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Preface 

M
easurement is at the heart of all science and of all applications of sci

ence. This is true for all areas of science, including the scientific attempt 

to understand or predict human behavior. Behavioral research, whether 

done by educators, psychologists, or other social scientists, depends on successful 

measurement of human behavior or of psychological attributes that arc thought to 

affect that behavior. Likewise, the application of psychological or educational sci

ence often rests on successful measurement at a level that is no less important than 

it is in research. Indeed, scientifically sound clinical or educational progr<lms and 

i ntcrvcn t ions req uirc measu remcnl of the behaviors or psychological attributes of 

the individuals enrolled in these programs. 

This book is concerned with methods used to evaluate the quality of measures, 

such as psychological tests, that arc used in research and applied settings by psy

chologists and others interested in human behavior. The scientific study of the 

quality of psychological measures is called psychometrics. Psychometrics is an 

extremely important field of study, and it can be highly technical. In fact, <ln article 

published in the New \'in-k 'l'il/lcs (l lerszcnhorn, 2006) slated that "psyclwmctrics, 

one of the most obscure, esoteric and cerebral professions in i\merica, is <liso one 

of the hottest." 

The Conceptual Orientation of This Book, 
Its Purpose, and the Intended Audience 

I )espite the potential "esoteric and cerebral" n<llure of the field, psych01netrics docs 

not need to be presented in a highly technical manner. The purpose of our book is 

to introduce thejiuulnl/lclllllfs of psychometrics to people who need to undnstand 

the properties of measures used in psychology and other behavioral sciences. More 

specifically, our goal is to make these important issues as accessible and as clear as 

possible, to as many readers as possible-including people who might initially 'hy 

away from something that might be seen as "obscure, esoteric, and cerebral." 
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x1v PSYCHOMETRICS AI"-! INTRODUCTION 

With these goals in mind, our coverage of psychometrics is intended to be deep 

but intuitive and relatively nontechnical. We believe that this is a novel approach. 

On one hand, our treatment is much broader and deeper than the cursory treat

ment of psychometrics in undergraduate "Tests and Measurement" texts. On the 

other hand, it is more intuitive and conceptual than the highly technical treat

ment in books and journal articles intended for usc by professionals in the field of 

psychometrics. We believe that anyone familiar with basic algebra and something 

equivalent to an undergraduate course in statistics will be comfortable with most of 

the material in this book. In general, our hope is that readers will attain a solid and 

intuitive understanding of the importance, meaning, and evaluation of a variety of 

fundamental psychometric concepts and issues. 

This book is highly relevant for a variety of courses, including Psychological 

Testing, Psychometrics, Educational Measurement, Personality Assessment, 

Cognitive Assessment, Clinical Assessment, and, frankly, any type of Assessment 

course. Moreover, it could be an important part of courses with an emphasis on 

measurement in many areas of basic and applied science-for example, in medical 

training, sociology, exercise science, and public health. 

Thus, this book is intended for usc by advanced undergraduates, graduate stu

dents, and professionals across a variety of behavioral sciences and related disci

plines. It will be of value to those who need a solid foundation in the basic concepts 

and logic of psychometrics or measurement more generally. Although it was not 

primarily written for people who are intending to become or already are psycho

metricians, it can serve as a very useful complement to the more technical texts. 

In our attempt to make the topics of psychometrics accessible to our target audi

ence, we constructed illustrative testing situations along with small artificial data 

sets to demonstrate important features of psychometric concepts. The data sets are 

used alongside algebraic proofs as a way of underscoring the conceptual meaning of 

fundamental psychometric concepts. In addition, we have departed fi·01n the usual 

practice of having a separate chapter devoted to statistics. Instead, we introduce 

statistical concepts throughout the text as needed, and we present them as tools to 

help solve particular psychometric problems. For example, we discuss bctor analysis 

initially in the context of exploring the dimensionality of a test. Thus, we tic the sta

tistical procedures to a set of important and intuitive conceptual issues. Our experi

ence as classroom instructors has taught us that students benefit when quantitative 

concepts arc linked to problems in this way, as the links seem to reinforce students' 

understanding of both the statistical procedures and the psychometric concepts. 

Organizational Overview 

The organization of this book is intended to bcilitate the readers' insight into core 

psychometric concepts and perspectives. In the first chapter, we address the basic 

importance of psychological measurement and psychometrics. In addition, we 

examine a few important issues and themes that cut across all remaining chapters. 

This explicit treatment of these issues and themes should help solidify the concepts 

that arc addressed in the later chapters. 



In Chapters 2 through 4, we address important issues in measurement theory 

and in the statistical basis of psychometric theory. These chapters arc fundamental 

to a full appreciation and understanding of the later chapters that examine psy

chometric theory in depth. Specifically, these chapters examine issues of scaling in 

psychological measurement, concepts in the quantification of psychological differ

ences and the quantification of associations among psychological variables, issues 

in the interpretation of test scores, and concepts in the meaning and evaluation of 
test dimensionality. Although these topics can be technical, our intention is to focus 

these chapters at a level that is relatively intuitive and conceptual. 
In Chapters 5 through 7, we examine the psychometric concept of reliability. 

I n  these chapters, we differentiate three fundamental aspects of reliability. In 

Chapter 5, we introduce the conceptual basis of reliability, focusing on the per

spective of classical test theory. In Chapter 6, we discuss the common methods of 

estimating and evaluating the reliability of test scores. In Chapter 7, we explore 

the importance of reliability in terms of applied testing, scientific research, and 

test development. We believe that differentiating these three aspects of reliability 

provides readers with an understanding of reliability that is clearer and deeper 

than what might be obtained fi·om many existing treatments of the topic. In all 

these chapters, we emphasize the psychological meaning of the concepts and 

procedures. We hope that this maximizes readers' ability to interpret reliability 
information meaningfully. 

In Chapters 8 and 9, we examine the psychometric concept of validity. In these 

chapters, we examine the conceptual foundations of this important psychomet

ric issue, we discuss many methods that are used to evaluate validity, and we 

emphasize the important issues to consider in the evaluation process. In these 

chapters, we adopt the most contemporary perspective on validity, as articulated 

by three national organizations involved in psychological testing-the American 

Psychological Association ( APA), the American Educational Research Association 

(i\ER/\), and the National Council on Measur ement in Education (NCME). 

Although we discuss the traditional "tripartite" model of validity (i.e., content 

validity, criterion validity, and construct validity), which is emphasized in most 

existing measurement-oriented texts, our core discussion represents a more mod

ern view of test validity and the evidence relevant to evaluating test validity. 

In Chapters I 0 and 11, we discuss two important threats to the psychometric 

quality of tests. We believe that it is vital to acknowledge and understand the chal

lenges bced by those who develop, administer, and interpret psychological tests. 

h1rthermore, we believe that it is crucial to grasp the creative and effective meth

ods that have been developed as ways of coping with many of these challenges to 

psychometric quality. In Chapter I 0, we explore response biases, which obscure 

the true differences among individuals taking psychological tests. In this chapter 

(which is unique to this book), we describe several different types of biases, we 

demonstrate their deleterious effects on psychological measurement, and we exam

ine some methods of preventing or minimizing these effects. I n  Chapter I I , we 

examine test bias, which obscures the true differences between groups of people. 

I n  this chapter, we describe the importance of test bias, the methods of detecting 

different forms of test bias, and the important difference between test bias and test 

fairness. 
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xv1 PSYCHOMETRICS: AI'-J NTRODUCTIOI'" 

Finally, in ( :hapters 12 to 14, we present advanced contemporary approaches to 

psychometrics. Much of the book reflects the most common psychometric approach 

in behavioral research and application-classical test theory. In the final three 

chapters, we provide overviews of approaches that move beyond this l raditional 

approach. In Chapter 12, we present confirmatory hlctor analysis (CFA), which 

is a powerful tool that allows test developers and test users to examine important 

psychometric issues with flexibility and rigor. In Chapter 13, we discuss the basic 

concepts and purpose of generalizability theory, which can be seen as an expan

sion of the more traditional approaches to psychometric theory. In Chapter I 3, 

we discuss item response theory (IRT) (aka latent trait theory or modern test 

theory), which is a very different way of conceptualizing the psychometric quality 

of tests, although it docs have some similarities to classical test theory. In all three 

chapters, we provide in-depth examples of the applications and interpretations, 

so that readers can have a deeper understanding of these important advanced 

approaches. Although a full understanding of these advanced approaches requires 

greater statistical knowledge than is required for most of the book, our goal is to 

present these approaches at a level that emphasizes their conceptual basis more 

than their statistical foundations. 

New to This Edition 

I (Mike hi IT) have made important revisions for the second edition of the book. 

These revisions reflect, in part, the valuable suggestions made by the reviewers of 

the first edition. They also reflect my views of the important issues that needed new 

coverage, greater attention, or better clarity. Considering these significant changes, 

I believe that the second edition is thus meaningfully improved beyond the first 

edition-it covers all of the previous content, it includes a great amount of impor

tant new content, and it does <Ill even better job of achieving our overarching goal 

of accessibility and intuitiveness. 

General Changes 

Some ch;mges are consistent throughout the book, not being limited to par

ticular l·hapters. I have thought long and hard about all the material in the hook, 

searching fi>r opportunities to make several types of general changes. 

I. M<lllY changes were made to increase the clarity and accessibility of the mate

ri<Ii. I identified sections, paragraphs, sentences, and words that, I felt, could 

he improved fi1r clarity, and I rewrote and/or reorganized this material. 

2. l{clatcdly, 111any changes added to the depth of coverage of important 

material. Sometimes this depth was provided by adding a sentence or two, 

'>Oinetimes it was a new paragraph, sometimes it was a new section, and, in 

one instance, it was an entirely new chapter. 



3. There were also a number of opportunities to be more explicit about the 

importance and implications of the material. If this book can't convey why 

readers should care about the material, then why should they spend their 
valu<lble time working through any particular concept, why should they 

bother reading this book, why should they try to remember the material, 

and why should they believe that psychometrics is, in gener<ll, a field with 
anything to offer society? Although this was a goal in the first edition, there 

were new opportunities to go even further in the new edition. 

4. Largely as a function of other changes, the references were expanded and 

updated significantly. Specifically, this book has expanded from approxi

mately 170 references to approximately 210. This expansion by nearly 25'!-b 

provides readers with even more original sources that they can tum to for 

greater depth, more technical discussions, and useful illustrations. 

5. Finally, the clarity of connections among the chapters was enhanced 
throughout the book. Many chapters now include a greater number of 

explicit references to other chapters, when discussing concepts that led to 

(or built on) principles or concepts that appeared in those other chapters. 

These changes were intended to help readers move back and forth more 

easily in the book, allowing them to remind themselves of important points 
when building on those points. 

Chapter-Specific Changes 

Of course, there arc substantial-and olicn unique-changes to each individual 
chapter in the book. ·nl be 'urc, some chapters received more attention than oth

ers; however, all chapters, at a minimum, went through changes that improve their 
content and style. 

Cl111ptcr I (Introduction): The most noticeable revisions to this chapter arc in 
the very beginning. The first several paragraphs have been rewritten to make the 

relevance and important of psychological testing and psychometrics as clear and 
robust as possible, as early <lS possible. This change was made to grab readers' at ten· 

lion immediately and to convey the importance of the nwteri<d---both personally 
and societally. 

Choptcr 2 (Smliug): The changes to this chapter are mostly among the "Cencral 

Changes" mentioned above. Th<ll is, this chapter has received a great deal of atten

tion to its clarity, depth, and importance (e.g., a new brief section on the pr<lctical 

implications of scales o( measurement h<lS been introduced). Indeed, this chapter 

has perhaps benefited (rom such fundamental changes more than any other chapter 
in the book. 

Cl111ptcr 3 ( Indil·idunl !Jif(crcnccs 111111 Corrclntions): There arc three significant 

changes to this chapter. The discussion o( the relevance o("individual differences" 
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XVIII PSYCHOMFTRICS AI" INTRODUCTIOI" 

111 experimental research was expanded to clarify and convey the true scope of 

importance of the topic. I also presented the logic and structure of variance/ 

covariance matrices, which arc the basis of some later concepts/procedures. Finally, 

the discussion of composite variables was extended to include the covariance 

between composite variables, which is directly relevant to the discussion of reli

ability in Chapter 5. 

Chapter 4 (Dimensionality and Factor Analysis): There are several important 

additions and revisions to this chapter. First, the three core dimensionality ques

tions were cast in a more central manner, expanding their role in the conceptual 

foundations of dimensionality and in factor analysis (e.g., viewing exploratory be
tor analysis as a tool to answer these questions). Second, and most substantially, the 

chapter now includes a greatly expanded discussion of the process of conducting an 

exploratory fiKtor analysis, along with a new flowchart that presents this process in 

an intuitive and visual way. This discussion expands on the illustration in the previ

ous edition, adding much more depth of discussion regarding topics such as filctor 

rotation, hKtor loadings, simple structure, and what to do when there are violations 

of simple structure. These additions should provide a much more robust founda

tion for readers who arc beginning to !cam the logic, execution, and interpretation 

of h1ctor analysis. A third addition is a new brief section that presents an overview 

of CFA, with reference to Chapter 12, later in the book. 

Chapter 5 (Reliability, Conceptrwl Basis): Changes to this chapter focused mainly 

on enhancing the clarity of presentation, adding depth in some important places. 

Even though reviewers' comments about this chapter have been very positive, these 

improvements should make the chapter even more accessible. 

Chapter 6 (E!mpiriwl listimates of Reliability): There are several key addi

tions to this chapter. hrst, there is added depth to the discussion of standardized 

alpha-separating it more clearly from raw alpha and explaining when and why 

it is relevant and appropriate to use. Second, additional discussion and examples 

(i.e., output) have been provided on how to usc statistical software to obtain vari

ous estimates of reliability. Third, I acknowledged some criticisms of alpha and the 

existence of altcmative reliability indices based on internal consistency. Fourth, and 

most substantially, the discussion of the psychometric quality of difference scores 

was greatly expanded and generalized. 

Lhoptcr 7 ('1'/u: ll!lportnncc o(Relia/Jility): In this revised chapter, extensive text 

and tables were added to link reliability to effect size and significance testing in 

a broader range of analytic contexts. This was done via expanded explanations, 

fundamental equations, and illustrations f(lCusing mainly on a basic independent

groups comparison. This significantly broadens the scope of implications. In addi

tion, the chapter now explicitly discusses the ti1ct that test development procedures 

(e.g., reliability-oriented item analyses) should be conducted separately l(>r each 

dimcmion being assessed by the test. This was implicit in the previous edition of 

the hook, hut the revision should reduce any relevant confusion about this matter 

when working with multidimensional tests. 



Chapter 8 (Validity, Conceptual Basis): This chapter has been very well received 

by reviewers, so I chose not to make too many revisions. That said, the chapter was 

revised for clarity, and the discussion of the importance of validity was moved to a 

much earlier section, making sure that readers appreciated the value of what they 

would learn as the chapter unf(Jidcd. 

Chapter 9 (Estimating and Evaluating Conve1gent and Viscriminant Validity 

Evidence): This chapter now explicitly discusses the importance of understanding 

and being attentive to the h1ctors that affect the size of a validity coeftlcicnt. It also 

provides more practical guidelines for using information about the t:1ctors affect

ing a validity coefllcient (e.g., what exactly to look for and what to do). In addi

tion, the section on relative proportions was broadened to include skew as a more 

general concept, of which relative proportions is one intuitive example. I;inally, 

and perhaps most significantly, the chapter now f(xuses deeply on a debate about 

the validity of the SAT as a practical example of the interpretation of validity cocf"

ficients and related issues. 

Chapter I 0 (Response Bias): Revisions to this chapter were relatively minimal. 

However, the chapter docs have an enhanced discussion of the implications f(lr 

applied testing contexts, some new discussion of the literature on "bking good" in 

employment settings, a new example of "adjmting" for social desirability li·01n a 

research study of moral behavior, and (again) general revisions f(lr clarity and depth. 

Chapter II (Test !lias): This chapter benefited from several important changes. 

First, it has a deepened explanation of several important concepts, along with use

ful examples. Second, it now notes particular software programs that can be used 

to conduct relevant analyses. Third, and most substantially, it has an extensive new 

section that focuses on the 2001 University of California Report on the SAT as a 

real-life example of an examination of potential predictive bias. 

Chapter 12 (Conjirnwtory Factor ;\nalysis): This chapter is entirely new to this 

edition. Several reviewers suggested that the book would benefit from discussion 

of CFA, given its important and growing role in psychometrics. I agreed with this 

suggestion, and I am happy to offer what's hopefully an accessible and intuitive 

introduction to the topic. This chapter primarily {(JCUSCS Oil the usc of u:A to 

evaluate measurement modeb, with an in-depth discussion of the logic and inter

pretation of the process. It also discusses the usc of CFA to evaluate reliability and 

convergent/discriminant validity evidence. As a side note, the chapters' overview of 

the logic and interpretation of CFA can be extended to other modeling procedures, 

including path analysis and structural equation modeling. 

Chapter 13 (Genemlizo/Jility Theory): This revised chapter has three main addi

tions. First, it provides much greater discussion of the meaning and interpreta

tion of variance components. Second, it has a much deepened discussion of the 

difference between random effects and fixed effects, particularly in terms of their 

estimation and interpretation. Finally, it now explicitly notes that researchers arc 

primarily interested in relative effects rather than absolute effects. 
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C'hnpter 14 (/tell/ Ncsponse Theory): Several key revisions to this chapter have 

been made. First, the introductory section has been expanded a bit, to provide 

greater context h1r the chapter. Second, it has a new discussion of "guessing" as an 

item parameter applicable in some testing contexts. Third, and very substantially, it 

benefits fi·mn new and extensive discussion or more advanced lRT models, particu

larly the graded response model (GRM).Jn doing this, it includes an in-depth (but 

hopefully intuitive) coverage of the GRM model's articulation of response prob

abilities, item characteristic curves, and item information curves. This expansion 

makes the chapter much more relevant for modern testing practices. 
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CHAPTER 1 

Psychometrics and the 
Importance of Psychological 
Measurement 

Y
our life has probably been shaped, in part, by psychological me;ISUITmenl. 

Whether you arc a student, a teacher, a parent, a psychologist, a physician, a 

nurse, a patient, a lawyer, a police officer, or a business person, you have taken 

psychological tests, your family members have taken psychological tests, or you 

have been allected by people who have taken psychological tests. These tests Gill 

affect our education, our careers, our Lunily life, our safety, our health, our wealth, 

and, potentially, our h;lppiness. Indeed, almost every member of an industrialized 

society is affected by psychological measurement at some point in his or her li!C

both directly and indirectly. 

It is even li1ir to say that in extreme situ;ltions psychological measurement can 

have life or death consequences. You might think that this suggestion is overly sen

sational, far-IC!Lhed, and perhaps even simply wrong, but it is true. The L1ct is that 

in some states and nations prisoners who are mentally retarded cannot receive a 

death penalty. h>r ex;llllplc, the North Carolina State Ceneral Assembly states that 

"a men!;11ly retarded person convicted of first degree murder shall not be sentenced 

to death" (Criminal Procedure J\ct, 2007); it dclines mental retardation, in part, 

as general intellectual functioning that is "signilicantly sub-average." 1\ut what is 

signillcantly subaverage intellectual functioning, and how could we know whether 

a person's intelligence is indeed significantly subaverage? 

These d i fficul I quest ions are answered in terms of psychologicd tests. Speci llcally, 

the (;eneral Assembly states that significantly subaverage intellectual funLtioning is 

indicated by a score of 70 or below "on an individually administered, scientilically 

recognized standardized intelligence quoticnt test administered by a licensed psy

chiatrist or psychologist." Put simply, if a person has an intelligence quotient (I()) 

score below 70, then he or she might not be sentenced to death by the state of North 
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Carolina; however, if a person has an IQ score above 70, then he or she can legally 

be put to death. Thus, though it might seem hard to believe, intelligence testing can 

affect whether men and women might live or die, quite literally. 

Of course, few consequences of psychological measurement arc so dramatic, but 

they can indeed be real, long-lasting, and important. Given the important role of 

psychological tests in our lives and in society more generally, it is imperative that 

such tests have extremely high quality. If testing has such robust implications, then 

it should be conducted with the strongest possible tools and procedures. 

This hook is about understanding whether such tools and procedures are indeed 

strong-how to determine whether a test produces scores that are psychologically 

meaningful and trustworthy. In addition, the principles and concepts discussed in 

this book are important for creating tests that are psychologically meaningful and 

trustworthy. These principles and concepts are known as "psychometrics." 

Why Psychological Testing Matters to You 

Considering the potential impact of psychological testing, we believe that everyone 

needs to understand the basic principles of psychological measurement. Whether 

you wish to be a practitioner of behavioral science, a behavioral researcher, or a 

sophisticated member of modern society, your life is likely to be affected by psy

chological mcasu rcmcnt. 

If you arc reading this book, then you might be considering a career involving 

psychological measurement. Some of you might be considering careers in the prac

tice or application of a behavioral science. Whether you are a clinical psychologist, 

a school psychologist, a human resources director, a university admissions officer, 

or a teacher, your work might require you to make decisions on the basis of scores 

obtained from some kind of psychological test. When a patient responds to a psy

chopathology assessment, when a student completes a test of cognitive ability, or 

when a job applicant fills out a personality inventory, there is an attempt to measure 

some type of psychological characteristic. 

In such cases, basic measurement information needs to be examined carefully if 

it is going to be used to make decisions about the lives of people. Without a solid 

undcrsta nd i ng oft he basic pri nciplcs of psychological mcasuremcn t, test users risk 

misinterpreting or misusing the information derived from psychological tests. Such 

mi,intcrpretation or misuse might harm patients, students, clients, employees, and 

applicants, and it can lead to lawsuits t(>r the test user. Proper test interpretation and 

usc c1n he extremely valuable l(>r test users and beneficial for test takers. 

Some of' you might be considering careers in behavioral research. Whether 

your area is psychology, education, or any other behavioral science, measure

ment is at the heart of your research process. Whether you conduct experimental 

rcsc;1rch, survey research, or any other kind of quantitative research, measure

ment i> at the heart of your research process. Whether you arc interested in 

differences between individuals, changes in people across time, differences 

between genders, dillcrcnccs between classrooms, differences between treatment 
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conditions, differences between teachers, or differences between cultures, mea

surement is at the heart of your research process. If something is not measured 

or is not measured well, then it cannot be studied with any scientific validity. If 

you wish to interpret your research findings in a meaningful and accurate man

ner, then you must evaluate critically the data that you have collected in your 

research. 

As mentioned earlier, even if you do not pursue a career involving psychologic1l 

measurement, you will almost surely face the consequences of psychological mea

surement, either directly or indirectly. Applicants to graduate school and various 

professional schools must take tests of knowledge and achievement. job appli

cants might be hired (or not) partially on the basis of scores on personality tests. 

Employees might be promoted (or passed over f(Jr promotion) partially on the 

basis of supervisor ratings of psychological characteristics such as attitude, compe

tence, or collegiality. Parents must cope with the consequences of their children's 

educational testing. People seeking psychological services might be diagnosed and 

treated partially on the basis of their responses to various psychological measures. 

Even more broadly, our society receives information and recommendations 

based on research flndings. Whether you are (or will be) an applicant, an employee, 

a parent, a psychological client, or an informed member of society, the more 

knowledge you have about psychological measurement, the more discriminating 

a consumer you will be. You will have a better sense of when to accept or believe 

test scores, when to question the use and interpretation of test scores, and what you 

need to know to make such important judgments. 

Given the widespread use and importance of psychological measurement, it is 

crucial to understand the properties affecting the quality of such measurements. 

This book is about the important ottri/mtes of tile instm111ents that psychologists 

usc to measure psychological attributes and processes. 

We address several fundamental questions related to the logic, development, 

evaluation, and usc of psychological measures. What docs it mean to attribute 

scores to characteristics such as intelligence, memory, self-esteem, shyness, hap

piness, or executive functioning? How do you know if a particular psychological 

measure is trustworthy and interpretable? I low confident should you be when 

interpreting an individual's score on a particular psychological test? What kinds of 

questions should you ask to evaluate the quality of a psychological test? What are 

some of the different kinds of psychological measures? What arc some of the chal

lenges to psychological measurement? How is the measurement of psychological 

characteristics similar to and different from the measurement of physical charac

teristics of objects? I low should you interpret some of the technical int(mnation 

regarding psychological measurement? 

We hope to address these kinds of questions in a way th;lt provides a deep and 

intuitive understanding of psychometrics. This book is intended to provide you 

with the knowledge and skills needed to evaluate psychological tests intelligently. 

Testing plays an important role in our science and in our practice, and it plays 

an increasingly important role in our society. We hope that this book helps you 

become a more informed consumer and, possibly, producer of psychological 

information. 
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Observable Behavior and 
Unobservable Psychological AHributes 

People usc many kinds of instruments to measure the observable properties of the 

physical world. hH example, if a person wants to measure the length of a piece of 

lumber, then he or she might use a tape measure. People also use various instru

ments to measure the properties of the physical world that arc not directly observ

able. For example, clocks are used to measure time, and voltmeters are used to 

measure the change in voltage between two points in an electric circuit. 

Similarly, psychologists, educators, and others use psychological tests as instru

ments to measure observable events in the physical world. In the behavioral sci

ences, these observable events arc typically some kind of behavior, and behavioral 

mcasuremcn t is usually conducted for two purposes. Someti mcs, psychologists 

measure a behavior because they arc interested in that specific behavior in its own 

right. For example, some psychologists have studied the way h1cial expressions 

affect the perception of emotions. The Facial Action Coding System (FACS; Ekman 

& Friesen, I<J7H) was developed to allow researchers to pinpoint movements of 

very specific h1cial muscles. Researchers using the FACS can measure precise "facial 

behavior" to examine which of a person's h1Cial movements affect other people's 

perceptions of emotions. In such cases, researchers are interested in the specific 

facial behaviors themselves; they do not interpret them as signals of some underly

ing psychological process or characteristics. 

l'vluch more commonly, however, behavioral scientists observe human behavior 

as a way of assessing unobservable psychological attributes such as intelligence, 

depression, knowledge, aptitude, extroversion, or ability. In such cases, they identify 

some type of observable behavior that they think represents the particular unob

servable psychological attribute, state, or process. They then measure the behavior 

and try to interpret those measurements in terms of the unobservable psychologi

cal characteristics that they think arc reflected in the behavior. In most, but not all, 

cases, psychologists develop psychological tests as a way to sample the behavior that 

they think is sensitive to the underlying psychological attribute. 

h)r example, suppose that we wish to identify which of two students, Sam 

and William, had greater working memory. 'l(J make this identification, we must 

mca-;u1-e each of their working memories. Unfortunately, there is no known way 

to observe dircllly working memory-we cannot directly "sec" memory inside �� 

pcr-;on's head. Therefore, we must develop a task involving observable behavior 

tlwt would <lllow us to measure working memory. For example, we might ask the 

'>tudents to repeat a string of digits presented to them one al a time and in rapid 

-;ucce,-;ion. If our two students differ in their task performance, then we might 

assume that they differ in their working memory. If Sam could repeat more of. the 

digit-, than William, then we might conclude that Sam's working memory is in some 

way superior to William's. This conclusion requires that we make an inference-

that ;111 overt behavior, the number of recalled digits, is systematically related to an 

unobscrv�1blc mental attribute, working memory. 

I • 
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There arc three things that you should notice about this attempt to measure 
working memory. First, we made an inference from an observable behavior to an 

unobservable psychological attribute. That is, we assumed that the particular behav

ior that we observed was in bet a measure of working memory. If our inference was 
reasonable, then we would say th<ll our interpretation of the behavior has a degree 

of validity. 1\lthough validity is a matter of degree, if the scores from a measure seem 

to be actually measuring the mental state or mental process that we think they arc 

measuring, we say that our interpretation of scores on the measure is valid. 

Second, for our interpretation of digit recall scores to be considered valid, the 

recall task had to bc theoretically linked to working memory. It would not have 

made theoretical sense, for example, to measure working memory by timing 

William's and Sam's running speed in the 100-metcr dash. In the behavioral sci

ences, we often make an inference from an observable behavior to an unobserv

able psychological attribute. Theref(lre, measurement in psychology often, but 

not always, involves some type of theory linking psychological characteristics, 

processes, or states to an observable behavior that is thought to retlect differences 

in the psychological attribute. 

There is a third important feature of our attempt to measure working mem

ory. Working memory is itself a theoretical concept. When measuring working 

memory, we assume that working memory is more than a figment of our imagina

tion. Psychologists, educators, and other social scientists often turn to theoretical 

concepts such as working memory to explain differences in people's behavior. 

Psychologists refer to these theoretical concepts as hypothetiml co11stmcts or /a/ell/ 

variables. They are theoretical psychological characteristics, attributes, processes, or 

states that cannot be directly observed, and they include things such as learning, 

intelligence, sci f-esteem, dreams, attitudes, and feelings. The operations or proce

dures used to measure these hypothetical constructs, or l(lr that matter to measure 

anything, arc called opcmtio11al dc{illiliolls. In our example, the number of recalled 

digits was used as an operational definition of some aspect of working memory, 

which itself is an unobservable hypothetical cons! ruct. 

You should not he dismayed by the fact that psychologists, educators, and other 

social scientists rely on unobservable hypothetical constructs to cxph1in human 

behavior. Ivlcasurement in the physical sciences, as well as the behavioral sciences, 

often involves making inferences about unobservable events, things, and processes 

based on observable events. As an example, physicists write about four types of 

"l(lrces" that exist in the universe: (I) the strong l(li'Cl\ (2) the electromagnetic 

l(lrcc, (3) the weak f(liU, and (11) gravity. Each of these l(m-cs is invisible, but their 

effects on the behavior of visible events can be seen. For example, objects do not 

lloat into space ofT the surbce of our planet. Theoretically, the l(Hu of gravity is 

preventing this from happening. Physicists have built huge pieces of equipment to 

create opportunities to observe the effects of some of these l(lrccs on observable 

phenomena. In effect, the equipment is used to create scenarios in which to mea

sure observable phenomena that arc believed to be caused by the unseen l(Hn's. 

'l(l be sure, the sciences differ in the number and nature of unobservable char

acteristics, events, or processes that are of concern to them. Some sciences might 
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rely on relatively few, while others might rely on many. Some sciences might have 

strong empirical bases for their unobservable constructs (e.g., gravity), while others 

might have weak empirical bases (e.g., penis envy). Nevertheless, all sciences rely on 

unobservable constructs to some degree, and they all measure those constructs by 

measuring some observable events or behaviors. 

Psychological Tests: Definition and Types 

What Is a Psychological Test? 

According to Cronbach 0960), a psychological test "is a systematic proce

dure for comparing the behavior of two or more people" (p. 21 ). The definition 

includes three important components: ( 1) tests involve behavioral samples of 

some kind, (2) the behavioral samples must be collected in some systematic way, 

and ( 3) the purpose of the tests is to compare the behaviors of two or more people. 

We would modify the third component to include a comparison of performance 

by the same individuals at ditlercnt points in time, but otherwise we find the defi

nition appealing. 

One of the appealing features of the definition is its generality. The idea of a test 

is sometimes limited to paper-and-pencil tests. For example, the Beck Depression 

Inventory (BDI; Beck, Steer, & Brown, 1996) is a 21-item multiple-choice test 

designed to measure depression. People who take the test read each question and 

then choose an answer from one of several supplied answers. Degree of depression 

is evaluated by counting the number of answers of a certain type to each of the 

questions. The BDI is clearly a test, but other methods of systematically sampling 

behavior arc also tests. For example, in laboratory situations, researchers ask par

ticipants to respond in various ways to well-defined stimulus events; participants 

might be asked to watch for a particular visual event and respond by pressing, as 

quickly as possible, a response key. In other laboratory situations, participants 

might be asked to make judgments regarding the intensity of stimuli such as 

sounds. By Cronbach's definition, these arc also tests. 

The generality of Cronbach's definition also extends to the type of informa
tion produced by tests. Some tests produce numbers that represent the amount of 

some psychological attribute possessed by a person. For example, the U.S. National 

Assessment of Education Progress ( NAEP; http:/ /nccs.cd.gov/nationsreportcard/ 

ndc/help/qs/NAEP _Scales. asp) uses statistical procedures to select test items that, 

at least in theory, produce data that can be interpreted as reflecting the amount of 

knowledge or skill possessed by children in various academic areas, such as reading. 

( Hhcr tests produce categorical data-people who take the test can be sorted into 

group> based on their responses to test items. The !louse-Tree-Person Test (Burns, 

I 9il7) i> an example of such a test. Children who take the test arc asked to draw a 

house, a tree, and a person. The drawings are evaluated for certain characteristics, 

and on the basis of these evaluations, children can be sorted into groups (however, 

this procedure might not be "systematic" in Cronbach's terms). Note that we are 



Chapter 1 : The Importance of Psychological Measurement 7 

not making any claims about the quality of the information obtained from the tests 

that we are using as examples. In Chapter 2, we will discuss the data produced by 

psychological tests. 

Another extremely important feature of C:ronbach's definition concerns the gen

eral purpose of psychological tests. Specifically, tests must be capable of comparing 

the behavior of different people (interinrlivirlual rliJlcrences) or the behavior of the 

same individuals at different points in time or under different circumstances ( intm

individual dijjcrences). The purpose of measurement in psychology is to identify 

and, if possible, quantify interindividual or intra-individual differences. This is a 

fundamental theme that runs throughout our book, and we will return to it in 

every chapter. Inter- and intra-individual differences on test performance contrib

ute to test score variability, a necessary component of any attempt to measure any 

psychological attribute. 

Types of Tests 

There are tens of thousands of psychological tests in the public domain 

(Educational Testing Service, 2011 ). These tests vary from each other along dozens 

of different dimensions. For example, tests can vary in content: There arc achieve

ment tests, aptitude tests, intelligence tests, personality tests, attitude surveys, 

and so on. 'Jests also vary with regard to the type of response required: There are 

open-ended tests, in which people can answer test questions by saying anything 

they want in response to the questions on the test, and there are closed-ended tests, 

which require people to answer questions by choosing among alternative answers 

provided in the test. ·rests also vary according to the methods used to administer 

them: There are individually administered tests, and there arc tests designed to be 

administered to groups of people. 

Another common distinction concerns the intended purpose of test scores. 

Psychological tests are often categorized as either criterion rcj(:rcnccrl (also called 

domain referenced) or norn1 rcjcrenccrl. Criterion-referenced tests arc most often 

seen in settings in which a decision must be made about a person's skill level. A 

fixed, predetermined cutoff test score is established, and it is used to sort people 

into two groups: (I) those whose performance exceeds the performance crite

rion and ( 2) those whose perform a nee docs not. In coni rast, norm-referenced 

tests arc usually used to compare a person's test score with scores from a rcf(Tcncc 

sa111plc or 11 nornuztivc S11111plc, in order to understand how the person compares 

with other people. Characteristics of the reference sample arc thought to be rep

resentative of some well-defined population. A person's test score is compared 

with the expected or average score on the test that would be obtained if the lest 

were to be given to all members of the population. Scores on norm-referenced 

tests arc of little value if the reference sample is not representative of some 

population of people, if the relevant population is not well-defined, or if there 

is doubt that the person being tested is a member of the relevant population. 

In principle, none of these issues arise when evaluating a score on a criterion

referenced test. 
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In practice, the distinction between norm-referenced tests and crite

rion-referenced tests is often blurred. Criterion-referenced tests are always 

"normcd" in some sense. That is, criterion cutoff scores arc not determined at 

random. The cutoff score will be associated with a decision criterion based on 

some standard or expected level of performance of people who might take the 

test. Most of us have taken written driver's license tests. These arc criterion

rcl"crcnccd tests because a person taking the test must obtain a score that 

exceeds some predetermined cutoff. The questions on these tests were selected 

to ensure that the average person who is qualified to take the test has a good 

chance or answering enough of the questions to pass the test. The distinction 

between criterion- and norm-referenced tests is l"urther blurred when scores 

l"rom norm-referenced tests arc used as cutoff scores. Institutions of higher 

education might have minimum SAT or American College Testing (ACT) score 

requirements for admission or for various types of scholarships. Public schools 

usc cutoff scores from intelligence tests to sort children into groups. In some 

cases, the usc of scores from norm-referenced tests can have life or death 

consequences. Despite the problems with the distinction between criterion

referenced tests and norm-referenced tests, we will sec that there are slightly 

different methods used to assess the quality of criterion-referenced and norm

referenced tests. 

Yet another common distinction is between spcctletl tests and power tests. 

Speeded tests arc time-limited tests. In general, people who take a speeded test 

arc not expected to complete the entire test in the allotted time. Speeded tests are 

scored by counting the number of questions answered in the allotted time period. 

It is assumed that there is a high probability that each question will be answered 

L·orrcctly; each of the questions on a speeded test should be of comparable diffi

culty. In contrast, power tests arc not time limited, in that examinees are expected 

to answer all the test questions. Often, power tests arc scored also by counting the 

number of correct answers made on the test. 'lest items must range in difficulty if 

scores on these tests arc to be used to discriminate among people with regard to 

the psychological attribute of interest. As is the case with the distinction between 

critnion-rcfcrenced tests and norm-rckrcnced tests, slightly different methods arc 

used to assess the quality of speeded and power tests. 

!\ brief note conceming terminology: There arc several different terms that arc 

often used as synonyms f(lr the word test. The words llll'!1SIIrC, instrti/1/CIIt, sw/e, 

iiiiiCIItory, /}{il/cry, sclictlulc, and nsscss/1/CIII have <Ill been used in different contexts 

<lnd by dii'krcnt authors as �ynonyms lilr the word test. We will sometimes refer to 

tests a.., instruments and sometimes as measures. The word balterywill be restricted 

in usc to rclcrenccs to bundled tests; bundled tests arc instruments intended to be 

;Jdrninisll"red together but arc not 1/ccessari/y designed to measure a single psy

Lhological <lllribute. The word 11/CI/SIIrc is one or the most confusing words in the 

psychology ll'�ting literature. In< :haptcr 2, we arc going to discuss in detail the usc 

oi' thi-; word as a verb, as in "The lll>l was designed to 11/Ct/SIII'C depression." The 

word 11/CiiSIIn' also is often used in its noun form, as in "The l\1)1 is a good 11/COS//rc 

oi' depression." We will use both l(lJ"lllS or the term and will rely on the context to 

ci;Jrii'y its meaning. 
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Psychometrics 

We previously cletincd a test as a procedure for systematically sampling behav

ior. These behavioral samples arc attempts to measure, at least in some sense, 

psychological attributes of people. The act of giving psychological tests to people 

is referred to as testing. In this book, we will not be concerned with the process of 

testing; rather, our concern will focus on psychological tests themselves. We will 

not, however, be concerned with particular psychological tests, except as a test 

might illustrate an important principle. In sum, we focus on the ottrilmtcs of tests. 

Just as psychological tests arc designed to measure psychological attributes of 

people (e.g., anxiety, intelligence), psychometrics is the science concerned with 

evaluating the attributes of psychological tests. Three of these attributes will be of 

particular interest: ( l) the type of information (in most cases, scores) genera ted by 

the use of psychological tests, (2) the reliability of data from psychological tests, and 

( 3) issues concerning the validity of data obtained from psychological tests. The 

remaining chapters in this book describe the procedures that psychometricians usc 
to evaluate these attributes of tests. 

Note that just as psychological attributes of people (e.g., anxiety) arc most often 

conceptualized as hypothetical constructs (i.e., abstract theoretical attributes of 

the mind), psychological tests also have attributes that are represented by theo

retical concepts such as validity or reliability. The important analogy is that just 

as psychological tests are about theoretical attributes of people, psychometrics is 

about theoretical attributes of psychological tests. Just as psychological attributes 

of people must be measured, so also psychometric attributes of tests must be esti

mated. Psychometrics is about the procedures used to estimate and evaluate the 
attributes of tests. 

Francis Galton and the Scope of Psychometrics 

Prancis c;alton (I R22-l 911) seems to have been obsessed with measurement. 

Among other things, he tried to measure the efficacy of prayer (Calton, I RR3), 

the number of brush stokes needed to complete a painting, and the number of 

times children fidgeted (i.e., moved around in their scats; Calton, IRR5) while in a 

classroom. lie was a meteorologist (Calton, I R63) and a geneticist (Calton, I fl(llJ), 

making important contributions to measurement in both fields. Most important 

f(lr our purpose, however, was his interest in what he called "anthropometries," 

the measurement of human features, such as head size, arm length, <llld phy-;ical 

strength. For (;alton (I R79), these features included psychological clwractcristics. 

lie rekrrcd to the measurement of mental katurcs as "psychometry," which he 

defined as "the art of imposing measurement and number upon operations of 

the mind'·· !p. 149). 'lbday, we might refer to this "art" as psychometrics; however, 

the term has acquired a variety of meanings since it was first coined by (;alton. 
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Calton is considered the founding f�tthcr of modern psychometrics. lie made 

many conceptual and technical innovations that arc the foundations of psycho

metric theory and practice. In hKt, you might already be bmiliar with some of 

(;alton's innovations. For example, he demonstrated the utility of using the normal 

distribution (Galton, 1907) to model many human characteristics, he developed the 

idea of· the correlation coefficient I Calton, I HH9), and he pioneered the usc of sam

pling f(>r the purpose of identifying and treating measurement error (Galton, 1902; 

this is a remarkable article, followed by an extensive development by Karl Pearson 

of< ;alton's ideas). All these arc concepts that we will treat in detail in subsequent 

sections of this book. (;alton also tried to measure mental abilities using mental 

tests. Although his specific efforts in this regard proved unsuccessful, the ide<l that a 

relatively simple, easy to administer test of mental abilities could be developed laid 

the f(nmdation for the modern intelligence test. 

While other early pioneers in psychology pursued general laws or principles of 

mental phenomena that apply to all people, Galton focused on the variability of 

human characteristics. That is, c;a]ton was primarily interested in the ways in which 

people differ from each other. Some people arc taller than others, some arc smarter 

than others, some arc more attractive than others, and some arc more aggressive 

than others. How large arc these differences, what causes such differences, and what 

arc the consequences of such differences? 
Galton's approach to psychology became known as differential psychology, the 

study of individual difTerences. This is usually seen as contrasting with experimen

tal psychology, which f(>cused mainly on the average person instead of the differ

ences among people. Because Galton is closely associated with both psychometrics 

and differential psychology, contemporary authors sometimes view psychometrics 

as an issue that concerns only those who study individual differences. They some

times seem to believe that psychometrics is not a concern f(>r those who take a more 

experimental approach to human behavior. We absolutely disagree with this view. 

( )ur view of psychometrics, as well as our usc of the term, is not limited to issues 

in differential psychology. Our view is that all psychologists, whatever their specific 

area of research or practice, must be concerned with measuring behavior (in this 

context, we will be concerned only with human behavior) and psychological attri

bute-,. Therefore, they should <til understand the problems of measuring behavior and 

p�ychological attributes, and these problems are the subject matter or psychometrics. 

Regardless of one's specific interest, all behavioral sciences and all applications of 

the behavioral sciences depend on the ability to identify and quantity variability 

in hunwn behavior. We will return to this issue later in the book, with specific 

examples and principles underscoring the wide relevance of psychometric concepts. 

l'sychomet rics is the study of' the opcr<lt iom and procedures used lo measure vari

<tbility in behavior <llld to connect those measurements to psychological phenomena. 

Challenges to Measurement in Psychology 

'vVc can never be sure that a measurement is perfect. Is your bathroom scale com

pletely accurate? Is the odometer in your car <l flawless measure of distance? Is 
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your new tape measure J()O<X> correct? When you visit your physician, is it possible 

that the nurse's measure of your blood pressure is off a hit? Even the usc of highly 

precise scient iflc i nsl rumen ts is potentially afkctcd by various errors, not the least 

of which is human error in reading the instruments. All measurements, and there

fore all sciences, arc affected by various challenges tlwt can reduce measurement 
accuracy. 

Despite the many similarities among the sciences, measurement in the behav
ioral sciences has special challenges that do not exist or arc greatly reduced in the 

physicd sciences. These challenges <lffect our confidence in our understanding and 

interpretation of behavioral observations. We will find that one of these challenges 

is related to the complexity of psychologic1l phenomena; notions such as intel

ligence, self-esteem, anxiety, depression, and so on, have many different aspects to 
them. Thus, one of our challenges is to try to identil)r and capture the important 

aspects of these types of human psychological <It tributes in a single number. 

Port icipant react il'ity is another such challenge. Bcca usc, in most cases, psycholo

gists arc measuring psychological characteristics of people who arc conscious and 

generally know that they are being measured, the act of measurement can itself 

influence the psychological state or process being measured. for example, suppose 
we design a questionnaire to determine whether you arc a racist. Your responses 

to the questionnaire might he influenced by your desire not to he thought of as 

a racist rather than by your true attitudes toward people who belong to ethnic or 

racial groups other than your own. Therefore, people's knowledge that they arc 

being observed can cause them to react in ways that obscure the interpretation of 
the behavior that is being observed. This is usually not a problem when measur

ing features of nonsentienl physical objects; the weight of a bunch of grapes is not 
influenced by the act of weighing them. 

Participant reactivity can take many forms. In research situations, some par

ticipants may try to figure out the researcher's purpose I(Jr a study, changing their 

behavior to accommodate the researcher ( dcnwnd chamctcrist ics). In research and 

in applied-measurement situations, some people might become apprehensive, 

others might change their behavior to try to impress the person doing the mea

surement (social t!csim/Ji/ity), and still others might even change their beh<lvior to 

convey a poor impression to the person doing the mL'<lSUI-cmenl ( nwlin�crin�). In 

each case, the validity of the measure is compromised-the person's "true" psy

chological characteristic is obscured by a temporary mol ivai ion or stale that is a 

reaction to the very act of being measured. 
A second clwllcnge lo psychological measurement is that, in the bchavior<li sci 

cnccs, the people collecting the behavioral data (observing the behavior, scoring a 
test, interpreting a verbal response, etc.) can bring biases and expectations to their 

task. J\rlcasu remcnl qual i l y is compromised when observers allow l hcsc in ilucncL'S 

to d istorl l heir observations. l:'xpcctn I io11 and /Jill> cfkcts cu1 he d i fficull to detect. In 

most cases, we can trusl thal people who collect behavioral data arc not consciously 

cheating; however, even subtle, unintended biases can have effects. ror CX<llnple, a 

researcher might give intelligence tests lo young children as part of a study of a pro

gram to improve the cognitive devclopml'lll of the children. The researchn might 

have a vested interest in certain intelligence lest score outcomes, and as a result, he 

or she might allow a bias, perhaps even an unconscious one, to iniluencc the testing 
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procedures. 0/Jserver, or scorer, /;iris of this t ypc can occur in the physical sciences, 

but it is less likely to occur because physical scientists rely more heavily than do 

social scientists on mechanical devices as data collection agents. 

The measures used in the behavioral sciences tend to differ from those used 

by physical scientists in a third important respect. Psychologists tend to rely on 

composite scores when measuring psychological attributes. Many of the tests used 

by psychologists involve a series of questions, all of which arc intended to measure 

some aspect of a particular psychological attribute or process. h>r example, a per

sonality test might have I 0 questions designed to measure extroversion. Similarly, 

class examinations that arc used to measure learning or knowledge generally 

include many questions. It is common practice to score each question and then to 

sum or otherwise combine the items' scores to create a total or composite score. The 

total score represents the final measure of the relevant construct�for example, an 

extroversion score or a "knowledge of algebra" score. Although composite scores do 

have their benefits (as we will discuss in a later chapter), several issues complicate 

their usc and evaluation. In contrast, the physical sciences arc less likely to rely on 

composite scores in their measurement procedures (although there are exceptions 

to this). When measuring a physical feature of the world, such as the length of a 

piece of lumber, the weight of a rnolecule, or the speed of a moving object, scientists 

can usually rely on a single value obtained from a single type of measurement. 

A fourth challenge to psychological measurement is score sensitivity. Sensitivity 

refers to the ability of a measure to discriminate adequately between meaningful 

amounts or units of the dimension that is being measured. As an example from the 

physical world, consider someone trying to measure the width of a hair with a stan

dard yardstick. Yardstick units are simply too large to be of any use in this situation. 

Similarly, a psychologist may find that a procedure for measuring a psychological 

attribute or process may not be sensitive enough to discriminate between the real 

differences that exist in the attribute or process. 

For example, imagine a clinical psychologist who wishes to track her clients' 

emotional changes from one therapeutic session to another. If she chooses a mea

sure that is not sufficiently sensitive to pick up small differences, then she might 

miss small but important differences in mood. For example, she might ask her 

clients to complete this very straightforward "measure" after each session: 

Check the box below that best describes your general emotional st<lte over the 
past week: 

D D 
Bad 

The p'iychologist might become disheartened by her clients' apparent lack of 

progrc'is because her clients might rarely, if ever, feel sufficiently happy to checkmark 

the"( ;ood" box. The key measurement point is that her measure might be masking 

real improveme nt by her clients. That is, her clients might be making meaningful 

improvements--originally feeling extremely anxious and depressed and eventu

ally feeling much less anxious and depressed. llowcvcr, they might not actually 
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feel "good," even though they feel much better than they did at the beginning of 

therapy. Unfortunately, her scale is too crude or insensitive, in that it allows only two 

responses and docs not distinguish among important levels of"badncss" or among 

levels of "goodness." A more precise and sensitive scale might look like this: 

Choose the number that best describes your general emotional slate over the 
past week: 

2 3 4 5 6 7 8 

Extremely Good Somewhat Good Somewhat Bod Ex.tremely Bod 

A scale of this kind might allow more fine-grained differentiation along the 

"good versus bad" dimension as compared with the original scale. 

hlr psychologists, the sensitivity problem is exacerbated because we might not 

anticipate the magnitude of meaningful differences associated with the mental 

attributes being measured. Although this problem can emerge in the physical sci

ences, physical scientists are usually aware of it before they do their research. In 

contrast, social scientists may be unaware of the scale sensitivity issue even after 

they have collected their measurements. 

A final challenge is an apparent lack of awareness of important psychometric 

inf(Jrmation. In the behavioral sciences, particularly in the application of behav

ioral science, psychological measurement is often a social or cultural activity. 

Whether it provides inf(mnation from a client to a therapist regarding psychiatric 

symptoms, from a student to a teacher regarding the student's level of knowledge, 

or from a job applicant to a potential employer regarding the applicant's personal

ity traits and skill, applied psychological measurement often is used to L1cilitatc the 

flow of information among people. Unf(Jrtunalcly, such mcasuremmt often seems 

to be conducted with little or no regard for the psychometric quality of the tests. 

1:or example, most classroom instructors give class examinations. Only on very 

rare occasions do instructors have any inf(mnation about the psychometric prop

erties of their examinations. In bet, instructors might not even be able to clearly 

define the reason for giving the examination. Is the instructor trying to measure 

knowledge (a latent variable or hypothetic1l construct), trying to determine which 

students can answer the most questions, or trying to motivate students to learn rel

evant infornwtion? Thus, some classroom tests might have qucslionahlc quality as 

indicators or· differences among students in their knowledge of· a particular subject. 

Even so, the tests might serve the very useful purpose of motivating students to 
acquire the relevant knowledge. 

Although a poorly constructed lest might serve �l 1nc�1ningful purpose in some 

community of people (e.g., motivating students to learn important int(mnalion), 

psycho me! rically well-f(mncd in f(mnat ion is lwt tcr than i nf(mnation ! ha! is not 

well-h:mned. Furthermore, if a test or measure is intended to reflect the psyclwlogi

cal differences among people, then the test must have strong psychometric proper

tics. Knowledge of these properties should inform the development or selection of a 

tcst-all clsc being equal, lest users should usc psychometrically sound instruments. 



,-·· 

14 PSYCI rJMETRICS AI'-J NJRODIJCTIOI'-J 

In sum, this survey of challenges should indicate that although measurement 

in the behavioral sciences and measurement in the physical sciences have much in 

common, there arc important differences. These differences should always inform 

our understanding of data collected from psychological measures. For example, 

we should be aware that participant reactivity can affect responses to psychologi

cal tests. At the same time, we hope to demonstrate that behavioral scientists have 

significant understanding of these challenges and that they have generated effective 

mel hods of minimizing, dctccti ng, and accounting for various problems. Similarly, 

bchavior<11 scientists have developed methods that reduce the potential impact of 

experimenter bias in the measurement process. In this book, we discuss methods 

that psychometricians have developed to h;111dlc the challenges associated with the 

developrncnl, evaluation, and process of measurement of psychological attributes 

and behavioral characteristics. 

Theme: The Importance of Individual Differences 

;\ fundamental theme links the following chapters. The theme is related to the 

fact that our ability to identify and characterize psychological differences is at 

the heart of all psychological measurement and is the foundation of all methods 

used to evaluate tests. The purpose of measurement in psychology is to identify 

and quantify the psychological differences that exist between people, over time or 

across conditions. These differences contribute to score variability and are the basis 

of all psychometric inf(mnation. Even when a practicing psychologist, educator, or 

consultant makes a decision about a single person based on the person's score on a 

psychological test, the meaning and quality of the person's score can be understood 

only in the context of the lest's ability to detect differences among people. 

All measures in psychology require that we obtain behavioral samples of some 

kind. I\chavioral samples might include scores on a paper-and-pencil test, writ

len or oral responses to questions, or records based on behavioral observations. 

Uscf"ul psychomctric information about the samples can be obtained only if people 

difkr with respect to the behavior that we arc sampling. If a behavioral sampling 

procedure produces individual differences, then the psychometric properties or the 

scores obtained !"rom the sampling procedure can be assessed along a wide variety 

of" dimensions. In this book, we will present the logic and analytic procedures asso

ciated with thcc;c psychometric properties. 

If we think that a particular behavioral sampling procedure is a measure of an 

unobservable psychological allributc, then we must be able to argue th<ll individld 

difkrenccs on the behavioral sample arc indeed related to individual differences on 

the relevant undnlying pc;ychological attribute. hlr example, a psychologist might 

he intercc;tcd in measuring visual allcntion. Because visual attention is an unob

c;crvahlc hypothetical construct, the psychologist will have to create a bclwvioral 

s;unpling procedure that reflects individual dif"krcnccs in visual attention. Before 

wncluding that the procedure is interpretable as a measure of" visual attention, 

the psychologist must accumulate evidence suggesting that there is an association 
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between individuals' scores on the test and their "true" levels of visual attention. 

The process by which the psychologist accumulates this evidence is called the vali

tbtion process; it will be examined in later chapters. 

In the f(>llowing chapters, we will show how individual differences <liT quantified 

and how their quantification is the first step in solving many of the challenges to mea

surement in psychology to which we have already alluded. Individual differences rep

resent the currency of psychometric analysis. In effect, individu<tl differences provide 

the data f(>r psychometric analyses of tests. 

Suggested Readings 

For a history of early developments in psychological testing: 

DuBois, 1'. II. ( 1970). ;\ iiistOI)' o(flS)'ciiologim/ testing. Boston, fVli\: Allyn & Bacon. 

For <l nwdern historical and philosophictl treatment of the history of measurement 

in psychology: 

Michell, J. ( 200:\). Epistemology of measurement: The relevance of it<> history for quanti
lication in the social sciences. Sociu/ Science In/(mnution, 42, 515-53-1. 
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CHAPTER 2 

Scaling 

I 
f something exists, it must exist in some amount (Thorndike, 1918 ). Psychologists 

generally believe that people have psychological attributes, such as thoughts, 

feelings, emotions, personality characteristics, intelligence, learning styles, and 

so on. If we believe this, then we must assume that each psychological attribute 

exists in some quantity. With this in mind, psychological measurement can be seen 

as a process through which numbers are assigned to represent the quantities of psy

chological attributes. The mc<lsurcment process succeeds if the numbers assigned 

to an attribute rdlcct the actual amounts of that attribute. 

The standard definition of measurement (borrowed from Stevens, 1946) 

found in most introductory test and measurement texts goes something like this: 

"Measurement is the assignment of numerals to objects or events according to 

rules." In the case of psychology, education, and other behavioral sciences, the 

"events" of interest arc generally samples of individuals' behaviors. The "rules" 

mentioned in this definition usually refer to the scales of measurement proposed 

by Stevens ( 1946 ). 

This chapter is about scaling, which concerns the way m11ncrical values arc 

assigned to psychological attributes. Scaling is a fundamental issue in measure

ment, and a full appreciation of scaling and its implications depends on a variety 

of abstract issues. In this chapter, we discuss the meaning of numerals, the way 

in which numerals can be used to represent psychological attributes, and the 

problems associated with trying to connect psychological attributes with numer

als. We emphasize psychological tests that arc intended to measure unobservable 

psychological characteristics, such as attitudes, personality traits, and intelligence. 

Such characteristics present special problems f(x measurement, and we will discuss 

several possible solutions for these problems. 

We acknowledge that these issues might not elicit cheers of excitement and 

enthusiasm among some readers or perhaps among most readers (or perhaps in 

any reader?); however, these issues arc fundamental to psychological measurement, 

to measurement in general, and to the pursuit and application of science. More 

19 
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specifically, they arc important because they help define scales of measurement. 

That is, they help differentiate the ways in which psychologists apply numerical 

values in psychological measurement. In turn, these differences have important 

implications for the usc and interpretation of scores from psychological tests. The 

way scientists and practitioners usc and make sense out of tests depends heavily on 

the scllcs of measurement being used. 

Thus, we encourage you to devote attention to the concepts in this chapter. We 

believe that your attention will he rewarded with new insights into the foundations 

of psychological n1casuremcnt and even into the nature of numbers. Indeed, in pre

paring this chapter, our own understanding of such issues has grown and evolved. 

Fundamental Issues With Numbers 

In psychological measurement, numerals arc used to represent an individual's 

level of a psychological attribute. For example, we usc your scores on an IQ test 

to represent your level of intelligence, we might use your scores Oil the Rosenberg 

Self-Esteem Inventory to represent your level of self-esteem, and we might even use 

a zero or one to represent your biological sex (e.g., males might be referred to as 

"Croup Zero" and females as "Group One"). Thus, psychological measurement is 

heavily oriented toward numbers and quantification. 

Civcn this heavily numerical orientation, it is important to understand that 

numcr<lis, however, can represent psychological attributes in different ways, 

depending on the nature of the numeral that is used to represent the attribute. In 

this section, we describe important properties of numerals, and we show how these 

properties influence the ways in which n umcra Is rcpresen t psychological attributes. 

We must understand three important numerical properties, and we must under

stand the meaning of zero. In essence, the numerical properties of identity, order, and 

qu<llltity reflect the ways in which nunwrals represent potential dilfercnces in psy

Lhological attributes. rurthermore, zero is an interestingly complex number, and this 

complexity has implications f(Jr the meaning of different kinds of test scores. i\ test 

score or 0 Gill have extremely diffl'l'ent meanings in dil"krcnt measur ement contexts. 

The Property of Identity 

The most fundamental form of measurement is the ability to reflect "sameness 

versus dirli:rcntncss." Indeed, the simplest measurements arc those that differentiate 

between categories of people. For example, you might ask first-grade teachers to 

identify those children in their classrooms who have behavior problems. The chil

dren who arc cf<�s-;ified as lwving beh<tvior problems should be si111ilnr to each other 

with re-;pcct to their behavior. In addition, the children with behavior problems 

-,hould he difJi'rcnl li-0111 the children who arc classified as not having behavioral 

prohlcim. Th<ll is, the individuals within a category should be the same as each 

other in terms of sharing a psychological feature, but they should he different from 

the individuals in another category. In psychology, this requires that we sort people 
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into at least two categories. The idea is that objects or events can he sorted into 

categories that arc based on similarity of features. In many cases, these features are 

behavioral characteristics rctlccting psychological attributes, such as happy or sad, 

introverted or extraverted, and so on. 

There are certain rules that must be followed when sorting people into catego

ries. The first and most straightf(>rward rule is that, to establish a category, the 

people within a category must satisfy the property of identity. That is, all people 

within a particular category must be "identical" with respect to the feature reflected 

by the category. For example, everyone in the "behavioral problem" group must, 

in bet, have behavioral problems, and everyone in the "no behavioral problem" 

group must not have behavioral problems. Second, the categories must be lllllfllllily 

cxclllsivc. If a person is classified as having a behavioral problem, then he or she 

cannot simultaneously be classified as not having a behavioral problem. Third, the 

categories must be cxilllllstivc. If you think that all first-graders can be classified as 

either having behavioral problems or not having behavioral problems, then these 

categories would be exhaustive. If, on the other hand, you can im;1gine someone 

who cannot be so easily classified, then you would need another category to cap

ture that person's behavior. 'It> summarize the second and third rules, each person 

should fi1ll into one and only one category. 

J\t this level, numerals serve simply as labels of categories. The categories could 

be labeled with letters, names, or numerals. We could label the category of children 

with behavior problems as "Behavior Problem Children," we could refer to the cate

gory as "Category B," or we could assign a numcr;ll to the category. h>r example, we 

could label the group as "0," "I," or" I 00." ;\t this level, numerals arc generally not 

thought of as h;wing true mathematical value. For example, if" I "  is used to reflect 

the category of children with behavioral problems and "2" is used to represent the 

category of children without behavioral problems, then we would not interpret the 

apparent !-point dif'fcrence between the numerical labels as having any f(mn of 

quantitative significance. 

The latter point merits some additional depth. When making categorical dilkren

tiations between people, the distinctions between members of different categories rep

resent dif'fcrences in kind or quality rather than differences in amount. Again returning 

to the teachers' classifications of children, the difkrence between the two groups is a 

dif'fcrmce between type:> of childrm-those children who have behavioral problems 

and those who do not. In this example, the classification is not intemkd to represent 

the amount of problems (e.g., a lot vs. a little) but rather the presence or absence of 

problems. In this way, the classification is intended to represent two qualitatively di-;

tinct groups of children. Of course, you might object that this is a rather nude and 

imprecise way of measuring or representing behavioral problems, suggesting that such 

an ;1ttribute is more accurately reflected in some quantity than in a simple presence/ 

absence categorization. This leads to ;Jddition;JI properties of numerals. 

The Property of Order 

;\!though the property or identity reflects the most fundamental f(mn or 

lllL'<lsurement, the property of order conveys greater inf(mnation. ;\s discussed 
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above, when numerals have only the property of identity, they convey information 

about whether two individuals are similar or different, but nothing more. In con

trast, when numerals have the property of order, they convey information about the 

relative amount of an attribute that people possess. 

When numerals have the property of order, they indicate the rank order of 

people relative to each other along some dimension. In this case, the numeral I 

might be assigned to a person because he or she possesses more of an attribute than 

anyone else in the group. The numeral 2 might be assigned to the person with the 

next greatest amount of the attribute, and so on. f:or example, teachers might be 

asked to rank children in their classrooms according the children's interest in learn

ing. Teachers might be instructed to assign the numeral I to the child who shows 

the most interest in learning, 2 to the child whose interest in learning is greater 

than all the other children except the first child, continuing in this way until all the 

children have been ranked according to their interest in learning. 

When numerals are used to indicate order, the numerals again serve essentially 

as labels. For example, the numeral I indicated a person who had more of an attri

bute than anyone else in the group. The child with the greatest interest in learning 

was assigned the numeral I as a label indicating the child's rank. In fact, we could 

just as easily assign letters as numerals to indicate the children's ranks. The child 

with the most !least) interest in learning might have been assigned the letter A to 

indicate his or her rank. Each person in a group of people receives a numeral (or 

letter) indicating that person's relative standing within the group with respect to 

some attribute. For communication purposes, it is essential that the meaning of 

the symbol used to indicate rank be clearly defined. We simply need to know what 

I, or A, means in each context. 

Although the property of order conveys more information than the property of 

identity, it is still quite limited. While it tells us the relative amount of differences 

between people, it does not tell us about the actual degree of differences in that 

attribute. For example, we know that the child ranked I has more interest in learn

ing than the child ranked 2, but we do not know how much more interest he has. 

The two children could differ only slightly in their amount of interest in learning, 

or they could differ dramatically. In this way, when numerals have the property of 

order, they arc still a rather imprecise way of representing psychological diflerences. 

The Property of Quantity 

Although the property of order conveys more inf(mnation than the property 

of identity, the property of quantity conveys even greater information. As noted 

above, numerals that have the property of order convey information about which 

of two individuals has a higher level of a psychological attribute, but they convey no 

inf(mnation about the exact amounts of that attribute. In contrast, when numerals 

have the property of quantity, they provide information about the magnitude of 

dillcrcnces between people. 

At this level, numerals reflect reolnunJlJers or, for our purposes, numbers. The 

number I is used to define the size of the basic unit on any particular scale. All 
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other values on the scale are multiples of I or fractions of 1. Each numeral I e.g., the 

numeral 4) represents a count of basic units. Think about a thermometer that you 

might usc to measure temperature. "lo describe how warm the weather is, your ther

mometer reflects temperature in terms of"number of degrees" I above or below 0). 

The degree is the unit of measurement, and temperature is represented in terms of 
this unit. 

Units of measurement are standardized quantities; the size of a unit will be 

determined by some convention. For example, 1 degree Celsius (I "C) is cletlnecl 

(originally) in terms of II! OOth of the difference between the temperature at which 

ice melts and the temperature at which water boils. We will expand on this impor

tant point shortly. 

Real numbers arc also said to be continuous. In principle, any real number can 

be divided into infinitely small parts. In the context of measurement, real numbers 

are often referred to as swlar, metric, or cardino/, or sometimes simply as quantito

tive values. 

The power of real numbers derives from the t�1ct that they can be used to mea

sure the quantity of an attribute of a thing, person, or event. When applied to an 

attribute in an appropriate way, a real number indicates the amount of something. 

For example, a day that has a temperature of SO"C is not simply warmer than a day 

that has a temperature of 40"C; it is precisely 10 units I i.e., degrees) wanner. 

When psychologists use psychological tests to measure psychological attributes, 

they often assume that the test scores have the property of quantity. As we will see 

later, this is seldom a good assumption. 

The Number 0 

The number 0 is a strange number, with a variety of meanings. In fact, it has 

only been during the past couple of I 00 years that the numeral 0 has been treated 

effectively as an integer. There arc two potential meanings of the number 0. Tb 

properly interpret a test score ofO, you must understand which meaning is relevant. 

In one possible meaning, zero reflects a state in which an attribute of an object 

or event has no existence. If you said that an object was 0.0 em long, you would be 

claiming that the object has no length, at least in any ordinary sense of the term 

lellgth. Zero in this context is referred to as n/Jsolutc zero. In psychology, the best 

example of a behavioral measure with an absolute 0 point might be reaction time. 

The second possible meaning of zero is to view it as an arbitrary quantity of 

an attribute./\. zero of this type is called a relative or ar/Jitmry zero. In the physical 

world, attributes such as time (e.g., calendar, clock) and temperature measured by 

standard thermometers arc examples. In these examples, 0 is simply an arbitrary 

point on a scale used to measure that feature. For example, a temperature of 0 on 

the Celsius scale represents the melting point of ice, but it docs not represent the 

"absence" of anything (i.e., it docs not represent the absence of temperature or of 

warmth). 

The psychological world is filled, at least potentially, with attributes having a 

relative 0 point. 1:or example, it is dirtlcult to think that conscious people could 
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truly have no (zero) intelligence, self-esteem, introversion, social skills, attitudes, 

and so on. Although we might inf(m11ally say that someone "has no social skill," 

psychologists would not suggest this formally-indeed, we actually believe that 

everyone has some level of social skill (and self-esteem, etc.), though some people 

might have much lower levels than other people. 

Despite the [Kt that most psychological attributes do not have an absolute 0 

point, psychological tests of such attributes could produce a score of 0. In such 

cases, the zero would be considered arbitrary, not truly reflecting an absence of 

the attribute. Furthermore, we will see that many if not most psychological lest 

scores can be expressed as a type of score called a z score, which will be discussed in 

Chapter 3. The mean of a distribution of z scores will always be 0. Zero in this case 

represents an arbitrary or relative 1.cro. 

In psychology, there is a serious problem in determining whether zero should be 

thought of as relative or absolute. The problem concerns the distinction between 

the features of a test used to measure a psychological attribute ;md the features of 

the psychological attribute that is being measured. We will usc an example from 

Thorndike ( 2005) to illustrate this problem. Thorndike describes a scenario in 

which sixth-grade children are given a spelling test. He asks us to imagine that one 

of the children f�1ils to spell correctly any of the words on the test. That is, the child 

receives a score of 0 on the test. In this case, the spelling test is the instrument used 

to measure an attribute of the child-the child's spelling ability. The lest has an 

absolute 0 point. That is, a test score of 0 means that the child l�1iled to answer any 

of the spelling questions correctly. It is difficult, however, to imagine that a sixth

grade child is incapable of spelling; the child's spelling o/Ji/ity is probably not zero. 

The question then becomes how we arc going to treat the child's test score. Should 

we consider it an absolute zero or a relative zero? 

In tcrprctat ion of psychological test scores will be in fluenccd by the type of zero 

associ<1tcd with a test. As a technical matter, if we can assume that a test has <111 

absolute zero, then we can fCel comfortable performing the arithmetical operations 

of multiplication and division on the test scores. On the other hand, if a test has 

a relative 0 point, we would probably want to restrict arithmetical operations on 

the scores to addition and subtraction. As a matter of evaluation, it is important 

to know what zero means-docs it mean that a person who scored 0 on a test had 

none of the attribute that was being measured, or docs it mean that the person 

might not have h<1d <1 measurable amount of the attribute, at least not measurable 

with respect to the particular test you used to measure the attribute? 

In sum, the three projJcrlics of numerals and the meaning of zero arc fundamcn

l<d issues that shape our understanding of psychological test scores. If two people 

share a psychological fCaturc, then we h<1VC established the properly of identity. If 

two people share a comnwn attribute but one person has more of that attribute 

than the other, we can establish order. If order can be established and if we can 

determine lww IIIIIch more of the attribute one person has compared with others, 

then we have C>l<1blishcd the property of quantity. Put another way, identity is the 

most func.lamcntal lcvel of 111L'<1>UITmcnl. 'J(J n1casure anything, the identity of the 

thing mu<>t be established. Once the identity of an attribute is known, then it might 

be possible to csl<1hlish order. h1rthcrmorc, order is a fundamental characteristic of 
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quantity. As we will sec, numbers play a different role in representing psychological 

attributes depending on their level of measurement. 

Most psychological tests arc treated as if they provide numerical scores that 

possess the property of quantity. In the next two sections, we will discuss two 

fundamental issues regarding the meaning and usc of such quantitative test scores. 

Specifically, we will discuss the meaning of a "unit of measurement," the issues 

involved with counting those units, and the implications of those counts. 

Units of Measurement 

The property of quantity requires that units of measurement be clearly defined. As 

we will discuss in the next section, quantitative measurement depends on our abil

ity to count these units. 1\cforc we discuss the process and implications of counting 

the units of measurement, we must clarify what is meant by a unit of measurement. 

In many t�uniliar cases of physical mcasu rem en l, the u n i Is of measurement are 

readily apparent. If people want to measure the length of a piece of lumber, then 

they will probably usc some type of tape marked otl in units of inches or centime

ters. The length of the piece of lumber is determined by counting the number of 

these units from one end of the board to the other end. 

In contrast, in many cases of psychological measurement, units of measure

ment arc often less obvious. When we measure a psychological characteristic 

such as shyness, working memory, attention, or intelligence, what arc the units of 

measurement? Presumably, they arc responses of some kind, perhaps to a series 

of questions or items. 1\ut how do we know whether, or to what extent, those 

responses are related to the psychological attributes themselves? We will return 

to these questions at a later time, as they represent the most vexing problems in 

psychometrics. At this point, we simply want to concentrate on the notion of a 

unit of measurement. 1\ccause this notion can be most easily illustrated in the 

context of the measurement of the length of physical objects (Michell, 1990), we 

will introduce it in that way. 

Imagine that you <He building a bookshelf" and you need to measure the length 

of pieces of wood. Unfortunately, you cannot find a tape measure, a yardstick, or 

a ruler of any kind-how can you precisely quantify the lengths of your various 

pieces of wood? When push comes lo shove, you could create your own unique 

measurement system. First, you happen to find a long wooden curtain rod IcC! over 

from a previous project. You cut a small piece or the curtain rod; let us call this an 

"xrod." 1\ccausc your pieces of bookshelf wood arc longer than your xrod, you will 

need a number of xrods. Therdili"C, you can usc this original xrod as a lcmpbtc to 

produce a collection of identical xrods. That is, you can cut additional xrods from 

the curtain rod, making sure that each xrod is the same, exact length as your origi

nal xrod. You c1n now usc your xrods to measure the length of all your pieces of 

wood. hH· example, to measure the length of one of your shelves, place one of the 

xrods at one end of the piece of wood that you will use as a shelf. Next, place xrods 

end to end in a straight line until you reach the opposite end of the piece of wood. 

Now count the number ofxrods, and you might Jind that the shelf is "H xrods long." 
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You have just measured length in "units of xrods." You can use your set of xrods 

to measure the length of each and every piece of wood that you need. In fact, you 

could use your xrods to measure the length of many things, not just pieces of wood. 

In many ways, your measure is a good as any measure of length (except that you are 

the only one who knows what an xrod represents!). 

Arbitrariness is an important concept in understanding units of measurement, 

and it distinguishes between different kinds of measurement units. There are three 

ways in which a measurement unit might be arbitrary. First, the unit size can be 

arbitrary. That is, the specific size of a unit might be arbitrary. Consider your 

xrod-the size of your original xrod could have been any length. When you cut that 

first xrod, your decision about its length could be completely arbitrary-there was 

no "true" xrod length that you were trying to obtain. You simply chose a length to 

cut, and that length became the "official" length of an xrod. In this sense, the actual 

length of our unit of measurement, the xrod, was completely arbitrary. Similarly, 

the amount of weight that is represented by a "pound" is an arbitrary amount. 

Although there is now clear consensus regarding the exact amount of weight rep

resented by a pound, we can ask why a pound should ref1ect that specific amount. 

The choice was likely quite arbitrary. 

A second form of arbitrariness is that some units of measurement are not tied to 

any one type of object. That is, there might be no inherent restriction on the objects 

to which a unit of measurement might be applied. Our xrods can be used to mea

sure the spatial extent of anything that has spatial extent. For example, they could 

be used to measure the length of a piece of wood, the length of a table, the distance 

between two objects, or the depth of water in a swimming pool. Similarly, a pound 

can be used to measure the weight of many different kinds of objects. 

1\ third form of arbitrariness is that, when they take a physical form, some units 

of measurement can be used to measure different features of objects. For example, 

the xrods that we used to measure the length of a piece of lumber could also be used 

as units of weight. Imagine that you needed to measure the weight of a bag of fruit. 

If you had a balance scale, you could put the bag in one of the balance's baskets, and 

you could gradually stack xrods in the other basket. When the two sides of the scale 

"balance," then you would know that the bag of fi·uit weighs, say, 4 xrods. 

Units of measurement, called stontlard measures, are based 011 arbitrary units of 

measurement in all three ways when they take a physical form. In physical measure

ment, standard units include units such as pounds, liters, and milliseconds. The f�Kt 

that they are expressed in arbitrary units gives them flexibility and generality. For 

example, you can use milliseconds to measure anything from a person's reaction 

time to the presentation of a stimulus to the amount of time it takes a car to travel 

down the st reel. 

In contrast to many physical measures, most psychological units of measure

ment (e.g., scores on tests such as mechanical aptitude tests or on intelligence 

tests) are generally arbitrary only in the first sense of the term arbitrary mentioned 

above. That is, most psychological units of measurement are arbitrary in size, but 

they are typically tied to specitlc objects or dimensions. For example, a "unit" of 

measurement on an IQ test is linked in a nonarbitrary way to intelligence, and it 

is not applicable to any other dimension. Because of this feature of IQ test scores, 

we refer to IQ score units as "IQ points"; the points have no referent beyond the 
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test used to measure intelligence. There is one important exception to this observa

tion; standard measures are sometimes used to measure psychological attributes. 

For example, reaction times are often used to measure various cognitive processes. 

Additivity and Counting 

The need for counting is central to all attempts at measurement. Whether we are 

trying to measure a feature of the physical world or of the psychological world, all 

measurement involves counting. Por example, when you used xrods to measure 

the length of a piece of wood, you placed the xrods end to end, starting from one 

end of the piece of wood and continuing until you reached the other end. You then 

counted the xrods to determine the length of the object. The resulting count was a 

measure of length. Similarly, when you use a behavioral sampling procedure (i.e., 

a test) to measure a person's self-esteem, you count responses of son1c kind. For 

example, you might count the number of test statements that a test respondent 

marks as "true," and you might interpret the number of"truc" marks as indicating 

the level of the respondent's self-esteem. That is, you count units to obtain a score 

for your measurement. 

Additivity 

Importantly, the process of counting as a fiJCet of measurement involves a key 

assumption that might not be valid in many applications of psychological measure

ment. The assumption is that the unit size docs not change-that all units being 

counted are identical. In other words, additivity requires unit size to remain con

stant; a unit increase at one point in the measurement process must be the same as 

a unit increase at any other point. 

Recall the xrod example, where you used the original xrod as a guide to cut addi

tional xrods-we encouraged you to make "sure that each xrod is the same exact 

length as your original xrod." By doing so, you ensured that any time you laid xrods 

side by side and counted them, you could trust that your count accurately reflected 

a length. Say that you had cut 10 xrods; if they arc all identical, then it docs not mat

ter which xrods you used when measuring the length of any piece of wood. That 

is, a piece of wood that you measured as 5 xrods would be measured as 5 xrods no 

matter which 5 xrods you used to measure the piece of wood. 

Now imagine that instead of having a collection of equal-length xrods, your 

xrods had various lengths. In that case, if you measured the same piece of wood 

on two occasions, you might get two different counts, indicating different lengths! 

That is, if some xrods were longer than the others, then your piece of wood might 

be 5 xrods when you use the shorter xrods, but it would be only 3 xrods if you hap

pened to usc the longer xrods. Because your units were not constant in magnitude, 

your entire measurement system is Hawed-there is no single unit of length that is 

represented by an xrod. This would prevent you from determining the real length 

of the lumber. 
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In addition, the size of a measurement unit should not change as the conditions 

of measurement change. For example, the size of an xrod should remain constant 

regardless of the time of day that the xrod is used to measure a piece of wood. In 

cfkct, we want our measure to be affected by only one attribute of the thing we are 

measuring, regardless of the conditions that exist at the time or place of measure

ment. This condition is referred to as conjoint mcasurcmcn t ( Lucc & Tukcy, I ':164) 

and is a complex issue beyond the scope of this book (but sec Green & Rao, I ':171, 

for a clear, nontechnical discussion). 

Although these issues might be initially clearest in terms of physical measure

ments (e.g., xrods), we arc most concerned about psychological measurement. 

So imagine that you arc a history teacher who wants to measure a psychological 

attribute such as "knowledge of American history." Ccncrally, this would be done 

by asking students a series of questions that you believed were diagnostic of their 

knowledge, recording their responses to the questions. Let us temporarily differen

tiate between measurement units and psychological units. That is, each lest item 

represents a measurement unit, and again you count the correctly answered items 

to obtain a score that you interpret as a student's knowledge of American history. 

In contrast, we will use the crude and informal idea of psychological units to mean 

"true" levels of knowledge. Ideally, the measurement units will correspond closely 

with psychological units. That is, we use test scores to represent levels of psycho

logical <lttributes. With this in mind, you combine each student\ test responses in 

some way (e.g., by counting the number of questions that each student answered 

correctly) to create a total score that is interpreted as a measure of knowledge of 

American history. 

Suppose that one of the questions on your test was "Who was the first president 

of the United States?'' and another was "Who was the first European to sail into 

Puget Sound?" It should be clear that the amount of knowledge of American his

tory you need to answer the first question correctly is considerably less than the 

amount you need to answer the second question correctly. In terms of psyclwlogi

cal units, let's say th<ll you needed only I psychological unit of American history 

knowledge to answer the first question correctly but you needed three times as 

much knowledge (i.e., 3 psychological units of knowledge) to answer the second 

question correctly. Consider a student who answered both questions correctly. In 

tcnns of amount of true knowledge, that student would have 4 psychologic1l units 

of history knowledge. llowcvcr, in terms of measurement, that student would have 

a score of only 2. That is, if you simply summed the number of correct responses 

to the questions to get a total score, the student would gel a score of 2. This would 

\Uggesl that the person had 2 units of American history knowledge when in (�let he 

or -,he had'' units of knowledge. This discrepancy occurs because the measurement 

unih arc not constant in terms of t he underlying attribute that they arc intended to 

reflect. That is, the answers to the questions arc not a function of equal-sized units 

of knowledge-it takes less knowledge to answer the first question than it docs to 

amwcr the 'iCcond. Thus, the additive count of correct answers is not a good mea

sure of amount of knowledge. 

1:rom a psychological perspective, the assumption is often made that a psycho

logical attribute such as knowledge of American history actually exists in some 
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amount. l lowevcr, unlike a piece of wood, whose "length" can be directly observed, 

we cannot directly observe "knowledge of American history." As a result, we can

not simply see if a count of American history questions corresponds to the actual 

amount of American history knowledge possessed by a particular individual. There 

is a paradox in this: We want to translate the amount of a psychological attribute 

onto a set of numbers in order to measure the attribute. But it appears that this can

not be done because we do not know how much of the attribute actually exists. In a 

subsequent section of this chapter, we will suggest ways to get around this problem. 

Before we do that, we must develop several other measurement themes. 

Counts: When Do They Qualify as Measurement? 

Although all measurement relics on counting, not all f(nms of counting qualify 

<lS forms of measurement. Indeed, a controversy about the relationship between 

counting and measur ement arises when we count things rather than o/lrilmtcs 

(Lord & Novick, 1961\; Wright, I 997). For example, if you count the number of 

h1rks on a table, arc you "measuring" something? Similarly, if you count the num

ber of children in a classroom, arc you measuring something? 

Some experts argue that simply counting the number of some kind of object 

docs not qualify as a "measurement"; rather, counting qualifies as measurement 

only when one is counting to rcllcct the amount of some feature or attribute of 

an object. hlr example, if a physical scientist uses a Geiger counter to count radio

active emissions from an object, then he or she is measuring the radioactivity of 

the object, where "radioactivity" is a feature of the object. Similarly, if a professor 

counts the number of correct answers given by a student on a multiple-choice 

mathematics test, then he or she might be measuring the amount of mathemati

cal knowledge of the st udcnt, where '\nnount of mathcmat ical knowledge" is the 

psychological attributc of the student. 

Four Scales of Measurement 

/\s discussed earlier, measurement involves the assignment of numlwrs to observa

tions in such a way that the numbers rcllect the real differences that exist between 

the levels of a psychological <lllribute. Scaling is the particular way in which num

bers <He linked to behavioral obscrv<ltions to create a measure (/\lien & Yen, 1979; 

Crocker & J\lgina, I 91)6; c;uilt(ml, I 954; Magnusson, 1967 ). 

In actuality, the definition of scaling is itself controversi;d. On one hand, some 

experts might find our definition of scaling un<lcccptably liberal, and they might 

restrict scaling to the assignment of numbers th<lt, <lt a minimum, have the property 

of order (Magnusson, I 967; McDonald, I 999). On the other hand, some experts 

might prefer an even more restrictive definition that requires the use of scalars 

(Wright, 1997). This is another controversy in the measurement literature that we 

arc not going to try to resolve. It should be pointed out that i(Jr some authors the 

terms smling and IIICtiSllrcii/Clll arc synonymous (Bart holomcw, I 9')(J ). 



j;' 

30 PART 1: BASIC COI�CEPTS IN MEASUREMENT 

In a frequently cited framework, Stevens ( 1946) identified four levels of mea

surement. In the standard definition of measurement, the assignment of numbers 

to observations of behaviors is said to be "rule governed." In most cases, these 

"rules" refer to the scales of measurement proposed by Stevens ( 1946, 1951 ). 

Stevens's measurement scales arc "rules" in that they suggest how certain properties 

of numerals might be linked to particular types of behavioral observations associ

ated with psychological attributes. CE1ble 2.1 integrates these levels of measurement 

with the fundamental numerical properties outlined earlier. 

Nominal Scales 

The most fundamental level of measurement is the nominal scale of measure

ment. In a nominal scale, numerals that have the property of identity are used to 

label observations in which behaviors have been sorted into categories according 

to some psychological attribute. For example, we can "measure" biological sex by 

sorting people into two categories-males and females, represented as Group 0 and 

Group I, respectively. Similarly and as described earlier, children in a classroom 

might be sorted into groups based on the presence or absence of behavioral prob

lems, with the numeral I identifying the children with behavioral problems and the 

numeral 2 identifying the children without behavioral problems. As long as we can 

be sure that the groups are mutually exclusive and exhaustive, our only concern will 

have to do with our ability to correctly sort the children into the groups. 

It is important to distinguish nominal scale labels, as used in the above example, 

from labels used to identify or name individuals. Nominal scale labels are used 

to identify groups of people who share a common attribute that is not shared by 

people in other groups. In contrast, numerals that are used to identify individu

als, such as Social Security numbers, are generally not intended to establish group 

membership. The distinction can be clouded, however, when numerals are assigned 

to individuals in some systematic bshion. For example, it is possible to sort people 

into groups according to their year of birth, and numerals on the jerseys of indi

vidual football players might be used to differentiate people who play different 

positions on a team (sec Lord, 1953, for a humorous discussion of this problem). 

The important point is that when using numerals to identify people, you need to 

Table 2.1 Association Between Numerical Principles and Levels of 
Measurement 

Principle 

Identity 

Order 

Quantity 

Absolute zero 

Example 

Nominal 

X 

Biological sex 

---- -------------
Level of Measurement 

Ordinal Interval Ratio 

X X X 

X X X 

X X 

X 

Class rank Temperature Distance 
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be clear about your intent. That is, arc you using the numerals to identify group 

membership (as is the case for the nominal level of measurement) or as labels that 

essentially serve as names for individuals? 

Ordinal Scales 

As its name implies, an ordinal scale detlnes measurement in terms of numer

als that have the property of order. That is, ordinal scales produce ranks in which 

people are ordered according to the amounts of some attribute that they possess. 

For example, the members of an athletic team might be ranked according to their 

athleticism. The team's coaches might create the rankings based on their own 

judgments of the athleticism of each team member. The player judged to have the 

most athleticism might be assigned the numeral I, the next most athletic player the 

numeral 2, and so on. 

As described earlier, numerals used in this sense arc simply labels indicating the 

relative position of people with regard to the relative levels of the attribute being 

measured (e.g., athleticism). However, there is no attempt to determine how 1111/Ch 
of that attribute is actually possessed by each person. The numerals simply indicate 

that one person has more or less of the attribute than another person. 

Though this level of measurement conveys more information than a nominal 

level of measurement, it is limited. One way to think about its limitation is to 

imagine two different athletic teams, one team composed of professional athletes 

and one team of high school athletes. Players on each team arc ranked according 

to athleticism by their respective coaches; each professional player is ranked in 

comparison with the other professionals, and each high school player is ranked in 

comparison with the other students. The most athletic protessional player and the 

most athletic high school student arc each given a ranking of" I" by their coaches. 

Their "scores" tell us that these two people arc the most athletic members of their 

teams, but the fact that both of them scored a" I" on the athleticism rankings clearly 

docs not imply that they arc equally athletic. Obviously, we should not infer that 

the most athletic high school player is as athletic as the most athletic professional 

player. Such quantitative comparisons would require a measurement that has the 

property of quantity. 

Interval Scales 

The property of quantity characterizes two remaining scales of measurement. 

That is, interval scales and ratio scales of measurement arc based on numbers that 

represent quantitative differences between people in terms of the attribute being 

measured. However, the difference between the two scales rests primarily on the 

meaning of zero. 

Interval scales have an arbitrary zero. As noted carl ier, temperature expressed 

in Celsius (or hducnheit) units is a classic example of an attribute (temperature) 

measured on an interval scale. That is, a temperature of 0 "C (or 0 "F, Fahrenheit) is 
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arbitrary because it docs not represent the absence of any attribute. That is, it docs 

not represent the absence of heal. 
In interval scales, the size of the unit or measurement is constant and additive, 

hullhc sc1lc docs not allow multiplicative interpretations. That is, you can add 2"h 
to 40" and get 42", or you can add r, to 80" and get 82". In each case, a 2" change 

in the lhcnnomclcr represents the same change in the underlying amount of heat. 

Th<lt is, the amount of· heal required to change the temperature from 40 to 42"C 

is the S<llllc as the amount of heal required to change it fi'01n 80 to 82"C. However, 

it is not appropriate to interpret a temperature of 8(J'"F as "twice as warm" as 40"E 

J\s discussed later, many psychological tests arc used and interpreted as if they 

arc b<Jsed on an interval scale of measurement. r:or example, the vast majority of 

in tell igcncc tests, personality tests, achievement tests, develop men tal tests, a ncl 

many other types of psychological assessments are treated as if they are interval 

scales. By assuming that a test's scores have the property of quantity and that 

the units of measurement have a constant magnitude, lest users can lll<lke many 

research-based and practice-based applications of test scores. 

Unf(Hlunatcly, according to many measurement experts, there arc few psycho
logical tests that can be truly said to yield interval-level scores (Ghisclli, Campbell, & 

Zcdcck, I 981 ) . Scores obtained from some well-known academic assessment tests, 

such as the SAT and the American College clcsting (ACT) program, arc probably 

on an interval scale. However, il has been argued that scores from the vast major
ity of psychological tests arc, in bel, not on an interval scale. We will return to the 
implications of this issue soon. 

Ratio Scales 

In contrast to interval scales, with an arbitrary 0 point, ratio scales have an abso

lute 0 point. 1:or l'X<lmple, measures of physical distance arc ratio scales. We might 

intend lo measure the distance between lwo objects, and we find that the distance 

is 0. In such a case, the zero indicates a true "absence of distance." That is, the zero 
indicates an <1bsencc of the feature being measured. 

Ratio scdcs arc considered a "higher" level of measurement than interval, ordi

nal, and nominal scdes, because they provide more inf(mnation and ;dlow f(n·morc 

oOflhi'ilicalcd inkrcnces. Specifically, r<llio scales allow additivity as well as multipli
cative inlcrprclalion:; in terms or ratios. hlr example, il is appropriate to interpret a 

distance of KO miles as "twice as far" as a distance of only ;J() miles. 
This imporl<lill i<>suc has implications f(Jr our interpretations or the differ

ences hctwccn objects. In applied settings, a ratio scale would ;dlow a lest user to 
make slalcmcnls such as "Psychiatric patient A is twice as mentally disturbed as 
i'<>ychialric patient 1\." In research settings, <1 r<llio scale would allow researchers 
[O inlcrprcl lhe rc<> tdls or Certain slalisticd procedures in lcrms of the underlying 
allribull"'> being measured. 

According lo most testing experts, there probably arc no psychological tests th<lt 

yield ratio-level data. This might be surprising because you are probably f�m1ili<1r 
with <lllc!npls lo measure psychological allributcs using standard measures. For 
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example, reaction times arc a common currency of measurement in cognitive 

psychology <llld arc becoming more popular in personality psychology. Standard 

measures such as reaction time me ratio-level measures. So why are we claiming 

that there arc no ratio-level psychological tests? 

Remember that ratio scales have an absolute 0 point./\ Jnomcnt's reflection, 

however, will show that it is impossible h>r a person to respond to anything in 0 
seconds (or milliseconds). The measuring device-for example, a stop clock-has 

an absolute zero, but a person's rc<lction time Gill never be zero. We are not claiming 

that reaction time measures arc poor measures of psychological processes. In f�1ct, 

we agree with Jensen (2005) that reaction times might be the most natural way to 

measure mental activity. Our point with this exam�1le is that test users must distin

guish between the zero associated with a measuring device and the t.cro associated 

with characteristics of the psychological attribute that we think we arc measuring. 

Although a measuring instrument might have an absolute t.cro, this docs not mean 

that the psychological attribute being measured has an absolute zero (Blanton & 

Jaccard, 2006). 

Scales of Measurement: Practical Implications 

J\s noted earlier, a test's scale of measurement can have important implications. 

Among behavioral researchers, it is commonly noted that this issue Gill have impli

cations f(>r the meaningrulness of specific f(nms or statistical analysis. That is, it has 

been <Irgued that son1e of the most common, fundamental, and f�uniliar statistical 

procedures should be used only with measurements that arc interval or ratio, not 

with nominal or ordinal measurements. For example, Cohen (2001) states that 

"parametric statistics <liT truly valid only when )'OLI arc dealing with interval/ratio 

data" (p. 7). 
l lowcvcr, there is, in f�Ict, some disagreement about thi,. hll· example, !lowell 

( llJ97) asserts that "the underlying measurement scale is not crucial in our choice 

of statistical techniques" (p. X). Reflecting on such disagrccJncnts, Maxwell and 

Delancy (2000) admit that "level of measurement continues to be controversial 

as a h1ctor that might or might not influence the choice between par<IIIICtric and 

nonparamctric approaches" (p. 710). 
Regardless or ambiguities <llld disagreements, lwlwvior<ll rcsl\lrchcrs gelllT· 

ally treat most tests <llld measures as having <Ill intcrv<JI level of IIIC<I'>UITJllent. 

Particularly f(>r <�ggregated scores obt<Iined rrom multi-item -;calcs, rese<Jrchcrs 

assume that scores arc "reason<Ibly" interv<II level. h>r very brier or -;ingle-item 

sc1les, this assumption is more tenuous. In such cases, resc<Irchers should either 

mnsidn altemativc analytic strategies or <Icknowlcdgc the potenti<ll problem. 

Additional Issues Regarding Scales of Measurement 

Stevens's rules for <Jssigning symbols, including numbers, to behavioral obscr

V<Itions used as tests should be taken as heuristic devices Lither than <IS definitive 
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Summary 

and exhaustive. In fact, other authors have proposed additional levels of measure

ment, with corresponding rules for creating scales. For example, Coombs ( 1950) 

argues for a level of measurement between nominal and ordinal levels and another 

between ordinal and interval levels. Moreover, counting can be considered a level of 

measurement in its own right, and when used to quantify a psychological attribute, 

it can be thought of as a measure with an absolute zero and a fixed nonarbitrary 

unit of measurement (the number I). Our discussion focused on Stevens's frame

work because it is the most common such framework and because it provides a 

reasonable foundation for understanding the key issues as related to psychometrics. 

Another point is that, although they are often used to reflect nominal scales, 

dichotomous variables that have been assigned binary codes (such as 0 and I) can 

sometimes be thought of as producing interval-level data. If you have reason to 

believe that discrete dichotomous categories were created based on some underly

ing quantitative psychological attribute, then the binary codes possess all of the 

properties associated with quantity. for example, imagine that you have a measure 

of depression. You give the test to a large group of people and sort people into two 

categories based on their scores-those who are depressed and those who are not 

depressed. If you assigned numerical codes to these categories, then the numbers 

can be seen as reflecting the differences in the amount of depression in the people 

in the two categories. In this case, the values could be conceptualized on an interval 

scale. On the other hand, if a sort into categories is not predicated on a quantitative 

attribute, then it would not make sense to treat the codes as having quantitative 

properties. An example might be a case in which people are sorted into categories 

based on whether they have used an illegal drug. 

This chapter has addressed a variety of important theoretical issues in an attempt 

to outline the foundations of psychological measurement. The core goal of scaling 

in the context of this book is to link numerical values to people's psychological 

attributes. As outlined in this chapter, fundamental issues in scaling concern (a) the 

connection between the observations of a behavior and numerical symbols and (b) 

the degree to which this connection is made in such a way that the symbols identify 

the real dillcrcnccs that exist between the behaviors under observation. 

The scaling of people's psychological attributes is h1ccd with challenges that 

partly arise from the f�1ct that psychological attributes (e.g., traits, abilities, skills, 

altitudes) arc not directly observable. Therefore, in many cases of psychological 

measurement, psychologists arc likely to rely on nonquantitative measures of psy

chological attributes or simply assume that quantitative measurement models work 

well enough to approximate quantities of psychological attributes. Nevertheless, all 

psychological scaling procedures have one feature in common-they arc all proce

dures for representing the differences among people. In the next chapter, we will 

discuss the statistical procedures that arc used to treat and describe these individual 

d iffcrcnces. 
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Suggested Readings 

This is the classic article on psychological scaling: 

Stevens, S. S. ( 1940). On the theory of scales of n1casurcmcnl. Science, I 103, 677-080. 

This is an article that discusses many variations on Stevens's scales of measurement: 

Coombs, C. 1-1., Raifh, II., & Thrall, R. fvl. ( 1954). Some views on mathematical models 
and measurement theory. I'syclwlogiml /(cvicw, 61, 132-14'1. 

The f(J!lowing is a good recent discussion of one of the most fundamental problems 

of measurement in psychology: 

Blanton, II., & Jaccard,]. (2006). Arbitrary metrics in psychology. /111/crimn Psychologist, 
61,27-41. 





CHAPTER 3 

Individual Differences and 

Correlations 

T
his chapter covers three key building blocks of psychological measur ement: 

variability, covariability, and the interpretation of test scores. As we shall sec, 

these three issues arc a fundamental part of measurement theory, test evalu

ation, and test usc. Much of the material covered in this chapter will be statistical 

in nature, and some of the concepts that we discuss might be familiar lo many of 

you. llowever, these concepts must be very well understood bel(lJT a coherent per

spective on psychometrics and the meaning of psychological test scores is possible. 

The current chapter integrates these three key building blocks. We begin with a 

discussion of V<lriability�the differences within a set of test scores or among the 

values of <l psychological attribute. We llrst discuss the importance of this concept 

and then describe the procedures l(lr quantifying the degree of variability within a 

set of scores. Next, we describe the concept of covariability�the degree to which 

variability in one set of scores corresponds with variability in another set of scores. 

We discuss the importance of the concept and det<lil the statistical llrocedure' l(lr 

quantifying the covariability between two sets of scores. Finally, we describe the 

procedures that have been developed to enhance the ability of test users and lest 

takers to intcrprct test scores. As we will see, these procedures are lirmly based on 

the concept of variability. 

The Nature of Variability 

As we have mentioned previously, llS)'L·hologicd measurement rests on the <lSSUlllll

tion that people differ (or might differ) with respect to their behavior or other psy

chological characteristics. This assumption is sometimes explicit, as in ITsearch th<ll 

attempts to explore the source and meaning of psychological dil"lcrences <lllHlllg 

people. llowever, this assumption is sometimes implicit. For example, a !l'st user 

might wish to understand a single individual, as in making a diagnosis reg<Jrding 

37 
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mental retardation. Even in these kinds of "single-case" situations, the measure

ment process rests on the assumption that differences exist among people and that 

a diagnostic measure is capable of detecting those differences. 

There are at least two kinds of differences that behavioral scientists attempt to mea

sure. Inlerindividunl differences are differences that exist between people. Por example, 

when high school students take the SKC all do not get the same score. The differences 

among the students' SAT scores represent intcrindividual differences. Similarly, when 

a researcher conducts an experiment and measures a dependent variable (DV), the 

participants do not all have the same score on the DV. The differences among the par

ticipants' scores are intcrindividual differences. Importantly, in an experiment, some of 

these interindividual diflercnccs arc between people in the same experimental group, 

and some arc between people who arc in ditlerent experimental groups. In this way, 

even strict, heavily controlled experimental research hinges on the measurement and 
analysis of interindividual differences. 

The other kind of differences that behavioral scientists attempt to measure is 

intra-individual dij)crcnces, which arc differences that emerge in one person over 

time or under diftercnt circumstances. r:or example, intra-individual differences 

might be seen if we recorded changes in a psychiatric patient's symptom level over 
the course of therapeutic treatment. 

Our ability to create, evaluate, and ultimately usc any measure in psychology 

requires that psychological differences exist and can be quantified. In this chapter, 

we will primarily focus our attention on intcrindividual variability, which is consis
tent with many applications of psychological measurement. 

Importance of Individual Differences 

It would be nearly impossible to overemphasize the importance of individual 

difkrcnccs in psychology. Long ago, the scientist Sir Francis Galton recognized 

that variability was the currency not only of evolution but also of psychology. 

Psychology is about variability in the behavior of individual people. Indeed, the 

behavioral sciences are largely about individual differences, and the measurement 

of those differences is a necessary component of those sciences. 

/\s we have emphasized, variability is at the heart of research and the application 

of research in the behavioral sciences. In a research context, behavioral scientists 

oficn strive to understand important differences among people (including diHercnccs 

between groups of people). When psychologists and other behavioral scientists con

duct studies of aggression, intelligence, psychopathy, happiness, marital satisbction, 

or academic aptitude, they arc attempting to identify and understand the causes and 

consequences of difkrcnccs between people. Why arc some people more aggressive 

than others? /\rc differences in intelligence associated with differences in biological 

traits? Docs variability in marital satisfaction seem to be related to variability in chil

dren's sclr·cstcem? Do differences in medication dosage affect differences in patients' 

levels of depressive affect? /\II such questions begin with the assumption that people 

differ in important ways and that these differences can be measured. 
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In an applied context, behavioral scientists often assume that psychological 

characteristics can and do vary. Employers attempt to detect variability in charac

teristics such as conscientiousness, integrity, and intelligence in order to improve 

their hiring efficacy. College admissions committees attempt to detect variability in 

academic aptitude in order to improve their admission choices. Clinicians attempt 

to detect variability in various psychological disorders in order to identify which 

clients might benefit fi·om which therapeutic interventions. 

l ndividual differences arc also fundamental to psychological measurement. As 

described earlier, measurement is based on the simple but crucial assumption that 

psychological differences exist and can be detected through well-designed mea

surement processes. As we will see later in this book, the existence and detection 

of individual differences lie at the heart of test construction and test evaluation. 

More specifically, psychometric concepts such as reliability and validity are entirely 

dependent on the ability to quantify the differences among people. 

Traditionally, individual differences have been considered a subject that con

cerned only those who construct and use traditional psychological tests. For 

example, the study of individual differences is often seen as primarily relevant only 

to researchers who study personality, intelligence, or achievement. This traditional, 

commonly held view limits the importance or meaning of "individual differences" 

to only some areas of behavioral science. As such, this view limits the relevance of 

psychometrics to only a few areas of behavioral science. Although this view is long

standing and common, it is simply incorrect. 

In fact, all research in psychology and all scientific applications of psychology 

depend on the ability to measure individual differences. For example, research in 

experimental psychology involves exposing people to different experiences and then 

measuring the effects of these experiences on their behavior. For example, a clini

cal experimentalist might randomly assign some depressed individuals to receive a 

new medication and randomly assign other depressed individuals to receive placebo 

pills, and he or she then measures all the individuals' levels of depressive aftect after 

2 months of taking their respective "treatments." Of course, the researcher likely 

expects to tlnd that the diflcrcnccs between the individuals' depression levels arc 

highly related to the t ypc of"trcatmcnt" they received-individuals who received the 

new medication arc expected to have lower levels of depression than arc individuals 

who received the placebos. In this way, the experimental psychologist is trying to 

show that individual differences in a psychologic1l response (i.e., depressive affect) 

arc, in part, a function of· the experiences to which the participants were exposed. 

Likewise, in all cases, the scientific application of psychology requires at a mini

mum that individual dif'!crcnccs be measured. For example, in clinical settings, diag

nosis of psychological pathology rests on a eli n ician's ability to measure the pathology. 

This requires that the clinician can show how an individual with the patholog)' dirtcrs 

from those who do not exhibit the pathology. If the clinician is committed to the sci

ence of psychology, the clinician will also try to determine if there is a change in client 

behavior over time and, if there is a change, try to establish if the change might be 

attributable to therapy. We believe that it is important to realize that any domain of 

scientific psychology-experimental or nonexpcrimental, basic or applied-depends 

on the existence and quantification of individual differences. 
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The process of the quantification of psychological differences begins with 

the recognition that scores on a psychological test or measure will vary from 

person to person or from time to time. When taken from a group of people or 

at different points in time from the same individuals, these test scores or mea

SUITS constitute a dislri!JIItion of scores. The differences among the scores within 

a distribution arc often called Jlarin/;i/ity. J\ key clement in most behavioral 

research is to quantify precisely the amount of variability within a distribution 
of· scores. 

Variability and Distributions of Scores 

"lo understand many of the fundamental concepts in psychometrics, it is necessary 

to understand some basic statistical concepts. In particular, we must understand 

how variance and covariance arc computed and how they arc related to each other. 

We need to compute variance as a way of quantifying variability or individual dif

ferences in a distribution or set of scores, and we need to compute covariance as 

a way to quantify the extent to which variability in one set of scores is related to 

variability in another set of scores. 

Many of the fundamental concepts in psychological measurement arc built on 

our ability to detect and describe distributions of test scores. When a group of 

people take a psychological test, each person obtains a score. Usually, these scores 

differ from each other, with some people obtaining high scores, some obtaining low 

scores, and some scoring in between. T he group's set of scores is a distribution of 

scores. Table 3.1 presents a small example in which six people take an I() test. J\s you 

can see, this sm<JII distribution of six scores reflects individual differences-scores 

range from a high of 130 to a low of':JO. 

Table 3.1 

IQ (X) 

110 

120 

100 

l)O 

l.lO 

110 ----

Example for Describing a Distribution of Scores 

· ·-- - ---

Deviation, 
(X-X) 

0 

10 

-10 

-20 

20 

0 

Squared Deviation, 
(X -X) 2 -----

0 

100 

100 

400 

400 

0 

NOTE: Sum (Ir X J) = 660, SS (I{ X- X)')= 1 ,000, mean (X) = 11 0; 

variance (s") = 166.67, standard deviation (s) = 12.91. 

I 
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One key goal of statistics is to describe a distribution of scores in a meaningful 

way, and at least three kinds of information can be used to do this. Many of you 

arc probably already t:m1iliar with concepts such as central tendency, v;1riability, 

and shape. We will discuss these concepts in a way that should set the stage f(ll' our 

discussion of psychometric concepts such as reliability and validity. 

Central Tendency 

Perhaps the most basic t:1ccl of a distribution of scores is central tendency: What 

is the "typical" score in the distribution or wh;lt is the score that is most representa

tive of the entire distribution? Although there arc several statistical values tlwt can 

be used as indexes of central tendency (e.g., median and mode), the mean is the 

most common. 

The arithmetic 11/Cilll (X) is a value that represents the "typical" score in a distri

bution of scores. Ivl;1ny of you <liT probably i�uniliar with the equation for the mean: 

- Ix Mean= X = -- · 

N 

(3.1) 

In this equation <lnd those th;lt follow, each indivicitwl's score is represented by 

an "X." Those of you who arc t;uniliar with sumnwtion notation will recall that the 

sigma symbol tells us to sum the clements X. In addition, N is used to represent 

the total number of people in the group (or, more generally, the total number of X 

values in the distribution). For the thlla in 'L1blc 3.1, the mean IQ is 

I 00 + 120 +I 00 + 90 + 130 +I I 0 
X=-------------

6(10 

(l 

= 110. 

(l 

Thus, the "avcr<1ge person" in the group has an IQ of 110. 

Although the mean of a distribution can be an interesting and useful piece of 

inft))'Jll<ltion, we arc much more interested in qu;lntil.ying the degree to which the 

people in a group differ from each other. One method of doing this is to quantify 

the degree to which each person's score deviates from the group nlc'<lll. We tum to 

that nexl. 

Variability 

J\s we have emphasized (and as we will continue to cmph;lsize), measurement 

rests on the concept of variability. If our measures arc to be useful, they need to 

be sensitive to meaningful psychological variability by reflecting the dillcrcnces in 



.• 

42 PART 1: BASIC COI'-JCEPTS 11'-J MEASUREMENT 

people's psychological attributes. Thus, we must be able to quantify precisely the 

amount of variability within a distribution of test scores. 

Although several statistical values can be used to quantify the variability within a 

distribution of scores, we will focus on two-the variance and its close relative, the 

standard deviation. We focus on these because they arc the most commonly used 

indexes of variability in behavioral research in general and because they lie at the 

heart of psychometric theory in particular. 

The variance and the standard deviation reflect variability as the degree to which 

the scores in a distribution deviate (i.e., differ) from the mean of the distribution. 

In the data in "E1ble 3.1, we see that the lQ scores do indeed vary. We see that one 

person scores a full 20 points above the mean, and another scores I 0 points above 
the mean. On the other end of the distribution, one person scores 20 points below 

the mean, and another scores I 0 points below the mean. The variance is computed 

from these deviations. 

Variance is a crucial concept in psychometrics. Therctc>re, let us think carefully 

about where it comes from and what it means. Building on the deviations of each 

score fi·om the mean, the process of computing the variance can be summarized 

in three steps. First, we find the deviation from the mean for each score in the 

distribution (note that we must have already computed the mean of the distribu-

tion). Formally, the deviation fi·om the mean is X-X lor each score, as shown in 

the "Deviation" column of 'H1ble 3.1. These values represent the degree to which 

each score is above or below the mean. Second, we square each deviation (X-X)2, 
as shown in the "Squared Deviation" column in 'l:Jble 3.1. Third, we compute the 

mean of these squared deviations, resulting in the variance: 

. , :L rx -x)2 
V anance = s- = ='------ (3.2) 

N 

For the data in 'l�Jb!e 3.1, the variance is 

(li0-110)' +(120-110)2 +(100-110)2 +(90-110)2 +(130-110)' +(-110-110)2 

(i 

ror' +II OJ' +1-lo/ +l-20)2 +12o)' +(0)2 

(i 
0 + I 00 + I 00 + 4 00 + 400 + 0 

1000 

(J 

= I (>(>J>7. 

The numerator of the variance is sometimes called the "sum of squared devia

tions about the mean," but it is more commonly shortened to the "sum of squares." 

In a seme, the variance is itself a type of mean. Specifically, the variance is the 

mean of squared deviation scores. As mentioned, an individual's squared deviation 

score ( X-X)2 represents the degree to which the individual ditlcrs from the mean. 

By calculating the mean of these squared deviation scores, we get a number that 
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represents the average degree to which people differ li·01n each other, and as such, it 
is a measure of variability. 

A close relative of the variance, the standard deviation is simply the square root 
of the variance: 

Standard deviation = s = N = 
(3.3) 

For the data in 1l1blc 3.1, the standard deviation is 

s = R = --!166.67 = 12.91. 

As an index of variability, the standard deviation has the advantage of reflecting 

variability in terms of the size of raw deviation scores, whereas the variance reflects 

variability in terms of squared deviation scores. Thus, the standard deviation is 
sometimes viewed as more intuitive. 

Although the variance and standard deviation arc fundamental clements of many 

psychometric concepts, their interpretation is not always clear. The size of the vari

ance (and, consequently, the size of the standard deviation) is determined by two 

factors. The first and most obvious ti1ctor is the degree to which the scores in a distri

bution differ li·om each other. In the hypothetical IQ data presented in 'H1ble 3.1, the 

variance is 166.67. llowever, if we had a distribution of!Q scores with less variability, 

then we would have a smaller variance. For example, we might have the following 

distribution of !C) scores: Ill, II O, 109, 112, 110, I 08. Note tlwt this distribution of 

scores is very tightly clustered around the mean of II 0; at most, the scores differ li·om 

the mean by only two points. Consequently, the variance f(>r this distribution is only 

;,2 = 1.67. Thus, all else being equal, a larger variance (and standard deviation) indi

cates greater variability within a distribution. However, all else is not always equal, 

which brings us to the second li1ctor that affects the size of the variance. 

The second fiKtor that determines the size of a variance is the metric of the scores 

in the distribution. Consider the difference between IQ scores and grade point aver

age (GPA) values. I() scores arc much larger than GPA scores: IQ scores average 

near I 00, with values such as 130 and 80 not being uncommon, hut CPA values 

range only between 0 and 4.0. Thus, JQ scores and CPA values arc measures that 

are on very dil1crent forms of measurement. For example, consider the CPA data in 

'I�1hle 3.2. Note that the mean is 2.7 and that scores range from 1.5 to 3.4, a nearly 

2-point range. Clearly, "a 2-point range" means something very different in terms of 

GPA scores from what it docs in terms of I() scores. Thus, although the variance of 

the IQ scores is �2 = 166.67 and the variance of the C ;p;\ scores is "only":/-= 0.39, this 

difference docs not 1ncan that people difkrcd more in terms of their !C) scores than 

in terms of their c;PAs. The dramatic dilkrcncc in the two variances arises largely 

because of the dramatic difference in the n1ctrics of the two sets of scores. 

Considering the nature of variance and the liJCtors that aflcct its size, there 

arc four bctors to consider in interpreting a vari<lncc or standard deviation. The 

first li1ctor is that neither one can ever be less than 0. At a minimum, they can be 

0, which indicates that the scores in the distribution do not vary at all. A positive 
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Table 3.2 Example for Computing Covariance and Correlation 

IQ GPA Cross-
Deviation, Deviation, Product, 

IQ Score (X) GPA (Y) (X-X) (Y-Y) (X -X)(Y -Y) 
110 2.6 () -0.1 0 

120 3 10 0.3 3 

100 I � -·:> -10 -0.2 2 

90 1.50 -20 -1.2 24 

130 3.2 20 0.5 10 

110 3.4 0 0.7 () 

NOTE: Mean (X)= 110, mean (r) = 2.70, L,IX-X)(Y-Yl= 39; variance 
S: = 166.67, variance (s:) = 0.39, covariance (Cxv) = 6.5; standard 
deviation (Sx ) = 12.91, standard deviation (S, ) = 0.62, correlation (rXY) =.81. 

value indicates that there is some amount of variability. Both mathcm<ltically and 

conceptually, it is impossible to have a negative vari<lnce or standard deviation. 

Second, there is no simple way to interpret a variance or standard deviation as 

large or small. Imagine that we tell you that the variance of a distribution is 56.23, 

but we do not tell you what the distribution refers to (i.e., is it SAT scores, is it mil

liseconds on a decision-making task, is it scores on a self-esteem questionnaire?) or 

what the "typical" variability might be for whatever scores arc in the distribution 

(i.e., what size variance do we usually find within a distribution of scores on this 

test?). In such a case, you would have no way of judging whether the;= 56.23 

rellccts a large amount of variability or a small amount. 

Third (and related to the second), the variance of a distribution of scores is most 

interpretable and meaningful when it is put into some kind of context. hll· example, 

<l variance of one distribution of scores is potentially meaningful when compared 

with the V<lri<lnce of another distribution of scores. If two distributions arc based 

on the same measure (i.e., both are b<lscd on an IC) test, or both <ll"C distributions of 

t ;J'/\s), then the distribution with the larger variance has greater variability than the 

distribution with the smaller variance. Note that such a comparison is meaningful 

only when the two distributions arc indeed based on the same measure. It would be 

inappropri;ltc to compare the variance of IQ scores with the variance of (;PAs and 

conclude that people vary more in their IQs than in their CPAs. 

Fourth, the importance of variance <llld standard deviation lies mainly in their 

cfkcts on other values that arc more directly interpretable. The variance and stan

dard dcvi<ltion arc lumlamcntal components of many 11sychometric concepts and 

procedure'>. h>r example, in this hook, we show that the vari<lllCC and standard 

dcvia I ion are <l p<l rt of concepts such as the correlation coefficient, the rei iabil it y 

coclficient, coni idence i ntcrvals, ;md test bias. Thus, you might not often hear or 

read interprctat ions of variances by thc1nsclves. I Iowcvcr, your understanding of 

many nucial concepts (e.g., correlations and reliability) depends heavily on under

\landing th<lt the V<lri<lncc ami the standard deviation rellect the degree to which 

the value\ in a distribution differ from each other. 
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i\t the risk of causing a bit of confusion, we should acknowledge something that 

some of you might lind odd about Equations 3.2 and 3.3. Those of you who have 

previously taken courses in statistics might notice a subtle discrepancy between the 

equations that we have presented and the equations for the variance and stand<Jrd 

deviation that you might have seen in other courses or other textbooks. Specifically, 

the variance and standard deviation are ofien presented with N � I in their denomi

nators, instead of simply N. The "N �I" versions of the equations are appropriate 

when researchers wish to compute inferential statistics (e.g., 1 tests) regarding prop

erties of populations. l lowever, the issues involved in this book do not require the 

computation of such infCrcntial statistics, and thcrct(Jre we usc the simpler, and log

ically appropriate, "N" versions of the equations. This somewhat tangential point 

docs not change the essential interpretation of a variance or a standard deviation 

as important indicators of the degree of variability within a distribution of scores. 

Distribution Shapes and Normal Distributions 

The final qualities of a distribution that we will discuss arc related to the shape of 

the distribution. ;\ distribution of scores can be graphically represented by a curve. 

Figure 3.1 presents a curve t(Jr a large distribution of](� scores. The x-axis presents 

various values l(n IQ scores, and they-axis represents proportions. Thus, the curve 

represents the proportion of people in a group who have](� scores at a spccilic value. 

Figure 3. 1 tells us that the greatest proportion of the sample have 10 scores ncar I 00. 

It <dso tells us that very few people have IQ scores that <ll"C 1�11· above or below 100. 

The curve in Figure 3.1 presents a distribution that is symmetric-the sh<lfle 

of the curve is mirrored on both sides of an IQ of 100. One type of distribution 

of scores that produces a curve with this shape is called a nonnol distri/JIItion. The 

idea of a normal distribution is important, and it is implicit in many statisticd 

procedures and concepts. Indeed, many of the statistical procedures that can he 

conducted on distributions of scores arc based on the assumption that the scores 

c: 
0 

:e 
0 
a. 
0 

a: 

'---,=--'----,---------,---,-------,-- ---.----�-��r---
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IQ 

Figure 3.1 Curve Representing a Normal Distribution 

130 145 
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arc normally distributed (or at least that the scores on the underlying construct arc 

normally distributed). In addition, as we will soon see, the very meaning of test 

scores sometimes hinges on the assumption that the scores are normally distributed. 

Although some of the procedures that we will present arc based on the assump

tion that distributions are normal, in fact normal distribution is a theoretical ideal. 

When we work with distributions of actual test scores, those distributions are rarely 

(if ever) perfectly"normal." For example, in one distribution of rcaiiQ scores, there 

might be a few more people who are on the lower side of the scores (e.g., who have 

IQ scores less than 100) than on the higher side (sec Figure 3.2a).ln another distri

bution of reaiiQ scores, there might be more people who have high IQ scores than 

people who have low IQ scores (see Figure 3.2b) . Such distributions arc skewed, and 

thus they are not exactly normal (although they might he close to normal). Despite 

the f�1ct that real data arc unlikely to be exactly normally distributed, many times 

they are close enough so that the normal distribution can be used as a model fi:>r 

interpreting scores in a distribution of scores. 
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Quantifying the Association Between Distributions 

Although science and measurement are based on variability, an equally important 

concept is covariability or association. Covariability is the degree to which two dis

tributions of scores vary in a corresponding manner. For example, we might tlnd 

that people vary in terms of their JQ scores, and we might find that people vary in 

their GPAs. These two facts become much more interesting when we examine the 

possibility that variability in IQ scores is associated with (i.e., covarics with) vari

ability in GPA-do people with relatively high 10 scores tend to earn relatively high 

GPAs? If so, to what degree? Is there a strong association between IQ and GPA, or is 

it weak? Such questions are at the heart of most behavioral science and at the heart 

of psychometric theory. 

"Jb examine most questions of covariability, each participant must have scores 

on at least two variables. For example, if we want to examine the association 

between IQ and GPA, then we would need to have a sample of participants each of 

whom has taken an JQ test and has earned a GPA. Thus, we would have a data set 

in which there arc two distributions of scores, with each distribution detlned by a 

different variable. We would then compute statistical values that retlect the degree 

to which the two variables (as represented by those distributions) arc associated 

with each other. 

Interpreting the Association Between Two Variables 

There are two types of information that we would like to know about the asso

ciation between two variables (i.e., between two distributions of scores). First, we 

would like to know the direction o( the association. Do people who obtain relatively 

high scores on one variable tend to obtain relatively high scores on the other? If so, 

then we say that the two variables have a positive or direct association. It is also pos

sible that people who obtain relatively high scores on one variable tend to obtain 

relatively low scores on the other. In this case, we say that the two variables have a 

negative or inverse association. 

The second type of information that we would like to know about the associa

tion between two variables is the lllllgnitudc o( the association. Arc two variables 

very strongly associated with each other or only weakly? For example, we might 

wish to know the strength of the association between SAI' scores and college ( ;PA. 

Most colleges and universities place considerable emphasis on SAT scores as a 

criterion for admission, presumably on the assumption that there is a strong posi

tive association between SAl' scores and college <_;PA. Admissions officers operate 

under the assumption that people who obtain high SAT scores have a rather strong 

tendency to earn relatively high CPAs. But just how strong is the actual association 

between SAT scores and college GPA? All of· us probably know <lt least one person 

who performed poorly on the SA!' but who did well in college, and all of us might 

know someone who performed well on the SAT but did poorly in college. Clearly, 

the association between SAT scores and college GPA is not perfect, but is it even 



48 fJART 1: BASIC COI'-ICEPTS IN MEA':iU�EMENT 

as strong as the admissions officers might assume? A great deal of research in 

behavioral science has been dcdic;1ted to understanding the strength of association 

between important behavioral variables. 

Consistency is a useful concept to consider when thinking about the associations 

between variables. We can interpret a strong association between two variables as 

showing that individual differences are consistent across the two variables. For 

example, a strong positive association between SAT scores and CPA would mean 

that differences in SAT scores arc highly consistent with differences in GPA

pcople with relatively high SAT scores have a strong tendency to earn a relatively 

high <_;PA. As a matter of fact, a strong negative association can be interpreted in 

terms of consistency. For example, a strong negative association between "number 

of class absences" and GPA would mean that differences in the number of absences 

arc inversely consistent with GPA-pcoplc who miss relatively many classes have a 

strong tendency to earn a relatively low GPA. Whereas strong associations (either 

positive or negative) indicate a high level of consistency between two variables, 

weak associations indicate inconsistency. 11· we find evidence that there is no clear 

association between two variables, then we know that individual differences in one 

variable arc totally inconsistent with individual differences in the other variable. 

hn example, we might find no association between shoe size and CPA-people 

who wear relatively large shoes have no consistent tendency to earn higher (or 

lower) GPAs than people who wear relatively small shoes. In other words, you are as 

likely to find a person with large shoes and a high CPA as you arc to lind a person 
with small shoes <lnd a high<;!'!\. In our discussion of reliability (sec Chapter 5), 

we will rely heavily on the concept of consistency. 
In the remainder of this section, we will discuss two statistical terms that can 

he used to quantify the association, or covariability, between two distributions of 

scores. In thi<> discussion, we will demonstrate the bet that these two terms-the 

covariance and the correlation-emerge from statistical concepts that we have 

already presented. This discussion should help you develop <ln intuitive and clear 

sense of wh<lt these values mean and where they come from. 

Covariance 

( :ovariance begins building a bridge between the concept of variability and an 

interpretable index of covariability. Recall that variance is computed from a single 

distribution of scores. In contrast, covariance is computed from the variability 

<1111011)', score<> in two different distributions. The covariance represents the degree 

ol association between the variability in the two distributions of scores. 

As lll<.'lltioned earlier, indexes of association ty pically require that each person 

lwve at k<l'it two scores. That is, each score in one distribution (e.g., IQ scores) 

i•; fl<lirL·d with one and only one score in the other distribution (e.g., (;!'As). Sec 

'L1ble :).2 f(>r an example that includes six participants who have scores on two 

variable'>- .j() ami c ;PA. 

c :omputing the covariance between two di'itributions of scores can be seen 

a'i a tlnTL'-'itcp process. hrq, similar to the variance, we compute deviation 

'>U>reo.,. Specifically, we compute the deviation of each score from the mean of its 
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distribution. In ·1�1blc 3.2, these values are presented in the columns labeled "IC1 
Deviation "  and "GPA Dcvi;1tion." If we refer to IQ scores as variable X <Jnd to CPAs 
as variable Y, then these deviation scores can be fimnally written as X- X and 

Y- Y , respectively. 
In the second step, we compute the "cross-products" of these deviation scores 

by multiplying each individual's two deviation scores (sec the "Cross-Product" 

column in 'Ii1ble 3.2). hmnally, a cross-product is (X- X )(Y- Y). 'l�1ke a nwment 

to think about the meaning of these values. Note that in ·n1ble 3.2, several of the 

cross-products arc positive. vVhy? J\ positive cross-product is obtained when an 

individual's scores arc consistent with each other: The individual is either above the 

mean on both variables or below the mean on both variables. Now, think about the 

meaning of a negative cross-product. A negative cross-product is obtained when 

an individual's scores are inconsistent with each other: The individual is above the 

mean on one variable (and thus obtains a positive deviation score fiH that variable) 

but below the mean on the other variable (and thus obtains a negative deviation 
score fiH that variable). 

In the third and final step, we compute the mean of the cross-products. We 

need to understand the trend in the cross-products across all the people in the 

sample. In general, do people have positive cross-products or negative cross

products? Or do the cross-products cancel themselves out, equaling 0? In addi

tion, how large arc the cross-products? The third step provides the equation fi1r 
the covariance: 

Covariance = c". 
L,rx- X)(Y- Y) 

N 

Putting it all together, the data in 'l�1ble 3.2 have a covariance of 6.5: 

(0)( -0.1) + (I 0)(0.3) + (-I 0)( -0.2) + ( -20)( -0.2) + ( 20)(0.5) + (0)(0.7) 

0 + 3 -t- 2 -t- 2'1 -t- I 0 + 0 

6 

39 

6 

= 6.5. 

( 3.4) 

As we have discussed, there arc two imporl<mt issues to be considered in inter

preting the association between variables-direction and magnitude. The covariance 

provides clear information about one of these issues but not the other. 

The covariance provides clear information about the direction of the associa

tion. If a covariance is positive, as it is in our example, then we know that there 

is a positive or direct association between the two variables. Because we obtained 

a positive covariance in our example, we know that, to some degree, people who 

have relatively high IC1 scores /cnr/to earn rcl<ltivcly high CPAs. If the covariance 

value is negative, then we would know that there is a negative or inverse association 

between the two variables. 
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Unfortunately, the covariance does not provide clear information about the 

magnitude of the association between two variables. In a sense, the covariance is 

very similar to the variance, as we discussed earlier. Specifically, there are two fac

tors that affect the magnitude or size of the covariance. First, the strength of asso

ciation affects the magnitude of the covariance-all else being equal, large values 

of the covariance (whether large positive values or large negative values) reflect 

strong associations. So in the examination of the association between IQ and GPA, 

a covariance of 6.5 indicates a stronger association than a covariance of only 2.3. 

However, the metrics of the two variables also affects the magnitude of the covari

ance. That is, the covariance between two "large-scale" variables (e.g., SAT and IQ) 

is likely to be larger than a covariance that involves one or more "small-scale" vari

ables (e.g.,(; PA), regardless of the strength of the associations. Therefore, we might 

find that the covariance between IQ and SAT (say c:o· = 154.32) is much larger than 

the covariance between IQ and CPA (CH = 6.5, as in our example), but this does 

not necessmily mean that IQ is more strongly associated to SAT scores than to GPA. 

Thus, covariance is an important statistical concept, but it has limited direct inter

pretability. It is important because, like variance, it serves as a basis for many other 

important statistical concepts and procedures. Most immediately, it is important 

because it begins to bridge the gap between variability and an easily interpretable 

index of association. Such an index is the correlation coeftlcient, which we will 

examine soon. 

Before turning to the correlation coefficient, we will take a moment to describe 

something that will appear later in this book-a variance-covariance matrix. Some 

psychometric and statistical procedures are based on the analysis of sets of vari

ances and covariances, and these sets of values can be captured efficiently in square 

matrices of values, such as the one in 'I;1ble 3.3a. 'I�1ble 3.3a presents the smallest 

possible type of variance-covariance matrix-it is based on only two variables, and 

it includes two variances and one covariance. 

;\variance-covariance matrix is always organized in a specific way, with several stan

dard properties. First, each variable has a row and a column. For example, the matrix 

in 3.:\a has two rows and two columns, each based on one of the two variables-IQ 

and c ;PA. Similarly, 'I�1ble 3.3b presents the generalized form of a variance-covariance 

matrix based on f(lllr variables, with f(lllr rows and f(Jur columns. 

;\second property of a variance-covariance matrix is that the variables' variances 

are presented "on the diagonal." That is, the variances are presented in a diagonal 

line going from the upper left to the bottom right of the matrix. In 'E1ble 3.3a, we see 

that H)'s vari;mce (51;,'-' 166.67) is in the upper left corner and that GPA's variance 

( s' 
- 0 . .\'J) is in the !

.
ower right. Similarly, 'E1ble 3.3b shows the more general form, 

l,f',-\ ) • • • 

in which the variance of Variable I ( s-) is in the uppermost left cell, the vanance of 
I 

Variable 2 ( s2) is in the next cell down the diagonal, and so on. 

The third 
'
property of a variance-covariance matrix is that all other cells pres

ent covariances between pairs of variables. For example, in 'H1ble 3.3a, the "off

diagonal" cells present the covariance between IQ and CPA (C�<l."�'" = 6.5). Similarly, 

in 'Ii1ble J.3b, the value in the first column and second row is the covariance 

between Variable I and Variable 2 ( c11), the value in the first column and third row 

is the covariance bet ween Variable I and Variable 3 ( c1 ) , and so on. 
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GPA 

Table 3.3b 

Variable l 
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Example of a 2 x 2 Variance-Covariance Matrix 

IQ GPA 

166.67 6.5 

6.5 .39 

Generalized Form of a 4 x 4 Variance-Covariance Matrix 

Variable Variable 2 

s' I cl2 

cl2 sj 

ct.l c23 

ct.\ L�!·l 

Variable 3 

(13 

cl3 
s2 ., 

ell 

�-- . 

Variable 4 

ct.t 
C2·1 

c\.1 
s.f 

The fourth property is that the covarianccs arc "symmetric" in that the values 

below the diagonal are identical to the values above the diagonal. This is clear in 
·n1ble 3.3a, with the covariance between IQ and GPA being presented in the lower 

left of the matrix and in the upper right. This is also apparent in 'J\1ble 3.3b, in 
which, for example, the covariance between Variable 1 and Variable 4 would be 

presented in the lower left cell and in the uppermost right cell. 

In sum, covariances reflect the association between two variables. llut again, 

although they clearly reflect the direction of association, they do not clearly reflect 

the magnitude of association. In contrast, correlation coefficients clearly retlcct 

both qualities. 

Correlation 

The correlation coefficient is intended to provide an easily interpretable index of 

linear association. Correlation coefficients arc bounded within a very specific range 

of possible values-they can range only ti·om -1 to + l. Partially because of this 

"boundedness," correlations are much more easily interpretable than covariances. 

Like the covariance, a correlation coertlcient reflects the direction of the associa� 

tion between two variables. A correlation with a value that lies between 0 and I I 

tells us that there is a positive association between the two variables. In contrast, a 

correlation with a value that lies between 0 and -1 tells us that there is a negative 

association between the two variables. 

The great benefit of a correlation is that it retlccts the lllllgnitut!c of the associ<l

tion between two variables much more clearly than docs the covari<mcc. A correla

tion coefficient of a spccitlc absolute value (e.g., r,1 = .30 or r\r = -.30) represents 

the same magnitude of association, regardless of the variables on which the correla

tion is based. Regardless of the mctrics of the variables, a large correlation (in terms 

of its absolute value) reflects a strong association, and a small correlation (i.e., a cor

relation that is close to 0) reflects a weak association. For example, we always know 



that a correlation of .30 reflects a stronger association than a correlation of .20, but 
it reflects a weaker association than a correlation of .40. In addition, we know that 
a correlation of .30 is the same magnitude as a correlation of -.30. Furthermore, 
the maximum possible correlation is 1.0 (or -1.0), whether we are talking about 
the association between 10 and ( ;p;\ or the association between IQ and SAl� As we 
described earlier, this is not true for a covariance. 

The correlation is based on statistical values tlwt we have already discussed. As a 

measure of association, the correlation between two variables is based parti<llly on 

the covariance between the variables. 1-Iowevcr, the correlation obtains its "bounded" 

quality by dividing the covariance by the standard deviations of the two variables: 

Correlation= r
"

. 
c,\. 

h>r the two variables in 'L1blc 3.2, the correlation is very strong: 

r 
" 

6.5 6.5 
----- =-=.81. 
(12.91)(0.62) 8 

(3.5) 

The importance of the correlation cannot be overemphasized. From this point 

forward, nearly every chapter will usc the concept of a correlation coefficient in some 

way. You will lind that the correlation coefficient is an important part of reliability 

theory, the estimation of reliability, the conceptual basis of validity, the estimation of 

validity, the effect of response biases on test scores, and the idea of test bias. 

Again, it is useful to view correlation as an index of the consistency of individual 

dilfercnccs. A strong positive correlation indicates a consistent tendency for people 

who have relatively high scores on one variable to have relatively high scores on the 

other (and for people who have relatively low scores on one variable to have rela

tively low scores on the other). A strong negative correlation indicates a consistent 

inverse tendency I(H· people who have relatively high scores on one variable to have 

relatively low scores on the other. J\ weak correlation-a correlation that is very 

Llose to 0-indicttcs no consistency of imlividu;tl differences. That is, people who 

have rehttively high scores on one variable are as likely to have low scores as they arc 

to have high scores on the other variable. 

Variance and Covariance for "Composite Variables" 

In many, if not most, cases, scores on psychological tests arc determined by asking 

pL·opk- a serie-, of que\lions, or they are based on several behavioral observations. 

l{esiH>nses to these qucstioth or observations arc usually summed or averaged to 

form a cotllJH»ite score. For example, the !leek Depression Inventory (BDI; !leek, 

Ward, IV!emlelson, Mock, & Erbaugh, !l)(, I) includes 21 items rcf"crring to various 

'>)'lnptonts related to dqncssion. An individual's response to each item is scored on 

a '>calc of 0 to 3. An individual's score on the liD! is the sum of his or her scores 

aero�� the 21 items. Thus, BDI �calc scores can range from 0 to 63. 
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The variance of composite scores can be computed in the way we outlined previ
ously (sec Equation 3.2). l lowcver, it is also important to realize that the variance of 
a com positc score is determined by the variability of each item with in the composite, 
along with the correlations among the items. As an example, we will usc the simplest 
case of a composite score-when a composite is created by summing only two items 
(note that this case is also directly applicable to the concept of reliability as described 
in Chapter 5 ). We will call the two items i and j. The variance of the composite will be 

"·2 = s/+ s,.-: + 2r,,siS;· � \ (llllj11l'.iiL' 
(3.6) 

where 5
2 

is the variance of the composite variable, 5
2 

and 5
2 

are the variances 
.UIIll'"'>l[(' I I 

of items i and j r-cs,Jectively, r is the correlation between scores on the two items, . t 1/ 

and s, and s, arc the standard deviations of the two items. Note that if the two items 
arc uncorrelated with each other, then the variance of the composite simply equals 
the sum of the two items' variances (i.e., if r = 0, then 5

' 
=52+ 5

2). 1/ Ullll)lO'>!\l' I I 

For more than one pair of items, the right-hand term of the expression is 
expanded, repeating itself for each additional item pair. For our purposes, the 
important feature of this equation is that it shows that toto/ test score vnrinnce 

will depend solely on itc111 vnrio/Ji/ity nnd the corrl'intion /Jctwccn itc111 pnirs. This 
issue is an important beet of reliability theory, as we will discuss in a later 
chapter. 

Coing further, we can consider the association between two composite scores, 

which again is relevant to our later discussion of the psychometric concept of reliabil
ity. Imagine two composite scores, one comprising items i and j and one comprising 
items k and /. In this case of a pair of two-item composites, the covariance between 
the composite scores is simply the sum of the cross-composite covarianccs. That is, 
it is the sum of coV<lriances between the items f"rom the diffCrcnt composites (i.e., the 
covarianccs between the items from composite I and the ill'ms f"rom composite 2): 

U.7) 

'lb avoid additi01wl complexity, we will not present the equationl(ll" the correlation 
between two composites. llowcvcr, interested readers can obt<lin that equation by sub
stituting values in equation 3.7. We will return to Equations :\.6 and 3.7 in Chaplcr 5, 

where we discuss the definition of reliability and the concept of parallel tests. 

Binary Items 

Some psychological tests are based on dichotomous responses to test items or to 
behavioral observations that have been scored dichotomously. hlr example, we 
might ask people to give a "Yes" or "No" answer to questions or ask them if they 
agree or disagree with statements. Soml'limcs responses to questions arc scored as 
correct or incorrect, or we might W<ltch f(n the occurrence of a behavior and record 
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whether it occurred. In cases where we have binary items, only one of two outcomes 

is available for each observation or for each test item. 

As we have been discussing, variance is one of the most important concepts in 

psychometrics, so it is worth considering the way variance is represented for binary 

items. Suppose there was a depression test with questions that require a "Yes" or "No" 

answer. For example, people might be asked simply, "Do you feel depressed?" with a 

"0" assigned to a no answer and a" l" assigned to a yes answer. It is common to assign 

codes to binary responses in this hlshion, with 0 used as a code for"negatively"valenced 

answers. Negatively valcnced answers would be answers such as "No," "Never," "Don't 

agree," "h1lsc," and "Incorrect." The number I is then assigned to positively valenced 

answers (i.e. , answers such as "Yes;' "Always," "Agree," "'ll·ue," or "Correct"). 

Like other tests, tests based on binary items are scored by summing or averaging 

responses across items. For example, if our depression test had I 0 items, then we 

would compute a person's score by summing (or averaging) all l 0 responses. If we 

use a 0 and 1 coding scheme, then the sum would range between 0 and I 0, repre

senting the number of items to which the person responded "Yes." Alternatively, the 

average score will range between 0 and I, representing the proportion of items to 

which the person responded "Yes." 

In this way, tests based on binary items are very similar to other tests; however, 

binary items have some special properties that we will reference later in this book. 

"[(J prepare for those later sections, we will outline a few of these special consid

erations with regard to the mean and variance of such items. Specifically, we will 

consider the mean and variance of a binary item, based on several test takers who 

respond to the item. 

If responses arc coded in this 0 versus I manner, then the mean of a binary item 

is equal to the proportion of positively valenccd answers. Let p stand for the pro

portion of positively valenced responses to the item (e.g., the proportion of people 

who respond "Yes" to a binary depression item): 

, :Lx X =p= -- . 
N 

(3.8) 

This, of course, is also the formula for the mean of any set of quantitative values. 

Imagine that 10 people take the depression test that consists of one binary question, 

with 6 responding "Yes" to the item and 4 responding "No." In these data, we find 

that the proportion of "Yes" responses was 

X= p = I + () + I + I + I + () + 0 -1- I + () + I = _2_ = .60. 
]() 10 

Once we recognize that pis equivalent to the mean for a binary test item, we 

C<lll usc that information to translate the variance of binary items into the simple 

terms of proportion. I:or this, let 11 stand for the proportion of negatively valencecl 

responses. Because proportions can range only between 0 and I, we know that 

q .c I - p. Recall (Equation 3.2) that the formula to compute the variance for a 

distribution of ordinary scores is 
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N 

As we have seen, X is equal to p J(x binary items. Theretixe, we can substitute 

p f(>r X: 

2 L,.iX-p)' 
s =='-----

N 

If we expand this expression, we obtain 

However, because this is a binary item that is scored 0 versus I, X can only have 

values of 0 or I. Since the square of 0 is 0 and the square of I is I, X= X2• Therefore, 

L,.x2 L,.x 
N N ' 

which equals p (see Equation 3.8). Substituting this into the equation h>r the variance, 

Because pis constant across all respondents, 

Substituting again, we have 

� '  ' 
L. I' Np , --=--=p. 

N N 

s' = p + p'-2p', 
c- /'- p', 
� pl I - p). 

Because we defined q as I - p (the proportion of people given negatively 

valenced responses ), the variance of a binary item can be expressed as 

( 3.9) 

For the sample in which six people responded "Yes" to the one-item depression 

test, the variance would be 

s2 = (.60)(.40), 
= .24. 
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Equation 3.0 is important because it shows that the vanance of a binary 

n:sponse item depends simply on p and tJ. The variance of <1 binar)' item is maxi

mized when half of the people provide a positively valenced response and the other 

half provide a negatively valenced response-that is, when p =if= .50. In this case, 

the item\ vari<1nce will be ,.2 = pq = (.50)( .50)= .25. Any other value of p will result 

in a reduction of variance. If p = 1.00 or .00, the associated item will have no vari

<lllCC. l{eturning to our definition of covariance, it should be clear that if tests scores 

h<lVc 110 variance, then the scores cannot be correlated with any other set of scores. 

Again, we will ret urn to these ideas later in this book. 

Interpreting Test Scores 

i\s we discussed in the opening chapters of this book, many psychological tests arc 

based on scores that arc inherently ambiguous. Por example, imagine that you take 

a personality questionnaire that includes agree/disagree questions intended to mca

�UJT your level of neuroticism, and the lest administrator counts the number of times 

you responded to a question in a way that indicated some level of neuroticisrn (e.g., 

the number of times you marked "Agree" to an item like "I tend to get upset easily."). 

Let' say that the test administrator tells you that you obtained a "raw" score of 34 on 

the neuroticism scale, how would you interpret your score? What does it mean to 

have a score of 34? Do you have 34 "units" of neuroticism? Is your score high? Is it 

low? If your friend look a dirtcrcnt personality questionnaire and obtained a score 

of'JX on a nemoticism scale, docs that mean that your fi-iend is much more neurotic 

than you <lre? Actually, it could mean that your friend is less neurotic than you arc. 

On most psychologic1l tests, the raw score on the test is not inherently meaningful 

and thus not easily interpretable. By "raw" scores, we mean scores that arc obtained 

most directly from the responses to test items, such as the number of"Agrce" responses 

on a personality test or the number of correct responses on an <JChicvcmenl test. 

Thnc arc at lc<1st two fi1cets to the "meaning" of test scores in psychological mca

surcml'llt. The first is the basic meaning of a raw test score as being relatively high 

or low. I>crhaps smprisingly, even this basic interpretative issue is obscure f(lr many 

psyclwlogicd tests. In the remainder of this chapter, we discuss some of the basic 

concepts <llld procedures that have been developed to allow test users to clarify this 

fi1n·t of test intcrprctation. Many of these procedures emerge from concepts covered 

in the first p<Jrt of this chapter-means, standard deviations, and "norlll<1lly shaped" 

distributions. The '>ccond fi1cct of meaning is more abstract and psychological. 

'ipcLific1lly, the second tilcct conccms the psychological implications of test scores. 

That is, wh;1t docs <1 high score on a particular test actU<111y mean, psychologically? 

IL1'>cd on the concepts to he covered in the remainder of this chapter, you might 

take <1 test and know that your score is indeed high. llowcvcr, you might still wonder 

<1hout the Jhyclwlogical implications of your high score. The test developer or test 

tJ',lT might tell you that the test is a Jncasurc of neuroticism, hut is that really true? Is 

it po">ihlc that the test user is misinterpreting the test scores? !f it is indeed a measure 

of neuroticism, then wh<1t docs it mean to have a high level of neuroticism? Such 
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questions are answered on the basis of psychological research, theory, and statistical 

analysis, and they will be covered later in this book, in the chapters on validity. 

Thus, the remainder of this chapter will address the fundamental problem of 

interpreting the magnitude of test scores as low, medium, or high. Solutions to 

this problem are built on issues we have already discussed in terms of quantifying 

individual differences within a distribution of scores. That is, to interpret an indi

vidual's raw test score, we need to make reference to an entire distribution of scores 
on the test, and we must identify where the individu<d f�dls within that distribution. 

When a person takes a psychological test, he or she receives a test score. These 
scores can be expressed in different f(mns. For example, when people 1<1ke a class 
examination, the instructor lws a variety of score-reporting options. The instructor 
might report the "number correct" (e.g., 40) or the "percent correct" (e.g., t!O'.l'i>). As 
we have emphasized throughout this book, one of the most serious problems with 
psychological tests is that raw scores on such tests are orten difficult to interpret. hlr 
example, what does it mean to take a class examination and get a raw score of 40? 
'lest scores are based on behavioral samples, and they seldom index an ri!II0/1111 of 
a psychological characteristic. Therc/(Jre, we are left with a number that needs an 
interpretive frame of rderence. 

In most applications of psychological testing, the interpretive fi·,nne of ref(:rence is 

based on two key pieces of infonnation about a test score in relation to a distribution 

of test scores. The first key is whether the raw score t:JJ!s above or below the mean of 

an entire distribution of test scores lor perhaps exactly <1t the mean). hn example, 

you might compare your class examination score of 40 with the mean test score in 

the class. For purposes of illustration, assume that the mean class test score is 3<>. 

The class mean provides a frame of reference fc1r interpreting your score. You now 

know that your test score is above the class's average test score, and this single piece of 

inf(mnation provides an important step toward clarity in interpreting your test score. 

Knowing that your raw score is above or below the mean tells )'OLJ something about 

your perf(m11<111ce on the test relative to )'Our classmates, but this inl(mnation could he 

enriched if you knew lwwfhr above or below the mean your lest score is. Is 40 a slightly 

high score, a moderately high score, or a very high score compared with the mean score? 

That is, if the class me<lll is 36, then you know tlwt your test score is 4 points a hove the 

mean; however, docs 4 points represent a small difkrencc or a large difkrencc? Four 

points on most l() tests is a relatively small psychological difterencc, but a difkrence 

of4 points in other types of tests could indicate a dranwtic psychologic1l difference. 

i\ solution to this "degree of difli:rencc" question involves knowing something 

about the individual cliffl.'rcnces that exi>t in the raw ll'sl scores an10ng the people 

who took the test. If there were large individu,d difkrences associated with test 

scores (i.e., if people have a wide range of scores on the test), then ,10 might be 

interpreted as a slightly high score. On the other hand, if most of the students in 

the class earned scores between 3,1 <111d 31) (i.e., if there were only small differences 

among most individuals), then your score of 40 might seem to he modcratcly or 

even l'cry high. What we need is a number that provides inf(mnation about the 

relative size of the distance between your score and the 111L'<111. 

Thus, the second key piece of inf(mnation in interpreting a tcsl score is the vari

ability within a distribution of raw test scores. Most typically, the standard deviation 
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is used to help interpret the distance of a particular score from the mean score. As 

discussed earlier, the standard deviation tells us the degree to which the raw scores 

within a distribution differ fi·om each other. Thus, knowing the standard deviation 

of a distribution can help us calibrate the degree to which an individual score is 

above or below the mean, which in turn helps us interpret your score as slightly 

high, moderately high, or very high. The two pieces of inf(mnation-whcther a raw 

score li1lls above or below the mean and the distance of the score ti·01n the mean

are used to compute z scores (sometimes called standard scores), which we turn to 

next. After discussing z scores, we turn to two additional ways of representing test 

scores: ( 1) converted standard scores (sometimes called standardized scores) and 

(2) percentile ranks. We will then discuss the process of "normalizing" test scores, 

which test developers might do in some circumstances. 

z Scores (Standard Scores) 

In this section, we describe the computation, logic, and interpretation of z 

scores. In addition, we describe some of their advantages and limitations as ways of 

expressing scores on psychological tests. Finally, we describe some of their impor

tant statistical properties. 

An understanding of z scores is important f(Jr at least two reasons. First, and by 

fiu· the most important for our purposes, z scores provide insight into the meaning 

of test scores as being high, medium, or low. More specifically, they provide fairly 

precise inf(muation about the degree to which an individual's test score is above or 

below the mean test score. Thus, they arc inf(mnative in their own right, but they 

arc also the basis of other ways that can be used to represent test scores, as we will 

discuss later in this chapter. !\ second reason why z scores are important is that 

they can be used to conceptualize and compute important statistical values, such as 

correlation coefficients. 

In an attempt to give meaning to test scores, we can transform an indi

vidual's raw test score into a z score, which rcl1ects the distance that the score 

f�dls above or below the mean. We can transform a raw test score into a z score 

by computing the difference between the score (X) and the mean of its distri

bution (X) and then dividing this difference by the standard deviation ( s) of 

that distribution: 

X-X 
x=---. 

s 
( 3. I 0) 

For example, to compute the z score {(Jr your class examination, let us first 

imagine that there arc large individual differences in the raw test scores. That is, the 

distribution of r<lW scores has a relatively large standard deviation, says= 
8. Your 

z score would be 

40-36, 4 x=---=-=OS - 8 8 ·- . 



.,·p• 

Chopte1 3: Individual Differences and Correlations 59 

�scores have specific, albeit somewhat abstract, interpretations. They can be 
interpreted in "standard deviation" units. That is, you would interpret your z score 
as indicating that your test score is "0.5 standard deviations above the mean" or 
"half of a standard devi<ltion above the mean." Because of this close connection to 
standard deviations, z scores arc sometimes called "standard scores." 

Another way of thinking about z scores is that they indicate the extremity of a 
score. A larger z score (in terms of absolute values) indicates a more extreme score. 
Thus, the filet that your z score is only 0.5 indicates that your test score is not par
ticularly extreme. In other words, a score that is only one half of a standard devia
tion away ti·om the mean is, all things considered, birly close to the mean. In theory, 
z scores arc unbounded-they can be infinitely large. However, in real data that tend 
to be normally distributed, it is rare to find z scores that are greater than 3 or 4 (or 
that arc less than -3 or -4). 

Now, let us now imagine that there are small individual differences in the raw 
test scores. That is, the distribution of test scores has a relatively small standard 
deviation, indicating that raw scores were clustered tightly about their mean. In 
such a case, the standard deviation (s) might be only 2, rather than 8. If this were 
the case, your z score would be meaningfully larger, at 2: 

You could interpret this as showing that your test score is 2 standard deviations 
above the mean, which indicates a relatively extreme score (i.e., it is relatively 1;1r 
above the mean). 

An important issue in fully understanding and interpreting z scores is their 
unique and important statistical properties. If you take a distribution of test scores 
and convert each into a z score, then your set of z scores will have a mean of 0 and 
a standard deviation of 1.0. This is important because it will afkct the permissible 
values of certain statistiwl indices, such as correlations. 

z scores have several bencllts in terms of interpreting test scores. First, the)' 
express test scores in a way that bypasses the ambiguity of most psychological mea
sures. By framing the meaning of a score in terms of"distancc fi·om the mean," the 
z score frees us ti·om worrying about the units of the origin;d test score. 

Second, z scores can be used to compare scores across tests that arc on difkrcnt
sized units. For example, two people, Adam and Barbara, might take different neu

roticism tests, with Adam getting a score of 34 on one test and Barbar<l getting a 
score of 98 on the other test. As described earlier, these scores by themselves simply 
arc not comparable. We can solve this problem by transl(mning each test score into 
a z score (based on the mean and standard deviation of c;1ch distribution) and then 
comparing the z scores. We might lind that Adam's score transl(lJ'InS into a z scorL' 
of 1.3 and Barbara's score transt(JI'ms into a z score of -0.'1. In this case, we would 

conclude that, in a sense, Adam has <1 higher level of neuroticism than Barbara. 
The z score transformation is even useful when behaviors arc measured 

with instruments that produce well-defined units, such as clocks that record 
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milliseconds. Although we know what a millisecond is and can compare 

response times between people or across conditions by simple subtraction, we 

might want to compare response times with other types of measures of behav

ior that might be recorded with a different measure (e.g., weight) or expressed 

in units that are not standard (e.g., scores on a test of optimism). These com

parisons can be made by transforming milliseconds and the scores from the 

other measures into z scores. 

One important additional interpretive fact should be emphasized about z 

scores: They express a score in terms of its relation to an entire distribution of 

scores. That is, they express scores in relative terms. For example, your z score of 

12 on the class examination tells us about your performance in rclotion to tile 
rest of tile doss. Specifically, by framing a score in terms of its distance above or 

below the Jllcan, a z score tells us about how well you did in comparison with the 

avcr <lgc person. llowever, a z score docs not tell us about your overall level of per

form;mce in some absolute sense. For example, we might know that you scored 

I standard deviation above the mean on a biology examination (i.e., z = I). This 

tells us that you seem to know more biology than the average student, but it docs 

not tell us "how much" biology knowledge you actually have, in some absolute 

sense. Although z scores express scores in relative terms and not in absolute 

terms, this might not be considered a problem. After all, as we have mentioned 

bcli>JT, the "absolute" meaning of most psychological tests is ambiguous.£ scores 

arc very helpful because they provide a frame of reference that is based on the 

way scores re i a tc to each other. 

i\s noted earlier, z scores not only serve an important interpretive role for test 
scores, but they also can be used to conceptualize and compute some imporlimt 

statistical values. For example, it is sometimes useful to think of a correlation as the 

con�istency of individual differences expressed in z score units. It is often difficult 

to examine the consistency of raw scores when those scores arc values expressed in 

different metric units. !:or example, suppose that you have collected the c;PAs of 

100 st udcnts and you want to know if their GPAs arc correlated with the number of 

hours that the students study each week. CPA values will be expressed as relatively 

�mall numbers (e.g., 3.2), while hours per week might be expressed by relatively 

large numbers (e.g., 10). Furthermore, the two variables arc measured with differ

ent n1etrics--CPA units and units of hours per week. By transf(mning each set of 

values to z scores, we express both sets of scores with a common metric, a z-scorc 

n1et ric. Now, fi1r example, we can ask whether students who study more than the 

average student have higher < ;J>As than the average student. We can make this 

compilri'ion directly hy comparing the z scores for Ci'A with the z scores for hours 

of -.;tudy. If there arc consistent differences between individuals, then you would 

expect to lind thilt e<Kh individu;d would have a pair ofzscorcs of roughly the S<llllC 

milgnitudc (not ncccssilrily with the same sign). 

The li>nnula f(Jr computing the corrcliltion between vilriablcs using z scores is 

(3.11) 
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where �;;;,;;;, is the sum of the cross-products of each individual's z scores. l t can 
be shown that Equation 3.11 is algebraically equivalent to I:quation 3.5, which 
expressed the correlation in terms of covariance and standard deviations. Some of 
you might have encountered Equation 3.11 in other books or classes in which you 
learned about the correlation coefficient. 

Returning to the role that z scores can play when interpreting test scores, they are 
useful but they might not be ideal for some purposes. That is, despite the advan
tages of z scores as ways of interpreting test scores, some test users and test takers 
might find them to be less than intuitive. Indeed, there are at least two potmtial rea
sons why test users and test takers might struggle to interpret z scores. r:irst, some 
respondents' test scores would be expressed as negative numbers. If a respondent's 
test score is below the mean, then he or she will have a negative z score. For people 
who arc not f�m1iliar with concepts such as "standard deviation units" and "distance 
from the mean," the notion of having a negative level of neuroticism, self-esteem, 
or intelligence might he difficult to comprehend, and perhaps even objectionable! 
A second reason why z scores are potentially confusing is that scores arc often 
expressed in fractions or decimals. Some people simply might not find it clear or 
appealing to be told, "Your IQ test score is 1.24." 

'ltl account for some of these nonintuitive aspects of z scores, test developers and 
test user.-; will sometimes transform scores yet again. These scores, which we will 
address next, arc sometimes called converted standard scores, standardized scores, 
or derived standard scores. 

Converted Standard Scores (Standardized Scores) 

Converted standard scores are simply z scores that have been converted into val
ue> that people might lind easier to understand. This is accomplished by rescaling the 
scores so that the converted scores have a different mean and standard deviation. ror 
example, scores on the Minnesota Multiphasic Personality lnvcntory-2 (MMI'l-2; 
!lutcher, Dahlstrom, (;raham, 'l(.·llcgcn, & Kacmmer, llJi\lJ) arc ortcn converted so 
that each of its scales has a mean of 50 <111d a standard deviation of 10. It is assumed 
that test takers and test users might be more likely to understand the meaning of a 
score of 65 or 45 on the Paranoia scall' than a score of 1.5 or �0.5. 

The conversion can be accomplished through a two-step process in which test 
users or test lkvclopcrs first select a new mean for the scores ( �\'"'")and a new stan
dard deviation ( s, .. ,,) lilr the distribution of converted scores. Again, the marketers 
oft he M M PI-2 have elected to have a lllC<lll of 50 and a standard dcvia t ion of I 0. 

In the second step, an individu:ll's z score is converted through the following 
equation: 

where 'I' is the converted standard score and z is the individual's original z score. 
For example, someone with a z score of 1.5 on the MMPI-2 Paranoia scale would 
have a '/'score of 
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T= 1.5(10) +50, 

= 15+50, 

= 65. 

The T score of 65 tells us that the individual is 1.5 standard deviations above the 

mean on the Paranoia Scale. 
Some of you might feel that there is something "fishy" about this process-is it 

really legitimate for a test user simply to decide that he or she wants scores to have 

a specific mean or standard deviation? We understand such skepticism, but these 

types of conversions are, in hKt, psychologically valid and meaningful. 

The legitimacy of this conversion process goes back to the ambiguity of most 

psychological measures. As we pointed out earlier, a neuroticism score of 34 has 

little inherent meaning. For most psychological measures, the meaning of an indi

vidual's score arises only in relation to other individuals' scores. The neuroticism 

score of 34 has no clear meaning until we know whether it is higher or lower than 
what other people tend to score and until we know how much higher or lower 

most people tend to score. T hus, z scores (standard scores) arc inf(Jrmative because 

they arc a pure expression of a score's distance above or below the group mean. 

By extension, converted standard scores are informative because they simply reex
press z scores in a way that might be more intuitive for more people. The essence 

and meaning of converted standard scores arc the same as for a z score-they tell 
us how t�1r above or below the mean an individual's score is. The trick to inter
preting converted standard scores is that you must know the mean and standard 

deviation of the converted scores. For example, to know that a score of 65 on the 

MMPI-2 Paranoia scale is 1 standard deviation above the mean, you must know 

that the MMPI-2 Paranoia scale has a standard deviation of 15 points. This (or 

closely related) information should be readily available from test users and test 

developers. 
Whether this conversion process actually improves communication among test 

user� and test takers is an interesting issue, but it is a common practice among 

those who construct psychological tests. Converted standard scores are the reported 

scores on many tests with which you are probably hnniliar, including the SAT, 

American College Testing (ACT), Graduate Record Examination (GRE), Medical 

College Admission "lest ( MCAT), and Law School Admission ·rest ( LSAT) examina

tions, many personality tests, and many intelligence tests. 

Percentile Ranks 

Another common way of presenting and interpreting test scores is through per

centile ranks, which indicate the percentage of scores that are below a specific test 

score. hll· example, if we know that a lest taker has scored at the 85th percentile 

on an achievement test, then we know that the person has a relatively high score. 

Specifically, we know that he or she scored higher than 85<Yo of the other people 

who have taken the test. Thus, the percentile rank is yet another way of expressing 

test score> in relative terms. 



Chapter 3: Individual Differences and Correlations 63 

There are two ways to determine the percentile rank for an individual's test 

score. The direct or empirical way is useful if one has access to all the raw scores 

in a distribution. If so, then an individual's percentile rank can be calculated by 

identifying the exact number of raw scores in the distribution that arc lower than 

the individual's raw test score and dividing by the total number of scores in the 

distribution. For example, if 75 people take a test and one of them, Carol, obtains 
a raw score of 194, we might wish to report her percentile rank. Ti:l do this, we first 

count the number of people who scored below 194 (say, we find that 52 people 

did so). We then simply divide this number by 75 and multiply by 100 to obtain 

the percentile rank: (52/75)( 100) = 69(!1>. This tells us that Carol scored at the 69th 

percentile. The direct or empirical way of calculating percentile ranks becomes a 

bit more complicated if Carol's score is tied with one or more other people, but the 

general idea and interpretation arc the same. 

A second way of identifying an individual's percentile rank might be useful 

if we do not have access to the complete distribution of individual scores. For 

example, we might have information about only the mean and standard devia

tion of raw test scores. In such a case, we might be able to compute a standard 

score (i.e., z score) for the individual and then link it to a percentile. If (and this 

is an important if) we can assume that individual differences on the psychological 

attribute that underlies the test scores arc normally distributed, then we can link 

standard scores to the standard nornwl distrilllltion (also called the unit normal 

distribution or the standard normal curve, which some readers might be bmiliar 

with). The standard normal distribution, not surprisingly, represents standard 

scores distributed in a perfectly normal form (see our discussion above regard

ing "normal" distributions and skew). The standard normal distribution has a 

special quality, in that it allows us to link specific standard scores to percentiles. 

This process is a potentially useful way of making z scores more interpretable for 
some test takers. 

There are at least two convenient ways to use the standard normal distribution as 

a way of linking standard scores to percentiles. First, and the most modern, we can 

usc websites (such as http://davidmlanc.com/hypcrstat/z_tablc.html) or computer 

programs (such as Microsoft Excel) to compute the percentile from a standard 

score (e.g., using the "NORMSDIST" function in l�xcel). 

Second, and more traditionally, many statistics textbooks provide tables that 

present the standard normal distribution (sec 'il1ble 3.4 for an example of part 

of the distribution). Once we have computed an individual's standard score (e.g., 

z = 1.5), we can turn to this table and begin linking to a percentile. Unfilrtunatcly, 

books differ in the way they present the table fin the standard normal dist ribu

tion, although they will provide sufficient information to interpret the table. Our 

presentation in 'll1hle 3.4 is a h1irly common format, including only two columns. 

One column presents possible z scores, so we simply need to identify the row that 

includes the z score that we have computed. The second column, as described in its 

label, presents the proportion of scores that fi1ll between the mean and the score fi1r 

which we have computed the z score. 1:or example, fi1r an individual with a z score 

of 1.5, 'H1blc 3.4 tells us that .4332 of the scores in the distribution filii between the 
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Table 3.4 Excerpt From a Table of the Standard Normal Distribution 
- - --------------

z Score 

1.40 

1.41 

1.42 

1.43 

1.44 

1.45 

1.46 

1.47 

1.4H 

1.49 

1.50 

1.51 

1.52 

1.53 

1.54 

1.55 

1.56 

1.57 

1.58 

1.59 

1.60 

Area Between Mean and z Score 
----- · -------

.4192 

.4207 

.4222 

.4236 

.4251 

.4265 

.4279 

.4292 

.4306 

.4319 

.4332 

.4345 

.4357 

.4370 

.43R2 

.4394 

.4406 

.441R 

.4429 

.4441 

.4452 

mean and that individual's score. 'I(> estimate the total percentage of scores that bll 

below th�1l person's score, we add .50 to the value in 'l�1ble 3.4 and multiply the sum 

by I 00, for a lol�li of 93.32<)1,. This tells us that if the distribution of scores is normal 
in <>h;q>e, then someone with a score of 1.5 has a percentile rank of 93.32%--that is, 
approximately ')3% of the other lest takers score below this person. 

In short, a table such as 'l�li>le 3.4 can be used to estimate the percentile rank for 
;1ny z score, with only one procedural consideration and one theoretical consider

ation. The procedural consideration rci'ers to the way the table is used. If the z score 

i.., pmitive, we add .50 to the proportion obtained from 'lhble 3.'1, as we have illus

trated. llowever, if the z score is negative, we subtract the proportion from .50. For 
eX<llllj>lc, if our jllT'ion had obtained a zscore of-1.5, we calculate the percentile as 
.SO .'1332 .066H. Mter multiplying by 100, this would tell us that only 6J>R% of 

tl1c ·;core' in the distribution l�dl below the person's score. The theoretical consider

ation refer.., to the assumption, mentioned earlier, that the underlying distribution 
i., Jl<lrmal. II we e<lll salely assume that the distribution of scores is truly normal, 
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then we can safely usc the standard normal distribution to link standard scores 
to percentiles. However, if there is good reason to suspect that the distribution of 
scores is not normal, then we should not use the standard nornwl distribution to 
link standard scores to percentiles. 

Normalized Scores 

For tests that arc widely marketed, distributed, and used, test developers might 
argue that their tests measure a psychological attribute that is normally distributed 
in the population. h>r example, many theorists feel comfortable with the assump
tion that the distribution of intelligence within the general population is fi1irly 
normal in shape. Thus, if we create a new intelligence test, we might like to provide 
a scoring mechanism that produces scores that arc normally distributed. \11.1c might 
do this so that we could provide test users with interpretive guides (i.e., "norms") 
that reflect the assumed normality of the construct. 

Unfortunately, we might encounter a problem. Specifically, if the scores that 
arc actually obtained from test takers during the test development process arc not 
distributed normally, then we encounter a discrepancy that complicates our goal of 
producing a set of "normal" scores. That is, there might be a discrepancy between 
our theory-based belief about a psychological attribute (e.g., that intelligence is 
normally distributed) and the actual test data that have been obtained (e.g., IQ lest 
scores arc not exactly normally distributed). In such a case, lest developers might 
make two assumptions: (I) their theory is correct (i.e., the attribute is indeed 
normally distributed) and (2) the actual test data(!(.) scores in this example) arc 
imperfect reflections of the distribution of the construct itself. 

One way in which test developers have tried to solve this nonnormality problem 
is by transforming the imperfect (i.e., nonnormal) distribution of test scores into 
a distribution that more closely approximates a normal distribution. These proce
dures are sometimes c1lled nornrolizotion lmnsf(mnotions or orco lmnsf(mnotions. 

This normalization transformation is a three-step process. The first step is to 
compute direct or empirical percentile ranks from the raw test scores. That is, we 
transform each individual's original raw score on the I C) test into a percentile rank, 
using the first procedure that we described for percentile ranks (i.e., based on h<lV·· 
ing access to all the raw scores in the distribution). The second step in the 1101"111<11-

ization process is to convert the percentile ranks into standard scores (i.e., z scores). 
"[(> do this, we take a percentile rank (obtained in Step I), go to the table of the 
standard normal distribution (sec "!�1ble 3.4), look in the column that correspond' 
to percentile ranks, identify the specific rank that we arc working with, and then 
identify the z score associated with that percentile rank. Third, we take the z score 
(standard score) and compute a converted standard score onto the metric that we 
would like (i.e., to fit a specific mean and standard deviation). 

h>r example, we might want our!() test scorl'S to be reported on a mdric with a 
mean of I 00 and a standard deviation of 15, and we 111ight wish to report the CO!l
vcrtcd standard score resulting from the normalization procedure for an original 
raw test score of 2H. We first find the percentile rank associated with a score of 2H. 
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Test Norms 

Imagine that a score of 28 is quite high, corresponding to a percentile rank of 92%, 

based on the entire set of test responses that we have obtained. We take this value 

and, looking in 1�1blc 3.4, we find that a percentile of approximately 92(Y<l is linked 

to a standard score of+ 1.41 from a normal distribution (i.e., .92- .50 = .42, which 

is the proportion associated with a standard score of+ 1.41 in a normal distribu

tion). Because we want scores to be reported on a metric with a mean of 100 and a 

standard deviation of 15, we convert this into a standard score ('I): 

T= 1.4105) + 100, 
= 21.15 + 100, 
= 121.15. 

Thus, an individual with a raw score of 28 on our test would obtain a "normal

ized" converted standard score of 121.15. If we, as test developers, wished to make a 

general interpretive guide f(Jr test users, we would conduct this normalization pro

cess for all possible original scores on our test. 'lest users could then usc our guide 

for future measurements to link any individual's original score with the appropriate 

normalized converted standard score. 

The normalization transformation that we have outlined is but one option for 

handling nonnormal test data. Additional options include the computation of 

"normal curve equivalents" or "stanincs." Details of these procedures are beyond 

the scope of our current discussion, but they arc available in other sources, particu

larly those that deal with educational measurement. 

---·---------------------------------

In psychological measurement, many tests have been nor111ed to facilitate their 

interpretation by test users. Often during a test construction process, test devel

opers administer their new test to a large group of people who arc believed to be 

representative of some relevant population. After this large group has taken the test 

and their scores have been calculated, test users can usc their scores as a frame of 

reference f(Jr interpreting the scores of other people who will eventually take the 

test. The large group of people used in the construction of a test is referred to as the 

nifi•rel/ce salllple, and their scores are called the "norms" for the test. 

Thus, test developers often usc the procedures that we have outlined above to 

prepare interpretive guides for test users, and test users can use these guides to 

interpret each new score on the test. ror example, test developers will use the refer

ence sample scores to calculate "converted standard scores" f(Jr each possible score 

011 the original test. That way, when a test user obtains a test score fi·OJn a new test 

taker, he or she can simply usc the reference sample norms to automatically link the 

test taker's original score on the test to a more interpretable Tscore (i.e., converted 

standard score) or percentile rank. Because the test developers have already worked 

through all of the conversions and transformations that we have discussed, the test 

user docs not have to worry about those processes. This norming process makes test 

usc and interpretation much easier and more efficient. 
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In research settings, test users might not rely heavily on test norms for at least 
two reasons. First, test norms, standard scores, and percentile ranks might not be 
available f(>r many tests that researchers use. The non11ing and standardization 

processes that we have discussed are often conducted tC:>r psychological tests that 
are widely used in applied areas of behavioral science, such as clinical assessment, 
achievement testing, intelligence testing, and employee screening. When tests 
are developed f(>r more specialized research use, test developers are less likely to 

spend time and effort to develop a set of norms and standardized scores. A second 

reason why researchers arc less likely to usc inf(>rmation about test norms and 
standardized scores is that they are not usually interested in interpreting individual 

scores. !{ather, researchers arc usually interested in finding associations among 

variables-computing correlations and other statistics to understand the way in 
which important behavioral variables arc associated with each other. Because they 

arc not usually interested in f(JCusing on any particular individual's score, there are 
few reasons to worry about identifying percentile ranks and standardized scores for 

the participants who happened to volunteer for the research project. 

Representativeness of the Reference Sample 

As we have just seen, tests arc normcd to provide information to usc as a frame 
of reference for the interpretation of individual test scores. The value of the normcd 
data, however, depends on the extent to which the rdercncc sample truly represents 

a relevant population and the extent to which an individual who takes a normcd 
test can be thought of as a member of that population. In both cases, the target 

population must be well-defined, and we must have confidence that the reference 
sample is, in fact, representative of that population. 

h>r example, suppose that you want to develop a sclf�estccm test to use in the 

counseling center of a university. 'Jb interpret clients' test scores, you want to norm 

the test. The first thing that you would have to do is to ddinc the appropriate target 

population. In this example, the population 111ight include full-time students enrolled 
in 4-ycar undergraduate programs in American universities. Because it is unlikely 

that you could administer your sclf�estccm test to all of the students in this enor
mous population, you would need to select a sample of students (i.e., the reference 
sample) fi·01n that target population of students. The reference sample needs to be 

representative of the population. By "representative," we mean tlwt if the self�cstcem 
test questions were given to everyone in the entire population, the self�cstcem scores 

from the reference sample could be shown to have statistical properties similar to the 
properties of the scores from that population. 

Selecting the individuals f(>r a reference sample that is truly representative of a 
target population is a very complex issue. There arc entire books written on the issue, 

but f(Jr our purposes, we need to discuss only two types of sampling procedures: 
(I) probability sampling and (2) nonprobability sampling. Probability samples arc 
obtained using procedures that ensure a representative sample. No such assurances 

can be made if a sample is obtained using a nonprobal>ility sampling procedure. 

You are probably filmiliar with the idea of <l random sample. If a sample selection 
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Summary 

procedure produces a selection of people for a sample in a truly random t�1shion, 
we can say that the sample is a random sample. Such a sample would be a type of 

probabilil y sample. Now consider a sampling procedure in which you go to univer
sities in your vicinity and ask for students to volunteer for your reference sample. 
This procedure would produce a nonprobability sample because students who arc 
willing to volunteer might not be perfectly representative of all students. Notice 

that it is the procedure and not the results of the application of the procedure that 

defines the type of sample. You can never know for sure if any particular sample is 
representative of any particular population, but if a reference sample is obtained 

using a probability sampling procedure, you can be f�1irly confident of the sample's 

represcn tat ivcncss. 

Individual differences constitute the basic source of data f(Jr all the statistical 

procedures used to evaluate the psychometric properties of psychological tests. 

Psychological tests arc instruments for identifying individual differences, and we 

will show that a good psychological test captures these differences accurately. 
In this chapter, we showed that individual differences in test scores or t rait 

levels can be quantified by computing the variance and/or the standard deviation. 

Variance is a value that reflects the average size of (squared) differences among 

scores in a distribution of scores; each tested individual has a test score that might 

differ by some amount from the mean of a distribution of test scores. These differ
ences are used to compute variance. 

We also demonstrated the importance and meaning of covariabilit y-thc degree 
to which variability within one set of values corresponds with variability within 
another set of values. Emerging from the logic of variance and covariance, correla
tion coefficients arc values that represent the extent to which variability in one set 

of scores is systematically related to variability in another set of scores, and they 

play an extremely important role in psychometric cvalu<llion. 
r:in;dly, we discussed some ambiguities in the interpretation of lest scores, and 

we described some ways in which such ambiguities arc managed. Specifically, we 

dc�crihed stamh1rd scores ( z scores) and derived standard scores (e.g., T scores). 
Such sum:� allow us to compare a person's score on two different tests even if 

the tests arc measured using different n1ctrics. In conjunction with the normal 

distribution, they can also be used to make predictions from performance in one 

testing >iluation to perf(mn<lllCC in subsequent testing situations, they can be con
vcrll'd lo percentile rank �cores, and they can be used to make inferences about 
one 11erson\ lest 11erformancc compared with the test performance of others. Our 
di�cm,ion highlighted the (1Ll that such interpretive values arc based on an inter

pretive framework in which an individual's test score is defined in relation to other 

individu;Jis' scores. That is, they arc based on describing test scores as reflecting 

individual difference� among test takers . 
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Suggested Readings 
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Chapter 2 in 
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Wadsworth. 

There is no better place to start exploring the importance of individual difkrences 

than with Darwin and there is no better place to start with Darwin than 

Darwin, C. (I :-l5l)). On the ori,�in of tile :;pccics [,y n1mns o/ntlluml selection. London, 
England: John Murray. 

h>r those who would like to read a technical account of how individual diftcrences 

play a role in an important area of experimental cognitive psychology, see 

Jense n,;\. R. (200h). Clocking the 1nint!: Mento! ciimnonictry ond illt!iJ·it!nol tfi!/i-rcncc.<. 

Oxford, Fnghllld: Elsevier. 

Individual differences have always been at the core of personality theory and 

research. A classic in this area is 

Eyscnck, I L J., & Eyscnck, M. W. ( Jl)H5). Pcrsonolity Illlti int!il'iduilf tfi!/1-reuces: /\ Iltiluml 
:<cicncc llf'f'!"OtiC!l. New York, NY: Plcnulll Pre ss. 
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Rose nthal, R., & l�osnow, R. L. (2008). J:"s:;cntiuls o(/Jclwl'ioml rcscarc!J, nll'tlwt!s llllti t!uln 
nnnlysis Urd e d.). Ne w York, NY: lvlcCraw-llill. 

An algebraically complete but very easy to tdlow discussion of the Pearson product 

moment correlation coefficient can be found in a small book, ;dmost a monograph 

(particularly Chapters 4-1\): 

t:dwards, i\. L. ( 1<)76). /Ill introduction /o !incur regression t111t! corrclulion. San l'r ancisco, 
C:;\: W. II. Frcelllan. 

An overview of 13 ways of conceptU<llit.ing ami dclining the correlation is available in 

Rodg ers, J. L., & Nice wander, W. J\. ( IWlH). Thirte e n  ways to look at the corrc!.1tion cocf· 
licie nt. 'ill£' /\111crimn Sitlti:<liciun, 42, 5l)- (,(,_ 

For a concise but thorough discussion of different types of test norms sec ( :haptcr .\in 

Thorndike , R. lvl. ( 2005 ). Alctl>llrcii/CIIt ant! cl'tlillut ion in 1'-'!'<"lio/ogy til It! rt!11Ctll io11. Upper 
Saddk i{ive r, NJ: Pe arson Education. 





CHAPTER 4 

Test Dimensionality 
and Factor Analysis 

I
magine that a colleague wishes to usc a personality inventory that includes the 

following six
. 

adje�tivc�: ta/katil�c, ass�rtivc, inu
_
zginativc, crcotivc, outgoing, and 

Jntcllcctunl. hll· this bnct quest10nnmrc, participants are asked to consider the 

degree to which each adjective describes their personality in general. Your colleague 

asks for y our opinion of this common, adjective-based form of personality assess

ment. You consider the inventory for a moment, and you begin to wonder-what 

exactly does this inventory measure? Does it measure six separate facets of per

sonality, with each beet being reflected by a single adjective? Or does it measure 

a single construct? If so, then what is that construct-what do these six adjectives 

have in common as a psychological characteristic or dimension? Or are there two 

or three separate dimensions rcilcctcd within these six adjectives? How will this 

questionnaire be scored? 

-Ii1kc a moment to think about the six adjectives on the short inventory, and 

group them into clusters that seem to share some common meaning. That is, group 

them in terms of their similarity to each other. Some people might suggest that the 

questionnaire includes only two sets of items. For example, some might argue that 

talkative, assertive, and outgoing arc three variations on one attribute (let us call it 

"extraversion") and that imaginative, creative, and intellectual arc three variations 
on another attribute Oct us call it "openness to experience"). J-"t·om this perspective, 

responses to these six personality adjectives reflect two basic dimensions: one set of 

responses that arc a function of an extraversion dimension and one set of responses 

that arc the result of an openness-to-experience dimension. 

In contrast, some people might suggest that the six adjectives reflect three dimen

sions, not two. Specifically, "talkative," "assertive," and "outgoing" might go together, 

and "imaginative" and "creative" might go together, but "intellectual" is importantly 

different from the other five items. From this perspective, responses to the six items 

71 
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rdlect three basic dimensions. Put anoth�r way, these six test items essentially reflect 

three ways in which people differ from each other psychologically. 

This �xample illustrat�s the issue of test dimensionality, which is a fundamental 

consideration in test development, evaluation, and usc. There ar� at least three 

fundamental psychometric questions r�garding the dimensionality of a Lest, and 

the answers lo these questions have important implications for evaluating the psy

chometric properties of any behavioral test, tiJr appropriately scoring on a test, and 

f(Jr the proper interpretation of lest scores. 

In this chapter, we discuss the concept of dimensionality, the key questions related 

to dimensionality, and the implications that dimensionality has for test construe

lion, evaluation, usc, and interpretation. Indeed, as shown in Figure 4.1, the answers 

to the three key questions lead to three main types of tests: (I) unidimensional tests, 

(2) multidimensional tests with correlated dimensions, and (3) multidimensional 

tests with uncorrclatcd dimensions. '!Cst developers and test users must understand 

which type of test is being developed or used, because these tests have important 

psychometric differences from each other. 

( ;ivcn the importance of understanding a test's dimcnsion<liity, we also describe 

one way the dimensionality questions can be answered quantitatively. We describe 

the way in which test developers, test evaluators, and test users identify the number 

of dimensions reflected by a test, the meaning of those dimensions, and the degree 

One 
dimension 

Type of Scale 
Unidimensional 

:-. Re.levimt EFA Info ; 
: Flotation method, : 
: intcrfactor correlations : '· - - - - - - - - - - -

No 

Question 2 

Arc the 

Type of Scale 
Multidimensional 

with uncorrclatod 
dimensions 

:- R����-a-�t-El=-..\ -��t�---: 
:Eigenvalues, scree plot. : 
: factor loadings, etc. : 
(_-------

-
------

-
-

-
- --_, 

Two or more 
dimensions 

Question 3 

What's the 

Type of Scale 
Multidimensional 

wiltl correlated 
dimensions 

:Relevant EFA Info 
: Factor loadings 

Figure 4.1 Three Core Questions of Dimensionality, Three Types of Tests, and 
the Relevant Information From Exploratory Factor Analysis (EFA) 
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to which the dimensions are associated with each other. A statistical procedure 
called ji1ctor 111111/ysis is an extremely useful tool in the psychometrician's statistical 
toolbox. Although bctor analysis can be <1 highly technical procedure, we will pres
ent its general logic and use in a way that is accessible to those who do not have a 
great interest or background in advanced statistics. A basic understanding of hKtor 
analysis can provide a solid foundation for several important psychometric issues. 

Test Dimensionality 

If you step on a bathroom scale, the resulting number on the scale is a value that 
tells you something about one of your physical <lltributes or features-your weight. 
As a human being, you h:1vc many other physical attributes, including height, skin 
color, length of hair, and so on. vVhen you weigh yourself� the number that repre
sents your weight should not be influenced by attributes such as your hair color, 
your height, or your age. The "score" on the batlm>Olll scale should (and docs) 
rellcct one and only one physical dimension. 

Similarly, if we have a psychological test that yields some kind of number, then 
we would like to think of the number as a value representing a single psychological 
feature or attribute. h>r example, suppose you had a test of courage. If you have 
a lest that produces scores that can be tre<lted as if they arc real numbers, then a 
person's score on the test might indicate the amount of cour<lge that he or she had 
when taking the test. We could then think of courage as an attribute of that person 
and the test score as an indication oC the amount of the person's courage. The score 
on the courage test should reflect one and only one psychological dimension. 

As a general rule (but not always), when we llle<lsure a physical or psychologi
cal attribute of an object or a person, we intend to measure a si11glc attribute ol' 
that object or person. In the case of weight, we try to measure weight so that our 
measurement is not allccted by other attributes of the person being measured. 
l;urthermore, it would not be reasonable to measure somconc's weight, measure his 
or her hair length, and then add those two scores together to form a "tot;li" score. 
< :lcarly, the total score would be a blend of two physical dimensions that arc almost 
totally unrelated to each other, ami the combination ol' the two scores would have 
no clear interpretation. That is, the total score would not have clear reference to a 
single physical <ltlribute and thus would have no clear meaning. Similarly, it would 
not be reasonable to measure someone's courage, measure his or her vcrb;li skill, 
and then add those two scores together to form a "total" score. /\gain, the total score 
would be a blend of two dimensions that arc clearly umclated to each other (i.e., 
one's courage is probably unrelated to one's level of verbal skill). Combining test 
scores fro1n two independent psychological <lttributcs produces a total score that 
has no clear meaning. 

i\s discussed in our presentation of comr)osite scores, the scores from a wide 
variety of psychological tests are based on multiple questions or test items. For 
example, personality tests range in length from 5 or fewer questions to several 
hundred questions. In scoring such tests, item responses arc combined in some 
way, usually by computing one or more scores of some kind, and these combined 
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scores are used to reflect the psychological attribute(s) of interest. These scores are 

referred to as composite scores, and ideally, a composite score reflects one and only 

one dimension. However, a test may include items that reflect more than a single 

dimension. 

Three Dimensionality Questions 

As mentioned earlier, there are at least three core questions regarding a test's 

dimensionality. First, how many dimensions are reflected in the test items? As we 

shall see, some tests reflect one and only one dimension, while others reflect two 

or more psychological dimensions. This issue is important because each dimension 

of a test is likely to be scored separately, with each dimension requiring its own 

psychometric analysis. 

The second core dimensionality question is this: If a test has more than one 

dimension, then are those dimensions correlated with each other? As we shall see, 

some tests have several dimensions that arc somewhat related to each other, while 

other tests have several dimensions that are essentially independent. This issue is 

important, in part, because the nature of the associations among a test's dimensions 

has implications for the meaningfulness of a "total score" for a test. 

Third, if a test has more than one dimension, then what are those dimensions? 

That is, what psychological attributes are reflected by the test dimensions? For 

example, in the six-adjective personality test described previously, docs the first 

dimension reflect the psychological attribute of extraversion or some other attri

bute? The importance of this issue should be h1irly clear-if we score and interpret 

a dimension of a test, we must understand the score's psychological meaning. 

Figure 4.1 summarizes these questions and illustrates their connections to three 

different types of tests. These types of tests have different properties, different 

implications for scoring and for psychometric evaluation, and ultimately different 

psychological implications. 

Unidimensional Tests 

The first question regarding test dimensionality concerns the number of 

dimensions reflected in a set of test items. Some tests include items that reflect a 

single psychological attribute, and others include items that reflect more than one 

at tribute. 

When a psychological test includes items that ref1ect only a single attribute of a 

person, this means that responses to those items are driven only by that attribute 

(and, to some degree, by random measurement error-see Chapters 5-7). In such 

cases, we say that the test is llllidil!lellsional, because its items reflect only one psy

chological dimension. 

Comider a multiple-choice geometry exam given in a classroom. Typically, a 

student takes the exam and receives a score based on the number of questions that 

he or she answers correctly. The student's score is then interpreted as a measure of 

the amount of his or her "knowledge of geometry." This interpretation makes sense 
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only if the answers to all the test items truly require knowledge of geometry, and 

only knowledge of geometry. for example, if we can believe that the test does not 
(mistakenly) include algebra items, calculus items, or vocabulary items in addi

tion to geometry items, then we can indeed have some confidence in interpreting 

test scores as reflecting knowledge of geometry. That is, we could assume that the 

answers to each of the questions on the test arc affected by that single psychological 

attribute. Such a test would be thought of as unidimensional. In addition, the test 

items or questions would have the property of conceptunl homogeneity-responses 
to each item would be a function of the same psychological attribute. 

The concept of a unidimensional test is illustrated in Figure 4.2. This figure 
uses formatting that is standard for graphically representing a test's dimensional

ity (or f�1ctorial structure, as we shall describe later). In such figures, a circle or 

oval represents a hypothetical psychological attribute or latent variable that affects 

participants' responses to test questions. Returning to the geometry test example, 

the circle would represent "knowledge of geometry" because it is the psychological 

property that (supposedly) determines whether a student answers the test items 

correctly. Correspondingly, in figures like Figure 4.2, squares or rectangles repre

sent responses to each of the test questions. Finally, the arrows' directionality (i.e., 

they point from the attribute to the responses) represents the idea that the psycho

logical attribute affects responses to test questions. For example, they represent the 

assumption that knowledge of geometry (as a psychological ability) is what affects 

students' answers to the test questions. Because it shows a single psychological attri

bute affecting participants' responses, this figure illustrates a unidimensional test. 

As we have mentioned, a test's dimensionality has implications ti.lr its scoring, 

evaluation, and usc. For a unidimensional test, only a single score is computed, 

reflecting the single psychological attribute measured by the test. That is, all the 

items arc combined in some way (usually through averaging, summing, or count

ing) to form a composite or "total" score. For example, if it is indeed unidimen

sional, the geometry test produces a single score (e.g., the total count of the number 

of correctly answered questions) retlccting "knowledge of geometry." In terms of 

Figure 4.2 Unidimensional Test 
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psychometric evaluation, psychometric quality is evaluated f<.>r the single score that 

is obtained from a unidimensional test. In later chapters, we shall discuss reliability 

and validity, which reflect the psychometric quality of test scores. For unidimen

sional tests, rcli<lbility and validity should be estimated and evaluated for the total 

score produced by the test. In terms of test usc, test users compute and interpret the 

total score produced by a unidimensional test. 

Multidimensional Tests With Correlated 
Dimensions {Tests With Higher-Order Factors) 

When a psychological test includes items reflecting more than one psychologi

cal attribute, the test is considered multidimensional. In such cases, we confront a 

second dimensionality question-arc the test's dimensions associated with each 

other? As shown in Figure 4.1, the answer to this question differentiates two types 

of tests. When a test has multiple dimensions that arc correlated with each other, 

the test can be considered a lllltltidimcnsionnllcst with correlotcd dimensions (this 

has also been called a test with higher-order l�1ctors). 

Intelligence tests such as the Wechsler Intelligence Scale for Children (WISC-IV) 

(Wechsler, 2003a, 2003b) and the Stanford-Binet (SB5) (Roid, 2003) arc examples 

of multidimensional tests with correlated dimensions. These tests include groups of 

questions that assess different psychological att ributcs. The groups of questions are 

called subtcsts, and they each reflect a different f�1cct of intelligence. For example, 

the Sll5 has five subtcsts: (I) one to measure fluid reasoning, (2) one to measure 

general knowledge, (3) one to measure quantitative processing ability, ( 4) one to 

measure visual-sp<lt ial processing ability, and ( 5) one that is thought to measure 

working memory. Research by test developers and test evaluators has shown that 

the subtcsts of the Sl\5 arc correlated with each other. That is, a participant who 

scores relatively high on one subtest is likely to score relatively high on the other 

subtests as well. 

As we h<IVC mentioned, a test's dimensionality has important implications for 

the scoring, evaluation, and usc of the test. Multidimensional tests with correlated 

dimensions Gin produce a variety of scores. Typically, each subtest has its own sub

test score. In principle, each subtest is, itself, unidimensional, and the questions in 

each suhtest arc conceptually homogeneous. hlr example, the quantitative process

ing subtest of the Sl\5 might require a test taker to answer I 0 questions. Presumably, 

responses to each of t hose I 0 q ucstions reflect only quanti tativc processing and not 

one or the constructs represented by the other subtcsts. That is, a person's responses 

to the 10 questions arc afkctcd only by the person's quantitative processing skills 

<llld not some other psychological attribute. If a subtes\ is unidimensional, then the 

subtc">t's score is interpretable with regard to a single psychological attribute. 

In addition to scores ((Jr each subtest, mul tid i mcnsional tests with correlated 

dimensions are often scored in a way that produces a total score, combined across 

several subtcsts. That is, suhtcst scores arc often combined with each other (again, 

either through summing or by averaging the scores) to produce a Iota/ tcsl score. 

hlr example, the five subtest scores from the Sll5 arc combined to form an overall 



Specific .,) 
Psychological .· 

Attribute A 

Chapler 4 Tesl Dimensionality cmd Faclor Analysis 77 

'· 
General 0 

Psychological 
' 

Attribute ' 

p:f�: ) 
hological 1 
ribute B / 

/ 

Figure 4.3 Multidimensional Test With Correlated Dimensions (i.e., a Higher
Order Factor Test) 

·'full-scale" score rcprescn ting general intelligence, or g. We can think of g (a general 
psychological attribute) as affecting a variety of more specific psychological attri
butes, which in turn atlecl the way people answer the test questions. 

This type of test structure is presented in Figure 4.3. Note that there arc two 
levels of psychological attributes. Responses to each test question are affected by a 
specific attribute, or LJCtor. For example, an individual's responses to the questions 
on the quantitative processing subtcst of the SBS arc affected by his or her psy
chological ability to process quantitative information. In contrast, an individual's 
responses to the questions on the visual-spatial processing subtcst of the SB5 arc 
affected by his or her psychological ability to process visual-spatial inf(mJJalion. In 
addition to these specific psychological attributes, there is a gencr<ll psychological 
attribute affecting each specific attribute. For example, an individual\ abilities to 
process quantitative information and to process visual-spatial inl(mnation arc par
tially determined by his or her general cognitive ability, or intelligence. This general 
attribute is often called a higher-orderji1ctor because it is <lt a more general level (or 
"order") than the spccitlc bctors or attributes. 

In terms of test evaluation, multidi1ncnsional tests arc different from unidimen
sional tests. Reed! that a unidimensional test has one and only one score and this 
score is evaluated with regard to its psychoml'lric quality. In mnlrasl, multidimen
sional tests have a score f(n each subtest, and each subtcsl score is cv;duatcd with 
regard to its psychometric quality. It is possible that a multidimcnsional tcstLould 
have some subtcsts that h<lW reasonable psychometric quality <llld other subtests 
that have poor psychometric quality. Thcrcf(ll'C, each subtcst requires psychometric 
examination. r:or example, the developers and users of the Sll5 h<lVC examined 
carcf'ully the reliability ami validity or each or its five suhtcsts. In addition, a 
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multidimensional test with correlated dimensions may have a total test score that 

is computed across its subtests. Thus, this total score also requires psychometric 

evaluation. For example, the developers and users of the SBS have examined the 

reliability and validity of its full-scale score. 

In terms of test use, multidimensional tests offer a variety of options. Test users 

could use any or all of the subtest scores, depending on their relevance to the 

research or practical context. In addition, test users could use a total test score from 

a test with correlated dimensions if such a score is computed and has acceptable 

psychometric properties. 

Multidimensional Tests With Uncorrelated Dimensions 

As we discussed, the second dimensionality question regards the degree to which 

a multidimensional test's dimensions are associated with each other (see Figure 4.1 ). 

If a test's dimensions are not associated with each other (or are only weakly associ

ated with each other), then the test can be considered a multidimensional test with 

uncorrclated dimensions. 

Several personality tests are multidimensional with dimensions that are gener

ally treated as if they arc uncorrclated. For example, a test called the NEO Five 

Factor Inventory (NEO-FH; Costa & McCrae, 1992) is a 60-item questionnaire 

retlecting five dimensions, or f�JCtors of personality. That is, the NEO-FFI is 

designed to measure five relatively independent personality attributes, and these 

five attributes are not typically treated as reflecting any higher-order factors. Test 

takers receive five scores-one for each dimension-and each one is itself treated as 

if it were unidimensional. In a sense, such tests could be viewed as a set of unrelated 
unidimensional tests that are presented with their items mixed together. 

With regard to scoring, evaluation, and usc, multidimensional tests with uncor

rclatcd dimensions arc similar to multidimensional tests with correlated dimen

sions, with one important exception. For tests with uncorrelated dimensions, no 

total test score is computed. That is, a score is obtained for each dimension, but the 

dimensions' scores arc not combined to compute a total test score. Furthermore, 

each of the dimension scores is evaluated in terms of psychometric quality, and 

each is potentially used by researchers and practicing psychologists. hH· example, 

the NEO-FI."J produces only five scores-one for each of the five factors or dimen

sions; however, no total test score is computed for the NEO-PFI. 

This type of test structure is presented in hgurc 4.4. Similar to the multidimen

sional test presented in Figure 4.3, there arc two psychological attributes, each one 

affecting responses to a set of questions. I lowevcr, in this figure, the two attributes 

arc not linked together in any way. This implies that the attributes arc uncorrclatcd 

with each other. 

T he Psychological Meaning of Test Dimensions 

After the first two dimensionality issues arc addressed (the number of dimen

sions reflected in a test's items and the association among multiple dimensions), 

a third important dimensionality issue needs examination. Specifically, test 
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Figure 4.4 Multidimensional Test With Uncorrelated Dimensions 

developers, evaluators, and users must understand the psychological meaning of 

each test dimension. For a test's dimensions to be used and interpreted accurately, 

test developers and evaluators must conduct research that reveals the psychological 
attribute that is represented by each test dimension. 

In the next section, we discuss a common way in which such research is con

ducted. We present the basics of a statistical procedure called factor analysis, which 

is a fundamental tool in the examination of test dimensionality. We present its 

logic, and we discuss the information that it provides to address each of the three 
core questions of test dimensionality. 

Factor Analysis: Examining the Dimensionality of a Test 
---------------

'lest developers can use a variety of statistical procedures to evaluate a test's dimen

sionality. Although procedures such as cluster analysis and multidimensional scal

ing arc available, bctor analysis is the most common method of examination. By 

using bctor analysis, researchers can address the core questions outlined in the 

section above, and this provides important insight into the potential scoring, evalu

ation, and usc of psychological tests. 

There arc, in C1et, two broad types of t;Ktor analysis: exploratory lilctor analysis 
(EI:A) and confirmatory t;Ktor analysis (CFA). EFA is the more common type, and 
it is relatively easy to conduct with basic statistical software such as SPSS or SAS. 
In addition, EFA is often used in early stages of psychometric analysis and develop

ment. Considering these issues, the remainder of this chapter focuses primarily on 
EPA. We will revisit CI:A brielly at the end of this chapter, and we will dedicate an 
entire chapter to it later in this book (Chapter 12). 

The Logic and Purpose of Exploratory 
Factor Analysis: A Conceptual Overview 

At the beginning of this chapter, we asked you to consider a six-item personality 

questionnaire that includes the following adjectives: talkative, assertive, i111aginotive, 
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crmtivc, outgoing, and intcllcctuol. h1rthermore, we asked you to consider the 
number of diiTcrcnt attributes that arc reflected in these adjectives. As we men· 
tioned, reasonable people might disagree about this question. Based on one's par
ticular interpretation of the adjectives and one's understanding of personality, one 
might argue that the six adjectives reflect one single dimension, two dimensions, or 
perhaps three or more dimensions. 

/\n important difficulty with this approach-an approach based only on our 

interpretations of the meaning of items-is that it is not easy to evaluate which 

perspective is the best. That is, if you believe that there is a two-f�1ctor structure to 

the questionnaire but your colleague believes that there is a three-bctor structure, 

then how could you dctennine who is correct or if either one of you is correct? 

Rather than relying on idiosyncratic interpretations of the meaning of items, 

lest developers and users often prefer to base their arguments on empirical data. 

Thcrcl(l!T, we might give the six-item questionnaire to a sample of I 00 respondents, 

asking each respondent to rate each item in terms of the t<>llowing response options 

(circling the number f·(>r the appropriate option): 

·----

1 2 3 4 5 
-----

Completely Somewhat Neither Somewhat Completely 
unlike me unlike me like me nor like me like me 

unlike me 

We then enter their data into a statistical soli ware computer program and com

pute the correlations among the six items. We would then use the correlations to 

help us identify and interpret the dimensions reflected in the items. 

h>r example, take a moment to examine the hypothetical correlation matrix pre

sented in 'E1blc 4.1. Note that three of the items-"talkative," "assertive," and "out

going"-are all strongly correlated with each other. /\n individual who rates herself 

as relatively high on one of these three items is likely to rate herself as relatively 

high on the other two items. We also sec that the other three itcms-"imaginative," 

"nc<ltivc," and "intcllcctual"---arc strongly correlated with each other. Importantly, 

we <lho sec that these two clusters of items are independent. For example, the corre

lation between "talkative" and "creative" is 0, as is the correi<1tion between talkative 

and imaginative, between outgoing and intellectual, and so 011. That is, the 1;1ct that 

"''individual rates himself as assertive, talkative, <llld outgoing S<lys nothing about 

that person's likely level of creativity, imagination, or intellect. This pattern of cor

rei<! lions hegins to reveal the dimensionality of the six-item personality lest. 

By '>Canning an intcrilcm correlation matrix in this way, we could begin to 

1111derst;1nd" test's dimensionality. l·:ssentially, we try to identify sets of items that 

go together--sets of items tlwl arc relatively strongly correlated with each other hut 

wc<Jkly correlated with other items. Each set of relatively highly correlated items 

rcprc>cnls" p<>ychological dimension or "factor." 

Indeed, we can begin to address the three dimensionality questions in Figure 

,1.1. '!(> detenninc the nurnl>cr of fiJCtors within a scale, we count the number 

of 'il'h thai we identify. l( all scale items arc well correlated with each other at 
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�
lpproxinlatrly equal levels, then there is only a single set (i.e., ti1ctor) and the scale 
Is unidinJensional. II", however, there arc two or more sets, then the scale is multidi

.
11

.
1ensional. We identified two sets of items in the hypothetical correlation matrix in 

lab!c � ·1-thcse findings suggest that the six-item personality questionnaire has a 
llvo-dllnensiona! structure I i.e., it is multidimensional). That is, three items cluster 
together into one dimension, and the other three cluster into a second dimension. 

"I() determine whether the t;1ctors arc correlated with C<Kh other, we would 
examine the p<lltcrn of correlations between the sets. That is, the potential correla-
110115 between filCtors arc based on the correlations between items in different sets. 
1'� the example in ·n1b!c 4.1, we t(nmd that the items fi·om one set were uncorrelatcd 
Wllh the items in the other scl. This suggests that the two f�JCtors arc, themselves, 
uncorrclated with each other-the bctor represented by the items in one set is 
unrelated to the f�Ktor represented by the items in the other set. Thus, this six-item 

lest appears to be a multidimensional test with uncorrclated dimensions. However, 
1'/ items from one set are, in fiJCt, correlated with items from another �et, then the 
<lctors are correlated with each other. For example, we might have found a cor-relation of .30 between t<dbtivc and creative, a correlation of .25 between talkative 

and in1· · · · J · II I l 
S 

. . •1ginativc, a corrch1tion of .32 bt'tween outgomg anu mte ectua , am so on. 

;;1
uch 

.'�
pattern of moderately sized cross-fi1ctor correlations would suggest that the 

cto, s arc correlated with each other-that we were work1ng With a test that was 
lllultidin1' · 1 · 1 · · cnsiona WI( l correlated dimenSIOnS. 

Finally, to understand the potential psychological meaning of the bctor, we e
.
xaminc the content of the items constituting that bctor. That is, a fiH.:tor's potential meaning arises, in part, fi·om the psychological concept or theme that its items 

share('() .J , . " II . "" . " I" . "WI · , ns1( cr, or example, the items ta wt1vc, asscrt1ve, am outgomg. 1at do they have in common? What is a common psychological concept that they 
share? Many personality psychologists would likely suggest that these items reflect an c��raversion f;JCtor and that the other three items (i.e., "imaginative," "creative," 
<�nd mt ·II - !" 1 · "1'1 I . . . 

. e cct ua ) ref ect openness to expencnce. 1e answer to t 11s questiOn IS, 
of co urse, based on interpretation, judgment, and preference. Indeed, one person's 
answer might ditl(.>r fi·om another's. The interpretation of"extravcrsion" and "open
ness to experience" i� based on fim1iliarity with "the fivc-liKtor model" of personal
Ity, which is widely known in personality psychology and which includes the tr<lits 
of extraversion and openness to experience. People with other perspectives and 
backgrounds might choose to label the h!ctors difkrcntly . 

By examining the p<lt!ern of correlations in this way, we have pcrlimned a very 
basic fi1ctor ana lysis. Un fi>rt uiwtely, such a simplistic "eyeballing" approach rarely 
works with real data. Real data usually inc!utk many more items. In the current 
exa111p!c, we examined only six items, but many me<!SUres include nmsider
ably more th<ln six items. For example, the Conscientiousness scale of the NJ·:O 
Personality lnvcntory-l{cvised (NI:0-1'1-1{) qucstion1Wire (Costa & McCrae, 
1992) includes 4H items. Difficulty arises because a larger number of items 

produces a much larger number of correlations to examine. hll· example, if we 
examined a correlation matrix fill· 4H items, we would have to inspect more than 
I' I 00 correlations! Obviously, visually inspecting such a large correlation matrix 

is a nearly impossible task. In addition to the large number of correlations in most 
real data, the pattern of correlations in real data is never as clear as it <lppears to be 
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Table 4.1 

'H1lkativc 

Assertive 

Outgoing 

Creative 

Imaginative 

Intellectual 

(Hypothetical) Correlation Matrix for a Two-Factor Set of 
Items 

Talkative Assertive Outgoing Creative Imaginative Intellectual 

I .00 

.66 1.00 

.54 .59 I .00 

.00 .00 .00 1.00 

.00 .00 .00 .46 1.00 

.00 .00 .00 .57 .72 1.00 

in '1�lblc 4.1. The hypothetical correlations in 'I�1blc 4.1 include a few very strong 

positive correlations and a few zero correlations, but nothing else. l n real data, 

correlations often are closer to . I 8 or -.32 than to .70. Therefore, the clusters of 

items in real data arc much more ambiguous than the ones in Table 4.1, and this 
ambiguity complicates the process of evaluating dimensionality. 

EFA is a statistical procedure that simplifies this process. Rather than visually 

inspecting a matrix of dozens or even hundreds of correlations, we can use EFA to 
process a large set of correlations. Because the analysis of dimensionality typically 

is "messier" than the example in 'lhble 4. I, researchers often rely on EFA to examine 

the dimensionality of psychological measures. 

Conducting and Interpreting an Exploratory Factor Analysis 

h1ctor analysis can be conducted by using participants' raw data-their 

responses to each individual item in a test. However, some statistical software pack

ages allow factor analysis to be conducted on a correlation matrix that summarizes 

the associations among test items. Thus, if you have access to the appropriate soft

ware, you could replicate the example analyses that we report and interpret below. 

Figure 4.5 is a flowchart of the process of conducting an EFA. As this figure 

illustrates, 1·TA is often an iterative process, as the results of one step often lead 

researchers to reevaluate previous steps. 

Choosing 1111 /:'xtmction Met/wei. In the first step of an EFA, we choose an "extrac

tion method." This refers to the specific statistical technique to be implemented, 

and options include principal axis factoring (PAF), maximum likelihood factor 

an;dysis, and principal components analysis (PCA), among others. 

PAF and l'CA are the common choices in most applications of EFA. Although 

PC:A is not technically a "f�1ctor" analysis, it is essentially the same thing and is 

the delillllt method for several popular statistical software packages' bctor analy

sis procedure. Although the results obtained from PAF are often quite similar to 

those obtained from PCA, many experts recommend PAl: over PCA. For example, 

Fabrigar, Wegener, MacCallum, and Strahan ( 1999) conclude that l'CA is not 

recommended "when the goal of the analysis is to identify latent constructs underly
ing measured variables" (p. 276), as is typically the case in psychometric evaluation. 
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Choose an extraction 

method 

(PAF, PCA, etc.) 

Identify # of factors, 

and "extract" them 

(scree plot, etc.) 

Ambiguous 
structure One factor Multiple factors 

� 
Examine item-factor 

� associations 

(factor loadings) 

I 
Clean, simple 

structure 

Conduct factor 

rotation 

Oblique 

rotation Clear, 
unidimensional 

scale 

Orthogonal 

rotation 

(e.g., Varimax) (e.g., Promax) 

Ambiguous 

structure 

Ambiguous 

structure 

Examine item-factor 

associations 

(factor loadings) 

Examine item-factor 

associations 

(factor loadings) 

Clean, simple 

structure 

Clear, 
multidimensional 

scale with 
uncorrelated 
dimensions 

Clean, simple 

structure 

Examine interfactor 

associations 

"'---- .  

Clear, 
multidimensional 

scale with 
correlated 

dimensions 

�--
--

----- ----- - -

Figure 4.5 Process Flowchart of an Exploratory Factor Analysis 

NOTE: PAF = principal axis factoring; PCA = principal components analysis. 
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'I(J illustrate the EFA process, we will usc a PAF extraction method to analyze the 

data illustrated in 'l�Jblc 11. I, Note that responses should be reverse scored, if neces

sary, hcfill-c conducting the EFA (sec Chapter 10). 

Jt!cutifj'illg the Nu111hcr of Factors aut! l!xtmctiug 'riJcllL In the second step of an 

LFA, we identify the number of bctors within our set of items, and we direct the 

statistical software to "extract" that number of bctors. Unfill·tunatcly, we have no 

single, simple rule that we can usc to make this identification. Instead, we must rely 

on rough guidelines ;md subjective judgment. 

'l(J address the "number of h1ctors" issue, test developers and test users often 

rcf"cr to statistics called eigenvolucs. In Pigure 4.6, this information is presented 

in the "'l(Jtal Variance Explained" box-specifically, the six eigenvalues arc in the 

"'l(Jtal" column under the "Initial Eigenvalues" heading. Although there arc highly 

technical definitions of eigenvalues, what matters fi.>r our current discussion is how 

eigenvalues arc used, not what they arc. There arc many ways in which this informa

tion can be used (e.g., parallel analysis; sec !layton, Allen, & Scarpello, 2004 ) , but 

we will fiJCus on the three ways that arc the most common and that arc integrated 

into most popular statistical software options. 

One way of using eigenvalues is to examine the relative sizes of the eigenvalues 

themselves. Note that the eigenvalue output in hgurc 4.6 includes six rows. Each 

row represents the potential number of dimensions reflected among the six test 

items. That is, this output will always include a number of rows that is equal to the 

number of items on the test, and each item might reflect a different dimension. 

Examining the eigenvalues, we scan down the descending values in this column, 

and we hope to find a point at which all subsequent differences between values 

become relatively small. For example, in our output, we sec a rci;Jtivcly large differ-

ence between the second eigenvalue (2.173) and the third eigenvalue (0.563). We 

also note that this diff"crcncc is much larger than all the subsequent other row-by

row differences. That is, the difference between the third and fourth eigenvalues is 

small, as is the difference between the filllrlh and firth, and so on. 

The "location" of" this point has implications fin the answer to the "number 

of dimensions" question. We find this point, and we conclude that the test has a 

nun1her of" dimensions equal to the row with the larger eigenvalue. In Figure 4.6, 

the point is located between Rows 2 and 3, so we would conclude that the test has 

two dimensions. If the large difference was located between Rows I and 2, then 

we would conclude that the test has one dimension (i.e., that the test is unidimcn

'>ional). Similarly, if" the large difference was located between Rows 4 and 5, then we 

would conclude th<ll the test has filur dimensions. 

/\I though it has been criticized, the "eigenvalue greater than 1.0" rule is the sec

ond comrnon way in which eigenvalues arc used to evaluate the number of" dimcn

·,iom. ;\s represented by the fiKt that several popular statistical packages (e.g., SPSS 

ami Si\SJ usc this as a dcfindt option fill· answering the "number of" dimensions" 

question, 111<111)' fi1ctor analysts base their judgments on the number of eigenvalues 

that arc greater than 1.0. ror example, of the six eigenvalues in Figure 4.6, only 

two arc <!hove 1.0. Thcrcf"orc, we might conclude that the test items reflect two 
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dimensions. If our analysis had revealed three eigenvalues greater than 1.0, then we 

might conclude that the test items reflect three dimensions. 

Total Variance Explained 

Initial Eigenvalues 

%of Cumulative 

Factor Total Variance % 

2.195 36.578 36.578 

2 2.173 36.222 72.800 

3 .563 9.382 82.183 

4 .472 7.867 90.050 

5 .333 5.554 95.604 

6 .264 4.396 100.000 

Extraction Method: Principal Axis Factoring. 

Extraction Sums of Squared 

Loadings 

%of Cumulative 

Total Variance % 

1.836 30.599 30.599 

1.808 30.131 60.730 

Rotation 

Sums of 

Squared 

Loadings" 

Total 

1.836 

1.808 

a. When factors are correlated, sums of squared loadings cannot be added to obtain a total 

variance. 

2.5 

2.0-

Q) 1.5 
::1 

-ro 
> 
c 

Q) 
Cl 

jjj 1.0 

0.5 

0.0-

2 

Scree Plot 

3 4 5 6 
Factor Number 

(Continued) 
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(Continued) 

Factor Matrix" 

Factor 

1 2 

Intellectual .942 .000 

Imaginative .764 .000 

Creative .604 .000 

Assertive .000 .849 

Talkative .000 .777 

Outgoing .000 .695 

Extraction Method: 

Principal 

Axis Factoring. 

a 2 factors extracted. 19 
iterations required. 

Pattern Matrixb 

Factor 

1 2 

Intellectual .942 .000 

Imaginative .764 .000 

Creative .604 .000 

Assertive .000 .849 

Talkative .000 .777 

Outgoing .000 .695 

Extraction Method: 

Principal 

Axis Factoring. 

Rotation Method: Promax 

with Kaiser Normalization. 

b. Rotation converged in 2 
iterations. 

Factor Correlation Matrix 

Factor 1 2 

1 1.000 .000 

2 .000 1.000 

Extraction Method: 

Principal Axis Factoring. 

Rotation Method: Promax 

with Kaiser Normalization. 

Structure Matrix 

Factor 

1 

Intellectual .942 

Imaginative .764 

Creative .604 

Assertive .000 

Talkative .000 

Outgoing .000 

Extraction Method: 

Principal 

Axis Factoring. 

Rotation Method: 

2 

.000 

.000 

.000 

.849 

.777 

.695 

Promax with Kaiser 

Normalization. 

- ·-------------------------

Figure 4.6 Selected Output From Exploratory Factor Analysis of the 
Correlations in Table 4. 1 

Again, we should note that, despite its popularity, the "eigenvalue greater than 1.0" 

rule has been criticized as inappropriate f(H· evaluating the number of dimensions 

in many applications of h1ctor analysis (Fabrigar et al., 1999). Indeed, this guideline 

"is 11111011g the least ocwmtc 111cthods for selecting the number of t:1ctors to retain" 

(Costello & Osborne, p. 2), and it should generally not be used as a guideline for 

identifying the number of fi1ctors. 

A third common way of using eigenvalues is to examine a scree plot, and it is 

probably the best of the three most common methods of identifying the number 

of fi1ctors. As illustrated by Figure 4.6's presentation of the scree plot resulting 

from our EFA, a scree plot is a graphical presentation of eigenvalues. Similar to the 

examination of eigenvalues discussed above, we look for a relatively large differ

ence or drop in the plotted values. More specifically, we hope to find an obvious 

"leveling-off point" in the plot (as we move from leh to right along the x-axis). 
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For example, the scree plot in Figure 4.6 shows an obvious flattening beginning at 

Factor 3. An obvious flattening point suggests that the number of f�1ctors is one less 

than the factor number of the Jlattening point. That is, if there is a flattening point 

beginning at the second eigenvalue, then this indicates the presence of only one [JC

tor. In contrast, if a flattening point begins at the third eigenvalue (as in our scree 

plot), then this indicates the presence of two factors, and so on. 

If we do obtain a clear answer to the "number of t;Jctors" question, then we 

extract that number of f�1ctors. In most software programs, this simply means that 

we tell the program to proceed to the next step (see the flowchart in Figure 4.5) using 

the number of t;Jctors that we have iclentitlcd. In the case of the data in "lhblc 4.1 and 

Figure 4.6, we directed the program to proceed with two bctors. We will return to 
the EFA of these data shortly. 

Unfortunately, scree plots are not always dear-certainly rarely as clear as 

the one in Figure 4.6, which was based on hypothetical data constructed to be as 

obvious as possible. Providing more realistic examples, Figures 4.7 and 4.8 show 

selected results of two additional EFAs based on hypothetical data from two differ

ent six-item scales. Figure 4.7 is more realistic than the results in Figure 4.6, but it 

is still fairly clear-we sec a relatively clear flattening point at the third eigenvalue, 

again indicating a two-dimensional structure to the items. In contrast, the scree 

plot in Figure 4.8 is extremely ambiguous-there is no clear flattening point that 

would guide our decision about the number of bctors. In ambiguous cases like this, 
we use additional information to guide our understanding of the scale's number of 
dimensions. 

One type of additional information is the clarity with which the scale's items 

are associated with its t;JCtors. For example, the ambiguous scree plot in Figure 4.8 

might lead us to (somewhat arbitrarily) extract two factors and examine the itcm

hlctor associations in the next step of the EFA. As we will discuss shortly, our results 

from that later step might motivate us to revisit the present step, extract a different 

number of factors, and proceed again to the next steps. This is the iterative back

and-forth nature of EFA that was mentioned earlier. 

Occasionally, we never obtain a dear answer to the "How many dimensions?" 

question, suggesting that the scale has no clear dimensionality. If we did encounter 

that situation, then we might conclude that the scale needs revision-for example, 

in terms of clarifying the construct(s) that it is intended to assess or in terms of 

revising the items themselves (sec Purr, 20 II, chaps. 2 and 3 ). 

In a typical EFA, researchers make an initial decision about the scale's number 

of t;Jctors and then move on to one of two subsequent steps. As illustrated in the 

flowchart in Figure 4.5, if the scree plot (or another good guideline) suggests a 

single dimension, then researchers proceed directly to examining the associations 

between the items and that h1ctor. We will discuss this later. I lowcver, if there is 

evidence of more than one dimension, then researchers next make decisions about 

rotating the f;JCtors. 

Rotati11g the Factors. If the evidence suggests that a scale is multidimensional, then 

we usually "rotate" the bctors. The purpose of this step is to clarify the psychologi

cal meaning of the f�1ctors. 



88 f)ART 1: tWX COI',JCEPTS 11'\J MEA::>UREMENT 

3.0 

2.5-

2.0 

Q) 
:J 

m 
� 1.5 
Q) 

-� 
w 

1.0-

0.5 

0.0 

Factor Matrix" 

Factor 

1 2 

item6 .754 -.457 

item2 .667 .536 

item5 .620 -.399 

item4 .589 -.339 

item1 .561 .417 

item3 .513 .391 
-----

Extraction Method: 

Principal Axis Factoring. 

' 2 factors extracted. 15 

iterations required. 

2 

Scree Plot 

3 4 

Factor Number 

Pattern Matrix" 

Factor 

1 2 

item6 .880 .004 

item5 .743 -.017 

item4 .672 -.021 

item2 -.015 .861 

item1 .016 .694 

item3 .007 .642 

Extraction Method: 

Principal Axis Factoring. 

Rotation Method: 

Promax with Kaiser 

Normalization. 

·• Rotation converged in 
3 iterations. 

Factor Correlation Matrix 

Factor 1 2 

1 1.000 .352 

2 .352 1.000 

5 6 

Structure Matrix 

Factor 

1 2 

item6 .882 .314 

item5 .737 .245 

item4 .679 .257 

item2 .288 .855 

item1 .260 .699 

item3 .233 .644 

Extraction Method: 

Principal Axis Factoring. 

Rotation Method: 

Promax with Kaiser 

Normalization. 

Extraction Method: Principal Axis Factoring. 

Rotation Method: Promax with Kaiser Normalization. 

Figure 4.7 Selected Output From Exploratory Factor Analysis of "More 
Realistic" Data From a Six-Item Questionnaire 



1.6 

1.4 

<1> 1.2 
.2 
"' 
> 
c: 
<1> 
0> 

iii 1.0 

0.8 

0.6 

Factor Matrix" 

Factor 

1 2 

item5 .959 - 138 

item4 .359 .022 

item1 .069 -.564 

item3 .098 -.471 

itern2 .032 .368 

itern6 .164 .266 

Extraction Method: 

Principal Axis Factoring. 

" 2 factors extracted. 206 

iterations required. 

2 
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Scree Plot 

3 4 

Factor Number 

Pattern Matrix" 

Factor 

1 2 

item5 .969 -.004 

itern4 .358 .028 

item1 -.024 .568 

item3 .020 .480 

item2 -.029 .368 

item6 .118 .286 

Extraction Method: 

Principal Axis Factoring. 

Rotation Method: 

Promax with Kaiser 

Normalization. 

" Rotation converged in 

3 iterations. 

5 6 

Structure Matrix 

Factor 

1 2 

itern5 .969 .021 

item4 .359 .037 

item1 -.010 .568 

itern3 .032 .481 

item2 -.020 .368 

item6 .126 .289 

Extraction Method: 

Principal Axis Factoring. 

Rotation Method: 

Promax with Kaiser 

Normalization. 

Factor Correlation Matrix 

Factor 1 2 

1 1.000 .026 

2 .026 1.000 

Extraction Method: Principal Axis Factoring. 

Rotation Method: Promax with Kaiser Normalization. 

Figure 4.8 Selected Output From Exploratory Factor Analysis of 
Ambiguously Structured Data From a Six-Item Questionnaire 
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There are two general types of rotation, and they have differing implications for 

the potential associations among hJCtors. The first general type of rotation is an 

orthogonal rotation, and it generates l�Ktors that are uncorrelated or "orthogonal" 

to each other. A procedure called "varimax" is the standard orthogonal rotation. 

The second general type of rotation is an oblique rotation, which generates fac

tors that can be either correlated or uncorrelated with each other. There are many 

subtypes of oblique rotations, including "promax" and "direct oblimin." A full 

discussion of the differences among these subtypes is beyond the scope of our 

discussion-the important point is that all the oblique rotations allow factors to be 

correlated or uncorrelated with each other. 'lo anthropomorphize, if factors "want 

to be" correlated with each other, then oblique rotations allow them to be corre

lated; and if factors "want to be" uncorrelated, then oblique rotations allow them 

to be uncorrclated. 

Many experts suggest that oblique rotations are preferable to orthogonal rota

tions (e.g., Fabrigar et al., 1999). Again, the main purpose of rotation is to clarify 

the nature of the factors, which (as we will discuss next) depends on the pattern of 

associations between the factors, on one hand, and the scale's items, on the other. 

Oblique rotations can produce results in which these associations arc as clear as 

possible, allowing us to understand our scales as clearly as possible. With this in 

mind, there is often little conceptual or psychometric reason to force a scale's fac

tors to be orthogonal (i.e., uncorrelated)-doing so can create less clarity about the 

scale as compared with oblique rotations. After rotating bctors, we next examine 

the associations between the items and the factors. 

E'Cmnining Itc111-Fac:tor Associ11tions. Although a full understanding of a scale's 

dimensions emerges from many kinds of information (as discussed in later 

chapters on reliability and validity), the associations between items and f�1ctors 

can be an important piece of the puzzle. EFA presents these associations in terms 

of "factor loadings;' and each item has a loading on each factor. By examining the 

loadings and identifying the items that are most strongly linked to each h1etor, we 

can begin to understand the bctors' psychological meaning. 

( ;encrally, factor loadings range between -I and +I, and they arc interpreted 

as correlations or as standardized regression weights. When using an orthogonal 

rot at ion (or when a scale has only one factor), we obtain loadings that can be seen 

as correlations between each item and each f�1ctor. In contrast, when using oblique 

rot at ions, we obtain several kinds of factor loadings. For example, if we use the 

statistical program Sl'SS and we choose an oblique rotation, then we obtain both 

"pattern coefficients" and "structure coefficients." Pattern coefficients reflect the 

"unique association" between an item and a factor. That is, a pattern coefficient 

reflects the degree to which an item is associated with a f�Ktor, controlling for the 

correlation between the bctors. 1:or readers who arc bmiliar with multiple regres

'ion, pattern coefficients are the standardized regression weights produced by a 

regression analysis in which respondents' item responses are predicted from their 

leveh of the underlying factors. In contrast, structure coefficients are simply cor

relations between respondents' item responses and their levels of the underlying 

f�1ctors. By controlling for any correlation between factors, pattern coefficients can 
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provide sharper clarity about the unique associations between items and f�1ctors as 
compared with structure cocftlcients. 

When interpreting t�1ctor loadings, two pieces of information arc important (sec 
our discussion of interpreting correlations and covariances in Chapter 3). First, 

the size of the loading indicates the degree of association between an item and a 

bctor-larger loadings (i.e., loadings f�u·ther from 0, closer to -I or +I) indicate 

stronger associations between an item and a bctor. More specifically, loadings above 

.30 or .40 are often seen as reasonably strong, with loadings of .70 or .80 being seen 

as very strong. The second important piece of information is the direction of a load

ing-positive or negative. A positive loading indicates that people who respond with 

a "high score" on the item have a high level of the underlying bctor. In contrast, a 

negative loading indicates that people who respond with a high score on the item 
have a low level of the underlying factor. 

For example, recall that the scree plot in Figure 4.6 strongly indicated the pres

ence of two hlctors. With this in mind, we continued our EFA of these data by 

extracting two factors and using an oblique rotation (i.e., "Promax"). We obtained 

the loadings also shown in 4.6; in bet, there arc three sets of loadings. The "Factor 

Matrix" presents the hlctor loadings that would be obtained bd(H·c rotating the 

factors. Given the usefulness of hKtor rotations, we generally ignore these loadings. 

As the "Pattern Matrix" label implies, the second set of loadings is the pattern coef

ficients. And, of course, the "Structure Matrix" presents the structure coefficients. 

Examining all three matrices reveals a very clear pattern of item-factor associa

tions. Indeed, these results arc highly consistent with our earlier "eyeball" t�1ctor 

analysis of the correlations in 'l�1blc 4.1. Specifically, the items "intcllcctual,""imagi

native," and "creative" load positively and strongly on Factor !-the lowest loading 

being .604. Similarly, the items "assertive," "talkative," and "outgoing" load strongly 
and positively on Factor 2. Importantly, the first set of items (i.e., "intellectual," 

etc.) do not load on Factor 2, and the second set of items do not load on hKtor I. 

Note that the three sets of loadings in Figure 4.6 arc identical. That is, the Factor 

Matrix, Pattern Matrix, and Structure Matrix have identical values. This is a very 

atypical finding that, again, results from the fact that the correlations in T!blc 4.1 

were created to be as clear and simple as possible. Thus, these results arc rather 

artificial-in real analyses of oblique rotations, these matrices will differ from each 
other. We will illustrate this shortly. 

The t�Ktor loadings in Figure 4.6 are an ideal example of "simple structure." 

Simple structure occurs when each item is strongly linked to one and only one file

tor. Again, in Figure 4.6, each item loads robustly on one f�1ctor but h<lS a loading of 

.000 on the other h1ctor. Thus, each item clearly belongs on one and only one bctor. 

Simple structure is important in psychometrics and scale usage. (;cnerally, we 

sum or average a respondent's responses to the items that load together on a t:1ctor. 

!:or example, if we used the six-item questionnaire analyzed in Figure tU), we would 

create two scores t(H· each person. Recall that f(lr our six-item questionnaire, we asked 

each hypothetical respondent to rate himself or herself on each item, using a 5-point 

set of response options (i.e., I = Co111pletely unlike 11/e, 5 = Co111plctcly like nJc). First, 

we would sum (or average) a person's responses to intellectual, imaginative, and 

creative, producing an "openness to experience" score f(lr each person (based only 
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on those three items). Second, we would combine each person's responses to "asser, 
live," "talkative," and "outgoing," producing an "extraversion" score for each person. 
Note th<lt if an item docs not load on a f�1ctor, then it is not included in scoring or 
that dimcnsion/bctor. Thus, simple structure is important because it reveals which 
items should be scored together. llccausc rotation makes it more likely that we will 
obtain simple structure, rotation is usually a key part of EFA. 

ror a more realistic example, consider the EIA results in Figure 4.7, conducte�j 
on a different (hypothetical) set of six items. As noted earlier, this scree plot indi, 
cates two f�1ctors; thus, we extracted two factors, used an oblique rotation, an�j 
obtained factor loadings. There arc several important points to note. hrst, note that 
the three matrices ditlcr from each other. Again, as noted earlier, this is typical-, 
the Factor Matrix will ditfcr from the Pattern Matrix, which will ditler fi·om th�: 
Structure Matrix. Second, note that the loadings in the Factor Matrix do not show 
simple structure. That is, each item loads birly robustly on /Joth f�1ctors. In this case, 
the lack of simple structure occurs because the htctor Matrix includes f�tctor load, 
ings that arc obtained bd(>rc rotation has taken place. Thus, as mentioned earlier, 
we typically ignore these results, even though they are often provided by the statisti
cal package. Third, the Pattern Matrix does show very good simple structure-each 
item loads robustly on one and only one item. Fourth, the loadings in the Structure 
Matrix have a somewhat less clear simple structure than the loadings in the Pattern 
Matrix. This result is pretty typical, and it arises from the difference (discussed ear
lier) between pattern coefficients and structure coefficients. Fifth, we now sec nega

tive bctor loadings, although none of the negative loadings in the Pattern Matrix 
arc large enough to be very meaningful. As compared with the highly artificial 
results in Figure 4.6, the results in Figure 4.7 arc a much more realistic illustration 
of a clear two-factor scale with very good simple structure. 

1:or a full understanding of item-htctor associations, it is important to realize 
that fitctor loadings can violate simple structure in two ways. First, an item might 
not load strongly on any f�tctor, and second, an item might load strongly on more 

than one fitctor. 
h>r example, consider again the results in Figure 4.il, illustrating a dimensional

ity that appears quite unclear. Based on another hypothetical six-item question
naire, the scree plot is highly ambiguous (as discussed earlier). Because of this 
ambiguity, we r;lther arbitrarily tried a two-f�1etor extraction, and we used an 
oblique rotation. Concentrating on the Pattern Matrix, we sec one clear problem
Item () docs not load very strongly on either factor (i.e., loadings below .30 on 
hot h). '1\vo other slight problems arc that the strongest h�etor loadings f(>r I tcms 4 

ami 2 arc below .40-idcally, an item would have an even stronger fitctor loading. 
Such results create ambiguity with regard to this scale. l>o all of these items belong 
on the questionnaire? I low should the questionnaire be scored? Arc there really two 
t;lll<>r"i, perlwps more, perhaps less? 

As shown in the EL'\ flowchart (Figure 4.5), when (�Ked with such ambiguity, 
one option is to revisit our initial decision about the number of bctors to extract. 
We noted earlier that scree plots sometimes htil to provide clear inf(mnation about 
this i'isuc, hut the item-factor associations might help shape our decision about 
the number of fitctors. Revisiting again the unclear structure in Figure 4.R, we 
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examined bctor loadings based 011 several different f�1etor structures. Our hope 
was lo find a number of fi1ctors that produces bctor loadings with a clear simple 
structure. If we find loadings that arc relatively clear and mcaninghJl, then we 
might decide that the "correct" number of bctors is the one producing that pattern 
of bctor loadings. In our analysis of the ambiguous data represented in Figure 4.B, 
we also examined one-factor and three-factor extractions. Unfortunately, neither 
analysis produced clearer results. 

Failing to lind a clearer solution by revisiting the number of tiKtors, there is at 
least one additional option t(x dealing with ti1Ctorial ambiguity. Specifically, we 

might drop items that have poor structure. If an item is not strongly associated 
with any L1ctor, then we conclude that it simply is not coherently related to the 
other items on the test or questionnaire. This might suggest that the item reflects 
a psychological construct that differs from the onc(s) rctlcctcd by the other items 
on the scale (e.g., having a single math item on a vocabulary test). Alternatively, it 
might suggest that the item is strongly affected by random measurement error (sec 
the later chapters on reliability). Either way, the item, as it is, likely docs not belong 
on the scale. We noted that another problem is when an item loads robustly on 
more than one fi1ctor. In such cases, the item reflects more than one psychological 
construct. That is, responses to the item arc affected by several psychological traits, 
abilities, or states (or what have you). Such an item docs not uniquely reflect any 
construct, and thus we might drop it or revise it to rctlcct only one construct. 

With this option in mind, we revisited the data reflected in Figure 4.8's ambigu
ous results. Noting that Item 6 seemed to load weakly on both t;lctors (in the two
(;1Ctor solution), we removed this item from the analysis and reconductcd the EFA. 

Essentially, this addresses the dimensionality of a questionnaire that would include 
only Items I through 5. Figure 4.9 presents the results of this analysis, showing that 
this adjustment produces a questionnaire that now has a dearer dimensionality. 
Indeed, the scree plot now clearly suggests two ti1ctors, and the bctor loadings have 
good simple structure�cach of the five remaining items loads on one and only one 
h1etor. Apparently the inclusion of Item 6 created ambiguity in the questionnaire 
as a whole. Thus, by dropping that item from the questionnaire, we arc left with a 
live-item questionnaire that clearly includes two dimensions. 

l:'x111nining the J\ssociotions Among f<lwtors. Finally, as shown in the cFA flowclwrt 
(Figure 4.5) when using oblique rotations, we should examine the correlations 
among the f�1ctors. Recall that oblique rotations allow bctors to be either correlated 
or uncorrclatcd with each other, whereas orthogonal rotations f(Jrcc the factors to 
be uncorrclatcd. The results of oblique rotations thus include <l correlation for each 
pair of hlctors, revealing the higher-order associations among f�1ctors. This inf(Jr
mation has implications for our understanding or the nature of the f�lClors and 
f(Jr the scoring of the test or questionnaire. As mentioned earlier ( l:igurc '!.I), we 
should create "total scores" from a multidimcnsion<d scale only when the dimen
sions arc correlated with each other to a meaningful degree. 

Returning to our first and main example (sec 'E1ble 4.1 and 1:igurc 4.6), the 
f�1ctor correlation is presented in the "Factor Correlation Matrix" box. This small 
matrix presents the correlation between the two f�1ctors that we extracted and 
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Factor Matrix• 

Factor 

1 2 

item4 .846 -.117 

item5 .401 -.082 

item1 .137 .651 

item2 .030 .394 

item3 .084 .368 

Extraction Method: 

Principal Axis Factoring. 

a 2 factors extracted. 

279 iterations required. 

Scree Plot 

2 3 

Factor Number 

Pattern Matrix• 

Factor 

1 2 

item4 .854 .006 

itemS .410 -.024 

item1 .009 .665 

item2 -.046 .395 

item3 .011 .376 

Extraction Method: 

Principal Axis Factoring. 

Rotation Method: 

Promax with Kaiser 

Normalization. 

a. Rotation converged in 

3 iterations. 

Factor Correlation Matrix 

Factor 1 2 

1 1.000 .050 

2 .050 1.000 

4 5 

Structure Matrix 

Factor 

1 2 

item4 .854 .048 

item5 .409 -.003 

item1 .042 .665 

item2 -.026 -.362 

item3 .030 .377 

Extraction Method: 

Principal Axis Factoring. 

Rotation Method: 

Promax with Kaiser 

Normalization. 

Extraction Method: Principal Axis Factoring. 
Rotation Method: Promax with Kaiser Normalization. 

-·--------·-- -----------------

Figure 4.9 Selected Output From Exploratory Factor Analysis of Data 
From a Five-Item Version of the Questionnaire Originally 
Analyzed in Figure 4.8 
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rotated earlier in the analysis. This output reveals a zero correlation between the 

two dimensions, indicating that the two dimensions are not associated with each 

other. That is, people who have a high level of openness to experience are not par

ticularly likely (or particularly unlikely) to have a high level of extraversion. 

Again, it is important to note that different data will produce different results

it is quite possible that an oblique rotation will produce dimensions that arc more 

highly correlated with each other. For example, Figure 4.7 presents a two-factor 

structure in which the two f�1ctors arc indeed more highly correlated, at .35. This 

suggests that people who have a relatively high level of the first psychological 

dimension are likely to have a relatively high level of the second dimension. 

In sum, oblique rotations allow factors to be correlated "however they want 

to be." For the questionnaire represented in Figure 4.6, the factors "wanted" to be 

uncorrebted, and the oblique rotation allowed them to be uncorrelated (i.e., the 

interf�1ctor correlation was .00 ) . In contrast, for the questionnaire represented in 

Figure 4.7, the factors "wanted" to be correlated, and the oblique rotation allowed 

them to be correlated. 

For some final insights into the links between rotations, f�1ctor correlations, and 

factor loadings, consider what happens if we use an orthogonal rotation f(Jr these 

EFAs. In the case of the data fi·om Figure 4.6 (the original, highly artificial data), 

varimax rotation produces the factor loadings shown in Figure 4.1 Oa. Note that 

these loadings arc identical to those obtained in the original analysis based on an 

oblique rotation (see Figure 4.6). In the case of the data from hgurc 4.7 (the more 

realistic data in which the factors were moderately correlated with each other), 

varimax rotation produces the loadings given in Figure 4.1 Ob. Note that these load

ings differ from those obtained in the analysis based on an oblique rotation (see 

Figure 4.7). 
'l�lke a moment to consider why this might be-why in one case orthogonal and 

oblique rotations produce the same result, whereas in the other case they produce 

different results. The answer is that for the data in Figure 4.6, the bctors "want" to 

be uncorrelated. That is, the oblique rotation (Figure 4.6) allowed the bctors to 

be either correlated or uncorrelatcd, and the results showed that the f�1ctors were 

"naturally" uncorrelatcd. Because the oblique rotation produced results in which 

the fiiCtors were uncorrelatcd, the orthogonal rotation (which forces the factors to 

be uncorrelated) produced the exact same results in terms of J;Ktor loadings. In 

contrast, the questionnaire reflected in Figure 4.7 includes factors that "want" to 

be correlated-the oblique rotation allowed them to be correlated, and they were, 

in f�Kt, correlated at .35. When we then conducted an orthogonal rotation, which 

forced the factors to be uncorrelated, this changed the nature of the bctors, which 

then changed the associations between the items and the J;1clors (i.e., it changed 

the f�1ctor loadings). 

Also, notice the way the h1ctor loadings changed-compare the pattern coef

ficients in Figure 4.7 with the b1ctor loadings in Figure 4.1 Ob. This comp<Hison 

reveals that the orthogonal rotation produced I�Ktor loadings that arc somewhat 

less clear-they have worse simple structure. !:or example, examine the loadings f(n 

Item 6 (the top item in the matrix). In the oblique rotation, its loading Oil Factor 1 

was .880, and its loading Oil Factor 2 was .004. In the orthogonal rotation, its 



96 PAPT 1: BASIC COI'-JCEPTS IN MEASUREMENT 

(a) 

Rotated Factor Matrixa 

�--

Factor 

1 2 

Intellectual .942 .000 

Imaginative .764 .000 

Creative .604 .000 

Assertive .000 .849 

Talkative .000 .777 

Outgoing .000 .695 

Extraction Method: 

Principal Axis Factoring. 

Rotation Method: Varimax 

with Kaiser Normalization. 

" Rotation converged in 

2 iterations. 

(b) 

Rotated Factor Matrix• 

Factor 

1 2 

item6 .867 .162 

item5 .728 .117 

item4 .665 .141 

item2 .139 .844 

item1 .140 .685 

item3 .121 .633 

Extraction Method: 

Principal Axis Factoring. 

Rotation Method: 

Varimax with Kaiser 

Normalization. 

"· Rotation converged in 

2 iterations. 

Figure 4.10 Factor Loadings From Orthogonal Rotation of Data From 
(a) Figure 4.6 and (b) Figure 4.7 

loading on hJCtor I is weaker, <1t .867 (though still quite strong), and its loading on 

Factor 2 is somewhat stronger, at .162 (though still relatively weak). All the items 

show thi-; p<111crn-in the orthogonal rotation, their main or "on-I�JCtor" loadings 

arc somewhat weaker, and their other or "off-l�1ctor" loadings are somewhat stron

ger. Thus, orthogonal rotation can produce a somewhat less simple structure within 

the bctor loadings. 

A Quick Look at Confirmatory Factor Analysis 

As noted earlier, there arc two types of bctor analysis: exploratory hlctor analysis 

( H"i\) and conlirm<1tory li1ctor analysis (CPA). Our discussion so hu· has focused 

on EI:A bec1mc it has been used more frequently than CFA, because it is relatively 

easy to conduct with basic statistical software, and l>cclllse it is often used in early 

ph<1SC'i of the development and evaluation of psychological tests. llowcvcr, a brief 

discu-;sion of ( ;1:/\ and how it differs from EFA is potentially useful at this point. 

;\!though both 1:.1:/\ and Cl·'A <1rc <1pproachcs to l�1ctor analysis, they have some

what dilt<:rcnt purposes or roles. As its label implies, EFA is as an exploratory 

procedure- it is designed /()]·situations in which there arc lew, if any, ideas about 

<1 test\ dimensionality. Again, test developers and ev;duators might usc El:A in the 

,_-;1rly pha'iC'>, while conducting basic exploratory analyses of a set of items. 
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l n contrast, CFJ\ is a con firma tory proceclu re-i l is designed for situations in 

which there arc very clear ideas ahout <1 test's dimensionality. ror example, we 

might wish to cvalu<!le the dimension;dity of a 16-itcm test that has been devel

oped specifically to have H questions reflecting one li1ctor and another H questions 

retlecting a different bctor. In this case, we would have a fi1irly clear idea about the 

intended dimensioll<llity of the test. That is, we would know exactly which items 
were intended to load on which fi1ctor. After collecting a large number of responses 
to this 16-item test, we could usc CFA to directly test these ide<lS; or perhaps more 

accurately, we could test whether the responses to the test items match or fit with 
these ideas (i.e., whether the test shows the dimcnsion;dity that it is intended to 

have). In this way, C:F;\ is used to confirm, or potentially disconfirm, our hypoth
eses about a test's dimensionality. 

There arc important similarities between C:FA and Eh\, hut the process of con

ducting a CFA is substantially different from the process of conducting an El:A. 

Indeed, CFA includes new concepts and statistics, such as inf(:rcntial tests of param

eter estim<ltcs and "goodness-of-fit" indices. Moreover, although most of the com

mon statistical software packages can now be used to conduct a CFA, the way this 

is done differs r<Jlher dramatically from the way those packages conduct an El:A. 

Given the differences between EFJ\ and CFA, and given the additional complex

ity of CFA, we will return to CJ:A later in the book, in Chapter 12. In that chapter, 

we will describe the inf(mn<Jtion provided by a C:FA of a test, the procedures for 

conducting a ( :1:!\, and the applic1lion of C:FA to several imporl<llll psychometric 
questions. 

---- --- · -------- ---
-

l11 this chapter, we have discussed the concept of test dimensionality and the way in 

which it is examined. We have discussed three core issues regarding test dimension

ality: (I) the number of dimensions reflected in a set of test items, ( 2) the degree 

of association among <1 test's dimensions, and (3) the psychological meaning of a 
test dimension. These issues serve to difkrcntiate three types of tests, which h<lS 

important implications (or the way a test is scored, evaluated, and used. 

This chapter provided <ln overview o( fi1ctor analysis-wlwt it is and how it is 

used to examine lest dimensionality. Although !i1ctor analysis is <1 highly <Jdvanced 

statistical procedure, we have provided <I general discussion and illustration or the 

procedures. Interested readers can obtain more details (rom many available sources 

(e.g., (;orsuch, I <JH3; Meyers, Gamsl, & Guarino, 2006 ). 

The first fin1r chapters of this hook have provided the conceptual and slalisti
c;Jl l(nmdations f(>r the remaining chapters. In the remaining chapters, we fi>uls 

on core psychometric properties. Specific;dly, issues such as rcliahilit)' <lnd v;didity 

require huniliarity with hasic concepts and procedures such as V<lriahility, correla

lions, and dimensionality. We will turn next to reliability. 

Summary 
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Suggested Readings 
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For a detailed technical discussion of the procedures: 
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analysis: 
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CHAPTER 5 

Reliability 

Conceptual Basis 

N
urses attempt to measure the length of babies at birth and <lt regular intervals 

thereafter. If you have ever watched an attempt to measure the length of a 

baby, you will not be surprised to learn that it's <l difficult task. Babies squirm 

<lround eiT<ltically, and they resist attempts to stretch them out to their full length. 

Such squirming creates difficulties for nurses who arc attempting to obtain accurate 

measurements of babies' lengths. h1rthermore, some babies <liT more compliant 

than others, which means that some arc less likely to squirm around than others. 

Again, this creates differences among babies in that some babies may be more likely 

to be measured accurately than others. These kinds of problems have led researchers 

(e.g., Johnson, Engstrmn, & Gclhar, 1997; Johnson, Engstrom, I laney, & Mulcrone, 

1999) to ask questions about the reliability of these measurements. 

Imagine that a nurse is asked to measur e  the le-ngths of 10 dirf(.'rent babies, and 

imagine th<ll there was some way to know beforehand (but unknown to the nurse) 

l'<Kh baby's true length. You could, in theory, compare each baby's measured le-ngth 

with his or her true length. Moreover, you could examine the diffen.'nLCS <lmong 

babies' measured lengths and compare them with the diffcrclll:cs among babies' 

true lengths. Ideally, you would find good consistency between these two sets of 

differences. That is, you would hope to find that differelllcs <lmong the babies' 

nle<lsurcd lengths were consistent with differences in their actual lengths--tklt the 

babies who were measured (by the nurse) as relatively long were truly rel<ltively 

long. If this was the case, then you would conclude t h<l t the measu rem en t proced u rc 

produced length "scores" that were reliable-. 

Throughout this book, we have emphasized the importance of undcr:.tanding 

psychological variability-psychological tests arc useful only to the degree th<lt they 

<Kcuratcly reflect true psychological differences. Again, in a research context, belwv

ioral science strives to quantif)' the degree to which difkrences in one variable- (e.g., 

intelligence) are associ;ltcd with differences in other va riablcs (e.g., parenting st yks, 
101 
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preschool experience, age, academic performance, aggression, gender, etc.). ·rest and 

other types of measures arc used to assess and represent these behavioral differences. 

In an applied context, practitioners strive to make decisions about people, and they 

use behavioral tests and diagnostic procedures to inforrn those decisions. Such deci

sions rest on the assumption that behavioral differences among people exist, that the 

differences have important implications, and that they can be measured with some 

precision. Thus, psychological measurement always hinges on the ability to reflect 

real psychological differences accurately. This ability is at the heart of reliability. 

This chapter introduces classical test theory (CIT), which is a measurement 

theory that defines the conceptual basis of reliability and outlines procedures for 

estimating the reliability of psychological measures ( Gullikscn, 1950; Magnusson, 

1967). For example, suppose that we give a burnout questionnaire to a group of 

people, and we found that people differ in their scores on the questionnaire. We 

would like to assume that the differences in their questionnaire scores accurately 

rellcct the differences in their true levels of burnout. According to CIT, a test's reli

ability rellccts the extent to which the differences in respondents' test scores are a 

function of their true psychological differences, as opposed to measurement error. 

W hether using a measure for research purposes or for applied purposes, we hope 

that all of our measures are highly reliable. 

Although it is somewhat imprecise to speak in this way, sometimes behavioral 

scientists speak as if reliability is an all-or-nonc issue. For example, someone might 

ask us whether a particular test is reliable, and we arc likely to answer "Yes" or "No." 

Such an answer seems to treat reliability as if it is a binary issue, with a test either 

being reliable or unreliable. Despite this common way of speaking and thinking 

about reliability, reliability is, in 1�\ct, on a continuum. That is, a procedure for 

measuring something will be more or less reliable. 

One useful insight to begin with is that reliability is itself a theoretical notion. 

Reliability is a feature, presumably, of the results of procedures for measuring char

acteristics of objects or psychological characteristics of people. Just as a psychologi

cal attribute such as intelligence is an unobserved feature of a person, reliability 

is an unobserved feature of test scores. Purthcrnwre, just as we must estimate a 

person's level of intelligence, we must estimate a test's reliability. 

In this chapter, we will describe the theoretical basis of reliability from the per

spec! ivc of CTT. In Chapter 6, we will describe procedures for estimating a test's 

reliability. We will show that it is possible, given certain assumptions of CI""I� to 

calculate numerical values that estimate the degree to which scores from a measure 

arc or arc not reliable. In Chapter 7, we discuss the importance of rcliability�why 

it matters and what its implications are for psychological testing, practice, and 

research. As we will detail in that chapter, reliability is a crucial issue that can have 

powerful implications on psychological research and practice. 

Overview of Reliability and Classical Test Theory 

According to CTI; reliability derives from observed scores, true scores, and mea

surement error. We refer to values that are obtained from the measurement of some 
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characteristic of a person as o/Jscrvcd scores. In contrast, the real arnounts of that 
characteristic are referred to as tme scores. In our length example, a baby's length as 
determined by the nurse would be an observed score, and a baby's real length would 

be a true score. We should note that some experts would object to this relatively 

simple definition of true score, preferring instead to dctine true scores more techni

cally as the average score that a participant would obtain if he or she completed the 

scale an infinite number of times. Alternatively, true scores can be seen as the scores 

that would be obtained if the test or measurement was perfectly precise-that is, if it 

was unaffected by measurement error. At a practical level, all of these definitions are 

essentially identical. Thus, we prefer, for current purposes, to describe true scores as 

noted first-as the actual or real level of the psychological attribute being measured 

by a test. Ideally, test users would like to interpret individuals' observed scores as 

good estimates of their true scores because most behavioral research and decision 

making are intended to reflect respondents' true psychological characteristics. 

Considering the concepts of observed scores and true scores, reliability is the 

extent to which differences in respondents' observed scores arc consistent with 

differences in their true scores. More specifically, the reliability for a measurement 

procedure depends on the extent to which differences in respondents' observed 

scores can be attributed to differences in their true scores, as opposed to other, often 

unknown, test administration characteristics. The extent to which these "other" 

characteristics contribute to differences in observed scores is referred to as mea

surenzent error, or just error, because they create inconsistency between observed 

scores and true scores. When measuring the quantity of anything, including fea

tures of physical objects or psychological characteristics of people, the results of the 

measurement will always be unreliable to some extent. There is no such thing as a 
perfectly reliable measure. 

lt is usually impossible to know all of the sources of measurement error affecting 

test scores. In the case of measuring the length of babies, we can imagine that some 

error might be related to how much each baby squirms while being measured. That 

is, it is likely that some babies squirm more than others. If this is true, then the accu

racy of the length "scores" will be affected by the amount each baby squirms. Some 

babies' squirming might c ause their nurses to underestimate their true length, but 

other babies' squirming might cause their nurses to overestimate their true length. 

The effects of squirming are considered measurement error because they create 

imprecision in the measurement of babies' true lengths. Other sources of error in 

the babies' measurement might include the l'i1Ct that different nurses might record 

the measurements. If each baby is measured by a different nurse and if some nurses 

are more careful in taking their measurements, then some babies will be more 

accurately measured than others. The differences in nurses' "measurement care" 

will obscure the differences among babies' true lengths. There are many possible 

sources of error that might aftcct the observed measurements, thereby obscuring 

the true differences among babies. Some of these sources of error might be subtle 

(e.g., nurses' carefulness), and some might be more obvious (e.g., squirming). 

There is no way to account for all of the possibly subtle h1ctors that might affect 

observed scores. 

Of course, such errors also influence the measurement of psychological attri

butes. Consider what might happen if a class of schoolchildren takes a mathematics 
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achievement test. We would like to think that a child's score accurately retlccts his or 

her true knowledge of mathematics; however, bctors other than "m<lth knowledge" 
are likely to influence children's lest performance. Some children who are taking 
the test might have a cold on the day they take the test. The cold might make them 

groggy, which in turn causes them to perf(nm worse on the test than they "truly" 
could perf(mn, given their true mathematical ability. Some children might have 
eaten a nutritious breakfast, which helps them feel alert and energetic, thereby caus

ing them to perform quite well on the test. Some children might happen to make 
many "lucky guesses" on the test, which makes their test score higher than it should 
really be, given their true mathematical ability. Some children might compute the 

math answers correctly but, by mistake, circle the wrong choice on an answer sheet, 

producing test scores that artificially underestimate their "true" mathematical 
ability. Such temporary and transient f�1ctors-amount of sleep, emotional state, 
physical well-being, guessing, misrecording answers, and so on-could artificially 
inflate or deflate the children's lest scores relative to their true scores. Each of these 
f�Ktors might be a source of measurement error, compromising the quality of the 
test scores. To evaluate the reliability of scores from any measure, we must estimate 
the extent to which individual differences in observed scores are a function of mea

surement error versus the extent to which they are a function of true or real score 

differences among respondents. 
One useful way to think about reliability is in terms of signal and noise-that is, 

in terms of our ability to detect a signal in the presence of noise. In this framework, 
true scores are the signal that we would like to detect, and measurement error is the 
noise that is obscuring the signal and making it difficult to detect. Reliability then 

can be seen as a ratio of signal and noise: 

Signal 
Reliability 

Signal+ Noise 

!:rom this perspective, reliability is clearest when there is a strong signal and/or 

little noise. We will return to this conceptual framework later in this chapter. 

Observed Scores, True Scores, and Measurement Error 

l�l'iiability depends on two things: (I) the extent to which differences in test scores 

Gill be attributed to real inter- or intra-individual differences and (2) the extent 
to which difTerences in test scores arc a function of measurement error. In CIT, a 

person's obsL-rved score on a lest is a function of that person's true score, plus error. 

If X, represents an individual's observed test score, if X, is the individual's true 
'>core 011 psychological characteristics, and if X,. is the amount of error afTecting the 

individual\ responses, then we can write the l()llowing f(mnula to represent this 
a•;suinpt ion: 

(5.1) 
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'Ill illustrate this point, we have constructed an artitlcial da1<1 set representing six 

people's responses to a self-esteem questionnaire (sec 'I;Jble 5.1a). For the sake of 

this example, we will pretend that we know each person's true level of self-esteem 

(i.e., each person's true score, X,). Of course, we would never actually know an indi

vidual's true score-this example is intended solei)' to explain the theoretical basis 

of reliability. From this "omniscient" perspective, we sec that i\shley truly has the 

highest level of self-esteem in this sample (X,= !30), that Bob has the next highest 

level rx, c= 120), and so on. 
In addition, we will also pretend that we know the degree to which each indi

vidual's questionnaire score is affected by measurement error. For example, Ashley 
h;1ppencd to take the self-esteem questionnaire only an hour after learning that 
she had earned a D on a biology test. Because of this disappointing grade, she felt 
unusually bad about herself when she took the self-esteem questionnaire. Notice 
I hat J\sh Icy's error score (X) is -I 0, reflecting the f�1ct I hat her dis;lppoi n !men I tem
porarily lowered her apparent self-esteem score. In contrast, Bob happened to take 
the test an hour after learning that he had been accepted into law school. Although 
Bob generally has a relatively high level of self-esteem (i.e., his true self-esteem score 
is relatively high compared with the rest of the sample), the good news about law 
school makes him feel even better about himself than he usually does. Notice that 
Bob's error score (X) is 25, reflecting the bet that this good news is temporarily 
raising his apparent self-esteem score. 

As '[1blc 5.1 a shows, the respondents' observed scores on the self-esteem ques
tionnaire arc determined by their true levels of self-esteem and by the "error" effect 
of random events or slates. For example, Ashley's observed score is as follows: 

Table 5.1 

Respondent 

.)\�� = .X'1 + ;'\l. , 
c 130 I (-10), 
= 120. 

Responses to an Original Self-Esteem Questionnaire and a 
Revised Self-Esteem Questionnaire 

Observed 
Score (X) 

True Score 
(X,) 

---- -·---- ' 

Error (X) 

(a) Responses to original self-esteem questionnaire 

Ash ley 120 !50 I -I 0 
Bob 145 120 y _) 

( :arl 95 110 I -15 
I lcnise !)� :J 100 1- -15 
Eric 115 90 + 25 
1:clicia 70 HO + -10 

Mean I 05.00 105 ( )  
Variance WH.33 29 1.(17 .\!(1.(17 

( C'out i uucd) 
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Table 5.1 

Respondent 

(Continued) 

Observed 
Score {X0) 

True Score 
(X,) 

--------------------------------------

Standard 
deviation 

Reliability= Rxx = 

r,c = 

24.66 

.48 

.00 

17.08 

.69 

.48 

(b) Responses to revised self-esteem questionnaire 

Ashley 135 130 
Bob 130 120 
Carl 95 110 
Denise 85 100 
Eric 100 90 
Felicia 85 80 

Mean 105 !05 
Variance 408.33 291.67 
Standard 20.21 17.08 
deviation 

Reliability= N,u = .71 r = 
"' .84 

r = 
'" 

.00 ' .71 r- = 0\ 

r = Ot' 

+ 
+ 
+ 
+ 
+ 
+ 

r = Ot' 
) r- = 

Oi: 

17.80 

.72 

.52 

5 
10 

-15 
-15 

10 
5 

0 
116.67 
10.80 

.53 

.29 

Again, this "omniscient" example illustrates the first simple but fundamental 

theoretical assumption of CIT--that observed scores on o psyclwlogicalmeasure are 

determined by respondents' /rue scores and by measurernent error. 

CIT makes a very important assumption about nzeasurement error. Specifically, it 

assumes that error occurs as if it is random. In part, this means that measurement 

error is just as likely to inflate any particular score as it is to decrease any particu

lar score. We assume that peoples' responses to a psychological test are affected in 

unpredictable ways that might make their observed scores artificially high or arti

ficially low. Consider Ashley and Bob. It was simply chance that Ashley took the 

self-esteem questionnaire only an hour after hearing bad news, thereby lowering 

her observed score as compared with her true, stable level of self-esteem. Similarly, 

it was simply chance that Bob took the questionnaire after hearing good news, 

thereby raising his observed score as compared with his true, stable level of self

esteem. Across the entire sample of respondents, random measurement error arti

ficially inflates some people's scores, and it artificially deflates other people's scores. 
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Because error affects scores as if it is random, the inflation and deflation caused 
by error is independent of the individuals' true levels of self-esteem. That is, mea
surement error can affect someone with a high true level of self-esteem in the same 
way (and to the same degree) as it affects someone with a low true level of self
esteem. Again, consider Ashley and Bob. The events that arc temporarily affecting 
their responses have nothing to do with their true level of self-esteem. The timing 
of Ashley's grade on her biology test and the timing of Bob's news about law school 
are completely unrelated to how high or low their true levels of self-esteem are. 
The artificial data in Table S.la illustrate this general point. Notice that the size and 
direction (positive or negative) of the error effects are spread equally for respon
dents across the entire range of true scores. For each "high-esteem" person whose 
observed score is artificially deflated by measurement error, there is a high-esteem 
person whose observed score is artificially inflated. The same is true for people with 
low true levels of self-esteem. 

'/"here ore two important consequences of this assu111ption a/wut error. First, error 
tends to cancel itself out across respondents. That is, error inflates the scores of 
some respondents and deflates the scores of other respondents in such a way that 
the average effect of error across respondents is zero. Indeed, Table 5.1 a shows that 
the mean of the six error scores is exactly 0 (i.e., X, = 0). The second consequence 
of the apparent randomness of error is that error scores are uncorrclatcd with true 
scores. As described above, error affects observed scores in ways that arc indepen
dent of the respondents' true levels of self-esteem. Therefore, if we compute the 
correlation between the individuals' true scores and their error scores in 'l�1blc 5.la, 
we tlnd that the correlation is exactly 0 (i.e., r,, = 0). These two consequences have 

important implications for reliability, as we shall soon see. 

Variances in Observed Scores, 
True Scores, and Error Scores 

As mentioned earlier, reliability reflects the degree to which difJi'renccs in observed 
scores are consistent with di[l'crences in true scores. Put another way, reliability 
depends on the links among observed score variability, true score variability, 
and error score variability. Civcn the importance of variability for interpreting 
and evaluating psychological measurement, we need to understand how the first 
assumption of CTT (i.e., that, for each individual, X.,= X, + X) extends to the dif
tt·rences among peop !c. 

This extension might make the most sense if we begin by illustrating how the 
true diftcn:nces between people can be obscured by differences in measurement 
error. 'E1ke a moment to examine the individuals' true scores in 'l�lhlc 5.la and focus 
on the diflercncc between Ashley and Bob. Notice that Ashley's true score (X, = 

130) is 10 points higher than Bob's IX,= 120). That is, her self-esteem is, in reality, 
I 0 points higher than Bob's. However, notice that Ashley's observed score on the 

questionnaire (X,= 120) is 25 points lower than Bob's observed score (X . . = 145). 
Obviously, the difference between Ashley's and Bob's true scores is inconsistent with 
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the diffCrence between their observed scores-Ashley's true score is higher than 
Bob's true score, but her observed score is lower than Bob's observed score: 

Ashley's X,- Bob's X, = 130- 120 = II 0. 

Ashley's X.,- Bob's X., = 120- 145 = -25. 

This inconsistency is created by the measurement error that artificially deflated 
Ashley's observed score hut artificially inflated Bob's observed sore. Of course, this 
inconsistency means that the apparent 25-point difference between Ashley and Bob 
(on the self-esteem questionnaire) is a very poor reflection of the real difference 
between Ashley and Bob (in their true, stable levels of self-esteem). 

Because such inconsistencies potentially affect the differences <lmong all the 
respondents, let us consider the relevant variances across all the participants. Variances 
f(>r this hypothetical data set are computed in the standard way. For example, variance 
among the error scores ( s}) is based on using error scores (X) in the computations: 

Irx.-X)2 
N 

(-10-0)2 +(25 -0/ +(-15 -0)2 +(-15 -0/ +(25-0)' +(-10-0)' 

6 

(-10) +(25)' +(-15)' +(-15)' +(25)2 +(-10)' 

6 

I 00+ (>25-t-225 + 225 + 625 +I 00 

6 

ll)()() 

6 

=3 16.67. 

(5.2) 

This value represents the degree to which error affected different people in dif
ferent ways. Again, the f:1ct that error affects people differently-artificially inflat
ing some people's scores and artificially della t i ng other people's scores-is what 
obscures the true differences among people. Thus, a high degree of error variance 
indicates the potential for poor measurement. Using the standard f(mHula f(>r vari
ance (sec Chapter 3), we can also compute a variance f(>r the observed scores (s,;) 
and a variance f(>r the true scores ( s/ ), as shown in 'Jhhlc 5. I a. 

Assuming tlwt an individual's observed score is the sum of the individual's true 
score and error score (i.e., X.,= X, -1- XJ and that measurement error is random, it 
follows that the total variance of the observed scores from a group of individuals 
l'quals the sum of their true score and error score variances: 

(5.3) 

If you examine the observed score variance (s,;) in 'Ell>lc 5.la, you will see that it 
is indeed the sum of the true score variance and error score variance: 

·< =291.67+31(>.67, 

= 60il.34. 
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You ma)' have noticed that Equation 5.3 seems inconsistent with the for
mula for the variance of a composite variable that was introduced in Chapter 3 
(Lquation 3.6). Recall that we originally described a composite score as a score 
that is the sum of two or more items. More generally, a composite variable is a 
variable (i.e., a set of scores) that is the sum of two components. Thus, observed 
scores can be seen as composite scores that arc simply the sum of two com
ponents-true scores and measurement error. In Chapter 3, we staled that the 
variance for a composite score is equal to the sum of variances of the items (or 
components) plus a term that represents the extent to which the items (or com
ponents) arc correlated with each other. Thus, you might expect that the variance 
of observed scores should be 

( 5.4) 

In other words, you might expect that observed score variance should be equal 
lo true score variance plus error variance plus the covariance of true scores and 
error scores ( c = r 55). However, as described above, we assume that error is indc-

ll' k 1 , .. 

pendent of true scores, which implies that the correlation between error score and 

true scores is() ( r"" = O). Therefore, the Lu·-right term of the above expression, the 
covariance, will equal 0 and will drop out of the equation, leaving us with 

, , , 
\� = s; +sl�. 

Fquation 5.3 is a critically important t(mnula in the classical theory of reliability. 

As we will discuss below, reliability will be defined in various ways in terms of the 
relationship between observed score, true score, and error score variance. 

Four Ways to Think of Reliability 

In CIT, there <ll"e al lcasl four ways to think <lboul reliability. In one way or another, 

c·ach one arises from the associations among observed scores, true scores, <lnd 

measurement error. At one level, the approaches diffcr only with respect lo the 

methods used to <ligebraically manipulate the terms associated with these variances. 

i\l another level, they represent ditlcrenl ways of concejllualizing or charaderizing 
the concept of reliability. 

/\s shown in "E1blc 5.2, these four approaches reflect two distinctions in the con
ceptualization of reliability. One distinction is whether <ln <1pproach conceplu<dizes 

reliability in terms of"proportion of variance" or in terms of correlations. J\ second 

di-,tinction is whether an appro<lch conceptualizes reliability in terms or observed 

scores as related lo true scores or lo measuiTillenl error. 

There arc at least three reasons to become familiar with thc-,e different ways 
or thinking about reliability. 1-"irst, it is possible that one way of conceptualizing 

reliability will seem clearer and more straightforward to you than <111Y of the other 

way-;. l:or example, you might lind that correlations, for whatever reason, simply 

111akc more seme to you than docs variance. Thus, you might find one of the 
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Table 5.2 A 2 x 2 Framework for Conceptualizing Reliability 

Statistical 

basis of 

reliability in 

terms of ... 

Conceptual Basis of 
Reliability: Observed 

Scores in Relation to ... 

True scores 
Measurement 
error 

Proportions of Reliability is Reliability is the 
lack of error 
variance 

variance the ratio of true 
score variance to 
observed score 
variance 

Correlations Reliability is 
the (squared) 
correlation between 

Reliability is the 
lack of correlation 
between observed 

observed scores and scores and error 
true scores scores 

"correlation-based" definitions of reliability to be particularly clear. By present

ing a variety of conceptualizations of reliability, we hope that each reader finds 

at least one that seems relatively clear. Second, an appreciation of the concepts 

expressed through tile different approaches should help you develop a deeper 

understanding of the general meaning of reliability. That is, if you understand 

reliability from more than one perspective, then you can gain greater insights 

into this important aspect of psychometric theory. Third, in your readings and 

discussions about tests and their reliabilities, you might find that different people 

discuss reliability in different ways. For example, some books, <Jrticles, websites, 

and teachers might present only one conceptualization of reliability. Being t�nnil

iar with a variety of different perspectives and knowing how they are related to 

each other might help you avoid confusion when confronted with them in these 

discussions. 

Reliability as the Ratio of True Score 
Variance to Observed Score Variance 

Probably the most common expression of reliability is the proportion of 

observed score variance that is attributable to true score variance: 
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(5.5) 

where Rxx is the reliability coefficient. For example, for the responses presented in 

'H1blc 5.1 a, 

291.67 
R . .  = �- =.4il. 

" 60tU3 

This value tells us that about 48l)'b of the differences that we sec among respondents' 

observed scores can be attributed to differences among their true trait levels. 

The size of the reliability coefficient indicates a test's reliability. Reliability 

ranges between 0 and I, and larger Rxx values indicate greater psychometric qual

ity. This is the case because, as R�x increases, a greater proportion of the differences 

among observed scores can be attributed to differences among true scores. Notice 

that if true score variance is 0, then reliability is 0. That is, an Rxx of 0 means 

that everyone has the same true score. This underscores the fact that reliability is 

intrinsically tied to differences among people-if respondents do not differ in the 

characteristic being assessed by a test (i.e., if sf= 0), then the test's reliability is 0 
f(Jr those respondents. In contrast, if true score variance is equal to observed score 

variance, then Rxx = 1.0. This would indicate that there is absolutely no measure

ment error affecting observed scores. In reality, measurement error always occurs 

to some degree. 

Although there is no clear cutoff value separating good reliability fi·om poor reli

ability, the reliability of .4il for the data in 'E1ble 5.1 a is rather low. A perfect reliability 

(R�x = !.0) will not occur, but we would be much more satisfied with a reliability 

of .70 or .RO for research purposes and even higher for applied purposes. We would 

be very worried if less than half of the variance in observed scores could be attributed 

to true scores. 

Therefore, the test user who used the self-esteem questionnaire for the data in 

'l�1blc 5.1 a might wish to improve the questionnaire's reliability. Imagine that she 

revised the questionnaire by rewriting some of its items-for example, by clarify

ing potentially ambiguous wording and making sure to refer to the way that people 

"generally" feel about themselves. She hopes that such revisions will improve the 

reliability of the questionnaire. 1:urthcrmore, imagine that she asked the same six 

respondents to complete the revised version of the questionnaire. These hypotheti

cal responses arc presented in T�1blc 5.1 b. Did her revisions improve the psychomet

ric quality of the self-esteem questionnaire? 

·r:1kc a moment to contrast the data in 'l:lille 5.1a (the original questionnaire) 

and 5.lb (the revised questionnaire). First, note that the individuals' true scores arc 

the same for the revised test as they were in the original test. This occurs because 

the questionnaire is a measure of self-esteem, and we assume that individuals' true 

levels of self-esteem arc stable across the two testing occasions. That is, self-esteem 

is a trait that is generally quite stable. Although people might experience temporary 

lluctuations in their self-esteem, we assume that each person has an overall level 
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that reflects his or her typical level of sclf�rcgard. The self-esteem questionnaire is 

intended to measure these stable levels of scll�estccm. 

Second, observe the ditlcrcnccs among the respondents. Again, let us focus on 

Ashley and !lob. As we have already pointed out in the original questionnaire data, 

there was a clear inconsistency between Ashley's and Bob's true score difference 
and their observed score difference. Specifically, Ashley's true score is 10 points 

higher th<lll Bob's true score, but her observed score was 25 points lower than Bob's 

observed score. This ref1ccts a substantial effect of measurement error. In contrast, 

their observed scores on the revised questionnaire seem to he much more consis
tent with their true scores. Specifically, Ashley 's observed score is 5 points higher 
than Bob's observed score. Although this 5-point difference is still somewhat incon

sistent with the full 10-point difference in their true scores, it is a relatively small 

inconsistency. Furthermore, the observed score difference on the revised question

naire is at least consistent with the t!ircclion of the difference in their true scores. 

That is, the revised test produced scores in which Ashley scored higher than Bob, 

which is consistent with their true score ditkrcncc. 

Thus, we begin to get a sense that the revised test docs a better job of reflecting 
the true diflerenccs among respondents than the original test. This sense is con

finned when we compute the reliability for the revised test: 

291.67 
R" =-- =.71. 

4otU3 

For the revised questionnaire, 71 <y;, of the observed score variance can be attrib

uted to V<lriance in the true scores. The reliability of the revised questionnaire is 

much better than the reliability of the original questionnaire. This suggests that 

the item revisions paid otT and that future test users should prob<lbly work with 

the revised lest. 

Lack of Error Variance 

A second way of conceptualizing reliability is in terms of a lack of measurement 

error. \11/e have already seen that error variance (sJ represents the degree to which 

error affects different people in diff(.'rent ways-artificially inflating some people's 

'iCOI"l''i a llli artificially dctla t i ng other people's scores. These effects obscure the 

true differences among people, as shown in our comparisons of Ashley and Bob. 

Therd(>re, reliability can be seen as the degree to which error variance is minimal 

in comparison with the variance of observed scores. 

In the previous section, we stated that reliability can be seen as the proportion of 

observed 'icore varia nee that is attributable to true score varia nee: 

(5.6) 
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We have also slated that observed score V<lriance is the sum of true score variance 

and error variance (Equation 5.3): 

Rearranging the terms algebraically, 

Substituting this into the numerator of Equation 5.6, we obtain 

/\gain rearranging, 

And simplifying, 

Note that 

S' 
I?,, = 1--"--. 

s,; 

·\' 
s,: 

(5.7) 

represents the proportion of observed score variance that is a function of error variance. 

Rcli<lhility is relatively high when this proportion is relatively small. That is, reliability is 

high when error V<lri<mce is Sl11<111 in comparison with observed score vari<mce. 

For the d<!ta from the original self-esteem questionn<lire, 

.\16.67 
/?." = 1- --- = l-.52 = .4H. 

60R.33 

lints, 52!Y,, of the variance in respondents' observed scores on the original qucstion

n<lirc is produced by measurement error, leaving only 4H% attributable to true score 

dillerences among the respondents. 

What would a small degree of error variance indicate? It would indicate that the 

respondents' scores arc being alkcted only slightly by measurement error. More 

precisely, it would indicate that the error alkcting one person's score is not very dif

krent Ji·mn the error aiTccting another person's score. \A/c sec this in the data l(lr the 

revised sell�csteem questionnaire, where the error scores range only Ji·mn -15 to -t I 0. 
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In addition, the standard deviation of error scores on the revised questionnaire is 

I 0.80, indicating that the average person's error score is only about II points. In t;ICt, 

measurement error accounts ftlr only 29'Y,, of the variance in observed scores on the 

revised questionnaire. Contrast this with the data t(Jr the original sclt�esteem question

naire, where error scores ranged fi·01n -15 to 25-a noticeably wider range of scores. In 

addition, the standard deviation of error scores on the original questionnaire is 17.80, 
indicating that the average error score is about 18 points. These t;ICts reflect the greater 

effects of error in the original questionnaire, accounting for fully 52% of the variance 

in observed scores. Of course, if there is no error variance, then I 00% of the observed 

variance in test scores will be associated with true score variance, and the test will be 

perfectly reliable. 

The (Squared) Correlation Between 
Observed Scores and True Scores 

This chapter began by stating that reliability is the degree to which ditlerences 

in observed scores are consistent with differences in true scores. In Chapter 3, we 

saw that the correlation coefficient tells us the degree to which differences in one 

variable arc consistent (i.e., correspond with) with differences in another variable. 

Thus, reliability can be seen in terms of the (squared) correlation between observed 

scores and true scores: 

/(._,. = T;l�. (5.8) 

Again, looking at the data in 'Htblc 5.1 a, we have calculated the correlation 

between the observed scores and the true score, 1;,, = .69. If we square this value, 

we get Rxx' as demonstrated earlier. The (unsquarcd) correlation between observed 

scores and true scores is sometimes called the "index of reliability" (Ghiselli et al., 

1981 ) . Please do not let this confuse you. If you square the index of reliability, you 

obtain the cocflicicnt of reliability. When people refer to reliability, they typically 

arc referring to the cocllicient of reliability ( Rxx)· Only rarely will you hear people 

refer to the index of reliability ( 1;,,); however, an understanding of their connections 

should provide deeper insight into the concept of reliability. 

h>r curious readers, we will take a moment to prove algebraically that the 

squared correlation between observed scores and true scores ( r,;1) equals the ratio 

of true score variance to observed score variance: 

which is the most common way of conceptualizing the reliability coefficient. Recall 

from ( ;hapter 3 that a correlation can be seen as a covariance divided by the prod

uct of 2 standard deviations: 
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Thus, the correlation between observed scores and true scores is 

(5.0) 

Again, going back to the ideas raised in Chapter 3, the covariance between observed 
scores and true scores is 

c.,,
= 

�)x., -X, )(X, -x, J
. 

N 
(5.1 0) 

From Equation 5.1, we assume that X =X,+ x; .. And because the mean error score 
• 0 

Is assumed to be 0 (i.e., X:.= 0 as explained above), the mean observed score is equal 
to the mean true score (i.e., X., = X,). 

Inserting this and Equation 5.1 into the covariance (Equation 5.10 ): 

L:rx, +X,.-X,)(X,-X,) 
c = 

. 
ot 

N 

Algebraically simplifying this equation, we find that the covariance between 

observed scores and true scores is equal to the sum of (a) the variance in true scores 
and (b) the covariance between true scores and error scores: 

However, as we explained earlier, we also assume that error scores and true 

scores are independent, which means that they arc not correlated with each other 

(i.e., r,,. = 0, and therefore c,,. = O). So the covariance between observed scores and 
true scores is simply equal to the variance in true scores: 

c =s
2

• 
ot I 

(5.11) 

Returning to the correlation between true scores and observed scores 

(Equation 5.0), we insert Equation 5.11 into the numerator: 

r = __i__ "' 
s ,. 

o'l 

Simplifying this, we find 

r =� 
"' 

s.. 
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Squaring this, we find that that the squared correlation between observed scor\:'s 
and true scores is exactly equal to the ratio of true score variance to observed sco1-\:' 
variance: 

Thus, reliability can be seen as the squared correlation between observed scores 
and true scores. A reliability of 1.0 would indicate that the differences among 
respondents' observed test scores arc perfectly consistent with the difference.� 
among their true scores. A reliability of .0 would indicate that the differences 
among respondents' observed test scores arc totally inconsistent with the differ, 
enccs among their true scores. In such a case, the test is completely useless as a me<!, 

sure of a psychological characteristic. In practice, reliability is usually in bctwce11 
these two extremes. 

Lack of (Squared) Correlation Between 
Observed Scores and Error Scores 

Paralleling the previous ways of conceptualizing reliability, reliability Gin also he 

seen as the degree to which observed scores <Ire uncorrelatcd with error scores. '1(1 

the degree that dilfcrctlccs in observed test scores reflect dillcrcnces in the ciTccts of 
error (instead of true scores), the test is unreliable. Thus, 

U = 1-r', ' ' o�· (5.12) 

where r,;)s the squared correlation between observed scores and error scores. 
Once again, the dat<l in 'E1blc 5.1a demonstrate this equivalence. We have Gll

culated the correlation between observed scores and error scores ( 1:". = .72). The 

-,quare of this V<liuc· is .52, which is equal to the ratio of error variance to observed 
'>core varia nee: 

') ' . ,. 
s.:. 

/\:; ·,l10wn earlier, I minus this value is equal to the reliability: Uu= I- r,;". Thus, 

N I - (.72)'' I -.52-= .4X. 

/\gain for intcrcstnl readers, we will algebraically show that the squared correla
tion hctwcc11 ohscrvcd 'ilorcs and error scores ( r,;:J equals the ratio of error score 

variat1ce to ohscrvcd ·;corL' variance: 

s 

S, 
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The correlation between observed scores and error scores is 

em· 
/:, ... ==--· 

SOSl, 

The covariance between observed scores and error scores is 

L,(X" _:,Xo)(X, -X.). 
COl'= 

N 

Once again, from Equation 5.1, we assume that X,= X, + )( . _ 

( 5.13) 

(5.14) 

And because the mean error score is assumed to be 0 (i.e., X,. = 0), the mean 
observed score is equal to the mean true score (X.,= X.J 

Inserting this and Equation 5.1 into the covariance (Equation 5.14): 

L,(X, +)(- X,)(X, -X .. 
N 

i\lgebraically sirnplit)ring this equation, we tind that the covariance between 
observed scores <llld error scores is equal to the variance of error scores: 

c,, = s:'. (5.15) 

Returning to the correlation between error scores and observed scores 
(Equation 5.13), we insert Equation 5.15 into the numerator of Equa tion 5.13 to 
obtain the following: 

Simplifying this, we find that 

sl. 
/;)l' ==--· 

So,)'(' 

Squaring this, we tlnd that that the squared correlation between observed scores 
and error scores is exactly equal to the ratio of error score variance to observed 
score variance: 

Thus, 
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Perhaps the best way to think about this is to realize that if the correlation ( ':,,.) 
between observed scores and error scores is 0, then Ru will equal 1.0. As the C()t, 
relation of observed scores with error scores increases, the size of Rxx will dccrea�l:' 
For example, compare the data in l�tble S.la (the original self-esteem qucstio11: 
nairc) with the data in 'l�tblc 5.1 b (the revised self-esteem questionnaire). For tl)l:' 
original questionnaire, the correlation between observed scores and error SCOJ·�:-.\ 
was relatively large ( 1:," = .72), resulting in a relatively low reliability ( N.,u = .48). )11 
contrast, the revised questionnaire produced responses with a smaller correlati1)11 
between observed scores and error scores (r.,c =.53 ) , resulting in a higher reliability 
( Rxx = .71 ). Thus, reliability will be relatively strong when observed scores havl:' 
relatively low correlations with error scores. 

Reliability and the Standard Error of Measurement 
----------- -- . --- ----·--. .  ----.. .... -.. 

Although the reliability coefficient is an extremely important piece of psychometric 
information (for reasons that will become even more apparent in Chapter 7), it 
docs not directly reflect the size of measurement error associated with a test. That 
is, reliability docs not tell us, in test score units, the average size of error scores th<tt 
we can expect to find when a test is administered to a group of people. As we Will 
sec later, the size of measurement error has important applications for interpreting 

the accuracy of test scores and for computing probabilities of scores in testing and 
research settings. 

Going back to an earlier section in this chapter, we sec that the standard dcvia, 
tion of error scores could be a useful way of expressing the amount of error affect

ing responses to a test. Let us take a moment to think about the error score standard 
deviations I(Jr the two versions of the self-esteem questionnaire represented in 
'l�tble 5.1. hn the original version Cl�tblc S.la), the error score standard deviation 
( s) is 17.il0, which represents the average size of the absolute values of the error 

scores. In this case, 17.80 tells us that, on average, the respondents' observed scores 
deviated from their true scores by nearly I il points. In contrast, the error standard 

deviation for the revised questionnaire ('l�tblc S.lb) is much smaller. Specifically, it 

is I O.RO, indicating that the respondents' observed scores on the revised question
naire deviated from their true scores by only about II points. Thus, the observed 

scores on the revised questionnaire arc more accurate than the observed scores on 
the original questionnaire. That is, they suffer weaker effects of error, and thus they 
arc closer to true scores. 

The standard deviation of error scores has a special name-the stmuiard error of 
111casurcn1cnt (sc,)-and it is one of the most important concepts in measurement 
theory. The standard error of measurement represents the average size of the error 
scores. The larger the standard error of measurement, the greater the average differ

ence between observed scores and true scores and the less reliable the test. 

;\c. you might imagine, a lest's standard error of measurement is closely linked 
to its reliability. In fitct, as we will see later, we will need to estimate the sc, from 
an es t imate of reliability. We can use reliability ( Ux,..) to find the standard error of 

measurement (sc,): 
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sc =s � 
m oV I -1\.xx' (5.16) 

where s, is the standard deviation of the observed scores. Looking at the data !i·om 
'I�1ble 5.1a, we see that the standard deviation of the observed scores is 24.66 and 
the reliability is .48. Thus, these, is 17.80: 

se = s. � = 24.66JI-.48 = 24.66(.72) = 17.80. 
/11 u \1 I - 1\. X.\ 

This value ( 17.80) is exactly equal to the standard deviation that is computed 
directly from the error scores (s). 

For curious readers, we will verify that Equation 5.16 is valid and that our par
ticular example is not by chance. Recall that reliability can be seen as the lack of 
error variance (see Equation 5.7): 

Rearranging this, 

and multiplying by s�, 

Because s: = scm and taking the square root, we obtain 

sc, =s, FJC . 

This shows how the standard error of measurement is related to Nn. Notice that 
if R,x = 1, then sc,, = 0. That is, if there is no measurement error, then reliability 
will be perfect. Also, notice that sc, can never be larger than s,,. That is, the standard 
deviation of error scores will always be less than or equal to the standard deviation 
of observed scores. To reiterate the more gcncr<ll point, we will soon sec that the 
standard error of measurement is an important psychometric v;due with implica
tions for applied measurement. 

Parallel Tests 

If you have been paying close attention, you might be aware of an unpleasant fi1ct. 
So far, reliability theory has been framed in terms of t rue scores, error scores, ;md 
observed scores. In contrast to the elegant theory of reliability, the practical reality 
of measurement is (of course) that we have no way of knowing people's true scores 
on a psychological variable or the error associated with their test responses. Thus, 
it may appear that there is no way to translate reliability theory into the actual 
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practice of measurement. It may appear that we cannot actually evaluate a test's 

reliability or its standard error of measurement. 
Classical test theorists deal with this problem by making one more assumption. 

"/'hey IISS/11/IC tllllt two psychologiml tests CCIII /Jc constructed iu such 11 way tho! they 

arc "pomllef. " Two tests can be considered parallel if all of the previous assumptions 

from err are true for each test and if the f(>llowing two additional assumptions 

hold true: 

I. Participants' true scores f(>r one test are exactly equal to their true scores 

on the other test. That is, the two tests measure the same psychological 
construct (this condition is known as "tau equivalence"). 

2. The tests have the same level of error variance. 

!\consequence of these fundamental assumptions is that the observed scores on 
the tests will have the same mean and the observed scores on the tests will have the 

'i<ll11e standard deviation. 

The idea of parallel tests is important because it begins to transition from theo

retic concepts such as true scores and measurement error to the practical need to 

estimate a test's reliability. If two tests are parallel, then we will be able to compute 

a reliability coefficient and a standard error of measurement from their observed 

scores. 
Imagine that you have two questionn<lires that you think are measures of 

self-esteem-call them X and Y-amlthat you ask a group of people to take both 

tests. If the questionnaires both measure the same psychological construct (pre

sumably self-esteem in this case) and if they have the same error variance (i.e., 

s\, � s\: ), then X and Y <Ire parallel tests. Notice that the hypothetical self-esteem 

questionn<lires presented in '1\ibles 5.1 a and b are 1101 parallel. Although their true 

scores are the same (i.e., they are measuring the sa me construct) and their observed 

111cans <He identical, they have difkrent error variances, which creates differences in 

the standard deviations of their observed scores. Thus, they E1il to meet one of the 

assumptions f(>r parallel tests. 

l lowever, if two tests-X and Y-are par<dlel, then we can compute the correla

tion in the usual way lwt ween the scores 011 the two tests. h>r example, if I 00 people 

take tests X and Y, then each person will have two scores, and we can calculate 

the corrci<1tion between the observed test scores using the correlation coefficient 

dL">nihed in ( :haptcr 3 ( r\\). 

According to! :'I" I', the corrclutiou /Jctwccu pumllcltcsts is Cifllllfto rcliu/Ji!ity That 

is, if we can reasonably assume that the two tests arc parallel, then their correlation 

i'>, in E1ct, equal to the reli<lhility of both tests. 
/\gain to denwnstr<lte the V<llidity of this assertion, we can show that r,r equals 

N,_\ given thc assUJllj>tiom of CIT. r:irc;t, based on the definition of a correlation 

(sec l·:quation .\5 in ( :haptcr 3), the correlation between the observed scores 011 the 

two tcsh is the covariance between the tests divided by the product of the standard 

deviations of their observed scores: 
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If the two tests arc parallel, then by definition, their observed scores have equal 

standard deviations (i.e., if s1, = s1'c·' then s,, = s1,, which we simply call s,J . Thus, 

Recalling that the definition of an observed score is X,= X,+ X, (sec Equation 5.1 ), 

the observed scores can be seen as composite variables. As described in Chapter 3, a 

composite score (or composite variable) is a score that's obtained by summing or aver

aging more than one component (e.g., by summing responses to multiple items on a 

questionnaire). Theret(JI"C, the covariance between the tests' observed scores is a covari

ance between composite variables. Furthermore, the covariance between two composite 

variables is the sum of the covariances between the components within the composite 

variables (sec Equation 3.7). In the context of observed scores li·Oin the two tests, the 

correlation is as l(lilows: 

where c1,r, is the covariance between true scores on 'Jest X and true scores on Test 

Y, em .. is the covariance between true scores on Test X and error scores on 'lest Y, c1,.1, 
is the covariance between error scores on 'lest X and true scores on Test Y, and c\,.1,. is 

the covariance between error scores on 'fest X and error scores on 'lest Y 

As discussed earlier in this chapter, CI'T assumes that error scores occur as 

if they arc random. Therefore, error scores arc uncorrclatcd with true scores. 

In addition, error scores on Test X arc uncorrelated with error scores on '!Cst Y 

Consequently, the three covarianccs that include error scores ( c1,1.,, c\,W and c 

arc all equal to 0, so that the correlation between parallel tests is simply 

r =�-
suro I 

s,� 

Finally, recall that tests arc parallel only if respondents' true scores arc equal 

across the tests (i.e., each respondent's X,==\�). If this assumption is valid, then the 

cova ri;1nce bet ween the true scores equals the variance oft rue scores ( i .c., c1, 1, = s;'). 

This derives from the f�lCt that a variance can be seen as the cov<lriance between a 

variable and itself. Therefore, replacing the numcr<ltor in the previous equation, the 

correlation between parallel tests is 

r = ·\ . 
\'())() 1 

I' . , 

That is, the correlation between scores on parallel tests is equal to the ratio of trw: 

score variance to observed score variance, which is a definition or reliability ( N11; 
sec Equation 5.5). 

Our discussion of' parallel tests has important implications f(lr the real world of 

testing. Specifically, the parallel test <lSStnnption will he cruci<li in Cha11tcr 6, where 

we discuss the procedures used to e-;tinwte the reliability in rcal-li!C testing situ<ltions. 
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Domain Sampling Theory 
-.-·--------------------------

Summary 

Domain sampling theory of reliability was developed in the 1950s as an alterna
tive to CIT ( Ghiselli ct al., 1981 ), in that both approaches arrive at the same place 
regarding procedures for calculating reliability, but they arrive there from different 
directions. For example, in CTT, the practical examination of reliability rests on 
the assumption that it would be possible to create two tests that are at <1 minimum 
parallel to each other. In domain sampling theory, you do not have to make this 
assumption, but if you follow the logic of the theory, you will end up with parallel 
tests by fiat. 

Domain sampling theory rests on the assumption that items on any particular 

test represent a sample from a large indefinite number or domain of potential test 

items. Responses to each of these items arc thought to be a function of the same 

psychological attribute. For example, suppose you had a test of self-esteem with 10 

questions. Differences in responses to each of these I 0 questions should be related 

to differences in self-esteem among the people taking the test. Up until this point, 

these ideas arc consistent with CIT. However, domain sampling theory adds the 

view that the particular items on the test can be seen as a random sample from a 

"population" or "domain" of similar items, each of which is an equally good mea

sure of self-esteem. 
From this perspective, imagine that you created a test by selecting a set of N 

items at random fi·om a domain of items. You then created a second test by selecting 

another set of N items (the same number of items but different items) at random 

from the same domain. In the long run, these two tests should have the same mean 

and standard deviation. In other words, on average, all test pairs selected in this 

filshion should be parallel to each other. If you have two parallel tests, then the test 

scores should correlate strongly with each other. Moreover, the extent to which the 

two parallel tests do not correlate strongly with each other is due to item sampling 

error. From this perspective, reliability is the average size of the correlations among 

all possible pairs of tests with N items selected from a domain of test items. The logic 

of domain sampling theory is the basis for a contemporary approach to reliability 

called generalizability theory. We will explore this in greater detail in Chapter 13. 

In thi' chapter, we have examined the theory of reliability from the perspective 

of C'I'T. Although there arc other perspectives on reliability, CTT is the most 

well-known, and it serves as the basis fi>r many psychometric evaluations of psy-

chological measures. . 
( :TT rests on a few fundamental assumptions about test scores and the factors 

that af"fcct them. As we have described, CIT is based on the assumption that 

observed scores on a test are a simple additive function of true scores and mea

surement error (i.e., X.,== X,+ XJ In addition, CIT rests on the assumption that 
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measurement error occurs as if it is random. The randomness assumption has 
several implications-for example, error is uncorrelated with true scores, error 

averages toO, and error on one test is uncorrelated with error on another test. 

These assumptions have important implications f{Jr the nature of variability 
among test scores. As this book has emphasized, the meaning of psychological 
measurements is tied closely to the need to detect and quantify diflcrences among 
people. Thus, variability among observed scores is the sum of true score variability 
and error variability. That is, the differences among people's observed scores arise 
from ditlerences in their true scores and differences in the degree to which error 
affects their responses. 

From this perspective, reliability reflects the links between observed scores, true 
scores, and error. As we have discussed, there are at least f(lllr ways to conceptualize 
reliability. Reliability can be seen in terms of variance. It is the ratio of true score 
variance to observed score variance, and it can also be seen as a lack of error vari
ance. That is, reliability is high when the differences among participants' observed 
scores primarily reflect the differences among their true scores. Reliability can also 
be seen in terms of consistency and correlations. It is the degree to which observed 

scores are correlated with true scores, and it can be seen as the degree to which 
observed scores arc uncorrelated with error scores. That is, reliability is high when 
the differences among participants' observed scores are consistent with the differ
ences among their true scores. 

This chapter also discussed the standard error of measurement and the notion 
of parallel tests. These two concepts, which emerge from en; will be important 
tools when we translate the theory of· reliability into the practice of psychometric 
evaluation of real-test data. 

Indeed, this chapter has f(Jcused on the theoretical basis of reliability. 'lb illus

trate the rather technical concepts, we have pretended to be omniscient, knowing 

respondents' true scores and the nature of error that at-kcted each score. Of course, 
we will not know such things when we work with real test responses. Thercfilre, 
we can never really know the reliability of a test (just as we can never really know 
an individual's level of self-esteem). However, the notion of parallel tests will allow 
us to actually estimate test reliability with real d<lta. Chapter 6 describes these 
estimation processes. 

Suggested Readings 

The classic in the development of classical test theory: 

Cullikscn, II. ( 1950). "111cory o(nlcllloltests. New York, NY: Wiley. 

For a detailed discussion of domain sampling theory: 

( ;hisclli, E. E., Campbell,}. 1'., & Zcdcck, S. ( 191{ I). Mcosurc11/clltlhcory /i1r the bclull'ioml 
sciences. San Fnmcisco, CA: W. H. 1:rccman. 

. 





CHAPTER 6 

Empirical Estimates 
of Reliability 

I

n Chapter 5, we described the conceptual basis of reliability. As we acknowl
edged, though, there is a gap between the theory of reliability and the practi
cal examination of reliability in behavioral measurement. Indeed, as we had 

discussed, reliability is a theoretical property of a lest and cannot be computed 
directly. It is defined in terms of true scores and measurement error, which we 
cannot ever actually know. Thus, it can only be estimated from real tbta. In this 
chapter, we will show that, given the assumptions of classical test theory (CIT), 
observed (empirical) test scores can be used to estimate score reliabilities and 
measurement error. 

There are at least three methods for estimating reliability. All three methods 
emerge from the notion of parallel tests, as discussed in the previous chapter. The 
estimates that these methods provide can be interprell'd as described in the discus
sion of reliability in the previous chapter (e.g., as the proportion of observed score 
vari<Jncc that is attributable to true score V<lriancc). llowevcr, the three methods 
differ in terms of the kind of data that are avaii<Jble and in the assumptions on 
which they rest. 

In this chapter, we outline these methods, providing examples and inteqH-cta
tions of each. This information is important because it allows test developers and 
test users to examine the reliability of their tests. This is a "practical" chapter, in 
that it presents a "how-to" for the real-world examination of reliability. In the next 
ch<lpter, we extend this discussion by detailing the implications of reliability l(>r 
behavioral research, applied behavioral practice, and test development. 

/\n important initial observation i-, that there is no single mdhod tlwt provides 
completely accurate estimates of reliability under all conditions. As we will discuss, 
the <Kcuracy of these methods depends heavily on a variety of assumptions about the 
participants and the testing procedures. If these assumptions arc not v<Jiid, then the 
reliability estimates will not be totally accurate. Indeed, tbla sometimes clear!)' imply 

125 
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that one or more assumptions are, in fact, not valid. In such cases, we might ne1, 
to consider an alternate method for estimating reliability, or we might simply IH.\1d 

to acknowledge the f:1ct that our estimate of the test's reliability might not he vq
d 

accurate. Y 

In addition to discussing basic methods of estimating the reliability of te1 
scores, we examine the reli�bility of"difference scores," wl�ich can be us�d to stu< 
phenomena such as cognitive growth, symptom reduction, personality chang\, 
person-environment fit, overconfidence, and the accuracy of first impression�' 
Despite their intuitive appeal, difference scores arc notorious for poor psychomeL' 

ric quality-although this reputation might be a bit undeserved ( Rogosa, 1995). 

Alternate Forms Reliability 

Alternate forms reliability (sometimes called parallel forms reliability) is one of the 
methods f(n estimating the reliability of test scores. By obtaining scores from two 

different f(mns of a test, test users can compute the correlation between the two 
forms and may he able to interpret the correlation as an estimate of the test's reli
ability. "lb the degree that differences in the observed scores fi·om one form are con
sistent with differences in the observed scores ti·om another f(mn, the test is reliable. 

The ability to interpret the correlation between alternate forms as an estimate of 
reliability is appropriate only if the two test jimns are parallel (see Chapter 5). You 
might recall that two tests arc considered parallel only if (a) they are measuring the 
same set of true scores and (b) they have the same amount of error variance. In 
addition, you should recall that the correlation between two parallel tests is exactly 
equal to the reliability of the test scores. 

Despite the theoretical logic of parallel tests and the statistical foundations 
linking parallel tests to reliability, there is a serious practical problem. Specifically, 
we can never be entirely confident that alternate forms of a test are truly parallel 
in the theoretical sense. This lack of confidence occur s because we can never truly 
know whether two f(mns of a test meet the very strict assumptions of err and of 
parallel tests. 

The main problem is that, in reality, we can never bc certain that scores on 
alternate forms of a test arc measures of the same psychological attribute. More 
spccificdly, we can never be sure that the true scores as measured by the first f(mn 
of a test an.' equal to the true scores as measur ed by the second fcm11 of the test. 
This problem arises in part because different f(mm will, by definition, include dit� 
lcrcnt content. Because of differing content, the different forms might not assess 
the S<IIllC psychological construct. For example, we might generate two forms of a 
self-esteem test, and we would like to assume that they arc parallel. However, the 
content of the first form includes several items regarding self-esteem in relation 
to other people, hut the second f(mn includes only one such item. In such a case, 
the two f(mm of the test might actually be assessing slightly different psycho
logical constructs (i.e., a socially derived self-esteem vs. a nonsocial self-esteem). 
Thcrcf(>rc, the respondents' true scores on the first f(mn arc not strictly equal to 
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their true scores on the second t(mn, and the two forms are not truly parallel. It 

t(Jllows that if two f(m11s are not parallel, then the correlation between the two is 
not a good estimate of reliability. 

A more subtle problem with alternate torms of tests is the potential for carryover 

or contamination effects due to repeated testing. It is possible that the act of taking 

one form of a test has an effect on pert(mnance on the second f(mn of a test
respondents' memory tor test content, their attitudes, or their immediate mood 
states might affect test performance across both forms of the test. Such ellccts 

could mean that error scores on one form are correlated with error scores on the 
second t(Jrm. Recall that a ti.mdmnental assumption of CTT is that the error a fleet
ing any test is random. An implication of the randomness assumption is that error 
scores on one test are uncorrelated with error scores on a second test. l lowevcr, if 
two f(Jrms of a test are completed simultaneously, then some of the error atkcting 
responses to one t()J·m might carry over and also affect responses to the other I(Jrm. 
This would violate a fundamental assumption of CTT, and it would mean that the 
two forms are not truly parallel tests. 

'J11ble 6.1 presents a hypothetical example illustrating the carryover problem. 

Imagine that six people respond to two t(mns of a test. 'l:1ble 6.1 presents their 

observed scores on the two tcmns, along with their true scores and their error 

scores (as always, we must pretend to be omniscient when we imagine that we know 

participants' true scores and error). Notice t!rst that the two hlrlns meet several 

assumptions of CTC in general, and of parallel tests, in particular. For example, 

each observed score is an additive function of true scores and error scores (i.e., X,= 
X+ X). In addition, the true scores arc completely identical across the two l(mns, 

the error scores sum to 0 f(Jr each form, the true scores arc uncorrclatcd with error 

scores, and the error variances are equal ti.Jr the two li.m11S (i.e., s} = 4.67 f(Jr both 

forms). As shown in 'Jhblc 6.1, these qualities ensure that the two forms are equally 

reliable-for both t<:mns, the ratio of true score variance to observed score variance 
is Rxx 

= .38. Thus, in our omniscient state, we know that the reliability of both tests 
is in bet .38, which is considerably lower than we would like it to be. If all of the 

assumptions of CIT and parallel tests hold true I(Jr these data, then the correlation 

between the two fi.nms' observed scores should be exactly equal to .38. 
Uni{Jrtunately, the data in 'I:lblc 6.1 violate a fundamental assumption about 

the nature of error scores. Again, error scores are assumed to affect tests as if they 
are random, which implies that the error scores from the two t(mns should be 
uncorrelated with each other. In liKt, the two sets of error scores in ·1;1blc 6.1 arc 
very strongly correlated ( r"1,.2 = .93). As mentioned earlier, this correlation nndd 
emerge ti·om carryover effects, such as mood state or memory. I r any such ele
ment of measurement error remains relatively stable across the two l(mns, then 
it will ensure that the two sets of error scores arc positively correlated with each 
other. The bet that the two sets of error scores arc correlated with each other, in 
turn, influences the correlation between the two sets of observed scores. I ndced, 
note that the correlation between the observed scores from the two f(mns is quite 
strong (1;>1.,2 = .96). Thus, the correlation between the alternate t{mns in this 
example is grossly inaccurate as an estimate of the reliability of the test, which our 
omniscience reveals to he .38. The test user in this example, who is unaware of 
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Table 6.1 Example of Carryover Effects on Alternate Forms Estimate 
of Reliability 

Form 1 Form 2 

Observed True Observed True 
Score Score Error Score Score Error 

P'!!!icipant (X� � = (X_,l_J __ +_(X_el J (X_o2_J ___ =_(X_, _2J __ +_(X_c2_J _ 
I 14 15 + -1 13 15 + -2 

2 

3 

4 

5 

iV!ean 

V<lriancc 

17 

I 1 

10 

14 

<) 

12.5 

7.51l 

14 

13 

12 

I 1 

10 

12.5 

2.<J2 

+ 

+ -2 

+ -2 

+ 3 

+ -1 

() 

4.67 

l{cli<lbility liJr Form 

2.lJ2 
Ryy =--=. 31l . 

7.51l 

r,,e� = .00 

r,2,.2 = .00 

r, Jo:! = .00 

r,!c/ = .00 

I� 1··2 = .<J3 

17 

12 

II 

14 

ll 

12.5 

7.51l 

14 

13 

12 

I I 

10 

12.5 

2.<)2 

+ 3 

+ -1 

+ -1 

+ 3 

+ -2 

() 

4.67 

Reliability for Form 2 

2.<J2 
Ru =--= ·w 

7.51l 
.. 

/\I lerna tc limns corrcla t ion 

-----·--·------------------------

the potenti<d problems with alternate limm, could dramatically overestimate the 
reli;Jhility of the test. 

/\/though we can never he certain that two test limns are truly parallel, it is 

mmcti1nes possible to have two test limns that seem to fit several criteria liJr being 
par;dlel. 1\s described in < :haptcr 5, a consequence of two assumptions of parallel 

te>ts (i.e., the true scores arc the same, and the error variance is the same) is that 

p;mdkl tests will have identical observed score means and stanthml deviations. If 
we have two test limns that have similar means and standard deviations, and if we 

k<:li;Jirly confident in assuming that they arc measuring the same construct, then 

we might feel that the limns <liT "close enough" to meeting the criteria /(Jr being 
Jl<lr;dkl. If we feel that the two limns arc close enough to being parallel, then we 

111ight l(:cl comliJrtahle computing the correlation between the test l(mns and using 

it a:, an estimate of reliability. limier these circumstances, we would have <l limn of 

n:liahility known as altcrnatcJimlls reliability. 
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Test-Retest Reliability 

The test-retest method of estimating rdi<1bility avoids some problems with the 
nlternate t(Jrms method, and it is potentially quite useful li1r measures of stable 
psychological constructs, such as intelligence or extraversion. As mentioned, an 
nnportant concern about the alternate t(m11s method of estimating reliability is 
that alternate f(xms of a test have different content and therd(Jrc might actually 
lllcasurc diftc•rent constructs. This would violate an important assumption about 
P<u

.
·aflel tests, thereby invalidating the usc of the correlation between lim11s as an 

estnnate of reliability. Another approach is to have the same people take the same 
lest on more than one occasion (i.e., a flrst test occasion and a "retest" occasion). l f 
)'ou can safely make several assumptions, then the correlation between the first test 
scores and the retest scores can be interpreted as an estimate of the lest's reliabilit)'· 

The test-retest method is similar to the alternate forms method in that its appli
cability rests on many of the same assumptions. ;\s was discussed earlier in the 
context of alternate /(m11s of reliability, the tlrst assumption is that the participants' 
true scores arc stable across the two testing occasions. That is, you must be conll
dent that the respondents' true scores do not change ti·01n the /Irs! time they take 
the test to the second time. We must be able to assume that the p<Hticipants who 
had the highest true scores at the first assessment <n-c the same participants with 
the highest true trait levels al the second assessment. The second assumption that 
must be made is that the error variance of the first test is equal to the error variance 
of the second test. Among other implications, these two assumptions essentially 
mean that the two testing occasions produce scores that arc equ<dly reliable. I{ these 
assumptions arc legitimate, then the correlation between scores ii·om the two test 
administrations is an estimate of the score's rcliabilit)'· 

Let us consider the contidence that we might have in these two <lssumptions. 
Beginning with the second assumption !i.e., the cqtwlity of error variances), it is 
likely that this assumption is not unreasonable, if care is taken in the testing process. 
l<cca/1 that measurement error (and thus error variance) is sl rongly <lifcctcd by tcm
porary clements within the immediate testing situation--noise, distmclions, the 
presence or absence of other people, and so on. Such clements of the testing situ
<Jtion can a11l·ct responses in apparently random ways that might mask the differ
ences among respondents' true scores. llowcvcr, under the right circumstances, you 
could crca te two tcsti ng situations that arc rc<lsonahly comp<H<1hlc with each other. 
If you carcii.dly set up the testing situations, controlling l(n the m<1n)' exlraneou.> 
variables that might affect test scores, then you might have L·onlidcnce that the two 
testing situations arc identical. For example, you could have p<1rlicipants complete 
hoth tests in the same room, during approximatc!y the same time of day, and in 
the same interpersonal context (i.e., in a h1rgc group, <1 small group, or alone). By 
holding such clements constant across testing occasions, )'Oll might have rc;1sonahlc 
confidence that responses <lre affected by error to the san1e degree. 

ll might he more difticult, however, to he confident in the first a�sumpl ion-th<1t 
the I rue scores of people taking your test arc stable during the time intcrval bctWL'L'll 
the first and second tests. !\/though the test-retest procedure avoids the problem or 
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differing content that arises with the alternate forms procedure, another probkn 
arises. Specifically, we must assume that participants' true scores have remaine, 
completely stable across the two tcstings, but it is quite possible that there have beer 
changes in the respondents' levels of the psychological attribute (and thus change1 
in their true scores). In filet, there are at least three factors affecting our confidence 
in the stability assumption. 

First, some psychological attributes arc likely to be less stable than other�. 
Attributes that reflect more transient or statelike characteristics are less stable than 
constructs that reflect more traitlike characteristics. For example, assume that yo\! 
have a test of mood states-an individual's level of mood at an exact moment in 
time. Generally, mood state is considered to be a psychological attribute that ctn 
fluctuate from day to day, hour to hour, or even moment to moment. Thus, it would 
probably not make sense to assume that a person's true score on a mood state test i.� 
stable during a test-retest interval of any significant length. Furthermore, changeo 
in mood state arc likely to result from various factors affecting mood swings in 
different ways for different people. For example, during the test-retest interval, 
one person might experience physical distress of some kind, which depresses that 
person's mooc!. In contrast, another person might learn that he or she has won an 
award, which elevates that person's mood. As a result, the individuals' mood states 
during the first assessment might be quite different from their mood states during 
the second assessment. T hat is, the differences among their true construct levels 
are not stable across the two tcstings. For such statelike constructs, the test-retest 
method provides a poor estimate of test reliability. Notice that the mood test 
might be quite reliable in the sense that differences in observed test scores at any 
single testing occasion accurately reflect differences in true score at that occasion. 
However, the test-retest method might provide a very low estimate of reliability 
because moods have changed across the two testing occasions. 

On the other hand, the test-retest procedure is likely to provide reasonable esti
mates of reliability for a measure of traitlike psychological attributes. For example, 
intelligence is generally conceived as a stable psychological characteristic. There 
is good theoretical rationale and strong empirical evidence suggesting that intel
ligence is highly stable fi·01n middle childhood through adulthood. In this case, it 
might be reasonable to assume that true scores do not change during a test-retest 
interval. If this assumption is correct, then changes in observed scores across two 
testings will represent measurement error, which will be reflected by the size of the 
test-retest reliability cocfllcicnt. 

A second bctor affecting our conlldcncc in the stability assumption is the length 

of the test-retest interval. Longer intervals arc likely to open the door to greater 

psychological change. True scores arc more likely to change across a period of years 

than across a period of weeks or days. Although test-retest analyses have been con

ducted across periods that span years, such analyses run the risk of confounding 

changes in true scores with measurement error. On the other hand, short intervals 

might suf1er from carryover ef1ects or contamination effects, as described in the 

section "Alternate Forms Reliability." In our experience, many test-retest analyses ot 

trait! ike measures seem to be conducted over a period of 2 to 8 weeks. 

A third t�1ctor that might af1ect our confidence in the stability assumption is 

the period at which the interval occurs. It is possible that change is more likely to 



Chapter 6. Empirical Estimates of Reliability 131 

occur at some periods in an individual's life than at other periods. For example, 

change in cognitive skills and knowledge might be more likely to occur during the 

school-age period than at a later period in one's life. In children, constructs such as 

reading skill, math skill, ;md knowledge in some area are likely to change as a result 

of schooling during a test-retest interval. Some children increase their skills and 

knowledge to a greater degree than others. These kinds of changes-where people's 

true scores change at different rates-violate an important assumption of parallel 

tests (and they violate the assumptions of other theoretical models that are even less 

restrictive than the parallel test model). Consequently, such changes impair the use 

of the test-retest correlation as an estimate of reliability. 

'I(J summarize, the test-retest approach to reliability depends heavily on the 

assumption that true scores remain stable across the test-retest interval. For this 

reason, a test-retest correlation coefficient is sometimes referred to as a stability 

coefficient. If true scores arc completely stable during the test-retest interval lor at 

least if the differences among participants' true scores remain stable), then the test

retest correlation reflects only one thing: the degree to which measurement error 

affects test scores. That is, if true scores are perfectly stable, then an imperfect cor

relation between observed scores (i.e., a correlation that is less than 1.0) indicates 

the degree to which measurement error affects the observed scores. The lower the 

test-retest correlation, the greater the effect of measurement error and the lower 

the reliability of the test. 

The difficulty is that we can never know the degree to which true scores actually 

remain stable. The three issues discussed above can make us more or less confident 

that true scores remain stable, but we can never be sure that true scores arc in bet 
stable between testings. 

Moreover, if true scores change during the test-retest interval, then the test

retest correlation reflects two independent f;1ctors: (I) the degree to which mea

surement error affects the test and (2) the amount of change in true scores. Using 

a simple correlational approach, these two t;1ctors cannot be separated. In such a 

case, an imperfect corrcl<llion between observed scores (i.e., a correlation that is 

less than 1.0) indicates the combined ellect of measurement error and true score 

instability. In fact, it is theoretically possible (though not very realistic) that a test 

could be perfectly reliable but have a low test-retest correlation. This would occur if 

true scores arc unstable across the test-retest interval. Obviously, in such a case, the 

test-retest correlation would be a poor estimate of the test's reliability. The bottom 

line is that test-retest correlations should be interpreted carefully, with regard to 

reliability and to the likely stability of the underlying construct. 

;\/though the alternate f(ll'lm and test-retest approaches have solid theoretical 

foundations as methods f(>r estimating reliability, they suffer from several pr<lcti

cal difficulties, as we have seen. For example, they require that at least two tests 

be given to the people being tested, but such repeated testings can be expensive, 

time-consuming, and difficult or even impossible to conduct. In addition, as we 

just pointed out, several assumptions must be made if you arc to interpret the 

correlation between tests obtained from these procedures as good estimates of test 

reli<1bility. Unfortunately, these assurnptions might not be valid in some, or perhaps 

many, cases. Therdi.>re, the alternate f(ll'lns method and the test-retest method have 

somewhat limited applicability. 
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Internal Consistency Reliability 
-------- -- -- ---- -----------------

!\ third approach lo cstinwling reliability is through internal consistency, which 

offers a useful practical alternative to the alternate forms procedure and the tesk 

retest procedure. The internal consistency approach has the praclical advan1<1ge of 

requiring respondents lo complete only one test at only one point in time. There 

is no need lo create more than one t(mn of a test, and there is no need to require 

that participants complete a lest on more than one occasion. Obviously, this can 

simplify the process of evalu<lling reliability considerably, and it might avoid some 

thorny issues regarding the validity of various assumptions. 
The internal consistency approach to estimated reliability can be used for com

posite lest scores. As we mentioned in Chapter 3, if a test includes multiple items 
and if the test's scores arc computed ti·om the responses to those items, then the 
test score is called a composite score. We mentioned also that most psychological 
tests arc of this kind and most test scores arc composite scores. Internal consistency 
approaches arc applicable f(>r estimating the reliability of such multiple-item tests. 

The fundamental idea behind the internal consistency approach is that the 

different "parts" of a lest (i.e., items or groups of items) can be treated as differ

ent f(mns of a lest. In many areas of behavioral science, the internal consistency 

<lpproach is the most widely used method h>r estimating reliability. In this section, 

we review several ways of estimating reliability by using an internal consistency 

approach. 
rrom the perspective of internal consistency, there arc two fundamental filclors 

that affect the reliability of lest scores. The first is the consistency among the parts 

of a test. As we shall sec, if a test's parts arc strongly corrchlled with each other, then 

the test is likely to be reliable. That is, if the observed differences on one part of the 

test (e.g. , an item) arc consistent with the observed differences on the other parts of 

the test (e.g., other items), then we arc likely lo conclude that the observed scores on 

the test as a whole arc comistenl with the true scores. The second bctor that affects 

a test's reliability is the test's length-a long lest is likely to be more reliable than 

a slwrl test. As we shall sec, this arises fi·om the nature o( measurement error and 

its link to rcli<Jhilily. We will discuss three well-known approaches to the internal 

consistency method of cstim<Jting reliability-( I) the split-half approach, (2) the 

"r<lW alpha" approach, and ( 3) the "standardized alpha" approach. 

Split-Half Estimates of Reliability 

I{ you could sort a lest's items into two parallel subtcsts of equal size, then you 

could compute a score f(>r each suhtcst <llld correlate those two scores. In clfecl, 

you would have created two parallel tests (rom the items within a single test.
-
' � is 

pqssiblc lo usc these subtcsl scores lo compute an estimate of lola! test
_ 
rch

_
ahJ

.
h

.
ty. 

Because it is based on splining a test into two separate parts, this type of rclwbd1ty 

is known as split-filii( rcli11/Jility 
_ 

Comidcr the sm<dl data set shown in "Illhlc 6.2, reflecting the hypothelJcal 

rc'iponscs 0( f(lllr persons to a f(nJ r-itcm test. Although these data do not conl(mn 

lo all the relevant assumptions (which we will discuss later), they should pnlVIdc an 
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Table 6.2 Example for Internal Consistency Method of Estimating 

Reliability 

Items -_!pli�-_1!�'!_! __ Split-Half 2 

Subtest Total "Odd" "Even" Subtest 1 Subtest 2 
Persons 2 3 4 Score Subtest Subtest and 4 and3 

---- -------

4 4 5 4 17 9 s 8 9 

2 5 2 Ll 2 13 9 4 7 6 

3 5 4 2 2 13 7 6 7 (J 

4 2 3 2 8 3 5 4 4 

Mean LJ 3.25 3 2.5 12.75 7 5.75 6.5 (J.25 

Variance 1.5 0.6875 2.5 .75 10.1875 6 2.1875 2.25 3.li\75 

intuitive example of the split-h;df method. This procedure can be seen as a three
step process. 

In the first step, we create two subtest scores. For example, we might create one 

subtest by summing the odd items and another subtest by summing the even items. 

The two suhtest scores arc presented in 'J;tblc 6.2 in the column labeled "Split-Half 1." 

In the second step of the process, we compute the correlation between the two 

subtests. If the test is reliable, then we should find that respondents' scores on the 

"odd" half of the test arc consistent with their scores on the "even" half of the test. 

In these data, the correlation between these halves is 'i,h = .276 (we will call this the 

"split-half correlation"). The split-half correlation retlccts the degree to which the 
two parts of the lest are consistent with each other. 

In the third step of the process, we enter the split-half correlation into a special

ized l(mnula to compute the reliability estimate. Many l(mnulas l(n computing 

internal consistency estimates of reliability were developed by Charles Spc<lf"lllan 

(the l(llhcr of the true score theory ofreli;tbility) <llld William Brown. The l(mnulas 

go by different names-the Spearman-Brown split-h;Ji( l(mmda, the Spe<mnan

Brown prophecy f(mnula, and the Spc<ll'lll<lll-llrown l(mnula--aml <Ire ex pres-;nl 

in difkrcnt I(Jnm. The most common l(mn usn! to cstinwtc reliability in the split 
h;df procedure is 

R,, 
21i,t. 

I+ 'i,;, 
(6.1) 

hll' our example, we enter the split-half corrcLttion into the equation, which 
gives us <l reliability estinwte of R,, = .43: 

2(.276) .552 
1<.1\ =---=--=.433 . 

I+ .27(, 1.276 

Ttke a moment to consider why we e<tnnot simply usc the split-hal( corre!;t
tion itself' as the csti111ate of' rcliahility. 1\licr all, according to the ;dtcrnatc I(JI'fns 
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approach and the test-retest approach, the correlation itself (i.e., between two 
forms or between two tcstings) is used as the estimate of reliability. However, for the 
split-half approach, we must enter the split-half correlation into a special formula 
to obtain the estimate of reliability. The difference between the approaches is th;lt 
the split-half correlation represents the reliability of only "half" of our test. Recall 
that the alternate forms approach and the test-retest approach required that the full 
test be completed twice-respondents either complete two fixms of the full test or 

they complete the full test itself twice. Thus, the alternate r{mns correlation and the 
test-retest correlation are correlations between two versions of the complete test. In 
contrast, the split-half correlation is the correlation between two halves of the test. 
Equation 6.1 is designed to take the correlation between the two halves of a test and 
"step up" to an estimate of the reliability of the complete test. 

Because it is based on a correlation derived from within the test itself, the split
half reliability estimate is called an internal consistency estimate of reliability. The 
premise is that if items on a test are similar to each other, then splitting the test into 
two parts in an appropriate way (this usually involves a procedure that is thought 
to produce a random assortment of items) should produce two parallel subtests. 

Unfortunately, the adequacy of the split-half approach once again rests on the 
assumption that the two halves are parallel tests. That is, the halves must have equal 
true scores and equal error variance. As we have discussed, if the assumptions of 
err and parallel tests are all true, then the two halves should have equal means 
and equal variances. You will note that the odd and even halves that we computed 
for the data in Table 6.2 do not seem to meet the assumption that they are paral
lel to each other (i.e., they clearly have different means and standard deviations). 
Because these two halves are not parallel tests, the split-half reliability estimate that 
we computed ( Rxx = .43) might be an inaccurate estimate of reliability. 

Indeed, we could split the data in 'I�1ble 6.2 in a different way and obtain a 
dramatically different estimate of reliability. For exam pie, we could create the 
two halves by summing Item I and Item 4 and by summing Item 2 and Item 3. 

These two halves are presented in 'lhble 6.2 in the column labeled "Split-Half 2." 

Computing the correlation between these two halves, we obtain a much larger split
half correlation ( r1111 = .ll9) than we did with the odd and even halves. Entering this 

value into Equation 6.1, we obtain a reliability estimate of Uxx = .94: 

2(.1l9) 
Rn =--=.94 . " 

I +.ll9 

Obviously, when the halves of a test do not meet the criteria f{>r being "paral

lel," our estimate of reliability can differ substantially depending on the way we 

have formed the halves. In our example, one "split" led to a very low estimate of 

reliability for the test (l<xx = .43 ), but another split led to a very high estimate of 

reliability h>r the test ( U,xx = .94 ). The problem is even more extreme for long tests, 

li>r which there arc many ways in which a test could be split into halves, with each 

way potentially producing a dillcrcnt estimate of reliability. Furthenno�-c, there 

is no single way of splitting a test that will produce the most accurate estunate of 

reliability. For these reasons, split-half reliability is not used frequently in contem

porary psychometrics. 
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Although it is not used often in contemporary psychometric analysis, split-half 

reliability is easily obtained from some statistical software. For example, SPSS has 

a "Reliability Analysis" procedure that will quickly conduct a split-half analysis of 

a test's items. Using the drop-down menus, the Reliability Analysis can be found 

under the Scale option in the Analyze menu. You can select the test's items, putting 

them in the order that you would like them to be split into halves. For example, 

to examine the llrst split-half analysis discussed earlier, we first selected Items 1 

and 3 and then selected Items 2 and 4. We then chose "Split Half" fi·om among 

the "Model" options, and we obtained the results in Figure 6.1. For our immediate 

purposes, the "Correlation Between Forms" value ( .276) and the "Speannan-Brown 

Coefficient" values (.433) reflect the split-half correlation and estimated reliability 
values, respectively. 

One problem associated with all internal consistency measures of reliability, 

such as split-half reliability, has to do with the distinction between power tests 

and speeded tests that we discussed in Chapter I. You will recall that a power test 

will include a variety of questions with different levels of difficulty. In most cases, 

people taking these types of tests will have adequate time to try to answer each of 

the questions on the test. Each person taking such a test will have a test score that 

reflects the number of correct responses made on the test. Most multiple-choice 

tests given in classroom situations are of this sort. Speeded tests, on the other hand, 

are usually composed of a series of equally difl/wlt questions. Respondents arc given 

a limited period of time to answer as many of the test questions as possible. It is 

generally assumed that each attempted answer will be correct. A score on a speeded 
test will reflect the number of items answered correctly during the allotted period 

Reliability Statistics 

Cronbach's Alpha Part 1 Value .667 

N of Items 2a 

Part 2 Value .686 

N of Items 2b 

Total N of Items 4 

Correlation Between Forms .276 

Spearman-Brown Equal Length .433 
Coefficient 

Unequal Length .433 

Guttman Split-Half Coefficient .393 

a. The items are: Item 1, Item 3. 
b. The items are: Item 4, Item 2. 

Figure 6.1 SPSS Output Frorn Split-Half Reliability Analysis of the Data in 
Table 6.2 
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of time fl)r taking the test. If you split a speeded test in half and calculate the num

ber of correct responses for each respondent on each half, the test reliability would 

be close to perfect. In this case, the reliability of the test would reflect the reliability 

of respondents' response speeds; that is, there is no reason to imagine that respon

dents' response speed to any one question should differ from their correct response 
speed to any other question. 13y way of illustration, suppose that a person takes a 

speeded test and is able to answer correctly I 0 questions during the test period. If 

you were to split the test in half in such a way that any test item had an equally likely 

chance of ending up in either half, then 5 of the I 0 items that the person answered 

correctly should end up in each half. Given that each of these questions is of equal 

difficulty, the amount of time it takes the respondent to answer the 5 questions on 

one half of the test should be about the same as the amount of Lime it takes that 

person to answer the 5 questions on the other half of the test. 13ccausc split-half 

rcliahilities calculated for speeded tests arc almost always ncar 1.0, other types of 

reliability measures, such as alternate forms reliability, are generally used to assess 

the reliability of speeded tests. 

Even though the split-half procedure might not be widely used, we believe that 

students of psychometrics should be fiuniliar with the procedure. This is because 

the procedure is historically important, because you are likely to hear people make 

reference to it, and because it sets the stage for our discussion of an approach that 

is much more commonly used. 

/\!though split-half rcliabilities are sometimes still reported (e.g., Wechsler, 

2003a, 2003b), other methods for computing internal consistency estimates of reli

ability have been developed. As we shall see, the other methods have at least two 

advantages over the split-half method. First, they use more information about the 

test than is used by the split-half method. Second, they require fewer assumptions 

about the statistical properties of the items than do split-half methods. 

"Raw" Coefficient Alpha 

The split-half approach is based on the perspective that the two halves within 

" test represent parallel subtcsts, with a reliability estimate emerging from the 

associations between the two subtests. In contrast, "item-level" approaches take the 

logic of internal consistency a step further by conceiving of each item as a subtes!. 

( :onscquently, the associations among all of the items can be used to estimate the 

reliability of the complete test. 
h·om the itcm-levcl perspective, a variety of approaches can be used to com

Jlllle reliability estimates. These approaches differ in their applicability lo dilfcren! 

response formals (i.e., binary items vs. nonbin;1ry items), in their applicability to 

da!<l that meet different assumptions (i.e., par;dlel tests vs. a more relaxed set of 

<hSUmp!ions), and in the USC of different forms of data (i.e., item variances, inter

item covarianccs, or inlcritcm correlations). 
The item-level inlemal consistency approaches Gln all be seen as two-step 

processes. In the first step, item-level <md/or test-level statistics are calculated. As 

mentioned carl ier, d i fferen! approaches use d i ff'ercn t kinds of information. Some 
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approaches are based primarily on the associations among the items, but others usc 

both item-level information and information about scores on the complete test. In 

the second step, the item-level and/or test-level ini(mnation is entered into special

ized equations to estimate the reliability of the complete test. 

We will begin with "raw" coefficient alpha (often called Cronbach's rx), which is 

the most widely used method for estimating reliability. The first step in computing 

rt is to obtain a set of item-level statistics. 'vVe first calculate the variance of scores on 

the complete test ( s�) Using the hypothetical dat;t f(lr the i(ntr-itcm test discussed in 

the split-half reliability sect ion (sec 'I�tblc 6.2), ( s0 =-c I 0. t 1\75. Next, we calculate the 

covariance between each pair of items ( rce<tll that a covariance rcilccts the degree 

of association between two variables). l-lcrc is the matrix of covari;mccs among the 

l(ntr items: 

Item 1 Item 2 Item 3 Item 4 

Item I 0.00 1.00 0.00 

Item 2 0.00 0.00 0.31\ 

Item 3 1.00 0.00 1.00 

Item 4 0.00 0.38 1.00 

If we take a moment to examine these covariances, we sec a potcnti<tl problem 

for the intern<tl consistency of the test-several covarianccs arc 0. 1:or example, 

scores for Item I arc unrelated to scores on Item 2, indicating an inconsistency. 

That is, the differences among participants' responses to Item I arc inconsistent 

with the differences among their responses to Item 2. If these two items were good 

mc<tsurcs of the same construct, then they should have a positive covari;tncc. So 

either the items do not measure the same construct or at least one of them is 

hc;tvily aflcctcd by measurement error (e.g., perhaps Item I has very <tmbiguous 

phrasing, which leads people to respond in ways th<tt arc unrcl<tlcd to their true 

scores). hlr a lest that is supposed to be measuring a single construct, we would 

hope to find that all of the items within the test positively covary with each other 

(i.e., arc correlated with each other) to some degree. Thus, the covariances in 

'LJblc (1.2 arc somewhat disappointing, indicating that the f(ntr-item test has sonte 

problems. 

After computing the covarianccs among all pairs of items (i.e., all "pairwise" 

covarianccs), we sum them. The sum of the intcrill'm covariances rl'fkcts the 

degree to which responses to all of the items arc �cncml/y consistent with each 

other. i\11 else being equal, the larger this sum is, the more consistent the items 

arc with each other. The sum of these covarianccs cut he denoted as LC,, whilh 

is intended to indicate that it is the sum (tints the sigma notation) of covari<tnces 

between any particular item (denoted as i) and any other item (denoted as i'). 
The second step in this approach is to calculate the estimate of reliability hy 

entering the variance of the scores on the complete test <lml the sum of the covari

<lltccs into the f(lllowing equation: 
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( k ) ( 2:c. J a= estimated Ru = 
k _ 1 T , X 

where k is the number of items in the test. For our example data, 

. 
! 

( 4 ) (  4.75 ) 
u = estn11ate( R.H = �- -�- = (1.333)(4.663) = .62. " 4-1 10.1875 

(6.2) 

Thus, we would estimate that the reliability of our four-item test in 1�1ble 6.2 is 

.62. Although a reliability of .62 is not very low, it is lower than we would like it to 

be. In Chapter 7, we will discuss how reliability information can be used to develop 

and improve psychological measures. 

Many statistical programs compute reliability estimates by using raw alpha. 

For example, SPSS's Reliability Analysis procedure labels this value as "Cronbach's 

Alpha" (the RELIABILITY procedure, available under the Scale menu option). Using 

this procedure, selecting all of the items on the test, and choosing "Alpha" fi·om 

among the "Model" options, we obtain output like that presented in Figure 6.2. 

These results are based on the data in 'I�1ble 6.2, and the "Cronbach's Alpha" value 

( .62) corresponds to the value we obtained above. Similarly, the statistical package 

SAS has a procedure that labels this value as "Cronbach Coefficient Alpha for Raw 

Variables" (within the CORRELATION procedure). 

If you read other presentations of reliability, you are likely to encounter another 

form of the equation f(Jr computing alpha: 

. ( k ) ( 2:s1 J u = estimated R,x = -- I - -.2- • 
k -1 sx 

(6.3) 

Equation 6.3 produces the same alpha value as Equation 6.2, but we present it 

so that (hopefully) you can avoid any future confusion that might arise from the 

bet that there are differing forms of the equation. Equation 6.3 uses the variance of 

the total scores ( sV, along with item variances (sf) values), instead of the interitem 

covariances equation (Equation 6.2). Note that the sum of the item variances in 

·n1ble (J.2 is as follows: 

Cronbach's 
Alpha 

.622 

= 1.50+.6875+ 25+.75, 

= 5.4375. 

Reliability Statistics 

Cronbach's Alpha Based on 
Standardized Items 

.626 

N of Items 

4 

-�--� . -------- --------------------

Figure 6.2 SPSS Output Presenting Raw Alpha and Standardized Alpha 
From Reliability Analysis of the Data in Table 6.2 
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Entering this value into Equation 6.3, we obtain the same alpha estimate of reli

ability that we obtained earlier: 

( 4 ) ( 5.4375 ) 
ex = estimated R YY = -- l---- = (1.333)( 1- .5337) = (1.333)( .4663) = .62. . . 

4-1 10.1875 

Again, Equations 6.2 and 6.3 lead to the same value for alpha; they differ only 

with regard to the information that is required (i.e., item variances or intcritcm 

covariances). 

"Standardized" Coefficient Alpha 

Another method of estimating reliability is often called the generalized Spmrman

Brown jimnula or the standardized nlphn estimate. As its name implies, this method 

is highly related to raw alpha, but there is an important diftercnce that might make 

it more appropriate for some tests. 

The "standardized alpha" is appropriate if a test score is created by aggregating 

(e.g., summing or averaging) standardized responses to test items. That is, if test 

users standardize or z-scorc (see Chapter 3) the responses to each item before sum

ming or averaging them, then the standardized alpha provides the more appropri

ate estimate of reliability. 

Why would a test user decide to standardize the responses? A test's items might 

need to he standardized if their variances arc dramatically different from each other. 

If this situation arises, then the score will heavily retlect those items that have the 

largest variabilities. Consider the hypothetical four-item test in T�1hle 6.2, in which 

the total test score is obtained by summing across all four items. Notice that the 

items have differing variances; spccitically, Item 3 has the largest variance (s� = 2.5), 

while Item 2 has the smallest variance ( sJ = 0.6875 ). In this type of case, it is likely 

that the total test score will be more highly corrch1ted with Item 3 than with Item 2. 

lndccd, based on the data in 'l�1ble 6.2, we can find that Item 3 and Item 2 arc cor

related with the total score at r = .89 and r = .40, respectively. Thus, the test is more 

heavily weighted to reflect the content and meaning of Item 3 than of Item 2. 

;\ltlwugh such <1 dif!Crcntial weighting of items is not a concern for many tests, it 

could be a problem and could be extreme in some cases. For example, it would be a 

concern if items had different response scales (e.g., if some items were on a 5-point 

scale and others were on a 7-point scale). Similarly, it would be a major concern if 

scores from different measures were combined to f(nm a new composite measure. 

For example, educational researchers might wish to obtain a general measure of 

academic ability by combining grade point average (CPA) and SAT scores. Because 

these two components arc on such dramatically different mctrics, any combination 

(e.g., summing or averaging) of unstandardizcd scores will essentially only reflect 

the SAT scores. Thus, researchers would likely decide to standardize the two sets 

of scores before creating the composite index of academic <lbility. ln such cases, 

standardization is appropriate, and thus, standardized alpha would be the more 

appropriate estimate of reliability (as compared with raw alpha) of the "two-item" 

composite. 



140 fJART II. RELIABILI rY 

Apart from its importance as an altcmativc to raw alpha, we present the stan

dardized alpha method also because it provides a perspective on reliability that is, in 

some ways, the most straightforward. Nunnally and Bernstein ( 1994) stale that "it 

is hard to overestimate the importance of I this approach [lo the theory of measure

ment error" (p. 232), and it is likely that they make such a claim, in part, because of 

its app<liTnt simplicity. That is, this approach presents reliability estimates in terms 

that arc, in some ways, the most fundamental and intuitive. As discussed earlier, 

the r<lW alpha procedure relics on variances and covarianccs, which might not be 

highly intuitive concepts for many people. In contrast, the standardized alpha pro

cedure relies only on correlations, which may be rnorc I�Hnilim and straightforward. 

Thus, a prescn tal ion of this method rnigh t help convey i 111 porta nt genera I points 

about reliability and the f�1ctors that affect it. We will return to this issue later in 

the chapter. 

The first step in the standardized alpha approach is to obtain a set of item-level 

statistics. We first calculate the correlations between each pair of items. Similar to 

the first equation for raw alpha (Equation 6.2), these values rdlcct the degree to 

which differences among the participants' response to the items arc consistent with 

each other. Returning to the example data in "lhble 6.2, we compute six correlation 

coefficients: 

Item Pair 

and 2 

and 3 

I and 4 

2 and 3 

2 and 4 

3 and 4 

Correlation 

r12 = .00 

r1, = .52 

1"11 = .00 

r2, = .00 

r21 = .52 

r�.� = .73 

Arter we compute the correlations among all pairs of items (i.e., all "pair

wise" correlations), we compute the average of those correlations. This aver<lge 

interitcm correlation reflects the degree to which responses to all of the items 

<liT generally consistent with each other. For example, the average of our six cor

rel<ll ions is .295, which indicates that, on average, the responses to the items arc 

moderately <lssociatcd with each other. This correlation is sometimes denoted as 

i',, which is intended to indic1te that it is the average (thus the bar above the r) 

of the correlations between any particular item (denoted as i) and any other item 

(denoted <ls i' J. 

The second step in this approach is to calculate the estimate of reliability by 

entering the average intcritcm correlation into the t(>llowing equation, which is n 

gcncralil.<ltion of the Spe<mnan-Brown f(mnula: 

I Hk-l)r., ' 
(6.4) 
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where k is the number of items in the test. For our example data, 

1' . - 4(.295) 
'n- I +(4-1)(.295) 

1.180 
1.885 

= .63. 

Thus, this procedure suggests that, if we standardized the four items, then the 

reliability of our test in ·n1ble 6.2 is .63. This estimate is only slightly different from 
the raw alpha estimates that we obtained above (rx = .62). In l�1ct, the standardized 
<liph<l procedure and the raw alpha procedure often produce similar (though not 
identical) estimates in real data. 

Many poJ-lular statistical packages present standardized alpha alongside the 
r<lW alpha estimate. For example, Sl'SS's Reliability ;\nalysis procedure labels this 
value "Cronbach's Alpha Based on Standardized Items." Indeed, this is apparent 
in hgurc 6.2. Simil<lrly, SAS labels this value "Cronbach Coefficient Alpha for 
Standardized V<lriables." 

Raw Alpha for Binary Items: KR20 

Many psychological measures include binary items (sec Chapter 3 ). 1:or exam
ple, the Minnesota Multiphasic Pcrso1wlity lnvcntory-2 (MMPI-2) is the most 
widely used measure of psychopathology, and it consists of 567 truc/blsc items th<lt 
:1sscss a wide va riel y of J-lSychopa thological cha ractcristics. Each of the 56 7 items 
produces only two possible responses, and thus they arc binary items. Similarly, 
multijllc-choice tests arc generally scored in a way that provides bin<lry responses, 
with each answer typically scored as either correct or incorrect. 

The r<lW alpha equations can be used to compute the reliability cstim<ltes for 
a test consisting of binary items, but you arc also likely to encounter a more SJ1l'
ci:dizcd ((mnula framed in terms of binary responses-the Kudcr-Rich<lrdson 20 
(1<1�,11) Cormula. The KI{�11 ((Jrmula is <ligebraically identic1l to Equation 6.3 I(Jr raw 
coefficient alplHl; however, it is expressed in a way that rclkcts a spcci<li clwractcr
istic of binary items. 

As with the raw alpha methods l(Jr estimating reliability, the procedure f(H binary 
items is a two-step process. As an example, we will usc the hypothctic1l dat<l in 
T1blc 6.3, which includes t(Jur persons' responses to a test composed oC lilllr bin<lr)' 
items. The first step in the process is to obtain a set of item-level <llld test-level 
statistics. For each item, we compute the proportions f(Jr each of the two possible 
<lnSWlTS. For example, ((n a multiple-choice test in class, we compute the propor
tion of respondents who answered C<lch item correctly (we will call this propor
tion p I(Jr each item, consistent with our discussion of binary items in ( :h<lptcr .l ), 
and we COlllJlUtc the pro port ion of l"CSJ)(Jndcn ts who <lnswcrcd each i tcm i ncor
rcctly (we will call this proportion 1/ for each item). hlr the data in 'n1ble 6.5, we sec 
that 75'Y<> of the sample <lnswcrcd Item I correctly (p ".75), which of course means 
th<lt 25% of the sample answered the item incorrectly ( 1/ = .25). We next calculate 
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Table 6.3 Example for Computing Reliability From Binary Items 

., 

. ......___ Item Total 
Person 2 3 4 Sco,.E! 

4 ......___ 

2 0 0 2 

3 0 0 2 

4 0 0 0 

Sum 3 3 2 9 

Mean 0.75 0.75 0.5 0.25 2.2s 

Variance 0.1875 0.1875 0.25 0.1875 1.1s7s 

p 0.75 0.75 0.5 0.25 

q 0.25 0.25 0.5 0.75 

pq 0.1875 0.1875 0.25 0.1875 

the variance for each item, which is simply (sf = pq), as shown in Equation 3.9 
(Chapter 3). '[1ble 6.3 presents these values. In addition, we calculate the variance 
of the total test scores (s� = 1.1875 ) , based on Equation 3.2 in Chapter 3, where the 
total test score is obtained by summing the responses to the items. 

The second step in this approach is to calculate the estimate of reliability by 
entering the variance of the total test scores and the sum of the item variances into 
the following KR20 equation: 

R. = (� ) l 1_ L PiJ J XX J I ,2 • (- 5 X 

For the data in Table 6.3, the sum of the item variances is 

Ipq = 0.1875 + 0.1875 + 0.25 + 0.1875 = 0.8125. 

Entering our values into Equation 6.5, we get the following: 

( 4 )( .8125 ) fL.= - 1- -- =(1.333)(.316)=.42. "" 
4-1 1.1875 

(6.5) 

If you compare the second formula t(Jr raw alpha (Equation 6.3) with the KR20 
f(mnula, you will see that it differs only with respect to the way in which the item 
variance term is expressed. 

Accuracy and Use of Internal Consistency 
Estimates of Reliability: Theory and Reality 

In our discussion of coefficient alpha, we have not yet addressed the relevance of 
various theoretical assumptions. As we discussed f(Jr the alternate forms approach, 
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the test-retest approach, and the split-half approach, reliability estimates arc accu

rate only if certain assumptions hold true. Jn this brief section, we will address this 

issue tc1r alpha, but let us begin by acknowledging the reality of measurement in 
"day-to-day" practice and research. 

Despite the fundamental importance of the assumptions underlying reliability 
estimation, most test users seem 10 ignore the issue completely. In research-based 
uses of reliability estimates, most researchers calculate and report an alpha estimate 
of reliability and report it, probably with no consideration of any relevant assump

tions. This standard "choice" of alpha as the method for estimating reliability is 
most likely based on two very practical bctors. First, as we have mentioned, most 
of the popular statistical packages report alpha coefficients as a dd�mlt part of any 
reliability analyses that they provide. Thus, alpha is easy to obtain from a set of 
data. Second, as we have also mentioned, alpha requires relatively little effi.Jrt, as 
compared with other methods for estimating reliability. There is no need to create 
multiple forms of the test, as would be required for the alternate forms method. In 
addition, there is no need to require participants to complete the test on more than 
one occasion, as would be required for the test-retest method. Finally, there is no 
need to worry about how a test might be split into halves, as would be required t(Jr 
the split-half method. Thus, alpha is based on data that arc relatively easy to obtain 
and use. 

Although most test users choose the alpha method of estimating reliability with
out much (if any) thought about the assumptions underlying its use, it is probably a 

reasonable choice most of the time. This is because the assumptions underlying the 
use of the alpha method arc somewhat more liberal (i.e., less strict and thus more eas

ily satisfied) than the assumptions underlying the usc of other methods. '1\·ying not 

to get bogged down in what can be a very technical set of issues, let us take a moment 
to consider the assumptions underlying the usc of the alpha method. The alpha 

method provides accurate estimates of reliability when lest items arc essentiolly tou 

equivalent (Feldt & Brennan, 1989). The notion of itcms being essentially tau equiva
lent is different from the notion that items arc "p<lrallcl" to each other. The notion of 
essential tau equivalence rests on more liberal assumptions than the notion of parallel 

tests-that is, the assumption of equal error variances is not required. Therefore, the 
estimates fi·om alpha arc likely to be accurate more often than those that would have 
been obtained fi·mn methods such as the split-half approach. 

In the unlikely case that test items actually do meet the strict assumptions 
of parallel tests, the raw alpha estimate, KR2", and the split-half estimate will all 
give you identical and accurate estimates of rcli<lhility. If lest items arc essentially 
tau equivalent but not parallel, KR20 and coefllcicnt alpha will give accurate esti
mates of reliability, but the split-half method will not. If test items arc neither tau 
equivalent nor parallel, then KR2" and alpha will underestimate reliability (h'ltlt & 
Brennan, 1989; Osburn, 2000). Thus, it is commonly said that KR211 and coefficient 
alpha place a lower limit on the size of the estimated reliability of tests scores. In 
general, KR20 and cocflicicnl alpha will underestimate the actual reliability of test 
scores (for a proof of this claim, sec Crocker & /\!gina, 1')8(,, pp. 120-122). 

Although it is commonly said that the alpha method will underestimate reli

ability, we should also acknowledge that all internal consistency methods might 

overestimate reliability to some degree. For example, because internal consistency 
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methods arc based on responses li·om only one measurement occasion, they ftil to 

account for measurement error that transcends a single measurement occasion. As 

stated by 1:cldt and Brennan ( 1989), "When behavioral observations are gathered in 

an hour or less, certain sources of error 'stand still' for each examinee. Their effects 

obscure the true difference among persons but arc not reflected in the estimate of 

test error variance" (p. 110). That is, some sources of error (e.g., fatigue) might 

become apparent only when respondents arc measured on more than one occa

siOIL Thus, the internal consistency approach might underestimate error variance, 

thereby overestimating reliability. 

More generally, there are several indices that have been proposed as ways of 

estimating reliability from an internal consistency rcrspectivc. Indeed, psycho

metricians have criticized the usc of alpha and debated the relative meanings, 

strengths, and weaknesses of a variety of indices including alpha, beta, and omega, 

among others (e.g., Revelle & Zinbarg, 2009; Sijtsma, 2009). Partly because this 

debate has been highly technical and partly because alpha remains highly acces

sible from popular software packages, many test developers and test users continue 

to compute and report alpha. In sum, there are many methods for estimating the 

reliability of test scores. In f�1ct, the methods that we have discussed in this chapter 

arc merely the most popular (for a more extensive discussion, sec Feldt & Brennan, 

1989; Osburn, 2000; Revelle & Zinbarg, 2009). The accuracy of each method rests 

on a set of assumptions, and some methods rest on assumptions that arc more eas

ily satisfied than others. In rractice, most lest users seem to depend on the internal 

consistency method for estimating reliability. More specifically, they rely heavily on 

the coefficient alpha, most likely the raw alpha, as we have described above. This 

choice is at least partly driven by the convenience and practical advantages of the 

alpha method. However, the choice is probably reasonable because alpha rests on 

less restrictive assumptions than many other methods, and it seems to be birly 

accura lc in comparison with many other methods ( Osbu m, 2000). 

Internal Consistency Versus Dimensionality 

Some test users arc very tempted to interpret a high level of internal consistency 

reliability as an indication that a test measures a single attribute (i.e., that it is uni

dinlcnsional or conceptually homogeneous). Unfortunately, such an interpretation 

is tenuous al best, and it is often invalid (Cronbach & Shavelson, 2004). 

ll is important to separate the idea of internal consistency from the idea that 

items on a lest arc unidimensional or conccptunlly homogeneous. Each item in 

a conccplu<lily homogeneous lest will reflect a single psychological attribute or 

dimension. Measurements of intem<li consistency such as alpha should be thought 

of with caution, if al all, as measures of the conceptual homogeneity of test items 

(Cortina, 199:); Nctcmcycr, Bearden, & Sharma, 2003). 

<:<Ill lion is required because a lest's intcmal consistency could be high (e.g., 

<X . . 75) even if the lest is multidimensional or conceptually heterogeneous. Por 

example, a composite lest might include two sets of items for which (a) the items 

within each set correlate highly with each other but I b) the items from different sets 
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correlate weakly with each other. In such a case, the test is multidimensional-a low 

correlation between different sets of items suggests that the sets measure dith.'r-ent 

psychological attributes (Schmitt, 1996). Although McDonald (1999) argues that 

this distinction is more important in theory than in practice, it is probably not a 

good idea to treat an internal consistency estimate of reliability (e.g., alpha) as a 

measure of the conceptual homogeneity or dimensionality of the test. As discussed 

in Chapter 4 and later in Chapter 12, statistical procedures such as hrctor <lnalysis 

<lJT much more appropri<tlc methods for evaluating the dimensionality or concep

tual homogeneity of test items. 

Factors Affecting the Reliability of Test Scores 

/\s mentioned earlier in this chapter, the internal consistency approach highlights 

two fundamental fKtors that affect the reliability of test scores. In this section, we 

explore the meaning of these i�1ctors and illustrate their influence on reliability. 

This issue is important because it lays the foundation for creating tests th<tt have 

strong psychometric quality. If we understand the t�tctors that influence the reli

ability of test scores, then we can consider these ftctors when creating tests, when 

trying to improve tests, and when using tests in research or in practice. Knowledge 

of these h1ctors can thus increase the quality of behavioral tests and enhance the 

quality of inferences and decisions that arc based on these tests. 

The first f1ctor affecting an internal consistency reliability estimate is the consis
tency 11111011g tlzc ports o{n test. As we have seen, the consistency among the parts of a 

test has a direct effect on reliability estimates. A l l  else being equal, a test with greater 

internal consistency-<lS reflected by a split-half correlation, by an average interitcm 

covariance, or by an average interitcm correlation-will have a greater estimated 

reliabil ity. r:or an example, let us revisit the four-item example in '1\tblc 6.2. In these 

data, we have seen that the average interitem correlation is 1', = .29 , ami we calcu

lated the standardized alpha to be .63. 

kr, 

l+(k-l)r 

4(.29) 
------

= .63. 
1+(4-1)(.29) 

The average interitem correlation of .29 is small to moderall', telling us th<tl, in 

general, the four items arc positively related to each other. That is, it tel ls us th�tt 

the items are at l east somewhat consistent with each othcr-··if an individual has a 

relatively high response (i.e., 4 or 5) on one item, then he or she is likely to have 

a relativel y high response on other items. We interpret a high level of consisll'ncy 

a1t10ng the items as an indication of a high level of consistency between observed 

lest scores and true test scores. 

Although we arc g lad that the average intcrilem correlation is positive, the test 

might be improved by increasing this value. A reliability estimate of .63 is on the 

l ow end of what we would deem acceptable, and so we might wish to improve 

the test. For example, some of the items might be rewritten to make them clearer. 
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Alternatively, we might choose to replace one or two items altogether-take them 

out of the test and replace them with items that are more clearly relevant to the 

construct being measured. Imagine that we implemented either of these solutions, 

retained the same length of the test (four items), asked a new sample of respon

dents to take the revised test, and recalculated the average interitem correlation. 
Let us imagine that the average interitem correlation for the revised test is indeed 

higher-say,?,; = .40-which indicates that our revised test is more internally con

sistent than was the original. The bet that the items are more consistent with each 

other suggests that, as a set, they do a better job of reflecting the construct being 

measured. Calculating the standardized alpha reliability estimate of the scores on 

the revised test, we find a reliability of .73: 

R . .  = 
4(.40) = 1.60 

= 73 
XX 

I +(4-1)(.40) 2.20 
. 

Thus, our revised test seems to produce scores that arc more reliable than the 

original test. If our average intcritcm correlation on the revised test had been even 

higher than ?;; = .40, then the estimated reliability would increase even more. In 

sum, if a test is made of parts (be they items or halves) that are highly consistent 

with each other, then it is likely to have better reliability than a test made of parts 

that are not highly consistent with each other. Thus, all else being equal, greater 

internal consistency produces greater reliability. 

The second factor that affects a test's reliability is the length of the test. J\ll else 

being equal, a long test is more reliable than a short test. This effect occurs because 

of the nature of true scores and measurement error, as well as their link to reli

ability. Specifically, as test length increases, true score variance will increase at a 

b1stcr rate than error score variance. To understand why this happens, remember 

that, according to CTT, reliability can be seen as the ratio of true score variance to 

observed score variance ( Equation 5.5): 

In addition, recall that total observed score variance is determined by true score 

variance and error variance (Equation 5.3): 

Thcrd(Jrc, reliability can be seen as 

(6.6) 

So anything that increases true score variance more than error variance will 

increase reliability. Assuming that we lengthen the test by adding new "parts" that 

arc parallel tests of the construct being assessed, then adding parts will have this 

exact effect-it will increase true score variance to a greater degree than observed 

score variance, thereby increasing reliability. 
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Let us demonstrate why this is true. Imagine that we begin with a one-part test. 

The true score variance for the part is \21• l f we double the length of the test by add

ing a second part (of equal length to the first part) that has a true score variance of 

sf2, then the true score variance of the lengt!Jcncd test (s�douhlc·d) will equal !based on 

our discussion of the variance of a composite variable; sec Equation 3.6) 

However, if the parts are parallel tests, then the two parts have identical true scores. 

Thus, the correlation between the two parts' true scores is perfect (i.e., r,1,2 = I), and 

the variabilities of the two parts are equal to each other (i.e., \1 = s,2 and s/1 � s�). 

Because the true score variance fc1r one part is exactly equal to the true score variance 

for the other part, we can simply usc sf_""' I'·"' to refer to the true score variance of"onc 

part." Therefore, s,21 = sf2 = si.""' I'·"·'· 
and the icmllllla reduces to 

Collecting the terms on the right, we gel 

Thus, by doubling the length of the test, we quadruple the original true score 

vanance. 

You can easily confirm this somewhat counterintuitive result by using a software 

package such as Excel to (a) create a set of numbers (representing the true scores of 

one lJart of a test)· (b) compute the variance of this set (obtaining s2 -the true t ) . 1-0lll' p.!rl 

score variance of one part of the test); (c) multiply each number in the set by two, 

producing a new "doubled" set of numbers (representing the true scores that result 

from a doubling of the test length); and (d) compute the variance of the doubled 

set (obtaining s,2 duuhlcd-the true score variance of a doubled test). You will find that 

the variance of your "doubled" values is four times greater than the variance of the 

original set of values. 

Now we can examine the etlect that doubling the test has on error score variance. 

Again, let the error variance on the first part be s31, the error variance on the sec

ond part be s�2, and the error variance on the lengthened test be s
;

'
doo

hlnl' According 

to our discussion, the error variance of the doubled Lest will be (again, based on 

Equation 3.6) 

However, according to CT'l', r,.1,.2 = 0 because errors arc thought to be random. 

Theref(Jre, the error variance of the doubled test reduces to 

) ) ' 

s�-douhkd = s�l + ,',';2 • 

In addition, if the two parts are parallel tests, then they will have equal error 

variances (i.e., s�1 = s32, as part of the definition of parallel tests). Because the error 

variance f-c1r one part is exactly equal to the error variance for other part, we can 
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simnlv usc s·
' to refer to the error variance of"one nart." Theref(>re, s2

1 =:: �· 
• t J L'-Oill' p.!J"I t t' �L') �'. 

s-� , and the J(mnula reduces to 
· ' 

•.' !II IV p.tr\ 

Thus, by doubling the length of the test, we double the error variance. 

In other words, these analyses show that if the parts meet the assumptions \l. 

parallel tests, then increasing a test's length will increase true score variance t1> f 
gre<lter degree th<ln error variance. In our example of doubling a test, true su>t·�� 
V<lriance quadrupled while error variance only doubled. 

· 

Let us now consider how reliability is affected by these changes. Let Uss .. ,i,:in"J rep, 

resent the reliability of the original test, which, if you recall, includes only a sing]1, 
"part" (note that this is simply a 1-e-expression of Equation 6.6 above ) : 

In <lddition, let /�.\.\ duuh�c-<J 
represent the reliability of· the doubled test, which is thco 

sum of two parallel parts. Based on the demonstration above, the reliability of thco 
doubled test can be expressed in terms of the t rue score variance and error varianc0 

of a single part: 

4(s' ) /?_\>.: _ l·l•llt' p.ut 
,J,.,J>Jnl - 4( �c ) + ?( �2 ) • 

' I IIIW p.ul � . l' 1lllt' p.ul 

After several algebraic steps, which we will not present here, it can be shown 
that the reliability of the doubled test is a simple function of the reliability of the 
original test: 

2R N = 
\\ orgin.1l 

'' -duui>J...d ] + R . 
\\ oq:uul 

1:or eX<lmple, the original test that is illustrated in'L1ble 6.2 has an estimated reli

ability of .(>2 (from our earlier calculations of raw alpha). If we double the length 
of the test by adding f(>ur items that, as a set, are exactly parallel to the original f(nll· 

items, then the estimated reliability of the doubled test would be as f(>llows: 

J?" duuhkd = l(.(>3) 
= .77 • 1+.63 

Son1e of you might notice that the equation <lbove is similar to the equation of 
'>plit-half rcli<Jbility that was presented earlier (Equation (>.I). Indeed, in a sense, the 

'>plit-half reliability equation works by estimating the reliability of a "doubled" test, 
whnc each part is half of the test. 

J\ more gcner<ll f(mnula f(>r estimating the reliability of a revised test (i.e., a 

!l''>t th<lt has been lengthened or shortened) is a version of the Spearman-Brown 
prophecy f(mnula: 
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(6.7) 

In this equation R.. is the estimated reli<lbility of a revised test, 11 is the ' ,\.\ fl'\'l�':d 
factor by which the test is lengthened or shortened, and Ru ori;:irr.rl is the reliability 

estimate ftlr the original version of the test. 
For example, if we tripled the length of the 4-itcm test in Table 6.2 (by adding 

two 4-item parallel sets), we would have a 12-itcm test with a likely reliability of.84: 

3(.63) 
_ o,l U . I= -.o . 

" '"'"'' I +D-1)(.(13) 

Equation 6.7 is called a "prophecy" formula because it can be used to forecast 
what would happen if a test was revised in a particular way. This can be very use
ful in the test development process. For example, we might design a test of a given 
length but find that it has a low reliability. Before taking the time to collect addi
tion<d data on a revised test, we can forecast the reliability of a test that is length
ened hy a specific amount. For example, we might usc the prophecy f(mnula to 
lind that doubling the length is sufficient to obtain adequate reliability. This kind of 
inf(>rmation allows a more cfllcicnt use of time and cfl<>rt in the test development 
and evaluation process. 

You might encounter another version of the Spearman-Brown prophecy ft>r
mula. The equation f(lr the stambrdized alpha can also be used to ftlrecast changes 
in reliability. Recall Equation 6.4: 

k r;,· 

l+lk-l)tii' 

Whereas the first version of a prophecy t<.mnula requires us to think in terms of 
"the l�lCtor by which the test is revised" (i.e., 11), the second version (Equation 6.4) 
simply requires us to think in terms of the number of items on a revised test (i.e., k). 
For example, we know that the average intcritem correlation for the t<.nrr-itcm test 
in ·1;1blc 6.2 is r;, = .2':J. If we arc considering the possibility of adding three items to 
the lest, and if we assume that the three new items will he just as good as the original 
f(nrr items, then we can assume that the average intcritcm correlation will remain 
T·, = .2':J. We can then ftlrccast the standardized alpha reliability of a seven-item ver
sion of the test: 

7(.2')) 
/( = = .74. 

,, 1+(7-1)1.2')) 

Thus, there arc two versions of a prophecy f(mnula, both of which illustr<lte the 

elfect of lest length on reliability estimates. Again, these equations can he used to 
l(m�casl the reliability of tests that arc changed in various ways. 

As a side note, it is sometimes labor intensive to calculate the average intcritem 
correlation among a large set of items. Most statistical packages will calculate the 
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standardized alpha value, and they will calculate all of the interitem correhlr 
. . , . l()ns· however, most wdl not calculate the average of these correlations. Some of us ' 

. . . . �� wish to use the standardized alpha formula as a prophecy formula, but we n1.1 
I I l I t. I 1·. . l . L l , y be too azy to ca cu ate t 1e average o a arge set o mtcntem corre atwns. uc 'ily 

l . I . . I . L I b . II . I 'we can o Jtain t 1e average mtentem corre ation 1y a gc raiGl y rearrangmg t 1e f.:c lJ· 
lion ti1r the standardized alpha (Equation 6.4). Doing so, we lind that the ave�. d. . . . . . . l<Jge mtentem correlation can be easily calculated If we know the standarciizccl alph-1 '<lnd the number of items in the test: 

R r ii' = --- --""xx __ 

k -(k -l)R,, 
(6.8) 

The idea that the reliability of a test increases as test length increases has in1Por
tant practical implications for test construction. For those who arc in the bu51·1 , •ess 
of constructing tests (e.g., teachers and professors), the lesson might be that lo11 er tests will be more reliable than shorter tests. Indeed, this is true: If everything e�se 
remains the same, longer tests will be more reliable than short tests. 

However, it is important to recognize that "everything else" might not re11, . •<1111 
the same. For example, the link between length and reliability is true only when the 
additional items arc parallel to the original items. This means, for example, that 
the average intcritem correlation would remain the same, which we assumed in the 
example above. ln fact, the additional items might not be parallel to the existin, 
items. If the new items are not perfectly consistent with the original items (at leas� 
on average), then the average interitem correlation might be reduced. This Would 
hurt the reliability of the test. 

Thus, the addition of new items to a test is a double-edged sword. On one hand 
longer tests are more reliable than short tests, all else being equal. On the othe1: 
hand, it might not be saf·e to assume that "all else" is in 1;1ct equal. In fiKt, if the aver
age interitem correlation of a lengthened test is small enough, then the lengthened 
test can actually be less reliable than the original test! That is, if we add "bad" items 
to a test, then the lengthened test will be worse than the shorter test. 

In addition, there arc practical limits on the number of items that can be 
included in a test. Time constraints and test-taker f�1tigue arc among these practical 
concerns. Purthermorc, all else being equal, the benefit of lengthening a test is sn1all 
fin tests that are already 1;1irly long. 'Iechnically speaking, the size of the increase 
in reliability will be a negatively increasing function of original test length. For 
example, adding I 0 items to a short test will have a bigger effect on the estimated 
reliability of' the revised test than adding I 0 items to a long test. In other words, the 
benefit of adding items to a test decreases with the number of items that are added. 
The effect is illustrated in Figure 6.3. 

In this figure, we have computed and plotted the standardized alpha values for 
tests with an average intcritcm correlation of .30 (which we chose arbitrarily), and 
the line represents the reliability fi1r tests of different lengths. For example, we sec 
that the estimated reliability of a 2-itcm version of the test is only about Rxx = .33. 
By adding 5 items, the reliability is increased to approximately Rxx = .64. Note 
that this 5-itcm increase in length produces a substantial .31 increase in reliability 
I .M - .33 -= .31 )-nearly doubling the reliability of the test. If we added another 
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Figure 6.3 The Association Between Number of Items and Reliability (for a 
Test With an Average lnteritem Correlation of .30) 

5 items (for a total of 12 items), then the reliability of the test would he R,x = .75. 

Although these 5 new items do increase the reliability of the test, the benefit of going 

fi·om 7 to 12 items is clearly less substantial than the benefit of going from 2 to 7 

items. Adding another 5 items would produce an even smaller increment in reliability. 

Thus, there arc practical limits to the benefit of adding more and more items to a test. 

Sample Homogeneity and Reliability Generalization 

Another factor that has subtle but important effects on the size of rcliabilit y coef

ficients is the heterogeneity of the people taking the test or, more precisely, the 

heterogeneity of their true scores. All else being equal, the greater the vari<Jbility 

among people in a group with respect to the psychological attribute that is being 

measured, the larger the reliability coeftlcient. You can sec why this is by revisiting 

the definitional formula for reliability, which again can be seen as 

, 
s� 

1(.- = -,�-, . 
s� + s;. 

Therefore, anything that increases s; relative to s� will increase the size of R1s· 
Recall that s,2 represents true score heterogeneity; the more heterogeneous the true 

scores, the larger the s;. 
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The issue of true score heterogeneity is important partly because it highlights 

the f�1ct that the reliability of a lest's scores depends to some degree on the nature of 

the sample that is being measured. If a test is administered to a sample that is very 

heterogeneous (i.e., in terms of their levels of the psychological construct being 

measured by the test), then the reliability estimate is likely to be higher than an 

estimate that would be obtained from a sample that was less heterogeneous. This 

f�1ct has at least two important implications. First, it underscores the important 

conceptual point that reliability is a characteristic of test scores; it is not a char<K

tcristic of the test itself. That is, a test might produce scores that arc highly reliable 

in one sample (i.e., a relatively heterogeneous sample), but it 1night produce scores 

that arc less reliable in another sample (i.e., a relatively homogeneous sample). 

A second and related implication is that sample heterogeneity highlights the 

utility of rclin/Jility gcnemlizntion studies. A reliability generalization study is 

intended to reveal the degree to which a test produces differing reliability estimates 

across different kinds of research uses and populations (Vacha-Haase, I 998). In a 

reliability generalization study, a researcher focuses on a specific test and gathers 

information from previously published research that used the test. In this process, 

he or she records information about the reliability of the test's scores as estimated 

in all the previously published research. This information can provide insight into 

several important psychometric questions. For example, Vacha-llaase, Kogan, 'Emi, 

and Woodall (2001) conducted a reliability gener<liization study of the IVIIVIPI to 

discover the typical reliability of IVIIVIPI clinical scale scores, the degree to which the 

reliability of the Jv!IVIPI scale scores differs across studies, and the f�1ctors that seem 

to al'fect the reliability of the scale scores. In their study, Vacha-Haase and her col

leagues examined more than ISO studies that had used the IVIIvl PI clinical scales and 

had reported reliability estimates based on the data. Results revealed that most of 

the IVIMPI clinical scales generally produced scores with acceptable reliability, but 

that reliability did vary across studies. In addition, results revealed that, for many 

ol the MMPI clinical scales, scale scores were more reliable f(lr adult samples (as 

opposed to adolescent samples) and for clinical samples (as opposed to nonclinical 

'>alnples). Thus, reliability generalization studies can be used to identify and under
-;tand the ways in which sample characteristics affect the reliability of test scores. 

Reliability of Difference Scores 

So f.1r, we lwve discussed the psychometric quality of scores on a single test. For 

exan1ple, we have been concerned with understanding and estimating the reliability 

of lest<> to measure intelligence, ability, self-esteem, job satisf�1ction, depression, and 

m on. I lowevcr, there arc times when we might also be interested in the difference 

bet ween two scores. 

Indeed, examinations of the difference between scores might be relevant to 

many hch<1vioral questions. Jo'or example, suppose that you were interested in ev<llu

ating whether a reading program leads to improved reading skills among children. 

'l(l examine this issue, you might ask a sample of children to take a reading test of 

'>OillC kind before they arc exposed to the program and then ask them to take the 
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same test f(lllowing the program. You would be interested in studying the clwngc in 

students' lest scores, and you might be interested in a variety of questions: What is 

the average degree of change? Do children differ in the degree of change that they 

experienced? Are there characteristics that differentiate which children changed 

more and which changed less? Many of the most important questions about dif

ference scores concern Forio/Ji!ity-you want to evaluate the degree to which the 

children vary in the amount of change in reading ability and whether there arc any 

psychological variables that arc associated with "amount of change." J\s another 

example, we might be interested in studying romantic couples to detcnnine 

whether relationship satisf1ction is associated with personality similarity. Thus, in 

each couple, we might be tempted to measure each partner's open-mindcdness, 

measure how much the partners argue, and sec whether couples who share similar 

levels of open-mindcdncss argue less than couples who have large disparities in 

their opcn-mindedncss. 

In this section, we present an overview of some fundamental issues that arc 

important in the analysis of these types of questions. This issue is important for 

several reasons. First, questions such as change, similarity, disparity, inaccuracy, 

<llld improvement are important and widely studied in behavioral science. Second, 

when studying such questions, test users often seem to forget that reliability has 

lundamental implications for their ability lo draw meaningful answers to their 

questions. That is, test users often 1:1il to examine, report, and interpret reliability in 

this context. Third, the special nature of these questions raises special psychometric 

challenges that nwke reliability particularly poor in many attempts to answer the 

questions. Fourth, many lest users might not be aware of the challenges raised by 

these questions. Considering all of these issues, we hope that this section helps cur

rent and future behavioral scientists understand and appreciate the importance of 

reliability in this context, and we hope that it provides some tools that can be used 

lo address these challenges. 

What is a di�(crcncc score? One popular method for studying change or diller

ences is by using difference scores. 1:or example, after obtaining two reading test 

<;cores for each child, you could compute a difference score by subtracting a child's 

initial reading test score from his or her linal lest score. You might want to inter

pret a child's difference score as the degree lo which his or her reading ability has 

improved. Note that, when subtracting the initial score from the fin<ll score, a posi

tive difference indicates improvement-the lin<ll score was higher than the initial 

o,core.ln <lddition, a difll.Tence score ofO indicates no change, and a negative differ
ence score would suggest that the child's reading skill actually declined. Thus, if a 

person takes the same lest on lwo different occasions, then you can subtract one of 

the test scores from the other score, creating a difference score. In general terms, a 

difference score that is created by computing the difference between a score on test 

x and a score on test y i;; slraightl(mNardly defined as follows: 

( (l.l)) 

where the V<llues represent a given individu<d's score on the x test and they lest, 

and the difference between them is interpreted as a measure of the child's level of 

<1 psychological altributc-f(H· example, reading skill improvement. 
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Although all difference scores are some variation of the general Equation 6.9, tl 
are in fact several more specific varieties. The type of difference scores that w\' l 

\ere 

· · · I f l't' '1'1 \ave focused on IS by far t 1e most common type o · c 1 1erence score. 1ey are 11 
. 1· . I l I . I . l l I tl \tra-
mc !VIC ua c 1ange scores, Ill w 1IC 1 eac 1 person 1as two scores on ·1e same t\'. 

· h l l l · d 'f'!' t I l d 'f!' 
St or measure, w1t eac 1 person t 1us 1avmg a I· erence score Msec on t 1e I \'t\' 

I f. l·t·f· . . nee between the two test scores. A seconc type o c 1 erence score IS sometnnes c,111, 
an intraindividual discrepancy score, in which each person again has scores o11 

ed 

measures but in which the two measures are from different tests. For examp]e
two 

I . l I I . . I l . I . I I' l 'an ec ucat1ona psyc 10 og1st mig 1t )e mterestcc 111 t 1e c 1screpancy )etwcen tyt)es . 
intelligence (e.g., what are the psychological implications if a child has an u11l . of 

tsu
ally large discrepancy between her verbal intelligence and her perceptual reas<)p. •Inu 
intelligence?). In such a case, the psychologist might determine a child's reh\tivt> 
performance on two subscales of a widely used intelligence test-for example l e 

' )y comnuting the difference between the child's score on the WISC-IV's (Wee] •. 1 ' •s er 
2003a, 2003b) Verbal Comprehension Index and the WISC-IV's Percel\t 1' 

�" l!a 
Reasoning Index. Because these are measures of two different attributes, the ditt'cr-
ence reflects a discrepancy between attributes rather than a change in a single <lttri
bute. A third type of difference score is an interindividual difference score, which 
can be computed by giving two different people the same test and then subtract· 

, , . Ing 
one person s test score from the other person s score. Our earlier example of the 
link between personality similarity and relationship satisf�1ction is an exampJe of 
this. Each couple has two test scores, but each person (e.g., wife and husband) has 
only one test score. In this case, the difference score might be computed to reflect 
the degree of similarity (or perhaps more appropriately, the degree of person,1lit 
dissimilarity) within the couple. 

y 

For either type of difference score, it will be used and interpreted as a measure of 
some psychological phenomenon-fi:n· example, a child's level of reading improve
ment or a couple's level of personality dissimilarity. Because the difference score 1·, s 
itself a measure (albeit derived from two other measures), it will be unreliable to 
some extent. Therdi:Jrc, a psychometrically savvy researcher would like to know the 
reliability of the difference scores for the same reasons that he or she would like to 
know the reliability of scores from any measure. Specifically, he or she would Want 
to know the degree to which the observed difference scores reflect true psychologi
cal diflcrcnces or discrepancies. 

Estimating the Reliability of Difference Scores 

The question then becomes how to estimate the reliability of difference scores. 
I low might we estimate the reliability of scores that represent the difference between 
two scores that arc obtained ti·om tests that are themselves unreliable to some 
degree? 

It can be shown that the reliability of the difference scores ( Rd) can be estimated 
on the basis of three sets of information: (I) the estimated reliability of each of the 
two tests used to compute the difference scores (Rxx and Rn), (2) the variability of 
the tests' observed scores (s�., s�, sx, and sy ) , and (3) the correlation between the 

J j) () (I 0 

observed test scores ( r\,1'): 
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:;2 f? . . +s �. f?1T -2r, r s, Sr 
Rd = x .. ·'·' .. . .... . " .. 

s',. + s;. - 2rx r s, Sr '" " " "  " " 

(6,10) 

To illustrate this, consider an example based on the situation described earlier, 
in which a researcher wants to examine improvements in reading skill by using the 
difference score based on two reading tests. That is, an individual child's reading 
improvement (f)) is computed as the difference between his or her score on the 
reading test at one point in time ( R;1) and his or her score on the reading test at a 
second point in time ( R;): 

Imagine th<lt the researcher carried out this project, administering the tests to 
a large number of children and obtaining the following information: T he variance 
of the first test scores and second test scores is 30.4 and 36.2, respectively; the esti
mated reliability of the first test scores (say, based on raw alpha) and second test 
scores is .90 and .85, respectively; and the correlation between observed test scores 
is .50. Based on this information, the estimated reliability of the reading improve
ment scores is ( Rd = .75): 

30.4(.90)+36.2(.85)-2(.50)v'JM.J}6.2 24.96 
T Rd = 30.4+36.2-2(.so)J3o.4J36.2 

= 

33.43 =. J 

Some of you might notice something that might strike you as odd about this 
result. Specifically, the reliability of the diflerence score is poorer than the reliabil
ity of either of its two components. That is, the two tests have rcliabilities of .KS or 
greater, but the reliability of the difference score was only .75. It might seem odd 
that the combination of two measures produces a score that is less reliable than 
either of those measures individually. 'lb understand this potentially counterintui
tive effect, you need some insights into the f�lCtors affecting the reliability of differ
ence scores. 

Factors Affecting the Reliability of Difference Scores 

There are two primary I:JCtors that determine whether a set of difference scores 
will have good reliability. One h1ctor is the correlation between the tests' observed 
scores (i.e., rx r ). Although this may seem somewhat counterintuitive at first, two 
tests that arc i�i'ghly correlated with each other will produce difference scores that 
have low reliability. That is, all else being equal, as the size of r\ r illcrCtlSCs, the size 
of Rd dccreoscs. Consider two examples. Above, we illust r<1ted E�l�;at ion 6.9 (i.e., the 
equation for estimating the reliability of a difference score) based on an example 
in which the two tests were moderately correlated with each other (i.e., r, 1 =.50). 
Based on this correlation, along with the good individual rcliabilities ,;;1'�1 along 
with the other relevant values (i.e., variabilities, Hxx and 1�1r values), we obtained a 
respectable reliability of .75 f(x the difference scores. Now, consider a case in which 
we have the same variabilities and Ru and Ul'l' values but the two tests arc even 
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more strongly correlated with each other-say r\ 1• = .70. In this case, the reliabilit 
of the dilfercncc score is noticeably lower, at only 'j�d =.51\. )' 

30.4(.<.J0)+36.2(.1\5)-2(.70)J3().4)36.2 11.6') � ,  
u.� = 

30.4+36.2-21.70JJ3oAJ36.2 = 20.16 =.:11\. 

Figure 6.'1 illustrates this effect more generally. Consider the solid line beginnh1, 
at .<.JO on they-axis. This line plots the rcliabilities of the difference scores fad) i� 
relation to the correlation between the two tests, across different levels of correk 
tion. To avoid unnecessary complexity, we computed U" values assuming that the 
tests were equally reliable, with both Ru and U1r equaling .<.JO (we also assun1ed 
that the tests had equal variance). As this line illustrates, the reliability of diflen.'I<ce 
scores is highest when the tests arc uncorrelated with each other. As the correlati11n 
between tests increases (moving along the x-axis from left to right), the reliability 
of the difference score decreases. '!(> illustrate the generality of this etfect even 
more broadly, we computed similar R" values under several different conditiolls. 
Specifically, we computed sets of values to illustrate the effect when the individu<ll 
tests have various degrees of reliability (i.e., when l�xx and R1T = .70, .50, and .30). In 
each set, the same pattcm emerges-as the correlation between the tests increases, 
the reliability of the difference scores decreases. 

A second fi1ctor that aflects the reliability of difference scores is the reliability of 
the two tests used to compute the difference scores (i.e., Ru and Rnl· All else being 
equal, test'> that have high reliabilities will produce difference scores that have rci<J, 
tively high reliability. Thus, generally speaking, difference scores will be relatively 
reliable when the two individual tests arc highly reliable. 
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Figure 6.4 The Effect of Test (Observed Score) Correlation and Individual Test 
Reliabilty on the Reliability of Difference Scores 
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Again, consider the original example and a new one. In the original example, 

the two tests had relatively high reli<lbilitics (Uxs == .90 and Rn == .85). Based 011 

these good individual rcliabilitics and the other relevant values (i.e., variabilities 

and r\ r ), we obtained an R == .75 for the difference scores. Consider a different 
II \) d 

case-one in which we have the same variabilities and r\ 1. values but where the 

two tests arc estimated to have lower reliabilities-say, /�u"�' .50 and Rr\' ==.55. For 
this situation, the difference scores would likely have very poor reliability: 

R = 
30.4(.60)+36.2(.50)-2(.50)Jill4J36.2 = 

3.17 =.38 . d 
30.4 + 36.2- 2( .50).)30.4 .)36.2 .'13.43 

Thus, the tests that were relatively reliable produced difference scores that were 

more reliable than those produced by tests that were relatively unrcli<lhlc ( Rd = .75 
and Rd = .38, respectively). 

hgurc 6.4 again illustr<ltcs this more generally. Note the differences between 

the lines-at any given point on the x-axis, the lines associated with tests that have 
high reliability (e.g., the line for R\X 

= urr = .90) are always higher than the Jines 

associ<lled with tests that have lower reliability. For example, let's look al the situ
ation when two individual tests are correlated with each other at, say, .20 (on the 

x-axis). Looking at lines above this point, we see that when the individual tests have 
extremely poor reliability ( Rsx = U\"\' = .30), the difference score has a reliability of 
only (approximately) Rd == .13. As the tests increase in reliability from .30 to .50 to 
.70 to .90 (going from one line up to the next), the difference scores increase in reli
ability from (approximately) 13 to .38 to .63 to .88. 

In sum, Figure 6.4 illustrates several important points about the reliability of 

difference scores. One is that, all else being equal, difference scores will be relatively 

reliable when the two individual tests are relatively uncorrclated. J\ second is that, 

all else being equal, difference scores will be relatively reliable when the two indi

vidual tests are themselves highly reliable. ;\ third, more subtle, point is that the 

reliability of difference scores will not be higher than (roughly) the average reli

ability of the two individu;d test scores. Finally, the reliability of difference scores 

actually can be 1/JIIch smaller than the reliability of the two individual test scores. 

h>r example, it is possible that two tests might have extremely good reliabilities (say 
.90) but that their difterence scores have a rcli<d>ility of .50 or lower. 

The Problem of Unequal Variability 

Perhaps because of their apparent simplicity, dif'krencc scores arc intuitively 

appealing; however, the apparent simplicity masks several serious problems.;\ full 

discussion of these problems is beyond the scope of this section, but one important 

psychometric issue is the f�Kt that in some cases, difference scores simply might not 
be a clear rc!lcction of psychological reality. 

More specifically, in some cases, dillcrcncc scores will essentially reflect only 

one of the two variables that <lre used to compute them. Somewhat technically, 

dilfcrcncc scores can be heavily confounded with one of their components. Thus, 
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psychological inferences that emphasize change, dissimilarity, or discrepancy c,111 
. I , . .f. . l . be 1111s eac mg, 1 ·not simp y mcorrect. 
For example, we might be interested in examining discrepancies between Cl· 

room performance and standardized testing performance (i.e., identifying 
s <lss

(ltne students with a large discrepancy in these performances and other students \v' 
ll I. · ) ·r· 1 h · · · h t 1 1· 

nh sma c1screpanoes . o stuc y I Is Issue, we 1111g t )e temptec to create c Iscrep.1 
scores by subtracting a student's GPA from his or her SAT score. Unfortun,;t�? 
such a score would not be psychologically meaningful as a discrepancy score . :, 

· Io 
illustrate the problem, consider four students from a school: 

Student SAT GPA Difference 
-

----�.._____ 
Emily 1000 2.5 997.5 
john 1000 1.0 999 
Sarah 1003 4.0 999 
Mark 1006 ) � �.J I 003.5 

For these students, their difference scores reflect the discrepancy between their 
standardized test performance and their classroom performance. More specifican 
the difference score is computed by subtracting their GPA from their SAT score�: 
producing a value that we might wish to interpret as the degree to which each stu
dent performs better on standardized tests than his or her classroom performa11ce. 
One problem should be obvious-everyone has an apparently large positive dif
ference score. Without some careful thought, we might be tempted to interpret 
this as meaning that all three students are better on standardized tests than in the 
classroom. Obviously, this would be an invalid interpretation of these data, arising 
from the differing scales of measurement between SAT and GPA scores. That is, 
since the scoring of the two "tests" is arbitrary (see earlier chapters), the difference 
between them is arbitrary. For example, we could arbitrarily divide the SAT scores 
by I ,000-although the variability among the three SAT scores remains relationally 
constant, the difference scores would change dramatically. 

Two more subtle and fi1r-reaching problems lie in the variability among the 
difference scores. Note that John and Sarah have the same difference score, which 
might imply that they have the same degree of superiority on standardized tests (as 
compared with their classroom perh.lrmance). But, given your knowledge about 
the meaning of SAT and GPA scores, you will probably recognize that this appar
('111 -;imilarity between john and Sarah is somehow incorrect. Second, if we were to 
examine the association between the difference scores and another variable (e.g., 
intelligence, achievement motivation, etc.), then the correlation would essentially 
reflect the correlation between SAT scores and the other variable. That is, the differ
ence scores are almost perfectly correlated with the SAT scores-indeed, the corre
lation between the two sets of scores is r= .90! Thus, the difference scores essentially 
reflect SAT scores, and consequently, anything that is associated with the difference 
scores is, in actuality, simply associated with SAT scores. With these issues in mind, 
it is not clearly psychologically accurate to interpret the difference scores as indicat
ing the "discrepancy between classroom performance and standardized test ability." 
It would be more accurate to interpret the difference scores simply as SAT scores. 
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We will not delve too deeply into the sources of this issue, other than to say that 
it arises when the two tests have unequal variabilities. In the current example, the 

SAT scores have a variance of 6.2, whereas the GPA scores have a variance of only 
1.1. That is, one variable has nearly six times more variance than the other. In such 

cases, the difference score will be strongly linked to the variable with higher vari

ance, and it will be weakly linked to the variable with lower variance. Interested 
readers can explore these sources of the problem more in Chapter 7 of Furr ( 20 II), 
but we will discuss one way of dealing with the problem. If scores on two tests 
have very different variabilities, one solution is to standardize the test scores (sec 

Chapter 3) prior to calculating difference scores. Recall that a variable that has 
been standardized has a mean of 0 and a standard deviation of 1.0. If two scales 
arc standardized, then they will have the same mean and standard deviation, and 
thus they will be on the same metric. Let us revisit our four students, Emily, John, 

Sarah, and Marie. for a more appropriate examination of the discrepancies between 
their standardized test perf(Jrmance and their classroom perf{mnance, we would 
standardize their scores. Here are their standard scores (i.e., z scores), along with 
the differences between them: 

Student ZSAT ZGPA 

Emily -.90 .00 
John -.90 -1.41 
Sarah .30 1.41 
Mark 1.5 I .00 

NOTE: ZSAT = z score for SAT; ZGPA = z score for GPA. 

Difference 

-.90 
.51 

-1.11 
1.51 

Again, a positive difference score should indicate superiority of standardized 

test performance over classroom performance. However, the meaning of the scores 

themselves has changed in an important way. As discussed in Chapter 3, standard

ized scores represent the individual's score as compared with the other people in the 

group. For example, John's standardized Si\T score is -.90, indicating th<lt he has a 

below-average perfC.mnance on standardized testing. But note that his standardized 

GPA is -1.41, indicating that he is even more below average in terms of classroom 

performance. Because his standardized testing score is not as bad as his classroom 

performance, his difference score is positive (i.e., he has higher standardized test 

pertonnance than class perf{Jrmance, relative to others). In contrast, Sarah's diffl:r

ence score is negative, indicating that her standardized test performance (relative 

to others) is quite a bit lower than her classroom perfi.mnance (relative to others). 

If we now compare John's difference score ( 1.51) with Sarah's (-1.11 ), then we 

might feel that the scores are a more accurate reflection of the real psychological 

issue under examination. Their two scores differ by nearly two units derived from a 

standardized metric, and a difference of this size is substantial. Again, if we ret urn 

to their difference scores (i.e., 999) obtained from the "raw" SAT and (;Pi\ scores, 

we see that John and Emily inaccurately appear to be the same. 

Keep in mind, however, that although it is possible to tr<msform test scores so 

that they share a common metric, it does not necessarily mean that it makes sense 
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to subtract one of these scores from the other. Presumably, difference scores are 

most meaningful if two test scores arc thought to have some psychological attribute 
in common. For example, it might make sense to create difference scores as a way 

to examine the difference between SJ\T and GPJ\ scores because both are thought 

to be related to academic achievement. It probably might not make as much sense, 

however, to create ditlerence scores based on scores from an intelligence test and 

scores from a self-esteem test. The meaning of the difference scores in this case 

would be less clear. 

In sum, the meaningfulness of diflcrcncc scores depends on the degree to which 

the two tests have similar variabilities. This is not usually a problem for "change 

scores," which are derived from administering the same test on different occa

sions. By using the same test, we usually obtain two sets of scores with reasonably 

similar metrics. However, researchers and other test users should always examine 

the variances, even when working with change scores, to detect whether there is a 

problem. The variability issue is likely to be even more problematic for"discrcpancy 

scores," which <lre derived from two tests that might have very different metrics. 

hn the analysis of discrepancy scores, we need to standardize the two tests before 

con1puting difference scores. Note that the standardization subtly reconccptualizes 

the issue as the discrepancy between relative levels of two variables (i.e., relative 

standardized test performance vs. relative classroom performance). 

Difference Scores: Summary and Caution 

Our treatment of the difference scores is consistent with most psychometric 

evalu<ltions of difference scores. Following Lord (I 956, I 962), it seems that most 

psychometricians and researchers perceive difference scores as very problematic, 

partly because they tend to be less reliable than the test scores used in their compu

tation. I ndeed, it seems th<lt many behavioral scientists arc trained to mistrust dif

ference scores inherently. Thus, if you are a researcher, you might be wary of using 

difference scores in your work-you are likely to be told that you have committed 

an cgrcg10us error. 

lilllccd there are reasons to be concerned about the usc of difTcrence scores in 

many cases. Tlwt is, our impression is that difference scores do indeed suffer from 

potential problems in many applications. Whether due to high intcrcorrclations 

lwtween the component tests, poor reliability of the component tests, or unequal 

variances in the component tests, we worry that difTcrcncc scores often have poor 

11sychometric quality and lead to questionable psychological conclusions. Perhaps 

even more im11ortant, researchers often seem to ignore these problems. That is, 

nwnv researchers either seem to be unaware of the problems or unsure how to 

dctc�t and address them. Considering both of these issues, we believe that differ

ence scores arc particularly likely to have psychometric flaws and that researchers 

seem particularly unlikely to recognize or appreciate these flaws. With this in mind, 

we worry that the use of difference scores in many applications produces informa

tion that is of unknown psychological meaning at best and that is psychologically 

misleading at worst. 
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for example, the inverse relationship between the reliability of difference scores 

and the correlation between test scores can create a dilemma in certain situations. 

Consider an example that commonly occurs in primary schools. In many school 

districts, learning disability is defined in terms of a discrepancy between a child's 

score on a standard intelligence test and his or her score on an academic achieve

ment test. If a child has a relatively large discrepancy between these two tests, then 

he or she might be classified as having some type of learning disability. Thus, the 

difference between the two scores is used as a measure to establish learning dis

ability. Although standard intelligence tests and well-designed academic achieve

ment tests have strong reliabilities (i.e., R,x and Rn are high), IQ scores arc also 

likely to be highly correlated with academic achievement scores (i.e., r,1 is high). 

Furthermore, it would probably be impossible to find intelligence tests that arc not 

highly correlated with academic achievement tests because the two psychological 

attributes should share many common psychological features. As illustrated in 
Figure 6.2, a high correlation between two tests creates a low reliability for the dif

ference between the two tests. Thus, it is possible that the "discrepancy" procedure 

f(Jr defining and identifying learning disabilities is inherently unreliable, leading to 

questionable decisions in practice. 

There is, however, a controversy regarding the quality and reliability of differ

ence scores. Rogosa ( 1995) and Zimmerman and Williams ( 1982) provide succinct 

discussions of hKtors that contribute to the size of such reliabilities, and they show 

that, under some special circumstances, difference score reliabilities can be larger 

than the average of the test reliabilities contributing to the difference scores. The 

analysis of the reliability of difference scores presented in the current chapter is 

typical in that it depends on a variety of simplifying assumptions (e.g., regarding 

the correlation between true scores and the differences as well as regarding the 

equality of variances across the two testings). As Rogosa shows, if such simplifying 

assumptions do not hold true, then it is possible that difference scores arc quite 

reliable. Rogosa summarizes his point, noting that "the difference score is reliable 

when individual ditferences in true change do exist" (p. !3). 
Considering all of this, we recommend caution if and when difference scores 

<liT used. In our own work, we usually try to avoid them, opting for alternative 

procedures such as partial correlations or multiple regression. Indeed, Furr (2011) 
outlines the concerns and alternatives in much more depth, and interested readers 

<Ire encouraged to consider that discussion bct(Jre deciding to work with difference 
scores. 

This chapter has taken the theory of reliability and translated it into practice. 

Although test users can never truly know the reliability of a set of test scores, they 

can usc a variety of procedures to estimate the reliability. In this chapter, we have 

described several of the most fiuniliar and widely used methods for estimating 

reliability. These three general methods include alternate forms, test-retest, and 

Summary 
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Note 

internal consistency. The accuracy of each method (in terms of providing col'. 
estimates of reliability) depends heavily on a number of assumptions regardin �,

1 e
1
'ct 

" t 1e nature of true scores and error variance. 
For a variety of theoretical and practical reasons, internal consistency i� tl 

most popular method for estimating reliability. More specifically, coefficient <llptle 
(either raw or standardized) is probably the most commonly reported estimate la. 

relia
. 
bility, and it is computed by many of the most widely used statistical pacl�·h, 

of 
1: 6es 

From the perspective of internal consistency, there are two core factors tl · 1at 
affect reliability. All else being equal, reliability estimates are high for tests in Whic[ 
different parts (i.e., halves or items) are highly correlated with each other. That is

1 

reliability is high for tests that are internally consistent. In addition, reliabilitye·t·' 
s !-

mates are higher for longer tests than for shorter tests (all else being equal). As W' 
demonstrated, the Spearman-Brown "prophecy" formulas can be used to fore,. e �ast 
the reliability of tests of specific lengths with specific levels of internal consiste11c 
Such forecasts are useful in the test development and refinement process. y. 

This chapter has also discussed the reliability of difference scores, which . 
<1re 

tempting ways of measuring phenomena such as psychological change. Ditfere11ce 
scores are more reliable if they are based on tests that are themselves highly reli<lbie. 
However, they are less reliable if they are based on tests that are highly correh1ted 
with each other. 

Thus far, we have presented the theoretical basis of reliability, which is one of the 
most fundamental concepts in measurement theory. In addition, we have presented 
the method through which reliability is actually estimated t(Jr real data. In Chapter 7 
we highlight the importance of reliability�why it commands so much attention fi·on� 
psychometricians and test users. As you will see, the reliability of test scores has il11Por
tant implications for test development, for applied uses of psychological tests, and for 
research uses of psychological tests. 

I. Equation 6.10 is a very general statement of the reliability of difference scores. It 
is based on the basic assumptions of classical test theory, with no additional assumptions 
or constraints. In some sources (including a previous edition of this book), you might sec a 
different equation for the reliability of difference scores: 

R = .5( Rxx + Rn)- rxl' 
d • 

I+ �'xr 
This alternative equation is indeed accurate, but only if the two tests have equal 

observed-score variabilities (i.e., only if (S',x,. = S\)· When the variabilities are not equal, 

this equation provides an inaccurate estimate of reliability. Thus, Equation 6.10 is the more 

generally accurate equation. 
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Suggested Readings 
--
----------------------------------------

An extensive presentation of many different methods for estimating reliability, in 

addition to discussions of the required assumptions, can be found in: 

reldt, L. S., & Brennan, R. L. (!989). Reliability. In R. L. Linn (Ed.), Edumtionalmeasure

lllczzt ( 3rd cd., pp. 105-146 ). Washington, DC: American Council on Education. 

An evaluation of the adequacy of various estimates of reliability is presented by: 

Osburn, H. G. (2000). Coefficient alpha and related internal consistency reliability coef

ficients. Psychological Methods, 5, 343-355. 

An introduction to reliability generalization is presented in: 

Vacha-Haase, 'L ( 1998). Reliability generalization: Exploring variance in measure

ment error affecting score reliability across studies. l!dumtionaland Psyclw/ogiml 

Measurement, 58, 6-20. 

A short, compete, and relatively easy to follow discussion of the reliability of differ

ences scores can be found in: 

Zimmerman, D. W., & W illiams, R. H. ( 1982). Gain scores in research can be highly reli

able. Jormwl of EducatiollCzl Measurmzent, I 9, !982. 
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CHAPTER 7 

The Importance 
of Reliability 

T
hroughout this book, we have emphasized the fact that psychological measure

ment is crucial for research in behavioral science and for the application of 

behavioral science. As a cornerstone of a test's psychometric quality, reliability 

is a fundamental issue in understanding and evaluating the quality of psychological 

measurement. The previous two chapters detailed the conceptual basis of reliability 

and the procedures used to estimate a test's reliability. In this chapter, we articulate 

the important roles that reliability plays in the applied practice of behavioral sci

ence, in behavioral research, and in test construction and refinement. 

Applied Behavioral Practice: Evaluation 
of an Individual's Test Score 

Psychological test scores arc often used by psychologists and others to make deci

sions that have important effects on people's lives. For example, intelligence test 

scores can be used by courts to determine eligibility for the death sentence for 

convicted murderers. This may be an extreme example of how test scores can affect 

our lives, but it illustrates the importance of having reliable scores. It would be 

tragic, to say the least, if someone were sentenced to death based on an unreliable 

intelligence test score. There arc uncounted other, albeit less dramatic, instances 

in which the reliability of scores on psychological tests can have an impact on 

the lives of ordinary people. Children arc oficn removed from standard academic 

cl;1ssrooms and assigned to special classes based on intelligence and achievement 

test scores. Similarly, tests such as the SAT and Craduale Record Examination 

(CRE) are used to make decisions about college admissions, and employers often 

use tests to make hiring and promotion decisions. Classroom instructors may 

165 
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not give the problem of test reliability much thought when they give their c) 
· · l l · · l · fl ass exammat1ons, mt scores on t 1ose exammat10ns can 1ave an m uence on stu�t" 

'-l1ts' futures. 
A test's reliability has crucial implications for the quality of decisions th,1t . 

made on the basis of their test scores. Recall that we can never know an indivirl l 
'1

1
re 

'-'la l, 

"true" level on an unobservable psychological construct. For example, we can 11e s 
know a person's true level of intelligence or capacity for college achievement. "I'! 

\ler 

l I . l . 1· . · 1· · I 1 ' 
ll!s, 

we use psyc 10 og1ca test scores to me ICate or estimate an me I VIc ua s true 1 . . . . �Ve] 
of some psychological attnbute. Because test scores are only estimates of pe!JPie' 
actual psychological characteristics and because decisions about persons' lives . 

s 
·Ire 

often based partly on these scores, we must be able to evaluate not only the C]lbl· 
. . . ,, tty 

of test scores m general but also the quality of the score obtamed by any partic11 I ar 
individual on a test. That is, we would like to be able to gauge the precisi!J11 or 
accuracy of an individual's test score as an estimate of the individual's psychological 
attribute. As we will see, the reliability of test scores can be used to calculate it)f()r
mation that will help us evaluate the quality of particular test scores. 

Two important sources of information can help us evaluate an individtlal's 
test score. First, a point estimate is a specific value that is interpreted as a ''best 
estimate" of an individual's standing on a particular psychological attribute. As 
we will discuss, there are two ways of obtaining a point estimate for an inclividl!·l d. 
The second source of information that helps us evaluate an individual's test 
scores is a confidence interval. A confidence interval reflects a range of values that 
is often interpreted as a range in which the true score is likely to fall. The logic 
of a confidence interval is based on the understanding that an observed score is 
simply an estimate of a true score. Because of measurement error, the observed 
score may not be exactly equal to the true score. The confidence interval arollnd 
a particular observed score gives us an idea of its accuracy or precision as an 
estimate of a true score. If we find that an individual's observed score is associ
ated with a wide confidence interval, then we know that the observed score is an 
imprecise or inaccurate point estimate of the individual's true score. We will sec 
that these values-point estimates and confidence intervals-are directly affected 
by test score reliability. 

Point Estimates of True Scores 

Two kinds of point estimates can be derived fi·om an individual's observed test 
score, representing the best single estimate of the individual's true score. One point 
estimate is based solely on an individual's observed test score. When an individual 
takes a test at a given point in time, his or her observed score is itself a point esti
mate. In f�1ct, it is the single best estimate of the quantity of an underlying psycho
logical attribute at the moment that the individual took the test. For example, if you 
give someone a self-esteem test, his or her score on the test is a point estimate of his 
or her true self-esteem score. 

The second point estimate, sometimes called an adjusted true score estimate, 
takes measurement error into account. Once again, recall that an individual's 
observed score on any given test is affected by measurement error. Because testing 
is never perfect, an individual's test score may be somewhat inflated or deflated 
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by momentary 1-�tctors, such as fatigue, distraction, and so on. Therefore, an indi
vidual's test score at one point is artificially high or low compared with the score 
that the individual would likely obtain if he or she took the test a second time. 
As a matter of fact, if an individual took the same test on two occasions, then he 
or she would likely obtain two observed scores that are at least slightly different 
from each other. Both of those observed test scores could be considered point 
estimates of the individual's true score. With an understanding of reliability and 
the nature of measurement error, we can usc an individual's observed score from 
one testing occasion to estimate the results of the second testing occasion. This 
produces an adjusted true score estimate, which retlects an effect called regression 
to the mean. 

Regression to the mean refers to the likelihood that on a second testing an indi

vidual's score is likely to be closer to the group mean than was his or her tlrst score. 
That is, if an individual's observed score is above the mean on the first testing occa
sion, then he or she is likely to score somewhat lower (i.e., closer to the mean) on 
the second testing occasion. Similarly, if an individual's observed score is below the 
mean on the tlrst testing occasion, then he or she is likely to score somewhat higher 

(i.e., closer to the mean) on the second testing occasion. This prediction is again 
based on the logic of classical test theory (CTT) and random measurement error. 
In Chapter 5, we learned that measurement error is random and likely to affect all 
test scores to some degree-artificially inflating some scores (that end up relatively 
high) and artificially deflating some scores (that end up relatively low). 

The adjusted true score estimate is intended to retlect the discrepancy in an 
individual's observed scores that is likely to arise between two testing occasions. 
The size and direction of this discrepancy will be a function of three factors: ( l) the 
reliability of the test scores, (2) the size of the difference between the individual's 
original observed test score and the mean of the test scores, and (3) the direction 
of the difference between the original score and the mean of the test scores These 
h\Ctors can be used to calculate the adjusted true score estimate through the fol
lowing equation: 

X,.,1 =X +f{_,,(Xo -X), (7.1) 

where X'"" is the adjusted true score estimate (i.e., an estimated result ti·om a second 
testing occasion), X is the test score mean, Rxx is the reliability of the test, and X, 

is the individual's observed score. Imagine that you have scores from a multiple
choice exam given to a class. There arc 40 questions on the exam, and the exam 
mean is 30. Assume that the exam has an estimated reliability of .90 (this would be 
a very high reliability t(lr most class examinations). If a student had a score of 38 
on the exam, then his or her estimated true score would be 

X"'= 30+.90138-30), 

=37.2. 

Notice that the estimated true score (37.2) is closer to the mean (30) than was the 
initial observed score (38). Thus, the adjusted true score attempts to account hlr the 
likely occurrence of regression to the mean. 
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There arc at least two important points to note about the adjusted true s12 

estimate, in relation to the observed score. First, test reliability influences the (
�

_
re 

fcrencc between the estimated true score and the observed score. Specifically 
It

reliability decreases, the difference between the adjusted true score estimate and '11�� 
observed score increases. That is, poorer reliability produces bigger discrcpatk· c 

. '-\es 
between the estimated true score and the observed score. This reflects the lact t·] 1at 
regression to the mean is more likely to occur (or is likely to be more substat1ti,t]) 
when a test's scores are affected heavily by measurement error. For example, ass111 11e 
that the class test's reliability is .50 and we computed the adjusted true score <:'•·r· 
mate for an individual with an observed score of 38: 

xcoi = 30+.50(38-30), 

= 34. 

" !-

Thus, for an individual with a test score of 38, the predicted effect of regression to 
the mean is 4 points (38-34 = 4) for a test with poor reliability but less than I Point 
(38-37.2 = .8) for a test with strong reliability. 

A second important implication of the adjusted true score estimate is that the 
observed score's extremity influences the difference between the estimated trlle 
score and the observed score. Specifically, the difference will be larger for relative], 
extreme observed scores (high or low) than for relatively moderate scores. Bo�
cxamplc, let us compute the adjusted true score estimate for an individual with an 
observed score of 22 (i.e., an observed score that is 8 points below the mean of 3()) 
on a test with a reliability of .<JO: 

X,,,= 30+.90(22-30), 

= 22.8. 

Note that the adjusted true score estimate is 0.8 points closer to the mean than 
the observed score in this case. Now, let us compute the adjusted true score estin1<1\e 
for an individual with <Ill observed score of 27 (i.e., a less extreme observed score 
that is only 3 points below the mean of 30): 

X,,, = 30 + .90( 27- 30), 

= 27.3. 

Note that this adjusted true score estimate is only 0.3 points closer to the mean than 
the observed score. Thus, the adjustment was more substantial for the relatively 
extreme observed score, (i.e., 22) than it was f<>r the less extreme observed score 
(i.e., 27). 

You might be wondering which score, X,,, or X,,, is the best estimate of the true 
score. The observed score is an unbiased estimate of the true score and as such 
represents the best estimate of the true score, but the adjusted true score estimate 
is the best estimate of a predicted true score. If you gave a class exam and someone 
docs really well on it, and you usc that inf�mnation to predict his or her score on 
the next examination, a regressed score would be, in all likelihood, a better guess 
than his or her observed score on the first examination. 
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Although the ideas of an adjusted true score estimate and regression to the 

mean are pervasive features of most attempts to evaluate individual scores on a test 

(e.g., see Wechsler, 2003a, 2003b), there arc reasons to approach these ideas with 

caution. First, as we mentioned, an observed score on a test is the best estimate of 

the psychological attribute that we are trying to measure. Except in the case where 

we intend to predict a person's score on a subsequent test, there seems to be little 

reason to correct observed scores by adjusting them for regression to the mean. 

Second, although most psychologists seem to think that regression to the mean 

is, in the long run, a mathematical certainty, Rogosa (I 995) has shown that there 

arc circumstances in which it will not occur. Nevertheless, as we will sec when we 

discuss true score conf·idcncc intervals, it is common practice to convert observed 

scores lo adjusted true score estimates. 

True Score Confidence Intervals 

In applied testing situations, point estimates of an individual's true score arc usu

ally reported along with true score confidence intervals. Roughly speaking, confidence 

intervals reflect the accuracy or precision of the point estimate as reflective of an 

individual's true score. For example, we might administer the Wccshlcr lntclligcncc 

Scale for Children (W!SC) to a child and find that the child obtains a score of 106. 

"H1king this observed score as an estimate of the child's true score, we might calculate 

a confidence interval and conclude that we arc "95'Y<' confident that the individual's 

true !Q score t�11ls in the range of 100-112" (Wechsler, 2003b, p. 37). The width of 

a confidence interval (e.g., a 12-point range) reflects the precision of the point esti

mate. You will probably not be surprised to learn that this precision is closely related 

to reliability-tests with high reliability provide estimates that arc relatively precise. 

The link between reliability and the precision of confidence intervals is made 
through the standard error of measurement (_se ). As discussed in Chal)tcr 5, the sc 

Ill t II/ 

represents the average size of the error scores that affect observed scores. The larger 

the sc,,, the greater the average difference between observed scores and true scores. 

Thus, these,, can be seen as an index of measurement error, and it is closely linked 

to reliability. In t:Kt, Equation 5.16 presented the exact link between the standard 

error of measurement ( sc,,), reliability ( Ux_), and the standard deviation of a IL'st's 
observed scores (s.,): 

sc,=s, � . 

hlr our classroom test, we might find that the estimated reliability is .90 and 

the standard deviation of observed scores is s .. = 6. hom this, we can estimate the 
standard error of measurement as 

sc =6 � 111 -..J 1 -.'JU, 

= 1.90. 

Once we have estimated the standard error of measurement for a set of test 

scores, we can compute a confidence interval around an individual's estimated true 
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score. For example, if someone scored 32 on our class examination, we might wi�l 
to report a 95% confidence interval around that score. To do this, we would liS� the 

following equation: 

95%confidence interval =X"± (1.96)(se, ), 

where X" is the observed test score (i.e., a point estimate of the individual's true 
score) and sell/ is the standard error of measurement of the test scores. The fln<ll 

component of this equation ( 1.96) reflects the fact that we arc interested in 
,1 

95% confidence interval rather than a 90% interval or any other "degree of con, 

fidence" (we will address alternate "degrees of confidence" later). Some readers�, 
particularly those who have a background in statistical significance testing-111igl1t 
recognize this value as being associated with a probability of .95 from the stand<lrd 
normal distribution. Based on Equation 7.2, for our test, the 95% confidence int�r

val around a score of 32 is 28.3 to 35.7: 

95% confidence interval= 32 ± ( 1.96)( 1.90), 
= 32 ± 3.7, 
= 28.3 to 35.7. 

Using the logic expressed by the above quote from Wechsler, we might interpr�r 
this result as indicating that we are 95% confident that the individual's true score 
f�1lls in the range of 28.3 to 35.7. 

Unfortunately, the exact interpretation of the true score confidence intervals 
is somewhat controversial. According to true score theory, observed scores arc 
distributed normally around true scores. Because an observed score is the best 
estimate of a true score, the observed score represents the mean of this distribu
tion. In our example, a score of 32 is within a 95% confidence interval that ranges 
from 28.3 to 35.7, but what does it mean to say that the score is in this confidence 
interval? Perhaps the most widely offered answer to this question is that "there is a 

95<Jio chance that the true score blls within the contldence interval." Another way 
to say the same thing is "The probability is .95 that the contldcnce interval con
tains the true score." These statements might be interpreted in two different ways. 
They might mean that there is a 95<J1> chance that a person's true score willi�Jll in 

the interval on repeated testing with the same or parallel tests, or it might mean 

that if you had many people with the same true score take the same test, 95% of 

their observed scores would f�1ll in the interval. However, disagreement exists over 

such interpretations. For example, Knapp (2005) objects to the use of answers 

such as "There is a 95<76 chance that the true score f�1lls within the confidence 

interval" because answers of this type imply that true scores arc deviating around 

an observed score when it is clear that this cannot be the case. We have sympathy 

f(Jr Knapp's view, but in most cases, when contldence intervals are reported, they 

are interpreted in a way that suggests that true scores are h1lling somewhere in the 

confidence interval. 
J\s mentioned earlier, the precision of a true score estimate is closely related 

to reliability. Briefly put, highly reliable tests will produce narrower confidence 
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intervals than less reliable tests. We just saw that for our highly reliable t
.
est (R.,x = 

.90), these.., was 1.90 and the cont-Idence interval had a range of 7.4 pomts (35.7 

- 28.3 = 7.4 ). The size of this range reflects the precision of the confidence inte:
val-the smaller or narrower the interval, the more precise the observed score IS 

as an estimate of the true score. Although highly reliable tests will produce narrow 

intervals, less reliable tests will produce wider (i.e., larger) confidence intervals, 
reflecting a less precise estimate of the true score. For example, let us imagine that 
our test had the same observed score standard deviation as our previous example 

(s" = 6) but a lower reliability ( say only R,x = .SO). In this case of a test with poor 
reliability, the standard error of measurement would be 4.2: 

,.,. = 6.JI- .50, 
.J'-- 111 

:=: 4.24. 

Note that this se,, is larger than it was fi.>r the previous example, in which reliabil
ity was .90 and these was only 1 .90. As we have seen, these.., has a direct effect on 

the confidence interv::l. So in the case of our low-reliability test, the 95% confidence 

interval around a score of 32 is relatively a wide range of 23.7 to 40.3: 

9591> confidence interval= 32 ± (1.96)(4.24), 
:=: 32 ± 8.3, 
= 23.7 to 40.3. 

Thus, the test with poor reliability produced a much less precise (i.e., wider) 

confidence interval than the test with high reliability. Specifically, the test with R"' 

=.50 produced an interval of 16.6 points (40.3- 23.7 = 16.6), but we saw that the 

test with R'-' =. 90 produced an interval of only 7.4 points. It is a much stronger and 
more precise statement to say that "we are 9591> confident that an individual's true 

score lies between 28.3 and 35. 7" than it is to say that "we are 95% confident that 

the individual's true score lies anywhere all the way from 23.7 to 40.3." 

For our purposes, the important message fi·om this section is that reliability 

affects the confidence, accuracy, or precision with which an individual's true score 

is estimated. That is, reliability affects the standard error of measurement, which 
affects the width of a confidence interval around an individual's estimated true 

score. Beyond this core issue, we should acknowledge that there arc variations on 
the ways in which confidence intervals arc computed and integrated with true 

score estimates. Confidence intervals can be computed f(>r various degrees of con

fidence (e.g., 99% or 90% instead of 95%), they <.:an be computed by using either 
the standard error of measurement or a value called the standard error of estimate 

(which is also affected by reliability), and they can be applied to either observed 
score estimates of true scores or adjusted true score estimates (as described in 

the previous section). Although such variations emerge in some applications of 
psychological testing, details of these variations arc well beyond the scope of our 
current discussion. 

The issues associated with estimated true scores and true score intervals might 

seem abstract and esoteric, but they can have important consequences in applied 

settings in which test scores arc used to make decisions about the lives of individual 
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people. For example, children arc often classified as having mental retardation iJ 

they have an intelligence test score below 70. We know, however, that any IQ scol·c 
will have some degree of unreliability associated with it (although the reliability 
of scores on standard, individually administered intelligence tests is very high). 
The degree of test score unreliability should inl1ucnce your interpretation of <ll) 
observed score; to what extent does an observed score reflect a child's true scores? 
Imagine that a child has a tested IQ score of 69. How confident would you be that 
the child's true score is below 70, and how likely is it that, on a second testing, th\' 
child's tested score might be greater than 70? We know that, in all likelihood, if thi\ 
child is given a second intelligence test the child's IQ score will increase because of' 

regression to the mean. At what point do we take these I�Klors into consideration, 
and how do we do so when making a decision about the child's intellectual status? 
It is irnperativc that those making these types of decisions recognize the problerns 
associated with the interpretation of psychological test scores. Our hope is that you 
recognize the problem and appreciate the fact that reliability has a fundamental 
role in it. 

Behavioral Research 
- -··- ---- --------------------------

I{eliability has important implications f(>r interpreting and conducting research in 
the behavioral sciences. The interpretability of research in areas such as psychology 
and education hinges on the quality of the measurement procedures used in the 
research. In this section, we explain how reliability and measurement error affect 
the results of behavioral research. Awareness of these effects is crucial for inter
preting behavioral research accurately and f(lr conducting behavioral research in a 
productive way. 

Reliability, True Associations, and Observed Associations 

Earlier in this book, we discussed the importance of understanding associations 
bet ween psychological variables (see Chapter 3 ) . That is, one of the most fundamen
tal goals of research is to discover the ways in which important variables arc related 
to each other. For example, researchers might want to know whether SAT scores arc 
associated with academic pcrl(mnance or whc!hcr personality similarity is associ
ated with rcl<rtionship satisl�1ction or whc!her "dosage of medication" is associated 
with decreases in depressive allcct. Thus, knowing the direction and magnitude of 
the associations between variables is a central part of scientific research. 

Psychological scientists usually rely on several basic ways of quantifying the 

association between variables. In terms of psychometrics, the most common way 

of doing this is through a correlation coefficient (again, sec Chapter 3). Thus, in 

the f(>ilowing discussion, we f(>cus mainly on the correlation cocnlcient as a way 

of explaining the importance that reliability has on behavioral research. However, 

it is important to realize that researchers often usc other statistics to reflect the 
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association between variables. For example, experimental psychologists arc more 
likely to use st<ltistics such as Cohen's d or q! rather than a correlation codflcicnt. 
We will touch on these st<ltistics brieHy here. 

According to err the correlation between observed scores on two measures 
I i.e., 1\ 1) is detcrmi1:cd by two lilctors: ( 1) the correlation between the true scores 
of the two psychological constructs being assessed by the measures (i.e., r."\ r,l and 

(b) the reliabifities of the two measures (i.e., R,s Rn and). Specitlcalfy, 

(7.3) 

. Equation 7.3 is the key element of this section, with many important implica
tions for research and applied measurement. Before we discuss those implications, 
We will explain how Equation 7.3 J(lllows logically hom CJ"L Hccall again from 
Chapter 3 that the correlation between two variables ( r,r) is the covariance divided 
by two standard deviations: 

c,T 

SySr 

. 
We will think about the numerator of this equation l(lr a moment. Recall 

f�·om Chapter 5 that,  according to en; observed scores arc composite variables 
(I.e., X, = X, + X. and Y = y + Y). Thcrd(lre the covariance between two sets of 

l • " I ,. ' 

0 lSCrved scores (i.e., observed scores on X and observed scores on Y) C<lll be seen 
as the covariance between two composite variables. Following the example outlined 
111 Chapter J's discussion of the covariance between composite variables, the covari
ance between X and y (i.e., c\, r) is 

where L\ 1·, is the covariance between true scores on test X and true scores on test Y, 
L:�,r, is the covariance between true scores on test X and error scores on test l', c, r 

is the covariance between error scores on test X and true scores on test Y, and c, 1: ·i� 
the covariance between error scores on test X and error scores on test }'. Hy d�fi;;i
tlOn, error scores occur as if they are random. Thcrd(nc, error scores me uncorrclated 
With true scores, and error scores on test X arc uncorrelated with error scores on test 
Y. (:onsequently, the three covariances that include error scores arc equal to 0, which 
means that the covariance between observed scores reduces to the covariance between 
true scores ( c'il' == cs,r/ Thus, returning to Equation 7.3, the correlation between two 
sets of observed scores is 

� (7.'1) 
,\'u·"t'\." 

Next, we will think about the denominator of this equation. Hccafl ti·om 
c:Jwptcr 5 that variability in a test's observed scores (e.g., s\ and ·'r ) is related to 
the test's reliability. Specifically, reliability can be dciined as !'he rati(� of true score 
variance to observed score variance: 
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Rearranging these, we can express the observed standard deviations as a func

tion of reliability and standard deviations of true scores: 

s, 
s = -·-·-

'" JiC 
(7.5a) 

and 

(7.5b) 

Entering Equations 7.5a and 7.5b into the denominator of Equation 7.4 and 

then rearranging, we find that 

And again, we realize that a correlation is equal to a covariance divided by stan
dare! deviations (again, sec Chapter 3's discussion of the correlation coefficient). 
In this case, we divide true score covariance (i.e., c.v) by the standard deviation of 

true scores (i.e., sx and Sy ), producing the correlation between true scores ( r" ). 
I I . ''t Y, 

This simplifies the equation to 

Ty y = r,. )' .J Rx·v R)'Y • 
' n  1> ' I  I '' 

This brings us back to Equation 7.3. Thus, CIT implies directly that the cor

relation between two measures (i.e., between observed scores) is determined by 

the correlation between psychological constructs and by the reliabilities of the 

measures. 

'/b illustrate this, imagine that we wish to examine the association between selr 

esteem and academic achievement. 'Jb investigate this issue, we conduct a study 

in which participants complete a self-esteem questionnaire and a measure of aca

demic achievement. Imagine that the true correlation between the constructs is .40 

(i.e., rx r = .40). Of course, we would not actually know this true correlation; in f�tct, 
I I 

the entire point of conducting a study is to uncover or estimate this correlation. 
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In addition, imagine that both measures have good reliability-say, reliability is .80 

for the self-esteem questionnaire and .86 for the academic achievement test. The 

correlation between the two measures will be 

== .40J(.80)(.86), 

== .40(.829), 

== .33. 

Note that the correlation between observed scores on the two measures JS 

smaller than the correlation between the two constructs. SpecillcaJJy, the correla
tion between the two constructs is .40, but the correlation that we would actually 
obtain in our study is only .33. This discrepancy is a result of measurement error, 
as we will explain next. 

Measurement Error (low Reliability) Attenuates the 
Observed Associations Between Measures 

The discrepancy between observed <lssociations and true associations reflects 
f(nzr important implications of Equation 7.3. In this section, we describe and illus
trate these important implications. 

First, in research, observed associations (i.e., between measures) will always be 

weaker than true associations (i.e., between psychological constructs). This arises li"om 

two bets of life in measurement. One tiJCt oflife in measurement is that measurement 

is never perfect. Although scientists might be able to develop very precise measures 

of their constructs, measures will always be affected by measurement error to some 

degree. That is, measures are not perfectly reliable. A second tiJCt of life in measure

ment is that imperfect measurement weakens or "attenuates" observed associations. 

For example, as shown by Equation 7.3, any time that rcliabilities are less than perfect, 

an observed correlation will be weaker (i.e., closer to 0) than the true correlation. For 

example, what would the observed correlation be if the true correlation is .40 and both 
measures were nearly perkctly reliable (say both had rcliabilities of.98)? 

r,..l:. == .40J(.98)(.98), 

== .40(.98), 

== .39. 

Thus, even the slightest imperfections in measurement will begin to attenuate 

observed associations. In sum, given th<ll measurement is never perfect and that 

imperfect measurement attenuates our observed associations, our observed asso
ciations wilJ always be weaker than the true associations. 

A second important implication of Equation 7.3 is that the degree of attenu

ation is determined by the reliabilities of the measures. Simply put, the poorer 

the measure, the greater the attenuation. More precisely, measures that have low 
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reliability produce more extreme attenuation than measures that have high reli

ability. Consider again our example of the association between self-esteem and aca

demic achievement, in which we assumed that the true correlation was .40. We saw 

earlier that, using measures with rcliabilities of .86 and .80, the correlation between 

measures was attenuated to .33. vVhat would the correlation be if the measures of 

self-esteem and academic achievement were poorer? For example, if the rcliabilities 

were only .60 for the self-esteem measure and .50 for the academic achievement 

measure, then we would obtain a correlation of only .22: 

r\.l. = .40-)(.60)(.50), 

= .40(.548), 

=.22. 

Obviously, this is a more extreme discrepancy between the true correlation and 

the observed correlation than we saw in the earlier example. Furthermore, the 

observed correlation can be extremely attenuated even if only one of the measures 

has poor reliability. For example, imagine that the academic achievement measure 

has good reliability (say .80) but the sclt�cstccm questionnaire has very poor reli

ability (say .30). In this case, the observed correlation is attenuated to .20: 

r\.r .. = .40-)(.80)(.30), 

= .40(.4<)0), 

= .20. 

In sum, the degree of attenuation is determined by the reliabilities of the two 

measures. If even one measure has poor reliability, the observed correlation can be 

considerably weaker than the true correlation. As we will sec, such attenuation can 

have important effects on the accuracy with which we interpret research findings. 

/\ third important implication of the bet that measurement error attenuates 

associations is that error constrains the maximum association that could be found 

between two measures. For example, imagine that you are interested in the asso

ciation between academic motivation and academic achievement. You hypothesize 

that students who have relatively high levels of academic motivation will have 

relatively high levels of academic achievement. That is, students who care strongly 

about doing well in .�clwol should generally perlcmn better than students who do 

not care about doing well (presumably because highly motivated students are more 

inclined to do homework, to pay attention in class, etc.). Although you believe that 

your hypothesis is reasonable, you do not know the size of the association between 

motivation <Jnd achievement; in fact, you do not even know if there truly is any 
association between the constructs. TherclcHT, you conduct a study in which your 

participants complete a measure of academic achievement and a measure of aca

demic motivation. 

WhiiL" planning your study, you search f(>r measures of your two constructs, 

and you pay careful attention to the reliabilities of the various measures that you 

might usc. You arc able to find a highly reliable llle<lSUlT of academic achievement 

hay reliability= .86), but the only measure of academic motivation that you can 
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find has a poor reliability 1 say .40). Because you are filll1iliar with Equation 7.3 
and you know that measurement error attenuates the correlation between mea

sures, you rightfully worry about the poor reliability of the motivation measure. 

You might even wonder about the highest possible correlation that you might 

obtain. That is, if your hypothesis is exactly correct and there is a perfect associa

tion between motivation and achievement, then what would your study reveal? By 

using Equation 7.3 and assuming a perf(xt association between the constructs I i.e., 

assuming that r\. \' = 1.0) you find tlwt 
'It ' 

rx,,r .. = l.OOJ(.86)(.40), 

= 1.00(.587), 

= .59. 

This simple analysis tells you that even if your hypothesis is completely accurate 

and motivation is perfectly correlated with achievement, your study would reveal a 

correlation of "only" .59 between the two measures. Although a correlation of .59 
would probably be taken as reasonable support for your theory, you should realize 

that this value represents the maximum possible correlation that you could hope 

to obtain if you usc the two measures that you have chosen. That is, given the reli

abilitics of your two measures, you can obtain a correlation of .59 at best. 
This information can be useful when you interpret the correlation that you 

actually obtain in your study. Because motivation and achievement arc probably 

not perfectly correlated (i.e., it is likely that r\. \' < 1.0 ), you will probably obtain 
't t 

a correlation that is quite a bit weaker than .59. In tiJCt, you arc likely to obtain a 

correlation much closer to .30 or even weaker, which might lead you to conclude 

that motivation is only moderately or even weakly associated with achievement. 

However, it might be very useful to interpret your results in the context of the best 

possible results that you could have hoped to obtain given the limits of your me<l
sures. Indeed, a correlation of .. 10 is much more compelling when you realize that a 
correlation of .59 was the best you could have hoped f(Jr considering the reliability 
of your measures. 

A f(Jurth important implication of Equation 7.3 is that it is possible to esti
mate the true association between a pair of constructs. When rescmchers actually 
conduct a study, they know or can estimate all hut one component of Equation 
7.3. Specifically, they do not know the true correlation between constructs; how
ever, they can compute the observed correlation between the measures, <llld they 
can estimate the measures' reliabilities (using one of the procedures discussed in 
Chapter 6). By knowing all but one component of Equation 7.3, researchers can 
solve for the unknown component. In f�lCt, the equation can be rearranged algebra
ically, producing a way of estimating the true correlation: 

(7.6) 

Equation 7.() is known as the correction jiJr lltfCIIIIIItion because it allows 

researchers to estimate the correlation that would be obtained if it were not artcctcd 
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by attenuation. That is, it allows researchers to estimate the true correlation-the 

correlation that would be obtained if perfectly reliable measures had been used 

in the study. If the measures were perfectly reliable, then the observed correlation 

would be exactly equal to the correlation between true scores. 

As an illustration, assume that your study of the association between academic 

achievement and academic motivation revealed an observed correlation of r\,Y., = .26 
based on the motivation questionnaire with an estimated reliability of .40 and the 

achievement test with an estimated reliability of .86. Of course, you do not know the 

true correlation, but you can use Equation 7.6 to estimate it: 

,)(.86)(.40)' 

.26 
.587 

= .44. 

Thus, if all the assumptions of err are correct (e.g., error affects test scores as if 

it is random), then you estimate that the true correlation between motivation and 

achievement is .44. 
The correction for attenuation is an important perspective within the overall 

connections among reliability, measurement error, observed associations, and true 

associations; however, the correction procedure is not used explicitly very often in 

real research. That is, when reading research reports, you do not often see research

ers conducting the correction for attenuation. Interestingly, recent developments 

in statistical analyses conduct an implicit correction for attenuation. Some of you 

might be familiar with a statistical procedure called structural equation modeling 

or latent variable modeling. Briefly, this procedure is designed (in part) to estimate 

the associations among unobservable psychological constructs by separating them 

from the effects of measurement error. In essence, the associations among psycho

logical constructs in structural equation modeling arc essentially based on correla

tions that have been corrected for attenuation. 

Reliability, Effect Sizes, and Statistical Significance 

The bet that measurement error (i.e., low reliability) attenuates observed asso

ciations has several implications for interpreting and conducting research. First, the 

results of a study should always be interpreted in the context of reliability. Although 

we have been discussing the "results" in terms of the observed correlation between 

measures, there arc several different kinds of results that you might see. At least two 

basic kinds of results should be of interest in behavioral research. 

These results-effect sizes and statistical significance-are affected heavily 

by reliability and measurement error. People who read and/or produce research 

should recognize these effects and take them into account when considering the 

results of scientific research. 
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Effect Sizes. Effect sizes are descriptive statistics that represent the results of a study 
as a matter of degree. For example, some effect sizes reflect the degree of association 
among variables, and others reflect the size of the differences among groups or con
ditions. For example, the correlation coefficient is an effect size that represents the 
degree to which two variables are associated with each other. Indeed, the previous sec
tions describe the way in which this particular etlect size (i.e., the correlation between 
observed scores on two variables) is affected by reliability. In addition to correlation 
coefficients, effect sizes also include statistics such as regression coefficients, R2 values, 
q2 values (from analysis of variance), and Cohen's d (from t tests of means). 

More and more, researchers are recognizing that effect sizes are a crucial part 
of their scientific results, arguably the most crucial. To fully understand the nature 
of their scientific findings, researchers should compute and interpret one or more 
effect sizes (Wilkinson & APA 1�1sk Force on Statistical Inference, 1 999). In f�1ct, 
some researchers have suggested that "the primary product of a research inquiry 
is one or more measures of effect size" (Cohen, 1990, p. 1310), and there is a clear 
trend for scholarly journals to require or encourage researchers to present effect 
sizes. Thus, it is crucially important to realize that effect sizes arc affected directly 
by measurement error and reliability. 

Although a full examination of such statistics is beyond the scope of this book, 
'H1ble 7.1 summarizes the link between reliability and effect sizes (i.e., associations/ 
differences) for three effect sizes that are very common in behavioral research
correlations, Cohen's d, and q'. These effect sizes ret1ect three fundamental types 
of analytic contexts: (I ) the correlation is usually used to represent the association 
between two continuous variables (e.g., lntclligcnce and Academic Achievement), 
(2) Cohen's dis usually used when examining the association between a dichoto
mous variable and a continuous variable (e.g., Biological Sex and Academic 
Achievement), and (3) q2 is usually used when examining the association between 
a categorical variable with more than two levels (e.g., Dosage of Medication: 0, I 0, 
and 20 mg) and a continuous variable (e.g., Level of Depressive Affect). 

For example, researchers examining sex differences in academic achievement 
might compute a Cohen's d to reflect the magnitude of those observed differences: 

' ' 

s,;)]+sz)2 
2 

In this particular form of the equation (which is appropriate when the two 
groups have equal numbers of participants), X01 and X02 arc the two groups' 
observed mean levels of achievement, and sf11 and sf12 arc the two groups' vari
ances of observed achievement scores. The lower limit of Cohen's rl is 0 (reflecting 
no difference between the two groups' mean levels of achievement), but its upper 
limit is, in theory, unlimited. Usually, the values hdl between 0 and 1 .5, with larger 
values reflecting bigger differences between the groups' means. ·1�1ble 7.1 shows that 
the observed value for Cohen's d ( dx)dcpends on two things: (I) the true value of 
Cohen's d (i.e., d"'r' the degree to which the male and female participants differ in 
their true average levels of Academic Achievement) and (2) the reliability of the 
measure of academic achievement (i.e., I<xxl· 
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Table 7.1 Links Between Reliability, Effect Sizes, and Inferential 
Statistics in Three Basic Analytic Contexts 

Analytic Context 

Association between 

variables 

Croup differences·' 
(two groups, equally 

sized) 

Croup differences 
(two or more groups) 

Effect Size 

Correlation 

Cohen's d 

Eta squared 

) ' !TJ 1F .. = 1F, v R,x 

Inferential Statistic 

I test of correlation 

t -_ r,,r, �RxxRn � vN-2 
JI- r�,l, R,..., R1T 

Independent groups I test 

!TJ(�) 
t = d,, '1/1\xx 

2 

J.' test (e.g., analysis of 
variance) 

11·'. R,.,. ( df" ) [<' == .\12 ' . . -7--.:1101" 
I-lls, Ru dflll<:ct 

" The reliability values in these equations refer to reliability within each group, 
assuming that the groups have equal reliability. 

The hypothetical data in 'J\Jblc 7.2 illustrate this dfcct for Cohen's d. This data set 

is much smaller than is typically found (or recommended) in behavioral research, 

but it reflects a hypothetical set of males and females who arc measured on aca

demic achievement (using a 0-4 scale). The "Observed Score" column presents 

these measured scores. If we temporarily pretend to be omniscient, then let's say 

we also know the participants' true levels of academic achievement and the degree 

to which their observed scores arc affected by measurement error. Within each 

of these groups, the reliability of scores on the DV (i.e., Academic Achievement) 

is much poorer than we would typically like, being only Uxx = .49. Note that the 

( :ohen's d value for the true scores is extremely robust ( d,T = 1.52): 

d.= 
13.025 - 2.3751 =0.650=1.52. 

" �0.11\2; 0.182 0.427 

Thi' "true score effect size" value indicates that the "true" means arc approxi

mately 1.5 standard deviations apart-an extremely l<lrgc difference, suggesting that 

the kmalcs truly arc much more academically capable than males. In contrast, the 

( :ohen's d value for the observed scores is noticeably less, t(," = 1.07. This "observed 

'>core effect size" is consistent with the equation in '1\Jble 7.2, as 1.07 = 1.52 JA9. 
Note that measurement error creates larger variances among the observed scores 

( s,;1 =-c s,,', �. 0.369) than among true scores (sj 1 = sf2 = 0.182). Moreover, the relatively 
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Table 7.2 Hypothetical Data Illustrating the Effect of Reliability on Effect 
Sizes and Significance Tests 

Observed True Measurement 
Participant Score {X0) Score {X1) Error (XE) 

Males 

1.6 2 + -0.4 

2 2.05 2.25 + -0.2 

3 2.3 2.5 + -0.2 

4 2.35 1.75 + 0.6 

5 2.35 2.75 + -0.4 

6 3.6 3 + 0.6 

Females 

7 2.25 2.65 + -0.4 

8 2.7 2.9 -t- -0.2 

9 2.95 3.15 -t- -0.2 

10 3 2.4 + 0.6 

II 3 3.4 + -0.4 

12 4.25 3.65 + 0.6 

Means 
(variance) 

Group I 2.375 (0.369) 2.375 (0.182) () (0.187) 

Group 2 3.025 (0.369) 3.025 (0.182) () (0.187) 

Cohen's d 1.07 1.52 

I value 1.69 2.41 

p value .12 .04 

large variance among the observed scores reduces (i.e., attenuates) the observed 

effect size compared with the true effect size. Thus, researchers who interpret only 

the observed effect size will L1il to understand the true psychological results of· their 

study, underestimating the effect by a robust amount. 

In sum, reliability affects many kinds of effect sizes, with good reliability produc

ing better estimates of true effect sizes. All else being equal, better reliability produces 

larger observed effect sizes, while poorer reliability attenuates the observed effect 

SIZeS. 

Stotistim/ Signifiwnce. A second important kind of result in behavioral research 

is statistical significance, which, roughly speaking, is related to a researcher's con

fidence in a result. That is, if a result is statistically significant, then researchers 
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generally interpret it as being a "real" finding and not simply a fluke. As you might 

imagine, researchers hope that their research produces findings that arc statistically 

significant. 
Again, a full examination of such issues is beyond the scope of this book; how

ever, it is important to realize that statistical significance is affected strongly by the 

size of the observed effect in a study (e.g., the size of an observed correlation or of 

an observed Cohen's d value). All else being equal, larger observed effect sizes make 

it more likely that a result will be statistically significant. 

Thus, through its impact on effect sizes, reliability indirectly affects statisti

cal significance-higher reliability allows f(Jr higher observed effect sizes, which 

increases the likelihood that a result will be statistically significant. Conversely, low 

reliability might contribute to a lack of statistical significance-lower reliability 

attenuates observed effect sizes, which decreases the likelihood that a result will be 

statistically significant. 
This effect is again presented in 'Il1blc 7. I (in the "Inferential Statistic" column) 

and illustrated in the hypothetical data in 'H1ble 7.2. For example, Table 7.2 shows 

that the independent groups I test of the true scores is significant ( t1 ro) = 
2.4 I, p = 

.04). That is, the true psychological "story" in 'Il1blc 7.2 is that males and females 

differ significantly in terms of their true levels of academic achievement. However, 

the independent groups I test of the observed scores is not statistically significant 

( t = I .69, p = . I 2). T hus, according to the observed scores, males and females do 
IIOJ 

not appear to differ in terms of their academic achievement. Of course, researchers 
have access only to the observed data, not to true scores. 

Thus, in the example in 'Ii1ble 7.2, the observed data would lead researchers to 

inaccurate conclusions about the effect of the independent variable (i.e., Sex) on 

the DV. As illustrated in 'li1ble 7.2, this inaccurate conclusion is driven (in part) by 

the poor reliability of the observed scores on the DV. 

In sum, reliability is important in part because it has a clear and robust effect on 

two key results in a typical scientific study. By affecting effect sizes and statistical 

significance, reliability can have a fundamental impact on the results that research

ers (and readers of research) sec and interpret. If poor reliability biases these 

results, then researchers can be misled into making inaccurate conclusions about 

their work. Therefore, it is important that effect sizes and statistical significance arc 

interpreted with close attention to the reliability of the measures used in the study. 

Measures with poor reliability are likely to underestimate the true effect sizes and 

are thus relatively likely to produce nonsignificant results. 

Implications for Conducting and Interpreting 
Behavioral Research 

The effects of reliability on effect sizes and on statistical significance are vital 

· .  'LI 'S when intcrqrcting the results of a study. There arc at least three important 
ISS C. t 

implications of considering reliability when drawing psychological conclusions 

from research. 
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The first important implication is that researchers (and readers of
. 

research) 

should always consider the effects of reliability on their results when mterpret

ing effect sizes and/or statistical significance. Imagine that you arc a member of 

a school board that's interested in enhancing students' academic achievement. 

The board is considering two possible programs that are designed to enhance 

achievement. One is based on a theory that self-esteem affects academic achieve

ment-students who feel good about themselves will perform better in school. 

Therefore, one program would be designed to increase students' self-esteem, 

which, in turn, could have beneficial effects on their academic achievement. 

The second potential program is based on a theory that academic motivation 

affects academic achievement-students who are properly motivated will per

form better in school. This program would be designed to increase students' 

academic motivation, which could have bencf'lcial effects on their achievement. 

Unfortunately, the school district has enough money to fund only one program, 

and the board wants to fund the program that might make the biggest impact on 

the students' ach ievemcnt. 
A developmental psychologist at a local university agrees to conduct a study 

to determine which program might be most effective. Specifically, he will recruit 

a sample of students and measure all three constructs-academic achievement, 

selt�esteem, and academic motivation. 'Il:> keep our example simple, let us imag

ine that the researcher will compute two correlations: ( 1) the correlation between 

selt�esteem and academic achievement and (2) the correlation between academic 

motivation and academic achievement. The school board will Ji.md the program 

f(>r the variable that is most strongly associated with achievement, based on the 

assumption that it will have the larger impact on achievement. Therefore, if self

esteem is more strongly correlated with achievement, then the school board will 

fund the self-esteem program. However, if motivation is more strongly associated 

with achievement, then the school board will fund the motivation program. 

The researcher collects the data and t!nds that the correlation between self

esteem and achievement ( r = .33) is somewhat higher than the correlation between 

motivation and achievement (r = .26). Consequently, the school board begins to 

decide to fund the self-esteem program. However, you pause to ask the researcher 

about the reliability of his three measures. Although the researcher is surprised at 

the sophisticated level of your question, he tells you that the measure of achieve

ment had a reliability of .86, the measure of selt�esteem had an estimated reliability 

of .80, and the measure of motivation had an estimated reliability of .40. What do 

you think of this psychometric inf(mnation? Docs it affect your opinion about 
which program should be funded? It should. 

'li1kc a moment to consider the f:lCt that the sel/�esteem questionnaire seems to 

be more reliable than the motivation questionnaire. As we have discussed, all else 

being equal, higher reliability will produce higher observed correlations. But notice 

that the correlation involving motivation (r = .26) was only a bit smaller than the 

correlation involving self-esteem (r = .33), even though the motivation measure 

was substantially less reliable (reliability= .40) than the selt�esteem measure (reli

ability= .80). Based on our discussion of attenuation, you should have a sense that 
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the correlation involving motivation is attenuated to a much greater extent than i'> 

the correlation involving self-esteem. That is, you should begin to think that the 

observed correlation involving motivation is much lower than its true correlation, 

in comparison to the observed correlation involving sclf�estcem. In iitct, you could 

correct both correlations I(Jr attenuation by using Equation 7.6: 

JHy_1R1T • 

The "corrected" correlation between motivation and achievement is 

.26 
rv,l, = J(.86)(.40) = .44. 

The "corrected" correlation between sell�estecm and achievement is 

.33 = = .40. J(.86)(.80) 

These simple analyses reveal a finding with potentially important implications 

for the school board. Once you correct for attenuation, you sec that the true (i.e., 

"corrected") correlation involving motivation is actually somewhat higher than 

the true correlation involving selt�esteem. That is, if the assumptions of err arc 

correct in this case, then motivation is somewhat more strongly related to achieve

ment than is self-esteem. Based on this finding, the school board might reverse 

its initial decision and fund the motivation program instead of the scll�cstccm 

program. 
l lopcfully, this example illustrates the need to interpret the results of research in 

the context of reliability. If those of us who read research or conduct research litil 

to consider the effects of reliability and measurement error, then we risk misinter

preting results and reaching (or believing) bulty conclusions. This issue might be 

particularly important when two or more analyses are being contrasted with each 

other, as in the example of the school board. Two or more analyses will diller in 
terms of the constructs involved and in terms of the measures of those constructs. 

If the difference in measurement is ignored, then any observed difference in the 

results of the analyses might be mistakenly interpreted in terms of the difference in 

constructs. Thus, one important implication of our discussion of reliability is that 

the eiJects of reliability should always be considered when interpreting the results 

of research. 

i\ 'iecond important research-based implication of our discussion is that 

researchers should try to use highly reliable measures in their work. Attenuation 

cannot be avoided altogether, because measurement is never perfect. llowcvcr, the 

problem of attenuation can be minimized if researchers usc highly reliable mea

'illl'l'� in their work. If researchers can usc measures that arc highly reliable, then 
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they em ! , c · 1 -
1 .· t · 15 between their measures ' >c 1<11r y confident that the observec assoua IOI · 

·tre re·Js<>IJ·tl>1 ·1 · · 1 . .. ·l·tti.<>IJS l>et'veen the constructs ' ' ·  ' Y c osc approximations to t 1e true co I Ie' · ' 

of interest. 
Despite the advantages of using highly re/iab/c measures, there arc at /east two 

rc·ts<>JJ · 1 . · 1 · · ·l··t!>I.II·t·y ()ne reason IS ' 5 w 1y researchers might usc measures wit 1 po01 JC I, · 

that there might be no highly reliable measure of the construct of interest. In such a 
case, a researcher must d;cidc between proceeding with a low-reliability me�Jsure or 
spending time and effort attempting to develop a highly reliable measure. Of course, 
there is no guarantee that the time and eft(>rt will produce a highly reliable measure, 
50 this option may seem like a risky choice. A second reason why researchers

_ 
��1 �ght 

use measures with poor reliability is that they simply have not devoted suffiCient 
ef!(>rt to finding a reliable measure. In psychology, there arc thousands of m�asures 
of all kinds of constructs, and these measures arc sometimes difficult to identify and 
obtain. Some measures arc published and easily available. Other measures are pub
lished but are copyrighted and require money and specific credentials to usc. Still 

other measures are used in the research literature but are not described in enough 
detail f(Jr other researchers to usc. Thus, a researcher who wishes to use a highly reli

able measure of a specific construct can fitce a daunting task of identifying which 
measures are available and which seem to be the most reliable. In addition, he or she 
will need to obtain the measure (or measures) that seem to fit his or her needs most 
closely. Although this can be a simple process at times, at other times it can require 
money, effort, and a great deal of patience. Resean:hers must decide if the potentia/ 
costs of identifying and obtaining highly reliable measures arc worth the potentia! 
benefits, as we have described in this section. In most cases they are. 

;\ third research-based implication of the f;JCI that reliability affects observed 
correlations is that researchers should report reliability estimates of their measures. 
Above, we argued for the importance of interpreting research results in the con
text of reliability. I lowevcr, readers can do this only if writers provide the relevant 
inf(mnation. Thus, if you conduct research and prepare a report such as a thesis, 
dissertation, or manuscript to submit f(>r publication, then you should include reli
ability estimates. As discussed in the previous chapter, estimates of reliability (e.g., 
codlicient alpha) can be obtained easily fi-om most of the popular statistical soft
ware packages (e.g., SPSS, SAS). In many research reports, reliability estimates arc 
provided along with other basic descriptive statistics, such as meam and standard 
dcvi<ltions. As a writer, you should be sure to include this inl(mnation. As a reader, 
you should expect to find and think about this inl(mnation (hopefully, the writer 
has as well!). If you find yourself reading a research report that l;ti/s to provide rc/i-· 
ability information, then you should feel comf(>rlablc in contacting the author of 
the report and requesting the relevant inl(mnation. 

In sum, lest reliability has important effects on behavioral research. Along 
with the true correlation between psychological constructs, reliability affects 
the observed association between measures. Although researchers should strive 
to usc the most reliable measures available, they cannot or do not a/ways do so. 

( :onsequcnt/y, a Jack of reliability weakens or attenuates the results of their sta
tistical analyses, potentially leading to misinterpretations of their findings. Along 

185 
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with those who conduct research, those who read research also should conside1-

the attenuating effects of imperfect measurement when interpreting the results of 
behavioral research, 

Test Construction and Refinement 

The previous two sections have described some of the important ways in which 

reliability and measurement error affect research and practice in behavioral science. 

It should be clear that high reliability is a desirable quality of any psychological test 

or measurement. Indeed, reliability is an important facet of test construction and 
refinement. In this section, we present some of the ways in which item information 

is evaluated in this process, and we highlight the role that reliability often plays. 

As we saw in the previous chapter, internal consistency reliability is affected by 

two fi1ctors-tcst length and the consistency among the parts of a test. All else being 

equal, a longer test will be more reliable than a shorter test, and a test with greater 

internal consistency will be more reliable than a test with lower internal consistency. 

In the test construction and refinement process, great <Jttention is paid to the 

consistency among the parts of a test-typically in terms of the test items them

selves. That is, test developers often examine various statistical characteristics of 

a test's items. They do so to identify items that should be removed from the test 

or to find items that should be revised to enhance their contribution to the test's 

psychometric quality. In general, items that enhance a test's internal consistency are 

preferable to items that detract from the test's internal consistency. 

We will discuss three interconnected item characteristics that are important con

siderations in test construction and refinement: item means, item variances, and 

item discrimination. In terms of reliability, the overarching issue is item discrimi

nation, which, as we shall see, is closely connected to internal consistency. Thus, our 

discussion will address the way in which the three item characteristics affect and 
reflect an item's contribution (or lack thereof) to internal consistency. 

It is important to note that the procedures and concepts that we describe in 

this section should be conducted for each dimension being assessed by a test. As 

described in our earlier discussion of test dimensionality (Chapter 4), psychometric 

analysis should be conducted for each score that is produced by a test, with a score 

representing each psychological dimension underlying the responses to the test's 

items. So for a unidimensional test, we would conduct the f(Jllowing analyses on all 

of the test's items together as a single group (because all items arc ostensibly com

bined together to create a single test score). However, tor a multidimensional test, 

we would conduct the following analyses separately for each of the test's dimen

sions. For example, imagine that a self-esteem test included 20 items, with Items 

1 to 1 ()ostensibly reflecting social self-esteem and Items I I to 20 ostensibly reflect
ing academic self-esteem. At a minimum, we would conduct the f(:>llowing analyses 

once f(Jr Items I to I 0 and then again f(Jr Items I I  to 20. 

'/(J illustrate the psychometric examination of item means, variances, and dis

crimination, we will usc the hypothetical data presented in Table 7.3. These data 

represent the responses of I 0 people to a unidimensional test that includes five 
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variable, and a test developer might be concerned about evaluating and improving 

the psychometric quality of the test. 
Using the Reliability Analysis procedure in the statistical package SPS

.
S, we 

obtained a set of results that will help us evaluate the psychometric quality of 

the test (see the output in Table 7.4). The top section of this table reveals that the 

five-item test has an estimated reliability of only .59 (using coefilcient alpha). For 

reasons discussed earlier in this chapter, we would prefer to have a test with greater 

reliability. T hus, we might wish to refine the test in a way that could improve its 

reliability for future usc. The results of our SPSS analyses will help us examine the 

degree to which each item enhances or detracts from the test's quality, and this 

information can guide any test refinements. 

Item Discrimination and Other Information 
Regarding Internal Consistency 

As we have seen, one key to internal consistency reliability is the degree to which 

a test's items are consistent with each other. More specifically, internal consistency is 

the degree to which ditlcrenccs among persons' responses to one item arc consistent 

with differences among their responses to other items on the test. 
Thus, a test's internal consistency is intrinsically linked to the correlations 

among its items. For any particular item, its p<lttern of correlation with the other 

items reflects its consistency with those other items (and thus with the test as a 

whole). For example, if we find that an item is relatively strongly correlated with 

the other items on a test, then we know that the item is generally consistent with the 

other items. Consequently, we would know that the item enhances the internal con

sistency of the test. In contrast, if we find that an item is relatively weakly correlated 

with the other items on a test, then we know that the item is generally inconsistent 

with the other items. Consequently, we would suspect that the item reduces the 
internal consistency of the test. 

With these considerations in mind, one important task is to determine which 

items contribute well to reliability and which detract ti·om the test's reliability. 

A quick look at the correlation among a test's items might be very revealing. Indeed, 
a reliability-based test construction or refinement process might include an exami
nation of the correlations among all of the items on a test. 

For example, 'H1ble 7.4 presents these correlations in the "1nter-ltem Correlation 
Matrix" output from the SPSS reliability analysis of the test responses in 'Ii1ble 7.3. 
A glance at these correlations reveals some good news and some bad news about the 
five-item test. The good news is that I()Ur items arc relatively well correlated with 
each other. Specifically, Items 2 to 5 are generally intercorrelated with each other at 
levels of r = .40 or .50. Interitem correlations of this size indicate reasonable levels of 
internal consistency. The bad news is that one of the items is potentially problematic. 
Notice that Item I is totally uncorrelated with Item 2 and Item J, only weakly corre
lated with Item 4 ( r = .25 ), and 11egativc/y correlated with Item 5. These correlations 
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Table 7.3 Example Data for Test Construction and Refinement 
-----

Item Total Total 

Respondent 2 3 
Excluding Excluding 

4 5 Total Item 1 Item 2 
-----

Maria 5 4 4 

Demetrius 5 4 4 

Rohit 0 0 3 2 2 

)ames I 0 I I 4 3 4 

Antonio () 0 I 0 2 2 2 

Esteban 0 I () I 3 3 2 

Zoe () () 3 3 2 

Emory 0 0 0 () 0 

Fitz 0 0 () () () 

( :Jaudelle () 0 () 0 

Table 7.4 SPSS Output From the Reliability Analysis of Data in Table 7.3 

l{e/iability Statistics 

Cronbach's 
Alpha 

.590 

Cronbach's Alpha Based on 
Standardized Items N of Items 

.594 5 

Inter-Item Correlation Matrix 

lteml 

Item I I .000 

Item 2 .000 

Item 3 000 

Item 4 .250 

Item 5 -.'lOll 

Jtem-'I(>tal Statistics 

Item I 

Item 2 

Item 3 

llem 11 

I telll 5 

Scale 
Mean 
if Item 
Deleted 

2.20 

2.30 

2.30 

2.40 

2.00 

---·-··-

ltem2 ltem3 

.000 .000 

1.000 .200 

.200 1.000 

.40/l .40/l 

.500 .500 

--------

Scale 
Variance Correlated 
if Item Item-Total 
Deleted Correlation 

2.17/l -.029 

1.5(>7 .42 I 

1.567 .421 

1.37/l .623 

1.77/l .395 

ltem4 ItemS 

.250 -.40/l 

.40/l .500 

.40/l .500 

I .000 .40/l 

.40/l 1.000 

-----

Cronbach's 
Squared Alpha 
Multiple if Item 
Correlation Deleted 

.410 .721 

.337 .492 

.337 .492 

.ill 0 .366 

.627 .517 
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Item Statistics 

Mean 

Item J .60 

Item 2 .50 
Item 3 .50 
Item 4 .40 

Item 5 .80 
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Standard 
Deviation N 

.516 10 

.527 10 

. 527 10 

.516 10 

.422 10 

suggest that Item 1 is not consistent with most of the other items on the test. The 
overall pattern of interitem correlations suggests that Items 2 through 5 arc consis
tent with each other but that Item J needs to be revised or dropped ii'om the test. 

Although the interitem correlations offer insight into the internal consistency 
of a test, there arc more efficient ways of evaluating the consistency issue. The int
critcm correlations in our example arc ti1irly straightf(li'ward-thcrc are only a few 
items and the paucrn of correlations is arranged in a rather clear way. In reality, 
most test dcvelopmcnt/rdinement situations might be much more complicated, 
With many more items and with a more complex pattern of correlations. Thus, an 
examination of a matrix of intcritcm correlations might be somewhat impractical 
with real data; f(>rtunatcly, alternative methods exist. 

ltc111 discriiiJinotion is a common concept for evaluating the degree to which an 
item might alfect a test's internal consistency. Briefly stated, item discrimination is 
the degree to which an item differentiates people who score high on the total test 
li·om those who score low on the total test. I·'n>m the perspective of rcliabilit y, we 
prefer to have items that have high discrimination values over those that have low 
discrimination values. 

There arc various ways of operationalizing an item's discrimination, one of 
which is the itelll-tota/ correlation. We can compute the total score on a test (sec 
·nll>lc 7.3) and then compute the correlation between an item and this total test 
score. The resulting correlation is called an item-total correlation, and it repre
sents the degree to which differences among persons' responses to the item <Jrc 
consistent with differences in their total test scores.;\ high item-total correlation 
indicates that the item is consistent with the test as a whole I which of course i.s a 
function of all of the items within the test), which is a desirable characteristic. In 
contrast, a low item-total correlation indicates that the item is inconsistent with 
the test as a whole, which would be an undesirable characteristic li·om the perspec
tive of rcliabilit y. 

'I(> illustrate this concept, the SPSS output labeled "ltcm-'lt>t;d Statistics" in Tll>k 
7.4 presents "corrected" ite111-tota/ correlations, which arc correlations between an 
item and a "corrected" total test score. The corrected item-tot;d correlation l(>r 
Item I is the correlation between rcspomes to Item I and the sum of the other l(wr 
items on the test. That is, the "corrected" total test score in the analysis of Item I is 
the total that is obtained by summing all of the items except Item I (sec the "'ll>t;Jl 
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Excluding Item I" column in 'Jhble 7.3 ). If we compute the correlation between the 

Item 1 values and the "Total Excluding Item I" values, then we obtain a value of r 

= -.029. T his value tells us that Item 1 seems to be generally inconsistent with the 

responses to the other four items. To compute a corrected item-total correlation for 

each item, SPSS computes a different corrected total test score for each item. As we 

have seen, the corrected item-total correlation for Item 1 requires a corrected total 

test score that excludes Item I. Similarly, the corrected item-total correlation for 

Item 2 would require a corrected total test score that excludes Item 2, and so on. As 

we see in the SPSS output, all of the corrected item-total correlations are positive 

values of reasonable size, expect for Item I. On the basis of these results, we should 

consider dropping or revising Item I. 

Another form of item discrimination is particularly applicable for items that are 

scored in a binary manner, as we have in Table 7.3. An item's item discrimination 

index (D) compares the proportion of high test scorers who answered the item 

correctly with the proportion of low test scorers who answered the item correctly. 

To do this, we begin by identifying a specific percentage of people with the highest 

total test scores (say all respondents who scored in the upper 30°1<>) and the same 

percentage of people with the lowest total test scores (say all respondents who 

scored in the lowest 30% ) . For the data in Table 7.3, the top 30% group includes 

Maria, Demetrius, and James, and the bottom 30% group includes Emory, Fitz, and 

Claudette. To compute the item discrimination index for an item, we next calculate 

the proportion of people within each group who answered the item correctly (as 

designated by a "I" in Table 7.3). For Item 1, we see that all three people in the "top 

3091>'' group answered the item correctly, for a proportion of phigh = 1.0. In contrast, 

we see that only two of the three people in the "bottom 30%" group answered the 

item correctly, for a proportion of p 1"" = .66. Pinally, we compute the item discrimi

nation index by calculating the difference between these two proportions: 

For Item I, this results in an item discrimination index of .33: 

[) = 1.0- 0.66, 

= .33. 

(7.7) 

The result for Item 1 tells us that high-scoring people arc somewhat more likely 

to answer Item I correctly than arc low-scoring people. Typically, the item discrimi

nation index ranges ti-om 0 to 1.0, except in the unlikely case that high-scoring peo

ple are less likely to answer an item correctly than are low-scoring people. Ideally, 

we prefer items that have large [) values, which would indicate that high scorers 

and low scorers differ dramatically in the likelihood of answering an item correctly. 

Although the SPSS output docs not present the item discrimination index, the val

ues could easily be calculated. In addition, note that the percentages chosen to form 

the high and low groups (e.g., 30%) arc somewhat arbitrary-there is no standard 

percentage that is implicit in the definition of the item discrimination index. 

c;oing further, the SPSS output in Table 7.4 provides two additional kinds of infor

mation regarding each item's contribution to the internal consistency reliability of 
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the test. Although a full description is beyond the scope of this chapter, the "squared 

multiple correlation" is another index of the degree to which an item is linked to the 

other items. For readers who are familiar with multiple regression, these values arc 

the R2 values obtained when predicting "scores" on each item ti·om the scores on all of 

the other items (e.g., predicting responses to Item I from the responses to Items 2-5). 
The second kind of information is potentially quite useful, although its meaning 

emerges directly fi·om issues that we have already discussed. The "Cronbach's Alpha 

if Item Deleted" column tells us the reliability estimate that we would obtain t()!· the 

test if we were to drop each item hom the test. For example, the "alpha if item deleted" 

value for Item I is .721. This indicates that, if we drop Item I but retain the other four 

items, the reliability of the resulting four-item test would be estimated at .72. Note 

that this value is clearly larger than the reliability estimate f(Jr the entire five-item test, 

which is .59, as mentioned earlier. With these two reliability estimates in mind, we 

see that dropping Item I would actually improve the internal consistency of the test 

from .59 to .72. Thus, we would seriously consider refining the test by dropping Item 

1. Also notice that reliability would decrease if any of the other items were dropped 

from the test-the other four "alpha if item deleted" values are less than .59. 
In sum, we have examined several interconnected kinds of information that 

reveal an item's effect on test score reliability. For example, we saw that Item I had 

relatively low interitem correlations, which suggested that Item I is inconsistent 

with the other items in the test. We then saw that, although Item I 's discrimination 

index was greater than 0, its corrected item-total correlation was very close to 0, 

which suggested that Item I is inconsistent with total test scores in general. Finally, 

we saw that the test's reliability would likely increase if we removed Item I from 

the test, which is consistent with the previous results that demonstrated Item I 's 

inconsistency with the other four items. 

Considering the results that we have discussed thus f�u·, we have a relatively 

clear idea of how we might improve the five-item test. Clearly, we arc likely to 

retain Items 2, 3, 4, and 5 in the test refinement process�thcy arc well correlated 

with each other, and dropping any one of them would reduce the test's reliability. 

However, we are likely to either drop Item I altogether or examine the item (i.e., 

its content, its wording, its response options, etc.) to see if we can improve it. It 

is possible that the test could be improved substantially if we were able to revise 

Item I in a way that makes it more consistent with the other four items. If so, then 

we could include the revised Item I along with the other f()ur items to produce a 

stronger five-item test. 

In the next section, we address two additional item characteristics that arc some

times evaluated in a test refinement process. Our discussion will highlight the ways 

in which item difficulty (i.e., item means) and item variance arc related to an item's 

effect on test reliability. 

Item Difficulty (Mean) and Item Variance 

An item's mean and variance arc potentially important factors affecting its con

tribution to the psychometric quality of a test. From the perspcct ive of rcliabil it y, an 

item's mean and variance arc important because they may be related to the degree 
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to which the item might be consistent with the other items on a test. Consequently, 

they have potential implications f(lr an item's effect on test score reliability. 
As we discussed in Chapter 3, a correlation reflects the degree to which variabil

ity within one variable is consistent with variability within another variable. Indeed, 
a correlation is highly dependent on variance. Specifically, the correlation between 
two variables is a transt(mnation of the covariance between the two variables. In 

turn, the covariance between two variables hinges on the existence of variance 

within each variable. Simply put, if a variable (e.g., responses to a test item) has no 

variability, then it will not be correlated with any other variable. 

Based on the intrinsic link between correlation and variance, an item's variance 

has potential implications for characteristics such as its intcritem correlations, its 

item-total correlation, and its "alpha if item deleted" value. Items with limited 

variability are less likely to have good correlational characteristics than are items 

with substantial variability. Indeed, items that all respondents answer in the same 

way (e.g., all respondents answer correctly, or all answer incorrectly) are poor items 

from the perspective of reliability. 

The link between an item's variability and its psychometric quality can be 
extended to the item's mean. In some cases, an item's mean tells us about the item's 

variability. Most psychological tests have practical limits on the responses that 

people can provide. For example, in the test presented in -E1ble 7.3, the maximum 
score on each item is I and the minimum is 0. This "ceiling" and "floor" constrain 

the total test scores, and they have implications for the link between item means 

and item variances and, consequently, tor the values of the covari;lllCes and correla

tions among items. 

For example, imagine that Item I (in 'l�lblc 7.3) had a mean of 1.0-what would 
this imply about the item's variability? Because the maximum value of an indi

vidual's response is l, there is only one way that Item I can have a mean equal to 

1.0. Specifically, Item I will have a mean of 1.0 only if every respondent answers 

the item correctly. Similarly, Item l will have a mean of 0 only if every respondent 

answers the item incorrectly. It should be clear that if every respondent answers 

an item in the same way, then the item will have no variability. And as we have 

discussed, if an item has no variability, then it is a poor test item from a reliability 

perspective. Thus, items that have "extreme" means (i.e., either very high or very 

low) are likely to have limited variability, and thus they arc likely to have poor psy

chometric qualities. 

;\n item's mean is sometimes interpreted as the item's "difficulty." For example, 

the mean of Item 5 is .80 (shown in 'E1hlc 7.4), which tells us that 80% of the 

respondents answered the item correctly (because we coded a correct answer as 

"1.,., and an incorrect answer as"()"). In contrast, the mean of Item 4 is .40, which 

tells us that only 40'Y<> of the respondents answered the item correctly. Thus, Item 4 

appears to he more difficult than Item 5. For binary response items, such as those 

presented in ·1;1hlc 7.3, CIT suggests that we would like to have items with diffi

culties of approximately .50. This ensures that items will have maximal variability, 

which avoids the difficulties associated with low variability. 
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In this section, we explained how reliability and measurement error allect the 

results of behavioral research. We showed that the correlation between the two 

measures is determined by the correlation between the 11sychological constructs 

being measured and by the reliabilities of the measures. These two bctors will com· 

bine to influeJlCe the interpretation of the results of empirical research findings. 

'lest score reliability will also play a role in test score interprl'lation. We showed 

how test scores will regress to the mean of a distribution of scores and how the 

size of this regression will depend on score reliability. Reliability will inllucnce the 

conlldence intervals created around particular scores; reliable test scores will be 

associated with smaller intervals than will less reliable scores. 

We also presented some of the ways in which test item information is evaluated, 

and we highlighted the role that reliability often plays in this type of evaluation. 

Three interconnected item characteristics th;lt arc important considerations in test 

construction and rdlnement�item means, item variances, and item discrimina· 

tion-were discussed in detail. 

Summary 

Suggested Readings 

ror a discussion of regression to the mean that differs from the standard undcr

otanding of the phenomena: 

J{ogosa, D. IC ( 19LJ5). Myths and methods: Myths about longitudinal research, plus 
supplcmcnl<li questions. In J. M. Collman (!'.d.), 'J'ill' lllllliysis o( clltlngc lpp. J-(>(>). 
llillsdak, NJ: l.;lWITncc Erlbaum. 

There is a short and well-cr<lfled technical discussion of a\lcnuation in: 

ivlcllonald, IC 1'. ( ILJ9LJ). '/i·stlhcory: ;\ uni/iccl!rm/lucu/. ivlahwah, NJ: Lawrence Frlllaunl. 
(Sccpp.I.\3-U6) 
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CHAPTER 8 

Validity 

Conceptual Basis 

I
magine that you have applied for your dream job. You have invested a huge 

<I mount of time, energy, and perhaps money preparing yourself to be competi

tive for the position. After all your prcp<lration, you finally apply for the job f(n 

which you have been working so hard. As part of the hiring process, the company 

requires you to complete a personality inventory. A week or two after completing 

the inventory and submitting your application, the company tells you that you are 

not going to be hired. Although they do not say so, you suspect that their decision is 

partially based 011 the "results" of the personality inventory. Aside from disappoint

ment and perhaps anger, what kind of reactions would you have? 

You would likely have several questions. What exactly was the personality inven

tory supposed to measure? Is there any evidence that the inventory is in f�JCt a good 

measure of wh<Jtevcr it is supposed lo measure? Is there any logical or theoretical 

reason lo believe that scores on the inventory arc related lo performance in the job 

that you wanted? Perhaps more important, arc there any hard data showing that 

scores on the inventory arc actually related to performanCL' in your job? 

In response lo such questions, the human resources director or the company 

might suggest that the personality inventory is a worthwhile part or the hiring 

process. She 111ight slate that the company h;Js been using it f(Jr ye<Jrs. In addition, 

she might assure you that in her experience the questionnaire is quite accurate and 

that it is usef"ul f(Jr predicting who will he good employees. However, if" she is going 

to be using the inventory to make such important decisions, then she needs to have 

stronger evidence than "her experience" testifying to the <Jccuracy and utility of the 

questionnaire. 

Your questions about the personality inventory <liT questions of" validity, which 

is perhaps the most important issue in psychological measurement. In this chapter, 

we begin by defining validity, we discuss its mc1ning and implications, and we 
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discuss the importance of validity in testing. In addition, we discuss the kinds of 

evidence that are necessary for establishing validity in testing, we describe the dif

ferences among several perspectives on test validity, and we contrast validity with 

reliability. As you will sec, a test user's personal experience is inadequate as evidence 

for the test's validity and its use. 

What Is Validity? 

The concept of validity has evolved over more than 60 years, and various definitions 

of validity have been proposed. A rather basic definition of validity is "the degree 

to which a test measures what is it supposed to measure." Although this definition 

is relatively common and straightforward, it oversimplifies the issue a bit. A bet

ter definition, reflecting the most contemporary perspective, is that validity is "the 

degree to which evidence and theory support the interpretations of test scores 

entailed by the proposed uses" of a test (American Education Research Association 

[AERA], the American Psychological Association [APA], and the National Council 

on Measurement in Education [NCME], 1999, p. 9). This, more sophisticated defi

nition has a number of important implications. 

First, a measure itself is neither valid nor invalid; rather, the issue of valid

ity concerns the interpretations and uses of a measure's scores. Consider the 

Conscientiousness bctor on the Revised NED-Personality Inventory (NEO-PI-R; 

Costa & McCrae, 1992). The NEO-PI-R is a multidimensional personality inventory, 

providing scores on five relatively independent domains, each of which includes six, 

narrower "facet" dimensions. One of the factors, or domains, included in the NEO

Pl-R is labeled Conscientiousness. The Conscientiousness scale includes 48 items, 

with each item presenting a statement regarding beliefs, interests, behaviors, and so 

on. The test authors offer a clear interpretation of the scores derived ti·om the items 

on the Conscientiousness factor. According to the authors of the NEO-PI-R, high 

scores on this set of items reilcct the tendency toward an "active process of planning, 

organizing, and carrying out tasks," and they state that people with high scores on 

this set of items arc "purposeful, strong willed, and determined" (Costa & McCrae, 

1992, p. 16). 

In terms of validity, the set of itell!s themselves is neither valid nor invalid. 

Similarly, the scores derived from the 48 items are neither valid nor invalid. 

However, the authors' interpretations of the scores might be valid or invalid. Are the 

authors correct in interpreting scores on the set of 48 items in terms of planfulness, 

organization, and determination? Thus, validity is about the accuracy or legitimacy 

of one's interpretations of a test's scores. 

Extending this notion beyond the interpretation of the scores, validity is related 

to the "proposed uses" of the scores. The NEO-Pl-R Conscientiousness scale might 

be used by employers to screen applicants. Experts in human resources might pre

dict that people who have relatively high scores on the Conscientiousness scale will 

be responsible, hardworking, motivated, and dependable employees. On the basis 

of this interpretation of scale scores, employers might usc the Conscientiousness 
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scale to identify people with a high level of conscientiousness and to make hiring 

decisions. But is there good reason to believe that scores on the Conscientiousness 

scale truly do provide information that differentiates potentially better and worse 

employees? That is, scores on the NEO-PI-R Conscientiousness scale might be 

interpreted validly as rellecting conscientiousness, but is conscientiousness (as 

measured by the scale) truly predictive of the quality of an employee's future 

performance? 

Psychological measures are like hammers. Someone might tell you that a ham

mer is a useful tool, but the usefulness of a hammer depends on the job to be done. 

If you need to drive a nail into a surt�1ce or if you need to remove a nail from a 

surf�lCe, then a hammer is enormously useful. If you need to hold down a piece of 

paper while you arc working or if you need to break through a piece of sheetrock 

in a wall, then a hammer might indeed be useful. However, if you need to tighten a 

screw, saw a piece of wood, change a light bulb, or call a contractor to fix the hole 

in your wall, then a hammer is completely useless. So it is somewhat simplistic and 

inaccurate to say that a hammer is a useful tool, without regard to the way in which it 

will he used. Similarly, it is somewhat simplistic and inaccurate to say that a particu

lar psychological measure, such as the NEO-Pl-R Conscientiousness scale, is valid, 

without regard to the way in which it will be interpreted and used. The scale's scores 

might be interpreted validly as indicators of conscientiousness, and they might help 

you select a conscientious contractor, but the scores are not validly interpreted as 

indicators of intelligence or extraversion. 

Despite our insistence that validity is really about test score interpretation and 

use (and not about the test itself), test users often refer to the "validity of a lest." 

For example, you might hear someone state that "the Conscientiousness scale of the 

NEO-Pl-R is valid." There are at least two possible reasons why a test user might 

make a statement that seems to contradict our definition of validity. First, the test 

user might not have a sophisticated understanding of validity. Although many 

copyrighted psychological tests are marketed only to qualified professionals, not 

every professional has a deep understanding of the concept of validity. Thus, some 

test users might not recognize the nuances of validity, and they might believe that 

validity is a property of tests rather than of one's interpretations of test scores. The 

second reason why you might hear such a statement is that it is simply a shortcut. 

That is, instead of saying, "Scores on the Conscientiousness scale of the NEO-PI-R 

are validly interpreted as a lllCr!sllrc of conscientiousness," we sometimes get a bit lazy 

and simply slate that "the Conscient iousncss scale of the NEO-PI-R is valid." Please 

do not let this confuse you.ln measurement, validity is a properly of the interpreta

tions and uses of test scores; it is not a property of the lest itself. 

A second important implication of the dctlnilion of validity is that validity is 

a matter of degree; it is not an "ali-or-none" issue. That is, the validity of a lest 

interpretation should be conceived in terms of strong versus weak instead of simply 

valid or invalid. There is no magical threshold beyond which validity is established. 

1:or test users, validity should be a deciding f�lclor in their choice of psychologi

cal tests. Although such choices arc based on a number of practical, theoretical, 

and psychometric t�1ctors, a test should be selected only if there is strong enough 

evidence supporting the intended interpretation and usc. Allcrnalivcly, test users 
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might need to choose among a set of possible tests, and they must weigh the relative 
strengths of the tests being considered. For example, there arc a variety of scales that 

an employer might use to measure the dependability, responsibility, motivation, 
and reliability of job applicants. The NE0-1'1-R Conscientiousness scale is a rea
sonable choice, but employers should consider the relative strengths of alternatives 

that might be even better measures of the specific characteristics that they wish to 
assess. Tests that have garnered more good evidence of their validity arc preferable 

to tests with less evidence of validity. 

A third important heel of validity is that the validity of a test's interpretation is 
based on evidence and theory. In the introduction to this chapter, the hypothetical 

human resources director stated that in her experience the psychological tests were 

useful. This is not good enough. hn a lest user to be confident in an interpreta

tion and use of test scores, there must be good empirical evidence supporting the 
interpretation and usc. That is, there must be strong objective data derived from 

well-conducted psychometric studies-not simply some test users' or test develop

ers' experience-based opinions about the test. In addition, contemporary views on 

validity emphasize the importance of grounding the interpretation and use of a test 

in a defensible psychological theory. 
/\]though many well-developed psychological measures have strong evidence 

regarding the validity of their typical interpretations, many supposed psychologi

cal measures do not. hll· example, handwriting analysis is a popular method for 
"assessing" personality. Despite the popularity and historical tradition of handwrit

ing analysis, there appears to be little peer-reviewed scientific evidence that hand
writing reveals anything about personality. Similarly, many supposed psychological 
measures can now be found on the Internet. One example is variously known as 

"Color ()uiz," "Colorgcnics," or the "Personality Color 'lest." These tests arc osten

sibly based on "color psychology," as developed by Max Uischcr ( Liischer & Scott, 

1%9 ). When you take the Color Quiz, you arc presented with eight colors, and 

you arc asked to select the colors in the order of your preferences (sec http://www 

.colorquiz.com/). After completing this procedure twice, you receive a series of 

interpretations regarding your "sources of stress," "restrained characteristics," 
"desired objectives," and "actual problems." The notion that your color prefer

ences reveal something about your personality is an interesting idea, but is there 

any objective evidence supporting these interpretations of your color preferences? 

Unf(>rtunatcly (but perhaps not surprisingly), a quick survey of the scientific litera

ture reveals essentially no support h>r the validity of color preferences as a measure 

of persOJwlit y characteristics (e.g., Picco & D:t.indolct, 1994 ). 

Assuming that there is indeed lillie scientific support for the validity of color 

pretCrcnces a<; a measure of personality, it is interesting to examine the "evidence" 

presented on l he Color Ouiz website (sec h llp:/ /www.colorquiz.com/<1bout 

.html). The website poses this question to interested readers: "Is the test reliable?" 

We suspect that the authors of the website arc not using the term rclin/Jic in the 

true psychometric sense outlined in previous chapters. Instead, we suspect that 

the authors intend to pose the question of validity: Is the test meaningful and 

useful as a measure of personality? Civcn the apparent lack of scientific evidence 

for color preference as a valid measure of personality, you might not be surprised 
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by the answer provided on the website. Regarding the quality of the Color (�uiz, 

the authors slate, "We leave that to your opinion. We can only say that there arc 

a number of corporations and colleges that use the Uischer test as part of their 

hiring/admissions processes." Clearly, the website implies that the Color (2uiz is 

a valid measure of some aspects of personality and that it is in fact used to make 

real decisions. However, we suggest that a human resources director using any 

version of the Color C2uiz should be prepared to defend his or her hiring deci

sions in cour t. If the scientific evidence for the validity of "color tests" as mea

sures of personality is as thin as it appears to be, then an applicant who is denied 

employment because of such a test would have legitimate reason to be angry and 

litigious. 

The contemporary perspective on validity states that there must be psychologi

cal theory and empirical evidence supporting a particular interpretation of test 

scores. For example, arc there strong data demonstrating that people who score 

relatively highly on the NEO-PI-R Conscientiousness scale are actually higher in 

"conscientiousness" than those who score relatively lower? Is there evidence that 

students who perform well on the SAT actually obtain higher grades in college 

than do students who perform less well on the SAT? Is there anything beyond 

the assertion that "there arc a number of corporations and colleges that usc the 

Uischer test as part of their hiring/admissions processes" to support the notion 

that color preferences actually reflect anything about an individual's personality? 

;\!though LUscher might offer theoretic1l reasons to suspect that color is somehow 

related to personality, such theory is not enough to argue that the Color Ouiz is 

valid as a measure of· personality. For users to have confidence in the validity of test 

interpretation, there must be good empirical evidence supporting the interpreta

tions. There must be data obtained from high-quality research, and these data 

must provide evidence for particular interpretations of test scores. 

In the sections that follow, we will examine the kinds of scientific evidence th<lt 

can be used to support the validity of test interpretations. As mentioned earlier, 

the concept of validity has evolved over the years. h>r m<lny years, the fields of 

psychology and education have seen validity as a three-faceted concept. From this 

tr<lditional perspective, there arc three types of v<llidity-contenl V<llidity, crite

rion validity, and construct validity. Although we will describe these concepts, we 

will emphasize a more contemporary perspective that highlights construct v;llid

ity <IS the essential concept in validity (Messick, ll)H9). Construct t'tllit!ity refers 

to the degree to which test scores can be interpreted as reflecting a particular 

psychological construct. In ]l)l)l), three major org;mizations in psychology and 

education outlined the contemporary perspectives on testing. The;\[.:!{;\, API\, 

and NC!V!E ( Jl)99) published a revision of the Stundunls j(>r l:"tlumtionul untl 

Psychologim/ '/(·sting. This public1tion outlined five types of evidence relevant 

for establishing the validity of test interpretations. r\s shown in hgurc H. I, the 

overall construct validity of test score interpretation depends on the content of 

the test content, the internal structure of the test, the psychological process used 

in test responses, the association among test scores and other variables, and the 

consequences of test usc. 
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Figure 8.1 A Contemporary Perspective of Types of Information Relevant 
to Test Validity 

However, before we discuss the types of evidence that arc relevant to validity, we 

will highlight the reasons why validity is such an important issue in psychometrics 

and more broadly in testing. Although its importance might be implicitly clear 

from our discussion thus far, we want to be as explicit as possible about this issue. 

And we want to make sure that its importance is appreciated before we delve into 

the scientific issues and procedures related to evaluating validity. 

The Importance of Validity 

We suspect that the importance of validity is already apparent through our 

discussion thus far. Indeed, we hope that we have started to convince you that 

validity is perhaps the most crucial issue in a test's psychometric quality. In this 

section, we underscore this point by explicitly addressing the role and impor

tance of validity in psychological research and practice. Whenever psychological 

measurements arc conducted for any serious purpose, those measurements are 
meaningful and useful only if they have acceptable validity for their intended 

purpose. Without validity, those measurements arc scientifically meaningless and 

potentially even hazardous. 

Our ability to interpret the great bulk of behavioral research hinges on test 

validity. The goals of scientific research include describing, predicting, or explain

ing some aspect of our world-be it a physical or a psychological aspect. Accurate 

description, prediction, and explanation depends on the ability to manipulate or 

measure specific variables that arc deemed important. For example, some social 

psychologists have examined the hypothesis that exposure to violent video games 

increases one's inclination to behave aggressively (e.g., Anderson & Dill, 2000; 
Bartholow, Scstir, & Davis, 2005). Research seems to indicate that, indeed, expo

sure to video violence docs affect an individual's aggressive behavior. But we must 

remain aware that this research partially hinges on the measurement of"inclination 

to behave aggressively." If this key variable is measured with good validity, then we 

should have increased confidence in the conclusion that aggression is increased 

by exposure to video violence. 1-Iowcvcr, if the "inclination to behave aggressively" 

is measured with poor validity, then we should have serious doubts about this 
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conclusion. Without test validity, our understanding of the role of video games in 

aggressiveness is obscured. 

Thus, validity influences the scientific process in a somewhat abstract sense, in 

that it affects the accuracy of our understanding of the world. 'fest validity can have 

an even more concrete impact on the outcome of the scientific process. As you 

know, another goal of scientific research is to guide decision making about various 

aspects of our social world. Such decisions can be made at the societal level or at 

the individual level, and test validity has important implications for both kinds of 

decisions. 

Without test validity, decisions about societal issues could be misinformed, 

wasteful, or even harmful. In June 2006, the U.S. House of Representatives held 

hearings concerning the level of violence depicted in many popular video games. 

The underlying concern was that exposure to violent video games has dire con

sequences for those who play the video games, particularly younger players. 

Specifically, the hearings were based on the assumption that exposure to violent 

video games increases aggressive behavior. Of course, the empirical legitimacy of 

this assumption is a key question. To the degree that there is strong research denl

onstrating the legitimacy of this assumption, the congressional hearings arc on a 

relatively solid foundation. However, if the research is based on tests with poor 

validity, then we should have serious doubts about the meaning of the research. 

Consequently, any societal decisions based on such questionable research are them

selves questionable. 

What would the implications be if the U.S. Congress enacted legislation on the 

basis of research with questionable validity? At a minimum, congressional time 

and attention would be wasted, and misguided laws could be passed. Furthermore, 

it is conceivable that public funds could be spent to "prevent" aggression by inter

vening against violent video games. Again, if the research is Hawed by poor test 

validity, then such funds would be wasted. Indeed, to the degree that public funds 

are diverted from alternative programs that actually would be beneficial to society, 

wastefulness might even be harmful to people who would have benefited from 

those alternative programs. Let us clarify that we are not denigrating the quality of 

research on the etfcct of violent video games. Most of this research is indeed well 

conceived and well executed. We simply use it to provide a compelling illustration 

of the fundamental connections between test validity, research quality, and social 

decision making. 

Finally, without test validity, test-based decisions about individuals could be 

misinf(xmed or harmful. Decisions that are at least partially based on psychologi

cal testing include placing children in specitlc classes, selecting students f(H· college 

admissions, hiring employees, making clinical decisions, and placing people in 

specific organizational roles. Such decisions have potentially life-altering implica

tions for the individuals affected by them, and test validity can have an irnportant 

impact on those decisions. Tb the degree that the decisions arc based on well

validated measures, they hopefully benefit the test users and test takers. If decisions 

are based on the appropriate use of well-validated psychological tests, then (hope

fully) children are more likely to be placed in appropriate classes; job applicants are 

more likely to be hired for jobs that fit their interests, skills, and abilities; students 
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arc more likely to be admitted to colleges that fit their academic skills; and clinical 

clients arc diagnosed in ways that facilitate effective treatment. 

llowcvcr, it is possible that such decisions are based on poorly validated tests. It is 

even possible that these types of decisions arc based on the inappropriate use of tests 

that have been well validated ft>r diflcrcnt uses. Recall the first chapter of this book, 

in which we discussed the North Carolina statute that "a mentally retarded person 

convicted of first degree murder shall not be sentenced to death" (Criminal Procedure 

Act, 2007). J\s we mentioned in that earlier chapter, the decisions regarding a person's 

status as mentally retarded arc based partly on the results from "an individually 

administered, scientifically recognized standardized intelligence quotient test admin

istered by a licensed psychiatrist or psychologist." We hope that the term scicntifiml!y 

recognized stondordizcd is interpreted largely as "scientifically validated," and we hope 

that jurors, lawyers, and judges arc aware of this important issue. 

Validity Evidence: Test Content 

As mentioned earlier and as shown in Figure S.l, the validity of test score interpre

tation hinges on five types of evidence. One type of validity evidence is the match 

between the actual content of a test and the content that should /Jc included in the 

test. That is, if a lest is to he interpreted as a measure of a particular construct, then 

the content of the test should rdlcct the important facets of that construct. Indeed, 

the supposed psychological nature of the construct should dictate the appropriate 

content of the test. Validity evidence of this type is sometimes referred to as content 

validity, but there arc two ways in which content validity might be compromised. 

Threats to Content Validity 

One th rca l to content validity occurs when a test i ncl udcs co11sl met -irrclcvont 

con/cut. A test should include no content (e.g., items or questions) that is irrelevant 

to the construct for which the test is to be interpreted. For example, imagine that 

you need to develop a midterm test f(>r a class in personality psychology and the 

tc-,t is intended to measure "knowledge of r:rcud's theories" as covered in the class 

lectures, discussion, and readings. In the chlss, three broad topics were covered-the 

'it ruct U rc of personality (i.e., id, ego, and Sll pcrcgo), the stages of personal i l y devel

opment, and defense mechanisms. Ideally, the content of the midterm test should 

include items representing a f�1ir sample of these three topics, no more and no less. 

h>r example, biographical questions about Freud's life should not be included on 

the lest because they were not covered in class and, thus, they are irrelevant to the 

construct of"knowlcdgc of !.'!·cud's theories <lS covered in the class lectures, discus

-,ion, ami readings." 'lest content that reflects issues, characteristics, or concepts that 

arc irrelevant to the construct f(>r which a test is to be interpreted is rckrrcd to as 

"construct-irrelevant" content. Such content is extraneous to the core construct f(>r 

which a test is to be interpreted, and its inclusion would reduce validity. 
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A second threat to content validity is cons/met undcrn.:prcscillillion. Although a 

test should not include content that is beyond its core construct, it should include 

the full range of content that is relevant to the construct, as much as possible. Again, 

a test intended to assess "knowledge of Freud's theories as covered in the class lee

lures, discussion, and readings" should include content relevant lo all three topics 

that were covered in class. A test that included content relevant only to personal

ity structure and personality development would have weak validity as a measure 

of "knowledge of 1:reud's theories as covered in the class lectures, discussion, and 

readings" because it l�1ils to cover the content related to defense mech;misms. Such 

a lest would sutTer from construct underrepresentalion, meaning that its actual 

content fails to represent the full scope of the content implied by the construct that 

it is intended to measure. In sum, a test's content should retlect the Iiiii range of the 

core construct, no more and no less. 

In practice, lesl developers and tesl users bee a trade-off between the ideal of 

content validity and the reality of the testing situation. Again, a test should include 

items that represent an adequate sample of the construct-relevant content, no more 

and no less. However, there is no clear rule as to what constitutes an ";1dequate" 

sample of content. For practical reasons, a lest developer might not be able to 

include content covering every beet or nuance of the construct lo an equally thor

ough degree. h>r example, the instructor developing a lest to assess "knowledge 

of heml's theories as covered in the class lectures, discussion, and readings" must 

consider the l�1ct lh;lt students might have only 50 minutes to complete the test. 

Therefore, he or she might include questions regarding details of only some of the 

total con lent. For example, he or she might include questions on only three stages 

of Freud's theory of personality development. So the tesl might not cover every 

conceivable f�1cet of the construct, but hopefully the selected items rcllecl a reason

able range of elements relevant to the construct. In sum, practic.ll issues, such as 

time, respondent L1tigue, respondent attention, and so on, place constraints on the 

amount of content that can be included in a measure. 

Content Validity Versus Face Validity 

J·occ validity is closely related to content validity. h1ce v;llidily is the degree to 

which a measure appears to be related to a specific construct, in the judgment of 

nonexpcrls, such as tesl takers and representatives of the legal system. That is, a 

lest has L1ce validity if its content simply looks relcv;ml to the person laking the 

test. Face validity is not usually considered an import.ml psychometric li1cel of 

V<liidity-nonexperls' opinions have no direll bearing on the ernpiric;ll <lnd theo

rcticll quality of a tcsr. 

i\llhough face validity might nol be <1 crucial LKel of tesl V<llidily from a p;;y

chometric perspective, it might have important implications for the test's u;;c. The 

apparent meaning and relevance of a lest's conlenl might inlluence lest takers' 

motivation to respond in a serious and honest manner. h>r example, consider a 

psychological inventory given to job applicants as p<lrt of the hiring proce-;s for 

a law enforcement agency. J\f1plicants might assume that such a measure should 
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include questions about problem solving, social skill, dependability, work ethics, 

and so on. If the inventory actually included questions about sexual attitudes or 

l�tmily history, then the job applicants might question the legitimacy or relevance 

of the entire testing procedure. Consequently, many applicants might respond 

randomly, respond in a way that presents a hdsely positive image of themselves, 

or even refi.Jse to complete the measure altogether. The utility of such a test would 

be almost entirely compromised. Therefore, a test with high face validity might be 

much better received by test takers and potential test users. 

The difference between content validity and face validity is an important one. 

Content validity is the degree to which the content of a measure truly ret1ects the 

full domain of the construct for which it is being used, no more and no less. In a 

sense, content validity can be evaluated only by those who have a deep understand

ing of the construct in question. Experts in a field are in the best position to evalu

ate accurately the quality of a test of a construct within that field. Face validity is the 

degree to which nonexperts perceive a test to be relevant for whatever they believe it 

is being used to measure. Although test takers' beliefs about a test might affect their 

motivation and honesty in responding to a test, test takers are not often experts 

on the theoretical and empirical meaning of the psychological constructs being 

assessed by the tests. Thus, content validity, but not face validity, is an important 

form of evidence in the overall evaluation of construct validity. 

Validity Evidence: Internal Structure of the Test 

A second issue related to the validity of a test interpretation concerns the internal 

structure of a test. A test's internal structure is the way the parts of a test are related 

to each other. For example, some tests include items that arc highly correlated with 

each other, but other tests include items that l�dl into two or more clusters. As we 

will discuss, the conceptual basis of a construct has implications for the internal 

structure of a measure of the construct. Therefore, an important validity issue is 

the match between the actual internal structure of a test and the structure that the 

test should possess. For a test to be validly interpreted as a measure of a particular 

construct, the actual structure of the test should match the theoretically based 

structure of the construct. 

For example, we might wish to evaluate measures of self-esteem. The Rosenberg 

Self-Esteem Inventory (RSEI; Rosenberg, 1989) is perhaps the most commonly 

used measure of self-esteem in psychological research. The RSEI is often used as a 

measure of a single coherent construct-global self-esteem. Global self-esteem is 

one's overall evaluation of one's self-worth, and the RSEI includes 10 items, such as 

"I take a positive attitude toward myself" and "At times I think I am no good at all" 

(note that this item is negatively keyed). Test users who intend to interpret scores on 

the RSEI as a measure of global self-esteem should expect to find a particular stniC

ture among the l 0 items. Specifically, if test users theorize that global self-esteem 

is indeed a single coherent construct and they believe that the RSEI is indeed valid 

as a measure of global self-esteem, then they should lind that all the items on the 
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RSEI arc highly correlated with each other, forming a single tight cluster of items. 

That is, if the RSEI is indeed valid as a measure of global self-esteem, then responses 

to the test items should exhibit a unidimensional structure that is consistent with a 

conceptual definition of the construct. 

However, our expectations might be quite different for another measure of self

esteem. The Multidimensional Self-Esteem Inventory (!VISE!; O'Brien & Epstein, 

1988) was designed to measure global self-esteem along with eight components of 

self-esteem. The test authors state that the conceptual model underlying the !VISE! 

specifics two primary levels within the hierarchy of self-esteem. The first level 

corresponds to global self-esteem. This level is concerned with the person's most 

basic, widely generalized evaluative feelings about him/hersciL The second level 

corresponds to self-evaluations at an intermediate level of generality, which are 

referred to as components of self-esteem. (O'Brien & Epstein, 1988, p. 7) 

This conceptual perspective on self-esteem was based on previous research sug

gesting that the components of competence, likability, lovability, personal power, 

moral self-approval, body appearance, and body functioning capture many of the 

events that affect self-esteem. Thus, the authors argue that these components ref-lect 

most of the experiences that typically affect self-esteem. 

If !VISE! scores are validly interpreted as measures of these components of self

esteem, then responses to the test items should exhibit a specific structure that is 

consistent with the multidimensional conceptual definition of the construct. That 

is, the items on the !VISE! should form separate clusters; they should not form one 

large cluster. In f�1ct, the items should more or less form one cluster for each of the 

components. 

As discussed earlier in Chapter 4, test developers oiicn use a statistical procedure 

called bet or analysis to evaluate the internal structure (i.e., dimensionality) of psy

chological tests (sec also Chapter 12, later). As described in that chapter, some items 

on a test might be more strongly correlated with each other than with other items, 

and items that are highly correlated with each other form clusters of items, called 

dimensions or fne/ors. Factor analysis helps to identify the presence and nature of 

l�1ctors existing within a set of items. 

Recall that h1ctor an<llysis addresses several fundamental issues related to a test's 

internal structure. f:irst, it helps clarif)r the number of f�Ktors within a set of items. 

As noted above, many social and personality psychologists would theorize that 

global self-esteem is a single coherent construct. Therefore, if the RSEI i; indeed 

validly interpreted as a measure of global self-esteem, then responses to the I 0 items 

on the RSEI should form only a single f�1ctor. If a h1ctor analysis revealed that the 

RSEI items formed two or more f�lctors, then we would begin to question the valid

ity of the RSEI as a measure of global self-esteem. Thus, the number of bctors is an 

important beet of evaluating the internal structure of a measure. 

'lb illustrate this issue in n1orc depth, we will examine the actual RS!:I responses 

made by 149 undergraduates. We conducted a factor analysis of these responses 

and examined the resulting scree plot (see Figure 8.2). Recall (from Chapter 4) 
that a scree plot is a graphical presentation of eigenvalues, which are often used 
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to make judgments regarding the number of h1ctors reflected in a set of test items. 

In the scree plot, we search tor a relatively clear "leveling-off" point in the plot. 

As shown in Figure 8.2, a clear leveling-off point is at the second point. The line 

sharply decreases as we move from the first point (approximately an eigenvalue of 

5.2) to the second point (approximately an eigenvalue of 1.1 ), and the remaining 

differences between adjacent eigenvalues arc relatively small. The fact that the lev

eling-off point occurs at the second point provides evidence for a unidimensional 

structure to these RSE! responses. Because this finding is consistent with theoreti

cally based expectations, this provides empirical evidence for the internal-structure 

beet of the RSE! as a valid measure of global sclr-estccm. 

J\ second important usc of factor analysis is to reveal the associations among 

the h1ctors/dimensions within a multidimensional test. As mentioned above, the 

l'vl SEI is in tended to be a multidimensional test, rdlecti ng several componcn ts of 

self-esteem. For such a multidimensional test, if our theory of self-esteem suggests 

that all the components of self-esteem are independent, then we should find that 

the self-esteem scales are uncorrelated with each other. I Iowever, if our theory sug

gests that the components are associated with each other in a particular way, then a 

f�1ctor analysis should reveal that particular pattern of associations. 

O'Brien and Epstein (I '-J88), the authors of the MSE!, conducted a factor analysis 

to investigate those associations ( pp. 15-16 ) . Their analysis revealed an interesting 

three-h1ctor structure to the MSEI scales. Using an orthogonal rotation, they found 
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that some !viSE! scales (e.g., Clobal Self-Esteem, Competence, Personal Power) 

clustered together to form an "overall self-evaluation" bctor, which the authors 

interpreted partly as reflecting the "ability to have an active and direct impact on 

the world by demonstrating capabilities, leadership abilities, body agility, and self

discipline" ( p. 16 ) . Other !viSE! scales (e.g., Lovability, Likability) clustered together 

to form a "social self-esteem" f�lCtor, which the authors suggest "is dependent on the 

social teed back and approval or disapproval received hom significant others" ( p. 16 ). 
Two scales-Moral Self-Approval and Defensive Self-Enh�lnccmcnt-clustcrcd 

together to form a "defensiveness and private self�evaluation" f�1ctor, which the 

authors suggest has "little in the way of objective or tangible social feedback" (p. 16). 
/\third primary usc of tiKtor analysis in the context of validity is identifying which 

items arc linked to which factors. In developing a measure, our conceptual under

standing of a construct might lead us to generate specific items that reflect particular 

aspects of the construct. For example, the authors of the lviSl�l might have written 

specific items to reflect each of the specific dimensions of sclf�cstccm that they wished 

to measure. 'lb evaluate the quality of the measure then, we must ensure that the items 

that arc intended to reflect a particular h1ctor actually are connected to that bctor and 

to no other hlctors. Recall that this evaluation is made through an examination of the 

f;Ktor loadings, which represent the associations between items and L1etors. 

In such an analysis, the authors of the MSEJ report the results of a fi1ctor analysis 

of all the items on their inventory (O'Brien & Epstein, 1988, pp. 14-15). They dem

onstrated th<lt nearly every item was connected strongly to the component that it 

was written to reflect and weakly connected to all other components. For example, 

the I 0 items written f(lr the competence component were clearly connected to 

that component ;md to no other. Similarly, the 10 itcrns written f(lr the moral 

self-approval component were clearly connected to it and to no other. The results 

were not perfect, though. hll· example, although the I 0 items written f(n the body 

appearance component were connected to it and no other, two global self-esteem 

items and three likcability items were also connected to the body appearance 

component. Despite a few imperfections in the internal structure of· the MSEl, the 

<lllthors seem generally satisfied that the f:1ctor analysis provides adequate support 

t(Jr the validity of the intcmal structure of the !VISE!. 

In sum, the intern<ll structure of a test is an important issue in construct valid

ity. A test's in tcrnal structure should correspond with the structure oft he construct 

that the test is intended to measure. Typie<11ly, internal strulturc is examined 

through the correlations among the items in a test and among the subscalcs in a 

test (if there arc any), and researchers often usc bctor analysis in this process. We 

return to this issue in Chapter 12, in which we present the logic behind confirma

tory LKtor analysis. 

Validity Evidence: Response Processes 

i\ third type of validity evidence is the match between the psychological processes 

that respondents oc/uo/ly usc when completing a mc<lSUI'C and the processes that 
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they should use. Many rsychological measures arc based on assumptions about the 

psychological processes that people use when completing the measure. For exam

ple, a researcher developing a measure of extraversion might include an item such 

as "I often attend parties," and this researcher might assume that respondents will 

read the item, search their memories for the number of times they have attended 

parties, and then make a judgment about whether that number qualifies as "often." 

If participants do not usc such a process, then the measure might not provide scores 

that arc interpretable as the test developer intended. 

A recent study of the effect of "control deprivation" on cognitive performance 

illustrates the sometimes subtle problem of response processes. Previous research 

has suggested that people who lack control over their outcomes in one task will 

show impaired performance on subsequent tasks. In the study, participants first 

engaged in a task in which some of them were able to exert control over a noise 

but others were not. In this "noise control" task, all participants were exposed to a 

loud buzzing noise, and they were instructed to Jearn a sequence of keystrokes that 

would temporarily suppress the noise. During this task, half of the participants 

were required to Jearn a very easy sequence, which ensured that they would eventu

ally control the noise. The other half of the participants were required to learn an 

impossible sequence, which ensured that they would lack control over the noise. 

After the noise control task, all participants completed a series of word tasks. They 

were given a list of scrambled words (e.g., pynhm) and were required to identif)r 

the correct word (e.g., nymph). Participants were instructed to proceed one word 

at a time and to proceed to the next word only after completing the prior word. 

The total number of words correctly unscrambled was taken as the measure of 

cognitive perf(Jrmancc. The researchers hypothesized that control deprivation on 

the noise task would impair attention, which would produce lower scores on the 

word scramble task. 

'l�1kc a moment to consider the psychological process that participants were 

assumed to use when responding to the scrambled words. The researchers implic

itly assumed that participants would need to devote cognitive attentional resources 

to the word task. Although cognitive bctors such as intelligence and previous 

experience with word puzzles could also affect performance on the word task, 

such factors were reasonably assumed to be constant across noise control groups 

because participants had been randomly assigned to the groups. Thus, the research

ers assumed that if they found a group difference in the mean number of words 

correctly unscrambled, it would be because control deprivation would impair some 

participants' ability to devote full attention to the word task. The impairment of 

cognitive resources would reduce those participants' ability to concentrate on the 

word task, which would in turn decrease their performance on the task. 

The results did not support the predictions-the participants who had expe

rienced control deprivation on the noise task completed just as many words (on 

average) as did the participants who had not experienced control deprivation. 

Many researchers would have taken this as evidence against the hypothesized 

effect of control deprivation on cognitive performance. However, the researchers 

who conducted this study paid careful attention to the participants' responses 

to the measure of cognitive pcrf{Jrmance. When examining these responses, the 
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researchers realized that some participants had not followed the instructions to 

continue to the next scrambled word only aher successfully unscrambling the pre

vic)US word. That is, some participants either had forgotten the instructions or had 

consciously chosen to ignore them. Closer inspection revealed a group difference 

in this "cheating" behavior-more participants in the control deprivation group 

"cheated" as compared with the control group. 

What docs this group difference suggest about the psychological processes 

that affect the measure of cognitive performance? Although the researchers had 

assumed that differences in performance would primarily ref1ect differences in 

attentional processes, their inspection revealed at least one other process that 

affected performance. Specifically, "adherence to instructions" also had an effect on 

performance because the participants who "cheated" were able to unscramble more 

words correctly. It is possible that their hypothesis was actually correct-that con

trol deprivation impairs attention, which reduces cognitive performance-but the 

participants who had experienced control deprivation also cheated, which inllatcd 

their scores on the measure of cognitive performance. 

Hopefully, this example illustrates the important point that construct validity 

can be evaluated in part by considering the processes involved in responding to a 

measure. In this example, the word task did not have strong validity as a measure 

of attention-based cognitive performance. The researchers' laudable attention to 

their data revealed that the word task also might have been affected by the partici

pants' adherence (or lack thereof) to the task instructions. In sum, their research 

is inconclusive regarding their original hypotheses, but their attention to response 

processes raises intriguing issues regarding the association between control depri

vation and rule adherence. 

Validity Evidence: Associations With Other Variables 

A fourth type of validity evidence involves the associations between test scores 

and other variables. As illustrated in Figure 8.1, the contemporary view of validity 

emphasizes the theoretical understanding of the construct f(Jr which test scores 

arc to be interpreted. Based on this view, we need to consider the way in which 

that construct might be connected to other relevant psychological variables. If 

respondents' test scores arc to be interpreted as reflecting the respondents' standing 

on a specillc psychological construct, then our theoretical understanding of· that 

construct should lead us to expect that test scores will have particular patterns of 

associations with other variables. 

For example, if the RSEI is to be interpreted as a measure of global self-esteem, 

then we should think carefully about the nature of glob<li self-esteem. Specifically, 

we should consider the way in which global self-esteem is associated with other 

psychological constructs such as happiness, depression, intelligence, social nwtiva

tion, assertiveness, and so on. Our theoretical perspective on self-esteem might lead 

us to believe that people with high levels of self-esteem should be relatively happy, 

relatively nondepressed, and relatively highly socially motivated. In addition, our 
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theoretical perspective might stale that sclrcstcem is unrelated to intelligence

people with low levels of self-esteem arc equally intelligent, on average, as people 
with high levels of self-esteem. Thus, our theoretical perspective on self-esteem sug
gests a particular pattern of associations between self-esteem and other psychologi

cal constructs. If RSEI scores can be validly interpreted as a measure of self-esteem 
(as we understand it), then we should find a particular pattern of associations 
between J{SJ:I scores and measures of happiness, depression, social motivation, and 

intelligence. 

Thus, the fourth type of validity evidence involves the match between a me<l

surc's nctuol associations with other measures and the associations that the test 

slioult! hove with the other measures. If a lest's pattern of actual correlations with 

other tests matches the pattern of correlations that our theoretical perspective 

leads us to expect, then we gain evidence supporting the interpretation of the lest 

as a measure of the construct in question. For example, imagine that we conduct a 

study in which respondents complete the RSLI along with measures of happiness, 

depression, social motivation, and intelligence. If we find that the RSEI is indeed 

positively correlated with happiness and social motivation, negatively correlated 

with depression, and uncorrclatcd with intelligence, then we gain confidence that 

I{SEI scores can be interpreted validly as a measure of self-esteem. Conversely, if 

a test's pattern of actual correlations with other tests docs not match the pattern 

of correlations that our theoretical perspective leads us to expect, then we have 

obtained evidence ogoinst the interpretation of the test a� a measure of the con

struct in question. Indeed, if we find that RSEI scores <ll"C uncorrelatcd with happi

ness and social nwtiv<ltion, then we lose confidence that it should be interpreted as 

a measure of -;elf-esteem. 

When evaluating the pattern of validity associations between a measure 

<lnd other measures, it is imporLlnt to consider several types of evidence. 

Convergent evidence is the degree to which test scores arc correlated with tests 

of related constructs. In the global self-esteem example, our theoretical per

spective slates that happiness and social motivation arc related to self-esteem. 

In addition, our theoretical perspective states that depression is related to self

cstcTm, albeit in a negative direction. Thus, if our research reveals that the RSJ-:1 

is in li1ct positively correlated with measures of happiness and social motivation 

and negatively correlated with measures of depression, then we have obtained 

convergent evidence. 

Often in the process of cvalu<lting the validity of test interpretations, researchers 

will <lsk respondents to complete several difli:rcnt measures of the same construct. 

1:or example, we might ask our respondents to complete the RSEI, along with 

other measures of sclf-e-;tccm, such a\ the Coopersmith (I 967/ I 9K I) Self-Esteem 

Inventory and MSLI. We would n<lt urally expect to find sl rong posit ivc correlations 

lwtwecn the RSLI and other measures of self-esteem. If we bib! to lind this, then 

we would question the validity of the RSEI as a measure of sell-esteem. Similarly, 

I"C'>carcher-; might include responses by "inl(>rmants" to evaluate a test. For example, 

we might <lsk each of our respondents to recruit a close acquaintance, and we could 

ask the <lCt]Uainlanccs to rate the self-esteem of the respondents. Although we 

might not expect to find an extremely high correlation, we would likely expect to 
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find a positive correlation between our respondents' self-reported RSEI scores and 

the RSEJ ratings provided by their acquaintances. That is, we would expect to find 

that the respondents who described themselves as having relatively high self-esteem 

were described by their acquaintances as having relatively high self-esteem. In sum, 

convergent evidence often comes in the form of correlations among different ways 

of measuring the same construct. 

When evaluating the pattern of correlations between a measure and other mea

sures, we must also consider discriminant evidence. Oiscriminont evidence is the 

degree to which test scores arc uncorrclatcd with tests of unrelated constructs. In 

the global self-esteem example, our theoretical perspective states that intelligence 

is unrelated to self-esteem. Thus, our research should reveal that the RSEI is in fact 

uncorrelated (or only weakly correlated) with measures of intelligence. If we found 

that RSEI scores were actually positively correlated with intelligence, then the RSEI 

would lack discriminant validity as a measure of self-esteem. That is, the RSL! 

would appear to measure more than just self-esteem. 

Discriminant evidence is an important but perhaps subtle concept. Whether 

a measure is being used for research purposes or for applied purposes, test users 

must be confident that they know exactly which psychological vari<lhlcs are being 

measured. Consider a study that might be conducted by a developmental psycholo

gist. The researcher might be interested in the association between sclf�cstcem and 

academic ability. The researcher might recruit a sample of high school students to 

complete the RSEI, and he might also obtain the students' permission to get their 

standardized academic achievement lest scores from their academic records. l-Ie 

computes the correlation between RSEI scores and academic achievement scores, 

and he finds a correlation of .40. He interprets this as indicating that students who 

have relatively high self-esteem tend to pcrl(mn relatively well in school. On the 

basis or these results, he might even suggest th<Jt schools devote resources toward 

increasing students' self-esteem. The conclusions might be considered to h<1ve 

important implications for psychological theory. They might even inllucncc the 

way school systems spend money. 

lkforc putting too much con fidcnce in the researcher's conclusions, we should 

carefully consider the methods used in his study, including the discriminant v<did

ity of his supposed measure of self-esteem. \IVhcthcr his conclusions arc correct 

depends in part on the degree to which the RSLI has discriminant validity as a mea

sure of self-esteem. If scores on the RSLI arc in i:1ct highly correlated with measures 

of intelligence, then the RSI:I lacks discriminant v<1lidity and is at least partly a mea

sure of intelligence. Thus, the corrdation found by the researcher might be more 

accurately interpreted as indicating that students who have relatively high intelli

gence tend to perform relatively well in school. Indeed, it is possible that the trait of 

scll�cstccm is actually unrelated to ac<Jdemic pcrJ(mnance and that the researcher 

h<lS made a serious error in his conclusions. This error could have harmed psycho

logical theory, and it could lead to wasteful spending of limited school resources. 

Another con11non distinction related to this type of evidence is the distinction 

between concurrent validity evidence and predictive validity evidence. Conmrrcnt 

Vilfidity evidence refers to the degree to which test swrcs arc correlated with other 

relevant variables that arc measured 111 the SIIIIIC ti111e as the primary test of interest. 
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For example, the website of the College Board, the company that administers the 

SAl� tells students that the SAT Reasoning ]est "is a measure of the critical thinking 

skills you'll need fi:Jr academic success in college" (College Board, 2006). How could 

we evaluate the validity of the SAT as a measure of the skills needed for academic 

success? One possibility would be to have students complete the SAT during their 

senior year in high school and then correlate their SAf scores with their high school 

grade point average (GPA). That is, we could examine the correlation between their 

SAf scores and the GPA scores that were obtained at more or less the same time the 

students responded to the SAl'. Predictive validity evidence refers to the degree to 

which test scores are correlated with relevant variables that arc measured at 11 filture 

point in time. For example, another way of evaluating the validity of the SAT is to have 

students complete the SAT during their senior year in high school and then correlate 

their SAT scores with the GPA obtained during their freshman year in college. That is, 

we could examine the correlation between students' SAT scores and their GPA scores 

that were obtained a year or more after they took the SAT Although the distinction 

between concurrent and predictive validity evidence is traditionally important, the 

larger point is that both concepts refer to the match between test scores and other 

relevant variables. As we discussed earlier, the match between test scores and other 

relevant variables is referred to as convergent validity. Thercf(xc, concurrent validity 

and predictive validity arc essentially varieties of convergent validity. 

There are many important issues involved in evaluating convergent and discrim

inant evidence, and such evidence is arguably the most important facet of valid

ity. The current description has focused mostly on their conceptual meaning and 

importance. Because of the importance of convergent and discriminant evidence, 

the next chapter will explore many additional issues in greater detail. 

Validity Evidence: Consequences of Testing 

As discussed earlier, one key difference between the contemporary perspective on 

validity and the traditional three-bceted perspective on validity is that the con

temporary perspective emphasizes the primacy of construct validity over content 

validity and criterion validity (more will be said about this later). However, an even 

more radical and contentious difference may be the assertion that the social conse

quences of testing arc a beet of validity. 

The I 999 Sill ndards fcJr Jiducationalo1111 Psychological '/'est iug states that validity 

includes "the intended and unintended consequences of test use" (AERA, APA, & 

NCivlE, 1999, p. 16). Ivlorc specifically, Cronbach ( 191\8) states that test developers, 

users, and evaluators "have an obligation to review whether a practice has appro

priate consequences hlr individuals and institutions and especially to guard against 

adverse consequences" ( p. 6). 1-'or example, if a construct and its measurement seem 

to benefit males more than females in the workplace, then we should be concerned 

about the usc of the test. Arc test scores equally valid for males and fcrnales as a 

measure of the intended construct? How large is the difference in the benefits for 

males and ICnwlcs? 
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This suggestion that the consequences of testing be considered an intrinsic part 
of construct validity has generated quite a bit of debate. Almost everyone would 

agree that test users, test takers, and policymakers should be concerned about the 

possibility that a testing program might unh1irly and adversely affect some people 

more than others. However, not everyone agrees that the conscquellccs of a testing 

program should be considered a h1cet of the scientific evaluation of the meaning 

of" test scores. For example, Lees-Haley ( 1996) considers the assertion that validity 

includes an assessment of the actual and potential consequences of test usc, and 

he poses the following questions: "But whose consequences? And who will decide? 

Enemy psychologists? Pacifists? Generals? Whose social values sh<lil we usc to assess 

the consequential validity of these tests?" (p. 982). Clearly, the infusion of value 

judgments into an ostensibly objective scientific process raises some interesting 

issues. Reflecting one perspective on this, Lees-Haley bluntly argues that "conse

quenti<Jl validity is a dangerous intrusion of politics into science" (p. 982). 
Proponents of consequential validity would respond by arguing that science 

can never be separated from personal and social values. The questions that sci

entists investigate are shaped partly by society's values and partly by their own 

personal values. For example, the theoretical assumptions that scientists make arc 

partly shaped by value judgments, and even the labels that scientists attach to their 

theoretical concepts are partly shaped by values. As an example based on Messick's 

( 1989) important work, consider two psychologists who are developing a theory 

around a personality construct. One psychologist believes that the construct should 
be called "flexibility versus rigidity" to differentiate people who can adapt their 

cognitive and behavioral tendencies in response to changing circumstances from 

people who tend to retain cognitive and behavioral stability. The other psycholo

gist considers the construct and the psychological diflcrence that it is intended to 

reflect, but she believes that the construct should be called "confusion versus 

consistency." Which labels arc "scientifically" correct? Should a high level of cogni

tive Jnd behavioral variability be considered flexibility, or should it be considered 

confusion? Should a low level of cognitive and behavioral variability be considered 

rigidity, or should it be considered consistency? 

Similarly, consider the following personality characteristic-the tendency to 

experience, recognize, monitor, and understand emotional reactions. Imagine 

that a test developer creates a measure of this characteristic and happens to Jlnd 

that females score higher than males, on average. What would the test developer 

choose to call the lest and the construct that it is intended to measure? Knowing 

that females tend to score higher than males, would the test developer be likely to 

call it "emotional sensitivity"? !f results had indicated that males tended to score 

higher than females, would the test developer instead choose to call it "emotional 

intelligence"? t:urthermorc, imagine that a human resources director was told that 

you have a high level of "emotional sensitivity." Would his impression of you be 

different if he had been told that you have a high level of"emotional intelligence"? 

Which label would you prefer? Would you have been hired if the human resources 

director believed that you were "intelligent" instead of"sensitivc"? 

The point here is that value judgments have potentially subtle (and sometimes 
not so subtle) influences on the scientific process. Proponents of consequential 
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validity argue that such influences should be recognized and evaluated as clearly as 
possible in a testing context. 

The issue of test bias will be discussed in greater detail in Chapter II; however, 

some brief comnH:nts arc relevant here. Earlier, we suggested that consequential 
validity concerns the possibility tha l some people arc unl�1i rly and adversely affected 
by a testing program. It is important to recognize the difference between filirncss in 
testing and the consequences of testing. A test can have adverse consequences for a 

person or a group of people, and yet the test might still be bir. hH· example, imag

ine that females tend to score higher than males on measures of conscientiousness. 

And imagine that a human resources director uses a conscientiousness question

naire in the hiring process, resulting in fewer males being hired than kmales. Is this 

l�1ir? Docs it constitute "adverse consequences" I(Jr males? 

In this case, f�1irncss depends on the nature of the gender diflercncc in test scores. 

Why might females and males have different scores on the test? One possibility is 

that the test is biased. That is, the test docs not measure conscientiousness equally 

well for all pcoplc-I(Jr whatever reason, it is a good measure of conscientiousness 

for kmalcs but not I(Jr males. This is clearly an issue of validity-the test is not 

equ<dly valid lcll· all people. TherdcJre, hiring decisions m;1de partly on the basis of 

test scores may be uni�Jirly biased against males. 

J\ second possibility is that the test is not biased. That is, the test docs in li1ct 

measure conscientiousness cquall}' well for /Cmales and males; it just so happens 

that, on average, females truly tend to have higher levels of conscientiousness than 

do males. In this case, hiring decisions made partly on the basis of test scores arc not 

unl�1irly biased against males (assuming that there are empirical ch1ta demonstrat

ing that conscientiousness docs predict job perl(mnancc). 

What about the consequences of the testing program? Whether or not the test is 

l�1ir or biased against males, males arc "adversely alkcted" by the way the test scores 

arc used. l lowcvcr, the test is "biased" only if the test is not equally valid f(Jr females 

and males. The existence of a group ditTcrcncc in test scores, hy itself does not tell 

us whcther the lest is biased, in terms of its validity as a meawrc of a psychologie<li 

characteristic. In Chapter II, we will discuss these issues in more detail, and we will 

present ways of evaluating whether a test is aclu<llly biased between groups. 

Other Perspectives on Validity 

So l�u·, this chapter has conceptualized validity in terms of the degree to which test 

,cores Gill he accurately interpreted as rellecting a particular psychological construct. 

This perspective assuJncs that lest scores arc linked to a construct that has a clear 

thcorctic<Ii b<Jsis. Indeed, the types of evidence outlined above are related to the lit 

hct ween various aspects of test responses and various aspects of a construct's theo

retical h<l'iis. Because it tics test scores so strongly to tiK'OJ")'-bascd psychological attri

hutcs, thi' perspective is, in essence, a theory-testing view of validity. l lowcver, there 

arc at least three altcmativc perspectives on validity. You might encounter these alter

native perspectives in your readings or discussions, so we briclly describe them here. 
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Criterion vnlidity is an alternative perspective that de-emphasizes the conceptual 

meaning or interpretation of test scores. Test users might simply wish to usc a test 

to differentiate between groups of people or to make predictions about future 

outcomes. !:or example, a human resources director might need to usc a test lo 

help predict which applicants arc most likely to pcrf(mn well as employees. From 

a very practical standpoint, she might not care about the particular psychological 

construct that the test might be measuring, and she might not be concerned about 

the theoretical implications of high and low test scores. Instead, she t(JCuses on the 

test's ability to diflcrcntialc good employees from poor employees. If the test docs 

this well, then the test is "valid" enough for her purposes. 

r:rom the traditional three-bceted view of validity mentioned earlier, criterion 

validity refers to the degree to which test scores can predict speciflc criterion vari

ables. From this perspective, the key to validity is the empirical association between 

test scores and scores on the relevant criterion variable, such as "job performance." 

Concurrent validity and predictive validity have traditionally been viewed as two 

types of criterion validity because they refer to the association between test scores 

and speciflc criterion variables. According to the traditional perspective on crite

rion validity, the psychological meaning of test scores is relatively unimportant-all 

that matters is the test's ability to differentiate groups or predict specific outcomes. 

Although criterion validity is a relatively common term in psychometrics and 

has traditionally been viewed as a separate type of validity, the contemporary per

spective suggests that evidence of criterion associations should be subsumed within 

the larger and more important concept of construct validity (Messick, 1989). From 

this perspective, criterion validity is not sufficient on its own, even f(n purely 

practical or applied contexts such as employee screening. Indeed, Messick (I 989) 

suggests that 

even f(Jr purposes of applied decision making, reliance on criterion validity or 

content coverage is not enough. The meaning of the measure, and hence its 

construct validity, must always be pursued-not only to support test interpre

tation but also to justify test use. ( p. 17) 

Another alternative perspective on validity emphasizes the need to learn what 

test scores mean, rather than testing specific hypotheses about te't scores. That is, 

instead of assuming that the theoretical basis of a construct is fully I(Jrmed and 

then testing specific hypotheses regarding that theory, test developers ;md users can 

eva! ua te a test by assuming that the meaning of test scores is itself an interesting and 

important question to be addressed. Such an "inductive" approach to validity Jlro

cccds by cxami n i ng the associations bet ween lest scores and a large set of potentially 

important and relevant psychological variables (Cough, 1965; (h.er, llJ/IlJ). In con

trast, the perspective emphasized so Lu- in this chapter has been C<llled a "deductive" 

approach to validity (Ozer, llJ8lJ) because lest evaluation proceeds by deducing a 

particular hypothesis from the theoretical basis of a construct <llld then c'mpirically 

evaiLwting the accuracy of the hypotheses. Whereas the deductive perspective is a 

theory-testing approach, the inductive perspective is a more exploratory approach. 

The goal of an inductive approach is lo understand the fulllm'<ming of test scores, 
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beyond the meaning that might be constrained by reference to a specific construct. 

From this approach, researchers "let constructs evolve as a planned part of the test 

construction process itself' Dcllegen & Waller, 2008, p. 262). 

The inductive approach to validity might be most relevant within a research 

context, and it can be seen as a back-and-forth process. In an applied context, test 

developers and test users will probably focus on a test f(lr the purposes of a well

specified use, such as predicting job performance. However, in a research context, 

test developers and test users might be interested in tackling a new area of interest 

and developing a theoretical foundation for the area. In such a case, test construc

tion and evaluation go hand-in-hand with the researcher's evolving understand

ing of the constructs being measured. For example, Tcllegen and Waller (2008) 

describe the development and evaluation of the Multidimensional Personality 

Questionnaire ( MPQ). In its current version, the MPQ consists of II primary 

personality f�1ctor scales (e.g., Social Potency, Achievement, Stress Reaction), which 

are clustered into four broad traits (e.g., positive emotional temperament, negative 

emotional temperament). The development of the MPQ was motivated by a desire 

"to clarify and highlight the nature of several 'focal' dimensions repeatedly empha

sized or adumbrated in the personality literature" (p. 264). During the years-long 

development of the MPQ, items were written, administered, analyzed, and rewrit

ten repeatedly. During this process, the researchers refined their understanding of 

the constructs that seemed to be emerging from the M PQ. 

Although the inductive approach to test validity can be informative in terms of 

expanding our understanding of a measure's theoretical and practical implications, 

it is not commonly emphasized in the testing literature. More typically, tests are 

typically developed with a focus on birly specific well-conceived constructs, and 

test developers usually spend their energy evaluating test score interpretation with 

keen regard to those specific constructs. Less often do test developers spend time 

and eff(Jrt examining a more comprehensive view of the test's implications. 

A third alternative perspective on test validity strongly emphasizes the connec

tion between tests and psychological constructs. Borsboom, Mellenbcrgh, and Van 

1-leerden (2004) suggest that the sole issue in test validity is whether test responses 

arc affected by the construct that the test is intended to measure. That is, a test is 

a valid measure of a construct if and only if the intended construct truly influ

ences respondents' performance on the test. From this perspective, Borsboom ct 

al. reject the argument that the consequences of testing are relevant to test validity. 

They even argue that the correlations between test scores and measures of other 

attributes arc not directly relevant to test validity. Instead, they suggest that "the 

primary objective of validation research is . . .  to offer a theoretical explanation of 

the processes that lead up to the measurement outcome" !p. I 067). 

The perspective offered by Borsboom et a!. (2004) is an interesting contrast and 

complement to the perspectives presented in this chapter. It is clearly at odds with 

an approach that emphasizes criterion validity and with the inductive approach to 

validity. These two approaches either minimize the importance of psychological 

constructs altogether (criterion validity) or suggest that the test developer's under

standing of a construct evolves and changes along with the test itself (inductive 

approach). In contrast, the perspective offered by Borsboom et a!. emphasizes 
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the importance of a test developer's well-articulated theoretical understanding of 

a single construct in test development and validity. That is, constructs not only 

exist and arc a crucial part of validity, but they should be the guiding forces in 

the test development and validation processes. In the context of the main defini

tion of validity otlercd in this chapter (based on the AERA, APA, & NCME, I 999, 

Standards for Hducotionnl nnd Psyclzologica/ Testing), the Borsboom ct al. approach 

wendel seem to reject much except for the importance of constructs and the theo

retically based examination of the response processes underlying performance on 

the test. 

Contrasting Reliability and Validity 

With the concept of validity now in mind, it might be useful to contrast validity and 

reliability. These two concepts arc fundamental to a sophisticated understanding of 

psychometrics, and it is important to understand the difference clearly. 

Recall Ji·om previous chapters that a test's reliability is the degree to which differ

ences in test scores reflect differences among people in their levels of the trait that 

affects test scores. At this point, we might add a bit to that definition and suggest 

that a test's reliability is the degree to which differences in test scores reflect differ

ences among people in their levels of the trait that affects test scores, 1vlwtcvcr tlzot 

trait might/}(:. That is, we can discuss the reliability of a particular test without even 

being aware of the potential interpretation of lest scores or the nature of the trail 

being measured by the test. 

On the other hand, validity is intrinsically tied to the interpretation of test scores 

and to the nature of the trait supposedly being assessed by the measure. In a sense, 

reliability might be considered to be a property of test responses, whereas validity 

is a property of the interpretation of test scores. That is, reliability is a relatively 

simple quantitative property of test responses, but validity is an issue more tied to 

psychological theory and to the implications of test scores. 

Even though they are separate concepts, reliability and validity arc linked 

both conceptually and statistically. Conceptually, for many areas of interest in 

the behavioral sciences, validity requires reliability. For example, intelligence is 

usually conceptualized as a psychological trait that is quite stable across time 

and situations�your true level of intelligence does not change very much from 

week to week or month to month. Therefore, a test that is intended to be a 

measure of intelligence should result in scores that arc reasonably stable across 

time. That is, a valid test of intelligence will be reliable. Put another way, if a 

test's scores arc not stable across time (i.e., if the lest docs not have test-retest 

reliability), then it cannot be valid as a rneasure of intelligence. Even though 

validity often requires reliability, the reverse is not true. i\ measure might have 

excellent internal consistency and very high test-retest reliability, but we might 

not interpret it in a valid manner. In sum, a test must be reliable if it is to be 

interpreted validly, but just because a test is reliable docs not mean that it will 

be interpreted validly. 
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Summary 

This chapter presented the conceptu<li basis of test validity. As defined in the 

c')tnndnrdsjin·I�duwtionn/ nnd Psyclwlogiwl Testing, validity is "the degree to which 

evidence and theory support the interpretations of test scores entailed by the pro

posed uses" of a test (!\ERA, ;\PA, & NC!vJE, 1999, p. 9). We described several key 

implications of this way of thinking about validity-validity concerns the interpre

tation of test scores, it is a matter of degree, and it is based on empirical evidence 

and theory. Because empirical evidence is a key consideration in evaluating the 

validity of test scores, we also described five types of evidence that arc relevant to 

tcsl valiclity-tesl content, internal structure, response processes, associations with 

other variables, and the consequences of testing. We then contrasted the contempo

rary view of validity with traditional perspectives that are still commonly discussed 

and with reliability. Pinally, we reiterated the importance of validity in terms of its 

implications for research and for real-world decision making. 

Suggested Readings 

;\ recent classic in test validity, this is an extensive summary of the perspective of a 

nwjor f"igurc in test validity: 

Messick, S. ( 19il9). Validity. In R. L. Linn (Ed.;, I:'dumlional IIICIIStliTiltCIII Urd cd., 
pp. 13--103). New York, NY: Ivlaclllillan. 

Another thorough summary of advances in test validity: 

Shepard, 1 .. /\. ( 19'U). Fv<lluating test validity. In L. ll<lrling-llammond (Ed.), RcvicJV of' 
rcsmrc/1 iu cdumliou (Vol. 19, pp. 405-450). Washington, I)(:: /\merican 1:ducational 
Research ;\ssociation. 

This is a classic article in the history of test validity, being one of the most cited 

articles in all of psychology: 

l ;ronbach, 1.. )., & Ivlcchl, 1'. L ( 1955). Construct validity in psychological tests. 
l'.<;•c!wlogiml !iu!lci in, 51, 2ill-302. 

;\n interesting complement to the construct validity f(Jcus of much recent theorizing: 

:-,chmidt, F 1.. ( 19ilil). V;didity generalization <llld the future of criterion-related valid
ity. In II. W;1incr & II. I. Br;Jun (l·:ds.), 'li·s/ volidiiy (pp. 17.l-lil9). 1-lillsdale, N): 
l.;nvrcnce J·:rllwum. 

This is an interesting commentary on the notion of consequential validity: 

l.cTs-llaky, 1'- It ( 19%). Alice in validitybml, or the d<lngcrous consequences of consc
qucnti;d v;didity. !\lllcrimn l':;yclw!ogisl, 51, 9KI-9il.\. 

This is the most recent view on validity from the perspective of three major org<l

ni·;ations concerned with psychological testing: 

1\merie<Jn l'.ducltion;il l<csc;lrch i\ssoci;ltion, ;\mcrie<lll l'sychologie<d i\ssociation, and 
National ( :ouncil on Ivlc;lSlll'l'nlcnt in Education. ( 1999). _)'/11111/nrds fin· edum
tionol 111111 psyc/Jologiml /csling. Washington, llC: i\lllcrican J·:ducational J(cscarch 
Association. 



CHAPTER 9 

Estimating and Evaluating 
Convergent and Discriminant 
Validity Evidence 

C
hapter R presented conceptual perspectives on validity, and it summarized f!vc 

types of evidence that arc used to gauge construct validity. J\s described in that 

chapter, convergent and discriminant evidence reflects the degree to which 

test scores have the "correct" patterns of associations with other variables. In this 

ch<lpter, we focus more deeply on the way in which convergent and discriminant 

evidence can be evaluated, and we discuss issues bearing on the interpretation of 

convergent and discriminant evidence. 

'](>restate the issue briefly, psychological constructs <ll'l' embedded in a theoreti

cal context. That is, the conceptual foundation of a construd includes the connec

tions between the construct and a variety of other psychological constructs. The 

interconnections between a construct and other related constructs have been C<llled 

<1 IIOIIIOiogiml network, which refers to the network of "meaning" sur rounding a 

construct (Cronbach & Meehl, 1955). 1:or example, 1\;lllmeister and Leary ( 1995) 

introduced the concept of a "need to belong," which was dcllned as the "drive to 

l(mn ;md maintain at least a minimum qu;mtity of lasting, positive, and signifi

cant interpersonal relationships" ( p. 497). Although they hypothesized that this is 

a fundamental human need, they also observed th;ll peof'le diller in the degree 

to which they experience this need. Some people have a rel;ltivcly great need to 

experience frequent interactions within close and caring relationship<>, while other 

people seem to need such interactions less. Leary, Kelly, Cottrell, and Sdneindorkr 

(2006) theorized about the nomological network surrounding the need to belong. 

Specifically, they suggested that the need to belong was somewhat similar to charac

teristics such as the need for afllliation, the need f(>r intimacy, soci;lhility, and extra

version. h1rthermore, the need to belong W<lS essentially unr elated to constructs 

'>uch as conscientiousness, openness to experience, and self-esteem. 

221 
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The nomological network of associations among constructs dictates a particular 

pattern of associations among measures of those constructs. The nomological net

work surrounding a construct suggests that a measure of the construct should be 

strongly associated with measures of some constructs but weakly correlated with 

measures of other constructs. For example, Leary ct al. (2006) predicted that their 

10-item "Need to Belong" (NTB) measure would be weakly to moderately corre

lated with measures of need for affiliation, sociability ,  and extraversion; negatively 

correlated with a measure of social isolation; and essentially uncorrelated with 

rneasurcs of conscientiousness, openness to experience, and self-esteem. Their 

predictions guided their evaluation of the convergent and discriminant quality of 

the NTB. 

A crucial part of the validation process is estimating the degree to which test 

scores actually show the predicted pattern of associations. In this chapter, we 

present some methods used in this process, some important factors affecting the 

outcome of the process, and some key considerations in interpreting the outcomes. 

Methods for Evaluating 
Convergent and Discriminant Validity 

There are at least four methods used to evaluate the degree to which measures show 

convergent and discriminate associations. These procedures differ in several ways

some are more conceptually complex than others; some can be more statistically 

complex than others; some arc decades old, while others are relatively new; and 

some require more explicit predictions than others. Despite these differences, the 

f(lllowing methods are (or might become) common and useful ways of evaluating 

convergent and discriminant validity evidence. 

Focused Associations 

Some measures have clear relevance for a few very specific variables. Evaluating 

the validity of interpretations for such measures can f(Jcus on the associations 

bet ween test scores and those relatively few specific variables. In a sense, these spe

cific associations arc "make-or-break" in terms of the convergent and discriminant 

validity evidence f(Jr such measures. Research verifying those crucial predicted 

associations provides strong validity evidence, but research fi1iling to verify the 

associations casts serious doubts on validity. 

As mentioned in Chapter 8, the SAT Reasoning 'Jest is intended to be "a measure 

of the critical thinking skills [needed] f(lr academic success in college" (College 

Board, 2000). This description implies that two kinds of variables might be par

ticularly critical f(ll" evaluating the SAT Reasoning Test. First, as a measure of "criti

cal thinking skills," the SAT should be associated with other measures of relevant 

critical thinking skills. Second, because it is intended to assess a construct required 
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for "academic success in college," the SAT should be associated with measures of 

collegiate academic performance. 

In establishing the quality of the SAT, the College Board appears to be most con

cerned with the latter issue. Several documents that arc made available to students, 

educators, and prospective researchers emphasize the correlation between SAT 

scores and academic indicators such as first-year college grades. For example, the 

SAT Program 1-Jmui!Joolc, published by the College Board for school counselors and 

admissions officers, includes several references to validity (College Board, 2006). In 

the first section regarding validity, the Hmui!Joolc states that a study of more than 

ll 0,000 students from more than 25 colleges revealed an average corrclat ion of 

.55 between SAT scores and freshman grades. The 1-illnd!Joolc goes on to mention 

additional studies providing predictive validity evidence for the SAT in relation to 
college grades. Clearly, the College Board focuses its validity argument heavily on 

the correlations between the SAT and a specific set of criterion variables related to 

academic performance in college. 

Thus, one method for evaluating the validity of test interpretations is to focus 

on a few highly relevant criterion variables. 'Ib the degree that test scores are indeed 

correlated with those crucial variables, test developers and test users gain increased 

confidence in the test. Those correlations, sometimes called validity coeUfcicnts, 

arc fundamental for establishing validity. If research reveals that a test's validity 

cocftlcicnts arc generally large, then test developers, users, and evaluators will have 

increased confidence in the quality of the test as a measure of its intended construct. 

Validity generalization is a process of evaluating a test's validity coefficients across 

a large set of studies (Schmidt, 1988; Schmidt & Hunter, 1977). Unlike the SAT, many 

measures used in the behavioral sciences rely on validity evidence obtained from 

relatively small studies. In fact, many if not most validity studies include fewer than 

400 participants-particularly if those studies include anything besides self-report 

data. Often a researcher conducting a single validity study will recruit a sample of 50 
to 400 participants, administer the measure of interest to those participants, assess 

additional criterion variables deemed relevant, and compute the correlation between 

the scores on the measure of interest and scores on the criterion measures. Such 

studies are the basis of many measures used for research in personality psychology, 

clinical psychology, developmental psychology, social psychology, organizational 

psychology, and educational psychology. Individual validity studies oi'lcn include rel

atively small samples due to limits on researchers' time, funding, and other resources. 

Although studies with relatively small samples are common and are conducted I(H· 

many practical reasons, they do have a potentially important drawback. Specifically, 

a study conducted at one location with one type of population might produce 

results that do not generalize to another location or another type of population. 

For example, the results of a study of bank employees might demonstrate that scores 

on the Revised NEO Personality Inventory (Nl\0-PI-R) Conscientiousness scak are 

relatively good predictors of job pcrhJrmance hlr bank tellers. Although this is potentially 

valuable and useful evidence for human resources directors in the banking indus! ry, do 

these results ol1er any insight t(H· human resources directors in the accounting indus

try, the real estate industry, or the sales industry? That is, is the association between 
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conscientiousness scores and job pert(mnance strong only l(n· bank tellers, or dol'' 

generalize to other groups? Perhaps the trait of conscientiousness is more relevant /(. 

soniC kinds ofjobs than l(>r others. If so, then we should not assume that the NH )-I'l-l 

Conscientiousness scale is a valid predictor of job perl(xmance in all prol·essions. 

Validity generalization studies are intended to evaluate the predictive utility of, 
test's scores across a range of settings, times, situ<1tions, and so on.;\ validity gcnn 
alization study is <1 form of meta-;malysis; it combines the results of several Slll<lfic1 
individual studies into one large analysis (Schmidt, llunter, Pearlman, & l lirsh, 
1Slil5). !:or example, we might lind 25 studies examining the association between 

the NEO-PJ-R Conscientiousness scale and job pert(mnance. One of these stud
ies might have examined the association among bank tellers, another might have 
examined the association within a sample of school teachers, another might haVe· 
examined the association within a sample of salespersons, and so on. Each studv 
might include a different kind of profession, but each study also might include ;1 
diltcrcnt W<1Y of measuring job pcrt(mnancc. 1:or instance, some studies might h<il"l' 
relied on managers' ratings of employees' job perf(>rrnance, while other studil·s 
might have used more concrete measures ofjob perf(Jrmance, such as "dollars sold_'· 

Thus, we might lind that the 25 diflerent studies reveal apparently different results 
regarding the strength of association between NEO-PJ-1{ Conscientiousness scores 
;1nd job perl(mnance. 

Validity generalization studies can address <lt lcast three important issues. First, 

they can reveal the general level of predictive validity across all of the smaller indi-

vidual studies. 1:or example, the analysis of all 25 studies in our conscientiousnc'ss 

example might reveal that the average validity corrcl<ltion between NE0-1'1-1( 

( :onscientiousness scores and job pert(mnance is .30. Second, validity gener;1fiza

tion studies can reveal the degree of variability among the smaller individual stud

ies. We might find that among the 25 studies in our generalization study, some lwve 

quite strong associations between NEO-PI-1< Conscientiousness scores and job 

perlcmnance (say correlations of .40 to .50), while others have much weaker <Jsso

cia t ions (say correl<ll ions of .00 to . I 0). I{ we li.>Und this kind of va riabi I it y, I hen we 

might need to conclude that the association between NEO-PI-R Comcientiou.sJ1ess 

scores <11lll job pcrl(>rm<1ncc does not generalize across the studies. Converse!)'. 

our validity gcner<1lization study might reveal that among the 25 studies in our 

generalization study, almost all lwve moder<lle associations between NI�0-1'1-R 

Conscientiousness scores and job peri(Jrmance (say correlations of .20 to .40). If 

we l(>und this smaller amount of variability among the 25 studies, then we might 

conclude that the <1ssociation between NH )-PI-R Conscientiousness scores and job 

perl(mll<1ncc docs in I�Kt generalii'.l' across the studies quite well. Either wa)', the 

finding would be important inl(mnation in evaluating the validity and usc of the 

NE0-1'1-R in hiring decisions. 

The third issue that can be addressed by V<1lidity generalization studies is 

the source of variability among studies. If initial analyses reveal a wide range 

of v<didity codficienh among the individual studies, then further analyses 

might cxpl<1in why the studies' results differ from each other. For example, 

we might f"ind <1 methodological difference among studies that corresponds to 

the validity cocfl"icient diflcrenccs among the studies. We might discover th<11 
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strong validity coefficients were t(nmd in studies in whidl managers provided 
ratings of job pcr/{nmance hut th<lt weaker validity coefficients were found in 
studies in which concrete measures such as "dollars sold" were used to <ls.sess 
job perf(nmance. Thus, differences in the measurement of the criterion vari
able seem to contribute to diflt'ITIJCes in the size of the V<llidity coefficient. 
This kind of methodological source of variability should be comidered when 
:valu<lting the implic.Jti(;ns of the general level and variability ofv<llidity cocf
IJcients across studies. 
. 

In sum, some psychological tests arc expected to be strongly relevant to <l 
lew specific variables. If research confirms that such <1 test is indeed strongly 
associated with its specific criterion V<Hiablcs, then test developers, users, and 
evalu<Jtors gain confidence th<Jt the test scores have good convergent V<llidity as 
a measure of the intended construct. J\ v<llidity gencr<dization study evaluates 
the degree to whid1 the association between a test and an import<mt criterion 
variable generalizes across individual studies that cover <l range of popuLJtions, 
settings, and so on. 

Sets of Correlations 

The nomological network surrounding a construct does not alw<lys f(Kus on a 
small set of extremely relevant criterion variables. Sometimes, a construct's nomo
logical network touches on a wide varictv of other constructs with differing levels 
of association to the mai 11 construct. In :uch cases, rese�Jrchers evaluating conver
gent and discriminant validity evidence must ex<unine a wide r<lnge of criterion 
variables. 

. 
In such cases, rese<Jrchers often compute the correlations between the test of 

mtcrest and llle<Jsures of the manv criterion variables. They will then "eyeball" the 
correlations <llld make a somewha,t subjective }udgment <Jbout the degree to which 
the correlations match what would be expected on the basis of the nomologie<ll 
network surrounding the construct of interest. 

1-'or ex<lmple, !lit/ et al. (2()();l) developed <l new me<Jsure o( pcrkctionism, 
and they presented evidence of its convergent <Jnd discri111inant v�diditv. The 
Perfectionism Inventor)' ( 1'1) wns designed to me<Jsure eight L!L'l'ts of perfection
ism, so it was intended to have a nll,iltidimensiOIWI st1�ucture (sec the discus
sion on "internal structure" in Ch;1pter H). Specilic.dly, the l'l W<JS designed to 

<lsscss hccts such as concern over mistakes, organization, planfulncss, striving 
lor excellence, and need l(>r <lpprov<JI. 'I(> cv<lluatc the convergent ;111d discrimi
nant validity evidence, p<lrtiL·ipants were asked to complete the PI along with 
llle<Jsures of 23 criterion V<Jriablcs. Criterion vari<Jblcs included other me<lSllrL'S 

of' perfectionism. In addition, bcclllse perl(:ctionism i.s associ�1tcd with various 
kinds of psydwlogicaJ distress, the criterion v;Jri<Jb/cs included measures of 
severn! psychologicll symptoms (e.g., obsessive-com pulsivc disorder, a nx iet y, 
lear of ncgntive cvnluntion ). The correlations between the PI scales and the 23 
criterion scales were presented in <1 correlation matrix that included more than 
200 correlations (sec 'Ld>le lJ.I ). 

225 



Table 9.1 Example of Sets of Correlations in the Validation of the Perfectionism 
Indicator Scales and Related Measures 

Scale CM HS NA OR pp 

Perfectionism: MPS-P 

Concern owr mistakes .82 .-13 .58 .18 .38 

Doubts about actions .63 r ·-· I .60 .24 .20 

Parental criticism AI ,-
,4,..) .20 -.03'" .60 

Parental expectations .31 ,.,. .18 .07"' .85 o.O:../ 

Personal standards AI .50 .36 ...!5 .3 

Organization .12 .36 .18 .89 .II*" 

Perfectionism: MPS-HFb 

Self-oriented AI .-12 .34 .-17 .42 

Other oriented .33 .62 .14** .29 .30 

Socially prescribed .65 .35 .-19 .16u .58 

Symptoms: BSI' 

Somatic complaints .35 .14* .31 .13" .11* 

Depression ...!6 .16** .46 .03'" .15** 

Obsessiw-compulsive AO .14** .46 .08"' .10** 

Anxiety .42 .28 .42 .22 .25 

Interpersonal sensitivity .52 .18 .68 .17 .13* 

Hostility .41 .30 .31 .10* .21 

Inventory: Correlations Between Perfectionism 

PL 

.30 

.38 

0'1"' 
0 � 

.06'" 

.44 

.49 

.45 

.26 

.21 

.13" 

.18 

.19 

.25 
-,., 

.� .. 

o::;m 

RU 

.70 

.70 

.32 

.29 

.52 

.31 

.55 

.37 

.61 

.34 

.46 

.46 

.49 

.56 

.39 

SE CP SEP 

.52 ...!7 .78 

...!3 .-17 .67 

.17 .14 ...!9 

.32 .23 .53 
-., 

./ � .70 .55 

.51 .76 .23 

.79 .71 .57 

.42 .53 .36 

.42 .38 .74 

.17 .19 .35 

.13* .17 .49 

.18 .19 .45 

.29 .35 .50 

.27 .28 .60 

.15** .20 ..!2 

PI-C 

-, 
.I� 

.65 

.36 

...!3 

.71 

.55 

.73 

.51 

.65 

.31 

.39 

�-·- I 

.49 

.51 

.36 



Phobic anxiety .39 .1-1** .39 .LI' .15** .13* .39 .15*' .21 .-12 r ·-I 

Paranoia .-18 .28 .-19 .18 .21 .21 .54 .30 .33 .55 .51 

Psychoticism .-19 .19 ...18 .09"' .16** .19 .49 .17 11 .51 .-±3 

Global Severity Index .54 .24 s-·- ::J .16 .20 .21 .57 .25 .29 .59 .51 

0 bsessive-Compulsive 
Inventory" 

Frequency .-±3 .24 .45 .39 .08'" .34 .52 .42 .-±7 .-±7 .54 

Distress .50 .28 .49 .40 .03"' .33 .60 .44 .48 .51 ')"7 ·- j 

Fear of negative .63 .26 .83 .16 .20 .31 .64 .33 .34 .73 .62 

evaluation" 

Social desirability: 1 -,. .. -. ,:'I -.17 -.09* -.04'" -.14** -.09* -.18 -.16 -.12** -.18 -.18 

l\1CSDS' 

SOURCE: Hill et al. (2004). Copyright© 2004 Journal of Personality Assessment. Reproduced by permission of Taylor & Francis Group (http://www 
. taylorandfrancis.com). 

NOTES: For all correlations, r < .001 (except as noted). CM = Concern Over Mistakes; HS = High Standards for Others; NA = Need for 
Approval; OR = Organization; PP = Perceived Parental Pressure; PL = Planfulness; RU = Rumination; SE = Striving for Excellence; CP = Conscientious 
Perfectionism; SEP = Self-Evaluative Perfectionism; PI-C = Perfectionism Indicator Composite score; MPS-F = Frost's Multidimensional Perfectionism Scale; 
MPS-HF = Hewim and Flett's Multidimensional Perfectionism Scale; BSI = Brief Symptom Index; MCSDS = Marlowe-Crowne Social Desirability Scale. 
0 n=613. 
b.n = 355. 
c n = 368. 
d n = 207. 
*p < .05 , one-tailed; **r < . 01, one-tailed; 11s p > .05 , all one-tailed. 
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'J(J evaluate the convergent and discriminant validity evidence, Hill <ind his L, 

leagues ( 2004) ca n:fully examined the correlations and interpreted 1 hem in kn 
of their conceptual logic. ror example, they noted that the Concern Over Mist;Ik 
scale of the PI was strongly associated with a Concern Over Mistakes se<1k fro 
a different measure of per!Cctionism. Similarly, they nolcd that the Striving J( 
Excellence scale of the PI was strongly associated with a Person;d St<l!ldards sc.I, 

(i.e., indicating high expectations for one's perlcmnance and an inclin;Ition I, 
base self-appraisal on pert(mn;Ince) and a Self-Oriented Perfectionism scdc (i.e• 
indicating unrealistic standards J(Jr performance <Ind the tendency to lix<IIL' 01 

imper!Cctions in one's perlcmJI<lllce) fi·om other measures of perfectionism. ThL'\ 
also examined the associations between the PI scales and the variom mcasurL\ 
of· psychological distress. For example, they noted that three of the PI scales 
(I J J{urnination, (2) Concern Over Mistakes, and (3) Need lc1r Approval-lvL'rv 
strongly <lssociatecf with fear of negative evaluation and with the frequency and 
severity of symptoms of obsessive-compulsive disorder. 

This approach to evaluating validity is common. Researchers gathn a i<lrge 

amount of data concerning the test of interest and measures from <1 variety of other 
tests. They then examine the panern of correlations, and they judge the degree to 
which the pattern generally "makes sense" given the conceptual meaning of tht· 
construct being assessed by the test. 

Multitrait-Multimethod Matrices 

( )ne of the most influential papers in the history of psychological measurement 
was published in I <JS<J by Campbell and hske. In this paper, Campbell and Fiske built 
on the concept of construct validity as articulated by Cronbach and Meehl ( I<J55). 1\s 

we have ali"C<ldy discussed, Cronbach and Meehl outlined a conceptual meaning of 

construct validity based on the notion of a nolnological network. Although their paper 

was a hugely important conceptual advance, Cronbach <l!ld Meehl did not presmt <I 

way to evaluate construct validity in a rigorous statistical manner. Campbell and hske 

developed the logic of a multitrait-multimethod matrix (1\t!Tl\t!Ml\t!) as a sl<ltistic<ll 

<Hid methodological expansion of the conceptual work done by ( :ronbach and J'vlcchl. 

For the <lnalysis of an MTMMM, researchers obtain measures of sever<d lr<Iits, 

e;H:h of which is measured through several methods. h>r example, researchers 

cv;duating a new self-report questionnaire of social skill might ask participants to 
compll'le the questionnaire ;dong with self-report' measures of several other traits, 

'iUch ,1s impubivity, conscientiousness, and emotional stability. In addition, the)· 

might ask dose acquaintances of the participants to provide ratings of the J-l<lrlici

pants' social skill, impubivity, conscientiousness, <llld emotional stability. hn<IIII', 

they 1night hire psychology students to interview each participant and then provide 

r;1tings of the participants' soci<II skill, impulsivity, conscientiousness, and emo
tional 'il<lhility. Thus, li1r each participant, the rese<Irchcrs obt<Iin dat<I relev<Inl to 

multiple traits (soci;d skill, impulsivity, conscientiousness, <llld emotional st<Ibility), 

e<Ich of which is measured through multiple methods (self-report, <lcquaini<Incc 

r;llings, <HJd interviewer ratings). 
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served through evaluating two importantly dilfercnl sources of variance that m1ght 
<lHect the correlations bl'!�een two measures-trait varinncc and method variance. 
'lb understand these sources of vari;Jnce, imagine that researchers examining the 
new self� report measure of social skill lind th<lt scores on their measure arc highly 
correlated with scores on n scll�rcport measure of emotional stability. VVhat docs 
this finding tell them? 

. 
Strictly speaking, the finding tells them that people who say that they arc n:la

tlvc/y wcially skilled tend to say that they are rel<1tivcly emotionally st;lbk. But docs 
this finding rellec t  n purely psychological phenomenon in terms of the associations 
between two constructs, or docs it rcilcct a more methodological phenomenon 
separate hom the two constructs? In terms of psychological phenomc11<1, it might 
indicate that the trait of social skill shares soml'lhing in common with the tr<lil of 
emotional stability. That is, the measures might share trait vari;lncc. For ex;lmplc, 
people who arc socially skilled might tend to become cmoti01wlly stable (perhaps 
because their social skill allows them to create social relationships that lwvc emo
tional benefits). Or people who arc enwtionaJJy stable might tend to become more 
sociaJJy skiJJed (perhaps because their stab ility aJJows thcn1 to be comfi>rt<lblc and 
effective in social situations). Or it might be that social skill and emotional stability 
arc hoth caused hy some other variable altogether (perhaps there is a genetic basis 
that influences both stability and social skill). Each of these explanations indicates 
that the two traits being assessed-social skill and emotional stability-truly over-
hlp in some way. Because the traits share some commonality, the measures of those 
tr;lits arc corrc/ atcd with each other. 

Des pile our i ncl ina tion to make a psyclwlogic;d interpretation of the correlation 
between social skill and emotional stability, the result might actu;dly have <1 rela
tively nonpsychological basis. Recall that our eX<lmplc was based on the correlation 
between self-report measures. Thus, the correlation might he produced simply by 
shared lllcthod Fariancc. Thil l  is, the corrcLllion is positive because it is based on 
two measures derived ti·om the same source-respondents' se/(-rcports in this case. 
When measures arc based on the same thlla source, they might slwrc propcrlit·s 
apart /i·om the lll <lin constructs being <lssesscd by the measures. 

h>r example, people might tend to sec themselves in very gencr;dizcd terms
either in generally "good" ways or in generally "h<1d" W<l)'S. Thcrdi>re, a positive 
correlation between self-reported social skill and sc/f�rcportcd cnH>liOil<ll sl<lhility 
might be due solely to the t;lcl thnt people who report high fcvcb of social skill 
simply tend lo sec themselves in gcncr.tlly good ways; therdi>re, they ;dso !l'nd to 
report high lcvds of emotional stahilit)'· Simi/;n/y, people who report low levels of 
social skill simply tend to sec themselves in generally had ways; thercli>rc, they ;dso 
lend lo report low levels of emotional st<Jhility. ln this case, the app<lrcnl correlation 
hctwccn social skill and enwtional stahilitv docs not rcllect <l commonalitv between 
the two tmits being assessed by the measut:cs. Instead, the corrcLltion i,s si1 ;1ply a hy · 
product of <1 bias inherent in the sclt�report method of measurement. Th<ll is, the 
correl;ltion is an "artiLJCt" of the J;1ct that the two measures share the s;Hnc method 
I i.e., sell�rcport). Testing experts would say th<l! the r;llings share method V<lri<lllCc'. 
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Due to the potential influences of trait variance and method variance, a c1 

relation between two measures is a somewhat ambiguous finding. On one hand 

strong correlation (positive or negative) could indicate that the two measures siJ,1 

trait variance-the constructs that they are intended to measure have some c01, 

monality. On the other hand, a strong correlation (again positive or negative) cou 

indicate that the two measures share method variance-they are correlated main 

because they arc based on the same method of measurement. 

The ambiguity inherent in a correlation between two measures cuts both wav. 
it also complicates the interpretation of a weak correlation. A relatively weak C<;; 
relation between two measures could indicate that the measures do not share trai 
variance-the constructs that they are intended to measure do not have any co111, 
monality. However, the weak correlation between measures could reflect diffen.>1L 
tial method variance, thereby masking a true correlation between the traits that 
they arc intended to assess. That is, the two traits actually could be associated with 
each other, but if one trait is assessed through one method (e.g., self-report) and 
the other is assessed through a different method (e.g., acquaintance report), then 
the resulting correlation might be f�1irly weak. 

These ambiguities can create confusion when evaluating construct validitv. 
Specifically, the influences of trait variance and method variance complicate th

.
c 

interpretation of a set of correlations as reflecting convergent and discriminant 

validity evidence. Each correlation represents a potential blend of trait variance' 
and method variance. Because researchers examining construct validity do not 

know the true influences of trait variance and method variance, they must exam

ine their complete set of correlations carefully. A careful examination Glll provide 

insight into trait variance, method variance, and, ultimately, construct validity. The 

MTMMM approach was designed to articulate these complexities, to organize the 
relevant information, and to guide researchers through the interpretations. 

As articulated by Campbell and Fiske ( 1959), an MTMMM examination should 
be guided by attention to the various kinds of correlations that represent varying 

blends of trait and method variance. Recall from our example that the researchers 

evaluating the new measure of social skill gathered data relevant to f(>ur traits, each 

of which was measured through three methods. Let us focus on two correlations f(l!· 

a moment: (I) the correlation between the sell� report measure of social skill and 

the acquaintance report measure of social skill and (2) the correlation between the 

self-report measure of social skill and the self-report measure of emotional stabil

ity. 'lhke a moment to consider this question: If the new self-report measure can be 

interpreted validly as a measure of social skill, then which of the two correlations 

should be stronger? 

Based purely on a consideration of the constructs being measured, the researchers 

might predict that the lirst correlation will be stronger than the second. They might 

expect the first correlation to be quite strong-after all, it is based on two measures 

of the same construct. In contrast, they might expect the second correlation to be 

relatively weak-after all, social skill and emotional stability arc different constructs. 

1 Jowevcr, these predictions ignore the potential influence of method variance. 

'lhking method variance into ;.Jccount, the researchers might reevaluate their 

prediction. Note that the first correlation is based on two different methods of 
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assessmei1t l t 1 J · · b J · · 1, 'til >d (I. e t·wo self" , )U t 1e seconc correlatiOn IS asec on a smg e me t . · ., · -
rep 't . OI measures). Thus, based on a consideration of method vanance, the research-
ers might expect to find that the flrst correlation is weaker than the second. 

As this example hopefully begins to illustrate, we can identify different types of 

correhtion · · 1 · f · · l I l · · 
. . ' , 

s, Wit 1 each type representmg a blend o trait vanance anc met we V<ll I-
dilee. Campbell and Fiske ( 1959) 'JOint to Jour types of correlatiom derived from 
·ulMTM 

t ' MM (see 'fi1ble 9.2): 

Table 9.2 MTMMM Basics: Types of Correlations, Trait Variance, and 
Method Variance 

Method Used to Measure 
the Two Constructs 

Association 
Between 
the Two 
Constructs 

DiHerent Methods 
(e.g., Self-Report for 
One Construct and 
Acquaintance Report 
for the Other) 

Same Method (e.g., 
Self-Report Used for 
Both Constructs) 

Different 
constructs 
(not 
associated) 

Same 
(or similar) 
constructs 
(associated) 

Label Heterotrait
heteromethod 
correlations 

Heterotrait
monomct-hod 
correlations 

Sources of 
variance 

Nonshared trait variance 
and nonshared method 
variance 

Nonshmed !J·nit 
variance and shared 
method variance 

Example Selt�report mensure of 
social skill correlated 
with acquaintnnce report 
measure of emotional 
stability 

Self-report measure of 
social skill correlated 
with seli�report 
measure of emotional 
stability 

Expected 
correlation 

Label 

Weakest 

Monotrait
heteromethod 
correlations 

Sources of Shared trait variance 
variance and nonshared method 

variance 

Example Sclt�report measure of 
social skill correlated 
with acquaintance report 
measure of social skill 

Moderate? 

Monotrait
monomet hod 
correlations 

Shared tr<lit variance 
and shared method 
variance 

Self-report measure of 
wcial skill correlated 
with sell�report 
measure of social skill 
(i.e., reliability) 

Expected Moderate? Strongest 
corrcla tion 
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• 1/ctcrotmit-hctcronzct/wt! corrclntions arc based on measures of different 
constructs measured through different methods (e.g., a self-report measure 
of social skill correlated with an acquaintance report measure of emotional 
stability). 

• 1/ctcrotmit-nzononzctlzod correlations arc based on measures of different 
constructs measured through the same method (e.g., a self-report measure 
of social skill correlated with a self-report measure of emotional stability). 

• iVlonot mit -hctcronzct lzod corrclat ions arc based on measures of the same con
s! ruct measured through l he d i ffcrcnl met hods (e.g., a self-report measure 
of social skill correlated with an acquaintance report measure of social skill). 

• i\1onol mil-mononzctlzocl corrclat ions arc based on mcasu res of the same con
struct measured through the same method (e.g., a self-report measure of 

social skill correlated with itself). These correlations reflect reliability-the 
correlation of a measure with itself. 

Carnpbcll and Fiske ( 1959) articulated the definitions and logic of thc:-.e f(ll!r 

types of correlations, and they tied them to construct validity. A full MTMMM of 
hypothetical correlations is presented in 'E1blc 9.3. The matrix includes 66 COITela
tions among the three measures of f(Jur traits, along with 12 reliability estimates 
along the main diagonal. Each of these 7H values can be characterized in terms of 

the four types of correlations just outlined. The evaluation of construct validity, 
trail variance, and method V<Iriance proceeds by focusing on various types of cor
relations as organized in the MTMMM. 

Evidence of convergent validity is represented by monotrait-hctcromcthod cor
relations, which arc printed in boldbce in the MTMMM. These values represent 
the correlations between different ways of measuring the same traits. For example, 
l he correlation bet ween self-report social skill and acqua i nlancc report social skill 
is AO, and the correlation between self-report social skill and interviewer report 
social skill is .34. These correlations suggest that people who describe themselves as 
relatively socially skilled (on the new self-report measure) tend to be described by 
their acquaintances and by the interviewers as relatively socially skilled. Monotrait
hetcromethod correlations that arc f"airly strong begin to provide convergent 
evidence for the new self�report measure of social skill. I lowcvcr, they must be 
interpreted in the context of the other correlations in the MTMMM. 

"](J provide strong evidence of" its convergent and discriminant validity, the self
report measure of" social skill should be more highly correlated with other measures 
of social skill than with any other measures. Illustrating this, the MTMMM in 'I�1bk 
'J .. \ shows that, as would be expected, the nwnotrait-heteromelhod correlations arc 
gem·rally larger than the hetcrotrait-heteromcthod correlations (inside the dashcd-
1 inc t ri<mgles, reflecting the associations bet ween measures of d i ffcrent cons! ructs 
aSSl"ised through diflerent methods). hlr example, the correlation between the self
report measure of social skill and the acquaintance report measure of emotional 
>lability is only .20, and the correlation between the self-report measure of social 
>kill ami the interviewer report measure of conscientiousness is only .OlJ. These 
correlations, as well as most of the other hctcrotrait-hctcromethod correlations, 
arc notice<lhly lower than the monotrait-hctcromcthod correlations discussed in 
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Table 9.3 

Methods 

_\cquaintancc 

Intcn·ic\\·c-r 
rc-pPrt 

Example of MTMMM Correlations 

I ,., .. 

C"nscicnti<lusness 

Emotional �tabilit\· 

Social skill 

C onscicn tir1usncs� 

Einotional �tabilit� 

Social sl-.ill 

I n1pubi\·ity 

Conscicnti(lli�I1L'!!� 

EnH,ti�._ln,il stabilit� 

Self-Report Acquaintance Report Interviewer Report 
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the previous paragraph (which were correlations of .40 and .34) . Thus, the corre[ 

tions between measures that share trait variance but do not share method vari<JI) 

(the monotrait-heteromethod correlations) should be larger than the corrcl<llio1 

between measures that share neither trait variance nor method variance ( tl 
heterotrait-hetcromcthod correlations). 

An even more stringent requirement f()r convergent and discriminant validit 
evidence is that the self-report measure of social skill should be more highly c01. 

related with other measures of social skill than with self-report measures of otht· 
traits. The IVITIVIIVIIVI in 'li1ble 9.3 shows that, as would be expected, the monotr<Jit 
hetcromethod correlations arc generally larger than the heterotrait-monomcthoq 
correlations (inside the solid-line triangles reflecting the associations bctwec11 
measures of difterent constructs assessed through the same method). The data ill 
the MTMMIVI in 'll1blc 9.3 provide mixed evidence in terms of these associations. 
Although the correlations between the self-report measure of social skill and the' 
sell� report measures of impulsivity and conscientiousness are relatively low ( .14 

and .20, respectively), the correlation between the self�report measure of soci,Ji 

skill and the self-report measure of emotional stability is relatively high, al .3S. 

Thus, the self� report measure of social skill overlaps with the self-report measure of 
emotional stability. Moreover, it overlaps with this measure of a difterent construct 
to the same degree that it overlaps with other measures of social skill. This find in" 

0 

might raise concerns about the discriminant validity of the self-report measure tlwt 
is supposed to assess social skill. Thus, the correlation between measures that sh<lre 

trait variance but do not share method variance (the monotrait-heteromethod 

correlations) should be larger than the correlations between measures that do not 
share trait variance but do share method variance (the heterotrait -monomethod 

correlations). Ideally, the researchers would like to see even larger monotrait

heteromethod correlations than those in ·1�1ble 9.3 and even smaller heterotrait

monomethod correlations. 

In sum, an MTMMM analysis, as developed by Campbell and Fiske ( 1959), 

provides useful guidelines for evaluating construct validity. I3y carefully considering 

the important cllccts of trait variance and method variance on correlations among 

measures, researchers can usc the logic of an MTMMM analysis to gauge conver

gent and discriminant validity. In the decades since Campbell and l:iske published 

their highly influential work, researchers interested in measurement have deVL'l

oped even more sophisticated ways of statistically analyzing data obtained from 
an MTMMM study. For example, Widaman ( 1985) developed a strategy fi.>r using 

t;1ctor analysis to analyze MTMMIVI data. Although such procedures arc beyond the 
scope of our discussion, readers should be aware that psychometricians continue to 

build on the work by Campbell and Fiske. 

])cspite the strong logic and widespread awareness of the approach, the 

IVITMMM approach to evaluating convergent and discriminant validity evidence 

does not seem to be used very frequently. For example, we conducted a quick review 

of the articles published in the 2005 volume of Psychological Assessii/CIIt, which is a 

research journal published by the American Psychological Association (APA). The 

journal is intended to present "empirical research on measurement and eva
_
luation 

relevant to the broad field of clinical psychology" (APA, n.d.). In our review, we 
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id:n�itled 13 articles claiming to present evidence related to converg�nt and dis
crunmant validity, or construct validity more generally. Of these 13 articles, only 2 

used an MTMM M approach. Furthermore, those 2 articles used multiple measure
ment occasions as the multiple "methods." That is, participants completed the same 
measure at different times, providing the same method of measurement at two or 
three different times. Although this review is admittedly limited and informal, it 
underscores our impressions of the ( in)hequency with which MTMMM analyses 
are used. 

J�egardless of the frequency of its use, the MTMMM has been an important 
developmen t  in the understanding and analysis of convergent and discriminant 
validity evidence. It has shaped the way many people think about construct validity, 
and it is an import;HH component of a full understanding of psychometrics. 

Quantifying Construct Validity 

The final method that we will discuss for evaluating convergent and discrimi

nant validity evidence is a more recent development. Westen and Rosenthal (2003) 

out
_
lined a procedure that they called "quantifying construct validity" (QCV), in 

which researchers formally quantify the degree of"fit" between (a) their theoretical 
predictions for a set of convergent and discriminant correlations and (b) the set of 
correlations that are actually obtained. 

At one level, this should sound /�uniliar, if not redundant! Indeed, an overriding 
theme in our discussion of construct validity is that the theoretical basis of a con
struct guides the study and interpretation of validity evidence. For example, in the 
previous sections, we have discussed various ways in which researchers identify the 
criterion variables used to evaluate convergent and discriminant validity evidence, 
and we have emphasized the importance of interpreting validity correlations in 
terms of conceptual relevance to the construct of interest. 

. 
However, in practice, evidence regarding convergent and discriminant validity 

often rests on rather subjective and impressionistic interpretations of validity cor
relations. fn our earlier discussion of the "sets of correlations" approach to conver
gent and discriminant validity evidence, we stated that researchers oncn "eyeball" 
the correlations and make a somewhat subjective judgment about the degree to 
which the correlations match their expectations (as based on the nomological net
work surrounding the construct of interest). We also stated that researchers olicn 
f.udge the degree to which the pattern of convergent and discriminant correlations 

makes sense" in terms of the theoretical basis of the construct being assessed by a 
test. But what if one researcher's judgment of what makes sense docs not agree with 
another's judgment? And exactly how strongly do the convergent and discriminant 
correlations actually fit with the theoretical basis of the construct? 

Similarly, when examining the MT/V!MM correlations, we asserted that some 
correlations were "generally larger" or "noticeably lower" than others. We must 
admit tl1at we tried to sneak by without defining what we meant by "generally 
larger" and without discussing exactly how 1111/d! lower a correlation should be to 
be considered "noticeably" lower than another. Jn sum, although the correlations 
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themselves arc precise estimates of association, the interpretation of the ovn, 

pattern of convergent and discriminant correlations oticn has been done in <I <>on1 

what imprecise and subjective manner. 
( ;ivcn the common tendency to rely on somewhat imprecise and subiecti1 

evaluations of pallcrns of convergent and discrimin<1llt correlations, the C.)c :· 
procedure was designed to provide a precise and objective quantitative estinJ;q 
of the support provided by the overall p<ltlcrn of evidence. Thus, the emph<1Si<> o1 
precision and objectivity is an important difference fi·om the previous strategiL\ 
The QCV procedure is intended to provide an answer to a single question in <ll· 
examination of the validity of <1 measure's interpretation: "!Joes this measure pre 
diet an <l!Tay of other measures in a way predicted by theory?" (vVesten & J<.oscnth,J/, 
2003, p. 60l) ). 

There <1rc two complementary kinds of results obtained in a QCV ;malysis. hrst, 
researchers obtain two effect sizes representing the degree o(lit between the actual 

pat tern of correlations and the predicted pattern of correlations. These effect siZL's, 
called ':o�,.,,;"'' u· and 1�"111,,,,, 1,, arc correlations themselves, ranging between -I and 

+I. We will discuss the nature of these effect sizes in more detail, but for both, i<lrgc 
positive effect sizes indicate that the actual pattern of convergent and discriminant 
correlations closely matches the pattern of correlatiom predicted on the basis of 
the conceptual meaning of the constructs being assessed. The second kind of result 
obtained in a (_)CV analysis is a test of statistical signif-icance. The significance te,t 
indicates whether the degree of fit between actual and predicted correlations is 
likely to have occurred by chance. Researchers conducting a validity study using the 
(_)CV procedure will hope to obtain large values for the two dfect sizes, along with 

statistically significant results. 
The(_)( :v procedure can be summarized in three ph<1scs. First, researchers must 

generate clear predictions <1hout the pattern of convergent and discriminant v<liid

ity correlations that they would expect to lind. They must think carefully about the 
criterion measures included in the study, and they must form predictions f(n c�ll'h 
one, in terms of its correlation with the primary measure of interest. For example, 

hilT and his colleagues (hilT, neimcr, & Bellis, 2004; Nave & Furr, 2006) developed 

,1 measure of impression motivation, which was defined as a person's gcncr<ll desirL' 

to make specific impressions on other people, "I(> evaluate the convergent and dis

criminant validity of the scale, participants were asked to complete the Impression 

Motivation scale along with 12 additional person<dity questionnaires. 'I(> usc the 

(_)CV procedure, h1rr et <lL (2004) needed to gener<1tc predictions about the corre

lations that would be obtained between the Impression Motivation scale and the 1.2 

,1ddition;d scales. They did this by recruiting five profCssors of psychology to act <Is 

"expert judges." The judges read descriptions of each scale, and each one provided 

predictions about the corrclatiom. The five sets of predictions were then averaged 

to generate a single set of predicted correlations. 

The criterion scale labels and the predicted correlations arc presented in -l�1blc 

lJ.4. Thus, the conceptu<dly guided predictions f(>r convergent and discriminant cor

rel<1tions ;11-c st<1tcd concretely. h>r example, the judges predicted that impression 

motivation would he rchllivcly strongly correlated with public scll�consciousncss 

(e.g., "I worry about what people think of me" and "I W<1nt to amount to something 
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Table 9.4 Example of the Quantifying Construct Validity Process 
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special in others' eyes") and the need to belong (e.g.,"] need to feel that there arc 
people I can turn to in times of need" ;1nd "I want other people to accept me"). The 

judges expect th<ll people who profess <1 desire to nwkc an impression on others 

should report the tendency to worry about others' impressions of them and the 

need to be accepted by others. Conversely, the judges did not believe th<ll impres

sion motivation scores would be associated with variables �uch <ls distrust and 
complexity, reflecting predictions of discriminant validity. 

in the second ph;Jse of the ()CV procedure, researchers collect d;Jta and com

pute the actual convergent and discriminant validity correlations. Of course, these 

correlations rdlcct the degree to which the primary measure of interest is 1/CIIIilll)' 

associated with e<Kh of the criterion vari;Jblcs. hll· ex;Jmplc, r:urr et al. (20(H) col

lected data from people who responded to the Impression Motiv<ltion scale <Jnd the 

12 criterion sclies listed in "Ji1blc LJ.4, ;md they computed the correLllions between 

the Impression Motivation sule and each of those other criterion scales.  /\s shown 

in "Ji1 ble LJ.4, these correlations r;mged fi·om -·.24 to .51. Participants who scorL'd 

high on tl1e Impression Motivation scale tended to report n:l;llivcly high levels of 

public selrconsciousness and the need to belong. In <lddition, they tended to report 

relatively low levels of distrust, hut they showed no tendency to report high or low 
levels of complexity or extmvcrsion. 

In the third phase, rcsc<Jrchcrs qu;Jntit)' tile degree to which the ;Jctual fl<lttcrn 

of convergent <llld discrimin;Jnt correlations fits the predicted p<lttem of correla

tions./\ close fit provides good evidence of validity f(Jr the intended intcrprei<J

tion of the test being evaluated, hut a weak fit would imply poor validity. As 

described earlier, the fit is quantified by two kinds of results·-effi:ct -;izes ;md a 
significance test. 
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The two effect sizes reflect the amount of evidence of convergent and dis 

criminant validity as a matter of degree. The r 1 . • etTect size is the correlatiot 
.1 ertmg-C .\' � ' 

between the set of predicted correlations and the set of actual correlations./\ larg, 
positive r.,lenin�.r:v would indicate that the correlations that the judges predicted t,, 
be relatively large were indeed the ones that actually were relatively large, and it 
indicates that the correlations that the judges predicted to be relatively small were 
indeed the ones that actually were relatively small. 'H1kc a moment to examine the 
correlations in Table 9.4. Note, for example, that the judges predicted that depen

dence, public sclt�consciousncss, self-monitoring, and the need to belong would 

have the largest correlations with social motivation. In f�Kt, three of these four 
scales did have the largest correlations. Similarly, the judges predicted that distrmt, 
rcsourcchdncss, sclf�cfficacy, and complexity would have the smallest correlations 

with social motivation. Indeed, three of these four scales did have the smallest cor

relations (relative to the others). Thus, the actual correlations generally matched 

the predictions made by the judges. Consequently, the r,,krtio::-r:v value for the data 

in 'H1blc 9.4 is .79, a large positive correlation. In actuality, the r1 . ,.1. value is 
.1 crtmg- . 

computed as the correlation between the predicted set of correlations and the set 

of "z-transfi:>rmcd" actual correlations. The z transformation is done fc>r technical 

reasons regarding the distribution of the underlying correlation coefficients. For all 

practical purposes, though, the raknio�-r:v effect size simply represents the degree to 

which the correlations that are predicted to be relatively high (or low) are the cor

relations that actually turn out to be relatively high (or low). 

Although its computation is more complex, the ��"'"''"' r:v effect size is similar to 

the ��,Jaring-cv effect size in that large positive values indicate greater evidence of con

vergent and discriminant validity. Specifically, the computation of r'"""'"H:v adjusts 

tor the intcrcorrelations among the criterion variables and tor the absolute level of 

correlations between the main test and the criterion variables. For the data collected 

by Furr ct al. (2004), the rconrr.rsr-r:v value was approximately .68, again indicating a 

high degree of convergent and discriminant validity. As the QCV procedure is a rel

atively recent development, there arc no clear guidelines about how large the effect 

sizes should be to be interpreted as providing evidence of adequate validity. At this 

point, we can say simply that higher effect sizes offer greater evidence of validity. 

In addition to the two effect sizes, the QCV procedure provides a test of statis

tical significance. Based on a number of hKtors, including the size of the sample 

and the amount of support for convergent and discriminant validity, a z test of 

significance indicates whether the results arc likely to have been obtained by chance. 

Although the QCV approach is a potentially useful approach to estimating con

vergent and discriminant evidence, it is not perfect. For example, low cfkct sizes 

li e low values f(Jr r1 . r·v and r ,.1J might not indicate poor evidence of 
• ., 

.1 t'rllllg . t:outr.hl .. 
validity. Low effect sizes could result fi·om an inappropriate set of predicted correla-

tions. If the predicted correlations <li'C poor reflections of the nomological network 

surrounding a construct, then a good measure of the construct will produce actual 

corrch1tions that do not match the predictions. Similarly, a poor choice of criterion 

variables could result in low effect sizes. If few of the criterion variables used in the 

validity study arc associated with the main test of interest, then they do not repre

sent the nomological network well. Thus, the criterion variables selected for a QCV 



---� -� ;-.,: . .  --..,_ 

Chapter 9: Estirnaling and Evoluoting Convergent and Discriminant Validity Evidence 

analysis should represent a range of strong and weak associations, reflecting a clear 
pattern of convergent and discriminant evidence. Indeed, Westen and Rosenthal 
(2005) Point out that "one of the most important limitations of all tlt indices is that 
they cannot address whether the choice of items, indicators, observers, and so forth 
was adequate to the task" (p. 410). 

In addition, the QCV procedure has been criticized l(ll· resulting in "high cor
relations in cases where there is little agreement between predictions and observa
tions" (Smith, 2005, p. 404 ) . That is, researchers might obtain apparently large 
values for r . . . and ,. . even when the observed pattern of convergent 

•dlr !JJJg { .\' 
L"Olllr.r�!-1 .\' 

· and discriminant validity correlations docs not match closely the actual pattern of 
convergent and discriminant validity correlations. Westen and Rosenthal (2005) 
acknowledge that this miuht be true in some cases; however, they suggest that the 
_QCV procedures arc "aid: to understanding" and should be carefully scrutinized 
Ill the context of many conceptual, methodological, and statistical tizctors ( p. 41 1 ) . 

. 
We have outlined several strategies that can be useful in many areas of test evalu

atwn, but there is no single perfect method or statistic f(JJ· estimating the overall 
convergent and discriminant validity of test interpretations. Although it is not 
perfect, the QCV docs offer several advantages over some other strategies. First, it 
forces researchers to consider caretiz/Jy the pattern of convergent and discriminant 
associations that would make theoretical sense, on the basis of the construct in 
question. Second, it /()rces researchers to make explicit predictions about the pat
tern of associations. Third, it retains the fixus on the measure of primary interest'. 
Fourth, it provides a single interpretable value reflecting the overall degree to which 
the pattern of predicted associations matches the pattern of associations that is 
actually obtained, and finally, it provides a test of statistical signitfcance. Used with 
care, the QCV is an important addition to the toolbox of validation. 

factors Affecting a Validity Coefficient 

The strategies outlined above are used to accumulate and interpret evidence of 
convergent and discriminant validity. 'Jb some extent, n/1 the strategies rest on the size of validity coeftlcients-statistical results that represent the degree of' association between a test of interest and one or more criterion variables. In this section, 

we address some important hzctors that affect validity coefficients. 
When conducting or reading studies regarding validity, it is important to be 

aware of these t:tctors. For a truly infimned understanding of validity research, it is 
Important to understand why <l test's scores might be strongly or, more problem
atic, weakly associated with key criterion variables. Indeed, there arc a lllany reasons 
why a test's scores might not be strongly associated with key criterion variables. 
Although weak convergent associillions might reflect fl<tws in the test, we shall sec 
that such a lizilurc might not actually be due to shortcomings in the test itselt: By 
considering the lizctors that can affect these associations, people who produce and 
interpret validity studies will reach conclusions that arc more well-informed and 
accurate. 
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Thus br, we have emphasized the correlation as <l cocrlicient of validity hec<tus, 

of its interpretability as a standardized measure of association. Although othc1 

statistical values can he used to represent associations between tests <tnd criterio1� 

variables (e.g., regression coefficients), most such v;ducs arc built on corrclatio11 

coefficients. Thus, our discussion centers on some of the key psychological, mcth 

odologicd, psychometric, and statisticd fitctors affecting correlations between ksh 

and criterion variables. 

Associations Between Constructs 

One fitctor affecting the correlation between measures of two constructs is the 

"true" association between those constructs. ff two constructs arc strongly associ. 

;tted with each other, then measures of those constructs will likely be highly corre

lated with each other. Conversely, if two constructs arc unrelated to each other, then 

measures of those constructs will probably be weakly correbted with each other. 

Indeed, when we conduct research in general, we intend to interpret the observed 

associations that we obtain (e.g., the correlations between the measured variables 

in our study) as <tpproximations of the true associations between the comtructs in 

which we arc interested. When we conduct validity research, we predict that two 

illCasures will be correlated because we believe that the two constructs arc associ

ated with each other. 

Measurement Error and Reliability 

fn earlier chapters (Chapters 5-7), you learned about the conceptual b<lsis, the 

estimation, and the importance of reliability as an index of (the lack of) measure

ment error. As we discussed in those clwptcrs, one important implication of mea

surement error is its effect on correlations between V<tri;tblcs-mcasurcmenl error 

reduces, or attenuates, the correlation between measures. Therci(lre, measurement 

error arlects validity codJicicnts, just like any other correlation. 

;\s we s;tw in earlier chapters, the corrchttion between tests (say X and l'J of two 

constructs is <l function of the true correlation between the two constructs and the 

reliabilitics of the two tests: 

(0.1) 

fn this equation, r. 1 is the correlation between the two tests (i.e., the correl;t

t ion between the ohs� ;·�ed scores). i'vlorc specitically, it is the validity corrcl;ttion 

between the primary test of interest (say the "X" test) and the test of a criterion 

variable (the" Y" lest). fn addition, r,,r, is the true correlation between the two 

com! ructs, U11 is the rei iabili t y of the test of in teres!, <tnd 1(1 is the rcliabil ity of the 

lest of the criterion variable. 

hlr example, in their examination of the convergent validity evidence f(Jr their mca

'>llrl' of impression motivation, h11T et a!. (20011; Nave & Furr, 200(1) were interested in 
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r· slrrncJIIllg ana vo uotrng I .-:; 

the correl· · 1 . . . . . 1 nublic selt�consciousness.Inwgine 

<ltron Ktween rmpresswn motrvatron .Jn( t . . 

tint tl , 
· f() WI. t would the actual v;drdrtv 

' Jc true correlation between the constructs rs · 1 • Jd . . 
' 

corrclatiorJ! _,.f. 1. . . 1 .. 1 .1.t , If the imnression motJvatron test had 

. Jt 1 t Je two tests had poor 1 e 1.1 11 I Y· t . . . . � , , 

a reliability of .63 and the public self-consciousness test had a rclwbrlrty of . :JB, then the 

actual v·dr'd't . f"' · · J 1 Jl ly "1(1· 
' I Y coe hcrent obtameu wou ( 1e on ·· · 

== .60( .604 ), 

== .36. 

RecJJI tl1 t 1 1. 1. 
. -J1 ·r·s s·]J(lllld comrJarc their cor-

. 
' a to eva uatc convergent va J( rty, rescarc t: • · ' 

. 

rehJtions with the correlations that they would expect based on the constructs bclllg 

measured. In this case, if Furr et al. (2004) were expecting to find a corrclatiOll 

clo
,
�c to .60, then they might be relatively disappointed with a validity coefficient 

of only" .36. Therefore they mioht conclude that their test has poor valrdrt)' as a 

mnsur, f. · 
. ' . . e> 

' ·  c 0 Impressron motrvatron . 

. 
Note that the validity cocrticient is affected by two rcliabilities: (I) the rcli<Jbility 

of the test of interest ami (2) the rcii<Jbility of the criterion test. Thus, the pnnwry 

test of interest could be a vood measure of the intended construct, but the validity 

coefficient could appear tr� be poor. For example, if the impression motivation test 

had a good reliability of� say, .B'l but the public self-consciousness test had a very 

poor reliability of .40, then the actual validity coeClicient obtained would be only .35: 

== .60( .580), 

== .35. 

So even if the primary test is psychometrically strong and interpreted v;didly, the 

usc of a psychometricallv weak criterion measure will produce poor validity c·oef

ficicnts. Thercf(xe, when
. 
evaluating the size of ;J validity correlation, it is import;1nt 

to consider both the reliabilitv of the primary test of interest and the reliability of 

the criterion test. II either om: or both is relatively weak, then the resulting v;didity 

corrch1tion is likely to appear relatively weak. This might be a particularly subtle 

consideration for the criterion variable. Even if the primary test of interest is <1 good 

rncasurc of its intended construct, we might find poor validity correlations. That is, 

If the criterion measures th<Jt we usc arc poor, then we <Ire unlikely to lind evidence 

supporting the validity of the primary test! This impor1<1nt issue is C<lSY to l(>rgct. 

. 
There <Ire rough guidelines for idcntif),ing problematic levels of reliability <lnd 

for handling those problems. ;\s mentioned in Chapter 5, researchers arc gener<llly 

satisfied if a test's reliability is above .70 or .HO, with higher levels being even bctttr. 

If a test's or a criterion vari;1blc's reli<lbility is much lower than this, then we would 

have concerns about its cf't<:ct on validity cocfficicr1ts. Of course, the lower one or 

more of the reli;lbilitics arc, the greattr our concern would be. 

In terms of handling the problcrn, there arc at least two possibilities. One is to 

'>imply discount a v;didity cocrticicnt that is based on poor reliability, or at least to 

reduce the weight tlwt one would give it in one's consideration of validity evidence. 
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The other possibility is to use the logic of the correction for attenuation discussed 

in Chapter 7, to adjust the validity coefficient. l Iowever, it might make sense to 

adjust only f(\r the criterion variable's reliability. That is, if the purpose of a vali

dation analysis is to evaluate the psychometric quality of a particular test, then it 

seems inadvisable to adjust h\r that test's lack of psychometric quality. Thus, to 

adjust for only one test's reliability, researchers can use the l(\llowing variation on 

the correction for attenuation: 

r.\T- mgin,d 
r\\' .ldju,inl 

:=: flC ' (9.2) 

where rXY·origin.•l is the original validity correlation, Un. is the estimated reliability 

of the criterion variable (i.e., not the test of interest being validated), and rxY.adiustcd 
is the adjusted validity correlation. This equation adjusts a validity correlation by 

assuming that the criterion variable is measured without any measurement error. 

Restricted Range 

Recall fi·om Chapter 3 that a correlation coefficient reflects covariability between 

two distributions of scores. That is, it represents the degree to which variability in 

one distribution of scores (e.g., scores on a test to be validated) corresponds with 
variability in another distribution of scores (e.g., scores on a test of a criterion vari

able). Prom this perspective, it is important to realize that the amount of variability 

in one or both distributions of scores can affect the correlation between the two 

sets of scores. Specifically, a correlation between two variables can be reduced if the 

range of scores in one or both variables is artificially limited or restricted. 

A classic example of this is the association between SAT scores and academic 

perltm11ance. Earlier, we discussed the l�1ct that much of the evidence for the quality 

of the SAT scores rests on the correlation between SAT scores and academic perfor

mance as measured by college grade point average ( GPAJ. The marketers of the SAT 

would like to demonstrate that people who score relatively high on the SAT tend to 

have relatively good performance in college. Implicitly, this demonstration requires 

that people who score relatively low on the SAT tend to have relatively poor perfor

mance in college. 'Ih demonstrate this kind of association, researchers would need 

to demonstrate that variability in the distribution of SAT scores corresponds with 

variability in the distribution of college GPAs. However, the ability to demonstrate 

this association is minimized by restricted range in two ways. 

First, range restriction exists in GPJ\ as a measure of academic performance. ln 

most colleges, CPA can range only between 0.0 and 4.0. The worst that any student 

can do is a (;PA of 0.0, and the best that any student can do is 4.0. But docs this 

11-point range in CPA really reflect the full range of possible academic performance? 

Consider two students, !.co and Mary, who do well in classes and earn As in all of 

their courses. Although !.co did pcrhlrrn well, he barely earned an A in each of his 

courses. So he "squeaked by" with a 4.0, and the 4.0 in a sense represents the upper 

limit of his acadcrnic perl{mnancc. Mary also pcrl(mns well, earning As in all of her 

courses. But Mary outperformed every other student in each of her courses. In each 
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course, she was the only one to earn an A on any test, and she had clearly mastered 

all the material on each and every assignment that her professors graded. So Mary 

also received a 4.0, but her 4.0 in a sense underestimates her academic ability. She 

hac\ mastered all the material so well that her professors wished that they could give 

her grades higher than an A. Although Leo and Mary received the same "score" on 

the measure of academic performance (i.e., they both have 4.0 c;PAs), they actu

ally differ in the quality of their performance. Leo fully earned his 4.0 and should 

be proud of it, but the professors would probably agree that Mary outperformed 

him. Thus, the 4-point CPA scale restricts the range of measurement of academic 

performance. 

Note that GPA is restricted in both directions�on the high end and on the low 

end. Consider Jenny and Bruce. Although both lenny and Bruce t�1iled all of their 

classes, Bruce nearly passed each class. On the other hand, lenny wasn't even close 

to passing any classes. So both Bruce and jenny earned a GPA of 0.0, but in a sense, 

Bruce had better academic performance than Jenny. In terms of test grades, home

work grades, and paper grades, Bruce outperformed Jenny (i.e., he received 59 on 

each assignment, while she received scores in the 30s on each assignment). Despite 

the difference in their performance during the semester, Jenny could not receive a 

lower GPA than Bruce, because the GPA scale "bottoms out" at 0.0. 

The scatterplot in Figure 9.1 shows a hypothetical data set for 5,000 students. 

This scatterplot presents the idealized association between SAT scores and "unre

stricted" college G PA. That is, it presents scores f(x students whose ac1demic per

formance is not restricted by a 4-point GPA scale. Notice that some unrestricted 

GPA scores fall below 0.0 on the plot, rd1ecting differences between students like 

jenny and Bruce. Notice also that some GPA scores f�dl above 4.0, rd1ecting dif

ferences between students like Leo and Mary. hll· the data displayed in Figure 9.1, 
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the correlation between SAT and CPA was .61. This indicates that students wl1< 

received relatively low SAT scores tended to have relatively low "unrestricted" 1 ;p,\\ 

But of course, (;p;\ actually is restricted, as just discussed. Thcrcfim:, studcn() 

whose academic perfimnance might, theoretically, merit a 5.0 or a 6.0 can earn onl1 

a 4.0 in practice. Similarly, students whose academic pcrh>nnance might mer i t <I 

( ;p;\ below 0 cannot actually receive less than 0. So all those students who might, 

in an abstract sense, deserve c;PAs above 4.0 (or below 0) will in reality rcceil'l' ;J 

(;]';\ of4.0 (or 0). 

The scattcrplot in Figure ':>.2 shows the data f(>r the same 5,000 students, based 

on the "restricted" c;P;\ scores. Note that there arc no (;p;\ scores above '1.0--th,_. 

scores arc "maxed out" at 4.0. And note that there arc no GPA scores below 0.0--thc 

scores arc bottomed out at 0. This scattcrplot appears to be more compressed, and 

the association between SAT and GPA is not as clear as it was in the first scatterplot. 

Consequently, for the data displayed in Figure ':>.2, the correlation between SAT ;llld 

c; PA was reduced, a hit, to .60. Thus, the restriction of range in c; Pi\ scores has <l 

slightly diminishing effect on the correlation. 

A second way in which range restriction minimizes the ability to demonstrate 

the association between SAT scores and academic pcrf(mnance is in the number 

of people who actually obtain college GPAs. That is, students with very low SAT 

scores arc much less likely to be admitted to college than arc students with higher 

SAT scores. If we were to conduct a real study of the association between Si\T 

scores and academic pcrt(mn;Jncc, we would probably be limited to a subsamplc of 

all the students who have SAT scores. This is because we would he limited to onlr 

those students who took the SAT and who were admitted to college. For bcllcr or 
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tor worse, not all students who take the SAT are ;nlmitted to college. In our hypo-
theticll d· 1 1· I ' •1 a set, nearly LJOO "students" had SAT scores below 700. In rea It)', t 1ese 
students might not he admitted 10 college; thcrcf(Jre, they would never actually have 
a college (,'fJJ\ 5 . 

. core . 

. 
The scatterplot in Figure 9.3 shows the data for the remaining -'1,600 students, 

With SAT sc 
L 

I . I SA'!' · orcs greater than 700. Note that there are no peop c WI! 1 • scores 
below 700 Tl · · · · · 1 I I I · lal 1s, we a1-c assummg that most Ji no! all of I 1ose peop e wou c nol 
be admitted t 11 ' 

· 1 1 · I · f. I 
. 

0 co egc, and thus they would not he mclm cc Ill an ana )'SIS o I lC 
assouation between SAT scores ;md college c;PAs. This scattcrplot is even more 
compressed tl 1 

L • 

j' I I · f" 
t 

· · Jan I 1c previous two. Consequently, for the data c 1sp aycc Ill ·1gure 
�-3• the correlation between SAT and CPA was reduced even more, to .55. 

In sum th • SA'!' 1 · · I · · f'f' · 

. . 
' c • · <lllC CPA example illustrates range rcstnctwn am J!s c eel 

on vahchty co1· · 1 · · · - · · 1 · I I I · 1 c  allons. Specifically ranac restnctwn can s 11'1!1 < 11c corrc at1on, 
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.1 1· 1·1· \11/l 1 · . . 
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the qual1ty of' -1 1 1 · 1 1· J J 1 · ( I 

. 
' psyc 10 og1ca measure, we o len c epcnc on corrc allons or ol 1er 

statistical v·dtl • .  1 · 1 · ' cs t lal arc based on correl<lllons) to reflect the c egree ot convergent 
and discrimi 

. 
1. 1. , . . · . · nant va 1c 1ty. i\nd as we ve cilscussed, when scarchmg for convergent 

cv1dencc we . . . . . 
' expect lo fmc! strong correlations. However, we need to be aware that 

lestncted l"lll"e . I I I . I II l . I . I' j' ' "' can rec ucc t 1e corre at1ons t 1at are actua y o  Jtamec 111 a va It 1ty 
study. In the c·tl · · 1 · [ · · · 1 • 

.
. I 1 1 cnt cxamp c, the corrclatwn 1etwecn SAl am C1Pi\ was allcctcc 

by rcstrictio11 1'11 1 1 · 1 11 1 " · I" wo ways, am 1t was son1cw 1a! slll<l cr I wn an unrestnclcc 
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Unf(>rtunately, there are no clear, simple guidelines about detecting range restric

tion; rather, it requires carefi.d thought and attention from researchers. For example, 
it would require knowledge about the relevant tests or variables (e.g., knowing 
that CPA scores range from 0 to 4 and that SAT scores range from 400 to 1,600). 

In addition, it would require examination of the scores obtained in a given stud)' 

in comparison with the range of possible scores on the relevant tests. For example, 

it would require a researcher to examine the actual range of SAT scores in a given 

analysis and to compare this range with the possible range of 400 to 1 ,600. If the 

range of obtained scores is dramatically different form the range of possible scores, 

then there might be reason for concern about range restriction. Perhaps more sub

tly, if the range of obtained scores tidls within a certain "side" of the distribution 

of possible scores, then there might be particularly serious concerns about range 

restrictions. Por example, the SAT scores in our analysis were mainly weighted 

toward the high end of possible SAT scores, with none in the range of 400 to 700. 

Although there arc no easy tricks to detect range restriction, careful attention to this 

issue can be an important part of validation evidence. Indeed, there are procedures f{li' 

adjusting or correcting correlations to account lor range restriction (Sackett & Y<mg, 

2000; Schmidt, Oh, & Lc, 2006). A discussion of these procedures is beyond the scope 

of this section, but we encourage interested readers to explore them on their own. 

Skew and Relative Proportions 

Another factor that aticcts the size of a validity coci1Icicnt is the "skew" of the 

distributions of scores being examined. In Chapter 3, we mentioned that some 

distributions of scores might be "normal" or symmetric, having just as many high 

scores as low scores. llowcvcr, other distributions might be skewed, with an imbaJ. 

<lnce of high scores relative to low scores (sec Figure 3.2). Although this li1ctor 

1night not be as widely known as some of the other factors affecting validity coef

ficients, the skew of a variable can have a robust impact on correlations (Dunlap, 

Burke, & Greer, 1995 ). Specitlcally, if the two variables being correlated have dir 

l(:rcnt "skews': then the correlation between those variables will be reduced. For 

example, imagine a case where one variable is normally distributed (i.e., unskcwcd; 

sc:c Figure 3. 1) but the other is heavily skewed in some way (e.g., Figure 3.2a). In 

this case, the correlation between those two variables cannot be 1.0; indeed, it might 

be capped at some relatively small value. In contrast, imagine that neither vari

able is skewed and tlwt both arc normally distributed. In this case, the correlation 

between the two variables Gill reach 1.0, and all else being equal, it will be larger 

than the corrci<Jtion in the first case (where one variable was skewed). Thus, if a 

validation study is conducted on a variable that is heavily skewed, then we might 

obtain <1 relatively small validity cocrticient. 
hH· a demonstration and discussion of this effect, it might be most straighttixward 

to consider the association between a continuous variable and a dichotomous vari

able. Imagine that we developed a selt�report inventory to measure depression. And 

imagine that we would like to evaluate its convergent quality by correlating its scores 

with diagnoses made by trained clinical psychologists. 'fb do this, we recruit a sample 
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,�f particip<mts who complete our inventory and who arc interviewed by clinicians. 
I h� clinicians then provide a diagnosis for each participant, bbcling each participant 

as either depressed or nondepresscd. Thus, our main test of interest (i.e., the new scll
:eport inventory) is 011 a continuous scale, and the criterion variable (i.e., diagnosis) 
Is

. 
a dichotomous categorical variable representing two groups of participants-those 

diagnosed with depression and those without depression. 'Jb evaluate the validity of 
our new scale as a measure of depression, we might compute a validity correlation 
between these two variables.� Indeed, we would hope to find that participants' scores 
on our n , · j · ·1 1 · · · ' · · ew mvcntory are strongly corrclatet wit 1 c micians ratmgs. 

In this case, the relative proportion of partic ipants in the two groups is akin to 
the

_ 
skew of the diagnosis variable. That is, if the groups arc cquaJJy sized, then the 

�<mabie is unskcwcd; however, if the groups are not cquaJJy sized, then the variable 
15_ skewed in some way. For example, if only a small proportion of p<lrticipants arc 
diagnosed as depressed, then the "diagnosis" variable wiJJ be heavily skewed in a 
way that is somewhat similar to the scatterplot in Figure 3.2a. 

T�us, as implied earlier, the validity correlation between the two variables would 
be a�fectcd by the relative proportion of participants in each of the two groups. More 
p:eCJsely, the size of the validity correlation between inventory scores and clinicians' 
�hagnoses is influenced by the proportion of participants who are diagnosed as hav
mg depression (vs. not having depression). If the group sizes arc equal, then the valid
Ity correlation is likely to be larger than when the group sizes arc unequal. h>llowing 
from this, if our validation study is conducted on groups having heavily unequal 
numbers of participants, then we might obtain a relatively small validity cod1icient. 

I et liS · · · · · exammc and demonstrate this influence concrete ly. ll we were computmg 
the validity correlation in this example, each participant would have scores on two 
variahles�deprcssion inventory score and diagnostic category-as illustrated by the 
hypothetie<1l data in 'l11ble 9.5. Obviously, the depression inventory scores are <llready 
on '1 t]li'li1t·'t· t · · · 1 . 

' ' I <1 1vc scale (let us say that scores can range from 0 to 30). However, I 1e 
.t:Iagnostic category variable must be quant ified so that we can compute the validity. 
Jo do this, we assign one value to all participants diagnosed as nondeprcsscd and 

another value to all participants di<lgnoscd as depressed. These values could be I 
and 2, l and l 0, -J ,000 and +I ,000, or any other pair of numbers (as long as aJJ the 
�eoplc in each group receive the same value). For om purposes, we will code the 
nondcpresscd" group as" I" and the depressed group as "2" (sec 'li1ble 9.5 ). 

Table 9.5 Data Illustrating the Effect of Relative Proportions on Validity 
Coefficients 

Participant 
Depression Diagnosis 
Inventory Diagnosis Code 

I 6 Nondcprcsscd 
2 5 Nondcprcssed 
3 7 Non depressed 
4 Nondepresscd 
5 II Nondcprcsscd 

( (.()// li/11/Cd) 



248 PAPT Ill VAliDITY 

Table 9.5 (Continued) 

Participant 

6 

7 

R 

10 

11 

12 

13 

14 

15 

16 

17 

IR 

19 

20 

Mean 

Standard 
deviation 

( :ovari<lnce 

( :orrel;llion 

Depression Diagnosis 
Inventory Diagnosis Code 

�------=--------------

9 Nondepressed 

3 

6 

4 

R 

10 

2 

5 

7 

10 

15 

5 

12 

7.00 

3.39 

Non depressed 

Non depressed 

Non depressed 

Nondepressed 

Nondepressed 

Nondepressed 

Nondepressed 

Nondepressed 

Nondepressed 

Depressed 

l >cpressed 

Depressed 

l )epressed 

l >cpressed 

.75 

.51 

2 

2 

2 

2 

2 

.25 

.43 

lkcdl from Chapter 3 that the correlation between two variables is the covari
aJlCe between the two variables divided by the product or their two standmd dcvia

t ions (sec J·:quat ion 3.5 ). J<'or a correlation between one continuous variable (C) and 

one dichotomous variable ( IJ), the correlation ( rn,) is 

(9 . .\) 

where c, 11 is the covariance between the two variables, S.· is the st<lndard deviation 

or the continuous vari;lble, and s/1 is the standard deviation or the dichotomous 

v;Jriai>lc. 

Two olthese terms arc directly <ilfected by the proportion of observations in the 

two groups, as defined by the dichotomous variable. Assuming that the groups arc 

coded" I" (l(lr (;roup I) and "2" (ltlr c;roup 2), then the covariance is 

c,11 = p,p,((;, -C,), (9.4) 
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where p . 1 
. 

c 
. 

. I dllt Pc arc I he proportion or p<l rticipants in Groups I and 2, rcspectrvcly, 

I IS the mean r I . . . . . . . -, I 
·. 1 

° t 1c contrmrous variable lor the partrcrpants rn C.roup I, C. ant 

rs t Je mean of tl , - . . . . . . . . . .. . 
. ·t I r • 

le contmuous vanable /or the partrcrpants Ill (,roup 2. In our d,tta 

se • :> of the 20 . . . . . . . 
. 1 . p,rrtrcrpants arc in the nondeprcssed dragrwstrc group ((,roup I), 
dllC 5 are ill t) , · r 

(lS/20= .75 . 
Je dcpr�sscd group ((;roup 2). Thus, the two proportrons are .'7::J 

I. . 
) '111d .25 (�)/20= .25). In addition, the average score on the depressron 

nventory rs 6 f . . . .  

ti , . . 
01 the nondcprcsscd group and I 0 lor the depressed g roup. I hus, 

Je covarrancc is 

c,n =(.75)(.25)(10-6), 
=I.I.S75)(4), 

= .75. 

The standard I. . . . 
l .1 

c cvratron of the dichotomous variable is the second term affected 

l)' I Ic proportio f I . . - . 

v·rri· ll . 
11 0 0 )Servatrons rn the two groups defrncd by the drdrotomous 

' d) e. AgaJn, as, . 
.__ 

H , - ., " , • 

c 
· summg that the uroups ·1re coded I (for C ll·oup I )  <llld 7 (for 

•roup 2), then h· . . L • 
"' • •  , 

-

('I. 
,Jscd on our drscussron of binary (i.e., dichotomous items) in 

-� ldpter 3 and hju,·Jt r'<lrl 3.9, we know that this standard deviation is 

s,, =fAA. (9.5) 

For thcdata in'Lll·c r .. 
. . . . " '  . , 

variable is 
1 1 c ) .. ),the standard dev rat ron of the drclwtomous dragnosrs 

"" = J(.75)(.25), 
= .433 

'Htking these t.. . . 
rcli-·mJc I . I . crms 11110 account, the equation /(Jr the correlation can be 

' c ,me srmpl itic 1 1 ·I · · . . c o s ww the drrcct rntluencc ol the rclat rve proportions: 

. plp.(C, -C1) 
It '/1 == - ' 

s, JP:P; 
. _ fM(c,-CIJ 

/(/}- . 
s, 

J:or the example I· t. . . � I . .  t '1 <� 111 l a 1lc 9.5, the valrdrty correlation is 

. _ Jr.75Ji.25HI0 -61 I,''-�-----__..:.. 

1 .72 
3.39 , 

=. 5 1 . 

3.39 
, 

('-J.(J) 

This correlation is positive ·md f . ·1 ' . . . . . 
bctwccrJ <lLrr· J 

' ,JII) strong, rndrcltrng good convcr"L'IKC 
new seal' ·mel -) ' . .  ·. ·' r 

c c "' 

those narticiJl'lllt. 1 
, 

I 
L rnrcrans t ragnoscs. lvlorc spccilicnlly, it revc;rls th;rt that 

' ' s w 10 nd rchtrv I) "J · J " ' ' e ' 11g 1 scores on the diagnosis v;rriahlc also 
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construct suggest� that extraverted people should be relatively talkative in a sm 

interaction, so you expect to tlnd a moderate to large positive correlation bet1vc1 

scores on your questionnaire and observations of talkativeness. 

"l<l test this validity prediction, let us say that you recruited a sa1nplc ol· ; 

participants, who completed your questionnaire and then engaged inn 5-miJHii 

soci<d interaction with a strnngcr "partner" of the other sex. The partners then r;1k 

the participants on t;dkativencss, using a I to 10 scale, with high scores indicatin 
greater talkativeness. You compute the correlation between your questionnaire <Ill ; 
the talkativeness ratings, and you find only a small positive correlation. You <1r1 

disappointed, and you feel compelled to conclude that your questionnaire is a p001 

measure of extraversion. 

Before )'OU decide to revise your measure or discard it entirely, you should con 

oidcr the nature of your criterion variable. Specifically, you should remember thai 
it was based on an observation of a single behavior (i.e., talkativeness) in a single 
social situation (i.e., a 5-minutc interaction with <lll other-sex stranger). hen 
beyond the issue of method variance, you should consider that there arc lll<lil\" 
1;1ctors that could influence an individual's talkativeness in any one moment. Wh,1

.
t 

kind of mood was the individual in? !-low was the partner acting? Was there a t;1sk 
or a topic of conversation that inhibited the individual's talkativeness? 

Chances arc that your validity correlation could have been larger if you had 

gathered observations of your participants from several difiercnt interactions or 

over a longer period of time. For a variety of reasons, including issues of poorer 

reliability, single events arc less predictable than arc aggregations of events or acru. 

mulations of observations (Epstein, I 07':.1 ). 

;\ particularly compelling example of the difficulty of predicting single events 

W<1S provided by Abelson ( 101\5). Some baseball players arc paid tens of millions 

of doll;1rs, partly because they have batting averages that arc much higher than 

the average player. Obviously, owners and managers of baseb;dl teams believe that 

players with high batting averages will be much more successful than players with 

low batting avernges. That is, in <1n)' single at bat, the player with a high b<1tting 

average should have a much greater chance of hitting the ball thnn <1 player with a 

low b;1tting average. But is this actually true? flow nlllch variability in at-bat suc

cess is actually expi<1ined by batting average? ;\bclson examined baseball st<1tistics 

to evalw1tc the association between batting average (scored from 0 to 1.0) and the 

ch<lnl·es of success at any single <1t b<1l. 

Abelson's (I 01\5) <Jnaly.'>is revealed what he interpreted as a "pitifully small" 

(p. 132) ;Jssociation between hatting skill (as reflected in batting <1VcrageJ and suc

cess in a single at hat. In light of such a small statistical association, he considered 

why he, other statistical experts, other baseball fims, and even baseball managers 

believed tlwt batting average is such an important issue. lie concludes that "the 

individual b;1t!cr\ success is appropriately measured over a long season, not by the 

individual at hat" ( p. 132). Tlwt is, although the ability to predict a single event (i.e., 

<Ill individu<11 at hat) is perhaps meager, what matters are the cumulative effects of 

nw1y such events. Even a meager level of predictability filr <Ill)' single event C<11l 

produce ,1 much more subst<l!1tial lcvcl of predictability as those events accumulate. 

In sum, single events-whether they arc baseb;dl at bats or a specific social 

heh;1vior in <1 specific social sitw1tion-might be inherently difficult to predict. In 
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st�rTtollllg ana vo uotmg onv 

terms of 1· 1. ·1 1 ·. · ··ue in rch1lion to the nile-. · va 1C 1ty coetlicicnls, one must cons1c er 1115 ISS 
. 

non variable. Is the criterion to be predicted a single event, such as a smgle observa-

tion of social bchmrior? ( )r is the criterion a cumulative variable, such as .r
_
h� average 

level of s .·. 1 l I 
. · ·< 1 ·trvc v·tlidity cocfhuenls arc 

· oc1,1 )e 1av1or ;tcross m;my obscrv;ttwns. ·' v ' 
. 

more likely to be obtained when the criterion variable is based on the accumulalwn 

or aggreg-11· 1-
·

. · l . , 1 1 c1nl)' ·t sinvle event. ' IOn o several events than when 11 IS 1ascc Ol ' · " 

After a validity coefficient is obt;1incd, it must be interpreted. kst developers, 
CV<tluators, <tnd users must decide whl'lhcr validity coefficients arc large enough to 

provide compelling evidence of convergence or if they arc sm<111 enough to provide 
assurance of discriminant validity. Altl�ough it is a precise way of quantifying the 

degree of association between two measures, the correlation coefficient might not 
be highly intuitive. Particularly for newcomers to a field of study, the knowledge 
that a correlation is, for example, .40 is not always very infi:mnative. In our experi
ence, the tendency seems to be t(Jr people to note that .40 seems fitr t]·OJn a perfect 
correlation or 1.0, and thus they interpret it as quite small. For people who are not 
used 10 interpreting correlations in behavioral science, anything less than perfect is 
often seen ·ts .1 · 1 1 · · · ' ·  ' somcw wt wca <assoCiation. 

This tendency could be problematic when evaluating <1 validity coefficient, 
particularly when discussing validity with someone who is not experienced with 
lll�erpreting correlations. For example, the human resources director f(ll· a comp<my 
1111�ht need to convince employers, test takers, or lawyers that a particular test is <1 
vahcl predictor of job perlimnance. 'l(J mnkc her case, she cites research evidence 

showing a .110 correlation between test scores nnd job performance. As we know, 
this suggests that people who score relatively high on the test tend to exhibit rela

tively high job perfimlt<lllcc. However, her audience of employers, test takers, or 
lawyers might interpret this evidence quite difkrcntly.ln lite!, thC)'lllight argue that 
a correlation of' .40 is fiu· from perfect ·md thcv mi<>ht even interpret it as evidence 
of the invalidity or the test I !-low coull; �he ln1n

,
wn l:'sources director convince oth

ers that the lest is actually a useful and vnlid predictor? 
As discussed <tbove, issues such as the true corrcl<ttion between constructs, 

method vari;tnce, relative proportions, and rl'ii;thility nrc some key fitctors 
affecting the size of a validity coefficient. Several addition;Ji important issues 
become rekv<tnt in the over;tll interpretation of the size and mc;tning of a 
V<tlid it y coefficient. 

Squared Correlations and "Variance Explained" 

In psychological rese;trch, a connnon pr;tctice is to interpret a squared correla

tion. Specifically, a squared correlation between two V<triables is oficn interpreted 
as the proportion of variance in one variable that is cxpL!incd or "accounted fi1r" 

by the other. For example, if we finmd a correlation of .30 between social �kill 
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and self-esteem, we might interpret this as showing that 91Jio of the variance i 

self-esteem is explained by social skill (because .30 squared is .09). Actually, w 

could also interpret this result as showing that 9'!-6 of the variance in social skill i 

explained by self-esteem. 

The "variance explained" interpretation is appealing, given our earlier asser. 

Lion that research in general (and psychometrics in particular) is concemed with 
measuring and understanding variability. Indeed, the more variability in a phc 

nomenon that we can explain or account {(Jr, the more we feel like we understand 
the phenomenon. Furthermore, the "variance explained" interpretation fits various 

statistical procedures such as regression and analysis of variance ( ANOVA), which 

rely on partitioning or predicting variability. Thus, you will ti·cquently read or 

hear researchers interpreting associations in terms of squared correlations and the 

amount of variance explained. 
Despite the appeal of this approach, the "squared correlation" approach to 

interpreting associations has been criticized for at least three reasons. First, it is 
technically incorrect in some cases. Although the statistical basis of this argument 

is beyond the scope of our current discussion, Ozer ( 1985) argues that in some 

cases, the correlation itself; and not the squared correlation, is interpretable as the 

proportion of variation explained. Second, some experts point out that variance 

itself is on a nonintuitive metric. Recall ti-om an earlier chapter that, as a measure of 

differences among a set of scores, variance is based on sq11ared deviations ti·om the 
mean. The variance has some nice statistical properties, but how arc we to interpret 

squared differences from a mean? !)'Andrade and Dart ( 1990) point out that think

ing in terms of squared differences or distance is not usually meaningful-do you 

provide directions to your house by telling fi·iends that it is 9 squared miles li·0111 

the interstate? The squared correlation approach might be seen as a nonintuitivc 

and, thcrcfi>re, nonuseful perspective on the association between variables. 

The third criticism of the squared correlation approach is the least technical but 

perhaps the most powerful of the three. Simply put, squaring a correlation makes 

the association between two variables seem too small. It is not uncommon to hear 

researchers bemoaning the l�1ct that they have explained "only" 9% or 12%> of the 

variance in a phenomenon. Or you might read criticism of a research finding that 

explains "only" 16'Jtb of the variance. Indeed, 91Y<>, 12%, and 16% do not sound like 

great <llllounts of anything. After all, this implies that nearly 90'76 of the variance is 

unexplained, and that sounds like a lot! However, as we will discuss in a later sec

tion, 9%, 121Yrl, or 16% of the variance in a phenomenon might he a meaningful and 
important amount of variance. This is particularly true if we are talking about the 

association between only two variables. h>r example, if we can use a single variable, 

such as social skill, to cxpl<lin nearly I 0% of the variability in an important and 

complex phenomenon such as self-esteem, then perhaps that is a pretty important 

ass< >e i at i < 111. 

The baseball example provided by Abelson ( 1985) is also relevant here. Recall 

that Abelson's examination led him to conclude that the association between 

hatting average and the chances of success at any single at bat was very small. In 

tact, his conclusion was based on analyses revealing that only one third o( 1% of 

the variance in any single batting perf(>n1Jancc was explained by batting skill (as 
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reflected in batting average). As discussed earlier, Abelson pointed out that 
_
the 

cumulative effect of many at bats could account for the general belief that ba�t:ng 

average Was an important indicator of batting skill. D'Andrade and Dart
, 

( 1 990) 

offer a cJ1'f·c, . . . . 
1 :1· .. . , . ·y between Abelson s effect 

. ' 'crent perspect1ve 111 exphunmg t 1e c 1sucp,mc 
. . 

SIZe (an apparently very small percentage of variance) and the conventwn:ll WIS

dom tlnt b· t · . . 
· ·t·. 'f']J'·'Y sugaest that the cllscrep-

' a tmg average 1s an 1mportant stat1s 1c. � · o . 
ancy partly results fi·om the fact that percentage of variance is a poor measure c:f 
association. Commenting on a table provided by Abelson, the� point out that his 
results could be legitimately interpreted <IS showing that the difference between a 

.220 batter and a .320 batter results in a !0% difference in their likelihood of get
ting a hit in any single at bat. D'Andrade and Dart acknowledge that "!O'Y<: may 
not be huge," but they suggest that "those who bet to win like 1 O% edges. So do 
ba��ball

" 
managers" ( p. 58). . . . . 

I he squared correlation" or "variance explained" interpretatiOn of V<lhdlt)' 
c�efficients is a common but potentially misleading approach. Although it tits the 
VIew of research and measurement as tied w variability, it has several technicnl and 
logical problems. Perhaps most critically, a "variance explained" appronch tends 
to c:Jst associations in a way that seems to minimize their size and imporwnce. 

I·or example, one notable organization hns criticized the SAT for, among 
other things, having poor validity in terms of predicting college GPA. Indeed, 
the National Center for Fair and Open Testing (NCFCYI; 2007) notes that the 
correlation between SAT scores and college freshman GPA is about .48. They 
assert that 

�his number is deceptive, however. 'Jb determine how much of the difference 
111 first-year grades between students the SliT I really predicts, the correlation 
coefficient must be multiplied by itself The result, called r squared, describes 
t�Je difference (or variation) among college fi'eshman grades. T hus, the predic
tive ability (or r squared) of the SAT I is just .22, meaning the test explains only 
22% of the variation in ti-eshman grades. 

Obviously, the intended point of this assertion is that the SAT is, in fiJCt, a poor 
predictor of college academic perf(mnance and is thus invalid <llld useless. 

Unfortunately, this <lssertion is misguided in at least two important W<Jys. First, 

contrary to the assertion's argument, there is no need to square a correlation in 
order to interpret it. Indeed, researchers fi·om nl<IJJY areas of psychology and other 
�ciences report correlations regularly without squaring them. The correlation 
Itself is a meaningful and reasonable index of association, as we have discussed 
throughout this book. Going further, it makes no sense to imply that a given value 
is deceptive or inappropriate but that squaring it makes it clc<u· and interpretable. 
Second, the suggestion that the <lbility to ;Iecount f(>r 22% of the vari<lnce in 
freshman GPA is poor is itself off the mark. I ndced, in many areas of behavioral 
science, an association of this magnitude is, in filet, very robust. J\s researchers 
ourselves, we would be quite happy if we could account for "only" 22% of the 
variance in an important and complex variable like heshman GPA. Indeed, f(H 
us, as psychological scientists trained in the study of individual differences and 
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predictive validity, the�e results provide compelling evidence in support o(thc S.\ 

a� a measure of capacity /(Jr academic achievement. Thus, thi� example shows th 

d;1ngers of <1 misguided interpretation of"squarcd correlations" as a way of intl'J 

prcting validity correlations. 

In the remainder of this section, we present better way� of interpreting the lll<�g 

nitude of a validity coefficient. The next two subsections put validity corrcbtion, 
in specific contexts that are themselves ways of understanding the meaning of d 

given associ a lion. 

Estimating Practical Effects: Binomial Effect Size Display, 
Taylor-Russell Tables, Utility Analysis, and Sensitivity /Specificity 

One useful way of interpreting a correlation is by estimating it� impact on "rcll

life" decision making and predictions. The larger a correlation is between a lest 

and a criterion variable, the more successful we will be in using the lest to make 

predictions or decisions about the criterion vari;1blc. This interpretive approach 

casts the associative strength of a test in terms that arc closely tied to the "practice" 

of testing and test usc. 

Returning to the SAT, we can frame the issue in terms of using it as a tool 

to predict academic pcrl(mnancc. That is, we can frame the issue in a way that 

university administrators, faculty members, student applicants, high school 

counselors, and parents are like!)' to find relatively intuitive. More specified!)', 

we can frame the question in terms of the percentage of times that Si\T-hascd 

predictions about students' college GPAs arc likely to he accurate. How oflL'n 

will SAT scores lead to accurate predictions, and how often will they lead to 

in<Jccuratc predictions? 

There arc at least four procedures that have been developed to present 

the implications of a correh1tion in terms of our ability to usc the correla

tion to make successful predictions. These procedures include the binomial 

effect size display (1\ESIJ; l{osentlwl & Rubin, 1':182), the Taylor-l{ussell t<1hlcs 

(Taylor & Russell, I <JYJ), u l il i l y analysis (Brogden & Taylor, I <J50 ), and an 

analysis of lest sensitiv ity and specificity (Loong, 2003). We will discuss each 

of these in turn. 

The Bl�Sl >is dc�igned to illustrate the practical con�cquenccs of u�ing a correla

tion to make decisions. Specifically, it is usually l(mnattcd to make predictiom or 

decisions /(Jr a group of 200 people-- I 00 of whom ll<lVe rei<Jtivcly high scores on 

the test of interest and I 00 who have relatively low scores on the lest. !low many 

of the high �corers <Jre likely to perl(mn well on <1 criterion vari<Jhle, and how 

many lm: scorers arc likely to pcrl(mn poorly? In terms of the SAT example, how 

many people who have above-average SAT scores will earn above-avcr<Jgc (;PAs, 

and how many people who have below-<Jvcrage SAT scores will cam below-average 

1 ,!'As? Sec "J;1blc ':IJ1a /(Jr a 2 x 2 table that reflects this issue. We c<Jn usc the Bl-:Sll 

procedure to show how many successful and unsuccessful predictions will he made 

011 the basis of a correlation. 
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Table 9.6 Example of the Binomial Effect Size Display 

(a) For a correlation of r == .00 
1est Score 

Below average 
Above average 

(b) For a con-elation of r == .48 
'lest Score 

Below average 

Above average 

NOTE: GPA = grade point average. 

College GPA 

!lcfmv Average 

50 

50 

fie/ow Avcmgc 

A 

74 

c 

26 

A[}()VC A vcmgc 

50 

50 

B 

26 

/) 

74 

'I(> illustrate this, let us start with a worst-case scenario of zero correlation 
between SAT scores and college c;PA. J{ .SJ\'J' scores ;1rc uncorrcbtcd with c;PA, 
then we would have only ,1 50:50 success rnte (sec 'L1bfc 9.6a) in using .SAl' scores 
to predict whether students' GPAs are relatively high or low. Th<ll is, <1mong 
100 people with below-average SAT scores, 50 would earn below-average CP/\s, 

and 50 would earn above-average GPA� . .Similarly, among the 100 people with 
above-average SAT scores, 50 would earn below-average c;PAs, <1nd 50 would 
earn above-average (;PAs. As this example illustrates, if a test is uncorrelated 
with a criterion variable, then using the test to make predictions i� no better 
than flipping a coin. Certainly, college admissions officers would reject a test 
that had a validit)' coclricient tlwt produced a success rate no better tlwn flip
ping a coin would. 

But what about a scenario in which there is <1 nonzero correlation between 
te<;t and criterion? If test scores arc unrelated with joh pcrfornwnce, then we 
would be more successful than 50:50. Rosenth;1l and J{ubin I I 9!>2 ) provide 
a way of illustrating exactlv how much more successful we would be. Note 
that the 1 x 1 labll'

L
prescnt

,
cd in Table 9.6b is li>rmatted so that Celli\ cor

responds to the number of people who h<1Ve relatively low .SAT scores and 
who will likely earn below-average <;PAs. '1(1 determine this value, we usc the 
li>llowing formula: 

L 

Cell A== 50+ I 001 r/2), 

where r is the correlation between test and criterion. If test scores arc corrclatnl 
with joh perf(mnancc at r == .4!> (e.g., as suggested by the NCHYI� 2007), thm 711 

people with below-average SAT scores would lwve below-average .SAl's: 
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Cell A= 50+ 100(.48/2), 

=50 + 24, 

=74. 

Our prediction f()r Cell B (the number of people with relatively low SAT scor1 

who arc predicted to earn relatively high GPAs) is 

Cell B =50- I 00( r/2), 

=50-100(.4S/2), 

= 50-24, 

=26. 

The predicted success r<ltes for Cells C and D parallel those for Cells A and B: 

Cell C =Cell B =50- 100( r/2) = 26, 

Cell D =Cell A= 50+ 100( r/2) = 74. 

Now, based on the data presented in the BESD, let us consider the importance or 

utility of a correlation that is "only" .48. If a college admissions committee accepted 
only applicants with relatively high SAT scores, then 74% of those applicants will 
turn out to earn high GPAs in college and only 26% will turn out to earn poor 
GPAs. A 74<)-iJ success rate is not perfect, but it  seems quite good f()r complex phe
nomena such as academic achievement. Depending on a variety of factors, collegl' 

administrators and faculty might view a 74% success rate as very good indeed. 

'lilke a moment to compare the potential interpretations of the finding that SAT 

scores are correlated at approximately .48 with college GPA. First, some people 

might square the correlation and be disappointed that the SAT "explains only 22% 

of the variation in freshman grades." But what docs 22°A> of the variation mean 

in real-life, practical terms? Is it truly as bad as the NCFOT (2007) would have us 

believe? A second interpretation would suggest not-indeed, the BESD approach 

provides rather compelling evidence in support of the validity and practical utility 

of the SAT as a tool for predicting college performance. That is, the finding that 

SAT-based admission decisions would be correct nearly 75<)k, of the time is quite 

impressive, considering the huge number of tiKtors that alkct each student's per

formance in college. Based on these results, practically speaking, the SAT seems to 

oHer meaningful information about a test taker's likelihood of achieving classroom 

success. In sum, the BESD can be used to translate a validity correlation into a 

framework that is relatively intuitive. By fi·aming the association as the rate of suc

cessful predictions, the BESD presents the association between a test and a criterion 

in terms that most people are bmiliar with and can understand easily. 

Despite the intuitive appeal of the BESD, it has been criticized as an estimate 

of the practical effects of a correlation ( llsu, 2004). One key criticism is that it 

automatically frames the illustration in terms of an "equal proportions" situation. 

That is, it is intended f(Jr a situation in which the number of people with low test 

scores is equal number to the number of people with high test scores. In addition, 
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it is cast l(n a situation in which half the sample arc "successful" on the criterion 
variable and half are unsuccessful. As described earlier in this chapter, the relative 
proportion of scores 011 a variable (i.e., its skew) can affect the size of a correlation. 
Alth�ugh the BES1Ys assumption of etluaf rel<ttive proportions might be reason
able lll sorne cases, it might not be representative of many real-lit� situations. For 
example, a college admissions committee might accept only 25% of the appl1cants, 

_
not :0%. In addition, high GPAs might be rather ditlicult to achieve, perhaps only 

"30!-6 chance. 
For situations in which the equal proportions assumption is untenable, we 

can
. 

examine the tnbles prepared by "litylor and Russell (I 939). These tables were 
d:sJ

.
gned to inf(mn selection decisions, and they provide the probability that a prc

<hctlon (e.g., a selection decision) based on ,111 "acceptable" test score will result in 
successfi.I/ pcrf(>rmancc on the criterion. As with the BESD, the '/iJylor-Russell tables 
cast the predictor (test) and outcome scores as dichotomous variables. For example, 
a human resources director might use an integrity test or an ability assessment to 
help make hiring decisions. Tht;s, she might conceive of test scores as either passing 
or failing · · 1 · · d · · 1 f l"t · ·l , 

. ' ll1 terms of meeting the standards for a Jmng cuswn. n at { 1 Jon, s 1c 
wlll conceive of the job performance criterion as either successful perfi:mnance or 
unsuccessf' l 1· · · 1 I l'ESV d I "1' 1 · u per ormance. The key d1fference >etween t 1c > an t 1e ay OJ-

[
Rus

,
sefl table� is that the 'Ji1ylor-Russell tables can accommodate decisions that arc 

><�sed on vanous proportions both for passing/fi1iling on the test and lor successful/ 
unsuccessful pcrt(nmancc. 
. 

'I(J usc the 'IiJylor-nusscll tables, we need to identify several pieces of inf(mna
tJon. First, what is the size of the validity coefficient? Second, what is the selection 
proportion-the proportion of people who arc going to be hired? That is, are 10% .�t 

_
applicants going to be hired (leaving 90% not hired), or will 30% be hired? 

1 hJrd wh·tt · · t·l · · 1 1 If l " r· 1" · ·· . . '
. . 

' Is 1e proportion of pcop c w 10 wou t 1avc success u cnteJJOll 
scores If the , 1 · J • ·1 · · J I · ' se ect1on was made without t Je test? I J<Jt Js, assummg t 1nt 1rrcs were 
made without regard to the test scores, how many employees would achieve suc
cessful job perf(nmancc? 

With these three pieces of infi.Jrmation, we can check the 'JiJylor-Russcfl tables to e�timate the proportion of· people with acceptable scores who go on to have suc
cessful performance. For example, if we knew that I O'Y<• of a sample would be hired 
(a sclecti(>Jl > · · f 1 1 · · J f. l1 oport1on o .! 0) and that t 1e genera rate of succcssfu per ormance 
was 60% ( ., '"tl · · · · I 1 f · 1 I t' ( · ' ·' cccss proportwn of .60), t 1cn we cou ( estnnate t 1e JCIIC Jt o us111g 
a test to make the selection decisions. Jf the applic;mt-screcning test has a validity 
coefficient of .30, then the "Thy/or and Russell tables tell the human resources tfirec�or that 79'!1, of the <lpplicants selected on the basis of the test would show success

ful jol� perl(>nnance. Note that this percentage is greater tlwn the general success 
rate of 60%, which is the success rate that is estimated to occur if hires were made 
without the usc of test scores. So the human resources director concludes that the 
test improves successful hiring by !9%. 

The 'lhylor-Russeli tables l1ave been popular in industrial/organizational psy
chology in terms of hiring decisions. Our goal in describing them is to alert you to their existence (sec "lilylor & J{usscll, !939) and to put their importance in the 

context of evaluating the meaning of a validity cocflicicnl. 
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Utility analysis is a third method of interpreting the meaning of <1 validit1 

cocnicicnl, and it can be seen as expanding on the logic of the BESD <llld thl' 

'Htylor-l{usscll tables. Utility analysis ti·amcs validity in terms of a cost-versus

benefit analysis of test use. That is, "is a test worth using, do the gains from using it 

outweigh the costs?" (Vance & Colella, I<J<JO, p. 124). Although a full discussion ol 

utility analysis is beyond the scope of this section, we will provide a brief overview. 

ror a utility analysis, researchers assign moncl"ary values to various aspects ol 
the testing and decision-making process. hrst, they must estimate the monctar\' 

benefit of using the test to make decisions, as opposed to alternative dccision

m;tking tools. For example, they might gauge the monetary benefit of hiring 
employees based partly on test scores as opposed to hiring employees without the 
aid of the test scores. Note that the logic of the 'Htylor-l{ussell tables provides some· 

insight into this issue. For example, those tables show the proportion of applicmts 

selected on the basis of the test who would show successful job performance, 

which researchers might then usc to cstinwtc the monetary impact of hiring a spe

cific number of people who show successful job pcrft>nllancc. Second, researchers 
must estimate the monetary costs of implementing the testing procedure as part 

of the decision-making process, such as the costs incurred by purchasing and 

scoring the test(s), training decision makers in the interpretation and usc of test 
scores, and the time spent by lest takers and decision makers in using the tcst(s). 

As an outcome of a utility analysis, researchers can evaluate whether the monctarv 

benefits of test use (which, again, arc affected by the ability of the test to prcdic
,
t 

in1portant outcomes) outweigh the potential costs associated with test usc. 

An analysis of test sensitivity and test specificity is a fourth approach to evaluat
ing the practical effects of using a specific test. Particularly useful f(>r tests that arc 

designed to detect a categorical ditTercncc, a test can be evaluated in terms of its 

ability to produce correct identifications of the categorical difference. For example, 

a test might be intended to help diagnose the presence versus absence of a specific 

psychological disorder. In such a case, there are f(nir possible outcomes of the diag

nosis, as shown in 'lithic 9.7: 

I. 'fhtc positive: The test leads test users to a correct idcntitlcllion of a test 
taker who truly has the disorder. 

2. 'fhtc negative: The test leads test u�crs to a correct identification of a test 
taker who truly docs not have the disorder. 

3. hilsc /}(}Sitive: The test leads test users to mistakenly identify a test taker as 

h<Iving the disorder (when the individual truly docs not have the disorder). 

1i_ l·lilsc negative: The test leads test users to mistakenly identify a test taker as 
not having the disorder (when the individual truly does have the disorder). 

r ll>viously, test users would like a test to produce many correct identifications and 

very few incorrect identifications. 

Scn-;itivity and specificity arc values that sumnwrizc the proportion of idcntifi

catiom that arc correct. i\s shown in 'litblc <J.7, sensitivity reflects the ability of a test 

to idcntif}' individuals who have the disorder, and specificity reflects the abilit)' of a 
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Table 9.7 Example of Sensitivity and Specificity 

1est Present 
Results 

Indicate 

That 

Disorder Is 

Absent 

In Reality, Disorder Is 

Present Absent 

BO 120 
True positive Fnlse positive 

20 7/:W 
hdse ncgnt ive 'Ji·ue negntive 

All with All without 
disorder l 00 disorder 900 

Sensitivity Specificity 
BO/ I 00 = .llO 780/900 = .87 

All with Positive 
positive predictive 
test 200 vn/ue 

IW/200 = 

.40 

All with Negntive 
negntive predictive 
test BOO value 

7/lO/ilOO = 

.975 

Everyone = I ,000 

Bnse rate ( prcvnlcnce, 
pretest prob;Jbility) = 

I 00/ I ,000 = . I 0 

test to identif)r individuals who do not have the disorder. More tcchnicnlly, sensitiv
ity reflects the probability th;Jt someone who has the disorder will he identified cor

rectly by the test, <llld specificity reflects the probability that someone who docs not 

hnve the disorder will he identified correctly by the test. in prnctice, researchers and 
test users can never truly know who has the disorder, but sensitivity and specificity 
are estimnted to he high in research that uses a highly trusted standard li>r gauging 
whether nn individu;d has the disorder. 

In sum, tools such as the /WSD, the '/�Jy/or-Russell tables, utility analysis, and 

sensitivity/specificity allow test users and test evaluators to illustr;Jte more con

cretely the implications of a p;lrlicular validity coellicient and the use of a given 

lest. Such procedures arc clenrly important and useful when <1 test is tied closely to 
a specific outcome, characteristic, or decision. 

Guidelines or Norms for a Field 

Yet another way in which validity correlations should hl· evaluated is in the con
text of a particular <I rea of research or <lpplicllion. l )ifferent are;Js of science might 

have dilkrent norms ti>r the size of the associ<! lions that ;Jre typic;d/y li>UJld. Son1e 

areas have gn.'<ller experimental control over their V<lriables th<lll other areas. Some 
areas have more precise Jlleasuremenllechniques th<lll others. Son1e areas may h;Jve 

more complex phcnon1ena, in terms of multidetermination, than others. Such dif
krmccs a/feet the nwgnitude of results obi<Jined in research. 

lksearchcrs in the physical sciences might commonly discover associ;Jtions 
that most psychologists nnd other hehnvior;d scientists would consider incredibly 

strong. For exnmple, <1 2000 study ex;llnined the ;Jssociation between the mass of 



262 PART Ill: VALIDITY 

black holes at the center of a galaxy and the average velocity of stars at the edge< 
the galaxies (Gebhardt et al., 2000). This study included approximately 26 gala x i<_ 

(the "subjects" in this study), and two variables were measured for each galaxy. On, 

variable was the size of the black hole at the center of the galaxy, and the other W<J, 

the velocity of the stars that orbit on the edge of the galaxy. Analyses revealed a cor, 
relation of .93 between the two variables. Such a high correlation is rarely, if cvn, 

found with real data in psychology. Similarly, Cohen ( 1 988) notes that researcher, 
in the field of classical mechanics often account for Sl9% of the variance in their 
dependent variables. 

In psychology, Jacob Cohen is often cited as providing rough guidelines il1r 

interpreting correlations as small, medium, or large associations. According to 

Cohen's ( 1988) guidelines for the interpretation of correlations, correlations of .I o 

are considered small, correlations of .30 are considered medium, and correlations 
of .50 are considered large (note that Cohen provides different guidelines for inter

preting other effect sizes, such as d). More recently, Hemphill (2003) conducted a 

review of several large studies and suggests that a more appropriate set of guide

lines would cite correlations below .20 as small, correlations between .20 and .30 as 

medium, and correlations greater than .30 as large. 

Even within the field of psychology, different areas of research arc likely to 

have different expectations for their effect sizes. For example, Hemphill's ( 2003) 

guidelines are derived fi·0111 studies of psychological assessment and treatment. The 

degree to which his guidelines arc appropriate for other areas of psychology or the 

behavioral sciences in general has not yet been examined. Similarly, Cohen ( 191Hl) 

acknowledges that his guidelines "may be biased in a 'soft' direction-i.e., towards 

personality-social psychology, sociology, and cultural anthropology and away ti·om 

experimental and physiological psychology" (p. 79). 

Sometimes, there are clear comparison standards fi>r a particular validity coef

ficient. That is, there might be a well-established body of literature regarding the 

various fi1ctors that arc correlated with a particular criterion of interest. In such <1 

case, it is simple to evaluate the validity cocfflcicnt fi>r a new test in the context of 

the existing body of literature. 

For example, there is a large body of literature regarding the correlates of col
lege academic performance, and this can be used to evaluate the predictive power 

of SAT scores. We can return again to critics of the Si\'1; who state that "the SAT 

is not a good predictor of academic performance" and that "insofar as any aca

demic measure I is the gold standard fi>r predicting college performance J, it is High 

School ( ;pA" (Soares, 2008). Such an endorsement would suggest that high school 

GJ>A would be the best comparison fi>r the predictive power of the SA' I: As it turns 

out, despite the critics' implications to the contrary, there is very little difference 

between the predictive power of the SAT and the predictive power of HSCPA. For 

example, the website of the NCFOT (2007), which cited the predictive power of the 

SAT at A8, slates that IISGPA is correlated with college CPA at a minimally larger 

.54. Similarly, a well-known study of nearly 80,000 college applicants in California 

revealed predictive correlations of .36 and .39 for the SAT and high school grades, 

respectively' (Geiser & Studley, 200 I). People who are familiar �itl� corrclatio�1al 

results will realize that such modest differences are a very weak basis for concludlllg 
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that there is a meaningful difference in the predictive power of two variables, and 
those differences certainly do not justify the conclusion that HSGPA is "the g�>ld 
standard" fix predicting college perform;mce while at the same tnne concludmg 
that the SAT "is not a good predictor." Indeed, such findings provide an important 
c�ntext for understanding the predictive validity of the SAT--if you b�Iicve that 
Jugh school grades arc meaningful predictors of college academic performance, 
then you must also believe that SAT scores are meaningful predictors of college 
academic pcr{()l'mancc. 

In sum, the in terprelation of validity coefficients, as with any measure of associa
tion, needs to be done with regard to the particular field. Careful and well-informed 
attention to the existing empirical work in a field can provide an important context 
for interpreting the magnitude of a specific validity coefficient. 

Statistical Significance 

If you read a study that revealed a predictive validity coeltlcient of .55 for the 
SKI; would you interpret the result as providing evidence of convergent validity? 
Using the BESD procedure, a correlation of this size would produce a success rate 

of nearly 80<31>, in terms of admitting students with high SAT scores into coJJege. 
However, what if you hnllld out that the study included only 20 participants? 
Would this change your opinion of the study? If so, how? What if you found out 
that the study included 200 participants? Would this improve your opinion of the 
Stl l ? I l IcY· n w 1at way would it be a better study? 

Earlier in this chapter, we mentioned a real study of the predictive validity of the 

SAT This was a large study, including more than I 00,000 students fi'om 25 colleges. 
What is the benefit of such a large study? Is it necessary to have such a large study? 
�s you might know, most studies in psychology, including most validation studies, 
�nclude much smaller samples-typically a few 100 p<ll'ticipants at the most. What, 
It anything, is lost by having samples of this size? 

Statistical significance is the final consideration we will discuss in evaluat
ing evidence of convergent and discriminant quality. Statistical significance is an 
important part of what is called inji:rcntial statistics, which arc procedures designed 
to help us make infi:rences abou; populations. Either from previous expericm:e 
or li·01n our brief discussion in Chapter 7, some of you might already he f�nniliar 
with inferential statistics such as I tests (e.g., h>r correlations or l(n comparing two 
means), F tests (e.g., from ANOVA or li'OI11 multiple regression), or x" (e.g., li"OIIl 
an analysis of liTqucncies). We will take a moment to cxpl.1in a tl-w basic issues in 
inferential statistics, and then we will consider their role in interpreting validity 
evidence. 

Most studies include a relatively small sample of participants. These �wrtici
pants provide the data th<It are analyzed and serve as the basis for interpretations 
and conclusions. But researchers usually want to make conclusions about people 
beyond the few who happened to participate in their particular study. Indeed, 
researchers usually assume that the participants in their studies represent a random 
sample fi·om a larger population of people. For example, the 20, 200, or I 00,000 
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people who happen to be included in a SAT study arc assumed to represent ,Jil 

students who might take the SAT and attend college. 

Because the sample of rarticipants in a study is assumed to represent a larger 

population, researchers further assume that the participants' data represent (Ill ore 
or less) data that would be collected from the entire population. Thus, they LL'C 

the data fi·om the sample to make inferences about the population tlwt the sample 
represents. hlr example, researchers who Jlnd a predictive validity coenlcicn t of.:\) 

f(Jr the SAT would like to believe that their results arply to more than the 20, 200, 

or I 00,000 people who participated in their study. 

llowevcr, researchers arc aware that making inferences fi·om a relatively Slll<lil 

sample to a larger population is an uncertain exercise. For example, just hce<lllse 

d;Jta from 20 participants might reveal a predictive validity correlation of .55 f(n· 

the SA'!; should we have great confidence that the SAT has predictive validity in 
the entire population of participants who might take the SAT? In f�1ct, it is quill' 
possible that the sample of 20 people docs not represent the enrire population of 
students who might take the SAT Therefore, it is possible that the predictive valid
ity results f·(lllnd in the sample do not represent the actual predictive validity in the 

entire population. 

Researchers use inferential statistics to help gauge the contldcncc that they 

should have when making inferences ti-om a sample to a population. Researchers 

compute inferential statistics alongside statistics such as correlations to help thcn1 

g<wgc the representativeness of the correlation f(nllld in the sample's data. Roughly 

stated, if a result is deemed "statistically significant," then researchers are fi1irly con

fident that the sample's result is representative of the population. For example, if 

a study reports a statistically significant positive predictive validity corrch1tion f(Jr 

the SAT, then researchers feel confident in concluding th<lt SAT scores arc in fiJCt 

positively associ<lted with college c;I'As in the population from which the study's 

sample was drawn. On the other hand, if a result is deemed to be statistically non

significant, then researchers arc not confident that the sample's result represents 

the population. For example, if a study reports a statistically nonsignillcant posi

tive predictive validity correlation J(Jr the SA'I; then researchers will likely conclude 

tlwt the positive correlation in the sample might h<Jve been a fluke finding caused 

purely by chance. That is, they arc not willing to conclude that SAT scores arc in fi1ct 

positively associated with college GPAs in the population from which the study's 

sample was drawn. 

With this background in mind, you are probably not surprised to learn that 111<111)' 

researchers place great emphasis on st<Jtistical significance. Many researchers tend lo 

view statistically significant results as "real" and worth paying attention to, and they view 

nonsignificant results either as meaningless or as indicating a lack of association in the 

population. !\It hough these views arc not entirely accurate, they seem to he common. 

Thus, the size of a validity cocfflcicnt is only part of the picture in evaluating the 

evidence f(Jr or against construct validity. In addition to knowing and interpreting 

the v;didity cocJJicicnt itself (e.g., is it small, medium, or large?), test developers, test 

users, and test cvalu<llors usually want to know whc!hcr the validity codllcicn! is 

'>l<ltisticdly significant. When evaluating convergent validity evidence, researchers 

expect to find validity coctllcicn!s that arc statistically significant. In contrast, when 
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evalu<!ling discrimin<Jnt validity evidence, researchers expect to find v;didity wet� 
ticients that arc nonsignit!cant (i.e., indicating that the test might not be correlated 
with the criterion in the population). 

Because statistical significance is often such an important par! of the interpre
tative process, we believe that you should have a basic understanding o( the issue 

being addressed and the t;1ctors aiTccting statistie<d significance. As applied to 
the typical case of a validity coctficicnt, statistical significance addresses a single 

question-do we believe that there is a nonzero validity correlation in the popula
tion ti·om which the sample was drawn? 

Note that this is a "yes or no" question. The statistical significance process leads 
to a dichotomous decision-researchers conclude either that there probably is an 
associ<llion between a test and a criterion in the population or that there might 
not be an association between the test and the criterion in the population. Again, 
when evaluating convergent validity, researchers would like to conclude that there 
is an association between a test and a criterion in the population, so they hope to 
lind results that arc st<ll istically significant. W hen evaluating discriminant validity, 
researchers would like to conclude that there is no (or <1 small) associ<Jtion between 
a lest and a criterion, so they hope to lind results that arc nonsignitic1n!. In lite!, 

Campbell and Fiske (I 'J5'J) included statistical significance as a key par! of inter
preting the results o{ an MTMMM an;dysis. 

A more sophisticated version of the basic question is this: Arc the results in the 

sample COIIIpcl!ing enough to make 11s confident that there is 11 nonzero correlation 
in the population fimn which the sample 1�'1/S dmwn? This highlights the notion of 
confidence, and it generates two subqucstions outlining the litctors alf(:cting statis
tical significance. One question is this: flow confident ore IVC that there i� a nonzero 
validity correlation in the population ti·om �hich the sample w<Js drawn? The 
second question is this: Arc we confident enough to actu;dly conclude that there is a 
nonzero correl<Jtion in the population tium which the sample was dr<Jwn? 

There arc two fiKtor� <Jffccting the amount of confidence that there is a nonzero 
correl;Jtion in the popul<Jtion-the size of the correlation in the S<llnplc's d<11<1 <Jnd 
the size of the sample. rirst, consider the t;Jct that larger correlations incrc-;Jse the 
confidence th;Jt the popul<Jtion correl<Jtion is not 0. If the correlation between SAl' 
scores and < ;p;\ is literally 0 in a population, then what correlation would we he 
likely to lind in a sample of people drawn from that population? Even if the cor
n:lation in the population is exactly .00, we migl1t not he very surprised to lind a 
small correlation of .07 in <1 sample. Such a sm<Jll correlation i� only slightly differ
ent ti·01n the population correlation. We might not even he too surprised to tim! 
il correlation of .15 in <1 sample. Going fi1rther, we might not be shocked to find a 

somewhat larger correlation ot; say, .30 in a sample, even if the sample comes ti·om 
a population in which the corrcl<Jtion is 0. Such a result(<! corrcl<1tion of .30) is not 
likely, but it is not impossible. In tiKI, it i� possible that a very strong coJ-rclation 
(e.g., a correlation of .8'J) could occur in a sample, even if the sample comes from 
a population in which the correi;Jtion is actually 0. 

In short, rci<Jtivcly l<�rgc correlations arc unlikely to occur (though not impos
sible) in a sample's dat<J if the s;11nplc is drawn ti·om <1 popul<1tion in which the 
correlation is 0. Indeed, if we find a large correlation in a s;Jmple, then it is much 
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more likely that the population's correlation is in fact something larger than 0. For 

example, if we find a correlation of .30 in our sample, then it's more likely that the 

population's correlation is something like .20, .30, or .40, rather than .00. Therefore, 

larger correlations in the sample's data increase our confidence that the population 

correlation is not 0. Consequently, larger correlations in the sample data increase 
the likelihood that the correlation will be considered statistically significant. 

Sample size is the second factor affecting the amount of confidence that there is 
a nonzero correlation in the population. All else being equal, larger samples increase 
confidence when making inferences about the population. Imagine that you hear 

about a study reporting a correlation of .30 between SAT scores and college GPA. If 

you knew that this study included only 20 participants, then how confident would 
you be in concluding that there is a positive correlation between SAT scores and 

college GPA among all students who could take the SAT? What if you knew that this 

study included 200 participants or l 00,000 participants? Obviously, larger sample 

sizes should make us more confident when making conclusions about a population. 

In sum, the size of the correlation and the size of the sample affect our con

fidence in concluding that there is a nonzero correlation in the population. The 

precise statistical equations are beyond the scope of this discussion, but in general, 

larger correlations and larger samples increase our confidence that the correlation 

in the population is not 0 (for a brief presentation of such equations, see 'H1ble 7.1 

in Chapter 7). Thus, larger correlations and larger samples increase the likelihood 

that the results of the validity study will be statistically significant. An equation 

(based on Rosenthal, Rosnow, & Rubin, 2000) summarizes the issue: 

Confidence that a 
test is correlated 
with a criterion in 
the population 

Size of the 
validity 
coefficient in the 
sample 

X 

Size of the 
sample 

I Iowever, for results to be deemed statistically significant, we must have a spe

cific level of confidence that the population correlation is not 0. 

Thus, the second question regarding statistical significance is this: Are we confi

dent enough to actually conclude that there is a nonzero correlation in the popula

tion from which the sample was drawn? Large correlations and large sample sizes 

increase our confidence, but we must ask if the results of a particular study make 

us confident enough to deem the results statistically significant. 

'lo answer this question, researchers set a specific level of confidence as a cutoff 

point that must be mel before they conclude that the population correlation is not 

0. By tradition, most behavioral researchers use a 95'!-b confidence level as the cut

off point for declaring results to be statistically significant. P ut another way, most 

behavioral researchers are willing to declare results statistically signif·lcant if they 

find that there is only a 5'!-b chance of being wrong (i.e., a probability of .05). This 

cutoff is the "alpha level" of a study (please note that this is a different "alpha" from 

the one introduced in Chapter 6). If our inferential statistics surpass the alpha level, 

then we are confident enough to conclude that there is a nonzero validity correla

tion in the population from which the sample was drawn. 
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As mentioned earlier, statistical significance is an important issue in interpreting 

evidence for convergent and discriminant validity. The fiKt that statistical significance 

is affected by sample size, effect size (i.e., the size of the validity coettlcient in the sam

ple), and alpha level is an extremely important point. These issues should be consid

ered when interpreting inf-erential statistics. For example, the results of a validity study 

can be statistically significant even if the V<llidity correlation is quite small. This could 

occur if the size of the sample in the validity study was sufficiently large. Similarly, the 

results of a validity study can be nonsignificant even if the validity correlation is quite 

large. This could occur if the si1.e of the sample in the validity study was quite small. 

How should this information be interpreted when gauging the results of a 

validity study? We mentioned earlier that most researchers would hope to find 

convergent correlations that are statistically significant and they would hope to 

find discriminant correlations that are nonsignificant. But what are the implica

tions of finding a convergent validity correlation that is nonsignificant? The typi

cal interpretation would be that the test in question has weak convergent validity 

(i.e., the convergent correlation might well be 0 in the population). I lowever, such 

a result should be interpreted with regard to the size of the correlation and the 

size of the sample. A nonsignificant convergent validity correlation could occur 

because the correlation is small or because the sample is small. If the correlation 

is small, then this is certainly evidence against the convergent validity of the test. 

However, if the correlation is moderate to large in size but the sample is small, 

then the results 111ight not indicate poor convergent validity. Instead, the results 

could indicate a poorly conceived study in that its sample was inappropriately 

small. If a study included a sample that was too small, then perhaps a larger study 

should be conducted before making any conclusions about construct validity. 

Similarly, what arc the implications of finding a discriminant validity correlation 

that is statistically significant? The typical interpretation would be that the test in 

question has weak discriminant validity (i.e., the discriminant correlation is prob

ably not 0 in the population). Again, such a result should be interpreted with regard 

to the size of the correlation and the size of the sample. A significant discriminant 

validity correlation could occur because the correlation is large or because the 

sample is large. If the correlation is large, then this is certainly evidence against the 

discriminant validity of the test. However, if the correlation is small but the sample 

is quite large, then the results might not indicate poor discriminant validity. !:or 

example, it is possible that small correlations of only .1 0, .06, or even smaller could 

be statistically signitlcant if the sample were large enough (say in the thousands of 

participants). In such cases, the statistical significance is almost meaningless and 

should probably be ignored. 

In sum, statistical significance is an important but tricky concept as it is applied 

to validity evidence. Although it plays a legitimate role in the interpretation of 

convergent and discriminant validity coef"t-lcients, it should be treated with some 

caution. As a rule, convergent correlations should be statistically significant, and 

discriminant validity correlation should be nonsignificant. l lowever, this general 

rule should be applied with an awareness of other factors. A sophisticated umler

standing of statistical significance reveals that the size of the sample and the size of 

the convergent and discriminant validity correlations both determine significance. 

Thus, a nonsignificant convergent correlation could reflect the bet that the study 



268 PART Ill VALIDITY 

had an in<nlequate �ample size, and a significant discriminant correlation co1 
rellect the t�1ct that the study had an extremely large sample size. 

Summary 

Notes 

Convergent and discriminant evidence is key to the empirical evaluation of tl\ 

validity, and this chapter presents issues related to the estimation and ev;duatio11 u 

these important f(mlls of validity evidence. We began by describing l(ntr nJCthod, 

that have been used to estimate and gauge the degree of convergence <lnd dis 

crimination among tests (e.g., MTMMMJ. We then discussed seven L1ctors that c;111 

affect the size of validity coefficients (e.g., measurement error, relative pro port iom, 

method variance). Finally, we presented fiJur important issues that should be con. 

sitk·red when judging the meaning and implications of validity coefficients (e.g., 

variance explained, statistical significance, practical importance). Awareness of t�l. 

issues described in this chapter can provide a more sophisticated and inl(>nned 

perspective on the meaning and evaluation of test validity. 

I. We might instead conduct an independent groups I test to compare the mean dq>i"l'S· 
sion scores of the two groups, hypothesizing that the depressed group of participants will 
have <1 higher mean on our new scale than the nondcpresscd group. Indeed, this is a w1·r 
common way to examine the association between a dichotomous variable and a continu
OLIS variable. llowever, it rests entirely on the same issues described in the text. Indeed, the 
1 test is simply a function of the correlation, as described here, along with the group si1cs 
(sec Chapter 7, especially "li1ble 7.t ). Thus, the relative proportion of participants in the two 
groups will have a direct cffi:ct on the magnitude of the I test, which will afli:ct the likelihood 
that we will conclude that the group means arc, in I�Kt, difli:rcnt from each other. 

2. These values (.39 <ind .36) arc not reported directly by Ceiser and Studley (2001 ) , but 
they arc easily obtained by taking the square roots of the relevant "Percent of Variance" v;tl 
ues in tiH:ir "liible I. The v;dues in this table Gill be converted tor' values as indic!lors of the 
percentage of v<�riancc in ( ;p;\ tlwt is explained by high school ( ;J>;\ <�nd h)' Si\T scores. l'or 
the oiH.:-prcdictor modeLs in this table, the square roots of the r' values arc simple correla
tions. Spccificall)', .39 is the square root of .154, and .36 is the square root of .133. 

Suggested Readings 

This is a discussion of the interpretation of effect sizes: 

;\hdson, ICI'. ( 19115). A variance cxphnwtion paradox: When a little is a lot.l'sychologiml 
!iu/lct iu, <J7, 129-I.U. 

This is a ci<J-;sic article, in which the multitrait-multimcthod matrix is presented 

f(,r the first time: 

r·. J ·II I) 'I' & J:,·,·ke J) W ( 19S9) Convcrocnt <llld discriminant validation hy the ,.JillJ' )l , . . , ' ' . . . . ' "' 

multitrait multimcthod matrix. l'syc!Jologiml !iullclin, 5o, H 1---I{H. 
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CHAPTER 10 

Response Biases 

A
t the beginning of our discussion of validity, we asked you to imagine that 
yoL� had �aken a personality questionnaire a� part

_ 
of a job

_ 
��:�.JI �cation

, 
��n:ccss: 

Let s rcv1s1 1 that example ,111d ask you to nnagmc yolll sell completmg the 
questionnaire. You arrive at a question that asks, "Have you ever stolen anythi1�� 
/rom an employer?" and another that asks, "!Jo you always tell the truth to others? 
As you think ahout these questions, you recall the time when you "borrowed" a very 
nice pen from ,1 previous workplace but "I(Jrgot" to return it. In addition, you think 
about the liKt that you told your best ti·iend that you needed to work last weekend, 
when in fi1c1 you just wanted to relax at home by yourself However, you also think 
about the fiKt that you would like to get the job, and you consider the answers that 
might make the employer more likely to hire you. Thus, despite the iiKt th;Jt your 
truthful answer to the first question ;,lwuld be "Yes" ;111d your truthful answer to 
the other question should be "No," you, like most of us, might be quite tempted to 
provide, let's say, "alternative" responses to both of the questions. 

liow docs your desire to he hired affect the quality of the personality question
naire? The employer might wish to i nterprct your responses as indicative of honest)' 

or integrity. However, if you chose to make the altemative responses, then your 
responses are no longer validly interpreted as indiullive of integrity. Instead, they 
are biased by your motivation to impress the employer, and they do not J'Ctlect your 
true level of integrity, slightly imperfect though it might be. 

In this chapter, we address the problem of response biases, and we describe SOillL' 

solutions that psychologists have developed to cope with the problem. ;\s much 
as we might hope that responses to psychological nH..'asurcs arc peri'cctly accurate 
reflections of individuals' true psychological characteristics, we know th<Jt such 
responses can be systematically biased l(>r a variety of re;lsons. 

These biases arc import<�nt because they can harm the psychometric quality of 
many types of tests, scales, and inventories. More spccilica//y, they can diminish 
lest reliability and the validity with whid1 we interpret psychological measures 
such as personal it)' i nven torics, a It it ude su rvq's, <1bili t y tests, <Jch icvemcnt tests, and 
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neuropsychological tests. Diminished validity can in turn compromise the dec 

sions that arc made about individuals, and it can cause problems for interprcti11 
research based on those measures. That is, the psychometric damage done h 

response biases can, in turn, do serious damage to our ability to usc psychologiq 
measures in a meaningti.d way. 

vVhether they are conscious or unconscious, malicious or cooperative, sclr 
enhancing or sclf-etiiJcing, response biases are a constant concern in psychologic;� 
measurement. Indeed, response biases arc a fundamental problem f{>r those of U\ 

who study or work with human behavior. Furthermore, they are a problem th;�t 
may be unique to the study of human behavior. Scientists who study rocks, planets, 
insects, chemicals, hurricanes, or nowers rarely have concerns that their subjects arc 
motivated to appear particularly intelligent or unintelligent, healthy or unhealthy, 
fi·iendly or powerful, competent or needy, honest or virtuous. Psychologists mu\t 
worry about all such problems, and more. 

Aw;�re of such problems, psychologists have dedicated themselves to identifying, 
understanding, detecting, and handling biases affecting responses to psychological 
tests and measures (e.g., Cronbach, 1946, 1950; Schwarz, 1999). We first describe 
some response biases that have been of greatest concern to behavioral scientists. 

We then turn to insights and solutions-some simple and some complex-that arc 

used to understand, detect, minimize, and cope with those biases. 

Types of Response Biases 
--� --�� ---- -----------------------

The quality of psychological measurement can be affected by a variety of response 

biases. In this section, we describe a number of biases that have concerned the 

developers and users of psychological measures. Some of these biases arc affected 

by the content or format of a test, some are affected by bctors of the testing context, 
others reflect respondents' conscious eft{>rts to respond in invalid ways, and still 
others renee! unconscious bctors that bias responses. Whatever their differences, 

all the biases reviewed in this section have the potential to compromise the quality 

of psychological measurement. 

Acquiescence Bias ("Yea-Saying and Nay-Saying") 

Psychologists and other behavioral scientists have been concerned with 

acq uicsccncc bias fi>r more than 80 years (e.g., Block, l 965; Cady, 1923; Cloud & 

Vaughn, 1970; Cronbach, 1942; Lentz, 1938; Ray, I 983; Smith, 2004 ) . Acquiescence 

bias occurs when an individual agrees with statements without regard t{n the 

meaning of those statements. Many psychological inventories include statements 
that might be true fi>r an individual (e.g., "I enjoy my job"), and individuals arc 

asked to respond by agreeing or disagreeing with the statements. Acquiescence 

bias can affect responses to such items, which arc often found on personality trait 

inventories, attitude questionnaires, interest inventories, clinical inventories, and 

marketing surveys. 
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The acquiescence bias and its effects arc illustrated in 'lllble 10.1 a. Imagine an 

industrial/organizational psychologist who is interested in the associat
_
ion bet�een 

job satisfaction and perceived prestige. She hypothesizes that people w1th reJat.Ively 

high job satisfiKtion will be those who perceive their jobs as relatively prestlgwus. 

She asks employees of a business to complete a job satisliJCtion questionnaire that 
includes the following four items: 

I. I really enjoy my work. 

2. I find my work personally fullilling. 

3. In general, I am satisfied with the day-to-day aspects of my job. 

4. There is very little that I would change about my job. 

Furthermore, imagine that responses arc made on a 7-point scale (I =strongly 
disagree, 2 = modcmtely disa�ree, 3 = sf(�!Jtly disagree, 4 = neutral, 5 =slightly agree, 
6 = moderately agree, 7 = s;rongly agree). The scoring "key" to this hypothetical 
questionnaire is such that an individual's responses to the items arc simply summed 
to form a total job satisfaction score, with high scores reflecting high levels of satis
faction. 'Ihble I 0.1 a presents the responses to these items and the total score for the 
satisfi1ction questionnaire. Examining these dat"a, we see that Respondents I, 2, and 
4 have the highest scores on the job satisf�JCtion questionnaire, and we would like 
to interpret this as indicating that they have the highest levels of job satisf�JCtion. 

The items' phr<Jsing is an import<mt issue in this hypothetical questionnaire. 
Note that each item is phrased so that an "agreement" response (i.e., a response of 
5, 6, or 7) is interpreted as meaning that the respondent is at least somewhat satis
fied with his or her job. Psychometricians might say that items arc all "keyed in the 
positive direction" because a positive (i.e., agreement) response to each item reflects 

a relatively high level of the construct being assessed. 
The filet that all items are keyed in the same direction is important because it 

makes the questionnaire particularly susceptible to the effects of an acquiescence 
response bias. Let us once again imagine that we arc omniscient and we know that 
two participants !Participants J and 4, as noted in Column 2 of'Ii1hlc JO.la) exhib
ited an acquiescence bias but that the other f(lllr participants were responding val
idly. Note that the acquiescent responders agreed to all lclllr items, even though they 
honestly might not be satisfied with their jobs. The diHiculty is compounded hy the 
filet that at least one additional participant (Participant 2) also agreed with all ltll1r 
items because he is genuinely satisfied with his job. If we were not omniscient-if 
we did not know thilt Participants l and 4 were responding invalidly-then we 
would not be able to distinguish the acquiescent responders from those who were 
genuinely satisfied with their job. 

Acquiescent responding has straightf(>rward implicntions for test users in 
applied psychology. Spcciticaffy, if some people engage in acquiescent responding 
while others do not, then test users might not be able to usc test scores clfcctively 
to identify which people have a high level of the construct being assessed. That is, 
test users might not be able to detect which respondents have a high level of the 
construct and which respondents arc simply responding with an acquiescent hi as. 
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Table 10.1 Acquiescent Response Bias Can Create a Spurious Correlation 

JS Items PP Items 

JS pp 

Valid 
Responders 

Part�ieant Acquiescence 1 2 3 4 Total 1 2 3 4 Total JS PP 

2 

3 

4 

5 

6 

y 

N 

N 

y 

N 

N 

6 5 7 6 24 

7 5 6 7 25 

3 4 5 4 16 

(l 6 6 7 25 

4 2 3 10 

3 2 4 3 12 

Correlation between )Sand PP = -.43 

5 5 4 5 ]') 

2 2 2 7 

5 4 5 4 Ill 

5 5 5 5 20 

2 2 6 

3 3 3 3 12 

16 

10 

12 

- . ()') 

Ill 

12 

-- - - -------------
� Raw responses to balanced tests 

JS Items PP Items 
PD!!�i�a'!!_ __ A_c!luiesc_e_n_ce _____ 2_ -�--4- _ 

1 
__ y_ 3 4 

2 

3 

4 

5 

6 

y 

N 

N 

y 

N 

N 

6 

7 

3 

6 

3 

5 7 

3 6 

4 5 

6 6 

4 2 

6 4 

6 5 

2 

4 5 

7 5 

5 

5 3 

(c) Reverse-scored responses to balanced tests 
---

JS Items PP Items 

JS pp 

5 4 

4 2 5 

2 5 2 

5 5 5 

4 4 

3 3 3 

Valid 
Responders 

P_a_'!icipal}t
_ 

�cqui'!_scence 1 2 3 4 Total 1 2 3 4 Toter�___!!__� 

2 

y 

N 

N 

y 

N 

N 

6 3 7 2 Ill 

7 5 (l 7 25 

3 4 5 4 16 

(, 2 6 15 

4 2 3 10 

3 2 4 3 12 

Correia t ion bet ween )S and PP "' -.I 0 

5 4 

2 2 2 

II 

7 

5 4 5 4 Ill 

5 5 12 

2 2 (l 

3 3 3 3 12 

NOTE: JS = iob satisfaction; PP = perceived prestige. 

16 

10 

12 

-.09 

7 

Ill 

(l 

1.2 
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For example, a human resource manager might administer a Conscientiousness 

scale to a set of job applicants but might not be able to identify which appJie<rnts 

truly have high levels of Conscientiousness. If this problem is ignored, then any 

decisions that arc based on such test scores might be misin/(mncd and misguided. 
The human resources director, for example, might end up hiring several appli
cants who arc simply acquiescent responders rather than truly conscientious 
workers. 

Acquiescent responding also has serious implications f(>r belwvioral research, 
compromising researchers' ability to answer their research question <Jccuratcly. 
Returning to our job satislirction example, Jet's say that, along with the job satisfiJC

tion questionnaire, participants complete a l(nrr-item measure of perceived prestige 
that is answered on 5-point scale of agreement ( 1 == strongly disagree, 2 == disagree, 
3 == llelltml, 4 ==agree, 5 ==strongly agree). As shown in ·nrble 10.1 a, those participants 
who were acquiescent while responding to the Job Satisfirction (JS) scrle were also 
acquiescent while responding to the Perceived Prestige scale. Participants 1 and 4 
once again respond to all questions by using the "agreement" optiom (4 and 5). 

Across all six participants (including the valid responders as well as the acqui
escent responders), the correlation between job satistirction and perceived pres
tige is r == .43 (sec ·n1blc 10.1a). This "tol<rl S<lmpJe" correlation suggests that the 
two constructs arc related to each other, which is consistent with the researcher's 
hypothesis. 

. 
I fowcvcr, because we arc temporarily omniscient, we can examine the corrcla

tHl!l between job satisli1ction and perceived prestige among only tlwscjhur partici
PIIII/s who respouded validly. We sec that this "valid responder" correlation is quite 
weak, r == -.09. Thus, according to v;Jiid responses, satisli1ction and prestige arc 1101 

<lssociatcd with each other. We sec that the inclusion of acquiescent participants 

created an artificially (i.e., spuriously) high corrdntion between the two mcnsurcs. 

Because the researcher is not omniscient, she has access only to the original correla

tion. Based on this, she would rcnch an incorrect conclusion about the link between 
job satisliJCtion nnd perceived prestige. 

Thus, acquiescent responders present n subtle but potentinlly important threat 

to the psychometric qunlity of the psychologic1l mensurcment, which can com

promise bchnvioral prncticc nnd research. Briefly stated, test users might not be 

able to differentiate acquiescent responders li·om valid responders who happen to 

have a high level of the construct being assessed. 1f a measure's items arc all scored 

in the same direction, then a set of"positive" responses could reflect a valid set of 

respomcs, or it could reflect an acquiescent response bias. ;\n important conse

quence of acquiescence bi;Js is that if nJtdtiple tests arc "contaminated" bv the bi<rs, 

_
then the tests will be more strongly correlated with each other th<111 arc th� undcrly

Jllg cons! ructs. This consequence occurs beca usc respondcn Is who arc acqu icsccnt 

on one test arc likely to be acquiescent on the other, which ensures that the\' will 

obtain rcl<llively high scores on both tests. As discussed in ( :lwptcr 3, <1 positiv:· cor

relation occurs when people who have relatively high scores on one variable tend to 

have rcl<rtivcly high scores 011 another vari;Jblc. 

Although we have li>eused on the acquiescence or "yca-s;rying" bias, it ern 

also take the limn of "nay-saying," where an individual disagrees with st;Jtemcnts 
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regardless of their meaning. A nay-saying bias can have similar effects as the yc;J 
saying bias. By ensuring that people who obtain relatively low scores on one il'sl 

will also obtain relatively low scores on another test, the nay-saying bias creates 

correlations that are artificially more positive than they should be. 
In sum, acquiescence response bias (including nay-saying) is a threat to psy

chometric quality that has long concerned psychologists and other behavior;i/ 

scientists. Although some researchers question the existence or impact of respon:;e 
biases (Rorer, 1965 ), much evidence suggests that acquiescence bias docs exist and 
affects various forms of psychological measurement (Knowles & Nathan, I ':!':!7; 
Van Herk, Poortinga, & Vcrhallen, 2004). The bias seems to occur most often when 
respondents do not easily understand test items-because the items are complex 

or ambiguous, because the testing situation presents distractions, or because the 

respondent naturally tends to have difficulty understanding the material. As our 

examples have illustrated, the bias can create artificially high (or low for the nay
saying bias) test scores for tests in which all items are keyed in the same direction. 

Consequently, the bias can affect research by creating correlations that are ;Jrlifi

cially more positive than they should be. 

Extreme and Moderate Responding 

As we have seen, many questionnaires include statements or questions th;JI 

require people to respond in terms of intensity, endorsement, or occurrence. 1-'or 
example, the State-'Ji·ait Anxiety Inventory (STA/; Spielberger, 1983) is a widely 
used questionnaire designed to assess respondents' levels of state anxiety and trait 
anxiety. The STAI's Trait Anxiety subscale consists of I 0 statements about one\ 
general level of psychological distress. Items on this scale include statements such a' 

"!lack self�contlclence" and "I am a steady person" (note that this item is negatively 
keyed). /<'en each statement, respondents have four response options: al111ost never, 

son!clilllcs, oficn, and al111os1 always. 

On many such questionnaires, the response options reflect different degrees of 

intensity, endorsement, or occurrence, with some reflecting an extreme degree and 
other options reflecting more moderate degrees. For example, on the SD\1, the 

al111os1 always option is a more extreme choice (reflecting a more extreme degree of 
occurrence) than the often option. Other scales include response options referring 
to the degree of' accuracy of statements or the degree to which a respondent <lgrees 
with statements. l-'or example, the International Personality Item Pool (Goldberg 
ct al., 2006) includes a Spirituality/Religiousness (SIR) scale with items such as "I am 

a spiritual person," and responses can be made on a 5-point scale: very inacmmtc, 

lllot!cmlcly inaccurate, neithe r inacwmle nor accurate, lllodcmtcly tlcwmle, and very 

t!CC/Imte. On the S/R scale, the very accumtc option is a more extreme choice than the 

lllotlcmtely acmmle option (reflecting a more extreme degree of accuracy), and the 

very inocmmte opt ion is a more extreme choice than the 111odcmtely i11accumtc option. 

The problem of extreme and moderate response biases (or "extreme response 

style") refers to differences in the tendency to use or avoid extreme response 

options. On the S'J'Al, one respondent might be much more willing to make an 
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"extreme" response choice (e.g., answering almost always to the statement "I Jack 

self-confidence") than another respondent, even if" those two respondents have the 

same leJ!c/ oj"mzxiety. Similarly, on the S/R scale, one respondent might be much 

more willing to respond with very accurate to the statement "I am a spiritual per

son" than another respondent, even if the two respondents have the same level of 

spirituality. Simply put, people might differ in their willingness to usc extreme 

response options, and this can obscure differences in true construct levels . 

The ambiguities created by differences in participants' use of extreme response 

options have important implications f(>r applied psychological practice and t(>r 

research results. As noted earlier for acquiescence bias, extremity bi<lS can create 
ambiguity in respondents' scores, which cw lead decision makers to make inap
propriate decisions on the basis of those scores. 

In terms of behavioral research, extremity bias can produce results that lead to 

inaccurate conclusions. As an example, consider the data in 'li1blc I 0.2. Imagine that 

a researcher is studying the association between spiritwdity and emotional distress 
and he hypothesizes that the correlation will be positive-people with higher levels 

of spirituality will tend to have relatively high levels of distress. '!(> examine this 

association, he asks participants to complete a four-item version of the ST/d (high 

scores should indicate greater anxiety and distress), along with a f(>Ur-item version 
of the SIR scale (high scores should indicate greater spirituality). 

Once again, we will pretend to be omniscient. In 'Ii1ble !0.2, the "'Jl·ue Anxiety" 
column presents the participants' true levels of trait anxiety. We see, t(>r example, 

that Participants I and 2 have the same trait level (i.e., both true scores are 14) as 

do Participants 4 and 5 (i.e., both true scores are 6). Computing the correlation 

between true anxiety levels and true spirituality levels (see 'EJblc I 0.2), we find 

essentially no association ( r = -.04 ). Thus, our omniscience allows us to realize that 

there is truly no tendency for people with relatively high spirituality to have any 

more or less anxiety than people with relatively low spirituality. This contradicts 

the researcher's hypothesis that high spirituality is associated with high levels of 
distress. 

Of course, the researcher would not know participants' true trait levels, having 

access only to test responses. So let us examine the participants' actu;d responses 

Table 10.2 Extremity Bias 
-

---� -- ---- ----- -

True STA/Items 

Participant Bias Anxiety 2 3 4 

r:xtrcme 14 ,, 4 4 4 

--·--- -
-

Total True 

- � --

STAI Spirituality 
- --··· 

16 I I ,, 

- - ·- - �-

5/R Items 

2 3 

,, ,, 

�- -

4 

-1 

Total 
5/R 

lb 

2 Moderate ,,, .l 3 3 3 12 12 1 2 2 2 

3 No 12 3 ,, J 2 12 ,, 

4 Moderate (l 2 2 2 2 ll l) 2 2 .I 3 

5 Extreme 6 4 /{ 

6 No 7 J 2 7 15 .I 5 4 3 l'i 

NOTE: STAI = State-Trait Anxiety Inventory; S/R = Spirituality/Religiousness scale. 
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to the f<>ur-item version of the S'J'AJ and compare them with their true trait lcwk 

!·or this version of the STAJ, the researcher used the following scoring: I cc alll!ost 

Jlcvcr, 2 = somcli111cs, 3 = oftcll, and 4 = alnwsl always. Note that P<lrticip<lnt 1 

responded ah11ost always to all four items, for a total score of 16. Also note th,1t 
Participant 2 responded ojic11 to all four items, for a total score of 12. Thus, 

these two participants obtain different scores on the measure of anxiety, even 

though they have the same trait level of anxiety. This discrepancy arises because 

Participant I was willing to usc a more extreme response option than Participant 
2. As this discrepancy illustrates, the extremity bias can generate artificial di(l(:r

cnccs among respondents' test scores. Note that this tendency is stable in that it 
also affects p;1rticip;1nts' responses to the S/1{ scale. 

In addition to generating artificial differences among respondents' test scores, 

the extremity bias e<ln obscure true differences ;mwng respondents' construct lev

els. Consider l'<lrticipants 2 and 3. These participants have different true trait levels 

of anxiety, but their test scores are identical. Because Participant 2 is reluctant to usc 

;1 more extreme response option, her test score is not as high as her trait level W<lr

rants. Thus, her test score is identical to that of a participant with a lower trait level. 

Ultimately, these types of problems can produce results that lead to inaccurate 

research conclusions. Earlier, in our omniscient state, we calculated the correlation 

between participants' true anxiety levels and their true spirituality levels (see ·Llhlc 

I 0.2), finding essentially a zero correlation. Now, let's compute the correlation 

between participants' measured anxiety scores ISTAI trait scores) and their mea

sured spirituality scores IS/R scale scores). Based on the data in ·n1hlc 10.2, this cor

rchltion is r"' .36, which would lead the researcher to conclude that spirituality is 

posilivc/yassoci<ltcd with anxiety. Obviously, the correlation based on the measured 

scores I which arc affected by the extremity problem) is meaningfully different Ji·0111 

the correlation based on true scores !which we know only through omniscience). 

Thercl(>re, the psychological conclusions derived from the statistical analyses of the 

1neasurcd scores arc incorrect, in comparison with the conclusion that would be 

derived if the researcher had direct knowledge of the participants' true trait levels. 

In this way, the extremity problem can contribute to incorrect research conclusions. 

In the current example, the researcher would incorrectly conclude that spirituality 

is associated with emotional distress. 

Note that the usc of extreme response options is itself not a bias or a problem, 

nor is the usc of more moderate response options. Indeed, test users hope that 

the usc of response options rctlccb an individual's trait level-people with more 

extreme trait levels (i.e., either particularly high or particularly low) should usc 

more extreme response options, and people with more moderate trait levels should 

usc more JnodLT<ltl' response options. Ilowcvcr, problems arise when (<l) people 

with identical construct lcvcl.s differ in their tendency to usc moderate and extreme 

rc,l><>mc options or (b) when people with dilfcrcnt construct levels do not differ in 

their willingness to usc moderate and extreme response options. 

l'sychologists and other behavioral scientists have studied the extent and the 

sources of the extremity problem-is it actu;JIIy true that some people are more 

willing to usc extreme response options than others, and if so, then why? nesearch 

suggests that there is indeed reason to be concerned about the extremity bias. Studies 
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have shown that differences in the tendency to usc extreme response optiom arc 
firirly stable across measures and across time I e.g., Bachman & O'Malley, I 9il4; J;rin 
& �garwa], I 977; Merrens, I 97o ), although son1e st udics have !iri/cd to replicate this effect. One example of rcse;rrch indicating the stability of the effect was conducted 

_
by !h�chrnan and 0'/VIa!Jey ( I984), who found "substantial and rather consistent 
mdrvrduaf differences in the tendency to usc-or to avoid-extreme response 
categories" lp. 506), with these consistencies fasting for intervals of up to 4 years. 

In SLIJlJ, the extremity bias can diminish the quality of psychological measures. 
Sor�lC respondents arc willing to usc extreme response options, but others tend 

_
to 

avord extreme response options. The difference in response styles can obscure dll
fercnccs in the respondents' true trait levels. Such effects can, in turn, compromise 
psychological practice and can diminish the accuracy of research conclusions. 

Social Desirability 

The social desirability problem has garnered perhaps the greatest attention 
among psychologists concerned with response biases. The social desirability 
response bias is the tendency fix a person to respond in a way that seems socially 
appealing, regardless of his or her true characteristics. i\t the beginning of this 
chapter, we asked you to imagine yourself completing a questionnaire as part of 
a hiring Process. In that scenario, we highlighted the possibility that you would 
be tempted to provide responses that would appeal to the employer. You might 
be tempted to respond in a way that enhances desirable qualities such as honesty, 
rntcgnty, conscientiousness, and emotional stability. If responses arc caused by a 
motivation to appear socially desirable, then they liri1 to reflect the respondents' 
true levels of the constructs being assessed. This can diminish the reliability and 
validity of the measurement process. 

Social desirability bias can be affected by at least three sources. First, it can he 
affected by a test's content. Some psychological constructs have greater implications 
lor social appeal than do others, and thus tests that lc>eus on those constructs might 
be more adversely affected by social desirability than tests of other constructs. h>r 
example, personality characteristics such as psychological well-being (vs. psycho
logical distress) or honesty (vs. dcccitlidncss) might be closely linked to social 
desirability, with well-being and honesty clearly more desirable than distress ;rnd 
deceitfulness. On the other hand, characteristics such ;rs extraversion (vs. introver
sion) might be less affected by such motivations (John & Robins, I<.JlJ3). Second, 
the social dc.�irabi!ity bias might he affected by the testing context. Socially desirable 
responding might be more likely to occur in contexts in which respondents can be 
identified than in contexts in which they arc anonymous. When respondents can 
be linked to their responses, they might be more likely to provide responses that 

arc socially appealing. In addition, socially desirable responding might be more 
likely to occur in contexts in which imporl<lnt consequences hinge on the testing 
outcomes. The hiring example represents a context in which test respomes can krve 
important imp]ic;rtions-the possibility that individuals are hired partially depends 
on their scores on the psychological measures. Socially desirable responding is 
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probably less of a concern if there are no important consequences of the test in< 
(although it is still a potential problem, as we will see below). 

' 

i\ third potential source of socially desirable responding is the personality of till· 

respondents. As demonstrated by research dating back at least to the 1950s, s0111e 
people arc more likely to provide socially desirable responses than others. Again, 

the difficulty arises because differences in participants' tendency to provide social I\' 

desirable responses can obscure differences in participants' true levels of the trait� 
being assessed. 

Obviously, there is serious concern about the impact that social desirabilitv 
can have in some areas of applied psychology. Indeed, many personality tests ar�· 
h1irly "transparent" in terms of being obvious about the ty pes of qualities that 
are being assessed, and in such tests it is easy to "fake" having desirable qualities 
1 Alliger & Dwight, 2000; Bacr, Wetter, & Berry, 1992; Viswesvaran, & Ones, !999). 

Unl(>rtunately, some evidence suggests that such laking occurs quite common!)', at 

least in the context of job applications (Donovan, Dwight, & llurtz, 2003 ). Such 

filking can, in turn, atfect decision making in psychological practice. For example, 

if job applicants exaggerate their positive qualities and minimize their negative 
qualities, then hiring decisions can be compromised severely. Indeed, it has been 
suggested that "when faking occurs, those hired under a [testing based) selection 

strategy are likely to be li1kcrs" (Ailigcr & Dwight, 2000, p. 62). 

In addition, social desirability is a serious concern t()l· behavioral researchers as 

well. 'Ib understand the social desirability response bias and its effect on research 

results, imagine that a researcher examines the association between emotional

ity and relationship quality. She hypothesizes that people who tend to experience 
high levels of positive emotions (or who tend to experience low levels of negative 

emotions) also tend to develop high-quality relationships. More technically, she 

expects to lind a positive correlation between positive emotionality and rela
tionship quality, and she expects to find a negative correlation between negative 

emotionality and relationship quality.'[() examine this issue, she asks participant<; 
to complete the Positive and Negative Afkct Schedule (PANAS; Watson, Clark, 

& 'Jcllegen, 1988). The PANAS is a very widely used measure of affectivity, and it 
can be used to measure trait-level (i.e., stable) differences in respondents' gencrnl 

tendencies to experience positive emotions and negative emotions. The PANAS 

includes two scales-Positive Affect ( PA) and Negative Affect INA)-cach of which 

includes I 0 emotions (e.g., strong, proud, excited, nervous, guilty, distressed). 

;\!though researchers use the PANAS in many different ways, let us imagine that our 

researcher asked participants to read each item and rate the extent to which they 

generally feel each emotion, with responses made on a 5-point scale. The PA and 

NA scales were scored by computing the mean of the I 0 responses f(>r each scale, 

so scores mngc between I and 5, with higher scores reflecting a greater tendency to 
experience each type of affect. hnally, the researcher asks participants to rate the 

overall quality of their social relationships on a scale of I to J 00, with higher levels 

representing better relationship quality. 

Note that these three constructs-positive atkct, negative affect, and rela

tionship quality-are potentially aftected by social desirability biases. At least in 

Westcm cultures, high positive affect is culturally preferable to low positive affect, 
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and low negative affect is preferable to high positive affect. Tlwt is, people who 
expr:ss strength, pride, and enthusiasm are generally seen as socially appealing and 
achlllrablc, whereas people who express nervousness, guilt, and distress are gener
ally s�en as socially unappealing and not admirable. Finally, most cultures would 
perceiv.e high-quality relationships as valuable and desirable. Thus, an individual 
wl�o Wtshes to appear socially appealing is likely to claim high levels of positive 
affect, to claim low levels of negative a/feet, and to report high-quality relationships. 

Let us again imagine that we are omniscient, knowing participants' true levels 
of positive aflect, negative atJect, and relationship quality. For example, 'li1blc 10.3 

;;w�� that Participant 1 has the highest true level ( 4.5) of positive ;1/tect (Pi\) and that 
drtJCJpant 2 has the next highest level ( 4). Also, note that Participant 4 truly has the 

highest level of relationship quality (RQ). Computing the correlation between these 
true levels of PA and the true levels of RQ, we find mild support liH· the researcher's 
hypothesis-a weak positive correlation (i.e., r = .23). Similarly, the association 
between trt1, · · · · j j 1· · J 'II t. e negat1vc aflect (NA) and true J{Q prov1c cs ac c Jtwna nu ( support or 
the rcsearch•·' 1 1 . · 1 · ( ' 71) "1'1 

. . 
Cl s 1ypot 1es1s-a weak negative corre atwn I.e., r = -.- . IUS, our 

omnJsCJence allows us to observe a weak tendency for people with relatively high Pi\ 
levels or low N;\ 1 1 l · 1 · 1 1· 1 · 1 · eve s to also have rc atJvcly ug 1-qua 1ty re atwns 11ps. 

Let us ·1lso · . · 1 

· 
· · 1 1 l · I . ·I · ' · Imagme t 1at , Ill our omniscient state, we mow t 1e c eg1 cc to w He 1 

each particip· · · · · · '-1 A 1 · ant Is motivated to provide socwlly dcsnau e answers. s s Jown 111 
the c

.
olumn labeled "SJ) Motive" in "Ihblc 1 0.3, Participant 2 is highly motivated to 

provide soc1· -111 1 · ,_1 . . 1 � 1 · 1 . ' Y ( cs1rau e responses, Participants 3 anc :J arc somew l<ll motivate( 
to do so but tl1 , · · · · 1 · I · · · ' e rcmammg participants wvc no parllcu ar mot1vallon to appear 
more desirable than they "truly" are. 

. 
We can sec how social desirability affects the measurement of the three con-structs. Specif'Jc·!ll t. · · · l l · I j · l ·1· f · ' y, or participants motJvatec )y a socw c cs1ra )J 1ty )WS, mea-

sured scores "II·e J 1 "d · ll" 1· · J 1 · 1 J ' ' more towarc t 1e es1ra ) e c JrectJon t l<lll are t 1e1r true eve s. 

Table J 0.3 Example of the Effect of the Social Desirability Response Bias 
on Research Findings 

True Scores SD Measured Scores 
'!_articipant 

------------
PA NA RQ Motive PA NA RQ 

l 4.5 5 60 None 4.5 5 (10 
2 4 2 55 High 5 ()5 
3 3 l.5 65 Low 3.375 1.125 HO 
4 2.25 3 85 None 2.25 3 85 
5 1.5 4 45 Moderate 2 3.5 (15 
6 1.75 3.25 40 None 1.75 3.25 40 

Correlation .23 -.21 .51 -.(15 with RQ 
NOTE: SD = socially d�sirable; PA = Positive Affect scale; NA = Negative Affect scale; RQ = relationship quality. 
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!-'or example, note Participant 2, who has a high level of social desirability motiv;1 

lion. This participant's measured score on the PA scale (i.e., 5) is higher lkl!l hi 
true level of PA (i.e., 4), reflecting a desire to claim <lll artificially high level of 1',\ 

Thus, this participant's high motivation to appear socially desirable has inlluellll'< 
his responses to some of the Pi\ items, resulting in an intlated score on the measur( 

of PA. Similarly, his score on the NA scale (i.e., I) is lower tlwn his true level of N,\ 

!i.e., 2), rellecting a desire to claim an artificially low level of NA. Thus, measured 
scores on dcsin1ble constructs such as PA and RQ arc artificially intlatcd li>r those 
participants with a social desirability motivation, and scores on "undesirable" con
strucb such as NA arc artificially de1latcd. In contrast, li>r participants who are 1101 
motivated by a social desirability bias, their measured scores are equivalent to their 
true values, regardless of the "desirability" of the construct. 

An important consequence of social desirability bias is that research results c111 

be compromised. Of most concern is the possibility that individual differences in 

social desirability bias can create spurious or arti!icially strong correlations between 
measures that arc "contamin<lled" by the bias. The data in 'Jhble 10.3 illmlr<llc this 
effect. As we have discussed, there arc at least two problems in the data. First, par

ticipants differ in terms of their motivation to appear socially desirable-some have 

moderate or strong motivation, but others have weak or no motivation. Second, thl· 

three variables arc linked to social desirability, and thus their measurement is potcn 

tially contaminated by social desirability motivation (indeed, the measures in 'Ji1bk 
I 0.3 arc contaminated by the bias, as we have seen). The effect of these two prob

lems is that the participants with social desirability motivation tend to have higher 

scores on P;\ and J{() (and lower scores on N/\J than the participants with no social 

desirability motivation. Therefore, the social desirability bias inflates the degree to 

which people who tend to score high on one measure also tend to score high on the 

other measures. This in turn affects the correlations among the measures. 

The effect of the social desirability bias is apparent in the <lrtificially intlated 

correlations among the three measures. Note that the correlations among the true 

scores <liT much weaker than the correlations among the three 11/CIIS/Ircs. Earlier, 

our omniscience allowed us to know that the "true" correlation between P;\ and 

J{Q was only .23 and th<ll the "true" correlation between N!\ and RQ was only -.21. 

;\s 'Jid>le I 0.3 shows, the correlations among the measures are much stronger-the 

corrcl;!lion bel ween the P;\ measure and the RQ measure is .51, and the correlation 
between theN;\ measure and the RO measure is -.65. Thus, the social desirability 

bias C<ln artificially intlate the correlation among measures. In our example. the 

researcher might intcrprcl the artificially inflated correlations between measures 

(i.e., r .'>I and rc. --.65) as evidence of very strong associations between cmotion

;dity <llld rcl<llionship quality. Again, our temporary omniscience revealed that such 

inlcrprctalions <liT incorrecl-lhc correlations among the constructs arc <lclually 

IIllich weaker than the researcher realizes. The researcher is severely overestimating 

the ">izc of the <lssoci;llions because of measurement inv<didity caused by the socid 

de'>irability hi<lS. Such overestimations can, in turn, produce misleading inlcrcncL'S 

uhout theories <lllll could produce inappropriate decisions in applied settings. 

;\s mentioned e<ll"licr in this section, psychologists have studied extensively the 

<;oci<d desir<lhility response bias. One of the most active researchers in this area h<lS 
hccn Del Paulhus, <1 personality psychologist who has been interested in socially 
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desirable ,·cs•)<> 1. ·t· <>I. r)"J·sc>J.1.1J1·ty One imnort<lllt outcome ti·01n , r nc mg as an a spec r � · ' · t . . . Paulhus's work has bcell the finding that there may be multiple forms of sooal 
desirability bias. Paulhus points to two processes through which soci;llly desir
able responding occurs. One process is a conscious impression nunwgelllent, wh.crc 
test takers iiHcntionaJJy attempt to appear socially desirable. For example, '.1 ;�b 
applicant might feel motivated to artificially exaggerate clcsirahlc charactcnstJcs 
and artificially minimize undesirable characteristics while completing a personnel 
selection test. In a clinical context, impression mallagcmcnt is sometimes caJJcd 
"f;Iking good," as it refers to undcrreporting of dillie<d symptoms. That is, a 
respondent might attempt to appear less pathological by fillscly denying various 
pathologic;ll symptoms. A second process is all unconscious sclf�deccption, where 
test takers hold unrealistically positive views of themselves, firmly believing their 
overestimation of their psychological characteristics. 

Paulhus (2002) argues that impression management and sclt�deccption biases 
differ in terms of being state/ike versus trait/ike. lie suggests that impressioll man
agement hi<lscs are relatively state/ike, occurring ill response to immediate situ
ational demands. In other words, the tendency to consciously respond in an overly 
desirable manner is usuallv a reaction to particular measurement contexts, such as 
completing a personnel selection inventory. In contrast, Paulhus suggests that self
deception biases reflect trait! ike differences among people. That is, some people are 
more predisposed toward self-deception than others, and this dil1ercnce can affect 
their responses across many ditlercnt measurement contexts . 

.. Despite the long-standing concern over social desirability bias and its potential 
effects on the quality of psychological test scores, some researchers argue that such 
concerns are at least somewhat exaggerated. Some of the most compelling argu
ments l(>r this arise ti·01n data suggesting that "in most applications, attempts to 
correct scores f(>r defensiveness or SD 1 social desirability I do not enhance validity" 
(McCrae & Costa, IYIU, p. llil6). Such conclusions arc partly based on findings tlwt 
measures of social desirability arc uncorrclatcd with important outcomes such as 

job pcrt(mnance ( Viswcsvaran, Ones, & Hough, 200 I), that repeated testing after 
liiilurc to be hired does not produce mcaningl:d ch<lllgcs in scores (!logan, Barrett, 
& !logan, 2007), and that statistically controlling f(>r individual dilkrcnccs in social 
desirability does not improve the criterion-related validities of personality trait 
measures (McCrae & Costa, 1Yil3; Ones, Viswcsvaran, & Reiss, IY%). I kspitc such 
findings, many psychologists remain concerned <lbout the potential effect of soci;d 
desirability on psychological tl'sts and their usc. 

Malingering 

Although many psychologists have been concerned about rcspondcn ts' art it icia I 
enhancement of· their social desirability, other psychologists arc very concerned 
about the opposite problem. Specilicdly, in some extremely impor1<111t testing 
cont exts, respondents might attempt to exaggerate their psychological p roblems. 
Particularly in some applied testing contexts, respondents might be strongly 
motivated to appear more cognitivcly impaired, emotionally distressed, physically 
challenged, or psychologically disturbed than they truly arc. This phenomenon is 
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called 111alingering or ji1king /Jar!, and it is recognized by the American Psychiatril 

Association's lJiagnostic and Statistical Manual of Mental IJisorders, 4th edition 

( IJSM-IV, 1994) as a serious problem in psychological assessment and diagnosis. 
·Jhke a moment to consider why individuals might attempt to exaggerate the 

presence or severity of their psychological problems. Consider some of the test
ing contexts in which malingering is most likely to occur-criminal competence 
hearings, disability evaluations, workers' compensation claims, and personal injury 

examinations (Berry, Baer, Rinaldo, & Wetter, 2002; Mitten berg, Patton, Canyock, & 

Condit, 2002). In all such contexts, examinees potentially benefit from being diag
nosed with some kind of psychological or neuropsychological disorder. Criminals 

might receive relatively mild sentences if they arc diagnosed with a mental disorder, 
workers might receive monetary settlements if they are judged to have suffered 
an impairment at work, and accident victims might receive monetary benefits if' 

they are deemed to suffer from neuropsychological problems resulting ti·om their 
accidents. In sum, malingering is a serious concern in applied testing situations in 

which the test taker has an incentive to appear impaired. 

It is probably obvious that malingering potentially compromises the quality of 

psychological assessment. For example, cognitive abilities such as attention and 

memory can be affected by traumatic brain injury. Consequently, a person involved 

in an automobile accident might reap great financial benefits from insurance settle

ments if he or she can convince the courts that he or she has suffered brain injury 

that compromises cognitive ability. Indeed, many neuropsychological assessments 
include tests of attention and memory, and the person might intentionally per

form poorly (or at least attempt to) to be diagnosed with a cognitive impairment. 

Malingering can have clear consequences for the accuracy and fitirness of diagnoses, 

judgments, and decisions that arc based on the compromised measures. 

Malingering is more than a theoretical possibility in applied testing contexts. 
Researchers (e.g., Berry et al., 2002; Mittcnbcrg ct al., 2002) estimate that malin

gering occurs in 7.3<)1, to 27% of general psychological evaluations and as much 

as 31% to 45% of forensic evaluations (i.e., criminal competence, disability hear

ings, etc.). In bet, there is evidence that attorneys intentionally coach clients in the 

methods used to detect malingering, as we will discuss later (Wetter & Corrigan, 

1995; Youngjohn, 1995 ). Thus, malingering is a legitimate concern in psychological 

assessment, and experts conclude that the failure to consider its influence "poten

tially carries high costs f(>r insurers, disability systems, and ultimate society at large" 

I Berry ct al., 2002, p. 275 ). 

Careless or Random Responding 

Sometimes lest takers provide responses that arc truly random or somewhat 
random. Whether due to carelessness or to a lack of motivation to respond mean

ingfully, some respondents might choose answers in a completely random or 

semi random hshion that is unrelated to item content. For example, an individual 

taking a test in which items arc answered on a 5-point scale of agreement (I = 

strongly disagree, 5 = strongly agree) might simply compete the test by "cycling 

through" the response scale-marking strongly disagree (I) for Item I, disagree 
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(2) for Item 2, neutral (3) for Item J, agree (4) J(>r Item 4, and_strongly agree (_5) 
c It ) 1 L t< beom the cycle ·1g·lln 10r em 5 and returning to strongly disagree ( 1 at tem 0 1 " ' ' · 

Obviou ·1 1 · · 1, · · •vith reaard to the construct 5 y, t 11s produces scores that are meanmg css ' " 
that is intended to be assessed. 

Guessing 

So ' · ·l · · 1 . · , ··t- · ·' ·rJonses are correct me psyc lologJCal tests are designed so t1<1t spec! Ic Ics, 

and others are incorrect. For example, achievement tests such as the SAT or the 
Graduate necord Exam (Gl{E) include items evaluating a respondent's verbal 
or mathematical skills. Each item on these tests has a single correct answer, and 
re

_
spondents obtain high scores by answering many items correctly. Such t�sts arc 

often used in situations in which important consequences (e.g., college adnllssion) 
arc partly contingent on test scores. 

For these kinds of tests used in these kinds of consequential situations, respon
dents might be motivated to guess. Particularly for tests that have a limited set of 
response options (e.g., multiple-choice questions), respondents may guess at an 
answer in an attempt to raise their scores. Indeed, guessing is such a likely occur
rence that some achievement tests arc scored in a way that accounts fi>r the clfect 
of guessing (as we will discuss later in this chapter). 

For cases in which a respondent truly does not know which response option 
is likely to be correct, guessing can compromise the quality and meaningli.IIncss 
of test scores. That is, a correct guess increases a respondent's test score, artifi
cially inflating it in comparison with the respondent's true score. Thus, decisions 
that are b<Jsed on test scores might be affected by guessing. Similarly, differential 
guessing could be a source of random measurement error. 1f some respondents 
arc "luckier" than others (i.e., some respondents randomly produce more correct 
guesses than other respondents) or if some respondents guess while others do not, 
then guessing produces test scores that are inconsistent with the true differences 
among respondents. 

Methods for Coping With Response Biases 

As we have discussed, several response biases can compromise the reliability and 
validity of psychological measures. In turn, compromised reliability and validity 
have important consequences f(Jr research and application of psychologicd mea
sures. As we have seen, various response biases can lead to inappropriate decisions 
for individuals in applied measurement contexts. In addition, response biases can 
obscure the associations among psychological constructs, leading to inappropriate 
conclusions in behavioral research contexts. 

Aware of these threats to psychometric quality and applied testing, psyclwlo
gists usc a variety of strategies f(>r coping with response biases. In the remainder of 
this chapter, we will discuss some of these strategies in relation to the spcci!lc goals 
liJr which they arc used, as summarized in Figure 10.1. As this figure illustrates, 
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Figure 10.1 Examples of Methods for Coping With Response Bias 

there are at least three general kinds of strategies-managing the testing context, 

managing the test content and/or scoring, and using specially designed "bias" tests. 

In addition, there are at least three general goals that these strategies are intended 
to accomplish. Some solutions are intended to minimize the existence of response 

biases, some are intended to minimize the effects of' response biases, and some are 

designed to detect biased responses, allowing test users to intervene in some W<l)' 

(which we will discuss later). 

Minimizing the Existence of 
Bias by Managing the Testing Context 

l'erhaps the best way to cope with response biases is to prevent them from occur

ring. /\I though a test user might never be sure that he or she has prevented response 
biases, there are strategies that might reduce the likelihood of various biases. Some 

strategies I(JCus on the way in which a respondent experiences the testing context. 

That is, the occurrence of response biases might be minimized by managing the 

way in which the test is presented to respondents and by managing the demands 

placed on the respondent within the testing situation. 

hH· example, l'aulhus (I')') I) suggests that social desirability bias might be 

minimized by reducing the situational factors that could elicit socially desirable

responding. In many research contexts, test users can assure participants that their 

responses will he anonymous. Knowing that there is no way f(>r their responses 
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to be identified personally, participants might be quite willing to provide honest 
responses. This suggestion is based on the rationale that anonymity allows respon
dents to feel comfortable in honestly admitting to undesirable attitudes, thoughts, 
behaviors, feelings, or traits. Although anonymity might increase honest respond
ing, there is a potential drawback. Specifically, anonymity might also increase 
the possibility of random responding. Many participants in behavioral research, 
particularly in psychological research, are undergraduate students taking classes in 
introductory psychology. Although students are not forced to participate, some of 
them might fc'c/ coerced into participating. The anonymity of a research context 
might interact with any feelings of coercion, producing very low motivation to he 
honest and conscientious ( Lelkcs, Krosnick, Marx, judd, & Park, 20 12 ). 'I 'h us, some 
participants might take advantage of the anonymity, responding carelessly, quickly, 
and perhaps even totally randomly. As we will discuss in a later section, it might be 
possible to identity such responses and exclude them from any analyses. 

Another method for 1nanaging the testing context is to create�� testing situation 
that minimizes respondent f�rtiguc, stress, distraction, or frustration. Such cogni
tive-emotional states can increase the potential for response biases (Paulhus, 1991 ). 
By decreasing a respondent's ability to concentrate or by increasing the likelihood 
that a respondent's motivation will wane, such states could elicit random respond
ing, social desirability, or other biases. In both applied and research testing contexts, 
it might be advisable to limit testing periods to a time frame that will not f�1tiguc 
respondents (e.g., in our experience, we avoid requesting more than an hour of 
objective testing from our research participants). In addition, it is probably advis
able to conduct measurement procedures in environments that arc birly quiet, with 
few potential distractions. 

A final example of managing the testing context is to tell respondents that the 

V<didity of their responses can be evaluated. Some research indicates that respon
dents who arc told that f�1lsc responding can be detected arc relatively likely to 
admit to socially undesirable attitudes, behaviors, or traits that might otherwise 
remain hidden (Paulhus, I')') I). This strategy is of particular interest as a solution to 
malingering. Some research (e.g., [lutcher, Morfitt, Rouse, & Holden, I 997; hnk & 

Butcher, 1 972) shows that valid responses on the Minncsol<l Multiphasic Personality 
Inventory ( MMPI) scales arc increased when respondents arc informed that random 
responses or dishonesty can be detected (although some research shows no ef'kcts of' 
such warnings, e.g., Butcher, At! is, & Fang, 2000). In tiKt, validity can be increased if 
participants merely /Je/icvc that biased responding can be dctcctnl. Research suggests 
that even if test users actually cannot detect biased responses, the mere possibility of 
detection can convince some respondents to be more honest and unbiased. 

Minimizing the Existence of Bias by Managing Test Content 

In their attempts to cope with the problem of response biases, test users and test 
developers will often use specific kinds of test content to minimize the existence of 
response biases. By choosing specific kinds of items or specillc kinds of response 
f(mnats, test developers might be able to nullify or reduce some biases. 
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As mentioned earlier, respondent ti·ustration might lead to biased rcspondino 
t>• 

Thus, test developers might write test items that are as straightforward and simple' 
as possible. If a test is easy for respondents to understand and complete, then 
respondents are less likely to become ti-ustrated or distracted. The avoidance of 
frustration and distraction might, in turn, reduce the tendency toward carelessness, 
low motivation, and, ultimately, biased responding. 

Another strategy is to write items that arc neutral in terms of social desirability. 
For example, a measure of "friendliness" might have a strong pull toward social 

desirability-many people might perceive fi·icndliness as a desirable characteristic, 
and they might be tempted (consciously or otherwise) to exaggerate their ti·iendli· 
ness. I Iowever, it is possible that items might be written in a way that underempha
sizes the desirable quality of being friendly and the potentially undesirable quality 

of being unfriendly. For example, the item "I am a surly and hostile person" might 
be used to retlect the unfriendly end of the dimension-this item might elicit 
relatively few "true" or "agree" responses because it is so clearly undesirable. An 

alternative might be "I am sometimes less friendly than other people." Although it 
is not "perfect," it expresses unli·icndliness in a way that might make respondents 

more willing to admit to it. Similarly, moral behavior is often viewed as admirable 
and therefore socially desirable. A recent study relied on participants' selt�rcports 
of morality, but the researchers were concerned about social desirability bias and 
the possibility that some participants might artificially inflate their reports of moral 
behavior or artificially minimize reports of their immoral tendencies (Meindl, 

Jayawickreme, Furr, & Flceson, 20 12). 'lb handle this, they asked questions in three 
ways-an "undisguised" way, a euphemistic way, and a dysphemistic way. In each 
case, they presented a description of a person and asked participants to rate how 

much they were like those people. For example, to assess dishonesty, they presented 
an "undisguised" description of a dishonest person ("A person who intentionally 
says things that include fi1lsehoods") as well as a euphemistic description ("A 'lin
guistically creative' person who intentionally says things that include fi1lschoods"). 
The logic behind this strategy is that the euphemistic description will be perceived 
as relatively positive, in that being "linguistically creative" might be interpreted as 

a desirable quality. Thus, the positive connotations of linguistic creativity might 

offset the more negative connotations of telling "lidsehoods," thereby composing 

an item that, on balance, was relatively neutral (i.e., less socially undesirable) than 
the undisguised item. Indeed, analyses showed that the euphemistic and dysphe
mistic items were rated as being more neutral, in terms of desirability, than the 

undisguised items. 
In addition to managing the content of the items, test developers might con

sider using certain kinds of response f(Jrmats as a way of minimizing the presence 
of response bias. 'lest developers have used "f(Jrccd-choicc" items to minimize the 
existence of social desirability bias. Forced-choice items arc items that present 

two characteristics and require that respondents endorse one and only one of 

them. hlr example, an item on a personality test might present the characteristics 

"friendly" and "assertive," and respondents would be asked to identify the charac

teristic that is 111ore descriptive of their personalities. Note that, in this example, 
both characteristics arc approximately equally socially desirable. Similarly, an 
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item might include characterist"ics that arc equally undesirable (e.g. , "timid" and 
"argu

.
mentative"), ag<1in requiring respondents to identify which one is Im�re 

descnptivc of them. Because each pair of choices is equated in terms of desir

ability, the forced-choice f(mm1t prevents respondents from simply pick
.
in

.
g �he 

more desirable choice. Test developers can also design test formats to mmimizc 
the .existence of the extremity problem. For example, they can provide only .two 
choices for each item. Again, using <1 personality test for an example, they

. 
might 

present a characteristic such as "friendly" along with only two response optwns
"Yes" and "No." In <1 sense, such a format prevents extremity bias by eliminating 

:my "extreme" response options altogether. The downside of this strategy is th
.
at 

It prevents valid dilfcrences in trait extremity fi·om manifesting themselves Ill 

responses to the i tcm. 

Minimi�ing the Effects of Bias by 
Managmg Test Content or Scoring 

. Despite our best efforts to prevent or minimize the occurrence of response 
bwses, they arc likely to occur to some degree. Thus, test content can be designed in 
:1 way th<Jt reduces the effect of some response biases that do occur, in terms of their 
unpact on test scores. Similarly, test users might be able to use spcci<llized scoring 
procedures in order to reduce the effect of biases on some tests. 

The best example of managing test wntent to reduce the effect of bias might 
be the use of balanced scales to cope with acquiescence bias. As described earlier, 
acquiescence bias occurs when a person agrees to a statement without regard f(>r 
the meaning of the statement. As we illustrated, this bias is a particular problem 
when all the items in a questionnaire arc keyed in the S<1lllC direction. In addition, 
We demonstrated how the bias can play havoc with the analysis of questionnaire 
data-respondents with an acquiescent bias are indistinguishable from respon
dents who truly have high tr;1it levels (assuming that items are keyed in ;1 positive 
dire·t" 1) J"l · · 

c IOI , w 1IC 1 can create artificially strong correlations between qucstion11<11res. 
A common solution to this problem is to creMe a test such that the effect of the 
bias is reduced, in terms of its intluence on the analysis of questionnaire d<lla. The 
solution is to use "balanced" scales. 

A balanced swle is a test or questionnc1irc that includes some items that arc posi
tively keyed and some th<ll ;1rc neg<1tivcly keyed. In our earlier example (see 'fhble 
I 0.1 <1), we imagined that a researcher asks six employees to respond to the l(>llowing 
lour "job satisf;Ktion" items (each on a 7-point scale, with I =strongly disagree and 
7 =strongly agree): 

I. I really enjoy my work. 
2. I find my work personally fullllling. 
3. In general, I am satisfied with the day-to-day aspects of my job. 
4. There is very little that I would change about my job. 
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We noted that all 1-illlr items are positively keyed because a positive rcsp01 

(some level of agreement) indicates a greater level of job satisbclion. 'I(> 111 in i Ill 

the potential effects of acquiescence bias, the researcher might use the l(>flowj 

revised set of items: 

J. I really enjoy my work. 

2. I do not lind my work personally fullllling. 

3. In general, I am satisfied with the day-to-day aspects of my job. 

4. There is much that I would change about my _job. 

Note that the revised questionnaire includes two items that are negativl.')1 
keyed (or "reverse keyed"). Specifically, Items 2 and 4 are revised so that a neu · t'ld 
live response (some level of denial or disagreement with the statement) indicltes d 

greater level ofjob satisfi1ction. The revised scale is balanced became it includes t\Vo 
items that arc positively keyed (i.e., where agreement with the statement indic<IIt·, 
high satisli1ction) and two items that arc negatively keyed (i.e., where disagreement 
with the statement indicates high satisfi1ction). 

'E1ble I 0.1 h presents the employees' responses to the balanced scale. The ke)' 
difli:rence between these responses and the original responses ('E1ble I 0.1 a) is th,11 
valid responders conf()J'Jn to the balanced item f()J'J1Jat, but acquiescent responders 
do not. For example, consider Participant 2, a valid responder with a high level o/ 

job satisf�Ktion. This participant agrees with the positively keyed items (i.e., Items 1 

and 3) and disagrees with the negatively keyed items (i.e., Items 2 and 4), as would 

he expected from someone with a high level of satish1ction who is paying attention 
to item content. In contrast, consider Participant I, an acquiescent responder. This 

participant agrees with all fin1r items, ignoring the liiCt that some agreements indi
cate a high level of satisbction but others indicate a low level. This suggests that the 

person is simply agreeing to the items without regard l(>r their content. 

h>r a b;danced scale to be useful, it must be scored appropriately. The scor
ing key must accommodate the fi1ct that the scale includes positively keyed items 
and negatively keyed items. Usually, lest users prefer that a high "total" score on ,1 

test or questionnaire represents high levels of the construct being measured. h>r 

example, they would like a high score on the JS scale to represent a high level o/ 

job satisi;Ktion. 
'I(J accomplish this, the test user lnust "reverse score" the negatively keyed items. 

'!(> reverse score a negatively keyed item, the test user recodes individuals' responses 
so that a relatively large value represents a high level of the construct being 111L'<I

sured. h>r example, the ]S scale is a 7-point scale. Therefore, the researcher recodcs 

<Ill answer of '' 7 " (strongly ngrcc) to an answer of" I" (strongly disogrce), an answer 

0f"6" ( ntodcmtcly ogree) to a "2" ( 111odemtcly disagree), and a "5" (slightly agree) to 

a "3" (slightly disogrcc). Similarly, the test user recodes responses so that a relativcir 

small value represents a low level of the construct being measured. Thercf(>rc, 

the researcher recodes an original answer of" I" (strongly disagree) to an answc1· 

of "7" ( stro11gly ogrce), an answer of "2" to a "6," and a "3" to a "5." This reverse
scoring process logically recalibrates responses so that relatively large values l(lr ;dl 

items (i.e., a 7, 6, or 5) represent high levels of the construct being measured and 
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relatively smaJJ v;dues (i.e., a J, 2, or J) represent low levels. 'l�1ble J(J.lc presents 
the reverse-scored re.sponses to the balanced scale. 

Let u.s consider how balanced scales minimize the effects of acquiescence 
response bias. The most immediate benefit of balanced scales is that they differ
entiate acquiescent responders /i-om valid responders who have high levels of the 
construct being assessed las a side note, balanced scales also differentiate nay-say1ng 
responders ti·om valid responders who have low levels of the comtruct ). 

. 'J�ll<e a moment to examine the acquiescent responders in Tl1ble 10.1 c, and nol!cc 
how their scores on the balanced scales differ fi·om their scores on the original scales 
l'li1blc I 0.1 a J. For example, note th<Jt Participant 1 's score on the balanced JS scale 
is only I il, whereas his score on the original JS scale was 24. Similarly, note that 
Participant 4's score on the balanced IS s;.de is 15, whereas his score on the original 
scale was 26. Thus, balanced scales ensure that acquiescent responders obtain scores 
that arc close to the sample average (i.e., not extremely high or low). 

Now l<1ke a moment to examine the valid responders in 'E1blc 10.1 c. For exam
ple, Participant 2's score remains high-the same as it was on the original scale (i.e., 
25). Valid responders who had high scores on the original scale still have high scores 
on the balanced scale, and valid responders who had low scores on the original scale 
still have low scores on the balanced scale. 

Thus, test users can be fairly conlldent that valid responders arc the only 
responders who will obt<lin extreme (i.e., particularly high or low) scores on the 
lest. Consequently, there is a sm;dl chance of mist<lkcnly believing that an acquies
cent responder has a relatively high (or low) level of the construct being assessed 
by the trait. 

Although balanced scdcs allow test users to avoid mistaking acquicsccn t 
responders l(n valid responders who have high trait levels, you might suspect tlwt 
this simply creates a new problem. You probably noticed in 'Ji1blc I 0.1 c th:1t we 

now cannot dirterenti;ltc acquiescent responders ti·om valid responders who h:1ve 
moderate trait levels. In a sense, we have indeed traded one problem fi>r <lllothcr. 
However, we have avoided a very serious problem by creating a problem th:1t is 
much less serious, at least fi>r 1-ese<Jrch purposes. For rcsC<lrch purposes, the usc of 
balanced scales has impor!<lllt implications for the <lccuracy of rcsc;1rch findings. 

The research implications of using balanced scales can be seen in the corrcl:l
tion between job satish1ction and perceived prestige, which was the go<il of the 
original research question. lktuming to the origin:d scales in which all items were 
positively keyed (sec 'Ld>lc 10.1 a), note that the correlation across ;ill six responders 
was r = .43. Relying on the original sc1le, the researcher would conclude that there 
is a moderate to strong <lssociat ion bet ween job sat is bet ion <lnd perceived pres! ige. 
However, we will again pretend to be omniscient-knowing which responders were 

valid and which were acquiescent. Examining the data from the /(lllr valid respond
ers, we find <l very weak negative corrcl:llion between satisLJCtion and prestige (i.e., 
r = -

. 0'1 ) . Thus, the filet that two particip<IIJU; responded with <ln ;JCquicscence bias 
compromised the results of the an;dyscs, causing the researcher to nwke <Ill incor
rect conclusion about the link between the comtructs. 

Now, let us consider the correlation computed fi-om the b;d:IIH.ed scale ('I�JbJc 
liJ. I c). Note that the correlation across all six responders is r = -.1 0. This is nHJCh 

closer to the "valid responder" correlation (i.e., r = -.(J'1) than was the correlation 
obtained fi·mn the six responses to the original sc:de. Thercf(m', if the researcher 
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uses the balanced scale, her conclusions will be much more accurate than if she U<>c' 

the original (unbalanced) scale. 

In sum, balanced scales have potentially important benefits lor behavioral 
research. Although they do not prevent acquiescence response bias or always co111_ 
plctely eliminate its effects, they do reduce its effects on research results. By usino 
balanced scales, test users can be fi1irly confident that their research results arc no7 
heavily compromised by acquiescence bias. As illustrated in cli1ble 10. 1, balanced 
scales can avoid a spurious I i.e., a bogus) correlation that could result fi·om acqui
escence response bias. The potentially important benefits of using balanced scales 
more than outweigh their meager cost !incurred by generating negatively keyed 
items and reverse scoring those items)_ 

As mentioned earlier, test users might also use specialized scoring procedures to 

minimize the effect of bias on test scores and test use. We have discussed guessing 
as a problem that might affect ability tests or achievement tests such as the SAT 
and GRE. Indeed, such tests usc scoring procedures that are intended to adjust 
test scores fiJr the potential effects of guessing. for example, the SAT has a scor
ing procedure that weights incorrectly answered items differently than items that 

are simply left unanswered. Specifically, an item that is answered correctly earns 1 
point, an item that is answered incorrectly results in a subtraction of 1/1 point, and 
an item that is omitted results in no points. Without going into great detail, the 
effect of this scoring procedure is that the benefit of random guessing is minimized. 
Interestingly, educated guessing can still be beneficial for SAT test takers. That is, if 

a respondent can eliminate one or more response options, then he or she is likely 
to benefit from guessing among the remaining response options. 

Managing Test Content to Detect Bias and Intervene 

Response biases can remain a concern even after test developers and test users 
atlcmpt to minimize their existence and their effects on test scores. Despite the best 
ell(>rls to prevent or minimize the degree to which biases affect test scores, such 

biases may continue to affect responses, decisions, and analyses. 
As another detcnse against response biases, test users might be able to detect 

responses that arc potentially biased in a variety of ways. In this section and the 

next, we will discuss methods that have been designed to identity participants who 
seem to be manifesting some f(>nll of response bias. After those participants have 

been identified, test users have several options for handling their responses, includ
ing discarding and statistical control. 

Several well-known measures of psychopathology and personality include va/itl

ity scales. Validity scales arc sets of items that are embedded within a large inventory, 

and they arc intended to quantify the degree to which a respondent is manifesting 
specific response biases. Using these scales, test users can examine a participant's 

pattern of responses across the set of items and evaluate the degree to which 
the response pattern seems to reflect random responses, acquiescent responses, 

artificially "good" responses, artificially "bad" responses, and so on. A great deal 
of psychometric attention has been devoted to creating and evaluating validity 

scales h>r widely used measures such as the MMPI, the Millon Clinical Multiaxial 



�--- -

Chapter I 0: Response Bioses 295 

Inventory (IVICM/), the NEO Personality Inventory (NEO-PI), and the Calilc>rnia 
Psychological Inventory (CPf). 

Perll'l' . 1 . l'd' . .. 1, . re tll<>se on the MMPI. The ',>s t 1e most w](lely known va 1 1ty sc,I es ,I · 

most recent edition of the MMPI (the lv/lv/PI-2) includes at least seven scales 
intended to provide inlcmnation about the likelihood that a respondent mani
fested a variety of biases. For example, the L scale is intended to reflect a respon
dent's ·Itt, 1 · · · .,.51'<>Jl According to Graham ' cmpt to present an over y positiVe Hllp!es. · 

(1990), the L scale (sometimes called the "Lie scale") consists of 15 items that 
describe "minor flaws and weaknesses to which most people arc willing to admit" 
(p. 23 ). People who deny these very common characteristics will obtai

.
n hi�� I sco.res 

on the L scale. Thus, the L scale is seen as a measure of social desJrabllJty biaS. 
The F scale (sometimes called the "Infrequency scale") is another MMPI validity 
scale, consisting of 64 items that arc endorsed (i.e., admitted to or agreed with) 
by very lew respondents. A high score on the F scale represents some f(mn of 
deviant responding, indicative of random responding, malingering, an "all-true" 
response pattern, an "all-h!lse" response pattern, or possibly a genuinely disturbed 
psychological state. Additional MMPI validity scales include the K scale (to detect 
"faking good"), the VRJN scale ("Variable Response Inconsistency," to detect ran
dom responding), <lnd 1 he TRI N scale ("Ti'tiC J{esponsc Inconsistency," to detect 
yea-saying or nay-saying). 

One of our earlier examples can help illustrate the way in which a response 
pattern can be used to detect the presence of a particular response bias. If we 
again examine the hypothetical responses presented in 'EJI>lc I(J.J c, then we can 
see how acquiescence bias will produce a very specific paUcrn of responses on a 
balanced scale. neturning 10 those responses, our temporary omniscience allowed 
us to know that Participant 1 was responding with an acquiescence bias. A careful 
examination of that person's responses reveals that he or she is inconsistent in a 
very specific way. Recall that the four-item scale was balanced, with two positively 
keyed items (Items I and 3) and two negatively keyed items (! tems 2 and 4) that 
Were reverse scored. 

Based on the reverse-scoring process, we wendel expect a participant who is 
responding validly to produce a t;Iirly consistent set of responses. For example, a 
participant with a genuinely high level of job satish!Ction should select responses 
that primarily lie above the scale midpoint . Participant 2 illustrates this consis
tency-all of this person's responses (i.e., 7, 5, 6, and 7) are above the sc;Ile mid
point of 4. Therefore, this person's responses are consistently in the direction of 
high job satist;Jction. Similarly, we see that Participant (l's responses arc consistently 
at or below the scale midpoint, and this response pattern indicates a relatively low 
level of job satisfaction. 

In contrast, a participant with an acquiescence bias will select responses 
that, when scored appropriately, me inconsistently above and below the scale 
midpoint. Por example, Particip<Int I provided responses that, aiicr the reverse
scoring process, arc scattered around the midpoint. This contradicts what is 
expected hom a participant with a truly high trait level or a truly low trait level. 
A test user who is not omniscient might see this kind of inconsistent response 
pattern and reasonably suspect that the respondent was manifesting an acquies
cence response bias. 
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/1 test user who detects that an individual might be manifesting one or nlOi\' 

response biases has at least three options f(>r using this inti:mnation to intervene in 
the assessment or research process. First, he or she might exclude the individu;tl\; 
test scores fi·om further consideration or analysis. In an applied context, the test 
user might ask the individual to take the test again or might simply disregard the 
test scores. According to one applied testing expert, if an individual's respon�l'-' 
are deemed to be dishonest or made without due consideration, then the indi 
vidual's scores "should be considered invalid and should not be interprl'led fur-· 
ther" (Graham, I 990, p. 22). In a research context, the test user might drop the 
individual's data ti·om any statistical analysis. A second option for handling suspect 
test scores is to retain the scores but use them cautiously. ln an applied context, ,1 

test user might consider the test scores but place little weight on them in the overall 
assessment or diagnosis of an individual. In a research context, a test user might 
retain the data and simply accept the tiJCt that various response biases might he 
allccting his or her results in various ways. A third option for researchers is to rcu1in 
any potentially invalid data but use statistical procedures to account for the ti1ct 
that some respondents might have provided invalid responses. Procedures such as 

partial corrcla tions or multiple regression allow researchers to usc scores on validity 
scales to "statistically control" for potentially invalid responses. For example, such 
procedures can allow a researcher to examine the association between job satisliJC
tion and perceived prestige separately for those participants who appear to be valid 
respondents and those who appear to be invalid respondents. 

;\!though validity scales might appear to be very useful, psychometricians and 
test users demand evidence that actually demonstrates their utility. Some studies 
fi1il to support the utility of validity scales (e.g., Piedmont, McCrae, Riemann, & 

Anglcitncr, 2000), but many studies attest to the "validity of validity scales." ;\n 
example of a typical study is reported by !!aim (2005). This study used an "analoo" 

design in which participants represented several groups. One group was a samp7e 
of hospitalized psychiatric patients. Because none of these patients had sought any 

f(mn of compensation, they were assumed to be representative of valid respond

ers with high levels of psychopathology. A second group included college students 
who were instructed to provide invalid responses. They were told to "l�1ke bad" by 

presenting I hemsclves as severely disturbed, and they were intended to be "an;J

Iogs" f(>r respondents who are attempting to malinger. All participants completed 
the MMPl-2, and analyses examined the ability of the validity scales to detect any 

differences among the groups. Results showed that, as would be expected, the 

analog malingerers scored higher on validity scales that are intended to signal that 

a respondent is providing deviant responses and is possibly malingering (e.g., the 

1: �cakJ. Although there arc reasonable concerns about overgeneralization from 
results that are b<Jscd on students who arc pretending to be disturbed (or who arc 

pretending to be overly desirable), n!llch of this research provides evidence that 

v;didity scales do indeed ditlcrcntiate such groups (Baer & Miller, 2002; Rogers, 

Sewell, Martin, & Vitacco, 2003). 

ln sum, embedded validity scales arc a potentially useful method of detecting 

mme kinds of response bias. By including such scales within <1 much larger set 



� ·  - -

Chopter I 0: Response Bioses 297 

of s .. 1 , · 1 
. 

1 . ·J J t·" ·t devclol)ers give test · ca cs 1 WI measure personality and psyc wp.1t JO ogy, �s 
t. 

• 
. users the opportunity to detect potentially invalid test scores and to Intcrvcn·e · In 

some way. /\!though there arc some concerns about their real-world app!JcabdJty, 
a 

.
s
.�
Ibstantia! body of research suggests that validity scales work well when used to 

differentiate "known filkers" ti-om presum<�b!y genuine respondents. 

Using Specialized Tests to Detect Bias and Intervene 

The final method tlwt we will discuss fi>r managing response bi;Jscs is closely 
re!<Jted to the previous method. Along with validity scales embedded within long 
measures of persona! it y and psychop<Jtho!ogy, psychologists have developed sepa
mte scales to measur e a variety of response biases. As with the embedded validity 
scales, separate measures of response biases can be used in a variety of ways-they 
'1Jlow lest users to identify and eliminate potentially invalid responses, and they 
allow researchers to statistically control the effects of response biases. 

These scales h;1vc been used in <11 !east two additional w<�ys. l:irst, in <Ill eff(>rl to 
better understand response biases, psychologists have ;Jiso used these measures of 
response biases to study their potentia! psychological causes and implications. By 
measuring a response bias and correlating its scores with measures of other psy
clw!ogica!, behavioral, or demographic v<Jri;Jblcs, psychologists C<lll <lttain <1 deeper 
understanding of the possible cognitive, emotional, or nwtiv;Jlional fi1ctors that 
produce the response bias. Second, test developers and test evaluators can usc these 
scales to gauge the degree to which a test's scores might be affected by response 
biases. That is, they might find tlwt a score on a new test is highly correh1tcd with 
a particular response bias, and they might be able to usc this infimnation to guide 
test improvements or ;J!crt test users to potentia! problems. 

Scdes that arc intended to measure individu<ll differences in the tendency to pro
vide social/y desirable responses arc a widely used method f(H· detecting response 
biases. The Mar!owc-Crowne Socia! I>csirability Scale (Crownc & Marlowe, J<J60) 
has been a widely used measure of social desir<Jbilitv. The scale is intended to reveal 
the degree to which an individual claims uncomlll;Jn virtues and denies coJnJnon 
flaws. It includes 33 st;Jtemcnts, such as "Bdi>re voting I thoroughly investigate the 
qualifications o(;J!J the candidates" (;lll uncommon virtue) and"( )n occ;1sion I lwvc 
had doubts about my ability to succeed in life" (;1 common flaw). J{espondcnts rate 
each item on <l binary truc/fidsc scale. Jf <1 respondent cbims nwny unconl!non 
virtues and denies many common flaws, then his or her score is interpreted as 
revealing an attempt to <lppear soci<�Jly desirable. 

i\s mentioned in our earlier discussion of· the social desirability response bias, 
recent work indicates tlwt the bias is more complex than was origin<Jlly conceived 
Ill the J'J40s, J<J50s, and J'J60s (P;ndhus, 2002). ;\s part of the evolution of their 

research on the process and content of social desirability response biases, l'au!hus 
and his col/cagucs developed the Brief Inventory of Desirable Responding 
(BJDH). The most recent research version of the BJI>J{ (J'au!hus, J<J<JJ) includes 
two main scales-a 20-item Self-Deceptive Enlwncement scale <llld <1 20-itcm 
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Impression Management scale (in addition, a 20-item Self-Deceptive Denial scale 

is available through the author's website). The items include self-relevant state

ments (e.g., "I am a completely rational person") that are answered on a 7-point 

scale ranging from not true to very true. High scores on the scales ret1ect tenden

cies toward socially desirable responding. Research indicates that the BIDR scales 

can be internally consistent, stable across at least a 5-week period, and reasonably 

good measures of the intended constructs (Paulhus, 1991 ). 

Additional tests are intended to detect malingering in terms of cognitive impair

ment. For example, the Dot Counting Test (DCT; Lezak, 1995) includes 12 cards 

on which various numbers of dots are printed. Half of the cards present the dots 

in a grouped format, and the other half present the dots in a random arrangement. 

"lest takers are asked to count the clots on each card as quickly as possible, with the 

responses and response times recorded by the test administrator. Presumably, test 

takers should require more time to count dots that are randomly arranged than 

dots that are grouped in a systematic manner. Therefore, malingering is suspected 

when a test taker requires as much time to count the dots on the grouped cards as 

on the random arrangement cards. Although the evidence is mixed, some research 

indicates that the DCT is a potentially useful method of detecting malingered cog

nitive impairment (Binks, Gouvier, & Waters, 1997; Boone et al., 2002). 

Although measures of social desirability and malingering are much more 

widely used than measures of other response biases, such measures do exist. 

For example, a measure of acquiescence was developed by Couch and Keniston 

( 1960); however, in his review of the measures of various response biases, 

Paulhus ( 1991) concludes that "none of the instruments claiming to measure 

general acquiescence tendencies can be recommended to the researcher" (p. 48). 

Similarly, Greenleaf ( 1992) criticized the literature examining extreme response 

style for inadequate concern about a standardized measure of the bias. Indeed, 

Greenleaf cites the conflicting results that have emerged from examinations of the 

correlates of extremity, and he points out that such ambiguity could be explained 

partially by the fact that each researcher tended to use a different (and unvali
dated) measure of extremity. Although Creenleaf presents a 16-item measure of 

extremity bias, he concludes that additional "improved measures of [the extrem
ity bias[ are worth developing" (p. 347). 

Response Biases, Response Sets, and Response Styles 

This brief section is intended to clarify terminology that you might encounter. In 

this chapter's discussion of response biases, we have addressed a variety of ten

dencies to respond to questionnaires on the basis of factors apart ti·om the actual 

content of the questionnaire. In this discussion, we have pointed to a variety of 

factors that contribute to these biases. Some factors might be temporary, reflect

ing aspects of the testing situation (e.g., the consequences of the testing) or the 

test itself (e.g., the test format or ambiguity of items). Such factors are often called 

respome sets (Paulhus, 1991 ). Other factors are more tied to stable characteristics 
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of individuals (e.g., some individuals are more concerned in general about appear

ing socially desirable than others), allll such factors are often called response styles. 

Thus, response biases can arise from response sets (i.e., something about the testing 

situation produces biases) and from response styles (i.e., something about a person 

being tested produces biases). Note, however, that psychologists arc not consistent 

in their use of these terms. 

Summary 

As this chapter has illustrated, a variety of biases can affect responses to psycho

logical measures, and such biases have the potential to reduce the psychometric 

quality of those measures and the psychological meaning of their scores. As we 

have described, these biases can arise from aspects of the tests (e.g., confusing items 

or ambiguous scale anchors), from the nature of the testing context (e.g., serious 

consequences arc partially contingent on test scores), and from personality charac

teristics of test takers (e.g., a stable tendency toward self-deception, acquiescence, 

or minimal self-disclosure). 

Behavioral scientists arc well aware of these biases and their consequences for 

applied decisions and for research conclusions that arc based on psychological 

measurement. To cope with the problems that can arise from response biases, psy

chologists have developed many strategies for minimizing their existence, for mini

mizing their effects on test scores, or for detecting them and handling responses 

that appear to be contaminated. 

Suggested Readings 

This is a solid overview of issues in malingering, with particular relevance to psy

chopathological testing: 

Berry, D. T. R., Baer, R. A., Rinaldo,). C., & Weller, M. W. (2002). Assessment of malin
gering. In). N. Butcher (Ed.), Cliniml personality asscssnlcnt (2nd ed., pp. 269-302). 

New York, NY: Oxford University Press. 

This is a classic analysis of social desirability and acquiescence, with regard to 

MMPI responses: 

Block,). ( 1965). '1"11c clltlllcii)!,C o(rcspo11sc sets: U11conji11tlltli11)!, IIICtlllill)!,, ciCifllicsccncc, CIIICI 
sociol tlcsimbility in the !VIM I'/. New York, NY: /\pplclon-Ccnlury-Crorts. 

This is another classic article in the history of the psychometric awareness and 

evaluation of response biases: 

Cronbach, L. ). ( 1946). Response sets and lest validity. hluwtional cllld Psyclwloy,ical 
MCCISIII"CIIICIIt, 6, 475-49'f. 

This is a recent summary of decades of research and theorizing regarding the 

nature and assessment of social desirability: 

Paulhus, ll. L. (2002). Socially desirable responding: The evolution or a construct. In 
I I. Braun, U.N. jackson, & D. E. Wiley (Ells.), The role o(cc>llstntcts i11 psycholoy,ical 
IIIICI ct!umticmoiiiiCCISIIrctiiCIIt (pp. (>7-88). I Iillsdale, NJ: Lawrence Erlbaum. 
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This is an analysis of a method fclr assessing extremity bias: 

(;reenlcaf, E./\. (I 992). Measuring extreme response sty le. Pu/Jiic Opinion Quortcr/y, 56, 
328-351. 

This is an empirical examination of a theory of the basis of acquiescence bias: 

Knowles, E. S., & Condon, C. A. (I 999). Why people say "yes":/\ dual-process theory of 
acquiescence. foumol o( Pcrsonolity ant! Social l'sychology, 77, 379-386. 

This is an accessible discussion of the processes that respondents go through when 
taking self-report tests, and it addresses the way test f(mnats can affect these pro
cesses: 

Schw;1rz, N. (I 999). Self� reports: !low the questions shape the answers. A111crimn 
i'syclwlogist, 54, 93-105. 



CHAPTER 11 

Test Bias 

A
s we have seen, psychological tests can be well conceived and well constructed, 
but none are perfect. The reliability of test scores can be compromised by 
measurement error, and the validity of test score interpretations can be 

compromised by response biases that systematically obscure the psychological dif
ferences among respondents. 

In this chapter, we will examine the possibility that the validity of test score inter

pretations can be compromised further by test biases that systematically obscure 
the differences (or lack thereof) among groups of respondents. Psychological tests 

arc often used to make important decisions that afiCct the lives of real people: 
Which colleges (if any) will decide to accept you< In which class will your child be 

enrolled? Will an employer decide to hire you? To the degree that such decisions arc 

based on tests that arc biased in LJVor of� or against, specific groups of people, such 
biases have extremely important pcrson<li <llld societal implications. 

Suppose you arc interested in knowing whether gender differences exist in 
mathematical ability. You give a reasonably reliable 111<lthcmatics test to a rcprc

senl<ltive group of males and females, and you find that, on average, males have 
higher math scores than females. As a researcher, you would he tempted to inter

pret your test scores in terms of the psychological construct that they arc intended 

to reflect-that males tend to have greater mathematical ability than !(:males. 

However, it is possible that the participants' test scores should not be inlnprctcd 

as reflecting purely their mathematie<1l ability. That is, it is possible that the lest is 
biased in some way. For example, i(the males' test scores overestimated their true 

lll<lthematical ability and the females' test scores underestimated their true abilil)', 
then the test is biased. In this case, the difference between the test scores f(n males 
and females might be due to test score bias, not due to a difference in their true 

mathematical a hili l ics. 

In this chapter, we discuss two important f(mns of test bias, and we discuss the 

methods that are used to dctcc! those biases. Roughly speaking, the two types of 
test bias reflect bioses in the 111ellning ofutest ami bioses in tile use o(utcst. Construct 

301 
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bias (also known as measurement bias or internal bias) occurs when a test has dif

ferent meanings for two groups, in terms of the precise construct that the test is 

intended to measure. Construct bias concerns the relationship of observed scores 
to true scores on a psychological test. If this relationship is systematically different 

for different groups, then we might conclude that the test is biased. Construct bias 

can lead to situations in which two groups have the same average true score but 
different averages on observed scores 011 a test of the construct. 

The second type of bias is predictive bias, which occurs when a test's use has 

different implications for two groups. Predictive bias (also known as differential 

validity or external bias) has to do with the relationship between scores on two 

different tests. One of these tests (the predictor test) is thought to provide values 

that can be used to predict scores 011 the other test (the outcome test or criterion 

measure). For example, college admissions officers might use SAT scores to predict 

freshman college GPAs. SAT would be the predictor test, and GPAs would be the 
outcome measure. In this context, test bias concerns the extent to which the link 

between predictor test true scores and outcome test observed scores differs for the 

two groups. If the SAT is more strongly predictive of GPA for one group than for 

another, then the SAT suffers fi·om predictive bias, in terms of its use as a predictor 

ofGPA. 

The two types of bias-construct and predictive-are independent. Indeed, a 

test might have no construct bias but might suffer fi·om predictive bias, or vice 
versa. For example, the SA'T might accurately reflect true "academic aptitude" dif .. 

ferences among groups of people (and thus have no construct bias), but academic 

aptitude might not be associated with freshman GPA equally for two groups of 

people (and thus predictive bias wmtld exist). 

In this chapter, we will discuss several ways to operationally define and identify 

test score bias. At least two categories of procedures can be used to identify test 

score bias: ( 1) internal methods to identify construct bias and (2) external meth

ods to identify predictive bias. We emphasize the operational nature of this task 

to remind you that test score bias in both of its forms is a theoretical concept, in 

part bee a usc both types of bias depend on the theoretical notion of a true score. 

There is no single way to detect test score bias any more than there is a single way 

to calculate directly psychometric test score properties such as reliability or validity. 

There arc, however, various generally accepted ways to estimate the degree to which 

test bias exists. 

An overarching issue in the definition and detection of test bias is that the 

existence of a group difference in test scores does not necessarily mean that the test 

scores are biased. Suppose you find that females have higher scores than males on 

a test of optimism. This difference is not prima f�1cie evidence that the test is biased 

(Jensen, 19HO, 199H; Thorndike, 1971 ) . Indeed, the participants' test scores might 

in f�1ct be good estimates of their true levels of optimism. In such a case, the test 

is not biased, and the group difference in the test scores reflects a real difference 

in average optimism. Consider doing a study in which you weigh representative 

groups of males and females. You would doubtless find that the average weight of 

females is lower than the average weight of males. You would not take this differ

ence to mean that the scale you used to measure weight produced scores that were 

biased. 
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Why Worry About Test Score Bias? 

It is likely that everyone reading this book has taken a psychological test of some 

kind. Virtually all children schooled in the United States or other industrialized 

countries arc exposed on a regular basis to academic achievement tests. In the 

United States, most students who plan to attend an institution of higher education 

have taken the SAT or American College Testing fACT) test. Most graduate schools 

in the United States require student applicants to take the Graduate Record Exam 

(GRE). Applicants for most federal government jobs arc required to take a civil ser

vice examination, and corporations regularly screen job applicants and sometimes 

evaluate employees by using psychological tests. 

Scores on these and other types of psychological tests are often used to make 

important decisions about people. In educational settings, intelligence tests scores 

are used to place children in special programs. Intelligence test scores arc used by 

law courts to make decisions about who can and who cannot be sentenced to death 

following a murder conviction. Educational institutions usc scores on standardized 

tests to make admission decisions. Corporations and governments ofien make job 

decisions about people based, at least in part, on test scores. In the United States, 

most public school teachers have to take and pass standardized tests to become 

certified school teachers. T he use of psychological tests in our society is pervasive, 

and scores on these tests can have an important impact on people's lives and on our 

public and private institutions. 

Because testing is a pervasive feature of our society and because test scores have 

important consequences for people, we would like to develop tests that produce 

scores that allow us to differentiate among people based on real psychological dif

ferences and not on group membership. For example, if we have a test of optimism, 

then we would like to be sure that scores are determined only by levels of optimism 

and not contaminated by some other extraneous h1ctor, such as the biological sex 

of the person taking the test. In other words, we want unbiased tests. 

Our desire for unbiased test scores is rooted in our belief that we should not dis

criminate for or against a person because of his or her biological sex, ethnicity, race, 

religious preference, or age. In some cases, the list of groups that should be pro

tected from test score bias has been expanded to include f�1ctors such as sexual pref

erence, pregnancy, marital status, linguistic background, and various disabilities. In 

each of these cases, we should be confident that any observed score differences on 

psychological tests arc a function of true score differences. It is especially imporlan t 

to be able to show that test scores are not bi<lScd in those instances in which average 

observed scores on some type of psychological test differ between groups. 

Detecting Construct Bias: Internal Evaluation of a Test 

Construct bias is related to the meaning of test scores. If a test suffers from con

struct bias, then the scores on a test might have different meanings for different 

groups of people. And if that is true, then it docs not make psychological sense to 
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compare te�t scores acros� those two groups. Given that the primary go<ll of tc\t 

ing is to detect psychological variability-usually in terms of diiTerences between 

people-an inability to compare people ti-om different groups is a serious problem. 

If test users ignore this problem, then any decisions, interpretations, prediction.>, or 

conclusions drawn from such comparisons arc potentially flawed and psychologi� 

cally unhnmdcd. 
Imagine that we obtain evidence suggesting that the scores on our mech;mic;d 

aptitude test suffered from construct bias related to biologica I sex. Such a lind i ll.l� 
should make us consider the possibility that test scores r"dlect different psyclwlogi� 
cal attributes in the two groups. For example, the males' responses to the te�t might 
be determined primarily by a single comtruct-mechanical aptitude-but the 
females' responses might he determined by two constructs-mechanical aptitude· 
and stereotype threat (t·he tendency to behave in ways that contlnn stereotypc:
about one's group) (Spencer, Steele, & Quinn, 1999). Thus, the mechanical aptitude 
test does not measure the same psychological attributes for the two sexes, and it 
would be inappropriate to compare a male's test score with a female's test score and 
conclude that the male has greater mechanical <lptitude. For example, it would be 
inappropriate I(Jr us to usc the test as the basis lin hiring a particular male rather 
th;ln a particular female. 

Construct bias is often evaluated by examining responses to individual items 

on <l test. An item on a test is biased (a) if people belonging to dift(:rent groups 

responded in different ways to the item nnd (b) if it could he shown that these 

differing responses were not related to group dilkrences associated with the psy� 

chological attribute measured by the test. For example, suppose you had a I OO�itc1n 

mechanical aptitude test. If you selected one item ti·om the test and l(nrnd that 

males' responses were similar to females' responses, then the item would not appear 

to be biased (assuming that the males and females had the same level of mechanic;d 

aptitude). On the other hand, if males and temales with the snme lel'cl of"nptitudc 

responded in different ways to the item, then you would suspect some type of bias 

in the item. Again, note that bias exists only if both li1ets arc true-there arc group 

differences in the responses to an item 1111d those dirterences arc not due to group 

diiJ(:rcnces in the primary construct of interest. The fiJCt that two groups have dif� 

ICrent responses to an item is, hy itself; not evidence of bias. 

As we have discussed, most psychological tests are composite tests--they cont;lin 

multiple items or questions. For such composite tests, the overall test score bias is 

<l function of the bi<ls associ<lted with each of the items or questions in the test. If 

we examine all of the items on a test and find none that seem to be biased, then we 

would assume that the total test score is unbiased. However, if one or more items 

do seem to he biased, then we would suspect that the total test score might also be 

i>iascd. 

l{emembcr that test bias concems the relationship between group dilli.:rences in 

true scores and group differences in observed test scores. In the case of construll 

hias, <I test item would be biased if responses to the item ti.>r people who belong 

to one group reflect their true scores on the relevant psychological attribute hut 

responses to the item l(>r people who belong to another group do not (we arc 

assuming sOJne minimum degree of reliability li.>r the test of interest). Of course, 
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we can never know a person's true score with respect to any attribute. Therefore, 

th
_
e procedures thaI we arc going 10 discuss arc estimates of the existence and degree 

of construct bias . 

. 
We will describe several specific procedures that can be used to estin

_
wtc the 

ex1stencc .111cJ l 1. 1 1 · . "J"ll'-'Se f>rocedures locus on the Internal ' c egree o construe Has. �. 
· 

structure of the test, as described in the discussion of validity in Chapter 8. lnllwt 

chapter, we defined intenwl structure as "the way the parts of a test arc related to 

each other." Most simply, internal structure refers to the pattern of correlations 
among items <l!ld/or the correlations between each item and the total test score. 

·n: evaluate the presence of construct bias, we examine the internal structure 
of a lest separately for two groups. If the two groups exhibit the �ame �nternal 
structure to their test responses, then we conclude tlwt the test JS unlikely to 
suffer from construct bias. However, if the two groups exhibit different internal 
structures to their test responses, then we conclude tlwt the test is likely to sul1cr 
from construct bias. 

There are at least f(JUr methods f(>r detecting construct bias. Most of these arc 
quite manageable within popular statistical software packages such as SPSS or SAS. 
However, one of them-diltcrential item functioning-is currently possible only 
with specialized solhvare such as BILOC; or PARSCALE. 

Item Discrimination Index 

. 
One lllethod of detecting construct bias is by computing item discrimination 

Indexes sep;lratcly t(1r two groups. As described in Chapter 7, an item's discrimina

tion index reflects the degree to which the item is rch1ted to the tot<d test score (i.e., 

that people who answer an item correctly tend to do better on the test as a whole 

than people who answer that item incorrectly). By implication, a strong discrimina

tion indicates that an item is highly similar conceptually to most of the other items 

on a lest. In this way, item discrimination indexes reiJect, in part, the structure of 
associations <lmong test items. 

Historically, the item discrimination index was developed in association with 
classical lest theory. The index is <Ill important measure of the extent to which 
responses to lest items Gill be used to diftercntiatc among people on the basis of 
the amount of their knowledge of some topic or on the <I mount of some other type 
of psychological a II ribu te. 

Again, imagine th<lt we give <I mechanical aptitude test to a group of people. 
Now, consider two groups of people-a group that has high scores on the test 
and a group that has low scores. Also consider the prob<lhility that one of the test 
items will be <lnswtTCd correctly by someone from each group (i.e., the propor 
lion of people in each group who will answer the items correctly). Tlwt is, what 
proportion of people in the high-scoring group will <lnswer the item correctly, 
and what proportion of people in the low-scoring group will answer the item 
correctly? Your answer should depend on the degree to which the item is in 
filet related to the construct being assessed by the test. That is, if the item docs 
indeed reflect mechanical <lplitudc, then you'd expect a rclatil'cly high propor-
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tion of "high scorers" to answer it correctly and a relatively low proportion 1 

"low scorers" to answer it correctly. Indeed, the "high scorers" presumably lw1 

a lot of mechanical aptitude, so they should be more likely to answer a spccii1 
question correctly than the "low scorers," who presumably have less aptitude--,1 
long as the question is indeed clearly related to mechanical aptitude. Obvious/\ 
if the item is not clearly related to mechanical aptitude, then we would notexpcc 
to find a difference between the groups. For example, we would note the higl· 
mechanical aptitude test scorers to be more likely to answer a psychomctriL'I 
question correctly than the low mechanical aptitude scorers. 

The proportion of people answering a question correctly can be used to c0111. 

pute an item discrimination index. If people who have high mechanical aptitude 
have a high probability of answering a particular aptitude question correctly while 

people who have low mechanical aptitude have a low probability of answering tht· 
question correctly, then the question would have a high item discrimination inde, 
value (e.g., . 90). This would indicate that the item strongly discriminates (i.e., 
differentiates) among people with varying levels of aptitude. This would, in turn, 
suggest that it is a good reflection of the construct being assessed by the test. Jn 

contrast, if people who have low aptitude answered the question correctly nearly ,11 

often as people who have high aptitude, then the question would have a low itcn1 

discrimination index value (e.g., . I 0). In such a situation, the item does not clearlv 
discriminate among people with varying levels of the construct being measurctl 
Obviously, such an item is not a good reflection of the construct. 

The item discrimination index can be used to estimate construct bias. 
Specifically, we would select an item, compute its discrimination index separately 
for two groups of people, and then compare the groups' indexes. For example, we 
might wish to know whether an item on our mechanical aptitude test is biased in 
terms of gender. Thus, we compute an item discrimination index f(>r males and f(n 

females. That is, we would determine the proportion of high-scoring males who 
answer the item correctly and the proportion of low-scoring males who answer 
the item correctly, and then we would use these proportions to determine the 
discrimination index t(>r males. We would do the same for females, and then we 
would compare the two discrimination indexes. If the two discrimination index 
values are approximately equal, then this would indicate that the item reflects the 
comtruct in the same way f(>r both genders. Thus, we would likely conclude that 
the item is probably not biased. !low ever, if the two discrimination index values 
arc not approximately equal, then this would suggest that the item does not reflect 

the construct equally well f(>r both genders (or that the item rdlects somewhat dif� 

fercnt constructs in males and in females). Such results would lead us to conclude 
that the item is probably biased in some way. That is, we would conclude that the 
item seems to belong on the test tin one group but not for the other group. If this 
were the case but we kept the item on the test, then the test would be somcwlwt 
different f(>r the two groups. Thus, the test scores would not be exactly comp<lrablc 
between the two groups, which creates a problem when our goal is to interpret test 
scores with regard to a particular psychological construct. 'I(> solve this problem, we 
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would revise the item or remove it ti"om the test. This analysis would be conducted 
for e·1cl1 t· ·1 · ' o t 1c Items on the test. 

An important feature of the item discrimination index as a measure of construct 
bias is that it is independent of the number of people in the groups that arc being 
compared who answer an item correctly. For example, we might find that one of 
our mechanical aptitude items was answered correctly by only 40% of the males 
but by 60% of the females. Even so, the item discrimination index f(>r the question 

�ould be the same fi>r both groups. In this case, we would assume that the item is 
functioning as a measure of mechanical aptitude in the same way for both groups 
but that fenwlcs know more about the material than males (i.e., more of them 
answe1·e J tl · · t · 1e Jtem correctly). 

Factor Analysis 

A second method for examining construct bias is by conducting a f;Jctor analy
sis of items separately f(>r two or more groups of people. As we have discussed in 
previous chapters, fiJCtor analysis is an important tool f(>r evaluating the internal 
structure of a test. Factor analysis is a statistical procedure for partitioning the vari
ance or covariance among test items into clusters or "factors" that in some sense 
"1 lang together" (see Chapters 4 and 12 for detailed descriptions of exploratory 
factor analysis and confirmatory 1;1ctor analysis, respectively). 

Recall fi·om Chapter 4 that when items are highly correlated with each other, 
they arc believed to reflect a fi1ctor. For a multidimensional test, responses to 

some items on a test are more highly positively correlated with each other tlwn 
they arc to responses to other items on the test. In contrast, if all of the items on 

a test have similar correlations with each other (i.e., there is no evidence of more 
than one cluster of items), then we say that the test is unidimensional or that all 
of the test score variance, other than error variance, is accounted f(>r by a single 
h1ctor. 

Factor analysis can be used to evaluate the internal structure of a test separately 
l(>r two groups of people. For example, we might find th;Jt among m;des, the 

mechanical aptitude test has a dear unidimensional structure-all of the items 

seem to be highly correlated with each other, suggesting that test scores rcJlect one 
and only one construct. '!(> evaluate the potcnti;d presence of construct bi;ls, we 
would examine the factor structure f(>r females' responses to the test items as well. If 
we found a single fiJCtor among females' responses, then we might conclude that the 
aptitude test has the same internal structure f(>r males and females. Consequently, 
we might conclude that the test does not suffer fi·om construct bias. 1 fowever, if we 
conducted a fiJCtor analysis of females' responses and J(nllld two li1ctors or more, 
then we might conclude that the test has a different internal structure fi>r m;des and 
for females. We might then conclude that the test docs indeed sutler fi·om construct 
bias. That is, we would conclude that the total test scores reflect different psycho
logical constructs for males and for females. 
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ICC Curves for Males and Females Illustrating Possible 
Nonuniform Bias 

Figure 11.2 is an example of uniforlll bias. In this example, it appears that 
females, with the same mechanical knowledge as males, find the item more diftl
cult to answer than the males. For example, imagine that Fiona and Mark have the 
same true level of mechanical aptitude-say they are 1 standard deviation above 
the mean (+I z score in the ti.gure).lf the test is unbiased, then they should have the 
same probability of answering the item correctly (i.e., the item should be equally 
diffi.cult or easy for both of them). However, if our analyses suggested something 
like Figure 11.2, then this would imply that the item is, for some reason, easier for 
Mark than it is for Fiona. Looking at Figure 1 1.2, we sec that for a male whose 

mechanical aptitude is 1 standard deviation above the mean, he has approximately 
an 80%) chance of answering the item correctly (i.e., a probability of about .80). 
However, we also sec that for a female who is 1 standard deviation above the mean, 

she has only about a 25<l·b chance of answering correctly. This should be an obvious 
source of concern-if two people have the same level of ability but are not equally 

likely to answer the item correctly, then there is something wrong with the item. 
There is something producing a bias. 

1-'igure 11.3 illustrates no111111ijimn /Jias, a situation in which the lCCs differ in 
shape as well as location. In this case, at some levels of aptitude, females find the 
item easier than males who have the aptitude; however, at other levels of aptitude, 
females find the item more difficult than males who have the same aptitude. That 
is, the exact consequence of bias differs, depending on one's level of aptitude. 

In both cases, it appears that the item is measuring different traits for males 
and females. The ICC approach is a visual method for detecting construct bias, but 
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there are IRT methods that are even more precise ways of evaluating the presence 

of construct bias (e.g., L. L. Smith & Reise, 1998). 

Although IRT's differential item functioning analysis is a strong method for iden

tifying construct bias, it has a downside. IRT analyses are quite complex in a variety 

of ways-there are issues regarding the appropriate model to use, the procedures for 

determining whether parameter differences between groups arc really different or 

simply due to measurement error, the need for very large sample sizes, the need 1()1" 

item samples and samples of people that are heterogeneous enough to represent the 

complete range of traits the test is designed to measure, and the need for specialized 

statistical software to conduct the analyses. These complexities arc such that IRT is 

still only emerging as a widely appreciated and understood method of detecting con

struct bias. Again, Chapter 14 provides much deeper discussion of the basics of IRT. 

Rank Order 

If test items can be ranked in order of difficulty, then there is another quick and 

computationally easy way to estimate construct bias. Using our I 00-item aptitude 

test as an example, some test questions will probably be easier to answer than oth

ers, and they can be ranked in order of difficulty. The rankings can be done sepa

rately for different groups (e.g., males and females). 

If the items' difficulty ranks differ across groups, then we would suspect that 

test score construct bias exists. We would suspect this because each item docs not 

appear to be a measure of the same thing for both groups. You can use the ranks 

to compute Spearman's rank-order correlation coefficient (rho, interpreted in the 

same way as rxy ) to index rank-order consistency across groups. If rho is low (e.g., 

< .90), we might suspect construct bias. If you found evidence of construct bias, 

you would probably want to follow up on the finding with additional analyses to 

identify the particular source of the low correlation coefficient (sec jensen, !980). 

Notice that the correlation between the ranks can be high even if the proportion 

of correct responses to each item differs across groups. Using our aptitude test as 

an example, males might be less likely than females to give correct answers to the 

test questions, but the rank ordering of questions according to difficulty might be 

the same across groups. Again, as with the item discrimination index, group differ

ences in correct responding are not by themselves an indication of test score bi<lS. 

Summary 

In summary, construct bias occurs when test scores represent different constructs 

for different groups or when they represent the same construct to differing degrees 

in different groups. There are several methods for estimating whether construct 

bias exists and for identifying specific items that might be most problematic. Using 

this information, test developers can revise the test to reduce the bias. For example, 

they might drop, revise, or replace the items that seem most biased. We turn next 

to a different type of bias that can plague psychological testing-predictive bias. 
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Detecting Predictive Bias: External Evaluation of a Test 
----- ----

As mentioned earlier, predictive bias concerns the degree to which a test's scores are 

equally predictive of an outcome for two groups. Ideally, if a test is going to be used 

to make decisions or predictions about people, then it docs so equally well for all 
groups of people. If this is not the case-that is, if a test seems to be more predictive 

for some groups than for others-then the test sutlers from predictive bias. 

1:or example, scores on the SAT are thought to measure academic achievement. 

On the assumption that academic achievement measured during secondary school 

years might be related to academic achievement during the freshman year in college 

(e.g., as measured by freshman CPA), institutions of higher education often usc 

S/\1' scores to make admission decisions. The idea is that it is possible to predict, 
at least with some degree of accuracy, student freshman-year ae<1dcmic perfor

mance based on SAT scores. If the SAT predicts freshman CPA equally well for 

various groups of students, then we would have no concerns about predictive bias. 

llowcver, if the SAT predicts (;PA better from some groups of students than for 

others, then we might suspect that the S/\f suffers from predictive test score bias. 

Predictive bias is examined by obtaining scores on two variables or measures. 

Analyses arc then conducted to examine the degree to which scores on the main test 

of interest (the predictor test) can be used to predict people's scores on another psy

chological measure (the outcome measure) that is thought to be related to scores 

on the main test of interest. 

Detection of predictive bias begins with the assumption that "one size fits all"

that the test is equally predictive for all groups. As we will illustrate, analyses arc 

mnductcd to evaluate this assumption formally. If those analyses confirm that the 

test is equally predictive for both groups, then we conclude that the test probably 

docs not suffer from predictive bias (at least with regard to the specific outcome in 

question and the specific groups in question). llowevcr, if those analyses indicate 

that one size docs not fit all-that predictor test scores are not equally predictive 

for both groups-then we conclude that the test might suffer from predictive bias. 

l1naginc that you arc a training program selection officer working for a corpor<l-
t ion that spends large sums of money training employees to develop the mechanical 

skill-; needed by the corporation to run its operations. Your job is to select the most 

promising candidates for this training program. Because of the cost of the program, 

it is L'sscntial that you select only those people who arc most likely to perform well 

in the training program. Indeed, your job depends on how well you make these 

-;election-,. In an attempt to improve your selection success rate, you develop a 

mechanical aptitude test that you administer to all trainee candidates. h1rthcrmorc, 

you as-;ume that scores on the test arc going to be related to some outcome measure 

of pmtlraining performance. ror example, following training, each trainee might 

be ratcd by a supervisor in terms of the trainee's level of mechanical competency. 

hnally, you -;uspcct that there is a positive linear relationship between the prctrain

ing apt it udc test scores and the post\ raining supervisor ratings of competence. That 

i-,, candidates with high aptitude scores (i.e., predictor scores) should have better 

ratings (i.e., outcome scores) than candidates with lower aptitude scores. 
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In your development and evaluation of the aptitude test, you might be con

cerned about predictive test bias. Formally speaking, predictive bias has to do with 

the use of test scores to predict a relevant outcome (e.g., behavior, competency, or 

pcrt<.mnancc) in situations other than the testing situation in which the predictor 

test was administered. Thus, if you had reason to believe that the aptitude test was 

strongly predictive of supervisor ratings for males but not f(H females, then you 

would suspect that the test was biased. 
'l(l evaluate the efficacy of your new aptitude test and to evaluate any potential 

predictive bias, you will need at least three pieces of information from participants 

in the training program. hrst, you need to get test scores by testing all trainees 

bel(m: they enter the program. Second, you obtain their scores on the outcome 

measure (i.e., supervisor ratings) at the end of the training program. Third, you 

need to know each participant's gender. 
Using this inftli'Illation, you will then need to examine two issues: ( l) Docs your 

test actually help you predict the outcome of training? ( 2) Docs your test predict 

the outcome of training equally well for various groups of trainees? The two issues 

arc often addressed by using correlations or a statistical procedure called regression, 

with which you usc the prctraining mechanical aptitude test scores to calculate 
predicted posttraining supervisor rating scores. 

Basics of Regression Analysis 

Regression analysis is based on the assumption that there is a linear relationship 

between test scores and outcome scores. If there is such a relationship, then the for

mula for a straight line can be used to predict outcome scores from aptitude scores: 

where Y is the predicted training outcome score for an individual training candi

date, a is the intercept (i.e., the predicted value of a person's outcome score if that 

person had an aptitude test score of 0), /J is the regression coefficient or slope (i.e., 

a number that tells you how much of a difference you would expect to sec in )�for 

a !-point difference in aptitude test scores), and X is an individual's aptitude test 

score. Many popular statistical software packages can be used to conduct the regres

sion analysis le.g., SPSS, SAS), which produces values of r1 and /1. 

Once you have obtained the values for the intercept and slope of the regression 

equation, you can evaluate the predictive ability of the test. For example, you can 

take any individual's score on the aptitude test (X), plug it into the regression equa

tion, and calculate a predicted score on the supervisor ratings ().')for that individual. 

'l(l illustrate this process, we will usc the data in 'l�1blc ll.l. In this table, we have 

aptitude scores for four trainees, along with each trainee's outcome score (note 

that an analysis of this kind would involve many more than four trainees). !lased 

on a regression analysis conducted using SPSS, we obtain estimates of the intercept 

and slope. As shown in the "ll" column of Figure 11.4 (under the "Unstandardized 

C :oefficicnts" heading), the intercept ( o, labeled"( :onstant" in Figure 11 A) is 56.03, 
and the slope (/1, labeled "AptTcst" in Figure 11.4) is .5R. These results tell us that a 
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trainee with an aptitude score of 0 is predicted to obtain an outcome rating of 56.03 
and that a !-point difference in aptitude scores is associated with a .58 difference 

in outcome scores. 

As mentioned earlier, these values can be used to obtain predicted scores for all 

trainees by plugging their aptitude scores into the following regression equation: 

Y = 56.03 + .58( X) 

Predicted supervisor rating= 56.03 + .58(Aptitude score). 

Por example, a trainee with an aptitude score of 69 is predicted to earn a supervi

sor rating of 96.Cl5: 

Y= 56.03 + .58(69), 

Y= 96.05. 

Similarly, a trainee with an aptitude score of 70 is predicted to earn a supervisor 

rating of 96.63: 

Y= 56.03 + .58170), 

Y= 96.63. 

Note that the difference between these two predictions is .58 196.63-96.05 = .58), 

which reflects the slope in the regression equation. That is, a !-point difference in 

aptitude test score 170- 69 = I) is associated with a .58 difference in outcome scores. 

Table 11.1 Data illustrating Regression Analysis 

Aptitude Supervisor Predicted 
Trainee Test Score Rating Supervisor Rating 

32 75 74.59 

2 40 80 79.23 

3 57 81 89.09 

4 60 98 90.83 

Coefficientsa 
-----

Unstandardized Standardized 

Coefficients Coefficients 

Model B Std. Error Beta t Sig. 

1 (constant) 56.034 16.018 3.498 .073 
AptTest .581 .329 .781 1.766 .219 

a. Dependent Variable: Suprating 

Figure 11.4 Results of Regression Analysis of the Data in Table 1 1 . 1 
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If we calculate predicted rating scores for a wide range of aptitude test scores, 

then we can generate a regression line or a "line of best lit." Each point on a regres

sion line is associated with the most likely (predicted) Yvalue for each possible X 

value. The line is used to illustrate the association between predictor test scores 

and outcome scores. In Table II. I, we have computed predicted scores ( Y) for 

each trainee. In Figure 11.5, we have plotted each of our four candidates' observed 

outcome score against his or her observed predictor test score, and we have drawn 

a regression line that reflects each candidate's predicted outcome score. 

One Size Fits All: The Common Regression Equation 

The estimation of predictive bias usually begins by establishing what would 

happen if no bias exists. If a test is not biased, then one regression equation should 

be equally applicable to different groups of people. The assumption that ditferent 

groups share a common regression equation is based on the idea that "one size fits 

all"-regardless of biological sex, ethnicity, culture, or whichever group difference 

is being considered, a single regression equation adequately reflects the predictive 

ability of the test in question. 

Imagine that you give your aptitude test to a large number of trainee candidates 

(e.g., I 00). Let's say that there are an equal number of male and female candidates 
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Figure 11.5 Scatterplot and Regression Line for Trainee's Aptitude Scores 
and Supervisor Ratings 
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and you want to make sure that your aptitude test is not biased with respect to 
biological sex. 

To begin your examination of this issue, you could compute the regression 

equation based on the data from the entire sample, regardless of sex. Imagine that 

you found that the intercept from this regression equation is c1 = 56.03 and that the 

-;lope is /J -= .58. These values represent the common regression equation, and they 

will he called the common intercept and the common slope. Again, if your aptitude 

lest is unbiased in terms of gender, then the common regression equation (calcu

lated from males and females together) should be equally applicable to males and 

females, when each gender is examined separately. 

·nl evaluate the presence of predictive bias, additional regression analyses must 

he conducted. To determine whether the common regression equation is indeed 

equally applicable to males and females, we must calculate one regression equation 

for males and one f(Jr females. We must then compare these group-level regression 

equations with the common regression equation. If the group-level values do not 

match the common regression equation, then you might suspect that your aptitude 
test scores arc biased. 

In practice, a variety of sophisticated statistical analyses can be conducted on 

these values to precisely estimate the presence of predictive test bias, but our discus

sion will focus on the more conceptual level. '[(J elucidate the meaning of various 

patterns of results, we first t(JCus on the meaning of biased intercepts, then on the 

meaning of biased slopes. However, in practice, it may be more likely that groups 

would diller on both of these clements of prediction rather than being exactly equal 

on one hut differing on the other. Thus, we will also illustrate the effect of bias in 
terms of intercepts and slopes. 

Intercept Bias 

C..uppose that group-level regression analyses reveal that males and females have 

slope-, that arc similar to the common regression equation but that their intercept 

value-; dilfer from the common intercept. In this case, you would suspect th,lt your 

te-;t suffers from intercept bias. 

For exampk, imagine that in your evaluation of scores from our mechanical 

aptitude test, you conduct regression analyses separately for the 50 males and the 

:'iO lcmalcs. You lind that, for both groups, the slope is /1 = .511 ,  which is equal to 

the common slope. llowever, you find that the intercept for males is 11 = 511.03, and 

the intncepl for femaks is 11 � 54.03. Note that these group-level intercept values 

differ from the conmwn intercept, indicating th,ll "one size docs 1101 lit all," at least 

in tcnm of the intercept. Thus, the lest appears to suffer from intercept bias. 

What exactly is intercept bias, and what arc its implications? The fact that the 

males' intercept is higher than the females' intercept indicates that males at any 

given level of aptitude will tend to receive higher supervisor ratings (outcome 

-,cores) than lcmalcs at the same level of aptitude. To illustrate this, let us compute 

the predicted outcome score for a male with an aptitude score of70 and f(Jr a female 

with an aptitude score of 70: 
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Predicted outcome score for male== 5tUl3 + .5�(70), 

Predicted outcome score for male== 9�.63; 

Predicted outcome score for female== 54.03 + .5�(70), 

Predicted outcome score for female== 94.63. 

These computations show that for a male and a f'cmale who have the same level of 

aptitude, the male is predicted to obtain a supervisor rating that is 4 points higher 
than the female's. 

lf we assume that the outcome variable (i.e., supervisor ratings) is itself unbi

ased, then this intercept bias indicates that the aptitude test docs not "work" the 

same for males and for females. As we saw earlier, the common regression equation 

resulted in a predicted supervisor rating of 96.63 for a trainee who had an aptitude 

score of 70. Comparing this result with the results of our group-level predictions, 

the common regression equation appears to underestimate the prediction for 

males and to overestimate the prediction for females. That is, the common regres

sion equation would lead us to predict that a male would score 2 points lower on 

the supervisor ratings (as compared with the "male" regression line) and a female 

would score 2 points higher (as compared with the "female" regression line). Thus, 

one si1.c docs not lit all, and the test appears to be predictively biased. 

If a test suf!'ers only from intercept bias, then the size of the group discrepancy 

is constant across all aptitude scores. For example, our regression analyses show 

a 4-point discrepancy h1r a male and a female who both had an aptitude score of 

70, and if the aptitude test suffers only from intercept bias, then the sex difference 

will be 4 points 111 every level o(nptitude. This is illustrated in l:igurc 11.6, which 

presents a common regression line (dashed) and two group-level regression lines. 

As this Jigure illustrates, the lines arc parallel, suggesting that a lll<lle trainee of a 

given aptitude level will obtain a predicted rating that is always 4 points higher than 

a kmalc who has the same level of aptitude. 
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Slope Bias 

A second way in which a test can be predictively biased is through slope bias. 

It is possible that group-level regression analyses reveal that males and females 

have intercept values that are similar to the common regression equation but 
that their slope values differ from the common slope. This would indicate that 
the connection between predictor scores and outcome scores differs between the 

two groups. 
For example, imagine that your analyses reveal that, for both groups, the inter

cept is a = 56.03, which is equal to the common intercept. However, you find that 
the slope for males is b = .53, while the slope for females is b = .63. Note that these 

group-level slope values differ from the common slope (i.e., .58), indicating that 
one size does not fit all, in terms of the connection between predictor test scores 

and outcome scores. 

Slope bias has important implications for the degree of discrepancy between the 

groups' predicted outcome scores. The fact that the two groups have different slopes 
indicates that the amount of bias is not constant across aptitude levels. Cio illustrate 

this, let us compute the predicted outcome score for a male with an aptitude score 
of 70 and for a female with an aptitude score of 70: 

Predicted male outcome score= 56.03 + .53(70), 

Predicted male outcome score= 93.13; 

Predicted female outcome score= 56.03 + .63(70), 

Predicted female outcome score = I 00.13. 

As summarized in Ti1ble 11.2, this shows that for a male and a female with an 
aptitude of 70, the female will be predicted to have an outcome score that is 7.0 

points higher than the male. Now, let us compute the predicted outcome score for 
a male and a female who have aptitude scores of 60: 

Predicted male outcome score= 56.03 + .53(60), 

Predicted male outcome score= 87.83; 

Predicted female outcome score= 56.03 + .63(60), 

Predicted female outcome score= 93.83. 

In this case, the female will be predicted to have an outcome score that is only 6.0 

points higher than the male's. 
Thus, the bias (i.e., the degree to which the predicted outcome score difters 

for males and females who have the same level of aptitude) is relatively small for 
relatively low levels of aptitude, but it is larger for higher levels of aptitude. That is, 

the discrepancy between male and female predicted scores will tend to increase as 
scores on the aptitude test increase. This type of "pure" slope bias is illustrated in 

hgure 11.7, which shows that the regression lines for males and fc>r females gradu
ally move apart. 
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Table 11.2 Predicted Outcome Scores, Based on Aptitude Scores 

Aptitude 
Test Score 

70 

60 

Predicted Outcome Score 

Male 

93.13 

87.83 

en 

� 
0 
u 
(/) 

U) 
Cl.> 

1-

CI.> 

E 
0 
u 

"5 
0 

Female 

100.13 

93.83 

Females 

Males 

Difference in Predicted 
Outcome Scores 

Female predicted to score 
7 points higher 

Female predicted to score 
6 points higher 

Common 

Aptitude Test Scores 

Figure 11.7 Regression Lines for Males and Females in Relation to the 
Common Regression Line Illustrating Possible Slope Bias 

Intercept and Slope Bias 

So hu·, we have illustrated "pure" intercept bias and "pure" slope bias-cases in 

which either the intercept is biased or the slope is biased, but not both. To sum

marize, pure intercept bias indicates that there is a discrepancy between groups' 

predicted scores and that the size of this discrepancy docs not change as aptitude 

scores increase or decease in size. In contrast, pure slope bias indicates that the size 

of this discrepancy docs change as aptitude scores increase or decease in size. 

It is also possible (perhaps even more so than either form of "pure" bias) for 

intercept and slope biases to exist simultaneously. In this case, there will be a 

complex relationship between the size of aptitude scores and the outcome scores 

for the different groups. For example, we might find that for people who have low 

levels of aptitude, the predicted outcome scores for males might be higher than the 

predicted outcome scores for females. But our analyses might also reveal that for 

people who have high levels of aptitude, the predicted outcome scores for males 

might be lower than the predicted outcome scores for females. Although there arc 

many patterns of discrepancy that might occur, one possible outcome of this type 

is illustrated in Figure 11.11. 
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Outcome Score Bias 

Our discussion of predictive bias has l(>euscd on the possibility that the scores 

on the predictor test arc biased. However, it is also possible that the scores on the 

outcome variable could be biased. For cxalllple, it is possible that the supervisor 

who provides the posttraining ratings of competence is biased in favor of one 

group; the test we usc to measure outcomes, such as our I 00-itcm mechanic.d 

competency test, could also he biased. We have been assuming that the outcome 

measure is not biased, but of course, it could be. 

The Effect of Reliability 

We should acknowledge that both the regression coeftlcient and the intercept 

Me sensitive to test score reliability. In our discussion of predictive bias, we have 

been assuming high predictor test and outcome test score rcliabilitics (e.g., I( 

grc;Jter than .S>OJ. ;\drop in test score reliability can have a profilL!nd ctfcct 011 these 

p<lralllctcrs <Jnd thereby, at least potentially, affect predictive bias. These cllccts arc 

complex and beyond the scope of our discussion, but fi>r interested readers, we 

rccollllllend )cJJscn (I S>HO, chap. 9 ). 

Other Statistical Procedures 

We also want to point out that there arc <Jdditional statistical procedures, which 

we haw not Jllcntioned here, that arc used to detect test score bias. For ex;lmple, 

'>tructural cqu;1tion Jllodcling is <l statistical procedure that ,  under the right cir

cun1stanccs, Clll yield d;lla related both to comtruct bias and to predictive bias. vVe 
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lllent· j' . ! . . Tl . 
'lt· 

toned the usc of regression as a statistical too/to uncover pret Jcttve >tas. Jet c 
' e · c · I I 
P

< colll p/cx regression procedures, such as hierarchical regressiOn, that extent I JC 

th:
W�r of regression <Jll<ilyses, <JIJowing researchers to test s�>ecif]c hypothc�cs about 

su. sources of predictive bias. Structural equation modeling and regressiOn tools 

1/ ��� as hierarchical regression arc very complex statistical procedures and beyond 
lc SCOI) (' ' e o this book. 

Test Fairness 
.....__ __ __ 

--------------------

F· rnaiJy w" · 1 · · 1 1, 'I. ·1l 1 • ·11.11" test 
r. ' L Want to mention briefly a controversra ISSUe Ill psyc 10 C8 (/ (.\ ,,, . 

<�rnJess v 1 · · I 1·t· I 
lives 

' .· · V len psychological test scores arc used to make dcctsrons I l<It a cc
_
t I 1c 

Vid' 
ot Peo ple, it is possible that people who belong to a particular group (e.g. , rndr-

U<Jis 'lfl'l· 1 · · · ) · 1 t 1· I ti 1 ti · ·<>r·"s 
are b,· 

' 1 talec with speciflc ethnic or raci;d mrnontrcs nng 1 ce · ��� Jc sc L. 

su e
tng used unl�1iriy to dis<ldvantagc those members in that group. l·or example, 

. PP
ose an employer uses a •>sychoi<wical test to screen potential employees. i\iso 

suppose . ' 0 
. ·, . ,. . . .. . , . th<Jt, on <lverafe, m;J/es do better on the test than lundks and, as a roult, 

IJlalcs. . ' · · 1 
fecJ tl 

dJ e Ill ore likely than females to be hired. Females, /(Jr various reasons, mtg Jt 
l,ll t h" Ll . , I. I . . . 

It . . . 
L sc o I JC test 1s not larr. 

t 
IS llllport;lnl to distingLIJ.siJ test flirness li'om test score bias. i\s we have seen, 

est 1 · . · c • • ' • • 

is' 
>_ras Is a psychometric concept embedded in theories of test score validity. It 

. dclrne l . I. . . . . I . , ·'f' ... li. . < WI! Jrn psychomctnc thconcs, and 11 1s detectable throug 1 spc u 1c sta-
strcaJ 'll 1 . 

. · 1 1 . ·. · . re ,. . ' l< r esearch methods that allow researchers to make rnlormcc < cuswns 
g<Jrdtng lest bias. 

t 'Jest I�Jirncss, on the other Jnnd docs 1101 refer to a nsychomctric nropcrty of a 
CS(. T>. : . < ' ' • t t

. . . 
1 . 

est f,lJrness has to do with the appropriate usc ol test scores, and 11 ts <I sou;d, 
p 1 1/osol)j . .. I ' . I (C) . . � 11l.l ' or perhaps legal term that represents someone s value JU< gmcnt 

is
'

. 
lJscllt et a/., I <J81; Jensen, 1 <J80; Thorndike, 2005). The old adage that L1irncss 

Ill the cy 1· I I .. l I . I I 
1 c o I 1e beholder <lpplics here. We could ask pcop c If I 1cy I Jill< I 1<1! 

IJe u., f sc 0 a pa rt icular test is l�1ir or not, but their <lllswcrs might have ahsolutl'iy 
nothin<> I I . l 

. . . . . I 
1. 

o 0 ( o WJ!J the psychomctnc propcrt1es olthc test. J·or cxampk, we nug 11 
ldVe conv· .· · · · I · I , rnc1ng cv rdcncc that the scores on <I parlicular test arc not bi<ISCt rn I J< 

ways t1 . . 
1 · 1'11 We have described in this ch;iplcr, but some people might still bclrcvc th<ll I le test scorns I . I . (' . I' I I I I { . I I 

h, .. 
· . . 

L, are not wrng usee Ill a arr manner. ·ur!Jcnnorc, Ill')' collt Jl' n� 1 
cc.1usc hrr·r1 j 1 · 1·.. · · · 1'1·1· l . · ' css ant )!<IS arc two ( rlterent conccnts exrstlllg rn two ( 1 crcnt rca Ills 

of I ' , <nowledgc, the realm of science and tl1c soci;i/-politic;d realm. 
J\/th<>Lig/J 't . j · " · · · · J rs not a psyc wmclnc concept, test l;nrncss rs an rmportant rssue 111 

psychologic;Il testing . Psychological testing h<IS to do with procedures l(n sclcct-
11lg, administering, and interpreting test scores in an applied setting. l'rL'SUm<ihly, 
Individuals who give <llld usc psychologic<il tests <1re {;nniliar with the psychometric 
properties of those tests. Wh<ll those individu;Ils who arc giving the lest do with the 
test scores might influence someonc's judgment concerning the l�1irncss of the test. 
hrrthemwrc, a test with stcllar psychometric properties might he used to make 

;udgments that arc not l�1ir. The psychometric properties of tests, including inlilr

mation about potential test score biases, should always be o11c /�JC!or that inl(mns 
the usc of tests in applied settings, but people's beliefs <�bout the l�rirncss of the usc 
of lest scores might or m ight not be influenced hy those psychometric properties. 
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Example: Is the SAT Biased in Terms of Race or 
Socioeconomic Status? 

--------

· ' 1 1· · 1 · t · 11itntion c In this section, we provtuc a rca - tic cxamp c ot a psyc 1omctnc cxa1 ' 
. . I I ' l I . I I' l s ,.,. . . ' ·I)' used as bias 111 a Wit C y USCll psyc 10 Of!,IGl test. >CG\USC t lC , n IS SO Will� ' 

· · k' I l · · · 1· , . · I · · · tl ·r tlnn con dcnswn-ma ·111g too , t 11s cxam111a11on ocuscs on prcuiCIIVC 11as r,1 K ' 

I . I I 1· . I . · · I I · · · · It t res t\10 u g struct 11as. n a llttwn, t 1c cxammatton ts 1asct on rcgrcsston pHKll · '  
not exactly as we have described them in this chapter. , ·I We present this example for several reasons. First, we want to show concr�t� 

how this work might be conducted and presented in a real-life examination ot W 
bias. The "idealized" hypothetical examples and procedures that we've provide 

I I f I . . I . I 1· . II I 1'1. 1\ ·s foil 0' ay t 1c oum at ton tor I 11s rca - tic example, hut not a rca - 1 c exam 1 t:. 
the exact procedures that we have dcscrilx·d. Thus, it might be useful for rcadc'. 
to be able to think more flexibly about the ways you might encounter analyses t 

test bias. Second, we want to illustrate how difficult and confusing this work ca 

I 'l'l · · 1 1· · t · · 1 · 1 · t t ·d debate 
lC. lC CXammatmn I 1at WC LISCUSS 111 t liS SCC(IOn has 1CCn Cltel Ill 1Ca � 

about the validity and bias of the SAT. Unfortunately, as you shall sec, there doc 
. I I I f. · I 1 · I W hone th� 111tect seem to 1c con uston a 1out what these results tnt v nnp y. c t 

our discussion stimulates your ability to think carefully <H�d appropriately aboti 

the complexities of test bias. . 
In 200 I, the University of California ( UC) published an in-depth analysis ol th 

S ''I'' 1· · 1· 1· ) '1'1 is repO'. " s pretiCttve va ILIIY and potential bias (C;eiscr & Studley, 2001 . 1: 'u< 
was based on nearly 1:10,000 students who had entered the eight campuses of tht: 
system over a 4-ycar period in the mid- to late 1 ':)90s. The report covers manY psY 
chomctric and practical issues, including the SAT's potential predictive bias. Mo� 
Sr) , .·, fi "til . ,  . t . II . . . I l . . I . ,· •)•·co no tnt t t:l c, y, 1 cxammcs po cntta 11as 111 terms of race ct 1111Ctty am soL ' �  
status. We will take these two issues in turn. 

Race/Ethnicity 
.. 1 In the ll<: report, racc/cthnicily was examined in terms of five groups: A!rt�' 

Americans, Native Americans (referred to as American Indians in the report), As�<1, 
Americans, Chicanos/Latinos, and Whites. The report presented average SAT scort: 
· . ... . \• tW for each group, rcvcalmg dtl!crences that arc potentially significant. For exai11P t:,_ h of the group� had average SAT scores that wcrc greater than I ,200, and two ot 1 , 
groups had averages less I han I, I 00. Considering 1 he implications that SAT sco�t: 
G\11 haw fill· students' admission to college, differences of this size certainly rat� 
legitimate concerns about the nature and ust• of the SAT. I lowever, recall fron� 

ot
l
t ·· f ·· 1· . .  · ·· · · · in 11se C.\t Ill t tsutsston that the extstence ol group differences in test scores ts not. 

evidl'llce of test bias. Thus, an in-depth psychometric examination is warranted. 
( :onducting analyses closely related to the procedures outlined above, the ;llt�ht�: 

· I · I r·dtd1 use
_
t 

_
rcgresston to examine potential predictive bias. They computed I 1e P l • e v·1h Itt f' tl · S ''!" .. . . 

· · 
'I'A IloWt:Y ' L Y 0 lt: · n 111 terms ol tis abthl v to prcdtcl college freshman ( • · rather than presenting regression slo1�e�, as we illustrated above, the researc

l
h�: 

l)r ' · • t I " · · 1 · ns t ll· cscn eL vanance-explamed" values. Like regression slopes or corre altO · ' 
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. can he us . I t tl I 
. . . . . 

CPA) is )ret .
.

. · lt. o re ect _1 ll: degree to wh1ch v:mabil1ty 111 
_
o�1e variable (e.g., 

expre·· . 11 . litt<�bk from vanabillty 111 another vanable (e.g., SAl' scores). \Vhen 
SS�( Ill I) • · ,  · 

rt'f]e ·r 
r lrcullages, these values can range trom 0 to 100, with higher values 

c 111g grt'·H · · . .  1 · · , . · . 
Prt'tl'. ·I 

.. ' �1 P1 ll 1CIIVC power. I hus, you can roughly th1nk of these as "I)CI"lt'nt 
llt<i )fjil .. _. . . . . ' 

t 

lhea . 1 
Y ,f 0 means thai the SAl IS totally unrelated to college (ri'A, and a 100 

ns t lat tl • SA . . . . . . . 
9's disc .. · 

l<: � I Glll be used to prediCt ( .PA perfect lr. As dcscnbed 111 Chapter 
lissloll of v 1· 1 · f" · · · t' I I 

whe 
a It rty coe flllellts, rt 1s not uncommon to lilt va ues below 20<)'(1 

n <�Item )1 · . . 
U . · J 111g to pred1ct complex psychological outconK·s such a college c;pA, 

. Sing thi . . ·I . 
. . 

lor eac1 .. 
s <ill,! yt1c strategy, the researcher.� presented vanance-expla1ned values 

1 r<lu•/eth . ·· '1'1 · · I I I . . I I I 
anal . · . . llil1ty. 1at 1s, for eac 1 race l'l lnluty, t ll'Y cont uctel a regression 

Ysrs Wltl ("I' 1 ' A as the outcome and SAT scores as the predictor: 

(;J>A =II+ /J(SAT). 

Ead1 s I u. . . . . . . . . 
11.3 . c 1 .rnalys1s produced a vanance-explamed value, <IS summanzcd Ill I able 

. As showrl . I 1 · · I I I I 1· I . 
ll.S<Yc Ill I 1e dtnwst numcrx co umn, t 1csc va ucs rangel rom a ow of 

SAl 0 
to a high of 12.6% (note that 'lirblc 11.3 also includes corrl'l<ltions between 

scores · I ' ·  · I · I · I I · 
squar. · <lilt (, I'A tor each group. whiCh can be o Hamet srmp y ))' tak1ng the 

<:root f"tl · · · I' · 
ti0115 . . 

0 1e V<lr J<lllcc cxplamcd values from one-pret rllor regression equa-
.). I hes · I · ·· · I 1 · . I SA'I" 

to bl' 
· l va ues �uggest some d1tlcrent1a p1Wlci1Vt' power-! 1e . seems 

lllore I) · 1 · · · 1 · · · ( \ · \ · ) I 1· 
Otl r l l't rctrve tor some races/ct 11llcltrcs e.g., 1 SJ<lll 1 mt•rre;ms t 1an or 

lers (e , . . 
(e.g. At. _'g., A nll'ncan Indians), with some groups commg between those extremes 

' rll""lll \ · · 1) ' ' mencans and Wlutcs). 
Othe v·l · · · I' · 1· ?"J'I 

is llot . 
. " ues rn "li1ble I I.J suggest the cxrstcnce ol prn rriiVl' )Jas. 1e answer 

<.:ntrrdy clear. 

l'able 11.3 Summary of SAT Scores and High Sch
,
ool GPA as Predictors 

of College GPA in Geiser and Studley s {200 I) Report of 

the University of California 

Roce; Variance 
Eth11 • • Explained 

SAT 

Predictor 
HSGPA 

Variance 
Explained 

Correlation 
� {%) Correlation 
Alric<ln -�"2 ____ _:=.::-=------------:-:-

--

A I{){) .32 

(%) 
<J.5 .31 

�err'· · 
lilll 

Arnerr·. I l<ln fldian 
Asi,1 11 
Arnerr·. lill] 
Chic a no; Latino 

H.5 

12.6 

I O.<J 

.2<J 

.35 

.33 

vv�ite � 10.1 .32 
0l'E: Hs GPA, High School grade point average. 

H.H .30 

15.<J .40 

12.0 .35 

1 5.6 .. N 
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On one hand, there arc indeed differences in the values, which might suggest 

the presence of bias. That is, the fact that the SAT is somewhat more predictively 

powerful for some groups than for others might be taken as evidence of predictive 

bias (i.e., akin to slope bias). 

On the other hand, it's not clear that these differences arc large enough to 

warrant substantial concern. For example, using the Binomial 1\llcct Size Display 

(BESU; see Chapter 9), we can translate these values into the "percentage of predic

tions that would be correct." This reveals that 64.5')-h of the predictions (based on 

the SAT) would be correct for the American Indian group, whereas the predictions 

for Asian Americans would be only slightly better, at 67.S<Y,,. 

'Ill gauge the magnitude of the differences in Table 1 1.3, we can also compare the 

differences in the SAT's predictive power with differences in the predictive power 

of high school CPA (J-ISCPA). The UC report included results from regression 

analyses in which college GPA scores were predicted by J-ISGPA, and these results 

are presented in Table 11.3. Interestingly, with a low of R.So;(, and a high of 15.9<){,, 

these predictive values actually range wider than the values for the SAT. That is, 

there are bigger racial/ethnic disparities in the predictive power of HSl;PA than in 

the SAl'. Thus, the UC report seems to suggest that the HSGPA suffers from more 

predictive bias than does the SAT. Also interestingly, this fact seems to have been 

ignored or deemed unimportant by those who criticize the SAT and promote the 

use of l-ISGPA in the admission process. If the predictive differences of I ISGPA are 

not large enough to warrant concern, then the (smaller) predictive differences of 

the SAl" should not. In sum, these results do not provide clear evidence of predictive 

bias for the SAT in terms of race/ethnicity. 

Socioeconomic Status 

The UC report also examines potential biases related to socioeconomic status 

(SI·:S). hll· this, the authors examined two pieces of information-family income 

and parent's education<ll status. I Iighcr levels of family income and parental educa

tion were interpreted as indicators of high SES. Based on the same basic data set of 

nearly 80,000 students, a different report (Ceiser & Santilices, 2007) showed that 

SAl" scores arc indeed associated with these markers of SES. Specifically, analyses 

revealed correlations of .�l2 and .39 between SAl' Verbal scores and family income 

and parents' education, respectively (with correlations of .24 and .32 for SAl' 

Math). Again, these values are cause for legitimate concern, as they indicate that 

students who come from highcr-SES background tend to have higher SAT scores 

than do st udcnts coming from lower-Sl�S backgrounds. 

,\gain using a regression-based procedure, the researchers examined the pos

sibility that the predictive power of the SAT was compromised by SES. That is, they 

examined the possibility that the SAI''s predictive power was solely due to its link 

to SES. Although this is not exactly an examination of predictive bias, as outlined 

<�hove, it does touch on an important issue related to the SAT's usc in the admission 

process. It has been argued that, if the SAI"'s predictive power derives solely from 

ih connection to SES, then its use in admissions creates an unfair disadvantage for 

students coming from a low-SES background. 
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Thus, the researchers examined the predictive power of the SAT while control
ling 1\H· SES. 'liJ determine whether the SAT has any predictive power above and 

beyond its connection to SES, the researchers used "multiple regression" proce

dures. Specifically, they conducted a regression analysis in which college (;l'A was 
the outcome and in which there were several predictors, including SAT scores, 

f<llllily income, and parental education. When multiple predictors arc entered into 

a regression analysis, the results tell us about each predictor's "unique" predictive 
power. That is, we can determine whether a predictor provides any useful informa
tion above and beyond the information that's provided by the other predictors in 
the analysis. 

Initial analyses revealed that, across all students, the SAT's correlation with col
lege CPA was .36. lf the SAT carries any useful predictive information beyond the 
other predictors in the regression analysis, then its predictive power will not drop 
much from this value. That is, statistically controlling for the other predictors 
,[wuld not have much effect on the SAT's predictive power. However, if the SAT's 
predictive information is heavily connected to the other predictors in the analysis, 
then its predictive power will drop substantially. 

\-\'hat were the results? Was there evidence that the predictive power of the SAT 
is compromised by SES? The answer to this question is clear, though it has been 
misinterpreted greatly. 

When examining the following regression equation (Equation l ), there was 
essentially no evidence of a compromised predictive power: 

College (;PA = 11 + /1(S/\T) + [J(Family income)+ /J(Parental education). ( 1) 

That is, when "controlling for" only the two SES variables, the predictive power 
of the SAT changed only slightly from its simple correlation of .36. As shown in the 
"Equation 1" column of Table 11.4, the SAT's predictive power remained high, at 
.345, after controlling for any overlap with SES (note that this value is a standard
ized regression coefficient, which is very closely related to correlations, typically 
ranging from -I to + 1, like correlations). Again, the fact that the SAT's predictive 
power remained very close to its original correlational value clearly suggests that 
its predictive power is not meaningfully compromised by a link to SF.S in these 
data. 

Unfortunately, the official UC report did not present the results of this crucial 
analysis. That is, the report did not include any analysis in which the predictive 
power of the SAT was examined while controlling only l{lr the two SES variables. 
Indeed, the results for Equation 1 arc available only from raw statistical output 
available through the UC system's website (UC Office of the President, n.d.), not in 
the ortlcial report that has been circulated and read widely. 

The orticial report, unfortunately, provided a different analvsis-one that offers 
no clear insight into the possibility that SES compromises ;he SAT's predictive 
power. Specifically, it presents the result of a regression equation that included SAT 
<1nd the two SES variables as predictors of college CPA, along with llS(;pA and 
Si\'l'-11 as two additional predictors (note that the SAI'-11 is an achievement test 
designed to assess knowledge of specific topic areas, but scores on it arc extremely 
lnghly correlated with scores on the original SAl'). Thus, it was of the form 
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Table 11.4 Regression Results (Standardized Regression Coefficients) 
for Three Analyses Linking SAT Scores to College GPA 

Predictors Equation Equation 2 Equation 3 

SAT .345 .02 .10 

Family income .01 .03 

Parental .04 .06 
education 

1-ISGPA .28 

SAT-II .24 .32 

NOTE: HSGPA, High School grade point average. 

College GPA = a+ b(SAT) + b(Family income) + b(Parcntal education) 

+ b(HSGPA) + b(SAT-II). (2) 

The results of this equation are presented in the "Equation 2" column of cl�1ble 
11.4, and they do indeed show that the SAT's predictive power is dramatically 
reduced. In fact, it has dropped from .36 (i.e., its original correlation with college 

GPA) to essentially 0. The fact that its predictive power has dropped so much has 

led some critics to conclude that the SAT is indeed compromised by its link with 
SES. For example, Soares (2008) cited these exact results as support for the conclu

sions that "SES differences ... reduce SAT! effects to an extent not worth noticing" 

and that "when one statistically controls for SES, the weak contribution of the SAT 

in a regression model drops down to near zero." Ultimately , these results contrib

uted to the assertion that "the cost of adding the SAT to [the admission process as 
reflected in the regression equation] is to stack the odds against underprivileged 

youths" and to the decision to remove the SAT from the required part of a univer

sity's admission process. 

For a sophisticated understanding, it is useful to recognize why Equation 2 f�1ils 

to justify the conclusion that the predictive power of the SAT is compromised by 
SES. This recognition hinges on a clear understanding of what we get when we 
conduct a multiple regression analysis (i.e., an analysis in which more than one 

predictor is in the equation). 

In such an analysis, the results for one predictor reflect its predictive power 

after controlling f(Jr all other predictors in the equation. Thus, in Equation 2, the 

predictive value for SAT ref1ccts its predictive power after controlling for SES and 

1-ISCPA and SAT-II. Indeed, the SAT's small predictive value in Equation 2 is not 

truly due to SES. Rather, the primary reason why the SAT's predictive value is so 

small is that SAT-II is also included as a predictor in the equation. That is, the SAT is 

extremely highly correlated with the SAT-11. Therefore, when controlling for SAT-Il 

scores, there is very little predictive power left for the SAT. lncleed, the "Equation 3" 

column in cl�lblc 11.4 shows the results of a regression equation in which SAT and 

SAT-I I arc the only two predictors: 

College GPA =a+ b(SAT) + b(SAT-ll). 
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As the results show, controlling for the SAT-II alone severely reduces the predic

tive power of the SA'!� all the way from .36 to .1 0. Controlling for additional vari

ables (i.e., SES and HSGPA) has relatively modest effects on the predictive power 

of the SAT. Thus, the small predictive value of the SAT in Equation 2 is due to its 

overlap with SA'T-ll rather than to any links to SES. 

So what are the more appropriate interpretations of the overall pattern of find

ings, including Equation I? The main conclusions should be that SES differences 

have minimal effect on the SAT's predictive power, because when one statisti

cally controls for SES alone, the contribution of the SAT in a regression model is 

essentially unchanged. Thus, these results provide no meaningful evidence that 

the SAT's predictive power is compromised by a link with SES. Instead, the results 

!Equations 2 and 3) show that the SAT is highly redundant with SA T-Il-so 

much that if you know students' SAT-II scores, then their SAT scores provide no 

new inf(mnation. If we move beyond these particular analyses, the issue of SAT's 

predictive bias has mixed support-some research suggests there is bias, whereas 

other research suggests not. Overall, these particular results provide no support 

for the suggestion that the SAT unh1iriy acts "to stack the odds against under

privileged youths". 

In sum, the UC's analysis of the SAT provides a useful and important example 

of a real-life examination of test bias. Not only docs it illustrate some of the ways 

in which researchers attempt to investigate predictive bias, but it also illustrates 

the need for a solid understanding of certain statistical procedures and for careful 

consideration of their results. 

In the past few chapters, we have discussed a variety of issues that arc fundamental 

to the concepts of reliability and validity. In Chapter H, we introduced the concep

tual foundations of validity as it relates to the interpretation and usc of test scores. 

That chapter presented several kinds of evidence that have implications for valid

ity (e.g., the internal structure of a test, the test's association with other variables). 

In Chapter 9, we presented an in-depth coverage of the methods that are used to 

evaluate the "nomological network" of test scores. That is, procedures such as the 

multitrait-multimcthod matrix and the quantifying construct validity process can 

be used to gauge the degree to which test scores manifest the associations from 

which they arc predicted on the basis of a particular construct. 

The current chapter and the previous chapter discussed important consid

erations that threaten the reliability and validity of test score interpretation 

and usc. In Chapter I 0, we discussed response biases (e.g., acquiescence bias, 

social desirability bias) that systematically obscure the true dilfcrcnccs among 

individuals. In the current chapter, we focused on test bias, which traditionally 

refers to the possibility that the true differences among groups are systemati

cally obscured (or artificially created). Although there arc widely used methods 

for coping with response biases, the methods that have been proposed for cop

ing with test bias tend to he somewhat controversial and beyond the scope of 

Summary 
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our current discussion. �or a recent survey of the issues, interested readers are 

directed to Sackett, Schmitt, and Ellingson (2001 ). 

ln sum, the validity of test score interpretation and usc is a fundamental concern 

to behavioral scientists who arc interested in psychological measurement. Through 

decades of conceptual and methodological development, psychometricians, test 

users, and test developers have articulated the meaning and evaluation of validity. 

Although threats to validity do exist, psychologists and others interested in psy

chological measurement have made great strides in identifying such threats and in 

developing strategies for detecting, preventing, or minimizing them. Nevertheless, 

psychological tests should always be used and interpreted with close regard for the 

theoretical and evidential basis of their meaning and application, as described in 

the previous chapters. 

Suggested Readings 

One of the most informative and complete discussions of test bias and test t�tirncss 

can be found in: 

jensen, A. R. ( l ':>l\0). Bias i11 IIICIItal testi11g. New York, NY: Free Press. 

This is an accessible and thoughtful discussion of the issues and evidence related to 

validity and potential bias in "high-stakes" testing in several important domains of 

applied psychological testing. 

Sackett, l'. It, Schmitt, N., 1'.\ling,son, }. E., & Kablin, l'vl. 1\. (2001 ). llig,h-stakes testing, in 
employment, credentialing,, and hig,her education: Prospects in a post-aftlrmativc
action world. A111crim11 Psyclwlogist, 56, 302-3\l\. 
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CHAPTER 12 

Confirmatory Factor Analysis 

I
n Chapters 4 and H, we discussed the internal structure, or dimensionality, of 

a psychologic:!! test. Recall that a test's inte
.
rnal struct�1rc a�1d di

.
m�J�sio�lal

.
it

.
� 

have to do w1th the number and nature of psychological const1 ucts that ,u e 

assessed by a test's items. For example, in Chapter 4, we presented a hypothetical 

6-itcm personality test, and we discussed the possibility that those 6 items (talk

ative, assertive, outgoing, creative, imaginative, and intellectual) might reflect 

two psychological traits-extraversion and openness to experience. Similarly, in 

Chapter 8, we described the I 0-item Rosenberg Self-Esteem Inventory (RSEI), 

and we noted that its items arc usually seen as reflecting only one psychological 

trait-global self-esteem. Thus, dimensionality and internal structure refer to the 

way a test's items cohere together and thereby represent one or more psychological 
constructs. 

As a quick refresher, take a moment to recall the importance of a test's dimen

sionality. As we have discussed in earlier chapters, a test's dimensionality has fun

damental implications for the test's development, reliability, validity, and usc. In 

terms of test development, internal structure should be a major consideration when 

constructing a new test or scale. For example, a test might be designed to match a 

specific dimensionality (e.g., to reflect five uncorrclatcd personality traits or a single 

dimension of self-esteem), and examinations of internal structure can reveal the 

degree to which the test being developed actually corresponds to this dimensionality. 

In terms of reliability, a test's dimensionality or internal structure rcl1ccts the test's 

internal consistency. That is, cvaluat ion of a test's dimcnsionali t y reveals which items 

arc consistent with which other items (e.g., arc all items roughly equally consistent 

with each other, or arc there sets of items that arc particularly consistent with each 

other?). In terms of validity, a test's internal structure is important because the 

appropriate interpretation of a test's scores depends on the match between its actual 

internal structure and the internal structure of its intended construct(s). For exam

ple, if we discovered that the RSEI included two uncorrclated dimensions, then it 

would be invalid to interpret the RSEI solely in terms of a unitary global self-esteem 

331 
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. 

trait. Following from its implications for test development, reliability, and validity, a 

test's internal structure has robust implications for its usc. That is, internal strut:ture 

should guide the way a lest is scored, producing one or more scores that are mean

ingful, both psychologically and quantitatively (see Figure 4.1 ). 
In our earlier discussions of dimensionality, we highlighted exploratory factor 

analysis (EFA) as a statistical tool that is often used to evaluate a test's dimension

ality. As we noted, EFA is most appropriate when one has few, if any, hypotheses 

about a scale's internal structure. Again, for example, we began our discussion of 

the six personality items in ( :haptcr 4 began by assuming that we had no idea about 

the number of dimensions ret1ected in those items. 

In contrast, confirmatory factor analysis (CFA) is useful when there are clear 

hypotheses about a test's dimensionality. That is, Ch\ is designed to examine a test's 

dimensionality when a test developer or test evaluator has clear expectations about 

the number of factors or dimensions underlying a test's items, the links between the 

items and factors, and the association between the factors. 
In this chapter, we introduce several important issues in CFA. Specifically, we 

discuss basic issues in the logic of CFA, the process of conducting a CFA, and the 

key results that are obtained from a CFA. In addition, we discuss the way CFA can 

be used to examine fundamental [Jsychometric issues-dimensionality (of course), 

reliability, and validity. Although the information obtained from CFA is most 

directly relevant to a test's internal structure, it also can be used to examine a test's 

internal consistency, and it can be used to evaluate convergent and discriminant 

evidence. 

Our presentation, like the two chapters that follow, is intended to be relatively 

nontechnical and intuitive-we emphasize the basic logic of CFA and the psycho

logical interpretation of its key results. Ilowever, cr:A is a complex multiv;1riate 

statistical procedure, with many technical considerations and problems. We cannot 

address many such issues in this chapter, and we recommend that interested readers 

consult other specialized sources for a more focused coverage (e.g., Brown, 2006; 

lloylc, 20 II; Thompson, 2004 ). 

On the Use of EFA and CFA 

The Frequency and Roles of EFA and CFA 

( )ur emphasis on FI:A in the earlier chapters reflects two facts about the typical 

use of factor analysis in psychometric evaluation. First, EFA has been used much 

more frequently than C:l:A. This discrepancy is at least partly due to the fact that 

LFA has been integrated much more seamlessly into statistical packages that arc 

U'il:r-rricndly and widely used. For example, EFA has long been integrated into 

the popular SPSS statistical package, but the ability to conduct Cl:i\ in SPSS is 

only recently becoming available and even now still requires additional software 

components. 

Despite this long-standing difference in the rrcquency with which EFi\ ;md 

< :h\ have been used, CFA seems to be enjoying emerging interest and application. 
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This emergence is likely due to the increasing av<lilability and user-friendliness of 
statistical software that is capable of conducting CFA. For example, the popular 

statistical packages SAS and SPSS now include modules that arc capable of con

ducting CFA (though again, these might not be included in all versions of either 

package). Moreover, when using some software (e.g., the 1\MOS package in SPSS), 

one can conduct CFA without doing much more than creating figures to represent 

hypotheses about a test's dimensionality (e.g., Figures 4.2, 4.3, or 4.4). 
A second issue in the usc of bctor analysis is that EFA and C:FA arc most appro

priate for different phases of the test development and evaluation process. El;i\ is 

perhaps most appropriate for the early phases of test usc. That is, FFA is most useful 

when test developers rnight still be clarifying their understanding of the constructs 

and of the test itself. In contrast, CFA is more appropriate in later phases of test 

development-after the initial evaluations of item properties and dimensionality 

and arter any significant revisions of test content. Some psychologists have sug

gested a more integrated approach, pointing out that FFA can, in fact, be used in a 
somewhat hypothesis-driven way and that ( :1:1\ is oticn, in fact, used in a way that is 

somewhat exploratory. Interested readers arc directed to other sources for in-depth 

discussion of these points (e.g., !lopwood & Donnellan, 2010). 

Using CFA to Evaluate Measurement Models 

As noted earlier, when using C:FA, we evaluate hypotheses about specific "mea

surement models" regarding the dimensionality or internal structure of a test. 

That is, (]:I\ allows test developers and test evaluators to understand the degree 

to which their hypothesized measurement models arc consistent with actual data 

produced by respondents. For example, based on previous research and theory, we 

might hypothesize that the RSFI has a unidimensional structure (i.e., we might 

hypothesi I.e a one-factor measurement model). Using C:FA, we can test this "model" 

formally-we can collect responses to the RSEI items and examine the degree to 

which those actual responses produce data in which the RSEI items cohere into a 

single bctor. 

Moreover, we can--if necessary and appropriate-alll'r our hypothesized 

model in a way that makes it more consistent with the actual structure of 

responses to the test. For example, some inl(mn<llion produced by our CJ;i\ of 

the RSEJ might indicate that the actual responses arc, in l�lel, not consistent with 

a unidimensional model. Thus, we might examine other information from our 

CFA and discover that a two-dimensional structure is much more consistent with 

the data. In this way, we might modi I)' our hypothesis regarding the true structure 

of the RSFI. 

Furthermore, we can ex a 111 inc scvcra I mcasu rem en t models in a series of 

C:FI\s, using the results to discover the one that best matches participants' actual 

responses. For example, we could formally test the RSITs "fit" with both a uni

dimensional model and a two-dimensional model, and we could formally ll'>t 

which model is in fact more consistent with the actual test responses that we have 

obtained. 
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The Process of CFA for Analysis of a Scale's Internal Structure 

ln this section, we describe the process of conducting a CFA and interpreting 
its main results. Our goal is to provide a conceptual perspective on the logic, 

process, and meaning of CFA. With this goal in mind, we do not provide details 

about the way to conduct CFA in any particular statistical package. Rather, we 
lay a conceptual foundation that helps readers become informed consumers of 

CFA-based psychometric analysis. This conceptual foundation should also be 

valuable for readers who also wish to be producers of CPA-based psychometric 

information; indeed we hope that our conceptual coverage provides a solid foun
dation for additional training in the "how to" of CFA with respect to a variety of 

specific statistical packages (e.g., Byrne, 200 l, 2006; Diamantopoulos & Siguaw, 

2000; Hatcher, 1994). 

Overview of CFA and Example 

The typical process of conducting a CFA is summarized in Figure 12.1. In the 
following discussion, we present the steps in this process, and we discuss the logic of 
each step and the psychometric information that is obtained and usually reported. 

We describe the steps in which test developers and test evaluators have active roles 

(the unshaded boxes in Figure 12.1) and the steps that are carried out by statistical 

software (in the shaded boxes). As illustrated in Figure 12.1, CFA can be an itera
tive, back-and-forth process. The process begins when we articulate and evaluate 

a specific measurement model, but the process often does not end there. Often, 

after initially evaluating a specific measurement model, we revise the model and 

then evaluate the revised model. In fact, this revision and reevaluation can occur 

multiple times as we learn more and more from the CFA process. 

After carrying out a CFA of a test, test developers and test evaluators usual!)' 
report key information about the model-testing process. This information includes 

any revisions that have been made to the model( s). Usually, the information high

lights the measurement model that is most consistent with the test's actual internal 
structure, as discovered via the CFA. 

"[(J illustrate and explain this process, we discuss a CFA of the Authenticity 
Scale (Wood, Linley, Maltby, Baliousis, & joseph, 2008). The Authenticity Scale 

was intended to measure the degree to which a person "knows himself or herself" 

and "acts accordingly;' and it was based on a conceptual model that identifies three 

dimensions of authenticity (with example items): 

I. Sclf�aliclwtion was defined (roughly) as the degree to which a person 

really understands himself or herself (e.g., "I don't know how l really feel 

inside"). 

2. Allthcntic living was defined as the degree to which a person behaves 

and expresses emotion in a way that is an honest reflection of his or 
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Figure 12.1 Flowchart of Confirmatory Factor Analysis 

her self-perception (e.g., "l think it is better to be yourself than to be 

popular"). 

3. Acccptiug cxtcrnol influcucc was defined as the degree to which a person 

understands that other people can intluencc one's life and conforms to 

these inllucnces (e.g., "I am strongly intlucnccd by the opinions of others"). 

Considering this conceptual basis, the Authenticity Scale was intended to have a 

three-dimensional structure, with a subscalc h>r each of the three dimensions. Each 

item is phrased as a self-relevant statement, and respondents arc asked to rate their 

level of agreement with each item, using response options ranging from I ("Docs 

not describe me at all") to 7 ("Describes me very well"). 
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Preliminary Steps 
-----

Before conducting a CFA, there arc at least three key preliminary steps. 1/irq, '> 

course, is clarillcation of the psychological construct to be assessed and initi,1 
development of the test items. Indeed, Wood ct a!. (200il) describe a conccpt11 

ally based process of writing a large Illtmbcr of items, an initial analysis of som,. 

responses to those items (e.g., an EFA), and a selection of 4 items l(>r each of th,. 

three intended dimensions. This produced a total of 12 items that passed so111,. 

initial tests of psychometric quality. 

A second preliminary step is the collection of a large number of responses to t!J,. 

test. The appropriate sample size for a CFA is an important but complex issue, and 

experts have offered a variety of recommendations. In terms of absolute numbers 

of respondents, recommendations range fi·om a minimum of 50 people (f(>r simple 
measurement models and "clean" conditions) to 400 people or more. Other recotn
mendations are made in terms of the ratio of respondents to items, with sugges

tions ranging from 5 respondents per item to 20 (or more) respondents per item. 

The bottom line is that, as a complex multivariate procedure, u:A requires a /;trge 

number of responses-it is not UJJCommon to have much more than 200 respon

dents in a CFA. For example, Wood and his colleagues recruited three samples 

totaling more than 550 people to respond to the 12-item test. 

i\ third preliminary step is to reverse score any negatively keyed items. This 

ensures that all items arc keyed in the same direction, and it avoids any confusion 

arising li·01n items that might otherwise seem highly inconsistent with each other. 

Step 1: Specification of Measurement Model 

After these preliminary steps, we translate our hypothesized measurement model 

into a statistical softw<trc package designed to conduct CFA. Using contemporary 

software packages such as AMOS/SPSS, SAS, EQS, and LISREL, the process can he 

quite straightl<>rward. Such packages allow us simply to draw a figure to represent 
or "specify" the measurement model. The packages translate these drawings into 
statistical equations, which it uses to conduct the CFA. Of course, these packages 

also ;tllow us to create those equations ourselves, rather than by drawing a figure. 

I lowcvcr, it is likely that most people opt to begin with the drawing cap;1bilities. 

h>r example, Figure 12.2 illustrates two measurement models evaluated in the 

(]·';\of the Authenticity Scale (Wood et a!., 200il), and it shows at least three clcmmts 

of a measurement model that need to be specified-as summarized in 'Etblc 12.1. 

r:irst, we must specify the mnnl>er of dimensions, fitctors, or latent variables (rep

resented by ovals) that arc hypothesized to underlie the test's items (represented 

by rectangles). h>r example, Figure 12.2a presents a uniditnensional measurement 

model in which the scale's 12 items load on a single Authenticity hctor. Note that 

this unidimensional model docs not correspond to the three-factor structure f(>r 

which the Authenticity Scale was designed. I lowcvcr, Wood ;md his colleagues tested 

this model as a comparison with their main hypothesized model, which is presented 
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in Figure l2.2b. This figure presents a "hierarchical" multidimensional measure
ment model in which the scale's items load on three "lower-level'' ti1ctors (i.e., Sclr 
Alienation, Authentic Living, Accepting Extenwl Influence), ;Ill of which load on a 
single, more ti111damental "higher-order" gener<ll Authenticity liKtor. 

A second clement of the measurement model to be specified is the links between 
items <md hctors. That is, we must specify which items <Jre linked to I i.e., load on) 
each tiJCtor. In the t ypical li1ctor-analytic figure (e.g., Figures 12.2a and l2.2b ), 
a pathway li.e., arrow) between an item and a li1ctor indicates that the item is 

hypothesized to load on a filctor. There arc two general guidelines that are generally 
ti>llowed when specifying these links. First, in most mc;Jsurement models, at least 
one item is linked to each liKtor. For example, in hgure 12.2a, all items are hypoth
esized to load on the sole liJCtor. Similarly, there arc tiJUr items lo<1ding on each of 
the three lower-level ti1ctors in Figure 12.2b. Note that there arc no items loading 
on the general Authenticity fi!ctor in hgurc 12.2b. This is typical li>r such higher
level iilctors I i.e., tiJCtors on which other tiJCtors load)-we will return to this later. 

(a) 

(b) 

� --- - ------ - -
--------------

Figure 12.2 Example: Two Measurement Models Examined by Wood 
eta/. !2008) 
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Preliminary Steps 

Before conducting a CFA, there arc at least three key preliminary steps. First, of 

course, is clarification of the psychological construct to be assessed and initial 

development of the test items. Indeed, Wood ct al. (200!-l) describe a conceptu

ally bas<:d process of writing a large number of items, an initial analysis of some 

responses to those items (e.g., an EFA), and a selection of 4 items for each of the 

three intended dimensions. This produced a total of 12 items that passed some 

initial tests of psychometric quality. 

A second preliminary step is the collection of a large numb<:r of responses to the 

lest. The appropriate sample size for a CFA is an important but complex issue, and 

experts have offered a variety of recommendations. In terms of absolute numbers 

of respondents, recommendations range from a minimum of 50 people (for simple 

measurement models and "clean" conditions) to 400 people or more. Other recom

mendations are made in terms of the ratio of respondents to items, with sugges

tions ranging from 5 respondents per item to 20 (or more) respondents per item. 

The bottom line is that, as a complex multivariate procedure, Cl:A requires a large 

numbn of responses-it is not uncommon to have much more than 200 respon

dents in a CFA. For example, Wood and his colleagues recruited three samples 

totaling more than 550 people to respond to the 12-item test. 

A third preliminary step is to reverse score any negatively keyed items. This 

ensures that all items arc keyed in the same direction, and it avoids any confusion 

arising from items that might otherwise seem highly inconsistent with each other. 

Step 1 : Specification of Measurement Model 

After these preliminary steps, we translate our hypothesized measurement model 

into a statistical software package designed to conduct CFA. Using contemporary 

software packages such as AMOS/SPSS, SAS, EQS, and LISREL, the proc<:ss can be 

quite straightfilrward. Such packages allow us simply to draw a figure to represent 

or "specify" the measurement model. The packages translate these drawings into 

'>lalistical equations, which it uses to conduct the CI·'A. Of course, these packages 

also allow us to create those equations ourselves, rather than by drawing a tlgure. 

1-iowever, it is likely that most people opt to begin with the drawing capabilities. 

h>r example, Figure 12.2 illustrates two measurement models evaluated in the 

< :1:/\ oft he Authenticity Scale (Wood ct al., 200!-l), and it shows at least three clements 

of a measurement model that need to be specified-as summarized in 'l�Jbil' 12.1. 

First, we must specify the number of dimensions, bctors, or latent variables (rep

resenll'd by ovals) that are hypothesized to underlie the test's items (represented 

by rectangles). 1:or example, i"igure 12.2a presents a unidimensional measurement 

model in which tlw scale\ 12 items load on a single Authenticity f�1ctor. Note that 

this unidimensional model does not correspond to the thrce-blctor structure fi.>r 

which the Authenticity Sclil' was designed. However, Wood and his colleagues tested 

this mmkl as a comparison with their main hypothesized model, which is presented 



Chapter 12: Confirrnotmy Foetor Analysis 337 

in Figure l2.2b. This figure presents a "hierarchical" multidimensional measure

ment model in which the scale's items load on three "lower-level" f�1ctors (i.e., Self

/\licnation, Authentic Living, Accepting External Influence), all of which load on a 

single, more fundamental "higher-order" general Authenticity f�Ktor. 

A second clement of the measurement model to be specified is the links between 

items and factors. That is, we must specify which items arc linked to (i.e., load on) 

each L1ctor. In the typical factor-analytic figure (e.g., Figures 12.2a and 12.2b ), 

a pathway (i.e., arrow) between an item and a f�1ctor indicates that the item is 

hypothesized to load on a f�1ctor. There are two gmcral guidelines that arc generally 

followed when specifying these links. hrst, in most measurcmmt models, at least 

one item is linked to each f�1ctor. For example, in Figure 12.2a, all items arc hypoth

esized to load on the sole fi1ctor. Similarly, there are four items loading on each of 

the three lower-level bctors in Figure l2.2b. Note th<lt there arc no items loading 

on the general Authenticity f�1ctor in Figure l2.2b. This is typical ((Jr such higher

level f�1ctors (i.e., h1ctors on which other factors load)-wc will return to this later. 

(a) 

Authenticity 

Figure 12.2 Example: Two Measurement Models Examined by Wood 
et al. (2008) 



338 PART V: ADVANCED PSYCHOMETRIC APPROACHES 

Table 12.1 Facets of the Measurement Model to be Specified 

Facets 

Required specifications: 

1. Number of fi1ctors 
2. The associations between items and h!ctors 
3. The potential associations between fiKtors (if more than one fi1ctor is 

hypothesized) 

Examples of some additional spccillcation options: 

4. Exact values of one or more parameters (e.g., specific liJctor-loading 
values) 

5. Equality of parameters (e.g., two factor loadings constrained to be equal) 

A second general guideline is that each item is typically linked to only one latent 
variable. Typically, we create each test item to reflect one and only one psychological 
characteristic, though different items might reflect different characteristics. With 
this in mind, we generally hypothesize that each item loads on one and only one 
h!ctor. For example, the second item in the Authenticity Scale was written to reflect 
Self-Alienation, and the first item was written to reflect Authentic Living. Thu�, 

Figure 12.2b hypothesizes that Item 2 should load only on the Self-Alienation file

tor, and ltcm 1 should load only on the Authentic Living factor. 

If a measurement model is multidimensional (e.g., Figure 12.2b), then we must 
specify a third clement of the model-the possible associations between liKtors. We 
have two possible ways of indicating that factors arc associated with each other. First, 

we can specify that the f�1ctors load on a higher-order factor. Indeed, Figure 12.2h 

is a hierarchical measurement model in which three lower-order f�Ktors load on ,1 

higher-order bctor. This suggests that a person's levels of Self-Alienation, Authentic 

Living, and Acceptance of External Influence are hypothesized to be affected by his 

or her level of general Authenticity. This hierarchical relationship suggests that the 

three lower-order liJCtors arc associated with each other. That is, if two or more 

lower-order fi1etors load on a higher-order fi1ctor, then by extension, those lower

order h!ctors should be associated with each other. For example, Figure 12.2b indi

cates thai people who have a high level of Authentic Living will also tend to have a 

high level of Acceptance of External Influence. A second way in which we can indi

cate that liJCtors arc associated with each other is by having them simply be corre

lated with each other, as represented by a two-way arrow between them. In contrast 

to one-way arrows (which indicate that one thing affects another thing), two-way 

arrows simply indicate that two things are associated with each other, without any 

implication of causality. With this in mind, we might choose to omit the general 

Authenticity filctor in Figure 12.2b and instead draw three two-way arrows-one 

arrow li>r each pair of the remaining factors (e.g., between Self-Alienation and 

Authentic Living). 

When thinking about the associations between li1ctors, we might also hypoth

esize that factors arc 1101 associated with each other. Consider the multidimensional 

test with uncorrclatcd h1ctors that we discussed in Chapter 4 (e.g., Figure 4.4). 
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'Jo indicate the hypothesis that two factors arc not correlated with each other, we 

simply omit any connection between those fi1ctors. Tlwt is, we would not include a 
higher-order factor that connects them, and we would not include a two-way arrow 
between them. 

Typically, when specifying the hypothesized itcm�fi1ctor links and any fi1ctor� 

factor associations, our hypotheses arc f<1irly simple-we simply hypothesize that a 

link/association exists or not. That is, we hypothesize either that an item is associ

ated with a particular ti1ctor or not and we hypothesize that fi1ctors arc associated 

with each other or not. The statistical software wiJJ then estimate the precise associ

ations, In other words, we simply hypothesize that peoples' responses to particular 

items are affected by their levels of· particular psychological characteristics, We then 

rely on the statistical software to estimate the actual magnitude of those effects. 

EssentiaJJy, the presence of n pathway between an item and a f�JCtor (or between two 

factors) indicates a hypothesized nonzero association; in contrast, the absence of a 

pathway indicates a hypothesized zero association, In sum, we generally specify the 

model in a way that the associations are "ti-eely estimated"; that is, we essentially 

state that "these parameters arc probably not zero" and allow the soli ware to esti
mate the parameters' precise values, 

It is worth noting that the models in Figure 12,2 arc somewhat simplified and 

that you might encounter more complex representations. Specifically, sometimes 

figures arc drawn so that each item also has a unique random error term associated 

with it. However, such complexity is not always included in published psychometric 

work. Thus, we will keep the description as simple as possible tin our immedi

ate purposes, and we will reltlrn to this additional complexity in the "Reliability" 
section of this chapter. 

Step 2: Computations 

After we have specified the hypothesized measurement model, we then ask our 

statistic;d software to conduct the CFJ\ based on those specifications <lnd on the 

data that we have collected (i.e., actual responses to the test), Although the statisti

cal computations arc conducted "behind the scenes" by the software, a quick over

view of the statistical process can enhance insight into CF/\ and its main results. 1\t 

a rather simplified level, the basic Cf·A computations have f(JUr phases. 

Phase 1: Actual Variances a/1{1 Covariances, In the first phase of the Ch'\ com

putations, the collected data arc used to compute the items' variances and the 

covarianccs among the items, That is, the software computes the actual degree 

of variance for each item and the actual level of covariance between each pair of 

items, For example, in the ana lysis of the Authenticity Scale, the soft wa rc com pules 

12 variances and 66 covarianccs (i.e., 66 = 12( 12 �1 )/2), These values arc used in 

subsequent phases, 

Phase 2: Parameter t'stimates (and Inji:rcntial Tests), Indeed, in the second phase 

of computations, the items' actual variances and covarianccs arc used to estimate 

values fi>r the "parameters" as specified by the researcher. Parameters arc quanlit<ltivc 
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values that arc related to specific clements of the measurement model, and they arc an 
important part of the results produced by CFA. There arc several key t ypcs of param
eters to be estimated. One type of parameter is the factor loading( s) for each item. As 
discussed earlier, when we hypothesize that an item loads on a factor, we usually do 

not hypothesize a specific value for that loading (i.e., we do not usually hypothesize 

that the item loads on the hlctor to any specific degree). Instead, we usually rely on 

the statistical sotiwarc to compute a value f(lr that parameter. For example, in the 

analysis of the model presented in Figure 12.2b, the software will compute 12 param
eter estimates for the factor loadings-one for each item. A second type of parameter 

that often occurs in multidimensional tests arc those that connect h1ctors to each 

other-either correlations between factors or the loading of lower-order l�lctors on 

higher-order factors. Again, when we hypothesize that one h1ctor loads on another or 
that two factors arc correlated, we usually do not hypothesize specitlc values. Thus, 

for example, in a CFA of the model in Figure 12.2b, the software will compute three 

parameter estimates for the loadings of the three lower-order factors on the higher

order factor. There are other types of parameters that can be estimated (e.g., error 

variances), but the item-factor parameters and the factor-l�1ctor parameters are typi
cally of most interest. 

To compute the parameter estimates, the software begins with the actual vari
ances and covariances from the first phase of computations. For example, in the 

analysis of the model in Figure 12.2b, it would usc, in part, the actual covariance 
(i.e., association) between Item 2 and Item 7 to estimate the loadings that those 

items might have on the Self-Alienation factor. Indeed, if the two items arc strongly 
associated with each other (i.e., if they have a robust covariance-if people who 

endorse Item 2 arc very likely to endorse Item 7), then they might have something 

strongly in common with each other. Thus, the statistical software might compute 

strong loadings for both items on the Self-Alienation factor, which they would have 

in common ( i .c., the Sclf-Aiicnat ion factor is the "thing" that the items have in com

mon). The actual variances and covariances arc thus used to compute values for all 

factor loadings, intcrfactor correlations, error variances, and so on. 

Importantly, CFA software also computes an inferential statistic (i.e., signitl
cancc lest) for each parameter estimate. We will return to this later-for now we 

will note that the typical null hypothesis for a given parameter is that the param

eter's estimated value is 0 in the population from which the sample was drawn. 

l'l111sc 3: l111plicd Variances and Covaritlllccs. In the third phase of computations, 
the software uses its estimated parameter values (from Phase 2) to compute 

"implied" item variances and covarianccs. That is, the software computes item 

variances and covarianccs, as implied by the estimated parameters. !:or example, 
if both Item 2 and Item 7 have very strong loadings on the Self-Alienation factor, 
then this implies that they will be strongly correlated with each other (i.e., they will 

h<lVl' a rch1tivcly large covariance). I lowevcr, if both items have very weak loadings 

on the Self-Alienation factor, then this implies that they arc weakly correlated with 
each ol her. 

This third phase might seem circular-indeed, you might suspect that the 
implied variances and covariance should exactly match the actual variances and 
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covarianccs; after all, the implied variances and covarianccs arc based on parameter 

estimates, which arc themselves computed from the actual variances and covari

ances! In f�Kt, there will not be exact matches (except under very specific condi
tions), and moreover, there can be substantial mismatches between actual and 
implied varianccs/covarianccs. The mismatches can h<lppen because the parameter 

estimates arc based on the software's attempt to account for a great amount of 

information when computing each parameter estimate. For example, we noted 

earlier that software would use, in part, the actual covariance (i.e., association) 

between Item 2 and Item 7 to estimate the loadings that those items might have on 

the Self-Alienation factor. This is true, but it oversimplifies the process. In h1ct, the 
software's estimate of Item 2's factor loading is based on the variances and covari

ances of oil the items. After all, the Self-Alienation I�Ktor directly involves four items 

(sec Figure 12.2b), which means that there are at least 6 covarianccs to be consid

ered and balanced in computations related to Self-Alienation. Actually, it is even 

more complicated, because Self-Alienation is hypothesized to load on Authenticity, 

which in turn is hypothesized to affect the other two l�1ctors. Thus, the model 

implies that the Self-Alienation factor will be correlated with the other two b1ctors. 

This in turn implies that the four Self-Alienation items will be correlated with the 

other eight items on the scale (i.e., 32 additional covariances). So when computing 

each and every parameter estimate, the software must balance and weigh a huge 

amount of information. Sometimes, when attempting to find solutions to the prob

lem of balancing all of this information, the CFA produces parameter estimates that 

arc not good representations of each single piece of information. 

Thus, it is important to consider the degree of match or mismatch between 
the actual variances/covarianccs and the implied varianccs/covariances. If the 

hypothesized model is good (i.e., if it is a good approximation of the true model 

underlying the scale's items), then the implied variances and covarianccs will match 

closely the actual variances and covarianccs computed in the first phase of analysis. 

llowcvcr, if the model is poor, then the implied values will differ greatly from the 

actual values. This important issue is the focus of the next computational phase. 

JYilasc 11: Indices o(Modcl Fir. In the fourth phase, the software produces informa

tion regarding the general adequacy or "lit" of the hypothesized model. '1(1 do this, 

it comrares the implied varianccs/covariances to the actual variances/covariances, 
and it computes indices of"model lit" and modification. If the comparison between 

implied and actual values reveals only minor discrepancies or mismatch, then the 

sortware produces indices of"good lit." This would indicate that the hypothesil,ed 
measurement model adequately reflects the actual pattern of responses to the test. 

In contrast, if the comparison between implied and actual values reveals large dis

crepancies or mismatches, then the software produces indices of "poor lit." This, 

of course, would indicate that the hypothesized measurement model docs not 

adequately rellect the actual pattern of responses to the test. In the next section, we 

will di�cuss the interpretation of these values in more depth. 
( ;oing fur ther, erA software can compute "modilication indices" that indicate 

specific ways in which the measurement model could be improved. These values 

reveal potential modifications that would bring the model closer to the factor 
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good tit, providing support ti1r a hypothesized measurement model. Note that this 

"significant is had" interpretation of chi-square is quite the opposite of the typical 

perspective on statistical significance, in which we generally hope to find that a test 

is statistically significant. Although chi-square values arc usually included in reports 

of CFA, it is important to note that sample size aflects the chi-square values: All 

else being equal, large samples will produce large chi-square values, which produce 
statistical significance. 

Interestingly, this is a hit of a paradox fi1r CFA. ()n om· hand, we want to have 
large samples so that we can obtain robust, reliable parametn estimates. ( )n the 
other hand, large samples increase the chance that we will obtain significant 
chi-square values, which would seem to indicate that our hypothesized model is 
invalid. 

Partly because of this paradox, reports of CFA usu;dly include additional tit 

indicL'S. These alternative indices include the goodness-of-fit index (( ;n ), the incre

mental fit index (IFf), the normcd fit index (NFI), thewmparativc fit index (CFI), 

the nonnormcd fit index (NNFI. also known as the Tucker-Lewis Index, or 'I'Ll), 

the root mean square of approximation ( RMSEA), the root mean square residual 
(RMR), the standardized root mean square residual (SRMR), and the Akaikc inf(Jr

nJation criterion (AI C), to name hut a few. Note that these indin·s, unlike the chi

square index, do not include a formal test of statistical significance. 

Importantly, these fit indices haw ditli.·rent scales and norms ti1r indicating 
model fit. For example, the CFI ranges from 0 to 1.0, with larger values indicating 
a good fit. In contrast, the RMR has a lower hound of 0 hut an upper hound that 
depends on the test's scale of mcasmement, with smaller values indicating good 
fit. As another example, the SRI\11{ ranges tium 0 to 1.0 (like the CFI), hut lower 
values indicate good fit (like the RMR). Many sources arc available ti1r guidance in 
intcrprl'ling indices (e.g., flu & Bentler, I'J'Jl); Kline, 2010). 

For example, in an article describing the CFA of the Authenticity Scale (Wood 

et al., 200X), fit indices arc the first results that arc presented. In that report, the 

researchns present filllr fit indices-chi-square, SRMR, CFI, and RMSEA-related 
to their analysis of the model in Figure 12.2h (their primary model of interest). 
Considering the possibility that some readers might not he f;uniliar with these 
Partintlar indices, the researchers note specific values that have been recommended 
by experts as indicative of "good fit" as represented by these indices (i.e., SJ{MR 
values� .OX, CFI values :2; ,l)5, and IU\1SFA values<; .06), although they .dso noted 
that these recommendations arc a hit nwre conservative than what is oficn taken as 
indicating an adequate tit. Based on a CFA of responses from 213 students, the fit 
indices arL' presented in the" 12.2h" column of 'J:thlc 12.2. ( )n finding ( Tl, SRI\ I R, 
and RMSFA values very dose to the conservative rccommendatiom, the rescardll' rs 
concluded that the model (as shown i 11 hgmc 12.2h) "provided a good fit" ( p . . N3) 

to the Authenticity Scale's responses. They also reported a significant chi square hut 
reminded readers of the link between large sample sizes and statistical signifilance, 
and they ignored the chi-square's apparent indication of misfit. Such dismissal of a 
significant chi-square value is wmmon inCh\ reports. 

'J(J more fullv cvaluall' the adequacy of their main model of intncst, \\'ood l't al. 
(200R) wmpar�·d this model with the alll'rnativc, unidimensional measurement 
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structure that truly may be underlying the test's items (as they were responded to in 

the sample). For example, a modification index derived from analysis of Figure 12.2b 

might indicate that Item 2 loads on the Authentic Living hlctor in addition to the 

Self-Alienation h1ctor. Because the original hypothesized model in Figure 12.2b 

does not hypothesize that Item 2 loads on Authentic Living, we might consider 

modifying our hypothesis to Jlt this suggestion. 

Step 3: Interpreting and Reporting Output 

After collecting responses to the test, specifying a measurement model that 

we believe underlies those responses, and computing parameter estimates and fit 

indices, we interpret the results. CPA produces many types of output addressing a 

variety of psychometric and statistical issues, and this section describes some of the 

most important and commonly reported results. 

As shown in Figure 12.1, the particulars of this step and the next depend on 

the results that arc obtained. Depending on some of the results, we might exam

ine other results. Moreover, depending on what we find, we might conclude our 

analysis and report our findings, or we might modify our hypothesized model and 

rerun the analysis. Ideally, we will find that our hypothesized measurement model 

is a good match to the actual responses to the test. In that case, we might examine 

only two sets of results. 

Fit Indices. Typically, we first examine the fit indices that address the overall 

adequacy of our hypothesized measurement model. As described earlier, "good 

tit" indicates that the hypothesized measurement model is consistent with the 

actual responses to the test, and this supports the validity of the model. That is, 

if the fit indices arc good, then we can have initial confidence in interpreting the 

test's dimensionality as we had hypothesized. However, "poor fit" indicates that 

the hypothesized dimensionality is not consistent with the actual responses to the 

lest. This is usually seen as evidence against the validity of the hypothesized mea

surement model, and we should not interpret the test's dimensionality as we had 

initially hypothesized. 

Most CFA programs will compute and present many fit indices. Por example, the 

statistical package SAS computes approximately 20 fit indices as part of its "calis" 

procedure, which is used to conduct CFA. Although many fit indices are available, 

most published reports of a CFJ\ present only a few. Unf(>rtunately, there is no clear 

consensus regarding best fit indices to interpret and report, thus different reports 

will present different sets of fit indices. 

That said, there are a few that you might be most likely to encounter in reports or 

CFJ\. The computational details for these indices arc beyond the scope of our cur

rent discussion; the important goal at this point is to be familiar with some of these 

indices and with their general interpretations. T he chi-square statistic is prolx1bly 

the most commonly reported fit index, and it actually indicates the degree of"poor

ncss of fit" or "misfit" of the model. That is, large, significant chi-square values 

arc evidence of poor tit, whereas small, nonsignif]cant chi-square values indicate 
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good fit, providing support for a hypothesized measurement model. Note that this 

"significant is bad" interpretation of chi-square is quite the opposite of the typical 

perspective on statistical significance, in which we generally hope to ilnd that a test 

is statistically significant. Although chi-square values are usually included in reports 

of CFA, it is important to note that sample size atlccts the chi-square values: All 

else being equal, large samples will produce large chi-square values, which produce 

statistical significance. 

Interestingly, this is a bit of a paradox for CFA. On one hand, we want to have 

large samples so that we can obtain robust, reliable parameter estimates. On the 

other hand, large samples increase the chance that we will obtain significant 

chi-square values, which would seem to indicate that our hypothesized model is 

invalid. 

Partly because of this paradox, reports of CI:A usually include additional fit 

indices. T hese alternative indices include the goodness-of-fit index (CFI), the incre

mental fit index (IF!), the norrned fit index (NH), the comparative fit index (CFI), 

the nonnormed fit index (NNFI, also known as the Tucker-Lewis Index, or 'I'Ll), 
the root mean square of approximation (RMSEA), the root mean square residual 

(RMR), the standardized root mean square residual (SRMR), and the Akaike infor

mation criterion (AI C), to name but a few. Note that these indices, unlike the chi

square index, do not include a formal test of statistical significance. 

Importantly, these fit indices have different scales and norms for indicating 

model tit. For example, the CFI ranges from 0 to 1.0, with larger values indicating 

a good fit. In contrast, the RMR has a lower bound of 0 but an upper bound that 

depends on the test's scale of measurement, with smaller values indicating good 

tit. As another example, the SRMR ranges from 0 to 1.0 (like the CFI), but lower 

values indicate good fit (like the RlVIR). Many sources are available for guidance in 

interpreting indices (e.g., 1-lu & Bentler, 1999; Kline, 20 I 0). 
For example, in an article describing the CI:A of the Authenticity Scale (Wood 

et al., 2008), fit indices are the first results that are presented. In that report, the 

researchers present four fit indices-chi-square, SRMR, CFI, and RlVISEA-related 

to their analysis of the model in Figure 12.2b (their primary model of interest). 

Considering the possibility that some readers might not be t:m1iliar with these 

particular indices, the researchers note specitlc values that have been recommended 

by experts as indicative of "good tit" as represented by these indices (i.e., SRM R 

values:':: .08, CFI values 2: .95, and RMSEA values:::; .06), although they also noted 

that these recommendations are a bit more conservative than what is often taken as 

indicating an adequate fit. Based on a CFA of responses from 21:) students, the fit 

indices are presented in the" 12.2b" column of 'H1ble 12.2. On finding Cl:], SRMR, 

and RMSEA values very close to the conservative recommendations, the researchers 

concluded that the model (as shown in Figure 12.2b) "provided a good fit" ( p. 303) 
to the Authenticity Scale's responses. They also reported a significant chi-square but 

reminded readers of the link between large sample sizes and statistical significance, 

and they ignored the chi-square's apparent indication of misfit. Such dismissal of a 

significant chi-square value is common in CFA reports. 

'lb more fully evaluate the adequacy of their main model of interest, Wood et al. 

(2008) compared this model with the alternative, unidimensional measurement 

j 

.. 
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Table 12.2 Fit Indices for Two Measurement Models Examined by 
Wood et al. (2008): Sample 3 (N = 213) 

Measurement Model 

Figure Figure Cited 
Fit Index l2.2b l2.2a Benchmark 

Chi-squared 90.06' ·' 353.45*h NA 

SRMR JlH .16 <.OH 

(X! .94 .53 >.95 

RMSEA .06 .16 <.06 

NOTE. Benchmarks are those cited by Wood et al. (2008). SRMR = standardized 
root mean square residual; CFI = comparative fit index; RMSEA = root mean square 
of approximation. 
u df = 51. 
b. df =54. 
*p < .05. 

model in hgurc 12.2a. The results indicated a much poorer fit for this alternative 

model-sec the "hgurc 12.2a" column in ·n1blc 12.2. Specifically, poor fit is incli

catcd by a u:I value well below the .95 benchmark cited by Wood and colleagues, by 
SRMR and RMSEA values well above their benchmarks, and by a large, significant 

chi-square value. The comparison of this model with the three-dimensional model 

(in rigure 12.2b) strengthened the researchers' confidence that the Authenticity 

Scale's internal structure is indeed well represented by the model in Figure 12.2b. 
J\s shown in hgurc 12.1, the examination of fit indices can lead in two possible 

directions. First, if the fit indices suggest that the model is adequate, then we will 

examine parameter estimates to evaluate the mon: specific psychometric qualities 

of the lest. Second and alternatively, if the fit indices instead suggest that the model 

is inadeqLwle, then we will likely examine the modification indices and consider 

ways in which the model could be revised. 

l'urll/uctcr bti111utcs wul Si,�ni.fiwncc 'J'csts. After deciding that a measurement 

model has an adequate overall fit, we then examine a variety of parameter esti

mates. We obtain an estimated value for each parameter, including values for the 

items' factor loadings and the interfactor associations. Parameter estimates arc <111 

important facet of a test's overall dimensionality and, as we shall see, other psycho
llletric lll"opnlies. 

/\s described earlier, an item's loading on a factor represents the degree lo which 

dillercnccs among peoples' rc:;ponscs to an item arc determined by differences 

,unong their levels of the underlying psychological construct that is assessed by that 
item. If an item is hypothesized to load on a particular factor, then we cxpcct lo dis

cover a large, positive, and statistically significantly factor loading. 11· we do indeed 

lind such results, then we arc likely to conclude that the item is a good reilcction 

ollhc underlying psyclwlogic.1l dimension. Thus, we arc likely to keep that item 

011 the lest. llowcvcr, if we find that the item's factor loading is small and/or 

nomignificanl, then we arc likely to conclude that the item is unrelated lo the 

.. 
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psychological dimension. In this case, we are likely to remove the item from the test. 
We then might respccify the model to accommodate this change (i.e., eliminating 
the item from the model) and rerun the computations to evaluate the revised test. 

We realize that this scenario might seem paradoxical-how could we have a gener

ally well-fitting model (as indicated by the fit indices) but a weak factor loading? 

The answer is that fit indices represent the overall adequacy or fit of the entire mea

surement model and that a model can have generally good support despite having 
some weak specific aspects. 

Once again turning to the CFA of the Authenticity Scale (Wood ct al., 200H), 
hgurc 12.3 presents some key parameter estimates obtained in the analysis of the 
three-dimensional measurement model. Recall that the fit indices indicated good 

support for this model Cl�1ble 12.2), so the researchers interpreted and reported 

the parameter estimates for this model. Figure 12.3 presents standardized factor 

loadings and interfactor associations. Note that as standardized f�1ctor loadings, 

these values arc interpretable like t�Ktor loadings from an El:A. That is, they are 

interpreted in terms of correlations or standardized regression weights-generally 

ranging between -1 and +I. As these values indicate, all 12 items loaded robustly 

on their hypothesized bctors-thc weakest factor loading was ltcm I 's loading of 

.60 on the Authentic Living factor. Figure 12.3 also indicates that each lower-order 

t;Jctor loads strongly on the higher-order bctor-the weakest loading being the 

-.58 loading of Accepting External l nflucncc on the higher-order Authenticity 

factor. Finally, although the researchers do not explicitly stale this, the magnitudes 

of these 15 parameter estimates lead us to assume that all of them arc statistically 
significant. 

Accepting 
External 

Influence 

- --------
-�------- ------

Figure 12.3 Measurement Model in Figure l2.2b With Parameter Estimates 
Reported by Wood et al. (2008) 
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As done in the report of the Authenticity Scale's CFA, researchers usually high

light these particular parameters-the items' factor loadings and any interfactor 

associations (Wood et a\., 2008). They somcti mes also present parameters retlecting 

items' error variances or items' variance-explained values. However, because these 

values are implied by the factor loadings themselves, researchers usually choose not 

to include this extra information. Indeed, the report of the Authenticity Scale's CFA 

did not report present these values. 

In sum, as Figure 12.1 suggests, CFA interpretation and the subsequent steps 

depend on several important issues. The most important issue is perhaps the over

all adequacy of an initial hypothesized measurement model, as indicated by the fit 

indices. If the fit indices suggest that the model fits well, then we generally move 

to an examination of the parameter estimates. If we find that those parameter esti

mates provide further support for the model (e.g., there are no weak, nonsignificant 

bctor loadings), then we will likely finish the CFA by concluding that the model is 

a good representation of the test's internal structure. However, things do not always 

proceed so smoothly. Indeed, if the fit indices indicate that the model fits poorly, 
then we will likely revise our hypothesis about the model's internal structure. This 

brings us to the next potential step in a ct:A-model modification and reanalysis, 

with the goal of improving our understanding of the test's true dimensionality. 

Step 4: Model Modification and Reanalysis (If Necessary) 

As Figure 12.1 illustrates, the results of a CFA sometimes, perhaps often, force us 

to consider modifying a hypothesized measurement model. If we obtain fit indices 

suggesting that a model is inconsistent with the actual responses to the test items, 

then we will likely examine modification indices to find hints about the revisions 

that we can make to the model. 

When conducting a CFA, we obtain a large number of modification indices; 

indeed, each one represents a parameter that was left out of (i.e., set to zero in) the 

initial measurement model. 1:or example, the model in Figure l2.2b implies that 

Item 2 loads on the Self-Alienation factor but not on the Authentic Living h1ctor. 

Thus, Wood et a\. (2008) initially allowed the software to estimate Item 2's loading 

on Self-Alienation (sec Figure 12.3 ), but they set or "fixed" the loading of Item 2 

on the Authentic Living f�lctor to 0, indicating that Item 2 has no direct association 

with Authentic Living. When we examine modification indices for this model, we 

thus would find a value referring to this "fixed" parameter-the "fixed-to-zero" 

ti1ctor loading of Item 2 on Authentic Living. Indeed, we would find modifica

tion values for every parameter that was initially set to zero-for example, the 

association between Item 2 and Authentic Living, the association between Item 2 

and Acceptance of External Influence, the association between Item l and Self

Alienation, the association between Item I and Acceptance of External Influence, 

and so on. 

The magnitude of a modification index reflects the potential impact of revising 

the relevant parameter. For example, a CFA of the model in Figure l2.2b might pro

duce a relatively large modification index related to Item 2's potential loading on the 

Authentic Living factor. 'i(J anthropomorphize a bit, this would indicate that Item 2 
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"wants" to load on the Authentic Living f�1ctor in addition to the Self-Alienation be
tor. That is, it would indicate that peoples' responses to Item 2 arc affected by both 

their degree of Self-Alienation and their degree of Authentic Living. More statisti

cally, it would indicate that if we allowed Item 2 to load on both f�Ktors, then the tit 
indices would be improved. Thus, by examining the modification indices and making 

changes based on the largest indices, we learn about the real dimensionality of the 

te�t, and our measurement model becomes a better reflection of this reality. 

With this in mind, as Figure 12.1 indicates, after examining modification indi

ces, we might change one or more parameters and then rerun the analysis. Analysis 
of the revised model will produce new output-new fit indices, new parameter 

estimates, and so 011. We then evaluate the adequacy of the revised model, and we 

either examine parameter estimates (if the revised model t]ts well) or examine the 
new modification indices (if the model still t1ts poorly). 

We should note a few cautions regarding modification in a CFA. First, modi

fication begins to obscure the difference between confirmatory analysis and 

exploratory analysis. This reiterates our earlier comment that CFA can be used in 

a semi-exploratory manner. Second, a test developer or test evaluator should be 

hesitant to perform many modifications in a CFA, with particular hesitancy about 

111odifications that lack a clear conceptual basis. Such modifications might arise 

from response patterns that are idiosyncratic or unique to that sample of people, 

and not be representative of other test takers more generally. Thus, if more than 

one or two modifications are made to a model, then test developers and test evalu

ators should strongly consider evaluating the revised model in a different sample 

of test takers (i.e., a "cross-validation sample") before drawing strong inferences 

about the "true" internal structure of the test in a way that generalizes to a broad 

range of people. 

Comparing Models 

Earlier, we noted that the analysis of the Authenticity Scale included a compari

son of the two models in Figure 12.2. Although the three-dimensional model was 

the main one of interest, the researchers contrasted it against the unidimensional 

model (Wood et al., 2008). 
Indeed, when conducting a CFA of a test, test developers and test evalu;Jtors 

often evaluate competing measurement models. The point of such comparisons is 

to identify which model is the best representation of the test's true internal stniC

ture. Rather than evaluating a single possible model's flt, test developers and test 

evaluators can learn even more by evaluating and comparing several reasonable 

potential measurement models. All else being equal (e.g., in terms of theoretical 

basis), we would prefer measurement models with a relatively good tit. That is, we 

would identify the model having the most supportive fit indices and conclude that 

it retlects the test's true dimensionality. This can provide strong insight into the 

test's actual properties. 

A full discussion of strategies for comparing models is beyond the scope of this 

chapter. However, interested readers can find such a discussion in other sources 

(e.g., Brown, 2006; Hoyle, 20 II). 
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Summary 

As a psychometric tool, C:FA can provide great insight into the internal strucwrc 
of psychological tests. By allowing us to test hypotheses about specific measurement 
models, CTA is an important complement to m�A. However, the value of CFA goeS 

beyond the evaluation of dimensionality, and the f(ll!owing sections describe thC 
way in which it can be extended to the evaluation of test reliability and validity. 

CFA and Reliability 
--·· -- -------------·----------------

Coefficient alpha is the most widely used method of estimating reliability (sec 
Chapter 4), but its accuracy depends on psychometric assumptions that may not 

be valid in some applications of behavioral research (Miller, jl)l)5; Zinbarg, Revelle, 
Yovcl, & Li, 2005). Indeed, alpha's accuracy as an estimate of reliability is deter

mined by the pattern and nature of items' psychometric properties (e.g., do th" 
items have correlated errors, do they have equal l�tctor loadings?). 

These issues have led psychometricians to usc factor analysis (or principal co111-
ponents analysis) for estimating reliability (e.g., Armor, ll)74). Although Cl:i\ is 

not currently used widely in this way, experts have recently developed CFA-bascd 

procedures for this purpose. In this section, we describe a c:t:A-based procedure 
for estimating the reliability of unidimensional scales; additional details, exampleS, 

and alternatives can be found in several sources (e.g., Brown, 2006, pp. 3:'17-351; 
Raykov, 2004; /jnbarg ct a!., 2005 ). 

W hen using C!:i\, we can estimate reliability through a two- or three-step pro

cess, depending on the need to modify the initial measurement model. First, \vc 

usc C:!:A to evaluate the lest's basic measurement model. Consider, for example, thC 
Interaction Anxiousness scale (lAS; Leary, 1<)83). The !AS is a IS-item personality 

scale designed to rcllect the tendency to experience social anxiety in interactions in 
which an "individual's responses are contingent on the responses of other intcntC
tants" (e.g., <lone-on one conversation, as opposed to a speech delivered to an audi

ence; Leary, I <)83, p. 68). Each item presents a self-relevant statement (e.g., "I often 

feel nervous even in casual gct-togcthers"), and respondents arc asked to rate their 

level of agreement/endorsement of each. 
hgurc 12.4a presents a simple unidimensional model hypothesi:t.cd to reflect the 

dimensionality of the 1;\S�all 15 items load on a single Interaction Anxiousness 
Ltctor, with no additional links among items. Note that this figure is a bit more 
complex than Figure l2.2a, discussed earlier. Specillcally, in this figure, each itent is 
affected by a unique error term that represents the effect of random measurement 
error on responses to each item. These error terms are part of all CFA models, 
but they <tre often omitted from graphical presentations of c:I:A models (e.g., sec 
l'igurcs 12.2 and 12.3 ). We collected responses to the !AS from a relatively small 
'><llnple of respondents ( 11 = 107, smaller than is ideal), and a CFA indicated that the 
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Figure 12.4 Initial Model, Modified Model, and Parameter Estimates for the 
Interaction Anxiousness Scale 

unidimensional model did not !It the lAS well in these rcspondcnts-x,-:,11, = 224 .. '>0, 

p < .05; NN1:1 = . 74 , CFI -= .n\; RMSI:,;\ ·� .12, and SIUvlR -- .OlJ. 

In the second step of the process, we modify and reanalyze the measurenll'nt 
model if necessary. As in the case of our CF;\ of the 1;\S, if the initial hypothcsi>'.cd 
model !Its poorly, then we identify useful revisions to the model (via the modifica
tion indices). Specifically, we focus m<linly on potential associations among the 
items' error terms. For example, we examined moditlc.1tion indices from the poorly 
fitting model in Figure 12.4a, and we identified six useful modifications. Not only 
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did the modification indices provide statistical support for these changes but the 
changes largely were psychologically reasonable as well. for example, the modi

fication indices suggested that Items 4 and 14 "wanted to be correlated with each 

other." Indeed, both items refer to interactions with people in positions of authority 

(i.e., "I get nervous when I must talk to a teacher or boss" and "I get nervous when I 
speak to someone in a position of authority"). Thus, these two items shared some

thing that was a bit different from the remaining items, none of which refer explicitly 

to authority ligures. Similarly, the results suggested that Items 6 and II were statisti

cally linked, and indeed, these are the only two items that explicitly include the word 

shy. Thus, Items 4 and 14 share an "authority" commonality, whereas Items 6 and 11 
share a "shyness" commonality. 

Considering the relative magnitudes of several modification indices and the 
conceptual connections between pairs of items, we modified the model by adding 
six parameters-the pairwise associations between items' error terms. Our reanaly

sis revealed a much improved fit for the modified model (X2,H11 = 122.76, p < .05; 
NNFI = .92, CFI = .94; RMSEA = .07, and SIUvlR = .(J7). Figure l2.4b presents the 

modified model and unstandardized parameter estimates, including each item's 

factor loading, the error variance of each item, and the six covariances between 

error terms. 

In the final step of the process, we use these unstandardized parameter estimates 

to estimate the test's reliability. Recall that reliability is defined as 

True variance 
Reliability= -------- --:-

True variance+ Error variance 

The parameter estimates obtained via Cl;A can be used to estimate the true vari

ance and error variance, and thus they can be used to estimate reliability (Brown, 
2006): 

(12.1) 

In this equation, A; refers to an item's factor loading, 8;; refers to an item's error 

variance, and H;; refers to the covariance between the error terms of two items (this 

is zero for models without correlated error terms). In terms of our earlier discus

sion of reliability, (L,A.; r reflects the variance of true scores (i.e., signal), because 

the factor loadings reflect the links between the items and the "true" psychological 

attribute. Similarly, the sum "'e + 2"' e .. rellccts random error variance (i.e., 
L...t II L...t I/ 

noise), because these terms reflect the unique aspects that affect each item but that 

arc not related to the underlying psychological attribute of interest. Thus, Equation 

12.1 represents the theoretical definition of reliability as the ratio of true score vari

ance to total observed score variance (with observed variance being the sum of true 

score variance and error variance; sec Chapter 5). For the results in Figure 12.4, true 

score variance is estimated as IOU\!: 
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Similarly, error variance is estimated as 14.52: 

(I"-i r = (0.66+0.70+0.51 +0.60+0.64+0.68+0.58+0.37 

+ 1.10+0.55+0.83+0.R5-Hl.75+0.60+0.67)' = I OI.R I. 

I 8ii = ro.63+0.70+0.72+0.97+0.73+ 1.15+0.75+0.99-rO.R7 

+ 1.00+0.78+0.66+0.72+0.R5 t-O.R4) = 12.36, 

2.:,8;; = ro.29 + 0.4R+(-o.25)+<-o.2o)+o.5o+o.26l = 1.o8, 

"8 + 2" 8 = 12.36 + 2(1.08) = 14.52 . .LJ II .LJ II 

Thus, the estimated reliability of the lAS is 

101.81 
--

--- =.87. 
101.81 + 14.52 

For these responses to the lAS, the CiA-based reliability estimate is only some

what smaller than the reliability estimate obtained via cocftlcicnt alpha, which is 

a= .89. Although the difference between the two estimates is not large in this case, 

it can be much more dramatic, and it ret1ccts the alpha's tendency to misestimate 

reliability (Miller, 1995 ). 

CFA is a very flexible tool for examining rcliabilit y, going well beyond the rela

tively simple analysis of a unidimensional test such as the lAS. For example, it can 

be used to estimate reliability for multidimensional scales, to estimate group differ

ences in reliability, and to obtain contldcnce intervals around estimates of reliability 
(e.g., Raykov, 2004). 

CFA and Validity 

Coing even further, CFA can be a useful tool for evaluating validity in several 

ways. F irst, as implied by our relatively in-depth discussion of CFA's ability to test 

a specific hypothesis about a test's internal structure, CTA offers insight into the 

"internal-structure" aspect of validity (i.e., docs the actual structure of responses to 

the test items tit the structure that is implied by the theoretical basis of the intended 

construct?). 

Second, if test responses arc collected along with measures of rclatl'd constructs 

or criteria, then we can evaluate the test's association with those variables. Whether 

we view this associative evidence in terms of convergent/discriminant validity, con

current validity, criterion validity, predictive validity, or external validity, it provides 

important information about the psychological meaning of test scores. There arc at 

least two ways in which we can usc CFA to examine these facets of validity. 

One way in which we usc CFA for evaluating convergent and discriminant valid

ity is by applying it to multitrait-multimethod (MTMM) matrices. i\s discussed in 

Chapter 5, an MTMM study includes multiple traits/constructs (e.g., social skill, 

impulsivity, conscientiousness, and emotional stability), each of which is assessed 
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through multiple methods (e.g., self-report, acquaintance ratings, and interviewer 

ratings). When we examine the associations among the entire set of scores, we 

can evaluate convergent validity, discriminant validity, method effects, and other 

important validity information. There arc several CI�'A-based methods for evaluat

ing an /VIT/VI/VImatrix, though a full discussion is beyond the scope of this chapter. 

Interested readers can consult other good sources for this information (e.g., Brown, 

2006, chap. 6; Marsh & (;rayson, 1005 ). 
/\ second way to usc CFA to examine convergent validity (and potentially dis

criminant validity) is through the focused examination of a test along with one or 

more criterion variables. For example, we could examine the construct validity of 

the I AS by collecting individuals' responses to the lAS along with other measures of 

their temlcncy to experience social anxiety. Indeed, the people who completed the 

11\S, as described in the previous section, also completed a measure of"situational 

social anxiety." That is, they completed a survey that described II different social 

situations and asked the participants to rate the level of anxiety that they would 

likely experience in each of those situations. Presumably, people who rate them

selves as likely to experience a high level of social anxiety, on average, across the II 

situations will also have high scores on the lAS. 

With such information, we can address several important psychometric ques

tions: Docs the lAS have a unidimensional structure as hypothesized? "lb what 

degree do participants' anxiety ratings from the II situations reflect a single "situ

ational social anxiety" factor? 'f(J what degree is the lAS bctor associated with a 

potential "situational anxiety" factor? Using CFA, we can evaluate all of these issues. 

For example, we used CFA (actually, structural equation modeling, or SEM) to 

examine the model illustrated in r:igure 12.5. First, as described earlier, we evalu

ated the intcrn<tl structure of the 11\S, to properly represent its internal structure. 

Second, we similarly evaluated the internal structure of the situational anxiety 

questionnaire, discovering that two of the situations did not load on a core "situ

ational anxiety" l�1ctor. Thus, we dropped those two items, and we discovered some 

correlated error terms among the remaining nine items. Third, after clarifying 

Situational 
Anxioty 

.76 Interaction 
Anxiety 

Figure 12.5 A Model to Evaluate the Convergent Validity of the Interaction 
Anxiousness Scale 
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the measurement models f(x the two questionnaires, we examined the model in 
Figure 12.5. As shown in this figure, we were primarily interested in the correlation 
between the two f�1ctors. And as shown in the figure, the correlation was extremely 
strong, and it was statistically sign i flcant. (Note that we include only I his parameter 
estimate in the figure, for the sake of simplicity.) 

By conducting such an analysis, we can evaluate validity evidence in terms of 
the association between a test and a relevant criterion, while also accounting f(Jr 

measurement error in both the test and the criterion. This is an important advan

tage of CFA over many alternative analytic strategies (e.g., the zero-order correla
tion between scale scores and criterion scores). Such models and similar ones (e.g., 

Figure 2 in McArdle, 1996) extend C:FA to SEivl, but the basic principles described 

in this chapter apply to SEivl as well as to u:A. Again, readers interested in addi

tional details on SEivl are directed to a variety of useful sources (e.g., Hoyle, 2011 ). 

CFA is a useful and increasingly accessible tool that we can use in the development 

and/or evaluation of psychological tests. It provides power and 11exibility when 

evaluating a test's dimensionality, reliability, and validity, and it has important 

advantages over other statistical techniques (e.g., EFA and regression) and indices 

(e.g., coefficient alpha). "I(J be sure, it requires more thought and careful attention 

than do some other psychometric tools; however, its important advantages and its 

increasing accessibility make it a very useful tool for the examination of psycho
metric quality. 

Summary 





CHAPTER 13 

Generalizability Theory 

D

r. johnson is a developmental psychologist interested in studying aggres
siveness in adolescents. For her research, she has a number of options for 
measuring aggressiveness. She might ask "target" participants to complete 

a self-report inventory designed to assess their aggressiveness, or she might ask 
the participants to recruit friends who could provide ratings of the participants' 
aggressiveness. Alternatively, she might wish to avoid relying on questionnaires and 
instead measure aggressiveness by observing the target participants' behavior. 

For example, Dr. johnson might ask participants to spend 5 minutes being vid
eotaped while chatting with a stranger of the opposite sex. She could then recruit 
her research assistant, Doris, to watch the videotapes, and she could ask Doris to 
judge each target's level of behavioral aggression. Understanding the importance of 
including multiple items, she might ask Doris to rate each target on three items that 
she believes arc related to aggression: hostile, angry, and belligerent. Dr. Johnson's 
goal is to quantify the differences among the target participants in terms of the 
aggressiveness that they exhibit. 

This measurement strategy fits well with the classical test theory ( CTT) approach 
to psychometrics described in our chapters on reliability. Dr. Johnson's strategy is 
relatively simple, where only one potential source of measurement error could be 
evaluated. With this design, Dr. johnson can usc err to evaluate the degree to 
which item differences contribute to measurement error. As discussed in Chapter 
6, she could evaluate the degree to which differences among the three items were 
related to measurement error, and she could compute coefficient alpha to estimate 
the reliability of the three-item measure of aggression. h1rthermore, as discussed in 
Chapter 7, she could use tools such as the Spearman-Brown prophecy formula to 
estimate the reliability of a measure with more or fewer similar items. 

But Dr. Johnson might have concerns about this relatively simple measurement 
strategy. In particular, she might worry about relying on only one observer to 
provide the behavioral ratings. As a unique individual, Doris has her own way of 
thinking about and interpreting behavior, including behavior that might be related 

355 
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to aggression. For example, Doris might tend to perceive sarcasm as quite aggres

sive. If a target participant makes a sarcastic remark, then Doris might interpret the 

remark as aggressive, but many others might interpret it as humorous rather than 

aggressive. 

'lb deal with this potential limitation, Dr. Johnson might decide to recruit Ken 

and Tim to be additional observers to watch the videotapes and rate the targets' 

behavior. In this design, each observer would independently rate each target par

ticipant on each item. Dr. Johnson will then combine the ratings provided by all 

three observers to form overall aggression scores for her participants, hoping that 

each observer's unique interpretations of the behaviors are offset by the other 

observers' interpretations. 

Although CIT is useful for conceptualizing and evaluating the quality of some 

measurement strategies, it cannot efficiently handle Dr. Johnson's improved strat

egy. The improved strategy is more complex than her original strategy because 

it includes multiple "facets" that could be evaluated as sources of measurement 

error�items and observers. Whereas her original strategy included multiple items, 

her improved strategy includes multiple items ond multiple observers as two beets 

of the measurement process. 

It is possible that different facets have different effects on the quality of mea

surement. For example, it is possible that the three items work well as measures of 

aggressiveness but that the different observers disagree dramatically in their ratings. 

Despite the potential importance of such differences, CTT cannot tease apart 

multiple h1cets of the measurement process. An approach called generalizability 

theory (G theory) allows us to separate the effects of multiple !�JCets and to adjust 

measurement strategies accordingly. 

In this chapter, we present the logic and process of a psychometric analysis based 

on generalizabilit y theory ( Cronbach, Gieser, Nanda, & Rajaratnam, 1972). First, we 

outline some of the basic concepts in (; theory, and we distinguish them from err. 

Second, we present two examples of a (; theory analysis, explaining the rationale, 

calculation, and interpretation of the process. The first example is relatively simple, 

and it is intended to introduce the process of G theory analysis and to illustrate 

its parallels with Cl"l'. The second example is more complex, and it illustrates the 

greater tlexibility of<; theory. Finally, we will describe several issues that affect the 

process and interpretation of analysis based on c; theory. 

Multiple Facets of Measurement 

As a psychometric framework, (; theory is well suited for complex measurement 

strategies in which multiple beets might affect measurement quality. This is a fun

damenta I <IIH.l potentially valuable difference between c; theory and err. 

Variability in psychological measurements might be created by many different 

fiJCcts of the measurement strategy, and these facets might in turn affect the mea

sure's quality. For example, Dr. Johnson might be concerned about the number of 

items, the number of observers, and the way in which these two beets combine to 

affect measurement quality. 
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Recall from Chapter 5 that, from the perspective of en� total variance in a 

measure's observed scores is decomposed into only two components: true score 

variance and error variance (see Equation 5.3 ). In CT'I', error variance is viewed 
as undifferentiated, amorphous, and monolithic (Brennan, 2001; Cronbach et al., 

llJ72). That is, C:TT cannot differentiate the effects of multiple beets, such as 

items and observers-they arc all pooled into a single "measurement error." Thus, 

Dr. Johnson's improved measurement strategy will produce nine ratings of each 

target participant-three observers each rating three items. From the perspective of 

CIT, these nine ratings can only be treated as nine "tests" of aggression. 

In contrast, from the perspective of (; theory, total variance in a measure's 

observed scores can be decomposed into many components or beets, depending on 

the design of the measurement strategy. Perhaps most crucially, measurement error 

can be differentiated into many beets. That is, G theory can be used to investigate 

the effects that different aspects of a measurement strategy have on the overall qual

ity of the measure. There arc many theoretical and practical reasons why we might 

wish to differentiate among various sources of measurement error. For example, 

Dr. Johnson might wish to distinguish and understand differences among observ

ers and differences among items as separable but potentially synergistic sources of 

measurement error in her improved strategy. 

For theoretical reasons, Dr. Johnson might be interested in teachers' perceptions 

of students' aggressive behavior. Therefore, she might conduct a study in which 

several adult observers watch adolescents interact with each other and rate their 

aggression. For this study, she is interested in observers' differential perceptions of 

aggression, and she might wish to disentangle this from the differences among the 

items. 

Alternatively, Dr. Johnson might have practical reasons for disentangling items 

and observers as scp;1rate fi1ccls of the measurement process. For instance, she 

might be planning a large-scale study of aggression, and she may need to prepare 

an efficient but reliable method for measuring aggressive behavior. In terms of the 

time and money required, relying on multiple observers might be more expensive 

than relying on multiple items-the inclusion of each additional observer (e.g., 

going from three to five observers) is probably more expensive and time consuming 

than simply asking each observer to rate additional items (e.g., going from three to 

five items). I lowcver, she docs not yet know the psychometric impact of adding (or 

removing) observers or items. Perhaps the overall measure of aggression would he 

improved greatly by adding more observers but might he improved only slightly by 

adding more i tcms. 

To estimate the potential benefits of various measurement strategies f(ll' her 

large-scale study, I )r, Johnson conducts a small-scale pilot study consisting of three 

items and three observers. By using the<_; theory framework to examine the pilot 

data, Dr. Johnson can evaluate the psychometric quality of various combinations 

of numbers of observers and nu1nbcrs of items (e.g., two observers each rating l(nir 

items or three observers each rating two items). That is, she can usc the inl(mna

tion from her pilot study to estimate the psychometric quality that would likely he 

obtained from alternative combinations. This inf(mnation, considered along with 

the practical costs of adding observers and/or items, can help optimize the effi

ciency and quality of the measurement strategy f(ll' her l<Irge-scale study. 
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In the language of G theory, each element of the measurement strategy is called 

a facet, and different measurement strategies are partly defined by their number of 

facets. Consider Dr. Johnson's original strategy, which included three items rated 

by one observer in one situation at one point in time. Because the strategy system

atically included more than one item, "item" is considered the only "facet" of the 

measurement strategy. That is, each item might have its own unique way of being 

rated, and a G theory analysis can be conducted to evaluate the effect of differences 

among items. There were no other characteristics of the measurement strategy 

that were systematically designed to have more than one level or form-there were 

three different items, but there was only one observer (i.e., Doris) and only one 

situation (i.e., conversation with an opposite-sex stranger), at only one point in 

time. Because there was only one observer in the original design, G theory cannot 

be used to evaluate differences among observers. Similarly, because there was only 

one situation in the original design, G theory cannot be used to evaluate differences 

among situations. However, because there were three different items included in the 

design, G theory can be used to evaluate differences among items. With only one 

characteristic of the measurement strategy (i.e., items) that has more than one level, 

Dr. Johnson's original design is considered a one-facet design. 

More complex measurement strategies have multiple facets. Dr. Johnson's 

improved strategy included several different items and several different observ

ers (i.e., Doris, Ken, and Tim). This improved strategy is a two-facet design, and 

Dr. Johnson can evaluate the differences among observers as well the differences 

among items. This improved strategy would allow several interesting and poten

tially important psychometric questions, as we will illustrate later. For an even more 

complex design, Dr. Johnson might observe participants in two situations: (I) a 

conversation with an opposite-sex stranger and (2) a conversation with a same-sex 

stranger. For this study, she might ask the three observers to rate participants on 

each of the three items in each of the two situations. This, more complex design 

would have three facets-items, observers, and situations. Again, this three-h1cet 

design would allow an even greater number of interesting and potentially impor

tant questions, beyond those allowed by a two-facet design. 

Generalizability, Universes, and Variance Components 

As the name implies, the concept of generalizability is at the heart of G theory. 

Briefly, measurement quality is evaluated in terms of the ability to make inferences 

from (a) scores based on a limited number of observations to (b) scores based on a 

nearly unlimited number of observations. 

When a psychological or behavioral variable is measured, only a limited num

ber of observations are made. For example, Dr. johnson's original measurement 

strategy included only three items-hostile, belligerent, and angry. From the typi

cal perspective of G theory, the important issue is the degree to which the scores 

obtained from the limited number of observations included in a measure represent 

the scores that would be obtained from a large "universe" of observations. In a sense, 
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Dr. Johnson's three aggression items are a sample from the entire set or universe of 

items that rd1ect aggressive behavior. There are many other behavioral items (e.g., 

confrontational, antagonistic, combative, etc.) that could have been included in her 

"aggression" measure, and it is possible that different items would work somewhat 

differently for her study. Thus, she needs to be concerned about the degree to which 

the specific items included in her study might be representative of the many other 

items that could be used to measure aggression. Although Dr. Johnson used only 

three items, she would like to assume that these three items will produce scores that 

are representative of or generalizable to or consistent with the scores that would be 

obtained if all possible "aggression" items had been used. 

In this way, G theory can be seen as an extension of domain-sampling theory, as 

discussed in Chapter 5. That discussion described the concept of a domain of items, 

and reliability was derived fi·om this concept. Similarly, G theory is based on the 

notion of a universe of items (or other methods of measurement), and reliability is 

framed in terms of our ability to generalize from a small set of items to a score that 

would be obtained by using an entire universe of items. 

As another example, consider scores made in physical competitions such as 

Olympic figure skating. In the current scoring system f(H· Olympic figure skating, 

ratings from only nine judges are used to score the competitors' performances 

(U.S. Figure Skating, 20 12). The nine judges are chosen because of their qualifica

tions, but they might be seen as a small sample from the large group of qualified 

judges from around the world. Furthermore, fi·mn the perspective of G theory, the 

scores obtained through the nine judges should represent the scores that would be 

obtained if all possible qualified judges were to observe and rate the performances. 

That is, we would like to believe that the scores generalize to something beyond the 

idiosyncratic perceptions of the nine people who happened to be selected as judges. 

In our earlier discussion of reliability (Chapters 5-7), we emphasized the concept 

of consistency, which can also be seen as an important concept in G theory. Earlier, 

we discussed reliability as the consistency between observed scores and true scores, 

and we showed that reliability is estimated ti·om the consistency among items on a 

test. From the perspective of G theory, Dr. Johnson is interested in the consistency 

between the scores on her three-item measure of aggression and the scores that 

would be obtained from a measure made of the entire universe of aggression items. 

More to the point, Dr. Johnson is interested in the degree to which the variability 

in individuals' lest scores is consistent with the variability in their "universe" scores. 

In a G theory analysis, estimates of generalizability arc based on variance C0/11-

poncnts representing the degree to which differences exist in the "universe" for 

each element of the design (Shavelson & Webb, 1991 ). For example, one variance 

component represents the variability among the Llrge set (i.e., the population) 

of people from which the observed target participants were drawn. Por an even 

deeper understanding of variance components, imagine that a participant receives 

a score on every aggression item ti-om the cnt ire universe of aggression items. This 

hypothetical score is the participant's "universe score" because it is based on the 

entire universe of items. Now imagine that each person in the population received a 

universe score (again, based on the entire universe of aggression items). A variance 

component is the variance of universe scores within the population of individuals. 
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The sizes of variance components have important implications for measurement 

design and quality. More specifically, the size of a facet's variance component imli

cates the degree to which it has an impact on observed scores. If a variance compo

nent is relatively large, then that facet has a relatively large impact on scores. That is, 

if a facet has a large variance component, then the different levels of that beet tend 

to produce different scores on the measure. t:or example, if Dr. Johnson's analysis 

shows that "item" facet in her pilot study has a relatively large variance component, 

then she would infer that different items arc interpreted differently-that is, that 

the items tend to dif!Cr substantially in the ratings that they elicit. It might be the 

case that "hostile" simply tends to be rated lower than "belligerent" for some reason. 

Thus, the items seem to be working somewhat differently as indicators of aggres

sion. Moreover, this would imply that a different set of items might elicit dramati
cally different ratings of aggression. 

Coing further, variance components can have important implications for the 

psychometric quality of a measurement strategy. For example, if Dr. Johnson's anal

ysis reveals a relatively large estimated variance component for the item facet, then 

she might have concerns about using only three items in her measurement design. 
That is, a large variance component would mean that items diller robustly. Thus, if 

she uses only a small number of items in her measurement design, then she might 
obtain scores that have poor gcneralizability. In other words, she might obtain 

scores that would differ substantially from scores that would be obtained if she 

used a different set of items, or from the "universe" scores that would be obtained 

if she used all possible items (which is, of course, only a theoretical possibility). Of 

course, this raises question such as "If the three original items are poor as a set, then 

which three items could be used instead? And is three even enough?" Perhaps she 

needs to usc a larger number of items in order to get a closer approximation to the 

universe of possible items. 

As we mention below, we arc primarily interested in the relative sizes of the 

variance components in an analysis. That is, when estimating gcncralizability and 

psychometric quality, our results arc affected most heavily when some variance 

components arc much larger than others. As we noted earlier in the book (Chapter 

3) the absolute size of a variance term is inherently ambiguous because it depends 

on the magnitude of the effect and on the scale of measurement. What we men

tioned with regard to the simple variance statistic in ( :hapter 3 also applies to "vari

ance components" inc; theory. 

G Studies and D Studies 

(; theory can be used for many kinds of analyses, but a basic c; theory analysis is 

a two-phase process. In the first phase, variance components are estimated from 

data collected through a measurement strategy of interest. In this phase, the factors 

affecting observed score variance (and thus affecting gencralizability) arc identified, 

and their clfccts can be estimated. For example, Dr. Johnson can estimate the degree 

to which the ratings of targets' aggressiveness are affected by differences among 

target participants, differences among items, and differences among observers, and 

the ways in which these facets interact with each other (e.g., the degree to which 
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the observers use the items differently). This phase is often known as a G study 

because it is used to identity the degree to which the various fi1ccts might affect the 

gcneralizability of the ratings (!vlarcoulides, 1996). 
1n the second step of a G theory analysis, the results of the first step can be 

used to estimate the generalizability of various combinations of the l�1cets. Because 

these estimations are the basis for making decisions about future measurement 

strategies, this second step is often known as a I) study ( !vlarcoulides, 1996 ) . For 
example, Dr. Johnson can conduct a J) study to estimate the number of items and 

observers that would be needed to obtain a gencralizability of .RO f(lr judgments of 

aggressiveness based on observations of behavior. It might be difficult or expensive 

f(lr Dr. Johnson to increase the number of observers that can contribute ratings. 

Therefore, she might be very interested in estimating the number of items that 

would be required to obtain a particular generalizability, based on a design with a 
small number of observers. On the basis of these estimates, she can make a well
informed decision about the optimal measurement strategy to adopt. 

Conducting and Interpreting Generalizability Theory 
Analysis: A One-Facet Design 

Our first example illustrates the logic, computations, and interpretation of a (; 

theory analysis of a relatively simple measurement strategy. For this example, we 

will f(xus on Dr. Johnson's original design, in which participants arc rated by an 

observer using three items. As described above, this is a onc-fi.1cet design because 
there is only one clement with multiple levels that differ in a systematic way. That is, 

"item" is a beet because the design includes several items. Again, there are no other 

clements of the measurement strategy that vary systematically-then: is only one 

observer, only one situation, only one point in time, and so on. Although we will 

use this simple measurement strategy to begin illustrating(; theory, it could also 

be examined through C'l"l'. Thus, we will usc this example to show how C theory 

parallels CIT in the simple case of a one-h1cet design. 

Imagine that Dr. johnson collected the data in ' l �lb lc Ll.l. In this example, five 

target participants arc observed by Doris, who mtcs each participant on three 

items associated with aggression. Ratings arc made on l 0-point scale in which high 

scores indicate greater aggressiveness. 'l(l obtain an overall aggressiveness score f(lr 

each target, l )r. Johnson plans to avnagc across the three ratings for each target. 

Again, l )r. Johnson hopes that the differences in the overall aggressiveness scores 

em he generalized to the "universe scores" that would be obtained if partiLipants 

Wl'l"e rated on the entire universe of aggressiveness items. As described earlier, a 

key goal of the(; theory analysis is to estimate this gencralizability. 1\ high kvcl of 

generalizahility would mean, roughly speaking, that the scores based on three items 

arc likely to he similar to the scores that would be based on all possible aggression 

items. Moreover, it would mean that there arc minimal differences among her three 

items, and those differences do not produce much measurement error. To begin the 

analysis, we must examine the bctors affecting the ratings ;md, consequently, the 
psychometric quality of the scores. 

\ .. 
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Table 13.1 Example Data for One-Facet Generalizability Theory: 
Ratings of Five Targets on Three Items 

Item 
Target Hostile Angry Belligerent Target Mea� 
Ann 3 3 3 3 

Bob 2 1.3 

Carolyn 3 3 4 3.3 

Drew 3 5 5 4.3 

Eleanor 3 7 6 5.3 

Item mean 2.60 3.80 4.00 

Phase 1 : G Study 

For the first phase of a G theory analysis (the G study phase), researchers gener
ate estimates of variance components for each of the factors affecting the ratings. 

Typically, researchers can usc analysis of variance (ANOVA), which is available in 

all popular statistical software packages (alternative variance decomposition proce
dures, such as SAS's VARCOMP procedure, will also produce these values). As you 

may know, AN OVA is a statistical procedure that is commonly used in experimental 

research. The purpose of AN OVA is to examine the variability within a distributi011 
of scores (e.g., ratings of participants' behavior) and to tease apart or "decompose" 

the degree to which the variability is associated with various factors of the measure
ment process (e.g., target participants, items). 

Dr. johnson conducts an ANOVA to examine the variability within the 15 rat

ings-ratings of the five participants on three items-and the results are shown 

in Table 13.2. The ANOVA allows Dr. Johnson to partition the rating data into the 

relevant effects and to estimate the variance component for each effect. 
In the case of a one-facet design, there arc three factors that might affect the 

variability in the distribution of ratings. One hKtor is, of course, the extent to which 

Table 13.2 Analysis of Variance and Generalizability Results for 
Behavioral Observation: Example Data 

··------

Sum of Mean Variance Proportion 
Effect df Squares Squares Component of Variance 

�----

'l�1rgct 4 27.067 6.767 1.967 .608 

Item 2 5.733 2.867 0.400 .124 

Residual 8 6.933 0.867 0.867 .268 

'lbtal 14 39.733 3.233 1.000 
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targets differ in their average level of aggressiveness. Notice in 'Etblc 13.1 that, aver

aged across the three items, Ann's average aggressiveness score (3.0) is lower than 

Drew's ( 4.3 ). This suggests that Ann generally behaved less aggressively than Drew 

did. The variability among targets' average aggressiveness scores reilects the degree 

to which target participants differ in aggressiveness. All else being equal, measure

ment quality will be best when the target participants differ from each other. As 

discussed in the earlier chapters on correlations and reliability, variability among 

participants is a key part of the measurement process. In essence, this factor is what 

Dr. johnson hopes to capture with her measurement strategy. 

The second ftctor is the extent to which items differ in their average level of 

aggressiveness. Notice in '[hble 13.1 that, averaged across target participants, "hos

tile" has a lower average rating (2.60) than "belligerent" (4.00). The variability 

among the item averages rel1ects the degree to which the items elicited different 

ratings across target participants. Thus, part of the reason why the 15 ratings difter 

from each other is because the items elicited different average ratings. 

Measurement error is the third h1ctor affecting differences among the 15 ratings 

in Table 13.1. Recall that Dr. johnson's goal is to detect clear and consistent differ

ences among her participants, but the ratings suggest that the differences arc some

what inconsistent across the items. Note in 'H1ble 13.1 that Ann is rated as equally 

hostile as Drew, but she is rated as less angry than Drew. So which person is more 

aggressive? Are Ann and Drew equally aggressive, as suggested by their same hostility 

ratings? Or is Ann less aggressive than Drew, as suggested by the t�1ct that her anger 

rating is lower than his? The inconsistency between the two items partially obscures 

the difference between Ann and Drew, so it is considered measurement error. 

For the one-facet measurement design, ANOVA produces two main effects and 

a residual (or error) term. In most experimental applications of ANOVA, we would 

conduct significance tests of the effects; however, a C theory application of AN OVA 

does not require significance tests. In fact, the results of the AN OVA, primarily the 

mean squares, arc useful for G theory only because they allow us to estimate vari

ance components. 

·r�1ble 13.2 presents the results of the AN OVA, and 'n1blc 13.3 presents the equa

tions for estimating the variance components in this design. In addition, 'l�1blc 13.2 
presents the estimates of the variance components (a' values) and the proportion 

of variance f(Jr each ctlect (the variance component divided by the sum of the vari

ance components). hll· example, the variance component for the target effect is 

6.767-.867 

3 
5.9 

3 
=1.967. 

Results reveal the degree to which each facet affects ratings of aggressiveness . 

As noted earlier, the absolute size of a variance component is difficult to interpret 
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Table 13.3 

Effect 

·n1rget 

Item 

Residual 

Equations for Estimating Variance Components in the Target 
Item Model 

Equation 
------------------------

a' = MS, - !'v!SJ(,., 
I 

/}i 

at 
= MS;- MS,(,., 

/)I 

��----�������������������--��--

because it depends on the magnitude of the effect and on the scale of measure

ment. Therefore, an effect's variance component is usually most meaningful when 

compared with the variance components of other effects in the analysis, or when it 

is viewed as a proportion of total variability. We will illustrate the meaning and use 

of these values for each effect in the design. 

The primary effect of interest is the target effect. This effect reflects the degree 

to which targets elicit different mean ratings, averaged across all items. As shown 

in 'l�lble 13.2, the estimated variance component for the target effect is the largest 

variance component of all the effects ( 1.967). In fact, differences among the target 

means account for more than 60% of all the variability in the ratings: 

1.967 
------ =.60H. 
I .967 +400+.867 

The relatively large size of this variance component (in comparison with the 
other variance components in this analysis) is good news for Dr. Johnson, who is 

interested in measuring the differences among the target participants. The target 

effect essentially is the "signal" that she is trying to detect, and its relatively large 

variance component indicates that there is a strong signa\. 

If the target effect is the signa\ that Dr. Johnson would like to detect, then we 

need also to consider the noise that potentially masks that signa\. There are two 

kinds or decisions that might be made on the basis of a (;theory analysis, and they 

treat noise or error in different ways. 'lb keep matters somewhat straightforward, 

we will now focus only on "relative" decisions, which have the closest connection 

to nHw;urement error and reliability as defined in CIT. Relative decisions (also 

known as norm-referenced decisions) concern the relative order of participants, or 

the participants in relation to each other. For example, if an honor society admits 

the top 151!--h or a group of students, then the society is interested in the rank order 

or the students, and its admissions decision is based on students' scores in relation 

to each other. '!(1ward the end of this chapter, we will briclly discuss the other type 

of decisions, which arc called "absolute" or criterion-referenced decisions. 

In the onc-t�lcet design, the residual effect is the noise that potentially masks the 

signal or the target effect. If the measurement strategy is good, then the participants 

with high scores on one item should also have high scores on the other items. More 
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technically, if there are clear differences among participants, if the items are all 
good reflections of the behavioral construct in question, and if the ratings arc not 

affected by random slates of the participants, observer, or measurement context, 

then the differences among participants should be consistently apparent across the 

items. Unfortunately, Dr. Johnson might find inconsistency in some way, which 

would indicate the noise that obscures a signal. 

Specifically, inconsistency across the items might come from three possible 

sources. First, there might not be clear differences among participants (i.e., a weak 

signal). Second, the items might not be equally good reflections of the construct. 

Third, the ratings might be affected by random stales or forces in the assessment 

context. The last two possibilities (items' relation to the construct and random 

effects) arc captured by the residual effect's variance component. In Dr. Johnson's 

data, the residual effect ( ai:,, = .!l67) is small in comparison with the variance 

component f(lr the target dlecl, reflecting only 27(J.·b of the variance. 

For a more complete perspective on the logic of(; theory, let us examine the 

main effect of items and consider why it is not considered a source of error when 

detecting differences among participants. The variance component for itc111s inch

cates the degree to which some items elicited higher mean ratings than did other 

items. J\s illustrated in 'l�Jble 13.1, the items' mean ratings (averaged across targets) 

range from 2.() to 4.0. l lowever, because Dr. Johnson is primarily interested in 

detecting the differences among the target participants, her primary psychometric 

concern is whether the items operated consistently with each other, in terms of the 

relative ordering of the targets. The bet that the items differ in the average ratings 

that they elicited is unrelated to the issue of whether the items operated comistcntly 

in terms of the relative ordering of the targets. Theref(ne, the main effect of items 

is not considered error, in terms of Dr. Johnson's ability to detect differences among 
targets. 

Phase 2: D Study 

The second phase of a (;theory analysis is often a I) study that informs decisions 

f(H· future measu rem en t sl rategies. As mention eel earlier, test users should try to 

maximize the quality and efficiency of their measurement stratq�ies, but these arc 

somewhat contradictory goals. On one hand, [)r. Johnson should include a large 

enough number of item� to ensure a high level of'gencralizability f(lr her large-scale 

study. On the other hand, she would like to include a small number of items, which 
would simplify the rating process for her observer, minimize the time needed to 

llle<V>ure aggression, and potentially even save money. 1\y conducting the[) study 

phase of <malysis, I )r. Johnson estimates the psychometric qu<dity of different mea

surement strategies, and the results can help plan a good measurement strategy for 

her large-scale study. 

To conduct a [)study, test users estimate ''coefficients of generalit.<Jbility" for 

various measurement strategies. If Dr. Johnson is interested in obtaining a mea

sure of individual differences among the target participants, then she is interested 

in "relative" generalizability coefficients. /\s mentioned earlier, a coefficient of 

generalizahility is <malogous to reliability as defined by CTT, in that it represents 
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the degree to which the observed differences among target participants are con

sistent with the differences that would be obtained if a nearly unlimited number 

of observations were obtained. Like coefficient alpha, generalizability coefficients 

can range from 0 to 1.0. In fact, one particular kind of generalizability is equal 
to coefficient alpha for some measurement designs, as we will illustrate. For her 

one-facet design, Dr. Johnson estimates generalizability coefficients for different 
numbers of items. 

Conceptually, a generalizability coefficient represents a ratio of signal and noise. 

When measuring psychological or behavioral differences among participants, the 
test user is essentially trying to detect a signal (i.e., differences among participants) 

that is potentially obscured by noise (i.e., random measurement error and other 

specific facets of the measurement strategy). There are two f�lCtors affecting the 

ability to detect a signal-the strength of the signal and the amount of noise. 

A generalizability coefficient can be seen as 

Signal 
Genera\i;rability coefficient= ---"----

Signal + Noise 

Tb estimate generalizability coefficients, test users use variance components 

obtained from the G study phase of analysis. As described earlier, the variance 

component of the target effect represents the signal that Dr. johnson is trying to 
detect, and the variance component for the residual term represents the noise that 

could be masking the signal. More specifically, to obtain an estimate of the coef

ficient of gcneralizability ( p2) for a particular measurement strategy, she obtains a 
ratio of the appropriate variance components weighted by the number of items for 

the measurement strategy: 

(13.1) 

In this equation, p� is the relative generalizability coefficient for the differences 

among targets, a; is the estimated variance component for the target effect, 0�" is 
the estimated variance component for the residual term, and n', is the number of 

items being considered. For example, Dr. Johnson can usc the variance components 
from her G study (see Table 13.2) to estimate the relative generalizability coefficient 

for her three-item measure of aggression: 

? 1.967 

p� = . .867, 
1.967 +-

3 
1.967 

1.967 +.289 

= .872. 

The relatively large size of this coefficient (well above .80) indicates that the 

three-item strategy of measuring aggression seems to be adequately generaliz

able. In f�1ct, the generalizability coefficient for the differences among targets in a 
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one-facet design is exactly equal to coefficient alpha (which you can demonstrate 

by computing u for the data in Table 13.1 ). 
Although the three-item strategy has good generalizability, Dr. Johnson might 

be interested in evaluating other measurement strategies using more or fewer items. 

Table 13.4 presents the relative gencralizability coefficients estimated ti.Jr different 

numbers of items. For example, her estimate of the relative generalizability coef

ficient that would be obtained with only two items is 

1.967 
p; = .867, 

1.967+- ·- -

2 
1.967 

1.967 + .433, 

= .819. 

'l�Jblc 13.4 and Figure 13.1 show the results of Dr. Johnson's [)study. As they 

demonstrate, gcneralizability increases as more items arc added; however, those 

increases begin to level off after three or four items. On the basis of these results, 

Dr. Johnson might decide that three items provide sufficient psychometric quality. 

Furthermore, she might decide that the potential psychometric benefit of adding 

a fourth or fifth item is not worth any additional time or efti.Ht on the part of her 

observer. 

In sum, this example illustrates G theory as applied to a one-beet measurement 

strategy. 1-lopefully, it conveys a sense of the process, logic, and meaning of G theory 

and the information that it generates. We presented a one-facet example to illus

trate some of the fundamental aspects of G theory in a relatively simple illustration 

and to show that G theory is equivalent to err for one-ti.1cet designs using relative 

gcncralizability coefficients. However, this example docs not demonstrate the true 

strength of G theory. As discussed earlier, a key difference between G theory and 

CTT is that G theory can accommodate multiple beets of measurement error. We 

turn to this in the next example. 

Coefficient 

Items ( n';) Relative ( p; ) Absolute ( m2) 
,, 

.69 .(11 

2 .82 .76 

3 .87 .82 

4 .90 .86 
5 .92 .89 
6 .93 .90 
7 .94 .92 
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.90 

c 
Q) 

·c:; 

� 
.80 

0 
(.) 

-� .70 
:0 
o:s 
.!:! 
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.60 
iii 
c 
Q) 
0 

.50 

.40 

2 3 4 

Number of Items 

5 6 7 

Figure 13.1 One-Facet Design: Relative Generalizability Coefficients as a 
Function of the Number of Items 

Conducting and Interpreting Generalizability Theory 
Analysis: A Two-Facet Design 

---------- ------ ---- --------- ------

With the ability to examine multiple facets of the measurement design simultane

ously, c; theory is a very useful alternative to CTT Many measurement designs 

might rely on more than one f�1cet of measurement, and the f�1cets might influence 

psychometric quality to differing degrees.(; theory can tease apart these influences. 

Recall that Dr. Johnson's improved strategy calls for several observers to rate 

the target participants on several items. This is an improvement over her original 

strategy because any individual observer might have unique ways of perceiving 

and inll'rpreting the targets' behavior. In fact, the one-h1cet design described above 

is limited because all the ratings were produced by only one observer-Doris. 

Although the example above showed that Doris's ratings seem to have good 

gencralizability, it is possible that Doris is a particularly perceptive and conscien

tious observer. I >r. Johnson might be concerned that most other observers would 

produce ratings with weaker psychometric quality. And if Doris cannot work on 

Dr. Johnson's large-scale study, then I>r. Johnson will need to recruit other observ

ers. 'l(l what degree arc the results of the c; theory analysis of Doris's ratings (as 

described earlier) generalizable to other observers? With these issues in mind, 

I >r. Johnson recr uited two additional observers to watch the same five target par

ticipants and rate their behavior on the same three aggressiveness items. 

·1�1ble 1.\.5 presents the data that Dr. Johnson could obtain from such a study. 

In this example, tlvc target participants arc rated by three observers using the same 

three items. The observers rated each target on each item, using a 1- to 1 0-point 



Table 13.5 Example Data for Two-Facet Generalizability Theory: Ratings of Five Targets by Three Observers Using Three Items 

Target Ken Doris Tim Target 

Hostile Angry Belligerent Hostile Angry Belligerent Hostile Angry Belligerent 
Mean 

Ann ' -, ' 3 3 3 3 :> 2.67 - -

Bob 3 2 2 4 5 3 2.44 

Carolyn ' 3 3 3 3 4 5 7 3 3.67 -

Drew 5 8 6 3 :> 5 
-

7 6 5.78 I 

Eleanor 8 9 3 i 6 4 7 9 6.67 
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scale in which high scores indicated greater aggressiveness. Again, Dr. Johnson 

plans to average across all the ratings that were made for each target. And again, she 

hopes that the differences in the observed aggressiveness scores are generali;r,ablc. 
The improved design includes two facets of the measurement strategy-items 

and observers. Thus, Dr. Johnson hopes to be able to generalize across two 

"universes." As described for the one-facet design, she hopes that the scores 

obtained from the three items in her study are generalizable to the scores that 

would be obtained from all items that could be used to measure aggression. In addi

tion, she hopes that the scores obtained from her three observers are generalizable 

to the scores that would be obtained if a huge set of observers provided ratings of 

aggression. That is, she hopes that her averaged scores arc generalizable across a 

universe of items and across a universe of observers. 

The analysis of a multiple-facet design works much like a one-facet design. 

hrst, a G study is conducted, and variance components are estimated for each 

effect related to the measurement strategy. In multiple-facet designs, as in one-facet 

designs, ANOVA is usually used to estimate the variance components. Second, a D 

study is conducted, and generalizability coefficients are estimated for various mea

surement strategies. In multiple-facet designs, generalizability coefficients are still 

estimated through an analysis of signal to noise as represented by ratios of variance 
components. 

Despite these similarities, there is an important difference between one-beet 

designs and multiple-facet designs. The difference lies in the complexity of the 

components affecting variability of the data. With each single facet added to a 

design, there are several components that are added. Recall that a one-hJCet design 

included 3 components-in Dr. Johnson's example, these were targets, items, and 

the residual. However, a two-facet design can include 7 components, a three-t:1cet 

design can include 16 components, and so on. This additional complexity adds 

complexity to the "noise" or error clement of generalizability coefficients. In this 

section of the chapter, we examine a two-h1cet design as a way of illustrating the 

important logic of more complex designs. 

Phase 1 : G Study 

Again, ANOVA is used to generate estimates of variance components for each 

t;Ktor affecting the ratings. Dr. johnson conducts an ANOVA to examine the vari

ability within the 45 ratings (5 targets x 3 items x 3 observers), and the results are 

shown in 'l�tble 13.6. She is interested in the degree to which the ratings arc affected 

by the three main effects (differences among target participants, differences among 

observers, and differences among items), the interactions among those effects, 

and random error. 'lhble 13.7 presents the equations for estimating the variance 

components in this design, and 'l�1ble 13.6 presents the estimates of the variance 

components and the proportion of variance for each effect. 

The results reveal the degree to which each effect int1uences the ratings of 

aggressiveness, and 'l�1ble 13.11 presents interpretations and examples for each effect. 

In evaluating the relative gencralizability of the coding procedures as a measure of 
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individual differences in targets' aggressiveness, four of the effects are of particular 

interest-one effect represents the signal to be detected, and three contribute to the 

noise masking the signal. T1ble 13.9 presents averages to help illustrate these effects. 

The primary effect of interest is again the lll!lill effect of the tm·gets. As men

tioned in 1�1ble 13.8, this effect reflects the degree to which the targets elicited 

different mean ratings, averaged across observers and items. The main ctlect of the 

targets reflects the differences among the target participants' averages, which range 

from 2.44 to 6.67 (see 'l�1ble 13.9). As shown in 'l�1blc 13.6, the estimated variance 

component for the target effect is the largest of all the variance components: 

32.133-1.550-2.900 + 1.417 

3 x 3  

29.1 

9 

== 3.233. 

In f�1ct, differences among the target means account for more than 50°A> of the 

variability in the ratings, which indicates that the signal is relatively strong. As in the 

one-l�1cet design, this is good news for Dr. Johnson, who is interested in measuring 

the differences among the target participants. The generalizability cocftlcicnts to be 

computed will reflect the degree to which the differences among the target partici

pants are consistent across items and observers. 

In terms of her ability to detect differences among the target participants, mea

surement error (i.e., noise) includes three eflects. These effects arc included in the 

Table 13.6 ANOVA and Generalizability Results for Behavioral 
Observation: Example Data 

Sum of 
EHect df Squares -------·---

'li1rgct 

Item 

Observer 

T1rget x 

Item 

'l�1rgct x 

Observer 

Item x 

Observer 

Residual 

4 

2 

2 

8 

8 

4 

16 

44 

128.533 

12.044 

19.244 

12.400 

23.200 

6.222 

22.667 

224.311 

Mean Variance Proportion of 
Square 

_E�"!ponent ___ "'_arianc':___ _ 

32.133 

6.022 

9.622 

1.550 

2.900 

1.556 

1.417 

3.233 

0.289 

0.439 

0.044 

0.'194 

0.028 

1.4170 

5.944 

.544 

.049 

.074 

.007 

.083 

.005 

1.000 
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Table 13.7 Equations for Estimating Variance Components in the 
Target x Observer x Item Model 

Effect Equation 
'l�1rget a2 = JvJS,- MS,"- i\11511 + MSI(n 

l 

Item 

()bserver 

'H1rget x Item 

a� = lvL\ - MS',, - !viS"' + MSn .. 
n,n, 

a;; = _lv_l_S=" -_iv_t._s='"_- _M_s=·"=' +_l'v_Js�·��{,·, 
n,n, 

a:, = MS,, - MSI(c", 
11(/ 

·1�1rget X Observer 

Item X Observer 

Residual 
n, 

a�,._.,= JvlS��." 

Table 13.8 Substantive Interpretations and Examples of the Effects in 
Generalizability Theory Analysis 

Effect 

Item (I) 

Observer ( 0 J 

T xI' 

T x 0' 

I x () 

Interpretation (the Degree to 
Which ... ) 
'l�n·gets elicited different mean 
ratings, averaged across the 3 
observers and the 3 items. 

Items elicited different mean ratings, 
averaged across the 5 targets and the 
3 observers. 

( )bservers provided different mean 
ratings, averaged across the 5 targets 

and the 3 items. 

'I\1rgets were rank ordered 
dilfercntly <HToss items, in terms 
of their ratings averaged across the 
o]J<;crvers. 

'I\1rgcts were rank ordered difiCrently 

across observers, in terms of their 

ratings averaged across the two 
itc1m. 

Items were rank ordered differently 

by the observers, in terms of the 
ratings averaged across the Lugets. 

Variance in ratings is not associated 

with <111)' of the above effects. 

Example 
'li1rgct X gets a higher average 
rating than '1\Jrget Y. 

Item I has a higher average 

rating than Item 2. 

Observer;\ gives higher average 
ratings than ( )bscrver fl. 

On Item I ,'l\1rget X was rated 

higher than 'E1rget Y, but on 
Item 2, 'l\1rget X was rated 

lower th<ln 'I\1rget Y. 
Observer;\ rates 'I>1rget X 
higher than 'I\1rget Y, but 

Observer H rates '1\uget X lower 
than '1\nget Y. 
Observer ;\ tends to rate Item 
I higher than Item 2, but 

Observer B tends to rate Item I 
lower than Item 2. 

'These terms arc considered as contributing to "error" in the relative gcneralizahility of the• 

target efkct. 
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Table 13.9 Means of Ratings 

Main effects 

Target Mean Observer Mean Item Mean 

Ann 2.67 Ken 4.20 Hostile 3.60 

Bob 2.44 Doris 3.50 Angry 4.87 

Carolyn 3.67 Tim 5.10 Belligerent 4.27 

Drew 5.78 

Eleanor 6.67 

Interactions 
Target x Observer Target x Item Observer x Item 

Target Ken Doris Tim Target Hostile Angry Belligerent Observer Hostile Angry 

i\nn 2.00 3.00 ��. 00 i\nn 3.00 3.33 2.00 Ken 3.60 4.60 

Bob 2.00 1.33 4.00 Bob 2.00 3.00 2.33 Doris 2.60 3.80 

Carolyn 2.67 3.33 5.00 Carolyn 3.00 4.33 3.33 Tim 4.60 6.20 

Drew (>.33 4.33 6.67 Drew 5.00 (>.67 5.67 

Eleanor 8.00 5.33 6.67 Eleanor 5.00 7.00 8.00 

numerator of the variance component for the target effect ( JvL\,, MS, .. , and iVISg,J, 
and they will affect the generalizability coefficient for the target effect. First, the 

'Eu·get x Item interaction reflects the degree to which the targets were rank ordered 

differently across the items. A large ·ntrget x Item interaction would indicate that 

the items operate somewhat inconsistently across the targets, thus potentially 

clouding the differences among the targets. That is, a large ·ntrgct x Item interac

tion would indicate that the difference between the targl'ts is inconsistent across 

the items. ·ntble 13.6 shows that the ·ntrgct x Item interaction is relatively small in 

Dr. Johnson's data (accounting ti.lr less than 1% of the variance), which is reflected 

in the averages in ·r�tble 13.9. Note, for example, that Drew scores noticeably higher 

than Carolyn on all three of the items. Drew's average hostility score (averaged 

across all three observers) is 2 points higher than Carolyn's average hostility score 

(i.e., 5-3= 2), his average anger score is 2.34 points higher than her average anger 

score, and his average belligerence score is 2.34 points higher than her average bel

ligerence score. Thus, the difference between Drew and Carolyn is quite consistent 

across the three items. t>ut another way, the difTercnces among the targets tlo seem 

generalizable across the items, and Dr. Johnson concludes that there is very little 

"noise" created by the small 'lbrgct x Item effect. 

;\ second source of error in this example is the 'l�u·get x Observer interaction, 

which reflects the degree to which the observers provided different rank orderings 

of the targets. The Target x Observer averages in 'l�tblc 13.9 illustrate this effect. 

For example, notice that the three observers arc inconsistent with each other in 

their judgments of the difference between Ann and Bob. /\I though Doris sees ,\nn 

Belligerent 

4.40 

1.00 

4.40 

373 
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as more aggressive than Bob, Ken sees no difference between the two, and Tim sees 

Ann as less aggressive than Bob. Specifically, Doris's average rating of Ann is 3.00 

(averaged across the three items), and her average rating of Bob is 1.33. In contrast, 

Ken's average rating of Ann is 2.00, as is his average rating of Bob. Finally, Tim's 

average rating of Ann is 3.00, and his average rating of Bob is 4.00. If Dr. Johnson's 

goal is to detect a difference between Ann and Bob, then the inconsistency in the 

observers' judgments about the difference between Ann and Bob is a problem. 

Again, the primary goal in this measurement example is to obtain a clear and 

consistent measure of the differences among the target participants on aggres

siveness scores (i.e., to obtain a generalizable measure of individual differences in 

aggressiveness). With this goal in mind, the Target X Observer effect contributes to 

error because a large effect would indicate that the relative ordering of the target 

participants is 110t consistent or generalizable across the observers. As shown in 

Table 13.6, the Ti1rget x Observer interaction accounts for approximately 8°/il of the 

variability in the ratings. 

A third source of error is reflected in the residual term, which represents two 

elements that might produce noise in the measurement. Because the observers pro

vided only one rating of each target on each item (in each situation), Dr. Johnson 

cannot separate the three-way interaction between targets, observers, and items 

from pure "error" variance. Both of these components would be considered 

measurement error because they would contribute to ambiguity/inconsistency in 

terms of the rank ordering of targets across the observers and items. As 1hble 13.6 

indicates, the residual accounts for 24% of the variance in the ratings. 

For an even more complete understanding, a discussion of the three remaining 

effects is useful. T hese effects are not considered to be measur ement error because 

they do not compromise the rank ordering of the targets. T he main effect of observer 

indicates the degree to which some observers provided higher average ratings than 

other observers-the degree to which some observers tend to see people as gener

ally more or less aggressive than do other observers. As illustrated in 'l�1ble 13.9, 

the observers' average ratings (averaged across targets and items) range from 3.5 to 

5.1. This suggests that Doris tended to view the target participants as less aggres

sive in general than did Tim. Importantly, the fact that the observers differed in 

their ratings of aggressiveness in general is unrelated to the issue of whether the 

observers were consistcn t with coclz ot lzer in terms of the relative ordering of the 

targets. Therefore, the main effect of observers is not considered error, in terms of 

Dr. johnson's ability to detect differences among the targets. Note that the Target x 

Observer intcr;Jction discussed earlier indicates the degree to which target differ

ences arc inconsistent across the observers (which would be considered measure

ment error), but this is statistically and conceptually separate from the possibility 

that some observers provided higher ratings than others, in general, across all the 

targets. 

/\s described for the onc-f�1cct design, the main ej(ect of item indicates the degree 

to which some items elicited higher mean ratings than did other items. As illus

trated in 'H1ble 13.9, the items' mean ratings (averaged across targets and observers) 

range fi·ozn 3.6 to 4.9. Again, the fact that the items differed in the ratings of aggres

siveness that they elicited is unrelated to the issue of whether the items operated 
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consistently in terms of the relative ordering of the targets. Thercf(Jrc, the nwin 
effect of items is not considered error, in terms of Dr. Johnson's ability to detect 
differences among the targets. 

Enally, the Item x Observer interaction indicates the degree to which the observers 
differed in their average rank orderings of the items, as averaged across the targets. Note 
that Doris's average rating f(x angry (3.80) is lower than her average rating for belliger
ent ( 4.00), but Ken's ratings are in the opposite direction-his average rating hn angry 
(4.60) is higher than his average rating f(x belligerent (4.40; see 'Jhblc 13.9). Thus, the 
observers seem to be interpreting and using these items in dilkrent ways. Although 
Doris and Ken seem to have used these two items differently in general, this difference 
should not affect the specific differences among the target participants. Therefore, the 
item-by-observer interaction is not considered to be measurement error, in terms of 
Dr. Johnson's ability to detect a clear and consistent rank ordering of the targets. 

G theory's differentiation of measurement error allows Dr. Johnson to under
stand the degree to which the targets' mean scores (i.e., the measure of individual 
differences in aggressiveness) arc affected by each t:1cet of the measurement strat
egy-observers and items. She can then use the variance components in 'Iilble 13.6 

to make decisions about the number of observers and the number of items that 
might be used in future research. 

Phase 2: D Study 

As described for the one-facet design, the relative generalizability coefficient 1s 
analogous to reliability in CTT. And again, it can be seen as a ratio of signal and noise: 

(_. I' l ·t· f'f' . Signal 
.cncra 1za Jl 1ty coe 1oent = ---"'----

Signal + Noise 

The only difference between the one-facet and two-t�Ket designs is the makeup 
of noise. More specifically, the relative gcncralizability coefficient for a particular 
measurement strategy is 

( 13.2) 

In this equation, p� is the relative gencralizability cocllicient f(x the differences among 
targets, and 0� is the estimated variance component for the target effect (i.e., the 
"signal" to be detected). The remaining clements of the equation constitute the 

"noise" that is potentially obscming the signal. Specifically, 0;', is the estimated 
variance component for the Target x Item effect, 0�" is the estimated variance com
ponent f(Jr the 'I�n·gct X Observer effect, 0�(c-,, is the estimated variance component 
for the residual term, n', is the number of items being considered, and n',. is the 
number of observers being considered. 

For example, Dr. Johnson can usc the variance components to estimate the gcn
eralizability for a measurement strategy in which two observers usc only one item: 
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' 3.233 
p- = ----;;-;;-;�--;;--=-:---:--:--;-;:-' 

3 21' 
0.044 0.494 1 .417 

, 
. -->+ + +-

1 2 1 x2 
3.233 

3.233+0.999
, 

= .764. 

This indicates that she would likely obtain a moderate level of generalizability, 

but she might consider increasing the number of observers and/or the number of 

items. 1:or example, her estimate of the generalizability coefficient that would be 

obtained with two observers and two items is approximately .84: 

3.233 
p; = --

-
-��

-
��-�� 

3 73
' ().()�14 0.494 1.417 , 

·- .>+ + + 
2 

3.233 

3.233 + 0.623
, 

= .838. 

2 2X2 

Equation 13.2 reveals the core advantage of a gencralizability approach 

over a CTT approach to measurement. From the CTT perspective in which 

error is undifferentiated, there is no ability to gauge the separate effects of 

observer s  and items and thus no ability to evaluate different combinations of 

numbers of observers and items as separate facets of the measurement strat

egy. l l owever, the G theory perspective (i.e., Equation 13.2 along with esti

mated variance components) allows Dr. Johnson to estimate the psy chometric 

quality of various combinations of observers and items. By sy s tematically 

testing various combinations of numbers of observers and numbers of items, 

she can estimate the generalizability for various measurement strategies. This 

information, considered along with the practical costs and benefits of add

ing observers and/or items, can help optimize the efficiency and quality of a 

measut-cment strategy. 

'Ill illustrate the results of such a 11rocess, ·ntblc 13.10 and Figure 13.2 present gen

LTali;.abilit y codiicicnts estimated for various combinations of observers and items. 

These estimates arc derived from Equation 13.2, using the variance components 

reported in Ttblc U.6. The values illustrate two important points. First, Dr. Johnson 

could find the combinations of observers and items that would be estimated to 

produce a specific reliability. hlr example, an estimated reliability of .80 is obtained 

through several combinations of observers and items. Specifically, three observers 

using one item, one observer using f·lve items, and two observers using two items 

would all be estimated to provide a reliability of approximately at least .80. So if she 

desires a minimum reliability of .80, then Dr. Johnson could weigh the costs and ben

efits of each of these three combinations. Second, Dr. Johnson can see the points at 

which adding ntot-c observers and/or items produces minimal increments in reliability. 

hll· example, consider the increment in reliability associated with using tlvc observers 

instead of three. Figure 13.2 suggests that this increment would be relatively small, 

particularly considering the possible "cost" of increasing the number of observers who 

need to he recruited, trained, monitored, and so on. This kind of information might be 

useful in planning an efficient strategy filr collecting behavioral observations. 
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Table 13.10 Generalizability Coefficients Estimated Using Variance 
Components 

-----------

Items (n;) Observers ( n� ) 
· -----

3 

3 

3 

5 

5 

5 

7 

7 

7 

3 

5 

3 

5 

3 

�) 

3 

5 

Coefficient 

Relative ( P� ) 
2 Absolute ( <�t ) 

.62 .54 

.!l3 .74 

.!l!l .RO 

.77 .(18 

.91 .85 

.94 .Ill) 

.80 .71 

.92 .!l7 

.95 .91 

.!l2 .73 

.93 .88 

.% .92 
----------------------------------

Other Measurement Designs 
------ --------------------------

The examples in this discussion have included a single-facet strategy and a two

l�lcct strategy, but G theory is applicable to a variety of measurement situations, 

and there are many variations on the strategies that have been illustrated. There 

are at least four important ways in which G theory analyses can differ, and these 

differences depend on the design of the measurement strategy and the intended 

usc of the scores. 

Number of Facets 

/\s our two examples have illustrated, measurement designs can diller in the 

number of facets. Onc-1�1cct designs arc quite common in some areas of research 

and practice. ror example, the typical self-report personality questionnaire is a 

one-facet measurement strategy, with items as the only beet. Furthermore, for 

some one-hcl'l designs, G theory is equivalent to CIT. l Iowever, multiple-facet 

designs Gill be very useful for a variety of theoretical or practical reasom. As illus

trated in our examples, Dr. Johnson had practical reasons for including multiple 

observers and multiple items as two fiKL'ls of her potential measurement strategy. 

Measurement strategies could be even more complex, with more than two or three 

facets. 

As illustrated in this chapll'r, the number of beets has implications for the number 

of clfccts in the analysis. Larger, more complex designs involve more effects, which 

generate more variance components. The variance components can provide important 
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Figure 13.2 Two-Facet Design: Relative Generalizability Coefficients as a 

Function of Number of Items and Number of Observers 

intcxmation about the hKtors aftecting scores, and they are used to estimate generaliz

ability coetlicients. Apart from this complexity, the basic logic and process of G theory 

is similar across designs with fewer and greater numbers of facets. 

Random Versus Fixed Facets 

ln a G theory analysis, each facet is considered either random or fixed. This 

is a somewhat subtle dif!crence that is decided by the individual conducting the 

analysis, and the individual must make the decision for each facet. The logic and 

examples outlined in this chapter reflect random jiJcets, which are common in most 

applications of G theory. Consider the item facet in Dr. johnson's two-facet design. 

We mentioned that Dr. johnson viewed the three items as representative of a large 

universe of items that could have been selected for the study. In a sense, the three 

items are a random sample from this universe. That is, Dr. johnson would not care 

if the three items that she used were exchanged for three different aggression items 

(e.g., confrontational, antagonistic, combative). Because Dr. johnson views the 

items as exchangeable or as a random sample from a universe of items, she consid

ers the item facet to be random. 
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Other measurement designs might include fixed _f(1ccts. A facet is considered 
fixed if the individual conducting the G theory analysis docs not wish to general
ize beyond the few conditions included in the analysis. for example, Dr. Johnson 
might truly be interested in only the three items used in her study, without con
ceptualizing them as being representative of some broader set of items. If she did 
not view these items as exchangeable for other items I i.e., if she did not view the 
items as being randomly selected from a universe of aggression items), then she 
would consider "item" to be a fixed facet. In addition, a beet is considered fixed if 
all conditions of a facet are included in the analysis. For example, a developmental 
psychologist might wish to assess children's aggressiveness through questionnaires 
completed by both biological parents. In this case, "biological parent" might be 
a hlCet of the measurement design, and the psychologist might be interested in 
generalizing across both parents. l Iowever, the mother and the father exhaust the 
entire set of "biological parents," and so the psychologist cannot generalize beyond 
the mother and the father to a larger universe of biological parents. That is, the 

universe of the biological parent facet includes only two conditions-mother and 

father. And since the psychologist's study includes the only two possible conditions, 
the entire universe is represented in her study, and the f�1cet is considered tlxed. 

For a G theory analysis, the individual conducting the analyses must consider 

the fixed versus random difference f(x each beet in the design. For multiple-t�1cet 

studies, it is possible to have a mixed design in which one or more hKcts arc fixed 

and one or more facets arc random. For example, the developmental psychologist 

obtaining aggressiveness ratings from parents might have a mixed two-facet design. 

As discussed, the biological parent t�1cet should probably be considered tlxcd. 

However, if each parent rates the child on three items that were randomly selected 

from a universe of potential aggressiveness items, then the item h1cct should prob

ably be considered random. With one llxcd t�1cet and one random facet, the psy

chologist has a mixed design. 

Although the difference between fixed and random f�1ccts is somewhat subtle, 

it can have important implications for the analyses that are conducted and f(lr the 

psychometric results. There arc al least two ways in which the difference can have 

psychometric implications. 

First, the distinction between random effects and fixed effects can af!Cct the 

apparent psychometric quality of one's assessment. For example, we recomputed 

the gcneralizability coefficient (for the large\ effect) for Dr. Johnson's procedure, 

based on a two-observer, one-item design. Earlier, we estimated the coefficient 

to be p� = .7(l, based on the assumption that all facets were random. We reesti

mated this coefficient based on the assumption that the item facet is fixed while 

the observer f�Kct is random. Following the terms laid out by Brennan ( 19'!2), 
the results showed that the target effect's gcneralizability coefficient in this mixed 

design is p;
' 

= .77. That is, the estimated gcneralizahility in the mixed model is 

somewhat greater than in the fully random model. Although the difference here 

is small (.77 vs . .  76), it can be substantial. Moreover, the direction of the difference 

is typical, the generalizability from the mixed model being larger than the gcncral

izability from the r;mdom model. 
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Second and rclatedly, the distinction between random and fixed effects has 

implications for test users' ability to make broad versus narrow generalizations 

about the quality of their measures. When treating a t�1cet as random, test users arc 

conceptualizing the clements of that f1cct as a random sample from a broad uni

verse of clements. For example, if Dr. Johnson treats "items" as a random facet, then 

she is conceptualizing her particular items as being drawn from a broad universe of 
items that could be used to measure aggression. Thus, she is attempting to general

ize broadly-that is, from her particular items to that broad universe of items. In 

contrast, when treating a facet as fixed, test users are conceptualizing the clements 
of that facet in a much more narrow way, being interested only in those l�1cets, 

without regard to the larger set of items. For example, if Dr. johnson treats "items" 

as tlxcd, then she is interested only in the particular items that she chooses to use. 

Thus, she is attempting to evaluate the degree to which scores from one assessment 

might generalize to another assessment using the same item(s). 

In sum, the question of whether a given liKct should be considered random or 

fixed needs to be answered by the individual planning to use the measurement. 

That is, there is no generally correct or incorrect answer to the question. Although 

most measurement strategies arc likely to be conceptualized in terms of random 

effects, any particular measurement strategy might be used in a way that includes 

one or more fixed effects. 

Crossed Versus Nested Designs 

In a c; theory analysis with multiple facets, pairs of facets arc either crossed or 

nested. This is an important characteristic of the research design in a c; study (and 

in /\NOVA more generally) because it has implications for the effects that can be 

estimated. Our two-fi1cct example reflects two clfccts that arc crossed, which is com

mon in many applications of G theory. In this design, each of the three observers 

rated each of the three items. That is, a rating was made for each possible combi

nation of the observer facet and the item f�1cet. When data are gathered for each 

possible combination of two beets, the facets are said to be crossed. 

In contrast, a IIcstcrl design occurs when all possible combinations of two facets 

arc not included in the study. For example, Dr. johnson could have conducted a 

study in which each observer used different items-Doris might have used the 

itcms mean, quarrelsome, and angry, Ken might have used the items hostile, aggres

sive, and belligerent, and Tim might have used the items confrontational, combat
ive, and antagonistic. In this case, there arc nine items, but each observer rates only 

three. Thus, all possible combinations of items and observers arc not represented in 

the design, and we would say that items are nested in observers. 

The issue of crossing and nesting is important because it determines which effects 

can be estimated in a (; theory analysis, which affects the apparent psychometric 

quality of the measurement strategy. For example, in the two-facet design illustrated 

earlier, in which the I�Kcts are crossed, seven effects were estimated-three main 

effects, three two-way interactions, and a residual term. However, if items were 

nested in observers, then only live effects could be estimated. This design difference, 

in turn, creates differences in the way gcneralizability coefficients arc computed 
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and thus creates differences in the conclusions that can be drawn from the analyses. 

Again, a full discussion of this issue is beyond the scope of our presentation; how

ever, we believe that it is important to be aware of the distinction between crossed 

versus nested designs and to realize that the distinction can affect G theory analyses. 

Relative Versus Absolute Decisions 

As mentioned earlier, G theory can be used to make two kinds of decisions. 

Our examples focused on "relative" decisions, which concern the relative order of 

participants. Again, if an honor society admits the top 15'11• of a group of students, 

then the society is interested in the rank order of the students, and their admissions 

decision is based on students' scores in relation to each other. When tests are used 

to make relative decisions, they are often called "norm-referenced tests" (Brennan, 

2001 ). 

In contrast, "absolute" decisions arc based on the absolute level of an individual's 

score. For example, individuals attempting to enlist in the U.S. Army must take 

the Armed Services Vocational Aptitude Ballery (ASVAB), which is described as a 

measure of 

knowledge and ability in ten different areas; from math to electronics. II is 

not an IQ test, but the ASVAB is one of the ways to help you decide what job 

areas in the Army would be best for you. (hllp://www.goarmy.com/contact/ 

how_to_ join.jsp) 

The Army's recruitment website tells potential recruits that "to be considered for 

enlistment in the Army, you need to score at least a 3 1." Presumably, a score below 

31 disqualifies a recruit, but a score of 31 or greater keeps a recruit in the enlistment 

pool. Thus, the Army makes enlistment decisions partly based on a recruit's abso

lute score on the ASVAI\, not by taking some percentage of recruits. When tests arc 

used to make absolute decisions, they arc often called "criterion-referenced tests" 

IBrcnnan, 2001 ). 

In terms of estimating psychometric quality, the difference between relative 

and absolute decisions is important because it affects the way "noise" or error is 

conceived. That is, it affects the number of variance components that contribute 

to error when computing generalizability coertlcients. In general, error consists of 

fewer components in relative decisions than in absolute decisions, and thus relative 

decisions lend to have larger generalizability coefficients. 

!:or the one-t;1cet example described earlier, absolute error variance (error vari

ance for absolute decisions) includes one more component than relative error 

variance (error variance for relative decisions). Specifically, the generalizability 

coefficient for absolute decisions (<1>\ sometimes called an index of dependability) 

in the one-facet example is 

ql;' = ___ a..:.; __ 

()� + G, j- ()Rc> 
1 n' n' 
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Notice that this equation includes the variance component for the item effect, 

which was not included in the generalizability coefficient for relative decisions (see 

Equation 13.1). For a measurement strategy based on three items, the estimated 

absolute generalizability coelficient is .823: 

f = 
1.967 

I 

\.967 
+ �.4()_0 + 0.867 • 

1.967 
3 3 

1.967 + 4.22' 
=.823. 

This coefficient is somewhat lower than the coefficient that was estimated for a 

relative decision ( p; = .87). The final row in 1�1ble 13.4 presents absolute generaliz

ability coefficients for various numbers of items. 

For the two-facet example described earlier, absolute error variance includes 

three more components than relative error variance. Specifically, the generalizabil

ity coefficient for absolute decisions in the two-facet example is 

Notice that this equation includes the variance component for the item effect, 
the observer effect, and the Item x Observer interaction, none of which were 

included in the generalizability coefficient for relative decisions (sec Equation 13.2). 
For a measurement strategy based on two items and two observers, the estimated 

generalizability coefficient for absolute decisions is .76: 

3.233 
<�>> 23� 0.289 0.439 0.044 0.494 0.028 1.417 ' 3. -'+ - + + - - - + + - + 

-

2 2 2 2 2x2 2x2 
3.233 

3.233 + 0.944' 
=76. 

This coefficient is somewhat lower than the coefficient that was estimated for a 

relative decision ( p; = .84 ). The final row in ·n1blc 13.10 presents absolute general

izability coefficients for various numbers of items in the two-facet example. 
It is worth noting that, in most research contexts, researchers are interested in the 

"relative" perspective rather than the absolute perspective. That is, they are interested 

in understanding the relative differences in participants' scores on a measure-why 

some people have relatively high scores and why some people have relatively low 

scores. Researchers arc less interested in participant's absolute scores on the tests. For 
example, they are not interested in understanding why Ann has an average aggres

sion score of 2.67 and why Drew has an average of 5.78 (see Table 13.5). Rather, 

they arc more interested in understanding why Ann is approximately 3 points less 
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aggressive than Drew-what makes her less aggressive and what arc the implications 
of the difference in their scores. Thus, researchers will generally be interested in the 
"relative" perspective and in gencralizability coefficients. 

In sum, the difference between relative and absolute decisions can have impor
tant effects on the size of generalizability coefficients. By defining error in different 

ways, relative and absolute decisions include different variance components in error 

variance, which in turn creates differences in the resulting gcneralizability coef

ficients. Without worrying too much about why this difference exists or how the 

exact equations arc generated, it is important to be aware of the differences and to 
be aware that absolute decisions arc usually associated with greater error and less 
gcneralizability. 

G theory expands the traditional perspective on psychometric quality in at least two 

ways. hrst, it extends our conceptualization of reliability to include the possibility 

that multiple h1ccts might systematically affect the quality of a measurement strat

egy. Second, it provides the statistical tools to estimate the effects of each facet and 

to plan measurement designs that optimize quality and efficiency. 

The current chapter outlined the basic logic as related to the most prototypi
cal G theory design-relative decisions based on random facets that arc crossed. 

However, it also briefly discussed alternative design issues that have implications 
for the logic, calculation, and interpretation in G theory. In sum, G theory is a flex

ible and powerful psychometric perspective that expands CTT in important ways. 

Summary 

Suggested Readings 

The classic presentation of gencralizability theory is: 

Cronbach, I.. )., Clcser, G. C., Nanda, II., & Rajaralnam, N. ( 1972). '/'he dcpcllllahility of 
bchaviomiiiJCIISIIH'IIJCIIIs: Theory o(gCilcmliza/Jility.fi)J' scores and profiles. New York, 
NY: John Wiley. 

· 

The eminent psychometrician Lee Cronbach prepared a commentary on reliability 

theory and the widely used coefficient alpha nearly 50 years after its introduction. 

This commentary, as well as an argument that generalizability theory provides a 

more comprehensive perspective on reliability, is presented in: 

Cronbach, L. )., & Shavclson, R. ). (2004). My current thoughts on cncfficicnt alpha and 
successor procedures. l:'d11ml ional 1111d Psychologiml Mc£1SIIrci/ICIII, (l'i, 39 I--ll R. 

A rather technical but clear and thorough discussion of gcncralizability theory is 

presented in: 

Brennan, R. L. (200 1 ) . c;cncmlizahility theory. New York, NY: Springer-Verlag. 

A widely used conceptual introduction to gcncralizability theory is presented in: 

Shavelson, R. )., & Webb, N. M. ( 1991 ). c;cncmlizal,ility theory: i\ pri111cr. Newbury !'ark, 
CA: Sagc.Four Scales of Measurement. 
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CHAPTER 14 

Item Response Theory and 
Rasch Models 

I
tem response theory (IRT) is another contemporary alternative to classical test 

theory (CTT). Although the roots of IRT have a long history (e.g., Lord, 1953; 

Rasch, 1960), JRT has emerged relatively recently as an alternative way of con

ceptu<liizing and analyzing measurement in the behavioral sciences. IRT is more 

compul<ltionally complex than CTT, hut its proponents suggest that this complex

ity is offset by several important advantages. 

In this chapter, we present an overview of IIU, with the goal of outlining the 

conceptual basis of IRT in a relatively accessible manner. In many areas of contem

porary psychological testing, IRT is an increasingly central part of test develop

ment and evaluation. Thus, for readers who wish to be f�uniliar with some of the 

most contemporary approaches to test development and psychometrics, IRT is an 

important topic. Certainly, we won't discuss IRT in all its complexity and scope; 

indeed, IRT can he quite tedmically complex, and its scope is increasing consis

tently. Rather, our goal is to provide a solid overview of some of the most funda

mental concepts of IRT and to do so in a way that will be relatively straightf(mv<lrd 

and conceptual. 

We will describe some of the most fundamental concepts in I RT, including the 

idea of item parameters, measurement models, and test inf(mnation. vVc'll usc 

cx<unples to help clarify these concepts, hopefully enhancing readers' overall grasp 

of I RT. 1-'inally, we will discuss several of the general ways in which Ill: I' has been 

used in psychological testing, demons! rating the breadth and a ppl icabil it y of this 

cmergi ng psychometric approach. 

385 
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Factors Affecting Responses to Test Items 

· 1 · · · . ..rson's At Its 1eart, IRI IS a psychomctnc approach emphasizing the fact that a P"' d l . I . . . fl I I  1· . f I · 1· · I I il11 lY response to a part1cu ar test Item IS 111 uencec lY qua I ties o t 1e Inc Ivic ua . 
I. . f I . n d I . . . .  . c obtam-qua I ties o t 1e Item. uase on t 11s perspective, IR I provides procedures . or � I . 

. . t- . l . ,. . I I . I 
. . r�:. t ldt mg 111 ormation a lout 111c IV I<. ua s, Items, anc tests. Advocates of I R [ st<J 

1 I I l . f' . 1 . . 1 . . . 0ducec 
t 1ese procec ures pr()( uce m ormation t 1at IS supenor to t 1e mformatJon pr 
by CT'l'. As we shall see, various forms of IRT exist, representing different deg�-��s 

f. I . l'f'f' ]' b'l' . . . I .  IRI IS o comp ex1ty or c 1 erent app IGI 1 1ty to vanous kinds of tests. In t liS way, 
indeed flexible and broad. 

I . I S k t' . f. I . I l .1. I. d to the magme t 1at uzy ta es a lYe-Item test o mat JematJGl a )J 1ty. Accon mv 

most basic form of IRT, the likelihood that Suzy will respond correctly to IteJ11 1 o_n 
the test is affected by two things. If Suzy has high mathematical ability, then 5]1e will 

have a relatively high likelihood of answering the item correctly. In addition, if Item 

I is difficult, then Suzy will have a relatively low likelihood of answering the ite1� cor

rectly. Therefore, the probability that she will respond correctly to I tem I is ,,ffccted 

by her mathematical ability and by the difficulty of Item 1. T his logic can be eJ(tended 
. I . I 1· I I . I l I l · f. 1· ll''l' · that a to vanous <Inc s o · psyc 10 og1ca measures, mt t 1e JasJC orm o · , state5 . 

, 
' . . f'f· d b  I . 1· ·I I' · I I ( Suzy s person s response to an Item Is a ecte y t 1e me IVJC ua s trait eve e.g., ' 

mathematical ability) and the item's difficulty level. More complex forms of IRT 
include additional factors (or parameters) affecting a person's responses to itelns. 

Respondent Trait Level as a Determinant of Item Responses 

One factor affecting a person's probability of responding in a particular way to 
an item is the individual's level on the psychological trait being assessed by the item. 
For example, a person who has a high level of mathematical ability will be more 
likely to respond correctly to a math item than will a person who has a low ]eve! of 
mathematical ability. Similarly, a person who has a high level of extraversion will be 
more likely to endorse or agree with an item that measures extraversion than will 
a person who has a low level of extraversion. An employee who has a high ]eve! of 
job satisbction will be more likely to endorse an item that measures job satisfaction 
than will an employee with a low level of job satishJCtion. 

Item Difficulty as a Determinant of Item Responses 

An item's level of difficulty is another f�1ctor affecting a person's probability of 
responding in a particular way. J\ math item that has a high level of difficulty will be 
less likely to be answered correctly than a math item that has a low level of difficulty 
(i.e., an easy item). For example, the item "What is the square root of 10,000?" is 
less likely to be answered correctly than is the item "What is 2 + 2?" Similarly, an 
extraversion item that has a high level of difficulty will be less likely to be endorsed 
than an extraversion item that has a low level of difficulty. 
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At first, the notion of "difficulty" might not be intuitive in the case of some 

psychological attributes. For example, it might be odd to think of a personality 

inventory as having "difficult" items, but consider these two hypothetical items that 

you might find on a questionnaire to measure extraversion:"[ enjoy having conver

sations with friends" and "I enjoy speaking before large audiences." Assuming that 

these two items are validly interpreted as measures of extraversion, the first item 

is, in a sense, easier to endorse than the second item. That is, it is likely that more 

people would say that it is enjoyable to have a conversation with friends than to 

speak in front of a large audience. Similarly, in the context of job satisf�1ction, the 

statement "My job is OK" is likely "easier" to agree with than is the statement "My 

job is the best thing in my life." 

Although they are separate issues in an IRT analysis, trait level and item diffi

culty arc intrinsically connected. In I�JCt, item diftlct�lty is conceived in terms of trait 

level. Specifically, a difficult item requires a relatively high trait level to be answered 

correctly, but an easy item requires only a low trait level to be answered correctly. 

Returning to the two mathematical items, stlldcnts might need to have a ninth

grade mathematical ability in order to have a good chance of answering correctly a 

square root question. In contrast, they might need only a second-grade mathemati

cal ability to have a good chance of answering correctly an addition question. 

The connection between trait level and difficulty might be particularly useful for 

understanding the concept of item diftlculty in personality inventories or attitude 

surveys. Recall the extraversion items mentioned earlier: "I enjoy having conversa

tions with fi·iends" and "I enjoy speaking before large audiences." We suggested that 

the first item is easier than the second. Put another way, the first item requires only 

a low level of extraversion to be endorsed, but the second would seem to require 

a much higher level of extraversion to be endorsed. That is, even people who arc 

h1irly introverted (i.e., people who have relatively low levels of extraversion) would 

be likely to agree with the statement that they enjoy having conversations with their 

fi·icnds. In contrast, a person would probably need to be very extraverted to agree 

with the statement that he or she enjoys speaking in front of a large audience. 

In an IRT analysis, trait levels and item difficulties arc usually scored on a 

standardized metric, so that their means arc 0 and the standard deviations arc I. 

T hcrcf(Jre, a person who has a trait level of 0 has an average level of that trail, and 

a person who has a trait level of 1.5 has a trait level that is 1.5 standard deviations 

above the mean. Similarly, an item with a difficulty level of 0 is an average item, and 

<Ill item with a difficulty level of 1.5 is a relatively difficult item. 

In IRT, item difficulty is expressed in terms of trait level. Specifically, an item's 

difficulty is defined as the trait level required ftlr participants to have a .50 prob

ability of answering the item correctly. If an item has a diniculty of 0, then a person 

with an average trait level (i.e., a person with a trait level of 0) will have a 50:50 
chance of correctly answering the item. hH that same item (i.e., an item with a 

difficulty of 0), a person with a high trait level (i.e., a trait level greater than 0) will 

have a higher chance of answering the item correctly, and a person with a low trait 

level (i.e., a trait level less than O) will have a lower chance of answering the item 

correctly. l lighcr dilliculty levels indicate that higher trait levels arc required for 

participants to have a 50:50 chance of answering the item correctly. hlr example, if 
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an item has a difficulty of 1.5, then a person with a trait level of 1.5 (i.e., a trait level 

that is 1.5 standard deviations above the mean) will have a 50:50 chance of answer
ing the item correctly. Similarly, lower difficulty levels indicate that only relatively 

low trait levels are required for participants to have a 50:50 chance of answering 
the item correctly. 

Item Discrimination as a Determinant of Item Responses 

just as the items on a test might differ in terms of their difticulties (some items 
are more difficult than others), they might also differ in terms of the degree to 

which they can differentiate individuals who have high trait levels from individuals 
who have low trait levels. This item characteristic is called item discrimination, and 

it is analogous to an item-total correlation from err (Embretson & Reise, 2000). 
An item's discrimination value indicates the relevance of the item to the trait 

being measured by the test. An item with a positive discrimination value is at least 

somewhat consistent with the underlying trait being measured, and a relatively 
large discrimination value (e.g., 3.5 vs .. 5) indicates a relatively strong consistency 

between the item and the underlying trait. In contrast, an item with a discrimina
tion value of 0 is unrelated to the underlying trait supposedly being measured, and 
an item with a negative discrimination value is inversely related to the underlying 
trait (i.e., high trait scores make it less likely that the item will be answered cor
rectly). Thus, it is generally desirable for items to have a large positive discrimina
tion value. 

Why would some items have good discrimination and others have poor discrimi

nation? Consider the following two items that might be wrillcn for a mathematics test: 

I. I low many pecks are in three bushels? (a) 12 (b) 24 

2. What is 10 times 10? (a) 10 (b) 100 

Think about the first item for a moment. What is required of a respondent to 

answer this item correctly? To answer the item correctly, the student needs to haw 

enough mathematical ability to perform multiplication. However, this item also 

requires additional knowledge of the number of pecks in a bushel. The fact that this 
item requires something apart from basic mathematical ability means that it is not 

very closely related to mathematical ability. In other words, having a high level of 

mathematical ability is not enough to answer the item correctly. The student might 
have the ability to multiply 4 times 3, but he or she might not have a very good 
chance of answering the item correctly without the knowledge that there arc four 

pecks in a bushel. T hus, this item would likely have a low discrimination value, as 

it is only weakly related to the underlying trail being assessed by the test of mathe

matical ability. In other words, this item docs not do a very good job of discriminat
ing students who have a relatively high level of mathematical ability from those who 
have relatively low mathematical ability. Even if Suzy answers the item correctly and 

johnny answers the items incorrectly, we might not feel confident concluding that 
Su/.y has a higher level of mathematical ability than does Johnny-perhaps Johnny 
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has the mathematical ability, but he simply docs not know the number of pecks in 

a bushel (sec our discussion of"Construct Irrelevant Content" in Chapter H). 
Now consider the second math item. What is required of a respondent to answer 

it correctly? This item requires the ability to perform multiplication, but it requires 
no additional knowledge or ability. The only quality of the student that is relevant 
to answering the item correctly is mathematical ability. Thcrcf(lrc, it is a much more 
"pure" mathematical item, and it is more strongly related to the underlying trait 
of mathematical ability than is the llrst item. Consequently, it would likely have a 
relatively high discrimination value. In other words, this item does a better job of 

discriminating individuals who have a relatively high level of mathematical ability 

from those who have relatively low mathematical ability. That is, if Suzy answers the 

item correctly and Johnny answers the items incorrectly, then we feel fairly confident 

concluding that Suzy has a higher level of mathematical ability than docs Johnny. 

Guessing 

Guessing is related to a third item property that might affect participants' 
responses to some ty pes of test items. For tests such as mull iple-choicc exams or 

true/L1lse exams of knowledge or ability, some test takers might resort to guessing 
if they do not know the correct answer to an item. When taking such tests, partici

pants might answer some items correctly, just on the basis of guessing and chance. 

Thus, IRT can include a guessing component to account for this possibility, 

and it is related to the probability that participants will answer an item correctly 

purely on the basis of chance. For example, the guessing component for t rue/blsc 

items accounts for the bet that guessing will produce a correct answer so<J-h of the 

time. Similarly, the guessing component for multiple-choice items depends on the 

number of response options that arc available-if there arc filln· response options, 

then the guessing component accounts for the bet that guessing will produce a 

correct answer 25<)-b of the time. This property is mainly relevant to tests of knowl

edge, skill, ability, or achievement, rather than personality or attitudes. That is, it 

is relevant f(H· items that arc scored as correct or incorrect; thus, it is likely to be 

examined only for tests with those types of ill'ms. 

IRT Measurement Models 
-�- �---·--------------

hom an IRT perspective, we can identify the components affecting the probability 

that a person will respond in a particular way to a particular item. i\ 11/Ciblii"C

IIICIII model expresses the mathematical links between an outcome (e.g., a person\ 

response to a particular item) and the comJHlnents that affect the outcome (e.g., 

qualities of the person and/or qualities of the item). 

1\ variety of models have been developed from the IIH perspective, and these 

models differ from each other in at least two imllOrl<lnl ways. One important dif

ference among the measurement models is in terms of the item characteristics, or 
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pcmmzeters, that are included in the models. That is, some models are designed to 
account for only one parameter, whereas other, more complex models account 

for two or more parameters. A second important difference among measurement 
models is in terms of the response option format. For example, some models are 

designed to be used for binary items, such as true/false, yes/no, or correct/incorrect 
items. Others are designed for items with more than two response options (i.e., 
polytomous items), such as Likert-type items with five options reflecting one's level 
of agreement. 

In this section, we describe some of the more commonly used IRT measure
ment models. Our descriptions are intended to convey the basic logic and meaning 
of the models, to further illuminate the logic and nature of an I RT perspective on 
psychometrics. 

One-Parameter logistic Model (or Rasch Model) 

The simplest IRT model is often called the Rasch model or the one-pnra111eter 

logistic model (I PL). According to this model, a person's response to a binary item 
(i.e., right/wrong, true/false, agree/disagree) is determined by the individual's trait 
level and only a single item characteristic or parameter-the item's difficulty. 

One way of expressing the Rasch model is in terms of the probability that a per
son with a particular trait level will correctly answer an item that has a particular 

difficulty. This is often presented as (e.g., Embrctson & Reise, 2000) 

( 14.1) 

This equation might require some explanation: 

Prefers to probability. In this, case it refers to a "conditional" probability, as 
described below. 

X;, refers to a particular response (X) made by subject s to item i. More specifi

cally, "X;,= I" refers to a "correct" response or an endorsement of the item. 

0, refers to the trait level of subjects. 

P; refers to the difficulty of item i. 

e is the base of the natural logarithm (i.e., e = 2.7182818 . . .  ), found on many 

calculators. 

So P( X;,= I \0,, f�,) refers to the probability ( P) that subjects will respond to item 

i correctly. The vertical bar in this statement indicates that this is a "conditional" 

probability. That is, it indicates that the probability that the subject will correctly 
respond to the item depends on (i.e., is conditional on) the subject's trait level WJ 

and the item's difficulty q�). As mentioned earlier, in an IRT analysis, trait levels 
and item difficulties arc usually scaled on a standardized metric, so that their means 
are 0 and the standard deviations arc I. 
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Consider two examples, in terms of a mathematics test. hrst, what is the prob
ability that a person who has an above-average level of math ability (say, a level 
of math ability that is 1 standard deviation above the mean, 0, = I) will correctly 
answer an item that has a relatively low level of ditliculty (say, (3i = -.5)? 

cl 1-1-511 c' '-'' 4.48 
1-'(Xj, = lll,-.5)= l+ell-<--'1' = I+e''-'' = 1+4.48 =.82. 

These calculations indicate that there is a .82 probability that the individual will 
correctly answer the item. In other words, there is a high likelihood (i.e., greater 
than an 8QO;h chance) that this individual will answer correctly. This should make 
intuitive sense because a person with a high level of ability is responding to a rela
tively easy item. 

Now, what is the probability that a person who has a below-average level of math 
ability (say, a level of math ability that is 1.39 standard deviations below the mean, 
0, = -1.39) will correctly answer an item that has a relatively low level of difficulty 
(say, [3i = -1.61 )? 

c(-I.YJ-( -l.(l))) c( 2.2) 1.25 r-
P(X = ll-1.39,-1.61)= 1-) \'J-HI))J = ---=---=.:>6. '' l+c ·· ·' l+c'!!J 1+1.25 

This indicates that there is a .56 probability that the individual will correctly 
answer the item. In other words, there is slightly more than a 50:50 chance that 
this individual will answer correctly. This should make intuitive sense because the 
individual's trait level (0 = -1.39) is only slightly higher than the item's difficulty 
level ((3 = -1.61 ). Recall that the item difficulty level represents the trait level at 
which a person will have a 50:50 chance of correctly answering the item. Because 
the individual's trait level is slightly higher than the item's difficulty level, the prob
ability that the individual will correctly answer the item is slightly higher than .50. 

Two-Parameter logistic Model 

A slightly more complex IRT model is called the two-pnmn1ctcr logistic model 

(2PL) because it includes two item paramcters. According to the 21'1. model, a 
person's response to a binary item is determined by the individu.d's trait level, the 
item difficulty, and the item discrimination. Thus, the diflerence between the 2PI. 
and the I Pl., or Rasch model, is the inclusion of the item discrimination paramcter. 
This can be presented as (e.g., Embretson & Reise, 2000) 

CW,!fJ, -j\,1! 
}J( X =II f) ,[3 (X.)= ---,---,.,---:-:-1.\ \ , , , 

I +cttt.,W,-Ii,JJ, ( 14.2) 

where n, refers to the discrimination of item i, with higher values representing more 
discriminating items (and all other terms arc defined as in the 1 PL model above). 
Thus, the 2PL model states that the probability of a respondent answering an item 
correctly is conditional on the respondent's trait level (0), the item's difficulty !(3,), 
and the item's discrimination ((x,l. 
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Consider again the items "!low many pecks arc in three bushels?" and "What is 
10 times lO?" Let us assume that the two items have equal difficulty (say, 13 = -.5). 

However, let us also assume that they have different discrimination values, as dis
cussed earlier (say, u1 = .5 and u, = 2). 

Consider two potential responses to the first item. What is the probability that 
Suzy, who has an above-average level of math ability (say, a level of math ability 

that is 1 standard deviation above the mean, 0 = 1 ), will correctly answer Item I? 

,l.:,ll-l-.5lil c1.7:'1 2.12 
P( X;, = 1\1,-.5,.5) = t • . = --- = --- = 68 1 +cl.·''1 '-·-''1' 1 +e1.r

'
1 1 + 2. 1 2 

· · 

Now, what is the probability that Johnny, who has an average level of math abil
ity (H -c 0), will correctly answer Item 1? 

)151o 1 -.�1))) ei.DJ 1_28 
P(X;, = 1\0,-.5,.5) = 

1 
�

c
l.;><o 1-.3111 = --- = ---=.56. 

1 + c
'51 1 + 1.28 

'l�1ke a moment to note the difference. Suzy's level of mathematical ability is 
substantially higher than Johnny's, but her probability of answering the item cor
rectly is only slightly higher than johnny's (i.e, .68 vs . .  56). This is a relatively large 
difference in trait level ( 1 standard deviation) but a relatively small difference in the 
likelihood of answering the item correctly. Thus, this item doesn't seem to reflect 
the difference between the two respondents very well-the people are highly differ
ent in terms of trait level, but they arc not very different in terms of the likelihood 
that they will answer the item correctly. That is, the item docs not discriminate very 
robustly between people at different trait levels. 

Now, let us consider the second item. What arc the probabilities that Suzy and 
johnny will answer Item 2 correctly? 

L!l 1-1 .5))) 

S · · fJ( X - 1\ ) 
- c 

,U/.y. ;, - 1,-.5,2 --�--.-,_,.--11--,--+c ·1·.5))1 

c1'1 20.0'1 
= .':JS. 

1 + c''' 1 + 20.0'1 

1211115111 Ill ?7? 
Johnny: fJ()( =1\0,-.5,2)= 

c 
=

-c-=_::_:___:_=.7 3 . , 1+el2<o-I-.5)1J 1+c'" 1+2.72 

'l�1kc a moment to consider the difference for Item 2. Suzy has a .'15 probability 
of answering the item correctly, and Johnny has only a .73 probability of answering 
the item correctly. Recall that the difference between the students' mathematical 
ability is still 1 standard deviation, but (unlike for Item 1) Suzy's probability of 

answering Item 2 correctly is noticeably higher than johnny's. As compared with 
Item I, we sec that Item 2-the item with the higher discrimination value-draws 
a sharper distinction between individuals who have different trait levels. 

lust as the 2PL model is an extension of the Rasch model (i.e., the I PL model), 

there arc other models that arc extensions of the 2PL model. You might not be 
surprised to learn that the tllrcc-pomllleter logistic 111ode/ UPL) adds yet another 
item parameter. We will forgo a discussion of this model, other than to note that 
the third parameter is an adjustment for guessing. 
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In sum, the 1 PL, 2PL, and 3PL models represent IRT measurement models that 

difFer with respect to the number of item parameters that are included in the mod

els. I Iowever, all of these models are designed for items with binary outcomes as the 

response option. As mentioned earlier, there is at least one additional way in which 

I RT measurement models differ from each other-in terms of the response option 

format, particularly in terms of the number of response options. 

Graded Response Model 

Many tests, questionnaires, and inventories in the behavioral sciences include 

more than two response options. For example, many personality questionnaires 

include self-relevant statements (e.g.,"! enjoy having conversation with friends"), 

and respondents are given three or more response options (e.g., strongly disngrce, 

disagree, ncutml, agree, strongly ngree). Such items are known as a polytomous items, 

and they require IRT models that are different from those required by binary items. 

Models such as the graded response model (<;RM; Samejima, 1969), the partial 

credit model (Masters, 1 982), and the nominal response model (Thissen, Cai, & 

Bock, 20 I 0) are polytomous l RT models. 

Although the models for polytomous items ditler in terms of the response 

options that they can accommodate, they rely on the same general principles as 

the models designed for binary items. That is, they reilect the idea that a person's 
response to an item is determined by the individual's trait level and by item proper

ties, such as ditliculty and discrimination. 
However, these models are also more complex than the models for binary 

items. hlr example, the CRM produces several difficulty parameters for each item, 

whereas (as noted earlier) the previous models include only a single difficulty 

parameter. h1rthermore, the nominal response model includes several discrimina
tion parameters for each item. 

We will briefly present the (;RM, for two reasons. First, it provides a useful 
example representing these more complex models, thus expanding the pos
sible insights into IRT. That is, a well-rounded basic understanding of IRT -;hould 
include some bmiliarity with the logic of models designed for polytomous items, 
and the C RM is a good vehicle t!Jr doing so. Second, the ( ;RM might be the most 
commonly applied !RT model in some areas of psychology, p<lrticularly in the mea 
surement of personality and psychopathology (Preston, Reise, Cai, & !lays, 2011 ). 
Thus, some readers might be particularly likely to encounter this molkl in many 
applications of !RT. 

ln a sense, the CRM initially conceptualizes a polytomous item in terms of sev

eral dichotomous response distinct ions. ( ;cncrally speaking, if there arc 111 response 

options or categories, then there arc 111- I distinctions. For example, considcr again 

a personality questionnaire item such as "I enjoy having conversation with l"ricnds," 

which might have five response options (e.g., strongly disngrcc, clisugrcc, ucutml, 

ngrcc, strongly ugrcc). hlr such an item, there are li.1ur possible distinctions: ( 1) 

the difference between strongly disugrccing with the item and disugrccing, (2) the 

difference between disugrccing and being 1/Clltrul, (3) the difference between being 

ncutml and ugrccing, and (4) the difkn:ncc between u,�rccing and strongly ugrccing. 
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According to the GRJvl, each of these dichotomous differences can be repre

sented as follows: 

( !4.3) 

where j refers to a particular response option, f31i is a difficulty parameter for 

response option j on item i, and the other parameters are as defined earlier. 

P(X1, � j l8,,f311,a;) refers to the probability that a person with trait levels will 

respond to item i in response option j or higher (which is conditional on the per

son's trait level, the difficulty of the relevant response distinction for category j of 

item i, and the discrimination value of item i). lkcausc there are 111- I dichoto

mous response differences, there are 111 - I difficulty parameters ( f3;1.s) for each 

item. Note however that the GRM includes only a single discrimination parameter 

(a) for an item. 

For example, we might usc our statistical software to analyze responses to the 

item "J enjoy having conversations with friends" and find the f(lllowing (estimated) 

difficulty parameters: [31 = -!.78, [31 =-.57, r33= .45, [31 = ! .53, o. = 2.32. These 

parameters indicate the difficulty associated with each response dichotomy. That is, 

each represents the trait level (i.e., H) required to move from one response option to 

the next "higher" one on the scale. For example, the first difficulty parameter ([31) 

reveals that someone who has a trait level of -!. 78 has a 501!1> chance of responding 

higher than strongly disagree (i.e., responding disagree or more positively). Similarly, 

f3.1 indicates that someone with a trait level of !.53 will have a 50% chance of 

responding higher than agree (i.e., responding strongly agree). 
Of course, response probabilities can be computed for people with particular 

trait levels, representing the probability that the person will respond in each of the 

response categories. Por example, a person with an average level of extraversion 

0;= 0), which is presumably the trait that drives responses to the "1 enjoy having 
conversations with friends" item, would have the following response probabilities: 

• Responding disagree or higher (i.e., responding higher than strongly disagree): 

(:'ll..l!IO-( 1.7HJ)) 62.15 
J>( X;, �disagree! 0, -!. 78, 2.32) = r> Pr _ __ 1 -;s = .98. 

l + e -· -0 1 · 1'1 I + 62. 15 

• Responding neutral or higher (i.e., responding higher than disagree): 

/ 
e12"1210 -rsnn 3.75 

P( X;, �neutral! 0,-.57,2.32) = 1, Pr<H--,7111 = --- = .79. 
l+c-·- ·· 1+3.75 

• Responding agree or higher (i.e., responding higher than neutral): 

{'1!..1210-(.·1511 .35 
J>(Xr, �agreel0,.45,2.32)= 1,P111_11,11 = -- =.26. 

!+c-· · ·  1+.35 
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• Responding strongly agree (i.e., responding higher than agree): 

'I�1ke a moment to note the pattern of these probabilities, specifically the l�1ct 

that they become smaller as the response options become more extremely posi

tive (i.e., as the options ref1ect more "difficult" choices). We see that a person with 

an average trait level is very likely to respond higher than strongly disagree, which 

should make intuitive sense. That is, a person with an average level of extraversion 

would be strongly expected to say something besides strongly disagree when asked 

if he or she enjoys having conversations with friends. Going further, we see that this 

person would have a nearly 80% chance of responding without any level of dis

agreement (i.e., responding neutml or higher). Going even further, we sec that the 

probabilities become smaller and smaller as the options reflect greater degrees of 

endorsement of the item (i.e., as they reflect more extreme levels of extraversion). 

Using these values, we can then estimate the probability that a person will choose 

a specific response option when responding to this item. That is, Equation 14.3 can 

be seen as reflecting a person's probability of responding in particular rouges of 

response options (e.g., disagree or higher, agree or higher, etc.) . These values can now 

be used to t1nd the likelihood that the person will make a specijic response to the 

item (e.g., disagree, agree, strongly ogrec, etc.). This can be done by computing the 

difference between two adjacent "range" probabilities, as just discussed: 

In this equation, j refers to one response option (e.g., disagree), and j- 1 refers 

to the immediately prior option (e.g., strongly disogree). Thus, based on the prob

abilities computed from Equation 14.3, we can estimate the following probabilities 

f(Jr a person with an average level of extraversion (0, = 0): 

• Probability of endorsing the strongly disagree option= I- .98 = .02 (note 

that the probability of responding in the range of strongly disagree or higher 

is 1 .0, since that range includes the entire set of response options). 

• Probability of endorsing the disagree option= .98- .79 = .1 9 

• Probability of endorsing the ncutml option= .79-.26 =.53 
• Probability of endorsing the ngree option = .26- .03 = .23 

• Probability of endorsing the strongly agree option = .03- .00 = .03 (note 

that the probability of responding higher than strongly ngree is .00, since 

there arc no response options beyond strongly ngrce) 

Of course, people who have different trait levels will have different probabilities 

of responding to the various options. People with low trait levels will be relatively 

likely to respond with the lower response options (e.g., strongly disagree or disagree), 

indicating low endorsement of the trail. In contrast, people with high trait levels 

will be relatively likely to respond with higher response options, such as agree or 

strongly agree. By using the equations above, we could use the (;RM to estimate 

response probabilities for any particular trait level. 
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Obtaining Parameter Estimates: A 1 Pl Example 

You might wonder how we obtain the estimates of trait level, item difficulty, and 

item discrimination that arc entered into the equations described above. In real

world research and application, these parameters arc almost always estimated by 

using specialized statistical software to analyze individuals' responses to sets of 

items. Indeed, software packages such as PARSCALF., BILOC;, and MUTLTILOG 

allow researchers to conduct I RT-based analyses (these programs arc currently 

available from Scientific Software International). Although early versions of these 

packages were not very user-h·iendly, more recent versions arc increasingly easy 

to usc. Nevertheless, an exam]Jie of a relatively simple !RT analysis conducted "by 

hand" might give you a deeper sense of how the process works and thus give you a 

deeper understanding of !RT in general. 

·1;1ble 14.1 presents the (hy]Jothetical) responses of six individuals to five items 

on a lest of mathematical ability. In these data," 1" represents a correct answer, 

and "()" represents an incorrec\ answer. Such a small data sci is not representative 

of "real-world" usc of I RT. Ideally, we would have a very large data sci, with many 

respondents and many items. However, we will usc a small data set to illustrate I RT 

analysis as simply as possible. 

An important step in IRT analysis is to choose an appropriate measurement 

model. Note that the responses in our example represent a binary outcome-cor

reel versus incorrect. Therefore, we would choose a model that is appropriate for 

binary outcomes (e.g., the IPL, 2PL, 3PL). Having focused on this class of models, 

we would then choose a model that includes parameters in which we arc interested. 

An advanced issue involves an evaluation of which model "fits" best. That is, we 

could conduct analyses to determine whether a particular model should l1e a]J]Jlied 

to a particular data set. AI this point, however, we will use the Rasch model (the 

I PL model) as the measurement model for analy1.ing these data because it is the 

si 111 plcst model. 

Several kinds of information can be obtained from these data. Recall from our 

earlier description of the 1 PL that this model includes two dclerminants of an item 

Table 14.1 Raw Data for IRT Example: A Hypothetical Five-Item Test of 

- - ·--- --

Person 

2 

�) 

I� 

5 

6 
---- ---

Mathematical Ability 
------ ------- ----

Item Item 2 

() 

(} () 

NOTE: IRT = item response theory. 

Item 3 Item 4 Item 5 

() () 0 

() 0 

() () 

() () 

() 

() () 
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response-the respondent's trait level and the items' difficulty level. We will f(JCus 

first on information about the respondents, and we will estimate a trait level for 

each of the six individuals who have taken the test. We will then estimate the item 
difficulties. 

The initial estimates of trait levels can be seen as a two-step process. First, we 
determine the proportion of items that each respondent answered correctly. hll· a 

respondent, the proportion correct is simply the number of items answered cor

rectly divided by the total number of items that were answered. As shown in 'l�1ble 

14.1, Respondent 5 answered four of the five items correctly (4/5), so her propor

tion correct is .t\0. ·n1hle 14.2 presents the proportion correct for each respondent. 

'I(J obtain estimates of trait levels, we next take the natural log of the ratio of pro

portion correct to proportion incorrect: 

e =In(�
.
) , ' 

1- 1-', 
( 14.5) 

where P, is the pro port ion correct for IZespondent 5. This analysis suggests that 

Respondent 5 has a relatively high trait level: 

( .80 ) 
e. =In --· = In( 4) = 1.39. 

1-.RO 

This suggests that Respondent 5's trait level is almost 1.5 standard deviations above 

the mean. 

The initial estimates of item difficulties also can be seen as a two-step process. 

First, we determine the proportion of correct responses for each item. h1r an item, 

the proportion of correct responses is the number of respondents who answered 

the item correctly divided by the total number of respondents who answered the 

Table 14.2 IRT Example: Item Difficulty Estimates and Person Trait-Level 
Estimates 

Person Item Item 2 

() 

2 

3 

4 

5 

6 0 () 

Proportion O.R3 0.67 

correct 

l >ifflcult y -1.61 -0.6l) 
------- --·--

Item 3 

() 

0 

() 

0.50 

0.00 

NOTE: IRT = item response theory. 

Proportion Trait 
Item 4 Item 5 Correct Level 

() () 0.20 -1 . .\') 

0 0.60 0.-11 

( )  0 0.(1() 0.,11 

0 O.W 0.41 

() O.RO 1..\l) 

()  0 0.20 -ULJ 

0.33 0.17 

0.6LJ 1.61 
- --·---- - --- -�- - --
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item. ror example, Item l was answered correctly by five of the six respondents, so 
Item l 's proportion of correct responses is 5/6 = .83. CI�lble 14.2 presents the pro
portion of correct responses for each item. To obtain estimates of item difficulty, 
we compute the natural log of the ratio of the proportion of incorrect responses to 
the proportion of correct responses: 

(\-vI ();=In 1( ) ' ( 14.6) 

where P; is the proportion of correct responses for item i. This analysis suggests that 
Item I has a relatively low difficulty level: 

( 1- 83 ) ();=In --·-=ln(.20)=-1.6l, 
.83 

This value suggests that even a person with a relatively low level of mathematical 
ability (i.e., a trait level that is more than 1.5 standard deviations below the mean) 
will have a 50:50 chance of answering the item correctly. CI�lblc \4.2 presents the 
difficulty levels for each of the five items. 

"l�1ble 14.2 provides initial estimates of ability levels and item difficulties. These 
results were obtained by using Microsoft Excel, rather than one of the specialized 
IRT software packages. When specialized !RT software is used to conduct analyses 
(as it should be for a complete lRT analysis), it implements additional processing 
to refine these initial estimates. This processing is an iterative procedure, in which 
estimates arc made and then refined in a series of back-and-forth steps, until a 
prcspecificd mathematical criterion is reached. The details of this procedure arc 
beyond the scope of our discussion, but such iterative processes arc used in many 
advanced statistical techniques. 

Item and Test Information 

As a psychometric approach, IRT provides information about items and about tests. 
In an IRT analysis, item characteristics are combined to reflect characteristics of the 
test as a whole. In this way, item characteristics such as difTiculty and discrimina
tion can be used to evaluate the items and to maximize the overall quality of a test. 

Item Characteristic Curves 

Psychometricians who usc I RT often examine item characteristic curves to pres
ent and evaluate characteristics of the items on a test. Item characteristic curves, 
such as those presented in hgure 14.1, reflect the probabilities with which individu
als across a range of trait levels are likely to answer each item correctly. The item 
characteristic curves in Figure 14.1 arc based on a I PL analysis of the five items 
from the hypothetical mathematics test analyzed earlier. For item characteristic 
curves, the x-axis reflects a wide range of trait levels, and the y-axis ret1ccts prob
abilities ranging from 0 to 1.0. 
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Item Characteristic Curves 

-2.0 -1.0 0.0 1.0 

Trait Level 

Item 1 Item 3 -o- Item 5 

Item 2 -lf- Item 4 

------- ----

2.0 :l.O 

Figure 14.1 Item Characteristic Curves 

Each item has a curve, and we can examine an item's curve to find the likeli

hood that a person with a particular trait level will answer the item correctly. ·n1kc 

a moment to study the curve for Item !-what is the probability that a person with 

an average level of mathematical ability will answer the item correctly? We find the 
point on the Item I curve that is directly above the"()" point on the x-axis (recall 

that the trait level is in z score units, so zero is the average trait level), and we sec 

that this point lies between .HO and .90 on they-axis. Looking at the other curves, 

we sec that a person with an average level of mathematical ability has about a .65 

probability of answering Item 2 correctly, a .50 chance of answering Item 3 cor

rectly, and a .17 probability of answering Item 5 correctly. 

Thus, the item characteristic curves provide clues about the likelihoods with 

which individuals of any trait level would answer any item correctly. Note that the 

order of the cmvcs, from left to right on the x-axis, rctlects their ditliculty levels. In 

Figure 14.1, Item I, with the leftmost curve, is the easiest item, and Item 5, with the 

rightmost curve, is the most difficult item. 

The item characteristic curves arc drawn based on the mathematical models, 

as presented above (in Figure 14.1, the equation for the IPL or Rasch model). '1(1 

draw an item characteristic curve for an item, we can repeatedly usc the model to 

compute the probabilities of correct responses for many trait levels. By entering an 

item's difficulty and a particular trait level (say, -3.0) into the model, we obtain the 

probability with which a person with that particular trait level will answer that item 

correctly. We can then enter a different trait level into the model (say, -2.9) and 

obtain the probability with which a person with the different trait level will answer 

the item correctly. After conducting this procedure for many different trait levels, 
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we simply plot the probabilities that we have obtained. The line connecting these 

probabilities rdlects the item's characteristic curve. We conducted this procedure 

for each of the items on the hypothetical five-item test in "l�lblc 14.1. Tb obtain 

Figure 14. 1 ,  we used the spreadsheet software package Microsoft Excel to compute 

305 probabilities for the five items (6 1 probabilities for each item) and to plot the 

points onto curves. 

As we have noted, the curves presented in Figure 14. 1 are based on the simplest 

modcl�the I Pl. model. Not only docs this model include only one item parameter 

(i.e., difficulty), but it is also designed for items that have only two response possi

bilities (i.e., binary items). As discussed earlier, other models arc designed for more 

complex mcasu remcnt scenarios. 

For example, recall that the GRM was designed for items with more than 

two response options, and it includes difficulty mul discrimination parameters. 

Analyses based on this model would produce more complex characteristic curves 

for each of a test's items. That is, each item would have several curvcs�one for each 

of its response options. Each curve retlects the probabilities with which people of 

any trait level would choose a particular response option. 

'lb illustrate this, we plotted an item characteristic curve for the item that we 

used earlier to illustrate the CRM ("l enjoy having conversations with friends"). 

Recall that it had five response options and the following parameter estimates: [31 == 

- 1 . 78, [3_, ==-.57, [3, == .45, [31 == 1 .53, a== 2.32. Based on these values, we computed 

response probabilities f(>r a wide range of trait levels, and we did this for each of the 

five response options. Figure 1 4.2 presents the curves for this item. 
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As shown in Figure 14.2, each response option has its own curve, representing the 

probability that people of any particular trait level will endorse that option. Note that 

as you move from one curve to another, from left to right in the figure, the opt ions 

increase in their level of endorsement. That is, strongly disogrec is brthest left, while 
strongly ogrcc is brthest right. This ordering of the curves parallels, reflects, and is 
driven by, the four difficulty parameters ([3 values) produced by the analysis. 

Based on the GRM, each item would have its own set of response curves like 
those in Figure 14.2. These item characteristic curves can convey visual information 

about the response tendencies associated with each item. Although test developers 

and users are interested in such tendencies, they are usually even more interested 

in the psychometric quality of each item and of the test as a whole. To examine 

this, they evalu<lte properties called item information and test information, which 

is closely related to reliability. 

Item Information and Test Information 

From the perspective of en� reliability is an important psychometric consid

eration for a test. Recall from Chapters 5 and 6 that from the perspective of CIT, 

we can articulate and estimate the reliability of a test. For example, we might com

pute coefficient alpha as an estimate of a test's reliability. An important point to 

note is that we would compute only one reliability estimate for a test and that 

estimate would indicate the degree to which observed test scores are correlated 

with true scores. The idea that there is a single reliability for a particular test is an 
important way in which CTI' differs from IRT. 

From the perspective of IRT, a test docs not have a single "reliability." Instead, a 

test might have stronger psychometric quality for some people than for others. That 

is, a test might provide better information at some trait levels than at other trait 

levels. This is an important difference between IRT and CIT, and it might require 

a bit of explanation. 

Imagine four people who have different trail levels-Elizabeth, !leather, Chris, 

and l.ahnna. VIc can depict their relative "true" trait levels along a continuum: 

Low trait 
level 

--- 1- - - -- T --

Elizabeth Heather 

Average trait 
level 

Chris 
1-

Lahnna 

High trait 
level 

In terms of the underlying psychological trait, Elizabeth and I leather arc both 

below the mean, with a relatively small ditlercnce between them. In contrast. Chris 

and l.ahnna arc at a relatively high trait level, with a relatively small difference 

between them. 

As we have emphasized repeatedly throughout this book, the purpose of psy

chological tests is to detect psychological variability. Indeed, the key goal of most 

psychological testing is to different iatc (i.e., discriminate) people with relatively 

high trait levels from people with lower trait levels. hom an IIZT perspective, a 

test provides "good information" when it can accurately detect differences between 

individuals at different trait levels. 
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Even a test that has modest psychometric quality should be able to reflect large 

differences in trait levels. For example, referring to the four individuals above, a 
test with moderate psychometric quality should be able to differentiate between the 

two people with below-average trait scores, on one hand, and the two people with 

above-average trait scores, on the other. That is, Elizabeth and Heather should score 

lower than Chris and Lahnna, even if the test is only a modestly good one. 

However, if we want to reflect the much smaller and more subtle differences 
between test takers, then we would need a test with strong psychometric properties. 

r:or example, if we wanted to detect the difterence between Elizabeth and Heather, 

or if we wanted to know whether Chris's trait level was different from Lahnna's, 

then the test would need to quite sensitive. 

Moreover and importantly, an IRT approach allows for the possibility that a 

test might be better at reflecting differences at some trait levels rather than at other 

trait levels. ror example, the test might be better at reflecting the difference between 

Chris and Lahnna than between Elizabeth and Heather. That is, the test might pro

vide better information at high trait levels than at low trait levels. 

How could a test provide information that differs by trait level? For example, 

why would a test be able to discriminate between people who have relatively high 

trait levels but not between people who have relatively low trait levels? Imagine a 

two-item test of mathematical ability: 

1. What is the square root of 1 0,000? 

2. Solve for x in this equation: 56 = 4r + 3y -14. 

Both items require a relatively high level of mathematical ability, at least com

pared with some potential items. If Elizabeth and Heather have low levels of math

ematical ability (say, they can both add and subtract, although Heather can do this 

a bit better than Elizabeth), then they will answer neither item correctly. Therefore, 

Elizabeth and I leather will have the same score on the two-item test and the test 

cannot differentiate between them. In contrast, Chris and Lahnna have higher levels 

of mathematical ability, and each might answer at least one item correctly. Because 

l.ahnna's ability level is a bit higher than Chris's, she might even answer both items 

correctly, but Chris might answer only one item correctly. Thus, Chris and Lahnna 

might have different scores. 

Considering this pattern of responding, the test can reflect some differences 

but not others. That is, the test might differentiate the people with high trait lev

els (Chris and Lahnna) from the people with low trait levels (i.e., Elizabeth and 

\leather). In addition, it might differentiate the people with high trait levels (i.e., 

( :hris from Lahnna) from each other. However, the test does not differentiate 

between the people with low trait levels. 

In sum, if a test's items have characteristics (e.g., item difficulty levels) that are 

more strongly represented at some trait levels than at others, then the test's psy

chometric quality might differ by trait levels. The two-item mathematics test has 

items with only high difficulty levels, and thus it does not provide clear information 

discriminating among people at low trait levels. 

We can use IRT to pinpoint the psychometric quality of a test across a wide 

range of trait levels. This can be seen as a two-step process. First, we evaluate the 
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psychometric quality of each item across a range of trait levels. Just as we can com

pute the probability of a correct answer for an item at a wide range of trait levels 

(as illustrated in item characteristic curves, as discussed earlier), we can use the 

probabilities to compute information at the same range of trait levels. r:or the 1 PL 

(Rasch) model, item information can be computed as (Embretson & Reise, 2000) 

!( O)=P; (0 J(l- P, (H)), ( 14.7) 

where J((O) is the item's information value at a particular trait level (0) and P,((O) 

is the probability that a respondent with a particular trait level will answer the 

item correctly. l;or example, Item I in ·n,ble 14.2 has an estimated difficulty level of 

- 1 .6 1 . A person with a trait level that is, say, 3 standard deviations below the mean 

has a probability of only .20 of answering Item I correctly (sec the equation lin 

computing the probabilities for a Rasch model). Thus, for a trait level of 3 standard 

deviations below the mean (0 = -3), Item I has an information value of .16: 

I(-3) = .20( I - .20), 

J(-3) = .16. 

In contrast, Item 1 has an information value of .0 I at a trait level of 3 standard 

deviations above the mean (H = 3 ). 

Higher inf(mnation values indicate greater psychometric quality. Therefore, 

Item I has better psychometric quality at relatively low trait levels than at rela

tively high trait levels. T hat is, it is more capable of discriminating among people 

with low trait levels than among people with high trait levels (presumably because 

almost everyone with high trait levels will answer the item correctly). Table 14.3 
includes probability values and information values that have been computed for 

each item at seven trait levels. If we compute information values at many more 

trait levels, we could display the results in a graph called an itc111 infimnatiOII cl/rl'c. 

Table 14.3 IRT Example: Probability of Correct Item Responses, Item 
Information, and Test Information for Various Trait Levels 

P(X = J /OJ Probability of Correct 
Answer Information 

Trait Item Item Item Item Item Item Item Item Item Item 

Level l 2 3 4 5 l 2 3 4 5 
�--· -- -------

-3 0.20 0.09 0.05 0.02 0.01 0.111 0.01:\ 0.05 0.02 0.01 

-2 0.40 0.21 0.12 O.Oh 0.0.\ 0.2'1 0.17 0.10 1).06 0.0.1 

-I 0.65 0.42 0.27 O.lh 0.07 O.D 0.24 0.20 0. 1.\ ll.Oil 

0 0.1:\3 0.67 0.50 0.33 0.17 0.1'1 0.22 0.25 0.22 0.1'1 

0.93 0.84 0.73 0.58 0.35 0.06 0.13 0.20 0.24 0.23 

2 0.97 0.94 0.88 0.79 0.60 0.03 O.IJ(, 0.10 0.17 0.2'1 

3 0.99 0.98 0.95 0.91 O.HO 0.01 0.<>2 0.05 ().()/:\ ().I (l 

NOTE: IRT = item response theory. 

Test 

0 .. 12 

ll.llO 

IU\(, 

0.9/ 

O.HI' 

O.llll 

ll..\2 
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Figure 14.3a presents item information curves for each item in our hypothetical 
five-item test of mathematics. There are several important issues in interpreting 

these figures. First, the height of the curve indicates the amount of information that 
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the item provides-higher curves indicate greater psychometric quality. Second, 

the highest point on a curve represents the trait level at which the item provides 

the most information. In [;let, an item provides the most inl(mnation at a trait level 

that corresponds with its difficulty level, estimated earlier. For example, Item I (the 

easiest item) provides the best information at a trait level of -1.61, which is its dil� 

ficulty level. In contrast, Item 1 does not provide much information at trait levels 

that are above average. Third, and relatedly, the items often differ in the points at 

which they provide good int(mnation. For example, Item I provides good informa

tion at relatively low trait levels, Item 3 provides good information at average trait 

levels, and Item 5 provides good inl(mnation at relatively high trait levels. 

Of course, when we actually use a psychological test, we arc concerned with the 

quality of the test as a whole more than the qualities of individual items. Therefore, 

we can combine item information values to obtain test information values. 

Specifically, item information values at a particular trait level can be added together 

to obtain a test inf(mnation value at that trait level. Again, '!�1ble 14.3 provides test 

information values for our tlve-item hypothetical test of mathematical ability at 

seven trait levels, and it shows, for example, that the test information score at an 
average trait level (0 = O) is simply the sum of the item int(Jrmation values at this 
trait level: 

.97 =: .14 + .22 + .25 + .22 + .14, 

Again, if we compute test information scores at many trait levels, we can plot the 

results in a test inf(mnation curve, as shown in Figure 14.3b. 

/\ test information curve is useful for illustrating the degree to which a test 

provides a different quality of inf(mnation at different trait levels. Note that our 

hypothetical test provides the greatest int(mnation at an average trait level and it 

provides less inf(lrmation at more extreme trait levels. That is, our test docs well at 

dilkrentiating among people who have trait levels within I or 2 st<llldard deviations 

of the mean. In contrast, it is relatively poor at difkrentiating <llllOng people who 

have trait levels that arc more th<m 2 standard deviations below the mean, and it is 
relatively poor at diffcrcntiatino amonu neonle who have trait levels that arc more 

0 D t t 

than 2 standard deviations above the mean. 
As we have described, Figure 14.3a presents item inl(mnation curves based on 

the simplest IRT model-the 1 PL or Rasch model. Again, this model includes only 

one type of item parameter-item difficulty. Thus, we sec that the items can provide 

maximal inf(mnation at dif!Crent trait levels. That is, the items differ in their dif

ficulty, and each one has its best psychometric quality at its spccillc difllndty level. 

However, as we have also described, some I RT nwdl'ls include more than one 

item parameter. For example, the 2\'L and the (;RM include both difficulty and 

discrimination parameters f(n each item. or course, item and test inhmnation can 
be estimated based on these models as well. 

Although the logic behind item inf(mnation is the same f(Jr these more complex 

models, its computation is more complex. Thcrci(Jrc, we will not delve into the 

complexities of those computations, hut we will present and describe item infor

mation curves that arc based on those models. /\g;lin, this can help expand your 

f�Hnilimity with IRT as a tlcxible psychometric approach. 
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For models that include both difficulty and discrimination as item parameters, 

item information curves can vary in two ways. First, as we have seen for the I PL 

model, the curves can vary in terms of location. That is, they can vary in the trait 

levels at which their maximal information occurs, as ret1ected in the fact that the 

curves "top out" at different points along the x-axis. Second, item information 

curves can also vary in terms of height. That is, they can vary in the amount of 

information that they �Jrovidc, as reflected in the fact that the curves "top out" at 

different !JOints along the y-axis. 

For example, Figure 14.4 presents three item information curves that could be 

obtained from models such as the 2PL or the CRM. Note that the curves differ 

in terms of location and height. From this figure, we sec that Item 2 is the easiest 

item (with its greatest information occurring at approximately 1 standard devia

tion below the average trait level) and ltem 3 is the most difficult (with its greatest 

information obtained at about 1 standard deviation above the average trait level). 

We also see that Item 2 provides the best psychometric quality by far. That is, its 

curve reaches much higher on the Information axis than do the other two items. In 

fact, Item 3 \)rovides very little information, even at its maximal level. 

Figures such as 14.4 can provide useful psychometric information for people 

interested in test development and evaluation. That is, they can highlight items 

that might merit revision or deletion from a test. For example, Figure 14.4 sug

gests that Item 3 provides almost no useful information at any trait level. Based 
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on this finding, we might consider dropping that item, or at least examining it in 

more detail to determine why it performs so poorly (e.g., poor wording, inclusion 

of construct-irrelevant variance, etc.). I n  addition, if we decide to drop Item :\,we 

might want to replace it with an item (or items) that provides good inf(Jrmation at 

high trait levels. A lthough Item I provides good inf(Jrmation across a range of trail 

levels, we might want to be sure to have items that provide good information for 

making discriminations among people who are 1 to 3 standard deviations above the 

average trait level. Thus, item information curves can provide very useful insights 

into items, tests, and test development possibilities. 

In sum, take a moment to consider again the difference between IRT and C:TT 

with regard to test reliability. from a CIT perspective, a test has one reliability that 

can be estimated using an index such as coefficient alpha. h·om an lRT perspective, 

a test's psychometric quality can vary across trait levels. This is an important but 

perhaps underappreciated difference between the two approaches to test theory. 

Applications of IRT 

lRT is a theoretical perspective with tools that have many applications for measure

ment in a variety of psychological domains. The discussion of item difficulty and 

discrimination is perhaps most intuitively applied to the measurement of abilities. 

Indeed, the College Board has used lRT as the basis of the SAT for several years. I n  

addition, several states use IRT a s  the basis of their achievement testing i n  public 

school systems. Beyond its application to ability testing, lRT has been applied to 

domains such as the measurement of attitudes (e.g., Strong, Breen, & Lcjuez, 2004) 
and personality characteristics ( Chernyshenko, Stark, Chan, Drasgow, & Williams, 

2001; haley, Waller, & Brennan, 2000; Kashdan et al., 2009). 

Test Development and Improvement 

A fundamental application of IRT is the evaluation and improvement of the 

basic psychometric properties of items and tests. Using information about item 

properties, test developers can select items that reflect an appropriate range of trail 

levels and that have a strong degree of discriminative ability. ( ;uided by mT analy

ses, these selections can create a test with strong psychometric propnties across a 

range of t rait levels. 

For example, Fraley et al. (2000) used I RT to examine the psychomctric proper-

ties of four inventories (with a total or 12 subscales) associated with adult allach 
ment. By computing and plotting test information curves f(ll' each subscalc, Fraley 
and his colleagues revealed that one inventory in particular, the Experiences in 

Close Relationships scales (ECR; Brennan, Clark, & Shaver, 199ll ), provides a 
higher level of information than the other inventories. Even l"urther, haley and his 
colleagues used I RT to guide and evaluate modifications to the ECR scales. These 
modifications produced revised ECR scales with better overall test inl"ormation 
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quality than the original ECR scales. Notably, this incrc<lsc in test information was 

obtained without increasing the number of items. 

Differential Item Functioning 

Earlier in this book, we discussed test bias. From an IRT perspective, analyses can 

be conducted to evaluate the presence <ll1d nature of differential item functioning 

(I llr). Differential item functioning occurs when an item's properties in one group 

arc different from the item's properties in another group. For example, DIF exists 

when a particular item has one diftlculty level for males and a different dif!lculty 

level for females. Put another way, the presence of differential item functioning 

means that a male and a female who have the same trait level have different prob

abilities of answering the item correctly. T he existence of DIF between groups indi

cates th<ll the groups cannot be meaningfully compared on the item. 

For example, Smith and Reise ( 19911) used IRT to examine the presence 

and nature of DIF for males and females on the Stress Reaction scale of the 

Multidimensional Personality Questionnaire (MPQ; Tellcgen, 1982). The Stress 

Reaction scale assesses the tendency to experience negative emotions such as guilt 

and anxiety, and previous research has shown that males and females often have 

different means on such scales. Smith and Reise argued that this difference could 

retlcct a true gender difference in such traits or that it could be produced by dif

ferential item functioning on such scales. Their analysis indicated that although 

females do appear to have higher trait levels of stress reaction, Dir exists for several 

items. Furthermore, their analyses revealed interesting psychological meaning for 

the items that did show DIE Smith and Reise state that items related to "emotional 

vulnerability and sensitivity in situations that involve self-evaluation" were easier 

for females to endorse, but items related to "the general experience of nervous 

tensions, unexplainable moodiness, irritation, frustration, and being on-edge" (p. 

1359) were easier fill· males to endorse. Smith and Reise conclude that inventories 

designed to measure negative emotionality will show a large gender difference 

when "female Dll,.-type items" are overrepresented <lml that such inventories will 

show a small gender difference when "male UIF-type items" are overrepresented. 

Such insights can inform the development and interpretation of important psycho

logical measures. 

Person Fit 

i\nother interesting application of llrl' is a phenomenon called pcrsou.fit (Meijer 

& Sijtsma, 200 I). When we administer a psychological test, we might find a per

-;on whose pattern of responses seems strange compared with typical responses. 

( :onsider two items that might be ti>und on a measure of friendliness: 

I. I like my friends. 

2. I am willing to lend my friends as much money as they might ever want. 
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Most people would probably agree with the first statement (i.e., it is an "easy" 

item). In contrast, fewer people might agree with the second statement. Although 
most of us like our friends and would be willing to help them, not all of us would 

be truly willing to lend our ti·iends "as much money as they might ever want." 

Certainly, those of us who would lend any amount of money to our friends also 
would be very likely to state that we like our friends (i.e., endorse the first item). 
That is, it would not be very strange to find someone who is willing to lend any 
amount of money to her fi·iends if she also likes her friends, but it would be quite 
odd to flnd someone who would be willing to lend any amount of money to her 
friends if she does not like her friends. There are ftJllr possible response patterns t(H 
this pair of items, and three of these patterns would have a birly straightf{mvard 
interpretation. 

Pattern Item J Item 2 Interpretation 

I )isagree Disagree Unfi·iendly person 

2 Agree Disagree Moderately friendly person 

3 Agree Agree Very friendly person 

4 I >isagree Agree Unclear interpretation 

The analysis of person fit is an attempt to identify individuals whose response 
pattern does not seem to tit any of the expected patterns of responses to a set of 
items. Although there are several approaches to the analysis of person fit (Meijer 
& Sijtsma, 200 I), the general idea is that IRT can be used to estimate item ch<Jrac

teristics and then to identify individuals whose responses to items do not adhere to 

those parameters. hll· example, IRT analysis might show tlwt Item I above has low 
diftlculty (i.e., it does not require a very high level of fi·iendlincss to be endorsed) 

and that Item 2 has higher difficulty. It would be odd to find a person who endorses 

a difficult item but who docs not endorse an easy item. 
The identification of individuals with poor person fit to a set of items has several 

possible implications. Poor person fit could indicate cheating, random responding, 

low motivation, cultural bias of the test, intentional misrepresentation, or even 

scoring or administration errors (Schmitt, Chan, Sacco, J\rlchH'i<md, & Jennings, 

1999). Furthermore, in a personality assessment context, poor person fit might 
reveal that a person's personality is unique in that it produces responses that do not 
fit the "typically expected" pattern of responses (Reise & \Valier, 1993 ). 

Computerized Adaptive Testing 

. 
An additional application that is commonly associated with I RT is called C0/1/fllll

cnzcd adaptil'c tcst i11g (CAT). C:i\T is a method of computerized test administration 

that is intended to provide an accurate and very efficient assessment of individuals' 

trait leveb. Computerized adaptive testing works by using a very large item pool for 

wh1ch IRT has been used to obtain information about the psychometric properties 
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of the items. For exampte, test administrators might asse1nble a pool of 300 items 

and conduct research to estimate the difficulty level for each item. Recall that item 

diff1culty is linked to trait level-an item's difficulty level is the trait level that is 

required for a respondent to have a .50 probability of answering the item correctly. 

The information about item difficulties is entered into a computerized database. 

As a person begins the test, the computer presents iten1s with difficulty levels 

targeted at an average trait tevel (i.e., difficulty levels near zero). From this point, 

the computer adapts the test to match the individual's apparent trait level. If the 

individual starts the test with several correct answers, then the computer searches its 

database of items and selects items with difficulty levels that are a bit above average. 

These relatively difficult items are then presented to the individual. ln contrast, if the 

individual starts the test with several incorrect answers, then the computer searches 

its database of items and selects items with difficulty levels that are a bit below aver

age. These relatively easy items arc then presented to the individual. Note that the 

two individuals might respond to two tests that are almost completely different. 

As the individual continues taking the test, the computer continues to select 

items that pinpoint the individual's trait level. The computer tracks the individual's 

responses to specific items with known difficulty levels. By tracking this informa

tion, the computer continually reestimates the individual's trait level as the inc\i

vidua\ answers some items correctly and others incorrectly. The computer ends the 

test when it has presented enough items to provide a solid final estimation of the 

individual's trait level. 

Interestingly, the accuracy and efficiency of computerized adaptive tests are 

obtained by giving different tests to different individuals. This might at first seem 

counterintuitive hut consider the purpose of adaptive testing. The purpose of adap

tive testing is to present items that target each individual's trait level efficiently. That 

is, it presents only the items that really help estimate precisely each examinee's trait 

\eve\. lf a person dearly has a high \eve\ of ability, then it is unnecessary to require 

the individual to respond to very easy questions. Similarly, if a person clearly has a 

lower level of ability, then we learn nothing by requiring the individual to respond 

to difficult items. Therefore, instead of presenting a common 300-item test to every 
individual, a CAT program presents each individual with only as many items as arc 

required to pinpoint his or her trait level-probably much less than 300 items.ldea\ly, 

this method of test administration is more efficient and less aversive for respondents. 

Computerized adaptive testing has been used mainly in ability, knowledge, 

and/or achievement testing. For example, the National Council of State Boards 
of Nursing ( NCSBN) maintains licensure standards for nurses across the United 

Stales. Earning a license involves a testing process that uses a pool of nearly 2,000 

items with known difficulty levels and a CAT administration process to present 

items am\ score respondents. The website for the NCSBN assures candidates for 

licensure that, as compared with a traditional pencil-and-paper test format, "CAT 

is able to produce test results that are more stable using fewer items by targeting 

items to the candidate's ability" (NCSBN, 20 I 0, p. 46 ). Similarly, the Graduate 

Management Admissions Test (GMAT) is taken by nearly a quarter of a million 

people worldwide each year (<_;raduate Management Admission Council\GMAC\, 

20 I I), and as of this writing, it is primarily administered through computerized 
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adaptive testing. To explain the adaptive nature of the test, the website for the 

GM1\T informs test takers that "the GM/\T adjusts to your individual ability \eve\, 

which both shortens the time it takes to complete the exam and establishes a higher 

\eve\ of accuracy than a fixed test:' (GM/\C, n.d.). Clearly, C/\T is a practically useful 

application of \RT, and its use seems to be growing. 

Summary 

In sum, lHT is an approach to psychometrics that is said to have several advan

tages over traditional crr.IRT encompasses a variety of statistical models that rep

resent the links between item responses, examinee trait \eve\, and an array of item 

characteristics. Knowledge of item characteristics, such as item c\ifficu\t y ami item 

discrimination, can inform the development, interpretation, and improvement of 

psychological tests. 

/\\though mT-based analyses arc computationally complex, spcciali"l.cd software 

has been designed to conduct the analyses, and this software is becoming more and 

more user-friendly. Continued research and application will reveal the nature and 

degree of practical advantage that IRT has over CI'T. 

Suggested Readings 

An accessible introduction to a variety of issues in I RT, oriented toward psychologists: 

Embretson, S. E., & Reise, S. (2000). ltc111 rcspo11sc tl1cory j(n psyc/10/ogists. Mahwah, Nl: 
Lawrence Erlbaum. 

"\"his is a classic source in the history of IR\": 

Lord, 1:. M. ( \953). T he relation of test score to the tr·,1it underlying the test. /·:dllcntiOIIIII 
Llllti Psyc/wlogim/ /'vlcnsllrC/11CIIt, /3, 5\ 7-54�. 

This is an accessible discussion of the issues and challenges of using \In' in person-
ality assessment: 

Reise, S. I'., & \Jenson,). M. (2()(L\). /\ tliscussion of modern versus tradition;!\ psydHl
mctrks as applied to pcrson;llity assessment scaks. ]ollmnl of l't' I"SOII!liity ;\s;cs>lll!"llt, 
Ill, 93-\03. 

This reference provides a thorough and in-depth description or many issues involv-
ing the Rasch model (I PL): 

\\ontl, T. C., & Fox, C. M. ( 200\ ) . ;\pp/yi11g tl1c Rasc/1 11/oclc/: l:llllclaiiiCIIta/ IIIC<ISIIrc/IICIIt i11 
the 1111111<111 scicllccs. lvhlhw·,1h, Nl·. Lawrence Erlbaum. 

This is a nice example or the <1pp\ication of \IU to psychologic\\ data: 

Fraley: R. C., Waller, N.C., & \\rennan, K. i\. (2000). 1\n item-response theory ;maly 
s1s ot sell-report measures of adult al\adm1en1. ]o11ma/ of l'crso11ality a11tl Social 
Psychology, 7/l, 350-.\65. · 

This is a nice conceptual introduction to \RT: 

I lamb\cton, R. K., Swaminathan, I\., & Rogers, \I. l. ( \99 t ). Filllcla/1/CIIta/s of itc111 
rcspo11sc 1 l1cory. Newbury Park, Ci\: Sage. 
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Bl LOC software, 305, 396 

Binary items 

dichotonHJUs responses, 53 

in item response theory, :l<JI), 3lJ3 

raw alpha fill·, 141-142 

variance of, 5.\-56 

Binomial effect size display (BESDJ, 

256-259,324 

Briel inventory ol Desirable Responding 

( Bll >R), 297-2911 

Brown, William, 133 

Bundled tests, H 

< :alifim1ia l'sychologicallnvcntory 

(C:I'I ), 295 

( :ardinal values, 23 

c ;,1rclcss or random responding, 21l6-21l7 

( :aiT)'OVlT problem, 127 

< :atcgorical data, 6, 20-21 

c :entral tendency, 41 

( :1'/\. Sec Conlirmatory be tor 

analysis (CI'i\) 

(:hi-square index, :\42-343 

Classical test theory (CIT) 

about, I 02-104, I 06, I 09, 120, 121 

domain sampling theory as alternative 

to, 122 

estimates ofrdiability, 125,126,146, 162n 

and generalizability theory, 355, 356, 

357,361,364,365,376 

and importance of reliability, 167, 173, 174 

item discrimination index 

development, 305 

item response theory as alternate to, 

3115, 31lll, 40 I, 407 

Coefficient alpha 

CI'A and reliability, 3411-351 

Sec also Raw alpha reliability estimates 

Coefficient ol reliability, 114, !Ill 

Coefficients of generalizability. 

Sec ( ;eneral izabi I i ty coenicien ts 

Cognitive impairment, 2lJil 

( :ognitive performance and control 

deprivation, 210-211 

Cohen, Jacob, guidelines for interpretation 

of correlations, 262 

Cohen's t!, 179-lllO 

College Board, 214, 222, 223 

Color psychology, 200-20 I 

Common regression equal ion, 315-316, 317 

Comparative lit index (CFI), 343,344 

Composite scores, 12, 74, I 09, 121 

Composite variables, variance and 

covariance for, 52-53 

Computations in CFA, 339-342 

Computerized adaptive testing, 409-411 

Conceptual homogeneity, 75 

Concurrent validity evidence, 213-214, 217 

Confidence, in statistical significance, 

264-266 

Confidence intervals, 166, 169-172 

Conlinnatory tiJCtor analysis (CFi\), xix, 

.l31-.l53 

compared to I'.Fi\, 96-97, 332-333, 347 

computations, 339-3-12 

evaluation of measurement models, 333 

flowchart of procedure, 3.l5 (figure) 

frequency and roles of C l'i\ and EF/\, 

3J2-J33 

measurement model specification, 

.l36-339 

modcl modilication, 346-347 

output interpretation and reporting, 

Y�2-3tJ(, 



overview of, 334-J35 

process of conducting a C:FA, 3J4-J47 

reliability and, 348-351 

validity and, 351-353 

Conjoint measurement, 28 

Consequential validity, 21 '1-216 

Consistency 

associ<llion between variables, 48 

internal. Sec Internal consistency reliability 

of rmv scores, (10 

Construct bias, :>o 1-302, 30J-311 

about, 303-305 

differential item functioning <lll<liysis, 

J08-311 

I;JCtor an<liysis, 307 

item discrimination index, 305-307 

rank order, J I I 

Construct-irrelevant content, 204 

Constructs, associations between, and 

validity cocilkicnls, 240 

Construct underrcpresentation, 205 

Construct V<liidity, 20 I, 202 (figure) 

consequences of testing, 214-215 

criterion V<llidity in, 217 

and internal structure of test, 209 

See 11/so V<llidity 

Contamination effects, 127 

Content validity, 20 I ,  204-20(> 

compared to liKe validity, 205-206 

defined, 20(, 

threats to, 204-205 

Control deprivation on cognitive 

perl(mnance, 210-211 

Convergent <liHI discriminant V<liidity 

evidence, xix, 221-269 

C:F1\ ev<Jiuation, JSI-353 

methods to evaluate, 222-239 

validity coeflicienl, lilCtors affecting, 

239-253. Sec n!so Validity 

melficienls, htctors affecting 

validity coefficient, interpreting, 

253-2(>8. Sec n/so V<liidity 

cocflicients, interpreting 

Convergent <tnd discrimin<Jnl validit)'• 

methods to ev<Jiuate, 222-239 

l(lCUSed <lSSOCi<ll ions, 222-225 

mull it ra it -mul timet hod mat rices 

(MTMMM), 228-2.\5 

quantifying construct validity, 235-2.\9 

sets of correlations, 225-228 

Subiect Index 425 

Convergent evidence, 212-213, 214 

Converted stand,Jrd scores (standardized 

scores), 61-(>2 

Coopersmith Self-Esteem Inventory, 212 

Corrected item-total correlation, 189-190 

Correction for atlcnuation, 177-178 

Correlation 

association between distributions, 51-52 

example for computing, 44 (table) 

between observed scores and error 

swrcs,hKk of(squared), 116-·lll:l 

between observed scores <llld true scores 

(squared), 11-1-116 

sets of, evaluation of V<llidity 

cocrtlcients, 225-228 

st<Jndardiz.ed alpha reliability, 140 

between variables using z scores, 60-(> I 

Correlation coefficient, 51-52 

as effect size, 179, lllO (table) 

G<liton\ usc of, 10 

Counting and additivity, 27-29 

Counts qualil)'ing as ml'<Jsurcmcnt, 29 

Covariability, 37 

association between distributions, 47 

Covariance 

association between distributions, 4H-51 

in CFi\, actual <llld implied, 339, 

340-3,11 

l(ll· composite vari<lhles, 52-53 

equation l(lr, ell) 

example l(lr computing, '''l (table) 

raw alpha, 137 

( \itcrion measure, 302 

Criterion-referenced tcsts, 7-8, 381 

Criterion v<liidit )'• �()I, 217 

< :ronhach, Lee, i>-7, 21 '1. 228, 383 

Cronhach's alpha, 137-I:\8, IHH, 191 

( :rosscd designs in (; theory, .\80-.\H I 

Cro>s-product' 

of dcviat ion scores, '19 

example l(lr computing, ·1'1 (tahll') 

Cross-V<Jiid;Jtion sample, .H7 

CT"l". SccC:lassicaltesl theory I< TTl 

( :utoll score, 8 

llc<lth penalty, 1-2, 1<>5, 20,1, 30.\ 

Deductive approach to validity, 217 

I Jcgree of attcntuation, 175-171> 

Degree of dillerence question, 57 

I kgree of lit, 2.\6 
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Demand characteristics, 11 

Dependent variable (DV), 38 

Depression 

measurement of, 6 

skew and validity coef!icicnt, 246-250 

Depression inventory, 247-250 

Derived standard scores. See Converted 

standard scores 

Deviation in distribution of scores, 42 

Diagnosis variable, skew and validity 

coefficients, 247-250 

Diagnostic ami Statistical Manual of Mental 

Disorders (l)SM), 286 

Dichotomous response distinctions, 393-394 

Dichotomous variables, 34 

skew and validity coefficients, 246-250 

DIF. See Differential item functioning (DIF) 

Difference scores, 126, 152-161 

defined, 153 

estimating reliability of, 154-155, 162n 

f�1ctors in reliability of, 155-157 

problem of unequal variability, 157-160 

summary and caution, 160-161 

Differential item functioning (DJF), 408 

detecting construct bias, 308-311 

statistical software for, 305 

Differential psychology, origin of, I 0 

Differential validity, 302 

See olso Predictive bias 

Dimensionality. See Test dimensionality 

Direction of the association, 47, 51 

Direct oblimin oblique rotation, 90 

Discriminant evidence, 213 

Discriminant validity evidence. See 

Convergent and discriminant 

validity evidence 

Distribution shapes, 45-46 

Distributions of scores 

central tendency, 41 

distribution shapes and normal 

distributions, 45-46 

quantifying association between, 47-52 

variability, 41-45 

Domain referenced tests, 7-8 

See olso Criterion refCrenced tests 

Domain sampling theory, 122 

generalizability theory as extension, 359 

Dot Counting Test (l)C T ), 298 

DSM (J)ingnostic mul Statistiml Mnmwl of 

Mental [)isorders), 286 

•• 

D studies, 360-361 

in one-facet design, 365-367 

in two-h1eet design, 375-377 

Educational Testing Service, 7, 407 

Eftccts in generalizability theory, 362 

(table), 364-365, 371-375 

Effect sizes, 178-181 

guidelines for interpretation of 

correlations, 262 

in QCV analysis, 236, 238-239 

Eigenvalues, 84-86 

Emotional stability, and social skills, 229-234 

Error scores 

lack of error variance, I 12-1 14 

and observed scores, lack of (squared) 

correlation between, 116-118 

standard deviation of, 118 

variance in test length, 147-148 

variances in, 107-109 

See also Measurement error 

Error variance 

for absolute decisions, 381-382 

CFA and reliability, 351 

Estimating practical effects, interpretation 

of validity coefficients, 256-261 

Estimating reliability. See Reliability, 

empirical estimates of 

Eta squared, 179-180 

Ethnicity example: is SAT biased?, 322-324 

Euphemistic description, 290 

Evidence. See Validity evidence 

Exhaustive categories, 21 

Expectation effects in testing, 11 

Experiences in Close Relationships scales 

(ECR), 407-408 

Experimental psychology, 10 

Exploratory factor analysis (EJ!A), 79-96 

conducting and interpreting, 82-96 

logic and purpose of, 79-82 

process ilowchart, 83 (figure) 

External bias, 302 

See also Predictive bias 

External evaluation of tests, 312-320 

See £1/so Predictive bias 

Extraction methods, 82-84 

Extreme and moderate response bias, 

278-281 

Extreme response style, 278 

Extremity bias, 278-281 

. . .. .  

. f'e-



Facet, defined, 358 

Facets of measurement in G theory 

crossed versus nested designs, 380-381 

multiple, 356-358 

one-fiJCcl design, 361-368 

other numbers in design, 377-378 

random versus fixed facets, 378-380 

relative versus absolute decisions, 381-383 

two-facet design, 368-377 

Face validity, compare to content validity, 

205-206 

Facial Action Coding System ( FACS), 4 

Facial behavior, 4 

Factor analysis, xviii, 73, 79-97 

confirmatory filCtor analysis, 96-97. 

Sec 11/so Confirmatory fi1ctor 

analysis (CFA) 

evaluation of internal structure of 

test, 307 

exploratory bctor analysis, 79-96. Sec 11/so 

Exploratory fi1ctor analysis (EFi\) 

and internal structure of tests, 207 

Factor Correlation Matrix, 93-95 

Factorial structure, 75 

Factor loadings, 90-93 

Factor Matrix, 91-92 

Factor rotation, 87, 90 

Fairness in testing, 216, 321 

h1king bad, 286 

Faking good, 285, 295 

False negative, 260-261 

h!lse positive, 260-261 

Family income, 324 

l:it indices, in Cl:i\ process, :H2-34'1 

Fixed liJCets inc; theory, 378-:>80 

Focused associations, 222-225 

Forced-choice items, 290-291 

(;alton, Francis, 9-10, 38 

c;ender example. Sec Mechanical 

aptitude lest 

Ceneralizability codlicienls, .\(,5-367, 371, 

373, 375-376, 377 (table) 

estimated l(>r absolute decisions, 382 

Ceneralizability theory((; theory), xix, 

355-3�U 

c; studies and D studies, 360-361 

multiple beets of measurement, 356-358 

one-liiCet design, 361-368 

other measurement designs, 377-.HU 

Subiect Index 427 

two-filCet design, 368-377 

universes and varia nee com ponenls, 

358-360 

Generalized Spearman-Brown formula, 

139-141 

c;Iobal self-esteem, validity evidence of 

tests, 206-207,211-213 

c;oodness-of-fit index (GFI), 343 

CPA 

association with IQ, 47-48 

as outcome measure in test score bias, 302 

and Si\T. Sec Scholastic Assessment 

"lest (SAT ) 

c;raded response model (CRM ), 393-395 

Craduale Management Admissions Test 

(CMAT), 410-411 

Craduate Record Examination (GRE), 62 

(; studies, 360-361 

in one-facc:t design, 362-365 

in two-liKet design, 370-375 

c; theory. Sec Ceneralizability theory 

Guessing 

as determinant of item responses, 389 

as response bias, 287 

( ;uidelines for a field, interpretation of 

validity coefllcients, 261-263 

llandwriting an<llysis, 200 

I Ieterotrait-hc:teromethod correlations, 

231 (table), 232 

I Ieterotrait-monomethod correlations, 

231 (table), 232, 23,1 

llierarchical regression, 321 

l ligher-order fiKtors, 77 

tests with, 76-78 

I louse-Tree-Person "lest, 6 

llypothctical constructs and working 

memory, 5 

ICC. Sec Item characteristic curve (ICC) 

Identity property, 20-21,24, .lO, 30 (table) 

Impression management, 285 

Impression Management scale, 298 

Impression motivation, 2.16-2.\7, 240-241 

Impression Motivation scale, 236-237 

Incremental lit index ( 11:1), 34.1 

Index of reli<tbility, 114 

Indices of model lit, inCh\ process, 

341-.>44 

Individual differences 
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in differential psychology, I 0 

importance of, 38-40 

inter- and intra-, 7 

Individual differences and correlations, 

xvii-xviii, 37-69 

binary items, 53-56 

composite variables, 52-53 

covariability and correlation, 47-52 

importance of individual differences, 

38-40 

interpreting Lest scores, 56-66 

nature of variability, 37-38 

test norms, 66-68 

variability and distributions of scores, 

40-46 

Inductive approach to validity, 217-218 

Inferential statistics, 45 

in analytic contexts, 180 (table) 

CI:A computation of, 340 

and statistical significance, 263-264 

Information 

item information, 401-407 

psychometric, as challenge in 

measurement, 13 

test inl(mnation, 401-407 

Instrument, 8 

Intelligence tests 

caution on difkrence scores, 161 

correlated with self-esteem, 212-213 

Calton's f(Jundation of, 10 

IQ points, 26-27 

multidimensional tests with correlated 

dimensions, 76-77 

Sec ub> IQ test scores; Wechsler 

Intelligence Scale f(>r Children 

(WISC-IVJ 

Interaction Anxiousness scale (lAS), 

34H-J51 

Intercept bias, detecting predictive bias, 

316-317,319 

lnterindividual diflerences, 7, 3H 

lnterindividual difference score, 154 

lnterindividual discrepancy score, 154 

In tern a! bias, 302 

Sec ulso ( :onstruct bias 

lntcrll<ll consistency rcliahilit y, 132-1,15 

accuracy and usc, 142-144 

and dimensionality, 1,14-145 

as factor in reliability of test scores, 

ltiS-1,16 

and item discrimination, 187-191 

raw alpha for binary items, 141-142 

raw cocflicient alpha, 136-139 

split-half reliability, 133-136 

standardized coefficient alpha, 139-141 

Internal evaluation of tests, 303-31 I 

See also Construct bias 

Internal structure of test 

CFA analysis of, 334, 351 

evaluation of construct bias, 303, 305 

validity evidence, 206-209 

International P ersonality Item Pool, 

Spirituality/Religiousness (S/R) scale, 

27H-2HO 

Interpretation and reporting CFA output, 

342-346 

Interpretation of validity coefficients. 

Sec Validity coefficients, interpreting 

Interpretations of test scores. Sec Validity 

Interval scales, 30 (table), 31-32 

Intra-individu<1l change scores, 154 

Intra-individual difTcrcnces, 7, 38 

Intra-individual difTcrcncc scores, 160 

Inventory, H 

IQ test scores, 2(> 

association with c;PA, 47 

and degree of test score unreliability, 172 

variability and distribution of scores, 40, 

43,114 (table), 45-46 

See u/so Intelligence tests 

IRT. See Item response theory (!RT) 

Item characteristic curve (ICC), 307-5 II, 

39R-,IOI 

Item difficulty, 191-192 

defined,3H7 

as determinant of item responses, 

3H6·-38H 

estimates of, 396, 397-391-l 

Item discrimination, 186-191 

as determinant of item responses, 

3H8-3H9 

Item discrimination index 

in detection of construct bias, 305-307 

internal consistency in test construction, 

190-191 

Item-f�Ktor associations, 90-93 

Item information, 401-407 

Item inf(mnation curve, 1103-407 

Item-level internal consistency, 136 

Item mean, 191-192 



I !em response theory ( IIU), xx, 385-41 I 

applications of, 407-'111 

differential item functioning analysis in, 

308-311 

I�Ktors affecting responses to test items, 

386-389 

item characteristic curves, 398-40 I 

item inf(mnation and test inf(mnation, 

401-407 

measurement models, 389-395 

par;mtcter estimates, example, 396-398 

Item-total correlation, 189 

Item variance, 1 91--192 

Job performance prediction, 223-224, 

259-260 

Job satisf�Ktion questionnaire, 275-277 

Keyed in neg;ttive direction, 291-292 

Keyed in positive direction, 275,291-292 

Kuder-Richardson 20 formula, 141, 143 

Latent vari;tble modeling, I?R 

Latent variables and working memory, 5 

Law School Admission 'lest ( LSAT), 62 

Length of objects, 25-26, 27-29 

Line of best fit, 315 

Logistic models 

one-parameter, 390-39 I, 393 

three-parameter, 392, 393 

two-p;trametcr, 391-393 

Llischcr tc,t, 200-20 I 

Magnitude of the associ;ttion, 47, 50, 51 

Main effect of items, 37'1--375 

Main effect of observer, 37,1 

Main effect of targets, 371 

Malingered cognitive impairment, 2911 

Malingering, II, 285-211(1, 2911 

Marlowe-< :rowne Social I lcsirabilit y 

Scale, 297 

Maximum likelihood I�Ktor analysis, 82 

Mean, arithmetic, 'II 

of binary item, 54 

for converted standard score'S, (11 

in IRT an;tlysis, 387-388 

of r;tw scores, 57 

Measure, 8 

Measurement. Sec 1:acets of measurement 

in (; theory; l'sychologic;tl 

measu rem en t; Sealing 

Measurement bias, .l02 

Sec also Cons! ruct bias 

Measurement error 

Subject Index 429 

assumptions about, I 06-107 

attenuation of observed associations 

between measures, 175-178 

defined, I 03 

in generalizability theory, 355, 357 

lack of error variance, I 12-1 14 

and observed scores and true scores, 

104-107 

in point estimates, 166-1 (19 

and reliability as t�JCtors affecting 

validity coefficient, 2'10-2,12 

variances in, 107--109 

Measurement models 

cr:A evaluation and specification, 333, 

336-:l:\9, 346-YI7 

ddlned, for item response theory, 3119 

graded response model, 39.�--395 

one-parameter logistic model (I PL), 

390-39 I, 393 

two-parameter logistic model (21'L), 

391-393 

Sec also Generalizability theory 

l'vlcasurcment theory. Sec ( :Jassical test 

theory 

Mc;tsut-ement units, comp;Hcd to 

psychological units, 211 

l'vlcclwnical aptitude test, 304, JO:i-307, 

3011-310,312-313 

fvlcdical College Admission 'kst ( l'v!Ci\T), !12 

l'vlcnt;tl tests, Calton's use of, I 0 

l'vktlwd vari;tnce 

as factor afkcting validity coeflicient, 

250-251 

MTMI\Hvl analysis, 229-2.\,1 

Met ric values, 23 

Microsoft Excel, .l<.J8, ,100 

Millon Clinical ivlultiaxial lnvcntory 

(MCMI), Nl--295 

iVIinnesota l'vlultiph<tsic l'crsonalit)' 

Inventory 

( lVI M I' I), 289, 29,1-295 

(MMI'I-2), 61, I'll, 152 

Modification indices, <TA comput<ttion 

oL J41<H2 

ivlonot rai t- hl'leromet hod corrcla t ions, 

231 (table), 2.\2, 234 
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Monotrait-monomcthod correlations, 

231 (table), 232 

Multidimensional Personality 

Questionnaire (MPQ), 218,408 

Multidimensional Self-Esteem inventory 

(MSEI), 207-209 

Multidimensional tests 

with correlated dimensions, 72, 76-78 

factor analysis of construct bias, 307 

test construction and refinement, 186 

with uncorrelated dimensions, 72, 78 

MUlTILOG software, 396 

Multiple regression analysis, 325 

Multitrait -multimethod matrix 

(MTMMM), 228-235 

CFA and validity, 351-352 

Mutually exclusive categories, 21 

National Assessment of Education 

Progress (NAEP), 6 

National Center for Fair and Open 

Testing (NCFOT), 255, 257,258, 262 

National Council of State Boards of 

Nursing (NCSI\N), 410 

National Council on Measurement in 

Education ( NCM E), xv, 198, 20 I, 214, 

220 

Nay-say ing bias, 277-278, 295 

Need to Belong (NTB), 221-222 

Negative Affect (NA) scale, 282-284 

Negatively keyed, 291-292 

NEO Five Factor Inventory (NEO-Hl), 78 

NEO Personality Inventory (NEO-PI), 295 

NEO Personality Inventory-Revised 

(NEO-Pl-R) 

Conscientiousness scale, 198-201, 

223-224 

questionnaire, 81 

Nested designs in (; theory, 380-381 

Neuroticism scale, 56, 62 

'J'Ize New York Ti111es, xiii 

Noise, I 04, 381 

Noise control task, 210-211 

Nominal response model, 393 

Nominal scales, 30-31 

Nomological network, 221-222,225,228 

Nonnormed tit index (NNl'l), 343 

Non probability sampling, 67-68 

Nonuniform bias, 310, 310 (figure) 

Normal curve equivalents, 66 

Normal distributions, I 0, 45-46 

Normalization transformations, 65 

Normalized scores, 65-66 

Normative sample, 7 

Normed fit index (NFI), 343 

Norm-referenced tests (decisions), 7-8, 

364,381 

See also Relative decisions 

Norms for a field, interpretation of validity 

coefficients, 261-263 

North Carolina State General Assembly, I, 204 

Numbers, properties of, 20-25 

association with scales of measurement, 

:lO (table) 

number zero, 23-25 

property of identity, 20-21 

property of order, 21-22 

property of quantity, 22-23 

Number zero, 23-25 

Numerals, 20 

Oblique rotations, 90, 91,93-95 

Observable behavior and unobservable 

psychological attributes, 4-6 

Observed associations 

attenuation of, between measures, 175-178 

and reliability and true associations, 

172-175 

Observed score effect size, 180-181 

Observed scores 

defined, 103 

and error scores, lack of (squared) 

correlation between, 116-118 

in point estimates, 166-169 

and true scores and measurement error, 

!04-107 

and true scores, (squared) correlation 

between, I H-116 

used to estimate reliability, 125 

variance in test length, 146 

variances in, 107-109 

variances in ratio for reliability, 110-112 

Observer bias, 12 

One-parameter logistic model (I PL), 

390-391,393 

item characteristic curves, 399-400 

item information, 403, 405 

parameter estimates example, 396-398 

Operational definitions and working 

memory, 5 

Order property, 21-22, 24, 30 (table), 31 

Ordinal scales, 30 (table), 31 



Orthogonal rotations, 90, 95-96 

Outcome score bias, detecting predictive 

bias, 320 

Outcome test (measure), 302, 312 

Parallel forms reliability, 126-12S 

See also Alternate forms reliability 

Parallel tests, I 19-121, 126, 143 

I' a ra meter estimates 

in CFA, 339-340, 344-346 

in IRT, 396-398 

Parameters 

defined, 390 

models in item response theory, 

390-393 

Paranoia scale, 61 

Parental educational status, 324 

PARSCALE software, 305, 396 

Parti<ll credit model, 393 

Participant reactivity, II 

Pat tern coefficients, 90-91 

Pattern Matrix, 91-92 

Paulhus, Del, 284-285 

Percentile ranks, 62-65 

Per!Cctionism Inventory (PI), 225-228 

Personality inventory, 197 

and response bias, 273 

Sec also Interaction Anxiousness scale; 

International Personality Item 

Pool; Minnesota Multiphasic Per

sonality Inventory; Multidimen

sional Personality (�ucstionnaire; 

NEO Personality Inventory 

Personality tests, 78 

Person lit, 'IOS-409 

Point estima\cs of true scores, 1(16--169 

Polytomous mT models, .>9"\ 

Polytomous items, 393 

Positive Affect !PA) scale, 282-2H4 

Positive and Negative Affect Schedule 

(PANAS), 2H2-284 

Positively keyed, 275, 291-292 

Power tests, 8 

internal consistency reliability, L\5-L\(1 

Predictions of single events, 251-253 

Predictive bias, 302, _) 12-320 

cllect of reliability, :no 

intercept bias, 316-317,319 

outcome score bias, 320 

regression analysis, 313-31 (1 

slope bias, 318-319 

Predictive validity evidence, 214,217 

!'red ictor test, 302, -' 12 
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Principal axis liJCtoring (I' A F), 82-84 

Principal components analysis (PCA), 82 

Probability sampling, 67-68 

Promax oblique rotation, 90 

Property of identity, 20-21, 24, 30, 30 (table) 

Property of order, 21-22, 24, 30 (table), 31 

Property of quantity, 22-23, 24, 30 (table), 31 

Prophecy f(mnula. Sec Spearman-Brown 

split-half (prophecy) I(Jrmula 

Psychological J\sscssiiiCilt, 234 

Psychological measurement, 1-15 

challenges to, I 0-14 

dellned,6-7, 19 

importance to reader, 2-3 

individual differences, importance of, 

14-15 

observable behavior and unobservable 

psychological attributes, 4-6 

psychometrics and hancis Galton, 

9-10 

types of tests, 7-8 

Psychological tests 

dellned,6-7 

scores used to make decisions, 165 

types of, 7-8 

Sec also Tests 

Psychological units compared to 

measurement units, 28 

Psychometric information as challenge in 

mcasu rcment, 13 

Psychomct rics, defined, xiii, 2, 9 

Psychometry, (;,!lton's usc of term, 9-10 

l'sychopatholo�y. 141 

Quantifying construct validity (()CV), 
235-239 

Quantitative values, 23 

Quantity property, 22-L\, 24, 30 (table), 31 

Race example: is SAT biased?, 322-324 

Random 1;1eets inC theory, 378-380 

ltlndom rl";IH1nding, 28(1-287, 295 

l{andom sample, (18 

Rank order in detection of construct 

bias,"\ II 

Rasch model, 390-391 

Sec also One-parameter logistic model 

( II'L) 

Ratio scales, 30 (table), .\2-33 

\ 
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Raw alpha reliability estimates 

accuracy of, 143 

for binary items, 141-\112 

coefficient, 136-139 

Raw scores, 56-57 

transforming into z score, 58 

Reaction limes, 23, 27,33 

Real numbers, 22-23 

Relcrence sample, 7 

representativeness of, 6(> 

Regression ;malysis 

basics of, 313-315 

comnwn regression eqLI<llion, 

315<\16, 317 

in example of SAT bias, 322-327 

intercept bias, 316-317,319 

slope bias, 318-319 

Regression lo the mean, I (>7-169 

Relal ive decisions in c; theory, 364, 381-3!\3 

Sec also Norm-relcrenced tests 

(decisions) 

Relative gencralizability cocfllcienls, 

%5-367,375 

Relative proportions, 246-250 

Relative zero point, 23-24 

Reliability 

and o:A, 348-351 

dell ned, I 03, I 04, 121, 173, 350 

clfccl on predictive bias, 320 

as factor affecting validity coefficient, 

240-242 

importance of, xviii 

validity compared to, 219 

Reliability coefficient, 114, 118 

Reliability, conceptual basis, xviii, I 01-123 

approaches lo conceptualizing reliability, 

109-110 

classical lest theory and, 102-104 

(squared) correlal ion between observed 

scores and true scores, I I'l-l 16 

domain sampling theory, 122 

lack of (squared) correlation between 

observed scores and error scores, 

11(>-11!\ 

lack of error variance, 112-11,1 

observed scores, true scores, and 

mcasu rem en t error, I 0·1-1 07 

parallel tests, 119-121 

ratio of true score variance to observed 

score variance, II 0-112 

and standard error of measurement, 

118-119 

variances in observed scores, true scores, 
and error scores, I 07-109 

Reliability, empirical estimates of, xviii, 

125-163 

alternate forms reliability, 126-128 

difference scores, reliability of, 152-161 

factors a!Iccting reliability of test scores, 

145-151 

internal consistency, 132-145 

internal consistency accuracy and usc, 

142-144 

internal consistency vs. dimensionality, 

144-145 

raw alpha for binary items, 141-142 

raw coclficient alpha, 136-139 

sample homogeneity and reliability 

generalization, 151-152 

split-half estimates of reliability, 

133-136 

standardized cocllicienl alpha, 139-141 

test-retest reliability, 129-131 

Reliability generalization, 151-152 

Reliability, importance of, 165-193 

applied behavioral practice: evaluation 

of test score, 165-172 

behavioral research, 172-186. Sec also 

Behavioral research 

lest construction and rcllncmcnl, 

I !\6-192. Sec o/so Test construction 

and refinement 

Religiousness scale, International 

Personality Item Pool, 278-2!\0 

Representativeness of rekrence sample. 67-68 

l�esearch. Sec Behavioral research 

Residual effect, 364-365, 374 

Respondents. Sec Trait level of respondents 

Response biases, xix, 273-300 

methods for coping with, 2!\7-298 

and response sets and response styles, 

29!\-299 

types of, 274-2!\7 

Response biases, coping methods, 2!\7-29H 

manage test content or scoring to 

minimize bias, 291-294 

manage test content to detect bias, 

294-297 

manage test content to minimize bias, 

2!\9-291 



manage testing context to minimize 

bias, 21\H-289 

usc specialized tests to detect bias, 

297-29H 

Response bias, types oL 274-2H7 

acquiescence bias, 274-278 

careless or random responding, 

2116-287 

extreme and moderate responding, 

278-2H l 

guessing, 287 

malingering, 2H5-2H6 

social desirability, 2H I -2H5 

Response probabilities, 390, 394-395 

Response processes in validity evidence, 

209-211 

Response sets, 298 

Response styles, 299 

Restricted range, 242-246 

Reverse keyed, 292 

See also Keyed in negative direction 

Reverse score, 292 

l�evised NEO Personality Inventory. Sec 

NEO Personality Inventory-Revised 

INE0-1'1-10 

rho, rank-order corrcbtion coefllcient, 311 

Root mean square of approximation 

( RMSEA), 343, J44 

Root mean square residual ( RM R), .\43 

Rosenberg Self-Esteem Inventory ( RSEI ), 

206-20H, 211-213, 331 

Rotation of fiKtors, H7, 90 

Rule governed, 30 

Rules as measurement scales, .\0 

Sample homogeneity, 151-152 

Sampling 

Calton's usc of, I 0 

and statistical signilicance, 2<d-26H 

Sampling procedures, (>7-6H 

SAS statistical package 

CI'A capability,.>.\.\, .H2 

< :ronbach coefficient alpha, 1.\H, 141 

SAT. Sec Scholastic Assessment Test (SAT) 

Scalar values, 2.\, 29 

Scale, H 

Scales of measurement, 29-.\tl 

interval sctlcs, 31-32 

nominal scales, .\0-J I 

ordinal scales,.\ I 

Subject Index 433 

practical implications and additional 

issues, 33-34 

ratio scales, 32-33 

Scaling, xvii, I 9-35 

additivity and counting, 27-29 

delined,29 

numbers and properties, 20-25 

scales of measurement, 29-.\4 

units of measurement, 25-27 

Scal\erplots of SAT scores and ( ;pA, 

243-2•15 

Schedule, H 

Scholastic Assessment Test (SAT ) 

binomial effect size display and CPA, 

256-259 

converted standard scores, 62 

correlation to (;PA scores, 214 

example: is SAT biased on race or 

socioeconomic status?, 322-327 

interval-level scores, 32 

item response theory used, 407 

norms in field, and predictive power of 

GPA, 262-263 

as predictor test in test score bias, 

302,312 

Reasoning test, 214, 222-223 

restricted range and c;J>A, 242-246 

SAT-II, 325-327 

SA/' Progm111 I illlull>ook, 223 

scores, association with (;pi\, 47-4H 

squared correlation and ( ;J>i\, 255-256 

and statistical significance, 26.\-2(>(> 

as type of test, H 

Scientifically recognized standardized, 2(H 

Scorer bias, 12 

Score sensitivity as challenge in 

1\leasU!Tnlen\, 12-13 

Scoring, minimizing responsL' bias, 

291-294 

Scree plots, H6- H7, 207-20H 

Sdf-<tlienation, in Authenticity Scale, .\.H 

Sdf-deception, 2H5 

Self-! lccq>tion l·:nhancement scale, 2<J7 

Self·L"i\eenl 

association with academic achievement, 

17,1-175,176 

questionnaire, 105-107, 111-·112, 

!13-114, IIH 

validity evidence oltests, 20<>-20<), 

211-213 
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Sclf-�:st<:<:m inventories. Sec Coop<:rsmith 
Self-Esteem Inventory; Multidimen
sional Self-Esteem Inventory (MSEI); 
Rosenberg Self-Esteem Inventory 
(RSEI) 

Sensitivity as d1allenge in measurement, 
I 2- U 

Sets of wrrelations, 225-22H 
Shared method variance, 22<J, 251 
Sigma symbol, 41 
Signal, I 04 
Simple structure, 'J 1-92 
Single events predictions, 251-253 
Situational social anxiety, 352 
Skew of distributions of scores, 246-250 
Slope bias, detecting predictive bias, 

31H-31<J 
Social desirability response bias, II, 

2HI-2H5 
I. validity scale (Lie scale), 295 
in methods to cope with respome bias, 

2HH-2H9,2<J0,297-2<JH 
Sec also Brief Inventory of Desirable 

Responding (Bll>R); Marlowe-
( :rownc Social I >c.:sirability Scak· 

Social skills 
emotional stability and, 229-234 
in method variance, 251 

Socim·conomic status (SES) example: is 
SAT biased?, 324-327 

Spearman-Brown split-half (prophecy) 
l(mnula, l.B, 14H-14<J 

generalized, 139 
Spearman, ( :harles, I.B 
Spearman's rank-order correlation 

wefticient (rho), 311 
Speeded tests, H, 135-136 
Spelling ability, 24 
Split-halt <"stimates of reli<lbility, 

U.�- U6, 143 
SI'SS software 

det<:cting predictive hi<ls, 313 
FFA and CFA e<1pabilities, 332-333 
Reliability Analysis prouxlur�.·, 135, 13H, 

141, IH7-190 
Squared correlations, interpretation of 

validity coefllcients, 253-256 
Squared multiple correlation, 1 <J 1 
Stability coefficient, U I 
Standard deviation 

li>r converted standard scor<:s, 61 
in distribution of scores, 42-44 
in IRT analysis, 3H7-3HH 
of raw test scores, 57-5H 
of z score, 5<J 

Standard dt:viation units, 59 
Standard <:rror of <:stimat<:, I71 
Standard <:rror of m<:asur�:mcnt 

and reliability, II H-II9 
reliability and contldcnce intervals, 

169-17I 
Standardized co�:fllcicnt alpha, 

U9-141, I4<J 
Standardized root mean square r�:sidual 

(SRMR), 343, .�44 
Standardized scores. Sec Converted 

standard scores 
Standard measures, 26-27 

Sec also Units of measurement 

Standard normal curve, 6.� 
Standard normal distribution, 63-65 
Standard scon:s, 5H-61 

Sec also Z scores 
I /1 -1 >lo�iml 

Sta11dards }i11· J:duwtiollal mrt sy1 11 , 

'/(·still,<.;, 20 I, 214, 220 
Stanli>rd-Binet (SB5 ), 76 
Stanincs, 66 
Stars, black holes, and galaxies, 262 

. 
. . 

S'l"AI) Irart State-Trait Anxiety Inventory (. 
Anxiety subscale, 27H-2HO 

Statistical signitlcance, 17H, I H 1-I H2 

interpretation of validity coefficients, 

263-26H 
in ()CV analysis, B6, DH 

Statistical software 
for detecting wnstruct bias, 305 
li>r detecting predictive bias, 313 
used in CFA, .B2-.B3, .B6, 339, 342 

used in (; theory analysis, 362 
used in I RT, 396, 39H .. 
S I SAS . . I klvc· spss . cc <1 so. • stat1st1G1 pac <" • · 

software 
7tl 

Structural equation modeling (SEM) ,  1 ' 
320-321,352-353 

Structure cocftlcients, IJ0-9 I 
Structure Matrix, IJI-92 
Subtests, 76 
Summation notation, 4I . s , . . I I ·via lion-
Sum ot squares (sum of square< 'c 

<lhout the mean), 42 
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'J;tlkativeness, 251-252 

Tar�et effect, 36·1, .'171-.\73 

·1;lll cquiv;tlcncc, 120, 143 

'J;tylor Russell tables, 256, 25lJ, 260 

'Jest bias, xix, .W I-32X 

about concerns on, 303 

compared to test f;tirncss, 216, .HI 

detect in� construct bias, JO.l-311. 

Sec also Construct bias 

detect in� predictive bias, 312-320. 

Sec also Predictive bias 

cx;unplc: is SAT b iased?, .l22-327 

other statistical procedures, 320-321 

'kst construction ;tnd refinement, IH6-192 

item discrimination ,tnd internal 

consi�tcncy, I H7-19 I 

item mean and itemvari;llKl', 191-192 

Test content 

detect in� response bias, 294-297 

as t;tctor in response hias, 2H I 

minimizing response bias, 2H9-294 

'lest dimensionality, xviii, 71-79 

and confirnwtory f;Ktor analysis, 

331-332 

ex;tmination of. Sec htctor analysis 

and internal consistency, 144-145 

multidimensional tests w ith correlated 

dimensions, 72, 76-7X 

mult idimensional tests with 

uncorrclatcd dimensions, 72, 7H 

psydwlo�iGtl meanin� of, 7X-79 

test construct ion .wd rcfi ncmcn t, I X6 

three questions, 72, 7·1 

unidinll'mional tests, 72, 74-71> 

'li:st f;tirncss, 216, 321 

Tc�t inf(mn;ttion, 401--407 

'J(:st inf(ll' ln at ion curve, 405 

'Ii:st in� context 

,,s factor in response bias, 2X I 

minimizin� response bias, 2XX-2H9 

'kstin�. defined, 9 

'kst items, f;tdors affect in� rt·sponses, 

.lX6-3X9 

'Ii:st kn�t h, 1·16-151 

'kst norms, 66 -6X 

rcpresent;ttivcncss of rdi:rencc sample, 

67-6X 

Tc�t-rctest correlation coefficient, 131 

'lest -retest reliability, 129- UI. 143 

'l(.·�ts 
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tkvclopment and improwment h)' I Kl', 
407-40H 

evaluation of, extcrtwl. Sec Predict ive bi;ts 

evaluation of, internal. Sec Comtrud bi,ts 

with hi�her-ordcr fiKtors, 76-?H 

specialized, to detect response bi,ts, 

297-29H 

synonyms fi,r, H 

Sec also l'sycholo�ical tests 

'lest score bi;ts. Sec Test bias 

'll'st scores, interpret in�, 56-66 

converted st;tndard scores (stand.mlin·d 

scores), 61-62 

nornwlin·d scores, 65-66 

percentile r.tnks, 62-65 

\'alid ity of. Sa Validity 

z scores (standard scores), 5H-61 

'Ibt sensitivit\' ,,nd specificity. an.tlysis of. 

256,260-261 

Th ree-p.t ra meter lo�ist ic model ( .ll'l.), 

392,393 

Time. as factor affeding validitv 

coefficient, 251 

Time-limited tests. Sec Speeded tests 

'li>tal test score, 7h 
Trait level of respondents 

and computeri;cd adaptive test in�. 

-109-4 II 

as dctcrmin,tnt of item re�ponscs, 

JH6,.lX7 

estimates of, .l%-.l97 

,111d item infimn.ttion,-WI-·107 

Trait vari.uiC<', 229-2.\4 

True as�ociat ions 

between constructs, f.Ktor .tlfellin� 

validity <odficicnt, 2·10 

.md rdi.tbility ;tnd obscrwd 

associati1>m, 172 175 

True nc�.1t ivc, 2h0 2h I 

True posit iw, 21>0 2h I 

True score confidence intcrv.ds, I (l(,, 

11>9 172 

True score cffi.·t t �ilt', I HO- I HI 

·rrue su>rc hetcn>�cneitv. 151-152 

True scores 

defined, !OJ 
,utd observed scores .md mt\tsurt·mcnt 

error. I 0·1 I 07 

and obscrwd scores, (squared) 

correlation between, 11·1 llh 
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variance in test length, 146-147 

variances, I 07-109 

variances in ratio for reliability, 110-112 

True score theory of reliability, 133 

Tucker-Lewis Index ('I'Ll), 343 

Two-parameter logistic model (2PL), 

391-393 

Unidimensional tests, 72, 74-76 

factor analysis of construct bias, 307 

test construction and rclincmcnt, 186 

Uniform bias, 309 (figure), 310 

Unit normal distribution, 63 

See also Standard normal distribution 

Unit siz.e, 22, 27-28 

Units of measurement, 23, 25-27 

Universe scores, 359 -360, 361 

Universes in generalizability theory, 

358-360, 370 

University of Calilt>rnia (UC), report on 

SAT predictive validity and potential 

bias, 322-327 

Unobservable psychological attributes and 

observable behavior, 4-6 

Utility analysis, 2%, 2(>() 

Validation process, 15 

Validity 

and CFA, 351-353 

conceptual basis, xix, 197-202 

construct validity. Sec Construct validity 

delined, 198-202 

importance of, 202-2!H 

other perspectives on, 216-219 

perspectives, traditional compared to 

contemporary, 201,202 (ligure), 

214, 217 

reliability compared to, 219 

and working memory, 5 

Validity coet'llcients, 223 

Validity coefficients, litctors affecting, 

239-253 

associations between constructs, 240 

measurement error and reliability, 

2;1(}-2;12 

method variance, 250---251 

predictions of single events, 251-253 

restricted range, 242-246 

skew ami relative proportions, 246-250 

time, 251 

Validity coefficients, interpreting, 253-268 

estimating practical effects, 256-261 

guidelines or norms for a licld, 261-263 

squared correlations and variance 

explained, 253-256 

statistical significance, 263-268 

Validity evidence 

associations with other variables, 

211-214 

consequences ol testing, 214-216 

internal structure of test, 206-209 

response processes, 209-21 I 

test content, 204-206 

See also Convergent and discriminant 

validity evidence 

Validity generalization, 223-225 

Validity scales, 294-297 

Variability 

dc!ined, 37 

and difference scores, 153 

distributions of scores and, 40-45 

importance in individual diflcn:nces, 

38-39 

nature of, 37-38 

unequal problem in difference scores, 

157-160 

Variables 

associations. Sec Associations between 

variables 

computing correlation using z scores, 

60-C> I 

interpreting association between two, 

47-48 

variance and covariance for composite 

variables, 52-53 

Variance 

of binary item, 5:1-56 

in CI'A, actual and implied, :1:19, 340-341 

for composite variables, 52-53 

in distribution of scores, 42-44 

in observed scores, true scores, and error 

scores, I 07 -I 09 

ratio of true score variance to observed 

score variance, I I 0-1 12 

raw alpha, 137 

Variance components 

in generalizability theory, 358-360 

in one-facet design, C theory, 363-365, 

364 (table), 366 

in two-f�tcct design, c; theory, 371-373, 

372 (table), 375-377 
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Variance-covariance matrix, 50, 51 (table) 

Variance explained interpretation of 

validity cocfEcients, 253-256 

Variance-explained values in bias example, 

322-323 

Varimax orthogonal rotation, 90, 95 

Video game violence, 202-203 

Wechsler Intelligence Scale h1r Children 

(W!SC-IV), 76-77 

Perceptual Reasoning Index, !54 

true score confidence intervals, 169 

Verbal Comprehension Index, !54 

Yea-saying bias, 274-277, 295 

Zero (number), 2.>-25 

z scores, 24 

about, 5!1-6 I 

converted standard scores,(> I 

standard normal distribution and, 

63-64 
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