
2

 e-x + Ce-3x 49. y = 1 + 1C>x2 51. y = C11 + x22 - 1

53. y = Cex2
- 1 55. y = Cekt 57. y = 1b>a2 + Ce-ax

59.  A1t2 = 62,500 - 42,500e0.048t; 8.035 years, $24,105
61. $15,124.60 63.  A1t2 = 35,000e0.07t - 30,000; $19,667.36
65. 5.23% 67.  p1t2 = 25 + 15e-2t; p = 25 69. 622 lb; 

622
250

≈ 2.5 lb>gal 71. 600 - 200e-0.5 ≈ 479 lb; 

3 - e-0.5 ≈ 2.4 lb>gal 73. 6.2 hr. 75. 154 lb; 58 days; weight  
will approach 120 lb if the diet is maintained for a long period of time 
77. 1,647 cal 79. Student A: 89.34%; Student B: 69.75%

Chapter 8 Review Exercises

3. (B) (8.1) 4. (A) (8.1) 5. 

3

6

23

y

x

C 5 2

C 5 0

C 5 22

C 5 1

C 5 21

 

            (8.1)

6. 
C 5 2

C 5 0

C 5 22

C 5 1

C 5 21

23

63
x

y  7. dy>dt = -k1y - 52, k 7 0 (8.2)
8. dy>dt = ky, k 7 0 (8.2)
9. A single person began the spread 
of a disease that is spreading at a rate 
proportional to the product of the 
number of people who have contracted 
the disease and the number who have 
not. (8.2)

(8.1) 

10. The amount of radioactive material now is 100 g, and the amount is 
decreasing at a rate proportional to the amount present, (8.2)
11. First-order linear form: y′ + 13x2 - ex2y = 11 - x2ex - 9 (8.2, 8.3)
12. Neither form (8.2, 8.3) 13. Separation of variables form: 
1y + 22 -1y′ = x - 3; first-order linear form: y′ + 13 - x2y = 2x - 6 (8.2, 
8.3) 14. Separation of variables form: y2eyy′ = 4xex (8.2, 8.3)
15. First-order linear form: y′ - x-1 y = 1 (8.3) 16. Neither form (8.2, 8.3)

17. y = -
2
3

+ Ce3x (8.3) 18. y =
1

C - 3x
 (8.2) 19. y = C>x4 (8.2)

20. y =
1
6

 x2 + 1C>x42 (8.3) 21. y = -1> 1x3 + C2 (8.2)

22. y = ex + Ce2x (8.3) 23. y =
1
2

 x7 + Cx5 (8.3)

24. y = C12 + x2 - 3 (8.2) 25. y = 10 - 4e-x (8.2, 8.3)
26. y = x - 1 + 11e-x (8.3) 27. y = e2e-2e-x

 (8.2)

28. y = 1x2 + 42 >1x + 42 (8.3) 29. y = 2x2 + 16 - 4 (8.2)

30. y =
1
3

 x ln x -
1
9

 x +
19
9

 11>x22 (8.3) 31. y = 21 + 2x2 (8.2) 

32. y = 12x + 52e-x2
 (8.3) 33. y = -2 + Cx4 (8.2, 8.3)

36. y = 2 + Cx5 (A) y = 2 + Cx5 for any constant C  
(B) No particular solution exists. (C) y = 2 - x5 (8.3)  
37. y = 2x2 + 16 (8.2)
38. (A) 

22

5

25

2

 (C) 

22

5

25

2

39. (A) M = 7> 11 - e-5k2, M = 4> 11 - e-2k2 (B) 9.2 (8.2)
40. $723.76 (8.2) 41. (A) 5yr (B) $74,000 (8.2)

42. (A) p = 50 + Ae-t (B) p = 50 (C) 

p 5 50 

p 5 50 1 25e2t

p 5 50 2 25e2t

321

50

25

75

0

p

t

43.  A1t2 = 100,000 - 40,000e0.05t; 18.326 yr; $91,630 (8.3)
44. 4.82% (8.3) 45. y = 100 + te-t - 100e-t (8.3) 46. (A) 211.1 lb 
(B) 10.3 hr (8.3) 47. (A) 337 birds (B) 357 birds (8.2) 48. (A) 23 people 
(B) 30 days (8.2)

Chapter 9
Exercises 9.1

1. 1 + 2x + 3x2 + 4x3 3. -
1
2

x2 +
1
6

x4 -
1

12
x6 +

1
20

x8 5. a
4

k = 0
2kxk

7. a
3

k = 0
31-12 kxk + 2 9. 6x 11. 36012x + 12 8 13. -6>x4 15. -e-x

17. -486> 11 + 3x2 4 19. 
-15
16

11 + x2 -7>2 21. 1 - x + 1
2x2 - 1

6x3 + 1
24x4

23. 1 + 3x + 3x2 + x3 25. 2x - 2x2 + 8
3x3 27. 1 + 1

3x - 1
9x2 + 5

81x3

29. (A) p31x2 = -1; -0.562 6 x 6 0.562 (B) p41x2 = x4 - 1; for all x
31. 1 + 1x - 12 + 1

21x - 12 2 + 1
61x - 12 3 + 1

241x - 12 4

33. 1 + 31x - 12 + 31x - 12 2 + 1x - 12 3

35.  31x - 1
32 - 9

21x - 1
32 2 + 9 1x - 1

32 3

37. 1 - 2x + 2x2 - 4
3x3; 0.604 166 67 39. 4 + 1

8x - 1
512x2; 4.123 046 9

41. 1 + 1
21x - 12 - 1

81x - 12 2 + 1
161x - 12 3 - 5

1281x - 12 4; 1.095 437 5
43. n!14 - x2 -1n + 12 45. 3n e3x 47. - 1n - 12!19 - x2 -n

49. 
1
4

+
1

42
x +

1

43
x2 +

1

44
x3 + g +

1

4n + 1
xn

51. 1 + 3x +
32

2!
x2 +

33

3!
x3 + g +

3n

n!
xn

53. ln 9 -
1
9

x -
1

922
x2 -

1

933
x3 - g -

1
9nn

xn

55. -1 - 1x + 12 - 1x + 12 2 - 1x + 12 3 - g - 1x + 12 n

57. 1x - 12 -
1
2
1x - 12 2 +

1
3
1x - 12 3 -

1
4
1x - 12 4 + g +

1-12 n + 1

n
1x - 12 n

59. 
1

e2
-  

1

e2
1x - 22 +

1

2!e2
1x - 22 2 -

1

3!e2
1x - 22 3 + g+

1-12 n

n!e2
1x - 22 n

61. 3 ln 3 + 11 + ln 32  1x - 32 +
1

3 # 2
1x - 32 2 -

1

322 # 3
  1x - 32 3

+
1

333 # 4
1x - 32 4 -

1

344 # 5
  1x - 32 5 + … +

1-12 n

3n-11n - 12 # n
1x - 32 n

63. (A) 7x2 + 6x + 5 (B) 2 65. n = 0, 3, 6

29.  I1x2 = ex; y = 3x3e-x + Ce-x; y = 3x3e-x + 2e-x

31.  I1x2 = x; y = x + 1C>x2; y = x
33.  I1x2 = x2; y = 2x3 + 1C>x22; y = 2x3 - 132>x22
35.  I1x2 = ex2>2; y = 5 + Ce-x2>2

37.  I1x2 = e-2x; y = -2x - 1 + Ce2x

39.  I1x2 = x; y = ex - 1ex>x2 + 1C>x2
41.  I1x2 = x; y =

1
2

 x ln x -
1
4

 x + 1C>x2
43.  I1x2 = x3>2; y = 4x + Cx-3>2
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67. p11x2 = x, p21x2 = x - 1
2 x2, p31x2 = x - 1

2x2 + 1
3 x3

x p1(x) p2(x) p3(x) f(x)

-0.2 -0.2 -0.22 -0.222 667 -0.223 144

-0.1 -0.1 -0.105 -0.105 333 -0.105 361

0 0 0 0 0

0.1 0.1 0.095 0.095 333 0.095 31

0.2 0.2 0.18 0.182 667 0.182 322

x � p11x2 - f1x2 � � p21x2 - f1x2 � � p31x2 - 1x2 �
-0.2 0.023 144 0.003 144 0.000 477

-0.1 0.005 361 0.000 361 0.000 028

0 0 0 0

0.1 0.004 69 0.000 31 0.000 023

0.2 0.017 678 0.002 322 0.000 345

69. 

f

f

23

3

23

3

p3

p1 p2 p3

p1
  71. -1.323 6 x 6 1.168  

73. x -
1
3!

x3 +
1
5!

x5

75. - ax -
p

2
b +

1
3!
ax -

p

2
b

3

-
1
5!
ax -

p

2
b

5

 77. n Ú degree of  f

79. Yes 81. p21x2 = 10 - 0.0005x2; $9.85
83. p21x2 = 8 - 3

401x - 602 - 1
10241x - 602 2; $7.12

85. p21t2 = 10 - 0.8t2; approx. $18 million 87. p21t2 = -3 + 3
25t2;  

6.32 cm2 89. p21x2 = 120 + 301x - 52 + 3
41x - 52 2; 126.25 ppm

91. p21t2 = 4 - 0.012t2; 19.5 wpm 

93. 

p1(x)

D(x)
0

10

0
100

 95. 

p2(t)

R(t)

0

10

0
5

97. p2(x)
P(x)

0

300

0
10

Exercises 9.2

1. 0 3. 
6
7

 5. 4 7. ∞ 9. � x �  6 1 or -1 6 x 6 1 11. � x �  6 1
7 or 

-1
7 6 x 6 1

7 13. � x �  6 5 or -5 6 x 6 5 15. � x �  6 1 or -1 6 x 6 1
17. � x �  6 1 or -1 6 x 6 1 19. -∞ 6 x 6 ∞  21. (A) 6 (B) Yes
23. � x + 6 �  6 1 or -7 6 x 6 -5 25. -∞ 6 x 6 ∞
27. � x - 2 �  6 3 or -1 6 x 6 5 29. � x - 9 �  6 4 or 5 6 x 6 13

31. (A)

23

15

25

3

p2

p2

p5

p5

p3

p3 p1

p1

p4
p4

  (B) -∞ 6 x 6 ∞

33. pn1x2 = 1 + 4x +
42

2!
x2 + g +

4n
n!

xn; 

1 + 4x +
42

2!
x2 + g +

4n

n!
xn + g ; - ∞ 6 x 6 ∞

35. pn1x2 = 2x -
22

2
x2 +

23

3
x3 - g +

1-12 n - 12n

n
xn; 

 2x -
22

2
x2 +

23

3
x3 - g +

1-12 n - 12n

n
xn + g ; � x �  6 1

2 or 

 -1
2 6 x 6 1

2 37. pn1x2 = 1 +
1
6

x +
1

62
x2 + g +

1
6n xn; 

1 +
1
6

x +
1

62
x2 + g +

1
6n

xn + g ; � x �  6 6 or -6 6 x 6 6

39. pn1x2 = - 1x - 12 -
1
2
1x - 12 2 -

1
3
1x - 12 3 - g -

1
n
1x - 12 n;

- 1x - 12 -
1
2
1x - 12 2 -

1
3
1x - 12 3 - g -

1
n
1x - 12 n - g ;  

� x - 1 �  6 1 or 0 6 x 6 2

41. pn1x2 = -1 + 1x - 92 - 1x - 92 2 + (x - 9)3 - g + 1-12 n - 11x - 92 n;  
-1 + 1x - 92 - 1x - 92 2 + (x - 9)3- g + 1-12 n - 11x - 92 n + g ;  
� x - 9 � 6 1 or 8 6 x 6 10 43. (A) � x � 6 4 or -4 6 x 6 4  
(C) � x � 6 2 or -2 6 x 6 2 45. (B) � x � 6 1 or -1 6 x 6 1

47. p2n + 11x2 = x -
1
3!

x3 +
1
5!

x5 - … +
1-12 n

12n + 12!
x2n + 1

49. x -
1
3!

x3 +
1
5!

x5 - g +
1-12 n

12n + 12!
x2n + 1 +  g ;  -∞ 6 x 6 ∞

Exercises 9.3

1. 2 - 2x +
5
2

x2 - 4x3 +
1

24
x4 3. 1 - 2x2 + 3x4 - 4x6

5. -2x2 + 6x3 - 12x4 7. C + x -
1
6

x3 +
1

120
x5

9. 2 + 2x2 + 2x4 + g + 2x2n + g ; -1 6 x 6 1

11. 2 +
3
2

x2 +
5
6

x3 + g + c1 +
1-12 n

n!
d xn + g ; -1 6 x 6 1

13. x6 +  x7 + x8 + g + xn + 6 + g ; -1 6 x 6 1

15. -x3 -
1
2

x4 -
1
3

x5 - g -
1
n

xn + 2 - g ; -1 6 x 6 1

17. 1 + x2 +
1
2

x4 + g +
1
n!

x2n + g ; - ∞ 6 x 6 ∞

19. 3x -
9
2

x2 + 9x3 - g + 1-12 n - 1 
3n

n
xn + g ; -

1
3

6 x 6
1
3

21. 
1
2

+
1

22
x +

1

23
x2 + g +

1

2n + 1
xn + g , -2 6 x 6 2

23. 1 + 8x3 + 82x6 + g + 8nx3n + g , -1
2 6 x 6 1

2

25.  10x = 1 + 1ln 102x +
1ln 102 2

2!
x2 +

1ln 102 3

3!
x3 + g+

1ln 102 n

n!
xn + g ;  

- ∞ 6 x 6 ∞

27. -
1

ln 2
x -

1
2 ln 2

x2 -
1

3 ln 2
x3 - g -

1
n ln 2

xn - g ; -1 6 x 6 1

29. 
1
4

-
1

42
x2 +

1

43
x4 - g +

1-12 n

4n + 1
x2n + g ; -2 6 x 6 2

31. (A) x Ú 0 (B) No
33.  (A) 1 - x2 + x4 - g + (-1)n  x2n + g , -1 6 x 6 1  

(B) 2x2 - 4x3 + 6x5 - g + 2n(-1)n-1 x2n - 1 + g , -1 6 x 6 1

35. x -
1
3

x3 +
1
5

x5 - g +
1-12 n

2n + 1
x2n + 1 + g , -1 6 x 6 1

37. 5 -
1
4

x 4 -
1

10
x5 - g -

1
n1n - 32 xn - g ; -1 6 x 6 1
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39. (A)
f

f

25

30

230

5
p1

p3

p5

p5

p3

p1

41. 1 + 1x - 32 + 1x - 32 2 + g + 1x - 32 n + g , 2 6 x 6 4

43.  1x - 12 -
1
2
1x - 12 2 +

1
3
1x - 12 3 - g+

1-12 n - 1

n
1x - 12 n + g , 

 0 6 x 6 2
45. 1 + 31x - 12 + 321x - 12 2 + g+ 3n1x - 12 n + g , 23 6 x 6 4

3

47. 1 + 3x + 6x2 + g +
n1n - 12

2
xn - 2 + g , -1 6 x 6 1

49.  (A) 1 + x2 + x4 + g + x2n + g , -1 6 x 6 1 
51. 1 + 2x + 2x2 + g + 2xn + g , -1 6 x 6 1

53. x +
1
3

x3 +
1
5

x 5 + g +
1

2n + 1
x2n + 1 + g , -1 6 x 6 1

55. 1 +
1
2!

x2 +
1
4!

x4 + g +
1

12n2!
x2n + g , - ∞ 6 x 6 ∞

57.  -2 + 3x +
1
6

x3 -
1

24
x4 + g +

1-12 n + 1

n1n - 121n - 22 xn + g ;  

-1 6 x 6 1

59.  ln a +
1
a
1x - a2 -

1

2a2
1x - a2 2 + g +

1-12 n - 1

nan 1x - a2 n + g ,  

0 6 x 6 2a

61.  
1

1 - ab
+

b

11 - ab2 2
1x - a2 +

b2

11 - ab2 3
1x - a2 2 + g ; 

+
bn

11 - ab2 n + 1
1x - a2 n + g  0 x - a 0 6 ` 1 - ab

b
`

63. 1 -
1
2!

x2 +
1
4!

x4 - c +
1-12 n

12n2!
x2n +  c ;  - ∞ 6 x 6 ∞

65. -1 +
1
2!

x2 -
1
4!

x4 -  c  +
1-12 n + 1

12n2!
x2n +  c  - ∞ 6 x 6 ∞

Exercises 9.4

1. 16 3. 0.625 5. 0.216 7. 0.001 9. 0.4; � R110.62 � … 0.18
11. 0.544; � R310.62 � … 0.0054 13. 0.495; � R210.92 � … 0.243
15. 0.573 975; � R410.92 � … 0.118 098 17. 0.818 667; 
� R310.22 � … 0.000 067 19. 0.970 446; � R310.032 � … 0.000 000 033
21. 0.492; � R310.62 � … 0.0324 23. 0.058 272; � R310.062 � … 0.000 003 24
25. 0.904 833; n = 3 27. 0.990 050; n = 2 29. 0.182 320; n = 6
31. 0.019 800; n = 2 33. 0.1973 35. 0.0656 37. 0.0193 39. n = 9
41. � x � 6 1.817 43. -0.427 6 x 6 0.405 45. 0.745; � R210.32 � … 0.0135
47. 1.051 25; � R210.052 � … 0.000 063 49. 4.123 047; � R2112 � … 0.000 061

51. The second computation is correct. 53. (A) p21x2 = 1 + x +
1
2!

x2  
(B)  Max � f1x2 - p21x2 � = 0.000 171 

Max � f1x2 - q21x2 � = 0.000 065 (C) q21x2  

55. L
1

0

10x6

4 + x2
dx ≈ 0.302; index of income concentration ≈ 0.698

57.  S142 ≈ 2.031 within {0.004, or $2,031,000 within {$4,000

59. 2yr; $1,270 61. 30.539°C 63.  A122 ≈ 6.32 cm2 within{0.031
65.  N152 ≈ 19.5 wpm within {0.01125

Chapter 9 Review Exercises

1. -6> 1x + 52 4 (9.1) 2. 1 + 1
3x - 1

9x2 + 5
81x3; 1.003 322 (9.1)

3. 2 + 1
41x - 32 - 1

641x - 32 2 + 1
5121x - 32 3; 1.974 842 (9.1)

4. 3 + 1
6x2; 3.001 667 (9.1) 5. -1

4 6 x 6 1
4 (9.2) 6. 1 6 x 6 11 (9.2)

7. -1 6 x 6 1 (9.2) 8. - ∞ 6 x 6 ∞  (9.2) 9. 1-12 n9ne - 9x (9.1)

10. 
1
7

+
1

72
x +

1

73
x2 + g +

1

7n + 1
xn + g ,-7 6 x 6 7 (9.2)

11.  ln2 +
1
2
1x - 22 -

1
8
1x - 22 2 + g+

1-12 n - 1

n2n 1x - 22 n + g, 0 6 x 6 4 

(9.2)

12. 
1

10
-

1

102
x +

1

103
x2 - g +

1-12 n

10n + 1
xn + g, -10 6 x 6 10 (9.3)

13. 
1
4

x2 +
1

42
x4 +

1

43
x6 + g +

1

4n + 1
x2n + 2 + g ,-2 6 x 6 2 (9.3)

14. x2 + 3x3 +
32

2!
x4 + g +

3n

n!
x n + 2 + g , - ∞ 6 x 6 ∞  (9.3)

15. x +
1
e

x 2 -
1

2e2
x3 + g +

1-12 n - 1

nen xn - 1 + g,-e 6 x 6 e (9.3)

16.  
1
2

+
1

22
1x - 22 +

1

23
1x - 22 2 + g +

1

2n + 1
1x - 22 n + g, 0 6 x 6 4 

(9.3)
17.  (A) The coefficients of the odd powers of x are 0.  

(B) - 25>5 6 x 6 25>5 (9.2, 9.3)
18.  (A) 0 … x 6 1 (B) No; some powers of x are not non-negative integers. 

(9.2, 9.3)

19.  f1x2 =
1
2

+
1

22
x +

1

23
x2 +

1

24
x3 + g+

1

2n + 1
xn + g, -2 6 x 6 2

 g1x2 =
1

22
+

1

22
x +

3

24
x2 + g +

n

2n + 1
xn - 1 + g , -2 6 x 6 2 

(9.3)
20.  f1x2 = x2 - x4 + x6 - g + 1-12 nx2n + 2 + g , -1 6 x 6 1;

 g1x2 = 2x - 4x3 + 6x5 - g+ 12n + 221-12 nx2n + 1 + g, - 1 6 x 6 1 
(9.3)

21.  
1

3 # 9
x3 -

1

5 # 92
x5 +

1

7 # 93
x7 - g +

1-12 n

12n + 329n + 1
x2n + 3 

 + g ; -3 6 x 6 3 (9.3)

22.  
1

5 # 16
x5 +

1

7 # 162
x7 +

1

9 # 163
x9 + g +

1

12n + 5216n + 1
x2n + 5 

+ g ; - 4 6 x 6 4 (9.3)

23. (A)  g1x2 = 2 - 31x - 12 + 1x - 12 3; 
 h1x2 = 91x + 12 - 61x + 12 2 + 1x + 12 3 (B) The two series represent 
the same polynomial function for - ∞ 6 x 6 ∞ . (9.2)
24. (A) f is not differentiable at 0. (B) If a 7 0, pn1x2 = x for n Ú 1.  
If a 6 0, pn1x2 = -x for n Ú 1. (9.2)
25. 1.78; � R210.62 � … 0.108 (9.4)
26. 1.0618; � R210.062 � … 0.000 108 (9.4)
27. 0.261 975; n = 4 (9.4) 28. 0.03; n = 1 (9.4)

29. 5 -
1
3

x3 -
1
8

x4 - g -
1

n1n - 22 xn - g ; -1 6 x 6 1 (9.3)

30.  3 - 4x +
1
6

x3 -
1

12
x4 + g +

1-12 n + 1

1n - 32!1n - 12n
xn + g ;  

- ∞ 6 x 6 ∞  (9.3)
31. 0.0612 (9.4) 32. 0.314 (9.4) 33. n = 7 (9.4) 34. � x � 6 0.6918 
(9.4) 35. -0.616 6 x 6 0.616 (9.4) 36. -0.488 6 x 6 0.488 
(9.4) 37. p21x2 = 5 - 1

1,000 x2; $4.93 (9.4) 38. p21t2 = 9 - 0.03t2; 
$80,000 (9.4)
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39. L
1

0

18x3

8 + x2
 dx ≈ 0.516; index of income concentration ≈ 0.484 (9.4)

40.  S182 ≈ 3.348 within {0.001, or $3,348,000 within {$1,000 (9.4)
41.  A122 ≈ 10.17 cm2 within {0.01 (9.4)

42. 
1
5 L

5

0

5,000t2

10,000 + t4
dt ≈ 4.06 (9.4)

43. 
1
5 L

5

0
110 + 2t - 5e-0.01t22dt ≈ 10.4 (9.4)

Chapter 10
Exercises 10.1

1. 8 3. 
4
5

 5. 1 7. ∞  9. 
1
2

 11. Diverges 13. 2 15. Diverges

17. 
2
3

 19. Diverges 21. 10 23. 10 25. Diverges 27. 16 

29. 
14
3

 y

x
20

5

 31. 2 

x
1 50

y

1

33. Diverges y

20102

1

010
x

 35. True 37. False

39.  F1b2 =
1
2

-
1

2b2
; lim

bS ∞
F1b2 =

1
2

0

0

1

10

41.  F1b2 =
b3

3
-

1
3

; lim
bS ∞

F1b2 = ∞

0

0

400

10

43.  F1b2 = 2 - 2eb>2; lim
bS -∞

F1b2 = 2

0

10

3

0

45.  F1b2 =
2b
50

-
1

25
; lim

bS ∞
F1b2 = ∞

0

4

3

10,000

49. Yes 51. 1 53. Diverges 55. 1
6 57. Diverges 59. Diverges

61. $600,000 63. $50,000 65. Increasing the interest rate to 6% decreases 
the capital value to $500,000. Decreasing the interest rate to 4% increases the 
capital value to $750,000. 67. (A) 7.5 billion ft3 (B) 6.14 yr 69. 500 gal
71. Approx. 8 million immigrants

Exercises 10.2

1. 2 3. -
4
3

 5. 
38
3

 7. 
e2 - 1

2
 

9.  f1x2 Ú 0 from graphL
4

0
f1x2  dx = 1

x

f(x)

420

1/2

 11. Yes 13. No 

15. (A) L
3

1

1
8x dx = 1

2

x

f(x)

42

1/2

0

 (B) L
2

0

1
8x dx = 1

4 

x

f(x)

420

1/2

 (C) L
4

3

1
8x dx = 7

16 

x

f(x)

420

1/2

17. (A) L
1

1
f1x2 dx = 0 (B) L

∞

5
f1x2 dx = 0 (C) L

5

-∞
f1x2 dx = 1

19.  F1x2 = •
0 if  x 6 0

1
16x2 if  0 … x … 4

1 if x 7 4
 

x

F(x)

42

1

0

y F(x)

21. (A)  F132 - F112 = 1
2 (B)  F152 - F132 = 7

16 23. (A) 2 (B) 43

47.  F1b2 =
2
3

-
22b

; lim
bS ∞

F1b2 =
2
3

0

9

1

1000
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x

F(x)

21

1

0

    7. 2 - 22 ≈ .5858 (10.3) 8. .4641 (10.4) 

9.   f1x2 = e
1

10 if 5 … x … 15
0 otherwise

 F1x2 = •
0 if x 6 5

1
101x - 52 if 5 … x … 15

1 if x 7 15
 
(10.4)

10.  f1x2 = e 5e-5x if x Ú 0
0 otherwise

27.  (A) L
4

1

2

11 + x2 3
  dx = .21 

(B) L
∞

3

2

11 + x2 3
  dx =

1
16

 

(C) L
2

0

2

11 + x2 3
  dx =

8
9

29.  F1x2 = •
0 if x 6 0

1-  
1

11 + x2 2
if x Ú 0

  x

F(x)

42

1

0

25.   f1x2 Ú 0 from graph 

L
∞

0

2

11 + x2 3
 dx = 1 

x

f(x)

321

2

1

0

31. (A) 1 (B) 3 33.  F1x2 = •
0 if x 6 0

3
4x2 - 1

4x3 if 0 … x … 2
1 if x 7 2

f(x)

2

1

0
x

y f(x)

1/2

 
x

F(x)

321

1

0

1/2
y F(x)

35.  F1x2 = •
0 if x 6 - 1

3
8 + 1

2 x + 1
8 x4 if - 1 … x … 1

1 if x 7 1

x

f(x)

11

1

y f(x)

 
x

F(x)

11

1

y F(x)

37. x ≈ 0.57 39. x ≈ 0.44 41. 1
3 43. 7 45. No  

47. 0.683; 0.954; 0.997 

0

3

1

3

49.  f1x2 = e 2x if 0 … x … 1
0 otherwise

51.  f1x2 = e 8x3 - 12x2 + 6x if 0 … x … 1
0 otherwise

53.  F1x2 = µ
0 if x 6     0

  12  x2 if 0 … x … 1
2x - 1

2  x2 - 1 if 1 … x … 2
1 if x 7 2

55. (A) .48 (B) .96 (C) .25 57. (A) .239 (B) .0952 (C) .6703
59. (A) .512 (B)   (C) 4,512 lb 61. (A) .47178 (B) .1875
63. (A) .5 (B) .64 (C) 10 days 65. (A) .223 (B) .018

Exercises 10.4

1.   f1x2 = e
1
2 if 0 … x … 2
0 otherwise

 

 F1x2 = •
0 if x 6 0

x>2 if 0 … x … 2
1 if x 7 2

3.   f1x2 = e 2e-2x if x Ú 0
0 otherwise

 

 F1x2 = e 1 - e-2x if x Ú 0
0 otherwise

5. m = 3; m = 3; s = 2>23 ≈ 1.155 7. m = 5; m = 5 ln 2 ≈ 3.466;  
s = 5 9. .3729 11. .2967 13. .4906 15. .9312 17. .9682 19. .7764
21. 0.25 23. 1.375 25. 2.625 27. .3413 29. .1125 31. .2119
33. X1 has standard deviation 1; X2 has standard deviation .722. 35. X1 has 
median 1; X2 has median .693. 37. m = 2; 12 39. m = 1; 1 - e-1 ≈ .632
41. m = 0; s = 5>23 ≈ 2.887; 1>23 ≈ .577 43. m = 6; s = 6; 
1 - e-2 ≈ .865 45. .3108 47. .7073 49. .2620 51. .9192 53. .0082
55. (A) .6827 (B) .6827 (C) .6827 57. (A) .9973 (B) .9973 (C) .9973
63. .2; .139; .2 65. m = p> 1p - 12, provided p 7 1. The mean does not  
exist if 0 … p … 1. 67. m = 2p

2 69. 3
8 = .375 71. 1 - e-2>3 ≈ .487  

73. 1 - 11>222 ≈ .293 75. 2.28% 77. 1.24%  
79. (A) -1> 1ln .72 ≈ 2.8 yr (B) e-1 ≈ .368 81. 0.82%  
83. e-2.5 ≈ .082 85. A’s, 80.2 or greater; B’s, 74.2–80.2; C’s, 65.8–74.2; 
D’s, 59.8–65.8; F’s, 59.8 or lower

Chapter 10 Review Exercises

1. 1
2 (10.1) 2. Diverges (10.1) 3. 8 (10.1) 4. .75 

x

f(x)

210

1

(10.2) 

5. m = 2
3 ≈ 0.6667; V1X2 = 2

9 ≈ .2222;

s = 22>3 ≈ .4714 (10.3)

6.  F1x2 = •
0 if x 6 0

x - 1
4x2 if 0 … x … 2

1 if x 7 2

(10.2)

35. am + b 37. x1 = 1; x2 = 22 ≈ 1.414; x3 = 23 ≈ 1.732  
39. x1 = 1; x2 = 3; x3 = 9 41. .54 43. 1.47  
45. (A) 50

3 ≈ 16.667 thousand, or $16,667  
(B) 20 - 5122>22 ≈ 16.464 thousand, or $16,464 47. 5 ln 2 ≈ 3.466 min  
49. 1 million gal 51. 20

3 ≈ 6.7 min 53. 20 days 55. 1.8 hr

1 … x … 2. Median is not 
unique. 

both have median 1. 17. 4
3; 29; .471 19. 8

3; 89; .943 21. 1.00; 0.25; 0.50
23. e.5 ≈ 1.649 25. 2

3 27. 1 29. 1ln 22 >2 ≈ .347 31.  F1x2 = 1
2 for 

any x satisfying 0.5 … x … 2.5. Median is not unique.

33.  F1x2 = e 0 if x 6 0
x - 1

2x2 if 0 … x 6 1
1
2 if 1 … x … 2;

1
2x2 - 2x + 5

2 if 2 6  x … 3
1 if x 7 3

   F1x2 = 1
2 for any x satisfying

Exercises 10.3

1. 1
4; 1

48; .144 3. 8
3; 89; .943 5. 4

3; 1
18; .236 7. -3

2 9. 210 ≈ 3.162
11. 4 - 222 ≈ 1.172 13. X1 has mean 1; X2 has mean 0. 15. X1 and X2  F1x2 = e 1 - e-5x if x Ú 0

0 otherwise
 
(10.4)
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(10.2)

14. m = 5
3 ≈ 1.6667; V1X2 = 20

9 ≈ 2.2222; s = 2
325 ≈ 1.4907 (10.3)

15.  F1x2 = e 1 - x-5>2 if x Ú 1
0 otherwise

   

x

F(x)

42

1

0

 

(10.2)

 

16. 22>5 ≈ 1.3195 (10.3)

17.  f1x2 = e
1
2e-x>2 if x Ú 0

0 otherwise
 
(10.4)

18. 1 - e-1 ≈ .6321 (10.2)

19.  F1x2 = e 1 - e-x>2 if x Ú 0
0 otherwise

 
(10.4)

20. m = 2; s = 2; m = 2 ln 2 ≈ 1.3863 (10.4) 21. (A) .9104  
(B) .0668 (10.4) 22. (A) .3345 (B) .9970 (10.4) 23. 1 (10.1) 24. 1

3 
(10.1) 25. Yes (10.1) 26. k = 10 (10.2) 27. No such constant exists 
because 1 ∞

0 f1x2 dx diverges. (10.2) 28.  P1X … 32 = 1 - e-1 ≈ .6321 
(10.4) 29. m = 5; m = 522 - 5 ≈ 2.0711 (10.3) 30. 1.68 (10.3) 31. 1 
(10.1) 32. as2 + am2 + bm + c (10.3) 33. In comparison with f1, the 
graph of ƒ2 is shifted to the right, so X2 has the greater mean. (10.3)  
34. In comparison with f1, the area under the graph of ƒ2 is more spread  
out, so X2 has the greater variance. (10.3) 35. X2 has mean 6; X1 has  
mean 4. (10.3) 36. X2 has variance 12; X1 has variance 8. (10.3)  
37. (A) 20,000,000 barrels (B) 4.09 yr (10.1) 38. (A) The probability  
that the weekly demand is between 40 and 100 pounds is .36. (B) 34 = .75  
(C) 80 lb (10.2) 39. $40,000 (10.1) 40. (A) .896 (B) 50% (C) 50% 
(10.2, 10.3) 41. (A) e-1 ≈ .3679 (B) 1 - e-.25 ≈ .2212 (10.4)  
42. .0228 (10.4) 43. (A) 57.62% (B) 6.68% (10.4) 44. (A) The prob-
ability that the shelf life of the drug is between 2 and 8 months is 5

18 ≈ .2778.  
(B) 23 ≈ .6667 (C) 10 months (10.2, 10.3) 45. (A) e-4 ≈ .0183 (C) 12 
month (10.2, 10.3) 46. (A) 25 ml (B) 6.93 hr (10.1) 47. 1.22% (10.4)  
48. 45,000; 50,000 (10.1)

11. No; the area under the graph of ƒ is not 1. (10.2)
12. No; f is negative for some values of x. (10.2)

13. 31
32 ≈ .9688 f(x)

54321

2

1

0
x

 

Appendix A
Exercises A.1

1. vu 3. 13 + 72 + y 5. u + v 7. T 9. T 11. F 13. T 15. T
17. T 19. T 21. F 23. T 25. T 27. No 29. (A) F (B) T (C) T
31. 22 and p are two examples of infinitely many. 33. (A) N, Z, Q, R (B) R  
(C) Q, R (D) Q, R 35. (A) F, since, for example,  213 - 12 ≠ 2 # 3 - 1  
(B) F, since, for example, 18 - 42 - 2 ≠ 8 - 14 - 22 (C) T (D) F, 

since, for example, 18 , 42 , 2 ≠ 8 , 14 , 22. 37. 
1

11
39. (A) 2.166 666 666 . . . (B) 4.582 575 69 . . . (C) 0.437 500 000 . . . 
(D) 0.261 261 261 . . . 41. (A) 3 (B) 2 43. (A) 2 (B) 6 45. $16.42
47. 2.8%

Exercises A.2

1. 3 3. x3 + 4x2 - 2x + 5 5. x3 + 1
7. 2x5 + 3x4 - 2x3 + 11x2 - 5x + 6 9. -5u + 2 11. 6a2 + 6a
13. a2 - b2 15. 6x2 - 7x - 5 17. 2x2 + xy - 6y2 19. 9y2 - 4

21. -4x2 + 12x - 9 23. 16m2 - 9n2 25. 9u2 + 24uv + 16v

2

27. a3 - b3 29. x2 - 2xy + y2 - 9z2 31. 1 33. x4 - 2x2y2 + y4

35. -40ab 37. -4m + 8 39. -6xy 41. u3 + 3u2
v + 3uv

2 + v

3

43. x3 - 6x2y + 12xy2 - 8y3 45. 2x2 - 2xy + 3y2

47. x4 - 10x3 + 27x2 - 10x + 1 49. 4x3 - 14x2 + 8x - 6 51. m + n
53. No change 55. 11 + 12 2 ≠ 12 + 12; either a or b must be 0
57. 0.09x + 0.12110,000 - x2 = 1,200 - 0.03x
59. 20x + 3013x2 + 5014,000 - x - 3x2 = 200,000 - 90x
61. 0.02x + 0.06110 - x2 = 0.6 - 0.04x

Exercises A.3

1. 3m212m2 - 3m - 12 3. 2uv14u2 - 3uv + 2v

22
5. 17m + 5212m - 32 7. 14ab - 1212c + d2 9. 12x - 121x + 22
11. 1y - 1213y + 22 13. 1x + 4212x - 12 15. 1w + x21y - z2
17. 1a - 3b21m + 2n2 19. 13y + 221y - 12 21. 1u - 5v21u + 3v2
23. Not factorable 25. 1wx - y21wx + y2 27. 13m - n2 2

29. Not factorable 31.  41z - 321z - 42 33. 2x21x - 221x - 102
35.  x12y - 32 2 37. 12m - 3n213m + 4n2 39. uv12u - v212u + v2
41. 2x1x2 - x + 42 43. 12x - 3y214x2 + 6xy + 9y22
45. xy1x + 221x2 - 2x + 42 47. 31x + 22 - 3y431x + 22 + 3y4
49. Not factorable 51. 16x - 6y - 121x - y + 42
53. 1y - 221y + 221y2 + 12 55.  31x - y2 215xy - 5y2 + 4x2
57. True 59. False

Exercises A.4

1. 39/7 3. 495 5. 8d6 7. 
15x2 + 10x - 6

180
 9. 

15m2 + 14m - 6

36m3

11. 
1

x1x - 42  13. 
x - 6

x1x - 32  15. 
-3x - 9

1x - 221x + 12 2
 17. 

2
x - 1

19. 
5

a - 1
 21. 

x2 + 8x - 16
x1x - 421x + 42  23. 

7x2 - 2x - 3

61x + 12 2
 25. 

x1y - x2
y12x - y2

27. 
-17c + 16
151c - 12  29. 

1
x - 3

 31. 
-1

2x1x + h2  33. 
x - y

x + y

35. (A) Incorrect (B) x + 1 37. (A) Incorrect (B) 2x + h

39. (A) Incorrect (B) 
x2 - x - 3

x + 1
 41. (A) Correct 43. 

-2x - h

31x + h2 2x2

45. 
x1x - 32

x - 1

Exercises A.5

1. 2>x9 3. 3w

7>2 5. 2>x3 7. 1>w

5 9. 4>a6 11. 1>a6 13. 1>8x12

15. 8.23 * 1010 17. 7.83 * 10-1 19. 3.4 * 10-5 21. 40,000
23. 0.007 25. 61,710,000 27. 0.000 808 29. 1 31. 1014 33. y6>25x4

35. 4x6>25 37. 4y3>3x5 39. 
7
4

-
1
4

 x-3 41. 
5
2

 x2 -
3
2

+ 4x-2

43. 
x21x - 32
1x - 12 3

 45. 
21x - 12

x3
 47. 2.4 * 1010; 24,000,000,000

49. 3.125 * 104; 31,250 51. 64 55. uv 57. 
bc1c + b2

c2 + bc + b2

59. (A) $60,598 (B) $1,341 (C) 2.21% 61. (A) 9 * 10-6 (B) 0.000 009  
(C) 0.0009% 63. 1,194,000

Exercises A.6

1. 625 x3 3. 25 132x2y32 3 5. 2x2 + y2 1not x + y2 7. 5x3>4

9. 12x2y2 3>5 11. x1>3 + y1>3 13. 5 15. 64 17. -7 19. -16

21. 
8

125
 23. 

1
27

 25. x2>5 27. m 29. 2x>y2 31. xy2>2

33. 1> 124x7>122 35. 2x + 3 37. 30x513x 39. 2 41. 12x - 6x35>4

43. 3u - 13u1>2
v

1>2 + 4v 45. 36m3>2 -
6m1>2

n1>2 +
6m

n1>2 -
1
n
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47. 9x - 6x1>2y1>2 + y 49. 
1
2

 x1>3 + x-1>3 51. 
2
3

 x-1>4 +
1
3

 x-2>3

53. 
1
2

 x-1>6 -
1
4

 55. 4n13mn 57. 
21x + 321x - 2

x - 2

59.  71x - y211x + 1y2 61. 
1

xy15xy
 63. 

12x + h + 1x

65. 
1

1t + x211t + 1x2  67. x = y = 1 is one of many choices.

69. x = y = 1 is one of many choices. 71. False 73. False 75. False

77. True 79. True 81. False 83. 
x + 8

21x + 32 3>2 85. 
x - 2

21x - 12 3>2

87. 
x + 6

31x + 22 5>3 89. 103.2 91. 0.0805 93. 4,588

95. (A) and (E); (B) and (F); (C) and (D)

Exercises A.7

1. {111 3. -  
4
3

, 2 5. -2, 6 7. 0, 2 9. 3 { 213 11. -2 {  12

13. 0, 
15
2

 15. {3
2

 17. 
1
2

, -3 19. 1-1 { 152 >2 21. 13 { 132 >2

23. No real solution 25. 1-3 { 1112 >2 27. {13 29. -  
1
2

, 2
31. 1x - 221x + 422 33. Not factorable in the integers
35. 12x - 921x + 122 37. 14x - 721x + 622 39. r = 1A>P - 1
41. If c 6 4, there are two distinct real roots; if c = 4, there is one real double  
root; and if c 7 4, there are no real roots. 43. -2 45. {110
47. {13, {15 49. 1,575 bottles at $4 each 51. 13.64%
53. 8 ft/sec; 412 or 5.66 ft/sec
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I-1

NOTE: Page numbers preceded by A refer to online Appendix B: Special Topics.

INDEX

A
Abscissa, 20
Absolute maxima and minima

overview, 338–341
second derivative and extrema, 341–344

Absolute value
function of, 35–37, 130

Addition
of polynomials, 690–691
of real numbers, 683
of Taylor series, 615–616

Algebra, 682–724
polynomials, factoring, 694–699
polynomials, operations on, 688–694
real numbers, 682–688

Amount A (future value), in compound  
interest calculations, 86

Antiderivatives, 365–366, 413–414
Approximations

error in, 402
Taylor polynomials used for, 595–596
Taylor series used for

alternating terms, 627–628
definite integrals, 628–631
remainder, 624–627

Area
approximated by left and right sums, 400–404
perimeter and, 346–349
between two curves, 423–428

Associative property of real numbers, 683–684
Asymptotes

of functions, 72, 74–75
horizontal, 148–150
L’Hôpital’s rule and, 323
oblique, 332
vertical, 143–145

Average cost
modeling of, 332–334

Average rate of change, 166
Average value

as definite integral, 417–419
over rectangular regions, 532–533

Axis of parabolas, 54

B
Base b logarithmic functions, 92
Base e, natural logarithms, 95
Base e exponential functions, 82–83
Base 10, common logarithms, 95

Basic elementary functions, 35–36
Basic Taylor series, 614
Best fit line or parabola, 60
Bound, error, 402–403
Bounded functions, 75
Boyle’s law for gases, 268
Break-even point, 28
Business, related rates and, 267

C
Calculator evaluation of logarithmic functions, 95–97
Canceling, in fraction operations, 701
Cartesian coordinate system, 20
Central tendency, measure of, 659
Chain rule

partial derivatives using, 493
reversing, 377–379

Change
maximum rate of, 310
percentage rate of, 270–271
relative rate of, 270–272

Change-of-variable method, 381
Cobb–Douglas production function, 484–485, 493–494
Coefficient of thermal expansion (CTE), 154, 215
Coefficients, 689–690
Common factors, 694–695
Common logarithms, 95
Commutative property of real numbers,  

683–684
Competitive products, 498
Compound interest

continuous, 391–392
Concavity, in graphing, 299–302
Conceptual insight

absolute value, 37
algebraic identity, 136
antiderivatives, 365
area and perimeter, 349
area approximation, 404
area between two curves, 423
change in quantities, 191
concavity, 301
constant functions, 182
continuity, 157
critical numbers, 285, 287
differential equations, 391
double integrals, 534
elasticity of demand, 273
endpoint solutions, 353
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I-2 Index

Conceptual insight (Continued)
exponential functions, graphs of, 81
fundamental theorem of calculus, 413

graphing strategy, 308
graph transformation properties, 54–55
horizontal asymptotes, 149
implicit differentiation, 260
improper integrals, 640

integration by parts, 443
L’Hôpital’s rule, 324
Lagrange multipliers, 515
limits, 133
maximizing revenue and profit, 351
median, 664
negation, 684
nonexistent limits, 145
normal probability density function, 672
nth-degree Taylor polynomials, 595
parentheses in notation, 28
partition numbers, 287
partition numbers as candidates for inflection  

points, 304–305
probability distribution vs. probability density  

function, 649
rational functions, 74
regression line, 521
regular regions, 537–540
related rates, 265
relative rate of change, 272
remainder, Taylor’s formula for, 627
second-derivative test, 343, 501
second-order partial derivatives, 496
signed area, 407
standard form of differential equations, 576–577
Taylor series, 605, 607–608, 616
three-dimensional coordinate  

systems, 488
trapezoidal rule and Simpson’s  

rule, 452
zero of functions, 51

Constant e, 217
Constant functions, 25, 158, 181–182
Constant multiple property, 184–185
Constant of integration, 366–377, 578
Continuity

overview, 154–158
properties of, 158–159
solving inequalities with properties of, 159–162

Continuous compound interest, 87, 391–392
Continuous functions, average value of, 418
Continuous graphs, of polynomial functions, 70
Continuous on the closed interval [a, b], functions as, 158
Continuous on the left, functions as, 158
Continuous on the right, functions as, 158
Continuous random variables, 646
Convergence, interval of, 606–609, 616, 630
Coordinate axes, 20

Coordinates, ordered pairs to form, 20
Coordinate systems

Cartesian, 20
three-dimensional, 485–488

Cosine. See Sine and cosine
Cost, modeling average, 332–334
Critical numbers, 285–287, 289, 349
Critical points, 502–504, 509
Cross sections, 487–488
CTE (coefficient of thermal expansion), 154
Cube function, 35–36
Cube root function, 35–36
Cubic regression polynomial, 71
Cumulative distribution function, 651–654, 673
Curve-sketching techniques. See also Graphing

average cost modeling, 332–334
graphing strategy for, 325–332
overview, 306–309

D
Decay, exponential functions of, 83–85
Decibel scale, as logarithmic scale, 90
Decreasing and increasing functions, 283–287

Taylor series to approximate, 628–631
Definite integral

areas approximated by left and right  
sums, 400–404

average value as, 417–419
evaluating, 413–417
as limit of sums, 404–406
properties of, 406–407

Degree of polynomial, 69
Degree of the term, in a polynomial, 689
Δ (delta), as symbol for change in quantities,  

191, 193
Demand, elasticity of, 270–275
Dependent variables, 24–25. See also Multivariable  

calculus
Depreciation, exponential regression model of, 85
Derivatives, 216–281. See also First derivative;  

Second derivative
elasticity of demand, 270–275
higher-order, 590–591
implicit differentiation, 257–262
nonexistence of, 176–177
overview, 171–176
rate of change, 166–169
related rates, 264–267
slope of tangent line, 169–171

Difference quotient, 28, 137–138
Differential equations, 551–588

carbon-14 dating, 394
continuous compound interest, 391–392
exponential growth law, 392–393
exponential growth models with, 570
exponential growth phenomena comparison,  

395–396

Z05_BARN6152_14_GE_IDX.indd   2 28/11/18   10:21 AM



 Index I-3

first-order linear, 574–578
learning, 395
limited growth models with, 566–568, 570
logistic growth models with, 568–570
overview, 389
population growth, 393–394
product rule, 574
slope fields and, 390–391

Differentials
approximations using, 194–196
increments, 191–193
indefinite integrals and, 380
overview, 193–194

Differentiation
constant function rule for, 181–182
constant multiple property of, 184–185
power rule for, 182–184
sum and difference properties of, 185–187
on Taylor series, 616–618

Diminishing returns, point of, 309–310
Discontinuity, 156
Discrete random variables, 646
Distributive properties of real numbers,  

683–684, 689
Divided difference tables, A21–A25
Division properties of real numbers, 685
Domains

of exponential functions, 80
of functions, 25–27
of logarithmic functions, 92
of polynomial functions, 69
of power functions, 182
of rational functions, 72

Double integrals
over rectangular regions, 528–534
over regular regions, 537–542

Doubling time for investments, 97–98

E
Elastic demand, 274
Elasticity of demand, 270–275
Elementary functions, 35–37
Endpoints of intervals, 50
Endpoint solutions, 353
Equations. See also Differential equations

continuity of functions defined by, 157
first-order, 389
functions specified by, 23–26
graphs of, 20–22
linear functions and inequalities, 47–50
point-by-point plotting of, 21–22
quadratic functions and inequalities, 50–53
second-order, 389

Equilibrium point, 59
Equilibrium price, 59
Equilibrium quantity, 59
Error bound, 402–403

Error in approximation, 402
Estes, William K., 585
Evinrude outboard motors, 61, 67
ex approximated with polynomials, 591–593
Expanded notation, 595
Expected value, standard deviation  

and, 657–660
Explore and discuss

absolute extremum, 339
area under curves, 401
asymptotes and L’Hôpital’s rule, 330
average value of continuous function, 418
base e exponential functions, 83
bounded functions, 75
compound interest, 86
continuity, 155
continuous and discrete random  

variables, 646
cumulative distribution functions, 651
derivatives, 174, 176–177
differential equations, 390
divided difference tables, A24
double integrals, 533
elasticity of demand, 272
evaluation of limits, 322
first-derivative test, 344
function definition, 23
graphing, 37, 39
growth, 579
higher-order derivatives, 591
improper integrals, 638, 640–641
increasing and decreasing functions, 283
increments, 193
indefinite integrals, 368
infinite limits, 142
interpolating polynomials, A17, A21
Lagrange multipliers, 513
limits, 133, 138
linear functions and transformations, 40
local extrema, 289, 501
median, 663
minimization subject to constraints, 511
natural or common logarithms, 97
one-to-one functions, 91
point-by-point plotting, 22
polynomials, 593
power functions, 182
probability density function, 659, 669–670
product rule, 574
quadratic functions, 53
regression line, 521, 522
related rates, 265
relative rate of change, 270
remainder functions, 625
shapes of graphs, 299
tangent lines, 259
Taylor series, 604–605, 617, 619, 629
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Explore and discuss (Continued)
three-dimensional coordinate  

systems, 486
trapezoidal rule and Simpson’s rule, 452
uniform distributions, 667

Exponential decay, 392
Exponential distributions, 669–671
Exponential functions

base e, 82–83
compound interest, 86–87
converted to logarithmic functions, 93
double integral of, 532
growth and decay, 83–85
logarithmic functions conversion to, 92–93
overview, 80–82
solving, 96–97

Exponential growth, 392–393, 395–396
Exponential growth models, 570
Exponential probability density function, 670–671
Exponential random variable, 670
Exponential regression, 85
Exponents

natural number, 688
Extrema

graphing local, 287–289
locating absolute, 340–341
second derivative and, 341–344

Extreme value, 339

F
Factored form, positive integer written in, 694
Factorials, A14
Factoring

polynomials, 694–699
Federal Bureau of Investigation (FBI), 125
Fems, W. O., 79
Finite sequences, A2
Finite series, A3, A9–A11
First derivative

economics applications for, 291–294
first-derivative test, 289–291
increasing and decreasing functions, 283–287
local extrema, 287–289

First divided differences, A21
First-order equations, 389
First-order linear differential equations, 574–578
First-order partial derivatives, 495
First property of exponents, 688
Fixed costs, 28
Forward substitution for finding interpolating  

polynomial, A20
Fraction properties of real numbers, 686
Functions and graphs, 19–126

Cartesian coordinate system, 20
definition of, 22–23
equations and, 23–26
exponential, 80–87

increasing and decreasing, 283–287
limits and, 128–129
linear and quadratic regression, 60–62
linear functions, equations, and inequalities, 47–50
logarithmic, 90–97
notation for, 26–28
polynomial, 69–70
quadratic function properties and graphs, 53–57
quadratic functions, equations, and inequalities,  

50–53
rational, 71–75
regression polynomials, 70–71
Taylor series to represent, 609–612
transformations and, 35–43

Fundamental theorem of analytic geometry, 20
Fundamental theorem of calculus

average value as definite integral, 417–419
evaluating definite integrals, 413–417
introduction to, 411–413

G
General solutions of differential equations, 575
General term of the sequence, A2–A3
Geometric sequences, A7–A12
Graphing, 282–363. See also Functions and graphs

absolute maxima and minima, 338–344
continuity of a function, 156
cross sections, 487–488
curve-sketching techniques, 325–334
first derivative and, 283–294
L’Hôpital’s rule, 316–324
limits, 129–133
optimization in, 346–355
second derivative and, 302–310

Grouping, factoring by, 695
Growth and decay, exponential functions of,  

83–85

H
Half-life, in radioactive decay, 84
Hill, A. W., 34
Home ownership rates, 98–99
Horizontal and vertical shifts, 37–39
Horizontal asymptotes

of functions, 72, 74–75, 81
L’Hôpital’s rule and, 323
limits of, 145, 148–150
polynomials of degree 1 or greater and, 147

Horizontal (x) axis, 20
Horizontally translating graphs, 38, 40

I
Identity function, 35–36
Identity property of real numbers, 683–684
Implicit differentiation, 257–262
Improper integrals, 638–642
Increasing and decreasing functions, 283–287
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Increments
from differentials, 191–193
differentials compared to, 195

Indefinite integrals
formulas and properties of, 366–372
general, 379, 381

Independent variables, 24–25. See also Multivariable  
calculus

Indeterminate forms, 136–137,171
∞/∞, 322–324
0/0, 318–321

Inelastic demand, 274
Inequalities

equations and linear functions, 47–50
equations and quadratic functions, 50–53
notation for, 50,160–,161

Infinite limits, 141–143
Infinite series, A11
Infinity, limits at, 145–148, 321–322
Infinity symbol (∞), 50
Inflection points, 302–305
Initial condition, in growth models, 395–396
Instantaneous rate of change, 169
Integral sign, 366
Integrands, 366, 382, 453, 531
Integrating factor, in differential  

equations, 575–578
Integration, 683–812. See also Multivariable calculus  

antiderivatives, 365–366
area between two curves, 423
business and economics  

applications, 460
definite integral, 406–419
differential equations, 389–396
fundamental theorem of calculus, 413–419
indefinite integrals, 366–372
improper integrals, 638–642
parts, integration by, 441–445
reduction formulas, 455–456
Simpson’s rule, 450–452
by substitution, 377–385
substitution and table of integrals,  

454–455
table of integrals, 453–454
Taylor series and, 616–618, 628–631
trapezoidal rule, 448–450

Intercepts of polynomial functions, 291
Interest

continuous compound, 391–392
compound, 86–87

Interpolating polynomials, A16–A21
Intersection point, in supply and demand  

equations, 59
Interval notation, 50
Interval of convergence, 606–609, 616, 630
Intervals, functions increasing or decreasing  

on, 284

Inventory control, 353–355
Inverse functions, 90–91
Inverse property of real numbers, 683–684
Irrational numbers, 82
Iterated integrals, 531

L
Lagrange multipliers

in functions of two independent variables, 508–513
in functions of three independent variables, 513–515

Leading coefficient, 70
Least squares method, in multivariable calculus

applications of, 522–524
approximation by, 520–521
linear regression by, 517–519
for quadratic equations, 521–522

Left-hand limits, 131
Leibniz, Gottfried Wilhelm von, 127
L’Hôpital’s rule

indeterminate form 0/0 and, 318–321
indeterminate form ∞/∞ and, 322–324
one-sided limits and limits at ∞, 321–322
overview, 316–318

Libby, Willard, 394
Like terms, in polynomials, 689–690
Limited growth models, 565–568, 570
Limits. See also L’Hôpital’s rule

algebraic approach to, 133–137
of difference quotients, 137–138
functions and graphs, 128–129
graphical approach to, 129–133
horizontal asymptotes, 148–150
infinite, 141–143
at infinity, 145–148, 321–322
one-sided, 321–322
of Riemann sums, 405
of sums, definite integral as, 404–406
vertical asymptotes, 143–145

Linear functions, 25, 47–50
Linear regression, 60–62, 517–519
LN key, 90, 95
Local extrema

first-derivative test for, 289–291
graphing, 287–289
multiple critical points for, 502–504
partial derivatives and, 501
of polynomial functions, 291
second-derivative test for, 501–502

Local maximum, 287–289. See also Maxima and minima
Local minimum, 288–289. See also Maxima and minima
Logarithmic functions

calculator evaluation of, 95–97
inverse functions, 90–91
natural, 577
overview, 91–93
properties of, 93–95

Logarithmic regression, 98
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Logistic growth models, 568–570
LOG key, 90, 95
Lorenz curves, 629–630
Losses, 28
Lower triangular system for finding interpolating  

polynomial, A20

M
Marginal analysis, 198–200
Marginal productivity of capital, 494
Marginal productivity of labor, 494
Marginal productivity of money, 512
Marsh, J., 79
Maxima and minima

finding local, 500–506
Lagrange multipliers for, 508–515
overview, 338–341
second derivative and extrema, 341–344

Maximizing profit, 350–352
Maximizing revenue, 349–350
Maximum rate of change, 310
Mean

arithmetic, A5
as expected value, 657–660
overview, 673

Median, 662–664, 671, 673
Menten, Maude, 153
Michaelis, Leonor, 153
Michaelis–Menten function, 153
Midpoint sum, as approximation of definite integral, 450
Modeling, 47, 332–334
Motion, related rates of, 264–266
Multiplication

of polynomials, 691–692
of Taylor series, 615–616

Multiplicative inverse of real numbers, 684
Multivariable calculus. See also Integration

double integrals over rectangular regions, 528–534
double integrals over regular regions, 537–542
least squares method, 517–524
maxima and minima, 500–515
partial derivatives, 491–496
several variables, functions of, 482–488

N
Natural logarithm function, 577
Natural logarithms, 95–97
Natural number exponents, 688
Negative properties of real numbers, 685
Negative real numbers, 683
Newton, Isaac, 127, 263
Newton’s form for the interpolating polynomial,  

A19, A21
n factorial, A14
Newton, Isaac, 127
Nobel Prize in chemistry, 394

Normal curve, standard, 673
Normal distributions, 671–675
Normal probability density function, 461, 671–673
Normal random variables, 671
Notation

derivatives, 181
expanded, 595
functions, 26–28
inequality, 50, 160–161
interval, 50, 160–161
second derivative, 300
special function, 257–258
summation, A3–A5

nth derivative of the function f ( f (n)), 590–591
nth-term formulas, A8
Number line, real, 683
Numerical coefficients, 689–690

O
Oblique asymptotes, 332
Olympic Games, 67
One-sided limits, 130–131, 321–322
One-to-one functions, 91
Optimization

area and perimeter, 346–349
inventory control, 353–355
maximizing profit, 350–352
maximizing revenue, 349–350, 352–353

Ordered triplet of numbers, in three-dimensional  
coordinate systems, 485

Order of operations, 692
Ordinate, 20

P
Parabola

best fit, 60
quadratic function graph as, 54–56
square function graph as, 50–51

Partial antidifferentiation, 528–529
Partial derivatives

operations of, 491–494
second-order, 495–496

Partition numbers
as candidates for inflection points,  

304–305
in continuity properties, 160–161
critical numbers and, 285–287

Parts, integration by, 441–445
Percentage rate of change, 270
Perimeter, area and, 346–349
Piecewise-defined functions, 41–43
Piecewise linear approximation, A17–A19
Point-by-point plotting, of equations, 21–22
Point of diminishing returns, 309–310
Point-slope form of equation, 48
Polynomial functions
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continuous, 159
intercepts and local extrema of, 291
limits of, 134, 146–148
overview, 69–70

Polynomials
divided difference tables and, A21–A25
factoring, 694–699
interpolating, A16–A21
operations on, 688–694

Population growth, exponential functions for, 83–84
Positive real numbers, 683
Power functions

differentiating, 183–184
elementary functions as examples of, 182–183
at infinity, 146

Power rule
overview, 182–184

Prime numbers, 694
Principal P (present value), in compound interest calculations, 86
Probability and calculus, 637–681

continuous random variables, 646
cumulative distribution functions, 651–654
expected value and standard deviation,  

657–660
exponential distributions, 669–671
improper integrals, 638–642
median, 662–664
normal distributions, 671–675
probability density functions, 647–651
uniform distributions, 667–669
variance, alternative formula for, 660–662

Probability density functions, 647–651
Product rule, 574
Products, 371
Profit–loss analysis, 28–29
Profit, maximizing, 350–352

Q
Quadrants, coordinate axes divide plane into, 20
Quadratic formula, 51
Quadratic functions

equations and inequalities, 50–53
properties and graphs, 53–57

Quadratic regression, 60–62, 522
Quantitative learning theory, 79
Quotients

indefinite integral of, 371
limits of, 136

R
Radioactive decay, 83–85, 394–395
Random variables, continuous, 646
Ranges

of exponential functions, 80
of functions, 25–27
of logarithmic functions, 92

Rates
of change, from derivatives, 166–169
in compound interest calculations, 86
related, 264–267

Rational functions, 71–75
continuous, 159
horizontal asymptotes of, 149
limits of, 134
limits of, at infinity, 149
vertical asymptotes of, 143

Real numbers, 682–688
Reciprocals of real numbers, 684
Rectangular coordinate systems, 20
Reduction formulas, 455–456
Reflections, 39–41
Regression

exponential, 85
least squares method of, 517–522
linear and quadratic, 60–62
logarithmic, 98

Regression polynomials, 70–71
Regular regions, double integrals over, 537–542
Related rates, 264–267
Relative growth rate, 83, 392
Relative rate of change, 270–272
Remainders, Taylor series to approximate, 624–627
Replacement time, for equipment, 78
Residuals, 518
Revenue

analysis of, 167
costs vs., 28
elasticity and, 275
maximizing, 349–350, 352–353

Richter scale, as logarithmic scale, 90
Riemann, Georg, 404
Riemann sums, 404–405
Right-hand limits, 131
Rise, in slope of a line, 48
Root of functions, 70
Run, in slope of a line, 48

S
Saddle point, in three-dimensional coordinate systems, 487, 500
Sales analysis, 148, 175–176
Scatter plots, 60–61
Secant line, slope of, 170–172
Second derivative

extrema and, 341–344
graphing, 302–310
notation for, 300

Second derivative, graphing
analyzing, 305–306
concavity as tool for, 299–302
curve sketching in, 306–309
inflection points, 302–305
point of diminishing returns, 309–310
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at a, 597–599
ex approximated with polynomials, 591–594
higher-order derivatives, 590–591
at 0, 594–597

Taylor series
addition and multiplication operations on,  

615–616
approximations using

alternating terms, 627–628
definite integrals, 628–631
remainder, 624–627

basic, 614
differentiation and integration operations on, 616–618
overview, 603–609
representation of functions by, 609–612
substitution operations on, 618–622

Terms of the sequence, A2
Test numbers, 160
Third divided differences, A21
Three-dimensional coordinate systems, 485–488
Thurstone, L. L., 79
Toyota Motor Corporation, 66
TRACE, 62, 98
Transformations

elementary functions, 35–37
piecewise-defined functions,  

41–43
reflections, stretches, and shrinks,  

39–41
vertical and horizontal shifts, 37–39

Trapezoidal rule, 448–450
Tree diagrams, of factorization, 694
Turning points, on graphs, 288

U
Uniform distributions, 667–669
Uniform probability density function,  

668–669
Union set operation, 157
Unit elasticity, 274
U.S. Census Bureau, 98, 428

V
Variable costs, 28
Variables. See also Multivariable calculus

continuous random, 646
discrete random, 646
exponential random, 670
independent and dependent, 24–25
linear equations in two, 47
normal random, 671
in polynomial terms, 688
restrictions on, 700
separation of, 562–565

Variance, alternative formula for, 660–662
Velocity, 167–169, 172

Second-derivative test for local extrema, 501–502
Second divided differences, A21
Second-order equations, 389
Second-order partial derivatives, 495–496
Sequences

arithmetic and geometric, A7–A12
overview, A1–A3

Series, A3–A5
Series and summation notation, A3–A5
Set of real numbers, 682–683
Shrinks, 39–41
Sign charts, 159–161
Sign properties on an interval, 160
Simpson’s rule, 450–452
Sketching graphs of equations, 21
Slope

differential equations and slope fields, 390–391
of lines, 48
of secant lines, 170–171
of tangent lines, 169–173, 259

Slope–intercept form of equation, 48
Solutions of differential equations, 389
Solution set of equations, 21
Square function, 35–36, 50
Square root function, 35–36
Standard deviation, expected value and,  

657–660
Standard form of equations, 48
Standard form of quadratic  

functions, 55
Standard normal curve, 673
Stretches, 39–41
Substitute products, 498
Substitution, integration by

additional techniques for, 382–385
antiderivatives found by, 414
directly into definite integral, 415–416
operation of, 380–382
reversing chain rule, 377–379
table of integrals and, 454–455
on Taylor series, 618–622

Subtraction
of fractions, 702–703
of polynomials, 691
of real numbers, 685

Sum and difference differentiation  
properties, 185–187

Summation notation, A3–A5
Symmetry, line of, 54

T
Table of integrals, 448, 453–454
Tangent lines

slopes of, 169–173, 259
Taylor, Brook, 589
Taylor polynomials, 589–597
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X
x (horizontal) axis

overview, 20
reflection in, 39–40

x coordinate, 20
x intercept of functions, 48, 51, 70

Y
y (vertical) axis, 20
y coordinate, 20
y intercept of lines, 48

Z
Zero factorial, A14
Zero of functions, 51, 70
Zero properties of real numbers, 685
0/0 indeterminate form, 136, 171

Vertex of angles, 102–103
Vertex form, of quadratic functions, 53–55
Vertical and horizontal shifts, 37–39
Vertical asymptotes

of functions, 72, 74–75
limits of, 143–145

Vertical (y) axis, 20
Vertical-line test for functions, 25
Vertically translating graphs, 38, 40
Vertical shrinks of graphs, 39–40
Vertical stretches of graphs, 39–40
Volume, double integrals and, 533–534

W
Weighted average of two estimates, 450
Written in factored form, positive integer  

as, 694
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Business and Economics
Advertising, 89, 107, 189–190, 197, 269, 310, 363, 373–374, 

398–399, 421, 572
Advertising and sales, 490, 498
Advertising: point of diminishing  

returns, 314, 363
Air travel, 109
Architecture, 126
Arrival rates, 671
Automation-labor mix, 507
Automobile production, 66
Average and marginal costs, 337
Average cost, 78, 152, 197, 298,  

362–363, 421
Average income, 281
Average price, 451, 599, 601–602, 633, 636

Bike rental, 164–165
Boat navigation, 109
Break-even analysis, 208, 214
Budgeting for least cost, 516
Budgeting for maximum production, 516
Business-depreciation, 64

Capital value, 642–643, 645, 681
Car rental, 356
Car sharing, 140
Cobb-Douglas production function, 436, 493–494,  

511, 549
Communications, 677
Component failure, 677
Compound growth, 88
Compound interest, A13
Computer failure, 681
Concert hall architecture, 546
Construction, 124, 362
Construction costs, 357, 363
Consumer Price Index, 124
Consumers’ and producers’ surplus, 465–468
Consumers’ surplus, 447, 456, 458, 471, 479
Continuous compound interest, 88, 100, 222, 231, 281, 398, 

560–561, 572, 579, 583–584, 588
Continuous income stream, 447, 458, 462–465,  

470–471, 479
Convention center expansion, 545
Corporate profits, 572
Cost, 420, 421, 458
Cost, rate of change of, 277
Cost analysis, 64, 206, 213–214, 313–314
Cost function, 256, 372–373, 376, 388, 490

Cost rates, 269
Credit applications, 681

Demand, 656, 681
Demand equation, 281, 498
Demand function, 421
Depreciation, 588
Digital display, 108
Distribution of wealth, 432–433
Doubling time of investments, 97–99, 100, 222, 280
Dynamic price stability, 557–558

Economy stimulation, A12–A13
Electrical current, 669
Electricity consumption, 180, 656, 666
Electricity rates, 45, 124
Employee training, 75–76, 153, 214, 336, 410, 421
Energy consumption, 524
Equilibrium point, 101, 125
Equilibrium price, 468, 557, 580
Equipment rental, 165

Finance, 88
Flight conditions, 64
Flight navigation, 64–65
Food preparation, 573
Future value, 490
Future value of continuous income  

stream, 479

Gasoline consumption, 656, 666
Gasoline prices, 688
Graphing, 291–294
Gravity, 263–264
Gross receipts, 694
Growth time, 222
Guarantees, 677

Home prices, 470
Honey production, 526
Hospital costs, 45

Income, 165
Income distribution, 428–430, 432, 438, 447, 459, 629–630, 

632–633, 636
Inflation, 313
Instantaneous velocity, 187–188
Internet users, 89
Inventory, 422, 439
Inventory control, 357, 362
Investing, 100
Investment, 693

I-10

NOTE: Page numbers preceded by A refer to online Appendix B: Special Topics.

Z06_BARN6152_14_GE_AIDX.indd   10 28/11/18   10:29 AM



 Index of Applications I-11

Labor costs, 377
Labor costs and learning, 421–422
LED life expectancies, 462
Life expectancies of machinery, 469
Linear depreciation, 124
Loan repayment, A11–A13
Long-range equilibrium price, 580

Maintenance costs, 421
Manufacturing, 356, 470, 573
Marginal analysis, 277, 362
Marketing, 388, 439, 459, 633, 636
Maximizing profit, 507, 526–527, 549
Maximum revenue, 277
Maximum revenue and profit, 355–356, 362
Maximum volume, 508, 516
Measurement, 197
Minimizing cost, 507
Minimizing material, 549
Minimum average cost, 78
Minimum material, 507
Mobile data traffic, 89
Money growth, 88–89, 124
Multiplier principle, 536
Museum design, 545

Natural-gas consumption, 214
Natural-gas rates, 165, 213
Natural resource depletion, 433
Nuclear accident, 399

Oil production, 388, 422, 432, 641–642
Olympic Games, 527
Operating system updates, 152–153
Operational costs, 357
Organic food sales, 527
Outboard motors, 67

Package design, 484, 490–491, 505–506, 513–515
Packaging, 356
Parking design, 108
Personal income, 572
Personnel screening, 681
Physics, 154, 215
Present value, 222
Price analysis, 297–298, 362
Price-demand, 33, 44, 45, 190, 197, 269, 385–386, 398,  

459, 471
Price-demand equation, 245, 256, 263, 387
Price-demand function, 29–31, 33, 44–45
Price stability, 560, 588
Price-supply, 398, 439, 471
Price-supply equation, 204, 256, 263, 269, 388
Price-supply function, 45
Probability density functions, 460–462
Producers’ surplus, 447, 455–456, 466,  

471, 479–480
Product analysis, 565–566, 572

Product demand, 499
Production, 477, 601–602, 636, 645, 680–681
Production costs, 376
Production: point of diminishing returns, 314
Production strategy, 200–205
Productivity, 485, 490, 493–494, 498, 511–512, 516
Product life, 666, 674–675
Product mix, 507
Product warranty, 479
Profit, 34, 161, 180, 197, 237, 314, 336, 447, 459, 493, 503,  

549, 666
Profit analysis, 206, 297
Profit and production, 438
Profit function, 438, 498
Profit rates, 269
Public debt, 709–710

Quality control, 677

Radial tire failure, 681
Rate of descent-parachutes, 64
Real estate property tax, 45
Renewable energy, 376
Rental income, 356, 362
Replacement time, 78, 336
Resale value, 231
Resource depletion, 438
Revenue, 33–34, 66, 126, 180, 197, 234–236, 314, 336,  

376, 459
Revenue, cost, and profit, 207–208
Revenue, cost, and profit functions, 483, 490
Revenue, rate of change of, 281
Revenue analysis, 206–207, 293, 297
Revenue and elasticity, 277, 281
Revenue and profit functions, 498
Revenue approximation, A17–A19
Revenue function, 388, 479, 490
Revenue rates, 269

Safety research, 45–46
Sales, 421, 677
Sales analysis, 148, 180, 189, 245, 376, 447, 572–573
Sales growth, 588
Sales tax, 688
Salvage value, 231, 421
Seasonal business cycle, 116, 476
Service time, 677
Sound intensity in decibels, 101
Speed of sound, 263–264
Stadium construction, 545
State sales tax, 686
Supply and demand, 57–60, 65, 100,  

584, 722–724
Supply function, 421

Telephone calls, 460
Time-sharing, 656
Tire mileage, 65–66
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Total revenue, 474–475

Useful life, 416, 421, 432, 633

Volume discounts, 140–141

Waiting time, 656, 666–668, 677
Water consumption, 469, 666

Life Sciences
Agriculture, 101, 126, 292, 356, 517, 677
Air pollution, 180, 710
Air quality, 536, 546, 550
Animal supply, 165

Bacteria control, 358, 363
Bacterial growth, 231, 315
Biochemistry, 153–154
Biology, 257, 388, 399, 422, 433, 527
Biophysics, 263
Bird flights, 358
Blood flow, 491
Blood pressure, 231, 257, 399
Botany, 358

Carbon-14 dating, 394–395
Carbon-14 dating in archaeology, 101
Cephalic index, 491, 499
Crop yield, 588

Diet, 79
Diet and minimum cost, 517
Drug assimilation, 480, 645, 681
Drug concentration, 153, 256, 281, 358, 399
Drug sensitivity, 197, 246, 315
Drug shelf life, 653–654, 657, 666–667

Ecology, 190, 573, 588, 724
Epidemics, 399, 573
Exercise physiology, 114–115, 116

Forestry, 66–67

Global warming, 527

Healing time, 470
Height of hay crop, 470
Herpetology, 45
Human weight, 45

Insecticides, 399
Life expectancy, 550, 656–657, 660, 663–664, 666, 681

Marine biology, 89, 125, 491
Medicare, 126
Medicine, 125, 181, 190, 197, 215, 246, 298, 337, 388, 410, 422, 

447, 480, 499, 601–602, 633, 636, 677, 681
Muscle contraction, 34

Nutrition, 694

Physiology, 79, 337, 116, 237
Pollution, 141, 153, 214–215, 270, 336, 358, 388, 439, 447, 459, 

476–477, 116, 237, 580–582, 584, 588, 602, 645

Population distribution, 536
Population growth, 568–570, 573
Population growth–logistic growth  

model, 561
Population growth–Verhulst growth  

model, 561
Postal rates, 164–165
Pulse rate, 197

Radioactive decay, 222

Sports medicine, 124
Survival time, 677

Temperature, 422, 633

Underwater pressure, 64

Water pollution, 256–257
Weight, 470
Weight-height, 377
Weight loss, 584
Wound healing, 281, 377, 439

Social Sciences
Archaeology, 101, 399, 439

College enrollment, 190, 389
Crime, 710
Crime rates, 526
Crime scene investigation, 573
Crime statistics, 125, 277

Divorce, 79
Dropout rates, from high school, 124

Education, 550
Exam scores, 522–524

Grading on a curve, 677
Growth and decay, 83–85

Immigration, 645

Learning, 45–46, 165, 190, 197–198, 215, 270, 281, 315, 358, 377, 
388–389, 395, 399, 410–411, 439, 433, 447, 459, 574, 602, 
633, 657, 667, 677

Learning curve, 89
Learning theory, 79, 585
Licensed drivers, 65

Marriage, 79

Olympic Games, 67

Perception, 399
Physical anthropology, 491, 499
Politics, 34, 198, 269, 358, 363, 422, 448, 459, 636, 681
Population, 439
Population composition, 422
Population density, 550, 710
Population growth, 89–90, 101, 126, 223, 277, 393–394
Psychology, 480, 491, 536–537, 117, 677

Z06_BARN6152_14_GE_AIDX.indd   12 28/11/18   10:29 AM



 Index of Applications I-13

Psychology: learning, 231
Psychology: retention, 337
Psychology: stimulus/response, 231

Rumor propagation, 400
Rumor spread, 574, 588
Rumor spread–Gompertz growth model, 561

Safety research, 491, 499, 536, 724
Sensory perception, 573

Small-group analysis, 399
Space travel, 491

Testing, 681
Test scores, 470

Urban growth, 377

Voter turnout, 141, 667

Wages, 470
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Similar Triangles
(A) Two triangles are similar if two angles of one triangle have  

the same measure as two angles of the other.
(B) If two triangles are similar, their corresponding sides are  

proportional:

a
a′

=
b
b′

=
c
c′

Basic Geometric Formulas

ab

c

a9b9

c9

Pythagorean Theorem
c2 = a2 + b2

a

b

c

Rectangle
A = ab    Area
P = 2a + 2b Perimeter

a

b

Parallelogram
h = height
A = ah = ab sin u Area
P = 2a + 2b     Perimeter

a

bh
u

Triangle
h = height
A = 1

2 hc           Area

P = a + b + c        Perimeter

s = 1
2(a + b + c)         Semiperimeter

A = 2s(s - a)(s - b)(s - c) Area: Heron’s formula

a

a

b

b

h

h

c

c

Trapezoid
Base a is parallel to base b.

h = height
A = 1

2(a + b)h Area

a

b

h

Circle
R = radius
D = diameter
D = 2R
A = pR2 = 1

4 pD2 Area

C = 2pR = pD   Circumference
C
D

= p      For all circles

p ≈ 3.14159

D

R
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Rectangular Solid
V = abc        Volume
T = 2ab + 2ac + 2bc Total surface area

a
b

c

Right Circular Cylinder
R = radius  of  base
h = height
V = pR2h     Volume
S = 2pRh     Lateral surface area
T = 2pR(R + h) Total surface area

h

R

Right Circular Cone
R = radius of base
h = height
s = slant height
V = 1

3pR2h              Volume
S = pRs = pR2R2 + h2         Lateral surface area
T = pR(R + s) = pR(R + 2R2 + h2) Total surface area

h
s

R

Sphere
R = radius
D = diameter
D = 2R
V = 4

3pR3 = 1
6pD3     Volume

S = 4pR2 = pD2 Surface area

D R
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Basic Functions

25 5

25

5

Identity function
f (x) 5 x

x

f (x)

  

25 5

25

5

Absolute value function
g(x) 5 uxu

x

g(x)

  

25 5

25

5

Square function
h(x) 5 x2

x

h(x)

25 5

25

5

Cube function
m(x) 5 x3

x

m(x)

  

25 5

25

5

Square root function
n(x) 5     x

x

n(x)

  

25 5

25

5

Cube root function
p(x) 5     x

x

p(x)

3

Linear and Constant Functions

Linear function
f (x) 5 mx 1 b

m . 0
Rising

x

f (x)

b

  
Linear function
f (x) 5 mx 1 b

m , 0
Falling

x

f (x)

b

  
Constant function

f (x) 5 b

m 5 0
Horizontal

x

f (x)

b

Quadratic Functions

f(x) 5 ax2 1 bx 1 c 5 a(x 2 h)2 1 k

a . 0
Opens upward

a , 0
Opens downward

f (x)

x
x

f (x)

h

k

k

h

A Library of Elementary Functions
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Exponential and Logarithmic Functions

Exponential function
f (x) 5 bx

b . 1

x

f (x)

(0, 1)

  
Exponential function

f (x) 5 bx

0 , b , 1

x

f (x)

(0, 1)

  
Logarithmic function

f (x) 5 logb x

b . 1

x

f (x)

(0, 1)

Representative Polynomial Functions (degree + 2)
f (x)

25 5

240

40

Third-degree polynomial
f (x) 5 x3 2 x2 2 14x 1 11

x

 

f (x)

25 5

240

40

Fourth-degree polynomial
f (x) 5 x4 2 3x3 2 9x2 1 23x 1 8

x

 

f (x)

25 5

240

40

Fifth-degree polynomial
f (x) 5 2x5 2 x4 1 14x3 1 6x2 2 45x 2 3

x

Representative Rational Functions

f (x) 5
x 2 3
x 2 2

25 5

25

5

x

f (x)

 
f (x) 5

8
x2 2 4

25 5

25

5

x

f (x)

 f (x) 5 x 1
1
x

25 5

25

5

x

f (x)

Graph Transformations

25 5

25

5

x

f (x)

g

f

h

Vertical shift
g(x) 5 f (x) 1 2
h(x) 5 f (x) 2 3   

25 5

25

5

x

f (x)
g f h

Horizontal shift
g(x) 5 f (x 1 3)
h(x) 5 f (x 2 2)   

25 5

25

5

x

f (x)

g f

h

Stretch, shrink and reflection
g(x) 5 2 f (x)

h(x) 5 20.5 f (x)
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Derivative Rules and Properties
Constant Function Rule

If  f (x) = C, then f ′(x) = 0.

Power Rule
If  f (x) = xn, then f ′(x) = nxn - 1.

Constant Multiple Property
If  f (x) = ku(x), then f ′(x) = ku′(x).

Sum and Difference Property
If  f (x) = u(x) { v(x), then f ′(x) = u′(x) { v′(x).

Product Rule
If  f (x) = F(x) S(x), then f ′(x) = F(x) S ′(x) + S(x)F ′(x).

Quotient Rule

If  f (x) =
T(x)

B(x)
 , then f ′(x) =

B(x)T ′(x) - T(x)B ′(x)

3B(x)42  .

Chain Rule
If m(x) = E3I(x)4, then m′(x) = E′3I(x)4  I′(x).

Derivatives of Exponential and Logarithmic Functions
d
dx

 ex = ex d
dx

 bx = bx ln b  (b 7 0,  b ≠ 1)

d
dx

 ln x =
1
x

d
dx

 logb x =
1

ln b
a1

x
b  (b 7 0,  b ≠ 1,  x 7 0)

Indefinite Integral Formulas and Properties

Lxndx =
xn + 1

n + 1
+ C (n ≠ -1) Lexdx = ex + C L

1
x
 dx = ln � x � + C (x ≠ 0)

Lk f(x)dx = kL f(x)dx L 3f(x) { g(x)4dx = L f(x)dx { Lg(x)dx

Integration By Parts Formula

Ludv = uv - Lvdu

Economics and Finance Formulas
Cost, Revenue, and Profit

R = x  p (revenue R is equal to the number x of units sold times the price p per unit)

P = R - C (profit P is equal to revenue R minus cost C)

P′ = R′ - C′ (marginal profit P′ is equal to marginal revenue R′ minus marginal cost C′)

C(x) =
C(x)

x
(average cost equals cost divided by the number of units; similarly for R, P)

C ′(x) =
d
dx

 C (x) (marginal average cost is the derivative of average cost; similarly for R′, P′)

Calculus Reference
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Compound Interest

A = Pa1 +
r
m
b

mt

 (amount A on principal P at annual rate r, compounded m times per year for t years)

Continuous Compound Interest
A = Pert (amount A on principal P at annual rate r, compounded continuously for t years)

Elasticity of Demand
If price p and demand x are related by x = f (p), then the elasticity of demand is given by

E(p) = -  
p f ′(p)

f (p)

Gini Index of Income Concentration
If y = f (x) is the equation of a Lorenz curve, then

Gini index = 2L
1

0

3x - f (x)4dx

Consumers’ Surplus and Producers’ Surplus

CS = L
x

0

3D(x) - p4  dx        PS = L
x

0

3p - S(x)4  dx

(where (x, p) is a point on the graph of the price–demand equation p = D(x), or a point on the graph of the price–
supply equation p = S(x), respectively)

Total Income for a Continuous Income Stream
If f (t) is the rate of flow, then the total income from t = a to t = b is given by

L
b

a

f  (t)dt

Future Value of a Continuous Income Stream
If f (t) is the rate of flow, and income is continuously invested at rate r, compounded continuously, then the future 
value at the end of T  years is given by

FV = L
T

0

f (t)er(T - t)dt
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Features
• Matched Problems accompanying each of the more than 300 worked examples to 

help students grasp concepts and assess their understanding

• Explore and Discuss problems that help to introduce new concepts or build upon a  
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