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PREFACE

INTENDED AUDIENCE

An Introduction to Statistical Methods and Data Analysis, Seventh Edition, provides
a broad overview of statistical methods for advanced undergraduate and graduate
students from a variety of disciplines. This book is intended to prepare students to
solve problems encountered in research projects, to make decisions based on data
in general settings both within and beyond the university setting, and finally to
become critical readers of statistical analyses in research papers and in news reports.
The book presumes that the students have a minimal mathematical background
(high school algebra) and no prior course work in statistics. The first 11 chapters
of the textbook present the material typically covered in an introductory statistics
course. However, this book provides research studies and examples that connect
the statistical concepts to data analysis problems that are often encountered in
undergraduate capstone courses. The remaining chapters of the book cover regres-
sion modeling and design of experiments. We develop and illustrate the statistical
techniques and thought processes needed to design a research study or experiment
and then analyze the data collected using an intuitive and proven four-step approach.
This should be especially helpful to graduate students conducting their MS thesis
and PhD dissertation research.

MAJOR FEATURES OF TEXTBOOK

Learning from Data

In this text, we approach the study of statistics by considering a four-step process
by which we can learn from data:

Defining the Problem

Collecting the Data

Summarizing the Data

Analyzing the Data, Interpreting the Analyses, and Communicating
the Results

AWM

Case Studies

In order to demonstrate the relevance and critical nature of statistics in solving real-
world problems, we introduce the major topic of each chapter using a case study.
The case studies were selected from many sources to illustrate the broad applica-
bility of statistical methodology. The four-step learning from data process is illus-
trated through the case studies. This approach will hopefully assist in overcoming

xi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Xii PREFACE

the natural initial perception held by many people that statistics is just another
“math course.” The introduction of major topics through the use of case studies
provides a focus on the central nature of applied statistics in a wide variety of
research and business-related studies. These case studies will hopefully provide the
reader with an enthusiasm for the broad applicability of statistics and the statistical
thought process that the authors have found and used through their many years
of teaching, consulting, and R & D management. The following research studies
illustrate the types of studies we have used throughout the text.

e Exit Polls Versus Election Results: A study of why the exit polls
from 9 of 11 states in the 2004 presidential election predicted John
Kerry as the winner when in fact President Bush won 6 of the 11
states.

@ Evaluation of the Consistency of Property Assessors: A study to
determine if county property assessors differ systematically in their
determination of property values.

¢ Effect of Timing of the Treatment of Port-Wine Stains with Lasers:
A prospective study that investigated whether treatment at a younger
age would yield better results than treatment at an older age.

® Controlling for Student Background in the Assessment of Teaching:
An examination of data used to support possible improvements to
the No Child Left Behind program while maintaining the important
concepts of performance standards and accountability.

Each of the research studies includes a discussion of the whys and hows of the
study. We illustrate the use of the four-step learning from data process with each
case study. A discussion of sample size determination, graphical displays of the
data, and a summary of the necessary ingredients for a complete report of the sta-
tistical findings of the study are provided with many of the case studies.

Examples and Exercises

We have further enhanced the practical nature of statistics by using examples and
exercises from journal articles, newspapers, and the authors’ many consulting
experiences. These will provide the students with further evidence of the practical
usages of statistics in solving problems that are relevant to their everyday lives.
Many new exercises and examples have been included in this edition of the book.
The number and variety of exercises will be a great asset to both the instructor and
students in their study of statistics.

Topics Covered

This book can be used for either a one-semester or a two-semester course. Chapters
1 through 11 would constitute a one-semester course. The topics covered would
include

Chapter 1—Statistics and the scientific method

Chapter 2— Using surveys and experimental studies to gather data
Chapters 3 & 4 — Summarizing data and probability distributions
Chapters 5-7— Analyzing data: inferences about central values and
variances

Chapters 8 & 9—One-way analysis of variance and multiple
comparisons
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Chapter 10— Analyzing data involving proportions
Chapter 11 —Linear regression and correlation

The second semester of a two-semester course would then include model building
and inferences in multiple regression analysis, logistic regression, design of experi-
ments, and analysis of variance:

Chapters 11-13—Regression methods and model building: multiple re-
gression and the general linear model, logistic regression, and building
regression models with diagnostics

Chapters 14-19— Design of experiments and analysis of variance: design
concepts, analysis of variance for standard designs, analysis of covari-
ance, random and mixed effects models, split-plot designs, repeated
measures designs, crossover designs, and unbalanced designs

Emphasis on Interpretation, not Computation

In the book are examples and exercises that allow the student to study how to
calculate the value of statistical estimators and test statistics using the definitional
form of the procedure. After the student becomes comfortable with the aspects of
the data the statistical procedure is reflecting, we then emphasize the use of com-
puter software in making computations in the analysis of larger data sets. We provide
output from three major statistical packages: SAS, Minitab, and SPSS. We find that
this approach provides the student with the experience of computing the value of the
procedure using the definition; hence, the student learns the basics behind each pro-
cedure. In most situations beyond the statistics course, the student should be using
computer software in making the computations for both expedience and quality of
calculation. In many exercises and examples, the use of the computer allows for more
time to emphasize the interpretation of the results of the computations without hav-
ing to expend enormous amounts of time and effort in the actual computations.

In numerous examples and exercises, the importance of the following aspects
of hypothesis testing are demonstrated:

1. The statement of the research hypothesis through the summarization
of the researcher’s goals into a statement about population
parameters.

2. The selection of the most appropriate test statistic, including sample
size computations for many procedures.

3. The necessity of considering both Type I and Type II error
rates (« and 8) when discussing the results of a statistical test of
hypotheses.

4. The importance of considering both the statistical significance and
the practical significance of a test result. Thus, we illustrate the
importance of estimating effect sizes and the construction of confi-
dence intervals for population parameters.

5. The statement of the results of the statistical test in nonstatistical
jargon that goes beyond the statement “reject Hy” or ““fail to
reject Hy.”

New to the Seventh Edition

® There are instructions on the use of R code. R is a free software package
that can be downloaded from http:/ /lib.stat.cmu.edu/R/CRAN.
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Click your choice of platform (Linux, MacOS X, or Windows) for the
precompiled binary distribution. Note the FAQs link to the left for
additional information. Follow the instructions for installing the base
system software (which is all you will need).

® New examples illustrate the breadth of applications of statistics to
real-world problems.

® An alternative to the standard deviation, MAD, is provided as a
measure of dispersion in a population/sample.

® The use of bootstrapping in obtaining confidence intervals and
p-values is discussed.

® Instructions are included on how to use R code to obtain percentiles
and probabilities from the following distributions: normal, binomial,
Poisson, chi-squared, F, and t.

® A nonparametric alternative to the Pearson correlation coefficient:
Spearman’s rank correlation, is provided.

® The binomial test for small sample tests of proportions is presented.

® The McNemar test for paired count data has been added.

® The Akaike information criterion and Bayesian information criterion
for variable selection are discussed.

Additional Features Retained from Previous Editions

® Many practical applications of statistical methods and data analysis
from agriculture, business, economics, education, engineering, medi-
cine, law, political science, psychology, environmental studies, and
sociology have been included.

® The seventh edition contains over 1,000 exercises, with nearly 400 of
the exercises new.

® Computer output from Minitab, SAS, and SPSS is provided in
numerous examples. The use of computers greatly facilitates the use
of more sophisticated graphical illustrations of statistical results.

® Attention is paid to the underlying assumptions. Graphical
procedures and test procedures are provided to determine if assump-
tions have been violated. Furthermore, in many settings, we provide
alternative procedures when the conditions are not met.

® The first chapter provides a discussion of “What Is Statistics?” We
provide a discussion of why students should study statistics along with
a discussion of several major studies that illustrate the use of statistics
in the solution of real-life problems.

Ancillaries

® Student Solutions Manual (ISBN-10: 1-305-26948-9;
ISBN-13:978-1-305-26948-4), containing select worked solutions
for problems in the textbook.

® A Companion Website at www.cengage.com/statistics/ott, containing
downloadable data sets for Excel, Minitab, SAS, SPSS, and others,
plus additional resources for students and faculty.
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CHAPTER 1 Statistics and the Scientific Method
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1.1 Introduction

Statistics is the science of designing studies or experiments, collecting data, and
modeling/analyzing data for the purpose of decision making and scientific discov-
ery when the available information is both limited and variable. That is, statistics is
the science of Learning from Data.

Almost everyone, including social scientists, medical researchers, superin-
tendents of public schools, corporate executives, market researchers, engineers,
government employees, and consumers, deals with data. These data could be in the
form of quarterly sales figures, percent increase in juvenile crime, contamination
levels in water samples, survival rates for patients undergoing medical therapy,
census figures, or information that helps determine which brand of car to purchase.
In this text, we approach the study of statistics by considering the four-step process
in Learning from Data: (1) defining the problem, (2) collecting the data, (3) sum-
marizing the data, and (4) analyzing the data, interpreting the analyses, and com-
municating the results. Through the use of these four steps in Learning from Data,
our study of statistics closely parallels the Scientific Method, which is a set of prin-
ciples and procedures used by successful scientists in their pursuit of knowledge.
The method involves the formulation of research goals, the design of observational
studies and/or experiments, the collection of data, the modeling/analysis of the
data in the context of research goals, and the testing of hypotheses. The conclusion
of these steps is often the formulation of new research goals for another study.
These steps are illustrated in the schematic given in Figure 1.1.

This book is divided into sections corresponding to the four-step process in
Learning from Data. The relationship among these steps and the chapters of the
book is shown in Table 1.1. As you can see from this table, much time is spent dis-
cussing how to analyze data using the basic methods presented in Chapters 5-19.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.1 Introduction 3

FIGURE 1.1
ientific Meth
Scientific Met O.d Formulate research goal:
Schematic
research hypotheses, models
Formulate new Make decisions:
research goals: . .
written conclusions,
new models, .
oral presentations
new hypotheses
Design study: Draw inferences:
sample size, variables, Collect data: graphs, estimation,
experimental units, data management hypotheses testing,
sampling mechanism model assessment
TABLE 1.1
The Four-Step Process Chapters

Organization of the text

Statistics and the Scientific Method
Using Surveys and Experimental Studies to Gather Data

1 Defining the Problem
2 Collecting the Data

3 Summarizing the Data Data Description

Probability and Probability Distributions

Inferences about Population Central Values

Inferences Comparing Two Population Central Values
Inferences about Population Variances

Inferences about More Than Two Population Central Values
Multiple Comparisons

Categorical Data

Linear Regression and Correlation

4 Analyzing the Data,
Interpreting the Analyses,
and Communicating
the Results

O 0NN R W N

—
N = O

Multiple Regression and the General Linear Model

—_
(O8]

Further Regression Topics

—_
~

Analysis of Variance for Completely Randomized Designs

[
94}

Analysis of Variance for Blocked Designs

[N
=)}

The Analysis of Covariance

Analysis of Variance for Some Fixed-, Random-, and
Mixed-Effects Models

18 Split-Plot, Repeated Measures, and Crossover Designs
19 Analysis of Variance for Some Unbalanced Designs

—_
~

However, you must remember that for each data set requiring analysis, someone
has defined the problem to be examined (Step 1), developed a plan for collecting
data to address the problem (Step 2), and summarized the data and prepared the
data for analysis (Step 3). Then following the analysis of the data, the results of the
analysis must be interpreted and communicated either verbally or in written form
to the intended audience (Step 4).

All four steps are important in Learning from Data; in fact, unless the prob-
lem to be addressed is clearly defined and the data collection carried out properly,
the interpretation of the results of the analyses may convey misleading informa-
tion because the analyses were based on a data set that did not address the problem
or that was incomplete and contained improper information. Throughout the text,
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CHAPTER 1 STATISTICS AND THE SCIENTIFIC METHOD

we will try to keep you focused on the bigger picture of Learning from Data
through the four-step process. Most chapters will end with a summary section
that emphasizes how the material of the chapter fits into the study of statistics —
Learning from Data.

To illustrate some of the above concepts, we will consider four situations
in which the four steps in Learning from Data could assist in solving a real-world
problem.

1. Problem: Inspection of ground beef in a large beef-processing facility.
A beef-processing plant produces approximately half a million pack-
ages of ground beef per week. The government inspects packages
for possible improper labeling of the packages with respect to the
percent fat in the meat. The inspectors must open the ground beef
package in order to determine the fat content of the ground beef.
The inspection of every package would be prohibitively costly and
time consuming. An alternative approach is to select 250 packages
for inspection from the daily production of 100,000 packages. The
fraction of packages with improper labeling in the sample of 250
packages would then be used to estimate the fraction of packages
improperly labeled in the complete day’s production. If this fraction
exceeds a set specification, action is then taken against the meat
processor. In later chapters, a procedure will be formulated to deter-
mine how well the sample fraction of improperly labeled packages
approximates the fraction of improperly labeled packages for the
whole day’s output.

2. Problem: Is there a relationship between quitting smoking and
gaining weight? To investigate the claim that people who quit
smoking often experience a subsequent weight gain, researchers
selected a random sample of 400 participants who had successfully
participated in programs to quit smoking. The individuals were
weighed at the beginning of the program and again 1 year later.
The average change in weight of the participants was an increase of
5 pounds. The investigators concluded that there was evidence that
the claim was valid. We will develop techniques in later chapters to
assess when changes are truly significant changes and not changes
due to random chance.

3. Problem: What effect does nitrogen fertilizer have on wheat production?
For a study of the effects of nitrogen fertilizer on wheat production,
a total of 15 fields was available to the researcher. She randomly
assigned three fields to each of the five nitrogen rates under inves-
tigation. The same variety of wheat was planted in all 15 fields. The
fields were cultivated in the same manner until harvest, and the
number of pounds of wheat per acre was then recorded for each of
the 15 fields. The experimenter wanted to determine the optimal
level of nitrogen to apply to any wheat field, but, of course, she was
limited to running experiments on a limited number of fields. After
determining the amount of nitrogen that yielded the largest produc-
tion of wheat in the study fields, the experimenter then concluded
that similar results would hold for wheat fields possessing charac-
teristics somewhat the same as the study fields. Is the experimenter
justified in reaching this conclusion?
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1.1 Introduction 5

4. Problem: Determining public opinion toward a question, issue,
product, or candidate. Similar applications of statistics are brought
to mind by the frequent use of the New York Times/CBS News,
Washington Post/ABC News, Wall Street Journal/NBC News, Harris,
Gallup/Newsweek, and CNN/Time polls. How can these pollsters
determine the opinions of more than 195 million Americans who are
of voting age? They certainly do not contact every potential voter in
the United States. Rather, they sample the opinions of a small num-
ber of potential voters, perhaps as few as 1,500, to estimate the reac-
tion of every person of voting age in the country. The amazing result
of this process is that if the selection of the voters is done in an unbi-
ased way and voters are asked unambiguous, nonleading questions,
the fraction of those persons contacted who hold a particular opinion
will closely match the fraction in the total population holding that
opinion at a particular time. We will supply convincing supportive
evidence of this assertion in subsequent chapters.

These problems illustrate the four-step process in Learning from Data.
First, there was a problem or question to be addressed. Next, for each prob-
lem a study or experiment was proposed to collect meaningful data to solve the
problem. The government meat inspection agency had to decide both how many
packages to inspect per day and how to select the sample of packages from the
total daily output in order to obtain a valid prediction. The polling groups had to
decide how many voters to sample and how to select these individuals in order
to obtain information that is representative of the population of all voters. Simi-
larly, it was necessary to carefully plan how many participants in the weight-gain
study were needed and how they were to be selected from the list of all such
participants. Furthermore, what variables did the researchers have to measure
on each participant? Was it necessary to know each participant’s age, sex, physi-
cal fitness, and other health-related variables, or was weight the only important
variable? The results of the study may not be relevant to the general population
if many of the participants in the study had a particular health condition. In the
wheat experiment, it was important to measure both the soil characteristics of
the fields and the environmental conditions, such as temperature and rainfall, to
obtain results that could be generalized to fields not included in the study. The
design of a study or experiment is crucial to obtaining results that can be general-
ized beyond the study.

Finally, having collected, summarized, and analyzed the data, it is important
to report the results in unambiguous terms to interested people. For the meat
inspection example, the government inspection agency and the personnel in the
beef-processing plant would need to know the distribution of fat content in the
daily production of ground beef. Based on this distribution, the agency could then
impose fines or take other remedial actions against the production facility. Also,
knowledge of this distribution would enable company production personnel to
make adjustments to the process in order to obtain acceptable fat content in their
ground beef packages. Therefore, the results of the statistical analyses cannot
be presented in ambiguous terms; decisions must be made from a well-defined
knowledge base. The results of the weight-gain study would be of vital interest to
physicians who have patients participating in the smoking-cessation program. If
a significant increase in weight was recorded for those individuals who had quit
smoking, physicians would have to recommend diets so that the former smokers
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FIGURE 1.2
Population and sample

Set of all measurements:
the population

- ~~

________

Set of measurements
selected from the
population:
the sample

would not go from one health problem (smoking) to another (elevated blood
pressure due to being overweight). It is crucial that a careful description of the
participants —that is, age, sex, and other health-related information—be included
in the report. In the wheat study, the experiment would provide farmers with
information that would allow them to economically select the optimum amount of
nitrogen required for their fields. Therefore, the report must contain information
concerning the amount of moisture and types of soils present on the study fields.
Otherwise, the conclusions about optimal wheat production may not pertain to

farmers growing wheat under considerably different conditions.
To infer validly that the results of a study are applicable to a larger group
population  than just the participants in the study, we must carefully define the population
(see Definition 1.1) to which inferences are sought and design a study in which the
sample  sample (see Definition 1.2) has been appropriately selected from the designated

population. We will discuss these issues in Chapter 2.

DEFINITION 1.1 A population is the set of all measurements of interest to the sample collector.
(See Figure 1.2.)

DEFINITION 1.2 A sample is any subset of measurements selected from the population.
(See Figure 1.2.)

1.2 Why Study Statistics?

We can think of many reasons for taking an introductory course in statistics. One
reason is that you need to know how to evaluate published numerical facts. Every
person is exposed to manufacturers’ claims for products; to the results of socio-
logical, consumer, and political polls; and to the published results of scientific
research. Many of these results are inferences based on sampling. Some infer-
ences are valid; others are invalid. Some are based on samples of adequate size;
others are not. Yet all these published results bear the ring of truth. Some peo-
ple (particularly statisticians) say that statistics can be made to support almost
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1.2 Why Study Statistics? 7

anything. Others say it is easy to lie with statistics. Both statements are true. It
is easy, purposely or unwittingly, to distort the truth by using statistics when
presenting the results of sampling to the uninformed. It is thus crucial that you
become an informed and critical reader of data-based reports and articles.

A second reason for studying statistics is that your profession or employment
may require you to interpret the results of sampling (surveys or experimentation)
or to employ statistical methods of analysis to make inferences in your work. For
example, practicing physicians receive large amounts of advertising describing
the benefits of new drugs. These advertisements frequently display the numerical
results of experiments that compare a new drug with an older one. Do such data
really imply that the new drug is more effective, or is the observed difference in
results due simply to random variation in the experimental measurements?

Recent trends in the conduct of court trials indicate an increasing use of
probability and statistical inference in evaluating the quality of evidence. The use
of statistics in the social, biological, and physical sciences is essential because all
these sciences make use of observations of natural phenomena, through sample
surveys or experimentation, to develop and test new theories. Statistical methods
are employed in business when sample data are used to forecast sales and profit.
In addition, they are used in engineering and manufacturing to monitor product
quality. The sampling of accounts is a useful tool to assist accountants in conduct-
ing audits. Thus, statistics plays an important role in almost all areas of science,
business, and industry; persons employed in these areas need to know the basic
concepts, strengths, and limitations of statistics.

The article “What Educated Citizens Should Know About Statistics and Prob-
ability,” by J. Utts (2003), contains a number of statistical ideas that need to be
understood by users of statistical methodology in order to avoid confusion in the
use of their research findings. Misunderstandings of statistical results can lead to
major errors by government policymakers, medical workers, and consumers of this
information. The article selected a number of topics for discussion. We will sum-
marize some of the findings in the article. A complete discussion of all these topics
will be given throughout the book.

1. One of the most frequent misinterpretations of statistical findings
is when a statistically significant relationship is established between
two variables and it is then concluded that a change in the explana-
tory variable causes a change in the response variable. As will be
discussed in the book, this conclusion can be reached only under
very restrictive constraints on the experimental setting. Utts exam-
ined a recent Newsweek article discussing the relationship between
the strength of religious beliefs and physical healing. Utts’ article
discussed the problems in reaching the conclusion that the stronger
a patient’s religious beliefs, the more likely the patient would be
cured of his or her ailment. Utts showed that there are numerous
other factors involved in a patient’s health and the conclusion that
religious beliefs cause a cure cannot be validly reached.

2. A common confusion in many studies is the difference between
(statistically) significant findings in a study and (practically) signifi-
cant findings. This problem often occurs when large data sets are
involved in a study or experiment. This type of problem will be dis-
cussed in detail throughout the book. We will use a number of exam-
ples that will illustrate how this type of confusion can be avoided by
researchers when reporting the findings of their experimental results.
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Utts’ article illustrated this problem with a discussion of a study that
found a statistically significant difference in the average heights of
military recruits born in the spring and in the fall. There were 507,125
recruits in the study and the difference in average height was about
1/4 inch. So, even though there may be a difference in the actual aver-
age heights of recruits in the spring and the fall, the difference is so
small (1/4 inch) that it is of no practical importance.

3. The size of the sample also may be a determining factor in studies
in which statistical significance is not found. A study may not have
selected a sample size large enough to discover a difference between
the several populations under study. In many government-sponsored
studies, the researchers do not receive funding unless they are able
to demonstrate that the sample sizes selected for their study are of
an appropriate size to detect specified differences in populations if
in fact they exist. Methods to determine appropriate sample sizes
will be provided in the chapters on hypotheses testing and experi-
mental design.

4. Surveys are ubiquitous, especially during the years in which national
elections are held. In fact, market surveys are nearly as widespread
as political polls. There are many sources of bias that can creep
into the most reliable of surveys. The manner in which people are
selected for inclusion in the survey, the way in which questions are
phrased, and even the manner in which questions are posed to the
subject may affect the conclusions obtained from the survey. We will
discuss these issues in Chapter 2.

5. Many students find the topic of probability to be very confusing. One
of these confusions involves conditional probability where the prob-
ability of an event occurring is computed under the condition that a
second event has occurred with certainty. For example, a new diag-
nostic test for the pathogen Escherichia coliin meat is proposed to
the U.S. Department of Agriculture (USDA). The USDA evaluates
the test and determines that the test has both a low false positive rate
and a low false negative rate. That is, it is very unlikely that the test
will declare the meat contains E. coli when in fact it does not contain
E. coli. Also, itis very unlikely that the test will declare the meat does
not contain E. coli when in fact it does contain E. coli. Although the
diagnostic test has a very low false positive rate and a very low false
negative rate, the probability that E. coliis in fact present in the meat
when the test yields a positive test result is very low for those situa-
tions in which a particular strain of E. coli occurs very infrequently.

In Chapter 4, we will demonstrate how this probability can be com-
puted in order to provide a true assessment of the performance of a
diagnostic test.

6. Another concept that is often misunderstood is the role of the degree
of variability in interpreting what is a “normal” occurrence of some
naturally occurring event. Utts’ article provided the following exam-
ple. A company was having an odor problem with its wastewater
treatment plant. It attributed the problem to “abnormal” rainfall dur-
ing the period in which the odor problem was occurring. A company
official stated that the facility experienced 170% to 180% of its
“normal” rainfall during this period, which resulted in the water in
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1.3 Some Current Applications of Statistics 9

the holding ponds taking longer to exit for irrigation. Thus, there was
more time for the pond to develop an odor. The company official did
not point out that yearly rainfall in this region is extremely variable.
In fact, the historical range for rainfall is between 6.1 and 37.4 inches
with a median rainfall of 16.7 inches. The rainfall for the year of the
odor problem was 29.7 inches, which was well within the “normal”
range for rainfall. There was a confusion between the terms “aver-
age” and “normal” rainfall. The concept of natural variability is cru-
cial to correct interpretation of statistical results. In this example, the
company official should have evaluated the percentile for an annual
rainfall of 29.7 inches in order to demonstrate the abnormality of
such a rainfall. We will discuss the ideas of data summaries and per-
centiles in Chapter 3.

The types of problems expressed above and in Utts’ article represent common
and important misunderstandings that can occur when researchers use statistics in
interpreting the results of their studies. We will attempt throughout the book to dis-
cuss possible misinterpretations of statistical results and how to avoid them in your
data analyses. More importantly, we want the reader of this book to become a dis-
criminating reader of statistical findings, the results of surveys, and project reports.

1.3 Some Current Applications of Statistics

Defining the Problem: Obtaining Information
from Massive Data Sets

Data mining is defined to be a process by which useful information is obtained
from large sets of data. Data mining uses statistical techniques to discover patterns
and trends that are present in a large data set. In most data sets, important patterns
would not be discovered by using traditional data exploration techniques because
the types of relationships between the many variables in the data set are either too
complex or because the data sets are so large that they mask the relationships.

The patterns and trends discovered in the analysis of the data are defined
as data mining models. These models can be applied to many different situations,
such as:

® Forecasting: Estimating future sales, predicting demands on a power
grid, or estimating server downtime

® Assessing risk: Choosing the rates for insurance premiums, selecting
best customers for a new sales campaign, determining which medical
therapy is most appropriate given the physiological characteristics of
the patient

® [dentifying sequences: Determining customer preferences in online
purchases, predicting weather events

® Grouping: Placing customers or events into cluster of related items,
analyzing and predicting relationships between demographic char-
acteristics and purchasing patterns, identifying fraud in credit card
purchases

A new medical procedure referred to as gene editing has the potential to
assist thousands of people suffering many different diseases. An article in the
Houston Chronicle (2013), describes how data mining techniques are used to
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10 CHAPTER 1 STATISTICS AND THE SCIENTIFIC METHOD

explore massive genomic data bases to interpret millions of bits of data in a per-
son’s DNA. This information is then used to identify a single defective gene,
which is cut out, and splice in a correction. This area of research is referred to as
biomedical informatics and is based on the premise that the human body is a data
bank of incredible depth and complexity. It is predicted that by 2015, the average
hospital will have approximately 450 terabytes of patient data consisting of large,
complex images from CT scans, MRIs, and other imaging techniques. However,
only a small fraction of the current medical data has been analyzed, thus opening
huge opportunities for persons trained in data mining. In a case described in the
article, a 7-year-old boy tormented by scabs, blisters, and scars was given a new
lease on life by using data mining techniques to discover a single letter in his faulty
genome.

Defining the Problem: Determining the Effectiveness
of a New Drug Product

The development and testing of the Salk vaccine for protection against poliomy-
elitis (polio) provide an excellent example of how statistics can be used in solving
practical problems. Most parents and children growing up before 1954 can recall
the panic brought on by the outbreak of polio cases during the summer months.
Although relatively few children fell victim to the disease each year, the pattern
of outbreak of polio was unpredictable and caused great concern because of the
possibility of paralysis or death. The fact that very few of today’s youth have even
heard of polio demonstrates the great success of the vaccine and the testing pro-
gram that preceded its release on the market.

Itis standard practice in establishing the effectiveness of a particular drug prod-
uct to conduct an experiment (often called a clinical trial) with human participants.
For some clinical trials, assignments of participants are made at random, with half
receiving the drug product and the other half receiving a solution or tablet that does
not contain the medication (called a placebo). One statistical problem concerns the
determination of the total number of participants to be included in the clinical trial.
This problem was particularly important in the testing of the Salk vaccine because
data from previous years suggested that the incidence rate for polio might be less
than 50 cases for every 100,000 children. Hence, a large number of participants had
to be included in the clinical trial in order to detect a difference in the incidence rates
for those treated with the vaccine and those receiving the placebo.

With the assistance of statisticians, it was decided that a total of 400,000
children should be included in the Salk clinical trial begun in 1954, with half of them
randomly assigned the vaccine and the remaining children assigned the placebo. No
other clinical trial had ever been attempted on such a large group of participants.
Through a public school inoculation program, the 400,000 participants were treated
and then observed over the summer to determine the number of children contract-
ing polio. Although fewer than 200 cases of polio were reported for the 400,000
participants in the clinical trial, more than three times as many cases appeared in
the group receiving the placebo. These results, together with some statistical cal-
culations, were sufficient to indicate the effectiveness of the Salk polio vaccine.
However, these conclusions would not have been possible if the statisticians and
scientists had not planned for and conducted such a large clinical trial.

The development of the Salk vaccine is not an isolated example of the use
of statistics in the testing and development of drug products. In recent years,
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the U.S. Food and Drug Administration (FDA) has placed stringent requirements
on pharmaceutical firms wanting to establish the effectiveness of proposed new
drug products. Thus, statistics has played an important role in the development
and testing of birth control pills, rubella vaccines, chemotherapeutic agents in the
treatment of cancer, and many other preparations.

Defining the Problem: Improving the Reliability
of Evidence in Criminal Investigations

The National Academy of Sciences released a report (National Research Council,
2009) in which one of the more important findings was the need for applying sta-
tistical methods in the design of studies used to evaluate inferences from evidence
gathered by forensic technicians. The following statement is central to the report:

“Over the last two decades, advances in some forensic science disciplines, espe-
cially the use of DNA technology, have demonstrated that some areas of foren-
sic science have great additional potential to help law enforcement identify
criminals. ... Those advances, however, also have revealed that, in some cases,
substantive information and testimony based on faulty forensic science analy-
ses may have contributed to wrongful convictions of innocent people. This fact
has demonstrated the potential danger of giving undue weight to evidence and
testimony derived from imperfect testing and analysis.”

There are many sources that may impact the accuracy of conclusions inferred
from the crime scene evidence and presented to a jury by a forensic investigator.
Statistics can play a role in improving forensic analyses. Statistical principles can
be used to identify sources of variation and quantify the size of the impact that
these sources of variation can have on the conclusions reached by the forensic
investigator.

An illustration of the impact of an inappropriately designed study and
statistical analysis on the conclusions reached from the evidence obtained at
a crime scene can be found in Spiegelman et al. (2007). They demonstrate that
the evidence used by the FBI crime lab to support the claim that there was not
a second assassin of President John F. Kennedy was based on a faulty analysis
of the data and an overstatement of the results of a method of forensic testing
called Comparative Bullet Lead Analysis (CBLA). This method applies a chemi-
cal analysis to link a bullet found at a crime scene to the gun that had discharged
the bullet. Based on evidence from chemical analyses of the recovered bullet frag-
ments, the 1979 U.S. House Select Committee on Assassinations concluded that all
the bullets striking President Kennedy were fired from Lee Oswald’s rifle. A new
analysis of the bullets using more appropriate statistical analyses demonstrated
that the evidence presented in 1979 was overstated. A case is presented for a new
analysis of the assassination bullet fragments, which may shed light on whether the
five bullet fragments found in the Kennedy assassination are derived from three or
more bullets and not just two bullets, as was presented as the definitive evidence
that Oswald was the sole shooter in the assassination of President Kennedy.

Defining the Problem: Estimating Bowhead Whale
Population Size
Raftery and Zeh (1998) discuss the estimation of the population size and rate of

increase in bowhead whales, Balaena mysticetus. The importance of such a study
derives from the fact that bowheads were the first species of great whale for
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12 CHAPTER 1 STATISTICS AND THE SCIENTIFIC METHOD

which commercial whaling was stopped; thus, their status indicates the recovery
prospects of other great whales. Also, the International Whaling Commission
uses these estimates to determine the aboriginal subsistence whaling quota for
Alaskan Eskimos. To obtain the necessary data, researchers conducted a visual
and acoustic census off Point Barrow, Alaska. The researchers then applied sta-
tistical models and estimation techniques to the data obtained in the census to
determine whether the bowhead population had increased or decreased since
commercial whaling was stopped. The statistical estimates showed that the
bowhead population was increasing at a healthy rate, indicating that stocks of
great whales that have been decimated by commercial hunting can recover after
hunting is discontinued.

Defining the Problem: Ozone Exposure
and Population Density

Ambient ozone pollution in urban areas is one of the nation’s most pervasive envi-
ronmental problems. Whereas the decreasing stratospheric ozone layer may lead
to increased instances of skin cancer, high ambient ozone intensity has been shown
to cause damage to the human respiratory system as well as to agricultural crops
and trees. The Houston, Texas, area has ozone concentrations and are rated sec-
ond only to those of Los Angeles. that exceed the National Ambient Air Quality
Standard. Carroll et al. (1997) describe how to analyze the hourly ozone meas-
urements collected in Houston from 1980 to 1993 by 9 to 12 monitoring stations.
Besides the ozone level, each station recorded three meteorological variables:
temperature, wind speed, and wind direction.
The statistical aspect of the project had three major goals:

1. Provide information (and/or tools to obtain such information)
about the amount and pattern of missing data as well as about the
quality of the ozone and the meteorological measurements.

2. Build a model of ozone intensity to predict the ozone concentration
at any given location within Houston at any given time between 1980
and 1993.

3. Apply this model to estimate exposure indices that account for
either a long-term exposure or a short-term high-concentration
exposure; also, relate census information to different exposure
indices to achieve population exposure indices.

The spatial-temporal model the researchers built provided estimates dem-
onstrating that the highest ozone levels occurred at locations with relatively small
populations of young children. Also, the model estimated that the exposure of
young children to ozone decreased by approximately 20% from 1980 to 1993. An
examination of the distribution of population exposure had several policy impli-
cations. In particular, it was concluded that the current placement of monitors
is not ideal if one is concerned with assessing population exposure. This project
involved all four components of Learning from Data: planning where the moni-
toring stations should be placed within the city, how often the data should be
collected, and what variables should be recorded; conducting spatial-temporal
graphing of the data; creating spatial-temporal models of the ozone data, mete-
orological data, and demographic data; and, finally, writing a report that could
assist local and federal officials in formulating policy with respect to decreasing
ozone levels.
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Defining the Problem: Assessing Public Opinion

Public opinion, consumer preference, and election polls are commonly used to
assess the opinions or preferences of a segment of the public regarding issues,
products, or candidates of interest. We, the American public, are exposed to the
results of these polls daily in newspapers, in magazines, on the internet, on the
radio, and on television. For example, the results of polls related to the following
subjects were printed in local newspapers:

® Public confidence in the potential for job growth in the coming year

® Reactions of Texas residents to the state legislature’s failure to expand
Medicaid coverage

® Voters’ preferences for tea party candidates in the fall congressional
elections

® Attitudes toward increasing the gasoline tax in order to increase
funding for road construction and maintenance

® Product preference polls related to specific products (Toyota vs. Ford,
DirecTV vs. Comcast, Dell vs. Apple, Subway vs. McDonald’s)

® Public opinion on a national immigration policy

A number of questions can be raised about polls. Suppose we consider a poll
on the public’s opinion on a proposed income tax increase in the state of Michigan.
What was the population of interest to the pollster? Was the pollster interested in
all residents of Michigan or just those citizens who currently pay income taxes?
Was the sample in fact selected from this population? If the population of interest
was all persons currently paying income taxes, did the pollster make sure that all
the individuals sampled were current taxpayers? What questions were asked and
how were the questions phrased? Was each person asked the same question? Were
the questions phrased in such a manner as to bias the responses? Can we believe
the results of these polls? Do these results “represent’”” how the general public
currently feels about the issues raised in the polls?

Opinion and preference polls are an important, visible application of statis-
tics for the consumer. We will discuss this topic in more detail in Chapters 2 and
10. We hope that after studying this material you will have a better understanding
of how to interpret the results of these polls.

1.4 A Note to the Student

We think with words and concepts. A study of the discipline of statistics requires
us to memorize new terms and concepts (as does the study of a foreign language).
Commit these definitions, theorems, and concepts to memory.

Also, focus on the broader concept of making sense of data. Do not let details
obscure these broader characteristics of the subject. The teaching objective of this
text is to identify and amplify these broader concepts of statistics.

B summary

The discipline of statistics and those who apply the tools of that discipline deal
with Learning from Data. Medical researchers, social scientists, accountants,
agronomists, consumers, government leaders, and professional statisticians are all
involved with data collection, data summarization, data analysis, and the effective
communication of the results of data analysis.
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M exercises

1.1 Introduction

Bio. 1.1 Hansen (2006) describes a study to assess the migration and survival of salmon released
from fish farms located in Norway. The mingling of escaped farmed salmon with wild salmon
raises several concerns. First, the assessment of the abundance of wild salmon stocks will be
biased if there is a presence of large numbers of farmed salmon. Second, potential interbreed-
ing between farmed and wild salmon may result in a reduction in the health of the wild stocks.
Third, diseases present in farmed salmon may be transferred to wild salmon. Two batches of
farmed salmon were tagged and released in two locations, one batch of 1,996 fish in northern
Norway and a second batch of 2,499 fish in southern Norway. The researchers recorded the
time and location at which the fish were captured by either commercial fisherman or anglers
in fresh water. Two of the most important pieces of information to be determined by the
study were the distance from the point of the fish’s release to the point of its capture and the
length of time it took for the fish to be captured.

Identify the population that is of interest to the researchers.

Describe the sample.

What characteristics of the population are of interest to the researchers?

If the sample measurements are used to make inferences about the population

characteristics, why is a measure of reliability of the inferences important?

enovoo

Env. 1.2 During 2012, Texas had listed on FracFocus, an industry fracking disclosure site, nearly
6,000 oil and gas wells in which the fracking methodology was used to extract natural gas.
Fontenot et al. (2013 ) reports on a study of 100 private water wells in or near the Barnett Shale
in Texas. There were 91 private wells located within 5 km of an active gas well using fracking, 4
private wells with no gas wells located within a 14 km radius, and 5 wells outside of the Barnett
Shale with no gas well located with a 60 km radius. They found that there were elevated levels
of potential contaminants such as arsenic and selenium in the 91 wells closest to natural gas
extraction sites compared to the 9 wells that were at least 14 km away from an active gas well
using the £racking technique to extract natural gas.

Identify the population that is of interest to the researchers.

Describe the sample.

What characteristics of the population are of interest to the researchers?

If the sample measurements are used to make inferences about the population

characteristics, why is a measure of reliability of the inferences important?

geovoo

Soc. 1.3 1In 2014, Congress cut $8.7 billion from the Supplemental Nutrition Assistance Program
(SNAP), more commonly referred to as food stamps. The rationale for the decrease is that
providing assistance to people will result in the next generation of citizens being more depend-
ent on the government for support. Hoynes (2012) describes a study to evaluate this claim. The
study examines 60,782 families over the time period of 1968 to 2009 which is subsequent to the
introduction of the Food Stamp Program in 1961. This study examines the impact of a posi-
tive and policy-driven change in economic resources available in utero and during childhood
on the economic health of individuals in adulthood. The study assembled data linking family
background in early childhood to adult health and economic outcomes. The study concluded
that the Food Stamp Program has effects decades after initial exposure. Specifically, access
to food stamps in childhood leads to a significant reduction in the incidence of metabolic
syndrome (obesity, high blood pressure, and diabetes) and, for women, an increase in eco-
nomic self-sufficiency. Overall, the results suggest substantial internal and external benefits
of SNAP.

Identify the population that is of interest to the researchers.

Describe the sample.

What characteristics of the population are of interest to the researchers?

If the sample measurements are used to make inferences about the population

characteristics, why is a measure of reliability of the inferences important?

enoo
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Med. 1.4 Of all sports, football accounts for the highest incidence of concussion in the United States
due to the large number of athletes participating and the nature of the sport. While there is gen-
eral agreement that concussion incidence can be reduced by making rule changes and teaching
proper tackling technique, there remains debate as to whether helmet design may also reduce the
incidence of concussion. Rowson et al. (2014) report on a retrospective analysis of head impact
data collected between 2005 and 2010 from eight collegiate football teams. Concussion rates for
players wearing two types of helmets, Riddell VSR4 and Riddell Revolution, were compared. A
total of 1,281,444 head impacts were recorded, from which 64 concussions were diagnosed. The
relative risk of sustaining a concussion in a Revolution helmet compared with a VSR4 helmet
was 46.1%. This study illustrates that differences in the ability to reduce concussion risk exist
between helmet models in football. Although helmet design may never prevent all concussions
from occurring in football, evidence illustrates that it can reduce the incidence of this injury.

Identify the population that is of interest to the researchers.

Describe the sample.

What characteristics of the population are of interest to the researchers?

If the sample measurements are used to make inferences about the population

characteristics, why is a measure of reliability of the inferences important?

eovoo

Pol. Sci. 1.5 During the 2004 senatorial campaign in a large southwestern state, illegal immigration was
a major issue. One of the candidates argued that illegal immigrants made use of educational
and social services without having to pay property taxes. The other candidate pointed out that
the cost of new homes in their state was 20-30% less than the national average due to the low
wages received by the large number of illegal immigrants working on new home construction. A
random sample of 5,500 registered voters was asked the question, “Are illegal immigrants gen-
erally a benefit or a liability to the state’s economy?” The results were as follows: 3,500 people
responded “liability,” 1,500 people responded “benefit,” and 500 people responded “uncertain.”

What is the population of interest?

What is the population from which the sample was selected?

Does the sample adequately represent the population?

If a second random sample of 5,000 registered voters was selected, would the

results be nearly the same as the results obtained from the initial sample of

5,000 voters? Explain your answer.

enoo

Edu. 1.6 An American history professor at a major university was interested in knowing the history
literacy of college freshmen. In particular, he wanted to find what proportion of college freshmen
at the university knew which country controlled the original 13 colonies prior to the American
Revolution. The professor sent a questionnaire to all freshman students enrolled in HIST 101 and
received responses from 318 students out of the 7,500 students who were sent the questionnaire.
One of the questions was “What country controlled the original 13 colonies prior to the American
Revolution?”

What is the population of interest to the professor?

What is the sampled population?

Is there a major difference in the two populations. Explain your answer.

Suppose that several lectures on the American Revolution had been given in

HIST 101 prior to the students receiving the questionnaire. What possible source

of bias has the professor introduced into the study relative to the population of

interest?

enoo
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Collecting Data

CHAPTER 2 Using Surveys and Experimental Studies

to Gather Data
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2.1 Introduction and Abstract of Research Study

As mentioned in Chapter 1, the first step in Learning from Data is to define the
problem. The design of the data collection process is the crucial step in intelli-
gent data gathering. The process takes a conscious, concerted effort focused on the
following steps:

® Specifying the objective of the study, survey, or experiment

® [dentifying the variable(s) of interest

® Choosing an appropriate design for the survey or experimental study
® Collecting the data

To specify the objective of the study, you must understand the problem being
addressed. For example, the transportation department in a large city wants to
assess the public’s perception of the city’s bus system in order to increase the use
of buses within the city. Thus, the department needs to determine what aspects of
the bus system determine whether or not a person will ride the bus. The objective
of the study is to identify factors that the transportation department can alter to
increase the number of people using the bus system.

To identify the variables of interest, you must examine the objective of the
study. For the bus system, some major factors can be identified by reviewing stud-
ies conducted in other cities and by brainstorming with the bus system employ-
ees. Some of the factors may be safety, cost, cleanliness of the buses, whether or
not there is a bus stop close to the person’s home or place of employment, and
how often the bus fails to be on time. The measurements to be obtained in the

18
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2.1 Introduction and Abstract of Research Study 19

study would consist of importance ratings (very important, important, no opin-
ion, somewhat unimportant, very unimportant) of the identified factors. Demo-
graphic information, such as age, sex, income, and place of residence, would also
be measured. Finally, the measurement of variables related to how frequently a
person currently rides the buses would be of importance. Once the objectives are
determined and the variables of interest are specified, you must select the most
appropriate method to collect the data. Data collection processes include surveys,
experiments, and the examination of existing data from business records, censuses,
government records, and previous studies. The theory of sample surveys and the
theory of experimental designs provide excellent methodology for data collection.
Usually surveys are passive. The goal of the survey is to gather data on existing
conditions, attitudes, or behaviors. Thus, the transportation department would
need to construct a questionnaire and then sample current riders of the buses and
persons who use other forms of transportation within the city.

Experimental studies, on the other hand, tend to be more active: The per-
son conducting the study varies the experimental conditions to study the effect of
the conditions on the outcome of the experiment. For example, the transporta-
tion department could decrease the bus fares on a few selected routes and assess
whether the use of its buses increased. However, in this example, other factors
not under the bus system’s control may also have changed during this time period.
Thus, an increase in bus use may have taken place because of a strike of subway
workers or an increase in gasoline prices. The decrease in fares was only one of
several factors that may have “caused” the increase in the number of persons rid-
ing the buses.

In most experimental studies, as many as possible of the factors that affect
the measurements are under the control of the experimenter. A floriculturist wants
to determine the effect of a new plant stimulator on the growth of a commercially
produced flower. The floriculturist would run the experiments in a greenhouse,
where temperature, humidity, moisture levels, and sunlight are controlled. An
equal number of plants would be treated with each of the selected quantities of
the growth stimulator, including a control—that is, no stimulator applied. At the
conclusion of the experiment, the size and health of the plants would be measured.
The optimal level of the plant stimulator could then be determined because ideally
all other factors affecting the size and health of the plants would be the same for
all plants in the experiment.

In this chapter, we will consider some sampling designs for surveys and some
designs for experimental studies. We will also make a distinction between an
experimental study and an observational study.

Abstract of Research Study: Exit Polls Versus Election Results

As the 2004 presidential campaign approached Election Day, the Democratic Party
was very optimistic that its candidate, John Kerry, would defeat the incumbent,
George Bush. Many Americans arrived home the evening of Election Day to watch
or listen to the network coverage of the election with the expectation that John
Kerry would be declared the winner of the presidential race because throughout
Election Day, radio and television reporters had provided exit poll results showing
John Kerry ahead in nearly every crucial state, and in many of these states lead-
ing by substantial margins. The Democratic Party, being better organized with a
greater commitment and focus than in many previous presidential elections, had
produced an enormous number of Democratic loyalists for this election. But, as
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TABLE 2.1 Predicted vs. actual percentages in battleground states

Exit Poll Results Election Results
Crucial Election
State Sample  Bush Kerry Difference Bush Kerry Difference vs. Exit
Colorado 2,515 49.9% 48.1% Bush 1.8% 52.0% 46.8% Bush 5.2% Bush 3.4%
Florida 2,223 48.8% 49.2% Kerry 0.4% 49.4% 49.8% Kerry 0.4% No Diff.
Towa 2,846 49.8% 49.7% Bush 0.1% 52.1% 47.1% Bush 5.0% Bush 4.9%
Michigan 2,502 48.4% 49.7% Kerry 1.3% 50.1% 49.2% Bush 0.9% Bush 2.2%
Minnesota 2,452 46.5% 51.1% Kerry 4.6% 47.8% 51.2% Kerry 3.4% Kerry 1.2%
Nevada 2,178 44.5% 53.5% Kerry 9.0% 47.6% 51.1% Kerry 3.5% Kerry 5.5%
New Hampshire 2,116 47.9% 49.2% Kerry 1.3% 50.5% 47.9% Bush 2.6% Bush 3.9%
New Mexico 1,849 44.1% 54.9% Kerry 10.8% 49.0% 50.3% Kerry 1.3% Kerry 9.5%
Ohio 1,951 47.5% 50.1% Kerry 2.6% 50.0% 48.9% Bush 1.1% Bush 3.7%
Pennsylvania 1,963 47.9% 52.1% Kerry 4.2% 51.0% 48.5% Bush 2.5% Bush 6.7%
Wisconsin 1,930 45.4% 54.1% Kerry 8.7% 48.6% 50.8% Kerry 2.2% Kerry 6.5%

the evening wore on, in one crucial state after another the election returns showed
results that differed greatly from what the exit polls had predicted.

The data shown in Table 2.1 are from a University of Pennsylvania techni-
cal report by Steven F. Freeman entitled “The Unexplained Exit Poll Discrepancy.”
Freeman obtained exit poll data and the actual election results for 11 states that
were considered by many to be the crucial states for the 2004 presidential election.
The exit poll results show the number of voters polled as they left the voting booth
for each state along with the corresponding percentage favoring Bush or Kerry
and the predicted winner. The election results give the actual outcomes and winner
for each state as reported by the state’s election commission. The final column of
the table shows the difference between the predicted winning percentage from the
exit polls and the actual winning percentage from the election.

This table shows that the exit polls predicted George Bush to win in only 2
of the 11 crucial states, and this is why the media were predicting that John Kerry
would win the election even before the polls were closed. In fact, Bush won 6 of the
11 crucial states, and, perhaps more importantly, we see in the final column that
in 10 of these 11 states the difference between the actual margin of victory from
the election results and the predicted margin of victory from the exit polls favored
Bush.

At the end of this chapter, we will discuss some of the cautions one must take
in using exit poll data to predict actual election outcomes.

2.2 Observational Studies

observational study A study may be either observational or experimental. In an observational study,
the researcher records information concerning the subjects under study without

any interference with the process that is generating the information. The researcher

experimental study  is a passive observer of the transpiring events. In an experimental study (which will
be discussed in detail in Sections 2.4 and 2.5), the researcher actively manipulates

explanatory variables  certain variables associated with the study, called the explanatory variables, and
response variables  then records their effects on the response variables associated with the experimen-
tal subjects. A severe limitation of observational studies is that the recorded values
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of the response variables may be affected by variables other than the explana-
tory variables. These variables are not under the control of the researcher. They
confounding variables  are called confounding variables. The effects of the confounding variables and the
explanatory variables on the response variable cannot be separated due to the lack
of control the researcher has over the physical setting in which the observations are
made. In an experimental study, the researcher attempts to maintain control over

all variables that may have an effect on the response variables.
comparative study Observational studies may be dichotomized into either a comparative study
descriptive study  or a descriptive study. In a comparative study, two or more methods of achieving
a result are compared for effectiveness. For example, three types of healthcare
delivery methods are compared based on cost effectiveness. Alternatively, several
groups are compared based on some common attribute. For example, the starting
incomes of engineers are contrasted from a sample of new graduates from private
and public universities. In a descriptive study, the major purpose is to characterize
a population or process based on certain attributes in that population or process —
for example, studying the health status of children under the age of 5 years old in
families without health insurance or assessing the number of overcharges by com-

panies hired under federal military contracts.

Observational studies in the form of polls, surveys, and epidemiological stud-
ies, for example, are used in many different settings to address questions posed
by researchers. Surveys are used to measure the changing opinion of the nation
with respect to issues such as gun control, interest rates, taxes, the minimum
wage, Medicare, and the national debt. Similarly, we are informed on a daily basis
through newspapers, magazines, television, radio, and the Internet of the results of
public opinion polls concerning other relevant (and sometimes irrelevant) politi-
cal, social, educational, financial, and health issues.

In an observational study, the factors (treatments) of interest are not manip-
ulated while making measurements or observations. The researcher in an envi-
ronmental impact study is attempting to establish the current state of a natural
setting to which subsequent changes may be compared. Surveys are often used by
natural scientists as well. In order to determine the proper catch limits of commer-
cial and recreational fishermen in the Gulf of Mexico, the states along the Gulf of
Mexico must sample the Gulf to determine the current fish density.

There are many biases and sampling problems that must be addressed in
order for the survey to be a reliable indicator of the current state of the sampled

cause-and-effect  population. A problem that may occur in observational studies is assigning cause-
relationships  and-effect relationships to spurious associations between factors. For example, in
many epidemiological studies, we study various environmental, social, and eth-
nic factors and their relationship with the incidence of certain diseases. A public
health question of considerable interest is the relationship between heart disease
and the amount of fat in one’s diet. It would be unethical to randomly assign vol-
unteers to one of several high-fat diets and then monitor the people over time to
observe whether or not heart disease develops.

Without being able to manipulate the factor of interest (fat content of the
diet), the scientist must use an observational study to address the issue. This could
be done by comparing the diets of a sample of people with heart disease with the
diets of a sample of people without heart disease. Great care would have to be taken
to record other relevant factors such as family history of heart disease, smoking
habits, exercise routine, age, and gender for each person, along with other physical
characteristics. Models could then be developed so that differences between the
two groups could be adjusted to eliminate all factors except fat content of the diet.
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Even with these adjustments, it would be difficult to assign a cause-and-effect

relationship between the high fat content of a diet and the development of heart

disease. In fact, if the dietary fat content for the heart disease group tended to be

higher than that for the group free of heart disease after adjusting for relevant

association  factors, the study results would be reported as an association between high dietary
causal  fat content and heart disease, not a causal relationship.

Stated differently, in observational studies, we are sampling from populations
where the factors (or treatments) are already present, and we compare samples
with respect to the factors (treatments) of interest to the researcher. In contrast,
in the controlled environment of an experimental study, we are able to randomly
assign the people as objects under study to the factors (or treatments) and then
observe the response of interest. For our heart disease example, the distinction is
shown here:

Observational study: We sample from the heart disease population and
heart disease—free population and compare the fat content of the
diets for the two groups.

Experimental study: Ignoring ethical issues, we assign volunteers to one
of several diets with different levels of dietary fat (the treatments)
and compare the different treatments with respect to the response of
interest (incidence of heart disease) after a period of time.

Observational studies are of three basic types:

sample survey ® A sample survey is a study that provides information about a popula-
tion at a particular point in time (current information).
prospective study ® A prospective study is a study that observes a population in the pre-

sent using a sample survey and proceeds to follow the subjects in the
sample forward in time in order to record the occurrence of specific
outcomes.

retrospective study ® A retrospective study is a study that observes a population in the
present using a sample survey and also collects information about the
subjects in the sample regarding the occurrence of specific outcomes
that have already taken place.

In the health sciences, a sample survey would be referred to as a cross-sectional
or prevalence study. All individuals in the survey would be asked about their
current disease status and any past exposures to the disease. A prospective study
would identify a group of disease-free subjects and then follow them over a period
of time until some of the individuals develop the disease. The development or
nondevelopment of the disease would then be related to other variables meas-
ured on the subjects at the beginning of the study, often referred to as exposure
variables. A retrospective study identifies two groups of subjects: cases —subjects
with the disease—and controls—subjects without the disease. The researcher
then attempts to correlate the subjects’ prior health habits to their current health
status.

Although prospective and retrospective studies are both observational stud-
ies, there are some distinct differences.

® Retrospective studies are generally cheaper and can be completed
more rapidly than prospective studies.

® Retrospective studies have problems due to inaccuracies in data due
to recall errors.
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® Retrospective studies have no control over variables that may affect
disease occurrence.

® [n prospective studies, subjects can keep careful records of their daily
activities.

® In prospective studies, subjects can be instructed to avoid certain
activities that may bias the study.

® Although prospective studies reduce some of the problems of retro-
spective studies, they are still observational studies, and hence the
potential influences of confounding variables may not be completely
controlled. It is possible to somewhat reduce the influence of the
confounding variables by restricting the study to matched subgroups
of subjects.

Both prospective and retrospective studies are often comparative in nature. Two
cohort studies  specific types of such studies are cohort studies and case-control studies. In a
case-control studies  cohort study, a group of subjects is followed forward in time to observe the differ-
ences in characteristics between subjects who develop a disease and those who do
not. Similarly, we could observe which subjects commit crimes while also recording
information about their educational and social backgrounds. In case-control stud-
ies, two groups of subjects are identified, one with the disease and one without the
disease. Next, information is gathered about the subjects from their past concern-
ing risk factors that are associated with the disease. Distinctions are then drawn
between the two groups based on these characteristics.

EXAMPLE 2.1

A study was conducted to determine if women taking oral contraceptives had a
greater propensity to develop heart disease. A group of 5,000 women currently
using oral contraceptives and another group of 5,000 women not using oral con-
traceptives were selected for the study. At the beginning of the study, all 10,000
women were given physicals and were found to have healthy hearts. The women’s
health was then tracked for a 3-year period. At the end of the study, 15 of the 5,000
users had developed a heart disease, whereas only 3 of the nonusers had any evi-
dence of heart disease. What type of design was this observational study?

Solution This study is an example of a prospective observational study. All
women were free of heart disease at the beginning of the study and their exposure
(oral contraceptive use) measured at that time. The women were then under ob-
servation for 3 years, with the onset of heart disease recorded if it occurred dur-
ing the observation period. A comparison of the frequency of occurrence of the
disease was made between the two groups of women, users and nonusers of oral
contraceptives. B

EXAMPLE 2.2

A study was designed to determine if people who use public transportation to travel
to work are more politically active than people who use their own vehicle to travel
to work. A sample of 100 people in a large urban city was selected from each
group, and then all 200 individuals were interviewed concerning their political activi-
ties over the past 2 years. Out of the 100 people who used public transportation,
18 reported that they had actively assisted a candidate in the past 2 years, whereas
only 9 of the 100 persons who used their own vehicles stated they had participated
in a political campaign. What type of design was this study?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



24 CHAPTER 2 USING SURVEYS AND EXPERIMENTAL STUDIES TO GATHER DATA

Solution This study is an example of a retrospective observational study. The
individuals in both groups were interviewed about their past experiences with the
political process. A comparison of the degree of participation of the individuals
was made across the two groups. ®

In Example 2.2, many of the problems with using observational studies are present.
There are many factors that may affect whether or not an individual decides to
participate in a political campaign. Some of these factors may be confounded with
ridership on public transportation—for example, awareness of the environmental
impact of vehicular exhaust on air pollution, income level, and education level.
These factors need to be taken into account when designing an observational study.

The most widely used observational study is the survey. Information from
surveys impacts nearly every facet of our daily lives. Government agencies use
surveys to make decisions about the economy and many social programs. News
agencies often use opinion polls as a basis of news reports. Ratings of television
shows, which come from surveys, determine which shows will be continued for the
next television season.

Who conducts surveys? The various news organizations all use public opinion
polls: Such surveys include the New York Times/CBS News, Washington Post/ABC
News, Wall Street Journal/NBC News, Harris, Gallup/Newsweek, and CNN/Time
polls. However, the vast majority of surveys are conducted for a specific industrial,
governmental, administrative, political, or scientific purpose. For example, auto
manufacturers use surveys to find out how satisfied customers are with their cars.
Frequently, we are asked to complete a survey as part of the warranty registration
process following the purchase of a new product. Many important studies involv-
ing health issues use surveys to determine, for example, the amount of fat in a diet,
exposure to secondhand smoke, condom use and the prevention of AIDS, and the
prevalence of adolescent depression.

The U.S. Bureau of the Census is required by the U.S. Constitution to enu-
merate the population every 10 years. With the growing involvement of the govern-
ment in the lives of its citizens, the Census Bureau has expanded its role beyond just
counting the population. An attempt is made to send a census questionnaire in the
mail to every household in the United States. Since the 1940 census, in addition to
the complete count information, further information has been obtained from rep-
resentative samples of the population. In the 2000 census, variable sampling rates
were employed. For most of the country, approximately five of six households were
asked to answer the 14 questions on the short version of the form. The remaining
households responded to a longer version of the form containing an additional 45
questions. Many agencies and individuals use the resulting information for many
purposes. The federal government uses it to determine allocations of funds to states
and cities. Businesses use it to forecast sales, to manage personnel, and to establish
future site locations. Urban and regional planners use it to plan land use, transpor-
tation networks, and energy consumption. Social scientists use it to study economic
conditions, racial balance, and other aspects of the quality of life.

The U.S. Bureau of Labor Statistics (BLS) routinely conducts more than
20 surveys. Some of the best known and most widely used are the surveys that
establish the Consumer Price Index (CPI). The CPI is a measure of price change
for a fixed market basket of goods and services over time. It is a measure of
inflation and serves as an economic indicator for government policies. Businesses
tie wage rates and pension plans to the CPI. Federal health and welfare programs,
as well as many state and local programs, tie their bases of eligibility to the CPI.
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Escalator clauses in rents and mortgages are based on the CPI. This one index,
determined on the basis of sample surveys, plays a fundamental role in our society.

Many other surveys from the BLS are crucial to society. The monthly Current
Population Survey establishes basic information on the labor force, employment,
and unemployment. The Consumer Expenditure Survey collects data on fam-
ily expenditures for goods and services used in day-to-day living. The Current
Employment Statistics Survey collects information on employment hours and
earnings for nonagricultural business establishments. The Occupational Employ-
ment Statistics Survey provides information on future employment opportunities
for a variety of occupations, projecting to approximately 10 years ahead. Other
activities of the BLS are addressed in the BLS Handbook of Methods (web version:
www.bls.gov/opub/hom).

Opinion polls are constantly in the news, and the names of Gallup and Harris
have become well known to everyone. These polls, or sample surveys, reflect the atti-
tudes and opinions of citizens on everything from politics and religion to sports and
entertainment. The Nielsen ratings determine the success or failure of TV shows.

How do you figure out the ratings? Nielsen Media Research (NMR) continu-
ally measures television viewing with a number of different samples all across the
United States. The first step is to develop representative samples. This must be done
with a scientifically drawn random selection process. No volunteers can be accepted
or the statistical accuracy of the sample would be in jeopardy. Nationally, there are
5,000 television households in which electronic meters (called People Meters) are
attached to every TV set, VCR, cable converter box, satellite dish, or other video
equipment in the home. The meters continually record all set tunings. In addition,
NMR asks each member of the household to let them know when they are watch-
ing by pressing a pre-assigned button on the People Meter. By matching this button
activity to the demographic information (age/gender) NMR collected at the time
the meters were installed, NMR can match the set tuning—what is being watched —
with who is watching. All these data are transmitted to NMR’s computers, where
they are processed and released to customers each day. In addition to this national
service, NMR has a slightly different metering system in 55 local markets. In each
of those markets, NMR gathers just the set-tuning information each day from more
than 20,000 additional homes. NMR then processes the data and releases what are
called “household ratings” daily. In this case, the ratings report what channel or
program is being watched, but they do not have the “who” part of the picture. To
gather that local demographic information, NMR periodically (at least four times
per year) asks another group of people to participate in diary surveys. For these
estimates, NMR contacts approximately 1 million homes each year and asks them
to keep track of television viewing for 1 week, recording their TV-viewing activity in
adiary. This is done for all 210 television markets in the United States in November,
February, May, and July and is generally referred to as the “sweeps.” For more
information on the Nielsen ratings, go to the NMR website (www. nielsenmedia.
com) and click on the “What TV Ratings Really Mean” button.

Businesses conduct sample surveys for their internal operations in addition
to using government surveys for crucial management decisions. Auditors esti-
mate account balances and check on compliance with operating rules by sampling
accounts. Quality control of manufacturing processes relies heavily on sampling
techniques.

Another area of business activity that depends on detailed sampling activities
is marketing. Decisions on which products to market, where to market them, and
how to advertise them are often made on the basis of sample survey data. The data
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may come from surveys conducted by the firm that manufactures the product or
may be purchased from survey firms that specialize in marketing data.

2.3 Sampling Designs for Surveys

A crucial element in any survey is the manner in which the sample is selected from
the population. If the individuals included in the survey are selected based on con-
venience alone, there may be biases in the sample survey, which would prevent the
survey from accurately reflecting the population as a whole. For example, a mar-
keting graduate student developed a new approach to advertising and, to evaluate
this new approach, selected the students in a large undergraduate business course
to assess whether the new approach is an improvement over standard advertise-
ments. Would the opinions of this class of students be representative of the general
population of people to which the new approach to advertising would be applied?
The income levels, ethnicities, education levels, and many other socioeconomic
characteristics of the students may differ greatly from the population of interest.
Furthermore, the students may be coerced into participating in the study by their
instructor and hence may not give the most candid answers to questions on a sur-
vey. Thus, the manner in which a sample is selected is of utmost importance to the
credibility and applicability of the study’s results.

In order to precisely describe the components that are necessary for a sample
to be effective, the following definitions are required.

target population Target population: The complete collection of objects whose descrip-
tion is the major goal of the study. Designating the target population
is a crucial but often difficult part of the first step in an observational
or experimental study. For example, in a survey to decide if a new
storm-water drainage tax should be implemented, should the target
population be all persons over the age of 18 in the county, all regis-
tered voters, or all persons paying property taxes? The selection of
the target population may have a profound effect on the results of

the study.
sample Sample: A subset of the target population.
sampled population Sampled population: The complete collection of objects that have the

potential of being selected in the sample; the population from which
the sample is actually selected. In many studies, the sampled popula-
tion and the target population are very different. This may lead to
very erroneous conclusions based on the information collected in the
sample. For example, in a telephone survey of people who are on the
property tax list (the target population), a subset of this population
may not answer their telephone if the caller is unknown, as viewed
through Caller ID. Thus, the sampled population may be quite differ-
ent from the target population with respect to some important charac-
teristics such as income and opinion on certain issues.

observation unit Observation unit: The object about which data are collected. In studies
involving human populations, the observation unit is a specific indi-
vidual in the sampled population. In ecological studies, the observa-
tion unit may be a sample of water from a stream or an individual
plant on a plot of land.

sampling unit Sampling unit: The object that is actually sampled. We may want to

sample the person who pays the property tax but may only have
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a list of telephone numbers. Thus, the households in the sampled
population serve as the sampled units, and the observation units are
the individuals residing in the sampled household. In an entomology
study, we may sample 1-acre plots of land and then count the num-
ber of insects on individual plants residing on the sampled plot. The
sampled unit is the plot of land; the observation unit would be the
individual plant.

sampling frame Sampling frame: The list of sampling units. For a mailed survey, it may
be a list of addresses of households in a city. For an ecological study,
it may be a map of areas downstream from power plants.

In a perfect survey, the target population would be the same as the sampled popu-
lation. This type of survey rarely happens. There are always difficulties in obtaining
a sampling frame or being able to identify all elements within the target popula-
tion. A particular aspect of this problem is nonresponse. Even if the researcher
was able to obtain a list of all individuals in the target population, there may be a
distinct subset of the target population that refuses to fill out the survey or allow
themselves to be observed. Thus, the sampled population becomes a subset of the
target population. An attempt at characterizing the nonresponders is very crucial
in attempting to use a sample to describe a population. The group of nonrespond-
ers may have certain demographics or a particular political leaning that if not iden-
tified could greatly distort the results of the survey. An excellent discussion of this
topic can be found in the textbook Sampling: Design and Analysis by Sharon L.
Lohr (1999).
simple random The basic design (simple random sampling) consists of selecting a group of
sampling  n units in such a way that each sample of size n has the same chance of being
selected. Thus, we can obtain a random sample of eligible voters in a bond-issue
poll by drawing names from the list of registered voters in such a way that each
sample of size n has the same probability of selection. The details of simple random
sampling are discussed in Section 4.11. At this point, we merely state that a sim-
ple random sample will contain as much information on community preference as
any other sample survey design, provided all voters in the community have similar
socioeconomic backgrounds.

Suppose, however, that the community consists of people in two distinct
income brackets, high and low. Voters in the high-income bracket may have opin-
ions on the bond issue that are quite different from the opinions of voters in the
low-income bracket. Therefore, to obtain accurate information about the popula-
tion, we want to sample voters from each bracket. We can divide the population
elements into two groups, or strata, according to income and select a simple random

stratified random  sample from each group. The resulting sample is called a stratified random sample.
sample  (See Chapter 5 of Scheaffer et al., 2006.) Note that stratification is accomplished by
using knowledge of an auxiliary variable, namely, personal income. By stratifying
on high and low values of income, we increase the accuracy of our estimator. Ratio
ratio estimation  estimation is a second method for using the information contained in an auxiliary
variable. Ratio estimators not only use measurements on the response of interest
but also incorporate measurements on an auxiliary variable. Ratio estimation can
also be used with stratified random sampling.

Although individual preferences are desired in the survey, a more economi-
cal procedure, especially in urban areas, may be to sample specific families, apart-
ment buildings, or city blocks rather than individual voters. Individual preferences
can then be obtained from each eligible voter within the unit sampled. This tech-

cluster sampling  nique is called cluster sampling. Although we divide the population into groups
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for both cluster sampling and stratified random sampling, the techniques differ. In
stratified random sampling, we take a simple random sample within each group,
whereas in cluster sampling, we take a simple random sample of groups and then
sample all items within the selected groups (clusters). (See Chapters 8 and 9 of
Scheaffer et al., 2006, for details.)

Sometimes the names of persons in the population of interest are available
in a list, such as a registration list, or on file cards stored in a drawer. For this situa-
tion, an economical technique is to draw the sample by selecting one name near the
beginning of the list and then selecting every tenth or fifteenth name thereafter. If

systematic sample  the sampling is conducted in this manner, we obtain a systematic sample. As you
might expect, systematic sampling offers a convenient means of obtaining sample
information; however, systematic sampling will be less precise than simple random
sampling if the sampling frame has a periodicity. (Details are given in Chapter 7 of
Scheaffer et al., 2006.)

The following example will illustrate how the goal of the study or the infor-
mation available about the elements of the population determines which type of
sampling design to use in a particular study.

EXAMPLE 2.3

Identify the type of sampling design in each of the following situations.

a. The selection of 200 people to serve as potential jurors in a medi-
cal malpractice trial is conducted by assigning a number to each of
140,000 registered voters in the county. A computer software pro-
gram is used to randomly select 200 numbers from the numbers 1 to
140,000. The people having these 200 numbers are sent a postcard
notifying them of their selection for jury duty.

b. Suppose you are selecting microchips from a production line for
inspection for bent probes. As the chips proceed past the inspection
point, every 100th chip is selected for inspection.

c. The Internal Revenue Service wants to estimate the amount of
personal deductions taxpayers made based on the type of deduc-
tion: home office, state income tax, property taxes, property losses,
and charitable contributions. The amount claimed in each of these
categories varies greatly depending on the adjusted gross income of
the taxpayer. Therefore, a simple random sample would not be an
efficient design. The IRS decides to divide taxpayers into five groups
based on their adjusted gross incomes and then takes a simple ran-
dom sample of taxpayers from each of the five groups.

d. The USDA inspects produce for E. coli contamination. As trucks carrying
produce cross the border, the truck is stopped for inspection. A random
sample of five containers is selected for inspection from the hundreds of
containers on the truck. Every apple in each of the five containers is then
inspected for E. coli.

Solution

a. A simple random sample is selected using the list of registered voters
as the sampling frame.

b. This is an example of systematic random sampling. This type of
inspection should provide a representative sample of chips because
there is no reason to presume that there exists any cyclic variation
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in the production of the chips. It would be very difficult in this situa-
tion to perform simple random sampling because no sampling frame
exists.

c. This is an example of stratified random sampling with the five levels
of personal deductions serving as the strata. Overall the personal
deductions of taxpayers increase with income. This results in the
stratified random sample having a much smaller total sample size
than would be required in a simple random sample to achieve the
same level of precision in its estimators.

d. This is a cluster sampling design with the clusters being the containers and
the individual apples being the measurement unit. l

The important point to understand is that there are different kinds of sur-
veys that can be used to collect sample data. For the surveys discussed in this
text, we will deal with simple random sampling and methods for summarizing
and analyzing data collected in such a manner. More complicated surveys lead
to even more complicated problems at the summarization and analysis stages of
statistics.

The American Statistical Association (http://www.amstat.org) publishes a
booklet: What Is a Survey?. The booklet describes many of the elements crucial
to obtaining a valid and useful survey. It lists many of the potential sources of
errors commonly found in surveys with guidelines on how to avoid these pitfalls. A
discussion of some of the issues raised in the booklet follows.

Problems Associated with Surveys

Even when the sample is selected properly, there may be uncertainty about
whether the survey represents the population from which the sample was
selected. Two of the major sources of uncertainty are nonresponse, which occurs
when a portion of the individuals sampled cannot or will not participate in the
survey, and measurement problems, which occur when the respondents’ answers
to questions do not provide the type of data that the survey was designed to
obtain.

survey nonresponse Survey nonresponse may result in a biased survey because the sample is not
representative of the population. It is stated in Judging the Quality of a Survey that
in surveys of the general population women are more likely to participate than
men; that is, the nonresponse rate for males is higher than for females. Thus, a
political poll may be biased if the percentage of women in the population in favor
of a particular issue is larger than the percentage of men in the population sup-
porting the issue. The poll would overestimate the percentage of the population in
favor of the issue because the sample had a larger percentage of women than their
percentage in the population. In all surveys, a careful examination of the nonre-
sponse group must be conducted to determine whether a particular segment of the
population may be either under- or overrepresented in the sample. Some of the
remedies for nonresponse are

1. Offering an inducement for participating in the survey

2. Sending reminders or making follow-up telephone calls to the indi-
viduals who did not respond to the first contact

3. Using statistical techniques to adjust the survey findings to account
for the sample profile differing from the population profile
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measurement Measurement problems are the result of the respondents not providing the
problems  information that the survey seeks. These problems often are due to the specific
wording of questions in a survey, the manner in which the respondent answers the

survey questions, and the fashion in which an interviewer phrases questions during

the interview. Examples of specific problems and possible remedies are as follows:

1. [Inability to recall answers to questions: The interviewee is asked
how many times he or she visited a particular city park during the
past year. This type of question often results in an underestimate of
the average number of times a family visits the park during a year
because people often tend to underestimate the number of occur-
rences of a common event or an event occurring far from the time
of the interview. A possible remedy is to request respondents to
use written records or to consult with other family members before
responding.

2. Leading questions: The fashion in which an opinion question is posed
may result in a response that does not truly represent the interview-
ee’s opinion. Thus, the survey results may be biased in the direction
in which the question is slanted. For example, a question concerning
whether the state should impose a large fine on a chemical company
for environmental violations is phrased as “Do you support the
state fining the chemical company, which is the major employer of
people in our community, considering that this fine may result in
their moving to another state?” This type of question tends to elicit
a “no” response and thus produces a distorted representation of the
community’s opinion on the imposition of the fine. The remedy is to
write questions carefully in an objective fashion.

3. Unclear wording of questions: An exercise club attempted to deter-
mine the number of times a person exercises per week. The question
asked of the respondent was “How many times in the last week did
you exercise?” The word exercise has different meanings to different
individuals. The result of allowing different definitions of important
words or phrases in survey questions is to greatly reduce the accu-
racy of survey results. Several remedies are possible: The questions
should be tested on a variety of individuals prior to conducting the
survey to determine whether there are any confusing or misleading
terms in the questions. During the training of the interviewers. all
interviewers should have the “correct” definitions of all key words
and be advised to provide these definitions to the respondents.

Many other issues, problems, and remedies are provided in the brochures from
the ASA.

The stages in designing, conducting, and analyzing a survey are contained in
Figure 2.1, which has been reproduced from an earlier version of What Is a Survey?
in Cryer and Miller’s Statistics for Business: Data Analysis and Modeling (1991).
This diagram provides a guide for properly conducting a successful survey.

Data Collection Techniques

Having chosen a particular sample survey, how does one actually collect the data?
The most commonly used methods of data collection in sample surveys are per-
sonal interviews and telephone interviews. These methods, with appropriately
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trained interviewers and carefully planned callbacks, commonly achieve response
rates of 60% to 75% and sometimes even higher. A mailed questionnaire sent to a
specific group of interested persons can sometimes achieve good results, but gener-
ally the response rates for this type of data collection are so low that all reported
results are suspect. Frequently, objective information can be found from direct
observation rather than from an interview or mailed questionnaire.

personal interviews Data are frequently obtained by personal interviews. For example, we can
use personal interviews with eligible voters to obtain a sample of public sentiment
toward a community bond issue. The procedure usually requires the interviewer
to ask prepared questions and to record the respondent’s answers. The primary
advantage of these interviews is that people will usually respond when confronted
in person. In addition, the interviewer can note specific reactions and eliminate
misunderstandings about the questions asked. The major limitations of the per-
sonal interview (aside from the cost involved) concern the interviewers. If they are
not thoroughly trained, they may deviate from the required protocol, thus intro-
ducing a bias into the sample data. Any movement, facial expression, or statement
by the interviewer can affect the response obtained. For example, a leading ques-
tion such as “Are you also in favor of the bond issue?” may tend to elicit a positive
response. Finally, errors in recording the responses can lead to erroneous results.

Information can also be obtained from persons in the sample through

telephone interviews  telephone interviews. With the competition among telephone service provid-
ers, an interviewer can place any number of calls to specified areas of the coun-
try relatively inexpensively. Surveys conducted through telephone interviews are
frequently less expensive than personal interviews, owing to the elimination of
travel expenses. The investigator can also monitor the interviews to be certain that
the specified interview procedure is being followed.

A major problem with telephone surveys is that it is difficult to find a list
or directory that closely corresponds to the population. Telephone directories
have many numbers that do not belong to households, and many households
have unlisted numbers. A technique that avoids the problem of unlisted numbers
is random-digit dialing. In this method, a telephone exchange number (the first
three digits of a seven-digit number) is selected, and then the last four digits are
dialed randomly until a fixed number of households of a specified type are reached.
This technique produces samples from the target population, but most random-
digit-dialing samples include only landline numbers. Thus, the increasing number
of households with cell phones only is excluded. Also, many people screen calls
before answering a call. These two problems are creating potentially large biases
in telephone surveys.
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Telephone interviews generally must be kept shorter than personal inter-
views because responders tend to get impatient more easily when talking over the
telephone. With appropriately designed questionnaires and trained interviewers,
telephone interviews can be as successful as personal interviews.

self-administered Another useful method of data collection is the self-administered question-
questionnaire  naire, to be completed by the respondent. These questionnaires usually are mailed
to the individuals included in the sample, although other distribution methods can
be used. The questionnaire must be carefully constructed if it is to encourage par-
ticipation by the respondents.

The self-administered questionnaire does not require interviewers, and thus
its use results in savings in the survey cost. This savings in cost is usually bought at
the expense of a lower response rate. Nonresponse can be a problem in any form
of data collection, but since we have the least contact with respondents in a mailed
questionnaire, we frequently have the lowest rate of response. The low response
rate can introduce a bias into the sample because the people who answer question-
naires may not be representative of the population of interest. To eliminate some
of the bias, investigators frequently contact the nonrespondents through follow-up
letters, telephone interviews, or personal interviews.

direct observation The fourth method for collecting data is direct observation. If we were
interested in estimating the number of trucks that use a particular road during
the 4-6 p.M. rush hours, we could assign a person to count the number of trucks
passing a specified point during this period, or electronic counting equipment
could be used. The disadvantage in using an observer is the possibility of error in
observation.

Direct observation is used in many surveys that do not involve measurements
on people. The USDA measures certain variables on crops in sections of fields in
order to produce estimates of crop yields. Wildlife biologists may count animals,
animal tracks, eggs, or nests to estimate the size of animal populations.

A closely related notion to direct observation is that of getting data from
objective sources not affected by the respondents themselves. For example, health
information can sometimes be obtained from hospital records and income informa-
tion from employer’s records (especially for state and federal government work-
ers). This approach may take more time but can yield large rewards in important
surveys.

2.4 Experimental Studies

An experimental study may be conducted in many different ways. In some studies,
the researcher is interested in collecting information from an undisturbed natu-
ral process or setting. An example would be a study of the differences in reading
scores of second-grade students in public, religious, and private schools. In other
studies, the scientist is working within a highly controlled laboratory, a completely
artificial setting for the study. For example, the study of the effect of humidity
and temperature on the length of the life cycles of ticks would be conducted in a
laboratory, since it would be impossible to control the humidity or temperature in
the tick’s natural environment. This control of the factors under study allows the
entomologist to obtain results that can then be more easily attributed to differ-
ences in the levels of the temperature and humidity, since nearly all other condi-
tions remain constant throughout the experiment. In a natural setting, many other
factors are varying, and they may also result in changes in the life cycles of the
ticks. However, the greater the control in these artificial settings, the less likely
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the experiment is portraying the true state of nature. A careful balance between
control of conditions and depiction of a reality must be maintained in order for
the experiment to be useful. In this section and the next one, we will present some
standard designs of experiments. In experimental studies, the researcher controls
the crucial factors by one of two methods.

Method 1: The subjects in the experiment are randomly assigned to the
treatments. For example, 10 rats are randomly assigned to each of
the four dose levels of an experimental drug under investigation.

Method 2: Subjects are randomly selected from different populations
of interest. For example, 50 male and 50 female dogs are randomly
selected from animal shelters in large and small cities and tested for
the presence of heartworms.

In Method 1, the researcher randomly selects experimental units from a homoge-
neous population of experimental units and then has complete control over the
assignment of the units to the various treatments. In Method 2, the researcher has
control over the random sampling from the treatment populations but not over the
assignment of the experimental units to the treatments.

In experimental studies, it is crucial that the scientist follows a systematic plan
established prior to running the experiment. The plan includes how all randomiza-
tion is conducted, either the assignment of experimental units to treatments or the
selection of units from the treatment populations. There may be extraneous factors
present that may affect the experimental units. These factors may be present as
subtle differences in the experimental units or slight differences in the surrounding
environment during the conducting of the experiment. The randomization process
ensures that, on the average, any large differences observed in the responses of the
experimental units in different treatment groups can be attributed to the differences
in the groups and not to factors that were not controlled during the experiment. The
plan should also include many other aspects of how to conduct the experiment.
Some of the items that should be included in such a plan are listed here:

1. The research objectives of the experiment

2. The selection of the factors that will be varied (the treatments)

3. The identification of extraneous factors that may be present in the
experimental units or in the environment of the experimental setting
(the blocking factors)

4. The characteristics to be measured on the experimental units
(response variable)

5. The method of randomization, either randomly selecting experimental
units from treatment populations or randomly assigning experimental
units to treatments

6. The procedures to be used in recording the responses from the
experimental units

7. The selection of the number of experimental units assigned to each
treatment may require designating the level of significance and
power of tests or the precision and reliability of confidence intervals

8. A complete listing of available resources and materials

Terminology

designed experiment A designed experiment is an investigation in which a specified framework is
provided in order to observe, measure, and evaluate groups with respect to a
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designated response. The researcher controls the elements of the framework dur-
ing the experiment in order to obtain data from which statistical inferences can
provide valid comparisons of the groups of interest.
There are two types of variables in a experimental study. Controlled variables
factors  called factors are selected by the researcher for comparison. Response variables
measurements or ~ are measurements or observations that are recorded but not controlled by the
observations  researcher. The controlled variables form the comparison groups defined by the
research hypothesis.
treatments The treatments in an experimental study are the conditions constructed
from the factors. The factors are selected by examining the questions raised by the
research hypothesis. In some experiments, there may only be a single factor, and
hence the treatments and levels of the factor would be the same. In most cases, we
will have several factors, and the treatments are formed by combining levels of the
treatment design  factors. This type of treatment design is called a factorial treatment design.
factorial treatment We will illustrate these ideas in the following example.

design
EXAMPLE 2.4

A researcher is studying the conditions under which commercially raised shrimp
achieve maximum weight gain. Three water temperatures (25°, 30°, 35°) and four
water salinity levels (10%, 20%, 30%, 40%) were selected for study. Shrimp were
raised in containers with specified water temperatures and salinity levels. The
weight gain of the shrimp in each container was recorded after a 6-week study
period. There are many other factors that may affect weight gain, such as density
of shrimp in the containers, variety of shrimp, size of shrimp, type of feeding, and
so on. The experiment was conducted as follows: 24 containers were available for
the study. A specific variety and size of shrimp was selected for study. The density
of shrimp in the container was fixed at a given amount. One of the three water
temperatures and one of the four salinity levels were randomly assigned to each of
the 24 containers. All other identifiable conditions were specified to be maintained
at the same level for all 24 containers for the duration of the study. In reality, there
will be some variation in the levels of these variables. After 6 weeks in the tanks,
the shrimp were harvested and weighed. Identify the response variable, factors,
and treatments in this example.

Solution The response variable is weight of the shrimp at the end of the 6-week
study. There are two factors: water temperature at three levels (25°, 30°, and 35°)
and water salinity at four levels (10%, 20%, 30%, and 40%). We can thus create
3 -4 =12treatments from the combination of levels of the two factors. These factor-
level combinations representing the 12 treatments are shown here:

(25°,10%)  (25°,20%)  (25°,30%)  (25°40%)
(30°,10%)  (30°,20%)  (30°,30%)  (30°,40%)
(35°,10%)  (35°,20%)  (35°,30%)  (35°40%)

Following proper experimental procedures, 2 of the 24 containers would be ran-
domly assigned to each of the 12 treatments. H

In other circumstances, there may be a large number of factors, and hence the
number of treatments may be so large that only a subset of all possible treatments
would be examined in the experiment. For example, suppose we were investigat-
ing the effect of the following factors on the yield per acre of soybeans: Factor 1—
Five Varieties of Soybeans, Factor 2—Three Planting Densities, Factor 3—Four
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Levels of Fertilization, Factor 4 —Six Locations Within Texas, and Factor 5— Three
Irrigation Rates. From the five factors, we can form 5 -3 -4 - 6 - 3 = 1,080 distinct
treatments. This would make for a very large and expensive experiment. In this
type of situation, a subset of the 1,080 possible treatments would be selected for
studying the relationship between the five factors and the yield of soybeans. This
fractional factorial ~ type of experiment has a fractional factorial treatment structure, since only a frac-
treatment structure  tion of the possible treatments are actually used in the experiment. A great deal of
care must be taken in selecting which treatments should be used in the experiment
so as to be able to answer as many of the researcher’s questions as possible.
control treatment A special treatment is called the control treatment. This treatment is the
benchmark to which the effectiveness of each remaining treatment is compared.
There are three situations in which a control treatment is particularly necessary.
First, the conditions under which the experiments are conducted may prevent gen-
erally effective treatments from demonstrating their effectiveness. In this case,
the control treatment consisting of no treatment may help to demonstrate that the
experimental conditions are keeping the treatments from demonstrating the dif-
ferences in their effectiveness. For example, an experiment is conducted to deter-
mine the most effective level of nitrogen in a garden growing tomatoes. If the soil
used in the study has a high level of fertility prior to adding nitrogen to the soil, all
levels of nitrogen will appear to be equally effective. However, if a treatment con-
sisting of adding no nitrogen—the control—is used in the study, the high fertility of
the soil will be revealed, since the control treatment will be just as effective as the
nitrogen-added treatments.

A second type of control is the standard method treatment to which all other
treatments are compared. In this situation, several new procedures are proposed
to replace an already existing well-established procedure. A third type of control
is the placebo control. In this situation, a response may be obtained from the sub-
ject just by the manipulation of the subject during the experiment. A person may
demonstrate a temporary reduction in pain level just by visiting with the physician
and having a treatment prescribed. Thus, in evaluating several different methods
of reducing pain level in patients, a treatment with no active ingredients, the pla-
cebo, is given to a set of patients without the patients’ knowledge. The treatments
with active ingredients are then compared to the placebo to determine their true
effectiveness.

experimental unit The experimental unit is the physical entity to which the treatment is ran-
domly assigned or the subject that is randomly selected from one of the treatment
populations. For the shrimp study of Example 2.4, the experimental unit is the
container.

Consider another experiment in which a researcher is testing various dose
levels (treatments) of a new drug on laboratory rats. If the researcher randomly
assigned a single dose of the drug to each rat, then the experimental unit would be
the individual rat. Once the treatment is assigned to an experimental unit, a single

replication  replication of the treatment has occurred. In general, we will randomly assign sev-
eral experimental units to each treatment. We will thus obtain several independent
observations on any particular treatment and hence will have several replications
of the treatments. In Example 2.4, we had two replications of each treatment.
measurement unit Distinct from the experimental unit is the measurement unit. This is the phys-
ical entity upon which a measurement is taken. In many experiments, the experi-
mental and measurement units are identical. In Example 2.4, the measurement
unit is the container, the same as the experimental unit. However, if the individual
shrimp were weighed as opposed to obtaining the total weight of all the shrimp in

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



36 CHAPTER 2 USING SURVEYS AND EXPERIMENTAL STUDIES TO GATHER DATA

each container, the experimental unit would be the container, but the measure-
ment unit would be the individual shrimp.

EXAMPLE 2.5

Consider the following experiment. Four types of protective coatings for frying
pans are to be evaluated. Five frying pans are randomly assigned to each of the
four coatings. The abrasion resistance of the coating is measured at three locations
on each of the 20 pans. Identify the following items for this study: experimental
design, treatments, replications, experimental unit, measurement unit, and total
number of measurements.

Solution

Experimental design: Completely randomized design.

Treatments: Four types of protective coatings.

Replication: There are five frying pans (replications) for each
treatment.

Experimental unit: Frying pan, because coatings (treatments) are ran-
domly assigned to the frying pans.

Measurement unit: Particular locations on the frying pan.

Total number of measurements: 4 - 5 - 3 = 60 measurements in this experiment.
The experimental unit is the frying pan, since the treatment was randomly
assigned to a coating. The measurement unit is a location on the frying
pan. ®

experimental error The term experimental error is used to describe the variation in the responses
among experimental units that are assigned the same treatment and are observed
under the same experimental conditions. The reasons that the experimental error
is not zero include (a) the natural differences in the experimental units prior to
their receiving the treatment, (b) the variation in the devices that record the meas-
urements, (c) the variation in setting the treatment conditions, and (d) the effect
on the response variable of all extraneous factors other than the treatment factors.

EXAMPLE 2.6

Refer to the previously discussed laboratory experiment in which the researcher
randomly assigns a single dose of the drug to each of 10 rats and then measures the
level of the drug in the rats’ bloodstream after 2 hours. For this experiment, the
experimental unit and measurement unit are the same: the rat.

Identify the four possible sources of experimental error for this study. (See (a)
to (d) in the last paragraph before this example.)

Solution We can address these sources as follows:

a. Natural differences in experimental units prior to receiving the
treatment. There will be slight physiological differences among rats,
so two rats receiving the exact same dose level (treatment) will have
slightly different blood levels 2 hours after receiving the treatment.

b. Variation in the devices used to record the measurements. There
will be differences in the responses due to the method by which
the quantity of the drug in the rat is determined by the laboratory
technician. If several determinations of drug level were made in the
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blood of the same rat, there may be differences in the amount of
drug found due to equipment variation, technician variation, or con-
ditions in the laboratory.

c. Variation in setting the treatment conditions. If there is more than
one replication per treatment, the treatment may not be exactly the
same from one rat to another. Suppose, for example, that we had 10
replications of each dose (treatment). It is highly unlikely that each
of the 10 rats would receive exactly the same dose of drug specified
by the treatment. There could be slightly different amounts of the
drug in the syringes, and slightly different amounts could be injected
and enter the bloodstreams.

d. The effect on the response variable (blood level) of all extraneous factors
other than the treatment factors. Presumably, the rats are all placed in
cages and given the same amount of food and water prior to determining
the amount of the drug in their blood. However, the temperature, humid-
ity, external stimulation, and other conditions may be somewhat different
in the 10 cages. This may have an effect on the responses of the 10 rats.

Thus, these differences and variation in the external conditions within the labora-
tory during the experiment all contribute to the size of the experimental error in
the experiment. B

EXAMPLE 2.7

Refer to Example 2.4. Suppose that each treatment is assigned to two containers
and that 40 shrimp are placed in each container. After 6 weeks, the individual
shrimp are weighed. Identify the experimental units, measurement units, factors,
treatments, number of replications, and possible sources of experimental error.

Solution This is a factorial treatment design with two factors: temperature and
salinity level. The treatments are constructed by selecting a temperature and salin-
ity level to be assigned to a particular container. We would have a total of 3 - 4 = 12
possible treatments for this experiment. The 12 treatments are

(25°,10%)  (25°,20%)  (25°,30%)  (25°40%)
(30°,10%)  (30°,20%)  (30°,30%)  (30°,40%)
(35°,10%)  (35°,20%)  (35°,30%)  (35°,40%)

Wenextrandomly assign two containers to each of the 12 treatments. This results
in two replications of each treatment. The experimental unit is the container, since
the individual containers are randomly assigned to a treatment. Forty shrimp are
placed in the containers, and after 6 weeks, the weights of the individual shrimp are
recorded. The measurement unit is the individual shrimp, since this is the physical
entity upon which an observation is made. Thus, in this experiment the experimen-
tal and measurement units are different. Several possible sources of experimental
error include the difference in the weights of the shrimp prior to being placed in
the container, how accurately the temperature and salinity levels are maintained
over the 6-week study period, how accurately the shrimp are weighed at the conclu-
sion of the study, the consistency of the amount of food fed to the shrimp (whether
each shrimp was given exactly the same quantity of food over the 6 weeks), and the
variation in any other conditions that may affect shrimp growth. |
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2.5 Designs for Experimental Studies

The subject of designs for experimental studies cannot be given much justice at the
beginning of a statistical methods course —entire courses at the undergraduate and
graduate levels are needed to get a comprehensive understanding of the methods
and concepts of experimental design. Even so, we will attempt to give you a brief
overview of the subject because much of the data requiring summarization and
analysis arises from experimental studies involving one of a number of designs. We
will work by way of examples.

A consumer testing agency decides to evaluate the wear characteristics of
four major brands of tires. For this study, the agency selects four cars of a standard
car model and four tires of each brand. The tires will be placed on the cars and then
driven 30,000 miles on a 2-mile racetrack. The decrease in tread thickness over
the 30,000 miles is the variable of interest in this study. Four different drivers will
drive the cars, but the drivers are professional drivers with comparable training
and experience. The weather conditions, smoothness of the track, and the mainte-
nance of the four cars will be essentially the same for all four brands over the study
period. All extraneous factors that may affect the tires are nearly the same for all
four brands. Thus, the testing agency feels confident that if there is a difference in
wear characteristics between the brands at the end of the study, then this is truly a
difference in the four brands and not a difference due to the manner in which the
study was conducted. The testing agency is interested in recording other factors,
such as the cost of the tires, the length of warranty offered by the manufacturer,
whether the tires go out of balance during the study, and the evenness of wear
across the width of the tires. In this example, we will consider only tread wear.
There should be a recorded tread wear for each of the 16 tires, 4 tires for each
brand. The methods presented in Chapters 8 and 15 could be used to summarize
and analyze the sample tread-wear data in order to make comparisons (inferences)
among the four tire brands. One possible inference of interest could be the selec-
tion of the brand having minimum tread wear. Can the best-performing tire brand
in the sample data be expected to provide the best tread wear if the same study is
repeated? Are the results of the study applicable to the driving habits of the typical
motorist?

Experimental Designs

There are many ways in which the tires can be assigned to the four cars. We will
consider one running of the experiment in which we have four tires of each of the
four brands. First, we need to decide how to assign the tires to the cars. We could
randomly assign a single brand to each car, but this would result in a design having
as the unit of measurement the total loss of tread for all four tires on the car and
not the individual tire loss. Thus, we must randomly assign the 16 tires to the four
cars. In Chapter 15, we will demonstrate how this randomization is conducted. One
possible arrangement of the tires on the cars is shown in Table 2.2.
completely In general, a completely randomized design is used when we are interested
randomized design  in comparing ¢ “treatments” (in our case, ¢ = 4; the treatments are the tire brands).
For each of the treatments, we obtain a sample of observations. The sample sizes
could be different for the individual treatments. For example, we could test 20 tires
from Brands A, B, and C but only 12 tires from Brand D. The sample of observa-
tions from a treatment is assumed to be the result of a simple random sample of
observations from the hypothetical population of possible values that could have
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TABLE 2.2
Completely randomized Carl Car 2 Car 3 Car 4
design of tire wear Brand B Brand A Brand A Brand D
Brand B Brand A Brand B Brand D
Brand B Brand C Brand C Brand D
Brand C Brand C Brand A Brand D

resulted from that treatment. In our example, the sample of four tire-wear thick-
nesses from Brand A was considered to be the outcome of a simple random sample
of four observations selected from the hypothetical population of possible tire-
wear thicknesses for standard model cars traveling 30,000 miles using Brand A.
The experimental design could be altered to accommodate the effect of a var-
iable related to how the experiment is conducted. In our example, we assumed that
the effect of the different cars, weather, drivers, and various other factors was the
same for all four brands. Now, if the wear on tires imposed by Car 4 was less severe
than that of the other three cars, would our design take this effect into account?
Because Car 4 had all four tires of Brand D placed on it, the wear observed for
Brand D may be less than the wear observed for the other three brands because all
four tires of Brand D were on the “best” car. In some situations, the objects being
observed have existing differences prior to their assignment to the treatments. For
example, in an experiment evaluating the effectiveness of several drugs for reduc-
ing blood pressure, the age or physical condition of the participants in the study
may decrease the effectiveness of the drugs. To avoid masking the effectiveness of
the drugs, we would want to take these factors into account. Also, the environmen-
tal conditions encountered during the experiment may reduce the effectiveness of
the treatment.
In our example, we would want to avoid having the comparison of the tire
brands distorted by the differences in the four cars. The experimental design used
randomized block  to accomplish this goal is called a randomized block design because we want to
design  “block” out any differences in the four cars to obtain a precise comparison of the
four brands of tires. In a randomized block design, each treatment appears in every
block. In the blood pressure example, we would group the patients according to
the severity of their blood pressure problem and then randomly assign the drugs to
the patients within each group. Thus, the randomized block design is similar to a
stratified random sample used in surveys. In the tire-wear example, we would use
the four cars as the blocks and randomly assign one tire of each brand to each of
the four cars, as shown in Table 2.3. Now, if there are any differences in the cars
that may affect tire wear, that effect will be equally applied to all four brands.
What happens if the position of the tires on the car affects the wear on the
tire? The positions on the car are right front (RF), left front (LF), right rear (RR),
and left rear (LR). In Table 2.3, suppose that all four tires from Brand A are placed
on the RF position, Brand B on RR, Brand C on LF, and Brand D on LR. Now,

TABLE 2.3
Randomized block design Car 1 Car2 Car 3 Car 4
of tire wear Brand A Brand A Brand A Brand A
Brand B Brand B Brand B Brand B
Brand C Brand C Brand C Brand C

Brand D Brand D Brand D Brand D
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TABLE 2.4
Lati . Position Carl Car 2 Car3 Car 4
atin square design
of tire wear RF Brand A Brand B Brand C Brand D
RR Brand B Brand C Brand D Brand A
LF Brand C Brand D Brand A Brand B
LR Brand D Brand A Brand B Brand C

if the greatest wear occurs for tires placed on the RF, then Brand A would be at a
great disadvantage when compared to the other three brands. In this type of situ-
ation, we would state that the effect of brand and the effect of position on the car
were confounded; that is, using the data in the study, the effects of two or more fac-
tors cannot be unambiguously attributed to a single factor. If we observed a large
difference in the average wear among the four brands, is this difference due to
differences in the brands or differences due to the position of the tires on the car?
Using the design given in Table 2.3, this question cannot be answered. Thus, we
now need two blocking variables: the “car” the tire is placed on and the “position”

Latin square design  on the car. A design having two blocking variables is called a Latin square design.
A Latin square design for our example is shown in Table 2.4.

Note that with this design, each brand is placed in each of the four positions
and on each of the four cars. Thus, if position or car has an effect on the wear of the
tires, the position effect and/or car effect will be equalized across the four brands.
The observed differences in wear can now be attributed to differences in the brand
of the tire.

The randomized block and Latin square designs are both extensions of the
completely randomized design in which the objective is to compare ¢ treatments.
The analysis of data for a completely randomized design and for block designs and
the inferences made from such analyses are discussed further in Chapters 14, 15,
and 17. A special case of the randomized block design is presented in Chapter 6,
where the number of treatments is ¢ = 2 and the analysis of data and the inferences
from these analyses are discussed.

Factorial Treatment Structure in a Completely
Randomized Design

factors In this section, we will discuss how treatments are constructed from several factors
rather than just being ¢ levels of a single factor. These types of experiments are
involved with examining the effect of two or more independent variables on a
response variable y. For example, suppose a company has developed a new
adhesive for use in the home and wants to examine the effects of temperature
and humidity on the bonding strength of the adhesive. Several treatment design
questions arise in any study. First, we must consider what factors (independent
variables) are of greatest interest. Second, the number of levels and the actual set-
tings of these levels must be determined for each factor. Third, having separately
selected the levels for each factor, we must choose the factor-level combinations
(treatments) that will be applied to the experimental units.

The ability to choose the factors and the appropriate settings for each of
the factors depends on the budget, the time to complete the study, and, most
important, the experimenter’s knowledge of the physical situation under study. In
many cases, this will involve conducting a detailed literature review to determine
the current state of knowledge in the area of interest. Then, assuming that the
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experimenter has chosen the levels of each independent variable, he or she must
decide which factor-level combinations are of greatest interest and are viable. In
some situations, certain factor-level combinations will not produce an experimen-
tal setting that can elicit a reasonable response from the experimental unit. Certain
combinations may not be feasible due to toxicity or practicality issues.

One approach for examining the effects of two or more factors on a response
is called the one-at-a-time approach. To examine the effect of a single variable,
an experimenter varies the levels of this variable while holding the levels of the
other independent variables fixed. This process is continued until the effect of each
variable on the response has been examined.

For example, suppose we want to determine the combination of nitrogen and
phosphorus that produces the maximum amount of corn per plot. We would select
a level of phosphorus (say, 20 pounds), vary the levels of nitrogen, and observe
which combination gives maximum yield in terms of bushels of corn per acre.
Next, we would use the level of nitrogen producing the maximum yield, vary the
amount of phosphorus, and observe the combination of nitrogen and phosphorus
that produces the maximum yield. This combination would be declared the “best”
treatment. The problem with this approach will be illustrated using the hypotheti-
cal yield values given in Table 2.5. These values would be unknown to the experi-
menter. We will assume that many replications of the treatments are used in the
experiment so that the experimental results are nearly the same as the true yields.

Initially, we run experiments with 20 pounds of phosphorus and the levels of
nitrogen at 40, 50, and 60. We would determine that using 60 pounds of nitrogen
with 20 pounds of phosphorus produces the maximum production, 160 bushels per
acre. Next, we set the nitrogen level at 60 pounds and vary the phosphorus levels.
This would result in the 10 level of phosphorus producing the highest yield, 175
bushels, when combined with 60 pounds of nitrogen. Thus, we would determine
that 10 pounds of phosphorus with 60 pounds of nitrogen produces the maximum
yield. The results of these experiments are summarized in Table 2.6.

Based on the experimental results using the one-factor-at-a-time methodol-
ogy, we would conclude that the 60 pounds of nitrogen and 10 pounds of phospho-
rus is the optimal combination. An examination of the yields in Table 2.5 reveals
that the true optimal combination was 40 pounds of nitrogen with 30 pounds of
phosphorus, producing a yield of 190 bushels per acre. Thus, this type of exper-
imentation may produce incorrect results whenever the effect of one factor on
the response does not remain the same at all levels of the second factor. In this

Phosphorus
Nitrogen 10 20 30
40 125 145 190
50 155 150 140
60 175 160 125

Phosphorus 20 20 20 10 30
Nitrogen 40 50 60 60 60
Yield 145 150 160 175 125
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interact  situation, the factors are said to interact. Figure 2.2 depicts the interaction between
nitrogen and phosphorus in the production of corn. Note that as the amount of
nitrogen is increased from 40 to 60, there is an increase in the yield when using
the 10 level of phosphorus. At the 20 level of phosphorus, increasing the amount
of nitrogen also produces an increase in the yield but with smaller increments. At
the 20 level of phosphorus, the yield increases 15 bushels when the nitrogen level is
changed from 40 to 60. However, at the 10 level of phosphorus, the yield increases
50 bushels when the level of nitrogen is increased from 40 to 60. Furthermore,
at the 30 level of phosphorus, increasing the level of nitrogen actually causes the
yield to decrease. When there is no interaction between the factors, increasing the
nitrogen level would have produced identical changes in the yield at all levels of
phosphorus.

Table 2.7 and Figure 2.3 depict a situation in which the two factors do not
interact. In this situation, the effect of phosphorus on the corn yield is the same
for all three levels of nitrogen; that is, as we increase the amount of phosphorus,
the change in corn yield is exactly the same for all three levels of nitrogen. Note
that the change in yield is the same at all levels of nitrogen for a given change in
phosphorus. However, the yields are larger at the higher levels of nitrogen. Thus,
in the profile plots we have three different lines, but the lines are parallel. When
interaction exists among the factors, the lines will either cross or diverge.

From Figure 2.3, we can observe that the one-at-a-time approach is appropri-
ate for a situation in which the two factors do not interact. No matter what level
is selected for the initial level of phosphorus, the one-at-a-time approach will pro-
duce the optimal yield. However, in most situations, prior to running the experi-
ments it is not known whether the two factors will interact. If it is assumed that the
factors do not interact and the one-at-a-time approach is implemented when in fact

TABLE 2.7

Hypothetical population Phosphorus
yields (no interaction) Nitrogen 10 20 30
40 125 145 150
50 145 165 170
60 165 185 190
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the factors do interact, the experiment will produce results that will often fail to
identify the best treatment.

Factorial treatment structures are useful for examining the effects of two or
more factors on a response, whether or not interaction exists. As before, the choice
of the number of levels of each variable and the actual settings of these variables is
important. When the factor-level combinations are assigned to experimental units
at random, we have a completely randomized design with treatments being the
factor-level combinations.

Using our previous example, we are interested in examining the effect of
nitrogen and phosphorus levels on the yield of a corn crop. The nitrogen levels are
40, 50, and 60 pounds per plot, and the phosphorus levels are 10, 20, and 30 pounds
per plot. We could use a completely randomized design where the nine factor-level
combinations (treatments) of Table 2.8 are assigned at random to the experimental
units (the plots of land planted with corn).

It is not necessary to have the same number of levels of both factors. For
example, we could run an experiment with two levels of phosphorus and three
levels of nitrogen, a 2 X 3 factorial structure. Also, the number of factors can be
more than two. The corn yield experiment could have involved treatments con-
sisting of four levels of potassium along with the three levels of phosphorus and
nitrogen, a 4 X 3 X 3 factorial structure. Thus, we would have 4 - 3 - 3 = 36 fac-
tor combinations or treatments. The methodology of randomization, analysis, and
inferences for data obtained from factorial treatment structures in various experi-
mental designs is discussed in Chapters 14, 15, 17, and 18.

More Complicated Designs

Sometimes the objectives of a study are such that we wish to investigate the effects
of certain factors on a response while blocking out certain other extraneous

Treatment 1 2 3 4 5 6 7 8 9
Phosphorus 10 10 10 20 20 20 30 30 30
Nitrogen 40 50 60 40 50 60 40 50 60
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TABLE 2.9
Block design for
heartworm experiment

Litter

Puppy 1 2 3 4

A-D1 A-D3 B-D3 B-D2
A-D3 B-D1 A-D2 A-D2
B-D1 A-D1 B-D2 A-D1
A-D2 B-D2 B-D1 B-D3
B-D3 B-D3 A-D1 A-D3
B-D2 A-D2 A-D3 B-D1

AN N RN

sources of variability. Such situations require a block design with treatments
from a factorial treatment structure and can be illustrated with the following
example.

An investigator wants to examine the effectiveness of two drugs (A and B)
for controlling heartworms in puppies. Veterinarians have conjectured that the
effectiveness of the drugs may depend on a puppy’s diet. Three different diets
(Factor 1) are combined with the two drugs (Factor 2), and we have a 3 X 2
factorial treatment structure consisting of six treatments. Also, the effectiveness
of the drugs may depend on a transmitted inherent protection against heartworms
obtained from the puppy’s mother. Thus, four litters of puppies consisting of six
puppies each were selected to serve as a blocking factor in the experiment because
all puppies within a given litter have the same mother. The six factor-level com-
binations (treatments) were randomly assigned to the six puppies within each of
the four litters. The design is shown in Table 2.9. Note that this design is really a

block design ~ randomized block design in which the blocks are litters and the treatments are the
six factor-level combinations of the 3 X 2 factorial treatment structure.

Other more complicated combinations of block designs and factorial treat-
ment structures are possible. As with sample surveys, however, we will deal only
with the simplest experimental designs in this text. The point we want to make is
that there are many different experimental designs that can be used in scientific
studies for designating the collection of sample data. Each has certain advan-
tages and disadvantages. We expand our discussion of experimental designs in
Chapters 14-18, where we concentrate on the analysis of data generated from
these designs. In those situations that require more complex designs, a professional
statistician needs to be consulted to obtain the most appropriate design for the
survey or experimental setting.

Controlling Experimental Error

As we observed in Examples 2.4 and 2.5, there are many potential sources of
experimental error in an experiment. When the variance of experimental errors is
large, the precision of our inferences will be greatly compromised. Thus, any tech-
niques that can be implemented to reduce experimental error will lead to a much
improved experiment and more precise inferences.

The researcher may be able to control many of the potential sources of
experimental errors. Some of these sources are (1) the procedures under which the
experiment is conducted, (2) the choice of experimental units and measurement
units, (3) the procedure by which measurements are taken and recorded, (4) the
blocking of the experimental units, (5) the type of experimental design, and (6)
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covariates  the use of ancillary variables (called covariates). We will now address how each of
these sources may affect experimental error and how the researcher may minimize
the effect of these sources on the size of the variance of experimental error.

Experimental Procedures

When the individual procedures required to conduct an experiment are not followed
in a careful, precise manner, the result is an increase in the variance of the response
variable. This involves not only the personnel used to conduct the experiments and
to measure the response variable but also the equipment used in their procedures.
Personnel must be trained properly in constructing the treatments and carrying
out the experiments. The consequences of their performance for the success of
the experiment should be emphasized. The researcher needs to provide the tech-
nicians with equipment that will produce the most precise measurements within
budget constraints. It is crucial that equipment be maintained and calibrated at
frequent intervals throughout the experiment. The conditions under which the
experiments are run must be as nearly constant as possible during the duration of
the experiment. Otherwise, differences in the responses may be due to changes in
the experimental conditions and not due to treatment differences.

When experimental procedures are not of high quality, the variance of the
response variable may be inflated. Improper techniques used when taking meas-
urements, improper calibration of instruments, or uncontrolled conditions within
a laboratory may result in extreme observations that are not truly reflective of
the effect of the treatment on the response variable. Extreme observations may
also occur due to recording errors by the laboratory technician or the data man-
ager. In either case, the researcher must investigate the circumstances surrounding
extreme observations and then decide whether to delete the observations from the
analysis. If an observation is deleted, an explanation of why the data value was not
included should be given in the appendix of the final report.

When experimental procedures are not uniformly conducted throughout
the study period, two possible outcomes are an inflation in the variance of the
response variable and a bias in the estimation of the treatment mean. For exam-
ple, suppose we are measuring the amount of a drug in the blood of rats injected
with one of four possible doses of the drug. The equipment used to measure the
precise amount of the drug to be injected is not working properly. For a given
dosage of the drug, the first rats injected were given a dose that was less than the
prescribed dose, whereas the last rats injected were given more than the prescribed
amount. Thus, when the amount of the drug in the blood is measured, there will
be an increase in the variance in these measurements, but the treatment mean may
be estimated without bias because the overdose and underdose may cancel each
other. On the other hand, if all the rats receiving the lowest dose level are given
too much of the drug and all the rats receiving the highest dose level are not given
enough of the drug, then the estimation of the treatment means will be biased.
The treatment mean for the low dose will be overestimated, whereas the high dose
will have an underestimated treatment mean. Thus, it is crucial to the success of
the study that experimental procedures are conducted uniformly across all experi-
mental units. The same is true concerning the environmental conditions within a
laboratory or in a field study. Extraneous factors such as temperature, humidity,
amount of sunlight, exposure to pollutants in the air, and other uncontrolled fac-
tors when not uniformly applied to the experimental units may result in a study
with both an inflated variance and a biased estimation of treatment means.
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Selecting Experimental and Measurement Units

When the experimental units used in an experiment are not similar with respect
to those characteristics that may affect the response variable, the experimental
error variance will be inflated. One of the goals of a study is to determine whether
there is a difference in the mean responses of experimental units receiving differ-
ent treatments. The researcher must determine the population of experimental
units that are of interest. The experimental units are randomly selected from that
population and then randomly assigned to the treatments. This is of course the
idealized situation. In practice, the researcher is somewhat limited in the selec-
tion of experimental units by cost, availability, and ethical considerations. Thus,
the inferences that can be drawn from the experimental data may be somewhat
restricted. When examining the pool of potential experimental units, sets of units
that are more similar in characteristics will yield more precise comparisons of the
treatment means. However, if the experimental units are overly uniform, then the
population to which inferences may be properly made will be greatly restricted.
Consider the following example.

EXAMPLE 2.8

A sales campaign to market children’s products will use television commercials
as its central marketing technique. A marketing firm hired to determine whether
the attention span of children is different depending on the type of product being
advertised decided to examine four types of products: sporting equipment, healthy
snacks, shoes, and video games. The firm selected 100 fourth-grade students from a
New York City public school to participate in the study. Twenty-five students were
randomly assigned to view a commercial for each of the four types of products.
The attention spans of the 100 children were then recorded. The marketing firm
thought that by selecting participants of the same grade level and from the same
school system it would achieve a homogeneous group of subjects. What problems
exist with this selection procedure?

Solution The marketing firm was probably correct in assuming that by selecting
the students from the same grade level and school system it would achieve a more
homogeneous set of experimental units than by using a more general selection
procedure. However, this procedure has severely limited the inferences that can
be made from the study. The results may be relevant only to students in the fourth
grade and residing in a very large city. A selection procedure involving other grade
levels and children from smaller cities would provide a more realistic study. H

Reducing Experimental Error Through Blocking

When we are concerned that the pool of available experimental units has large dif-
ferences with respect to important characteristics, the use of blocking may prove to
be highly effective in reducing the experimental error variance. The experimental
units are placed into groups based on their similarity with respect to characteristics
that may affect the response variable. This results in sets or blocks of experimen-
tal units that are homogeneous within the block, but there is a broad coverage of
important characteristics when considering the entire unit. The treatments are ran-
domly assigned separately within each block. The comparison of the treatments is
within the groups of homogeneous units and hence yields a comparison of the treat-
ments that is not masked by the large differences in the original set of experimental
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units. The blocking design will enable us to separate the variability associated with
the characteristics used to block the units from the experimental error.

There are many criteria used to group experimental units into blocks; they
include the following:

1. Physical characteristics such as age, weight, sex, health, and education
of the subjects

2. Units that are related such as twins or animals from the same litter

3. Spatial location of experimental units such as neighboring plots of
land or position of plants on a laboratory table

4. Time at which experiment is conducted such as the day of the week,
because the environmental conditions may change from day to day

5. Person conducting the experiment, because if several operators or
technicians are involved in the experiment, they may have some dif-
ferences in how they make measurements or manipulate the experi-
mental units

In all of these examples, we are attempting to observe all the treatments at
each of the levels of the blocking criterion. Thus, if we were studying the number
of cars with a major defect coming off each of three assembly lines, we might want
to use day of the week as a blocking variable and be certain to compare each of the
assembly lines on all 5 days of the work week.

Using Covariates to Reduce Variability

A covariate is a variable that is related to the response variable. Physical char-
acteristics of the experimental units are used to create blocks of homogeneous
units. For example, in a study to compare the effectiveness of a new diet to that of
a control diet in reducing the weight of dogs, suppose the pool of dogs available
for the study varied in age from 1 year to 12 years. We could group the dogs into
three blocks: B;—under 3 years, B,—3 years to 8 years, B3—over 8 years. A more
exacting methodology records the age of the dog and then incorporates the age
directly into the model when attempting to assess the effectiveness of the diet.
The response variable would be adjusted for the age of the dog prior to compar-
ing the new diet to the control diet. Thus, we have a more exact comparison of the
diets. Instead of using a range of ages as is done in blocking, we are using the exact
age of the dog, which reduces the variance of the experimental error.

Candidates for covariates in a given experiment depend on the particular
experiment. The covariate needs to have a relationship to the response variable,
it must be measurable, and it cannot be affected by the treatment. In most cases,
the covariate is measured on the experimental unit before the treatment is given
to the unit. Examples of covariates are soil fertility, amount of impurity in a raw
material, weight of an experimental unit, SAT score of a student, cholesterol level
of a subject, and insect density in a field. The following example will illustrate the
use of a covariate.

In this study, the effects of two treatments, supplemental lighting (S) and partial
shading (P), on the yield of soybean plants were compared with normal lighting
(C). Normal lighting will serve as a control. Each type of lighting was randomly
assigned to 15 soybean plants, and the plants were grown in a greenhouse study.
When setting up the experiment, the researcher recognized that the plants were
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of differing size and maturity. Consequently, the height of the plant, a measur-
able characteristic of plant vigor, was determined at the start of the experiment
and will serve as a covariate. This will allow the researcher to adjust the yields of
the individual soybean plants depending on the initial size of the plant. On each
plant, we record two variables, (x, y) where x is the height of the plant at the begin-
ning of the study and y is the yield of soybeans at the conclusion of the study. To
determine whether the covariate has an effect on the response variable, we plot
the two variables to assess any possible relationship. If no relationship exists, then
the covariate need not be used in the analysis. If the two variables are related,
analysis of covariance | then we must use the techniques of analysis of covariance to properly adjust the
response variable prior to comparing the mean yields of the three treatments. An
initial assessment of the viability of the relationship is simply to plot the response
variable versus the covariate with a separate plotting characteristic for each treat-
ment. Figure 2.4 contains this plot for the soybean data.

From Figure 2.4, we observe that there appears to be an increasing relationship
between the covariate —initial plant height—and the response variable —yield.
Also, the three treatments appear to have differing yields; some of the variation
in the response variable is related to the initial height as well as to the difference
in the amount of lighting the plant received. Thus, we must identify the amount of
variation associated with initial height prior to testing for differences in the aver-
age yields of the three treatments. We can accomplish this using the techniques
of analysis of variance. The analysis of covariance procedures will be discussed in
detail in Chapter 16. &

2.6 RESEARCH STUDY: Exit Polls Versus Election Results

In the beginning of this chapter, we discussed the apparent “discrepancy” between
exit polls and the actual voter count during the 2004 presidential election. We will
now attempt to answer the following question.
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Why were there discrepancies between the exit polls and the election results
obtained for the 11 “crucial” states? We will not be able to answer this question
definitely, but we can look at some of the issues that pollsters must address when
relying on exit polls to accurately predict election results.

First, we need to understand how an exit poll is conducted. We will examine
the process as implemented by one such polling company, Edison Media Research
and Mitofsky International, as reported on its website. The company conducted exit
polls in each state. The state exit poll was conducted at a random sample of polling
places among Election Day voters. The polling places are a stratified probability
sample of a state. Within each polling place, an interviewer approached every nth
voter as he or she exited the polling place. Approximately 100 voters completed a
questionnaire at each polling place. The exact number depends on voter turnout
and the willingness of selected voters to cooperate.

In addition, absentee and/or early voters were interviewed in pre-election tel-
ephone polls in a number of states. All samples were random-digit dialing (RDD)
selections except for Oregon, which used both RDD and some follow-up calling.
Absentee or early voters were asked the same questions as voters at the polling place
on Election Day. Results from the phone poll were combined with results from vot-
ers interviewed at the polling places. The combination reflects approximately the
correct proportion of absentee/early voters and Election Day voters.

The first step in addressing the discrepancies between the exit poll results
and actual election tabulation numbers would be to examine the results for all
states, not just those thought to be crucial in determining the outcome of the elec-
tion. These data are not readily available. Next, we would have to make certain
that voter fraud was not the cause for the discrepancies. That is the job of the state
voter commissions. What can go wrong with exit polls? A number of possibilities
exist, including the following:

1. Nonresponse: How are the results adjusted for sampled voters refus-
ing to complete the survey? How are the RDD results adjusted for
those screening their calls and refusing to participate?

2. Wording of the questions on the survey: How were the questions
asked? Were they worded in an unbiased, neutral way without
leading questions?

3. Timing of the exit poll: Were the polls conducted throughout the day
at each polling station or just during one time frame?

4. Interviewer bias: Were the interviewers unbiased in the way they
approached sampled voters?

5. Influence of election officials: Did the election officials evenly enforce
election laws at the polling booths? Did the officials have an impact
on the exit pollsters?

6. Voter validity: Did those voters who agreed to be polled give accurate
answers to the questions asked?

7. Agreement with similar pre-election surveys: Finally, when the exit
polls were obtained, did they agree with the most recent pre-election
surveys? If not, why not?

Raising these issues is not meant to say that exit polls cannot be of use in predicting
actual election results, but they should be used with discretion and with safeguards
to mitigate the issues we have addressed as well as other potential problems. But,
in the end, it is absolutely essential that no exit poll results be made public until the
polls across the country are closed. Otherwise, there is a significant, serious chance
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that potential voters may be influenced by the results, thus affecting their vote or,
worse, causing them to decide not to vote based on the conclusions derived from
the exit polls.

¥ summary

The first step in Learning from Data involves defining the problem. This was dis-
cussed in Chapter 1. Next, we discussed intelligent data gathering, which involves
specifying the objectives of the data-gathering exercise, identifying the variables of
interest, and choosing an appropriate design for the survey or experimental study.
In this chapter, we discussed various survey designs and experimental designs for
scientific studies. Armed with a basic understanding of some design considerations
for conducting surveys or scientific studies, you can address how to collect data
on the variables of interest in order to address the stated objectives of the data-
gathering exercise.

We also drew a distinction between observational and experimental stud-
ies in terms of the inferences (conclusions) that can be drawn from the sample
data. Differences found between treatment groups from an observational study
are said to be associated with the use of the treatments; on the other hand, dif-
ferences found between treatments in a scientific study are said to be due to the
treatments. In the next chapter, we will examine the methods for summarizing
the data we collect.

M Ecorcises

2.2 Observational Studies

2.1 In the following descriptions of a study, confounding is present. Describe the explanatory
and confounding variable in the study and how the confounding may invalidate the conclusions
of the study. Furthermore, suggest how you would change the study to eliminate the effect of the
confounding variable.
a. A prospective study is conducted to study the relationship between incidence of

lung cancer and level of alcohol drinking. The drinking status of 5,000 subjects

is determined, and the health of the subjects is then followed for 10 years. The

results are given below.

Lung Cancer

Drinking Status Yes No Total
Heavy drinker 50 2,150 2,200
Light drinker 30 2,770 2,800
Total 80 4,920 5,000

b. A study was conducted to examine the possible relationship between coronary
disease and obesity. The study found that the proportion of obese persons having
developed coronary disease was much higher than the proportion of nonobese
persons. A medical researcher states that the population of obese persons
generally has higher incidences of hypertension and diabetes than the population
of nonobese persons.
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2.2 1In the following descriptions of a study, confounding is present. Describe the explanatory
and confounding variable in the study and how the confounding may invalidate the conclusions
of the study. Furthermore, suggest how you would change the study to eliminate the effect of the
confounding variable.

a. A hospital introduces a new screening procedure to identify patients suffering
from a stroke so that a new blood clot medication can be given to the patient dur-
ing the crucial period of 12 hours after stroke begins. The procedure appears to be
very successful because in the first year of its implementation there is a higher rate
of total recovery by the patients in comparison to the rate in the previous year for
patients admitted to the hospital.

b. A high school mathematics teacher is convinced that a new software program will
improve math scores for students taking the SAT. As a method of evaluating her
theory, she offers the students an opportunity to use the software on the school’s
computers during a 1-hour period after school. The teacher concludes the soft-
ware is effective because the students using the software had significantly higher
scores on the SAT than did the students who did not use the software.

2.3 A news report states that minority children who take advanced mathematics courses in high
school have a first-year GPA in college that is equivalent to that of white students. The newspaper
columnist suggested that the lack of advanced mathematics courses in high school curriculums in
inner-city schools was a major cause of the low college success rate of students from inner-city
schools. What confounding variables may be present that invalidate the columnist’s conclusion?

2.4 A study was conducted to determine if the inclusion of a foreign language requirement in
high schools may have a positive effect on students’ performance on standardized English exams.
From a sample of 100 high schools, 50 of which had a foreign language requirement and 50 of
which did not, it was found that the average score on the English proficiency exam was 25%
higher for the students having a foreign language requirement. What confounding variables may
be present that would invalidate the conclusion that requiring a foreign language in high school
increases English language proficiency?

2.3 Sampling Designs for Surveys

Gov. 2.5 The board of directors of a city-owned electric power plant in a large urban city wants to
assess the increase in electricity demands due to sources such as hybrid cars, big-screen TVs, and
other entertainment devices in the home. There are a number of different sampling plans that
can be implemented to survey the residents of the city. What are the relative merits of the follow-
ing sampling units: individual families, dwelling units (single-family homes, apartment buildings,
etc.), and city blocks?

H.R. 2.6 A large auto parts supplier with distribution centers throughout the United States wants
to survey its employees concerning health insurance coverage. Employee insurance plans vary
greatly from state to state. The company wants to obtain an estimate of the annual health insur-
ance deductible its employees would find acceptable. What sampling plan would you suggest to
the company to achieve its goal?

Pol. Sci. 2.7 The circuit judges in a rural county are considering a change in how jury pools are selected
for felony trials. They ask the administrator of the courts to assess the county residents’ reaction
to changing the requirement for membership in the jury pool from the current requirement of
all registered voters to a new requirement of all registered voters plus all residents with a current
driver’s license. The administrator sends questionnaires to a random sample of 1,000 people from
the list of registered voters in the county and receives responses from 253 people.

a. What is the population of interest?
b. What is the sampling frame?
C. What possible biases could be present in using the information from the survey?

Psy. 2.8 An evaluation of whether people are truthful in their responses to survey questions was
conducted in the following manner. In the first survey, 1,000 randomly selected persons were told
during a home visit that the survey was being done to obtain information that would help protect
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the drinking water supply in their city. After the short introduction, they were asked if they used
a brand of detergent that was biodegradable. In the second survey, 1,000 randomly selected per-
sons were also given the information about safe drinking water during a home visit and then were
asked if they used a biodegradable detergent. If they said yes, the interviewer asked to see the box
of detergent.

a. What differences do you think will be found in the two estimates of the

percentage of households using biodegradable detergents?
b. What types of biases may be introduced into the two types of surveys?

Edu. 2.9 Time magazine, in an article in the late 1950s, stated that “the average Yaleman, class of
1924, makes $25,111 a year,” which, in today’s dollars, would be over $150,000. Time’s estimate
was based on replies to a sample survey questionnaire mailed to those members of the Yale class
of 1924 whose addresses were on file with the Yale administration in the late 1950s.

a. What is the survey’s population of interest?

b. Were the techniques used in selecting the sample likely to produce a sample that
was representative of the population of interest?

c. What are the possible sources of bias in the procedures used to obtain the
sample?

d. Based on the sources of bias, do you believe that Time’s estimate of the salary of
a 1924 Yale graduate in the late 1950s is too high, too low, or nearly the correct
value?

2.10 The New York City school district is planning a survey of 1,000 of its 250,000 parents or
guardians who have students currently enrolled. They want to assess the parents’ opinion about
mandatory drug testing of all students participating in any extracurricular activities, not just
sports. An alphabetical listing of all parents or guardians is available for selecting the sample. In
each of the following descriptions of the method of selecting the 1,000 participants in the survey,
identify the type of sampling method used (simple random sampling, stratified sampling, or clus-
ter sampling).

a. Each name is randomly assigned a number. The names with numbers 1 through
1,000 are selected for the survey.

b. The schools are divided into five groups according to grade level taught at the
school: K-2, 3-5, 6-7, 8-9, 10-12. Five separate sampling frames are constructed,
one for each group. A simple random sample of 200 parents or guardians is se-
lected from each group.

c. The school district is also concerned that the parent’s or guardian’s opinion may
differ depending on the age and sex of the student. Each name is randomly as-
signed a number. The names with numbers 1 through 1,000 are selected for the
survey. The parent is asked to fill out a separate survey for each of their currently
enrolled children.

2.11 A professional society, with a membership of 45,000, is designing a study to evaluate its
members’ satisfaction with the type of sessions presented at the society’s annual meeting. In
each of the following descriptions of the method of selecting participants in the survey, iden-
tify the type of sampling method used (simple random sampling, stratified sampling, or cluster
sampling).

a. The society has an alphabetical listing of all its members. It assigns a number to
each name and then using a computer software program generates 1,250 numbers
between 1 and 45,000. It selects these 1,250 members for the survey.

b. The society is interested in regional differences in its members’ opinions. Therefore,
it divides the United States into nine regions with approximately 5,000 members
per region. It then randomly selects 450 members from each region for inclusion
in the survey.

c. The society is composed of doctors, nurses, and therapists, all working in hos-
pitals. There are a total of 450 distinct hospitals. The society decides to conduct
onsite in-person interviews, so it randomly selects 20 hospitals and interviews all
members working at the selected hospital.
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2.12 For each of the following situations, decide what sampling method you would use. Provide
an explanation of why you selected a particular method of sampling.

a.

A large automotive company wants to upgrade the software on its notebook
computers. A survey of 1,500 employees will request information concerning fre-
quently used software applications such as spreadsheets, word processing, e-mail,
Internet access, statistical data processing, and so on. A list of employees with
their job categories is available.

. A hospital is interested in what types of patients make use of their emergency room

facilities. It is decided to sample 10% of all patients arriving at the emergency room
for the next month and record their demographic information along with type of
service required, the amount of time the patient waits prior to examination, and the
amount of time needed for the doctor to assess the patient’s problem.

2.13 For each of the following situations, decide what sampling method you would use. Provide
an explanation of why you selected a particular method of sampling.

a.

The major state university in the state is attempting to lobby the state legislature
for a bill that would allow the university to charge a higher tuition rate than the
other universities in the state. To provide a justification, the university plans to
conduct a mail survey of its alumni to collect information concerning their current
employment status. The university grants a wide variety of different degrees and
wants to make sure that information is obtained about graduates from each of the
degree types. A 5% sample of alumni is considered sufficient.

. The Environmental Protection Agency (EPA) is required to inspect landfills in

the United States for the presence of certain types of toxic material. The materi-
als were sealed in containers and placed in the landfills. The exact location of the
containers is no longer known. The EPA wants to inspect a sample of 100 contain-
ers from the 4,000 containers known to be in the landfills to determine if leakage
from the containers has occurred.

Designs for Experimental Studies

2.14 The process engineer designed a study to evaluate the quality of plastic irrigation pipes. The
study involved a total of 48 pipes; 24 pipes were randomly selected from each of the company’s
two manufacturing plants. The pipes were heat-treated at one one of four temperatures (175, 200,
225,250°F). The pipes were chemically treated with one of three types of hardeners (H; , H, , H3 ).
The deviations from the nominal compressive strength were measured at five locations on each of

the pipes.
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Pipe No. Plant Temperature (°F) Hardener | Pipe No. Plant Temperature (°F) Hardener
200 H, 15 2 200 H;
175 H, 16 2 175 H;
200 H, 17 1 200 H,
175 H, 18 1 175 H,
200 H, 19 2 200 H,
175 H, 20 2 175 H,
200 H, 21 1 200 H,
175 H, 22 1 175 H,
200 H; 23 2 200 H,
175 H; 24 2 175 H,
200 H; 25 1 250 H,
175 H; 26 1 225 H,
200 H; 27 2 250 H,
175 H; 28 2 225 H,

—
~
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29 1 250 H, 39 2 250 H;
30 1 225 H, 40 2 225 H;
31 2 250 H, 41 1 250 H,
32 2 225 H, 42 1 225 H,
33 1 250 H; 43 2 250 H,
34 1 225 H; 44 2 225 H,
35 2 250 H; 45 1 250 H,
36 2 225 H; 46 1 225 H,
37 1 250 H; 47 2 250 H,
38 1 225 H; 48 2 225 H,

Identify each of the following components of the experimental design.
. Factors
. Factor levels
. Blocks
. Experimental unit
. Measurement unit
Replications
. Covariates
. Treatments
In the descriptions of experiments given in Exercises 2.15-2.18, identify the important features of
each design. Include as many of the components listed in Exercise 2.14 as needed to adequately
describe the design.

Q"0 000w

Ag. 2.15 A horticulturist is measuring the vitamin C concentration in oranges in an orchard on a
research farm in south Texas. He is interested in the variation in vitamin C concentration across
the orchard, across the productive months, and within each tree. He divides the orchard into eight
sections and randomly selects a tree from each section during October—May, the months in which
the trees are in production. During each month, he selects from each of the eight trees 10 oranges
near the top of the tree, 10 oranges near the middle of the tree, and 10 oranges near the bottom
of the tree. The horticulturist wants to monitor the vitamin C concentration across the productive
season and determine if there is a substantial difference in vitamin C concentration in oranges at
various locations in the tree.

Med. 2.16 A medical study is designed to evaluate a new drug, Dy, for treating a particular illness.
There is a widely used treatment, D», for this disease to which the new drug will be compared. A
placebo will also be included in the study. The researcher has selected 10 hospitals for the study.
She does a thorough evaluation of the hospitals and concludes that there may be aspects of the
hospitals that may result in the elevation of responses at some of the hospitals. Each hospital has
six wards of patients. She will randomly select six patients in each ward to participate in the study.
Within each hospital, two wards are randomly assigned to administer D, two wards to administer
D>, and two wards administer the placebo. All six patients in each of the wards will be given the
same treatment. Age, BMI, blood pressure, and a measure of degree of illness are recorded for
each patient upon entry into the hospital. The response is an assessment of the degree of illness
after 6 days of treatment.

Med. 2.17 In place of the design described in Exercise 2.16, make the following change. Within each
hospital, the three treatments will be randomly assigned to the patients, with two patients in each
ward receiving D1, two patients receiving D, and two patients receiving the placebo.

Edu. 2.18 Researchers in an education department at a large state university have designed a study
to compare the math abilities of students in junior high. They will also examine the impact of
three types of schools—public, private nonparochial, and parochial —on the scores the students
receive in a standardized math test. Two large cities in each of four geographical regions of the
United States were selected for the study. In each city, one school of each of the three types was
randomly selected, and a single eighth-grade class was randomly selected within each school.
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The scores on the test were recorded for each student in the selected classrooms. The researcher
was concerned about differences in socio-economie status among the 8 cities, so she obtained a
measure of socioeconomic status for each of the students that participated in the study.

Bio. 2.19 A research specialist for a large seafood company plans to investigate bacterial growth on
oysters and mussels subjected to three different storage temperatures. Nine cold-storage units are
available. She plans to use three storage units for each of the three temperatures. One package of
oysters and one package of mussels will be stored in each of the storage units for 2 weeks. At the end
of the storage period, the packages will be removed and the bacterial count made for two samples
from each package. The treatment factors of interest are temperature (levels: 0, 5, 10°C) and sea-
food (levels: oysters, mussels). She will also record the bacterial count for each package prior to plac-
ing seafood in the cooler. Identify each of the following components of the experimental design.

. Factors

. Factor levels

. Blocks

. Experimental unit

Measurement unit

. Replications

g. Treatments

In Exercises 2.20-2.22, identify whether the design is a completely randomized design, rand-

omized complete block design, or Latin square design. If there is a factorial structure for the

treatments, specify whether it has a two-factor or three-factor structure. If the measurement units
are different from the experimental units, identify both.

w0 OO0TO

Ag. 2.20 The researchers design an experiment to evaluate the effect of applying fertilizer having
varying levels of nitrogen, potassium, and phosphorus on the yields of orange trees. There were
three, four, and three different levels of N, P, and K, respectively, yielding 36 distinct combi-
nations. Ten orange groves were randomly selected for the experiment. Each grove was then
divided into 36 distinct plots, and the 36 fertilizer combinations were randomly assigned to the
plots within each grove. The yield of five randomly selected trees in each plot is recorded to assess
the variation within each of the 360 plots.

Bus. 2.21 A company is planning on purchasing a software program to manage its inventory. Five
vendors submit bids on supplying the inventory control software. In order to evaluate the effec-
tiveness of the software, the company’s personnel decide to evaluate the software by running
each of the five software packages at each of the company’s 10 warehouses. The number of errors
produced by each of the software packages is recorded at each of the warehouses.

Sci. 2.22 Four different glazes are applied at two different thicknesses to clay pots. The kiln used in
the glazing can hold eight pots at a time, and it takes 1 day to apply the glazes. The experimenter
wanted eight replications of the experiment. Since conditions in the kiln vary somewhat from day
to day, the experiment was conducted over an 8-day period. The experiment is conducted so that
each combination of a thickness and type of glaze is randomly assigned to one pot in the kiln each
day.

Bus. 2.23 A bakery wants to evaluate new recipes for carrot cake. It decides to ask a random sample
of regular customers to evaluate the recipes by tasting samples of the cakes. After a customer
tastes a sample of the cake, the customer will provide scores for several characteristics of the
cake, and these scores are then combined into a single overall score for the recipe. Thus, from
each customer, a single numeric score is recorded for each recipe. The taste-testing literature
indicates that in this type of study some consumers tend to give all samples low scores and others
tend to give all samples high scores.

a. There are two possible experimental designs. Design A would use a random sam-
ple of 100 customers. From this group, 20 would be randomly assigned to each of
the five recipes, so that each customer tastes only one recipe. Design B would use
a random sample of 100 customers with each customer tasting all five recipes, the
recipes being presented in a random order for each customer. Which design would
you recommend? Justify your answer.
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b. The manager of the bakery asked for a progress report on the experiment. The
person conducting the experiment replied that one recipe tasted so bad that she
eliminated it from the analysis. Is this a problem for the analysis if Design B was
used? Why or why not? Would it have been a problem if Design A was used?
Why or why not?

Supplementary Exercises

H.R. 2.24 A large healthcare corporation is interested in the number of employees who devote a sub-

stantial amount of time to providing care for elderly relatives. The corporation wants to develop
a policy with respect to the number of sick days an employee can use to provide care to elderly
relatives. The corporation has thousands of employees, so it decides to have a sample of employees
fill out a questionnaire.

a. How would you define employee? Should only full-time workers be considered?

b. How would you select the sample of employees?

c. What information should be collected from the workers?

Bus. 2.25 The school of nursing at a university is developing a long-term plan to determine the num-
ber of faculty members that may be needed in future years. Thus, it needs to determine the future
demand for nurses in the areas in which many of the graduates find employment. The school
decides to survey medical facilities and private doctors to assist in determining the future nursing
demand.

a. How would you obtain a list of private doctors and medical facilities so that a
sample of doctors could be selected to fill out a questionnaire?

b. What are some of the questions that should be included on the questionnaire?

c. How would you determine the number of nurses who are licensed but not cur-
rently employed?

d. What are some possible sources for determining the population growth and health
risk factors for the areas in which many of the nurses find employment?

e. How could you sample the population of healthcare facilities and types of private
doctors so as not to exclude any medical specialties from the survey?

2.26 Consider the yields given in Table 2.7. In this situation, there is no interaction. Show that
the one-at-a-time approach would result in the experimenter finding the best combination of
nitrogen and phosphorus—that is, the combination producing maximum yield. Your solution
should include the five combinations you would use in the experiment.

2.27 The population values that would result from running a 2 X 3 factorial treatment structure
are given in the following table. Note that two values are missing. If there is no interaction between
the two factors, determine the missing values.

Factor 2
Factor 1 I I I
A 25 45
B 30 50
Vet. 2.28 An experiment is designed to evaluate the effect of different levels of exercise on the

health of dogs. The two levels are L;—1-mile walk every day and L,—2-mile walk every other
day. At the end of a 3-month study period, each dog will undergo measurements of respiratory
and cardiovascular fitness from which a fitness index will be computed. There are 16 dogs avail-
able for the study. They are all in good health and are of the same general size, which is within
the normal range for their breed. The following table provides information about the sex and age
of the 16 dogs.
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Dog Sex Age Dog Sex Age
1 F 5 9 F 8
2 F 3 10 F 9
3 M 4 11 F 6
4 M 7 12 M 8
5 M 2 13 F 2
6 M 3 14 F 1
7 F 5 15 M 6
8 M 9 16 M 3

a. How would you group the dogs prior to assigning the treatments to obtain a study
having as small an experimental error as possible? List the dogs in each of your
groups.

b. Describe your procedure for assigning the treatments to the individual dogs using
a random number generator.

Bus. 2.29 Four cake recipes are to be compared for moistness. The researcher will conduct the
experiment by preparing and then baking the cake. Each preparation of a recipe makes only one
cake. All recipes require the same cooking temperature and the same length of cooking time. The
oven is large enough that four cakes may be baked during any one baking period, in positions P;
through P4, as shown here.

Py P,

P3 Py

a. Discuss an appropriate experimental design and randomization procedure if there
are to be r cakes for each recipe.

b. Suppose the experimenter is concerned that significant differences could exist due
to the four baking positions in the oven (front vs. back, left side vs. right side). Is
your design still appropriate? If not, describe an appropriate design.

c. For the design or designs described in (b), suggest modifications if there are five
recipes to be tested but only four cakes may be cooked at any one time.

Bio. 2.30 A forester wants to estimate the total number of trees on a tree farm that have a diam-
eter exceeding 12 inches. Because the farm contains too many trees to facilitate measuring all of
them, she uses Google Earth to divide the farm into 250 rectangular plots of approximately the
same area. An examination of the plots reveals that 27 of the plots have a sizable portion of their
land under water. The forester excluded the 27 “watery” plots for the study. She then randomly
selected 42 of the remaining 223 plots and counted all the trees having a diameter exceeding
12 inches on the 42 selected plots.

a. What is the sampling frame for this study?

b. How does the sampling frame differ from the population of interest, if at all?

c. What biases may exist in the estimate of the number of trees having a diameter
greater than 12 inches based on the collected data?

Engin. 2.31 A transportation researcher is funded to estimate the proportion of automobile tires with
an unsafe tread thickness in a small northern state. The researcher randomly selects one month
during each of the four seasons for taking the measurements. During each of the four selected
months, the researcher randomly selects 500 cars from the list of registered cars in the state and
then measures the tread thickness of the four tires on each of the selected cars.

a. What is the population of interest?

b. What is the sampling frame?

c. What biases if any may result from using the data from this study to obtain the
estimated proportion of cars with an unsafe thread thickness?
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Gov. 2.32 The department of agriculture in a midwestern state wants to estimate the amount of
corn produced in the state that is used to make ethanol. There are 50,000 farms in the state that
produce corn. The farms are classified into four groups depending on the total number of acres
planted in corn. A random sample of 500 farms is selected from each of the four groups, and the
amount corn used to generate ethanol is determined for each of the 2,000 selected farms.

. What is the population of interest?

. What is the sampling frame?

. What type of sampling plan is being used in this study?

. What biases if any may result from using the data from this study to obtain an es-

timate of the amount of corn used to produce ethanol?

[o Mo N o gl )]

2.33 Discuss the relative merits of using personal interviews, telephone interviews, and mailed
questionnaires as data collection methods for each of the following situations:
a. A television executive wants to estimate the proportion of viewers in the country
who are watching the network at a certain hour.
b. A newspaper editor wants to survey the attitudes of the public toward the type of
news coverage offered by the paper.
C. A city commissioner is interested in determining how homeowners feel about a
proposed zoning change.
d. A county health department wants to estimate the proportion of dogs that have
had rabies shots within the last year.

Soc. 2.34 A Yankelovich, Skelly, and White poll taken in the fall of 1984 showed that one-fifth of the
2,207 people surveyed admitted to having cheated on their federal income taxes. Do you think
that this fraction is close to the actual proportion who cheated? Why? (Discuss the difficulties of
obtaining accurate information on a question of this type.)
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3.1 Introduction and Abstract of Research Study

In the previous chapter, we discussed how to gather data intelligently for an exper-
iment or survey, Step 2 in Learning from Data. We turn now to Step 3, summariz-
ing the data.

The field of statistics can be divided into two major branches: descriptive
statistics and inferential statistics. In both branches, we work with a set of meas-
urements. For situations in which data description is our major objective, the set
of measurements available to us is frequently the entire population. For exam-
ple, suppose that we wish to describe the distribution of annual incomes for all
families registered in the 2000 census. Because all these data are recorded and
are available on computer tapes, we do not need to obtain a random sample from
the population; the complete set of measurements is at our disposal. Our major
problem is in organizing, summarizing, and describing these data—that is, mak-
ing sense of the data. Similarly, vast amounts of monthly, quarterly, and yearly
data of medical costs are available for the managed healthcare industry, HMOs.

60
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These data are broken down by type of illness, age of patient, inpatient or outpa-
tient care, prescription costs, and out-of-region reimbursements, along with many
other types of expenses. However, in order to present such data in formats useful
to HMO managers, congressional staffs, doctors, and the consuming public, it is
necessary to organize, summarize, and describe the data. Good descriptive statis-
tics enable us to make sense of the data by reducing a large set of measurements
to a few summary measures that provide a good, rough picture of the original
measurements.

In situations in which we are unable to observe all units in the population,
a sample is selected from the population, and the appropriate measurements are
made. We use the information in the sample to draw conclusions about the popu-
lation from which the sample was drawn. However, in order for these inferences
about the population to have a valid interpretation, the sample should be a random
sample of one of the forms discussed in Chapter 2. During the process of making
inferences, we also need to organize, summarize, and describe the data.

Following the tragedies that occurred on September 11, 2001, the Transpor-
tation Security Administration (TSA) was created to strengthen the security of the
nation’s transportation systems. TSA has the responsibility to secure the nation’s
airports and screens all commercial airline passengers and baggage. Approxi-
mately 1.8 million passengers pass through our nation’s airports every day. TSA
attempts to provide the highest level of security and customer service to all who
pass through our screening checkpoints. However, if every passenger was physi-
cally inspected by a TSA officer, the delay in the airports would be unacceptable
to the traveling public. Thus, TSA focuses its resources at security checkpoints by
applying new intelligence-driven, risk-based screening procedures and enhancing
its use of technology. Instead of inspecting every passenger, TSA employs a system
of randomly selecting passengers for screening together with random and unpre-
dictable security measures throughout the airport. No individual will be guaran-
teed expedited screening in order to retain a certain element of randomness to
prevent terrorists from gaming the system.

Similarly, in order to monitor changes in the purchasing power of consumers’
income, the federal government uses the Consumer Price Index (CPI) to measure
the average change in prices over time in a market basket of goods and services
purchased by urban wage earners. The current CPI is based on prices of food, cloth-
ing, shelter, fuels, transportation fares, charges for doctors’ and dentists’ services,
drugs, and so on, purchased for day-to-day living. Each month the Bureau of Labor
Statistics (BLS) scientifically samples approximately 80,000 goods and services pur-
chased by consumers. The CPI is estimated from these samples of consumer pur-
chases; it is not a complete measure of price change. Consequently, the index results
may deviate slightly from those that would be obtained if all consumer transactions
were recorded. This is called sampling error. These estimation or sampling errors
are statistical limitations of the index. A different kind of error in the CPI can occur
when, for example, a respondent provides BLS field representatives with inaccurate
or incomplete information. This is called nonsampling error.

A third situation involves an experiment in which a drug company wants
to study the effects of two factors on the level of blood sugar in diabetic patients.
The factors are the type of drug (a new drug and two drugs currently being used)
and the method of administering the drug to the diabetic patient (two different
delivery modes). The experiment involves randomly selecting a method of admin-
istering the drug and randomly selecting a type of drug and then giving the drug to
the patient. The fasting blood sugar of the patient is then recorded at the time the
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patient receives the drug and at 6-hour intervals over a 2-day period of time. The six
unique combinations of type of drug and method of delivery are given to 10 differ-
ent patients. In this experiment, the drug company wants to make inferences from
the results of the experiment to determine if the new drug is commercially viable.
In many experiments of this type, the use of proper graphical displays provides
valuable insights to the scientists with respect to identifying unusual occurrences
and making comparisons of the responses to the different treatment combinations.

Whether we are describing an observed population or using sampled data to
draw an inference from the sample to the population, an insightful description of
the data is an important step in drawing conclusions from it. No matter what our
objective, statistical inference or population description, we must first adequately
describe the set of measurements at our disposal.

The two major methods for describing a set of measurements are graphical
techniques and numerical descriptive techniques. Section 3.3 deals with graphical
methods for describing data on a single variable. In Sections 3.4, 3.5, and 3.6, we
discuss numerical techniques for describing data. The final topics on data descrip-
tion are presented in Section 3.7, in which we consider a few techniques for describ-
ing (summarizing) data on more than one variable. A research study involving the
evaluation of primary school teachers will be used to illustrate many of the sum-
mary statistics and graphs introduced in this chapter.

Abstract of Research Study: Controlling for Student
Background in the Assessment of Teaching

By way of background, there was a movement to introduce achievement standards
and school/teacher accountability in the public schools of our nation long before
the No Child Left Behind bill was passed by the Congress during the first term
of President George W. Bush. However, even after an important federal study
entitled A Nation at Risk (National Commission on Excellence in Education, 1983)
spelled out the grave trend toward mediocrity in our schools and the risk this poses
for the future, Presidents Ronald Reagan, George H. W. Bush, and Bill Clinton
did not venture into this potentially sensitive area to champion meaningful change.

Many politicians, teachers, and educational organizations have criticized the
No Child Left Behind (NCLB) legislation, which requires rigid testing standards
in exchange for money to support low-income students. A recent survey conducted
by the Educational Testing Service (ETS) with bipartisan sponsorship from the
Congress showed the following:

® Those surveyed identified the value of our education as the most
important source of the United States’ success in the world. (Also
included on the list of alternatives were our military strength, our
geographical and natural resources, our democratic system of govern-
ment, our entrepreneurial spirit, etc.)

® 45% of the parents surveyed viewed the NCLB reforms favorably;
34% viewed them unfavorably.

® Only 19% of the high school teachers surveyed viewed the NCLB
reforms favorably, while 75% viewed them unfavorably.

Given the importance placed on education, the difference or gap between
the responses of parents and those of educators is troubling. The tone of much of
the criticism seems to run against the empirical results seen to date with the NCLB
program. For example, in 2004 the Center on Education Policy, an independent
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research organization, reported that 36 of 49 (73.5%) schools surveyed showed
improvement in student achievement.

One of the possible sources of criticism coming from the educators is that
there is a risk of being placed on a “watch list” if the school does not meet the
performance standards set. This would reflect badly on the teachers, the school,
and the community. But another important source of the criticism voiced by the
teachers and reflected in the gap between what parents and teachers favor relates
to the performance standards themselves. In the previously mentioned ETS sur-
vey, those polled were asked whether the same standard should be used for all stu-
dents of a given grade, regardless of their background, because of the view that it
is wrong to have lower expectations for students from disadvantaged backgrounds.
The opposing view is that it is not reasonable to expect teachers to be able to bring
the achievement for disadvantaged students to the same level as that of students
from more affluent areas. While more than 50% of the parents favored a single
standard, only 25% of the teachers suggested this view.

Next, we will examine some data that may offer a way to improve the NCLB
program while maintaining the important concepts of performance standards and
accountability.

In an article in the Spring 2004 issue of the Journal of Educational and Behavioral
Statistics, “An Empirical Comparison of Statistical Models for Value-Added Assessment
of School Performance,” by Tekwe et al., data were presented from three elementary
school grade cohorts (third—fifth grades) in 1999 in a medium-sized Florida school
district with 22 elementary schools. The data are given in Table 3.1. The minority

TABLE 3.1 .
Assessment of elementary Third Grade

school performance School Math Reading %Minority %Poverty N
1 166.4 165.0 79.2 91.7 48

2 159.6 157.2 73.8 90.2 61

3 159.1 164.4 75.4 86.0 57

4 155.5 162.4 87.4 83.9 87

5 164.3 162.5 37.3 80.4 51

6 169.8 164.9 76.5 76.5 68

7 155.7 162.0 68.0 76.0 75

8 165.2 165.0 53.7 75.8 95

9 1754 173.7 313 75.6 45

10 178.1 171.0 13.9 75.0 36

11 167.1 169.4 36.7 74.7 79

12 1771 172.9 26.5 63.2 68

13 174.2 172.7 28.3 52.9 191

14 175.6 174.9 23.7 48.5 97

15 170.8 174.9 14.5 39.1 110

16 175.1 170.1 25.6 38.4 86

17 182.8 181.4 22.9 34.3 70

18 180.3 180.6 15.8 30.3 165

19 178.8 178.0 14.6 30.3 89

20 181.4 175.9 28.6 29.6 98

21 182.8 181.6 214 26.5 98

22 186.1 183.8 12.3 13.8 130

(continued)
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TABLE 3.1
Assessment of elementary Fourth Grade
school performance School Math Reading %Minority %Poverty N
(continued)
1 181.1 177.0 78.9 89.5 38
2 181.1 173.8 75.9 79.6 54
3 180.9 175.5 64.1 719 64
4 169.9 166.9 94.4 91.7 72
5 183.6 178.7 38.6 61.4 57
6 178.6 170.3 67.9 83.9 56
7 182.7 178.8 65.8 63.3 79
8 186.1 180.9 48.0 64.7 102
9 187.2 187.3 333 62.7 51
10 194.5 188.9 111 77.8 36
11 180.3 181.7 474 70.5 78
12 187.6 186.3 19.4 59.7 72
13 194.0 189.8 21.6 46.2 171
14 193.1 189.4 28.8 36.9 111
15 195.5 188.0 20.2 38.3 94
16 191.3 186.6 39.7 47.4 78
17 200.1 199.7 239 239 67
18 196.5 193.5 22.4 32.8 116
19 203.5 204.7 16.0 11.7 94
20 199.6 195.9 311 333 90
21 203.3 194.9 233 259 116
22 206.9 202.5 13.1 14.8 122
Fifth Grade
School Math Reading % Minority % Poverty N
1 197.1 186.6 81.0 92.9 42
2 194.9 200.1 833 88.1 42
3 192.9 194.5 56.0 80.0 50
4 193.3 189.9 92.6 75.9 54
5 197.7 199.6 21.7 67.4 46
6 193.2 193.6 70.4 76.1 71
7 198.0 200.9 64.1 67.9 78
8 205.2 203.5 45.5 61.0 77
9 210.2 2233 34.7 73.5 49
10 204.8 199.0 29.4 55.9 34
11 205.7 202.8 423 712 52
12 201.2 207.8 15.8 513 76
13 205.2 203.3 19.8 412 131
14 212.7 2114 26.7 41.6 101
15 — — — — —
16 209.6 206.5 224 373 67
17 2235 217.7 14.3 30.2 63
18 222.8 218.0 16.8 24.8 137
19 — — — — —
20 228.1 222.4 20.6 235 102
21 221.0 221.0 10.5 132 114
22 — — — — —

Source: Tekwe, C., R. Carter, C. Ma, J. Algina, M. Lucas, J. Roth, M. Ariet, T. Fisher, and M. Resnick. (2004),
“An empirical comparison of statistical models for value-added assessment of school performance.” Journal of
Educational and Behavioral Statistics 29, 11-36.
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status of a student was defined as black or non-black race. In this school district,
almost all students are non-Hispanic blacks or whites. Most of the relatively small
numbers of Hispanic students are white. Most students of other races are Asian but
are relatively few in number. They were grouped in the minority category because
of the similarity of their test score profiles. Poverty status was based on whether
or not the student received a free or reduced lunch subsidy. The math and reading
scores are from the Iowa Test of Basic Skills. The number of students by class in each
school is given by N in the table.

The superintendent of the schools presented the school board members with
the data, and they wanted an assessment of whether poverty and minority status
had any effect on the math and reading scores. Just looking at the data in the table
presented very little insight to answering this question. At the end of this chapter,
we will present a discussion of what types of graphs and summary statistics would
be beneficial to the school board in reaching a conclusion about the impact of these
two variables on student performance.

3.2 Calculators, Computers, and Software Systems

Electronic calculators can be great aids in performing some of the calculations
mentioned later in this chapter, especially for small data sets. For larger data sets,
even hand-held calculators are of little use because of the time required to enter
data. A computer can help in these situations. Specific programs or more general
software systems can be used to perform statistical analyses almost instantaneously
even for very large data sets after the data are entered into the computer. It is not
necessary to know computer programming to make use of specific programs or
software systems for planned analyses—most provide pull-down menus that lead
the user through the analysis of choice.

Many statistical software packages are available. A few of the more com-
monly used are SAS, SPSS, Minitab, R, JMP, and STATA. Because a software
system is a group of programs that work together, it is possible to obtain plots,
data descriptions, and complex statistical analyses in a single job. Most people find
that they can use any particular system easily, although they may be frustrated by
minor errors committed on the first few tries. The ability of such packages to per-
form complicated analyses on large amounts of data more than repays the initial
investment of time and irritation.

In general, to use a system you need to learn about only the programs in
which you are interested. Typical steps in a job involve describing your data to the
software system, manipulating your data if they are not in the proper format or if
you want a subset of your original data set, and then invoking the appropriate set
of programs or commands particular to the software system you are using.

Because this isn’t a text on computer use, we won’t spend additional time
and space on the mechanics, which are best learned by doing. Our main interest is
in interpreting the output from these programs. The designers of these programs
tend to include in the output everything that a user could conceivably want to
know; as a result, in any particular situation, some of the output is irrelevant. When
reading computer output, look for the values you want; if you don’t need or don’t
understand an output statistic, don’t worry. Of course, as you learn more about
statistics, more of the output will be meaningful. In the meantime, look for what
you need and disregard the rest.
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There are dangers in using such packages carelessly. A computer is a mind-
less beast and will do anything asked of it, no matter how absurd the result might
be. For instance, suppose that the data include age, gender (1 = female, 2 = male),
political party (1 = Democrat, 2 = Republican, 3 = Green, 4 = Libertarian, 5 =
Other, 6 = None), and monthly income of a group of people. If we asked the com-
puter to calculate averages, we would get averages for the variables gender and
political party, as well as for age and monthly income, even though these averages
are meaningless. For example, suppose a random sample of 100 people identifies
their political party as follows: 30 respond Democrat = 1, 30 respond Republican
= 2,10 respond Green = 3, 10 respond Libertarian = 4, 10 respond Other = 5, and
10 respond None = 6. The average of the 100 numbers would be 2.7, which would
be a green republican, that is, it would have absolutely no meaning with respect
to the “average” political affiliation of the group of 100 people. Used intelligently,
these packages are convenient, powerful, and useful —but be sure to examine the
output from any computer run to make certain the results make sense. Did any-
thing go wrong? Was something overlooked? In other words, be skeptical. One
of the important acronyms of computer technology still holds—namely, GIGO:
garbage in, garbage out.

Throughout the textbook, we will use computer software systems to do most
of the more tedious calculations of statistics after we have explained how the cal-
culations can be done. Used in this way, computers (and associated graphical and
statistical analysis packages) will enable us to spend additional time on interpret-
ing the results of the analyses rather than on doing the analyses.

3.3 Describing Data on a Single Variable:
Graphical Methods

After the measurements of interest have been collected, ideally the data are organ-
ized, displayed, and examined by using various graphical techniques. As a gen-
eral rule, the data should be arranged into categories so that each measurement is
classified into one, and only one, of the categories. This procedure eliminates any
ambiguity that might otherwise arise when categorizing measurements. For exam-
ple, suppose a sex discrimination lawsuit is filed. The law firm representing the
plaintiffs needs to summarize the salaries of all employees in a large corporation.
To examine possible inequities in salaries, the law firm decides to summarize the
2005 yearly income rounded to the nearest dollar for all female employees into the
categories listed in Table 3.2.

The yearly salary of each female employee falls into one, and only one,
income category. However, if the income categories had been defined as shown in

TABLE 3.2
Format for summarizing
salary data

Income Level Salary

less than $20,000
$20,000 to $39,999
$40,000 to $59,999
$60,000 to $79,999
$80,000 to $99,999
$100,000 or more

AN N B W N
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TABLE 3.3
Format for summarizing
salary data

Income Level Salary

less than $20,000
$20,000 to $40,000
$40,000 to $60,000
$60,000 to $80,000
$80,000 to $100,000
$100,000 or more

AN BN

Table 3.3, then there would be confusion as to which category should be checked.
For example, an employee earning $40,000 could be placed in either category 2 or
category 3. To reiterate: If the data are organized into categories, it is important to
define the categories so that a measurement can be placed into only one category.

When data are organized according to this general rule, there are several

ways to display the data graphically. The first and simplest graphical procedure for
pie chart  data organized in this manner is the pie chart. It is used to display the percentage
of the total number of measurements falling into each of the categories of the vari-
able by partitioning a circle (similar to slicing a pie).

The data of Table 3.4 represent a summary of a study to determine which
types of employment may be the most dangerous to their employees. Using data
from the National Safety Council, it was reported that in 1999, approximately
3,240,000 workers suffered disabling injuries (an injury that results in death
or some degree of physical impairment or that renders the employee unable to
perform regular activities for a full day beyond the day of the injury). Each of the
3,240,000 disabled workers was classified according to the industry group in which
he or she was employed.

Although you can scan the data in Table 3.4, the results are more easily inter-
preted by using a pie chart. From Figure 3.1, we can make certain inferences about
which industries have the highest number of injured employees and thus may
require a closer scrutiny of their practices. For example, the services industry had
nearly one-quarter, 24.3%, of all disabling injuries during 1999, whereas govern-
ment employees constituted only 14.9%. At this point, we must carefully consider
what is being displayed in both Table 3.4 and Figure 3.1. They show the numbers
of disabling injuries, but these figures do not take into account the numbers of
workers employed in the various industry groups. To realistically reflect the risk
of a disabling injury to the employees in each of the industry groups, we need to

TABLE 3.4 -

Disabling injuries Nm.nb.er of Disabling Percent

by industry group Industry Group Injuries (in 1,000s) of Total
Agriculture 130 34
Construction 470 12.1
Manufacturing 630 16.2
Transportation & utilities 300 9.8
Trade 380 19.3
Services 750 243
Government 580 14.9

Source: U.S. Census Bureau. (2002), Statistical Abstract of the United States,
122nd ed. Washington, D.C.: U.S. Government Printing Office 2001.
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FIGURE 3.1
Pie chart for the data
of Table 3.4

Category

W Services

W Trade

@ Manufacturing

@ Government

O Construction

[0 Transportation and utilities
[0 Agriculture

take into account the total number of employees in each of the industries. A rate
of disabling injury could then be computed that would be a more informative index
of the risk to a worker employed in each of the groups. For example, although the
services group had the highest percentage of workers with a disabling injury, it also
had the largest number of workers. Taking into account the number of workers
employed in each of the industry groups, the services group had the lowest rate
of disabling injuries in the seven groups. This illustrates the necessity of carefully
examining tables of numbers and graphs prior to drawing conclusions.

Another variation of the pie chart is shown in Figure 3.2. It shows the loss of
market share by PepsiCo as a result of the switch by a major fast-food chain from
Pepsi to Coca-Cola for its fountain drink sales. In summary, the pie chart can be
used to display percentages associated with each category of the variable. The fol-
lowing guidelines should help you to obtain clarity of presentation in pie charts.

Guidelines for 1. Choose a small number (five or six) of categories for the variable because
Constructing Pie too many make the pie chart difficult to interpret.
Charts 2. Whenever possible, construct the pie chart so that percentages are in
either ascending or descending order.

FIGURE 3.2 Before switch After switch
Estimated U.S. market
share before and after
switch in soft drink
accounts 38% Coke 42%
L 29% Others 29%
33% Pepsi 29%
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foreign investors
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FIGURE 3.4
Greatest per capita
consumption by country

bar chart

Guidelines for
Constructing
Bar Charts

frequency histogram,
relative frequency
histogram
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A second graphical technique is the bar chart, or bar graph. Figure 3.3
displays the number of workers employed in the Cincinnati, Ohio, area by major
foreign investors by country. There are many variations of the bar chart. Some-
times the bars are displayed horizontally, as in Figures 3.4(a) and (b). They can
also be used to display data across time, as in Figure 3.5. Bar charts are relatively
easy to construct if you use the following guidelines.

1. Label frequencies on one axis and categories of the variable on the
other axis.

2. Construct a rectangle at each category of the variable with a height
equal to the frequency (number of observations) in the category.

3. Leave a space between each category to connote distinct, separate
categories and to clarify the presentation.

The next two graphical techniques that we will discuss are the frequency
histogram and the relative frequency histogram. Both of these graphical tech-
niques are applicable only to quantitative (measured) data. As with the pie chart,
we must organize the data before constructing a graph.

Gulf Coast ticks are significant pests of grazing cattle that require new strate-
gies of population control. Some particular species of ticks not only are the source
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FIGURE 3.5 250— [] Direct cost $231 million
Estimated direct and I:l Indirect cost
indirect costs for 200
developing a new drug by
selected years >
g 150 $125 million
S 100 $87 million
$54 million
50
0
1976 1982 1987 1990

Year of estimate

of considerable economic losses to the cattle industry due to weight loss in the cattle
but also are recognized vectors for a number of diseases in cattle. An entomologist
carries out an experiment to investigate whether a new repellant for ticks is effective
in preventing ticks from attaching to grazing cattle. The researcher determines that
100 cows will provide sufficient information to validate the results of the experiment
and convince a commercial enterprise to manufacture and market the repellant. (In
Chapter 5, we will present techniques for determining the appropriate sample size
for a study to achieve specified goals.) The scientist then exposes the cows to a speci-
fied number of ticks in a laboratory setting and records the number of attached ticks
after 1 hour of exposure. The average number of attached ticks on cows using a cur-
rently marketed repellant is 34 ticks. The scientist wants to demonstrate that using
the new repellant will result in a reduction of the average number of attached ticks.
The numbers of attached ticks for the 100 cows are presented in Table 3.5.

An initial examination of the tick data reveals that the largest number of
ticks is 42 and the smallest is 17. Although we might examine the table very
closely to determine whether the number of ticks per cow is substantially less
than 34, it is difficult to describe how the measurements are distributed along the
interval 17 to 42. One way to facilitate the description is to organize the data in a

frequency table  frequency table.

To construct a frequency table, we begin by dividing the range from 17 to

class intervals 42 into an arbitrary number of subintervals called class intervals. The number of
subintervals chosen depends on the number of measurements in the set, but we
generally recommend using from 5 to 20 class intervals. The more data we have,
the larger the number of classes we tend to use. The guidelines given here can be
used for constructing the appropriate class intervals.

TABLE 3.5

Number of attached ticks 17 18 19 20 20 20 21 21 21 22 22 22 22 23 23

23 24 24 24 24 24 25 25 25 25 25 25 25 26 26
27 27 27 27 27 27 28 28 28 28 28 28 28 28 28
28 28 29 29 29 29 29 29 29 29 29 29 30 30 30
30 30 30 30 30 31 31 31 31 31 31 32 32 32 32
32 32 32 32 33 33 33 34 34 34 34 35 35 35 36
36 36 36 37 37 38 39 40 41 42

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.3 Describing Data on a Single Variable: Graphical Methods 71

Guidelines for 1. Divide the range of the measurements (the difference between the larg-
Constructing Class est and the smallest measurements) by the approximate number of class
Intervals intervals desired. Generally, we want to have from 5 to 20 class intervals.

2. After dividing the range by the desired number of class intervals, round
the resulting number to a convenient (easy to work with) unit. This unit
represents a common width for the class intervals.

3. Choose the first class interval so that it contains the smallest measure-
ment. It is also advisable to choose a starting point for the first interval
so that no measurement falls on a point of division between two class
intervals, which eliminates any ambiguity in placing measurements into
the class intervals. (One way to do this is to choose boundaries to one
more decimal place than the data.)

For the data in Table 3.5,
range =42 — 17 =25

Assume that we want to have approximately 10 subintervals. Dividing the range by
10 and rounding to a convenient unit, we have 25/10 = 2.5. Thus, the class interval
width is 2.5.

It is convenient to choose the first interval to be 16.25-18.75, the second to
be 18.75-21.25, and so on. Note that the smallest measurement, 17, falls in the first
interval and that no measurement falls on the endpoint of a class interval. (See
Tables 3.5 and 3.6.)

Having determined the class interval, we construct a frequency table for the
data. The first column labels the classes by number and the second column indi-
cates the class intervals. We then examine the 100 measurements of Table 3.5,
keeping a tally of the number of measurements falling in each interval. The num-

class frequency  ber of measurements falling in a given class interval is called the class frequency.
These data are recorded in the third column of the frequency table. (See Table 3.6.)

relative frequency The relative frequency of a class is defined as the frequency of the class
divided by the total number of measurements in the set (total frequency). Thus,

if we let f; denote the frequency for class i and let n denote the total number of

TABLE 3.6 .
Frequency table for Class Class Interval Frequency f; Relative Frequency fi/n

number of attached ticks 1 16.25-18.75 2 02
2 18.75-21.25 7 .07

3 21.25-23.75 7 .07

4 23.75-26.25 14 14

5 26.25-28.75 17 17

6 28.75-31.25 24 24

7 31.25-33.75 11 A1

8 33.75-36.25 11 A1

9 36.25-38.75 3 .03

10 38.75-41.25 3 .03

11 41.25-43.75 1 .01

Totals n =100 1.00
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FIGURE 3.6(a) 25 —
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measurements, the relative frequency for class i is f;/n. The relative frequencies for
all the classes are listed in the fourth column of Table 3.6.

The data of Table 3.5 have been organized into a frequency table, which can
now be used to construct a frequency histogram or a relative frequency histogram.
To construct a frequency histogram, draw two axes: a horizontal axis labeled with
the class intervals and a vertical axis labeled with the frequencies. Then construct
a rectangle over each class interval with a height equal to the number of measure-
ments falling in a given subinterval. The frequency histogram for the data of Table
3.6 is shown in Figure 3.6(a).

The relative frequency histogram is constructed in much the same way as a
frequency histogram. In the relative frequency histogram, however, the vertical
axis is labeled as relative frequency, and a rectangle is constructed over each class
interval with a height equal to the class relative frequency (the fourth column of
Table 3.6). The relative frequency histogram for the data of Table 3.6 is shown
in Figure 3.6(b). Clearly, the two histograms of Figures 3.6(a) and (b) are of the
same shape and would be identical if the vertical axes were equivalent. We will

histogram  frequently refer to either one as simply a histogram.

There are several comments that should be made concerning histograms.
First, the distinction between bar charts and histograms is based on the distinction
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between qualitative and quantitative variables. Values of qualitative variables vary
in kind but not degree and hence are not measurements. For example, the variable
political party affiliation can be categorized as Republican, Democrat, or other,
and although we could label the categories as one, two, and three, these values are
only codes and have no quantitative interpretation. In contrast, quantitative vari-
ables have actual units of measure. For example, the variable yield (in bushels) per
acre of corn can assume specific values. Pie charts and bar charts are used to display
frequency data from qualitative variables; histograms are appropriate for displaying
frequency data for quantitative variables.

Second, the histogram is the most important graphical technique we will pre-
sent because of the role it plays in statistical inference, a subject we will discuss in
later chapters. Third, if we had an extremely large set of measurements, and if we
constructed a histogram using many class intervals, each with a very narrow width,
the histogram for the set of measurements would be, for all practical purposes, a
smooth curve. Fourth, the fraction of the total number of measurements in an inter-
val is equal to the fraction of the total area under the histogram over the interval.

For example, suppose we consider those intervals having cows with fewer
numbers of ticks than the average under the previously used repellent—that
is, the intervals containing cows having a number of attached ticks less than 34.
From Table 3.6, we observe that exactly 82 of the 100 cows had fewer than 34
attached ticks. Thus, the proportion of the total measurements falling in those
intervals —82/100 = .82 —is equal to the proportion of the total area under the his-
togram over those intervals.

Fifth, if a single measurement is selected at random from the set of sample

probability =~ measurements, the chance, or probability, that the selected measurement lies in a
particular interval is equal to the fraction of the total number of sample measure-
ments falling in that interval. This same fraction is used to estimate the probability
that a measurement selected from the population lies in the interval of interest.
For example, from the sample data of Table 3.5, the chance or probability of select-
ing a cow with less than 34 attached ticks is .82. The value .82 is an approximation
of the proportion of all cows treated with the new repellant that would have fewer
than 34 attached ticks after exposure to a population similar to that used in the
study. In Chapters 5 and 6, we will introduce the process by which we can make a
statement of our certainty that the new repellant is a significant improvement over
the old repellant.

Because of the arbitrariness in the choice of number of intervals, starting
value, and length of intervals, histograms can be made to take on different shapes
for the same set of data, especially for small data sets. Histograms are most useful
for describing data sets when the number of data points is fairly large—say, 50
or more. In Figures 3.7(a)—(d), a set of histograms for the tick data constructed
using 5, 9, 13, and 18 class intervals illustrates the problems that can be encoun-
tered in attempting to construct a histogram. These graphs were obtained using the
Minitab software program.

When the number of data points is relatively small and the number of inter-
vals is large, the histogram fluctuates too much—that is, responds to a very few
data values; see Figure 3.7(d). This results in a graph that is not a realistic depic-
tion of the histogram for the whole population. When the number of class inter-
vals is too small, most of the patterns or trends in the data are not displayed; see
Figure 3.7(a). In the set of graphs in Figure 3.7, the histogram with 13 class inter-
vals appears to be the most appropriate graph.

Finally, because we use proportions rather than frequencies in a relative
frequency histogram, we can compare two different samples (or populations) by
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examining their relative frequency histograms even if the samples (populations) are
of different sizes. When describing relative frequency histograms and comparing the
plots from a number of samples, we examine the overall shape in the histogram.
Figure 3.8 depicts many of the common shapes for relative frequency histograms.
unimodal A histogram with one major peak is called unimodal; see Figures 3.8(b), (c),
and (d). When the histogram has two major peaks, such as in Figures 3.8(e) and
bimodal  (f), we state that the histogram is bimodal. In many instances, bimodal histograms
are an indication that the sampled data are in fact from two distinct populations.
Finally, when every interval has essentially the same number of observations, the
uniform  histogram is called a uniform histogram; see Figure 3.8(a).
symmetric A histogram is symmetric in shape if the right and left sides have essentially
the same shape. Thus, Figures 3.8(a), (b), and (e) have symmetric shapes. When
the right side of the histogram, containing the larger half of the observations in the
data, extends a greater distance than the left side, the histogram is referred to as
skewed to the right  skewed to the right; see Figure 3.8(c). The histogram is skewed to the left when
skewed to the left  its left side extends a much larger distance than the right side; see Figure 3.8(d).
We will see later in the text that knowing the shape of the distribution will help us
choose the appropriate measures to summarize the data (Sections 3.4-3.7) and the
methods for analyzing the data (Chapter 5 and beyond).
The next graphical technique presented in this section is a display technique
exploratory data  taken from an area of statistics called exploratory data analysis (EDA). Professor
analysis ~ John Tukey (1977) has been the leading proponent of this practical philosophy of
data analysis aimed at exploring and understanding data.
stem-and-leaf plot The stem-and-leaf plot is a clever, simple device for constructing a histo-
gramlike picture of a frequency distribution. It allows us to use the information
contained in a frequency distribution to show the range of scores, where the scores
are concentrated, the shape of the distribution, whether there are any specific val-
ues or scores not represented, and whether there are any stray or extreme scores.
The stem-and-leaf plot does not follow the organization principles stated previ-
ously for histograms. We will use the data shown in Table 3.7 to illustrate how to
construct a stem-and-leaf plot.
The data in Table 3.7 are the maximum ozone readings (in parts per billion
(ppb)) taken on 80 summer days in a large city. The readings are either two- or
three-digit numbers. We will use the first digit of the two-digit numbers and the first
two digits of the three-digit numbers as the stem number (see Figure 3.9) and the
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FIGURE 3.8 Some common shapes of distributions
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TABLE 3.7
Maximum ozone
readings (ppb)

FIGURE 3.9
Stem-and-leaf plot for

maximum ozone readings
(ppb) of Table 3.7
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remaining digits as the leaf number. For example, one of the readings was 85. Thus,
8 will be recorded as the stem number and 5 as the leaf number. A second maximum
ozone reading was 111. Thus, 11 will be recorded as the stem number and 1 as the
leaf number. If our data had been recorded in different units and resulted in, say,
six-digit numbers such as 104,328, we might use the first two digits as stem numbers,
use the second two digits as leaf numbers, and ignore the last two digits. This would
result in some loss of information but would produce a much more useful graph.

For the data on maximum ozone readings, the smallest reading was 60 and
the largest was 169. Thus, the stem numbers will be 6,7, 8, . . ., 15, 16. In the same
way that a class interval determines where a measurement is placed in a frequency
table, the leading digits (stem of a measurement) determine the row in which a
measurement is placed in a stem-and-leaf graph. The trailing digits for a measure-
ment are then written in the appropriate row. In this way, each measurement is
recorded in the stem-and-leaf plot, as in Figure 3.9 for the ozone data. The stem-
and-leaf plot in Figure 3.9 was obtained using Minitab. Note that each of the stems
is repeated twice, with leaf digits split into two groups: 0 to 4 and 5 to 9.

We can see that each stem defines a class interval and that the limits of each
interval are the largest and smallest possible scores for the class. The values rep-
resented by each leaf must be between the lower and upper limits of the interval.

Note that a stem-and-leaf plot is a graph that looks much like a histogram
turned sideways, as in Figure 3.9. The plot can be made a bit more useful by
ordering the data (leaves) within a row (stem) from lowest to highest as we did in
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Figure 3.9. The advantage of such a graph over the histogram is that it reflects not
only the frequencies, concentration(s) of scores, and shapes of the distribution but
also the actual scores. The disadvantage is that for large data sets, the stem-and-
leaf plot can be more unwieldy than the histogram.

Guidelines for 1. Split each score or value into two sets of digits. The first or leading set of
Constructing Stem- digits is the stem and the second or trailing set of digits is the leaf.
and-Leaf Plots 2. List all possible stem digits from lowest to highest.

3. For each score in the mass of data, write the leaf values on the line
labeled by the appropriate stem number.

4. If the display looks too cramped and narrow, stretch the display by
using two lines per stem so that, for example, leaf digits 0, 1, 2, 3, and 4
are placed on the first line of the stem and leaf digits 5, 6, 7, 8, and 9 are
placed on the second line.

5. If too many digits are present, such as in a six- or seven-digit score, drop
the right-most trailing digit(s) to maximize the clarity of the display.

6. The rules for developing a stem-and-leaf plot are somewhat different
from the rules governing the establishment of class intervals for the
traditional frequency distribution and for a variety of other procedures
that we will consider in later sections of the text. Class intervals for
stem-and-leaf plots are, then, in a sense slightly atypical.

The following data display and stem-and-leaf plot (Figure 3.10) are obtained
from Minitab. The data consist of the number of employees in the wholesale and
retail trade industries in Wisconsin measured each month for a 5-year period.

Data Display

Trade
322 317 319 323 327 328 325 326 330 334
337 341 322 318 320 326 332 334 335 336
335 338 342 348 330 325 329 337 345 350
351 354 355 357 362 368 348 345 349 355
362 367 366 370 371 375 380 385 361 354
357 367 376 381 381 383 384 387 392 396

Note that most of the stems are repeated twice, with the leaf digits split into two
groups: 0 to4 and 5to 9.

The last graphical technique to be presented in this section deals with how
certain variables change over time. For macroeconomic data such as disposable
income and microeconomic data such as weekly sales data of one particular prod-
uct at one particular store, plots of data over time are fundamental to business
management. Similarly, social researchers are often interested in showing how
variables change over time. They might be interested in changes with time in atti-
tudes toward various racial and ethnic groups, changes in the rate of savings in the
United States, or changes in crime rates for various cities. A pictorial method of
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FIGURE 3.10
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FIGURE 3.11
Total violent crimes in the
United States, 1983-2012

Source: Uniform Crime
Reports.
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presenting changes in a variable over time is called a time series. Figure 3.11 is a
time series showing the number of homicides, forcible rapes, robberies, and aggra-
vated assaults included in the Uniform Crime Reports of the FBI.

Usually, the time points are labeled chronologically across the horizontal
axis (abscissa), and the numerical values (frequencies, percentages, rates, etc.) of
the variable of interest are labeled along the vertical axis (ordinate). Time can be
measured in days, months, years, or whichever unit is most appropriate. As a rule
of thumb, a time series should consist of no fewer than four or five time points;
typically, these time points are equally spaced. Many more time points than this
are desirable, though, in order to show a more complete picture of changes in a
variable over time.

How we display the time axis in a time series frequently depends on the time
intervals at which data are available. For example, the U.S. Census Bureau reports
average family income in the United States only on a yearly basis. When informa-
tion about a variable of interest is available in different units of time, we must
decide which unit or units are most appropriate for the research. In an election
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year, a political scientist would most likely examine weekly or monthly changes in
candidate preferences among registered voters. On the other hand, a manufacturer
of machine-tool equipment might keep track of sales (in dollars and number of
units) on a monthly, quarterly, and yearly basis. Figure 3.12 shows the quarterly
sales (in thousands of units) of a machine-tool product over 3 years. Note that from
this time series it is clear that the company has experienced a gradual but steady
growth in the number of units over the 3 years.

Time-series plots are useful for examining general trends and seasonal
or cyclic patterns. For example, the “Money and Investing” section of the Wall
Street Journal gives the daily workday values for the Dow Jones Industrials Aver-
ages. Figure 3.13 displays the daily Dow Jones Industrial Average for the period
from mid-December 2013 through mid-June 2014. Exercise 3.58 provides the
details on how the Dow Jones Industrial Average is computed. The plot reveals
a sharp decline in values from mid-January to the beginning of February. This
decline is followed by a steady increase through mid-June 2014. However, there are
just enough daily decreases in the Dow values to keep investors nervous. In order
to detect seasonal or cyclical patterns in a time series, there must be daily values
recorded over a large number of years.

FIGURE 3.13
Time-series plot of the
Dow Jones Average,
mid-December 2013
to Mid-June 2014 16,500

Source: Wall Street Journal.
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Sometimes it is important to compare trends over time in a variable for
two or more groups. Figure 3.14 reports the values of two ratios from 1985 to
2000: the ratio of the median family income of African Americans to the median
family income of Anglo-Americans and the ratio of the median family income of
Hispanics to the median family income of Anglo-Americans.

Median family income represents the income amount that divides family
incomes into two groups —the top half and the bottom half. For example, in 1987,
the median family income for African Americans was $18,098, meaning that 50%
of all African American families had incomes above $18,098 and 50% had incomes
below $18,098. The median, one of several measures of central tendency, is dis-
cussed more fully later in this chapter.

Figure 3.14 shows that the ratio of African American to Anglo-American fam-
ily income and the ratio of Hispanic to Anglo-American family income remained
fairly constant from 1985 to 1991. From 1995 to 2000, there was an increase in both
ratios and a narrowing of the difference between the ratio of African American
family income and the ratio of Hispanic family income. We can interpret this trend
to mean that the income of African American and Hispanic families has generally
increased relative to the income of Anglo-American families.

Sometimes information is not available in equal time intervals. For example,
polling organizations such as Gallup or the National Opinion Research Center do
not necessarily ask the American public the same questions about their attitudes
or behavior on a yearly basis. Sometimes there is a time gap of more than 2 years
before a question is asked again.

When information is not available in equal time intervals, it is important for
the interval width between time points (the horizontal axis) to reflect this fact. If,
for example, a social researcher is plotting values of a variable for 1995, 1996, 1997,
and 2000, the interval width between 1997 and 2000 on the horizontal axis should
be three times the width of that between the other years. If these interval widths
were spaced evenly, the resulting trend line could be seriously misleading.

Before leaving graphical methods for describing data, there are several gen-
eral guidelines that can be helpful in developing graphs with an impact. These
guidelines pay attention to the design and presentation techniques and should help
you make better, more informative graphs.
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General Guidelines 1. Before constructing a graph, set your priorities. What messages should
for Developing the viewer get?

Successful Graphics Choose the type of graph (pie chart, bar graph, histogram, and so on).

Pay attention to the title. One of the most important aspects of a graph is

its title. The title should immediately inform the viewer of the point of the

graph and draw the eye toward the most important elements of the graph.

4. Fight the urge to use many type sizes, styles, and colors. The indiscrimi-
nate and excessive use of different type sizes, styles, and colors will
confuse the viewer. Generally, we recommend using only two typefaces;
color changes and italics should be used in only one or two places.

5. Convey the tone of your graph by using colors and patterns. Intense,
warm colors (yellows, oranges, reds) are more dramatic than the
blues and purples and help to stimulate enthusiasm by the viewer.
On the other hand, pastels (particularly grays) convey a conservative,
businesslike tone. Similarly, simple patterns convey a conservative tone,
whereas busier patterns stimulate more excitement.

6. Don’t underestimate the effectiveness of a simple, straightforward graph.

W

3.4 Describing Data on a Single Variable:
Measures of Central Tendency

Numerical descriptive measures are commonly used to convey a mental image of
pictures, objects, and other phenomena. There are two main reasons for this. First,
graphical descriptive measures are inappropriate for statistical inference because
it is difficult to describe the similarity of a sample frequency histogram and the
corresponding population frequency histogram. The second reason for using
numerical descriptive measures is one of expediency—we never seem to carry
the appropriate graphs or histograms with us and so must resort to our powers of
verbal communication to convey the appropriate picture. We seek several num-
bers, called numerical descriptive measures, that will create a mental picture of the
frequency distribution for a set of measurements.
The two most common numerical descriptive measures are measures of
central tendency  central tendency and measures of variability; that is, we seek to describe the
variability ~ center of the distribution of measurements and also how the measurements vary
about the center of the distribution. We will draw a distinction between numerical
parameters  descriptive measures for a population, called parameters, and numerical descrip-
statistics  tive measures for a sample, called statistics. In problems requiring statistical infer-
ence, we will not be able to calculate values for various parameters, but we will be
able to compute corresponding statistics from the sample and use these quantities
to estimate the corresponding population parameters.
In this section, we will consider various measures of central tendency, fol-
lowed in Section 3.5 by a discussion of measures of variability.
mode The first measure of central tendency we consider is the mode.

DEFINITION 3.1 The mode of a set of measurements is defined to be the measurement that

occurs most often (with the highest frequency).
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We illustrate the use and determination of the mode in an example.

EXAMPLE 3.1

A consumer investigator is interested in the differences in the selling prices of a
new popular compact automobile at various dealers in a 100-mile radius of Hou-
ston, Texas. She asks for a quote from 25 dealers for this car with exactly the same
options. The selling prices (in 1,000s) are given here.

26.6 253 23.8 24.0 27.5
21.1 259 22.6 23.8 25.1
22.6 27.5 26.8 23.4 27.5
20.8 20.4 22.4 27.5 23.7
222 23.8 232 28.7 27.5

Determine the modal selling price.

Solution For these data, the price 23.8 occurred three times in the sample, but the
price 27.5 occurred five times. Because no other value occurred more than once,
we would state the data had a modal selling price of $27,500. B

Identification of the mode for Example 3.1 was quite easy because we were
able to count the number of times each measurement occurred. When dealing with
grouped data—data presented in the form of a frequency table —we can define the
modal interval to be the class interval with the highest frequency. However, because
we would not know the actual measurements but only how many measurements
fall into each interval, the mode is taken as the midpoint of the modal interval; it is
an approximation to the mode of the actual sample measurements.

The mode is also commonly used as a measure of popularity that reflects
central tendency or opinion. For example, we might talk about the most preferred
stock, the most preferred model of washing machine, or the most popular candi-
date. In each case, we would be referring to the mode of the distribution. In Figure
3.8 of the previous section, frequency histograms (b), (c), and (d) had a single
mode, with that mode located at the center of the class having the highest fre-
quency. Thus, the modes would be —.25 for histogram (b), 3 for histogram (c), and
17 for histogram (d). It should be noted that some distributions have more than
one measurement that occurs with the highest frequency. Thus, we might encoun-
ter distributions that are bimodal, trimodal, and so on. In Figure 3.8, histogram (e)
is essentially bimodal, with nearly equal peaks at y = 0.5and y = 5.5.

median The second measure of central tendency we consider is the median.

DEFINITION 3.2 The median of a set of measurements is defined to be the middle value when
the measurements are arranged from lowest to highest.

The median is most often used to measure the midpoint of a large set of
measurements. For example, we may read about the median wage increase won by
union members, the median age of persons receiving Social Security benefits, and
the median weight of cattle prior to slaughter during a given month. Each of these
situations involves a large set of measurements, and the median would reflect the
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central value of the data—that is, the value that divides the set of measurements
into two groups, with an equal number of measurements in each group.

However, we may use the definition of median for small sets of measure-
ments by using the following convention: The median for an even number of
measurements is the average of the two middle values when the measurements
are arranged from lowest to highest. When there are an odd number of measure-
ments, the median is still the middle value. Thus, whether there are an even or odd
number of measurements, there are an equal number of measurements above and
below the median.

EXAMPLE 3.2

After the third-grade classes in a school district received low overall scores on a
statewide reading test, a supplemental reading program was implemented in order
to provide extra help to those students who were below expectations with respect
to their reading proficiency. Six months after implementing the program, the 10
third-grade classes in the district were reexamined. For each of the 10 schools,
the percentage of students reading above the statewide standard was determined.
These data are shown here.

95 8 78 90 62 73 89 92 84 76

Determine the median percentage of the 10 schools.

Solution First, we must arrange the percentages in order of magnitude.
62 73 76 78 84 86 89 90 92 95

Because there are an even number of measurements, the median is the average of
the two midpoint scores.

4 +
median = % =85m

EXAMPLE 3.3

An experiment was conducted to measure the effectiveness of a new procedure
for pruning grapes. Each of 13 workers was assigned the task of pruning an acre
of grapes. The productivity, measured in worker-hours/acre, was recorded for
each person.

44 49 42 44 48 49 48 45 43 48 47 44 42

Determine the mode and median productivity for the group.

Solution First, arrange the measurements in order of magnitude:
42 42 43 44 44 44 45 47 48 48 48 49 49

For these data, we have two measurements appearing three times each. Hence, the
data are bimodal, with modes of 4.4 and 4.8. The median for the odd number of
measurements is the middle score, 4.5. &

grouped data median The median for grouped data is slightly more difficult to compute. Because the
actual values of the measurements are unknown, we know that the median occurs
in a particular class interval, but we do not know where to locate the median within
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the interval. If we assume that the measurements are spread evenly throughout the
interval, we get the following result. Let

L = lower class limit of the interval that contains the median
n = total frequency

cfy = the sum of frequencies (cumulative frequency) for all classes be-
fore the median class

fm = frequency of the class interval containing the median
w = interval width
Then, for grouped data,

median = L + K(.Sn - cfy)

m

The next example illustrates how to find the median for grouped data.

EXAMPLE 3.4

Table 3.8 is a repeat of the frequency table (Table 3.6) with some additional col-
umns for the tick data of Table 3.5. Compute the median number of ticks per cow
for these data.

Class  Class Interval  f; Cumulative f;  fi/n ~ Cumulative f;/n

1 16.25-18.75 2 2 .02 .02
2 18.75-21.25 7 9 .07 .09
3 21.25-23.75 7 16 .07 .16
4 23.75-26.25 14 30 14 .30
5 26.25-28.75 17 47 17 47
6 28.75-31.25 24 71 24 71
7 31.25-33.75 11 82 A1 .82
8 33.75-36.25 11 93 A1 .93
9 36.25-38.75 3 96 .03 .96
10 38.75-41.25 3 99 .03 .99
11 41.25-43.75 1 100 01 1.00

Solution Let the cumulative relative frequency for class j equal the sum of the
relative frequencies for class 1 through class j. To determine the interval that con-
tains the median, we must find the first interval for which the cumulative relative
frequency exceeds .50. This interval is the one containing the median. For these
data, the interval from 28.75 to 31.25 is the first interval for which the cumulative
relative frequency exceeds .50, as shown in Table 3.8, Class 6. So this interval con-
tains the median. Then

L =2875 f,=24
n =100 w =25
cfy = 47
and

2.5
median = L + fﬁ(.Sn — ¢f,) = 28.75 + 5(50 —47) =29.06 m

m
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Note that the value of the median from the ungrouped data of Table 3.5 is 29.
Thus, the approximated value and the value from the ungrouped data are nearly
equal. The difference between the two values for the sample median decreases as
the number of class intervals increases.
The third, and last, measure of central tendency we will discuss in this text is
mean  the arithmetic mean, known simply as the mean.

DEFINITION 3.3 The arithmetic mean, or mean, of a set of measurements is defined to be the
sum of the measurements divided by the total number of measurements.

When people talk about an “average,” they quite often are referring to the mean.
It is the balancing point of the data set. Because of the important role that the
mean will play in statistical inference in later chapters, we give special symbols to
the population mean and the sample mean. The population mean is denoted by the
Greek letter p (read “mu”), and the sample mean is denoted by the symbol y (read
“y-bar”’). As indicated in Chapter 1, a population of measurements is the com-
plete set of measurements of interest to us; a sample of measurements is a subset
of measurements selected from the population of interest. If we let y1, ys, ..., y,
denote the measurements observed in a sample of size n, then the sample mean y
can be written as

2y

n

< '’

y:

where the symbol appearing in the numerator, >, y,, is the notation used to desig-
nate a sum of n measurements, y;:

EYi:)’1+Y2+"'+Yn

1

The corresponding population mean is u.

In most situations, we will not know the population mean; the sample will
be used to make inferences about the corresponding unknown population mean.
For example, the accounting department of a large department store chain is
conducting an examination of its overdue accounts. The store has thousands of
such accounts, which would yield a population of overdue values having a mean
value, . The value of u could be determined only by conducting a large-scale audit
that would take several days to complete. The accounting department monitors
the overdue accounts on a daily basis by taking a random sample of n overdue
accounts and computing the sample mean, y. The sample mean, y, is then used as
an estimate of the mean value, u, of all overdue accounts for that day. The accu-
racy of the estimate and approaches for determining the appropriate sample size
will be discussed in Chapter 5.

EXAMPLE 3.5

A sample of n = 15 overdue accounts in a large department store yields the follow-
ing amounts due:

$5520 § 488 $271.95
18.06 180.29 365.29
28.16 399.11 807.80
44.14 97.47 9.98
61.61 56.89 82.73
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a. Determine the mean amount due for the 15 accounts sampled.
b. If there are a total of 150 overdue accounts, use the sample mean to
predict the total amount overdue for all 150 accounts.

Solution
a. The sample mean is computed as follows:

_ 2y 5520 +18.06 + ---+ 8273  2,483.56
Y7 s 15 15

b. From part (a), we found that the 15 accounts sampled averaged $165.57
overdue. Using this information, we would predict, or estimate, the total
amount overdue for the 150 accounts to be 150(165.57) = $24,835.50. ®

= $165.57

The sample mean formula for grouped data is only slightly more compli-
cated than the formula just presented for ungrouped data. In certain situations, the
original data will be presented in a frequency table or a histogram. Thus, we will
not know the individual sample measurements, only the interval to which a meas-
urement is assigned. In this type of situation, the formula for the mean from the
grouped data will be an approximation to the actual sample mean. Hence, when
the sample measurements are known, the formula for ungrouped data should be
used. If there are k class intervals and

yi = midpoint of the ith class interval
fi = frequency associated with the ith class interval

n = total number of measurements

y = 2 fivi
n
where = denotes “is approximately equal to.”

EXAMPLE 3.6

The data of Example 3.4 are reproduced in Table 3.9, along with three additional
columns: y;, fiyi, f(y; — )% These values will be needed in order to compute
approximations to the sample mean and the sample standard deviation. Using the
information in Table 3.9, compute an approximation to the sample mean for this
set of grouped data.

then

TABLE 3.9 —
Class information for Class Class Interval fi i foi Jivi=y)

number of attached ticks 1 16.25-18.75 2 175 35.0 258.781

2 18.75-21.25 7 20.0 140.0 551.359

3 21.25-23.75 7 22.5 157.5 284.484

4 23.75-26.25 14 25.0 350.0 210.219

5 26.25-28.75 17 27.5 467.5 32.141

6 28.75-31.25 24 30.0 720.0 30.375

7 31.25-33.75 11 32.5 357.5 144.547

8 33.75-36.25 11 35.0 385.0 412.672

9 36.25-38.75 3 37.5 112.5 223.172

10 38.75-41.25 3 40.0 120.0 371.297

11 41.25-43.75 1 42.5 42.5 185.641

Totals 100 2,887.5 2,704.688
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Solution After adding the entries in the f;y; column and substituting into the
formula, we determine that an approximation to the sample mean is
3L fy, 28815

Y=E"700 100 = 28.875

Using the 100 values, from Table 3.5, the actual value of the sample mean is

_ 2%y, 2881
= =izt )i 2000 gkl m
Y 100 100 288

Example 3.6 demonstrates that the approximation from the grouped data
formula can be very close to the actual value. When the number of class intervals
is relatively large, the approximation from the grouped data formula will be very
close to the actual sample mean.

The mean is a useful measure of the central value of a set of measurements,
but it is subject to distortion due to the presence of one or more extreme values

outliers  in the set. In these situations, the extreme values (called outliers) pull the mean in

the direction of the outliers to find the balancing point, thus distorting the mean as

trimmed mean a measure of the central value. A variation of the mean, called a trimmed mean,
drops the highest and lowest extreme values and averages the rest. For example, a

5% trimmed mean drops the highest 5% and the lowest 5% of the measurements

and averages the rest. Similarly, a 10% trimmed mean drops the highest and the

lowest 10% of the measurements and averages the rest. In Example 3.5, a 10%

trimmed mean would drop the smallest and largest account, resulting in a mean of

2,483.56 — 4.88 — 807.8
13

y= = §128.53
By trimming the data, we are able to reduce the impact of very large (or small)
values on the mean and thus get a more reliable measure of the central value of the
set. This will be particularly important when the sample mean is used to predict the
corresponding population central value.

Note that in a limiting sense the median is a 50% trimmed mean. Thus, the
median is often used in place of the mean when there are extreme values in the
data set. In Example 3.5, the value $807.80 is considerably larger than the other
values in the data set. This results in 10 of the 15 accounts having values less than
the mean and only 5 having values larger than the mean. The median value for the
15 accounts is $61.61. There are 7 accounts less than the median and 7 accounts
greater than the median. Thus, in selecting a typical overdue account, the median
is a more appropriate value than the mean. However, if we want to estimate the
total amount overdue in all 150 accounts, we would want to use the mean and not
the median. When estimating the sum of all measurements in a population, we
would not want to exclude the extremes in the sample. Suppose a sample contains
a few extremely large values. If the extremes are trimmed, then the population sum
will be grossly underestimated using the sample trimmed mean or sample median
in place of the sample mean.

In this section, we discussed the mode, median, mean, and trimmed mean.
How are these measures of central tendency related for a given set of measure-

skewness  ments? The answer depends on the skewness of the data. If the distribution is
mound-shaped and symmetrical about a single peak, the mode (M,), median (M),
mean (u), and trimmed mean (7M) will all be the same. This is shown using a
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FIGURE 3.15
Relation among the
mean u, the trimmed

mean TM, the median L
M,. and the mode M, (a) A mound-shaped distribution

(b) A distribution skewed to the left
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o

(c) A distribution skewed to the right
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™

smooth curve and population quantities in Figure 3.15(a). If the distribution is
skewed, having a long tail in one direction and a single peak, the mean is pulled
in the direction of the tail; the median falls between the mode and the mean; and
depending on the degree of trimming, the trimmed mean usually falls between
the median and the mean. Figures 3.15(b) and (c) illustrate this for distributions
skewed to the left and to the right.

The important thing to remember is that we are not restricted to using only
one measure of central tendency. For some data sets, it will be necessary to use
more than one of these measures to provide an accurate descriptive summary of
central tendency for the data.

Major Characteristics Mode
of Each Measure of

It is the most frequent or probable measurement in the data set.
Central Tendency

There can be more than one mode for a data set.

It is not influenced by extreme measurements.

. Modes of subsets cannot be combined to determine the mode

of the complete data set.

For grouped data, its value can change depending on the categories
used.

6. It is applicable for both qualitative and quantitative data.

Median

AWN

e

1. It is the central value; 50% of the measurements lie above it and
50% fall below it.
2. There is only one median for a data set.
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3. Itis not influenced by extreme measurements.

4. Medians of subsets cannot be combined to determine the median
of the complete data set.

5. For grouped data, its value is rather stable even when the data are
organized into different categories.

6. It is applicable to quantitative data only.

Mean
1. Itis the arithmetic average of the measurements in a data set.
2. There is only one mean for a data set.
3. Its value is influenced by extreme measurements; trimming can

help to reduce the degree of influence.

4. Means of subsets can be combined to determine the mean of the
complete data set.

5. It is applicable to quantitative data only.

Measures of central tendency do not provide a complete mental picture of
the frequency distribution for a set of measurements. In addition to determining
the center of the distribution, we must have some measure of the spread of the
data. In the next section, we discuss measures of variability, or dispersion.

3.5 Describing Data on a Single Variable:
Measures of Variability

It is not sufficient to describe a data set using only measures of central tendency,
such as the mean or the median. For example, suppose we are monitoring the pro-
duction of plastic sheets that have a nominal thickness of 3 mm. If we randomly
select 100 sheets from the daily output of the plant and find that the average thick-
ness of the 100 sheets is 3 mm, does this indicate that all 100 sheets have the desired
thickness of 3 mm? We may have a situation in which 50 sheets have a thickness of
1 mm and the remaining 50 sheets have a thickness of 5 mm. This would result in
an average thickness of 3 mm, but none of the 100 sheets would have a thickness
close to the specified 3 mm. Thus, we need to determine how dispersed the sheet
thicknesses are about the mean of 3 mm.
Graphically, we can observe the need for some measure of variability by exam-
ining the relative frequency histograms of Figure 3.16. All the histograms have the
variability =~ same mean, but each has a different spread, or variability, about the mean. For illus-
tration, we have shown the histograms as smooth curves. Suppose the three histo-
grams represent the amount of PCB (ppb) found in a large number of 1-liter samples
taken from three lakes that are close to chemical plants. The average amount of
PCB, p, in a 1-liter sample is the same for all three lakes. However, the variabilities
in the PCB quantities are considerably different. Thus, the lake with the PCB quan-
tities depicted in histogram (a) would have fewer samples containing very small or
large quantities of PCB as compared to the lake with PCB values depicted in histo-
gram (c). Knowing only the mean PCB quantity in the three lakes would mislead the
investigator concerning the level of PCB present in all three lakes.
range The simplest but least useful measure of data variation is the range, which we
alluded to in Section 3.2. We now present its definition.
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The range of a set of measurements is defined to be the difference between
the largest and the smallest measurements of the set.

Determine the range of the 15 overdue accounts of Example 3.5.

Solution The smallest measurement is $4.88 and the largest is $807.80. Hence, the
range is

$807.80 — $4.88 = $802.92 m

For grouped data, because we do not know the individual measurements, the range
is taken to be the difference between the upper limit of the last interval and the
lower limit of the first interval.

Although the range is easy to compute, it is sensitive to outliers because it
depends on the most extreme values. It does not give much information about the
pattern of variability. Referring to the situation described in Example 3.5, if in the cur-
rent budget period the 15 overdue accounts consisted of 10 accounts having a value of
$4.88, 3 accounts of $807.80, and 2 accounts of $5.68, then the mean value would be
$165.57 and the range would be $802.92. The mean and range would be identical to
the mean and range calculated for the data of Example 3.5. However, the data in the
current budget period are more spread out about the mean than the data in the earlier
budget period. What we seek is a measure of variability that discriminates between
data sets having different degrees of concentration of the data about the mean.

A second measure of variability involves the use of percentiles.

The pth percentile of a set of » measurements arranged in order of magnitude
is that value that has at most p% of the measurements below it and at most
(100 — p)% above it.
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FIGURE 3.17
The 60th percentile of a )
set of measurements Relative frequency

40% above

60th percentile

FIGURE 3.18
Quartiles of a distribution

Relative frequency

Median
~—IQR —

Lower quartile Upper quartile

For example, Figure 3.17 illustrates the 60th percentile of a set of measurements.
Percentiles are frequently used to describe the results of achievement test scores
and the ranking of a person in comparison to the rest of the people taking an
examination. Specific percentiles of interest are the 25th, 50th, and 75th percen-
tiles, often called the lower quartile, the middle quartile (median), and the upper
quartile, respectively (see Figure 3.18).

The computation of percentiles is accomplished as follows: Each data value
corresponds to a percentile for the percentage of the data values that are less than
or equal to it. Let y(1), ¥2), - - - , Y(n) denote the ordered observations for a data set;
that is,

Yo=Y ="""=Yu

The ith ordered observation, y(;, corresponds to the 100(i — .5)/n percentile. We
use this formula in place of assigning the percentile 100i/n so that we avoid assign-
ing the 100th percentile to y(,), which would imply that the largest possible data
value in the population was observed in the data set, an unlikely happening. For
example, a study of serum total cholesterol (mg/l) levels recorded the levels given
in Table 3.10 for 20 adult patients. Thus, each ordered observation is a data per-
centile corresponding to a multiple of the fraction 100(i — .5)/n = 100(2i — 1)/2n =
100(2i — 1)/40.

The 22.5th percentile is 152 (mg/1). Thus, 22.5% of persons in the study have
a serum cholesterol less than or equal to 152. Also, the median of the above data
set, which is the 50th percentile, is halfway between 192 and 201; that is, median =
(192 + 201)/2 = 196.5. Thus, approximately half of the persons in the study have
a serum cholesterol level less than 196.5 and half have a level greater than 196.5.

When dealing with large data sets, the percentiles are generalized to quan-
tiles, where a quantile, denoted Q(u), is a number that divides a sample of n data
values into two groups so that the specified fraction u of the data values is less
than or equal to the value of the quantile, Q(u). Plots of the quantiles Q(u) versus
the data fraction u provide a method of obtaining estimated quantiles for the
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TABLE 3.10
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Serum cholesterol levels Observation (/) Cholesterol (mg/l) Percentile
1 133 2.5
2 137 7.5
3 148 12.5
4 149 17.5
5 152 22.5
6 167 27.5
7 174 32.5
8 179 37.5
9 189 42.5
10 192 47.5
11 201 52.5
12 209 57.5
13 210 62.5
14 211 67.5
15 218 72.5
16 238 77.5
17 245 82.5
18 248 87.5
19 253 92.5
20 257 97.5

93

population from which the data were selected. We can obtain a quantile plot using
the following steps:

1. Place a scale on the horizontal axis of a graph covering the interval
0,1).

2. Place a scale on the vertical axis covering the range of the observed
data, y; to y,.

3. Plot y( versus u; = (i — .5)/n = (2i — 1))2n,fori=1,...,n.

Using the Minitab software, we obtain the plot shown in Figure 3.19 for the cho-
lesterol data. Note that, with Minitab, the vertical axis is labeled Q(u) rather than

FIGURE 3.19 °
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FIGURE 3.20 .
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Y- We plot y(; versus u to obtain a quantile plot. Specific quantiles can be read
from the plot.

We can obtain the quantile, Q(u), for any value of u as follows. First, place
a smooth curve through the plotted points in the quantile plot, and then read the
value off the graph corresponding to the desired value of u.

To illustrate the calculations, suppose we want to determine the 80th per-
centile for the cholesterol data—that is, the cholesterol level such that 80% of the
persons in the population have a cholesterol level less than this value, Q(.80).

Referring to Figure 3.19, locate the point # = .8 on the horizontal axis and
draw a perpendicular line up to the quantile plot and then a horizontal line over
to the vertical axis. The point where this line touches the vertical axis is our esti-
mate of the 80th quantile. (See Figure 3.20.) Roughly 80% of the population has
a cholesterol level less than 243. A slightly different definition of the quartiles is
given in Section 3.6.

When the data are grouped, the following formula can be used to approxi-
mate the percentiles for the original data. Let

P = percentile of interest

L = lower limit of the class interval that includes the percentile of
interest

n = total frequency

cfy = cumulative frequency for all class intervals before the percentile
class
f» = frequency of the class interval that includes the percentile of

interest
w = interval width

Then, for example, the 65th percentile for a set of grouped data would be com-
puted using the formula

P=L+2(65n—cfy)
Ty
To determine L, f,, and cfy,, begin with the lowest interval and find the first interval
for which the cumulative relative frequency exceeds .65. This interval would
contain the 65th percentile.
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EXAMPLE 3.8

Refer to the tick data of Table 3.8. Compute the 90th percentile.

Solution Because the eighth interval is the first interval for which the cumulative
relative frequency exceeds .90, we have

L =3375
n =100
cfy = 82
foo =11
w=25

Thus, the 90th percentile is

2.5
Py, = 33.75 +A117L9000)——82]=:3557

This means that 90% of the cows have 35 or fewer attached ticks and 10% of the
cows have 36 or more attached ticks. ®

interquartile range ~ The second measure of variability, the interquartile range, is now defined.

DEFINITION 3.6 The interquartile range (IQR) of a set of measurements is defined to be the
difference between the upper and lower quartiles; that is,

IQR = 75th percentile — 25th percentile

The IQR is displayed in Figure 3.18. The interquartile range, although more
sensitive to data pileup about the midpoint than is the range, is still not sufficient
for our purposes. In fact, the IQR can be very misleading when the data set is
highly concentrated about the median. For example, suppose we have a sample
consisting of 10 data values:

20, 50, 50, 50, 50, 50, 50, 50, 50, 80

The mean, median, lower quartile, and upper quartile would all equal 50. Thus, IQR
equals 50 — 50 = 0. This is very misleading because a measure of variability equal
to 0 should indicate that the data consist of n identical values, which is not the case
in our example. The IQR ignores the extremes in the data set completely. In fact,
the IQR measures only the distance needed to cover the middle 50% of the data
values and hence totally ignores the spread in the lower and upper 25% of the data.
In summary, the IQR does not provide a lot of useful information about the vari-
ability of a single set of measurements, but it can be quite useful when comparing the
variabilities of two or more data sets. This is especially true when the data sets have
some skewness. The IQR will be discussed further in connection with the boxplot
(Section 3.6).

In most data sets, we would typically need a minimum of five summary values
to provide a minimal description of the data set: smallest value, y(;); lower quartile,
Q(.25); median; upper quartile, Q(.75); and largest value, y(,. When the data set
has a unimodal, bell-shaped, and symmetric relative frequency histogram, just the
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sample mean and a measure of variability, the sample variance, can represent the
data set. We will now develop the sample variance.

We seek now a sensitive measure of variability, not only for comparing the
variabilities of two sets of measurements but also for interpreting the variability of

deviation  a single set of measurements. To do this, we work with the deviation y, — y of a
measurement y; from the mean y of the set of measurements.

To illustrate, suppose we have five sample measurements y; = 68, y, = 67,
y3 = 606, y4 = 63, and ys = 61, which represent the percentages of registered voters
in five cities who exercised their right to vote at least once during the past year.
These measurements are shown in the dot diagram of Figure 3.21. Each measure-
ment is located by a dot above the horizontal axis of the diagram. We use the
sample mean

g 23 o
n 5
to locate the center of the set, and we construct horizontal lines in Figure 3.21
to represent the deviations of the sample measurements from their mean. The
deviations of the measurements are computed by using the formula y, — y. The
five measurements and their deviations are shown in Figure 3.21.

A data set with very little variability would have most of the measurements
located near the center of the distribution. Deviations from the mean for a more
variable set of measurements would be relatively large.

Many different measures of variability can be constructed by using the devia-
tion, y; — y. A first thought is to use the mean deviation, but this will always equal
zero, as it does for our example. A second possibility is to ignore the minus signs
and compute the average of the absolute values. However, a more easily inter-
preted function of the deviations involves the sum of the squared deviations of the

variance  measurements from their mean. This measure is called the variance.

DEFINITION 3.7 The variance of a set of n measurements y1, y», . . . , ¥, With mean y is the sum
of the squared deviations divided by n — 1:

E(Yi B y)z

n—1

As with the sample and population means, we have special symbols to
s> denote the sample and population variances. The symbol s? represents the sample
o?  variance, and the corresponding population variance is denoted by the symbol o,

FIGURE 3.21 3
Dot diagram of the
percentages of registered .;
voters in five cities
2
fr—
4
1
—
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3.5 Describing Data on a Single Variable: Measures of Variability 97

The definition for the variance of a set of measurements depends on whether
the data are regarded as a sample or population of measurements. The definition
we have given here assumes we are working with the sample because the popula-
tion measurements usually are not available. Many statisticians define the sample
variance to be the average of the squared deviations, > (y — y)?/n. However, the
use of (n — 1) as the denominator of s> is not arbitrary. This definition of the sam-
ple variance makes it an unbiased estimator of the population variance o. This
means roughly that if we were to draw a very large number of samples, each of size
n, from the population of interest and if we were to compute s? for each sample, the
average sample variance would equal the population variance 2. Had we divided
by n in the definition of the sample variance s, the average sample variance com-
puted from a large number of samples would be less than the population variance;
hence, s> would tend to underestimate o2.

standard deviation Another useful measure of variability, the standard deviation, involves the
square root of the variance. One reason for defining the standard deviation is that
it yields a measure of variability having the same units of measurement as the
original data, whereas the units for variance are the square of the measurement
units.

DEFINITION 3.8 The standard deviation of a set of measurements is defined to be the positive
square root of the variance.

s We then have s denoting the sample standard deviation and o denoting the cor-
o responding population standard deviation.

EXAMPLE 3.9

The time between an electric light stimulus and a bar press to avoid a shock was
noted for each of five conditioned rats. Use the given data to compute the sample
variance and standard deviation.

Shock avoidance times (seconds): 5,4,3,1,3

Solution The deviations and the squared deviations are shown in Table 3.11. The
sample mean Yy is 3.2.

TABLE 3.11

. R Y
Shock avoidance data Yi Yi—Jy 0i—Y)
5 1.8 3.24
4 8 .64
3 -2 .04
1 -22 484
3 -2 .04
Totals 16 0 8.80

Using the total of the squared deviations column, we find the sample variance to be

o 2= y)r 880

=221
n—1 4
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We can make a simple modification of our formula for the sample variance
to approximate the sample variance if only grouped data are available. Recall that
in approximating the sample mean for grouped data, we let y; and f; denote the
midpoint and frequency, respectively, for the ith class interval. With this notation,
the sample variance for grouped data is s* = X, f(y; — y)*/(n — 1). The sample
standard deviation is Vs>,

EXAMPLE 3.10

Refer to the tick data from Table 3.9 of Example 3.6. Calculate the sample vari-
ance and standard deviation for these data.

Solution From Table 3.9, the sum of the f,(y; — y)? calculations is 2,704.688. Using
this value, we can approximate s* and s.

1 1
s?=—— 3, {0y, — ¥)? = —(2,704.688) = 27.32008
n—1 99

s = 2732008 = 5.227

If we compute s from the original 100 data values, the value of s (using Minitab) is
computed to be 5.212. The values of s computed from the original data and from
the grouped data are very close. However, when the frequency table has a small
number of classes, the approximation of s from the frequency table values will not
generally be as close as in this example. B

A problem arises with using the standard deviation as a measure of spread
in a data set containing a few extreme values. This occurs because the deviations
of data values about the mean are squared, resulting in more weight given to the
extreme data values. Also, the variance uses the sample/population mean as the
central value about which deviations are measured. If a data set contains outliers,
a few values that are particularly far away from the mean, either very small or very
large, the mean and standard deviation can be overly inflated and hence do not
properly represent the center or the spread in the data set. Previously, the median
was used in place of the mean to represent the center of the data set when the data
set contains outliers. In a similar fashion, an alternative to the standard deviation,
the median absolute deviation (MAD) will be defined.

DEFINITION 3.9 The median absolute deviation of a set of » measurements yy, y», ..., y, With
median y is the median of the absolute deviations of the » measurements
about the median:

MAD = median {|y; — y|,y2 — Vl,....lyn — y|}/.6745}

Refer to the time between electric light stimulus and a bar press in Example 3.9,
and suppose there was a sixth rat in the experiment who had an extremely high
tolerance to the shock. This rat had a shock avoidance time of 71 seconds. Compute
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TABLE 3.12
Shock avoidance data
Source: Department of

Justice, Crime Reports and
the United States, 2000.
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the value of the sample standard deviation and MAD for the shock avoidance
times for the six values.

Shock avoidance times (seconds): 5,4,3,1,3,71

To observe the impact of the extreme value, compare the values of the mean,
median, standard deviation, and MAD for the five original shock values to their
corresponding values in the new data set.

Solution The deviations, squared deviations, and absolute deviations are given
in Table 3.12. The sample mean and median of the six values are, respectively,
y=%=145andy =254 =35

yi yi— 145 (y; — 14.5)% y; — 3.5 |y; — 3.5

5 -9.5 90.25 15 15

4 —10.5 110.25 0.5 0.5

3 —115 132.25 —0.5 0.5

1 —13.5 182.25 —2.5 2.5

3 —115 132.25 =05 0.5

71 56.5 3,192.25 67.5 67.5

Total 87 0 3,839.50 66.0 73.0

The mean of the six shock times is 14.5 seconds, which is larger than all but one of
the six times. The median shock time is 3.5, yielding three shock times less than the
median and three shock times greater than the median. Thus, the median is more
representative of the center of the data set than is the mean when outliers are pre-
sent in the data set. The standard deviation is given by

6 (y, — 14.5) :
s = \/2’1(” r _ \/3’8395 =27.71

6-1 5

MAD is computed as the median of the six absolute deviations about the median
divided by 0.6745.

First, compute the median of 0.5, 0.5, 0.5, 1.5, 2.5, and 67.5, which is (0.5 + 1.5)2 =1.0.

Next, divide the median absolute deviation, 1.0, by 0.6745, yielding MAD = 1.0
/.6745 = 1.48.

The value of the median and MAD from the five shock times in Example 3.9 are
3 and 1.48 compared to 3.5 and 1.48 for the six shock times in the current data set.
Thus, the outlier shock time 71 does not have a major impact on the median and
MAD as measures of center and spread about the center.

However, the single large shock time greatly inflated the mean and standard devia-
tion, raising the mean from 3.2 to 14.5 seconds and the standard deviation from
1.48 to 27.71 seconds. H

You may wonder why the median of the absolute deviations is divided by
the value 0.6745 in Definition 3.9. In a population having a normal distribution
with standard deviation o, the expected value of the absolute deviation about
the median is 0.6745¢. By dividing the median absolute deviation by 0.6745, the
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100 CHAPTER 3 DATA DESCRIPTION

expected value of MAD in a population having a normal distribution is equal to o.
Thus, the values computed for MAD and the sample standard deviation are also
the expected values for data randomly selected from populations that have a
normal distribution.

We have now discussed several measures of variability, each of which can
be used to compare the variabilities of two or more sets of measurements. The
standard deviation is particularly appealing for two reasons: (1) We can compare
the variabilities of two or more sets of data using the standard deviation, and (2)
we can also use the results of the rule that follows to interpret the standard devia-
tion of a single set of measurements. This rule applies to data sets with roughly a
“mound-shaped” histogram —that is, a histogram that has a single peak, is sym-
metrical, and tapers off gradually in the tails. Because so many data sets can be
classified as mound-shaped, the rule has wide applicability. For this reason, it is
called the Empirical Rule.

EMPIRICAL RULE Given a set of n measurements possessing a mound-shaped histogram, then

the interval y * s contains approximately 68% of the measurements
the interval y = 2s contains approximately 95% of the measurements
the interval y = 3s contains approximately 99.7 % of the measurements.

EXAMPLE 3.12

The yearly report from a particular stockyard gives the average daily wholesale
price per pound for steers as $.61, with a standard deviation of $.07. What conclu-
sions can we reach about the daily steer prices for the stockyard? Because the
original daily price data are not available, we are not able to provide much further
information about the daily steer prices. However, from past experience, it is
known that the daily price measurements have a mound-shaped relative frequency
histogram. Applying the Empirical Rule, what conclusions can we reach about the
distribution of daily steer prices?

Solution Applying the Empirical Rule, the interval
61 .07 or  $54t0$.68

contains approximately 68 % of the measurements. The interval
61 + .14 or $.47 to $.75

contains approximately 95% of the measurements. The interval

.61 = 21 or $.40to $.82

contains approximately 99.7% of the measurements.

In English, approximately two-thirds of the steers sold for between $.54 and
$.68 per pound, and 95% sold for between $.47 and $.75 per pound, with minimum
and maximum prices being approximately $.40 and $.82.

To increase our confidence in the Empirical Rule, let us see how well it
describes the five frequency distributions of Figure 3.22. We calculated the mean
and standard deviation for each of the five data sets (not given), and these are
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FIGURE 3.22 A demonstration of the utility of the Empirical Rule
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shown next to each frequency distribution. Figure 3.22(a) shows the frequency
distribution for measurements made on a variable that can take values y = 0, 1,
2,...,10. The mean and standard deviation y = 5.50 and s = 1.49 for this sym-
metric, mound-shaped distribution were used to calculate the interval y * 2s,
which is marked below the horizontal axis of the graph. We found 94% of the
measurements falling in this interval —that is, lying within two standard deviations
of the mean. Note that this percentage is very close to the 95% specified in the
Empirical Rule. We also calculated the percentage of measurements lying within
one standard deviation of the mean. We found this percentage to be 60%, a figure
that is not too far from the 68% specified by the Empirical Rule. Consequently,
we think the Empirical Rule provides an adequate description for Figure 3.22(a).

Figure 3.22(b) shows another mound-shaped frequency distribution but one
that is less peaked than the distribution of Figure 3.22(a). The mean and standard
deviation for this distribution, shown to the right of the figure, are 5.50 and 2.07,
respectively. The percentages of measurements lying within one and two stand-
ard deviations of the mean are 64% and 96%, respectively. Once again, these
percentages agree very well with the Empirical Rule.
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Now let us look at three other distributions. The distribution in Figure 3.22(c)
is perfectly flat, whereas the distributions of Figures 3.22(d) and (e) are nonsym-
metric and skewed to the right. The percentages of measurements that lie within
two standard deviations of the mean are 100%, 96%, and 95%, respectively, for
these three distributions. All these percentages are reasonably close to the 95%
specified by the Empirical Rule. The percentages that lie within one standard devi-
ation of the mean (60%, 75%, and 87%, respectively) show some disagreement
with the 68% of the Empirical Rule.

To summarize, you can see that the Empirical Rule accurately forecasts the
percentage of measurements falling within two standard deviations of the mean
for all five distributions of Figure 3.22, even for the distributions that are flat, as in
Figure 3.22(c), or highly skewed to the right, as in Figure 3.22(e). The Empirical
Rule is less accurate in forecasting the percentage within one standard deviation of
the mean, but the forecast, 68 %, compares reasonably well for the three distribu-
tions that might be called mound-shaped, Figures 3.22(a), (b), and (d).

The results of the Empirical Rule enable us to obtain a quick approximation
to the sample standard deviation s. The Empirical Rule states that approximately
95% of the measurements lie in the interval y * 2s. The length of this interval
is, therefore, 4s. Because the range of the measurements is approximately 4s, we

approximating s obtain an approximate value for s by dividing the range by 4:

range
4

approximate value of s =

Some people might wonder why we did not equate the range to 6s because
the interval y = 3s should contain almost all the measurements. This procedure
would yield an approximate value for s that is smaller than the one obtained by the
preceding procedure. If we are going to make an error (as we are bound to do with
any approximation), it is better to overestimate the sample standard deviation so
that we are not led to believe there is less variability than may be the case.

EXAMPLE 3.13

The Texas legislature planned on expanding the items on which the state sales tax
was imposed. In particular, groceries were previously exempt from sales tax. A con-
sumer advocate argued that lower-income families would be impacted because they
spend a much larger percentage of their income on groceries than do middle- and
upper-income families. The U.S. Bureau of Labor Statistics publication Consumer
Expenditures in 2000 reported that an average family in Texas spent approximately
14% of their family income on groceries. The consumer advocate randomly selected
30 families with income below the poverty level and obtained the following percent-
ages of family incomes allocated to groceries.

26 28 30 37 33 30
29 39 49 31 38 36
33 24 34 40 29 41
40 29 35 44 32 45
35 26 42 36 37 35

For these data, Xy, = 1,043 and X(y, — y)* = 1,069.3667. Compute the mean,
variance, and standard deviation of the percentage of income spent on food. Check
your calculation of s.
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Solution The sample mean is

_ Sy 1043
y=50t =5y = AT

The corresponding sample variance and standard deviation are
1 S)2
n—1 E(Vi y )

1
29 (1,069.3667) = 36.8747
s =N36.8747 = 6.07

We can check our calculation of s by using the range approximation. The largest
measurement is 49 and the smallest is 24. Hence, an approximate value of s is

S2

range 49 — 24
4 4

s =~ = 6.25

Note how close the approximation is to our computed value. B

Although there will not always be the close agreement found in Example 3.13,
the range approximation provides a useful and quick check on the calculation of s.
The standard deviation can be deceptive when comparing the amount of
variability of different types of populations. A unit of variation in one population
might be considered quite small, whereas that same amount of variability in a dif-
ferent population would be considered excessive. For example, suppose we want
to compare two production processes that fill containers with products. Process
A is filling fertilizer bags, which have a nominal weight of 80 pounds. The process
produces bags having a mean weight of 80.6 pounds with a standard deviation of
1.2 pounds. Process B is filling 24-ounce cornflakes boxes, which have a nomi-
nal weight of 24 ounces. Process B produces boxes having a mean weight of 24.3
ounces with a standard deviation of 0.4 ounces. Is process A much more variable
than process B because 1.2 is three times larger than 0.4? To compare the vari-
ability in two considerably different processes or populations, we need to define
coefficient of variation = another measure of variability. The coefficient of variation measures the variabil-
ity in the values in a population relative to the magnitude of the population mean.
In a process or population with mean w and standard deviation o, the coefficient
of variation is defined as

cv ="
ul
provided p # 0. Thus, the coefficient of variation is the standard deviation of the
population or process expressed in units of w. The two filling processes would have
equivalent degrees of variability if the two processes had the same CV. For the fer-
tilizer process, the CV = 1.2/80 = .015. The cornflakes process has CV = 0.4/24 =
.017. Hence, the two processes have very similar variability relative to the size of
their means. The CV is a unit-free number because the standard deviation and
mean are measured using the same units. Hence, the CV is often used as an index
of process or population variability. In many applications, the CV is expressed as
a percentage: CV = 100(a/|u|)%. Thus, if a process has a CV of 15%, the standard
deviation of the output of the process is 15% of the process mean. Using sampled
data from the population, we estimate CV with 100(s/[y]) %.
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3.6 The Boxplot

As mentioned earlier in this chapter, a stem-and-leaf plot provides a graphical
representation of a set of scores that can be used to examine the shape of the dis-

boxplot tribution, the range of scores, and where the scores are concentrated. The boxplot,
which builds on the information displayed in a stem-and-leaf plot, is more con-
cerned with the symmetry of the distribution and incorporates numerical measures
of central tendency and location to study the variability of the scores and the con-
centration of scores in the tails of the distribution.

Before we show how to construct and interpret a boxplot, we need to intro-
duce several new terms that are peculiar to the language of exploratory data analy-
sis (EDA).We are familiar with the definitions for the first, second (median), and
third quartiles of a distribution presented earlier in this chapter. The boxplot uses

quartiles  the median and quartiles of a distribution.

We can now illustrate a skeletal boxplot using an example.

EXAMPLE 3.14

A criminologist is studying whether there are wide variations in violent crime rates
across the United States. Using Department of Justice data from 2000, the crime
rates in 90 cities selected from across the United States were obtained. Use the data
given in Table 3.13 to construct a skeletal boxplot to demonstrate the degree of
variability in crime rates.
TABLE 3.13 South Rate North Rate West Rate
Violent crime rates for 90
standard metropolitan Albany, GA 498 Allentown, PA 285 Abilene, TX 343
statistical areas selected Anderson, SC 676 Battle Creek, M1 490 Albuquerque, NM 946
from around the United Anniston, AL 344 Benton Harbor, M1 528 Anchorage, AK 584
States Athens, GA 368 Bridgeport, CT 427 Bakersfield, CA 494

Augusta, GA 772 Buffalo, NY 413 Brownsville, TX 463

Baton Rouge, LA 497 Canton, OH 220 Denver, CO 357

Charleston, SC 415 Cincinnati, OH 163 Fresno, CA 761

Charlottesville, VA 925 Cleveland, OH 428 Galveston, TX 717

Chattanooga, TN 555 Columbus, OH 625 Houston, TX 1094

Columbus, GA 260 Dayton, OH 339 Kansas City, MO 637

Dothan, AL 528 Des Moines, [A 211 Lawton, OK 692

Florence, SC 649 Dubuque, IA 451 Lubbock, TX 522

Fort Smith, AR 571 Gary, IN 358 Merced, CA 397

Gadsden, AL 470 Grand Rapids, MI 660 Modesto, CA 521

Greensboro, NC 897 Janesville, WI 330 Oklahoma City, OK 610

Hickery, NC 973 Kalamazoo, MI 145 Reno, NV 477

Knoxville, TN 486 Lima, OH 326 Sacramento, CA 453

Lake Charles, LA 447 Madison, WI 403 St. Louis, MO 798

Little Rock, AR 689 Milwaukee, WI 523 Salinas, CA 646

Macon, GA 754 Minneapolis, MN 312 San Diego, CA 645

Monroe, LA 465 Nassau, NY 576 Santa Ana, CA 549

Nashville, TN 496 New Britain, CT 261 Seattle, WA 568

Norfolk, VA 871 Philadelphia, PA 221 Sioux City, IA 465

Raleigh, NC 1064 Pittsburgh, PA 754 Stockton, CA 350
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South Rate North Rate West Rate
Richmond, VA 579 Portland, ME 140 Tacoma, WA 574
Savannah, GA 792 Racine, W1 418 Tucson, AZ 944
Shreveport, LA 367 Reading, PA 657 Victoria, TX 426
Washington, DC 998 Saginaw, M1 564 Waco, TX 471
Wilmington, DE 773 Syracuse, NY 405 Wichita Falls, TX 354
Wilmington, NC 887 Worcester, MA 872 Yakima, WA 264

Note: Rates represent the number of violent crimes (murder, forcible rape, robbery, and aggravated assault)
per 100,000 inhabitants, rounded to the nearest whole number.

Source: Department of Justice, Crime Reports and the United States, 2000.

Solution The data were summarized using a stem-and-leaf plot as depicted in
Figure 3.23. Use this plot to construct a skeletal boxplot.

FIGURE 3.23

1 40 45
Stem-and-leaf plot 1 &
of crime data 2 11 20 21
2 60 61 64 85
3 12 26 30 39 43 44
3 50 54 57 58 67 68 97
4 03 05 13 15 18 26 27 28 47
4 51 53 63 65 65 70 77 77 86 90 94 96 97 98
5 21 22 23 28 28 49
5 55 64 68 71 74 76 79 84
6 10 25 37 45 46 49
6 57 60 76 89 92
7 17
7 54 54 61 72 73 92 98
8
8 71 72 87 97
9 25 44 46
9 73 98
10
10 64 94

When the scores are ordered from lowest to highest, the median is computed
by averaging the 45th and 46th scores. For these data, the 45th score (counting
from the lowest to the highest in Figure 3.23) is 497 and the 46th is 498; hence, the
median is

_ 497 + 498

= 497.
> 97.5

To find the lower and upper quartiles for this distribution of scores, we need to
determine the 25th and 75th percentiles. We can use the method given on page 94
to compute Q(.25) and Q(.75). A quick method that yields essentially the same
values for the two quartiles consists of the following steps:

1. Order the data from smallest to largest value.
2. Divide the ordered data set into two data sets using the median as
the dividing value.
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3. Let the lower quartile be the median of the set of values consisting
of the smaller values.

4. Let the upper quartile be the median of the set of values consisting
of the larger values.

In the example, the data set has 90 values. Thus, we create two data sets, one con-
taining the 90/2 = 45 smallest values, and the other containing the 45 largest values.
The lower quartile is the (45 + 1)/2 = 23rd smallest value, and the upper quartile is
the 23rd value counting from the largest value in the data set. The 23rd-lowest score
and 23rd-highest score are 397 and 660.

lower quartile, Q, = 397
upper quartile, Q5 = 660

These three descriptive measures and the smallest and largest values in a data set
skeletal boxplot | are used to construct a skeletal boxplot (see Figure 3.24). The skeletal boxplot is
constructed by drawing a box between the lower and upper quartiles with a solid
line drawn across the box to locate the median. A straight line is then drawn con-
necting the box to the largest value; a second line is drawn from the box to the
smallest value. These straight lines are sometimes called whiskers, and the entire
box-and-whiskers plot | graph is called a skeletal box-and-whiskers plot.

FIGURE 3.24 M
Skeletal boxplot for the 0 O 0;
data of Figure 3.23 T T T T : : ; , , , , r
0 200 400 600 800 1,000
—
|

With a quick glance at a skeletal boxplot, it is easy to obtain an impression about
the following aspects of the data:

1. The lower and upper quartiles, Q1 and Q3

2. The interquartile range (IQR), the distance between the lower and
upper quartiles

3. The most extreme (lowest and highest) values

4. The symmetry or asymmetry of the distribution of scores

If we were presented with Figure 3.24 without having seen the original data,
we would have observed that

0, ~ 400
0, ~ 675

IQR ~ 675 — 400 = 275
M = 500

most extreme values: =150 and =1,100
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Also, because the median is closer to the lower quartile than the upper quartile
and because the upper whisker is a little longer than the lower whisker, the distri-
bution is slightly nonsymmetrical. To see that this conclusion is true, construct a
frequency histogram for these data.

The skeletal boxplot can be expanded to include more information about
extreme values in the tails of the distribution. To do so, we need the following
additional quantities:

lower inner fence: Q1 — 1.5(IQR)
upper inner fence: Q3 + 1.5(IQR)
lower outer fence: Q1 — 3(IQR)
upper outer fence: O3 + 3(IQR)

Any data value beyond an inner fence on either side is called a mild outlier,
and any data value beyond an outer fence on either side is called an extreme outlier.
The smallest and largest data values that are not outliers are called the lower
adjacent value and upper adjacent value, respectively.

EXAMPLE 3.15

Compute the inner and outer fences for the data of Example 3.14. Identify any
mild and extreme outliers.

Solution For these data, we found the lower and upper quartiles to be 397 and
660, respectively; IQR = 660 — 397 = 263. Then

lower inner fence = 397 — 1.5(263) = 2.5
upper inner fence = 660 + 1.5(263) = 1,054.5
lower outer fence = 397 — 3(263) = —392
upper outer fence = 660 + 3(263) = 1,449

Also, from the stem-and-leaf plot, we can determine that the lower and upper
adjacent values are 140 and 998. There are two mild outliers, 1,064 and 1,094,
because both values fall between the upper inner fence, 1,054.5, and upper outer
fence, 1,449. m

We now have all the quantities necessary for constructing a boxplot, sometimes
refered to as a modified boxplot.

Steps in 1. As with a skeletal boxplot, mark off a box from the lower quartile to the
Constructing a upper quartile.
Boxplot . Draw a solid line across the box to locate the median.

2

3. Draw a line from each quartile to its adjacent value.
4. Mark each mild outlier with an open circle, O.

5. Mark each extreme outlier with a closed circle, ®.

Construct a boxplot for the data of Example 3.13.

Solution The boxplot is shown in Figure 3.25.
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FIGURE 3.25 M
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What information can be drawn from a boxplot? First, the center of the dis-
tribution of scores is indicated by the median line (Q,) in the boxplot. Second,
a measure of the variability of the scores is given by the interquartile range, the
length of the box. Recall that the box is constructed between the lower and upper
quartiles, so it contains the middle 50% of the scores in the distribution, with 25%
on either side of the median line inside the box. Third, by examining the relative
position of the median line, we can gauge the symmetry of the middle 50% of
the scores. For example, if the median line is closer to the lower quartile than the
upper, there is a greater concentration of scores on the lower side of the median
within the box than on the upper side; a symmetric distribution of scores would
have the median line located in the center of the box. Fourth, additional informa-
tion about skewness is obtained from the lengths of the whiskers; the longer one
whisker is relative to the other one, the more skewness there is in the tail with the
longer whisker. Fifth, a general assessment can be made about the presence of out-
liers by examining the number of scores classified as mild outliers and the number
classified as extreme outliers.

Boxplots provide a powerful graphical technique for comparing samples
from several different treatments or populations. We will illustrate these concepts
using the following example. Several new filtration systems have been proposed
for use in small city water systems. The three systems under consideration have
very similar initial and operating costs, and will be compared on the basis of the
amount of impurities remaining in the water after it passes through the system.
After careful assessment, it is determined that monitoring 20 days of operation
will provide sufficient information to determine any significant differences among
the three systems. Water samples are collected on a hourly basis. The amount of
impurities, in ppm, remaining in the water after the water passes through the filter
is recorded. The average daily values for the three systems are plotted using a side-
by-side boxplot, as presented in Figure 3.26.

An examination of the boxplots in Figure 3.26 reveals the shapes of the rela-
tive frequency histograms for the three types of filters based on their boxplots.
Filter A has a symmetric distribution, filter B is skewed to the right, and filter C is
skewed to the left. Filters A and B have nearly equal medians. However, filter B
is much more variable than both filters A and C. Filter C has a larger median than
both filters A and B but smaller variability than A with the exception of the two
very small values obtained using filter C. The mild outliers obtained by filters B
and C, identified by *, would be examined to make sure that they are valid mea-
surements. Note that the software package, Minitab, used to produce the graph,
uses the symbol * in place of the open circle O to designate a mild outlier. These
measurements could be either recording errors or operational errors. They must
be carefully checked because they have such a large influence on the summary
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statistics. Filter A would produce a more consistent filtration than filter B. Filter A
generally filters the water more thoroughly than filter C. We will introduce statisti-
cal techniques in Chapter 8 that will provide us with ways to differentiate among
the three filter types.

3.7 Summarizing Data from More Than One Variable:
Graphs and Correlation

In the previous sections, we’ve discussed graphical methods and numerical descrip-
tive methods for summarizing data from a single variable. Frequently, more than
one variable is being studied at the same time, and we might be interested in sum-
marizing the data on each variable separately and also in studying relations among
the variables. For example, we might be interested in the prime interest rate and
in the Consumer Price Index, as well as in the relation between the two. In this
section, we’ll discuss a few techniques for summarizing data from two (or more)
variables. Material in this section will provide a brief preview of and introduction
to contingency tables (Chapter 10), analysis of variance (Chapters 8 and 14-18),
and regression (Chapters 11, 12, and 13).
Consider first the problem of summarizing data from two qualitative vari-
contingency table  ables. Cross-tabulations can be constructed to form a contingency table. The
rows of the table identify the categories of one variable, and the columns iden-
tify the categories of the other variable. The entries in the table are the number
of times each value of one variable occurs with each possible value of the other.
For example, episodic or “binge” drinking—the consumption of large quantities
of alcohol at a single session resulting in intoxication —among eighteen- to twenty-
four-year-olds can have a wide range of adverse effects—medical, personal, and
social. A survey was conducted on 917 eighteen- to twenty-four-year-olds by the
Institute of Alcohol Studies. Each individual surveyed was asked questions about
his or her alcohol consumption in the prior 6 months. The criminal background
of the individuals was also obtained from a police data base. The results of the
survey are displayed in Table 3.14. From this table, it is observed that 114 of binge
drinkers were involved in violent crimes, whereas 27 occasional drinkers and 7
nondrinkers were involved in violent crimes.
One method for examining the relationships between variables in a contin-
gency table is a percentage comparison based on row totals, column totals, or the
overall total. If we calculate percentages within each column, we can compare
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TABLE 3.14

Data from a survey of Level of Drinking
. drinking behavior of Binge/Regular Occasional Never
eighteen- to twenty-four- Criminal Offense Drinker Drinker Drinks Total
year-old youths
Violent Crime 114 27 7 148
Theft/Property Damage 53 27 7 87
Other Criminal Offenses 138 53 15 206
No Criminal Offenses 50 274 152 476
Total 355 381 181 917
Source: Institute of Alcohol Studies.
TABLE 3.15 .
Comparing the Level of Drinking
di§tr.ibuti0n of criminal Binge/Regular Occasional Never
activity for each leve% of Criminal Offense Drinker Drinker Drinks
alcohol consumption
Violent Crime 32.1% 7.1% 3.9%
Theft/Property Damage 14.9% 7.1% 3.9%
Other Criminal Offenses 38.9% 13.9% 8.2%
No Criminal Offenses 14.1% 71.9% 84.0%
Total 100% 100% 100%
(n = 355) (n = 381) (n=181)

the distribution of criminal activity within each level of drinking. A percentage
comparison based on column totals is shown in Table 3.15.

For all three types of criminal activities, the binge/regular drinkers had more
than double the level of activity of the occassional or nondrinkers. For binge/
regular drinkers, 32.1% had committed a violent crime, whereas only 7.1% of
occasional drinkers and 3.9% of nondrinkers had committed a violent crime. This
pattern is repeated across the other two levels of criminal activity. In fact, 85.9% of
binge/regular drinkers had committed some form of criminal violation. The level
of criminal activity among occasional drinkers was 28.1% and only 16% for non-
drinkers. In Chapter 10, we will use statistical methods to explore further relations
between two (or more) qualitative variables.

An extension of the bar graph provides a convenient method for displaying

stacked bar graph ~ data from a pair of qualitative variables. Figure 3.27 is a stacked bar graph, which
displays the data in Table 3.15.

The graph represents the distribution of criminal activity for three levels of
alcohol consumption by young adults. This type of information is useful in mak-
ing youths aware of the dangers involved in the consumption of large amounts of
alcohol. While the heaviest drinkers are at the greatest risk of committing a crimi-
nal offense, the risk of increased criminal behavior is also present for occasional
drinkers when compared to those youths who are nondrinkers. This type of data
may lead to programs that advocate prevention policies and assistance from the
beer/alcohol manufacturers by including messages about appropriate consumption
in their advertising.

A second extension of the bar graph provides a convenient method for
displaying the relationship between a single quantitative and a single qualitative
variable. A food scientist is studying the effects of combining different types of
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fats with different surfactants on the specific volume of baked bread loaves. The
experiment is designed with three levels of surfactant and three levels of fat, a
3 X 3 factorial experiment with varying number of loaves baked from each of the
nine treatments. She bakes bread from dough mixed from the nine different com-
binations of the types of fat and types of surfactants and then measures the specific
volume of the bread. The data and summary statistics are displayed in Table 3.16.
In this experiment, the scientist wants to make inferences from the results of
cluster bar graph  the experiment for the commercial production process. Figure 3.28 is a cluster bar
graph from the baking experiment. This type of graph allows the experimenter to
examine the simultaneous effects of two factors, type of fat and type of surfactant,
on the specific volume of the bread. Thus, the researcher can examine the differ-
ences in the specific volumes of the nine different ways in which the bread was
formulated. A quantitative assessment of the effects of fat type and surfactant type
on the mean specific volume will be addressed in Chapter 15.
We can also construct data plots to summarize the relation between two
quantitative variables. Consider the following example. A manager of a small

TABLE 3.16

Descriptive statistics with Fat Surfactant Mean Standard Deviation N
the dependent variable, 1 1 5.567 1.206 3
specific volume ) 6.200 794 3

3 5.900 458 3

Total 5.889 .805 9

2 1 6.800 794 3

2 6.200 .849 2

3 6.000 .606 4

Total 6.311 725 9

3 1 6.500 .849 2

2 7.200 .668 4

3 8.300 1.131 2

Total 7.300 975 8

Total 1 6.263 1.023 8

2 6.644 .832 9

3 6.478 1.191 9

Total 6.469 997 26
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machine shop examined the starting hourly wage y offered to machinists with x
years of experience. The data are shown here:

y (dollars) | 890 870 9.10 9.00 9.79 945 1000 10.65 1110 1105
x(years) | 125 150 200 200 275 4.00 5.00 6.00 8.00 12.00

Is there a relationship between hourly wage offered and years of experience? One
scatterplot ~ way to summarize these data is to use a scatterplot, as shown in Figure 3.29. Each
point on the plot represents a machinist with a particular starting wage and years
of experience. The smooth curve fitted to the data points, called the least squares
line, represents a summarization of the relationship between y and x. This line
allows the prediction of hourly starting wages for a machinist having years of expe-
rience not represented in the data set. How this curve is obtained will be discussed
in Chapters 11 and 12. In general, the fitted curve indicates that, as the years of
experience x increase, the hourly starting wage increases to a point and then levels

FIGURE 3.29 Y=8.09218+0.544505X~-2.44E-02X"2

~ R-Sg=93.0%
Scatterplot of starting 5q=93.0
hourly wage and years ° N
of experience 11
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G
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T
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Crime rate as a function
of number of casino
employees

FIGURE 3.30
Crime rate as a function
of number of casino
employees
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3.7 Summarizing Data from More Than One Variable: Graphs and Correlation

off. The basic idea of relating several quantitative variables is discussed in the
chapters on regression (Chapters 11-13).

Using a scatterplot, the general shape and direction of the relationship
between two quantitative variables can be displayed. In many instances, the rela-
tionship can be summarized by fitting a straight line through the plotted points.
Thus, the strength of the relationship can be described in the following manner.
There is a strong relationship if the plotted points are positioned close to the line
and a weak relationship if the points are widely scattered about the line. It is fairly
difficult to “eyeball” the strength using a scatterplot. In particular, if we wanted
to compare two different scatterplots, a numerical measure of the strength of the
relationship would be advantagous. The following example will illustrate the dif-
ficulty of using scatterplots to compare the strength of the relationship between
two quantitative variables.

Several major cities in the United States are now considering allowing gam-
bling casinos to operate under their jurisdiction. A major argument in opposition
to casino gambling is the perception that there will be a subsequent increase in the
crime rate. Data were collected over a 10-year period in a major city where casino
gambling had been legalized. The results are listed in Table 3.17 and plotted in
Figure 3.30. The two scatterplots are depicting exactly the same data, but the scales
of the plots differ considerably. The results appear to show a stronger relationship
in one scatterplot that in the other.

Because of the difficulty of determining the strength of the relationship
between two quantitative variables by visually examining a scatterplot, a numerical
measure of the strength of the relationship will be defined as a supplement to a

Number of Casino Crime Rate y (number of crimes

Year Employees x (thousands) per 1,000 population)

1994 20 132

1995 23 1.67

1996 29 2.17

1997 27 2.70

1998 30 2.75

1999 34 2.87

2000 35 3.65

2001 37 2.86
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2003 43 4.25
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graphical display. The correlation coefficient was first introduced by Francis Galton
in 1888. He applied the correlation coefficient to study the relationship between the
forearm length and height of particular groups of people.

DEFINITION 3.10 The correlation coefficient measures the strength of the linear relationship
between two quantitative variables. The correlation coefficient is usually
denoted as r.

Suppose we have data on variables x and y collected from #n individuals or objects,
with means and standard deviations of the variables given as x and s, for the
x-variable and y and s, for the y-variable. The correlation r between x and y is
computed as

- SN - LS - 00— ) s,

i=1 Sy sy i=1

In computing the correlation coefficient, the variables x and y are standard-
ized to be unit-free variables. The standardized x-variable for the ith individual,
(xls— *), measures how many standard deviations x; is above or below the x-mean.
Thus, the correlation coefficient, r, is a unit-free measure of the strength of the

linear relationship between the quantitative variables, x and y.

EXAMPLE 3.16

For the data in Table 3.17, compute the value of the correlation coefficient.

Solution The computation of r can be performed by any of the statistical software
packages or by Excel. The calculations required to obtain the value of r for the data
in Table 3.17 are given in Table 3.18, with x = 31.80 and y = 2.785.The first row is
computed as

x—¥=20-318=—-118, y—y=132—2785 = —1.465,
(x =)y —y) = (~11.8)(~1.465) = 17.287,
(x — %)% = (—11.8)> = 13924, (y — 7)> = (—1.465)* = 2.14623

TABLE 3.18

Data and calculations X y x—x y-y -0-y G-x? -y
for computing r 20 1.32 -11.8 —1.465 17.287 139.24 2.14623
23 1.67 -8.8 -1.115 9.812 77.44 1.24323
29 2.17 -2.8 —0.615 1.722 7.84 0.37823
27 2.70 —4.8 —0.085 0.408 23.04 0.00722
30 2.75 -1.8 —-0.035 0.063 3.24 0.00123
34 2.87 22 0.085 0.187 4.84 0.00722
35 3.65 32 0.865 2.768 10.24 0.74822
37 2.86 52 0.075 0.390 27.04 0.00562
40 3.61 82 0.825 6.765 67.24 0.68062
43 425 112 1.465 16.408 125.44 2.14622

Total 318 27.85 0 0 55.810 485.60 7.3641

Mean 31.80 2.785

[ ]
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A form of r that is somewhat more direct in its calculation is given by

_ il —X) 0 —y) _ 55.810
VI — X))y, — y)? V(485.6)(7.3641)

r

The above calculations depict a positive correlation between the number of casino
employees and the crime rate. However, this result does not prove that an increase
in the number of casino workers causes an increase in the crime rate. There may be
many other associated factors involved in the increase of the crime rate.

Generally, the correlation coefficient, r, is a positive number if y tends to
increase as x increases; r is negative if y tends to decrease as x increases; and r is
nearly zero if there is either no relation between changes in x and changes in y or a
nonlinear relation between x and y such that the patterns of increase and decrease
in y (as x increases) cancel each other.

Some properties of r that assist us in the interpretation of the relationship
between two variables include the following:

1. A positive value for r indicates a positive association between the
two variables, and a negative value for r indicates a negative associa-
tion between the two variables.

2. The value of r is a number between —1 and +1. When the value of
ris very close to *1, the points in the scatterplot will lie close to a
straight line.

3. Because the two variables are standardized in the calculation of r,
the value of r does not change if we alter the units of x or y. The
same value of r will be obtained no matter what units are used for x
and y. Correlation is a unit-free measure of association.

4. Correlation measures the degree of the straight-line relationship
between two variables. The correlation coefficient does not describe
the closeness of the points (x, y) to a curved relationship, no matter
how strong the relationship.

What values of r indicate a “strong” relationship between y and x? Figure 3.31
displays 15 scatterplots obtained by randomly selecting 1,000 pairs (x;, y;) from 15
populations having bivariate normal distributions with correlations ranging from
—.99 to .99. We can observe that unless |r| is greater than .6, there is very little
trend in the scatterplot.

Finally, we can construct data plots for summarizing the relations among
several quantitative variables. Consider the following example. Thall and Vail
(1990) described a study to evaluate the effectiveness of the anti-epileptic drug
progabide as an adjuvant to standard chemotherapy. A group of 59 epileptics was
selected to be used in the clinical trial. The patients suffering from simple or com-
plex partial seizures were randomly assigned to receive either the anti-epileptic
drug progabide or a placebo. At each of four successive postrandomization clinic
visits, the number of seizures occurring over the previous 2 weeks was reported.
The measured variables were y; (i = 1, 2, 3, 4), the seizure counts recorded at the
four clinic visits; Trt (x1), where 0 is the placebo and 1 is progabide; Base (x;),
the baseline seizure rate; and Age (x3), the patient’s age in years. The data and
summary statistics are given in Tables 3.19 and 3.20.

side-by-side boxplots The first plots are side-by-side boxplots that compare the base number of
seizures and the age of the treated patients to those of the patients assigned to the
placebo. These plots provide a visual assessment of whether the treated patients
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and placebo patients had similar distributions of age and base seizure counts prior
to the start of the clinical trials. An examination of Figure 3.32(a) reveals that the
seizure patterns prior to the beginning of the clinical trials are similar for the two
groups of patients. There is a single patient with a base seizure count greater than
100 in both groups. The base seizure count for the placebo group is somewhat
more variable than that for the treated group—its box is wider than the box for
the treated group. The descriptive statistics table contradicts this observation. The
sample standard deviation is 26.10 for the placebo group and 27.98 for the treated
group. This seemingly inconsistent result occurs due to the large base count for a
single patient in the treated group. The median number of base seizures is higher
for the treated group than for the placebo group. The means are nearly identical
for the two groups. The means are in greater agreement than are the medians due
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TABLE 3.19

Data for epilepsy study: ID I Y2 3 Y4 Trt Base Age
successive 2-week ‘seiZL.lre 104 5 3 3 3 0 11 31
counts for 59 epileptics; 106 3 5 3 3 0 11 30
covariates are adjuvant 107 2 4 0 5 0 6 25
treatment (0 = placebo, 114 4 4 1 4 0 8 36
1 = progabide), 8-week 116 7 18 9 21 0 66 2
baseline seizure counts, 118 5 2 8 7 0 27 29
and age (in years) 123 6 4 0 2 0 12 31
126 40 20 23 12 0 52 42
130 5 6 6 5 0 23 37
135 14 13 6 0 0 10 28
141 26 12 6 22 0 52 36
145 12 6 8 4 0 33 24
201 4 4 6 2 0 18 23
202 7 9 12 14 0 42 36
205 16 24 10 9 0 87 26
206 11 0 0 5 0 50 26
210 0 0 3 3 0 18 28
213 37 29 28 29 0 111 31
215 3 5 2 5 0 18 32
217 3 0 6 7 0 20 21
219 3 4 3 4 0 12 29
220 3 4 3 4 0 9 21
222 2 3 3 5 0 17 32
226 8 12 2 8 0 28 25
227 18 24 76 25 0 55 30
230 2 1 2 1 0 9 40
234 3 1 4 2 0 10 19
238 13 15 13 12 0 47 22
101 11 14 9 8 1 76 18
102 8 7 9 4 1 38 32
103 0 4 3 0 1 19 20
108 3 6 1 3 1 10 30
110 2 6 7 4 1 19 18
111 4 3 1 3 1 24 24
112 22 17 19 16 1 31 30
113 5 4 7 4 1 14 35
117 2 4 0 4 1 11 27
121 3 7 7 7 1 67 20
122 4 18 2 5 1 41 22
124 2 1 1 0 1 7 28
128 0 2 4 0 1 22 23
129 5 4 0 3 1 13 40
137 11 14 25 15 1 46 33
139 10 5 3 8 1 36 21
143 19 7 6 7 1 38 35
147 1 1 2 3 1 7 25
203 6 10 8 8 1 36 26
204 2 1 0 0 1 11 25
207 102 65 72 63 1 151 22
208 4 3 2 4 1 22 32
209 8 6 5 7 1 41 25
211 1 3 1 5 1 32 35
214 18 11 28 13 1 56 21
218 6 3 4 0 1 24 41
221 3 5 4 3 1 16 32
225 1 23 19 8 1 22 26
228 2 3 0 1 1 25 21
232 0 0 0 0 1 13 36
236 1 4 3 2 1 12 37
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TABLE 3.20

Descriptive statistics: 0=PLACEBO
escriptive statistics: | _TREATED
Minitab output for
epilepsy example
(worksheet size: Variable TREATMENT N Mean Median Tr Mean StDev SE Mean
100,000 cells) Y1 0 28 9.36 5.00 8.54 10.14 1.92
1 31 8.58 4.00 5.26 18.24 3.28
Y2 0 28 8.29 4.50 7.81 8.16 1.54
1 31 8.42 5.00 6.37 11.86 2.13
¥3 0 28 8.79 5.00 6.54 14.67 2.77
1 31 8.13 4.00 5.63 13.89 2.50
Y4 0 28 7.96 5.00 7.46 7.63 1.44
1 31 6.71 4.00 4.78 11.26 2.02
BASE 0 28 30.79 19.00 28.65 26.10 4.93
1 31 31.61 24.00 27.37 27.98 5.03
AGE 0 28 29.00 29.00 28.88 6.00 1.13
1 31 27.74 26.00 27.52 6.60 1.19
Variable TREATMENT Min Max Q1 Q3
Y1l 0 0.00 40.00 3.00 12.75
1 0.00 102.00 2.00 8.00
Y2 0 0.00 29.00 3.00 12.75
1 0.00 65.00 3.00 10.00
Y3 0 0.00 76.00 2.25 8.75
1 0.00 72.00 1.00 8.00
Y4 0 0.00 29.00 3.00 11.25
1 0.00 63.00 2.00 8.00
BASE 0 6.00 111.00 11.00 49.25
1 7.00 151.00 13.00 38.00
AGE 0 19.00 42.00 24.25 32.00
1 18.00 41.00 22.00 33.00
FIGURE 3.32(a) "
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FIGURE 3.32(b)
Boxplot of age 40—
by treatment

20

TREATMENT

to the skewed-to-the-right distribution of the middle 50% of the data for the pla-
cebo group, whereas the treated group is nearly symmetric for the middle 50% of
its data. Figure 3.32(b) displays the nearly identical distribution of age for the two
groups; the only difference is that the treated group has a slightly lower median
age and is slightly more variable than is the placebo group. Thus, the two groups
appear to have similar age and baseline-seizure distributions prior to the start of
the clinical trials.

3.8 RESEARCH STUDY: Controlling for Student
Background in the Assessment of Teaching

At the beginning of this chapter, we described a situation faced by many school
administrators having a large minority population in their school and/or a large
proportion of their students classified as from a low-income family. The implica-
tions of such demographics for teacher evaluations based on the performance of
their students on standardized reading and math tests generates much controversy
in the educational community. The task of achieving goals set by the national No
Child Left Behind mandate is much more difficult for students from disadvantaged
backgrounds. Requiring teachers and administrators from school districts with a
high proportion of disadvantaged students to meet the same standards as those
for schools with a more advantaged student body is inherently unfair. This type of
policy may prove to be counterproductive. It may lead to the alienation of teach-
ers and administrators and the flight of the most qualified and most productive
educators from disadvantaged school districts, resulting in a staff with only those
educators with an overwhelming commitment to students with a disadvantaged
background and/or educators who lack the qualifications to move to the higher-
rated schools. A policy that mandates that educators should be held accountable
for the success of their students without taking into account the backgrounds of
those students is destined for failure.

The data from a medium-sized Florida school district with 22 elementary
schools were presented at the beginning of this chapter. The minority status of a
student was defined as black or non-black race. In this school district, almost all
students are non-Hispanic blacks or whites. Most of the relatively small numbers
of Hispanic students are white. Most students of other races are Asian, but they
are relatively few in number. They were grouped in the minority category because
of the similarity of their test score profiles. Poverty status was based on whether
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TABLE 3.21

Summary statistics for Variable Grade N Mean St.Dev Minimum @Q; Median @3 Maximum

22 5400 2420 11.70 3318  60.55  73.38 91.70
19 5647 2348 13.20 37.30 61.00  75.90 92.90

reading scores and math g, 322 17187 916 15550 16498 17465 17918  186.10
scores by grade level 4 22 18988 964 16990 18110 189.45 197.28  206.90
519 20616 1114 19290  197.10 20520 21270  228.10
Reading 322 17110 746 15720 16478 17185 17643  183.80
4 22 18596 1020 16690 17828 18695 193.85  204.70
5 19 20536 1104 18660  199.00 20330 21770  223.30
%Minority 3 22 3943 2532 1230 2000 2845 6945  87.40
4 22 4022 2419 110 2125 3220 6453 9440
519 4042 2637 1050  19.80 2940 6410  92.60
%Poverty 3 22 5876 24.60 13.80 3330 6895 7748 9170
4
5

or not the student received a free or reduced lunch subsidy. The math and reading
scores are from the Iowa Test of Basic Skills. The number of students by class in
each school is given by N in Table 3.21.

The superintendent of schools presented the school board members with the
data, and they wanted an assessment of whether poverty and minority status had
any effect on the math and reading scores. Just looking at the data presented very
little insight in reaching an answer to this question. Using a number of the graphs
and summary statistics introduced in this chapter, we will attempt to assist the
superintendent in providing insight to the school board concerning the impact of
poverty and minority status on student performance.

In order to access the degree of variability in the mean math and reading
scores between the 22 schools, a boxplot of the math and reading scores for each of
the three grade levels is given in Figure 3.33. There are 22 third- and fourth-grade
classes and only 19 fifth-grade classes.

FIGURE 3.33 230
Boxplot of math and
reading scores for each 220
grade
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FIGURE 3.34 Fitted line plot
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From these plots, we observe that for each of the three grade levels there is a
wide variation in mean math and reading scores. However, the level of variability
within a grade appears to be about the same for math and reading scores but with a
wide level of variability for fourth and fifth graders in comparison to third graders.
Furthermore, there is an increase in the median scores from the third to the fifth
grades. A detailed summary of the data is given in Table 3.21.

For the third-grade classes, the scores for math and reading had similar
ranges: 155 to 185. The range for the 22 schools increased to 170 to 205 for the
fourth-grade students in both math and reading. This size of the range for the
fifth-grade students was similar to that of the fourth graders: 190 to 225 for both
math and reading. Thus, the level of variability in reading and math scores is
increasing from third grade to fourth grade to fifth grade. This is confirmed by
examining the standard deviations for the three grades. Also, the median scores
for both math and reading are increasing across the three grades. The school
board then asked the superintendent to identify possible sources of differences
in the 22 schools that may help explain the differences in the mean math and
reading scores.

In order to simplify the analysis somewhat, it was proposed to analyze just
the reading scores because it would appear that the math and reading scores had
a similar variation between the 22 schools. To help justify this choice in analysis,
a scatterplot of the 63 pairs of math and reading scores (recall there were only 19
fifth-grade classes) was generated (see Figure 3.34). From this plot, we can observe
a strong correlation between the reading and math scores for the 63 grades. In fact,
the correlation coefficient between math and reading scores is computed to be .97.
Thus, there is a very strong relationship between reading and math scores at the 22
schools. The remainder of the analysis will concern the reading scores.

The next step in the process is to examine whether minority or poverty status
is associated with the reading scores. Figure 3.35 is a scatterplot of reading versus
%poverty and reading versus %minority.

Although there appears to be a general downward trend in reading scores as
the levels of %poverty and %minority in the schools increase, there is a wide scat-
tering of individual scores about the fitted line. The correlation between reading
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FIGURE 3.35 230
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and %poverty is —.45, and that between reading and %minority is —.53. However,
recall that there is a general upward shift in reading scores from the third grade
to the fifth grade. Therefore, a more appropriate plot of the data would be to fit a
separate line for each of the three grades. This plot is given in Figure 3.36.

From these plots, we can observe a much stronger association between
reading scores and both %poverty and %minority. In fact, if we compute the
correlation between the variables separately for each grade level, we will note a
dramatic increase in the value of the correlation coefficient. The values are given
in Table 3.22.

From Figure 3.36 and the values of the correlation coefficients, we can
observe that as the proportion of minority students in the schools increases, there
is a steady decline in reading scores. The same pattern is observed with respect to
the proportion of students who are classified as being from a low-income family.

What can we conclude from the information presented above? First, it
would appear that scores on reading exams tend to decrease as the values of
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FIGURE 3.36
Scatterplot of reading
scores versus %minority
and %poverty with
separate lines for each
grade
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Correlation Between 3rd Grade 4th Grade S5th Grade

Reading Scores and
% Minority —.83 —.87 =75
% Poverty —.89 -.92 —.76

%poverty and %minority increase. Thus, we may be inclined to conclude that
increasing values of %poverty and %minority cause a decline in reading scores
and hence that the teachers in schools with high levels of %poverty and %minor-
ity should have special considerations when teaching evaluations are conducted.
This type of thinking often leads to very misleading conclusions. There may be
many other variables involved other than %poverty and %minority that may be
impacting the reading scores. To conclude that the high levels %poverty and
%minority in a school will often result in low reading scores cannot be supported
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by these data. Much more information is needed to reach any conclusion having
this type of certainty.

3.9 R Instructions

R Commands for Summarizing Data
Suppose we have two data sets:

Dataset 1: 2,6, 8,12, =19, 30,0, =5, 7, 16, 23, 38, —29, 35, 1, —28
Dataset2:9,2, —4,42,9,23, -3, -6, 5,22, —14, 51, 65, 3, =16, =3

The following commands will generate plots of the data and summary statistics:
1. Enter data into R:

x=c(2,6,8,12, —19,30,0, —5, 7, 16,23, 38, —29, 35,1, —28 )
y=c(9,2, —4,42,9,23, -3, —6,5,22, —14, 51, 65, 3, —16, —3)

. Mean: mean(x)

. Median: median(x)

. Histogram: hist(x)

. Stem-and-leaf plot: stem(x)

. Ordered data: sort(x)

. Percentiles: quantile(x, seq(0, 1, .1))
. Quantiles at p = .1, .34, .68, .93:

p = c(.1,.34,.68,.93)
quantile (x, p)

ONOOUAWN

9. Interquartile range: IQR(x)
10. Variance: var(x)
11. Standard deviation: sd(x)
12. MAD: mad(x)
13. Boxplot: boxplot(x)
14. Scatterplot: plot(x, y)
15. Correlation: cor(x, y)
16. Quantile plot:

n = length(x)

i =seq(l:n)
u=(>Gi-.5)/n
s = sort(x)
plot(u, s)

You can obtain more information about any of the R commands—for example,
plot—by just typing ? plot after the command prompt.

3.10 B AL R GQAL Il EN

This chapter was concerned with graphical and numerical description of data. The
pie chart and bar graph are particularly appropriate for graphically displaying
data obtained from a qualitative variable. The frequency and relative frequency
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histograms and stem-and-leaf plots are graphical techniques applicable only to
quantitative data.

Numerical descriptive measures of data are used to convey a mental image
of the distribution of measurements. Measures of central tendency include the
mode, the median, and the arithmetic mean. Measures of variability include the
range, the interquartile range, the variance, and the standard deviation of a set of
measurements.

We extended the concept of data description to summarize the relations
between two qualitative variables. Here cross-tabulations were used to develop
percentage comparisons. We examined plots for summarizing the relations
between quantitative and qualitative variables and between two quantitative vari-
ables. Material presented here (namely, summarizing relations among variables)
will be discussed and expanded in later chapters on chi-square methods, on the
analysis of variance, and on regression.

Key Formulas

Lety1, 2, ..., y, be a data set of n values with ordered values yy = yo) = ... =y

1. Sample median () 6. Sample variance, grouped data
If nisodd,y = y(ez1), middle . 1 & .y
value s *n_lzfj()’j_)/)

j=1
Ifniseven, y = [y(g) e +1)], 7. Sample standard deviation
ft iddle val
average of two middle values PN
2. Sampl dian, d dat . -
ampe fedian gr(v)vupe ata 8. Sample coefficient of variation
Median = L + f— (5n — cf,)
o cv ="
3. Sample mean (y) lyl
y= 21 9. Sample MAD
n
4. Sample mean, grouped data 1|VIADNT med1|an of £||};1/ ;7: 5|’
Yo = Yooy, = YD/
— E]I'(:lf}yj ’
n 10. Sample correlation coefficient
5. Sample variance

_ ﬁzyzl(xi - )0 — )

1 “ _
s2_ E(Yi_y)z sxsy

n—15

M Erercises

3.3 Describing Data on a Single Variable: Graphical Methods

Gov. 3.1 The U.S. government spent more than $3.6 trillion in the 2014 fiscal year. The following
table provides broad categories that demonstrate the expenditures of the federal government for
domestic and defense programs.
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2014 Expenditures
Federal Program (billions of dollars)
National Defense $612
Social Security $852
Medicare & Medicaid $821
National Debt Interest $253
Major Social-Aid Programs $562
Other $532

a. Construct a pie chart for these data.

b. Construct a bar chart for these data.

c. Construct a pie chart and bar chart using percentages in place of dollars.
d. Which of the four charts is more informative to the tax-paying public?

Bus. 3.2 The type of vehicle the U.S public purchases varies depending on many factors. Table 1060
from the U.S. Census Bureau, Statistical Abstract of the United States: 2012 provides the following
data. The numbers reported are in thousands of units; that is, 9,300 represents 9,300,000 vehicles
sold in 1990.

Year

Type of Vehicle 1990 1995 2000 2005 2006 2007 2008 2009 2010

Passenger Car 9,300 8500 8852 7720 7821 7618 6,814 5456 5,729
SUV/Light Truck 4,560 6,340 8492 9228 8,683 8471 6,382 4945 5826

a. Construct a graph that would display the changes from 1990 to 2010 in the public’s
choice in vehicle.

b. Do you observe any trends in the type of vehicle purchased? What factors may be
influencing these trends?

Med. 3.3 It has been reported that there has been a change in the type of practice physicians are
selecting for their career. In particular, there is concern that there will be a shortage of family
practice physicians in future years. The following table contains data on the total number of
office-based physicians and the number of those physicians declaring themselves to be family
practice physicians. The numbers in the table are given in thousands of physicians. (Source: U.S.
Census Bureau, Statistical Abstract of the United States: 2002.)

Year

1980 1990 1995 1998 1999 2000 2001

Family Practice 47.8 57.6 59.9 64.6 66.2 67.5 70.0
Total Office-Based Physicians 271.3 3599 4273 4688 4732 4904 5140

a. Use a bar chart to display the increase in the number of family practice physicians
from 1990 to 2001.

b. Calculate the percentage of office-based physicians who are family practice physi-
cians and then display these data in a bar chart.

c. Is there a major difference in the trend displayed by the two bar charts?

Env. 3.4 The regulations of the board of health in a particular state specify that the fluoride level
must not exceed 1.5 parts per million (ppm). The 25 measurements given here represent the
fluoride levels for a sample of 25 days. Although fluoride levels are measured more than once per
day, these data represent the early morning readings for the 25 days sampled.
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75 .86 .84 .85 97
94 .89 .84 .83 .89
.88 78 77 .76 .82
72 92 1.05 94 .83
.81 .85 97 .93 79

a. Determine the range of the measurements.

b. Dividing the range by 7, the number of subintervals selected, and rounding, we
have a class interval width of .05. Using .705 as the lower limit of the first interval,
construct a frequency histogram.

c. Compute relative frequencies for each class interval and construct a relative fre-
quency histogram. Note that the frequency and relative frequency histograms for
these data have the same shape.

d. If one of these 25 days were selected at random, what would be the chance (proba-
bility) that the fluoride reading would be greater than .90 ppm? Guess (predict)
what proportion of days in the coming year will have a fluoride reading greater
than .90 ppm.

Gov. 3.5 The National Highway Traffic Safety Administration has studied the use of rear-seat auto-
mobile lap and shoulder seat belts. The number of lives potentially saved with the use of lap and
shoulder seat belts is shown for various percentages of use.

Lives Saved Wearing

Percentage
of Use Lap Belt Only Lap and Shoulder Belt
100 529 678
80 423 543
60 318 407
40 212 271
20 106 136
10 85 108

Suggest several different ways to graph these data. Which one seems more appropriate and
why?

Soc. 3.6 With the increase in the mobility of the population in the United States and with the increase
in home-based employment, there is an inclination to assume that the personal income in the
United States will become fairly uniform across the country. The following table provides the per
capita personal income for each of the 50 states and the District of Columbia.

Income
(thousands of dollars) Number of States

22.0-24.9 5
25.0-27.9 13
28.0-30.9 16
31.0-33.9 9
34.0-36.9 4
37.0-39.9 2
40.0-42.9 2

Total 51
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a. Construct a relative frequency histogram for the income data.

b. Describe the shape of the histogram using the standard terminology of
histograms.

c. Would you describe per capita income as being fairly homogenous across the
United States?

Med. 3.7 The survival times (in months) for two treatments for patients with severe chronic left-
ventricular heart failure are given in the following tables.

Standard Therapy New Therapy
4 15 24 10 1 27 31 5 20 29 15 7 32 36
14 2 16 32 7 13 36 17 15 19 35 10 16 39
29 6 12 18 14 15 18 27 14 10 16 12 13 16

6 13 21 20 8 3 24 9 18 33 30 29 31 27

a. Construct separate relative frequency histograms for the survival times of both
the therapies.

b. Compare the two histograms. Does the new therapy appear to generate a longer
survival time? Explain your answer.

3.8 Combine the data from the separate therapies in Exercise 3.7 into a single data set, and
construct a relative frequency histogram for this combined data set. Does the plot indicate that
the data are from two separate populations? Explain your answer.

Gov. 3.9 Liberal members of Congress have asserted that the U.S. government has been expending
an increasing portion of the nation's resources on the military and intelligence agencies since
1960. The following table contains the outlays (in billion of dollars) for the Defense Department
and associated intelligence agencies since 1960. The data are also given as a percentage of gross
national product (% GNP).

Year Expenditure % GNP Year Expenditure % GNP
1960 48 9.3 1996 266 35
1970 81 8.1 1997 271 33
1980 134 4.9 1998 269 3.1
1981 158 52 1999 275 3.0
1982 185 5.8 2000 295 3.0
1983 210 6.1 2001 306 3.0
1984 227 6.0 2002 349 33
1985 253 6.1 2003 376 33
1986 273 6.2 2004 456 3.8
1987 282 6.1 2005 495 3.9
1988 290 59 2006 522 3.9
1989 304 5.7 2007 551 3.9
1990 299 5.2 2008 616 43
1991 273 4.6 2009 661 4.7
1992 298 4.8 2010 694 4.7
1993 291 4.4 2011 768 5.1
1994 282 4.1 2012 738 4.7
1995 272 3.7

Source: U.S. Census Bureau, Statistical Abstract of the United States, 2012.
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a. Plot the defense expenditures time series data and describe any trends across the
period from 1960 to 2012.

b. Plot the% GNP time series data and describe any trends across the period from
1960 to 2012.

c. Do the two time series have similar trends? Do either of the plots support the
assertions by the liberal members of Congress?

d. What factors, domestic or international, do you think may have had an influence
on your observed trends?

Soc. 3.10 The following table presents homeownership rates, in percentages, by state for the years
1985, 1996, and 2002. These values represent the proportion of homes owned by the occupant to
the total number of occupied homes.

State 1985 1996 2002 State 1985 1996 2002
Alabama 70.4 71.0 73.5 Montana 66.5 68.6 69.3
Alaska 61.2 62.9 67.3 Nebraska 68.5 66.8 68.4
Arizona 64.7 62.0 65.9 Nevada 57.0 61.1 65.5
Arkansas 66.6 66.6 70.2 New Hampshire 65.5 65.0 69.5
California 54.2 55.0 58.0 New Jersey 62.3 64.6 67.2
Colorado 63.6 64.5 69.1 New Mexico 68.2 67.1 70.3
Connecticut 69.0 69.0 71.6 New York 50.3 52.7 55.0
Delaware 70.3 715 75.6 North Carolina 68.0 70.4 70.0
Dist. of Columbia 37.4 40.4 44.1 North Dakota 69.9 68.2 69.5
Florida 67.2 67.1 68.7 Ohio 67.9 69.2 72.0
Georgia 62.7 69.3 71.7 Oklahoma 70.5 68.4 69.4
Hawaii 51.0 50.6 57.4 Oregon 61.5 63.1 66.2
Idaho 71.0 714 73.0 Pennsylvania 71.6 717 74.0
Tllinois 60.6 68.2 70.2 Rhode Island 61.4 56.6 59.6
Indiana 67.6 74.2 75.0 South Carolina 72.0 72.9 77.3
Towa 69.9 72.8 73.9 South Dakota 67.6 67.8 715
Kansas 68.3 67.5 70.2 Tennessee 67.6 68.8 70.1
Kentucky 68.5 73.2 73.5 Texas 60.5 61.8 63.8
Louisiana 70.2 64.9 67.1 Utah 715 72.7 72.7
Maine 73.7 76.5 73.9 Vermont 69.5 70.3 70.2
Maryland 65.6 66.9 72.0 Virginia 68.5 68.5 74.3
Massachusetts 60.5 61.7 62.7 Washington 66.8 63.1 67.0
Michigan 70.7 73.3 76.0 West Virginia 75.9 74.3 77.0
Minnesota 70.0 75.4 77.3 Wisconsin 63.8 68.2 72.0
Mississippi 69.6 73.0 74.8 Wyoming 732 68.0 72.8
Missouri 69.2 70.2 74.6

Source: U.S. Bureau of the Census, http://www.census.gov/ftp/pub/hhes/www/hvs.htmI.

a. Construct relative frequency histogram plots for the homeownership data given in
the table for the years 1985, 1996, and 2002.

b. What major differences exist among the plots for the three years?

c. Why do you think the plots have changed over these 17 years?

d. How could Congress use the information in these plots for writing tax laws that
allow major tax deductions for homeownership?

3.11 Construct a stem-and-leaf plot for the data of Exercise 3.10.

3.12 Describe the shape of the stem-and-leaf plot and histogram for the homeownership
data in Exercises 3.10 and 3.11, using the terms modality, skewness, and symmetry in your
description.

Bus. 3.13 A supplier of high-quality audio equipment for automobiles accumulates monthly sales
data on speakers and receiver—-amplifier units for 5 years. The data (in thousands of units per
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month) are shown in the following table. Plot the sales data. Do you see any overall trend in the
data? Do there seem to be any cyclic or seasonal effects?

Year J F M A M J J A S (] N D
1 101.9 93.0 93.5 93.9 104.9 94.6 105.9 116.7 1284 118.2 107.3 108.6
2 109.0 98.4 99.1 110.7 100.2 112.1 123.8 135.8 124.8 114.1 114.9 112.9
3 115.5 104.5 105.1 105.4 117.5 106.4 118.6 130.9 143.7 1322 120.8 121.3
4 122.0 1104 110.8 111.2 124.4 1124 124.9 138.0 1515 139.5 127.7 128.0
5 128.1 115.8 116.0 117.2 130.7 117.5 131.8 145.5 159.3 146.5 134.0 1342
3.4 Describing Data on a Single Variable:
Measures of Central Tendency
Basic 3.14 Compute the mean, median, and mode for the following data:
155 25 30 52 142 35 51 26 2 23
270 74 29 29 29 29 51 83 9 69
Basic 3.15 Compute the mean, median, and mode for the following data:
35 81 96 45 109 126 71 15 8 79 56
73 58 17 82 29 58 68 24 5 24

Basic 3.16 Refer to the data in Exercise 3.15 with the measurements 109 and 126 replaced by 378 and
517. Recompute the mean, median, and mode. Discuss the impact of these extreme measure-
ments on the three measures of central tendency.

Basic 3.17 Compute a 10% trimmed mean for the data sets in Exercises 3.15 and 3.16. Do the extreme
values in Exercise 3.16 affect the 10% trimmed mean? Would a 5% trimmed mean be as affected
by the two extreme values as the 10% trimmed mean?

Basic 3.18 A data set of 75 values is summarized in the following frequency table. Estimate the mean,
median, and mode for the 75 data values using the summarized data.

Class Interval Frequency

2.0-4.9 9

5.0-7.9 19

8.0-10.9 27
11.0-13.9 10
14.0-16.9 5
17.0-19.9 3
20.0-22.9 2

Engin. 3.19 A study of the reliability of buses [“Large Sample Simultaneous Confidence Intervals

for the Multinominal Probabilities on Transformations of the Cell Frequencies,” Technometrics
(1980) 22:588] examined the reliability of 191 buses. The distance traveled (in 1,000s of miles)
prior to the first major motor failure was classified into intervals. A modified form of the table
follows.
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Distance Traveled
(1,000s of miles) Frequency

0-20.0 6
20.1-40.0 11
40.1-60.0 16
60.1-100.0 59
100.1-120.0 46
120.1-140.0 33
140.1-160.0 16
160.1-200.0 4

a. Sketch the relative frequency histogram for the distance data and describe its
shape.

b. Estimate the mode, median, and mean for the distance traveled by the 191 buses.

C. What does the relationship among the three measures of center indicate about the
shape of the histogram for these data?

d. Which of the three measures would you recommend as the most appropriate rep-
resentative of the distance traveled by one of the 191 buses? Explain your answer.

Med. 3.20 In astudy of 1,329 American men reported in American Statistician [(1974) 28:115-122],
the men were classified by serum cholesterol and blood pressure. The group of 408 men who
had blood pressure readings less than 127 mm Hg were then classified according to their serum
cholesterol level.

Serum Cholesterol

(mg/100cc) Frequency
0.0-199.9 119
200.0-219.9 88
220.0-259.9 127
greater than 259 74

a. Estimate the mode, median, and mean for the serum cholesterol readings
(if possible).

b. Which of the three summary statistics is most informative concerning a typical
serum cholesterol level for the group of men? Explain your answer.

Env. 3.21 The ratio of DDE (related to DDT) to PCB concentrations in bird eggs has been shown
to have a number of biological implications. The ratio is used as an indication of the movement
of contamination through the food chain. The paper “The Ratio of DDE to PCB Concentrations in
Great Lakes Herring Gull Eggs and Its Use in Interpreting Contaminants Data” [Journal of Great Lakes
Research (1998) 24(1):12-31] reports the following ratios for eggs collected at 13 study sites from
the five Great Lakes. The eggs were collected from both terrestrial- and aquatic-feeding birds.

DDE to PCB Ratio

Terrestrial Feeders 76.50 6.03 3.51 9.96 4.24 7.74 9.54 41.70 1.84 2.50 1.54
Aquatic Feeders 0.27 0.61 0.54 0.14 0.63 0.23 0.56 0.48 0.16 0.18

a. Compute the mean and median for the 21 ratios, ignoring the type of feeder.

b. Compute the mean and median separately for each type of feeder.

€. Using your results from parts (a) and (b), comment on the relative sensitivity of
the mean and median to extreme values in a data set.
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d. Which measure, mean or median, would you recommend as the more appropriate
measure of the DDE to PCB level for both types of feeders? Explain your answer.

Med. 3.22 A study of the survival times, in days, of skin grafts on burn patients was examined by
Woolson and Lachenbruch [Biometrika (1980) 67:597-606]. Two of the patients left the study
prior to the failure of their grafts. The survival time for these individuals is some number greater
than the reported value.

Survival time (days): 37, 19, 57%, 93, 16, 22, 20, 18, 63, 29, 60*

(The “*” indicates that the patient left the study prior to failure of the graft; values given are for
the day the patient left the study.)
a. Calculate the measures of center (if possible) for the 11 patients.
b. If the survival times of the two patients who left the study were obtained, how
would these new values change the values of the summary statistics calculated
in (a)?

Engin. 3.23 A study of the reliability of diesel engines was conducted on 14 engines. The engines were
run in a test laboratory. The time (in days) until the engine failed is given here. The study was termi-
nated after 300 days. For those engines that did not fail during the study period, an asterisk is placed
by the number 300. Thus, for these engines, the time to failure is some value greater than 300.

Failure time (days): 130, 67, 300%, 234, 90, 256, 87, 120, 201, 178, 300%, 106, 289, 74

a. Calculate the measures of center for the 14 engines.
b. What are the implications of computing the measures of center when some of the
exact failure times are not known?

Gov. 3.24 Effective tax rates (per $100) on residential property for three groups of large cities,
ranked by residential property tax rate, are shown in the following table.

Group 1 Rate Group 2 Rate Group 3 Rate
Detroit, M1 4.10 Burlington, VT 1.76 Little Rock, AR 1.02
Milwaukee, WI 3.69 Manchester, NH 1.71 Albuquerque, NM 1.01
Newark, NJ 3.20 Fargo, ND 1.62 Denver, CO 94
Portland, OR 3.10 Portland ME 1.57 Las Vegas, NV .88
Des Moines, IA 2.97 Indianapolis, IN 1.57 Oklahoma City, OK .81
Baltimore, MD 2.64 Wilmington, DE 1.56 Casper, WY .70
Sioux Falls, TA 2.47 Bridgeport, CT 1.55 Birmingham, AL .70
Providence, RI 2.39 Chicago, IL 1.55 Phoenix, AZ .68
Philadelphia, PA 2.38 Houston, TX 1.53 Los Angeles, CA .64
Omaha, NE 2.29 Atlanta, GA 1.50 Honolulu, HI .59

Source: Government of the District of Columbia, Department of Finance and Revenue, Tax Rates and Tax
Burdens in the District of Columbia: A Nationwide Comparison (annual).

a. Compute the mean, median, and mode separately for the three groups.

b. Compute the mean, median, and mode for the complete set of 30 measurements.

c. What measure or measures best summarize the center of these distributions?
Explain.

3.25 Refer to Exercise 3.24. Average the three group means, the three group medians, and the
three group modes, and compare your results to those of part (b). Comment on your findings.

3.5 Describing Data on a Single Variable: Measures of Variability

Engin. 3.26 Pushing economy and wheelchair-propulsion technique were examined for eight wheelchair
racers on a motorized treadmill in a paper by Goosey and Campbell [Adapted Physical Activity
Quarterly (1998) 15:36-50]. The eight racers had the following years of racing experience:
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Racing experience (years): 6, 3,10, 4,4,2,4,7

a. Verity that the mean years of experience is 5 years. Does this value appear to
adequately represent the center of the data set?

b. Verify that 3,(y — y)> = 3,(y — 5)> = 46.

c. Calculate the sample variance and standard deviation for the experience data.
How would you interpret the value of the standard deviation relative to the
sample mean?

3.27 In the study described in Exercise 3.26, the researchers also recorded the ages of the eight
racers.

Age (years): 39, 38, 31, 26, 18, 36, 20, 31

a. Calculate the sample standard deviation of the eight racers’ ages.
b. Why would you expect the standard deviation of the racers’ ages to be larger than
the standard deviation of their years of experience?

Engin. 3.28 For the data in Exercises 3.26 and 3.27,

a. Calculate the coefficient of variation (CV) for both the racers’ ages and their
years of experience. Are the two CVs relatively the same? Compare their relative
sizes to the relative sizes of their standard deviations.

b. Estimate the standard deviations for both the racers’ ages and their years of
experience by dividing the ranges by 4. How close are these estimates to the
standard deviations calculated in Exercises 3.26 and 3.27?

Med. 3.29 The treatment times (in minutes) for patients at a health clinic are as follows:

21 20 31 24 15 21 24 18 33 8
26 17 27 29 24 14 29 41 15 11
13 28 22 16 12 15 11 16 18 17
29 16 24 21 19 7 16 12 45 24
21 12 10 13 20 35 32 22 12 10

Construct the quantile plot for the treatment times for the patients at the health clinic.
a. Find the 25th percentile for the treatment times and interpret this value.
b. The health clinic advertises that 90% of all its patients have a treatment time of
40 minutes or less. Do the data support this claim?

Env. 3.30 To assist in estimating the amount of lumber in a tract of timber, an owner decided to
count the number of trees with diameters exceeding 12 inches in randomly selected 50 X 50-foot
squares. Seventy 50 X 50 squares were randomly selected from the tract and the number of trees
(with diameters in excess of 12 inches) was counted for each. The data are as follows:

7 8 6 4 9 11 9 9 9 10
9 8 11 5 8 5 8 8 7 8
3 5 8 7 10 7 8 9 8§ 11
10 8 9 8 9 9 7 8 13 8
9 6 7 9 9 7 9 5 6 5
6 9 8 8 4 4 7 7 8 9
10 2 7 10 8 10 6 7 7 8

a. Construct a relative frequency histogram to describe these data.

b. Calculate the sample mean y as an estimate of u, the mean number of timber
trees with diameter exceeding 12 inches for all 50 X 50 squares in the tract.

c. Calculate s for the data. Construct the intervals (y = s), (y = 2s), and (y = 3s).
Count the percentages of squares falling in each of the three intervals, and
compare these percentages with the corresponding percentages given by the
Empirical Rule.
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Bus. 3.31 Consumer Reports in its June 1998 issue reports on the typical daily room rate at six luxury
and nine budget hotels. The room rates are given in the following table.

Luxury Hotel $175 $180 $120 $150 $120 $125
Budget Hotel $50 $50 $49 $45 $36 $45 $50 $50 $40

a. Compute the mean and standard deviation of the room rates for both luxury and
budget hotels.

b. Verify that luxury hotels have a more variable room rate than budget hotels.

c. Give a practical reason why the luxury hotels are more variable than the budget
hotels.

d. Might another measure of variability be better to compare luxury and budget
hotel rates? Explain.

Env. 3.32 Many marine phanerogam species are highly sensitive to changes in environmental con-
ditions. In the article “Posidonia oceanica: A Biological Indicator of Past and Present Mercury
Contamination in the Mediterranean Sea” [Marine Environmental Research, March 1998
45:101-111], the researchers report the mercury concentrations over a period of about 20 years
at several locations in the Mediterranean Sea. Samples of Posidonia oceanica were collected by
scuba diving at a depth of 10 meters. For each site, 45 orthotropic shoots were sampled and the
mercury concentration was determined. The average mercury concentration is recorded in the
following table for each of the sampled years.

Mercury Concentration (ng/g dry weight)

Site 1 Site 2
Year Calvi Marseilles-Coriou
1992 14.8 70.2
1991 12.9 160.5
1990 18.0 102.8
1989 8.7 100.3
1988 18.3 103.1
1987 10.3 129.0
1986 19.3 156.2
1985 12.7 117.6
1984 15.2 170.6
1983 24.6 139.6
1982 21.5 147.8
1981 18.2 197.7
1980 25.8 262.1
1979 11.0 123.3
1978 16.5 363.9
1977 28.1 3294
1976 50.5 542.6
1975 60.1 369.9
1974 96.7 705.1
1973 100.4 462.0
1972 * 556.1
1971 #* 461.4
1970 #* 628.8
1969 #* 489.2
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a. Generate a time-series plot of the mercury concentrations and place lines for both
sites on the same graph. Comment on any trends in the lines across the years of
data. Are the trends similar for both sites?

b. Select the most appropriate measure of center for the mercury concentrations.
Compare the centers for the two sites.

c. Compare the variabilities of the mercury concentrations at the two sites. Use the
CV in your comparison, and explain why it is more appropriate than using the
standard deviations.

d. When comparing the centers and variabilities of the two sites, should the years
1969-1972 be used for site 2?

3.6 The Boxplot

Med. 3.33 Construct a boxplot for the following measurements:

33,31,19,25,23,27,11,9,29,3,17,9,2,5,8,2,9,1,3

Med. 3.34 The following data are the resting pulse rates for 30 randomly selected individuals who
were participants at a 10K race.

49 40 59 56 55 70 49 59 55 49 58 54 55 72 51
54 56 55 65 57 61 41 52 60 49 57 46 55 63 55

a. Construct a stem-and-leaf plot of the pulse rates.

b. Construct a boxplot of the pulse rates.

c. Describe the shape of the distribution of the pulse rates.

d. The boxplot provides information about the distribution of pulse rates for what

population?
Bus. 3.35 Consumer Reports in its May 1998 issue provides cost per daily feeding for 28 brands of dry

dog food and 23 brands of canned dog food. Using the Minitab computer program, the following
side-by-side boxplot for these data was created.

DOG FOOD COSTS BY TYPE OF FOOD

3.5 %
k

2.5+ |

2.0+

COST

1.5+

0 -

CAN DRY
TYPE

a. From these graphs, determine the median, lower quartile, and upper quartile for
the daily costs of both dry and canned dog food.

b. Comment on the similarities and differences in the distributions of daily costs for
the two types of dog food.

3.7 Summarizing Data from More Than One Variable:
Graphs and Correlation

Soc. 3.36 For the homeownership rates given in Exercise 3.10, construct separate boxplots for the
years 1985, 1996, and 2002.
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a. Describe the distributions of homeownership rates for each of the 3 years.
b. Compare the descriptions given in part (a) to the descriptions given in
Exercise 3.10.

Soc. 3.37 Compute the mean, median, and standard deviation for the homeownership rates given in
Exercise 3.10.
a. Compare the mean and median for the 3 years of data. Which value, mean or
median, is more appropriate for these data sets? Explain your answers.
b. Compare the degrees of variability in homeownership rates over the 3 years.

Soc. 3.38 For the boxplots constructed for the homeownership rates given in Exercise 3.36, place the
three boxplots on the same set of axes.

a. Use this side-by-side boxplot to discuss changes in the median homeownership
rate over the 3 years.

b. Use this side-by-side boxplot to discuss changes in the variation in these rates over
the 3 years.

C. Are there any states that have extremely low homeownership rates?

d. Are there any states that have extremely high homeownership rates?

Soc. 3.39 In the paper “Demographic Implications of Socioeconomic Transition Among the Tribal Popu-
lations of Manipur, India” [Human Biology (1998) 70(3):597-619], the authors describe the tre-
mendous changes that have taken place in all the tribal populations of Manipur, India, since the
beginning of the twentieth century. The tribal populations of Manipur are in the process of socio-
economic transition from a traditional subsistence economy to a market-oriented economy. The
following table displays the relation between literacy level and subsistence group for a sample of
614 married men and women in Manipur, India.

Literacy Level

At Least
Subsistence Group Illiterate Primary Schooling Middle School

Shifting Cultivators 114 10 45
Settled Agriculturists 76 2 53
Town Dwellers 93 13 208

a. Graphically depict the data in the table using a stacked bar graph.

b. Do a percentage comparison based on the row and column totals. What conclu-
sions do you reach with respect to the relation between literacy and subsistence
group?

Engin. 3.40 In the manufacture of soft contact lenses, the power (the strength) of the lens needs to be
very close to the target value. In the paper “An ANOM-Type Test for Variances from Normal Pop-
ulations” [Technometrics (1997) 39:274-283], a comparison of several suppliers is made relative
to the consistency of the power of the lens. The following table contains the deviations from the
target power value of lenses produced using materials from three different suppliers:

Supplier Deviations from Target Power Value

1 189.9 1919 1909 183.8 1855 1909 1928 1884 189.0

2 156.6 1584 157.7 1541 1523 1615 1581 1509 156.9

3 218.6 2084 187.1 1995 2020 2111 197.6 2044 206.8
a. Compute the mean and standard deviation for the deviations of each supplier.
b. Plot the sample deviation data.
c. Describe the deviation from specified power for the three suppliers.
d. Which supplier appears to provide material that produces lenses having power

closest to the target value?
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Bus. 3.41 The federal government keeps a close watch on money growth versus targets that have
been set for that growth. We list two measures of the money supply in the United States, M2
(private checking deposits, cash, and some savings) and M3 (M2 plus some investments), which
are given here for 20 consecutive months.

Money Supply Money Supply

(in trillions (in trillions

of dollars) of dollars)
Month M2 M3 Month M2 M3
1 2.25 2.81 11 2.43 3.05
2 227 2.84 12 2.42 3.05
3 2.28 2.86 13 2.44 3.08
4 2.29 2.88 14 2.47 3.10
5 2.31 2.90 15 2.49 3.10
6 2.32 2.92 16 2.51 3.13
7 2.35 2.96 17 2.53 3.17
8 2.37 2.99 18 2.53 3.18
9 2.40 3.02 19 2.54 3.19
10 242 3.04 20 2.55 3.20

a. Would a scatterplot describe the relation between M2 and M3?
b. Construct a scatterplot. Is there an obvious relation?

3.42 Refer to Exercise 3.41. What other data plot might be used to describe and summarize
these data? Make the plot and interpret your results.

Supplementary Exercises

Env. 3.43 To control the risk of severe core damage during a commercial nuclear power station
blackout accident, the reliability of the emergency diesel generators in starting on demand must
be maintained at a high level. The paper “Empirical Bayes Estimation of the Reliability of Nuclear-
Power Emergency Diesel Generators” [Technometrics (1996) 38:11-23] contains data on the
failure history of seven nuclear power plants. The following data are the number of successful
demands between failures for the diesel generators at one of these plants from 1982 to 1988.

28 50 193 55 4 7 147 76 10 0 10 & 0 9 1 0 62
26 15 226 54 46 128 4 105 40 4 273 164 7 55 41 26 6

(Note: The failure of the diesel generator does not necessarily result in damage to the nuclear

core because all nuclear power plants have several emergency diesel generators.)

. Calculate the mean and median of the successful demands between failures.

. Which measure appears to best represent the center of the data?

. Calculate the range and standard deviation, s.

. Use the range approximation to estimate s. How close is the approximation to the
true value?

e. Construct the intervals

o 0T

y*xs y *2s y *3s

Count the number of demands between failures falling in each of the three inter-
vals. Convert these numbers to percentages and compare your results to the
Empirical Rule.

f. Why do you think the Empirical Rule and your percentages do not match well?

Edu. 3.44 The College of Dentistry at the University of Florida has made a commitment to develop
its entire curriculum around the use of self-paced instructional materials such as videotapes, slide
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tapes, and syllabi. It is hoped that each student will proceed at a pace commensurate with his
or her ability and that the instructional staff will have more free time for personal consultation
in student—faculty interaction. One such instructional module was developed and tested on the
first 50 students proceeding through the curriculum. The following measurements represent the
number of hours it took these students to complete the required modular material.

16 8 33 21 34 17 12 14 27 6
33 25 16 7 15 18 25 29 19 27
5 12 29 22 14 25 21 17 9 4
12 15 13 11 6 9 26 5 16 5
9 11 5 4 5 23 21 10 17 15

a. Calculate the mode, the median, and the mean for these recorded completion
times.

b. Guess the value of s.

c. Compute s by using the shortcut formula and compare your answer to that of
part (b).

d. Would you expect the Empirical Rule to describe adequately the variability of
these data? Explain.

Bus. 3.45 The February 1998 issue of Consumer Reports provides data on the price of 24 brands of
paper towels. The prices are given in both cost per roll and cost per sheet because the brands had
varying numbers of sheets per roll.

Brand Price per Roll Number of Sheets per Roll Cost per Sheet
1 1.59 50 .0318
2 0.89 55 .0162
3 0.97 64 0152
4 1.49 96 0155
5 1.56 90 0173
6 0.84 60 .0140
7 0.79 52 0152
8 0.75 72 .0104
9 0.72 80 .0090

10 0.53 52 .0102
11 0.59 85 .0069
12 0.89 80 .0111
13 0.67 85 .0079
14 0.66 80 .0083
15 0.59 80 .0074
16 0.76 80 .0095
17 0.85 85 .0100
18 0.59 85 .0069
19 0.57 78 .0073
20 1.78 180 .0099
21 1.98 180 .0100
22 0.67 100 .0067
23 0.79 100 .0079
24 0.55 90 .0061

a. Compute the standard deviation for both the price per roll and the price per
sheet.

b. Which is more variable, price per roll or price per sheet?

¢. In your comparison in part (b), should you use s or CV? Justify your answer.
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3.46 Refer to Exercise 3.45. Use a scatterplot to plot the price per roll and number of sheets
per roll.
a. Do the 24 points appear to fall on a straight line?
b. If not, is there any other relation between the two prices?
c. What factors may explain why the ratio of price per roll to number of sheets is not
a constant?

3.47 Refer to Exercise 3.45. Construct boxplots for both price per roll and number of sheets per
roll. Are there any “unusual” brands in the data?

Env. 3.48 The paper “Conditional Simulation of Waste-Site Performance” [ Technometrics (1994) 36:
129-161] discusses the evaluation of a pilot facility for demonstrating the safe management, stor-
age, and disposal of defense-generated, radioactive, transuranic waste. Researchers have deter-
mined that one potential pathway for release of radionuclides is through contaminant transport
in groundwater. Recent focus has been on the analysis of transmissivity, a function of the proper-
ties and the thickness of an aquifer that reflects the rate at which water is transmitted through
the aquifer. The following table contains 41 measurements of transmissivity, T, made at the pilot

facility.
9354 6302  24.609 10.093 0.939 354.81  15399.27 88.17 1253.43 0.75 312.10
1.94 3.28 1.32 7.68 2.31 16.69  2772.68 0.92 10.75 0.000753
1.08  741.99 323 6.45 2.69 398  2876.07 12201.13 4273.66 207.06
2.50 2.80 5.05 3.01 462.38 5515.69 118.28 10752.27 956.97 20.43

. Draw a relative frequency histogram for the 41 values of T.

. Describe the shape of the histogram.

c. When the relative frequency histogram is highly skewed to the right, the
Empirical Rule may not yield very accurate results. Verify this statement for the
data given.

d. Data analysts often find it easier to work with mound-shaped relative frequency

histograms. A transformation of the data will sometimes achieve this shape.

Replace the given 41 T values with the logarithm base 10 of the values and recon-

struct the relative frequency histogram. Is the shape more mound-shaped than the

original data? Apply the Empirical Rule to the transformed data, and veritfy that
it yields more accurate results than it did with the original data.

[o )]

Soc. 3.49 A random sample of 90 standard metropolitan statistical areas (SMSAs) was studied to
obtain information on murder rates. The murder rates (number of murders per 100,000 people)
were recorded, and these data are summarized in the following frequency table.

Class Interval fi Class Interval fi
-.5-15 2 13.5-15.5 9
1.5-3.5 18 15.5-17.5 4
3.5-55 15 17.5-19.5 2
55-7.5 13 19.5-21.5 1
7.5-9.5 9 21.5-23.5 1
9.5-11.5 8 23.5-25.5 1
11.5-13.5 7

Construct a relative frequency histogram for these data.

3.50 Refer to the data of Exercise 3.49.
a. Estimate the sample mean, sample median, and sample mode.
b. Which measure of center would you recommend using as a measure of the center
of the distribution for the murder rates?
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3.51 Refer to the data of Exercise 3.49.

a.
b.

C.

Estimate the interquartile range and the sample standard deviation.

Which measure of variation would you recommend using as a measure of the vari-
ation in the murder rates?

Identify the population to which the measures of center and variation would be
reasonable estimators.

3.52 Refer to the homeownership data in Exercise 3.10.

a.

b.

Construct a quantile plot for each of the 3 years of data. Place these plots on the
same set of axes.

Congress wants to develop special programs for those states having low
homeownership percentages. Which states fell into the lower 10th percentile of
homeownership during 2002?

. Was there a change in the states falling into the 10th percentile during the 3 years,

1985, 1996, and 2002?

3.53 Refer to the homeownership data in Exercise 3.10.

a.
b.

C.

d.

e.

Compute mean and median homeownership percentages during the 3 years.
Which measure best represents the average homeownership percentage during
each of the 3 years?

Compute standard deviation and MAD homeownership percentage during the

3 years.

Which measure best represents the variation in homeownership percentages
across the U.S during each of the 3 years?

Describe the change in the percentage of homes owned by the occupant over the
3 years.

3.54 The Insurance Institute for Highway Safety published data on the total damage suffered
by compact automobiles in a series of controlled, low-speed collisions. The data, in dollars, with
brand names removed are as follows:

1,

[o Mo Ik o gl )]

361 393 430 543 566 610 763 851
886 887 976 1,039 1,124 1,267 1,328 1415
425 1444 1476 1542 1544 2,048 2,197

. Draw a histogram of the data using six or seven categories.

. On the basis of the histogram, what would you guess the mean to be?

. Calculate the median and mean.

. What does the relation between the mean and median indicate about the shape of

the data?

3.55 Data are collected on the weekly expenditures of a sample of urban households on food
(including restaurant expenditures). The data, obtained from diaries kept by each household, are
grouped by number of members of the household. The expenditures are as follows:

1 member:

2 members:

3 members:

4 members:

5+ members:

a.
b.

C.

e.

67 62 168 128 131 118 80 53 99 68
76 55 84 71 70 140 84 65 67 183
129 116 122 70 141 102 120 75 114 81 106 95
94 98 85 81 67 69 119 105 94 94 92
79 99 171 145 86 100 116 125
82 142 82 94 8 191 100 116
139 251 93 155 158 114 108
111 106 99 132 62 129 91
121 128 129 140 206 111 104 109 135 136

Compute the mean expenditure separately for each of the five groups.

Combine the five data sets into a single data set and then compute the mean
expenditure.

Describe a method by which the mean for the combined data set could be obtained
from the five individual means.

Describe the relation (if any) among the mean expenditures for the five groups.
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3.56 Refer to the data of Exercise 3.55.

a. Compute the standard deviation in the expenditures separately for each of the
five groups.

b. Combine the five data sets into a single data set and then compute the standard
deviation in expenditures.

c. Describe a method by which the standard deviation for the combined data set
could be obtained from the five individual standard deviations.

d. Which group appears to have the largest variability in expenditures?

Gov. 3.57 Federal authorities have destroyed considerable amounts of wild and cultivated marijuana
plants. The following table shows the number of plants destroyed and the number of arrests for a
12-month period for 15 states.

State Plants Arrests
1 110,010 280
2 256,000 460
3 665 6
4 367000 66
5 4,700,000 15
6 4,500 8
7 247000 36
8 300,200 300
9 3,100 9

10 1,250 4
11 3,900,200 14
12 68,100 185
13 450 5
14 2,600 4
15 205,844 33

a. Discuss the appropriateness of using the sample mean to describe these two
variables.

b. Compute the sample mean, 10% trimmed mean, and 20% trimmed mean. Which
trimmed mean seems more appropriate for each variable? Why?

c. Does there appear to be a relation between the number of plants destroyed
and the number of arrests? How might you examine this question? What other
variable(s) might be related to the number of plants destroyed?

Bus. 3.58 The most widely reported index of the performance of the New York Stock Exchange
(NYSE) is the Dow Jones Industrial Average (DJIA). This index is computed from the stock
prices of 30 companies. When the DJIA was invented in 1896, the index was the average price
of 12 stocks. The index was modified over the years as new companies were added and dropped
from the index and was also altered to reflect when a company splits its stock. The closing New
York Stock Exchange (NYSE) prices for the 30 components (as of June 19, 2014) of the DJIA are
given in the following table.

a. Compute the average price of the 30 stock prices in the DJIA.

b. The DJIA is no longer an average; the name includes the word “average” only for
historical reasons. The index is computed by summing the stock prices and divid-
ing by a constant, which is changed when stocks are added or removed from the
index and when stocks split.

2?21 Yi
DIJIA = C
where y; is the closing price for stock i and C = 0.155625. Using the stock prices
given, compute the DJIA for June 19, 2014.
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c. The DJIA is a summary of data. Does the DJIA provide information about a popula-
tion using sampled data? If so, to what population? Is the sample a random sample?

Components of DJIA
Company Stock Price (Noon 6/19/2014)
3M Co 144.41
American Express Co 94.72
AT&T Inc 35.31
Boeing Co 132.41
Caterpillar Inc 107.28
Chevron Corp 130.73
Cisco Systems Inc 24.63
E.I. Dupont de Nemours and Co 67.55
Exxon Mobil Corp 101.85
General Electric Co 26.90
Goldman Sachs Group Inc 169.52
Home Depot Inc 80.10
Intel Corp 29.99
IBM 182.95
Johnson & Johnson 103.41
JP Morgan Chase and Co 57.36
McDonald’s Corp 101.60
Merck & Co Inc 58.27
Microsoft Corp 41.45
Nike Inc 75.43
Pfizer 29.55
Procter & Gamble Co 80.28
The Coca-Cola Co 41.76
Travelers Companies Inc 95.51
United Technologies Corp 117.09
United Health Group Inc 79.88
Verizon Communications Inc 49.47
Visa Inc 208.30
Wal-Mart Stores Inc 76.25
Walt Disney Co 83.69
H.R. 3.59 As one part of a review of middle-manager selection procedures, a study was made of

the relation between the hiring source (promoted from within, hired from related business,
hired from unrelated business) and the 3-year job history (additional promotion, same position,
resigned, dismissed). The data for 120 middle managers follow.

Source
Job History Within Firm Related Business Unrelated Business Total
Promoted 13 4 10 27
Same Position 32 8 18 58
Resigned 9 6 10 25
Dismissed 3 3 4 10
Total 57 21 42 120
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a. Compute the job-history percentages within each of the three sources.

b. Describe the relation between job history and source.

c. Use an appropriate graph to display the relation between job history and
source.

Env. 3.60 In order to assess the U.S. public's opinion about national energy policy, random samples
were taken of 150 residents of major coal-producing states, 200 residents of major natural gas/
oil-producing states, and 450 residents of the remaining states. Each resident was asked to select
his or her most preferred national energy policy. The results are shown in the following table.

Type of State
Energy Policy Coal Oil & Gas Other Total
Coal Based 62 25 53 140
Oil & Gas Based 19 79 102 200
Nuclear Based 8 6 22 36
Solar & Wind Based 58 78 247 383
Fusion Based 3 12 26 41
Total 150 200 450 800

a. Replace the number of responses in the table with the five percentages for each of
the three groups of respondents.

b. Based on the percentages, does there appear to be a strong dependence between
the type of state and the energy policy?

c. Provide a graphical display of the dependency.

d. Which energy policy has the strongest support amongst the 800 surveyed
people?

e. Do the opinions displayed in the above table represent the U.S. public’s opinion
in general?

Bus. 3.61 A municipal workers’ union that represents sanitation workers in many small midwestern
cities studied the contracts that were signed in the previous years. The contracts were subdivided
into those settled by negotiation without a strike, those settled by arbitration without a strike,
and those settled after a strike. For each contract, the first-year percentage wage increase was
determined. Summary figures follow.

Contract Type Negotation  Arbitration  Poststrike
Mean Percentage Wage Increase 8.20 9.42 8.40
Variance 0.87 1.04 1.47
Standard Deviation 0.93 1.02 121
Sample Size 38 16 6

Does there appear to be a relationship between contract type and mean percentage wage
increase? If you were management rather than union affiliated, which posture would you take
in future contract negotiations?

Med. 3.62 Refertotheepilepsystudydatain Table3.19. Examine the scatterplots of Y7, >, Y3, and
Y, versus baseline count and age given here.
a. Does there appear to be a difference in the relationship between the seizure count
(Y1 — Y4) and either the baseline count or age when considering the two groups
(treatment and placebo)?
b. Describe the type of apparent differences, if any, that you found in part (a).
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Seizure counts versus age and baseline counts
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Med. 3.63 The correlations computed for the six variables in the epilepsy study are given here. Do
the sizes of the correlation coefficients reflect the relationships displayed in the graphs given in
Exercise 3.62? Explain your answer.

Placebo Group

Y Y, Y3 Y, Base
Y, 782
Y3 507 .661
Y .675 780 .676
Base 744 .831 493 .818
Age 326 .108 113 117 .033

Treatment Group

Y Y2 Y3 Y, Base
Y, .907
Y3 912 925
Yy 971 .947 952
Base .854 .845 .834 .876
Age —.141 —.243 —.194 —-.197 —.343

Med. 3.64 An examination of the scatterplots in Exercise 3.62 reveals one patient with a very large

value for baseline count and all subsequent counts. The patient has ID 207.
a. Predict the effect of removing the patient with ID 207 from the data set on the
size of the correlations in the treatment group.
b. Using a computer program, compute the correlations with patient ID 207
removed from the data. Do the values confirm your predictions?

Med. 3.65 Refer to the research study concerning the effect of social factors on reading and math
scores in Section 3.8. We justified studying just the reading scores because there was a strong cor-
relation between reading and math scores. Construct the same plots for the math scores as were
constructed for the reading scores.
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a. Is there support for the same conclusions for the math scores as obtained for the
reading scores?
b. If the conclusions are different, why do you suppose this has happened?

Med. 3.66 In the research study concerning the effect of social factors on reading and math scores,
we found a strong negative correlation between %minority and %poverty and reading scores in
Section 3.8.
a. Why is it not possible to conclude that large relative values for %minority and
%poverty in a school result in lower reading scores for children in these social
classes?
b. List several variables related to the teachers and students in the schools that may
be important in explaining why low reading scores were strongly associated with
schools having large values of %minority and %poverty.

Soc. 3.67 In the January 2004 issue of Consumer Reports, an article titled “Cut the Fat” described
some of the possible problems in the diets of the U.S. public. The following table gives data on
the increase in daily calories in the food supply per person. Construct a time-series plot to display
the increase in calorie intake.

Year 1970 1975 1980 1985 1990 1995 2000
Calories 3,300 3,200 3,300 3,500 3,600 3,700 3,900

a. Describe the trend in calorie intake over the 30 years.
b. What would you predict the calorie intake was in 2005? Justify your answer by
explaining any assumptions you are making about calorie intake.

Soc. 3.68 In the January 2004 issue of Consumer Reports, an article titled “Cut the Fat” described
some of the possible problems in the diets of the U.S. public. The following table gives data on the
increase in pounds of added sugar produced per person. Construct a time-series plot to display
the increase in sugar production.

Year 1970 1975 1980 1985 1990 1995 2000
Pounds of Sugar 119 114 120 128 132 144 149

a. Describe the trend in sugar production over the 30 years.

b. Compute the correlation coefficient between calorie intake (using the data in
Exercise 3.67) and sugar production. Is there strong evidence that the increase in
sugar production is causing the increased calorie intake by the U.S. public?

Med. 3.69 Certain types of diseases tend to occur in clusters. In particular, persons affected with
AIDS, syphilis, and tuberculosis may have some common characteristics and associations that
increase their chances of contracting these diseases. The following table lists the number of
reported cases by state in 2001.

State AIDS Syphilis Tuber. State AIDS Syphilis Tuber.
AL 438 720 265 MT 15 0 20
AK 18 9 54 NE 74 16 40
AZ 540 1,147 289 NV 252 62 96
AR 199 239 162 NH 40 20 20
CA 4,315 3,050 3,332 NJ 1,756 1,040 530
CO 288 149 138 NM 143 73 54
CT 584 165 121 NY 7476 3,604 1,676
DE 248 79 33 NC 942 1,422 398
(continued)
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State AIDS Syphilis Tuber. State AIDS Syphilis Tuber.
DC 870 459 74 ND 3 2 6
FL 5,138 2,914 1,145 OH 581 297 306
GA 1,745 1,985 575 OK 243 288 194
HI 124 41 151 OR 259 48 123
1D 19 11 9 PA 1,840 726 350
1L 1,323 1,541 707 RI 103 39 60
IN 378 529 115 SC 729 913 263
1A 90 44 43 SD 25 1 13
KS 98 88 63 TN 602 1,478 313
KY 333 191 152 X 2,892 3,660 1,643
LA 861 793 294 uT 124 25 35
ME 48 16 20 VT 25 8 7
MD 1,860 937 262 VA 951 524 306
MA 765 446 270 WA 532 174 261
MI 548 1,147 330 wvV 100 7 32
MN 157 132 239 WI 193 131 86
MS 418 653 154 WY 5 4 3
MO 445 174 157 All States 41,868 32,221 15,989

a. Construct a scatterplot of the number of AIDS cases versus the number of syphilis
cases.

b. Compute the correlation between the number of AIDS cases and the number of
syphilis cases.

c. Does the value of the correlation coefficient reflect the degree of association
shown in the scatterplot?

d. Why do you think there may be a correlation between these two diseases?

Med. 3.70 Refer to the data in Exercise 3.69.
a. Construct a scatterplot of the number of AIDS cases versus the number of tuber-
culosis cases.
b. Compute the correlation between the number of AIDS cases and the number of
tuberculosis cases.
c. Why do you think there may be a correlation between these two diseases?

Med. 3.71 Refer to the data in Exercise 3.69.
a. Construct a scatterplot of the number of syphilis cases versus the number of
tuberculosis cases.
b. Compute the correlation between the number of syphilis cases and the number of
tuberculosis cases.
C. Why do you think there may be a correlation between these two diseases?

Med. 3.72 Refer to the data in Exercise 3.69.
a. Construct a quantile plot of the number of syphilis cases.
b. From the quantile plot, determine the 90th percentile for the number of syphilis
cases.
c. Identify the states in which the number of syphilis cases is above the 90th
percentile.

Med. 3.73 Refer to the data in Exercise 3.69.
a. Construct a quantile plot of the number of tuberculosis cases.
b. From the quantile plot, determine the 90th percentile for the number of tubercu-
losis cases.
c. Identify the states in which the number of tuberculosis cases is above the 90th
percentile.
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3.74 Refer to the data in Exercise 3.69.
a. Construct a quantile plot of the number of AIDS cases.
b. From the quantile plot, determine the 90th percentile for the number of AIDS
cases.
c. Identify the states in which the number of AIDS cases is above the 90th
percentile.

3.75 Refer to the results from Exercises 3.72-3.74.
a. How many states had numbers of AIDS, tuberculosis, and syphilis cases that were
all above the 90th percentiles?
b. Identify these states and comment on any common elements among the
states.
c. How could the U.S. government apply the results from Exercises 3.69-3.75 in
making public health policy?

3.76 The article “Viral Load and Heterosexual Transmission of Human Immunodeficiency Virus
Type 1” [New England Journal of Medicine (2000) 342:921-929], reports a study that addressed
the question of whether people with high levels of HIV-1 are significantly more likely to transmit
HIV to their uninfected partners. Measurements follow of the HIV-1 RNA levels in the group
whose partners were initially uninfected but became HIV positive during the course of the study:
values are given in units of RNA copies/mL.

79725, 12862, 18022, 76712, 256440, 14013, 46083, 6808, 85781, 1251,
6081, 50397, 11020, 13633 1064, 496433, 25308, 6616, 11210, 13900

a. Determine the mean, median, and standard deviation.
b. Find the 25th, 50th, and 75th percentiles.

c. Plot the data in a boxplot and histogram.

d. Describe the shape of the distribution.

3.77 In many statistical procedures, it is often advantageous to have a symmetric distribution.
When the data have a histogram that is highly right-skewed, it is often possible to obtain a sym-
metric distribution by taking a transformation of the data. For the data in Exercise 3.76, take the
natural logarithm of the data and answer the following questions.

a. Determine the mean, median, and standard deviation.

b. Find the 25th, 50th, and 75th percentiles.

c. Plot the data in a boxplot and histogram.

d. Did the logarithm transformation result in a somewhat symmetric distribution?

3.78 PCBs are a class of chemicals often found near the disposal of electrical devices. PCBs tend
to concentrate in human fat and have been associated with numerous health problems. In the
article “Some Other Persistent Organochlorines in Japanese Human Adipose Tissue” [ Environ-
mental Health Perspective (April, 2000) 108:599—603], researchers examined the concentra-
tions of PCB (ng/g) in the fat of a group of adults. They detected the following concentrations:

1800, 1800, 2600, 1300, 520, 3200, 1700, 2500, 560, 930, 2300, 2300, 1700, 720

. Determine the mean, median, and standard deviation.

. Find the 25th, 50th, and 75th percentiles.

. Plot the data in a boxplot.

. Would it be appropriate to apply the Empirical Rule to these data? Why or
why not?

[o e I o gl )]

3.79 The focal point of an agricultural research study was the relationship between the time a
crop is planted and the amount of crop harvested. If a crop is planted too early or too late, farm-
ers may fail to obtain optimal yield and hence not make a profit. An ideal date for planting is
set by the researchers, and the farmers then record the number of days either before or after the
designated date. In the following data set, D is the number of days from the ideal planting date
and Y is the yield (in bushels per acre) of a wheat crop:
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D -19 —18 —15 -12 -9 -6 —4 -3 -1 0
Y 30.7 29.7 44.8 414 48.1 42.8 49.9 46.9 46.4 535
D 1 3 6 8 12 15 17 19 21 24
Y 55.0 46.9 441 50.2 41.0 42.8 36.5 35.8 322 233
a. Plot the data in a scatterplot.
b. Describe the relationship between the number of days from the optimal planting
date and the wheat yield.
c. Calculate the correlation coefficient between days from optimal planting and
yield.
d. Explain why the correlation coefficient is relatively small for this data set.
Con. 3.80 Although an exhaust fan is present in nearly every bathroom, it often is not used due to the

high noise level. This is an unfortunate practice because regular use of the fan results in a reduc-
tion of indoor moisture. Excessive indoor moisture often results in the development of mold,
which may have adverse health consequences. Consumer Reports in its January 2004 issue reports
on a wide variety of bathroom fans. The following table displays the price (P) in dollars of the fans
and the quality of the fan measured in airflow (AF), cubic feet per minute (cfm).

P 95 115 110 15 20 20 75 150 60 60
AF 60 60 60 55 55 55 85 80 80 75

P 160 125 125 110 130 125 30 60 110 85
AF 90 90 100 110 90 90 90 110 110 60

a. Plot the data in a scatterplot and comment on the relationship between price and
airflow.

b. Compute the correlation coefficient for this data set. Is there a strong or weak
relationship between price and airflow of the fans?

c. Is your conclusion in part (b) consistent with your answer in part (a)?

d. Based on your answers in parts (a) and (b), would it be reasonable to conclude
that higher-priced fans generate greater airflow?
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4.1 Introduction and Abstract of Research Study

We stated in Chapter 1 that a scientist uses inferential statistics to make state-
ments about a population based on information contained in a sample of units
selected from that population. Graphical and numerical descriptive techniques
were presented in Chapter 3 as a means to summarize and describe a sample.

149
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However, a sample is not identical to the population from which it was selected.
We need to assess the degree of accuracy to which the sample mean, sample
standard deviation, or sample proportion represents the corresponding popula-
tion values.

Most management decisions must be made in the presence of uncertainty.
Prices and designs for new automobiles must be selected on the basis of shaky
forecasts of consumer preference, national economic trends, and competitive
actions. The size and allocation of a hospital staff must be decided with limited
information on patient load. The inventory of a product must be set in the face of
uncertainty about demand. Probability is the language of uncertainty. Now let us
examine probability, the mechanism for making inferences. This idea is probably
best illustrated by an example.

Newsweek, in its June 20, 1998, issue, asks the question “Who Needs Doc-
tors? The Boom in Home Testing.” The article discusses the dramatic increase
in medical screening tests for home use. The home-testing market has expanded
beyond the two most frequently used tests, pregnancy and diabetes glucose mon-
itoring, to a variety of diagnostic tests that were previously used only by doctors
and certified laboratories. There is a DNA test to determine whether twins are
fraternal or identical, a test to check cholesterol level, a screening test for colon
cancer, and tests to determine whether your teenager is a drug user. However,
the major question that needs to be addressed is, How reliable are the testing
kits? When a test indicates that a woman is not pregnant, what is the chance that
the test is incorrect and the woman is truly pregnant? This type of incorrect result
from a home test could translate into a woman not seeking the proper prenatal
care in the early stages of her pregnancy.

Suppose a company states in its promotional materials that its pregnancy
test provides correct results in 75% of its applications by pregnant women. We
want to evaluate the claim, so we select 20 women who have been determined by
their physicians, using the best possible testing procedures, to be pregnant. The
test is taken by each of the 20 women, and for all 20 women, the test result is nega-
tive, indicating that none of the 20 is pregnant. What do you conclude about the
company’s claim about the reliability of its test? Suppose you are further assured
that each of the 20 women was in fact pregnant, as was determined several months
after the test was taken.

If the company’s claim of 75% reliability was correct, we would have
expected somewhere near 75% of the tests in the sample to be positive. How-
ever, none of the test results was positive. Thus, we would conclude that the com-
pany’s claim is probably false. Why did we fail to state with certainty that the
company’s claim was false? Consider the possible setting. Suppose we have a
large population consisting of millions of units and 75% of the units are Ps for
positives and 25% of the units are Ns for negatives. We randomly select 20 units
from the population and count the number of units in the sample that are Ps. Is
it possible to obtain a sample consisting of 0 Ps and 20 Ns? Yes, it is possible, but
it is highly improbable. Later in this chapter, we will compute the probability of
such a sample occurrence.

To obtain a better view of the role that probability plays in making inferences
from sample results that are then used to draw conclusions about populations,
suppose 14 of the 20 tests are positive—that is, a 70% correct response rate.
Would you consider this result highly improbable and reject the company’s claim
of a 75% correct response rate? How about 12 positives and 8 negatives, or 16
positives and 4 negatives? At what point do we decide that the result of the
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observed sample is so improbable, assuming the company’s claim is correct, that
we disagree with its claim? To answer this question, we must know how to find
the probability of obtaining a particular sample outcome. Knowing this prob-
ability, we can then determine whether we agree or disagree with the company’s
claim. Probability is the tool that enables us to make an inference. Later in this
chapter, we will discuss in detail how the FDA and private companies determine
the reliability of screening tests.

Because probability is the tool for making inferences, we need to define
probability. In the preceding discussion, we used the term probability in its every-
day sense. Let us examine this idea more closely.

Observations of phenomena can result in many different outcomes, some
of which are more likely than others. Numerous attempts have been made to
give a precise definition for the probability of an outcome. We will cite three of
these.

classical interpretation The first interpretation of probability, called the classical interpretation of
of probability ~ probability, arose from games of chance. Typical probability statements of this
type are, for example, “the probability that a flip of a balanced coin will show
‘heads’ is 1/2” and “the probability of drawing an ace when a single card is drawn
from a standard deck of 52 cards is 4/52.” The numerical values for these probabili-
ties arise from the nature of the games. A coin flip has two possible outcomes (a
head or a tail); the probability of a head should then be 1/2 (1 out of 2). Similarly,
there are 4 aces in a standard deck of 52 cards, so the probability of drawing an ace

in a single draw is 4/52, or 4 out of 52.
In the classical interpretation of probability, each possible distinct result is
outcome  called an outcome; an event is identified as a collection of outcomes. The prob-
event  ability of an event E under the classical interpretation of probability is computed
by taking the ratio of the number of outcomes, N,, favorable to event E to the total

number of possible outcomes, V:

Plevent E) = e
even = —
N

The applicability of this interpretation depends on the assumption that all out-
comes are equally likely. If this assumption does not hold, the probabilities indi-
cated by the classical interpretation of probability will be in error.
relative frequency A second interpretation of probability is called the relative frequency concept
interpretation  of probability; this is an empirical approach to probability. If an experiment is
repeated a large number of times and event E occurs 30% of the time, then .30
should be a very good approximation to the probability of event E. Symbolically,
if an experiment is conducted » different times and if event E occurs on n, of these
trials, then the probability of event E is approximately

n
Plevent E) = —*
n

We say “approximately” because we think of the actual probability P(event E) as
the relative frequency of the occurrence of event E over a very large number of
observations or repetitions of the phenomenon. The fact that we can check prob-
abilities that have a relative frequency interpretation (by simulating many repeti-
tions of the experiment) makes this interpretation very appealing and practical.
The third interpretation of probability can be used for problems in which it is
difficult to imagine a repetition of an experiment. These are “one-shot” situations.
For example, the director of a state welfare agency who estimates the probability
that a proposed revision in eligibility rules will be passed by the state legislature
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would not be thinking in terms of a long series of trials. Rather, the director would
personal/subjective  use a personal or subjective probability to make a one-shot statement of belief
interpretation of  regarding the likelihood of passage of the proposed legislative revision. The prob-
probability  lem with subjective probabilities is that they can vary from person to person and

they cannot be checked.

Of the three interpretations presented, the relative frequency concept seems
to be the most reasonable one because it provides a practical interpretation of the
probability for most events of interest. Even though we will never run the neces-
sary repetitions of the experiment to determine the exact probability of an event,
the fact that we can check the probability of an event gives meaning to the relative
frequency concept. Throughout the remainder of this text, we will lean heavily on
this interpretation of probability.

Abstract of Research Study: Inferences About Performance-
Enhancing Drugs Among Athletes

The Associated Press reported the following in an April 28, 2005, article:

CHICAGO—The NBA and its players union are discussing expanded testing
for performance-enhancing drugs, and commissioner David Stern said Wednes-
day he is optimistic it will be part of the new labor agreement. The league already
tests for recreational drugs and more than a dozen types of steroids. But with
steroid use by professional athletes and the impact they have on children under
increasing scrutiny, Stern said he believes the NBA should do more.

An article in USA Today (April 27, 2005) by Dick Patrick reports:

Just before the House Committee on Government Reform hearing on steroids
and the NFL ended Wednesday, ranking minority member Henry Waxman, D-
Calif., expressed his ambiguity about the effectiveness of the NFL testing system.
He spoke to a witness panel that included NFL Commissioner Paul Tagliabue and
NFL Players Association executive director Gene Upshaw, both of whom had
praised the NFL system and indicated there was no performance-enhancing drug
problem in the league. “There’s still one thing that puzzles me,” Waxman said,
“and that’s the fact that there are a lot of people who are very credible in sports
who tell me privately that there’s a high amount of steroid use in football. When I
look at the testing results, it doesn’t appear that’s the case. It’s still nagging at me.”

Finally, we have a report from ABC News (April 27, 2005) in which the drug issue in
major league sports is discussed:

A law setting uniform drug-testing rules for major U.S. sports would be a mis-
take, National Football League Commissioner Paul Tagliabue said Wednesday
under questioning from House lawmakers skeptical that professional leagues
are doing enough. “We don’t feel that there is rampant cheating in our sport,”
Tagliabue told the House Government Reform Committee. Committee mem-
bers were far less adversarial than they were last month, when Mark McGwire,
Jose Canseco and other current and former baseball stars were compelled to
appear and faced tough questions about steroid use. Baseball commissioner
Bud Selig, who also appeared at that hearing, was roundly criticized for the
punishments in his sport’s policy, which lawmakers said was too lenient.

One of the major reasons the leaders of professional sports athletes’ unions
are so concerned about drug testing is that failing a drug test can devastate an
athlete’s career. The controversy over performance-enhancing drugs has seriously
brought into question the reliability of the tests for these drugs. Some banned sub-
stances, such as stimulants like cocaine and artificial steroids, are relatively easy to
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deal with because they are not found naturally in the body. If these are detected
at all, the athlete is banned. Nandrolone, a close chemical cousin of testosterone,
was thought to be in this category until recently. But a study has since shown that
normal people can have a small but significant level in their bodies—0.6 nanograms
per milliliter of urine. The International Olympic Committee has set a limit of 2
nanograms per milliliter. But expert Mike Wheeler, a doctor at St Thomas’ Hospi-
tal, states that this is “awfully close” to the level at which an unacceptable number
(usually more than .01%) of innocent athletes might produce positive tests.

In an article titled “Inferences About Testosterone Abuse Among Athletes,”
in a 2004 issue of Chance (17:5-8), the authors discuss some of the issues involved
with the drug testing of athletes. In particular, they discuss the issues involved in
determining the reliability of drug tests. They report:

The diagnostic accuracy of any laboratory test is defined as the ability to dis-
criminate between two types of individuals—in this case, users and nonusers.
Specificity and sensitivity characterize diagnostic tests.... Estimating these pro-
portions requires collecting and tabulating data from the two reference samples,
users and nonusers,... Bayes’ rule is a necessary tool for relating experimental
evidence to conclusions, such as whether someone has a disease or has used a par-
ticular substance. Applying Bayes’ rule requires determining the test’s sensitivity
and specificity. It also requires a pre-test (or prior) probability that the athlete
has used a banned substance.

Any drug test can result in a false positive due to the variability in the testing
procedure, biologic variability, or inadequate handling of the material to be tested.
Even if a test is highly reliable and produces only 1% false positives but the test is
widely used, with 80,000 tests run annually, the result would be that 800 athletes
would be falsely identified as using a banned substance. The result is that innocent
people will be punished. The trade-off between determining that an athlete is a
drug user and convincing the public that the sport is being conducted fairly is not
obvious. The authors state, “Drug testing of athletes has two purposes: to prevent
artificial performance enhancement (known as doping) and to discourage the use
of potentially harmful substances.” Thus, there is a need to be able to assess the
reliability of any testing procedure.

In this chapter, we will explicitly define the terms specificity, sensitivity, and
prior probability. We will then formulate Bayes’ rule (which we will designate as
Bayes’ Formula). At the end of the chapter, we will return to this article and dis-
cuss the issues of false positives and false negatives in drug testing and how they are
computed from our knowledge of the specificity and sensitivity of a drug test along
with the prior probability that a person is a user.

4.2 Finding the Probability of an Event

In the preceding section, we discussed three different interpretations of probability.
In this section, we will use the classical interpretation and the relative frequency
concept to illustrate the computation of the probability of an outcome or event.
Consider an experiment that consists of tossing two coins, a penny and then a dime,
and observing the upturned faces. There are four possible outcomes:

TT: tails for both coins

TH: a tail for the penny, a head for the dime
HT: ahead for the penny, a tail for the dime
HH: heads for both coins
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What is the probability of observing the event exactly one head from the two
coins?

This probability can be obtained easily if we can assume that all four out-
comes are equally likely. In this case, that seems quite reasonable. There are N = 4
possible outcomes, and N, = 2 of these are favorable for the event of interest,
observing exactly one head. Hence, by the classical interpretation of probability,

2 1
P tly 1 head) = — = —
(exactly 1 head) i)

Because the event of interest has a relative frequency interpretation, we
could also obtain this same result empirically, using the relative frequency con-
cept. To demonstrate how relative frequency can be used to obtain the prob-
ability of an event, we will use the ideas of simulation. Simulation is a technique
that produces outcomes having the same probability of occurrence as the real
situation events. The computer is a convenient tool for generating these out-
comes. Suppose we wanted to simulate 500 tosses of two fair coins. We can use a
computer program R to simulate the tosses. R is a software program that you can
obtain free of charge by visiting the website cran.r-product.org or just by typing
CRAN into Google. The following R code will be used to generate 500 two-digit
numbers. Even digits will be designated as H and odd digits designated as T.
The 500 numbers have now been transformed into pairs of Ts and Hs. Because
there are five even and five odd single-digit numbers, the probability of obtain-
ing an even number is 5/10 = .5, which is the same probability of obtaining an
odd number. This set of 500 pairs of single-digit numbers represents 500 tosses
of two fair coins; that is, coins in which the probabilities of H and T are both .5.
The first digit represents the outcome of tossing the first coin and, the second
digit represents the toss of the second coin. For example, the number 36 would
represent a T for the toss of the first coin and an H for the toss of the second coin.
The following lines of code in R will generate 500 pairs of randomly selected
single-digit numbers.

1. y =¢c(0:9)

2. x; = sample(y, 500, replace = T)
3. xp = sample(y, 500, replace = T)
4. x = cbind(xy, x2)

5. x

Most computer packages contain a random-number generator that can be used to
produce similar results. Table 4.1(a) contains the results of the simulation of the
500 pairs of tosses. The 500 pairs of single-digit numbers are then summarized in
Table 4.1(b).

Note that this approach yields simulated probabilities that are nearly in
agreement with our intuition; that is, intuitively we might expect these outcomes to
be equally likely. Thus, each of the four outcomes should occur with a probability
equal to 1/4, or .25. This assumption was made for the classical interpretation. We
will show in Chapter 10 that in order to be 95% certain that the simulated prob-
abilities are within .01 of the true probabilities, the number of tosses should be at
least 7,500 and not 500 as we used previously.

If we wish to find the probability of tossing two coins and observing exactly
one head, we have, from Table 4.1(b),

117 + 125

P(exactly 1 head) = =m0 484
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TABLE 4.1(a) Simulation of tossing a penny and a dime 500 times

25
82
46
15
66
48
26
86
18
52
07
66
21
87
70
57
85
29
42
08

32
81
86
81
44
20
79
12
87
79
40
79
47
2
84
32
65
11
97
30

70
58
89
39
15
27
54
83
21
14
96
83
34
18
50
98
78
45
56
37

15
50
82
83
40
73
64
09
48
12
46
82
02
65
37
05
05
22
38
89

96
85
20
79
29
53
94
27
75
94
22
62
05
66
58
83
24
38
41
17

87
27
23
21
73
21
01
60
63
51
04
20
73
18
41
39
65
33
87
89

80 43 15 77 89 51 08 36 29 55 42 86 45 93 68 72 49 99 37
99 41 10 31 42 35 50 02 68 33 50 93 73 62 15 15 90 97 24
63 59 50 40 32 72 59 62 58 53 01 8 49 27 31 48 53 07 78
88 57 35 33 49 37 85 42 28 38 50 43 8 47 01 55 42 02 52
11 06 79 81 49 64 32 06 07 31 07 78 73 07 26 36 39 20 14
44 16 00 33 43 95 21 08 19 60 68 30 99 27 22 74 65 22 05
21 47 86 94 24 41 06 81 16 07 30 34 99 54 68 37 38 71 79
49 54 21 92 64 57 07 39 04 66 73 76 74 93 50 56 23 41 23
09 97 9 8 8 68 65 35 92 40 57 87 8 71 04 16 01 03 45
39 40 42 17 32 94 42 34 68 17 39 32 38 03 75 56 79 79 57
12 90 80 71 46 11 18 81 54 95 47 72 06 07 66 05 59 34 81
75 71 73 79 48 86 83 74 04 13 36 87 96 11 39 81 59 41 70
71 57 64 58 05 16 57 27 66 92 97 68 18 52 09 45 34 80 57
84 31 09 38 05 67 10 45 03 48 52 48 33 36 00 49 39 55 35
08 62 42 64 02 29 33 68 87 58 52 39 98 78 72 13 13 15 96
13 39 37 08 17 01 35 13 98 66 89 40 29 47 37 65 86 73 42
24 92 03 46 67 48 90 60 02 61 21 12 8 70 35 15 40 52 76
32 52 17 20 03 26 34 18 8 46 52 66 63 30 84 53 76 47 21
14 43 30 35 99 06 76 67 00 47 83 32 52 42 48 51 69 15 18
23 58 13 93 17 44 09 08 61 05 35 44 91 8 35 15 06 39 27

either A or B occurs

TABLE 4.1(b)
Summary of the simulation

4.3

Event Outcome of Simulation Frequency Relative Frequency
TT (0dd, Odd) 129 129/500 = .258
TH (Odd, Even) 117 117/500 = 234
HT (Even, Odd) 125 125/500 = 250
HH (Even, Even) 129 129/500 = .258

This is very close to the theoretical probability, which we have shown to be .5.

Note that we could easily modify our example to accommodate the tossing
of an unfair coin. Suppose we are tossing a penny that is weighted so that the
probability of a head occurring in a toss is .70 and the probability of a tail is .30.
We could designate an H outcome whenever one of the random digits 0, 1, 2, 3,
4,5, or 6 occurs and a T outcome whenever one of the digits 7, 8, or 9 occurs. The
same simulation program can be run as before, but we would interpret the output
differently.

Basic Event Relations and Probability Laws

The probability of an event—say, event A —will always satisfy the property
0=PA)=1

that is, the probability of an event lies anywhere in the interval from 0 (the occur-
rence of the event is impossible) to 1 (the occurrence of the event is a “sure thing”).

Suppose A and B represent two experimental events and you are interested
in a new event, the event that either A or B occurs. For example, suppose that we
toss a pair of dice and define the following events:

A: A total of 7 shows
B: A total of 11 shows
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Then the event “either A or B occurs” is the event that you toss a total of either 7
or 11 with the pair of dice.

mutually exclusive Note that, for this example, the events A and B are mutually exclusive; that
is, if you observe event A (a total of 7), you could not at the same time observe
event B (a total of 11). Thus, if A occurs, B cannot occur (and vice versa).

DEFINITION 4.1 Two events A and B are said to be mutually exclusive if (when the experiment
is performed a single time) the occurrence of one of the events excludes the
possibility of the occurrence of the other event.

The concept of mutually exclusive events is used to specify a second property
that the probabilities of events must satisfy. When two events are mutually exclu-
sive, then the probability that either one of the events will occur is the sum of the
event probabilities.

DEFINITION 4.2 If two events, A and B, are mutually exclusive, the probability that either
event occurs is P(either A or B) = P(A) + P(B).

Definition 4.2 is a special case of the union of two events, which we will soon define.

The definition of additivity of probabilities for mutually exclusive events can
be extended beyond two events. For example, when we toss a pair of dice, the sum
S of the numbers appearing on the dice can assume any one of the values § = 2, 3,
4,...,11,12. On a single toss of the dice, we can observe only one of these values.
Therefore, the values 2, 3, . . ., 12 represent mutually exclusive events. If we want to
find the probability of tossing a sum less than or equal to 4, this probability is

P(S=4)=P2)+ P3) + P4)

For this particular experiment, the dice can fall in 36 different equally likely
ways. We can observe a 1 on die 1 and a 1 on die 2, denoted by the symbol (1, 1).
We can observe a 1 on die 1 and a 2 on die 2, denoted by (1, 2). In other words, for
this experiment, the possible outcomes are

(LH 21 G1H @G (6,1 (6,1
(1,2 2,20 3,20 &2 (52 (6,2
(1,3 23 33 &3 (53) (6,3
1,4 249 G4 &4 649 (6,49
(1,5 2,5 3,5 &5 (5,5 (6,5
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

Asyou can see, only one of these events, (1, 1), will result in a sum equal to 2. There-
fore, we would expect a 2 to occur with a relative frequency of 1/36 in a long series
of repetitions of the experiment, and we let P(2) = 1/36. The sum S = 3 will occur
if we observe an outcome of either (1, 2) or (2, 1). Therefore, P(3) = 2/36 = 1/18.
Similarly, we find P(4) = 3/36 = 1/12. It follows that

1 1 1 1
=4) = - - =—+—+-—-=-
P(S=4)=PQ2)+ P(3) + P@4) % 18 12 6
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complement A third property of event probabilities concerns an event and its complement.

DEFINITION 4.3 The complement of an event A is the event that A does not occur. The com-
plement of A is denoted by the symbol A.

Thus, if we define the complement of an event A as a new event—namely, “A does
not occur” —it follows that

P(A) + P(A) =1

For an example, refer again to the two-coin-toss experiment. If, in many repe-
titions of the experiment, the proportion of times you observe event A, “two
heads show,” is 1/4, then it follows that the proportion of times you observe
the event A, “two heads do not show,” is 3/4. Thus, P(A) and P(A) will always
sum to 1.

We can summarize the three properties that the probabilities of events must
satisfy as follows:

Properties of If A and B are any two mutually exclusive events associated with an experi-
Probabilities ment, then P(A) and P(B) must satisfy the following properties:

1. 0=PA)=1and0=PB) =1

2. P(either Aor B) = P(A) + P(B)

3. P(A) + P(A) =1land P(B) + P(B) =1

union We can now define two additional event relations: the union and the intersection
intersection of two events.

DEFINITION 4.4 The union of two events A and B is the set of all outcomes that are included
in either A or B (or both). The union is denoted as AUB.

DEFINITION 4.5 The intersection of two events A and B is the set of all outcomes that are
included in both A and B. The intersection is denoted as ANB.

These definitions along with the definition of the complement of an event formal-
ize some simple concepts. The event A occurs when A does not; AUB occurs when
either A or B occurs; ANB occurs when A and B occur.

The additivity of probabilities for mutually exclusive events, called the addition
law for mutually exclusive events, can be extended to give the general addition law.

DEFINITION 4.6 Consider two events A and B; the probability of the union of A and B is

P(AUB) = P(A) + P(B) — P(ANB)
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FIGURE 4.1
Probabilities for events
Aand B

4.4

TABLE 4.2
Categorization of
insurance claims

EXAMPLE 4.1

Events and event probabilities are shown in the Venn diagram in Figure 4.1. Use
this diagram to determine the following probabilities:

a. P(A), P(A)

b. P(B), P(B)

c. P(ANB)

d. P(AUB)

Solution From the Venn diagram, we are able to determine the following prob-
abilities: B

a. P(A) = .5; therefore P(A) =1 - .5

=1-2

b. P(B) = .2; therefore P(B)
c. P(ANB) = .05
d. P(AAUB) = P(A) + P(B) — P(ANB) = .5+ 2 — 05= 651

S
8

Conditional Probability and Independence

Consider the following situation: The examination of a large number of insurance
claims, categorized according to type of insurance and whether the claim was
fraudulent, produced the results shown in Table 4.2. Suppose you are responsible
for checking insurance claims—in particular, for detecting fraudulent claims—
and you examine the next claim that is processed. What is the probability of
the event F, “the claim is fraudulent”? To answer the question, you examine
Table 4.2 and note that 10% of all claims are fraudulent. Thus, assuming that the
percentages given in the table are reasonable approximations to the true proba-
bilities of receiving specific types of claims, it follows that P(F) = .10. Would you
say that the risk that you face a fraudulent claim has probability .10? We think
not, because you have additional information that may affect the assessment of
P(F). This additional information concerns the type of policy you are examining
(fire, auto, or other).

Type of Policy (%)

Category Fire Auto Other Total %
Fraudulent 6 1 3 10
Nonfraudulent 14 29 47 90
Total 20 30 50 100
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Suppose that you have the additional information that the claim was associ-
ated with a fire policy. Checking Table 4.2, we see that 20% (or .20) of all claims
are associated with a fire policy and that 6% (or .06) of all claims are fraudulent
fire policy claims. Therefore, it follows that the probability that the claim is fraudu-
lent, given that you know the policy is a fire policy, is

P(Flfire policy) = proportion of claims that are fraudulent fire policy claims

proportion of claims that are against fire policies
_ 06 _
20

conditional  This probability, P(F|fire policy), is called a conditional probability of the event
probability ~ F—that is, the probability of event F given the fact that the event “fire policy” has
already occurred. This tells you that 30% of all fire policy claims are fraudulent.
The vertical bar in the expression P(F [fire policy) represents the phrase “given
that,” or simply “given.” Thus, the expression is read, “the probability of the event
F given the event fire policy.”

unconditional / The probability P(F) = .10, called the unconditional or marginal probability
marginal probability  of the event F, gives the proportion of times a claim is fraudulent—that is, the
proportion of times event F occurs in a very large (infinitely large) number of rep-
etitions of the experiment (receiving an insurance claim and determining whether
the claim is fraudulent). In contrast, the conditional probability of F, given that the
claim is for a fire policy, P(F|fire policy), gives the proportion of fire policy claims
that are fraudulent. Clearly, the conditional probabilities of F, given the types of
policies, will be of much greater assistance in measuring the risk of fraud than the

unconditional probability of F.

.30

DEFINITION 4.7 Consider two events A and B with nonzero probabilities, P(A) and P(B). The
conditional probability of event A, given event B, is
P(ANB)
PA|B) = ————
(AlB) = 5z
The conditional probability of event B, given event A, is
P(ANB)
PBIA) = ——~—
(BlA) = “50as

This definition for conditional probabilities gives rise to what is referred to as the
multiplication law.

DEFINITION 4.8 The probability of the intersection of two events A and B is
P(ANB) = P(A)P(B|A)
= P(B)P(A|B)

The only difference between Definitions 4.7 and 4.8, both of which involve conditional
probabilities, relates to what probabilities are known and what needs to be calcu-
lated. When we know the intersection probability P(A N B) and the individual
probability P(A), we can compute P(B|A). When we know P(A) and P(B|A), we
can compute P(A N B).
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EXAMPLE 4.2

A corporation is proposing to select 2 of its current regional managers as vice presi-
dents. In the history of the company, there has never been a female vice president.
The corporation has 6 male regional managers and 4 female regional managers.
Make the assumption that the 10 regional managers are equally qualified and hence
all possible groups of 2 managers should have the same chance of being selected as
the vice presidents. Now find the probability that both vice presidents are male.

Solution Let A be the event that the first vice president selected is male, and let
B be the event that the second vice president selected is also male. The event that
represents both selected vice presidents are male is the event (A and B)—that
is, the event A N B. Therefore, we want to calculate P(4A N B) = P(B|A)P(A),
using Definition 4.8.

For this example,
# of male managers 6

P(A) = P(first selection is male) =

# of managers 10
and
P(B|A) = P(second selection is male, given first selection was male)
_# of male managers after one male manager was selected 5
~ #of managers after one male manager was selected 9
Thus,

6 (5 30 1
P(A N B) = P(A)P(B|A) 10 (9) %0 "3
Thus, the probability that both vice presidents are male is 1/3 under the condition
that all candidates are equally qualified and that each group of two managers has
the same chance of being selected. Thus, there is a relatively large probability of
selecting two males as the vice presidents under the condition that all candidates
are equally likely to be selected.

Suppose that the probability of event A is the same whether event B has or
has not occurred; that is, suppose

P(A|B) = P(A|B) = P(A)

Then we say that the occurrence of event A is not dependent on the occurrence of
independent events  event B, or simply that A and B are independent events. When P(A|B)=P(A),
the occurrence of A depends on the occurrence of B, and events A and B are said

dependent events to be dependent events.

DEFINITION 4.9 Two events A and B are independent events if
P(A|B) = P(A) or P(B|A) = P(B)

(Note: You can show that if P(A|B) = P(A), then P(B|A) = P(B), and vice
versa.)

Definition 4.9 leads to a special case of P(A N B). When events A and B are
independent, it follows that

P(A N B) = P(A)P(B|A) = P(A)P(B)
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The concept of independence is of particular importance in sampling. Later
in the text, we will discuss drawing samples from two (or more) populations to
compare the means, variances, or other population parameters. For most of these
applications, we will select samples in such a way that the observed values in one
sample are independent of the values that appear in another sample. We call these
independent samples.

Bayes’ Formula

In this section, we will show how Bayes’ Formula can be used to update condi-
tional probabilities by using sample data when available. These “updated” con-
ditional probabilities are useful in decision making. A particular application
of these techniques involves the evaluation of diagnostic tests. Suppose a meat
inspector must decide whether a randomly selected meat sample contains E. coli
bacteria. The inspector conducts a diagnostic test. Ideally, a positive result (Pos)
would mean that the meat sample actually has E. coli, and a negative result (Neg)
would imply that the meat sample is free of E. coli. However, the diagnostic test
is occasionally in error. The result of the test may be a false positive, for which
the test’s indication of E. coli presence is incorrect, or a false negative, for which
the test’s conclusion of E. coli absence is incorrect. Large-scale screening tests
are conducted to evaluate the accuracy of a given diagnostic test. For example,
E. coli (E) is placed in 10,000 meat samples, and the diagnostic test yields a posi-
tive result for 9,500 samples and a negative result for 500 samples; that is, there
are 500 false negatives out of the 10,000 tests. Another 10,000 samples have all
traces of E. coli removed (indicated as NE), and the diagnostic test yields a posi-
tive result for 100 samples and a negative result for 9,900 samples. There are 100
false positives out of the 10,000 tests. We can summarize the results in Table 4.3.
Evaluation of test results is as follows:

9,500

True positive rate = P(Pos|E) = 10000 95
False positive rate = P(Pos|NE) = 100 01
10,000
. 9,900
True negative rate = P(Neg|NE) = 10,000 = .99
False negative rate = P(Neg|E) = 00 .05
10,000

Meat Sample Status

Diagnostic

Test Result E NE
Positive 9,500 100
Negative 500 9,900
Total 10,000 10,000

The sensitivity of the diagnostic test is the true positive rate—that is, P(test is
positive|disease is present). The specificity of the diagnostic test is the true negative
rate—that is, P(test is negative|disease is not present).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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The primary task facing the inspector is to evaluate the probability of E.
coli being present in the meat sample when the test yields a positive result—that is,
the inspector needs to know P(E|Pos). Bayes’ Formula provides us with a method
to obtain this probability.

Bayes’ Formula If A and B are any events whose probabilities are not 0 or 1, then

_ P(B|A)P(A)
PlAIB) = LR pa) + PBA)PA)

The above formula was developed by Thomas Bayes in a book published in 1763
(Barnard, 1958). We will illustrate the application of Bayes’ Formula by returning
to the meat inspection example. We can use Bayes’ Formula to compute P(E|Pos)
for the meat inspection example. To make this calculation, we need to know the
rate of E. coli in the type of meat being inspected. For this example, suppose
that E. coli is present in 4.5% of all meat samples; that is, E. coli has prevalence
P(E) = .045. We can then compute P(E[Pos) as follows:

P(Pos|E)P(E)
(Pos|E)P(E) + P(Pos|NE)P(NE)
(.95)(.045)

= 95)(045) + (o1 —.045) V7

P(E|Pos) = 2

Thus, E. coli is truly present in 81.7% of the tested samples in which a positive test
result occurs. Also, we can conclude that 18.3% of the tested samples indicated E.
coli was present when in fact there was no E. coli in the meat sample.

EXAMPLE 4.3

A book club classifies members as heavy, medium, or light purchasers, and separate
mailings are prepared for each of these groups. Overall, 20% of the members are
heavy purchasers, 30% medium, and 50% light. A member is not classified into a
group until 18 months after joining the club, but a test is made of the feasibility of
using the first 3 months’ purchases to classify members. The following percentages
are obtained from existing records of individuals classified as heavy, medium, or
light purchasers (Table 4.4):

TABLE 4.4
] Group (%)
Book club membership First 3 Months’
classifications Purchases Heavy Medium Light
0 5 15 60
1 10 30 20
2 30 40 15
3+ 55 15 5

If a member purchases no books in the first 3 months, what is the probability that
the member is a light purchaser? (Note: This table contains “conditional” percent-
ages for each column.)
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Solution Using the conditional probabilities in the table, the underlying purchase
probabilities, and Bayes’ Formula, we can compute this conditional probability.
P(light|0)
B P(0|light) P(light)
P(Ollight) P(light) + P(0lmedium)P(medium) + P(0lheavy)P(heavy)
_ (.60)(.50)
(.60)(.50) + (.15)(.30) + (.05)(.20)
=845

These examples indicate the basic idea of Bayes’” Formula. There is some

number k of possible, mutually exclusive, underlying events Aj,..., Ay, which

states of nature are sometimes called the states of nature. Unconditional probabilities P(A;),...,

prior probabilities ~ P(Ay), often called prior probabilities, are specified. There are m possible, mutu-

observable events ally exclusive, observable events By,..., B,,. The conditional probabilities of each

observable event given each state of nature, P(B; |Ai), are also specified, and these

likelihoods  probabilities are called likelihoods. The problem is to find the posterior probabili-

posterior  ties P(A;|B;). Prior and posterior refer to probabilities before and after observing
probabilities an event B;.

Bayes’ Formula If Ay, ..., Ay are mutually exclusive states of nature, and if By, ..., B,, are m
possible, mutually exclusive, observable events, then
P(B|A;,)P(A;)

P(AB;) = P(B|A,)P(A,) + P(B|A,)P(A,) + -+ + P(B|A)P(A,)

 P(BJA)P(A)
" 3.P(B]A)P(A)

EXAMPLE 4.4

In the manufacture of circuit boards, there are three major types of defective
boards. The types of defects, along with the percentage of all circuit boards hav-
ing these defects, are (1) improper electrode coverage (D), 2.8%; (2) plating
separation (D), 1.2%; and (3) etching problems (D3), 3.2%. A circuit board will
contain at most one of the three defects. Defects can be detected with certainty
using destructive testing of the finished circuit boards; however, this is not a
very practical method for inspecting a large percentage of the circuit boards. A
nondestructive inspection procedure has been developed that has the following
outcomes: A, which indicates the board has only defect D1; A,, which indicates
the board has only defect D,; A3, which indicates the board has only defect Ds;
and A4, which indicates the board has no defects. The respective likelihoods for
the four outcomes of the nondestructive test determined by evaluating a large
number of boards known to have exactly one of the three types of defects are
given in Table 4.5.
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TABLE 4.5
Circuit board defect data Test Type of Defect
Outcome D, D, D; None
Ay .90 .06 .02 .02
A .05 .80 .06 .01
Az .03 .05 .82 .02
Ay (no defects) .02 .09 .10 .95

If a circuit board is tested using the nondestructive test and the outcome indicates
no defects (A4), what are the probabilities that the board has no defect or a Dy, D>,
or D3 type of defect?

Let D4 represent the situation in which the circuit board has no defects.

PD I = P(AD)P(D))
" P(AD)P(D,) + P(A,D,)P(D,) + P(A,|D5)P(D;) + P(A,[D,)P(D,)
_ (.02)(.028) _ 00056 _ 00063
(.02)(.028) + (.09)(.012) + (.10)(.032) + (.95)(.928) 88644
DAL = P(AD,)P(D,)
274 P(A|D)P(D,) + P(AD,)P(D,) + P(A,|D;)P(D;) + P(A,[D,)P(D,)
_ (.09)(.012) _ .00108 — 00122
(.02)(.028) + (.09)(.012) + (.10)(.032) + (.95)(.928) .88644
PDIA,) = P(A,|D3)P(D;)
¥ P(AID)P(D,) + P(AD,)P(D,) + P(A,|D;)P(D,) + P(A,/D,)P(D,)
_ (.10)(.032) _ 0032
(.02)(.028) + (.09)(.012) + (.10)(.032) + (.95)(.928) .88644
DAL = P(AD,)P(D,)
7 P(A|D)P(D,) + P(AD,)P(D,) + P(A,|D;)P(D;) + P(A,[D,)P(D,)
(.95)(.928) 8816 9945

T (02)(:028) + (09)(012) + (10)(.032) + (:95)(.928) 88644

Thus, if the new test indicates that none of the three types of defects is present in
the circuit board, there is a very high probability, .9945, that the circuit board in fact
is free of defects. In Exercise 4.31, we will ask you to assess the sensitivity of the test
for determining the three types of defects. ®

4.6 Variables: Discrete and Continuous

The basic language of probability developed in this chapter deals with many different
kinds of events. We are interested in calculating the probabilities associated with both
quantitative and qualitative events. For example, we developed techniques that could
be used to determine the probability that a machinist selected at random from the
workers in a large automotive plant would suffer an accident during an 8-hour shift.
These same techniques are also applicable to finding the probability that a machinist
selected at random would work more than 80 hours without suffering an accident.
These qualitative and quantitative events can be classified as events (or
outcomes) associated with qualitative and quantitative variables. For example, in the
automotive plant accident study, the randomly selected machinist’s accident report
would consist of checking one of the following: No Accident, Minor Accident, or
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Major Accident. Thus, the data on 100 machinists in the study would be observations
on a qualitative variable because the possible responses are the different categories
of accident and are not different in any measurable, numerical amount. Because we
cannot predict with certainty what type of accident a particular machinist will suffer,
qualitative random  the variable is classified as a qualitative random variable. Other examples of quali-
variable  tative random variables that are commonly measured are political party affiliation,
socioeconomic status, the species of insect discovered on an apple leaf, and the brand
preferences of customers. There are a finite (and typically quite small) number of
possible outcomes associated with any qualitative variable. Using the methods of
this chapter, it is possible to calculate the probabilities associated with these events.
Many times the events of interest in an experiment are quantitative outcomes
quantitative random  associated with a quantitative random variable, since the possible responses vary
variable  in numerical magnitude. For example, in the automotive plant accident study, the
number of consecutive 8-hour shifts between accidents for a randomly selected
machinist is an observation on a quantitative random variable. Events of interest,
such as the number of 8-hour shifts between accidents for a randomly selected
machinist, are observations on a quantitative random variable. Other examples
of quantitative random variables are the change in earnings per share of a stock
over the next quarter, the length of time a patient is in remission after a cancer
treatment, the yield per acre of a new variety of wheat, and the number of persons
voting for the incumbent in an upcoming election. The methods of this chapter can
be applied to calculate the probability associated with any particular event.
There are major advantages to dealing with quantitative random variables.
The numerical yardstick underlying a quantitative variable makes the mean and
standard deviation (for instance) sensible. With qualitative random variables, the
methods of this chapter can be used to calculate the probabilities of various events,
and that’s about all. With quantitative random variables, we can do much more:
We can average the resulting quantities, find standard deviations, and assess prob-
random variable able errors, among other things. Hereafter, we use the term random variable to
mean quantitative random variable.
Most events of interest result in numerical observations or measurements. If
a quantitative variable measured (or observed) in an experiment is denoted by the
symbol y, we are interested in the values that y can assume. These values are called
numerical outcomes. The number of different plant species per acre in a coal strip
mine after a reclamation project is a numerical outcome. The percentage of regis-
tered voters who cast ballots in a given election is also a numerical outcome. The
quantitative variable y is called a random variable because the value that y assumes
in a given experiment is a chance or random outcome.

DEFINITION 4.10 When observations on a quantitative random variable can assume only a
countable number of values, the variable is called a discrete random variable.

Examples of discrete variables are these:

1. Number of bushels of apples per tree of a genetically altered apple
variety

2. Change in the number of accidents per month at an intersection
after a new signaling device has been installed

3. Number of “dead persons” voting in the last mayoral election in a
major midwestern city
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Note that it is possible to count the number of values that each of these random
variables can assume.

DEFINITION 4.11 When observations on a quantitative random variable can assume any one of
the uncountable number of values in a line interval, the variable is called a
continuous random variable.

For example, the daily maximum temperature in Rochester, New York, can
assume any of the infinitely many values on a line interval. It can be 89.6, 89.799,
or 89.7611114. Typical continuous random variables are temperature, pressure,
height, weight, and distance.
discrete and The distinction between discrete and continuous random variables is
continuous variables  pertinent when we are seeking the probabilities associated with specific values of
a random variable. The need for the distinction will be apparent when probability
distributions are discussed in later sections of this chapter.

4.7 Probability Distributions for Discrete
Random Variables

As previously stated, we need to know the probability of observing a particular
sample outcome in order to make an inference about the population from which
the sample was drawn. To do this, we need to know the probability associated with
each value of the variable y. Viewed as relative frequencies, these probabilities

probability  generate a distribution of theoretical relative frequencies called the probability

distribution  distribution of y. Probability distributions differ for discrete and continuous ran-
dom variables. For discrete random variables, we will compute the probability of
specific individual values occurring. For continuous random variables, the prob-
ability of an interval of values is the event of interest.

The probability distribution for a discrete random variable displays the proba-
bility P(y) associated with each value of y. This display can be presented as a table,
a graph, or a formula. To illustrate, consider the tossing of two coins in Section 4.2,
and let y be the number of heads observed. Then y can take the values 0, 1, or 2.
From the data of Table 4.1, we can determine the approximate probability for
each value of y, as given in Table 4.6. We point out that the relative frequencies
in the table are very close to the theoretical relative frequencies (probabilities),
which can be shown to be .25, .50, and .25 using the classical interpretation of prob-
ability. If we had employed 2,000,000 tosses of the coins instead of 500, the rela-
tive frequencies for y = 0, 1, and 2 would be indistinguishable from the theoretical
probabilities.

The probability distribution for y, the number of heads in the toss of two
coins, is shown in Table 4.7 and is presented graphically in Figure 4.2.

TABLE 4.6 K TABLE 4.7
Empirical sampling Relative Probability distribution for y P(y)
results for y:the number Y Frequency Frequency the number of heads when 0 s
ih . . .
of heads in 500 tosses 0 129 58 two coins are tossed 1 50
of two coins
1 242 484 2 25
2 129 258
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FIGURE 4.2 5
Probability distribution '
for the number of heads
when two coins are tossed 4+
.31
s}
S
2 4
14
0 T T
0 5 1.0 1.5 2.0
y

The probability distribution for this simple discrete random variable illus-
trates three important properties of discrete random variables.

Properties of Discrete 1. The probability associated with every value of y lies between 0 and 1.
Random Variables 2. The sum of the probabilities for all values of y is equal to 1.
3. The probabilities for a discrete random variable are additive. Hence, the
probability that y = 1 or 2 is equal to P(1) + P(2).

The relevance of the probability distribution to statistical inference will be
emphasized when we discuss the probability distribution for the binomial random
variable.

4.8 Two Discrete Random Variables:
The Binomial and the Poisson

Many populations of interest to business persons and scientists can be viewed as
large sets of Os and 1s. For example, consider the set of responses of all adults in the
United States to the question “Do you favor the development of nuclear energy?”
If we disallow “no opinion,” the responses will constitute a set of “yes” responses
and “no” responses. If we assign a 1 to each yes and a 0 to each no, the population
will consist of a set of Os and 1s, and the sum of the 1s will equal the total number of
persons favoring the development. The sum of the 1s divided by the number of adults
in the United States will equal the proportion of people who favor the development.

Gallup and Harris polls are examples of the sampling of 0, 1 populations. Peo-
ple are surveyed, and their opinions are recorded. Based on the sample responses,
Gallup and Harris estimate the proportions of people in the population who favor
some particular issue or possess some particular characteristic.

Similar surveys are conducted in the biological sciences, engineering, and
business, but they may be called experiments rather than polls. For example, experi-
ments are conducted to determine the effect of new drugs on small animals, such as
rats or mice, before progressing to larger animals and, eventually, to human par-
ticipants. Many of these experiments bear a marked resemblance to a poll in that
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the experimenter records only whether the drug was effective. Thus, if 300 rats are
injected with a drug and 230 show a favorable response, the experimenter has con-
ducted a “poll” —a poll of rat reaction to the drug, 230 “in favor” and 70 “opposed.”

Similar “polls” are conducted by most manufacturers to determine the frac-
tion of a product that is of good quality. Samples of industrial products are collected
before shipment, and each item in the sample is judged “defective” or “acceptable”
according to criteria established by the company’s quality control department.
Based on the number of defectives in the sample, the company can decide whether
the product is suitable for shipment. Note that this example, as well as those pre-
ceding, has the practical objective of making an inference about a population based
on information contained in a sample.

The public opinion poll, the consumer preference poll, the drug-testing
experiment, and the industrial sampling for defectives are all examples of a
common, frequently conducted sampling situation known as a binomial experi-
ment. The binomial experiment is conducted in all areas of science and business and
differs from one situation to another only in the nature of objects being sampled
(people, rats, electric lightbulbs, oranges). Thus, it is useful to define its character-
istics. We can then apply our knowledge of this one kind of experiment to a variety
of sampling experiments.

For all practical purposes, the binomial experiment is identical to the coin-
tossing example of previous sections. Here n different coins are tossed (or a single
coin is tossed n times), and we are interested in the number of heads observed. We
assume that the probability of tossing a head on a single trial is 7 (7 may equal .50,
as it would for a balanced coin, but in many practical situations, 7 will take some
other value between 0 and 1). We also assume that the outcome for any one toss
is unaffected by the results of any preceding tosses. These characteristics can be
summarized as shown here.

DEFINITION 4.12 A binomial experiment is one that has the following properties:

1. The experiment consists of z identical trials.

2. Each trial results in one of two outcomes. We will label one outcome a
success and the other a failure.

3. The probability of success on a single trial is equal to 77, and 7 remains
the same from trial to trial.*

4. The trials are independent; that is, the outcome of one trial does not
influence the outcome of any other trial.

5. The random variable y is the number of successes observed during
the n trials.

EXAMPLE 4.5

An article in the March 5, 1998, issue of The New England Journal of Medicine
(338:633-639) discussed a large outbreak of tuberculosis. One person, called the
index patient, was diagnosed with tuberculosis in 1995. The 232 co-workers of the
index patient were given a tuberculin screening test. The number of co-workers
recording a positive reading on the test was the random variable of interest. Did
this study satisfy the properties of a binomial experiment?

*Some textbooks and computer programs use the letter p rather than 7. We have chosen 7 to
avoid confusion with p-values, discussed in Chapter 5.
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Solution To answer the question, we check each of the five characteristics of the
binomial experiment to determine whether they were satisfied.

1. Were there n identical trials? Yes. There were n = 232 workers who
had approximately equal contact with the index patient.

2. Did each trial result in one of two outcomes? Yes. Each co-worker
recorded either a positive or a negative reading on the test.

3. Was the probability of success the same from trial to trial? Yes, if
the co-workers had equivalent risk factors and equal exposures to
the index patient.

4. Were the trials independent? Yes. The outcome of one screening
test was unaffected by the outcomes of the other screening tests.

5. Was the random variable of interest to the experimenter the number
of successes y in the 232 screening tests? Yes. The number of co-
workers who obtained a positive reading on the screening test was
the variable of interest.

All five characteristics were satisfied, so the tuberculin screening test represented
a binomial experiment. H

EXAMPLE 4.6

A large power utility company uses gas turbines to generate electricity. The engi-
neers employed at the company monitor the reliability of each turbine —that is,
the probability that the turbine will perform properly under standard operating
conditions over a specified period of time. The engineers wanted to estimate
the probability a turbine will operate successfully for 30 days after being put
into service. The engineers randomly selected 75 of the 100 turbines currently in
use and examined the maintenance records. They recorded the number of tur-
bines that did not need repairs during the 30-day time period. Is this a binomial
experiment?

Solution Check this experiment against the five characteristics of a binomial
experiment.

1. Are there identical trials? The 75 trials could be assumed identical
only if the 100 turbines are the same type of turbine, are the same
age, and are operated under the same conditions.

2. Does each trial result in one of two outcomes? Yes. Each turbine
either does or does not need repairs in the 30-day time period.

3. Isthe probability of success the same from trial to trial? No. If we let
success denote a turbine “did not need repairs,” then the probability
of success can change considerably from trial to trial. For example,
suppose that 15 of the 100 turbines needed repairs during the 30-day
inspection period. Then 7, the probability of success for the first
turbine examined, would be 85/100 = .85. If the first trial is a failure
(turbine needed repairs), the probability that the second turbine
examined did not need repairs is 85/99 = .859. Suppose that after 60
turbines have been examined, 50 did not need repairs and 10 needed
repairs. The probability of success of the next (61st) turbine would be
35/40 = .875.

4. Were the trials independent? Yes, provided that the failure of
one turbine does not affect the performance of any other turbine.
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However, the trials may be dependent in certain situations. For
example, suppose that a major storm occurs that results in several
turbines being damaged. Then the common event, a storm, may
result in a common result, the simultaneous failure of several
turbines.

5. Was the random variable of interest to the engineers the number
of successes in the 75 trials? Yes. The number of turbines not
needing repairs during the 30-day period was the random variable
of interest.

This example shows how the probability of success can change substan-
tially from trial to trial in situations in which the sample size is a relatively
large portion of the total population size. This experiment does not satisfy the
properties of a binomial experiment. B

Note that very few real-life situations satisfy perfectly the requirements
stated in Definition 4.12, but for many, the lack of agreement is so small that the
binomial experiment still provides a very good model for reality.

Having defined the binomial experiment and suggested several practical
applications, we now examine the probability distribution for the binomial random
variable y, the number of successes observed in n trials. Although it is possible to
approximate P(y), the probability associated with a value of y in a binomial experi-
ment, by using a relative frequency approach, it is easier to use a general formula
for binomial probabilities.

Formula for The probability of observing y successes in # trials of a binomial experiment is
Computing P(y) in a n! 3
Binomial Experiment Ply) = n—y)! w1 =)
where
n = number of trials
77 = probability of success on a single trial
1 — 7 = probability of failure on a single trial
y = number of successes in # trials

n!l =nn—1)n-2)---3)2)(1)

As indicated in the box, the notation n! (referred to as n factorial) is used for
the product

n=nn—1)n-2)...3)2)1)
Forn =3,

n=3'=3B)(3-1)3-2)=0B)2)1) =6
Similarly, for n = 4,

4= 4)3)2)1) =24

We also note that 0! is defined to be equal to 1.
To see how the formula for binomial probabilities can be used to calculate
the probability for a specific value of y, consider the following examples.
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EXAMPLE 4.7

A new variety of turf grass has been developed for use on golf courses, with the
goal of obtaining a germination rate of 85%. To evaluate the grass, 20 seeds are
planted in a greenhouse so that each seed will be exposed to identical conditions. If
the 85% germination rate is correct, what is the probability that 18 or more of the
20 seeds will germinate?

n!

P(y) = mﬂy(l — )"

and substituting for n = 20, = = .85, y = 18, 19, and 20, we obtain
Ply = 18) = ﬁ (85)15(1 — 85)20-15 = 190(85)15(.15)? = 229
Py =19) = ﬁ (.85)(1 — .85)%~ 1 = 20(.85)(.15)! = .137
P(y = 20) = 20|(2§0_'20), (85)(1 — 85)20-20 — (85)% — 0388

P(y=18) = P(y = 18) + P(y = 19) + P(y = 20) = .405 m

The calculations in Example 4.7 entail a considerable amount of effort even though
n was only 20. For those situations involving a large value of n, we can use com-
puter software to make the exact calculations. The following commands in R will
compute the binomial probabilities:

1. To calculate P(X = 18), use the command dbinom(18, 20, .85)
2. To calculate P(X = 17), use the command pbinom (17, 20, .85)
3. To calculate P(X = 18), use the command 1 — pbinom(17, 20, .85)

Later in this chapter, the normal approximation to the binomial will be discussed. This
approximation yields fairly accurate results and does not require the use of a computer.

EXAMPLE 4.8

Suppose that a sample of households is randomly selected from all the households
in the city in order to estimate the percentage in which the head of the household
is unemployed. To illustrate the computation of a binomial probability, suppose
that the unknown percentage is actually 10% and that a sample of n = 5 (we select a
small sample to make the calculation manageable) is selected from the population.
What is the probability that all five heads of households are employed?

Solution We must carefully define which outcome we wish to call a success. For
this example, we define a success as being employed. Then the probability of suc-
cess when one person is selected from the population is 7 = .9 (because the pro-
portion unemployed is .1). We wish to find the probability that y = 5 (all five are
employed) in five trials.

Py =5) = ﬁ(e)sa )5
5! 5 0
= RS
 e@ON)
" mHwee0o O

= (.9)° = 590
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172 CHAPTER 4 PROBABILITY AND PROBABILITY DISTRIBUTIONS

The binomial probability distribution for n = 5, 77 = .9 is shown in Figure 4.3.
The probability of observing five employed in a sample of five is shown to be 0.59
in Figure 4.3.
FIGURE 4.3 6 -
The binomial probability
distribution for 5
n=5m=.9 ’
4
£ 34
24
1A
P
0 1 2 3 4 5
Number employed [

EXAMPLE 4.9

Refer to Example 4.8 and calculate the probability that exactly one person in the
sample of five households is unemployed. What is the probability of one or fewer
being unemployed?

Solution Since y is the number of employed in the sample of five, one unem-
ployed person would correspond to four employed (y = 4). Then

5!

= m (.9)4(.1)1
5)4)3)@)1)
“)3)@)1)1)
= 5(.9)*1)
=328

P(4)

(9)*C1)

Thus, the probability of selecting four employed heads of households in a sample
of five is .328, or roughly one chance in three.

The outcome “one or fewer unemployed” is the same as the outcome “4 or 5
employed.” Since y represents the number employed, we seek the probability that
y =4 or 5. Because the values associated with a random variable represent mutu-
ally exclusive events, the probabilities for discrete random variables are additive.
Thus, we have

P(y =4o0r5) = P@4) + P(5)
= .328 + .590
= 918

Thus, the probability that a random sample of five households will yield either four
or five employed heads of households is .918. This high probability is consistent
with our intuition: We would expect the number of employed in the sample to be
large if 90% of all heads of households in the city are employed. B
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4.8 Two Discrete Random Variables: The Binomial and the Poisson 173

Like any relative frequency histogram, a binomial probability distribution
possesses a mean, u, and a standard deviation, o. Although we omit the derivations,
we give the formulas for these parameters.

w=nm and o =\Nnw(l — 7)

where 7 is the probability of success in a given trial and 7 is the number of
trials in the binomial experiment.

If we know 7 and the sample size, n, we can calculate u and o to locate
the average value and describe the variability for a particular binomial probability
distribution. Thus, we can quickly determine those values of y that are probable
and those that are improbable.

EXAMPLE 4.10

We will consider the turf grass seed example to illustrate the calculation of the
mean and standard deviation. Suppose the company producing the turf grass takes
a sample of 20 seeds on a regular basis to monitor the quality of the seeds. If the
germination rate of the seeds stays constant at 85%, then the average number of
seeds that will germinate in the sample of 20 seeds is

w = nm = 20(85) = 17

with a standard deviation of

o =\nm(1 — 7) =20(85)(1 — .85) = 1.60

Suppose we examine the germination records of a large number of samples of
20 seeds each. If the germination rate has remained constant at 85%, then the
average number of seeds that germinate should be close to 17 per sample. If in a
particular sample of 20 seeds we determine that only 12 had germinated, would
the germination rate of 85% seem consistent with our results? Using a computer
software program, we can generate the probability distribution for the number
of seeds that germinate in the sample of 20 seeds, as shown in Figures 4.4(a)
and 4.4(b).

The binomial distribution

for n = 20 and p = .85
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FIGURE 4.4 (b) 25
The binomial distribution
forn =20 and p = .85 204
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A software program was used to generate Figure 4.4(a). Many such packages
place rectangles centered at each of the possible integer values of the binomial
random variable, as shown in Figure 4.4(a), even though there is zero probability
for any value but the integers to occur. This results in a distorted representation of
the binomial distribution. A more appropriate display of the distribution is given
in Figure 4.4(b).

Although the distribution is tending toward left skewness (see Figure 4.4(b)),
the Empirical Rule should work well for this relatively mound-shaped distribution.
Thus, y = 12 seeds is more than three standard deviations less than the mean num-
ber of seeds, u = 17; it is highly improbable that in 20 seeds we would obtain only
12 germinated seeds if 7 really is equal to .85. The germination rate is most likely a
value considerably less than .85. ®

EXAMPLE 4.11

A cable TV company is investigating the feasibility of offering a new service in a
large midwestern city. In order for the proposed new service to be economically
viable, it is necessary that at least 50% of its current subscribers add the new ser-
vice. A survey of 1,218 customers reveals that 516 would add the new service. Do you
think the company should expend the capital to offer the new service in this city?

Solution In order to be economically viable, the company needs at least 50% of
its current customers to subscribe to the new service. Is y = 516 out of 1,218 too
small a value of y to imply a value of 7 (the proportion of current customers who
would add new service) equal to .50 or larger? If = = .5,

w = nm = 1218(.5) = 609
o =Vnm(l — m) =V1218(5)(1 — .5) = 17.45
and 30 = 52.35.
You can see from Figure 4.5 that y = 516 is more than 30, or 52.35, less than

=609, the value of w if 7 really equalled .5. Thus, the observed number of
customers in the sample who would add the new service is much too small if the

FIGURE 4.5 T T T
Location of the observed 516 556.65 P =609

—
value of y (y = 516) Observed
relative to p value of y 30=52.35
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number of current customers who would not add the service in fact is 50% or
more of all customers. Consequently, the company concluded that offering the new
service was not a good idea. ®

The purpose of this section is to present the binomial probability distribution
so you can see how binomial probabilities are calculated and so you can calculate
them for small values of #, if you wish. In practice, » is usually large (in national
surveys, sample sizes as large as 1,500 are common), and the computation of the
binomial probabilities is tedious. Later in this chapter, we will present a simple pro-
cedure for obtaining approximate values of the probabilities we need in making
inferences. In order to obtain very accurate calculations when n is large, we
recommend using a computer software program. (See Section 4.16.)

In 1837, S. D. Poisson developed a discrete probability distribution, suitably

Poisson distribution  called the Poisson distribution, which has as one of its important applications the
modeling of events of a particular time over a unit of time or space —for example, the
number of automobiles arriving at a toll booth during a given 5-minute period of time.
The event of interest would be an arriving automobile, and the unit of time would be
5 minutes. A second example would be the situation in which an environmentalist
measures the number of PCB particles discovered in a liter of water sampled from a
stream contaminated by an electronics production plant. The event would be a PCB
particle is discovered. The unit of space would be 1 liter of sampled water.

Let y be the number of events occurring during a fixed time interval of length
t or a fixed region R of area or volume m(R). Then the probability distribution of
y is Poisson, provided certain conditions are satisfied:

1. Events occur one at a time; two or more events do not occur
precisely at the same time or in the same space.

2. The occurrence of an event in a given period of time or region of
space is independent of the occurrence of the event in a nonover-
lapping time period or region of space; that is, the occurrence (or
nonoccurrence) of an event during one period or in one region does
not affect the probability of an event occurring at some other time
or in some other region.

3. The expected number of events during one period or in one region, u,
is the same as the expected number of events in any other period or
region.

Although these assumptions seem somewhat restrictive, many situations
appear to satisfy these conditions. For example, the number of arrivals of cus-
tomers at a checkout counter, parking lot toll booth, inspection station, or garage
repair shop during a specified time interval can often be modeled by a Poisson dis-
tribution. Similarly, the number of clumps of algae of a particular species observed
in a unit volume of lake water could be approximated by a Poisson probability
distribution.

Assuming that the above conditions hold, the Poisson probability of observing
y events in a unit of time or space is given by the formula

_ we
P(y) = D

where e is a naturally occurring constant approximately equal to 2.71828 (in fact,

e=2+5+4+4+ )y =ylp—1)y—2)---(1), and u is the average

value of y. Table 14 in the Appendix gives Poisson probabilities for various values

of the parameter w.
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EXAMPLE 4.12

A large industrial plant is being planned in a rural area. As a part of the environ-
mental impact statement, a team of wildlife scientists is surveying the number and
types of small mammals in the region. Let y denote the number of field mice cap-
tured in a trap over a 24-hour period. Suppose that y has a Poisson distribution with
w = 2.3;that is, the average number of field mice captured per trap is 2.3. What is the
probability of finding exactly four field mice in a randomly selected trap? What is
the probability of finding at most four field mice in a randomly selected trap? What
is the probability of finding more than four field mice in a randomly selected trap?

Solution The probability that a trap contains exactly four field mice is computed
to be
e >3(2.3)*  (.1002588)(27.9841)

Ply=4)=— = 2 = 1169

Alternatively, we could use Table 14 in the Appendix. We read from the table with
pw=23andy = 4 that P(y = 4) = .1169.

The probability of finding at most four field mice in a randomly selected trap
is, using the values from Table 14, with u = 2.3

Py=4)=Py=0)+Py=1)+Py=2)+Ply=3)+Ply=4)
= .1003 + .2306 + .2652 + .2033 + .1169 = .9163.

The probability of finding more than four field mice in a randomly selected trap,
using the idea of complementary events, is

Ply>4)=1—-Ply=4)=1— 9163 = .0837

Thus, it is a very unlikely event to find five or more field mice in a trap.
The Poisson probabilities can be computed using the following R commands.

P(y = 4) = dpois(4,2.3) = .1169022
P(y = 3) = ppois(3,2.3) = 7993471
P(y>4)=1—P(y=4) =1 — ppois(4,2.3) = .08375072

When n is large and 7 is small in a binomial experiment, n = 100, 7= = .01,
and n7 = 20, the Poisson distribution provides an reasonable approximation to
the binomial distribution. In applying the Poisson approximation to the binomial
distribution, use u = n7. A

EXAMPLE 4.13

In observing patients administered a new drug product in a properly conducted
clinical trial, the number of persons experiencing a particular side effect might be
quite small. Suppose = (the probability a person experiences a side effect to the
drug) is .001 and 1,000 patients in the clinical trial received the drug. Compute
the probability that none of a random sample of n = 1,000 patients administered
the drug experiences a particular side effect (such as damage to a heart valve)
when 7 = .001L

Solution The number of patients, y, experiencing the side effect would have
a binomial distribution with n = 1,000 and 7 = .001. The mean of the binomial
distribution is u = nar = 1,000(.001) = 1. Applying the Poisson probability distri-
bution with u = 1, we have
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oy Wt
Ph =0 = = e = 27188
(Note also from Table 14 in the Appendix that the entry corresponding to y = 0

and u = 1is.3679.) m

= .367879

For the calculation in Example 4.13, it is easy to compute the exact binomial
probability and then compare the results to the Poisson approximation. With
n = 1,000 and = = .001, we obtain the following.

1,000!
Py=0)=——"
¥=0)= 51000 — o):

The Poisson approximation was accurate to the third decimal place.

EXAMPLE 4.14

Suppose that after a clinical trial of a new medication involving 1,000 patients, no
patient experienced a side effect to the drug. Would it be reasonable to infer that
less than .1% of the entire population would experience this side effect while taking
the drug?

(.001)°(1 = .001)"% = (.999)19% = 367695

Solution Certainly not. We computed the probability of observing y =0 in
n = 1,000 trials, assuming 7 = .001 (i.e., assuming .1% of the population would
experience the side effect), to be .368. Because this probability is quite large, it
would not be wise to infer that 7 < .001. Rather, we would conclude that there is
not sufficient evidence to contradict the assumption that 7 is .001 or larger.

4.9 Probability Distributions for Continuous
Random Variables

Discrete random variables (such as the binomial) have possible values that are
distinct and separate, such as 0 or 1 or 2 or 3. Other random variables are most
usefully considered to be continuous: Their possible values form a whole interval
(or range, or continuum). For instance, the 1-year return per dollar invested in a
common stock could range from 0 to some quite large value. In practice, virtually
all random variables assume a discrete set of values; the return per dollar of a
million-dollar common-stock investment could be $1.06219423 or $1.06219424 or
$1.06219425 or.... However, when there are many possible values for a random
variable, it is sometimes mathematically useful to treat the random variable as
continuous.

Theoretically, then, a continuous random variable is one that can assume
values associated with infinitely many points in a line interval. We state, without
elaboration, that it is impossible to assign a small amount of probability to each
value of y (as was done for a discrete random variable) and retain the property that
the probabilities sum to 1.

To overcome this difficulty, we revert to the concept of the relative fre-
quency histogram of Chapter 3, where we talked about the probability of y falling
in a given interval. Recall that the relative frequency histogram for a population
containing a large number of measurements will almost be a smooth curve because
the number of class intervals can be made large and the width of the intervals
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FIGURE 4.6 §i6))
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for a continuous random
variable

Area=1

y
(a) Total area under the curve
S
Pla<y<b)
y
a b
(b) Probability

can be decreased to a very small value. Thus, we envision a smooth curve that
provides a model for the population relative frequency distribution generated by
repeated observation of a continuous random variable. This will be similar to the
curve shown in Figure 4.6.

Recall that the histogram relative frequencies are proportional to areas over
the class intervals and that these areas possess a probabilistic interpretation. Thus,
if a measurement is randomly selected from the set, the probability that it will fall
in an interval is proportional to the histogram area above the interval. Since a
population is the whole (100%, or 1), we want the total area under the probability
curve to equal 1. If we let the total area under the curve equal 1, then areas over
intervals are exactly equal to the corresponding probabilities.

The graph for the probability distribution for a continuous random variable
is shown in Figure 4.7. The ordinate (height of the curve) for a given value of y is
denoted by the symbol f(y). Many people are tempted to say that f(y), like P(y)
for the binomial random variable, designates the probability associated with the
continuous random variable y. However, as we mentioned before, it is impossible
to assign a probability to each of the infinitely many possible values of a continu-
ous random variable. Thus, all we can say is that f(y) represents the height of the
probability distribution for a given value of y.

The probability that a continuous random variable falls in an interval—say,
between two points a and b—follows directly from the probabilistic interpretation

FIGURE 4.7 §i62)
Hypothetical probability
distribution for student
examination scores

|
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y, examination scores
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given to the area over an interval for the relative frequency histogram (Section 3.3)
andis equal to the area under the curve over the interval a to b, as shown in Figure 4.6.
This probability is written Pla <y < b).

There are curves of many shapes that can be used to represent the popu-
lation relative frequency distribution for measurements associated with a con-
tinuous random variable. Fortunately, the areas for many of these curves have
been tabulated and are ready for use. Thus, if we know that student examination
scores possess a particular probability distribution, as in Figure 4.7, and if areas
under the curve have been tabulated, we can find the probability that a particular
student will score more than 80 by looking up the tabulated area, which is shaded
in Figure 4.7.

Figure 4.8 depicts four important probability distributions that will be
used extensively in the following chapters. Which probability distribution we
use in a particular situation is very important because probability statements
are determined by the area under the curve. As can be seen in Figure 4.8, we
would obtain very different answers depending on which distribution is selected.
For example, the probability the random variable takes on a value less than
5.0 is essentially 1.0 for the probability distributions in Figures 4.8(a) and (b)
but is .584 and .947 for the probability distributions in Figures 4.8(c) and (d),
respectively. In some situations, we will not know exactly the distribution for

FIGURE 4.8 Probability distributions of normal, 7, chi-square, and F
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the random variable in a particular study. In these situations, we can use the
observed values for the random variable to construct a relative frequency histo-
gram, which is a sample estimate of the true probability frequency distribution.
As far as statistical inferences are concerned, the selection of the exact shape
of the probability distribution for a continuous random variable is not crucial
in many cases because most of our inference procedures are insensitive to the
exact specification of the shape.

We will find that data collected on continuous variables often possess a nearly
bell-shaped frequency distribution, such as depicted in Figure 4.8(a). A continuous
variable (the normal) and its probability distribution (bell-shaped curve) provide a
good model for these types of data. The normally distributed variable is also very
important in statistical inference. We will study the normal distribution in detail in
the next section.

4.10 A Continuous Probability Distribution:
The Normal Distribution

Many variables of interest, including several statistics to be discussed in later
sections and chapters, have mound-shaped frequency distributions that can be

normal curve  approximated by using a normal curve. For example, the distribution of total
scores on the Brief Psychiatric Rating Scale for outpatients having a current his-
tory of repeated aggressive acts is mound-shaped. Other practical examples of
mound-shaped distributions are social perceptiveness scores of preschool chil-
dren selected from a particular socioeconomic background, psychomotor retar-
dation scores for patients with circular-type manic-depressive illness, milk yields
for cattle of a particular breed, and perceived anxiety scores for residents of a
community. Each of these mound-shaped distributions can be approximated with
anormal curve.

Since the normal distribution has been well tabulated, areas under a nor-
mal curve —which correspond to probabilities—can be used to approximate prob-
abilities associated with the variables of interest in our experimentation. Thus, the
normal random variable and its associated distribution play an important role in
statistical inference.

The relative frequency histogram for the normal random variable, called the
normal curve or normal probability distribution, is a smooth, bell-shaped curve.
Figure 4.9(a) shows a normal curve. If we let y represent the normal random vari-
able, then the height of the probability distribution for a specific value of y is rep-
resented by f(y).* The probabilities associated with a normal curve form the basis
for the Empirical Rule.

As we see from Figure 4.9(a), the normal probability distribution is bell-
shaped and symmetrical about the mean u. Although the normal random variable y
may theoretically assume values from — to + o, we know from the Empirical Rule
that approximately all the measurements are within 3 standard deviations (30°) of .
From the Empirical Rule, we also know that if we select a measurement at random
from a population of measurements that possesses a mound-shaped distribution,
the probability is approximately .68 that the measurement will lie within 1 standard

*For the normal distribution, f(y) = o \}277 e 0m#2° where w and o are the mean and standard

deviation, respectively, of the population of y-values.
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FIGURE 4.9 Normal distribution
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deviation of its mean (see Figure 4.9(b)). Similarly, we know that the probability
is approximately .954 that a value will lie in the interval w * 20 and .997 in the
interval u = 30 (see Figures 4.9(c) and (d)). What we do not know, however, is
the probability that the measurement will be within 1.65 standard deviations of its
mean, or within 2.58 standard deviations of its mean. The procedure we are going
to discuss in this section will enable us to calculate the probability that a measure-
ment falls within any distance of the mean w for a normal curve.

Because there are many different normal curves (depending on the param-
eters u and o), it might seem to be an impossible task to tabulate areas (prob-
abilities) for all normal curves, especially if each curve requires a separate table.
Fortunately, this is not the case. By specifying the probability that a variable y lies
within a certain number of standard deviations of its mean (just as we did in using
the Empirical Rule), we need only one table of probabilities.

Table 1 in the Appendix gives the area under a normal curve to the left of a
value y that is z standard deviations (zo) away from the mean (see Figure 4.10).
The area shown by the shading in Figure 4.10 is the probability listed in Table 1
in the Appendix. Values of z to the nearest tenth are listed along the left-hand
column of the table, with z to the nearest hundredth along the top of the table. To
find the probability that a normal random variable will lie to the left of a point 1.65
standard deviations above the mean, we look up the table entry corresponding to
z = 1.65. This probability is .9505 (see Figure 4.11).
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FIGURE 4.10 4 -
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FIGURE 4.11 4 -
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To determine the probability that a measurement will be less than some
value y, we first calculate the number of standard deviations that y lies away from
the mean by using the formula
_Y "M

o

Z

The value of z computed using this formula is sometimes referred to as the

z-score  z-score associated with the y-value. Using the computed value of z, we determine
the appropriate probability by using Table 1 in the Appendix. Note that we are
merely coding the value y by subtracting u and dividing by o. (In other words,
y = zo + w.) Figure 4.12 illustrates the values of z corresponding to specific
values of y. Thus, a value of y that is 2 standard deviations below (to the left of)
pcorresponds to z = —2.

FIGURE 4.12 f»)

Relationship between or
specific values of y and f2)
2= —wo

w—3c pw—20 p—0o W p+o pw+20 p+30 y
-3 -2 -1 0 1 2 3 b4
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FIGURE 4.13
Area less than y = 23
under normal curve,
with u = 20,0 =2

FIGURE 4.14
Area less than y = 16

under normal curve, with
n=20,0=2
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EXAMPLE 4.15

Consider a normal distribution with u = 20 and ¢ = 2. Determine the probability
that a measurement will be less than 23.

Solution When first working problems of this type, it might be a good idea to
draw a picture so that you can see the area in question, as we have in Figure 4.13.

4
= 3
—°§ .9332
- .2
<
£
3
Z 14

0 -

T T T T T T T
n=20 23

To determine the area under the curve to the left of the value y = 23, we first
calculate the number of standard deviations y = 23 lies away from the mean.

_y—m_23-20_
s 2
Thus, y = 23 lies 1.5 standard deviations above u = 20. Referring to Table 1 in the

Appendix, we find the area corresponding to z = 1.5 to be .9332. This is the prob-
ability that a measurement is less than 23. B

EXAMPLE 4.16

For the normal distribution of Example 4.15 with u = 20 and o = 2, find the prob-
ability that y will be less than 16.

Z 1.5

Solution In determining the area to the left of 16, we use
_y—mw_16-20 _
o 2

We find the appropriate area from Table 1 to be .0228; thus, .0228 is the probability
that a measurement is less than 16. The area is shown in Figure 4.14.

Z -2

4

31

Normal density
[\
1
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184 CHAPTER 4 PROBABILITY AND PROBABILITY DISTRIBUTIONS

EXAMPLE 4.17

A high accumulation of ozone gas in the lower atmosphere at ground level is air
pollution and can be harmful to people, animals, crops, and various materials.
Elevated levels above the national standard may cause lung and respiratory dis-
orders. Nitrogen oxides and hydrocarbons are known as the chief “precursors” of
ozone. These compounds react in the presence of sunlight to produce ozone. The
sources of these precursor pollutants include cars, trucks, power plants, and fac-
tories. Large industrial areas and cities with heavy summer traffic are the main
contributors to ozone formation. The United States Environmental Protection
Agency (EPA) has developed procedures for measuring vehicle emission levels of
nitrogen oxide. Let P denote the amount of this pollutant in a randomly selected
automobile in Houston, Texas. Suppose the distribution of P can be adequately
modeled by a normal distribution with a mean level of u = 70 ppb (parts per
billion) and a standard deviation of ¢ = 13 ppb.

a. Whatis the probability that a randomly selected vehicle will have an
emission level less than 60 ppb?

b. What is the probability that a randomly selected vehicle will have an
emission level greater than 90 ppb?

c. What s the probability that a randomly selected vehicle will have an
emission level between 60 and 90 ppb?

Solution We begin by drawing pictures of the areas that we are looking for

(Figures 4.15(a)—(c)). To answer part (a), we must compute the z-value corre-

sponding to the y-value of 60. The value y = 60 corresponds to a z-score of

_y—p _ 60—70
o 13

From Table 1, the area to the left of 60 is .2206 (see Figure 4.15(a)).
Alternatively, we could use the R command pnorm (— .77).

Z = =77

FIGURE 4.15(a)

4+
Area less than y = 60
under normal curve, with
n=70,0 =13 3

Normal density
(3]
!

.2206

I T
60 p =70

To answer part (b), the value y = 90 corresponds to a z-score of

y—u 9070
- - ~ 1.54
. p 13

so from Table 1 we obtain .9382, the tabulated area less than 90. Thus, the area
greater than 90 must be 1 — 9382 = .0618, since the total area under the curve is
1 (see Figure 4.15(b)). Alternatively, 1 — pnorm(1.54) = .0618.
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FIGURE 4.15(b)
Area greater than y = 90
under normal curve, with

n=70,0=13

FIGURE 4.15(c)
Area between 60 and 90

under normal curve, with
w=70,0=13

100pth percentile
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Normal density
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To answer part (c), we can use our results from (a) and (b). The area between
two values y; and y; is determined by finding the difference between the areas to
the left of the two values, (see Figure 4.15(c)). We found that the area less than 60
is .2206 and the area less than 90 is .9382. Hence, the area between 60 and 90 is
9382 — 2206 = .7176. We can thus conclude that 22.06% of inspected vehicles will
have nitrogen oxide levels less than 60 ppb, 6.18% of inspected vehicles will have
nitrogen oxide levels greater than 90 ppb, and 71.76% of inspected vehicles will
have nitrogen oxide levels between 60 ppb and 90 ppb.

4+
2 3
&
<
— .2
g 7176
=}
Z 14

O_

T T T T T T T
60 w=70 90 |

An important aspect of the normal distribution is that we can easily find the
percentiles of the distribution. The 100pth percentile of a distribution is that value,
¥p, such that 100p% of the population values fall below y, and 100(1 — p)% are
above y,. For example, the median of a population is the 50th percentile, y 50, and
the quartiles are the 25th and 75th percentiles. The normal distribution is symmet-
ric, so the median and the mean are the same value, y 5o = u (see Figure 4.16(a)).

To find the percentiles of the standard normal distribution, we reverse our
use of Table 1. To find the 100pth percentile, z,, we find the probability p in Table
1 and then read out its corresponding number, z,, along the margins of the table.
For example, to find the 80th percentile, z gy, we locate the probability p = .8000 in
Table 1. The value nearest to .8000 is .7995, which corresponds to a z-value of 0.84.
Thus, z.50 = 0.84 (see Figure 4.16(b)). Now, to find the 100pth percentile, y,, of a
normal distribution with mean p and standard deviation o, we need to apply the
reverse of our standardization formula,

yp:[L+Zp(T
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FIGURE 4.16 Mean, median, 80th percentile of normal distribution
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(a) For the normal curve, the mean and median (b) The 80th percentile for the normal curve
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Suppose we wanted to determine the 80th percentile of a population having a normal
distribution with u = 55 and o = 3. We have determined that z gy = 0.84; thus, the
80th percentile for the population would be ygy = 55+ (.84)(3) = 57.52. Alterna-
tively, we could use the R command qnorm(.8, 55, 3).

EXAMPLE 4.18

A State of Texas environmental agency, using the vehicle inspection process
described in Example 4.17,is going to offer a reduced vehicle license fee to those
vehicles having very low emission levels. As a preliminary pilot project, it will offer
this incentive to the group of vehicle owners having the best 10% of emission
levels. What emission level should the agency use in order to identify the best 10%
of all emission levels?

Solution The best 10% of all emission levels would be the 10% having the lowest
emission levels, as depicted in Figure 4.17.

To find the 10th percentile (see Figure 4.17), we first find z 1 in Table 1. Since
.1003 is the value nearest .1000 and its corresponding z-value is —1.28, we take
z10 = —1.28. We then compute

Vi =+ 2500 =70 + (=1.28)(13) = 70 — 16.64 = 53.36

Thus, 10% of the vehicles have emissions less than 53.36 ppb. Alternatively,
v.10 = qnorm(.1, 70, 13).

FIGURE 4.17 4
The 10th percentile for a
normal curve, with

w=700=13 3

Normal density
(3]
1

I I T T T T T
T p =70
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EXAMPLE 4.19

An analysis of income tax returns from the previous year indicates that for a given
income classification, the amount of money owed to the government over and above
the amount paid in the estimated tax vouchers for the first three payments is approxi-
mately normally distributed with a mean of $530 and a standard deviation of $205.
Find the 75th percentile for this distribution of measurements. The government
wants to target that group of returns having the largest 25% of amounts owed.

Solution We need to determine the 75th percentile, y 75 (Figure 4.18). From Table 1,
we find z 75 = .67 because the probability nearest .7500 is .7486, which corresponds
to a z-score of .67. We then compute

Vas =+ 2450 = 530 + (67)(205) = 667.35

FIGURE 4.18 4
The 75th percentile for a
normal curve, with
pw=530,0=205 | z -3
g
S 5 75
<
g
3
Z 1 4
O -
T T I T T T T
=530 \
Y75 = 667.35

Thus, 25% of the tax returns in this classification exceed $66735 in the amount
owed the government. H

4.11 Random Sampling

Thus far in the text, we have discussed random samples and introduced various sam-
pling schemes in Chapter 2. What is the importance of random sampling? We must
know how the sample was selected so we can determine probabilities associated
with various sample outcomes. The probabilities of samples selected in a random
manner can be determined, and we can use these probabilities to make inferences
about the population from which the sample were drawn.

Sample data selected in a nonrandom fashion are frequently distorted by a
selection bias. A selection bias exists whenever there is a systematic tendency to
overrepresent or underrepresent some part of the population. For example, a sur-
vey of households conducted during the week entirely between the hours of 9 A.m.
and 5 .M. would be severely biased toward households with at least one member at
home. Hence, any inferences made from the sample data would be biased toward
the attributes or opinions of those families with at least one member at home and
may not be truly representative of the population of households in the region.

random sample Now we turn to a definition of a random sample of » measurements selected
from a population containing N measurements (N > n). (Note: This is a simple
random sample, as discussed in Chapter 2. Since most of the random samples dis-
cussed in this text will be simple random samples, we’ll drop the adjective unless
needed for clarification.)
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DEFINITION 4.13 A sample of n measurements selected from a population is said to be a
random sample if every different sample of size n from the population has an
equal probability of being selected.

EXAMPLE 4.20

A study of crimes related to handguns is being planned for the 10 largest cities in
the United States. The study will randomly select 2 of the 10 largest cities for an
in-depth study following the preliminary findings. The population of interest is the
10 largest cities (Cy, Cy, C3, C4, Cs, Cg, C7, Cg, Co, Cyp). List all possible different
samples consisting of 2 cities that could be selected from the population of 10 cities.
Give the probability associated with each sample in a random sample of n =2
cities selected from the population.

Solution All possible samples are listed in Table 4.8.

TABLE 4.8

Samples of size 2 Sample Cities Sample Cities Sample Cities
1 C1, G 16 Gy, Gy 31 Cs, Cq

2 C.G 17 [N ET) 32 Cs, C;

3 C1,Cy 18 C3,Cy 33 Cs, Cg

4 C1,Cs 19 C3,Cs 34 Cs, Co

5 €1, Co 20 Cs, Cs 35 Cs, Cio

6 C1, Gy 21 Cs, C; 36 Ce, C7

7 Cy, Cs 22 C3, Cg 37 Cg, Cs

8 C1, Co 23 C3, Co 38 Cg, Co

9 C1, Cyo 24 (N ET) 39 Cs, Cro

10 Gy, Cs 25 Cy,Cs 40 Cq,Cs

11 Cy, Cy 26 Cy, Co 41 Cq,Cy

12 C,, Cs 27 Cy, C7 42 Cq7,Cyg

13 C,, Cq 28 Cy, Cg 43 Cg, Co

14 G, C; 29 Cy, Gy 44 Cs, Cyg

15 C,, Cg 30 Cy, Cyo 45 Co, Cyg

Now let us suppose that we select a random sample of n = 2 cities from the
45 possible samples. The sample selected is called a random sample if every sample
has an equal probability, 1/45, of being selected. m

One of the simplest and most reliable ways to select a random sample of n
measurements from a population is to use a table of random numbers (see Table
random number table 13 in the Appendix). Random number tables are constructed in such a way that,
no matter where you start in the table and no matter in which direction you move,
the digits occur randomly and with equal probability. Thus, if we wished to choose
a random sample of n = 10 measurements from a population containing 100 mea-
surements, we could label the measurements in the population from 0 to 99 (or 1 to
100). Then by referring to Table 13 in the Appendix and choosing a random starting
point, the next 10 two-digit numbers going across the page would indicate the labels
of the particular measurements to be included in the random sample. Similarly, by
moving up or down the page, we would also obtain a random sample.
This listing of all possible samples is feasible only when both the sample size
n and the population size N are small. We can determine the number, M, of distinct
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samples of size n that can be selected from a population of N measurements using
the following formula:

N!
M=—"
n!(N — n)!
In Example 4.20, we had N = 10 and n = 2. Thus,
10! 10!

M =45

2110 — 2)1 218!
The value of M becomes very large even when N is fairly small. For example, if
N =50andn = 5, then M = 2,118,760. Thus, it would be very impractical to list all
2,118,760 possible samples consisting of n = 5 measurements from a population of
N = 50 measurements and then randomly select one of the samples. In practice,
we construct a list of elements in the population by assigning a number from 1 to
N to each element in the population, called the sampling frame. We then randomly
select n integers from the integers (1, 2,...,/N) by using a table of random numbers
(see Table 13 in the Appendix) or by using a computer program. Most statisti-
cal software programs contain routines for randomly selecting » integers from the
integers (1,2,...,N), where N > n. For example, the R command sample (seq(l:N),
n, replace = False) would produce a random sample of n integers from the collec-
tion of integers 1, 2,...,N.

EXAMPLE 4.21

The school board in a large school district has decided to test for illegal drug use
among those high school students participating in extracurricular activities. Because
these tests are very expensive, they have decided to institute a random testing pro-
cedure. Every week 20 students will be randomly selected from the 850 high school
students participating in extracurricular activities, and drug tests will be performed.
Refer to Table 13 in the Appendix or use a computer software program to determine
which students should be tested.

Solution Using the list of all 850 students participating in extracurricular activi-
ties, we label the students from 0 to 849 (or, equivalently, from 1 to 850). Then,
referring to Table 13 in the Appendix, we select a starting point (close your eyes
and pick a point in the table). Suppose we selected line 1, column 3. Going down
the page in Table 13, we select the first 20 three-digit numbers between 000 and 849.
We would obtain the following 20 numbers:

015 110 482 333
255 564 526 463
225 054 710 337
062 636 518 224
818 533 524 055

These 20 numbers identify the 20 students that are to be included in the first
week of drug testing. We would repeat the process in subsequent weeks using a
new starting point. The R command sample(seq(1:850), 20, replace = False) would
produce a random sample of 20 integers from the integers 1 to 850. B

A telephone directory is often used in selecting people to participate in surveys
or pools, especially in surveys related to economics or politics. In the 1936 presi-
dential campaign, Franklin Roosevelt was running as the Democratic candidate
against the Republican candidate, Governor Alfred Landon of Kansas. This was
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a difficult time for the nation; the country had not yet recovered from the Great
Depression of the early 1930s, and there were still 9 million people unemployed.

The Literary Digest set out to sample the voting public and predict the win-
ner of the election. Using names and addresses taken from telephone books and
club memberships, the Literary Digest sent out 10 million questionnaires and got
2.4 million back. Based on the responses to the questionnaire, the Digest predicted
a Landon victory by 57% to 43%.

At this time, George Gallup was starting his survey business. He conducted
two surveys. The first one, based on 3,000 people, predicted what the results of the
Digest survey would be long before the Digest results were published; the second
survey, based on 50,000, was used to forecast correctly the Roosevelt victory.

How did Gallup correctly predict what the Literary Digest survey would pre-
dict and then, with another survey, correctly predict the outcome of the election?
Where did the Literary Digest go wrong? The first problem was a severe selection
bias. By taking the names and addresses from telephone directories and club mem-
berships, its survey systematically excluded the poor. Unfortunately for the Digest,
the vote was split along economic lines; the poor gave Roosevelt a large majority,
whereas the rich tended to vote for Landon. A second reason for the error could
be due to a nonresponse bias. Because only 20% of the 10 million people returned
their surveys and approximately half of those responding favored Landon, one
might suspect that maybe the nonrespondents had different preferences than did
the respondents. This was in fact true.

How then does one achieve a random sample? Careful planning and a certain
amount of ingenuity are required to have even a decent chance to approximate
random sampling. This is especially true when the universe of interest involves
people. People can be difficult to work with; they have a tendency to discard mail
questionnaires and refuse to participate in personal interviews. Unless we are very
careful, the data we obtain may be full of biases having unknown effects on the
inferences we are attempting to make.

We do not have sufficient time to explore the topic of random sampling fur-
ther in this text; entire courses at the undergraduate and graduate levels can be
devoted to sample-survey research methodology. The important point to remem-
ber is that data from a random sample will provide the foundation for making
statistical inferences in later chapters. Random samples are not easy to obtain,
but with care, we can avoid many potential biases that could affect the inferences
we make. References providing detailed discussions on how to properly conduct a
survey were given in Chapter 2.

4.12 Sampling Distributions

We discussed several different measures of central tendency and variability in
Chapter 3 and distinguished between numerical descriptive measures of a popu-
lation (parameters) and numerical descriptive measures of a sample (statistics).
Thus, u and o are parameters, whereas y and s are statistics.

The numerical value of a sample statistic cannot be predicted exactly in
advance. Even if we knew that a population mean u was $216.37 and that the popu-
lation standard deviation o was $32.90—even if we knew the complete population
distribution—we could not say that the sample mean y would be exactly equal to
$216.37. A sample statistic is a random variable; it is subject to random variation
because it is based on a random sample of measurements selected from the pop-
ulation of interest. Also, like any other random variable, a sample statistic has a
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probability distribution. We call the probability distribution of a sample statistic the
sampling distribution of that statistic. Stated differently, the sampling distribution of
a statistic is the population of all possible values for that statistic.

The actual mathematical derivation of sampling distributions is one of the
basic problems of mathematical statistics. We will illustrate how the sampling
distribution for y can be obtained for a simplified population. Later in the chapter,
we will present several general results.

EXAMPLE 4.22

The sample y is to be calculated from a random sample of size 2 taken from a
population consisting of 10 values (2, 3,4,5,6,7,8,9, 10, 11). Find the sampling dis-
tribution of y, based on a random sample of size 2.

Solution One way to find the sampling distribution is by counting. There are 45
possible samples of 2 items selected from the 10 items. These are shown in Table 4.9.

Sample Value of y Sample Value of y Sample Value of y
2,3 2.5 3,10 6.5 6,7 6.5
2,4 3 3,11 7 6,8 7
2,5 35 4,5 4.5 6,9 7.5
2,6 4 4,6 5 6,10 8
2,7 4.5 4,7 5.5 6,11 8.5
2,8 5 4,8 6 78 7.5
2,9 5.5 4,9 6.5 79 8
2,10 6 4,10 7 7.10 8.5
2,11 6.5 4,11 7.5 711 9
3,4 35 5,6 5.5 8,9 8.5
3,5 4 5,7 6 8,10 9
3,6 4.5 5,8 6.5 8,11 9.5
3,7 5 5,9 7 9,10 9.5
3,8 5.5 5,10 7.5 9,11 10
3,9 6 5,11 8 10,11 10.5

Assuming each sample of size 2 is equally likely, it follows that the sampling distri-
bution for y based on n = 2 observations selected from the population {2,3,4,5,6,
7.8,9,10, 11} is as indicated in Table 4.10.

y P(y) y P(y)
25 1/45 7 4/45
3 1/45 75 4/45
35 2/45 8 3/45
4 2/45 8.5 3/45
45  3/45 9 2/45
5 3/45 9.5 2/45
55 445 10 1/45
6 4/45 10.5 1/45
6.5  5/45

The sampling distribution is shown as a graph in Figure 4.19. Note that the distribu-
tion is symmetric, with a mean of 6.5 and a standard deviation of approximately 2.0
(the range divided by 4).
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FIGURE 4.19 5/45 ]
Sampling distribution for y
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Example 4.22 illustrates for a very small population that we could in fact
enumerate every possible sample of size 2 selected from the population and then
compute all possible values of the sample mean. The next example will illustrate
the properties of the sample mean, y, when sampling from a larger population.
This example will illustrate that the behavior of y as an estimator of u depends on
the sample size, n. Later in this chapter, we will illustrate the effect of the shape of
the population distribution on the sampling distribution of y.

EXAMPLE 4.23

In this example, the population values are known, and, hence, we can compute
the exact values of the population mean, u, and population standard deviation,
o. We will then examine the behavior of y based on samples of size n =5, 10,
and 25 selected from the population. The population consists of 500 pennies from
which we compute the age of each penny: Age = 2015 — Date on penny. The his-
togram of the 500 ages is displayed in Figure 4.20(a). The shape is skewed to the
right with a very long right tail. The mean and standard deviation are computed
to be u = 13.468 years and o = 11.164 years. In order to generate the sampling
distribution of y for n = 5, we would need to generate all possible samples of size
n =5 and then compute the y from each of these samples. This would be an enor-
mous task, since there are 255,244,687,600 possible samples of size 5 that could be
selected from a population of 500 elements. The number of possible samples of
size 10 or 25 is so large it makes even the national debt look small. Thus, we will
use a computer program to select 25,000 samples of size 5 from the population of
500 pennies. For example, the first sample consists of pennies with ages 4, 12,26, 16,
and 9. The sample mean y = (4 + 12 + 26 + 16 + 9)/5 = 13.4. We repeat 25,000
times the process of selecting 5 pennies; recording their ages, y1, V2, y3, V4, ys; and
then computing y = (y1 + y2 + y3 + y4 + y5)/5. The 25,000 values for y are then
plotted in a frequency histogram, called the sampling distribution of y forn = 5. A
similar procedure is followed for samples of size n = 10 and n = 25. The sampling
distributions obtained are displayed in Figures 4.20(b)—(d).

Note that all three sampling distributions have nearly the same central value,
approximately 13.5. (See Table 4.11.) The mean values of y for the three samples
are nearly the same as the population mean, u = 13.468. In fact, if we had gener-
ated all possible samples for all three values of n, the mean of the possible values
of y would agree exactly with .

The next characteristic to notice about the three histograms is their shape. All
three are somewhat symmetric in shape, achieving a nearly normal distribution
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FIGURE 4.20 Sampling distribution of y for n = 1,5, 10,25
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TABLE 4.11
Means and standard
deviations for

the sampling
distributions of y

standard error of y

Central Limit
Theorems
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Sample Size Mean of y Standard Deviation of y 11.1638/Vn
1 (Population) 13.468 () 11.1638 (o) 11.1638
5 13.485 4.9608 4.9926

10 13.438 3.4926 3.5303

25 13.473 2.1766 2.2328

shape when n = 25. However, the histogram for y based on samples of sizen = 5 is
more spread out than the histogram based on n = 10, which, in turn, is more spread
out than the histogram based on n = 25. When 7 is small, we are much more likely
to obtain a value of y far from u than when 7 is large. What causes this increased
dispersion in the values of y? A single extreme y, either large or small relative to
1, in the sample has a greater influence on the size of y when 7 is small than when
n is large. Thus, sample means based on small n are less accurate in their estimation
of w than are their large-sample counterparts.

Table 4.11 contains summary statistics for the sampling distribution of y.
The sampling distribution of y has mean u; and standard deviation oy, which
are related to the population mean, u, and standard deviation, o, by the following
relationships:

(o
_- = 0’,:7
SRR

From Table 4.11, we note that the three sampling deviations have means that are
approximately equal to the population mean. Also, the three sampling deviations
have standard deviations that are approximately equal to o/Vn. If we had gener-
ated all possible values of y, then the standard deviation of y would equal o/Vn
exactly. This quantity, o; = o/ Vn, is called the standard error of y.

Quite a few of the more common sample statistics, such as the sample
median and the sample standard deviation, have sampling distributions that are
nearly normal for moderately sized values of n. We can observe this behavior by
computing the sample median and sample standard deviation from each of the
three sets of 25,000 samples (n = 5, 10, 25) selected from the population of 500
pennies. The resulting sampling distributions are displayed in Figures 4.21(b)—(d),
for the sample median, and Figures 4.22(b)—(d), for the sample standard devia-
tion. The sampling distributions of both the median and the standard deviation
are more highly skewed in comparison to the sampling distribution of the sample
mean. In fact, the value of n at which the sampling distributions of the sample
median and standard deviation have a nearly normal shape is much larger than
the value required for the sample mean. A series of theorems in mathematical
statistics called the Central Limit Theorems provide theoretical justification for
our approximating the true sampling distribution of many sample statistics with
the normal distribution. We will discuss one such theorem for the sample mean.
Similar theorems exist for the sample median, sample standard deviation, and
sample proportion.

Figure 4.20 illustrates the Central Limit Theorem. Figure 4.20(a) displays the
distribution of the measurements y in the population from which the samples are to
be drawn. No specific shape was required for these measurements for the Central
Limit Theorem to be validated. Figures 4.20(b)—(d) illustrate the sampling distri-
bution for the sample mean y when n is 5, 10, and 25, respectively. We note that
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FIGURE 4.21 Sampling distribution of median for n = 5, 10, 25
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FIGURE 4.22 Sampling distribution of standard deviation for n = 5, 10, 25
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THEOREM 4.1 Central Limit Theorem for y

Let y denote the sample mean computed from a random sample of n mea-
surements from a population having a mean u and finite standard deviation
o. Let u; and o denote the mean and standard deviation of the sampling
distribution of y, respectively. Based on repeated random samples of size n
from the population, we can conclude the following:

Lopy=p

2. 0,=0/Vn

3. When n is large, the sampling distribution of y will be approxi-
mately normal (with the approximation becoming more precise as
n increases).

4. When the population distribution is normal, the sampling distribu-
tion of y is exactly normal for any sample size 7.

even for a very small sample size, n = 10, the shape of the sampling distribution of
y is very similar to that of a normal distribution. This is not true in general. If the
population distribution had many extreme values or several modes, the sampling
distribution of y would require n to be considerably larger in order to achieve a
symmetric bell shape.

We have seen that the sample size n has an effect on the shape of the sam-
pling distribution of y. The shape of the distribution of the population measure-
ments also will affect the shape of the sampling distribution of y. Figures 4.23 and
4.24 illustrate the effect of the population shape on the shape of the sampling dis-
tribution of y. In Figure 4.23, the population measurements have a normal distri-
bution. The sampling distribution of y is exactly a normal distribution for all values
of n, as is illustrated for n = 5, 10, and 25 in Figure 4.23. When the population
distribution is nonnormal, as depicted in Figure 4.24, the sampling distribution of
y will not have a normal shape for small » (see Figure 4.24 with n = 5). However,
for n = 10 and 25, the sampling distributions are nearly normal in shape, as can be
seen in Figure 4.24.

It is very unlikely that the exact shape of the population distribution will be
known. Thus, the exact shape of the sampling distribution of y will not be known
either. The important point to remember is that the sampling distribution of y will

FIGURE 4.23
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sampling from a normal
distribution
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FIGURE 4.24 6 -
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be approximately normally distributed with a mean u; = u, the population mean,
and a standard deviation o = o /V/n. The approximation will be more precise as
n, the sample size for each sample, increases and as the shape of the population
distribution becomes more like the shape of a normal distribution.

An obvious question is, How large should the sample size be for the Central
Limit Theorem to hold? Numerous simulation studies have been conducted over
the years, and the results of these studies suggest that, in general, the Central Limit
Theorem holds for n > 30. However, one should not apply this rule blindly. If the
population is heavily skewed, the sampling distribution for y will still be skewed
even for n > 30. On the other hand, if the population is symmetric, the Central
Limit Theorem holds for n < 30.

Therefore, take a look at the data. If the sample histogram is clearly skewed,
then the population will also probably be skewed. Consequently, a value of n much
higher than 30 may be required to have the sampling distribution of y be approxi-
mately normal. Any inference based on the normality of y for n = 30 under this
condition should be examined carefully.

EXAMPLE 4.24

A person visits her doctor with concerns about her blood pressure. If the sys-
tolic blood pressure exceeds 150, the patient is considered to have high blood
pressure and medication may be prescribed. A patient’s blood pressure readings
often have a considerable variation during a given day. Suppose a patient’s systolic
blood pressure readings during a given day have a normal distribution with a mean
n = 160 mm mercury and a standard deviation ¢ = 20 mm.

a. What is the probability that a single blood pressure measurement
will fail to detect that the patient has high blood pressure?

b. If five blood pressure measurements are taken at various times
during the day, what is the probability that the average of the five
measurements will be less than 150 and hence fail to indicate that
the patient has high blood pressure?

c. How many measurements would be required in a given day so that
there is at most a 1% probability of failing to detect that the patient
has high blood pressure?

Solution Let y be the blood pressure measurement of the patient. y has a normal
distribution with u = 160 and o = 20.
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a. P(measurement fails to detect high pressure) = P(y = 150) =
Pz = W) = P(z = —0.5) = .3085. Thus, there is over a 30%
chance of failing to detect that the patient has high blood pressure if
only a single measurement is taken.

b. Let y be the average blood pressure of the five measurements. Then
y has a normal distribution with w = 160 and o = 20/\/5 = 8.944.
_ 150 — 160
= = = | = = — =
P(y = 150) P(z =" gom ) P(z = —-1.12) = 1314
Therefore, by using the average of five measurements, the chance of
failing to detect the patient has high blood pressure has been reduced
from over 30% to about 13%.

c. We need to determine the sample size n such that P(y < 150) = .01.

Now P(y < 150) = P(z = 15200/;\;’60). From the normal tables, we

have P(z = —2.326) = .01; therefore, 10 =160 _ 5 396, Solving

20 \n
for n yields Va = %, n = 21.64. It would require at least 22

measurements in order to achieve the goal of at most a 1% chance
of failing to detect high blood pressure. B

As demonstrated in Figures 4.21 and 4.22, the Central Limit Theorem can
be extended to many different sample statistics. The form of the Central Limit
Theorem for the sample median and sample standard deviation is considerably
more complex than for the sample mean. Many of the statistics that we will encoun-
ter in later chapters will be either averages or sums of variables. The Central Limit
Theorem for sums can be easily obtained from the Central Limit Theorem for the
sample mean. Suppose we have a random sample of n measurements, yi, . .., yu,
from a population and we let 2y =y, +--- + y,.

THEOREM 4.2 Central Limit Theorem for Zy

Let Xy denote the sum of a random sample of n measurements from a
population having a mean p and finite standard deviation o. Let uy, and oy,
denote the mean and standard deviation of the sampling distribution of Xy,
respectively. Based on repeated random samples of size n from the popula-
tion, we can conclude the following:

1. py, = np

2. 0y, = Vno

3. When n is large, the sampling distribution of Xy will be approxi-
mately normal (with the approximation becoming more precise
as n increases).

4. When the population distribution is normal, the sampling distribu-
tion of Xy is exactly normal for any sample size n.

Usually, a sample statistic is used as an estimate of a population parameter.
For example, a sample mean y can be used to estimate the population mean u from
which the sample was selected. Similarly, a sample median and sample standard
deviation estimate the corresponding population median and standard deviation.
The sampling distribution of a sample statisticis then used to determine how accurate
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the estimate is likely to be. In Example 4.22, the population mean w is known to be
6.5. Obviously, we do not know u in any practical study or experiment. However, we
can use the sampling distribution of y to determine the probability that the value of y
for a random sample of n = 2 measurements from the population will be more than
three units from u. Using the data in Example 4.22, this probability is
PR5) + PG) + P(0) + P(105) = —
In general, we would use the normal approximation from the Central Limit Theorem
in making this calculation because the sampling distribution of a sample statistic is
seldom known. This type of calculation will be developed in Chapter 5. Since a sam-
ple statistic is used to make inferences about a population parameter, the sampling
distribution of the statistic is crucial in determining the accuracy of the inference.
interpretations of a Sampling distributions can be interpreted in at least two ways. One way uses
sampling distribution  the long-run relative frequency approach. Imagine taking repeated samples of a
fixed size from a given population and calculating the value of the sample statistic
for each sample. In the long run, the relative frequencies for the possible values of
the sample statistic will approach the corresponding sampling distribution prob-
abilities. For example, if one took a large number of samples from the population
distribution corresponding to the probabilities of Example 4.22 and, for each sam-
ple, computed the sample mean, approximately 9% would have y = 5.5.

The other way to interpret a sampling distribution makes use of the classi-
cal interpretation of probability. Imagine listing all possible samples that could be
drawn from a given population. The probability that a sample statistic will have a
particular value (say, y = 5.5) is then the proportion of all possible samples that
yield that value. In Example 4.22, P(y = 5.5) = 4/45 corresponds to the fact that
4 of the 45 samples have a sample mean equal to 5.5. Both the repeated-sampling
and the classical method approaches to finding probabilities for a sample statistic
are legitimate.

In practice, though, a sample is taken only once, and only one value of the
sample statistic is calculated. A sampling distribution is not something you can see
in practice; it is not an empirically observed distribution. Rather, it is a theoretical
concept, a set of probabilities derived from assumptions about the population and
about the sampling method.

There’s an unfortunate similarity between the phrase “sampling distribution,”
meaning the theoretically derived probability distribution of a statistic, and the
phrase “sample distribution,” which refers to the histogram of individual values
actually observed in a particular sample. The two phrases mean very different
things. To avoid confusion, we will refer to the distribution of sample values as the

sample histogram  sample histogram rather than as the sample distribution.

4.13 Normal Approximation to the Binomial

A binomial random variable y was defined earlier to be the number of successes
observed in n independent trials of a random experiment in which each trial
resulted in either a success (S) or a failure (F) and P(S) = & for all n trials. We will
now demonstrate how the Central Limit Theorem for sums enables us to calculate
probabilities for a binomial random variable by using an appropriate normal curve
as an approximation to the binomial distribution. We said in Section 4.8 that prob-
abilities associated with values of y can be computed for a binomial experiment for
any values of n or 7, but the task becomes more difficult when n gets large. For
example, suppose a sample of 1,000 voters is polled to determine sentiment toward
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the consolidation of city and county government. What would be the probability of
observing 460 or fewer favoring consolidation if we assume that 50% of the entire
population favors the change? Here we have a binomial experiment with n = 1,000
and 7, the probability of selecting a person favoring consolidation, equal to .5. To
determine the probability of observing 460 or fewer favoring consolidation in the
random sample of 1,000 voters, we could compute P(y) using the binomial formula
for y = 460, 459, . . ., 0. The desired probability would then be

P(y = 460) + P(y = 459) + --- + P(y = 0)

There would be 461 probabilities to calculate, with each one being somewhat
difficult because of the factorials. For example, the probability of observing 460
favoring consolidation is
- _ 1000 yu60, 5500
P(y = 460) = 216015401 (.5)%°(.5)

A similar calculation would be needed for all other values of y.

To justify the use of the Central Limit Theorem, we need to define n random
variables, I, . . .., I,, by

;= 1 if the ith trial results in a success
i 0  if the ith trial results in a failure

The binomial random variable y is the number of successes in the #n trials. Now,
consider the sum of the random variables Iy, ..., I,; 27, I, A 1is placed in the
sum for each S that occurs and a 0 for each F that occurs. Thus, >/_, ; is the num-
ber of Ss that occurred during the n trials. Hence, we conclude that y = X7 1.
Because the binomial random variable y is the sum of independent random varia-
bles, each having the same distribution, we can apply the Central Limit Theorem for
sums to y. Thus, the normal distribution can be used to approximate the binomial
distribution when # is of an appropriate size. The normal distribution that will be
used has a mean and standard deviation given by the following formulas:

w=nmw, o=\nw(l —m)

These are the mean and standard deviation of the binomial random variable y.

EXAMPLE 4.25

Use the normal approximation to the binomial to compute the probability of
observing 460 or fewer favoring consolidation in a sample of 1,000 if we assume
that 50% of the entire population favors the change.

Solution The normal distribution used to approximate the binomial distribution
will have

w = nm = 1,000(.5) = 500
o =\nm(1 — ) = V1,000(.5)(.5) = 15.8

The desired probability is represented by the shaded area shown in Figure 4.25. We
calculate the desired area by first computing
_y—um _ 460 — 500

= = -2.
o 15.8 >3

Z
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FIGURE 4.25
Approximating normal
distribution for the
binomial distribution,
w=>500and o = 15.8
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Referring to Table 1 in the Appendix, we find that the area under the normal curve
to the left of 460 (for z = —2.53) is .0057. Thus, the probability of observing 460
or fewer favoring consolidation is approximately .0057. Using R, the exact value is
pbinom(460, 1000, .5) = .0062. ®

The normal approximation to the binomial distribution can be unsatisfactory
ifnm < 5o0rn(l — 7) < 5.1f 7, the probability of success, is small and r, the sample
size, is modest, the actual binomial distribution is seriously skewed to the right. In
such a case, the symmetric normal curve will give an unsatisfactory approximation.
If 7 is near 1, so n(1 — ) <5, the actual binomial will be skewed to the left, and,
again, the normal approximation will not be very accurate. The normal approxi-
mation, as described, is quite good when n7 and n(1 — ) exceed about 20. In the

continuity correction  middle zone, n7 or n(1 — ) between 5 and 20, a modification called a continuity
correction makes a substantial contribution to the quality of the approximation.

The point of the continuity correction is that we are using the continuous
normal curve to approximate a discrete binomial distribution. A picture of the
situation is shown in Figure 4.26.

The binomial probability that y =5 is the sum of the areas of the rectangles
above5,4,3,2,1,and 0. This probability (area) is approximated by the area under the
superimposed normal curve to the left of 5. Thus, the normal approximation ignores
half of the rectangle above 5. The continuity correction simply includes the area
between y = 5 and y = 5.5. For the binomial distribution with n = 20 and 7= = .30
(pictured in Figure 4.26), the correction is to take P(y = 5) as P(y = 5.5). Instead of

Py =5) = Plz=(5—-20(3))N20(.3)(.7)] = P(z = —.49) = 3121
use

P(y =5.5) = Plz = (5.5 — 20(.3))N20(.3)(.7)] = P(z = —.24) = 4052
The actual binomial probability is pbinom(5, 20, .3) = .4164. The general idea of
the continuity correction is to add or subtract .5 from a binomial value before using

normal probabilities. The best way to determine whether to add or subtract is to
draw a picture like Figure 4.26.

FIGURE 4.26 n=20
Normal approximation w=.30 // \
to the binomial
1 2 3 4 5 6

.05 1.5 2.5 35 4.5 5.5 6.5
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4.14 Evaluating Whether or Not a Population Distribution Is Normal 203

For large n and 7r not too near 0 or 1, the distribution of a binomial random
variable y may be approximated by a normal distribution with w = n7r and
o = Vnm (1 — 7). This approximation should be used only if n7 =5 and
n(1 — 7) = 5. A continuity correction will improve the quality of the approxi-
mation in cases in which # is not overwhelmingly large.

EXAMPLE 4.26

A large drug company has 100 potential new prescription drugs under clinical test.
About 20% of all drugs that reach this stage are eventually licensed for sale. What
is the probability that at least 15 of the 100 drugs are eventually licensed? Assume
that the binomial assumptions are satisfied, and use a normal approximation with
continuity correction.

Solution Let y be the number of approved drugs. We are assuming y has a bi-
nomial distribution with n = 100 and 7 = .2. The mean of y is u = 100(.2) = 20,
and the standard deviation is V100(.2)(.8) = 4. Because nm = 100(.2) = 20> 5
and n(1 — m) = 100(.8) = 80 > 5, the normal approximation can safely be used to
approximate the probability that 15 or more drugs are approved; that is, P(y = 15).
Because y = 15 is included, the continuity correction is to take the event as y
greater than or equal to 14.5.

14.5 — 20
Ply=15) = P(z = 4) = P(z=-1375)=1- P(z < —1.375)

=1—.0846 = 9154

Using the R command for computing binomial probabilities, the exact probability
is Py =15) =1 — P(y = 14) = 1 — pbinom (14, 100, .2) =.9196. Comparing the
approximate probability, .9154, to the exact probability, .9196, we can conclude that
the approximation was accurate to two decimal places.

If the continuity correction was not used, the probability would be approxi-
mated to be

=Plz=-125)=1-P(z<—125)

P(y=15) = P(z = 15;”)

=1 —.1056 = .8944

Thus, the continuity correction is crucial in obtaining an accurate approximation.

Evaluating Whether or Not a Population
Distribution Is Normal

In many scientific experiments or business studies, the researcher wishes to deter-
mine if a normal distribution would provide an adequate fit to the population dis-
tribution. This would allow the researcher to make probability calculations and
draw inferences about the population based on a random sample of observations
from that population. Knowledge that the population distribution is not normal
also may provide the researcher insight concerning the population under study.
This may indicate that the physical mechanism generating the data has been
altered or is of a form different from previous specifications. Many of the statistical
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procedures that will be discussed in subsequent chapters of this book require that
the population distribution have a normal distribution or at least be adequately
approximated by a normal distribution. In this section, we will provide a graphical
procedure and a quantitative assessment of how well a normal distribution models
the population distribution.
The graphical procedure that will be constructed to assess whether a random
normal probability sample yy, y,...,y, was selected from a normal distribution is referred to as a normal
plot  probability plot of the data values. This plot is a variation on the quantile plot that
was introduced in Chapter 3. In the normal probability plot, we compare the quan-
tiles from the data observed from the population to the corresponding quantiles from
the standard normal distribution. Recall that the quantiles from the data are just
the data ordered from smallest to largest: y(1), ¥(2),- .-, Y(n) Where y() is the smallest
value in the data yq, y2,...,ys; y(2) is the second smallest value; and so on until reaching
Y(n), Which is the largest value in the data. Sample quantiles separate the sample in the
same fashion as the population percentiles, which were defined in Section 4.10. Thus,
the sample quantile Q(u) has at least 100u% of the data values less than Q(u) and has
at least 100(1 — u)% of the data values greater than Q(u). For example, Q(.1) has at
least 10% of the data values less than Q(.1) and has at least 90% of the data values
greater than Q(.1). Q(.5) has at least 50% of the data values less than Q(.5) and has
at least 50% of the data values greater than Q(.5). Finally, Q(.75) has at least 75% of
the data values less than Q(.75) and has at least 25% of the data values greater than
Q(.75). This motivates the following definition for the sample quantiles.

DEFINITION 4.14 Let y(1), Y(2)»---»Y(n) be the ordered values from a data set. The [(i — .5)/n]th
sample quantile, Q((i — .5)/n), is (). That is, y1) = Q((.5)/n) is the [(.5)/n]th
sample quantile, y2) = Q((1.5)/n) is the [(1.5)/n]th sample quantile,...,and,
lastly, y(,) = Q((n — .5)/n) is the [(n — .5)/n]th sample quantile.

Suppose we had a sample of n = 20 observations: yi, y2,...,y2. Then

ya) = 0((:5)20) = Q(.025) is the .025th sample quantile,

y@) = 0((1.5)/20) = Q(.075) is the .075th sample quantile,

y3) = 0((2.5)/20) = Q(.125) is the .125th sample quantile, ..., and
Yoy = 0((19.5)/20) = Q(.975) is the .975th sample quantile.

In order to evaluate whether a population distribution is normal, a random sample
of n observations is obtained, the sample quantiles are computed, and these n quan-
tiles are compared to the corresponding quantiles computed using the conjectured
population distribution. If the conjectured distribution is the normal distribution,
then we would use the normal tables to obtain the quantiles z(;— 5, fori = 1,2,...,
n. The normal quantiles are obtained from the standard normal tables, Table 1 in
the Appendix, for the n values .5/n, 1.5/n,...,(n — .5)/n. For example, if we had
n = 20 data values, then we would obtain the normal quantiles for .5/20 = .025,
1.5/20 = .075, 2.5/20 = .125,...,(20 — .5)/20 = .975. From Table 1, we find that
these quantiles are given by z g5 = —1.960, zo7;5 = —1.440, z125 = —1.150,...,
Z.975 = 1.960. The normal quantile plot is obtained by plotting the n pairs of points:

(Z.S/m Yu)s (ZLs/m Yo)s (Zz.s/n’ Yo (Z(n7A5)/n’ Vo)

If the population from which the sample of n values was randomly selected
has a normal distribution, then the plotted points should fall close to a straight line.
The following example will illustrate these ideas.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4.14 Evaluating Whether or Not a Population Distribution Is Normal 205

EXAMPLE 4.27

Itis generally assumed that cholesterol readings in large populations have a normal
distribution. In order to evaluate this conjecture, the cholesterol readings of n = 20
patients were obtained. These are given in Table 4.12, along with the correspond-
ing normal quantile values. It is important to note that the cholesterol readings are
given in an ordered fashion from smallest to largest. The smallest cholesterol read-
ing is matched with the smallest normal quantile, the second-smallest cholesterol
reading with the second-smallest quantile, and so on. Obtain the normal quantile
plot for the cholesterol data, and assess whether the data were selected from a
population having a normal distribution.

Solution
TABLE 4.12 - : : .
Sample and normal Patient Cholesterol Reading @i — .5)/20 Normal Quantile
quantiles for cholesterol 1 133 025 —-1.960
readings 2 137 .075 —1.440
3 148 125 —1.150
4 149 175 —.935
5 152 225 —-.755
6 167 275 —.598
7 174 325 —.454
8 179 375 -.319
9 189 425 —-.189
10 192 475 —.063
11 201 525 .063
12 209 575 189
13 210 .625 319
14 211 675 454
15 218 725 .598
16 238 775 755
17 245 .825 935
18 248 .875 1.150
19 253 925 1.440
20 257 975 1.960

FIGURE 4.27
Normal quantile plot for
cholesterol reading
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A plot of the sample quantiles versus the corresponding normal quantiles is dis-
played in Figure 4.27 The plotted points generally follow a straight-line pattern.
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FIGURE 4.28 280
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Using the R code in Section 4.16, we can obtain a plot with a fitted line that
assists us in assessing how close the plotted points fall relative to a straight line.
This plot is displayed in Figure 4.28. The 20 points appear to be relatively close to
the fitted line, and, thus, the normal quantile plot would appear to suggest that the
normality of the population distribution is plausible.

Using a graphical procedure, there is a high degree of subjectivity in making
an assessment of how well the plotted points fit a straight line. The scales of the axes
on the plot can be increased or decreased, resulting in a change in our assessment
of fit. Therefore, a quantitative assessment of the degree to which the plotted points
fall near a straight line will be introduced.

In Chapter 3, we introduced the sample correlation coefficient r to measure
the degree to which two variables satisfied a linear relationship. We will now dis-
cuss how this coefficient can be used to assess our certainty that the sample data
were selected from a population having a normal distribution. First, we must alter
which normal quantiles are associated with the ordered data values. In the above
discussion, we used the normal quantiles corresponding to (i — .5)/n. In calculat-
ing the correlation between the ordered data values and the normal quantiles, a
more precise measure is obtained if we associate the (i — .375)/(n + .25) normal
quantiles for i = 1, ..., n with the n data values y(), ..., y»). We then calculate
the value of the correlation coefficient, r, from the n pairs of values. To provide
a more definitive assessment of our level of certainty that the data were sampled
from a normal distribution, we then obtain a value from Table 15 in the Appen-
dix. This value, called a p-value, can then be used along with the following criterion
(Table 4.13) to rate the degree of fit of the data to a normal distribution.

TABLE 4.13

Criteria for assessing fit p-value Assessment of Normality
of normal distribution p<.01 Very poor fit
Ol=p<.05 Poor fit
05=p<.10 Acceptable fit
10=p < .50 Good fit

p=.50 Excellent fit

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TABLE 4.14
Normal quantiles data
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It is very important that the normal quantile plot accompany the calculation
of the correlation because large sample sizes may result in an assessment of a poor
fit when the graph would indicate otherwise. The following example will illustrate
the calculations involved in obtaining the correlation.

EXAMPLE 4.28

Consider the cholesterol data in Example 4.27. Calculate the correlation coefficient,
and make a determination of the degree of fit of the data to a normal distribution.

Solution The data are summarized in Table 4.14 along with their corresponding
normal quantiles.

Patient Cholesterol Reading @i — .375)/(20 + .25) Normal Quantile

i yi X;
1 133 .031 —1.868
2 137 .080 —1.403
3 148 130 —1.128
4 149 179 —-.919
5 152 228 —.744
6 167 278 —.589
7 174 327 —.448
8 179 377 -.315
9 189 426 —.187
10 192 475 —.062
11 201 525 .062
12 209 574 187
13 210 623 315
14 211 673 448
15 218 722 .589
16 238 772 744
17 245 821 919
18 248 870 1.128
19 253 .920 1.403
20 257 969 1.868

The calculation of the correlation between cholesterol reading (y) and normal
quantile (x) will be done in Table 4.15. First, we compute y = 195.5 and x = 0. Then
the calculation of the correlation will proceed as in our calculations from Chapter 3.

The correlation is then computed as

2 —x) (v —y) _ 720.18

VE, & — 0D,y — y)?)  V(17.634)(30511)

From Table 15 in the Appendix with n = 20 and r = .982, we obtain p-value =~ .50.
This value is obtained by locating the number in the row for n = 20 that is closest to
r = .982. The a-value heading this column is the p-value. Thus, we would appear to
have an excellent fit between the sample data and the normal distribution. This is
consistent with the fit that is displayed in Figure 4.28, where the 20 plotted points
are very near to the straight line. The R command cor(y, x) yields the value .9818,
where y and x are the values in Table 4.14.
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TABLE 4.15 - - - - — —
Calculation of correlation (i — x) 0i—y) (i = X)(yi = y) 0i—y (i — x)
coefficient | @i —0) (y: — 195.5) (x: - 0)(y; — 195.5) (i — 195.5)2 (x; — 0)?
—1.868 —-62.5 116.765 3,906.25 3.49033

—1.403 —58.5 82.100 3,422.25 1.96957

—-1.128 —47.5 53.587 2,256.25 1.27271

-.919 —46.5 42.740 2,162.25 .84481

—.744 —43.5 32.370 1,892.25 55375

-.589 —28.5 16.799 812.25 34746

—.448 —-21.5 9.627 462.25 20050

-.315 -16.5 5.190 272.25 .09896

—.187 —-6.5 1.214 42.25 .03488

—.062 —-3.5 217 12.25 .00384

.062 5.5 341 30.25 .00384

187 13.5 2.521 182.25 .03488

315 14.5 4.561 210.25 .09896

448 15.5 6.940 240.25 20050

589 22.5 13.263 506.25 34746

744 42.5 31.626 1,806.25 55375

919 49.5 45.497 2,450.25 .84481

1.128 52.5 59.228 2,756.25 1.27271

1.403 57.5 80.696 3,306.25 1.96957

1.868 61.5 114.897 3,782.25 3.49033

0 0 720.18 30,511 17.634

|

4.15 RESEARCH STUDY: Inferences About Performance-
Enhancing Drugs Among Athletes

As was discussed in the abstract to the research study given at the beginning of
this chapter, the use of performance-enhancing substances has two major conse-
quences: the artificial enhancement of performance (known as doping) and the
use of potentially harmful substances that may have significant health effects
for the athlete. However, failing a drug test can devastate an athlete’s career.
The controversy over performance-enhancing drugs has seriously brought into
question the reliability of the tests for these drugs. The article in Chance discussed
at the beginning of this chapter examines the case of Olympic runner Mary Decker
Slaney. Ms. Slaney was a world-class distance runner during the 1970s and 1980s.
After a series of illnesses and injuries, she was forced to stop competitive run-
ning. However, at the age of 37, Slaney made a comeback in long-distance running.
Slaney submitted to a mandatory test of her urine at the 1996 U.S. Olympic Trials.
The results indicated that she had elevated levels of testosterone and hence may
have used a banned performance-enhancing drug. Her attempt at a comeback was
halted by her subsequent suspension by USA Track and Field (USATF). Slaney
maintained her innocence throughout a series of hearings before USATF and was
exonerated in September 1997 by a Doping Hearing Board of the USATF. How-
ever, the U.S. Olympic Committee (USOC) overruled the USATF decision and
stated that Slaney was guilty of a doping offense. Although Slaney continued to
maintain that she had never used the drug, her career as a competitive runner
was terminated. Anti-doping officials regard a positive test result as irrefutable
evidence that an illegal drug was used, to the exclusion of any other explanation.
We will now address how the use of Bayes’ Formula, the sensitivity and specificity
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of a test, and the prior probability of drug use can be used to explain to anti-doping
officials that drug tests can be wrong.

We will use tests for detecting artificial increases in testosterone concentra-
tions to illustrate the various concepts involved in determining the reliability of a
testing procedure. The article states, “Scientists have attempted to detect artifi-
cial increases in testosterone concentrations through the establishment of a ‘nor-
mal urinary range’ for the T/E ratio.” Despite the many limitations in setting this
limit, scientists set the threshold for positive testosterone doping at a T/E ratio
greater than 6:1. The problem is to determine the probabilities associated with
various tests for the T/E ratio. In particular, what is the probability that an athlete
is a banned-drug user given she tests positive for the drug (positive predictive
value, or PPV)?

We will use the example given in the article. Suppose in a population of 1,000
athletes there are 20 users. That is, prior to testing a randomly selected athlete
for the drug, there is a 20/1,000 = 2% chance that the athlete is a user (the prior
probability of randomly selecting a user is .02 = 2%). Suppose the testing pro-
cedure has a sensitivity of 80% and a specificity of 99%. Thus, 16 of the 20 users
would test positive, 20(.8) = 16, and about 10 of the nonusers would test positive,
980(1 — .99) = 9.8. If an athlete tests positive, what is the probability she is a user?
We now have to make use of Bayes’ Formula to compute PPV.
sens * prior

PPV =
sens * prior + (1 — spec) * (1 — prior)

where “sens” is the sensitivity of the test, “spec” is the specificity of the test, and
“prior” is the prior probability that an athlete is a banned-drug user. For our exam-
ple with a population of 1,000 athletes,

(.8) *(20/1,000)
(.8) *(20/1,000) + (1 —.99) * (1 — 20/1,000)
Therefore, if an athlete tests positive, there is only a 62% chance that she has used

the drug. Even if the sensitivity of the test is increased to 100%, the PPV is still
relatively small:

PPV = = .62

(1) * (20/1,000)
(1) * (20/1,000) + (1 — .99) * (1 — 20/1,000)

There is a 33% chance that the athlete is a nonuser even though the test result was
positive. Thus, if the prior probability is small, there will always be a high degree
of uncertainty with the test result even when the test has values of sensitivity and
specificity near 1.

However, if the prior probability is fairly large, then the PPV will be much
closer to 1. For example, if the population consists of 900 users and only 100
nonusers and if the testing procedure has sensitivity = .9 and specificity = .99,
then the PPV would be .9988:

PPV = = .67

(.9) * (900/1,000)
(.9) * (900/1,000) + (1 — .99) * (1 — 900/1,000)

That is, the chance that the tested athlete is a user given she produced a positive
test would be 99.88%, a very small chance of a false positive.

From this, we conclude that an essential factor in Bayes’ Formula is the prior
probability of an athlete being a banned-drug user. Making matters even worse in
this situation is the fact that the prevalence (prior probability) of substance abuse

PPV = = .9988
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is very difficult to determine. Hence, there will inevitably be a subjective aspect to
assigning a prior probability. The authors of the article comment on the selection
of the prior probability, suggesting that in their particular sport, a hearing board
consisting of athletes participating in the same sport as the athlete being tested
would be especially appropriate for making decisions about prior probabilities.
For example, assuming the board knows nothing about the athlete beyond what is
presented at the hearing, it might regard drug abuse as rare, and, hence, the PPV
would be at most moderately large. On the other hand, if the board knew that
drug abuse is widespread, then the probability of abuse would be larger, based on
a positive test result.

To investigate further the relationship among PPV, prior probability, and
sensitivity for a fixed specificity of 99%, consider Figure 4.29. The calculations of
PPV are obtained by using Bayes’ Formula for a selection of prior and sensitivity,
and with specificity = .99.

We can thus observe that if the sensitivity of the test is relatively low —say,
less than 50% — then unless the prior is above 20%, we will not be able to achieve a
PPV greater than 90%. The article describes how the above figure allows for using
Bayes’ Formula in reverse. For example, a hearing board may make the decision
that it would not rule against an athlete unless his or her probability of being a user
was at least 95%. Suppose we have a test having both sensitivity and specificity of
99%. Then the prior probability must be at least 50% in order to achieve a PPV
of 95%. This would allow the board to use its knowledge about the prevalence of
drug abuse in the population of athletes to determine if a prevalence of 50% or
larger is realistic.

The authors conclude with the following comments:

Conclusions about the likelihood of testosterone doping require consideration
of three components: specificity and sensitivity of the testing procedure, and the
prior probability of use. As regards the T/E ratio, anti-doping officials consider
only specificity. The result is a flawed process of inference. Bayes’ rule shows
that it is impossible to draw conclusions about guilt on the basis of specificity
alone. Policy-makers in the athletic federations should follow the lead of med-
ical scientists who use sensitivity, specificity, and Bayes’ rule in interpreting
diagnostic evidence.
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4.16 R Instructions

Generating Random Numbers

To generate 1,000 random numbers from the integers [0, 1,...,9]:

1. y=¢(0:9)
2. x = sample(y, 1000, replace=T)
3. x

Calculating Binomial Probabilities

To calculate binomial probabilities when X has a binomial distribution with n = 10
and 7 = 0.6:

1. To calculate P(X = 3), use the command dbinom(3, 10, .6)

2. To calculate P(X = 3), use the command pbinom(3, 10, .6)

3. To calculate P(X = k) for k = 0, 1,...,10, use the commands
k = ¢(0:10) and dbinom(k, 10, .6)

Calculating Poisson Probabilities

To calculate Poisson probabilities when Y has a binomial distribution with A = 10
and 7 = 0.6:

1. To calculate P(X = 3), use the command dbinom(3, 10, .6)

2. To calculate P(X = 3), use the command pbinom(3, 10, .6)

3. To calculate P(X = k) for k = 0, 1,...,10, use the commands
k = ¢(0:10) and dbinom(k, 10, .6)

Calculating Normal Probabilities
To calculate probabilities when X has a normal distribution with u = 23 and o = 5:

1. To calculate P(X = 18), use the command pnorm(18, 23, 5)
2. To calculate P(X > 18), use the command 1 — pnorm(18, 23, 5)
3. To find 85th percentile, use q(.85, 23, 5)

Generating Sampling Distribution of y

The following R commands will simulate the sampling distribution of y. We will
generate 10,000 values of y, with each of the 10,000 values of y computed from
a unique random sample of 16 observations, from a population having a normal
distribution with u = 43 and o = 7.

. r=10,000

.y =r1ep(0, 16)

. ybarl6 = rep(0, r)

. for (i in L:r){

.y = rnorm(16,43,7)
. ybarl6[i] = mean(y) }

OOUTDAWN

The above commands will produce 10,000 values for y, where y is the average of 16
data values from a population having a normal distribution with u =43 and o = 7.
To display the 10,000 values, type “ybar16”.
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The following three commands will generate a histogram, mean, and standard
deviation for the 10,000 values:

1. hist(ybar16)
2. mean(ybarl6)
3. sd(ybarl6)

The histogram should be bell-shaped with its center near 43. The mean of the
10,000 values should be close to 43, and the standard deviation should be close to

7V16 = 1.75.

Commands to Generate the Plot in Figure 4.28

The following R commands will generate the normal reference plot in Figure 4.28
and the correlation coefficient.

1. y = ¢(133,137, 148, 149, 152, 167, 174, 179, 189, 192, 201, 209, 210,
211, 218, 238, 245, 248, 253, 257)

2. y = sort(y)

3. n = length(y)

4. i=1:n

5. u= (i —.375)/(n + .25)

6. x = qnorm(u)

7. plot(x, y, xlab = “Normal quantiles”, ylab = “Cholesterol readings”,

lab = ¢(7, 8, 7), ylim = ¢(100, 280), main = “Normal Reference
Distribution Plot\n Cholesterol readings”, cex = .95)

. abline(Im(y ~ x))

. cor(x, y)

ZAVA Summary and Key Formulas

In this chapter, we presented an introduction to probability, probability distri-
butions, and sampling distributions. Knowledge of the probabilities of sample
outcomes is vital to a statistical inference. Three different interpretations of the
probability of an outcome were given: the classical, relative frequency, and subjec-
tive interpretations. Although each has a place in statistics, the relative frequency
approach has the most intuitive appeal because it can be checked.

Quantitative random variables are classified as either discrete or continuous
random variables. The probability distribution for a discrete random variable y is
a display of the probability P(y) associated with each value of y. This display may
be presented in the form of a histogram, table, or formula.

The binomial is a very important and useful discrete random variable. Many
experiments that scientists conduct are similar to a coin-tossing experiment where
dichotomous (yes—no) types of data are accumulated. The binomial experiment
frequently provides an excellent model for computing probabilities of various
sample outcomes.

Probabilities associated with a continuous random variable correspond to
areas under the probability distribution. Computations of such probabilities were
illustrated for areas under the normal curve. The importance of this exercise is
borne out by the Central Limit Theorem: Any random variable that is expressed
as a sum or average of a random sample from a population having a finite stand-
ard deviation will have a normal distribution for a sufficiently large sample size.

©O 0
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Direct application of the Central Limit Theorem gives the sampling distribution
for the sample mean. Because many sample statistics are either sums or averages
of random variables, application of the Central Limit Theorem provides us with
information about probabilities of sample outcomes. These probabilities are vital
for the statistical inferences we wish to make.

Key Formulas

1. Bayes’ Formula

If Ay, Ay,..., Ay are mutually exclusive events and B is any event, then
P(B|A;)P(A;)

P(A|B) =
WIB) = pBIAP(AL) + PBIAP(A,) + - + PBIA)P(A)
2. Binomial probability
— ) — n! k(1 _ -k — Jh: . :
Py =k) = K = k)7T (1 — @)"* = dbinom(k, n, 7) using R function

P(y = k) = SX, P(y = i) = pbinom(k, n, ) using R function
3. Poisson probability

e uk
k!

P(y = k) = 3, P(y = i) = ppois(k, p) using R function

Py =k) = = dpois(k, p) using R function

4. Normal probability
Let y have a normal distribution with mean u and standard deviation o, and let
z have a standard normal distribution with mean u = 0 and standard deviation
o=1

Ply=w) = P(z =¥- ’u> = pnorm(w ; M> using R code
o
5. Sampling distribution for sample mean y when random sample is from popu-
lation having mean u and standard deviation o

Mean: p

Standard deviation: o/Vn

For a large sample size n, the distribution of y will be approximately a normal
distribution.

6. Normal approximation to binomial distribution
w=nm, o=Vnr(l —m)
Provided both nr = Sand n(1 — 7)) =5,

+.5 - +.5 -
o (23

Ply = k) ~ P(Z _ "—5—M> _ _pnorm<k—-5—ﬂ>
g

o
Compare the above to the exact values:

P(y = k) = pbinorm(k, n, )
Py=k)=1—-P(y=k—1)=1— pbinorm(k — 1, n, )
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W Exercises

4.1 Introduction and Abstract of Research Study

Basic 4.1 Indicate which interpretation of the probability statement seems most appropriate.

a. A casino in New Jersey posts a probability of .02 that the Dallas Cowboys will win
Super Bowl L.

b. A purchaser of a single ticket in the Texas Powerball has a probability of
1/175,223,510 of winning the big payout.

c. The quality control engineer of a large pharmaceutical firm conducts an intensive
process reliability study. Based on the findings of the study, the engineer claims
that the probability that a bottle of a newly produced drug will have a shelf life
greater than 2 years is .952.

d. The probability that the control computer on a nuclear power plant and its backup
will both fail is .00001.

e. The state meteorologist of Michigan reports that there is a 70/30 chance that the
rainfall during the months of June through August in 2014 will be below normal;
that is, there is a .70 probability of the rainfall being below normal and a .30 prob-
ability of the rainfall being above normal.

f. A miniature tablet that is small enough to be worn as a watch is in beta testing.
In a preliminary report, the company states that more than 55% the 500 testers
found the device to be easier to use than a full-sized tablet. The probability of
this happening is .011 provided there is no difference in ease of use of the two
devices.

Med. 4.2 If you are having a stroke, it is critical that you get medical attention right away. Immedi-
ate treatment may minimize the long-term effects of a stroke and even prevent death. A major
U.S. city reported that there was a 1 in 250 chance of the patient not having long-term memory
problems after suffering a stroke. That is, for a person suffering a stroke in the city, P(no memory
problems) = 1/250 = .004. This very high chance of memory problems was attributed to many
factors associated with large cities that affected response times, such as heavy traffic, the misiden-
tification of addresses, and the use of cell phones, which results in emergency personnel not being
able to obtain an address. The study documented the 1/250 probability based on a study of 15,000
requests for assistance by stroke victims.

a. Provide a relative frequency interpretation of the .004 probability.

b. The value .004 was based on the records of 15,000 requests for assistance from
stroke victims. How many of the 15,000 victims in the study had long-term mem-
ory problems? Explain your answer.

Gov. 4.3 In reporting highway safety, the National Highway Traffic Safety Administration (NHTSA)
reports the number of deaths in automobile accidents each year. If there is a decrease in the
number of traffic deaths from the previous year, NHTSA claims that the chance of a death on the
highways has decreased. Explain the flaw in NHTSA’s claim.

Bus. 4.4 Inacable TV program concerning the risk of travel accidents, it was stated that the chance
of a fatal airplane crash was 1 in 11 million. An explanation of this risk was that you could fly daily
for the next 11 million days (30,137 years) before you would experience a fatal crash. Provide an
explanation why this statement is misleading.

Game 4.5 The gaming commission in its annual examination of the casinos in the state reported that
all roulette wheels were fair. Explain the meaning of the term fair with respect to the roulette
wheel?

4.2 Finding the Probability of an Event

Edu. 4.6 Suppose an economics examination has 25 true-or-false questions and a passing grade is
obtained with 17 or more correct answers. A student answers the 25 questions by flipping a fair
coin and answering true if the coin shows a head and false if it shows a tail.
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a. Using the classical interpretation of probability, what is the chance the student will
pass the exam?

b. Using a simulation approach, approximate the chance the student will pass the
exam. (Hint: Generate at least 10,000 sets of 25 single-digit numbers. Each num-
ber represents the answer to one of the questions, with even numbers recorded as
a true answer and odd numbers recorded as a false answer. Determine the relative
frequency of 17 or more correct answers in the 25 questions.)

4.7 The R&D department of a company has developed a new home screening test for diabe-
tes. A demonstration of the type of results that may occur was mandated by upper management.
Simulate the probability of obtaining at least 24 positive results and 6 negative results in a set of
30 results. The researchers state that the probability of obtaining a positive result is 80%.

a. Let a two-digit number represent the outcome of running the screening test.
Which numbers should represent a positive result?

b. Approximate the probability of obtaining at least 24 positive results and 6
negative results in a set of 30 results by generating 10,000 sets of 30 two-digit
numbers.

4.8 The state vehicle inspection bureau provided the following information on the percentage
of cars that fail an annual vehicle inspection due to having faulty lights: 15% of all cars have one
faulty light, 10% have two faulty lights, and 5% have three or more faulty lights.
a. What is the probability that a randomly selected car will have no faulty lights?
b. What is the probability that a randomly selected car will have at most one faulty light?
C. What is the probability that a randomly selected car will fail an inspection due to a
faulty light?
4.9 The Texas Lottery has a game, Daily 4, in which a player pays $1 to select four single-digit
numbers. Each week the Lottery commission places a set of 10 balls numbered 0-9 in each of
four containers. After the balls are thoroughly mixed, one ball is selected from each of the four
containers. The winner is the player who matches all four numbers.
a. What is the probability of being the winning player if you purchase a single set of
four numbers?
b. Which of the probability approaches (subjective, classical, or relative frequency)
did you employ in obtaining your answer in part (a)?

Basic Event Relations and Probability Laws

4.10 A die is rolled two times. Provide a list of the possible outcomes of the two rolls in this
form: the result from the first roll and the result from the second roll.
4.11 Refer to Exercise 4.10. Assume that the die is a fair die, that is, each of the outcomes has
a probability of 1/36. What is the probability of observing

a. Event A: Exactly one dot appears on each of the two upturned faces?

b. Event B: The sum of the dots on the two upturned faces is exactly 4?

c. Event C: The sum of the dots on the two upturned faces is at most 4?
4.12 Refer to Exercise 4.11.

a. Describe the event that is the complement of event A.

b. Compute the complement of event A.
4.13 Refer to Exercise 4.11.

a. Are events A and B mutually exclusive?

b. Are events A and C mutually exclusive?

C. Are events B and C mutually exclusive?

4.14 A credit union takes a sample of four mortgages each month to survey the homeowners’
satisfaction with the credit union’s servicing of their mortgage. Each mortgage is classified as a
fixed rate (F) or variable rate (V).
a. What are the 16 possible combinations of the four mortgages? Hint: One such
possibility would be F;V,V3F;.
b. List the combinations in event A: At least three of the mortgages are variable rate.
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c. List the combinations in event B: All four mortgages are the same type.
d. List the combinations in event C: The union of events A and B.
e. List the combinations in event D: The intersection of events A and B.

Engin. 4.15 A nuclear power plant has double redundancy on the feedwater pumps used to remove
heat from the reactor core. A safely operating plant requires only one of the three pumps to be
functional. Define the events A, B, and C as follows:

A:Pump 1 works properly
B: Pump 2 works properly
C: Pump 3 works properly
Describe in words the following events:
a. The intersection of A, B,and C
b. The union of A, B, and C
c. The complement of the intersection of A, B,and C
d. The complement of the union of A, B, and C

4.16 The population distribution in the United States based on race/ethnicity and blood type
as reported by the American Red Cross is given here.

Blood Type
Race/Ethnicity (o) A B AB
White 36% 322% 8.8% 32%
Black 7% 2.9% 2.5% 5%
Asian 1.7% 1.2% 1% 3%
All others 1.5% 8% 3% 1%

a. A volunteer blood donor walks into a Red Cross blood donation center. What is
the probability she will be Asian and have Type O blood?

b. What is the probability that a white donor will not have Type A blood?

c. What is the probability that an Asian donor will have either Type A or Type B
blood?

d. What is the probability that a donor will have neither Type A nor Type AB blood?

4.17 The makers of the candy M&Ms report that their plain M&Ms are composed of 15%
yellow, 10% red, 20% orange, 25% blue, 15% green, and 15% brown. If you randomly select an
M&M, what is the probability of the following?

a. Itis brown.

b. Itisred or green.

c. Itis not blue.

d. It is both red and brown.

4.4 Conditional Probability and Independence

Bus. 4.18 Refer to Exercise 4.11. Compute the following probabilities:
a. P(A|B)
b. P(A|C)
c. P(B|O)
Basic 4.19 Refer to Exercise 4.11.
a. Are the events A and B independent? Why or why not?
b. Are the events A and C independent? Why or why not?
C. Are the events B and C independent? Why or why not?
Basic 4.20 Refer to Exercise 4.14.
. Are the events A and B independent? Justify your answer.
. Are the events A and C independent? Justify your answer.
. Are the events A and D independent? Justify your answer.
. Which pair(s) of the events are mutually exclusive: (A, B), (B, C,), and/or (A, C)?
Justify your answer.

o nT O
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4.21 Refer to Exercise 4.16. Let W be the event that the donor is white, B be the event that the
donor is black, and A be the event that the donor is Asian. Also, let 7' be the event that the donor
has blood type O, T, be the event that the donor has blood type A, T3 be the event that the donor
has blood type B, and T, be the event that the donor has blood type AB.

a.
b.
C.
d.

Describe in words the event T|W.

Compute the probability of the occurrence of the event T1|W, P(T1|W).
Are the events W and 7' independent? Justify your answer.

Are the events W and 71 mutually exclusive? Explain your answer.

4.22 Tsit possible for events A and B to be both mutually exclusive and independent? Justify

your anSwer.

H.R. 4.23 A survey of 1,000 U.S. government employees who have an advanced college degree
produced the following responses to the offering of a promotion to a higher grade position that
would involve moving to a new location.

Married

Promotion Both Spouses  One Spouse

Professional  Professional  Unmarried Total

Rejected
Accepted

Total

184 56 17 257
276 314 153 743
460 370 170 1,000

Use the results of the survey to estimate the following probabilities.

a.

b.

C.

What is the probability that a randomly selected government employee having an
advanced college degree would accept a promotion?

What is the probability that a randomly selected government employee having an
advanced college degree would not accept a promotion?

What is the probability that a randomly selected government employee having an
advanced college degree has a spouse with a professional position?

H.R. 4.24 Refer to Exercise 4.23. Define the following events.

Event A: A randomly selected government employee having an advanced college
degree would accept a promotion

Event B: A randomly selected government employee having an advanced college degree
has a spouse in a professional career

Event C: A randomly selected government employee having an advanced college
degree has a spouse without a professional position

Event D: A randomly selected government employee having an advanced college degree
is unmarried

Use the results of the survey in Exercise 4.23 to compute the following probabilities:

a. P(A)
b. P(B)
c. P(A|C)
d. P(AD)
H.R. 4.25 Refer to Exercise 4.23.
a. Are the events A and C independent? Justify your answer.
b. Are the events A and D independent? Justify your answer.
c. Compute 1 — P(A|B) and P(A|B). Are they equal?
d. Compute 1 — P(A|B) and P(A|B). Are they equal?
H.R. 4.26 A large corporation has spent considerable time developing employee performance rat-

ing scales to evaluate an employee’s job performance on a regular basis so major adjustments can
be made when needed and employees who should be considered for a “fast track” can be isolated.
Keys to this latter determination are ratings on the ability of an employee to perform to his or her
capabilities and on his or her formal training for the job.
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Formal Training

Workload Capacity None Little Some Extensive

Low .01 .02 .02 .04
Medium .05 .06 .07 10
High .10 15 .16 22

The probabilities for being placed on a fast track are as indicated for the 12 categories of work-
load capacity and formal training. The following three events (A, B, and C) are defined:

A: An employee works at the high-capacity level

B: An employee falls into the highest (extensive) formal training category

C: An employee has little or no formal training and works below high capacity

a. Find P(A), P(B),and P(C).
b. Find P(A|B), P(B|B),and P(B|C).
c. Find P(AUB),P(ANC),and P(BNC).
Bus. 4.27 The utility company in a large metropolitan area finds that 70% of its customers pay a
given monthly bill in full.
a. Suppose two customers are chosen at random from the list of all customers. What
is the probability that both customers will pay their monthly bill in full?
b. What is the probability that at least one of them will pay in full?
4.28 RefertoExercise 4.27. A more detailed examination of the company records indicates that
95% of the customers who pay one monthly bill in full will also pay the next monthly bill in full;
only 10% of those who pay less than the full amount one month will pay in full the next month.
a. Find the probability that a customer selected at random will pay two consecutive
months in full.
b. Find the probability that a customer selected at random will pay neither of two
consecutive months in full.
c. Find the probability that a customer chosen at random will pay exactly one month
in full.

4.5 Bayes’ Formula

Bus. 4.29 Of a finance company’s loans, 1% are defaulted (not completely repaid). The company
routinely runs credit checks on all loan applicants. It finds that 30% of defaulted loans went to
poor risks, 40% to fair risks, and 30% to good risks. Of the nondefaulted loans, 10% went to poor
risks, 40% to fair risks, and 50% to good risks. Use Bayes’ Formula to calculate the probability
that a poor-risk loan will be defaulted.

4.30 Refer to Exercise 4.29. Show that the posterior probability of default, given a fair risk,
equals the prior probability of default. Explain why this is a reasonable result.

4.31 In Example 4.4, we described a new test for determining defects in circuit boards. Com-
pute the probability that the test correctly identifies the defects Dy, D, and Ds; that is, compute
P(Dj|A,), P(D,|A,), and P(D;|A;).
4.32 In Example 4.4, compute the probability that the test incorrectly identifies the defects Dy,
D, and D3; that is, compute P(D,| A,), P(D,| A,), and P(D,| A;).

Bus. 4.33 An underwriter of home insurance policies studies the problem of home fires resulting
from wood-burning furnaces. Of all homes having such furnaces, 30% own a type 1 furnace, 25%
a type 2 furnace, 15% a type 3, and 30% other types. Over 3 years, 5% of type 1 furnaces, 3% of
type 2, 2% of type 3, and 4% of other types have resulted in fires. If a fire occurs in a particular
home, what is the probability that a type 1 furnace is in the home?

Med. 4.34 1InalJanuary 15,1998, article, the New England Journal of Medicine (338:141-146) reported
on the utility of using computerized tomography (CT) as a diagnostic test for patients with clini-
cally suspected appendicitis. In at least 20% of patients with appendicitis, the correct diagnosis
was not made. On the other hand, the appendix was normal in 15% to 40% of patients who under-
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went emergency appendectomy. A study was designed to determine the prospective effectiveness
of using CT as a diagnostic test to improve the treatment of these patients. The study examined
100 consecutive patients suspected of having acute appendicitis who presented to the emergency
department or were referred there from a physician’s office. The 100 patients underwent a CT
scan, and the surgeon made an assessment of the presence of appendicitis for each of the patients.
The final clinical outcomes were determined at surgery and by pathological examination of the
appendix after appendectomy or by clinical follow-up at least 2 months after CT scanning.

Presence of Appendicitis

Radiologic Determination Confirmed (C) Ruled Out (RO)
Definitely appendicitis (DA) 50 1
Equivocally appendicitis (EA) 2 2
Definitely not appendicitis (DNA) 1 44

The 1996 rate of occurrence of appendicitis was approximately P(C) = .00108.

a. Find the sensitivity and specificity of the radiological determination of
appendicitis.

b. Find the probability that a patient truly had appendicitis given that the radiologi-
cal determination was definitely appendicitis (DA).

c. Find the probability that a patient truly did not have appendicitis given that the
radiological determination was definitely appendicitis (DA).

d. Find the probability that a patient truly did not have appendicitis given that the
radiological determination was definitely not appendicitis (DNA).

Med. 4.35 Conditional probabilities can be useful in diagnosing disease. Suppose that three differ-
ent, closely related diseases (A1, A, and Az) occur in 25%, 15%, and 12% of the population. In
addition, suppose that any one of three mutually exclusive symptom states (B;, By, and B3) may
be associated with each of these diseases. Experience shows that the likelihood P(Bj|A,-) of hav-
ing a given symptom state when the disease is present is as shown in the following table. Find the
probability of disease A, given symptoms B, B,, B3, and By, respectively.

Disease State A;

Symptom

State Bj Al Az A3
By .08 17 .10
B, 18 12 14
Bs .06 .07 .08
B, (no symptoms) .68 .64 .68

4.6 Variables: Discrete and Continuous

Basic 4.36 Classify each of the following random variables as either continuous or discrete:

. The survival time of a cancer patient after receiving a new treatment for cancer

. The number of ticks found on a cow entering an inspection station

. The average rainfall during August in College Station, Texas

. The daily dose level of medication prescribed to a patient having an iron deficiency

. The number of touchdowns thrown during an NFL game

. The number of monthly shutdowns of the sewage treatment plant in a large

midwestern city

Basic 4.37 The U.S. Consumer Product Safey Commission investigates bicycle helmet hazards.
The inspectors studied incidents in which deaths resulted from improper uses of helmets. The
inspectors recorded the incidents in which children were strangled by the straps on the helmet.
Is the number of deaths by helmet strangulation during a randomly selected month a discrete or
continuous random variable. Explain your answer.
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4.38 Texting while driving is a very dangerous practice. An electronic monitoring device is
installed on rental cars at a randomly selected rental franchise.

a. Is the number of times a randomly selected driver sends a text message during the
first hour after leaving the rental company’s parking lot a discrete or continuous
random variable?

b. Is the length of time the driver spends typing a text message while driving a discrete
or continuous random variable?

C. Is the brand of cell phone from which the text message is sent a discrete or
continuous random variable?

4.39 A car dealership uses a questionnaire to evaluate customer interactions with the dealer-
ship’s salespersons. One of the items on the questionnaire was “Overall, the interaction with the
salesperson was positive.” The possible responses are Strongly agree, Agree, No opionion, Disa-
gree, and Strongly disagree.

a. Is the number of customers responding Strongly agree a continuous or discrete
random variable?

b. Is the proportion of customers responding Strongly agree a continuous or discrete
random variable?

Probability Distributions for Discrete Random Variables

4.40 The numbers of cars failing an emissions test on randomly selected days at a state inspec-
tion station are given in the following table.

y 0 1 2 3 4 5 6 7 8 9 10
P(y) | 100 130 250 .160 .095 .075 .063 .047 041 .024 .015

a. Construct a graph of P(y).

b. Compute P(y = 2).

c. Compute P(y > 7).

d. Compute P2 <y =7).
4.41 A traditional call center has a simple mission: Agents have to answer customer calls fast
and end them as quickly as possible to move on to the next call. The quality of service rendered
by the call center was evaluated by recording the number of times a customer called the center
back within a week of his or her initial call to the center.

y = number of recalls 0 1 2 3 4 5 6
P(y) 51 232 354 161 067 .021  .014

a. What is the probability that a customer will recall the center more than three times?

b. What is the probability that a customer will recall the center at least two times but
less than five times?

c. Suppose a call center must notify a supervisor if a customer recalls the center
more than four times within a week of his or her initial call. What proportion of
customers who contact the call center will require a supervisor to be contacted?

Two Discrete Random Variables: The Binomial and the Poisson

4.42 A biologist randomly selects 10 portions of water, each equal to .1 cm? in volume, from
the local reservoir and counts the number of bacteria present in each portion. The biologist then
totals the number of bacteria for the 10 portions to obtain an estimate of the number of bacteria
per cubic centimeter present in the reservoir water. Is this a binomial experiment?

4.43 Examine the accompanying newspaper clipping. Does this sampling appear to satisfy the
characteristics of a binomial experiment?



221

4.18 Exercises

Poll Finds Opposition to Phone Taps

New York—People surveyed in a recent poll
indicated they are 81% to 13% against having
their phones tapped without a court order.

The people in the survey, by 68% to 27%,
were opposed to letting the government use a
wiretap on citizens suspected of crimes, except
with a court order.

The survey was conducted for 1,495
households and also found the following results:

—The people surveyed are 80% to 12%

against the use of any kind of electronic spying
device without a court order.

—Citizens are 77% to 14% against allow-
ing the government to open their mail without
court orders.

—They oppose, by 80% to 12%, letting the
telephone company disclose records of long-
distance phone calls, except by court order.

For each of the questions, a few of those in
the survey had no responses.

Env. 4.44 A survey is conducted to estimate the percentage of pine trees in a forest that are infected
by the pine shoot moth. A grid is placed over a map of the forest, dividing the area into 25-foot
by 25-foot square sections. One hundred of the squares are randomly selected, and the number of

infected trees is recorded for each square. Is this a binomial experiment?

Gov. 4.45 1In an attempt to decrease drunk driving, police set up vehicle checkpoints during the
July 4 evening. The police randomly select vehicles to be stopped for “informational” checks. On
a particular roadway, assume that 20% of all drivers have a blood alcohol level above the legal
limit. For a random sample of 15 vehicles, compute the following probabilities:

a. All 15 drivers will have a blood alcohol level exceeding the legal limit.

b. Exactly 6 of the 15 drivers will exceed the legal limit.

c. Of the 15 drivers, 6 or more will exceed the legal limit.

d. All 15 drivers will have a blood alcohol level within the legal limit.

Bus. 4.46 The quality control department examines all the products returned to a store by custom-
ers. An examination of the returned products yields the following assessment: 5% are defec-
tive and not repairable, 45% are defective but repairable, 35% have small surface scratches but
are functioning properly, and 15% have no problems. Compute the following probabilities for a
random sample of 20 returned products:

a. All of the 20 returned products have some type of problem.

b. Exactly 6 of the 20 returned products are defective and not repairable.

c. Of the 20 returned products, 6 or more are defective and not functioning properly.

d. None of the 20 returned products has any sort of defect.

Med. 4.47 XKnee replacements have emerged as a mainstream surgery. According to the Knee
Replacement Statistics Agency of Research and Quality (AHRQ), over 600,000 procedures were per-
formed in 2009, and the number is expected to grow into the millions by the year 2030. According
to the American Academy of Orthopedic Surgeons (AAOS), serious complications occur in less than
2% of cases. If AAOS is correct that only 2% of knee replacement patients have serious com-
plications, would the next 10 patients at a major teaching hospital receiving a knee replacement

constitute a binomial experiment with » = 10 and 7= = .02? Justify your answer.

Bus. 4.48 The CFO of a hospital is concerned about the risk of patients contracting an infection
after a one-week or longer stay in the hospital. A long-term study estimates that the chance of
contracting an infection after a one-week or longer stay in a hospital is 10%. A random sample of
50 patients who have been in the hospital at least 1 week is selected.

a. If the 10% infection rate is correct, what is the probability that at least 5 patients

out of the 50 will have an infection?

b. What assumptions are you making in computing the probability in part (a)?
Basic 4.49 Suppose the random variable y has a Poisson distribution. Compute the following
probabilities:

a. P(y=4)givenpu =2

b. P(y =4) given u = 3.5
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C. P(y>4)given u =2
d. Pl=y<4)givenp =2
Bus. 4.50 Customers arrive at a grocery store checkout at a rate of six per 30 minutes during the

hours of 5 p.m. and 7 p.m. during the workweek. Let C be the number of customers arriving at the
checkout during any 30-minute period of time. The management of the store wants to determine
the frequency of the following events. Compute the probabilities of these events:

a. No customers arrive.

b. More than six customers arrive.

C. Atmost three customers arrive.

Bus. 4.51 A firm is considering using the Internet to supplement its traditional sales methods. Using
data from an industry association, the firm estimates that 1 of every 1,000 Internet hits results in
a sale. Suppose the firm has 2,500 hits per day.

a. What is the probability that the firm will have more than five sales in a randomly
selected day?
b. What conditions must be satisfied in order for you to make the calculation in
part (a)?
c. Use the Poisson approximation to compute the probability that the firm will have
more than five sales in a randomly selected day.
d. Is the Poisson approximation accurate?
4.52 A certain birth defect occurs in 1 of every 10,000 births. In the next 5,000 births at a major
hospital, what is the probability that at least 1 baby will have the defect? What assumptions are
required to calculate this probability?

410 A Continuous Probability Distribution: The Normal Distribution

Basic 4.53 Find the area under the standard normal curve between these values:
a. z=0andz =13
b. z=0andz =27
Basic 4.54 Find the area under the standard normal curve between these values:
a. z=.S5andz=13
b. z=—-13andz=0
Basic 4.55 Find the area under the standard normal curve between these values:
a. z=-25andz=—12
b. z=-13andz= -7
Basic 4.56 Find the area under the standard normal curve between these values:
a. z=—15andz =02
b. z=—-12andz =0.7
In Exercises 4.57 through 4.63, let z be a random variable with a standard normal distribution.
Basic 4.57 Find the probability that z is less than 1.23.
Basic 4.58 Find the probability that z is greater than 0.35.
Basic 4.59 Find the value of z, denoted zo, such that P(z < zp) = .5.
Basic 4.60 Find the value of z, denoted zo, such that P(z > zo) = .025.
Basic 4.61 Find the value of z, denoted zp, such that P(z > zp) = .0091.
Basic 4.62 Find the value of z, denoted zp, such that P(—z < z = z0) = .975.
Basic 4.63 Find the value of z, denoted z, such that P(—zo < z = z¢) = .90.
Basic 4.64 Let y be a random variable having a normal distribution with a mean equal to 50 and a
standard deviation equal to 8. Find the following probabilities:
. P(y >50)
. P(y>53)
. P(y <58)
. P38 <y<62)
. P38 =y=62)

o QN T oW
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4.65 Lety be arandom variable having a normal distribution with a mean equal to 250 and a
standard deviation equal to 50. Find the following probabilities:

a. P(y >250)

b. P(y > 150)

c. P(150 <y < 350)

d. Find & such that P(250 — k& <y <250 + k) = .60

4.66 Suppose that y is a random variable having a normal distribution with a mean equal to
250 and a standard deviation equal to 10.

a. Show that the event y < 260 has the same probability as z < 1.

b. Convert the event y > 230 to the z-score equivalent.

c. Find P(y <260) and P(y > 230).

d. Find P(y > 265), P(y <242),and P(242 <y < 265).
4.67 Suppose that z is a random variable having a standard normal distribution.

a. Find a value z, such that P(z > zo) = .01

b. Find a value zo, such that P(z < zg) = .025.

c. Find a value zo, such that P(—zo < z < z¢) = .95.
4.68 Let y be a random variable having a normal distribution with mean equal to 250 and
standard deviation equal to 50.

a. Find a value y, such that P(y > yo) = .01

b. Find a value yy, such that P(y < yg) = .025.

c. Find two values y; and y,, such that (y; + y;)/2 =250 and P(y; < y < y;) = .95.

4.69 Records maintained by the office of budget in a particular state indicate that the amount of
time elapsed between the submission of travel vouchers and the final reimbursement of funds has
approximately a normal distribution with a mean of 36 days and a standard deviation of 3 days.
a. What is the probability that the elapsed time between submission and reimburse-
ment will exceed 30 days?
b. If you had a travel voucher submitted more than 55 days ago, what might you
conclude?

4.70 The College Boards, which are administered each year to many thousands of high school
students, are scored so as to yield a mean of 513 and a standard deviation of 130. These scores are
close to being normally distributed. What percentage of the scores can be expected to satisfy each
of the following conditions?

a. Greater than 600

b. Greater than 700

C. Less than 450

d. Between 450 and 600

4.71 Monthly sales figures for a particular food industry tend to be normally distributed with a
mean of 155 (thousand dollars) and a standard deviation of 45 (thousand dollars). Compute the
following probabilities:

a. P(y <200)

b. P(y >100)

c. P(100 <y < 200)
4.72 Refer to Exercise 4.70. An honor society wishes to invite those scoring in the top 5% on
the College Boards to join their society.

a. What score is required to be invited to join the society?

b. What score separates the top 75% of the population from the bottom 25%? What

do we call this value?

Random Sampling

4.73 City officials want to sample the opinions of the homeowners in a community regard-
ing the desirability of increasing local taxes to improve the quality of the public schools. If a
random number table is used to identify the homes to be sampled and a home is discarded if the
homeowner is not home when visited by the interviewer, is it likely this process will approximate
random sampling? Explain.
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Pol. Sci. 4.74 Alocal TV network wants to run an informal survey of individuals who exit from a local
voting station to ascertain early results on a proposal to raise funds to move the city-owned histori-
cal museum to a new location. How might the network sample voters to approximate random sam-
pling?

Psy. 4.75 A psychologist is interested in studying women who are in the process of obtaining a di-
vorce to determine whether the women experienced significant attitudinal changes after the di-
vorce has been finalized. Existing records from the geographic area in question show that 798
couples have recently filed for divorce. Assume that a sample of 25 women is needed for the
study, and use Table 12 in the Appendix to determine which women should be asked to partici-
pate in the study. (Hint: Begin in column 2, row 1, and proceed down.)

Pol. Sci. 4.76 Suppose you have been asked to run a public opinion poll related to an upcoming election.
There are 230 precincts in the city, and you need to randomly select 50 registered voters from
each precinct. Suppose that each precinct has 1,000 registered voters and it is possible to obtain a
list of these persons. You assign the numbers 1 to 1,000 to the 1,000 people on each list, with 1 to
the first person on the list and 1,000 to the last person. You need to next obtain a random sample
of 50 numbers from the numbers 1 to 1,000. The names on the sampling frame corresponding to
these 50 numbers will be the 50 persons selected for the poll. Note that you would need to obtain
a new random sample for each of the 230 precincts.

a. Using either a random number table or a computer program, generate a random
sample of 50 numbers from the numbers 1 to 1,000.

b. Give several reasons why you need to generate a different set of random numbers for
each of the precincts. Why not use the same set of 50 numbers for all 230 precincts?

412 Sampling Distributions

4.77 A random sample of 16 measurements is drawn from a population with a mean of 60 and
a standard deviation of 5. Describe the sampling distribution of y, the sample mean. Within what
interval would you expect y to lie approximately 95% of the time?

4.78 Refer to Exercise 4.77. Describe the sampling distribution for the sample sum Xy;. Is it
unlikely (improbable) that >y, would be more than 70 units away from 960? Explain.

Psy. 4.79 Psychomotor retardation scores for a particular group of manic-depressive patients have
approximately a normal distribution with a mean of 930 and a standard deviation of 130. A ran-
dom sample of 20 patients from the group was selected, and their mean psychomotor retardation
score was obtained.

a. What is the probability that their mean score was between 900 and 960?
b. What is the probability that their mean score was greater than 960?
C. What is the 90th percentile of their mean scores?

Soc. 4.80 Federal resources have been tentatively approved for the construction of an outpatient
clinic. In order to design a facility that will handle patient load requirements and stay within a
limited budget, the designers studied patient demand. From studying a similar facility in the area,
they found that the distribution of the number of patients requiring hospitalization during a week
could be approximated by a normal distribution with a mean of 125 and a standard deviation of 32.

a. Use the Empirical Rule to describe the distribution of y, the number of patients
requesting service in a week.

b. If the facility was built with a 160-patient capacity, what fraction of the weeks
might the clinic be unable to handle the demand?

4.81 Refer to Exercise 4.80. What size facility should be built so the probability of the patient
load’s exceeding the clinic capacity is .10? .30?

Soc. 4.82 Based on the 1990 census, the number of hours per day adults spend watching television is
approximately normally distributed with a mean of 5 hours and a standard deviation of 1.3 hours.
a. What proportion of the population spends more than 7 hours per day watching
television?
b. In a 1998 study of television viewing, a random sample of 500 adults reported that
the average number of hours spent viewing television was greater than 5.5 hours
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per day. Do the results of this survey appear to be consistent with the 1990 census?
(Hint: If the census results are still correct, what is the probability that the average
viewing time would exceed 5.5 hours?)

4.83 The level of a particular pollutant, nitrogen oxide, in the exhaust of a hypothetical model
of car, the Polluter, when driven in city traffic has approximately a normal distribution with a
mean level of 2.1 grams per mile (g/m) and a standard deviation of 0.3 g/m.
a. If the EPA mandates that a nitrogen oxide level of 2.7 g/m cannot be exceeded,
what proportion of Polluters would be in violation of the mandate?
b. At most,25% of Polluters exceed what nitrogen oxide level value (that is, find the
75th percentile)?
€. The company producing the Polluter must reduce the nitrogen oxide level so that
at most 5% of its cars exceed the EPA level of 2.7 g/m. If the standard deviation
remains 0.3 g/m, to what value must the mean level be reduced so that at most
5% of Polluters would exceed 2.7 g/m?

4.84 Refer to Exercise 4.83. A company has a fleet of 150 Polluters used by its sales staff.
Describe the distribution of the total amount, in g/m, of nitrogen oxide produced in the exhaust
of this fleet. What are the mean and standard deviation of the total amount, in g/m, of nitrogen
oxide in the exhaust for the fleet? (Hint: The total amount of nitrogen oxide can be represented as

150 W,, where W; is the amount of nitrogen oxide in the exhaust of the ith car. Thus, the Central
Limit Theorem for sums is applicable.)

4.85 The baggage limit for an airplane is set at 100 pounds per passenger. Thus, for an airplane
with 200 passenger seats, there would be a limit of 20,000 pounds. The weight of the baggage of
an individual passenger is a random variable with a mean of 95 pounds and a standard deviation
of 35 pounds. If all 200 seats are sold for a particular flight, what is the probability that the total
weight of the passengers’ baggage will exceed the 20,000-pound limit?

4.86 A patient visits her doctor with concerns about her blood pressure. If the systolic blood
pressure exceeds 150, the patient is considered to have high blood pressure, and medication may
be prescribed. The problem is that there is a considerable variation in a patient’s systolic blood
pressure readings during a given day.

a. If a patient’s systolic readings during a given day have a normal distribution with
a mean of 160 mm mercury and a standard deviation of 20 mm, what is the prob-
ability that a single measurement will fail to detect that the patient has high blood
pressure?

b. If five measurements are taken at various times during the day, what is the proba-
bility that the average blood pressure reading will be less than 150 and hence fail
to indicate that the patient has a high blood pressure problem?

c. How many measurements would be required so that the probability of failing to
detect that the patient has high blood pressure is at most 1%.

Normal Approximation to the Binomial

4.87 Critical key-entry errors in the data processing operation of a large district bank occur
approximately .1% of the time. If a random sample of 10,000 entries is examined, determine the
following:
a. The expected number of errors
b. The probability of observing fewer than four errors
c. The probability of observing more than two errors
4.88 Use the binomial distribution with n = 20 and 7 = .5 to compare the accuracy of the normal
approximation to the binomial.
a. Compute the exact probabilities and corresponding normal approximations for
y<5.
b. The normal approximation can be improved slightly by taking P(y = 4.5). Why
should this help? Compare your results.
c. Compute the exact probabilities and corresponding normal approximations with
the continuity correction for P(8 <y < 14).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



226 CHAPTER 4 PROBABILITY AND PROBABILITY DISTRIBUTIONS

4.89 Lety be a binomial random variable with n = 10 and = = .5.

a. Calculate P(4 =y = 0).

b. Use a normal approximation without the continuity correction to calculate the
same probability. Compare your results. How well did the normal approximation
work?

4.90 Refer to Exercise 4.89. Use the continuity correction to compute the probability
P(4 = y = 6). Does the continuity correction help?

Bus. 4.91 A marketing research firm advises a new client that approximately 15% of all persons sent
a sweepstakes offer will return the mailing. Suppose the client sends out 10,000 sweepstakes offers.

a. What is the probability that fewer than 1,430 of the mailings will be returned?

b. What is the probability that more than 1,600 of the mailings will be returned?

414 Evaluating Whether or Not a Population Distribution Is Normal

4.92 In Figure 4.19, we visually inspected the relative frequency histogram for sample means
based on two measurements and noted its bell shape. Another way to determine whether a set
of measurements is bell-shaped (normal) is to construct a normal probability plot of the sample
data. If the plotted points are nearly a straight line, we say the measurements were selected from
a normal population. A normal probability plot was obtained using Minitab software. If the plot-
ted points fall within the curved dotted lines, we consider the data to be a random sample from a
normal distribution.

ML Estimates
Mean: 6.5
StDev: 1.91485

Percent

a. Do the 45 data values appear to be a random sample from a normal distribution?

b. Using the values of y in Table 4.9, compute the correlation coefficient and p-value
for the normal quantile plot to assess whether the data appear to be sampled from
a normal distribution.

c. Do the results in part (b) confirm your conclusion from part (a)?

4.93 Suppose a population consists of the 10 measurements (2, 3, 6, 8, 9, 12, 25, 29, 39, 50).
Generate the 45 possible values for the sample mean based on a sample of n = 2 observations per
sample.
a. Use the 45 sample means to determine whether the sampling distribution of the
sample mean is approximately normally distributed by constructing a boxplot,
relative frequency histogram, and normal quantile plot of the 45 sample means.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4.18 Exercises 227

b. Compute the correlation coefficient and p-value to assess whether the 45 means
appear to be sampled from a normal distribution.
c. Do the results in part (b) confirm your conclusion from part (a)?
4.94 The fracture toughness in concrete specimens is a measure of how likely it is that blocks
used in new home construction may fail. A construction investigator obtains a random sample of
15 concrete blocks and determines the following toughness values:

47,.58,.67,.70,.77,.79, .81, .82, .84, .86, .91, .95, .98, 1.01, 1.04

a. Use a normal quantile plot to assess whether the data appear to fit a normal
distribution.

b. Compute the correlation coefficient and p-value for the normal quantile plot.
Comment on the degree of fit of the data to a normal distribution.

Supplementary Exercises

Bus. 4.95 One way to audit expense accounts for a large consulting firm is to sample all reports dated
the last day of each month. Comment on whether such a sample constitutes a random sample.
Engin. 4.96 The breaking strengths for 1-foot-square samples of a particular synthetic fabric are

approximately normally distributed with a mean of 2,250 pounds per square inch (psi) and a
standard deviation of 10.2 psi. Find the probability of selecting a 1-foot-square sample of material
at random that on testing would have a breaking strength in excess of 2,265 psi.

4.97 Refer to Exercise 4.96. Suppose that a new synthetic fabric has been developed that may
have a different mean breaking strength. A random sample of 15 1-foot sections is obtained, and
each section is tested for breaking strength. If we assume that the population standard deviation
for the new fabric is identical to that for the old fabric, describe the sampling distribution for y
based on random samples of 15 1-foot sections of new fabric.

4.98 Refer to Exercise 4.97. Suppose that the mean breaking strength for the sample of 15
1-foot sections of the new synthetic fabric is 2,268 psi. What is the probability of observing a value
of y equal to or greater than 2,268, assuming that the mean breaking strength for the new fabric
is 2,250, the same as that for the old?

4.99 Based on your answer in Exercise 4.98, do you believe the new fabric has the same mean
breaking strength as the old? (Assume o = 10.2.)

Gov. 4.100 Suppose that you are a regional director of an IRS office and that you are charged with
sampling 1% of the returns with gross income levels above $15,000. How might you go about
this? Would you use random sampling? How?

Med. 4.101 Experts consider high serum cholesterol levels to be associated with an increased incidence
of coronary heart disease. Suppose that the natural logarithm of cholesterol levels for males in
a given age bracket is normally distributed with a mean of 5.35 and a standard deviation of .12.

a. What percentage of the males in this age bracket could be expected to have a
serum cholesterol level greater than 250 mg/ml, the upper limit of the clinical
normal range?

b. What percentage of the males could be expected to have serum cholesterol levels
within the clinical normal range of 150-250 mg/ml?

c. What percentage of the adult males in this age bracket could be expected to
have a very risky cholesterol level —that is, above 300 mg/ml?

Bus. 4.102 Marketing analysts have determined that a particular advertising campaign should
make at least 20% of the adult population aware of the advertised product. After a recent
campaign, 60 of 400 adults sampled indicated that they had seen the ad and were aware of the
new product.

a. Find the approximate probability of observing y = 60 given that 20% of the popu-
lation is aware of the product through the campaign.

b. Based on your answer to part (a), does it appear the ad was successful? Explain.

Med. 4.103 One or more specific, minor birth defects occur with probability .0001 (that is, 1 in 10,000
births). If 20,000 babies are born in a given geographic area in a given year, can we calculate the
probability of observing at least one of the minor defects using the binomial or normal approxi-
mation to the binomial? Explain.
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Basic 4.104 The sample mean to be calculated from a random sample of size n = 4 from a popu-
lation that consists of eight measurements (2, 6, 9, 12, 25, 29, 39, 50). Find the sampling distri-
bution of y. (Hint: There are 70 samples of size 4 when sampling from a population of eight
measurements.)

Basic 4.105 Plot the sampling distribution of y from Exercise 4.104.
a. Does the sampling distribution appear to be approximately normal?
b. Verify that the mean of the sampling distribution of y equals the mean of the
eight population values.
Basic 4.106 Refer to Exercise 4.104. Use the same population to find the sampling distribution for
the sample median based on samples of size n = 4.
Basic 4.107 Refer to Exercise 4.106. Plot the sampling distribution of the sample median of
Exercise 4.106.
a. Does the sampling distribution appear to be approximately normal?
b. Compute the mean of the sampling distribution of the sample median, and
compare this value to the population median.
Basic 4.108 Random samples of size 5, 20, and 80 are drawn from a population with a mean of
w = 100 and a standard deviation of o = 15.
a. Give the mean of the sampling distribution of y for each of the three sample sizes.
b. Give the standard deviation of the sampling distribution of y for each of the three
sample sizes.
c. Based on the results obtained in parts (a) and (b), what do you conclude about
the accuracy of using the sample mean y as an estimate of population mean u?

Basic 4.109 Refer to Exercise 4.108. To evaluate how accurately the sample mean ) estimates the
population mean u, we need to know the chance of obtaining a value of y that is far from pu.
Suppose it is important that the sample mean Y is within five units of the population mean .
Find the following probabilities for each of the three sample sizes, and comment on the accuracy
of using y to estimate p.
a. Py = 105)
b. P(y = 95)
c. P95 =y =105)
Geol. 4.110 Suppose the probability that a major earthquake occurs on a given day in Fresno,
California, is 1 in 10,000.
a. In the next 1,000 days, what is the expected number of major earthquakes in
Fresno?
b. If the occurrence of major earthquakes can be modeled by the Poisson distribu-
tion, calculate the probability that there will be at least one major earthquake in
Fresno during the next 1,000 days.

Bio. 4.111 A wildlife biologist is studying turtles that have been exposed to oil spills in the Gulf of
Mexico. Previous studies have determined that a particular blood disorder occurs in turtles ex-
posed for a length of time to oil at a rate of 1 in every 8 exposed turtles. The biologist examines
12 turtles exposed for a considerable period of time to oil. If the rate of occurrence of the blood
disorder has not changed, what is the probability of each of the following events?

She finds the disorder in
a. None of the 12 turtles.
b. Atleast 2 of the 12 turtles.
C. No more than 4 turtles.

Bus. 4.112 Airlines overbook (sell more tickets than there are seats) flights, based on past records
that indicate that approximately 5% of all passengers fail to arrive on time for their flight. Sup-
pose a plane will hold 250 passengers, but the airline books 260 seats. What is the probability that
at least 1 passenger will be bumped from the flight?

Geol. 4.113 For the last 300 years, extensive records have been kept on volcanic activity in Japan. In
2002, there were five eruptions or instances of major seismic activity. From historical records, the
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mean number of eruptions or instances of major seismic activity is 2.4 per year. A researcher is
interested in modeling the number of eruptions or major seismic activities over the 5-year period
of 2005-2010.
a. What probability model might be appropriate?
b. What is the expected number of eruptions or instances of major seismic activity
during 2005-2010?
c. What is the probability of no eruptions or instances of major seismic activity
during 2005-2010?
d. What is the probability of at least two eruptions or instances of major seismic
activity during 2005-2010?

Ecol. 4.114 As part of a study to determine factors that may explain differences in animal species
relative to their size, the following body masses (in grams) of 50 different bird species were re-
ported in the paper “Temperature and the Northern Distributions of Wintering Birds,” by Richard

Repasky (1991).

7.7 10.1 21.6 8.6 12.0 114 16.6 9.4
11.5 9.0 8.2 20.2 48.5 21.6 26.1 6.2
19.1 21.0 28.1 10.6 31.6 6.7 5.0 68.8
23.9 19.8 20.1 6.0 99.6 19.8 16.5 9.0
448.0 21.3 17.4 36.9 34.0 41.0 15.9 12.5
10.2 31.0 21.5 11.9 32.5 9.8 93.9 10.9

19.6 14.5

a. Does the distribution of the body masses appear to follow a normal distribution?
Provide both a graphical and a quantitative assessment.

b. Repeat part (a), with the outlier 448.0 removed.

c. Determine the sample mean and median with and without the value 448.0 in the
data set.

d. Determine the sample standard deviation and MAD with and without the value
448.0 in the data set.
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5.1 Introduction and Abstract of Research Study

Inference —specifically, decision making and prediction—is centuries old and
plays a very important role in our lives. Each of us faces daily personal decisions
and situations that require predictions concerning the future. The U.S. govern-
ment is concerned with the balance of trade with countries in Europe and Asia. An
investment advisor wants to know whether inflation will be increasing in the next 6
months. A metallurgist would like to use the results of an experiment to determine
whether a new lightweight alloy possesses the strength characteristics necessary for
use in automobile manufacturing. A veterinarian investigates the effectiveness of a
new chemical for treating heartworm in dogs. The inferences that these individuals
make should be based on relevant facts, which we call observations, or data.

In many practical situations, the relevant facts are abundant, seemingly
inconsistent, and, in many respects, overwhelming. As a result, a careful decision
or prediction is often little better than an outright guess. You need only refer to
the “Market Views” section of the Wall Street Journal or to one of the financial
news shows on cable TV to observe the diversity of expert opinion concerning
future stock market behavior. Similarly, a visual analysis of data by scientists and
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engineers often yields conflicting opinions regarding conclusions to be drawn from
an experiment.

Many individuals tend to feel that their own built-in inference-making equip-
ment is quite good. However, experience suggests that most people are incapable
of utilizing large amounts of data, mentally weighing each bit of relevant informa-
tion, and arriving at a good inference. (You may test your own inference-making
ability by using the exercises in Chapters 5 through 10. Scan the data and make an
inference before you use the appropriate statistical procedure. Then compare the
results.) The statistician, rather than relying upon his or her own intuition, uses
statistical results to aid in making inferences. Although we touched on some of
the notions involved in statistical inference in preceding chapters, we will now col-
lect our ideas in a presentation of some of the basic ideas involved in statistical
inference.

The objective of statistics is to make inferences about a population based
on information contained in a sample. Populations are characterized by numeri-
cal descriptive measures called parameters. Typical population parameters are
the mean u, the median M, the standard deviation o, and a proportion 7. Most
inferential problems can be formulated as an inference about one or more param-
eters of a population. For example, a study is conducted by the Wisconsin Educa-
tion Department to assess the reading ability of children in the primary grades.
The population consists of the scores on a standard reading test of all children in
the primary grades in Wisconsin. We are interested in estimating the value of the
population mean score w and the proportion 7 of scores below a standard, which
indicates that a student needs remedial assistance.

Methods for making inferences about parameters fall into one of two catego-

estimation  ries. Either we will estimate the value of the population parameter of interest or
hypothesis testing we will test a hypothesis about the value of the parameter. These two methods of
statistical inference —estimation and hypothesis testing—involve different proce-
dures, and, more important, they answer two different questions about the param-
eter. In estimating a population parameter, we are answering the question “What
is the value of the population parameter?” In testing a hypothesis, we are seeking
an answer to the question “Does the population parameter satisfy a specified con-
dition—for example, ‘u > 20’ or ‘m < .3°?”

Consider a study in which an investigator wishes to examine the effectiveness
of a drug product in reducing anxiety levels of anxious patients. The investigator uses
a screening procedure to identify a group of anxious patients. After the patients are
admitted into the study, each one’s anxiety level is measured on a rating scale immedi-
ately before he or she receives the first dose of the drug and then at the end of 1 week
of drug therapy. These sample data can be used to make inferences about the popula-
tion from which the sample was drawn either by estimation or by a statistical test:

Estimation: Information from the sample can be used to estimate the
mean decrease in anxiety ratings for the set of all anxious
patients who may conceivably be treated with the drug.

Statistical test: Information from the sample can be used to determine whether
the population mean decrease in anxiety ratings is greater
than zero.

Notice that the inference related to estimation is aimed at answering the question
“What is the mean decrease in anxiety ratings for the population?” In contrast,
the statistical test attempts to answer the question “Is the mean drop in anxiety
ratings greater than zero?”
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Abstract of Research Study: Percentage of Calories from Fat

There has been an increased recognition of the potential relationship between
diet and certain diseases. Substantial differences in the rate of incidence of breast
cancer across international boundaries and changes in incidence rates as people
migrate from low-incidence to high-incidence areas indicates that environmental
factors, such as diet, may play a role in the occurrence of certain types of diseases.
For example, the percentage of calories from fat in the diet may be related to the
incidence of certain types of cancer and heart disease. Recommendations by federal
health agencies to reduce fat intake to approximately 30% of total calories are
partially based on studies that forecast a reduced incidence of heart disease and
breast cancer. The cover and lead article in the August 23, 2004, issue of Newsweek
were titled “What You Don’t Know About Fat.” The article details the mechanisms
by which fat cells swell to as much as six times their normal size and begin to multiply,
from 40 billion in an average adult to 100 billion, when calorie intake greatly exceeds
expenditures of calories through exercise. Fat cells require enormous amounts of
blood (in comparison to an equal weight of lean muscle), which places a strain on
the cardiovascular system. Obesity results in increased wear on the joints, leading to
osteoarthritis. Fat cells also secrete estrogen, which has been linked to breast cancer
in postmenopausal women. Type 2 (adult-onset) diabetes has as one of its major risk
factors obesity. Researchers suspect that the origin of diabetes lies at least partially
in the biochemistry of fat. The article states that the evidence that obesity is bad for
you is statistical and unassailable. The problem is that some leading companies in
the food industry contest some of the claims made linking obesity to health problems
based on the fact that it is statistical evidence. Thus, research in laboratories and
retrospective studies of people’s diet continue in order to provide needed evidence
to convince governmental agencies and the public that a major change in people’s
diet is a necessity.

The assessment and quantification of a person’s usual diet is crucial in evaluating
the degree of relationship between diet and diseases. This is a very difficult task, but
it is important in an effort to monitor dietary behavior among individuals. Rosner,
Willett, and Spiegelman, in “Correction of Logistic Regression Relative Risk Estimates
and Confidence Intervals for Systematic Within-Person Measurement Error” [Statistics
in Medicine (1989) 8:1051-1070], describe a nurses’ health study in which the diet of
a large sample of women was examined. Nurses receive information about effects of
dietary fat on health in nutrition courses taken as a part of their training. One of the
objectives of the study was to determine the percentage of calories from fat in the
diet of a population of nurses and compare this value with the recommended value of
30%. This would assist nursing instructors in determining the impact of the material
learned in nutritionally related courses on the nurses’ personal dietary decisions.
There are many dietary assessment methodologies. The most commonly used method
in large nutritional epidemiology studies is the food frequency questionnaire (FFQ).
This questionnaire uses a carefully designed series of questions to determine the
dietary intakes of participants in the study. In the nurses’ health study, a sample of
nurses completed a single FFQ. These women represented a random sample from
a population of nurses. From the information gathered from the questionnaire, the
percentage of calories from fat (PCF) was computed. The parameters of interest were
the average PCF value, u for the population of nurses, the standard deviation o of
PCF for the population of nurses, and the proportion 7r of nurses having PCF greater
than 50%, as well as other parameters. The number of subjects needed in the study
was determined by specifying the necessary degree of accuracy in the estimation of
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the parameters u, o, and 7. We will discuss in later sections in this chapter several
methods for determining the proper sample sizes. For this study, it was decided that a
sample of 168 participants would be adequate. The data is given in Section 5.10. The
researchers were interested in estimating the parameters associated with PCF along
with providing an assessment of how accurately the sample estimators represented
the parameters for the whole population. An important question of interest to the
researchers was whether the average PCF for the population exceeded the current
recommended value of 30%. If the average value is 32% for the sample of nurses, what
can we conclude about the average value for the population of nurses? At the end of
this chapter, we will provide an answer to this question, along with other results and
conclusions reached in this research study.

5.2 Estimation of u

The first step in statistical inference is point estimation, in which we compute a sin-
gle value (statistic) from the sample data to estimate a population parameter. Sup-
pose that we are interested in estimating a population mean and that we are willing
to assume the underlying population is normal. One natural statistic that could be
used to estimate the population mean is the sample mean, but we also could use
the median and the trimmed mean. Which sample statistic should we use?

A whole branch of mathematical statistics deals with problems related to
developing point estimators (the formulas for calculating specific point estimates
from sample data) of parameters from various underlying populations and deter-
mining whether a particular point estimator has certain desirable properties. Fortu-
nately, we will not have to derive these point estimators—they’ll be given to us for
each parameter. When we know which point estimator (formula) to use for a given
parameter, we can develop confidence intervals (interval estimates) for these same
parameters.

In this section, we deal with point and interval estimation of a population
mean u. Tests of hypotheses about u are covered in Section 5.4.

For most problems in this text, we will use sample mean y as a point estimate
of u; we also will use it to form an interval estimate for the population mean pu.
From the Central Limit Theorem for the sample mean (Chapter 4), we know that
for a large n, y will be approximately normally distributed, with a mean u and a
standard error o /\/Z. Then from our knowledge of the Empirical Rule and areas
under a normal curve, we know that the interval u = 20/\/11, or, more precisely,
the interval u + 1.960/Vn, includes 95% of the ys in repeated sampling, as shown
in Figure 5.1.

From Figure 5.1, we can observe that the sample mean y may not be very close
to the population mean w, the quantity itis supposed to estimate. Thus, when the value
of y is reported, we should also provide an indication of how accurately y estimates p.

FIGURE 5.1 §i6))
Sampling distribution
for y

95% of
the ys lie
in this interval

w — 1.960nm W w+ 1.960n/m
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FIGURE 5.2 &

When the observed value
of y lies in the interval

w * 1.960 Nn, the interval
y *+ 1.960/\n contains
the parameter u

| | ;
T“ — 1.960A/ T w T w+ 1.960A/7
y — 1.960nm Observed y v+ 1.960nm

We will accomplish this by considering an interval of possible values for u in place
of using just a single value y. Consider the interval y + 1.960-/Vn. Any time y falls in
the interval u + 1.960/Vn, the interval y + 1.960/Vn will contain the parameter
(see Figure 5.2). The probability of y falling in the interval u + 1.96¢/\n is .95, so
interval estimate  we state that y + 1.9607/Vn is an interval estimate of . with level of confidence .95.
level of confidence We evaluate the goodness of an interval estimation procedure by examining
the fraction of times in repeated sampling that interval estimates would encompass
confidence coefficient the parameter to be estimated. This fraction, called the confidence coefficient, is .95
when using the formula y *+ 1.960/\n; that is, 95% of the time in repeated sampling
the intervals calculated using the formula y = 1.960/\/; will contain the mean p.
This idea is illustrated in Figure 5.3. Suppose we want to study a commercial
process that produces shrimp for sale to restaurants. The shrimp are monitored
for size by randomly selecting 40 shrimp from the tanks and measuring their
length. We will consider a simulation of the shrimp monitoring. Suppose that the
distribution of shrimp length in the tank had a normal distribution with a mean
n=27cm and a standard deviation o = 10 cm. One hundred samples of size
n = 40 are drawn from the shrimp population. From each of these samples, we
compute the interval estimate y = 1.960/\n = y + 1.96(10/V40). (See Table 5.1.)
Note that although the intervals vary in location, only 6 of the 100 intervals failed
to capture the population mean w. The fact that six samples produced intervals that
did not contain u is not an indication that the procedure for producing intervals
is faulty. Because our level of confidence is 95%, we would expect that, in a large

FIGURE 5.3
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TABLE 5.1 One hundred interval estimates of the population mean (27)

5.2 Estimation of u

237

Interval Interval
Contains Contains
Sample Lower Upper Population Sample Lower Upper Population
Sample Mean Limit Limit Mean Sample Mean Limit Limit Mean

1 27.6609 24.5619 30.7599 Yes 51 26.9387 23.8397 30.0377 Yes

2 27.8315 24.7325 30.9305 Yes 52 26.4229 23.3239 29.5219 Yes

3 25.9366 22.8376 29.0356 Yes 53 242275 21.1285 27.3265 Yes

4 26.6584 23.5594 29.7574 Yes 54 26.4426 23.3436 29.5416 Yes

5 26.5366 23.4376 29.6356 Yes 55 26.3718 23.2728 29.4708 Yes

6 25.9903 22.8913 29.0893 Yes 56 29.3690 26.2700 32.4680 Yes

7 29.2381 26.1391 32.3371 Yes 57 25.9233 22.8243 29.0223 Yes

8 26.7698 23.6708 29.8688 Yes 58 29.6878 26.5888 32.7868 Yes

9 25.7277 22.6287 28.8267 Yes 59 24.8782 21.7792 27.9772 Yes
10 26.3698 23.2708 29.4688 Yes 60 29.2868 26.1878 32.3858 Yes
11 29.4980 26.3990 32.5970 Yes 61 25.8719 22.7729 28.9709 Yes
12 25.1405 22.0415 28.2395 Yes 62 25.6650 22.5660 28.7640 Yes
13 26.9266 23.8276 30.0256 Yes 63 26.4958 23.3968 29.5948 Yes
14 27.7210 24.6220 30.8200 Yes 64 28.6329 25.5339 31.7319 Yes
15 30.1959 27.0969 33.2949 No 65 28.2699 25.1709 31.3689 Yes
16 26.5623 23.4633 29.6613 Yes 66 25.6491 22.5501 28.7481 Yes
17 26.0859 22.9869 29.1849 Yes 67 27.8394 24.7404 30.9384 Yes
18 26.3585 23.2595 29.4575 Yes 68 29.5261 26.4271 32.6251 Yes
19 27.4504 24.3514 30.5494 Yes 69 24.6784 21.5794 27.7774 Yes
20 28.6304 25.5314 31.7294 Yes 70 24.6646 21.5656 27.7636 Yes
21 26.6415 23.5425 29.7405 Yes 71 26.4696 23.3706 29.5686 Yes
22 25.6783 22.5793 28.7773 Yes 72 26.0308 22.9318 29.1298 Yes
23 22.0290 18.9300 25.1280 No 73 27.5731 24.4741 30.6721 Yes
24 24.4749 21.3759 27.5739 Yes 74 26.5938 23.4948 29.6928 Yes
25 25.7687 22.6697 28.8677 Yes 75 25.4701 22.3711 28.5691 Yes
26 29.1375 26.0385 32.2365 Yes 76 28.3079 25.2089 31.4069 Yes
27 26.4457 23.3467 29.5447 Yes 77 26.4159 23.3169 29.5149 Yes
28 27.4909 24.3919 30.5899 Yes 78 26.7439 23.6449 29.8429 Yes
29 27.8137 24.7147 30.9127 Yes 79 27.0831 23.9841 30.1821 Yes
30 29.3100 26.2110 32.4090 Yes 80 24.4346 21.3356 27.5336 Yes
31 26.6455 23.5465 29.7445 Yes 81 24.7468 21.6478 27.8458 Yes
32 27.9707 24.8717 31.0697 Yes 82 27.1649 24.0659 30.2639 Yes
33 26.7505 23.6515 29.8495 Yes 83 28.0252 24.9262 31.1242 Yes
34 24.9366 21.8376 28.0356 Yes 84 27.1953 24.0963 30.2943 Yes
35 27.9943 24.8953 31.0933 Yes 85 29.7399 26.6409 32.8389 Yes
36 27.3375 24.2385 30.4365 Yes 86 24.2036 21.1046 27.3026 Yes
37 29.4787 26.3797 32.5777 Yes 87 27.0769 23.9779 30.1759 Yes
38 26.9669 23.8679 30.0659 Yes 88 23.6720 20.5730 26.7710 No
39 26.9031 23.8041 30.0021 Yes 89 25.4356 22.3366 28.5346 Yes
40 27.2275 24.1285 30.3265 Yes 90 23.6151 20.5161 26.7141 No
41 30.1865 27.0875 33.2855 No 91 24.0929 20.9939 27.1919 Yes
42 26.4936 23.3946 29.5926 Yes 92 27.7310 24.6320 30.8300 Yes
43 25.8962 22.7972 28.9952 Yes 93 27.3537 24.2547 30.4527 Yes
44 24.5377 21.4387 27.6367 Yes 94 26.3139 23.2149 29.4129 Yes
45 26.1798 23.0808 29.2788 Yes 95 24.8383 21.7393 27.9373 Yes
46 26.7470 23.6480 29.8460 Yes 96 28.4564 25.3574 31.5554 Yes
47 28.0406 24.9416 31.1396 Yes 97 28.2395 25.1405 31.3385 Yes
48 26.0824 22.9834 29.1814 Yes 98 25.5058 22.4068 28.6048 Yes
49 25.6270 22.5280 28.7260 Yes 99 25.6857 22.5867 28.7847 Yes
50 23.7449 20.6459 26.8439 No 100 27.1540 24.0550 30.2530 Yes
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collection of 95% confidence intervals, approximately 5% of the intervals would
fail to include p. Thus, in 100 intervals, we would expect 4 to 6 intervals (5% of
100) to not contain w. It is crucial to understand that even when experiments are
properly conducted, a number of the experiments will yield results that in some
sense are in error. This occurs when we run only a small number of experiments or
select only a small subset of the population. In our example, we randomly selected
40 observations from the population and then constructed a 95% confidence
interval for the population mean w. If this process was repeated a very large
number of times—for example, 10,000 times instead of the 100 in our example —
the proportion of intervals containing u would be very nearly 95%.

In most situations when the population mean is unknown, the population
standard deviation o will also be unknown. Hence, it will be necessary to estimate
both u and o from the data. However, for all practical purposes, if the sample size is
relatively large, we can estimate the population standard deviation o with the sample
standard deviation s in the confidence interval formula. Because o is estimated by the
sample standard deviation s, the actual standard error of the mean O’/\/Z is naturally
estimated by s/\n . This estimation introduces another source of random error (s will
vary randomly, from sample to sample, about o) and, strictly speaking, invalidates
the level of confidence for our interval estimate of w. Fortunately, the formula is
still a very good approximation for large sample sizes. When the population has a
normal distribution, a better method for constructing the confidence interval will be
presented in Section 5.7. Also, based on the results from the Central Limit Theorem,
if the population distribution is not too nonnormal and the sample size is relatively
large, level of confidence for the interval y = 1.96s/\/ﬁ will be approximately the
same as if we were sampling from a normal distribution with o known and using the
interval y = 1.960/\n .

EXAMPLE 5.1

A courier company in New York City claims that its mean delivery time to any
place in the city is less than 3 hours. The consumer protection agency decides to
conduct a study to see if this claim is true. The agency randomly selects 50 deliveries
and determines the mean delivery time to be 2.8 hours with a standard deviation of
s = .6 hours. The agency wants to estimate the mean delivery time u using a 95%
confidence interval. Obtain this interval and then decide if the courier company’s
claim appears to be reasonable.

Solution  The random sample of n = 50 deliveries yields y = 2.8 and s = .6.
Because the sample size is relatively large, n = 50, the appropriate 95% confidence
interval is then computed using the following formula:

y *+ 1.960 Nn

With s used as an estimate of o, our 95% confidence interval is

6
2.8+ 1.96— or 2.8 = .166
V50

The interval from 2.634 to 2.966 forms a 95% confidence interval for the mean
delivery time, u- In other words, we are 95% confident that the average delivery
time lies between 2.634 and 2.966 hours. Because the upper value of this inter-
val, 2.966, is less than 3 hours, we can conclude that the data strongly support the
courier company’s claim. B
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TABLE 5.2
Common values of the
confidence coefficient
(1 — a) and the
corresponding
z-value, 7,2
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There are many different confidence intervals for w, depending on the
confidence coefficient we choose. For example, the interval u + 2.580/\n includes
99% of the values of y in repeated sampling, and the interval y = 2.58¢/\n forms
a 99% confidence interval for .

We can state a general formula for a confidence interval for w with a
confidence coefficient of (1 — ), where a (Greek letter alpha) is between 0 and 1.
For a specified value of (1 — «), a 100(1 — @)% confidence interval for w is given
by the following formula. Here we assume that o is known or that the sample size
is large enough to replace o with s.

y* za/za/\/;

The quantity za/2 is a value of z having a tail area of /2 to its right. In other
words, at a distance of z,, standard deviations to the right of w, there is an area
of a/2 under the normal curve. Values of z,, can be obtained from Table 1 in
the Appendix by looking up the z-value corresponding to an area of 1 — («/2)
(see Figure 5.4). Common values of the confidence coefficient (1 — «) and z,p are
given in Table 5.2.

a
Area=1 — )

@)
\

y
W
< Zg/2 O~/ >
Confidence Coefficient Value of Area in Table 1 Corresponding z-Value,

1-a) a/2 1- a2 Za2

.90 .05 95 1.645

.95 .025 975 1.96

.98 .01 .99 233

.99 .005 .995 2.58

EXAMPLE 5.2

A forester wishes to estimate the average number of “count trees” (trees larger
than a specified size) per acre on a 2,000-acre plantation. She can then use this
information to determine the total timber volume for trees in the plantation. A ran-
dom sample of n = 50 l-acre plots is selected and examined. The average (mean)
number of count trees per acre is found to be 27.3, with a standard deviation of
12.1. Use this information to construct a 99% confidence interval for u, the mean
number of count trees per acre for the entire plantation.
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Solution We use the general confidence interval with a confidence coefficient
equal to .99 and a z,/,-value equal to 2.58 (see Table 5.2). Substituting into the
formula y * 2.58 o \\n and replacing o with s, we have

121

273 + 2.58———

V50
This corresponds to the confidence interval 27.3 = 4.41 —that is, the interval from
22.89 to 31.71. Thus, we are 99% sure that the average number of count trees per
acre is between 22.89 and 31.71. ®

Statistical inference-making procedures differ from ordinary procedures in
that we not only make an inference but also provide a measure of how good that
inference is. For interval estimation, the width of the confidence interval and the
confidence coefficient measure the goodness of the inference. For a given value of
the confidence coefficient, the smaller the width of the interval, the more precise
the inference. The confidence coefficient, on the other hand, is set by the experi-
menter to express how much confidence he or she has that the interval estimate
encompasses the parameter of interest. For a fixed sample size, increasing the level
of confidence will result in an interval of greater width. Thus, the experimenter will
generally express a desired level of confidence and specify the desired width of the
interval. Next, we will discuss a procedure to determine the appropriate sample
size to meet these specifications.

5.3 Choosing the Sample Size for Estimating u

How can we determine the number of observations to include in the sample? The
implications of such a question are clear. Data collection costs money. If the sample
is too large, time and talent are wasted. Conversely, it is wasteful if the sample is too
small because inadequate information has been purchased for the time and effort
expended. Also, it may be impossible to increase the sample size at a later time.
Hence, the number of observations to be included in the sample will be a compro-
mise between the desired accuracy of the sample statistic as an estimate of the popu-
lation parameter and the required time and cost to achieve this degree of accuracy.

The researchers in the dietary study described in Section 5.1 had to determine
how many nurses to survey for their study to yield viable conclusions. To deter-
mine how many nurses must be sampled, we have to determine how accurately
the researchers want to estimate the mean percentage of calories from fat (PCF).
The researchers specified that they wanted the sample estimator to be within 1.5
of the population mean w. Then we would want the confidence interval for u to
be y *= 1.5. Alternatively, the researchers could specify that the tolerable error in
estimation is 3, which would yield the same specification y = 1.5 because the toler-
able error is simply the width of the confidence interval.

There are two considerations in determining the appropriate sample size for
estimating p using a confidence interval. First, the tolerable error establishes the
desired width of the interval. The second consideration is the level of confidence. In
selecting our specifications, we need to consider that if the confidence interval of w is
too wide, then our estimation of u will be imprecise and not very informative. Simi-
larly, a very low level of confidence (say, 50%) will yield a confidence interval that
very likely will be in error —that is, fail to contain u. However, obtaining a confidence
interval having a narrow width and a high level of confidence may require a large
value for the sample size and hence be unreasonable in terms of cost and/or time.
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What constitutes reasonable certainty? In most situations, the confidence
level is set at 95% or 90%, partly because of tradition and partly because these lev-
els represent (to some people) a reasonable level of certainty. The 95% (or 90%)
level translates into a long-run chance of 1 in 20 (or 1 in 10) of not covering the
population parameter. This seems reasonable and is comprehensible, whereas 1
chance in 1,000 or 1 in 10,000 is too small.

The tolerable error depends heavily on the context of the problem, and only
someone who is familiar with the situation can make a reasonable judgment about
its magnitude.

When considering a confidence interval for a population mean u, the plus-or-
minus term of the confidence interval is z,,, o/Nn. Three quantities determine the
value of the plus-or-minus term: the desired confidence level (which determines
the z-value used), the standard deviation (o), and the sample size. Usually, a guess
must be made about the size of the population standard deviation. An initial sam-
ple can be taken to estimate the standard deviation; or the value of the sample
standard deviation from a previous study can be used as an estimate of o. For a
given tolerable error, once the confidence level is specified and an estimate of o
supplied, the required sample size can be calculated using the formula shown here.

Suppose we want to estimate p using a 100(1 — «a)% confidence interval
having tolerable error W. Our interval will be of the form y = E, where E = w/2.
Note that W is the width of the confidence interval. To determine the sample size
n, we solve the equation

E = zg/za'/\/ﬁ

for n. This formula for n is shown here:

Sample Size

Required for a (10/2)20-2

100(1 — a)% n = T g
Confidence Interval
for u of

the Formy + £ Note that determining a sample size to estimate u requires knowledge of the

population standard deviation o. We can obtain an approximate sample size by
estimating ¢%, using one of these two methods:

1. Employ information from a prior experiment to calculate a sample
standard deviation s. This value is used to approximate o.

2. Use information on the range of the observations in the population
to obtain an estimate of .

We can then substitute the estimated value of o in the sample-size equation to
determine an approximate sample size n.
We illustrate the procedure for choosing a sample size with two examples.

EXAMPLE 5.3

The cost of textbooks relative to other academic expenses has risen greatly over the
past few years, and university officials have started to include the average amount
expended on textbooks in their estimated yearly expenses for students. In order for
these estimates to be useful, they should be within $25 of the mean expenditure for
all undergraduate students at the university. How many students should the univer-
sity sample in order to be 95% confident that its estimated cost of textbooks will
satisfy the stated level of accuracy?
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Solution From data collected in previous years, the university officials have deter-
mined that the annual expenditure for textbooks has a histogram that is normal in
shape with costs ranging from $250 to $750. An estimate of o is required to find the
sample size. Because the distribution of book expenditures has a normal-like shape,
a reasonable estimate of o would be

range 750 — 250
4 4
The various components in the sample size formula are level of accuracy = E = $25,

¢ = 125, and level of confidence = 95% which implies z,» = z.0sp = zZ.0s5 = 1.96.
Substituting into the sample-size formula, we have

=125

6-:

(1.96)%(125)*
=——5 — =96.04
Ty
To be on the safe side, we round this number up to the next integer. A sample
size of 97 or larger is recommended to obtain an estimate of the mean textbook
expenditure that we are 95% confident is within $25 of the true mean. B

EXAMPLE 5.4

A federal agency has decided to investigate the advertised weight printed on
cartons of a certain brand of cereal. The company in question periodically samples
cartons of cereal coming off the production line to check their weight. A summary
of 1,500 of the weights made available to the agency indicates a mean weight of
11.80 ounces per carton and a standard deviation of .75 ounce. Use this information
to determine the number of cereal cartons the federal agency must examine to
estimate the average weight of cartons being produced now, using a 99% confidence
interval of width .50.

Solution The federal agency has specified that the width of the confidence inter-
val is to be .50, s0 E = .25. Assuming that the weights made available to the agency
by the company are accurate, we can take o = .75. The required sample size with
Za/2 = 2.58 is

(2.58)*(.75)*
(.25)

Thus, the federal agency must obtain a random sample of 60 cereal cartons to
estimate the mean weight to within =.25. 1

= 5991

n =

5.4 A Statistical Test for u

A second type of inference-making procedure is statistical testing (or hypothesis
testing). As with estimation procedures, we will make an inference about a popula-
tion parameter, but here the inference will be of a different sort. With point and
interval estimates, there was no supposition about the actual value of the param-
eter prior to collecting the data. Using sampled data from the population, we are
simply attempting to determine the value of the parameter. In hypothesis test-
ing, there is a preconceived idea about the value of the population parameter. For
example, in studying the antipsychotic properties of an experimental compound,
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we might ask whether the average shock-avoidance response of rats treated with a

specific dose of the compound is greater than 60—that is, u > 60—the value that

has been observed after extensive testing using a suitable standard drug. Thus,

there are two theories or hypotheses involved in a statistical study. The first is the

research hypothesis  hypothesis being proposed by the person conducting the study, called the research

hypothesis—p > 60 in our example. The second theory is the negation of this

null hypothesis  hypothesis, called the null hypothesis—up = 60 in our example. The goal of the
study is to decide whether the data tend to support the research hypothesis.

statistical test A statistical test is based on the concept of proof by contradiction and is com-

posed of the five parts listed here.

1. Research hypothesis (also called the alternative hypothesis), denoted
by H,.

Null hypothesis, denoted by H,.

Test statistics, denoted by T.S.

. Rejection region, denoted by R.R.

. Check assumptions and draw conclusions.

LI NYPEN

Forexample, the Texas A&M agricultural extension service wants to determine
whether the mean yield per acre (in bushels) for a particular variety of soybeans has
increased during the current year over the mean yield in the previous 2 years when u
was 520 bushels per acre. The first step in setting up a statistical test is determining the
proper specification of Hy and H,,. The following guidelines will be helpful:

1. The statement that u equals a specific value will always be included
in Hy. The particular value specified for u is called its null value and
is denoted puy.

2. The statement about u that the researcher is attempting to support
or detect with the data from the study is the research hypothesis, H,.

3. The negation of H, is the null hypothesis, Hy.

4. The null hypothesis is presumed correct unless there is overwhelm-
ing evidence in the data that the research hypothesis is supported.

In our example, pug is 520. The research statement is that yield in the current
year has increased above 520; that is, H,: u > 520. (Note that we will include 520 in
the null hypothesis.) Thus, the null hypothesis, the negation of H,, is Hy: u = 520.

To evaluate the research hypothesis, we take the information in the sample
data and attempt to determine whether the data support the research hypothesis or
the null hypothesis, but we will give the benefit of the doubt to the null hypothesis.

After stating the null and research hypotheses, we then obtain a random sam-
ple of 1-acre yields from farms throughout the state. The decision to state whether
or not the data support the research hypothesis is based on a quantity computed

test statistic ~ from the sample data called the test statistic. If the population distribution is deter-
mined to be mound-shaped, a logical choice as a test statistic for u is y or some
function of y.

If we select y as the test statistic, we know that the sampling distribution of
y is approximately normal with a mean  and a standard deviation o/\n, provided
the population distribution is normal or the sample size is fairly large. We are
attempting to decide between H,: u > 520 and Hy: u = 520. The decision will be to
either reject Hy or fail to reject Hy. In developing our decision rule, we will assume
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FIGURE 5.5 &)
Assuming that H is true,
contradictory values of y

are in the upper tail

Contradictory
values of y

~l

=520

. Rejection
<— Acceptance region|—

region

that w = 520, the null value of u. We will now determine the values of y that
rejection region define what is called the rejection region; we are very unlikely to observe these
values if u = 520 (or if w is any other value in Hy). The rejection region contains
the values of y that support the research hypothesis and contradict the null
hypothesis; hence, it is the region of values for y that reject the null hypothesis.
The rejection region will be the values of y in the upper tail of the null distribution
(n = 520) of y. See Figure 5.5.
As with any two-way decision process, we can make an error by falsely
Type Ierror  rejecting the null hypothesis or by falsely accepting the null hypothesis. We give
Type Il error  these errors the special names Type I error and Type II error.

DEFINITION 5.1 A Type I error is committed if we reject the null hypothesis when it is true.
The probability of a Type I error is denoted by the symbol a.

DEFINITION 5.2 A Type II error is committed if we accept the null hypothesis when it is
false and the research hypothesis is true. The probability of a Type II error is
denoted by the symbol B (Greek letter beta).

The two-way decision process is shown in Table 5.3 with corresponding
probabilities associated with each situation.

Although it is desirable to determine the acceptance and rejection regions
to simultaneously minimize both « and B, this is not possible. The probabilities
associated with Type I and Type 1I errors are inversely related. For a fixed sample
size n, as we change the rejection region to increase «, then 8 decreases, and vice
versa.

To alleviate what appears to be an impossible bind, the experimenter specifies
atolerable probability for a Type I error of the statistical test. Thus, the experimenter
may choose « to be .01, .05, .10, and so on. Specification of a value for « then locates

TABLE 5.3 .
Two-way decision process Null Hypothesis
Decision True False
Reject Hy Type I error Correct
a 1-B8
Accept Hy Correct Type II error

11—« B
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the rejection region. Determination of the associated probability of a Type Il error
is more complicated and will be delayed until later in the chapter.

Let us now see how the choice of «a locates the rejection region. Returning
to our soybean example, we will reject the null hypothesis for large values of the
sample mean y. Suppose we have decided to take a sample of n = 36 1-acre plots
and from these data we compute y = 573 and s = 124. Can we conclude that the
mean yield for all farms is above 520?

specifying « Before answering this question, we must specify a. If we are willing to take
the risk that 1 time in 40 we would incorrectly reject the null hypothesis, then
a = 1/40 = .025. An appropriate rejection region can be specified for this value of
a by referring to the sampling distribution of y. Assuming that u = 520 and n is
large enough so that o can be replaced by s, then y is normally distributed, with
w =520 and o/Nn =~ 124/V36 = 20.67. Because the shaded area of Figure 5.6(a)
corresponds to «, locating a rejection region with an area of .025 in the right tail
of the distribution of y is equivalent to determining the value of z that has an area
.025 toits right. Referring to Table 1 in the Appendix, this value of z is 1.96. Thus,
the rejection region for our example is located 1.96 standard errors (1.960/Vn)
above the mean p = 520. If the observed value of y is greater than 1.96 standard
errors above u = 520, we reject the null hypothesis, as shown in Figure 5.6(a).

The reason that we need to consider only u = 520 in computing « is that for
all other values of w in Hy—that is, u < 520—the probability of Type I error would
be smaller than the probability of Type I error when w = 520. This can be seen by
examining Figure 5.6(b)

The area of the rejection region under the curve centered at 500 is less than
the area of that associated with the curve centered at 520. Thus, « for u = 500 is
less than « for u = 520—that is, a (500) < « (520) = .025.

This conclusion can be extended to any value of u less than 520—that is, all
values of w in Hy: u = 520.

FIGURE 5.6(a) £
Rejection region for the

soybean example when
a = .025

Area a equals .025.

7

y
w =320 Rejection
|<_l'960-/\/77_> region
FIGURE 5.6(b) [y
Size of rejection region
when p = 500 ; :

y

500 520 L

Rejection

|<_1 960 /T —> region >
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EXAMPLE 5.5

The Texas A&M extension service wanted to investigate if the mean yield per acre
of soybeans (in bushels) was greater than 520 bushels. In a random sample of 36
l-acre soybean plots, the sample mean and standard deviation were computed to be
y = 573 and s = 124, respectively.

Set up all the parts of a statistical test for the soybean example, and use the
sample data to reach a decision on whether to accept or reject the null hypothesis.
Set @ = .025. Assume that o can be estimated by s.

Solution The first four parts of the test are as follows.

Hy w=520
H,;: p>520
TS.: y

R.R.: For a = .025, reject the null hypothesis if y lies more than 1.96
standard errors above u = 520.

The computed value of y is 573. To determine the number of standard errors
that y lies above u = 520, we compute a z-score for y using the formula
- = y = Ho
o/\n
Substituting into the formula with s replacing o, we have
Yy — Mg 573 — 520

o/\n 12436 g

Before drawing conclusions from these calculations, it is necessary to check
the assumptions underlying the probability statements. Thus, it is necessary to
make sure that the 36 1-acre soybean plots are representative of the population for
which inferences are to be drawn and to examine the location of the plots to make
sure that there are no confounding factors that could result in a strong correlation
among the yields of the 36 plots. Finally, a normal quantile plot should be used to
assess whether the 36 yields appear to be a random sample from a population hav-
ing a normal distribution. Because the observed value of y lies more than 1.96—in
fact it is 2.56 —standard errors above 520, we reject the null hypothesis in favor of
the research hypothesis and conclude that there is strong evidence in the data that
average soybean yield per acre is greater than 520 bushels. B

one-tailed test The statistical test conducted in Example 5.5 is called a one-tailed test
because the rejection region is located in only one tail of the distribution of y. If
our research hypothesis was H,: u < 520, small values of y would indicate rejection
of the null hypothesis. This test would also be one-tailed, but the rejection region
would be located in the lower tail of the distribution of y. Figure 5.7 displays the
rejection region for the alternative hypothesis H,: p < 520 when a = .025.

FIGURE 5.7 §i6)
Rejection region for
H,: <520 when

a = .025 for the
soybean example

~|

=520

Rejection
<«—1.960/7 —>

region
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Two-tailed rejection
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region

Rejection
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We can formulate a two-tailed test for the research hypothesis H,: u # 520,
where we are interested in detecting whether the mean yield per acre of soybeans
is different from 520. Clearly, both large and small values of y would contradict
the null hypothesis, and we would locate the rejection region in both tails of the
distribution of y. A two-tailed rejection region for H,: u # 520 and a = .05 is shown
in Figure 5.8.

EXAMPLE 5.6

Elevated serum cholesterol levels are often associated with cardiovascular disease.
Cholesterol levels are often thought to be associated with type of diet, amount
of exercise, and genetically related factors. A recent study examined cholesterol
levels among recent immigrants from China. Researchers did not have any prior
information about these people and wanted to evaluate whether their mean cho-
lesterol level differed from the mean cholesterol level of middle-aged women in
the United States. The distribution of cholesterol levels in U.S. women aged 30-50
is known to be approximately normally distributed with a mean of 190 mg/dL. A
random sample of n = 100 female Chinese immigrants aged 30-50 who had immi-
grated to the United States in the past year was selected from USCIS records.
They were administered blood tests that yielded cholesterol levels having a mean
of 178.2 mg/dL and a standard deviation of 45.3 mg/dL. Is there significant evidence
in the data to demonstrate that the mean cholesterol level of the new immigrants
differs from 190 mg/dL?

Solution The researchers were interested in determining if the mean cholesterol
level was different from 190; thus, the research hypothesis for the statistical test
is Hy;: n#190. The null hypothesis is the negation of the research hypothesis:
Hy: = 190. With a sample size of n = 100, the Central Limit Theorem should
hold, and, hence, the sampling distribution of y is approximately normal. Using
a = .05, z4n = 7025 = 1.96. The two-tailed rejection region for this test is given by

o = 1.96sn = 190 = 1.96(45.3)/N100 = 190 + 8.88

lower rejection = 181.1 upper rejection = 198.9

The two regions are shown in Figure 5.9.

We canobserve from Figure 5.9that y = 178.2fallsinto the lowerrejection
region. Therefore, we conclude there is significant evidence in the data that
the mean cholesterol level of middle-aged Chinese immigrants differs from
190 mg/dL.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



248 CHAPTER 5 INFERENCES ABOUT POPULATION CENTRAL VALUES

FIGURE 5.9 §i6))
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Alternatively, we can determine how many standard errors y lies away from
n = 190 and compare this value to z,2 = 2025 = 1.96. From the data, we compute

Y-, 1782 — 190

- — 260
ST ofn 4537100

The observed value for y lies more than 1.96 standard errors below the speci-
fied mean value of 190, so we reject the null hypothesis in favor of the alternative
H,: v # 190. We have thus reached the same conclusion as we reached using the
rejection region. The two methods will always result in the same conclusion. H

The mechanics of the statistical test for a population mean can be greatly
simplified if we use z rather than y as a test statistic. Using

Hy: = po (Where w is some specified value)
Hg: M= o

and the test statistic

z:y_:“do
o\Nn

then for a = .025 we reject the null hypothesis if z = 1.96—that is, if y lies more
than 1.96 standard errors above the mean. Similarly, for a« = .05 and H,: u # o, we
reject the null hypothesis if the computed value of z = 1.96 or the computed value
of z = —1.96. This is equivalent to rejecting the null hypothesis if the computed
value of |z| = 1.96.
test for a population The statistical test for a population mean p is summarized next. Three
mean  different sets of hypotheses are given with their corresponding rejection
regions. In a given situation, you will choose only one of the three alternatives
with its associated rejection region. The tests given are appropriate only when
the population distribution is normal with known o. The rejection region will
be approximately the correct region even when the population distribution is
nonnormal provided the sample size is large. We can then apply the results from
the Central Limit Theorem with the sample standard deviation s replacing o to
conclude that the sampling distribution of z = (y — /.LO)/(S/\/;) is approximately
normal.
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Summary of a
Statistical Test Hypotheses:

for pu with a Casel. Hypw=pmovs. Hip>pp  (right-tailed test)

NormaIDFi‘:tl:iL:)I:::g: Case 2. Hyp=pmovs. Hpp<pp  (left-tailed test)
Case 3. Hp p = moVs. Hy: u# po (two-tailed test)
(o Known) or Large _
Sample Size n T.S.: _Y " MK

Z =
o/\n
R.R.: For a probability a of a Type I error,

Case 1. Reject Hjifz = z,.
Case 2. Reject Hyif z = —z,.
Case 3. Reject Hyif |z = zq)2.

Note: These procedures are appropriate if the population distribution

is normally distributed with o known. If the sample size is large, then

the Central Limit Theorem allows us to use these procedures when the
population distribution is nonnormal. Also, if the sample size is large, then
we can replace o with the sample standard deviation s. The situation in
which 7 is small is presented later in this chapter.

EXAMPLE 5.7

As a part of her evaluation of municipal employees, the city manager audits the
parking tickets issued by city parking officers to determine the number of tickets
that were contested by the car owner and found to be improperly issued. In past
years, the number of improperly issued tickets per officer had a normal distribution
with mean p = 380 and standard deviation o = 35.2. Because there has recently
been a change in the city’s parking regulations, the city manager suspects that the
mean number of improperly issued tickets has increased. An audit of 50 randomly
selected officers is conducted to test whether there has been an increase in improper
tickets. Use the sample data given here and « = .01 to test the research hypothesis
that the mean number of improperly issued tickets is greater than 380. The audit
generates the following data: n = 50 and y = 390.

Solution Using the sample data with a = .01, the five parts of a statistical test are

as follows.
Hy: p=380
Hy: p>380
y — 390 — 380 10
TS: z=2_Ho_ - 2.01

T oNn | 352450  352/7.07

R.R.: For a = .01 and a right-tailed test, we reject Hy if z = 7,01,
where z; = 2.33.

Check assumptions and draw conclusions: Because the observed value of z,2.01,
does not exceed 2.33, we might be tempted to accept the null hypothesis that
= 380. The only problem with this conclusion is that we do not know f, the
probability of incorrectly accepting the null hypothesis. To hedge somewhat in
situations in which z does not fall in the rejection region and 8 has not been cal-
culated, we recommend stating that there is insufficient evidence to reject the null
hypothesis. B
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computing 8 We can illustrate the computation of B, the probability of a Type II error,
using the data in Example 5.7. If the null hypothesis is Hy: u =< 380, the probability
of incorrectly accepting Hy will depend on how close the actual mean is to 380.
For example, if the actual mean number of improperly issued tickets is 400, we
would expect 8 to be much smaller than if the actual mean is 387. The closer the
actual mean is to uo, the more likely we are to obtain data having a value y in the
acceptance region. The whole process of determining B for a test is a “what-if”
type of process. In practice, we compute the value of 8 for a number of values of u
OC curve  in the alternative hypothesis H, and plot 8 versus w in a graph called the OC curve.
Alternatively, tests of hypotheses are evaluated by computing the probability that
power  the test rejects false null hypotheses, called the power of the test. We note that
power curve  power = 1 — B. The plot of power versus the value of w is called the power curve.
We attempt to design tests that have large values of power and hence small values
for B.

Let us suppose that the actual mean number of improper tickets is 395 per

officer. What is 87 With the null and research hypotheses as before,

Hy: p =380
Hyz p > 380

and with @ = .01, we use Figure 5.10(a) to display 8. The shaded portion of
Figure 5.10(a) represents B, as this is the probability of y falling in the acceptance
region when the null hypothesis is false and the actual value of w is 395. The power
of the test for detecting that the actual value of u is 395 is 1 — B, the area in the
rejection region.

Let us consider two other possible values for u—namely, 387 and 400. The
corresponding values of 8 are shown as the shaded portions of Figures 5.10(b) and (¢),
respectively; power is the unshaded portion in the rejection region of Figures 5.10(b)
and (c). The three situations illustrated in Figure 5.10 confirm what we alluded
to earlier; that is, the probability of a Type II error 8 decreases (and hence power
increases) the farther w lies away from the hypothesized mean under H,.

The following notation will facilitate the calculation of 8. Let uy denote the
null value of w, and let u, denote the actual value of the mean in H,. Let B(u,) be the
probability of a Type II error if the actual value of the mean is u,, and let PWR(w,)
be the power at u,. Note that PWR () equals 1 — B(u,). Although we never really
know the actual mean, we select feasible values of u and determine B for each
of these values. This will allow us to determine the probability of a Type II error
occurring if one of these feasible values happens to be the actual value of the mean.
The decision whether or not to accept Hy depends on the magnitude of 8 for one
or more reasonable values for u,. Alternatively, researchers calculate the power
curve for a test of hypotheses. Recall that the power of the test at w,, PWR(u,), is
the probability the test will detect that H is false when the actual value of u is u,.
Hence, we want tests of hypotheses in which PWR (w,,) is large when w,, is in H, and
is far from wy.

For a one-tailed test, Hy: u = uo or Hyp: u = o, the value of B at u, is the
probability that z is less than

|,LL0 B I*La|
Ly —
o Nn

This probability is written as

_ _ Wo‘f‘«'} _ ( _ |P«o—M|>
B(,U«a) Pz <z, 0_/\/; pnorm| z,, a_/\/;
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The value of B(u,) is found by looking up the probability corresponding to the
number z, — |u, — w,|/o/Vn in Table 1 in the Appendix.

Formulas for B are given here for one- and two-tailed tests. Examples using
these formulas follow.

1. One-tailed test:

_ ol |f*o‘ﬂ|> _ ( _ M‘M)
Bw,) = P<z =z, o = pnorm( z,, o
PWR(ua) = 1 = B(pa)-
2. Two-tailed test:

Bu,) = P(z =Zoyp — |M((]T/_\/;“|> = pnorm(za/z - |M(;/_\/;”|>
PWR(uqa) = 1 — B(ka)-

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



252 CHAPTER 5 INFERENCES ABOUT POPULATION CENTRAL VALUES

EXAMPLE 5.8

Compute B8 and power for the test in Example 5.7 if the actual mean number of
improperly issued tickets is 395.

Solution The research hypothesis for Example 5.7 was H,: u > 380. Using « = .01
and the computing formula for 8 with wy = 380 and u, = 395, we have

o — 1 I} { 1380 — 395|
395) = Plz <z, — 0 Ba| _ pl, <933 - BT 0
A3%) {Z o N ¢ 35250

= P[z <233 —3.01] = P[z < —.68] = pnorm(—.68) = .2483

Referring to Table 1 in the Appendix, the area corresponding to z = —.68 is .2483.
Hence, B(395) = .2483 and PWR(395) = 1 — .2483 = .7517. 1

Previously, when y did not fall in the rejection region, we concluded that
there was insufficient evidence to reject Hy because 8 was unknown. Now, when y
falls in the acceptance region, we can compute B corresponding to one (or more)
alternative values for u that appear reasonable in light of the experimental setting.
Then, provided we are willing to tolerate a probability of falsely accepting the
null hypothesis equal to the computed value of B for the alternative value(s) of
w considered, our decision is to accept the null hypothesis. Thus, in Example 5.8,
if the actual mean number of improperly issued tickets is 395, then there is about
a .25 probability (1 in 4 chance) of accepting the hypothesis that u is less than or
equal to 380 when in fact u equals 395. The city manager will have to analyze the
consequence of making such a decision. If the risk is acceptable, then she could
state that the audit has determined that the mean number of improperly issued
tickets has not increased. If the risk is too great, then the city manager will have
to expand the audit by sampling more than 50 officers. In the next section, we will
describe how to select the proper value for n.

EXAMPLE 5.9

As the public concern about bacterial infections increases, a soap manufacturer
has quickly promoted a new product to meet the demand for an antibacterial soap.
This new product has a substantially higher price than the “ordinary soaps” on the
market. A consumer testing agency notes that ordinary soap also kills bacteria and
questions whether the new antibacterial soap is a substantial improvement over
ordinary soap. A procedure for examining the ability of soap to kill bacteria is to
place a solution containing the soap onto a petri dish and then add E. coli bacteria.
After a 24-hour incubation period, a count of the number of bacteria colonies on
the dish is taken. From previous studies using many different brands of ordinary
soaps, the mean bacteria count is 33 for ordinary soap products. The consumer
group runs the test on the antibacterial soap using 35 petri dishes. For the 35 petri
dishes, the mean bacterial count is 31.2 with a standard deviation of 8.4. Do the
data provide sufficient evidence that the antibacterial soap is more effective than
ordinary soap in reducing bacteria counts? Use o = .05.

Solution Let p be the population mean bacterial count for the antibacterial soap
and o be the population standard deviation. The five parts to our statistical test are as
follows.

Hy w=33
H; pn<33

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TABLE 5.4

Probability of Type 11
error and power for
values of uin H,
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_Yom _312-33
o Nn 8.4 N35

R.R.: For a = .05, we will reject the null hypothesis if z = — 795 = —1.645.

TS.: z

Check assumptions and draw conclusions: With n = 35, the sample size is prob-
ably large enough that the Central Limit Theorem would justify our assum-
ing that the sampling distribution of y is approximately normal. The normality
assumption should be checked using the techniques from Chapter 4. Because the
observed value of z, —1.27, is not less than —1.645, the test statistic does not fall
in the rejection region. We reserve judgment on accepting Hy until we calculate
the chance of a Type II error, B, for several values of u falling in the alternative
hypothesis, values of u less than 33. In other words, we conclude that there is
insufficient evidence to reject the null hypothesis and hence there is not sufficient
evidence that the antibacterial soap is more effective than ordinary soap. How-
ever, we next need to calculate the chance that the test may have resulted in a
Type II error. &

EXAMPLE 5.10

Refer to Example 5.9. Suppose that the consumer testing agency thinks that the
manufacturer of the antibacterial soap will take legal action if the antibacterial
soap has a population mean bacterial count that is considerably less than 33 —say,
28.Thus, the consumer group wants to know the probability of a Type II error in its
test if the population mean w is 28 or smaller; that is, it wants to determine B(28)
because B(u) = B(28) for u = 28.

Solution Using the computational formula for 8 with uo =33, u, =28, and
a = .05, we have
|33 — 28|

— |M0 — lu’a|:|
B(28) = P|z 84/V35

=Zos o

= P[z = —1.88] = pnorm(—1.88) = .0301

= P[z = 1.645 —

The area corresponding to z = —1.88 in Table 1 of the Appendix is .0301. Hence,
B(28) = .0301 and PWR(28) =1 —.0301 = .9699

Because B is relatively small, we accept the null hypothesis and conclude that the
antibacterial soap is not more effective than ordinary soap in reducing bacterial
counts.

The manufacturer of the antibacterial soap wants to determine the chance
that the consumer group may have made an error in reaching its conclusions. The
manufacturer wants to compute the probability of a Type II error for a selection of
potential values of u in H,. This would provide it with an indication of how likely it
is that a Type II error may have occurred when in fact the new soap is considerably
more effective in reducing bacterial counts in comparison to the mean count for
ordinary soap, u = 33. Repeating the calculations for obtaining 3(28), we obtain
the values in Table 5.4.

" 33 32 31 30 29 28 27 26 25
B(m) .9500 .8266 5935 .3200 1206 .0301 .0049  .0005 .0000
PWR(u) .0500 1734 4065 .6800 .8794 9699 9951 9995 .9999
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FIGURE 5.11 1.0
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Figure 5.11 is a plot of the B(n) values in Table 5.4 with a smooth curve
through the points. Note that as the value of u decreases, the probability of Type 11
error decreases to 0 and the corresponding power value increases to 1.0. The com-
pany could examine this curve to determine whether the chances of Type II error
are reasonable for values of w in H, that are important to the company. From
Table 5.4 or Figure 5.11, we observe that B(28) = .0301, a relatively small number.
Based on the results from Example 5.9, we find that the test statistic does not fall
in the rejection region. The manufacturer has decided that if the true population
mean bacterial count for its antibacterial soap is 29 or less, this product is consid-
ered a substantial improvement over ordinary soap. Based on the values of the
probability of Type II error displayed in Table 5.4, the chance is relatively small
that the test run by the consumer agency has resulted in a Type II error for values
of the mean bacterial count of 29 or smaller. Thus, the consumer testing agency was
relatively certain in reporting that the new antibacterial soap did not decrease the
mean bacterial count in comparison to ordinary soap. i

In Section 5.2, we discussed how we measure the effectiveness of interval esti-
mates. The effectiveness of a statistical test can be measured by the magnitudes of
the Type I and Type II errors, a and B(w). When « is preset at a tolerable level by
the experimenter, B(u,) is a function of the sample size for a fixed value of u,. The
larger the sample size n, the more information we have concerning w, and the less
likely we are to make a Type II error —hence the smaller the value of B(u,). To illus-
trate this idea, suppose we are testing the hypotheses Hy: u = 84 versus H,: u > 84,
where u is the mean of a population having a normal distribution with o = 1.4. If we
take a = .05, then the probability of Type II errors is plotted in Figure 5.12(a) for
three possible sample sizes, n = 10, 18, and 25. Note that 8(84.6) becomes smaller
as we increase n from 10 to 25. Another relationship of interest is that between «
and B(w). For a fixed sample size n, if we change the rejection region to increase
the value of «, the value of B(u,) will decrease. This relationship can be observed in
Figure 5.12(b). Fix the sample size at 25 and plot B(w) for three different values of
a = .05, .01, and .001. We observe that 3(84.6) becomes smaller as « increases from
.001 to .05. A similar set of graphs can be obtained for the power of the test by sim-
ply plotting PWR(u) = 1 — B(n) versus u. The relationships described would be
reversed; that is, for fixed «, increasing the value of the sample size would increase
the value of PWR(w), and for fixed sample size, increasing the value of & would
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FIGURE 5.12 Impact of @ and 7 on B(u)
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increase the value of PWR(un). We will consider now the problem of designing an
experiment for testing hypotheses about u when « is specified and B(u,) is preset
for a fixed value pw,. This problem reduces to determining the sample size needed
to achieve the fixed values of « and B(u,). Note that in those cases in which the
determined value of n is too large for the initially specified values of « and 3, we
can increase our specified value of « and achieve the desired value of B(u,) with a
smaller sample size.

5.5 Choosing the Sample Size for Testing u

The quantity of information available for a statistical test about w is measured by the
magnitudes of the Type I and Il error probabilities, « and B(w), for various values of w
in the alternative hypothesis H,. Suppose that we are interested in testing Hy: w = wo
against the alternative H,: u > wo. First, we must specify the value of a. Next, we
must determine a value of u in the alternative, w1, such that if the actual value of
the mean is larger than w1, then the consequences of making a Type II error will be
substantial. Finally, we must select a value for 8(u), 8. Note that for any value of w
larger than w1, the probability of a Type II error will be smaller than B(u;); that is,

B(r) < B(p1), for all w > uy

Let A = w1 — wo. The sample size necessary to meet these requirements is
2

Lz + 2p)

n=o—ag—

Note: If o2 is unknown, substitute an estimated value from previous studies or a
pilot study to obtain an approximate sample size.

The same formula applies when testing Hy: u = uo against the alternative H,:
< o, with the exception that we want the probability of a Type II error to be of
magnitude B or less when the actual value of u is less than w1, a value of the mean
in H,; that is,

B(n) < B, forall p < uy

with A = uy — w1.
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EXAMPLE 5.11

A cereal manufacturer produces cereal in boxes having a labeled weight of
16 ounces. The boxes are filled by machines that are set to have a mean fill per box
of 16.37 ounces. Because the actual weight of a box filled by these machines has
a normal distribution with a standard deviation of approximately .225 ounces, the
percentage of boxes with a fill weighing less than 16 ounces is 5% using this setting.
The manufacturer is concerned that one of its machines is underfilling the boxes
and wants to sample boxes from the machine’s output to determine whether the
mean weight w is less than 16.37 —that is, to test

Hy p=1637
Hy p<1637

with & = .05. If the true mean weight is 16.27 or less, the manufacturer needs the
probability of failing to detect this underfilling of the boxes with a probability of at
most .01, or it risks incurring a civil penalty from state regulators. Thus, we need to
determine the sample size »n such that our test of Hj versus H, has a = .05 and B(u)
less than .01 whenever w is less than 16.27 ounces.

Solution We have @ = .05, 8 = .01, A = 16.37 — 16.27 = .1, and o = .225. Using
our formula with z o5 = 1.645 and zy; = 2.33, we have

(225)%(1.645 + 2.33)?
(1)?

Thus, the manufacturer must obtain a random sample of n = 80 boxes to conduct
this test under the specified conditions.

Suppose that after obtaining the sample, we compute y = 16.35 ounces. The
computed value of the test statistic is

=79.99 = 80

n =

,_ Y1637 16351637 _

oNn  225M80 -9

Because the rejection region is z < —1.645, the computed value of z does not fall
in the rejection region. What is our conclusion? Knowing that B(u) = .01 when
n = 16.27, the manufacturer is somewhat secure in concluding that the mean fill
from the examined machine is at least 16.37 ounces. ®

With a slight modification of the sample size formula for the one-tailed tests,

we can test
Hy: p=po
Hy: M7 1o

for a specified «, B, and A, where

B(r) = B, whenever [u — pol = A

Thus, the probability of Type II error is at most 8 whenever the actual mean differs
from po by at least A. A formula for an approximate sample size n when testing a
two-sided hypothesis for u is presented here:
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Approximate Sample a? 5
Size for a Two-Sided n= F(Za/z + zp)

Test of Ho: 1 = po . . . .
Note: If o2 is unknown, substitute an estimated value to get an approximate

sample size.

5.6 The Level of Significance of a Statistical Test

In Section 5.4, we introduced hypothesis testing along rather traditional lines: We
defined the parts of a statistical test along with the two types of errors, a and B(u,),
and their associated probabilities. The problem with this approach is that if other
researchers want to apply the results of your study using a different value for «, then
they must compute a new rejection region before reaching a decision concerning Hy
and H,. An alternative approach to hypothesis testing contains the following steps:
Specify the null and alternative hypotheses, specify a value for «, collect the sample
data, and determine the weight of evidence for rejecting the null hypothesis. This
level of significance  weight, given in terms of a probability, is called the level of significance (or p-value)
p-value of the statistical test. More formally, the level of significance is defined as follows:
the probability of obtaining a value of the test statistic that is as likely or more likely
to reject Hy as the actual observed value of the test statistic, assuming that the null
hypothesis is true. Thus, if the level of significance is a small value, then the sample
data fail to support Hy, and our decision is to reject Hy. On the other hand, if the
level of significance is a large value, then we fail to reject Hy. We must next decide
what is a large or small value for the level of significance. The following decision
rule yields results that will always agree with the testing procedures we introduced
in Section 5.5.

Decision Rule for
Hypothesis Testing
Using the p-Value

1. If the p-value = «, then reject H,.
2. If the p-value > «, then fail to reject Hy.

We illustrate the calculation of a level of significance with several examples.

EXAMPLE 5.12

Refer to Example 5.7.

a. Determine the level of significance (p-value) for the statistical test, and
reach a decision concerning the research hypothesis using a = .01.

b. If the preset value of « is .05 instead of .01, does your decision
concerning H, change?

Solution
a. The null and alternative hypotheses are

Hp: =380
H,;: wu>380
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From the sample data, with s replacing o, the computed value of the
test statistic is

y — 380 390 — 380
= — = —
o Nn 352750
The level of significance for this test (i.e., the weight of evidence for reject-
ing Hy) is the probability of observing a value of y greater than or equal to

390 assuming that the null hypothesis is true; that is, u = 380. This value
can be computed by using the z-value of the test statistic, 2.01, because

p-value = P(y = 390, assuming p = 380) = P(z =2.01)
=1 — pnorm(2.01) = .0222

Referring to Table 1 in the Appendix, P(z = 2.01) = 1 — P(z < 2.01)
=1 —.9778 = .0222. This value is shown by the shaded area in
Figure 5.13. Because the p-value is greater than « (.0222 > .01),

we fail to reject Hy and conclude that the data do not support the
research hypothesis.

2.01

FIGURE 5.13 @)
Level of significance
for Example 5.12

z=0 2.01

b. Another person examines the same data but with a preset value
for @ = .05. This person is willing to support a higher risk of a
Type I error, and, hence, the decision is to reject Hy because the
p-value is less than « (.0222 = .05). It is important to emphasize that
the value of « used in the decision rule is preset and not selected
after calculating the p-value. B

As we can see from Example 5.12, the level of significance represents the
probability of observing a sample outcome more contradictory to Hy than the
observed sample result. The smaller the value of this probability, the heavier the
weight of the sample evidence against Hy. For example, a statistical test with a level
of significance of p = .01 shows more evidence for the rejection of Hj than does
another statistical test with p = .20.

EXAMPLE 5.13

Refer to Example 5.9. Using a preset value of a = .05, is there sufficient evidence
in the data to support the research hypothesis?

Solution The null and alternative hypotheses are
Hy: n = 33
H; w<33
From the sample data, with s replacing o, the computed value of the test statistic is
Yy My 312-33

T opfn  sapzs

Z
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The level of significance for this test statistic is computed by determining which
values of y are more extreme to Hy than the observed y. Because H, specifies w
less than 33, the values of y that would be more extreme to Hy are those values less
than 31.2, the observed value. Thus,

p-value = P(y = 31.2,assuming u = 33) = P(z = —1.27) = .1020

There is considerable evidence to support Hy. More precisely, p-value = .1020 >
.05 = a, and, hence, we fail to reject Hy. Thus, we conclude that there is insufficient
evidence (p-value = .1020) to support the research hypothesis. Note that this is
exactly the same conclusion reached using the traditional approach. m

For two-tailed tests, H,: u # o, we still determine the level of significance by
computing the probability of obtaining a sample having a value of the test statistic
that is more contradictory to Hy than the observed value of the test statistic. How-
ever, for two-tailed research hypotheses, we compute this probability in terms of
the magnitude of the distance from y to the null value of u because both values of
y much less than uy and values of y much larger than uo contradict u = uo. Thus,
the level of significance is written as

p-value = P(|y — uol = observed |y — uol) = P(1z| = |computed z[)
= 2P(z = |computed z[)

To summarize, the level of significance (p-value) can be computed as

Case 1 Case 2 Case 3

Ho: p = o Ho: = o Ho: p = o

Hg: > o Hgy: o < o Hg: o # po

p-value: P(z = computed z) P(z = computed z) 2P(z = |computed z|)

EXAMPLE 5.14

Refer to Example 5.6. Using a preset value of a = .01, is there sufficient evidence
in the data to support the research hypothesis?

Solution The null and alternative hypotheses are

Hy: p=190
Hyz w190

From the sample data, with s replacing o, the computed value of the test statistic is

Yo 1782190
ofNn 453 N100 '

The level of significance for this test statistic is computed using the formula given
in Example 5.13, Case 3.

p-value = 2P(z = | computed z|) = 2P(z = |—2.60]) = 2P(z = 2.60)
= 2(1 — .9953) = .0094

Because the p-value is very small, there is very little evidence to support Hy. More
precisely, p-value = .0094 = .01 = «, and, hence, we reject Hy. Thus, there is suf-
ficient evidence (p-value = .0094) to support the research hypothesis and conclude
that the mean cholesterol level differs from 190. Note that this is exactly the same
conclusion reached using the traditional approach. B
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There is much to be said in favor of this approach to hypothesis testing.
Rather than reaching a decision directly, the statistician (or person performing the
statistical test) presents the experimenter with the weight of evidence for rejecting
the null hypothesis. The experimenter can then draw his or her own conclusion.
Some experimenters reject a null hypothesis if p =< .10, whereas others require
p = .05 or p = .01 for rejecting the null hypothesis. The experimenter is left to
make the decision based on what he or she believes is enough evidence to indicate
rejection of the null hypothesis.

Many professional journals have followed this approach by reporting the
results of a statistical test in terms of its level of significance. Thus, we might read
that a particular test was significant at the p = .05 level or perhaps the p < .01 level.
By reporting results this way, the reader is left to draw his or her own conclusion.

One word of warning is needed here. The p-value of .05 has become a magic
level, and many seem to feel that a particular null hypothesis should not be rejected
unless the test achieves the .05 level or lower. This has resulted in part from the
decision-based approach with « preset at .05. Try not to fall into this trap when
reading journal articles or reporting the results of your statistical tests. After all,
statistical significance at a particular level does not dictate importance or practical
significance. Rather, it means that a null hypothesis can be rejected with a specified
low risk of error. For example, suppose that a company is interested in determining
whether the average number of miles driven per car per month for the sales force
has risen above 2,600. Sample data from 400 cars show that y = 2,640 and s = 35.
For these data, the z statistic for Hy: u = 2,600 is z = 22.86 based on o = 35; the
level of significance is p < .0000000001. Thus, even though there has been only a
1.5% increase in the average monthly miles driven for each car, the result is (highly)
statistically significant. Is this increase of any practical significance? Probably not.
What we have done is proved conclusively that the mean u has increased slightly.

The company should not examine just the size of the p-value. It is very impor-
tant to also determine the size of the difference between the null value of the popu-
lation mean po and the estimated value of the population mean y. This difference
is called the estimated effect size. In this example, the estimated effect size would
be y — up = 2,640 — 2,600 = 40 miles driven per month. This is the quantity that
the company should consider when attempting to determine if the change in the
population mean has practical significance.

Throughout the text, we will conduct statistical tests from both the decision-
based approach and the level-of-significance approach to familiarize you with
both avenues of thought. For either approach, remember to consider the practical
significance of your findings after drawing conclusions based on the statistical test.

5.7 Inferences About u for a Normal
Population, o0 Unknown

The estimation and test procedures about u presented earlier in this chapter were
based on the assumption that the population variance was known or that we had
enough observations to allow s to be a reasonable estimate of ¢. In this section, we
present a test that can be applied when o is unknown, no matter what the sample
size, provided the population distribution is approximately normal. In Section 5.8,
we will provide inference techniques for the situation where the population distri-
bution is nonnormal. Consider the following example. Researchers would like to
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determine the average concentration of a drug in the bloodstream 1 hour after it is

given to patients suffering from a rare disease. For this situation, it might be impos-
sible to obtain a random sample of 30 or more observations at a given time. What
test procedure could be used in order to make inferences about w?

W. S. Gosset faced a similar problem around the turn of the nineteenth
century. As a chemist for Guinness Breweries, he was asked to make judgments on

the mean quality of various brews, but he was not supplied with large sample sizes
to reach his conclusions.

Gosset thought that when he used the test statistic
.= y - o
o Nn

with o replaced by s for small sample sizes, he was falsely rejecting the null hypoth-
esis Ho: w = po at a slightly higher rate than that specified by a. This problem
intrigued him, and he set out to derive the distribution and percentage points of
the test statistic

Y~ Mo
sNn

for n < 30.

For example, suppose an experimenter sets « at a nominal level —say, .05.
Then he or she expects falsely to reject the null hypothesis approximately 1 time
in 20. However, Gosset proved that the actual probability of a Type I error for this
test was somewhat higher than the nominal level designated by «. He published the
results of his study under the pen name Student because at that time it was against

company policy for him to publish his results in his own name. The quantity
DA )

sNn
is called the ¢ statistic, and its distribution is called the Student’s t distribution, or
Student’s r  simply Student’s ¢. (See Figure 5.14.)
Although the quantity
Y~ My
sNn
FIGURE 5.14 45
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possesses a t distribution only when the sample is selected from a normal popula-
tion, the ¢ distribution provides a reasonable approximation to the distribution of
Y~ Mo
sNn
when the sample is selected from a population with a mound-shaped distribution.
We summarize the properties of ¢ here.

Properties of 1. There are many different ¢ distributions. We specity a particular one by a
Student’s parameter called the degrees of freedom (df). (See Figure 5.14.)
t Distribution 2. The ¢ distribution is symmetrical about 0 and hence has a mean equal to

0, the same as the z distribution.
3. The ¢ distribution has variance df/(df — 2) and hence is more variable
than the z distribution, which has a variance equal to 1. (See Figure 5.14.)
4. As the df increase, the ¢ distribution approaches the z distribution.
(Note that as the df increase, the variance df/(df — 2) approaches 1.)
5. Thus, with

Y T K
sNn

we conclude that ¢ has a ¢ distribution with df = n — 1, and as » increases,
the distribution of # approaches the distribution of z.

=

The phrase “degrees of freedom” sounds mysterious now, but the idea will
eventually become second nature to you. The technical definition requires advanced
mathematics, which we will avoid; on a less technical level, the basic idea is that
degrees of freedom are pieces of information for estimating o using s. The stand-
ard deviation s for a sample of n measurements is based on the deviations y;, — y.
Because (y; — y) = 0 always, if n — 1 of the deviations are known, the last (nth) is
fixed mathematically to make the sum equal 0. It is therefore noninformative. Thus,
in a sample of n measurements, there are n — 1 pieces of information (degrees of
freedom) about o. A second method of explaining degrees of freedom is to recall
that o measures the dispersion of the population values about w, so prior to estimat-
ing o we must first estimate u. Hence, the number of pieces of information (degrees
of freedom) in the data that can be used to estimate o is n — 1, the number of origi-
nal data values minus the number of parameters estimated prior to estimating o.

Because of the symmetry of ¢, only upper-tail percentage points (probabilities
or areas) of the distribution of ¢ have been tabulated; these appear in Table 2 in the
Appendix. The degrees of freedom (df) are listed along the left column of the page.

t,  Anentryin the table specifies a value of t—say, #,—such that an area « lies to its right.
See Figure 5.15. Various values of « appear across the top of Table 2 in the Appendix.
Thus, for example, with df = 7, the value of ¢ with an area .05 to its right is 1.895 (found
in the @ = .05 column and df = 7 row). Since the ¢ distribution approaches the z distri-
bution as df approach «, the values in the last row of Table 2 are the same as z,. Thus,
we can quickly determine z,, by using values in the last row of Table 2 in the Appendix.

We can use the ¢ distribution to make inferences about a population mean
. The sample test concerning u is summarized next. The only difference between
the z test discussed earlier in this chapter and the test given here is that s replaces
o. The ¢ test (rather than the z test) should be used any time o is unknown and the
distribution of y-values is mound-shaped.
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FIGURE 5.15
Illustration of area
tabulated in Table 2 in the
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Distribution
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J

Hypotheses:
Case 1. Hp p = wmoVvs. Hi > o (right-tailed test)
Case 2. Hy p = povs. Hy o < o (left-tailed test)
Case 3. Hy p = o Vvs. Hy: pu # po (two-tailed test)

Y — Mo
TS.: t=——
sNn

R.R.: For a probability « of a Type [ error and df = n — 1:
Case 1. Reject Hyift=1,=qt(1 —a,n—1)
Case 2. Reject Hyift = —t, = —qt(1 —a,n — 1)
Case 3. Reject Hyif [t = to)p = gt(1 — a/2,n — 1)
Level of significance (p-value):

Case 1. p-value = P(t = computed ¢)
Case 2. p-value = P(¢t = computed ¢)
Case 3. p-value = 2P(¢t = |computed #|)

Recall that @ denotes the area in the tail of the ¢ distribution. For a one-tailed test
with the probability of a Type I error equal to «, we locate the rejection region using the
value from Table 2 in the Appendix for the specified a and df = n — 1. However, for a
two-tailed test, we use the t-value from Table 2 corresponding to /2 and df = n — 1.

Thus, for a one-tailed test, we reject the null hypothesis if the computed
value of ¢ is greater than the #-value from Table 2 in the Appendix with the speci-
fied « and df = n — 1. Similarly, for a two-tailed test, we reject the null hypothesis
if |¢|is greater than the ¢-value from Table 2 with @/2 and df = n — 1.

EXAMPLE 5.15

A massive multistate outbreak of foodborne illness was attributed to Salmo-
nella enteritidis. Epidemiologists determined that the source of the illness was ice
cream. They sampled nine production runs from the company that had produced
the ice cream to determine the level of Salmonella enteritidis in the ice cream.
These levels (MPN/g) are as follows:

593 142 329 .691 231 793 519 392 418

Use these data to determine whether the average level of Salmonella enteritidis
in the ice cream is greater than .3 MPN/g, a level that is considered to be very
dangerous. Set a = .01.
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FIGURE 5.16
Normal probability plot 999
for Salmonella data
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Solution The null and research hypotheses for this example are

Hy: /.,LS.3
H;, nu>23

Because the sample size is small, we need to examine whether the data appear
to have been randomly sampled from a normal distribution. Figure 5.16 is a
normal probability plot of the data values. All nine points fall nearly on the
straight line. We conclude that the normality condition appears to be satisfied.
Before setting up the rejection region and computing the value of the test sta-
tistic, we must first compute the sample mean and standard deviation. You can
verify that

y = 456 and s = .2128
The rejection region with & = .01 is
R.R.: Reject Hyif t > 2.896

where, from Table 2 in the Appendix, the value of 5, with df = 9 — 1 = 8 is 2.896.
The computed value of ¢ is
t_?—/uo 456 — .3
sh\n 2128 N9
The observed value of ¢ is not greater than 2.896, so we have insufficient evidence
to indicate that the average level of Salmonella enteritidis in the ice cream is
greater than .3 MPN/g. The level of significance of the test is given by

p-value = P(t > computed 1) = P(t >2.20) = 1 — pt(2.2,8) = .029

Using the t-tables there are only a few areas («) for each value of df. The best we can do
is bound the p-value. From Table 2 with df = 8,5 = 1.860 and ¢ 5 = 2.306. Because
computed ¢t = 2.20, .025 < p-value < .05. However, with a = .01 < .025 < p-value,
we can still conclude that p-value > « and hence fail to reject Hy.
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In order to assess the chance of a Type II error, we need to calculate the prob-
ability of a Type II error for some crucial values of u in H,. These calculations are
somewhat more complex than the calculations for the z test. We will use a set of
graphs to determine B(w,). The value of B(u,) depends on three quantities, df = n
— 1, a, and the distance d from u, to po in o units:

|, — ol
g

d =

Thus, to determine B(u,), we must specify « and p, and provide an estimate of o.
Then with the calculated d and df = n — 1, we locate B(u,) on the graph. Table 3
in the Appendix provides graphs of B(u,) for & = .01 and .05 for both one-sided
and two-sided hypotheses for a variety of values for d and df. m

EXAMPLE 5.16

Refer to Example 5.15. We have n = 9, = .01, and a one-sided test. Thus, df = 8§,
and if we estimate o = .25, we can compute the values of d corresponding to
selected values of w,. The values of B(u,) can then be determined using the graphs
in Table 3 in the Appendix. Figure 5.17 is the necessary graph for this example. To
illustrate the calculations, let u, = .45. Then

Ity = sl _ 145 = 3] _
o 25

We draw a vertical line from d = .6 on the horizontal axis to the curve labeled 8,
our df. We then locate the value on the vertical axis at the height of the intersection,
.79. Thus, B(.45) = .79. Similarly, to determine B(.55), first compute d = 1.0, draw a
vertical line from d = 1.0 to the curve labeled 8, and locate .43 on the vertical axis.

d:

.6

FIGURE 5.17
Probability of Type 11
error curves a = .01,
one-sided

Probability of Type II error

d for / d for
My =45 Ho=

5
Difference (d)
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Thus, B(.55) = .43.Table 5.5 contains values of B(w,) for several values of u,. Because
the values of B(w,) are large for values of w, that are considerably larger than
o = .3—for example, B(.6) = .26—we will not state that u is less than or equal to .3
but will only state that the data fail to support the contention that w is larger than .3.

TABLE 5.5
Probability of Type IT Ma 35 4 45 5 .55 .6 .65 7 75 8
errors d 2 4 .6 .8 1.0 12 14 1.6 1.8 2.0
B(ra) 97 91 .79 .63 43 .26 13 .05 .02 .00
|

In addition to being able to run a statistical test for u© when o is unknown,
we can construct a confidence interval using ¢. The confidence interval for u with
o unknown is identical to the corresponding confidence interval for u when o is
known, with z replaced by ¢ and o replaced by s.

100(1 — a)%

Confidence Y+t s/\/;
Interval for u, o
Unknown Note: df = n — 1 and the confidence coefficient is (1 — a).

EXAMPLE 5.17

An airline wants to evaluate the depth perception of its pilots over the age of 50.
A random sample of n = 14 airline pilots over the age of 50 is asked to judge the
distance between two markers placed 20 feet apart at the opposite end of the
laboratory. The sample data listed here are the pilots’ errors (recorded in feet) in
judging the distance.

27 24 19 26 24 19 23
22 25 23 18 25 20 22

Use the sample data to place a 95% confidence interval on w, the average
error in depth perception for the company’s pilots over the age of 50.

Solution Before setting up a 95% confidence interval on w, we must first assess
the normality assumption by plotting the data in a normal probability plot or a
boxplot. Figure 5.18 is a boxplot of the 14 data values. The median line is near the
center of the box, the right and left whiskers are approximately the same length,
and there are no outliers. The data appear to be a sample from a normal distri-
bution. Thus, it is appropriate to construct the confidence interval based on the ¢
distribution. You can verify that

y =226 and s = .28

FIGURE 5.18
Boxplot of distance
(with 95% ¢ confidence
interval for the mean)
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Referring to Table 2 in the Appendix, the ¢-value corresponding to a = .025 and
df = 13 is 2.160. Hence, the 95% confidence interval for u is

Y * 1,,5/n or 226 + 2.160 (28) /14

which is the interval 2.26 =+ .16, or 2.10 to 2.42. Thus, we are 95% confident that the
average error in the pilots’ judgment of the distance is between 2.10 and 2.42 feet. B

In this section, we have made the formal mathematical assumption that
the population is normally distributed. In practice, no population has exactly a
normal distribution. How does nonnormality of the population distribution affect
inferences based on the ¢ distribution?

There are two issues to consider when populations are assumed to be non-
normal. First, what kind of nonnormality is assumed? Second, what possible
effects do these specific forms of nonnormality have on the ¢-distribution proce-

skewed distributions ~ dures? The most important deviations from normality are skewed distributions
heavy-tailed  and heavy-tailed distributions. Heavy-tailed distributions are roughly symmetric
distributions  but have outliers relative to a normal distribution. Figure 5.19 displays these non-
normal distributions: Figure 5.19(a) is the standard normal distribution, Figure
5.19(b) is a heavy-tailed distribution (a ¢ distribution with df = 3), Figure 5.19(c) is
a distribution mildly skewed to the right, and Figure 5.19(d) is a distribution heav-

ily skewed to the right.

To evaluate the effect of nonnormality as exhibited by skewness or heavy-
tailedness, we will consider whether the ¢-distribution procedures are still approxi-
mately correct for these forms of nonnormality and whether there are other more
efficient procedures. For example, even if a test procedure for u based on the ¢ dis-
tribution gives nearly correct results for, say, a heavy-tailed population distribution,

FIGURE 5.19 44
Standard normal ;
distriubtion and three > 3 ’
nonnormal distributions z
3 2 21
z 14
1A
0 -
T T T T T T T T T T
-2 -1 0 1 2 -4 -2 0 2 4
y, value of random variable y, value of random variable
(a) Density of the standard normal distribution (b) Density of a heavy-tailed distribution
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(c) Density of a lightly skewed distribution (d) Density of a highly skewed distribution
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it might be possible to obtain a test procedure with a more accurate probability of
Type I error and greater power if we test hypotheses about the population median in
place of the population w. Also, in the case of heavily tailed or highly skewed popu-
lation distributions, the median rather than u is a more appropriate representation
of the population center.

The question of approximate correctness of ¢ procedures has been studied
extensively. In general, probabilities specified by the ¢ procedures, particularly the
confidence level for confidence intervals and the Type I error for statistical tests,
have been found to be fairly accurate, even when the population distribution is
heavy-tailed. However, when the population is very heavy-tailed, as is the case in
Figure 5.19(b), the tests of hypotheses tend to have a probability of Type I errors
smaller than the specified level, which leads to a test having much lower power
and hence greater chances of committing Type II errors. Skewness, particularly
with small sample sizes, can have an even greater effect on the probability of both
Type I and Type II errors. When we are sampling from a population distribution
that is normal, the sampling distribution of a ¢ statistic is symmetric. However,
when we are sampling from a population distribution that is highly skewed, the
sampling distribution of a ¢ statistic is skewed, not symmetric. Although the degree
of skewness decreases as the sample size increases, there is no procedure for
determining the sample size at which the sampling distribution of the ¢ statistic
becomes symmetric.

As a consequence, the level of a nominal a = .05 test may actually have a level
of .01 or less when the sample size is less than 20 and the population distribution
looks like that of Figure 5.19(b), (¢), or (d). Furthermore, the power of the test will
be considerably less than when the population distribution is a normal distribution,
thus causing an increase in the probability of Type II errors. A simulation study
of the effect of skewness and heavy-tailedness on the level and power of the ¢
test yielded the results given in Table 5.6. The values in the table are the power
values for a level a = .05 ¢ test of Hy: u = o versus Hy: u > wo. The power values
are calculated for shifts of size d = |u, — wol|/o for values of d = 0, .2, .6, .8. Three
different sample sizes were used: n = 10, 15, and 20.When d = 0, the level of
the test is given for each type of population distribution. We want to compare
these values to .05. The values when d > 0 are compared to the corresponding
values when sampling from a normal population. We observe that when sampling
from the lightly skewed distribution and the heavy-tailed distribution, the levels
are somewhat less than .05 with values nearly equal to .05 when using n = 20.
However, when sampling from a heavily skewed distribution, even with n = 20
the level is only .011. The power values for the heavily tailed and heavily skewed
populations are considerably less than the corresponding values when sampling from
a normal distribution. Thus, the test is much less likely to correctly detect that the

TABLE 5.6
Level and power values n=10 n =15 n =20
for £ test Shift d Shift d Shift d
Population
Distribution 0 2 .6 8 0 2 .6 8 0 2 .6 .8
Normal 05 145 543 754 .05 182 714 903 .05 217 .827 .964

Heavy-tailedness .035 .104 .371 .510 .049 .115 .456 .648 .045 .163 .554 .736
Light skewness  .025 .079 .437 .672 .037 .129 .614 .864 .041 .159 .762 .935
Heavy skewness .007 .055 .277 .463 .006 .078 .515 .733 .011 .104 .658 .873
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alternative hypothesis H, is true. This reduced power is present even when n = 20.
When sampling from a lightly skewed population distribution, the power values
are very nearly the same as the values for the normal distribution.

Because the ¢ procedures have reduced power when sampling from skewed
populations with small sample sizes, procedures have been developed that are not
as affected by the skewness or extreme heavy-tailedness of the population distri-

robust methods  bution. These procedures are called robust methods of estimation and inference.
Three robust procedures, the bootstrap, the sign test, and Wilcoxon signed rank
test, will be considered in Sections 5.8 and 5.9, and Chapter 6, respectively. They
are both more efficient than the ¢ test when the population distribution is very
nonnormal in shape. Also, they maintain the selected « level of the test, unlike
the ¢ test, which, when applied to very nonnormal data, has a true « value much
different from the selected « value. The same comments can be made with respect
to confidence intervals for the mean. When the population distribution is highly
skewed, the coverage probability of a nominal 100(1 — «) confidence interval is
considerably less than 100(1 — «).

So what is a nonexpert to do? First, examine the data through graphs. A
boxplot or normal probability plot will reveal any gross skewness or extreme
outliers. If the plots do not reveal extreme skewness or many outliers, the nominal
t-distribution probabilities should be reasonably correct. Thus, the level and power
calculations for tests of hypotheses and the coverage probability of confidence
intervals should be reasonably accurate. If the plots reveal severe skewness
or heavy-tailedness, the test procedures and confidence intervals based on the
t distribution will be highly suspect. In these situations, we have two alternatives.
First, it may be more appropriate to consider inferences about the population
median rather than the population mean. When the data are highly skewed or
very heavily tailed, the median is a more appropriate measure of the center of the
population than is the mean. In Section 5.9, we will develop tests of hypotheses and
confidence intervals for the population median. These procedures will avoid the
problems encountered by the t-based procedures discussed in this section when the
population distribution is highly skewed or heavily tailed. However, in some situ-
ations, the researcher may be required to provide inferences about the mean, or
the median may not be an appropriate alternative to the mean as a summary of the
population. In Section 5.8, we will discuss a technique based on bootstrap methods
for obtaining an approximate confidence interval for the population mean.

5.8 Inferences About x When the Population Is
Nonnormal and n Is Small: Bootstrap Methods

The statistical techniques in the previous sections for constructing a confidence
interval or a test of hypotheses for u required that the population have a normal
distribution or that the sample size be reasonably large. In those situations where
neither of these requirements can be met, an alternative approach using boot-
strap methods can be employed. This technique was introduced by Efron in the
article “Bootstrap Methods: Another Look at the Jackknife” [Annals of Statistics
(1979) 7:1-26]. The bootstrap is a technique by which an approximation to the sam-
pling distribution of a statistic can be obtained when the population distribution is
unknown. In Section 5.7, inferences about u were based on the fact that the statistic

y oM
sh\n

t statistic =
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had a ¢ distribution. We used the t-tables (Table 2 in the Appendix) to obtain
appropriate percentiles and p-values for confidence intervals and tests of hypotheses.
However, it was required that the population from which the sample was randomly
selected have a normal distribution or that the sample size n be reasonably large.
The bootstrap will provide a means for obtaining percentiles of yj —E when the
population distribution is nonnormal and/or the sample size is relatively small.

The bootstrap technique utilizes data-based simulations for statistical inference. The
central idea of the bootstrap is to resample from the original data set, thus producing a
large number of replicate data sets from which the sampling distribution of a statistic can
be approximated. Suppose we have a sample y1, y», . . ., y, from a population and we want
to construct a confidence interval or test a set of hypotheses about the population mean
. We realize either from prior experience with this population or from an examination
of a normal quantile plot that the population has a nonnormal distribution. Thus, we are
fairly certain that the sampling distribution of r = i

v, isnot the ¢ distribution, so it would

not be appropriate to use the -tables to obtain percentiles. Also, the sample size 7 is rela-

tively small so we are not too sure about applying the Central Limit Theorem and using

the z-tables to obtain percentiles to construct confidence intervals or to test hypotheses.
The bootstrap technique consists of the following steps:

1. Select a random sample yy, y», . . ., ¥, of size n from the population,
and compute the sample mean, y, and sample standard deviation, s.
2. Select a random sample of size n, with replacement from yy, y,, . . .,

ynyielding yi, y3, ..., yi

3. Compute the mean y* and standard deviation s* of y3{, y3,..., yi
4. Compute the value of the statistic
P
s*Nn
5. Repeat Steps 2—4 a large number of times, B, to obtain #,,0,, ...,
Use these values to obtain an approximation to the sampling distri-
. yom
bution of ~ i
Suppose we have n = 20 and we select B = 9,999 bootstrap samples. The steps
in obtaining the bootstrap approximation to the sampling distribution of ys ; \/5 are
depicted here.
Obtain random sample y1, 2, . . ., y2o from the population, and compute
y ands. -
First bootstrap sample: y3, v5, . . ., ¥5, yields y*, s*, and 7, = ﬁ
Second bootstrap sample: yi, y;, ..., y5 yields y* s*, and , = ﬁ
Bth bootstrap sample: y7,ys, ..., y5 yields y*, s*, and f; = ﬁ
We then use the B values of 7—17,,%, . .. ,I;—to obtain the approximate percentiles.

For example, suppose we want to construct a 95% confidence interval for u and
B =9,999. We need the lower and upper .025 percentiles, 7,5 and?g;s. Thus,
we would take the (9,999 + 1)(.025) = 250th-largest value of 7 =7 s and the
(9,999 + 1)(1 — .025) = 9,750th-largest value of 7 =7 g75. The approximate 95%
confidence interval for u would be

. s _ s
<y —lgys E» y _1.025\@)
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EXAMPLE 5.18

Secondhand smoke is of great concern, especially when it involves young children.
Breathing secondhand smoke can be harmful to children’s health, contributing to
health problems such as asthma, Sudden Infant Death Syndrome (SIDS), bron-
chitis and pneumonia, and ear infections. The developing lungs of young children
are severely affected by exposure to secondhand smoke. Child Protective Services
(CPS) in a city is concerned about the level of exposure to secondhand smoke for
children placed by their agency in foster parents’ care. A method of determining
level of exposure is to determine the urinary concentration of cotanine, a metabo-
lite of nicotine. Unexposed children will typically have mean cotanine levels of 75
or less. A random sample of 20 children suspected of being exposed to secondhand
smoke yielded the following urinary concentrations of cotanine:

29,30,53,75,89,34,21,12,58,84,92,117,115, 119, 109, 115, 134,253,289, 287

CPS wants an estimate of the mean cotanine level in the children under their
care. From the sample of 20 children, it computes y = 105.75 and s = 82.429. Con-
struct a 95% confidence interval for the mean cotanine level for children under
the supervision of CPS.

Solution Because the sample size is relatively small, an assessment of whether the
population has a normal distribution is crucial prior to using a confidence interval
procedure based on the ¢ distribution. Figure 5.20 displays a normal probability
plot for the 20 data values. From the plot, we observe that the data do not fall near
the straight line, and the p-value for the test of normality is less than .01. Thus, we
would conclude that the data do not appear to follow a normal distribution. The
confidence interval based on the ¢ distribution would not be appropriate; hence, we
will use a bootstrap confidence interval.

B = 9,999 samples of size 20 are selected with replacement from the original
sample. Table 5.7 displays 5 of the 9,999 samples to illustrate the nature of the
bootstrap samples.

FIGURE 5.20 99
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TABLE 5.7
Bootstrap samples | Original 29 30 53 75 8 34 21 12 58 84
Sample 92 117 15 119 109 115 134 253 289 287
Bootstrap 29 21 12 115 21 8 29 30 21 89
Sample 1 30 84 84 134 58 30 34 8 29 134

Bootstrap 30 92 75 109 115 117 84 89 119 289
Sample 2 115 75 21 92 109 12 289 58 92 30
Bootstrap 53 289 30 92 30 253 89 89 75 119
Sample 3 115 117 253 53 84 34 58 289 92 134
Bootstrap 75 21 115 287 119 75 75 53 34 29
Sample 4 117 115 29 115 115 253 289 134 53 75
Bootstrap 89 119 109 109 115 119 12 29 84 21
Sample 5 34 134 115 134 75 58 30 75 109 134

Upon examination of Table 5.7 it can be observed that in each of the bootstrap
samples there are repetitions of some of the original data values. This arises due
to the sampling with replacement. The following histogram of the 9,999 values of
i = 7y, illustrates the effect of the nonnormal nature of the population distribution
on the sampling distribution on the ¢ statistic. If the sample had been randomly
selected from a normal distribution, the histogram would be symmetric, as was

depicted in Figure 5.14. The histogram in Figure 5.21 is somewhat left-skewed.

FIGURE 5.21 250 -
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After sorting the 9,999 values of 7 from smallest to largest, we obtain the
250th-smallest and 250th-largest values: —3.167 and 1.748, respectively. We thus
have the following percentiles:

f‘ozs = —3.167 and f‘975 =1.748

The 95% confidence interval for the mean cotanine concentration is given here using
the original sample mean of y = 105.75 and original sample standard deviation of

s = 82.429:
_ s _ s 82.429 82.429
—fgs—=, ¥ —1ps—=|=1105.75 — 1.748 ,105.75 + 3.167 ———
(Y 915 Y —lons \/ﬁ) ( 20 V20 )

= (73.53,164.12)

A comparison of these two percentiles to the percentiles from the ¢ distribu-
tion (Table 2 in the Appendix) reveals how much in error our confidence inter-
vals would have been if we has directly applied the formulas from Section 5.7.
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From Table 2 in the Appendix, with df = 19, we have ¢ 5 = —2.093 and ¢ 975 = 2.093.
This would yield a 95% confidence interval on u of

82.429
V20

Note that the confidence interval using the ¢ distribution is centered about the
sample mean, whereas the bootstrap confidence interval has its upper limit farther
from the mean than its lower limit. This is due to the fact that the random sample
from the population indicated that the population distribution was not symmetric.
Thus, we would expect that the sampling distribution of our statistic would not be
symmetric due to the relatively small size,n = 20.®

105.75 £ 2.093 = (67.17, 144.33)

We will next apply the bootstrap approximation of the test statistic ¢ = %

to obtain a test of hypotheses for the situation where 7 is relatively small and the
population distribution is nonnormal. The method for obtaining the p-value for
the bootstrap approximation to the sampling distribution of the test statistic under
the null value of u, o, involves the following steps: Suppose we want to test the
following hypotheses:

Hopw = po versus Hgp > o

1. Select a random sample yq, yo, . . . , ¥, of size n from the population,

and compute the value of t = ‘vsz/:l”

2. Select a random sample of size n, with replacement from y;,

V2, . .., Yn, and compute the mean y* and standard deviation s* of
VI Y2 o s Ve
3. Compute the value of the statistic
N
s*Nn
4. Repeat Steps 2—4 a large number of times, B, to obtainf,,,, . . ., .

Use these B values to approximate sampling distribution of %
5. Let m be the number of values that are greater than or equal to the
value ¢ computed from the original sample.
6. The bootstrap p-value is .

When the hypotheses are Hy: p = o versus H,: w < wo, the only change would be
to let m be the number of values from#?,,7, ..., 7; that are less than or equal to
the value t computed from the original sample. Finally, when the hypotheses are
Hy: o = po versus H,: 7 wo, let my, be the number of values from#,, 7, . . ., {5 that
are less than or equal to the value t computed from the original sample and my be
the number of values from7,,%, ..., f, that are greater than or equal to the value
t computed from the original sample. Compute p, = % and p, = %. Take the
p-value to be the minimum of 2p; and 2py.

A point of clarification concerning the procedure described above: The
bootstrap test statistic replaces uo with the sample mean from the original sample.
Recall that when we calculate the p-value of a test statistic, the calculation
is always done under the assumption that the null hypothesis is true. In our
bootstrap procedure, this requirement results in the bootstrap test statistic having
o replaced with the sample mean from the original sample. This ensures that our
bootstrap approximation of the sampling distribution of the test statistic is under
the null value of w, wo.
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EXAMPLE 5.19

Refer to Example 5.18. CPS personnel wanted to determine if the mean cotanine
level was greater than 75 for children under their supervision. Based on the sample
of 20 children and using & = .05, do the data support the contention that the mean
exceeds 75?

Solution The set of hypotheses that we want to test is
Hyp =75 versus Hyu>75

Because there was a strong indication that the distribution of contanine levels in
the population of children under CPS supervision was not normally distributed
and because the sample size n was relatively small, the use of the ¢ distribution to
compute the p-value may result in a very erroneous decision based on the observed
data. Therefore, we will use the bootstrap procedure.

First, we calculate the value of the test statistic in the original data:

Yo 1057575
sAn 82.429N20

t

Next, we use the 9,999 bootstrap samples generated in Example 5.18 to determine
the number of samples, m, with 7 = ys/%;y = % greater than 1.668. From
the 9,999 values of 7, we find that m = 330 of the B = 9,999 values of 7 exceeded
or were equal to 1.668. Therefore, our p-value = m/B = 330/9,999 = .033 < .05 = a.
Therefore, we conclude that there is sufficient evidence that the mean cotanine
level exceeds 75 in the population of children under CPS supervision.

It is interesting to note that if we had used the ¢ distribution with 19 degrees
of freedom to compute the p-value, the result would have produced a different

conclusion. From Table 2 in the Appendix with df = 19,
p-value = P[t = 1.668] = .056 > .05 = «

Using the #-tables, we would have concluded there is insufficient evidence in the data
to support the contention that the mean cotanine exceeds 75. The small sample size,
n = 20, and the possibility of nonnormal data would make this conclusion suspect. B

Steps for Obtaining Bootstrap Tests
and Confidence Intervals

The following steps using the R software will yield the p-value and confidence
intervals given in Example 5.18 using B = 9,999 bootstrap samples selected with
replacement from the original 20 data values. Note that each running of the code
will yield slightly different values for the p-value and confidence intervals.

1. x = ¢(29,30,53,75, 89, 34,21, 12,58, 84,92, 117, 115, 119, 109, 115,
134, 253, 289, 287)

n = length(x)

mndata = mean(x)

sdata = sd(x)

tdata = (mndata-75)/(sdata/sqrt(n))

B =9,999

oA NWN
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7. mnsamp = rep(0, times =B)

8. ssamp = rep(0, times = B)

9. tsamp = rep(0, times = B)
10. for (iin1:B){

11. samp = sample(x, replace = TRUE)
12. mnsamp = mean(samp)
13. ssamp = sd(samp)
14. tsamp[i] = (mnsamp-mndata)/(ssamp/sqrt(n)) }
15. pval = sum(tsamp > = tdata)/B
16. tsort = sort(tsamp)
17. L = mndata — tsort[9750]*sdata/sqrt(n)
18. U = mndata — tsort[250]*sdata/sqrt(n)

5.9 Inferences About the Median

When the population distribution is highly skewed or very heavily tailed, the median
is more appropriate than the mean as a representation of the center of the population.
Furthermore, as was demonstrated in Section 5.7, the ¢ procedures for constructing
confidence intervals and for testing hypotheses for the population mean are not
appropriate when applied to random samples from such populations with small sample
sizes. In this section, we will develop a test of hypotheses and a confidence interval for
the population median that will be appropriate for all types of population distributions.

The estimator of the population median M is based on the order statistics
that were discussed in Chapter 3. Recall that if the measurements from a random
sample of size n are given by y1, y2, . . ., ¥, then the order statistics are these values
ordered from smallest to largest. Let yq) = yo) = ... = y(,) represent the data in
ordered fashion. Thus, y() is the smallest data value and y(, is the largest data
value. The estimator of the population median is the sample median M. Recall that
M is computed as follows:

If 7 is an odd number, then ]\;IA= Y(m), Wwhere m = (n + 1)/2.
If n is an even number, then M = (Y(m) + Y(n+1))/2, where m = n/2.

To take into account the variability of M as an estimator of M, we next
construct a confidence interval for M. A confidence interval for the population
median M may be obtained by using the binomial distribution with 7= = 0.5.

100(1 — a)% A confidence interval for M with level of confidence at least 100(1 — «)% is
Confidence given by
Interval for the
M,,M,) = ,
Median (M, My) (y(Laﬂ) y(Ua,z))

where

Lo = Co@)n +1
Us2 =1 — Co@),n

Table 4 in the Appendix contains values for Cy(2), », which are percentiles from a
binomial distribution with 7 = .5.

Because the confidence limits are computed using the binomial distribution, which
is a discrete distribution, the level of confidence of (M, M) will generally be somewhat
larger than the specified 100(1 — @) %. The exact level of confidence is given by

Level = 1 — 2P[Bin(n, .5) = Cu2),n] = 1 — 2 pbinom(Cy(2), 5, 11, .5)
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The following example will demonstrate the construction of the interval.

EXAMPLE 5.20

The sanitation department of a large city wants to investigate ways to reduce the
amount of recyclable materials that are placed in the city’s landfill. By separating
the recyclable material from the remaining garbage, the city could prolong the life
of the landfill site. More important, the number of trees needed to be harvested for
paper products and the aluminum needed for cans could be greatly reduced. From an
analysis of recycling records from other cities, it is determined that if the average weekly
amount of recyclable material is more than 5 pounds per household, a commercial
recycling firm could make a profit collecting the material. To determine the feasibility
of the recycling plan, a random sample of 25 households is selected. The weekly weight
of recyclable material (in pounds/week) for each household is given here.

142 53 29 42 12 43 11 26 6.7 7.8 259 438 2.7
56 7.8 39 47 65 295 21 348 36 58 45 67

Determine an appropriate measure of the amount of recyclable waste from a
typical household in the city.

FIGURE 5.22(a) Boxplot of recyclable wastes
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FIGURE 5.22(b) Normal probability plot of recyclable wastes
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Solution A boxplot and normal probability of the recyclable waste data
(Figures 5.22(a) and (b)) reveal the extreme right skewness of the data. Thus, the
mean is not an appropriate representation of the typical household’s potential
recyclable material. The sample median and a confidence interval on the population
are given by the following computations. First, we order the data from smallest
value to largest value:

1.1 12 21 26 27 29 36 39 42 43 45 47 53

56 58 65 67 67 7.8 7.8 142 259 295 348 438
The number of values in the data set is an odd number, so the sample median is
given by

M= Y(@s+1)r) = yaz) = 5.3
The sample mean is calculated to be y = 9.53.Thus, we see that 20 of the 25 house-
holds have weekly recyclable waste that is less than the sample mean. Note that 12
of the 25 waste values are less and 12 of the 25 are greater than the sample median.
Thus, the sample median is more representative of the typical household’s recy-
clable waste than is the sample mean. Next, we will construct a 95% confidence
interval for the population median.

From Table 4 in the Appendix, we find

Co@)n=Cos,25=7
Thus,

Lps=Cps25+1=38

U,()25 =n— C,oj,n =25—-7=18
The 95% confidence interval for the population median is given by

(M1, My) = (ys), yas)) = (3.9,6.7)
Using the binomial distribution, the exact level of coverage is given by 1 — 2P[Bin
(25,.5) = 7] = .957 which is slightly larger than the desired level 95%. Thus, we are
at least 95% confident that the median amount of recyclable waste per household
is between 3.9 and 6.7 pounds per week. B

Large-Sample Approximation

When the sample size n is large, we can apply the normal approximation to the
binomial distribution to obtain approximations to Cy(2) ». The approximate value
is given by

n n

Ca(Z),n - E - Za/Z 4

Because this approximate value for Cy(2), , is generally not an integer, we set Cy(2), »
to be the largest integer that is less than or equal to the approximate value.

EXAMPLE 5.21

Using the data in Example 5.20, find a 95% confidence interval for the median
using the approximation to C(2), n.

Solution We have n = 25 and a = .05.Thus, z 05, = 1.96, and

n n 25 25
Corn =5 = za/z\/; =2 196 7 =76
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Thus, we set Cy2),» = 7, and our confidence interval is identical to the interval
constructed in Example 5.20. If n is larger than 30, the approximate and the exact
value of Cy(2),, will often be the same integer. B

In Example 5.20, the city wanted to determine whether the median amount
of recyclable material was more than 5 pounds per household per week. We con-
structed a confidence interval for the median, but we still have not answered the
question of whether the median is greater than 5. Thus, we need to develop a test
of hypotheses for the median.

We will use the ideas developed for constructing a confidence interval for the
median in our development of the testing procedures for hypotheses concerning a
population median. In fact, a 100(1 — «)% confidence interval for the population
median M can be used to test two-sided hypotheses about M. If we want to test H:
M = My versus Hi: M # M, at level «, then we construct a 100(1 — )% confidence
interval for M. If My is contained in the confidence interval, then we fail to reject H,.
If My is outside the confidence interval, then we reject H,,.

For testing one-sided hypotheses about M, we will use the binomial distribu-

sign test  tion to determine the rejection region. The testing procedure is called the sign test

and is constructed as follows. Let yy, . .., y, be a random sample from a population

having median M. Let the null value of M be My, and define W; = y; — M,. The sign

test statistic B is the number of positive W;s. Note that B is simply the number of

yis that are greater than M. Because M is the population median, 50% of the data

values are greater than M and 50% are less than M. Now, if M = M, then there is

a 50% chance that y; is greater than M, and hence a 50% chance that W; is positive.

Because the W;s are independent, each W;has a 50% chance of being positive when-

ever M = My, and B counts the number of positive W;s under Hy. B is a binomial

random variable with 77 = .5, and the percentiles from the binomial distribution with

7 = .S givenin Table 4 in the Appendix can be used to construct the rejection region

test for a population  for the test of hypotheses. The statistical test for a population median M is sum-

median M marized next. Three different sets of hypotheses are given with their corresponding
rejection regions. The tests given are appropriate for any population distribution.

Summary of a Hypotheses:
Statistical Test _f°" Casel. Hy M= Myvs. H: M > M, (right-tailed test)
the P°'°“'_""t'°“ Case 2. Hy M = Myvs. H: M < M, (left-tailed test)
Median M Case 3. Hy:M = Myvs. H: M# M, (two-tailed test)

T.S.: Let W; =y, — Myand B = number of positive W;s.
R.R.: For a probability « of a Type I error,

Case 1. Reject Hyif B=n — Cy1),n
Case 2. Reject Hyif B = Cyq1), n
Case 3. Reject Hyif B =< Cqu),,0r B=n — Cy2), n-

The following example will illustrate the test of hypotheses for the population
median.

Refer to Example 5.20. The sanitation department wanted to determine whether
the median household recyclable waste was greater than 5 pounds per week. Test
this research hypothesis at level & = .05 using the data from Exercise 5.20.
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Solution The set of hypotheses is
Hy: M =5versus H;: M >S5

The data set consisted of a random sample of n = 25 households. From Table 4
in the Appendix, we find Cqy1),, = Cos,25 = 7. Thus, we will reject Hp: M = 5 if
B=n—Cy1),,=25—7=18.Let W; = y; — My = y; — 5, which yields

-39 =38 -29 -24 -23 -21 -14 -11 -038
-07 -05 —-03 0.3 0.6 0.8 1.5 1.7 1.7
2.8 2.8 92 209 245 298 388

The 25 values of W; contain 13 positive values. Thus, B = 13, which is not greater
than 18. We conclude that the data set fails to demonstrate that the median house-
hold level of recyclable waste is greater than 5 pounds. B

Large-Sample Approximation

When the sample size n is larger than the values given in Table 4 in the Appendix,
we can use the normal approximation to the binomial distribution to set the rejec-
tion region. The standardized version of the sign test is given by

_B -2

B = m
When M equals My, Bsr has approximately a standard normal distribution. Thus,
we have the following decision rules for the three different research hypotheses:
Case 1. Reject Hy: M = M, if Bsr = z,, with p-value = P(z = Bsr)
Case 2. Reject Hy: M = M, if Bsy = —z,, with p-value = P(z = Bgr)
Case 3. Reject Hy: M = Myif |Bs7| = 74, with p-value = 2P(z = |Bs7])

where z, is the standard normal percentile.

EXAMPLE 5.23

Using the information in Example 5.22, construct the large-sample approximation
to the sign test, and compare your results to those obtained using the exact sign test.

Solution Refer to Example 5.22, where we had n = 25 and B = 13. We conduct
the large-sample approximation to the sign test as follows. We will reject Hp: M < 5
in favor of H,: M > 5 if Bgr = 7,95 = 1.96.
_B-(n2) 13- 25]2)

By m m

Because Bgr is not greater than 1.96, we fail to reject Hy. The p-value = P(z =
02) =1- P(z<0.2) =1 — .5793 = .4207 using Table 1 in the Appendix. Thus, we
reach the same conclusion as was obtained using the exact sign test. B

=02

In Section 5.7, we observed that the performance of the ¢ test deteriorated
when the population distribution was either very heavily tailed or highly skewed.
In Table 5.8, we compute the level and power of the sign test and compare these
values to the comparable values for the ¢ test for the four population distributions
depicted in Figure 5.19 in Section 5.7. Ideally, the level of the test should remain
the same for all population distributions. Also, we want tests having the largest
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TABLE 5.8 Level and power values of the 7 test versus the sign test

n=10 n=15 n=20
M, — My)/o M, — My)/o M, — My)/o

Population Test
Distribution Statistic Level 2 .6 8 Level 2 .6 8 Level 2 .6 8
Normal t .05 145 .543 754 .05 182 714 903 .05 217 .827 964

Sign .055 136 454 .642 .059 172 .604 .804 .058 194 704 .889
Heavily Tailed t .035 104 371 510 .049 115 456 .648 .045 163 554 736

Sign .055 .209 715 .869 .059 278 .866 964 .058 325 935 .990
Lightly Skewed t .055 140 454 .631 .059 178 .604 794 .058 201 704 .881

Sign .025 .079 437 .672 .037 129 .614 .864 041 159 762 935
Highly Skewed t .007 .055 277 463 .006 .078 515 733 011 104 .658 .873

Sign .055 196 .613 778 .059 258 777 912 .058 301 867  .964

possible power values because the power of a test is its ability to detect false null
hypotheses. When the population distribution is either heavily tailed or highly
skewed, the level of the ¢ test changes from its stated value of .05. In these situa-
tions, the level of the sign test stays the same because the level of the sign test is the
same for all distributions. The power of the ¢ test is greater than the power of the
sign test when sampling from a population having a normal distribution. However,
the power of the sign test is greater than the power of the ¢ test when sampling from
very heavily tailed distributions or highly skewed distributions.

5.10 RESEARCH STUDY: Percentage of Calories from Fat

In Section 5.1, we introduced the potential health problems associated with obesity. The
assessment and quantification of a person’s usual diet is crucial in evaluating the degree
of relationship between diet and diseases. This is a very difficult task but is important
in an effort to monitor dietary behavior among individuals. Rosner, Willett, and
Spiegelman, in “Correction of Logistic Regression Relative Risk Estimates and Confidence
Intervals for Systematic Within-Person Measurement Error” [Statistics in Medicine (1989)
8:1051-1070],describe anurses’ health study in which the diet of a large sample of women
was examined. One of the objectives of the study was to determine the percentage of
calories from fat (PCF) in the diet of a population of nurses and compare this value with
the recommended value of 30%. The most commonly used method in large nutritional
epidemiology studies is the food frequency questionnaire (FFQ). This questionnaire
uses a carefully designed series of questions to determine the dietary intakes of
participants in the study. In the nurses’ health study, a sample of nurses completed a
single FFQ. These women represented a random sample from a population of nurses.
From the information gathered from the questionnaire, the PCF was then computed.

To minimize missteps in a research study, it is advisable to follow the four-
step process outlined in Chapter 1. We will illustrate these steps using the PCF
study described at the beginning of this chapter. The first step is determining the
goals and objectives of the study.

Defining the Problem

The researchers in this study would need to answer questions similar to the following:

1. What is the population of interest?
2. What dietary variables may have an effect on a person’s health?
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3. What characteristics of the nurses other than dietary intake may be
important in studying their health condition?

4. How should the nurses be selected to participate in the study?

5. What hypotheses are of interest to the researchers?

The researchers decided that the main variable of interest was the percentage of
calories from fat in the diet of nurses. The parameters of interest were the PCF
mean u for the population of nurses, the standard deviation o of the PCF for the
population of nurses, and the proportion 7 of nurses having a PCF greater than
50%. They also wanted to determine if the average PCF for the population of
nurses exceeded the recommended value of 30%.

In order to estimate these parameters and test hypotheses about the param-
eters, it was first necessary to determine the sample size required to meet certain
specifications imposed by the researchers. The researchers wanted to estimate the
mean PCF with a 95% confidence interval having a tolerable error of 3. From pre-
vious studies, the PCF values ranged from 10% to 50%. Because we want a 95%
confidence interval with width 3, E = 3/2 = 1.5 and z.» = z.025 = 1.96. Our estimate
of o is & = range/4 = (50 — 10)/4 = 10. Substituting into the formula for 1, we have

242 2 2
L el 0962002
E (1.5)
Thus, a random sample of 171 nurses should give a 95% confidence interval for u
with the desired width of 3, provided 10 is a reasonable estimate of . Three nurses
originally selected for the study did not provide information on PCF; therefore, the
sample size was only 168.

Collecting the Data

The researchers would need to carefully examine the data from the FFQs to deter-
mine if the responses were recorded correctly. The data would then be transfered
to computer files and prepared for analysis following the steps outlined in Chapter
2. The next step in the study would be to summarize the data through plots and
summary statistics.

Summarizing the Data

The PCF values for the 168 women are displayed in Figure 5.23 in a stem-and-leaf
diagram along with a table of summary statistics. A normal probability plot is
provided in Figure 5.24 to assess the normality of the distribution of PCF values.

From the stem-and-leaf plot and normal probability plot, it appears that the
data are nearly normally distributed, with PCF values ranging from 15% to 57%. The
proportion of the women who have a PCF greater than 50% is+ = 4/168 = 2.4 %.
From the table of summary statistics in the output, the sample mean is y = 36.919,
and the sample standard deviation is s = 6.728. The researchers want to draw
inferences from the random sample of 168 women to the population from which
they were selected. Thus, we would need to place bounds on our point estimates
in order to reflect our degree of confidence in their estimation of the population
values. Also, the researchers may be interested in testing hypotheses about the
size of the population PCF mean u or variance o>. For example, many nutritional
experts recommend that one’s daily diet have no more than 30% of total calories
from fat. Thus, we would want to test the statistical hypothesis that u is greater than
30 to determine if the average PCF value for the population of nurses exceeds the
recommended value.
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FIGURE 5.23 The percentage of calories from fat (PCF) for 168 women in a dietary study

1 5
2 0044
2 556666 7788899999999
3 000001111111 2222222333333333334444444414
3 555555555555556666¢66¢67777777777888888888888899999999
4 0000000111111 11111111222222333444414
4 5555566677899
5 034
5 57
Descriptive Statistics for Percentage of Calories from Fat Data
Variable N Mean Median TrMean StDev SE Mean
PCF 168 36.919 36.473 36.847 6.728 0.519
Variable Minimum Maximum Q1 Q3
PCF 15.925 57.847 32.766 41.295
FIGURE 5.24 | \ j j j
Normal probability plot o T Ve oo [ R
for percentage of calories - - - - e
from fat (PCF) O I . P N~ HE
o 1 _____________ R [T~ A JI ________
B B0 b oo
k= : : :
I e it 1o oo
o ' ' '
=~ 1 1 1
I S TS il SECEEERLPLELE s qomme e
L 7 booenoeooes 2emmeeo
Ol L R LR
O 1 : :
001 4= it SEEEEEEEEEEES Fommmoeoees Aomee e
f f f T f
15 25 35 45 55

Analyzing the Data and Interpreting the Analyses

One of the objectives of the study was to estimate the mean PCF in the diet of
nurses. Also, the researchers wanted to test whether the mean was greater than the
recommended value of 30%. Prior to constructing confidence intervals or testing
hypotheses, we must first check whether the data represent a random sample from
a normally distributed population. From the normal probability plot in Figure 5.24,
the data values fall nearly on a straight line. Hence, we can conclude that the data
appear to follow a normal distribution. The mean and standard deviation of the
PCF data were given by y = 36.92 and s = 6.73. We can next construct a 95%
confidence interval for the mean PCF for the population of nurses as follows:

6.73 6.73
36.92 + ¢ —= 23692 + 1.974 —= = 36.92 + 1.02
025167 \[168 V168

Thus, we are 95% confident that the mean PCF in the population of nurses is
between 35.90 and 37.94. As a result, we would be inclined to conclude that the
mean PCF for the population of nurses exceeds the recommended value of 30.
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We will next formally test the following hypotheses:
Hy:p =30 versus Hg wp>30

Since the data appear to be normally distributed and in any case the sample size is
reasonably large, we can use the ¢ test with rejection region as follows.

R.R: For a one-tail ¢ test with & = .05, we reject Hy if

y - 30
f= e = sy = 1654
36.92 —

Since ¢t = io = 13.33, we reject Hy. The p-value of the test is essentially 0,
so we can ¢oncliide that the mean PCF value is very significantly greater than 30.
Thus, there is strong evidence that the population of nurses has an average PCF
larger than the recommended value of 30. The experts in this field would have to
determine the practical consequences of having a PCF value between 5.90 and 7.94
units higher than the recommended value.

Reporting the Conclusions
A report summarizing our findings from the study would include the following items:

Statement of objective for study

Description of study design and data collection procedures

Numerical and graphical summaries of data sets

Description of all inference methodologies:

® ftests

® t-based confidence interval on population mean

® Verification that all necessary conditions for using inference
techniques were satisfied

Discussion of results and conclusions

Interpretation of findings relative to previous studies

Recommendations for future studies

Listing of data set

LAY Summary and Key Formulas

A population mean or median can be estimated using point or interval estimation.
The selection of the median in place of the mean as a representation of the
center of a population depends on the shape of the population distribution. The
performance of an interval estimate is determined by the width of the interval and
the confidence coefficient. The formulas for a 100(1 — a)% confidence interval for
the mean p and median M were given. A formula was provided for determining
the necessary sample size in a study so that a confidence interval for u would have
a predetermined width and level of confidence.

Following the traditional approach to hypothesis testing, a statistical test con-
sists of five parts: research hypothesis, null hypothesis, test statistic, rejection region,
and checking assumptions and drawing conclusions. A statistical test employs the
technique of proof by contradiction. We conduct experiments and studies to gather
data to verify the research hypothesis through the contradiction of the null hypothesis
Hy. As with any two-decision process based on variable data, there are two types of
errors that can be committed. A Type I error is the rejection of Hy when Hy is true,
and a Type II error is the acceptance of Hy when the alternative hypothesis H, is true.

PUON

ONoOW®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



284 CHAPTER 5 INFERENCES ABOUT POPULATION CENTRAL VALUES

The probability for a Type I error is denoted by a. For a given value of the mean
M in H,, the probability of a Type II error is denoted by B(u,). The value of B(u,)
decreases as the distance from p, to wg increases. The power of a test of hypotheses
is the probability that the test will reject Hy when the value of u resides in H,. Thus,
the power at u, equals 1 — B(w,).

We also demonstrated that for a given sample size and value of the mean p,,
a and B(w,) are inversely related; as « is increased, B(u,) decreases, and vice versa.
If we specity the sample size n and « for a given test procedure, we can compute
B(u,) for values of the mean p, in the alternative hypothesis. In many studies, we
need to determine the necessary sample size n to achieve a testing procedure having
a specified value for @ and a bound on B(w,). A formula is provided to determine n
such that a level « test has B(u,) = B whenever w, is a specified distance beyond .

We developed an alternative to the traditional decision-based approach for a
statistical test of hypotheses. Rather than relying on a preset level of «, we compute
the weight of evidence in the data for rejecting the null hypothesis. This weight,
expressed in terms of a probability, is called the level of significance for the test.
Most professional journals summarize the results of a statistical test using the level
of significance. We discussed how the level of significance can be used to obtain the
same results as the traditional approach.

We also considered inferences about u when o is unknown (which is the usual
situation). Through the use of the ¢ distribution, we can construct both confidence
intervals and a statistical test for u. The t-based tests and confidence intervals do not
have the stated levels or power when the population distribution is highly skewed or
very heavily tailed and the sample size is small. In these situations, we may use the
median in place of the mean to represent the center of the population. Procedures
were provided to construct confidence intervals and tests of hypotheses for the popu-
lation median. Alternatively, we can use bootstrap methods to approximate confi-
dence intervals and tests when the population distribution is nonnormal and 7 is small.

Key Formulas

Estimation and tests for u and the median:

1. 100(1 — a)% confidence interval for w (oo unknown) when sampling from a
normal population or when # is large

y * ta/zs/\/ﬁ, df =n-1

2. Sample size for estimating u with a 100(1 — «a)% confidence interval, y = E

(Za/z)Zdl

E2
where 6% is an estimate of population variance.

3. Statistical test for u (o unknown) when sampling from a normal population
or when n is large

n =

)
shNn ~
4. Calculation of B(u,) (and equivalent power) for a test on u (0 estimate of o)

when sampling from a normal population or when 7 is large
a. One-tailed level « test

Test statistics: t = df=n-1

|/"L0 - lu’a|

Blw,) = P(Z <2z~ W>
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b. Two-tailed level «a test

5. Calculation of B(u,) (and equivalent power) for a test on u (o unknown) when
sampling from a normal population or when 7 is large: Use Table 3 in the
Appendix.

6. Sample size n for a statistical test on u (& estimate of o) when sampling from
a normal population
a. One-tailed level « test
A2
g
n =37t zp)’

b. Two-tailed level «a test
6'2

n> E(Za/z + ZB)Z

7.100(1 — @)% confidence interval for the population median M

(V(L

8. Statistical test for median

)> y(Ua/Z))’ where La/Z = Ca(Z),n + 1 and Ua/2 =n — Ca(Z),n

a2

Test statistic:
Let W;=y,— My and B = number of positive Ws

BBy Exercises

5.1 Introduction

Pol. Sci. 5.1 The county government in a city that is dominated by a large state university is concerned
that a small subset of its population has been overutilized in the selection of residents to serve on
county court juries. The county decides to determine the mean number of times that an adult resi-
dent of the county has been selected for jury duty during the past 5 years. They will then compare
the mean jury participation for full-time students to that of nonstudents.

a. Identify the populations of interest to the county officials.
b. How might you select a sample of voters to gather this information?

Med. 5.2 In the research study on percentage of calories from fat,
a. What is the population of interest?
b. What dietary variables other than PCF might affect a person’s health?
c. What characteristics of the nurses other than dietary intake might be important in
studying their health condition?
d. Describe a method for randomly selecting which nurses participate in the study.
e. State several hypotheses that may be of interest to the researchers.

Engin. 5.3 Face masks used by firefighters often fail by having their lenses fall out when exposed
to very high temperatures. A manufacturer of face masks claims that for its masks the average
temperature at which pop-out occurs is 550°F. A sample of 75 masks is tested, and the average
temperature at which the lenses popped out was 470°F. Based on this information is the manu-
facturer’s claim valid?

a. Identify the population of interest to the firefighters in this problem.
b. Would an answer to the question posed involve estimation or hypothesis testing?
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5.4 Refer to Exercise 5.3. Describe a process to select a sample of face masks from the manu-
facturer to evaluate the claim.

5.2 Estimation of u

Engin. 5.5 A company that manufacturers coffee for use in commercial machines monitors the caf-
feine content in its coffee. The company selects 50 samples of coffee every hour from its pro-
duction line and determines the caffeine content. From historical data, the caffeine content (in
milligrams, mg) is known to have a normal distribution with & = 7.1 . During a 1-hour time
period, the 50 samples yielded a mean caffeine content of y = 110 mg.

a. Identify the population about which inferences can be made from the sample data.

b. Calculate a 95% confidence interval for the mean caffeine content u of the coffee
produced during the hour in which the 50 samples were selected.

c. Explain to the CEO of the company in nonstatistical language the interpretation
of the constructed confidence interval.

5.6 Refer to Exercise 5.5. The engineer in charge of the coffee manufacturing process examines
the confidence intervals for the mean caffeine content calculated over the past several weeks and
is concerned that the intervals are too wide to be of any practical use. That is, they are not provid-
ing a very precise estimate of u.
a. What would happen to the width of the confidence intervals if the level of confi-
dence of each interval is increased from 95% to 99%?
b. What would happen to the width of the confidence intervals if the number of sam-
ples per hour was increased from 50 to 100?

5.7 Refer to Exercise 5.5. Because the company is sampling the coffee production process every
hour, there are 720 confidence intervals for the mean caffeine content u constructed every month.
a. If the level of confidence remains at 95% for the 720 confidence intervals in a
given month, how many of the confidence intervals would you expect to fail to
contain the value of w and hence provide an incorrect estimation of the mean caf-
feine content?
b. If the number of samples is increased from 50 to 100 each hour, how many of the
95% confidence intervals would you expect to fail to contain the value of nina
given month?
c. If the number of samples remains at 50 each hour but the level of confidence
is increased from 95% to 99% for each of the intervals, how many of the 99%
confidence intervals would you expect to fail to contain the value of w in a given
month?

Bus. 5.8 As part of the recruitment of new businesses, the city’s economic development department
wants to estimate the gross profit margin of small businesses (under $1 million in sales) currently
residing in the city. A random sample of the previous years annual reports of 15 small businesses
shows the mean net profit margin to be 7.2% (of sales) with a standard deviation of 12.5%.

a. Construct a 99% confidence interval for the mean gross profit margin of u of all
small businesses in the city.

b. The city manager reads the report and states that the confidence interval for u
constructed in part (a) is not valid because the data are obviously not normally
distributed and thus the sample size is too small. Based on just knowing the mean
and standard deviation of the sample of 15 businesses, do you think the city man-
ager is valid in his conclusion about the data? Explain your answer.

Soc. 5.9 A program to reduce recidivism has been in effect for two years in a large northeastern
state. A sociologist investigates the effectiveness of the program by taking a random sample of
200 prison records of repeat offenders. The records were selected from the files in the courthouse
of the largest city in the state. The average length of time out of prison between the first and
second offenses is 2.8 years with a standard deviation of 1.3 years.
a. Use this information to estimate the mean prison-free time between first and
second offenses using a 95% confidence interval.
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b. Identify the group for which the confidence interval would be an appropriate
estimate of the population mean.

c. Would it be valid to use this confidence interval to estimate the mean prison-free
time between first and second offenses for all two-time offenders in the whole
state? In a large southern state?

Ag. 5.10 The susceptibility of the root stocks of a variety of orange tree to a specific larva is investigated
by a group of researchers. Forty orange trees are exposed to the larva and then examined by the
researchers 6 months after exposure. The number of larvae per gram is recorded on each root
stock. The mean and standard deviation of the logarithm of the counts are recorded to be 9.02
and 1.12, respectively.

a. Use the sample information to construct a 90% confidence interval on the mean
of the logarithm of the larvae counts.

b. Identify the population for which this confidence interval could be used to assess
the susceptibility of the orange trees to the larva.

5.11 Refer to Example 5.4. Suppose an estimate of o is given by o = .7

a. If the level of confidence remains 99% but the desired width of the interval is
reduced to 0.3, what is the necessary sample size?

b. If the level of confidence is reduced to 95% but the desired width of the interval
remains 0.5, what is the necessary sample size?

c. If the level of confidence is increased to 99.5% but the desired width of the inter-
val remains 0.5, what is the necessary sample size?

d. Describe the impact on the value of the sample size of increases (decreases) in the
level of confidence for a fixed desired width.

e. Describe the impact on the value of the sample size of increases (decreases) in the
desired width for a fixed level of confidence.

5.3 Choosing the Sample Size for Estimating u

5.12 1In any given situation, if the level of confidence and the standard deviation are kept
constant, how much would you need to increase the sample size to decrease the width of the
interval to half its original size?

Bio. 5.13 A biologist wishes to estimate the effect of an antibiotic on the growth of a particular bacte-
rium by examining the mean amount of bacteria present per plate of culture when a fixed amount
of the antibiotic is applied. Previous experimentation with the antibiotic on this type of bacte-
ria indicates that the standard deviation of the amount of bacteria present is approximately 13
cm?. Use this information to determine the number of observations (cultures that must be devel-
oped and then tested) necessary to estimate the mean amount of bacteria present, using a 99%
confidence interval with a half-width of 3 cm?.

Gov. 5.14 The housing department in a large city monitors the rent for rent-controlled apartments in
the city. The mayor wants an estimate of the average rent. The housing department must deter-
mine the number of apartments to include in a survey in order to be able to estimate the average
rent to within $100 using a 95% confidence interval. From past surveys, the monthly charge for
rent-controlled apartments ranged from $1,000 to $3,500. How many renters must be included in
the survey to meet the requirements?

Gov. 5.15 Refer to Exercise 5.14. Suppose the mayor's staff reviews the proposed survey and decides
that in order for the survey to be taken seriously the requirements need to be increased.

a. If the level of confidence is increased to 99% with the average rent estimated
within $50, how many apartments need to be included in the survey?

b. Suppose the budget for the survey will not support increasing the level of
confidence to 99%. Provide an explanation to the mayor, who has never taken a
statistics course, of the impact on the accuracy of the estimate of the average rent
of not raising the level of confidence from 95% to 99%.
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5.4 A Statistical Test for u

Basic 5.16 A study is designed to test the hypotheses H: u = 26 versus H,: u < 26. A random sample
of 50 units was selected from a specified population, and the measurements were summarized to
y=259ands = 7.6.

a. With o = .05, is there substantial evidence that the population mean is less
than 26?

b. Calculate the probability of making a Type II error if the actual value of the
population mean is at most 24.

c. If the sample size is doubled to 100, what is the probability of making a Type 11
error if the actual value of the population mean is at most 24?

Basic 5.17 Refer to Exercise 5.16. Graph the power curve for rejecting Hy: p = 26 for the following
values of u: 20, 21, 22, 23, 24, 25, and 26.

a. Describe the change in the power as the value of u decreases from uy = 26.

b. Suppose the value of n remains at 50 but « is decreased to a = .01. Without
recalculating the values of the power, superimpose on the graph for & = .05 and
n = 50 the power curve for « = .01 and n = 50.

c. Suppose the value of n is decreased to 35 but « is kept at « = .05. Without recal-
culating the values of the power, superimpose on the graph for &« = .05 and n = 50
the power curve for a = .05 and n = 35.

Basic 5.18 Use a computer to simulate 100 samples of n = 25 from a normal distribution with
= 43 and a = 4. Test the hypotheses Hy: u = 43 versus H,: u # 43 separately for each of the
100 samples of size 25 with a = .05.

a. How many of the 100 tests of hypotheses resulted in a rejection of H?

b. Suppose 1,000 tests of hypotheses of Hy: u = 43 versus H,: u # 43 were
conducted. Each of the 1,000 data sets consists of n = 50 data values randomly
selected from a population having u = 43. Suppose a = .05 is used in each of
the 1,000 tests. On the average, how many of the 1,000 tests would result in the
rejection of Hy?

c. Suppose the procedure in part (b) is repeated with 1,000 tests with n = 75 and
a = .01. On the average, how many of the 1,000 tests would result in a rejection
of Ho?

Basic 5.19 Refer to Exercise 5.18. Simulate 100 samples of size n = 25 from a normal population in
which p = 45 and o = 4. Use a = .05 in conducting a test of Hy: u = 43 versus H,: u # 43 for each
of the 100 samples.

a. What proportion of the 100 tests of Hy: u = 43 versus H,: u # 43 resulted in the
correct decision, that is, the rejection of Hy?

b. Calculate the power of the test of hypotheses necessary to reject Hy: u = 43 when
the value of u is 45.

c. Based on the calculated probability, in part (b), how many of the 100 tests on the
average should produce a rejection of Hy? Compare this value to the number of
rejections obtained in the simulation. Explain why the estimated number of rejec-
tions and the number of rejections observed in the simulation differ.

Basic 5.20 Refer to Exercises 5.18 and 5.19.
a. Answer the questions asked in Exercises 5.18 and 5.19 with a = .01 replacing
a = .05.You can use the same simulated data, but the exact power will need to be
recalculated.
b. Did decreasing « from .05 to .01 result in the power increasing or decreasing?
Explain why this change occurred.

Med. 5.21 A study was conducted of 90 adult male patients following a new treatment for congestive
heart failure. One of the variables measured on the patients was the increase in exercise capacity
(in minutes) over a 4-week treatment period. The previous treatment regime had produced
an average increase of u = 2 minutes. The researchers wanted to evaluate whether the new
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treatment had increased the value of u in comparison to the previous treatment. The data yielded
y =217 ands = 1.05.

a. Using @ = .05, what conclusions can you draw about the research hypothesis?

b. What is the probability of making a Type II error if the actual value of w is 2.1?

5.22 Refer to Exercise 5.21. Compute the power of the test PWR(w,) at p, = 2.1, 2.2, 2.3, 2.4,
and 2.5. Sketch a smooth curve through a plot of PWR(u,) versus u,.
a. If ais reduced from .05 to .01, what would be the effect on the power curve?
b. If the sample size is reduced from 90 to 50, what would be the effect on the
power curve?

5.5 Choosing the Sample Size for Testing u

Med. 5.23 A national agency sets recommended daily dietary allowances for many supplements. In
particular, the allowance for zinc for males over the age of 50 years is 15 mg/day. The agency
would like to determine if the dietary intake of zinc for active males is significantly higher than
15 mg/day. How many males would need to be included in the study if the agency wants to con-
struct an a = .05 test with the probability of committing a Type II error at most .10 whenever the
average zinc content is 15.3 mg/day or higher? Suppose from previous studies they estimate the
standard deviation to be approximately 4 mg/day.

Edu. 5.24 To evaluate the success of a 1-year experimental program designed to increase the
mathematical achievement of underprivileged high school seniors, a random sample of participants
in the program will be selected and their mathematics scores will be compared with the previous
year’s statewide average of 525 for underprivileged seniors. The researchers want to determine
whether the experimental program has increased the mean achievement level over the previous
year’s statewide average. If « = .05, what sample size is needed to have a probability of Type II
error of at most .025 if the actual mean is increased to 550? From previous results, o = 80.

5.25 Refer to Exercise 5.24. Suppose a random sample of 100 students is selected yielding
y = 542 and s = 76. Is there sufficient evidence to conclude that the mean mathematics achieve-
ment level has been increased? Explain.

Bus. 5.26 The administrator of a nursing home would like to do a time-and-motion study of staff time
spent per day performing nonemergency tasks. Prior to the introduction of some efficiency measures,
the average number of person-hours per day spent on these tasks was w = 16. The administrator
wants to test whether the efficiency measures have reduced the value of u. How many days must be
sampled to test the proposed hypothesis if she wants a test having « = .05 and the probability of a
Type I error of at most .10 when the actual value of w is 12 hours or less (at least a 25% decrease from
the number of hours spent before the efficiency measures were implemented)? Assume o = 7.64.

Env. 5.27 The vulnerability of inshore environments to contamination due to urban and industrial
expansion in Mombasa is discussed in the paper “Metals, Petroleum Hydrocarbons and Organo-
chlorines in Inshore Sediments and Waters on Mombasa, Kenya” [Marine Pollution Bulletin (1997)
34:570-577]. A geochemical and oceanographic survey of the inshore waters of Mombasa,
Kenya, was undertaken during the period from September 1995 to January 1996. In the survey,
suspended particulate matter and sediment were collected from 48 stations within Mombasa’s
estuarine creeks. The concentrations of major oxides and 13 trace elements were determined
for a varying number of cores at each of the stations. In particular, the lead concentrations in sus-
pended particulate matter (mg kg~ ! dry weight) were determined at 37 stations. The researchers
were interested in determining whether the average lead concentration was greater than 30 mg
kg~! dry weight. The data are given in the following table along with summary statistics and a
normal probability plot.

Lead concentrations (mg kg~ ! dry weight) from 37 stations in Kenya

48 53 44 55 52 39 62 38 23 27
41 37 41 46 32 17 32 41 23 12

3 13 10 11 5 30 11 9 7 11
77 210 38 112 52 10 6
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a. Is there sufficient evidence (a = .05) in the data that the mean lead concentra-
tion exceeds 30 mg kg~! dry weight?
b. What is the probability of a Type II error if the actual mean concentration is 50?
. Do the data appear to have a normal distribution?
. Based on your answer in (c), is the sample size large enough for the test proce-
dures to be valid? Explain.

(oMo}

The Level of Significance of a Statistical Test

5.28 The R&D department of a paint company has developed an additive that it hopes will in-
crease the ability of the company’s stain for outdoor decks to resist water absorption. The current
formulation of the stain has a mean absorption rate of 35 units. Before changing the stain, a study
was designed to evaluate whether the mean absorption rate of the stain with the additive was
decreased from the current rate of 35 units. The stain with the additive was applied to 50 pieces
of decking material. The resulting data were summarized to y = 33.6 and s = 9.2

a.

b.
C.

d.

Is there substantial evidence (a = .01) that the additive reduces the mean ab-
sorption from its current value?

What is the level of significance (p-value) of your test results?

What is the probability of a Type II error if the stain with the additive in fact has
a mean absorption rate of 30?

Estimate the mean absorption using a 99% confidence interval. Is the confidence

interval consistent with your conclusions from the test of hypotheses?

5.29 Refer to Exercise 5.28. If the R&D department used & = .10 in place of « = .01, would the
conclusion about whether the additive reduced the mean absorption change from the conclusion
using @ = .01?

5.30 A concern to public health officials is whether a concentration of lead in the paint of older
homes may have an effect on the muscular development of young children. In order to evaluate
this phenomenon, a researcher exposed 90 newly born mice to paint containing a specified
amount of lead. The number of Type 2 fibers in the skeletal muscle was determined 6 weeks
after exposure. The mean number of Type 2 fibers in the skeletal muscles of normal mice of this
age is 21.7. The n = 90 mice yielded y = 18.8, s = 15.3. Is there significant evidence in the data
to support the hypothesis that the mean number of Type 2 fibers is different from 21.7 using an
a = .05 test?

5.31 Refer to Exercise 5.30. In fact, the researcher was more concerned about determining if the
lead in the paint reduced the mean number of Type 2 fibers in skeletal muscles. Does the change
in the research hypothesis alter your conclusion about the effect of lead in paint on the mean
number of Type 2 fibers in skeletal muscles?
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Med. 5.32 A tobacco company advertises that the average nicotine content of its cigarettes is at most
14 milligrams. A consumer protection agency wants to determine whether the average nicotine
content is in fact greater than 14. A random sample of 300 cigarettes of the company’s brand yields
an average nicotine content of 14.6 milligrams and a standard deviation of 3.8 milligrams. Deter-
mine the level of significance of the statistical test of the agency’s claim that u is greater than 14. If
a = .01, is there significant evidence that the agency’s claim has been supported by the data?

Psy. 5.33 A psychological experiment was conducted to investigate the length of time (time delay)
between the administration of a stimulus and the observation of a specified reaction. A random
sample of 36 persons was subjected to the stimulus, and the time delay was recorded. The sample
mean and standard deviation were 2.2 and .57 seconds, respectively. Is there significant evidence
that the mean time delay for the hypothetical population of all persons who may be subjected to
the stimulus differs from 1.6 seconds? Use a = .05. What is the level of significance of the test?

5.7 Inferences About u for a Normal Population, o Unknown

Basic 5.34 Provide the rejection region based on a f-test statistic for the following situations:
a. Hyp:p =28 versus Hy: u <28 withn = 11,a = .05
b. Hy: p = 28 versus H,: u > 28 withn = 21, = .025
C. Hy:p =28 versus H,: u <28 withn = 8,a = .001
d. Hy: p = 28 versus H,: p # 28 with n = 13, = .01

Basic 5.35 A study was designed to evaluate whether the population of interest has a mean greater
than 9. A random sample of n = 17 units was selected from a population, and the data yield
x =10.1 ands = 3.1.
a. Is there substantial evidence (a = .05) that the population mean is greater than 9?
b. What is the level of significance of the test?

Edu. 5.36 The ability to read rapidly and simultaneously maintain a high level of comprehension is
often a determining factor in the academic success of many high school students. A school district
is considering a supplemental reading program for incoming freshmen. Prior to implementing the
program, the school runs a pilot program on a random sample of n = 20 students. The students
were thoroughly tested to determine reading speed and reading comprehension. Based on a
fixed-length standardized test reading passage, the following reading times (in minutes) and
comprehension scores (based on a 100-point scale) were recorded.

Student 12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 n y s
Reading Time 5 7 15 12 8 7 10 11 9 1310 6 11 8 100 8 7 6 11 8 20 910 2573
Comprehension 60 76 76 90 81 75 95 98 88 73 90 66 91 8 100 8 76 69 91 78 20 82.05 10.88

a. What is the population about which inferences are being made?

b. Place a 95% confidence interval on the mean reading time for all incoming fresh-
men in the district.

c. Plot the reading time using a normal probability plot or boxplot. Do the data
appear to be a random sample from a population having a normal distribution?

d. Provide an interpretation of the interval estimate in part (b).

5.37 Refer to Exercise 5.36. Using the reading comprehension data, is there significant evidence
that the reading program would produce for incoming freshmen a mean comprehension score
greater than 80, the statewide average for comparable students during the previous year?
Determine the level of significance for your test. Interpret your findings.

5.38 Refer to Exercise 5.36.
a. Does there appear to be a relationship between reading time and reading comprehen-
sion of the individual students? Provide a plot of the data to support your conclusion.
b. What are some weak points in this study relative to evaluating the potential of
the reading improvement program? How would you redesign the study to over-
come these weak points?
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Bus. 5.39 A consumer testing agency wants to evaluate the claim made by a manufacturer of discount
tires. The manufacturer claims that its tires can be driven at least 35,000 miles before wearing out.
To determine the average number of miles that can be obtained from the manufacturer’s tires, the
agency randomly selects 60 tires from the manufacturer’s warehouse and places the tires on 15 cars
driven by test drivers on a 2-mile oval track. The number of miles driven (in thousands of miles)
until the tires are determined to be worn out is given in the following table.

Car 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n y s
Miles Driven 25 27 35 42 28 37 40 31 29 33 30 26 31 28 30 153147 5.04

a. Place a 99% confidence interval on the average number of miles driven, w, prior
to the tires wearing out.

b. Is there significant evidence (« = .01) that the manufacturer’s claim is false?
What is the level of significance of your test? Interpret your findings.

5.40 Refer to Exercise 5.39.
a. Does the normality of the data appear to be valid?
b. How close to the true value were your bounds on the p-value?
c. Is there a contradiction between the interval estimate of u and the conclusion
reached by your test of the hypotheses?

Env. 5.41 The amount of sewage and industrial pollutants dumped into a body of water affects the
health of the water by reducing the amount of dissolved oxygen available for aquatic life. Over
a 2-month period, eight samples were taken from a river at a location 1 mile downstream from a
sewage treatment plant. The amount of dissolved oxygen in the samples was determined and is
reported in the following table. The current research asserts that the mean dissolved oxygen level
must be at least 5.0 parts per million (ppm) for fish to survive.

Sample 1 2 3 4 5 6 7 8 n y s
Oxygen (ppm) 5.1 4.9 56 42 4.8 4.5 53 52 8 495 45

a. Place a 95% confidence on the mean dissolved oxygen level during the 2-month
period.

b. Using the confidence interval from part (a), does the mean oxygen level appear
to be less than 5 ppm?

c. Test the research hypothesis that the mean oxygen level is less than 5 ppm. What
is the level of significance of your test? Interpret your findings.

Env. 5.42 A dealer in recycled paper places empty trailers at various sites. The trailers are gradu-
ally filled by individuals who bring in old newspapers and magazines and are picked up on
several schedules. One such schedule involves pickup every second week. This schedule is desir-
able if the average amount of recycled paper is more than 1,600 cubic feet per 2-week period.
The dealer’s records for 18 2-week periods show the following volumes (in cubic feet) at a
particular site:

1,660 1,820 1,590 1440 1730 1,680 1750 1,720 1,900
1,570 1,700 1,900 1,800 1,770 2,010 1,580 1,620 1,690

y =1,7183 and s = 137.8

a. Assuming the 18 2-week periods are fairly typical of the volumes throughout the
year, is there significant evidence that the average volume u is greater than 1,600
cubic feet?

b. Place a 95% confidence interval on .

c. Compute the p-value for the test statistic. Is there strong evidence that u is
greater than 1,600?
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Inferences About 1 When the Population Is Nonnormal and n Is
Small: Bootstrap Methods

5.43 Refer to Exercise 5.36.
a. Use a computer program to obtain 10,000 bootstrap samples from the 20 com-
prehension scores. Use these 10,000 samples to obtain the bootstrap p-value for
the ¢ test of H,: u > 80.
b. Compare the p-value from part (a) to the p-value obtained in Exercise 5.37.

5.44 Refer to Exercise 5.39.
a. Use a computer program to obtain 10,000 bootstrap samples from the 15 sets of
tire wear data. Use these 10,000 samples to obtain the bootstrap p-value for the
ttest of H,: o < 35.
b. Compare the p-value from part (a) to the p-value obtained in Exercise 5.39.

5.45 Refer to Exercise 5.41.
a. Use a computer program to obtain 10,000 bootstrap samples from the eight oxy-
gen levels. Use these 10,000 samples to obtain the bootstrap p-value for the ¢
test of Hy:pu < 5.
b. Compare the p-value from part (a) to the p-value obtained in Exercise 5.41.

5.46 Refer to Exercise 5.42.
a. Use a computer program to obtain 10,000 bootstrap samples from the 18
recycling volumes. Use these 10,000 samples to obtain the bootstrap p-value
for the ¢ test of H,: u > 1,600.
b. Compare the p-value from part (a) to the p-value obtained in Exercise 5.42.

Inferences About the Median

5.47 Arandom sample of 12 measurements is obtained from a population. Let M be the me-
dian for the population. The research study requires an estimate of M. The sample median
is determined to be 37.8. The researchers want to assess a range of values for this point
estimator.

a. Display a 95% confidence interval on M by obtaining the values of L,y and Ugp.

b. Obtain a 95% confidence interval on M using the large-sample approximations

of Lap and U,p. Compare the two confidence intervals.
c. Provide reasons for the difference in the two confidence intervals.

5.48 A random sample of 50 measurements is obtained from a population. Let M be the median
for the population. The research study requires an estimate of M. The sample median is deter-
mined to be 37.8. The researchers want to assess a range of values for this point estimator.
a. Display a 95% confidence interval on M by obtaining the values of L,y and Ugp.
b. Obtain a 95% confidence interval on M using the large-sample approximations
of Lp and Ua/z. Compare the two confidence intervals.
c. Provide reasons for the difference in the two confidence intervals.

5.49 A researcher selects a random sample of 25 units from a population. Let M be the
population median. Display the rejection region for an @ = .01 test that the population median is
greater than 40.

5.50 Refer to Exercise 5.49.
a. Display the rejection region for an a = .01 test that the population median is
greater than 40 using the large-sample approximation.
b. Compare the rejection region from Exercise 5.49 to the rejection region in part (a).
Provide reasons for the differences in the two regions.

5.51 The amount of money spent on health care is an important issue for workers because many
companies provide health insurance that only partially covers many medical procedures. The
director of employee benefits at a midsize company wants to determine the amount spent on health
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care by the typical hourly worker in the company. A random sample of 25 workers is selected, and
the amounts they spent on their families’ health care needs during the past year are given here.

400 345 248 1,290 398 218 197 342 208 223 531 172 4321
143 254 201 3,142 219 276 326 207 225 123 211 108

a. Graph the data using a boxplot or normal probability plot, and determine
whether the population has a normal distribution.

b. Based on your answer to part (a), is the mean or the median cost per household a
more appropriate measure of what the typical worker spends on health care needs?

c. Place a 95% confidence interval on the amount spent on health care by the typi-
cal worker. Explain what the confidence interval is telling us about the amount
spent on health care needs.

d. Does the typical worker spend more than $400 per year on health care needs?
Use a = .05.

Gov. 5.52 Many states have attempted to reduce the blood-alcohol level at which a driver is declared
to be legally drunk. There has been resistance to this change in the law by certain business
groups who have argued that the current limit is adequate. A study was conducted to demonstrate
the effect on reaction time of a blood-alcohol level of .1%, the current limit in many states.
A random sample of 25 persons of legal driving age had their reaction times recorded in a standard
laboratory test procedure before and after drinking a sufficient amount of alcohol to raise their
blood alcoholtoa.1% level. The difference (After — Before) in their reaction times in seconds was
recorded as follows:

01 02 04 05 07 09 11 26 27 27 28 28 29
29 30 31 31 32 33 35 36 38 39 39 40

a. Graph the data and assess whether the population has a normal distribution.

b. Place a 99% confidence interval on both the mean and the median differences in
reaction times of drivers who have a blood-alcohol level of .1%.

c. Is there sufficient evidence that a blood-alcohol level of .1% causes any increase
in the mean reaction time?

d. Is there sufficient evidence that a blood-alcohol level of .1% causes any increase
in the median reaction time?

e. Which summary of reaction time differences seems more appropriate, the mean
or median? Justify your answer.

5.53 Refer to Exercise 5.52. The lobbyist for the business group has his expert examine the
experimental equipment and determines that measurement errors may have been made when
recording the reaction times. Unless the difference in reaction time is at least .25 seconds, the
expert claims that the two times are essentially equivalent.
a. Is there sufficient evidence that the median difference in reaction times is greater
than .25 seconds?
b. What other factors about the drivers are important in attempting to decide
whether moderate consumption of alcohol affects reaction time?

Soc. 5.54 1In an attempt to increase the amount of money people would receive at retirement from
Social Security, the U.S. Congress during its 1999 session debated whether a portion of Social
Security funds should be invested in the stock market. Advocates of mutual stock funds reassured
the public by stating that most mutual funds would provide a larger retirement income than the
income currently provided by Social Security. The annual rates of return of two highly recom-
mended mutual funds for the years 1989 through 1998 are given here. (The annual rate of return
is defined as (P — P())/P(), where Py and P; are the prices of the fund at the beginning and end of
the year, respectively.)

Year 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

Fund A 254 17.1 —8.9 26.7 3.6 -85 -13 329 229  26.6
Fund B 319 -84 41.8 6.2 17.4 —2.1 30.5 15.8 26.8 5.7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.12 Exercises 295

a. For both fund A and fund B, estimate the mean and median annual rates of
return, and construct a 95% confidence interval for each.

b. Which of the parameters, the mean or median, do you think best represents the
annual rate of return for fund A and for fund B during the years 1989 through
1998? Justify your answer.

5.55 Refer to Exercise 5.54.
a. Is there sufficient evidence that the median annual rate of return for the two
mutual funds is greater than 10%?
b. Is there sufficient evidence that the mean annual rate of return for the two
mutual funds is greater than 10%?

5.56 Using the information in Table 5.8, answer the following questions.

a. If the population has a normal distribution, then the population mean and
median are identical. Thus, either the mean or the median could be used to
represent the center of the population. In this situation, why is the ¢ test more
appropriate than the sign test for testing hypotheses about the center of the
distribution?

b. Suppose the population has a distribution that is highly skewed to the right. The
researcher uses an a = .05  test to test hypotheses about the population mean. If
the sample size is n = 10, will the probability of a Type I error for the test be .05?
Justity your answer.

C. When testing hypotheses about the mean or median of a highly skewed population,
the difference in power between the sign and t tests decreases as the size of
(M, — My) increases. Verify this statement using the values in Table 5.8. Why do
think this occurs?

d. When testing hypotheses about the mean or median of a lightly skewed popula-
tion, the difference in power between the sign and 7 tests is much less than that
for a highly skewed population distribution. Verify this statement using the
values in Table 5.8. Why do you think this occurs?

Supplementary Exercises

Bus. 5.57 A Internet provider has implemented a new process for handling customer complaints.
Based on a review of customer complaint data for the past 2 years, the mean time for handling a
customer complain was 27 minutes. Three months after implementing the plan, a random sam-
ple of the records of 50 customers who had complaints produced the following response times.
Use the 50 data values to determine if the new process has reduced the mean time to handle
customer complaints.

323 269 254 329 277 322 248 205 304 213 259 27.1 192 284 18.0
331 311 219 334 243 255 29.6 327 213 318 27.6 174 269 189 286
235 21.6 201 309 268 287 246 215 219 283 241 289 298 27.1 238
253 30.7 272 19.0 30.0

a. Estimate the mean time for handling a customer complaint under the new
process using a 95% confidence interval.

b. Is there substantial evidence (a = .05) that the new process has reduced the
mean time to handle a customer complaint?

c. What is the population about which inferences from these data can be made?

Env. 5.58 The concentration of mercury in a lake has been monitored for a number of years.
Measurements taken on a weekly basis yielded an average of 1.20 mg/m?® (milligrams per
cubic meter) with a standard deviation of .32 mg/m>. Following an accident at a smelter on the
shore of the lake, 15 measurements produced the following mercury concentrations.

160 177 161 108 107 179 134 107
145 159 143 207 116 085 211
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a. Give a point estimate of the mean mercury concentration after the accident.

b. Construct a 95% confidence interval on the mean mercury concentration after
the accident. Interpret this interval.

c. Is there sufficient evidence that the mean mercury concentration has increased
since the accident? Use a = .05.

d. Assuming that the standard deviation of the mercury concentration is .32 mg/m?,
calculate the power of the test to detect mercury concentrations of 1.28, 1.32,
1.36, and 1.40.

Med. 5.59 In a standard dissolution test for tablets of a particular drug product, the manufacturer
must obtain the dissolution rate for a batch of tablets prior to release of the batch. Suppose that
the dissolution test consists of assays for 24 randomly selected individual 25 mg tablets. For each
test, the tablet is suspended in an acid bath and then assayed after 30 minutes. The results of the
24 assays are given here.

195 197 197 204 192 195 19.6 208
199 192 201 198 204 198 19.6 195
193 197 195 206 204 199 200 19.8

a. Using a graphical display, determine whether the data appear to be a random
sample from a normal distribution.

b. Estimate the mean dissolution rate for the batch of tablets, for both a point esti-
mate and a 99% confidence interval.

c. Is there significant evidence that the batch of pills has a mean dissolution rate
less than 20 mg (80% of the labeled amount in the tablets)? Use & = .01.

d. Calculate the probability of a Type II error if the true dissolution rate is 19.6 mg.

Bus. 5.60 When an audit must be conducted that involves a tedious examination of a large
inventory, the audit may be very costly and time consuming if each item in the inventory must
be examined. In such situations, the auditor frequently obtains a random sample of items from
the complete inventory and uses the results of an audit of the sampled items to check the validity
of the company's financial statement. A large company’s financial statement claims an inventory
that averages $600 per item. The following data are the auditor’s assessment of a random sample
of 75 items from the company’s inventory. The values resulting from the audit are rounded to
the nearest dollar.

303 547 1,368 493 984 507 148 2,546 738 83 2 135 274 74 1472
399 1,784 71 751 136 571 147 282 2,039 1,909 748 188 548 1 280
102 618 129 1324 1428 469 102 454 1,059 939 303 600 234 514 17
551 293 1,395 7 28 2 973 506 511 812 1,290 685 447 11 35
252 1,526 464 5 67 99 67 259 7 67 248 3215 3 33 41

a. Estimate the mean value of an item in the inventory using a 95% confidence
interval.

b. Is there substantial evidence (a = .01) that the mean value of an item in the
inventory is less than $600?

c. What is the target population for the above inferences?

d. Would normal distribution-based procedures be appropriate for answering the
above questions?

Bus. 5.61 Opver the past 5 years, the mean time for a warehouse to fill a buyer’s order has been
25 minutes. Officials of the company believe that the length of time has increased recently, either
due to a change in the workforce or due to a change in customer purchasing policies. The processing
times (in minutes) were recorded for a random sample of 15 orders processed over the past month.

28 25 27 31 10
26 30 15 55 12
24 32 28 42 38

Do the data present sufficient evidence to indicate that the mean time to fill an order has increased?
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Engin. 5.62 If a new process for mining copper is to be put into full-time operation, it must produce
an average of more than 50 tons of ore per day. A 15-day trial period gave the results shown in
the accompanying table.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Yield (tons) 57.8 583 503 385 479 157.0 38.6 1402 393 1387 492 139.7 483 592 497

a. Estimate the typical amount of ore produced by the mine using both a point
estimate and a 95% confidence interval.

b. Is there significant evidence that on a typical day the mine produces more than
50 tons of ore? Test by using a = .05.

Env. 5.63 The board of health of a particular state was called to investigate claims that raw pollut-
ants were being released into the river flowing past a small residential community. By applying
financial pressure, the state was able to get the violating company to make major concessions
toward the installation of a new water purification system. In the interim, different production
systems were to be initiated to help reduce the pollution level of water entering the stream. To
monitor the effect of the interim system, a random sample of 50 water specimens was taken
throughout the month at a location downstream from the plant. If y = 5.0 and s = .70, use the
sample data to determine whether the mean dissolved oxygen count of the water (in ppm) is less
than 5.2, the average reading at this location over the past year.

a. List the five parts of the statistical test, using a = .05.
b. Conduct the statistical test and state your conclusion.

Env. 5.64 The search for alternatives to oil as a major source of fuel and energy will inevitably bring
about many environmental challenges. These challenges will require solutions to problems in
such areas as strip mining and many others. Let us focus on one. If coal is considered as a major
source of fuel and energy, we will have to consider ways to keep large amounts of sulfur dioxide
(SO,) and particulates from getting into the air. This is especially important at large government
and industrial operations. Here are some possibilities.

1. Build the smokestack extremely high.

2. Remove the SO, and particulates from the coal prior to combustion.

3. Remove the SO, from the gases after the coal is burned but before the gases are
released into the atmosphere. This is accomplished by using a scrubber.

A new type of scrubber has been recently constructed and is set for testing at a power plant.
Over a 15-day period, samples are obtained three times daily from gases emitted from the stack.
The amounts of SO, emissions (in pounds per million BTU) are given here:

Day
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
6 A.M. A58 129 176 - 082 .099 151 .084 155 163 .077 116  .132 .087 134 179
2PM. 066 135 .09 174 179 149 164 122 063 111 .059 118 134 066 .104
10 .M. A28 172 106 165 163 200 228 129 101 .068 .100 .119 125 182  .138

a. Estimate the average amount of SO, emissions during each of the three time
periods using 95% confidence intervals.

b. Does there appear to be a significant difference in the average amounts of SO,
emissions over the three time periods?

c. Combining the data over the entire day, is the average amount of SO, emissions
using the new scrubber less than .145, the average daily value for the old scrubber?

Soc. 5.65 As part of an overall evaluation of training methods, an experiment was conducted to
determine the average exercise capacity of healthy male army inductees. To do this, each
male in a random sample of 35 healthy army inductees exercised on a bicycle ergometer
(a device for measuring work done by the muscles) under a fixed workload until he tired.
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Blood pressure, pulse rate, and other indicators were carefully monitored to ensure that
no one’s health was in danger. The exercise capacities (mean time, in minutes) for the 35
inductees are listed here.

23 19 36 12 41 43 19
28 14 44 15 46 36 25
35 25 29 17 51 33 47
42 45 23 29 18 14 48
21 49 27 39 44 18 13

a. Use these data to construct a 95% confidence interval for w, the average
exercise capacity for healthy male inductees. Interpret your findings.
b. How would your interval change using a 99% confidence interval?

5.66 Using the data in Exercise 5.65, determine the number of sample observations that would
be required to estimate w to within 1 minute, using a 95% confidence interval.

H.R. 5.67 Faculty members in a state university system who resign within 10 years of initial employ-
ment are entitled to receive the money paid into a retirement system, plus 4% per year. Unfortu-
nately, experience has shown that the state is extremely slow in returning this money. Concerned
about such a practice, a local teachers’ organization decides to investigate. For a random sample of
50 employees who resigned from the state university system over the past 5 years, the average time
between the termination date and reimbursement was 75 days, with a standard deviation of 15 days.
Use the data to estimate the mean time to reimbursement, using a 95% confidence interval.

5.68 Refer to Exercise 5.67. After a confrontation with the teachers’ union, the state prom-
ised to make reimbursements within 60 days. Monitoring of the next 40 resignations yields an
average of 58 days, with a standard deviation of 10 days. If we assume that these 40 resignations
represent a random sample of the state’s future performance, estimate the mean reimbursement
time using a 99% confidence interval.

Bus. 5.69 Improperly filled orders are a costly problem for mail-order houses. To estimate the
mean loss per incorrectly filled order, a large firm plans to sample »n incorrectly filled orders and
to determine the added cost associated with each one. The firm estimates that the added cost
is between $40 and $400. How many incorrectly filled orders must be sampled to estimate the
mean additional cost using a 95% confidence interval of width $20?

Engin. 5.70 The recipe for producing a high-quality cement specifies that the required percentage of
Si0,is 6.2%. A quality control engineer evaluates this specification weekly by randomly selecting
samples from n = 20 batches on a daily basis. On a given day, she obtained the following values:

170 986 544 428 459 876 916 628 383 3.17
598 277 359 317 846 7.76 555 595 956 3.58

a. Estimate the mean percentage of SiO; using a 95% confidence interval.

b. Evaluate whether the percentage of SiO; is different from the value specified in
the recipe using an a = .05 test of hypotheses.

€. Produce a plot to determine if the procedures you used in parts (a) and (b) were valid.

5.71 Refer to Exercise 5.70.
a. Estimate the median percentage of SiO, using a 95% confidence interval.
b. Evaluate whether the median percentage of SiO, is different from 6.2% using an
a = .05 test of hypotheses.

5.72 Refer to Exercise 5.70. Generate 9,999 bootstrap samples from the 20 SiO, percentages.

a. Construct a 95% bootstrap confidence interval on the mean SiO; percentage.
Compare this interval to the interval obtained in Exercise 5.70(a).

b. Obtain the bootstrap p-value for testing whether the mean percentage of
Si0O; differs from 6.2%. Compare this value to the p-value for the test in
Exercise 5.70(b).

c. Why is there such a good agreement between the #-based and bootstrap values in
parts (a) and (b)?
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Med. 5.73 A medical team wants to evaluate the effectiveness of a new drug that has been proposed
for people with high intraocular pressure (IOP). Prior to running a full-scale clinical trial of
the drug, a pilot test was run using 10 patients with high IOP values. The n = 10 patients had
a mean decrease in IOP of y = 15.2 mm Hg with a standard deviation of the 10 IOPs equal to
s = 9.8 mm Hg after 15 weeks of using the drug. Determine the appropriate sample size for an
a = .01 test to have at most a .10 probability of failing to detect at least a 4 mm Hg decrease in
the mean IOP.

Gov. 5.74 A federal regulatory agency is investigating an advertised claim that a certain device can
increase the gasoline mileage of cars (mpg). Ten such devices are purchased and installed in cars
belonging to the agency. Gasoline mileage for each of the cars is recorded both before and after
installation. The data are recorded here.

Car
1 2 3 4 5 6 7 8 9 10 n x s
Before (mpg) 19.1 299 17.6 20.2 23.5 26.8 21.7 25.7 19.5 28.2 10 2322 425
After (mpg) 25.8 237 287 254 328 192 296 223 257 20.1 10 2533 425
Change (mpg) 6.7 —-6.2 111 52 93 76 79 34 6.2 -8.1 10 211 7.54

Place 90% confidence intervals on the average mpg for both the before and the after phases of
the study. Interpret these intervals. Does it appear that the device will significantly increase the
average mileage of cars?

5.75 Refer to Exercise 5.74.

a. The cars in the study appear to have grossly different mileages before the devices
were installed. Use the change data to test whether there has been a significant
gain in mileage after the devices were installed. Use o = .05.

b. Construct a 90% confidence interval for the mean change in mileage. On the
basis of this interval, can one reject the hypothesis that the mean change is either
zero or negative? (Note that the two-sided 90% confidence interval corresponds
to a one-tailed a = .05 test by using this decision rule: Reject Hy: u = g if po is
greater than the upper limit of the confidence interval.)

5.76 Refer to Exercise 5.74.
a. Calculate the probability of a Type 1I error for several values of ., the average
change in mileage. How do these values affect the conclusion you reached in
Exercise 5.75?
b. Suggest some changes in the way in which this study in Exercise 5.74 was conducted.
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6.1 Introduction and Abstract of Research Study

The inferences we have made so far have concerned a parameter from a single
population. Quite often we are faced with an inference involving a comparison
of parameters from different populations. We might wish to compare the mean
corn crop yields for two different varieties of corn, the mean annual incomes for
two ethnic groups, the mean nitrogen contents of two different lakes, or the mean
lengths of time between administration and eventual relief for two different
antivertigo drugs.

In many sampling situations, we will select independent random samples
from two populations to compare the populations’ parameters. The statistics
used to make these inferences will, in many cases, be the differences between
the corresponding sample statistics. Suppose we select independent random
samples of n; observations from one population and n, observations from
a second population. We will use the difference between the sample means,
(y; — ,), to make an inference about the difference between the population
means, (i, — p1,).

The following theorem will help in finding the sampling distribution for
the difference between sample statistics computed from independent random
samples.

300
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6.1 Introduction and Abstract of Research Study 301

THEOREM 6.1 If two independent random variables y; and y, are normally distributed
with means and variances (u, oj) and (u,, o5), respectively, the difference
between the random variables is normally distributed with mean (u, — u,)
and variance (o} + o3). Similarly, the sum (y, + y,) of the random variables
is normally distributed with mean (u, + u,) and variance (o] + 03).

Theorem 6.1 can be applied directly to find the sampling distribution of the
difference between two independent sample means or two independent sample
proportions. The Central Limit Theorem (discussed in Chapter 4) implies that
if two random samples of sizes, n; and n,, are independently selected from two
populations, 1 and 2, then where n; and n, are large, the sampling distributions of
y, and y, will be approximately normal with means and variances (u,, o7/n,) and
(uy, 0°3/n,),respectively. Consequently, because y, and y, are independent, normally
distributed random variables, it follows from Theorem 6.1 that the sampling
distribution for the difference in the sample means, (y, — y,), is approximately
normal with a mean of

K=y, = 1 T e

a variance of

2 2
ol o
0'%,7 =02 +o2=—"1+-2
172 N Y2 n, n,
and a standard error of
ot | 03
Tn TN, T
1 2
Properties of the 1. The sampling distribution of (y, — y,) is approximately normal for large
Sampling samples.
Distribution for the 2. The mean of the sampling distribution, u; _5 ,is equal to the difference

Difference Between
Two Sample Means,
(.71 - .‘72)

between the population means, (1, — u,).
3. The standard error of the sampling distribution is

2 2
(03 (ox
91, %

o- - =
Y172 n, n,

The sampling distribution of the difference between two independent, normally
distributed sample means is shown in Figure 6.1.

The sampling distribution for the difference between two sample means,
(y; — ¥,), can be used to answer the same types of questions as we asked about
the sampling distribution for y in Chapter 4. Because sample statistics are used
to make inferences about corresponding population parameters, we can use the
sampling distribution of a statistic to calculate the probability that the statistic will
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FIGURE 6.1 fG1=72)
Sampling distribution for
the difference between
two sample means
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2
014,92
ny ny

PR Y=
I I 1
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be within a specified distance of the population parameter. For example, we could
use the sampling distribution of the difference in sample means to calculate the
probability that (y, — y,) will be within a specified distance of the unknown dif-
ference in population means, (u, — u,). Inferences (estimations or tests) about
(u; — m,) will be discussed in succeeding sections of this chapter.

Abstract of Research Study: Effects of an Oil Spill
on Plant Growth

On January 7, 1992, an underground oil pipeline ruptured and caused the contami-
nation of a marsh along the Chiltipin Creek in San Patricio County, Texas. The
cleanup process consisted of a number of procedures, including vacuuming the
spilled oil, burning the contaminated region in the marsh to remove the remaining
oil, and then planting native plants in the contaminated region. Federal regulations
require the company responsible for the oil spill to document that the contami-
nated region has been restored to its prespill condition. To evaluate the effective-
ness of the cleanup process and, in particular, to study the residual effects of the
oil spill on the flora, researchers designed a study of plant growth 1 year after the
burning. In an unpublished Texas A&M University dissertation, Newman (1998)
describes the researchers’ plan for evaluating the effect of the oil spill on Distichlis
spicata, a flora of particular importance to the area of the spill.

After holding lengthy discussions, reading the relevant literature, and searching
many data bases about similar sites and flora, the researchers found there was no spe-
cific information on the flora in this region prior to the oil spill. They determined that
the flora parameters of interest were the average Distichlis spicata density u after
burning the spill region, the variability o in flora density, and the proportion 7 of the
spill region in which the flora density was essentially zero. Since there was no relevant
information on flora density in the spill region prior to the spill, it was necessary to
evaluate the flora density in unaffected areas of the marsh to determine whether
the plant density had changed after the oil spill. The researchers located several
regions that had not been contaminated by the oil spill. The spill region and the unaf-
fected regions were divided into tracts of nearly the same size. The number of tracts
needed in the study was determined by specifying how accurately the parameters pu,
o, and 7 needed to be estimated in order to achieve a level of precision as specified
by the width of 95% confidence intervals and by the power of tests of hypotheses.
From these calculations and within budget and time limitations, it was decided that
40 tracts from both the spill and the unaffected areas would be used in the study.
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Forty tracts of exactly the same size were randomly selected in these locations, and
the Distichlis spicata density was recorded. Similar measurements were taken within
the spill area of the marsh. The data are presented in Section 6.7.

From the data, summary statistics were computed in order to compare the
two sites. The average flora density in the control sites is y.,, = 38.48 with a stand-
ard deviation of s, = 16.37.The sites within the spill region have an average den-
sity of yg,;; = 26.93 with a standard deviation of sg,; = 9.88.Thus, the control sites
have a larger average flora density and a greater variability in flora density than do
the sites within the spill region. Whether these observed differences in flora density
reflect similar differences in all the sites and not just the ones included in the study
will require a statistical analysis of the data. We will discuss the construction of con-
fidence intervals and statistical tests about the differences between uc,, and pg,y
in Section 6.7 The estimation and testing of the population standard deviations, os,
and population proportions, 7rs, will be the topic of Chapters 7 and 10. At the end
of this chapter, we will provide an analysis of the data sets to determine if there is
evidence that the conditions in the spill area have been returned to a state that is
similar to its prespill condition.

6.2 Inferences About u; — ua: Independent Samples

In situations where we are making inferences about u, — u, based on random
samples independently selected from two populations, we will consider three
cases:

Case 1. Both population distributions are normally distributed with
g1 = 0.

Case 2. Both sample sizes, n; and ny, are large.

Case 3. The sample sizes, 1y or ny, are small, and the population
distributions are nonnormal.

In this section, we will consider the situation in which we are independently select-
ing random samples from two populations that have normal distributions with
different means, 1 and u,. The data will be summarized into the statistics: sample
means y, and y, and sample standard deviations s; and s,. We will compare the two
populations by constructing appropriate graphs, confidence intervals for w, — u,,
and tests of hypotheses concerning the difference u, — w,.

A logical point estimate for the difference in population means is the sample
difference y, — y,. The standard error for the difference in sample means is more
complicated than for a single sample mean, but the confidence interval has the
same form: point estimate *f,,, (standard error). A general confidence interval for
1, — M, with a confidence level of (1 — «) is given here for the situations oy = o,.

Confidence 1 1
Interval for p; — 2, 01— ¥) = LapSp\| T~ + —
ngn

Independent Samples
Equal Variances where

—1)s2 + (n, — 1)s3
s =\/(n1 )i + [y )3 and df = n, + n, — 2
P n +n, —2
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The sampling distribution of y, — y, is a normal distribution with standard
deviation

o} 0} o2 g% 1 1
O 5, =A== — =0y + —
ny n, ny n, ngoon

because we require that the two populations have the same standard deviation o
If we knew the value of o, then we would use z,/; in the formula for the confidence
interval. Because o is unknown in most cases, we must estimate its value. This esti-
mate is denoted by s, and is determined by combining (pooling) the two independ-
s },, aweighted  entestimates of ,s1,and s,. In fact, s is a weighted average of the sample variances
average  si and s3. We have to estimate the standard deviation of the point estimate of w; — u,,
so we must use the percentile from the ¢ distribution, #,/,, in place of the normal
percentile, z,/,. The degrees of freedom for the t-percentile are df = n, + n, — 2
because we have a total of n; + n, data values and two parameters, i and u,, that
must be estimated prior to estimating the standard deviation o. Remember that
we use y, and y, in place of w; and uy, respectively, in the formulas for s and s3.
Recall that we are assuming that the two populations from which we draw the
samples have normal distributions with a common variance o?. If the confidence
interval presented was valid only when these assumptions were met exactly, the
estimation procedure would be of limited use. Fortunately, the confidence coeffi-
cient remains relatively stable if both distributions are mound-shaped and the sam-
ple sizes are approximately equal. For those situations in which these conditions do
not hold, we will discuss alternative procedures in this section and in Section 6.3.

EXAMPLE 6.1

Company officials were concerned about the length of time a particular drug prod-
uct retained its potency. A random sample of n; = 10 bottles of the product was
drawn from the production line and analyzed for potency.

A second sample of n; = 10 bottles was obtained and stored in a regulated
environment for a period of 1 year. The readings obtained from each sample are
given in Table 6.1.

TABLE 6.1
Potency reading for Fresh Stored
two samples |15 10.6 9.8 9.7
10.5 10.7 9.6 9.5
10.3 10.2 10.1 9.6
10.8 10.0 10.2 9.8
9.8 10.6 10.1 9.9

Suppose we let 1 denote the mean potency for all bottles that might be sam-
pled coming off the production line and let u, denote the mean potency for all
bottles that may be retained for a period of 1 year. Estimate w, — u, using a 95%
confidence interval.

Solution The potency readings for the fresh and stored bottles are plotted in
Figures 6.2(a) and (b) in normal probability plots to assess the normality assump-
tion. We find that the plotted points in both plots fall very close to a straight line,
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and, hence, the normality condition appears to be satisfied for both types of bottles.
The summary statistics for the two samples are presented next.

Percent

Fresh Bottles Stored Bottles
ny = 10 Ny = 10

y; = 10.37 v, =9.83

s1 = 0.3234 s, = 0.2406

In Chapter 7, we will provide a test of equality for two population variances.
However, for the above data, the computed sample standard deviations are
approximately equal considering the small sample sizes. Thus, the conditions
required to construct a confidence interval on u, — u,—that is, normality, equal
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variances, and independent random samples —appear to be satisfied. The estimate
of the common standard deviation o is

. J (n, — 1)s? + (n, — 1)s3 _ J9(.3234)2 + 9(.2406)2

n +n,—2 18

= 285

From Table 2 in the Appendix, the t-percentile based on df = n, + n, —
2 =18 and a = .0251s 2.101. A 95% confidence interval for the difference in mean
potencies is

(10.37 — 9.83) = 2.101(.285)V1/10 + 1/10
54 = 268 = (272, .808)

We estimate that the difference in mean potencies for the bottles from the produc-
tion line and those stored for 1 year, w; — u,, lies in the interval .272 to .808. Com-
pany officials would then have to evaluate whether a decrease in mean potency of
a size between .272 and .808 would have a practical impact on the useful potency
of the drug. m

EXAMPLE 6.2

During the past 20 years, the domestic automobile industry has been repeatedly
challenged by consumer groups to raise the quality of their cars to the level of
comparably priced imports. An automobile industry association decides to
compare the mean repair costs of two models: a popular full-sized imported car
and a widely purchased full-sized domestic car. The engineering firm hired to
run the tests proposes driving the vehicles at a speed of 30 mph into a concrete
barrier. The costs of the repairs to the vehicles will then be assessed. To account
for variation in the damage to the vehicles, it is decided to use 10 imported cars
and 10 domestic cars. After completing the crash testing, it was determined that
the speed of one of the imported cars had exceeded 30 mph and thus was not a
valid test run. Because of budget constraints, it was decided not to run another
crash test using a new imported vehicle. The data, recorded in thousands of dollars,
produced sample means and standard deviations as shown in Table 6.2. Use these
data to construct a 95% confidence interval on the difference in mean repair costs,

(/Jvdomestic - Mimported) = (/-'Ll - IJ“Z)-

TABLE 6.2
S . Domestic  Imported
ummary of repair cost
data for Example 6.2 Sample Size 10 9
Sample Mean 8.27 6.78
Sample Standard Deviation 2.956 2.565

Solution A normal probability of the data for each of the two samples suggests that
the populations of damage repairs are nearly normally distributed. Also, considering
the very small sample sizes, the closeness in size of the sample standard deviations
would not indicate a difference in the population standard deviations; that is, it
is appropriate to conclude that o, =~ ¢, = 0. Thus, the conditions necessary for
applying the pooled #-based confidence intervals would appear to be satisfied.

The difference in sample means is

y, =y, =827 —6.78 = 1.49
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The estimate of the common standard deviation in repair costs o is

B \/(n1 — )53+ (n, — 1)s3 \/(10 —1)(2.956)% + (9 — 1)(2.565)*
a n +n,—2 10+9-2

s = 2.778

P

The r-percentile for «/2 = .025 and df = 10 + 9 — 2 = 17 is given in Table 2
of the Appendix as 2.110. A 95% confidence interval for the difference in mean
repair costs is given here.

S5 o4y 1 N 1

V. s A — 4 —

Yi 7= Y2 = LapS) n, o on
Substituting the values from the repair cost study into the formula, we obtain
1
10

1.49 = 2.1102.778) + — =149 =2.69 = (—1.20,4.18)

O | —

Thus, we estimate the difference in mean repair costs between particular brands
of domestic and imported cars tested to lie somewhere between —1.20 and 4.18. If
we multiply these limits by $1,000, the 95% confidence interval for the difference in
mean repair costs is —$1,200 to $4,180. This interval includes both positive and nega-
tive values for u, — u,, so we are unable to determine whether the mean repair cost
for domestic cars is larger or smaller than the mean repair cost for imported cars. B

We can also test a hypothesis about the difference between two population
means. As with any test procedure, we begin by specifying a research hypothesis for
the difference in population means. Thus, we might, for example, specify that the
difference wu, — u, is greater than some value Dy. (Note: Dy will often be 0.) The
entire test procedure is summarized here.

A Statistical Test for The assumptions under which the test will be valid are the same as were required
M — p2, Independent for constructing the confidence interval on u, — w,: population distributions
Samples, Equal are normal with equal variances, and the two random samples are independent.
Variances Hy: 1. p, —p, =D, (Dyis a specified value, often 0)

2.y — up =D

3. wy — =Dy

H,: 1wy — > D,

2. py — uy <D,

3w —my F Dy

TS.: (= 0 = ¥) = D,
1. 4
% wy

R.R.: For alevel «, Type I error rate and with df = n, + n, — 2,
1. Reject Hyif t =¢,.
2. Reject Hyif t = —t¢,.
3. Reject Hyif |1 = ¢,.

Check assumptions and draw conclusions.
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EXAMPLE 6.3

An experiment was conducted to evaluate the effectiveness of a treatment for
tapeworm in the stomachs of sheep. A random sample of 24 worm-infected lambs
of approximately the same age and health was randomly divided into two groups.
Twelve of the lambs were injected with the drug, and the remaining 12 were left
untreated. After a 6-month period, the lambs were slaughtered, and the worm
counts recorded are listed in Table 6.3:

TABLE 6.3
Sample data for treated Drug-Treated Sheep 18 43 28 50 16 32 13 35 38 33 6 7

and untreated sheep | Untreated Sheep 40 54 26 63 21 37 39 23 48 58 28 39

a. Is there significant evidence that the untreated lambs have a mean
tapeworm count that is more than five units greater than the mean
count for the treated lambs? Use an a = .05 test.

. What is the level of significance for this test?

c. Place a 95% confidence interval on u, — u, to assess the size of the

difference in the two means.

(o2

Solution

a. Boxplots of the worm counts for the treated and untreated lambs are
displayed in Figure 6.3. From the plots, we can observe that the data
for the untreated lambs are symmetric with no outliers and the data
for the treated lambs are slightly skewed to the left with no outliers.
Also, the widths of the two boxes are approximately equal. Thus, the
condition that the population distributions are normal with equal
variances appears to be satisfied. The condition of independence of
the worm counts both between and within the two groups is evaluated
by considering how the lambs were selected, assigned to the two
groups, and cared for during the 6-month experiment. Because the 24
lambs were randomly selected from a representative herd of infected
lambs, were randomly assigned to the treated and untreated groups,
and were properly separated and cared for during the 6-month
period of the experiment, the 24 worm counts are presumed to be
independent random samples from the two populations. Finally, we
can observe from the boxplots that the untreated lambs appear to
have higher worm counts than the treated lambs because the median
line is higher for the untreated group. The following test confirms
our observation. The data for the treated and untreated sheep are
summarized next.

FIGURE 6.3

Boxplots of worm counts
for treated (1) and 50 1
untreated (2) sheep 40 A

30 A
20 A
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60

‘Worm count

T T
1 2
Treatment group
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Drug-Treated Lambs Untreated Lambs

ny = 12 nG = 12
y, = 26.58 ¥y, = 39.67
52 = 14.36 51 =13.86

The sample standard deviations are of a similar size, so from this
and from our observation from the boxplot, the pooled estimate of the
common population standard deviation o is now computed:

S, = =

\/(n1 — Dt - D \/11(13.86)2 + 11(1436)° _ 141
n, +n,—2 22

The test procedure for evaluation of the research hypothesis that
the untreated lambs have a mean tapeworm count (u1) that is more
than five units greater than the mean count (u,) of the treated lambs
is as follows:

Hy: 1 — po =5 (drug does not reduce the mean tapeworm count
by more than 5 units)

H,: 1 — po > 5 (drug does reduce the mean tapeworm count by
more than 5 units)

5. —3,) - D 67 — 26.58) —
TS:r= W1 =Y) = Do (3967 -2658) =5 _, )

s Vi + 41VE + 5

P 1

R.R:: Reject Hyif t = 1.717, where 1.717 is the value from Table 2 in the
Appendix for a critical t-value witha = .05 and df = n; + ny — 2 =22.

Conclusion: Because the observed value of ¢ = 1.404 is less than 1.717
and hence is not in the rejection region, there is insufficient evidence
to conclude that the drug treatment reduces the mean tapeworm
count by five or more units.

b. Using Table 2 in the Appendix with ¢ = 1.404 and df = 22, we can bound
the level of significance (p-value) in the range .05 < p-value < .10.

Using the R function pi(t., df), which calculates P(t < t.), we can
obtain the p-value for the calculated value of the T.S., t, = 1.404.

p-value = P(t = 1.404) = 1 — P(t = 1.404) = 1— pr(1.404,22) =
1- 913 = .087

C. A 95% confidence interval on u, — u, provides the experimenter
with an estimate of the size of the reduction in mean tapeworm count
obtained by using the drug. This interval can be computed as follows:

_ _ 1 1
(1 = ¥2) = 158, "T + nj

[ 1 1
(39.67 — 26.58) = (2.074)(14.11) I + - 13.09 = 11.95 = (1.14,25.4)

Thus, we are 95% certain that the reduction in mean tapeworm
count through the use of the drug is between 1.1 and 25.0 worms.
The confidence interval contains values that are less than 5, which
is consistent with our conclusions. W
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The confidence interval and test procedures for comparing two population means
presented in this section require three conditions to be satisfied. The first and most criti-
cal condition is that the two random samples are independent. Practically, we mean that
the two samples are randomly selected from two distinct populations and that the ele-
ments of one sample are statistically independent of those of the second sample. Two
types of dependencies (data are not independent) commonly occur in experiments and
studies. The data may have a cluster effect, which often results when the data have been
collected in subgroups. For example, 50 children are selected from five different class-
rooms for an experiment to compare the effectiveness of two tutoring techniques. The
children are randomly assigned to one of the two techniques. Because children from
the same classroom have a common teacher and hence may tend to be more similar in
their academic achievement than children from different classrooms, the condition of
independence between participants in the study may be lacking.

A second type of dependence is the result of serial or spatial correlation. When
measurements are taken over time, observations that are closer together in time tend
to be serially correlated—that is, more similar than observations collected at greatly
different times. A similar dependence occurs when the data are collected at different
locations—for example, water samples taken at various locations in a lake to assess
whether a chemical plant is discharging pollutants into the lake. Measurements that
are physically closer to each other are more likely to be similar than measurements
taken farther apart. This type of dependence is spatial correlation. When the data are
dependent, the procedures based on the ¢ distribution produce confidence intervals
having coverage probabilities different from the intended values and tests of hypoth-
eses having Type I error rates different from the stated values. There are appropriate
statistical procedures for handling this type of data, but they are more advanced.
A book on longitudinal or repeated measures data analysis or the analysis of spatial
data can provide the details for the analysis of dependent data.

When the population distributions are either very heavily tailed or highly
skewed, the coverage probability for confidence intervals and the level and power
of the t test will differ greatly from the stated values. A nonparametric alternative
to the ¢ test is presented in the next section; this test does not require normality.

The third assumption is that the two population variances, of and o3, are
equal. In Chapter 7, a formal test of the equality of the two variances, named the
F test, will be presented. However, the F test is not very reliable if the population
distributions are not close to a normal distribution. Thus, use of the F test is not rec-
ommended in deciding whether the equal variance t-procedures are appropriate.
If there is evidence in the data that the two variances are considerably different,
then alternatives to the equal-variance ¢ test should be implemented. In particular,
if one of the variances is at least four times the other (e.g., 0} = 403), then the
equal-variance ¢ test and confidence intervals should not be used.

To illustrate the effect of unequal variances, a computer simulation was per-
formed in which two independent random samples were generated from normal
populations having the same means but unequal variances: o1 = ko with k = .25,
.5, 1, 2, and 4. For each combination of sample sizes and standard deviations,
1,000 simulations were run. For each simulation, a level .05 test was conducted.
The proportions of the 1,000 tests that incorrectly rejected Hy are presented in
Table 6.4. If the pooled ¢ test is unaffected by the unequal variances, we would
expect the proportions to be close to .05, the intended level, in all cases.

From the results in Table 6.4, we can observe that when the sample sizes
are equal, the proportion of Type I errors remains close to .05 (ranging from .042
to .065). When the sample sizes are different, the proportion of Type I errors

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TABLE 6.4

The effect of unequal
variances on the Type I
error rates of the pooled
1 test

Approximate t Test
for Independent
Samples, Unequal
Variance

6.2 Inferences About u; — wa: Independent Samples 31

o1 = ko,

ny ny k=.25 .50 1 2 4

10 10 .065 .042 .059 .045 .063
10 20 .016 .017 .049 114 165
10 40 .001 .004 .046 150 .307
15 15 .053 .043 .056 .060 .060
15 30 .007 .023 .066 129 174
15 45 .004 .010 .069 148 250

deviates greatly from .05. The more serious case occurs when the smaller sample
size is associated with the larger variance. In this case, the error rates are much larger
than .05. For example, when n; = 10, n, = 40, and o = 407, the error rate is .307.
However, when n; = 10, n, = 10, and o = 407, the error rate is .063, much closer to
.05.This is remarkable and provides a convincing argument to use equal sample sizes.
In the situation in which the sample variances (s7and s3) suggest that 0% # o3,

there is an approximate ¢ test using the test statistic
= (1 = ¥,) = Dy

2 2
s s
L, 5

n, n

Welch (1947) showed that the percentage points of a ¢ distribution with modified
degrees of freedom, known as Welch-Satterthwaite approximation, can be used to
set the rejection region for ¢'. This approximate ¢ test is summarized here.

Ho: 1.opy =y = Dy Hg 1wy = py > Dy
2.y — =D, 2.y — <D,
3. —myp =Dy 3. m —mp #F Dy
15 =R D,
st 8
Wy

R.R.: For alevel a, Type I error rate,
1. Reject Hyif t' = ¢,
2. Reject Hyif t' = —t,
3. Reject Hyif [t'| = 1,

with
(n, — 1)n, — 1) siny
df = andc = ———
(1 —c)n —1) + c*n, — 1) s . 53
n, n

Note: If the computed value of df is not an integer, round down to the
nearest integer.
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312 CHAPTER 6 INFERENCES COMPARING TWO POPULATION CENTRAL VALUES

The test based on the ¢ statistic is sometimes referred to as the separate-variance
¢ test because we use the separate sample variances s and s3 rather than a pooled
sample variance.

When there is a large difference between o and o;, we must also modify
the confidence interval for u, — u,. The following formula is developed from the
separate-variance ¢ test.

Approximate 2 2

Confidence 0, —»,) * lap nfl + nfz

Interval for p; — oy, L 2
Independent where the ¢ percentile has

Samples with o1 # o>

(n, —1)(n, — 1) : si/my
(1—c)Pm —1) +c*n,—1) W€ ﬁ . ﬁ
nnon

EXAMPLE 6.4

The weekend athlete often incurs an injury due to not having the most appropriate
or latest equipment. For example, tennis elbow is an injury that is the result of the
stress encountered by the elbow when striking a tennis ball. There have been enor-
mous improvements in the design of tennis rackets in the last 20 years. To investi-
gate whether the new oversized racket delivers less stress to the elbow than does a
more conventionally sized racket, a group of 45 tennis players of intermediate skill
volunteered to participate in the study. Because there was no current information
on the oversized rackets, an unbalanced design was selected. Thirty-three players
were randomly assigned to use the oversized racket, and the remaining 12 players
used the conventionally sized racket. The force on the elbow just after the impact
of a forehand strike of a tennis ball was measured five times for each of the 45 ten-
nis players. The mean force was then taken of the five force readings; the summary
of these 45 force readings is given in Table 6.5.

TABLE 6.5 : :
Oversized Conventional
Summary of force
readings for Example 6.4 Sample Size 33 12
Sample Mean 252 339
Sample Standard Deviation 8.6 17.4

Use the information in Table 6.5 to test the research hypothesis that a tennis player
would encounter a smaller mean force at the elbow using an oversized racket than
he or she would encounter using a conventionally sized racket.

Solution A normal probability of the force data for each type of racket suggests
that the two populations of forces are nearly normally distributed. That the sample
standard deviation in the forces for the conventionally sized racket is more than
double that for the oversized racket would indicate a difference in the population
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6.2 Inferences About uy — u2: Independent Samples 313

standard deviations. Thus, it would not be appropriate to conclude that o, = o,.
The separate-variance ¢ test was applied to the data. The test procedure for evalu-
ating the research hypothesis that the oversized racket has a smaller mean force is
as follows:

Hy: w1 = pp (that is, oversized racket does not have smaller mean force)
H,: w < p; (that is, oversized racket has smaller mean force)

Writing the hypotheses in terms of u; — u, yields
Hy: py — puy,=0versus H,: puy — p, <0

v, —y,) — D 252 —339) - 0
T8¢ = WY =D | D=0 _ 166
s N 53 (8.6)° N (17.4)?
n, n, 33 12

To compute the rejection region and p-value, we need to compute the approximate
df for ¢

2 2
s1/ny (8.6)*/33
= = = .0816
CTY 2T 867 (1747
L2 +
n, n, 33 12

(”1 — 1)(”2 - 1)
(1= cny = 1) + Sy, — 1)
(33 —1)12 —1)

T - 816G - 1) + (os162 - 1) 0

df =

We round 13.01 down to 13.
Table 2 in the Appendix has the ¢t-percentile for a = .05 equal to 1.771. We can
now construct the rejection region.
R.R.: For &« = .05 and df = 13, reject Hpif ¢’ < —1.771.

Because ¢ = —1.66 is not less than —1.771, we fail to reject Hy and conclude that
there is not significant evidence that the mean force of oversized rackets is smaller
than the mean force of conventionally sized rackets. We can bound the p-value
using Table 2 in the Appendix with df = 13. With ¢ = —1.66, we conclude .05 <
p-value < .10. Using a software package, the p-value is computed to be .060. B

The standard practice in many studies is to always use the pooled ¢ test. To
illustrate that this type of practice may lead to improper conclusions, we will con-
duct the pooled ¢ test on the above data. The estimate of the common standard
deviation in mean force o is

5, = \/(nl - 1)S% + (I’l2 - 1)S% — \/(33 — 1)(86)2 + (12 — 1)(17-4)2 = 11.5104
n o+ n, -2 3B3+12-2

5. —3,) - D, (252 —33.9) —
Ts.: o= yf) - 0_ (25 3319) f — 2024
1151044 — 4 —
* n, n, 33 12
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314 CHAPTER 6 INFERENCES COMPARING TWO POPULATION CENTRAL VALUES

The t-percentile for @ = .05 and df = 33 + 12 — 2 = 43 is given in Table 2 of the
Appendix as 1.684 (for df = 40). We can now construct the rejection region.

R.R.: For a = .05 and df = 43, reject Hy if t < —1.684.

Because t = —2.24 is less than —1.684, we would reject Hy and conclude that there
is significant evidence that the mean force of oversized rackets is smaller than the
mean force of conventionally sized rackets. Using a software package, the p-value is
computed to be .015. Thus, an application of the pooled ¢ test when there is strong
evidence of a difference in variances would lead to a wrong conclusion concerning
the difference in the two means.

Although we failed to determine that the mean force delivered by the over-
sized racket was statistically significantly lower than the mean force delivered by
the conventionally sized racket, the researchers may be interested in the range of
values for the difference in the mean forces of the two types of rackets. We will now
estimate the size of the difference in the two mean forces, u; — u,, using a 95%
confidence interval.

Using df = 13, as computed previously, the t-percentile from Table 2 in the
Appendix is tyn = tgs = 2.160. Thus, the confidence interval is given by the follow-
ing calculations:

2 2 2 2
Fo = B = ooyl + 52 = 252 — 339 = 2,16, 80, (174)
o “ﬂ\/nin 33 12

1 2
= —87 = 1132

Thus, we are 95% confident that the difference in the mean forces is between
—20.02 and 2.62. An expert who studies the effect on the elbow of varying amounts
of force would then have to determine if this range of forces has any practical
significance on injuries to the elbow of tennis players.

To illustrate that the separate-variance ¢ test is less affected by unequal
variances than is the pooled ¢ test, the data from the computer simulation reported
in Table 6.4 were analyzed using the separate-variance ¢ test. The proportion of the
1,000 tests that incorrectly rejected Hy is presented in Table 6.6. If the separate-
variance ¢ test was unaffected by the unequal variances, we would expect the
proportions to be close to .05, the intended level, in all cases.

From the results in Table 6.6, we can observe that the separate-variance ¢ test
has aType I error rate that is consistently very close to .05 in all the cases considered.
On the other hand, the pooled ¢ test has Type I error rates very different from .05
when the sample sizes are unequal and we sample from populations having very
different variances.

In this section, we developed pooled-variance ¢t methods based on the require-
ment of independent random samples from normal populations with equal population

TABLE 6.6 0
The effect of unequal g1~ ko
variances on the Type I n n k=25 50 1 2 4
error rates of the

separate-variance f test 10 10 055 .040 .056 .038 .052
10 20 .055 .044 .049 .059 .051
10 40 .049 .047 .043 .041 .055
15 15 .044 .041 .054 .055 .057
15 30 .052 .039 .051 .043 .052

15 45 058 .042 .055 .050 .058
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6.3

Wilcoxon rank sum
test

FIGURE 6.4
Skewed population
distributions identical
in shape but shifted

6.3 A Nonparametric Alternative: The Wilcoxon Rank Sum Test 315

variances. For situations when the variances are not equal, we introduced the separate-
variance ¢' statistic. Confidence intervals and hypothesis tests based on these proce-
dures (¢ or t') need not give identical results. Standard computer packages often report
the results of both ¢ and ¢ tests. Which of these results should you use in your report?

If the sample sizes are equal and the population variances are equal, the
separate-variance ¢ test and the pooled ¢ test give algebraically identical results;
that is, the computed ¢ equals the computed ¢'. Thus, why not always use ¢’ in place
of t when n, = n,? The reason we would select ¢ over ¢’ is that the df for ¢ are nearly
always larger than the df for ¢, and, hence, the power of the ¢ test is greater than
the power of the ¢ test when the variances are equal. When the sample sizes and
variances are very unequal, the results of the ¢ and ¢’ procedures may differ greatly.
The evidence in such cases indicates that the separate-variance methods are some-
what more reliable and more conservative than the results of the pooled t methods.
However, if the populations have both different means and different variances, an
examination of just the size of the difference in their means, u, — u,, would be an
inadequate description of how the populations differ. We should always examine
the size of the differences in both the means and the standard deviations of the
populations being compared. In Chapter 7, we will discuss procedures for examin-
ing the difference in the standard deviations of two populations.

A Nonparametric Alternative:
The Wilcoxon Rank Sum Test

The two-sample ¢ test of the previous section was based on several conditions:
independent samples, normality, and equal variances. When the conditions of nor-
mality and equal variances are not valid but the sample sizes are large, the results
using a ¢ (or t') test are approximately correct. There is, however, an alternative
test procedure that requires less stringent conditions. This procedure, called the
Wilcoxon rank sum test, is discussed here.

The assumptions for this test are that we have two independent random sam-
ples of sizes n; and ny:

Xy Xgs ooy X, and Yy, Y,

The population distributions of the xs and ys are identical with the exception that
one distribution may be shifted to the right of the other distribution, as shown in
Figure 6.4. We model this relationship by stating

yEx+A

14 A

12 4
.10 A
.08 +
.06 -
.04 -
.02 -

0 -

f)

0 10 20 30
v, value of random variable
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316 CHAPTER 6 INFERENCES COMPARING TWO POPULATION CENTRAL VALUES

that the distribution of y equals the distribution of x plus a shift of size A. When A
is a positive number, the population (treatment) associated with the y-values tends
to have larger values than the population (treatment) associated with the x-values.
In the previous section, A = w; — u,; that is, we were evaluating the difference in
the population means. In this section, we will consider the difference in the popu-
lations more generally. Furthermore, the ¢-based procedures from Chapter 5 and
Section 6.2 required that the population distributions have a normal distribution.
The Wilcoxon rank sum test does not impose this restriction. Thus, the Wilcoxon
procedure is more broadly applicable than the ¢-based procedures, especially for
small sample sizes.

Because we are now allowing the population distributions to be nonnormal,
the rank sum procedure must deal with the possibility of extreme observations in
the data. One way to handle samples containing extreme values is to replace each
data value with its rank (from lowest to highest) in the combined sample —that is,
the sample consisting of the data from both populations. The smallest value in the
combined sample is assigned the rank of 1, and the largest value is assigned the
rank of N = ny + np. The ranks are not affected by how far the smallest (largest)
data value is from next smallest (largest) data value. Thus, extreme values in data
sets do not have as strong an effect on the rank sum statistic as they did in the
t-based procedures.

The calculation of the rank sum statistic consists of the following steps:

1. List the data values in the combined data set from smallest to
largest.

2. In the next column, assign the numbers 1 to N to the data values with 1
assigned to the smallest value and N to the largest value. These are the

ranks ranks of the observations.

3. If there are ties—that is, duplicated values—in the combined data set,
the ranks for the observations in a tie are taken to be the average of
the ranks for those observations.

4. Let T denote the sum of the ranks for the observations from
population 1.

If the null hypothesis of identical population distributions is true, the n; ranks
from population 1 are just a random sample from the N integers 1,..., N. Thus,
under the null hypothesis, the distribution of the sums of the ranks 7 depends only
on the sample sizes, n; and n,, and does not depend on the shape of the population
distributions. Under the null hypothesis, the sampling distribution of 7 has a mean
and variance given by

+ny+ 1
wr = mln ¥ 1) an ) and o% = 7”11’212 (n, +n, + 1)

Intuitively, if 7" is much smaller (or larger) than w,, we have evidence that the
null hypothesis is false and in fact the population distributions are not equal.
The rejection region for the rank sum test specifies the size of the difference
between T and u, for the null hypothesis to be rejected. Because the distribution
of T under the null hypothesis does not depend on the shape of the population
distributions, Table 5 in the Appendix provides the critical values for the test
regardless of the shape of the population distribution. The Wilcoxon rank sum
test is summarized here.
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Wilcoxon Rank (mp =10, ny = 10)

Sum Test* Hy: The two populations are identical (A = 0).
H,: 1. Population 1 is shifted to the right of population 2 (A > 0).
2. Population 1 is shifted to the left of population 2 (A < 0).
3. Populations 1 and 2 are shifted from each other (A # 0).

T.S.: T, the sum of the ranks in sample 1

R.R.: Use Table 5 in the Appendix to find critical values for 7y and 77 ;
1. Reject H if T > Ty (one-tailed from Table 5).
2. Reject Hy if T < T (one-tailed from Table 5).
3. Reject Hyif T> Tyor T < Ty, (two-tailed from Table 5).

Check assumptions and draw conclusions.

*This test is equivalent to the Mann-Whitney U test (Conover, 1999).

After the completion of the test of hypotheses, we need to assess the size of the
difference in the two populations (treatments). That is, we need to obtain a sample
estimate of A and place a confidence interval on A. We use the Wilcoxon rank
sum statistics to produce the confidence interval for A. First, obtain the M = njn;
possible differences in the two data sets: x; — y;fori=1,...,njandj=1...,n.
The estimator of A is the median of these M differences:

A = median[(x; — y),wherei=1,...,njandj=1,...,n,]

Let D1y = Dy = D) denote the ordered values of the M differences, x; — y;. If
M = nin, is odd, take

A= D1
If M = nyn, is even, take
~ 1
A= E [D(M/Z) + D(M/2+])]

We obtain a 95% confidence interval for A using the values from Table 5 in
the Appendix for the Wilcoxon rank sum statistic. Let 7y be the & = .025 one-tailed
value from Table 5 in the Appendix, and let

n,Q2n, + n, + 1)
Cos = )
If Cgps is not an integer, take the nearest integer less than or equal to Cps. The
approximate 95% confidence interval for A, (Ar, Ay) is given by

+1-T,

AL = D(C.nzs) and AU = D(M+1_C.(1zs)

where Dy and Dy, ) are obtained from the ordered values of all possible
differences in the xs and ys.
For large values of n; and n,, the value of C,; can be approximated using

co_mm \/nlnz(nl +n, +1)
a2 2 a2 12

where z,, is the percentile from the standard normal tables. We will illustrate these
procedures in the following example.
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318 CHAPTER 6 INFERENCES COMPARING TWO POPULATION CENTRAL VALUES

EXAMPLE 6.5

Many states are considering lowering the blood-alcohol level at which a driver is
designated as driving under the influence (DUI) of alcohol. An investigator for a
legislative committee designed the following test to study the effect of alcohol on
reaction time. Ten participants consumed a specified amount of alcohol. Another
group of 10 participants consumed the same amount of a nonalcoholic drink, a
placebo. The two groups did not know whether they were receiving alcohol or
the placebo. The 20 participants’ average reaction times (in seconds) to a series of
simulated driving situations are reported in Table 6.7. Does it appear that alcohol
consumption increases reaction time?

TABLE 6.7

Data for Example 6.5 Placebo  0.90 0.37 1.63 0.83 0.95 0.78 0.86 0.61 0.38 1.97

Alcohol  1.46 1.45 1.76 1.44 1.11 3.07 0.98 1.27 2.56 1.32

a. Why is the ¢ test inappropriate for analyzing the data in this study?
b. Use the Wilcoxon rank sum test to test the hypotheses:

Hy:  The distributions of reaction times for the placebo and alcohol
populations are identical (A = 0).

H,: The distribution of reaction times for the placebo consumption
population is shifted to the left of the distribution for the alco-
hol population. (Larger reaction times are associated with the
consumption of alcohol, A < 0.)

c. Place 95% confidence intervals on the median reaction times for the
two groups and on A.
d. Compare the results you obtain to the results from a software program.
Solution

a. A boxplot of the two samples is given in Figure 6.5. The plots
indicate that the population distributions are skewed to the right
because 10% of the data values are large outliers and the upper
whiskers are longer than the lower whiskers. The sample sizes are
both small, and, hence, the ¢ test may be inappropriate for analyzing
this study.

b. The Wilcoxon rank sum test will be conducted to evaluate whether
alcohol consumption increases reaction time. Table 6.8 contains the
ordered data for the combined samples, along with their associated
ranks. We will designate observations from the placebo group as 1
and from the alcohol group as 2.

FIGURE 6.5
Boxplots of placebo and
alcohol populations
(means are indicated by
solid circles)
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TABLE 6.8
Ordered reaction Ordered Ordered
times and ranks Data Group Rank Data Group Rank
1 0.37 1 1 11 1.27 2 11
2 0.38 1 2 12 1.32 2 12
3 0.61 1 3 13 1.44 2 13
4 0.78 1 4 14 1.45 2 14
5 0.83 1 5 15 1.46 2 15
6 0.86 1 6 16 1.63 1 16
7 0.90 1 7 17 1.76 2 17
8 0.95 1 8 18 1.97 1 18
9 0.98 2 9 19 2.56 2 19
10 1.11 2 10 20 3.07 2 20

For @ = .05, reject Hy if T' < 83, using Table 5 in the Appendix
with a = .05, one-tailed, and n{ = n, = 10. The value of T'is
computed by summing the ranks from group 1: 7=1+2 + 3 +
4+5+6+7+8+ 16 + 18 = 70. Because 70 is less than 83, we
reject Hy and conclude there is significant evidence that the placebo
population has smaller reaction times than the population of alcohol
consumers.

c. Because we have small sample sizes and the population distributions
appear to be skewed to the right, we will construct confidence intervals
on the median reaction times in place of confidence intervals on the
mean reaction times. Using the methodology from Section 5.9 and
Table 4 in the Appendix, we find

Coon = Cos,0 =1
Thus,
Lo =Cos,10+1=2
and
Ups=n—Cps,10=10-1=9
The 95% confidence intervals for the population medians are given by

(M1, My) = (@), y))

Thus, a 95% confidence interval is (.38, 1.63) for the placebo popu-
lation median and (1.11, 2.56) for the alcohol population median.
Because the sample sizes are very small, the confidence intervals are
not very informative.

To compute the 95% confidence interval for A, we need to
form the M = nin, = 10(10) = 100 possible differences D;; = yi; — y»;.
Next, we obtain the o = .025 value of T, from Table 5 in the
Appendix with n; = n, = 10—that is, Ty = 131. Using the formula
for C 5, we obtain

n,Q2n, + n, + 1) 10(2(10) + 10 + 1)

Cops = ) t1-Ty = )

+1-131=125
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AL =D,y = Dpsyand Ay = Dyi1-¢) = Dago+1-25) = Dige)

Thus, we need to find the 25th and 76th ordered values of the dif-
ferences D; = x; — y;. Table 6.9 contains the 100 differences, Ds. We
would next sort the Ds from smallest to largest. The estimator of A
would be the median of the differences:

<1 1
A= E [D(SO) + D(Sl)] = E [(_061) + (_061)] = —0.61

To obtain an approximate 95% confidence interval for A, we first need
to obtain

D(25) = —1.07 and D(76) = —0.28

Therefore, our approximate 95% confidence interval for A is (—1.07,
—0.28).

d. The output from Minitab is given here.

Mann-Whitney Confidence Interval and Test

PLACEBO N = 10 Median = 0.845
ALCOHOL N = 10 Median = 1.445

Point estimate for ETA1-ETA2 is —0.610

95.5 Percent CI for ETA1-ETA2 is (—1.080,—0.250)
W = 70.0

Test of ETA1 = ETA2 vs ETAl < ETA2 is significant at 0.0046

TABLE 6.9 Summary data for Example 6.5

Yo Yy Dy yu yy Dj iy D;  yu yy Dj Yo ¥y Dj

90 146 -56 37 146 —109 163 146 A7 83 146 —.63 95 146 -—51
90 145 -55 37 145 —108 163 145 A8 83 145 -—-.62 95 145 -0
90 176 -8 37 176 -139 163 176 -13 8 176 —.93 95 176 —-81
90 144 -S54 37 144 -107 163 144 19 83 144 -6l 95 144 —-49
90 111 -21 37 111 =74 163 111 S22 83 111 —28 95 111 -.16
90 3.07 -—-217 37 307 -270 163 3.07 —-144 83 3.07 -—-224 95 3.07 —-212
90 0.98 —-.08 .37 98 —-.61 163 .98 65 83 98 —.15 95 98 —.03
90 1.27 -37 37 127 -90 163 127 36 83 127 -—.44 95 127 -32
90 256 —-166 37 256 -219 163 256 -—-93 83 256 -—173 95 256 —161
90 1.32 —-42 37 132 -95 163 132 31 83 132 —.49 95 132 -.37
78 146 —-.68 86 146 —.60 61 146 -85 38 146 -—1.08 197 146 Sl
78 145 —-.67 86 145 -.59 61 145 -84 38 145 -—107 197 145 52
78 176 -98 86 176 —.90 61 176 —115 38 176 —138 197 176 21
78 144 —.66 .86 144 -.58 61 144 -—-83 38 144 -1.06 197 144 53
78 111 -33 86 111 -.25 61 111 -50 38 111 =73 197 111 .86
78 3.07 -229 86 3.07 -221 61 307 =246 38 3.07 -269 197 3.07 -110
78 .98 -20 .86 .98 -.12 .61 98 =37 38 98 —-.60 197 .98 .99
78 127 -49 86 127 —41 61 127 —-66 38 127 -89 197 127 .70
78 256 —178 86 256 —170 .61 256 -195 38 256 -—-218 197 256 —.59
78 132 —-.54 86 132 —.46 61 132 =71 38 132 -94 197 132 .65
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6.3 A Nonparametric Alternative: The Wilcoxon Rank Sum Test 321

Minitab refers to the test statistic as the Mann-Whitney test. This test
is equivalent to the Wilcoxon test statistic. In fact, the value of the test
statistic W = 70 is identical to the Wilcoxon 7" = 70. The output indi-
cates that the p-value = .0046 and a 95.5% confidence interval for A
is given by (—1.08, —.25).

Note: This interval is slightly different from the interval com-
puted in part (c) because Minitab computed a 95.6% confidence
interval, whereas we computed a 94.8% confidence interval. B

When both sample sizes are more than 10, the sampling distribution of 7 is
approximately normal; this allows us to use a z statistic in place of 7" when using
the Wilcoxon rank sum test:

_ T~ pr
or

Z

The theory behind the Wilcoxon rank sum test requires that the population distri-
butions be continuous, so the probability that any two data values are equal is zero.
Because in most studies we record data values to only a few decimal places, we will
often have ties—that is, observations with the same value. For these situations, each
observation in a set of tied values receives a rank score equal to the average of the
ranks for the set of values. When there are ties, the variance of 7 must be adjusted.
The adjusted value of o is shown here.

nn
0'2T=12<(n1+n2+1)—

Ef:lt,'(t,'z - 1) )
(n, + ny)n, + n, — 1)

where k is the number of tied groups and #; denotes the number of tied observa-
tions in the jth group. Note that when there are no tied observations, t; = 1 for all
7, which results in
nn
2 1"
or=—=n, +n,+1

T 12 ( 1 2 )
From a practical standpoint, unless there are many ties, the adjustment will result
in very little change to o%. The normal approximation to the Wilcoxon rank sum
test is summarized here.

Wilcoxon Rank Sum ny > 10 and n, > 10
Test: Normal Hy:

e The two populations are identical.
Approximation H.:
4

1. Population 1 is shifted to the right of population 2.
2. Population 1 is shifted to the left of population 2.
3. Population 1 and 2 are shifted from each other.

_ T — pr
@
R.R.: For a specified value of a,
1. Reject Hyif z = z,.
2. Reject Hyif z = —2z,.
3. Reject Hif [z] = z,,).

TS.: z , where T denotes the sum of the ranks in sample 1

Check assumptions and draw conclusions.
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322 CHAPTER 6 INFERENCES COMPARING TWO POPULATION CENTRAL VALUES

EXAMPLE 6.6

Environmental engineers were interested in determining whether a cleanup pro-
ject on a nearby lake was effective. Prior to initiation of the project, they obtained
12 water samples at random from the lake and analyzed the samples for the amount
of dissolved oxygen (in ppm). Due to diurnal fluctuations in the dissolved oxygen,
all measurements were obtained at the 2 p.M. peak period. The before and after
data are presented in Table 6.10.

TABLE 6.10
. Before After
Dissolved oxygen
measurements (in ppm) Cleanup Cleanup

11.0 11.6 10.2 10.8
11.2 11.7 10.3 10.8
112 11.8 10.4 10.9
112 11.9 10.6 11.1
11.4 119 10.6 11.1
11.5 12.1 10.7 11.3

a. Use a = .05 to test the following hypotheses:

Hy: The distributions of dissolved oxygen measurements taken
before the cleanup project and 6 months after the cleanup
project began are identical.

H,: The distribution of dissolved oxygen measurements taken
before the cleanup project is shifted to the right of the cor-
responding distribution of measurements taken 6 months
after the cleanup project began. (Note that a cleanup pro-
ject has been effective in one sense if the dissolved oxygen
level drops over a period of time.)

For convenience, the data are arranged in ascending order in Table 6.10.
b. Has the correction for ties made much of a difference?
Solution

a. First, we must jointly rank the combined sample of 24 observations
by assigning the rank of 1 to the smallest observation, the rank of 2
to the next smallest, and so on. When two or more measurements
are the same, we assign all of them a rank equal to the average of the
ranks they occupy. The sample measurements and associated ranks
(shown in parentheses) are listed in Table 6.11.

Because n; and n; are both greater than 10, we will use the test
statistic z. If we are trying to detect a shift to the left in the
distribution after the cleanup, we expect the sum of the ranks for the
observations in sample 1 to be large. Thus, we will reject Hy for large
values of z = (T — py) /oy

Grouping the measurements with tied ranks, we have 18 groups.
These groups are listed in Table 6.12 with the corresponding values of
tj, the number of tied ranks in the group.

For all groups with #; = 1, there is no contribution for

3605 — 1)
(n, + ny)n, + n, — 1)

in ¢ because 1} — 1 = 0. Thus, we will need only 4; = 2, 3.
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TABLE 6.11

Dissolved oxygen Before Cleanup After Cleanup
measurements and ranks 11.0 (10) 102 1)
11.2 (14) 10.3 2)
11.2 (14) 10.4 3)
11.2 (14) 10.6 4.5)
11.4 17) 10.6 4.5)
115 (18) 10.7 (6)
11.6 (19) 10.8 (7.5)
11.7 (20) 10.8 (7.5)
11.8 (21) 10.9 )
11.9 (22.5) 11.1 (11.5)
11.9 (22.5) 111 (11.5)
12.1 (24) 113 (16)
T =216
TABLE 6.12
Ranks, groups, and ties Rank Group L Rank Group ¢
1 1 1 14,14, 14 10 3
2 2 1 16 11 1
3 3 1 17 12 1
45,45 4 2 18 13 1
6 5 1 19 14 1
7.5,7.5 6 2 20 15 1
9 7 1 21 16 1
10 8 1 22.5,22.5 17 2
11.5,11.5 9 2 24 18 1

Substituting our data in the formulas, we obtain
oyt +1) 1212 + 12 + 1)

Mmr = > > =150
S -1
0'2T=n]nz[(n1+n2+l)— Al ) ]
12 (n, + ny)(ny +n, — 1)
12(12){ 6+6+6+24+6}
= 25 -
12 24(23)
= 12(25 — .0870) = 298.956
oy =17.29

The computed value of z is

T —pp 216 — 150
or 17.29

z =3.82

Using the R function pnorm(z,), the test statistic z = 3.82 has
p-value P(z = 3.82) = 1 — pnorm(3.82) = .00007. This implies that
there is very strong evidence in the data that the distribution of
before-cleanup measurements is shifted to the right of the correspond-
ing distribution of after-cleanup measurements; that is, the after-
cleanup measurements of dissolved oxygen tend to be smaller than
the corresponding before-cleanup measurements.
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b. The value of 0% without correcting for ties is

o2 = 12(12)(25)

12
For this value of o, z = 3.81 rather than 3.82, which was found by
applying the correction. This should help you understand how little

effect the correction has on the final result unless there are a large
number of ties.

=300 and o,=1732

The Wilcoxon rank sum test is an alternative to the two-sample ¢ test, with the
rank sum test requiring fewer conditions than the ¢ test. In particular, the rank sum
test does not require the two populations to have normal distributions; it requires
only that the distributions be identical except possibly that one distribution could
be shifted from the other distribution. When both distributions are normal, the ¢ test
is more likely to detect an existing difference; that is, the ¢ test has greater power
than the rank sum test. This is logical because the # test uses the magnitudes of the
observations rather than just their relative magnitudes (ranks), as is done in the rank
sum test. However, when the two distributions are nonnormal, the Wilcoxon rank
sum test has greater power; that is, it is more likely to detect a shift in the population
distributions. Also, the level or probability of a Type I error for the Wilcoxon rank
sum test will be equal to the stated level for all population distributions. The ¢ test’s
actual level will deviate from its stated value when the population distributions
are nonnormal. This is particularly true when nonnormality of the population
distributions is present in the form of severe skewness or extreme outliers.

Randles and Wolfe (1979) investigated the effect of skewed and heavy-tailed
distributions on the power of the ¢ test and the Wilcoxon rank sum test. Table 6.13
contains a portion of the results of their simulation study. For each set of distribu-
tions, sample sizes and shifts in the populations, 5,000 samples were drawn, and
the proportion of times a level @ = .05 ¢ test or Wilcoxon rank sum test rejected
H, was recorded. The distributions considered were normal, double exponen-
tial (symmetric, heavy-tailed), Cauchy (symmetric, extremely heavy-tailed), and
Weibull (skewed to the right). Shifts of size 0,.60, and 1.20- were considered, where
o denotes the standard deviation of the distribution, with the exception of the
Cauchy distribution, where o is a general scale parameter.

When the distribution is normal, the ¢ test is only slightly better —has greater
power values—than the Wilcoxon rank sum test. For the double exponential, the
Wilcoxon test has greater power than the ¢ test. For the Cauchy distribution, the

TABLE 6.13

Power of ¢ test (¢)
and Wilcoxon rank sum
test (7)) with « = .05

Double
Distribution Normal Exponential Cauchy Weibull

Shift 0 .6 1.2 0 .6 1.2 0 .6 1.2 0 .6 1.2
ny,ny; Test

5,5 t .044 213 523 045 255 588 .024 132 288 .049 221 .545
T .046 208 .503 .049 269 589 .051 218 408 .049 219 537
5,15 t .047 303 724 .046 304 733 056 137 282 .041 289 723
T 048 287 .694 .047 351 .768 .046 284 576 .049 290 .688
15,15 t 052 497 947 046 507 928 .030 .153 333 .046 488 935
T .054 479 933 .046 594 962 .046 484 839 .046 488 .927

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6.4 Inferences About u; — uz: Paired Data 325

level of the ¢ test deviates significantly from .05, and its power is much lower than for
the Wilcoxon test. When the distribution was somewhat skewed, as in the Weibull
distribution, the tests had similar performance. Furthermore, the level and power of
the ¢ test were nearly identical to the values when the distribution was normal. The
t test is quite robust to skewness except when there are numerous extreme values.

6.4 Inferences About u; — u2: Paired Data

The methods we presented in the preceding three sections were appropriate for
situations in which independent random samples are obtained from two popula-
tions. These methods are not appropriate for studies or experiments in which each
measurement in one sample is matched or paired with a particular measurement in
the other sample. In this section, we will deal with methods for analyzing “paired”
data. We begin with an example.

EXAMPLE 6.7

Insurance adjusters are concerned about the high estimates they are receiving for

auto repairs from garage I compared to garage II. To verify their suspicions, each

of 15 cars recently involved in an accident was taken to both garages for separate

estimates of repair costs. The estimates from the two garages are given in Table 6.14.
A preliminary analysis of the data used a two-sample ¢ test.

Solution Computer output for these data is shown here.

Two-Sample T-Test and Confidence Interval

Two-sample T for Garage I vs Garage II

N Mean StDev SE Mean
Garage I 15 16.85 3.20 0.83
Garage II 15 16.23 2.94 0.76
95% CI for mu Garage I — mu Garage II: (—1.69, 2.92)
T-Test mu Garage I = mu Garage II (vs not =): T = 0.55 P = 0.59 DF = 27

TABLE 6.14

Repair estimates Car Garage | Garage 11

(in hundreds of dollars) 1 17.6 173
2 20.2 19.1

3 19.5 18.4

4 11.3 11.5

5 13.0 12.7

6 16.3 15.8

7 153 14.9

8 16.2 153

9 122 12.0

10 14.8 142

11 213 21.0

12 221 21.0

13 16.9 16.1

14 17.6 16.7

15 18.4 17.5

Totals: v, = 16.85 vy, =16.23
51 =3.20 51 =294
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From the output, we see there is a consistent difference in the sample means
(y, — ¥, = .62). However, this difference is rather small considering the variability
of the measurements (s; = 3.20, s, = 2.94). In fact, the computed t-value (.55) has
a p-value of .59, indicating very little evidence of a difference in the average claim
estimates for the two garages.

A closer glance at the data in Table 6.14 indicates that something about the
conclusion in Example 6.7 is inconsistent with our intuition. For all but one of the
15 cars, the estimate from garage I was higher than that from garage II. From our
knowledge of the binomial distribution, the probability of observing garage I esti-
mates higher in y = 14 or more of the n = 15 trials, assuming no difference (7 = .5)
for garages I and 11, is

P(y = 14or15) = P(y = 14) + P(y = 15)

_ (B 14 15 15 _
(14>(.5) (5) + (15>(.5) .000488

Thus, if the two garages in fact have the same distribution of estimates, there is
approximately a 5 in 10,000 chance of having 14 or more estimates from garage I
higher than those from garage II. Using this probability, we would argue that the
observed estimates are highly contradictory to the null hypothesis of equality of
distribution of estimates for the two garages. Why are there such conflicting results
from the 7 test and the binomial calculation?

The explanation of the difference in the conclusions from the two procedures
is that one of the required conditions for the ¢ test, two samples being independent
of each other, has been violated by the manner in which the study was conducted.
The adjusters obtained a measurement from both garages for each car. For the two
samples to be independent, the adjusters would have to take a random sample of
15 cars to garage I and a different random sample of 15 to garage II.

As can be observed in Figure 6.6, the repair estimates for a given car are
about the same value, but there is a large variability in the estimates from each
garage. The large variability among the 15 estimates from each garage diminishes
the relative size of any difference between the two garages. When designing the
study, the adjusters recognized that the large differences in the amount of damage

FIGURE 6.6 23 -
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suffered by the cars would result in a large variability in the 15 estimates at both
garages. By having both garages give an estimate on each car, the adjusters could
calculate the difference between the estimates from the garages and hence reduce
the large car-to-car variability.

This example illustrates a general design principle. In many situations, the
available experimental units may be considerably different prior to their random
assignment to the treatments with respect to characteristics that may affect the
experimental responses. These differences will often then mask true treatment dif-
ferences. In the previous example, the cars had large differences in the amount of
damage suffered during the accident and hence would be expected to have large
differences in their repair estimates no matter what garage gave the repair estimate.
When comparing two treatments or groups in which the available experimental
units have important differences prior to their assignment to the treatments or
groups, the samples should be paired. There are many ways to design experiments
to yield paired data. One method involves having the same group of experimental
units receive both treatments, as was done in the repair estimates example. A sec-
ond method involves having measurements taken before and after the treatment is
applied to the experimental units. For example, suppose we want to study the effect
of a new medicine proposed to reduce blood pressure. We would record the blood
pressure of participants before they received the medicine and then after receiving
the medicine. A third design procedure uses naturally occurring pairs such as twins
or spouses. A final method pairs the experimental units with respect to factors that
may mask differences in the treatments. For example, a study is proposed to evalu-
ate two methods for teaching remedial reading. The participants could be paired
based on a pretest of their reading ability. After pairing the participants, the two
methods are randomly assigned to the participants within each pair.

A proper analysis of paired data needs to take into account the lack of
independence between the two samples. The sampling distribution for the differ-
ence in the sample means, y, — y,, will have a mean and standard error of

2 2
B oyt oy — 2004
Ky, = 1~y and oy, = \/

n
where p measures the amount of dependence between the two samples. When the
two samples produce similar measurements, p is positive and the standard error of
V1 — Y, is smaller than what would be obtained using two independent samples.
This was the case in the repair estimates data. The size and sign of p can be deter-
mined by examining the plot of the paired data values. The magnitude of p is large
when the plotted points are close to a straight line. The sign of p is positive when
the plotted points follow an increasing line and negative when the plotted points
follow a decreasing line. From Figure 6.6, we observe that the estimates are close
to an increasing line, and, thus, p will be positive. Using paired data in the repair
estimate study will reduce the variability in the standard error of the difference in
the sample means in comparison to using independent samples.

The actual analysis of paired data requires us to compute the differences in
the n pairs of measurements, d; = y;; — y»;, and obtain d, sy, and the mean and
standard deviations in the d;s. Also, we must transform the hypotheses about w;
and w, into hypotheses about the mean of the differences, us = u; — uo. The con-
ditions required to develop a ¢ procedure for testing hypotheses and constructing
confidence intervals for w, are

1. The sampling distribution of the d;s is a normal distribution.
2. The d;s are independent; that is, the pairs of observations are independent.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



328 CHAPTER 6 INFERENCES COMPARING TWO POPULATION CENTRAL VALUES

A summary of the test procedure is given here.

Paired t test H: ua = Dy (D, is a specified value, often .0)
- a = Dy
ma = Do
ta > Dy
ta < Do
- a7 Dy

_d—- D,
s, Nn

R.R.: For alevel a, Type I error rate withdf =n — 1
1. Reject Hyif t = t,,.
2. Reject Hpif t = —1,.
3. Reject Hyif [t| = top-

Check assumptions and draw conclusions.

H,:

WN= WN =

T.S.: ¢

The corresponding 100(1 — «)% confidence interval on w; = w1 — pu, based
on the paired data is shown here.

1001 — @)% d-+1¢ Sa
Confidence Interval — P
for pa .Based on where 7 is the number of pairs of observations (and hence the number of
Paired Data

differences) and df = n — 1.

EXAMPLE 6.8

Refer to the data of Example 6.7, and perform a paired ¢ test. Draw a conclusion
based on a = .05.

Solution For these data, the parts of the statistical test are
Ho: pyg=p — ;=0
Hy: p,>0
_ 4
sd/\/;l
R.R.: Fordf =n—1=14,reject Hyif t = t 5.

Before computing ¢, we must first calculate d and s, . For the data of
Table 6.14, we have the differences d; = garage I estimate — garage II estimate
(see Table 6.15).

TS.: ¢

TABLE 6.15
Difference data Car 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fromTable 614 | & 3 11 11 -2 3 5 4 9 2 6 3 11 8 9 9
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The mean and standard deviation are given here.
d= .61 and s;4=.3%
Substituting into the test statistic ¢, we have

. d-0 61
s/ n 394N15

Indeed, r = 6.00 is far beyond all tabulated ¢ values for df = 14, so the p-value is
less than .005; in fact, the p-value is .000016. We conclude that the mean repair
estimate for garage I is greater than that for garage II. This conclusion agrees with
our intuitive finding based on the binomial distribution.

The point of all this discussion is not to suggest that we typically have two or
more analyses that may give very conflicting results for a given situation. Rather, the
point is that the analysis must fit the experimental situation. For this experiment,
the samples are dependent, demanding that we use an analysis appropriate for
dependent (paired) data.

After determining that there is a statistically significant difference in the
means, we should estimate the size of the difference. A 95% confidence interval
for w; — w2 = pg will provide an estimate of the size of the difference in the
average repair estimate between the two garages:

6.00

d+q,-d
= fan
394
61 £ 2145 — = .61 = 22 = (.39, .83
= ( )

Thus, we are 95% confident that the mean repair estimates differ by a
value between $390 and $830. The insurance adjusters determined that a dif-
ference of this size is of practical significance. B

Reducing the standard error of y; — y, by using the differences, d;s, in place
of the observed values, yy;s and yy;s, will often produce a ¢ test having greater power
and confidence intervals having smaller width. Is there any loss in using paired
data experiments? Yes, the ¢ procedures using the d;s have df = n — 1, whereas the
t procedures using the individual measurements have df = n; + ny — 2 =2(n — 1).
Thus, when designing a study or experiment, the choice between using an
independent samples experiment and a paired data experiment will depend on
how much difference exists in the experimental units prior to their assignment to
the treatments. If there are only small differences, then the independent samples
design is more efficient. If the differences in the experimental units are extreme,
then the paired data design is more efficient, provided that the two measurements
within the pairs are positively correlated.

6.5 A Nonparametric Alternative:
The Wilcoxon Sighed-Rank Test

The Wilcoxon signed-rank test, which makes use of the sign and the magnitude of
the rank of the differences between pairs of measurements, provides an alterna-
tive to the paired ¢ test when the population distribution of the differences is non-
normal. The Wilcoxon signed-rank test requires that the population distribution
of differences be symmetric about the unknown median M. Let Dy be a specified
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hypothesized value of M. The test evaluates shifts in the distribution of differences
to the right or left of Dg; in most cases, Dy is 0. The computation of the signed-rank
test involves the following steps:

1. Calculate the differences in the n pairs of observations.

2. Subtract D from all the differences.

3. Delete all zero values. Let n be the number of nonzero values.

4. List the absolute values of the differences in increasing order, and
assign them the ranks 1, . . ., n (or the average of the ranks for ties).

We define the following notation before describing the Wilcoxon signed-rank

test:
n = the number of pairs of observations with a nonzero difference
T+ = the sum of the positive ranks; if there are no positive ranks, 7' = 0
T_ = the sum of the negative ranks; if there are no negative ranks, 7 = 0
T = the smaller of T and 7-
_nln+1)
Mr ""T - 4
oy o - \/n(n +1)2n + 1)
24

g groups If we group together all differences assigned the same rank and there are g such
groups, the variance of T'is

214[n(n+1)(2n+1 E“ )@ + 1)

2
Or =

t;  where ¢ is the number of tied ranks in the jth group. Note that if there are no tied
ranks, #; = 1 for all groups. The formula then reduces to

nn+1)2n +1)
r 24

The Wilcoxon signed-rank test is presented here. Let M be the median of the
population of differences.

0_2_

Wilcoxon Hy. M = Dy (D, is specified; generally Dy is set to 0.)
Signed-Rank Test H,; 1. M>D,
2. M < D,
3. M# D,
(n =50)
TS.: 1. T=T-
2. T=T,;

3. T =smaller of T, and 7-

R.R.: For a specified value of « (one-tailed .05, .025, .01, or .005; two-
tailed .10, .05, .02, .01) and fixed number of nonzero differences r,
reject Hy if the value of 7 is less than or equal to the appropriate
entry in Table 6 in the Appendix.
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(n > 50)
T.S.: Compute the test statistic
nn +1)
T - 7
4
Z =
\/n(n +1)2n + 1)
24
R.R.: For cases 1 and 2, reject Hy if z < —z,; for case 3, reject H if

Z< —Zap-
Check assumptions, place a confidence interval on the median of the differ-
ences, and state conclusions.

EXAMPLE 6.9

A city park department compared a new formulation of a fertilizer, brand A, to
the previously used fertilizer, brand B, on each of 20 different softball fields. Each
field was divided in half, with brand A randomly assigned to one half of the field
and brand B to the other. Sixty pounds of fertilizer per acre were then applied to
the fields. The effect of the fertilizer on the grass grown at each field was measured
by the weight (in pounds) of grass clippings produced by mowing the grass at the
fields over a 1-month period. Evaluate whether brand A tends to produce more
grass than brand B. The data are given in Table 6.16.

TABLE 6.16
Field Brand A Brand B Difference Field Brand A Brand B  Difference
1 2114 186.3 25.1 11 208.9 183.6 253
2 204.4 205.7 —-13 12 208.7 188.7 20.0
3 202.0 184.4 17.6 13 213.8 188.6 25.2
4 201.9 203.6 -1.7 14 201.6 204.2 —-2.6
5 202.4 180.4 22.0 15 201.8 181.6 20.1
6 202.0 202.0 0 16 200.3 208.7 -84
7 202.4 181.5 20.9 17 201.8 181.5 20.3
8 207.1 186.7 20.4 18 201.5 208.7 -72
9 203.6 205.7 -2.1 19 212.1 186.8 25.3
10 216.0 189.1 26.9 20 203.4 182.9 20.5

Solution Evaluate whether brand A tends to produce more grass than brand B.
Plots of the differences in grass yields for the 20 fields are given in Figures 6.7(a)
and (b). The differences appear to not follow a normal distribution and appear
to form two distinct clusters. Thus, we will apply the Wilcoxon signed-rank test
to evaluate the differences in grass yields from brand A and brand B. The null
hypothesis is that the distribution of differences is symmetrical about 0 against the
alternative that the differences tend to be greater than 0. First, we must rank (from
smallest to largest) the absolute values of the n = 20 — 1 = 19 nonzero differences.
These ranks appear in Table 6.17.
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FIGURE 6.7(a)
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TABLE 6.17
. Rank of Rank of
Rankings of . .
grass yield data Absolute Sign of Absolute Sign of
Field Difference Difference Difference | Field Difference Difference Difference
1 25.1 15 Positive 11 253 17.5 Positive
2 -13 1 Negative 12 20.0 8 Positive
3 17.6 7 Positive 13 25.2 16 Positive
4 -1.7 2 Negative 14 —2.6 4 Negative
5 22.0 14 Positive 15 20.1 9 Positive
6 0 None Positive 16 -84 6 Negative
7 20.9 13 Positive 17 20.3 10 Positive
8 20.4 11 Positive 18 =72 5 Negative
9 -2.1 3 Negative 19 253 17.5 Positive
10 26.9 19 Positive 20 20.5 12 Positive

The sums of the positive and negative ranks are
T-=1+2+3+4+5+6=21
and

T:=7+8+9+10+11+12+13+14+15+16+175+17.5+ 19
=169
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Because H,;: M > 0, T = T_ = 21. For a one-sided test with n = 19 and o = .05, we
see from Table 6 in the Appendix that we will reject Hy if 7 is less than or equal to
53. Thus, we reject Hy and conclude that brand A fertilizer tends to produce more
grass than does brand B.

A 95% confidence interval on the median difference in grass production is
obtained by using the methods given in Chapter 5. Because the number of sample
differences is an even number, the estimated median difference is obtained by
taking the average of the 10th- and 11th-largest differences: D10y and D j1):

.1 1
M= [Dyo + Dyy) = 5 [20.1 +203] = 2022

A 95% confidence interval for M is obtained as follows. From Table 4 in the
Appendix with a(2) = .05, we have Cy(2), 20 = 5. Therefore,

Lps=Cps,200=5+1=6
and
U.025 =n— C_05’ 20 — 20—-5=15

The 95% confidence for the median of population of differences is

(ML’ MU) = (D6’ DIS) = (—1.3, 22.0) | |

The choice of an appropriate paired-sample test depends on examining
different types of deviations from normality. Because the level of the Wilcoxon
signed-rank does not depend on the population distribution, it is the same as the
stated value for all symmetric distributions. The level of the paired ¢ test may be
different from its stated value when the population distribution is very nonnormal.
Also, we need to examine which test has greater power. We will report a portion
of a simulation study contained in Randles and Wolfe (1979). The population
distributions considered were normal, uniform (short-tailed), double exponential
(moderately heavy-tailed), and Cauchy (very heavy-tailed). Table 6.18 displays
the proportion of times in 5,000 replications that the tests rejected Hy. The two
populations were shifted by amounts 0, .40, and .80, where o denotes the standard
deviation of the distribution. (When the population distribution is Cauchy, o
denotes a scale parameter.)

TABLE 6.18

Empirical power of Double
paired 7 (r) and signed- Distribution Normal Exponential Cauchy Uniform
rank (7) tests with )
a =05 Shift: 0 4o 8o 0 do 8o 0 do 8o 0 do 8o
n=10 t .049 330 758 .047 374 781 .028 .197 414 051 294 746
T 050 315 741 .048 412 804 .049 332 .623 .049 277 .681
n=15 t 048 424 906 .049 473 898 .025 210 418 .051 .408 914
T .047 418 893 .050 .532 .926 .050 423 750 .051 383 .852

n =20 t 048 546 967 .044 571 955 026 214 433 .049 522 971
049 531 962 .049 .652 975 .049 514 849 .050 479 .935

'ﬂ
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From Table 6.18, we can make the following observations. The level of
the paired ¢ test remains nearly equal to .05 for uniform and double exponential
distributions, but is much less than .05 for the very heavy-tailed Cauchy distribu-
tion. The Wilcoxon signed-rank test’s level is nearly .05 for all four distributions,
as expected because the level of the Wilcoxon test requires only that the popu-
lation distribution be symmetric. When the distribution is normal, the ¢ test has
only slightly greater power values than the Wilcoxon signed-rank test. When the
population distribution is short-tailed and uniform, the paired ¢ test has slightly
greater power than the signed-rank test. Note also that the power values for
the ¢ test are slightly less than the ¢ power values when the population distribu-
tion is normal. For the double exponential, the Wilcoxon test has slightly greater
power than the ¢ test. For the Cauchy distribution, the level of the ¢ test deviates
significantly from .05, and its power is much lower than that of the Wilcoxon test.
From other studies, if the distribution of differences is grossly skewed, the nomi-
nal ¢ probabilities may be misleading. The skewness has less of an effect on the
level of the Wilcoxon test.

Even with this discussion, you might still be confused as to which statistical
test or confidence interval to apply in a given situation. First, plot the data and
attempt to determine whether the population distribution is very heavy-tailed or
very skewed. In such cases, use a Wilcoxon rank-based test. When the plots are
not definitive in their detection of nonnormality, perform both tests. If the results
from the different tests yield different conclusions, carefully examine the data to
identify any peculiarities to understand why the results differ. If the conclusions
agree and there are no blatant violations of the required conditions, you should be
very confident in your conclusions. This particular “hedging” strategy is appropri-
ate not only for paired data but also for many situations in which there are several
alternative analyses.

6.6 Choosing Sample Sizes for Inferences About p; — u»

Sections 5.3 and 5.5 were devoted to sample-size calculations to obtain a confidence
interval about u with a fixed width and specified degree of confidence or to conduct
a statistical test concerning u with predefined levels for a and 3. Similar calcula-
tions can be made for inferences about w; — u, with either independent samples
or paired data. Determining the sample size for a 100(1 — @)% confidence interval
about w; — uy of width 2E based on independent samples is possible by solving the
following expression for n:

1 1
za/zcr ;‘F;:E

Note that, in this formula, ¢ is the common population standard deviation and we
have assumed equal sample sizes.

Sample Sizes for a

~ 10001 - )% 222, 02
Confidence Interval n = iz
for w1 — 2 of the E
Formy, — ¥, £ E, (Note: If o is unknown, substitute an estimated value to get an approximate
Independent sample size.)

Samples
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The sample sizes obtained using this formula are usually approximate because
we have to substitute an estimated value of o, the common population standard
deviation. This estimate will probably be based on an educated guess from infor-
mation on a previous study or on the range of population values.

Corresponding sample sizes for one- and two-sided tests of u; — u, based on
specified values of « and 8, where we desire a level « test having the probability of
aType II error B(u1 — u2) =< B whenever |u; — u| = A, are shown here.

Sample Sizes for (Za + ZB)Z
Testing One-sided test: n = 20° —

M1 — M2, Independent
Samples (za/2 4 zﬁ,)2

Two-sided test: n = 20 2
where n; = n, = n and the probability of a Type II error is to be = 8 when
the true difference |w; — po| = A. (Note: If o is unknown, substitute an
estimated value to obtain an approximate sample size.)

EXAMPLE 6.10

One of the crucial factors in the construction of large buildings is the amount of
time it takes for poured concrete to reach a solid state, called the “set-up” time.
Researchers are attempting to develop additives that will accelerate the set-up
time without diminishing any of the strength properties of the concrete. A study is
being designed to compare concrete with the most promising additive to concrete
without the additive. The research hypothesis is that the concrete with the addi-
tive will have a smaller mean set-up time than the concrete without the additive.
The researchers have decided to have the same number of test samples for the
concrete with and without the additive. For an o = .05 test, determine the appro-
priate number of test samples needed if we want the probability of a Type II error
to be less than or equal to .10 whenever the concrete with the additive has a mean
set-up time of 1.5 hours less than the concrete without the additive. From previous
experiments, the standard deviation in set-up time is 2.4 hours.

Solution Let u be the mean set-up time for concrete without the additive and w,
be the mean set-up time for concrete with the additive. From the description of the
problem, we have

® One-sided research hypothesis: u; > w,
® g=24

® o =.05

® 3= .10 whenever u; —u, =15=A

® ni=n=mn

From Table 1 in the Appendix, z, = z.5 = 1.645 and zg = z.19 = 1.28. Substituting

into the formula, we have

20%(z, + 25)°  2(2.4)%(1.645 + 1.28)°
A? (1.5)?

n = = 43.8, or 44

Thus, we need 44 test samples of concrete with the additive and 44 test samples of
concrete without the additive. B
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Sample-size calculations can also be performed when the desired sample
sizes are unequal, n; # n,. Let ny be some multiple m of ny; that is, n, = mn,. For
example, we may want n; three times as large as ny; hence, n, = %nl. The displayed
formulas can still be used, but we must substitute (m + 1)/m for 2 and n; for n in
the sample-size formulas. After solving for ny, we have n, = mn;.

EXAMPLE 6.11

Refer to Example 6.10. Because the set-up time for concrete without the additive has
been thoroughly documented, the experimenters wanted more information about
the concrete with the additive than about the concrete without the additive. In par-
ticular, the experimenters wanted three times more test samples of concrete with the
additive than without the additive; that is, n, = mn; = 3n;. All other specifications
are as given in Example 6.10. Determine the appropriate values for n; and n,.

Solution Inthe sample-size formula, we have m = 3. Thus,replace 2 with ™ 41 = %.
We then have
+1 4
(m )02 (24 + 25)? <3> (2.4)2(1.645 + 1.28)?
m
n, = = =292, or 30

A? (1.5)?
Thus, we need n; = 30 test samples of concrete without the additive and n, = mn; =
(3)(30) = 90 test samples with the additive. B

Sample sizes for estimating u, and conducting a statistical test for u, based on
paired data (differences) are found using the formulas of Chapter 5 for . The only
change is that we are working with a single sample of differences rather than a sin-
gle sample of y-values. For convenience, the appropriate formulas are shown here.

Sample Sizes for a 2 o2

Za/Z T4
10001 — @)% n=—rs
Confidence Interval
for py — p2 of the (Note: If o4 is unknown, substitute an estimated value to obtain an approximate
Form d + E, Paired sample size.)
Samples
Sample Sizes for ) o2z, + zﬁ)2
Testing w — o, One-sided test: n = —
Paired Samples 2 2
. Z d(Za/2 + ZB)
Two-sided test: n = TV

where the probability of a Type II error is B8 or less if the true difference
a = A. (Note: If o4 is unknown, substitute an estimated value to obtain an
approximate sample size.)

6.7 RESEARCH STUDY: Effects of an Oil Spill
on Plant Growth
The oil company responsible for the oil spill described in the abstract at the begin-

ning of this chapter implemented a plan to restore the marsh to prespill condition.
To evaluate the effectiveness of the cleanup process, and in particular to study the
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residual effects of the oil spill on the flora, researchers designed a study of plant
growth 1 year after the burning. In an unpublished Texas A&M University disser-
tation, Newman (1998) describes the researchers’ plan for evaluating the effect of
the oil spill on Distichlis spicata, a flora of particular importance to the area of the
spill. We will now describe a hypothetical set of steps that the researchers may have
implemented in order to successfully design their research study.

Defining the Problem

The researchers needed to determine the important characteristics of the flora that
may be affected by the spill. Some of the questions that needed to be answered
prior to starting the study included the following:

What are the factors that determine the viability of the flora?

. How did the oil spill affect these factors?

. Are there data on the important flora factors prior to the spill?

. How should the researchers measure the flora factors in the oil-spill
region?

. How many observations are necessary to confirm that the flora has
undergone a change after the oil spill?

. What type of experimental design or study is needed?

. What statistical procedures are valid for making inferences about the
change in flora parameters after the oil spill?

8. What types of information should be included in a final report to

document the changes observed (if any) in the flora parameters?

Ul AWNS

N O

Collecting the Data

The researchers determined that there was no specific information on the flora in
this region prior to the oil spill. Since there was no relevant information on flora
density in the spill region prior to the spill, it was necessary to evaluate the flora
density in unaffected areas of the marsh to determine whether the plant density
had changed after the oil spill. The researchers located several regions that had
not been contaminated by the oil spill. They needed to determine how many tracts
would be required in order for their study to yield viable conclusions. To deter-
mine how many tracts must be sampled, we have to determine how accurately the
researchers want to estimate the difference in the mean flora densities in the spilled
and unaffected regions. The researchers specified that they wanted the estimator
of the difference in the two means to be within eight units of the true difference in
the means. That is, the researchers wanted to estimate the difference in mean flora
density with a 95% confidence interval having the form yco, — yspin = 8. In previ-
ous studies on similar sites, the flora density ranged from 0 to 73 plants per tract.
The number of tracts the researchers needed to sample in order to achieve their
specifications would involve the following calculations.

We want a 95% confidence interval on pcon — pspin With £ = 8 and z.» =
Zo2s = 1.96. Our estimate of o is & = range/4 = (73 — 0)/4 = 18.25. Substituting
into the sample-size formula, we have

2(z,0)°0°  2(1.96)2(18.25)>
EZ (8)2
Thus, a random sample of 40 tracts should give a 95% confidence interval for

Mcon — Mspill With the desired tolerance of eight plants provided 18.25 is a reason-
able estimate of o.

n= = 39.98 = 40
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FIGURE 6.8
Number of plants
observed in tracts at oil-
spill and control sites.
The data are displayed in
stem-and-leaf plots

TABLE 6.19
Summary statistics
for oil-spill data
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The spill region and the unaffected regions were divided into tracts of nearly
the same size. From the above calculations, it was decided that 40 tracts from
both the spill and the unaffected areas would be used in the study. Forty tracts of
exactly the same size were randomly selected in each of these locations, and the
Distichlis spicata densities were recorded. The data consist of 40 measurements of
flora density in the uncontaminated (control) sites and 40 density measurements
in the contaminated (spill) sites. The data are given below in a stem-leaf plot. The
researchers would next carefully examine the data from the fieldwork to determine
if the measurements were recorded correctly. The data would then be transferred
to computer files and prepared for analysis.

Summarizing Data

The next step in the study would be to summarize the data through plots and
summary statistics. The data are displayed in Figure 6.8, with summary statistics
given in Table 6.19. A boxplot of the data displayed in Figure 6.9 indicates that
the control sites have a somewhat greater plant density than the oil-spill sites.
From the summary statistics, we see that the average flora density in the control
sites is Ycon = 38.48 with a standard deviation of sco, = 16.37. The sites within
the spill region have an average density of yspn = 26.93 with a standard devia-
tion of sspin = 9.88. Thus, the control sites have a larger average flora density
and a greater variability in flora density than do the sites within the spill region.
Whether these observed differences in flora density reflect similar differences in
all the sites and not just the ones included in the study will require a statistical
analysis of the data.

Control Tracts Oil-Spill Tracts

Mean: 38.48 000 0 Mean: 26.93
Median: 41.50 7 0 59 Median: 26.00
St. Dev: 16.37 1 1 14 St. Dev: 9.88
n: 40 6 1 77799 n: 40
4 2 2223444
9 2 555667779
0 3 11123444
55678 3 5788
000111222233 4 1
57 4
0112344 5 02
67789 5
Descriptive Statistics
Variable Site Type N Mean Median Tr. Mean St. Dev.
No. plants Control 40 38.48 41.50 39.50 16.37
Oil spill 40 26.93 26.00 26.69 9.88
Variable Site Type SE Mean Minimum Maximum Q1 Q3
No. plants Control 2.59 0.00 59.00 35.00 51.00
Oil spill 1.56 5.00 52.00 22.00 33.75
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FIGURE 6.9 60 -
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Analyzing Data

The researchers hypothesized that the oil-spill sites would have a lower plant
density than the control sites. Thus, we will construct confidence intervals on the
mean plant densities in the control plots, pcon, and in the oil-spill plots, uspi, to
assess their average plant density. Also, we can construct confidence intervals on
the difference wcon — mspin and test the research hypothesis that uco, is greater
than uspin. From Figure 6.9, the data from the oil spill area appear to have a nor-
mal distribution, whereas the data from the control area appear to be skewed to
the left. The normal probability plots are given in Figure 6.10 to further assess
whether the population distributions are in fact normal in shape. We observe that
the data from the spill tracts appear to follow a normal distribution but that the
data from the control tracts do not, since their plotted points do not fall close to
the straight line. Also, the variability in plant density is higher in the control sites
than in the spill sites. Thus, the approximate ¢ procedures will be the most appro-
priate inference procedures.

The sample data yielded the summary values shown in Table 6.20.

The research hypothesis is that the mean plant density for the control plots
exceeds that for the oil-spill plots. Thus, our statistical test is set up as follows:

Hoy: pucon = pspin versus  Hy: tcon > Mspill
That is,

Hy: pcon — pspin = 0

Hg: peon — pspin > 0

Ycon — Yspi) — D 48 — 26. —
TS (' = ¥con ySplll) 0 _ (38.48 — 26.93) — 0 — 38

\/séon n Sl \/(16.37)2 N (9.88)?

Reon  Ppin 40 40

In order to compute the rejection region and p-value, we need to compute the
approximate df for ¢'.

séon/nCon _ (1637)2/40

B B =73
5t , Sou (163740 + (9.88)°/40
Reon Mspin

Vcen = Wtgn — 1) (39)(39)

B = Py — 1) + g — 1) (1 = 737(9) + (73)°(39)

= 64.38, which is rounded to 64
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Since Table 2 in the Appendix does not have df = 64, we will use the R function
qt(1 — .05,64) = 1.699. In fact, the difference is very small when df becomes large:
tos = 1.671 for df = 60, the value from Table 2.

R.R.: For a = .05 and df = 64, reject Hyif t' > 1.699.

FIGURE 6.10 99
Normal probability plots o Mean 26.93
for the two types of sites StDev ~ 9.882
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TABLE 6.20
Control Plots Oil-Spill Plots

ncon = 40 nspinn = 40
Ycon = 38.48 Yspill = 26.93
SCon — 16.37 SSpill = 9.88
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Since ¢ = 3.82 is greater than 1.699, we reject Hyp. We can bound the p-value using
Table 2 in the Appendix with df = 60. With ¢ = 3.82, the level of significance is
p-value < .001. Using R, p-value = 1 — p#(3.82, 64) = .00015. Thus, we can con-
clude that there is significant (p-value < .00015) evidence that wco, is greater than
uspill- Although we have determined that there is a statistically significant amount
of evidence that the mean plant density at the control sites is greater than the mean
plant density at the spill sites, the question remains whether these differences have
practical significance. We can estimate the size of the difference in the means by
placing a 95% confidence interval on pcon — Mspill-

The appropriate 95% confidence interval for wcon — pspin is computed by
using the following formula with df = 64, the same as the value that was used for

the R.R.
> - 2 2
(Veon = Yspin) * fa/z\/m =

Non n Spill

2 2
(%%—2w$tz%mi?)+Qf)=n$¢aw=6@nm

Thus, we are 95% confident that the mean plant densities differ by an amount
between 5.5 and 17.6. The plant scientists would then evaluate whether a difference
in this range is of practical importance. This would then determine whether the
sites in which the oil spill occurred have been returned to their prespill condition,
at least in terms of this particular type of flora.

Reporting Conclusions

We would need to write a report summarizing our findings from the study. The fol-
lowing items should be included in the report:

1. Statement of objective for study
2. Description of study design and data collection procedures
3. Numerical and graphical summaries of data sets
® table of means, medians, standard deviations, quartiles, range
® boxplots
® stem-and-leaf plots
4. Description of all inference methodologies:
® approximate ¢ tests of differences in means
® approximate f-based confidence interval on population means
® verification that all necessary conditions for using inference
techniques were satisfied using boxplots, normal probability plots
Discussion of results and conclusions
Interpretation of findings relative to previous studies
Recommendations for future studies
Listing of data set

X:3 Summary and Key Formulas

In this chapter, we have considered inferences about w; — uo. The first set of
methods was based on independent random samples being selected from the
populations of interest. We learned how to sample data to run a statistical test or to

® N o
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342 CHAPTER 6 INFERENCES COMPARING TWO POPULATION CENTRAL VALUES

construct a confidence interval for u; — u, using t methods. The Wilcoxon rank sum
test, which does not require normality of the underlying populations, was presented
as an alternative to the ¢ test.

The second major set of procedures can be used to make comparisons
between two populations when the sample measurements are paired. In this situa-
tion, we no longer have independent random samples, and, hence, the procedures of
Sections 6.2 and 6.3 (t methods and the Wilcoxon rank sum test) are inappropriate.
The test and estimation methods for paired data are based on the sample differ-
ences for the paired measurements or the ranks of the differences. The paired ¢ test
and corresponding confidence interval based on the difference measurements were
introduced and found to be identical to the single-sample ¢t methods of Chapter 5.
The nonparametric alternative to the paired ¢ test is the Wilcoxon signed-rank test.

The material presented in Chapters 5 and 6 lays the foundation of statistical
inference (estimation and testing) for the remainder of the text. Review the mate-
rial in this chapter periodically as new topics are introduced so that you retain the
basic elements of statistical inference.

Key Formulas

1. 100(1 — a)% confidence interval for w; — u,, independent samples; y; and

y approximately normal; o3 = o3

(5= 3 = tyaspn) o+
! 2 = e\ T )

where

sp=\/(”1 ~Usi+ = 1)s3 and df=n, +n, — 2

n,+n,—2
2. ttest for u; — wp, independent samples; y; and y, approximately normal;
o2 = o3
yi—y,— D
TSir=2_"2"20 Ggr—p +n,-2

sp\/l/n1 + 1/n,

3. t' test for w; — uy, unequal variances; independent samples; y; and y,
approximately normal

TS ¢ = yi— Y, — Dy df = (nl — 1)(”2 - 1)
ﬁ_’_é (1 —=c) @, — 1)+ cAm, — 1)
nom

where
S%/”l
si,8
nom

4. 100(1 — a)% confidence interval for u; — u», unequal variances; independent
samples; y; and y, approximately normal

S2

2

S s

01 = ¥2) Tt/ 2+ =2
noon
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where the t-percentile has

(n, — 1)n, — 1)
(1 —c)n — 1)+ c*n,— 1)

df =

with
2
_ s1/ny
=2
s
1, %
ng m

5. Wilcoxon rank sum test, independent samples

H,: The two populations are identical.
(n1,n, = 10)

T.S.: T, the sum of the ranks in sample 1
(n1,n, > 10)

T — pr
Or

TS.: z =

where T denotes the sum of the ranks in sample 1

nn, +n, +1 nn
[.LT:—I(I 2+ 1) and UT=\/1 2(n, +n, + 1)

2 12
provided there are no tied ranks

6. Paired ¢ test; differences approximately normal

Ts:r= 7 D0 4 1
Sit=—F—— =n-—
s, Nn

where 7 is the number of differences

7. 100(1 — &)% confidence interval for w,, paired data; differences approxi-
mately normal

d*i, 254/\/;
8. Wilcoxon signed-rank test, paired data

H,: The distribution of differences is symmetrical about D.
T.S.: (n=150) T- or T or smaller of 7 and 7T- depending on the

form of H,
T.S.: (n>50)
_ T — pr
Z = ——
gr
where
_nln+1) d _ \/n(n +1)2n + 1)
Hr="y and or= 24

provided there are no tied ranks

9. Independent samples: sample sizes for estimating u; — u, with a
100(1 — @)% confidence interval, of the form y, — y, * E

2 2
_2za/20
n=m
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10. Independent samples: sample sizes for testing u; — w2
a. One-sided test:

202(10( + zﬁ)z

S

b. Two-sided test:

2(r2(za/2 + z)°
e
1. Paired samples: sample sizes for estimating u; — u, with 100(1 — @)%
confidence interval, of the form d = E

2 2
Zap9d

E2
12. Paired samples: sample sizes for testing u; — w2
a. One-sided test:

n =

oz, + 25)
AZ

n

b. Two-sided test:
03(zap + 25)?
AZ

] exercises

6.1 Introduction

Env. 6.1 Refer to the oil-spill case study.
a. What are the populations of interest?
b. What are some factors other than flora density that may indicate that the oil spill
has affected the marsh?
c. Describe a method for randomly selecting the tracts where flora density measure-
ments were to be taken.
d. State several hypotheses that may be of interest to the researchers.

I

n

6.2 Inferences About i, — u2: Independent Samples

Basic 6.2 For each of the situations, set up the rejection region:
a. Ho:w = py versus Hy: puy # pp with np = 12,n, = 15, and a = .05
b. Hy: w = uy + 3 versus H: > up + 3 withny = n, =25and a = .01
C. Hy: = py — 9versus Hy: wy < up — 9 with ny = 13, n, = 15, and a = .025

Basic 6.3 Conduct a test of Hy: = up — 2.3 versus H,: u < up — 2.3 for the sample data summarized
here. Use & = .01 in reaching your conclusions.

Population

1 2
Sample size 13 21
Sample mean 50.3 58.6
Sample standard deviation 7.23 6.98
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6.9 Exercises 345
6.4 Refer to Exercise 6.3.

a. What is the level of significance for your test?

b. Place a 99% confidence interval on u; — po.

6.5 In an effort to link cold environments with hypertension in humans, a preliminary experi-
ment was conducted to investigate the effect of cold on hypertension in rats. Two random samples
of 6 rats each were exposed to different environments. One sample of rats was held in a normal
environment at 26°C. The other sample was held in a cold 5°C environment. Blood pressures and
heart rates were measured for rats for both groups. The blood pressures for the 12 rats are shown
in the accompanying table.

a. Do the data provide sufficient evidence that rats exposed to a 5°C environment have a

higher mean blood pressure than rats exposed to a 26°C environment? Use o = .05.
b. Evaluate the three conditions required for the test used in part (a).
c. Provide a 95% confidence interval on the difference in the two population means.

26°C

5°C

Rat

Blood Pressure

Rat

Blood Pressure

AN AW

152
157
179
182
176
149

10
11
12

384
369
354
375
366
423

6.6 The Department of Natural Resources (DNR) received a complaint from recreational fish-
ermen that a community was releasing sewage into the river where they fished. These types of
releases lower the level of dissolved oxygen in the river and hence cause damage to the fish resid-
ing in the river. An inspector from the DNR designs a study to investigate the fishermen’s claim.
Fifteen water samples are selected at locations on the river upstream from the community and
fifteen samples are selected downstream from the community. The dissolved oxygen readings in
parts per million (ppm) are given in the following table.

Upstream 52 4.8
Downstream 3.2 34

5.1 50 49 4.8 5.0 4.7 4.7 5.0 4.6 52 5.0 4.9 4.7
3.7 39 3.6 3.8 39 3.6 4.1 33 4.5 3.7 39 3.8 3.7

Engin.

a. In order for the discharge to have an impact on fish health, there needs to be at
least an .5 ppm reduction in the dissolved oxygen. Do the data provide sufficient
evidence that there is a large enough reduction in the mean dissolved oxygen be-
tween the upstream and downstream water in the river to impact the health of the
fish? Use @ = .01

b. Do the required conditions to use the test in part (a) appear to be valid?

c. What is the level of significance of the test in part (a)?

d. Estimate the size of the difference in the mean dissolved oxygen readings for the
two locations on the river using a 99% confidence interval.

6.7 An industrial engineer conjectures that a major difference between successful and
unsuccessful companies is the percentage of their manufactured products returned because
of defectives. In a study to evaluate this conjecture, the engineer surveyed the quality control
departments of 50 successful companies (identified by the annual profit statement) and
50 unsuccessful companies. The companies in the study all produced products of a similar nature
and cost. The percentages of the total output returned by customers in the previous year are
provided in following table.
a. Do the data provide sufficient evidence that successful businesses have a lower
percentage of their products returned by customers? Use a = .05.
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Unsuccessful ~ 11.35 9.19 1030 8.59 4.98 6.82 6.03 11.15 9.38 8.32
Businesses 8.34 7.69 13.58 10.49 11.07 6.98 9.77 9.36 8.39 7.98
6.56 6.85 8.06 771 11.04 11.69 9.40 10.00 545 9.67
8.93 7.32 13.70 8.67 10.08 8.53 9.14 9.02 6.70 5.66
8.26 7.07 1223 11.93 476 13.81 11.41 6.44 9.50 8.99
Successful 10.24 6.16 5.06 10.64 6.77 10.13 4.59 138 8.81 1.97
Businesses 543 6.32 0.43 7.30 0.47 10.82 9.34 2.39 11.06 4.19
5.09 8.20 10.51 1.94 9.82 6.69 0.91 6.17 0.17 7.47
3.62 223 1.08 9.16 6.07 7.51 4.46 2.13 241 7.24
4.06 7.70 8.32 6.33 3.83 4.96 9.05 6.41 0.27 8.48

b. Do the required conditions for applying your test in part (a) appear to be valid?

c. In order for the difference in percentage returns to have an economical impact,
the difference must be at least 5%. Is there significant evidence that the
percentage for successful businesses is at least 5% less that the percentage for
unsuccessful businesses?

d. Estimate the difference in the percentages of returns for successful and
unsuccessful businesses using a 95% confidence interval.

Soc. 6.8 The number of households currently receiving a daily newspaper has decreased over the
last 10 years, and many people state they obtain information about current events through
television news and the Internet. To test whether people who receive a daily newspaper have a
greater knowledge of current events than people who don’t, a sociologist gave a current events
test to 25 randomly selected people who subscribe to a daily newspaper and to 30 randomly
selected persons who do not receive a daily newspaper. The following stem-and-leaf graphs give
the scores (maximum score is 70) for the two groups. Does it appear that people who receive a
daily newspaper have a greater knowledge of current events? Be sure to evaluate all necessary
conditions for your procedures to be valid.

Character Stem-and-Leaf Display

Stem-and-leaf of No Newspaper Deliver Stem-and-leaf of Newspaper Subscribers
N=30 N=25
Leaf Unit = 1.0 Leaf Unit = 1.0
0 000
0
13
1 59
2 334 2 2
2 57 2 99
3 00234 32
3 5589 3 66889
4 00124 4 000112333
45 4 55666
50 5 2
5 55 59
6 2

Env. 6.9 The study of concentrations of atmospheric trace metals in isolated areas of the world
has received considerable attention because of the concern that humans might somehow alter
the climate of the earth by changing the amount and distribution of trace metals in the atmos-
phere. Consider a study at the South Pole, where, over a 2-month period, seventy air samples
were obtained. In thirty-five of the samples, the amount of magnesium was determined. In the
remaining thirty-five samples, the amount of europium was determined.
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Sample Size Sample Mean Sample Standard Deviation
Magnesium 35 1.0 221
Europium 35 17.0 12.65

. What are the populations of interest in this study?

Is there significant evidence of a difference in the mean magnesium and
Europium levels? Use a = .05.

c. What is the level of significance of your test?

d. Estimate the mean levels of magnesium and Europium using a 95% confidence
interval.

T o

Env. 6.10 Refer to Exercise 6.9.
a. Based on the values of the sample mean and sample standard deviation for
magnesium, provide a reason why the distribution of magnesium does not have a
normal distribution.
b. Are the inferences given in Exercise 6.9 valid based on your answer in part (a)?

Env. 6.11 PCBs have been in use since 1929, mainly in the electrical industry, but it was not until
the 1960s that they were found to be a major environmental contaminant. In the paper “The
Ratio of DDE to PCB Concentrations in Great Lakes Herring Gull Eggs and Its Use in Interpreting
Contaminants Data” [ Journal of Great Lakes Research (1998) 24(1):12-31], researchers report on
the following study. Thirteen study sites from the five Great Lakes were selected. At each site, 9
to 13 herring gull eggs were collected randomly each year for several years. Following collection,
the PCB content was determined. The mean PCB content at each site is reported in the following
table for the years 1982 and 1996.

Site

Year 1 2 3 4 5 6 7 8 9 10 11 12 13

1982 61.48 6447 4550 5970 5881 7586 7157 38.06 30.51  39.70 29.78 66.89 63.93
1996 13.99 1826 1128 10.02 21.00 17.36  28.20 7.30 12.80 9.41 12.63 16.83 22.74

a. Legislation was passed in the 1970s restricting the production and use of PCBs.
Thus, the active input of PCBs from current local sources has been severely
curtailed. Do the data provide evidence that there has been a significant
decrease in the mean PCB content of herring gull eggs?

b. Estimate the size of the decrease in mean PCB content from 1982 to 1996, using
a 95% confidence interval.

c. Evaluate the conditions necessary to validly test the hypotheses and construct
the confidence intervals using the collected data.

d. Does the independence condition appear to be violated?

6.12 Refer to Exercise 6.11. There appears to be a large variation in the mean PCB content
across the 13 sites. How could we reduce the effect of variation in PCB content due to site differ-
ences on the evaluation of the difference in the PCB content means between the 2 years?

H.R. 6.13 A firm has a generous but rather complicated policy concerning end-of-year bonuses for its
lower-level managerial personnel. The policy’s key factor is a subjective judgment of “contribu-
tion to corporate goals.” A personnel officer took samples of 24 female and 36 male managers to
see whether there was any difference in bonuses, expressed as a percentage of yearly salary. The
data are listed here:
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Gender Bonus Percentage

F 9.2 7.7 11.9 6.2 9.0 8.4 6.9 7.6 7.4
8.0 9.9 6.7 8.4 9.3 9.1 8.7 9.2 9.1
8.4 9.6 7.7 9.0 9.0 8.4

M 10.4 8.9 11.7 12.0 8.7 9.4 9.8 9.0 9.2
9.7 9.1 8.8 7.9 9.9 10.0 10.1 9.0 11.4
8.7 9.6 9.2 9.7 8.9 9.2 9.4 9.7 8.9
9.3 104 11.9 9.0 12.0 9.6 9.2 9.9 9.0

a. What are the populations of interest in this study?

b. Is there significant evidence that the mean bonus percentage for males is more
than five units larger than the mean bonus percentage for females? Use a = .05.

c. What is the level of significance of your test?

d. Estimate the difference in the mean bonus percentages for males and females
using a 95% confidence interval.

6.3 A Nonparametric Alternative: The Wilcoxon Rank Sum Test

Basic 6.14 Provide the rejection region for the Wilcoxon rank sum test for each of the following sets
of hypotheses:
a. Hyp: A =0versus H;: A#0withny = 8,1, =9,and a = .10
b. Hy: A = 0versus H;: A <0withn; =6,n,=7,and a = .05
Cc. Hy: A =0versus H;: A > 0withny =5,n,=9,and a = .025

6.15 Random samples of size n; = 8 and n, = 8 were selected from populations A and B,
respectively. The data are given in the following table.

Population A 43 4.6 4.7 51 53 53 58 5.4
Population B 3.5 3.8 3.7 3.9 4.4 4.7 5.2 4.4

a. Test for a difference in the medians of the two populations using an & = .05
Wilcoxon rank sum test.

b. Place a 95% confidence interval on the difference in the medians of the two
populations.

Basic 6.16 Refer to Exercise 6.15.

a. Test for a difference in the means in the two populations using an a = .05 ¢-test.

b. Place a 95% confidence interval on the difference in the means of the two
populations.

c. Compare the inferences obtained from the results from the Wilcoxon rank sum
test and the -test.

d. Which inferences appear to be more valid, inferences on the means or the
medians?

Bus. 6.17 A cable TV company was interested in making its operation more efficient by cutting down
on the distance between service calls while still maintaining at least the same level of service
quality. A treatment group of 18 repairpersons was assigned to a dispatcher who monitored all
the incoming requests for cable repairs and then provided a service strategy for that day’s work
orders. A control group of 18 repairpersons was to perform their work in a normal fashion —that
is, by providing service in roughly a sequential order as requests for repairs were received. The
average daily mileages for the 36 repairpersons are recorded here:
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Treatment Group 62.2 79.3 83.2 822 84.1 89.3
95.8 97.9 91.5 96.6 90.1 98.6

85.2 87.9 86.7 99.7 101.1 88.6

Control Group 971 70.2 94.6 182.9 85.6 89.5
109.5 101.7 99.7 193.2 105.3 92.9

63.9 88.2 99.1 95.1 92.4 87.3

a. What are the populations of interest in this study?

b. Is there significant evidence that the treatment group had a smaller average daily
mileage than the control group? Use a = .05.

C. What is the level of significance of your test?

d. Estimate the difference in the average daily mileage for the treatment and control
groups using a 95% confidence interval.

e. There are three possible procedures that could be applied to answer the questions
in parts (b), (c), and (d). Which of these procedures appears to be the most valid?

Med. 6.18 The paper “Serum Beta-2-Microglobulin (SB2M) in Patients with Multiple Myeloma Treated
with Alpha Interferon” [ Journal of Medicine (1997) 28:311-318] reports on the influence of alpha
interferon administration in the treatment of patients with multiple myeloma (MM). Twenty
newly diagnosed patients with MM were entered into the study. The researchers randomly
assigned the 20 patients to the two groups. Ten patients were treated with both intermittent
melphalan and sumiferon (treatment group), whereas the remaining 10 patients were treated
only with intermittent melphalan (control group). The SB2M levels were measured before and
at days 3, 8, and 15 and months 1, 3, and 6 from the start of therapy. The measurement of SB2M
was performed using a radioimmunoassay method. The measurements before treatment are given
here.

Treatment Group 2.9 2.7 39 2.7 21 2.6 22 4.2 5.0 0.7
Control Group 3.5 2.5 3.8 8.1 3.6 22 5.0 29 2.3 29

a. Plot the sample data for both groups using boxplots or normal probability plots.
b. Based on your findings in part (a), which procedure appears more appropriate for
comparing the distributions of SB2M?
c. Is there significant evidence that there is a difference in the distribution of SB2M
for the two groups?
d. Discuss the implications of your findings in part (c) for the evaluation of the
influence of alpha interferon.
6.19 The simulation study described in Section 6.3 evaluated the effect of heavy-tailed and
skewed distributions on the level of significance and power of the ¢ test and Wilcoxon rank sum
test. Examine the results displayed in Table 6.13, and then answer the following questions.
a. What has a greater effect, if any, on the level of significance of the ¢ test, skewness
or heavy-tailness?
b. What has a greater effect, if any, on the level of significance of the Wilcoxon rank
sum test, skewness or heavy-tailness?
6.20 Refer to Exercise 6.19.
a. What has a greater effect, if any, on the power of the ¢ test, skewness or heavy
tailedness?
b. What has a greater effect, if any, on the power of the Wilcoxon rank sum test,
skewness or heavy tailedness?

6.21 Refer to Exercises 6.19 and 6.20.
a. For what type of population distributions would you recommend using the ¢ test?
Justify your answer.
b. For what type of population distributions would you recommend using the
Wilcoxon rank sum test? Justify your answer.
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6.4 Inferences About u, — u,: Paired Data
Basic 6.22 Provide the rejection region for the paired ¢ test for each of the following sets of
hypotheses:
a. Ho: g = 0versus Hy: g # 0 with n = 19,and a = .05
b. Hy: wy = 0versus H,: py > 0 withn = 8, and a = .025
C. Hy pg=0versus H,: ug < 0withn =14, and @ = .01

Basic 6.23 A random sample of eight pairs of twins was randomly assigned to treatment A or
treatment B. The data are given in the following table.

Twins 1 2 3 4 5 6 7 8

Treatment A 48.3 44.6 49.7 40.5 54.3 55.6 45.8 354
Treatment B 43.5 43.8 53.7 43.9 544 54.7 452 34.4

a. Is there significant evidence that the two treatments differ using an a = .05
paired ¢ test.

b. Is there significant evidence that the two treatments differ using an @ = .05
sign test.

c. Do your conclusions in parts (a) and (b) agree?

d. How do your inferences about the two treatments based on the paired ¢ test and
based on the sign test differ?

Basic 6.24 Refer to Exercise 6.23.
a. What is the level of significance of the paired ¢ test?
b. What is the level of significance of the sign test?
c. Place a 95% confidence interval on the mean difference between the responses
from the two treatments.
d. Which of the two procedures, the paired  test or the sign test, appears to be more
valid in this study?

6.25 Refer to the data of Exercise 6.11. A potential criticism of analyzing these data as if they
were two independent samples is that the measurements taken in 1996 were taken at the same sites
as the measurements taken in 1982. Thus, there is the possibility that there will be a strong positive
correlation between the pair of observations at each site.

a. Plot the pairs of observations in a scatterplot with the 1982 values on the
horizontal axis and the 1996 values on the vertical axis. Does there appear to be a
positive correlation between the pairs of measurements? Estimate the correlation
between the pairs of observations?

b. Compute the correlation coefficient between the pairs of observations. Does this
value confirm your observations from the scatterplot? Explain your answer.

c. Answer the questions posed in parts (a) and (b) of Exercise 6.11 using a paired
data analysis. Are your conclusions different from the conclusions you reached
treating the data as two independent samples?

Engin. 6.26 Researchers are studying two existing coatings used to prevent corrosion in pipes that
transport natural gas. The study involves examining sections of pipe that had been in the ground
at least 5 years. The effectiveness of the coating depends on the pH of the soil, so the research-
ers recorded the pH of the soil at all 20 sites at which the pipe was buried prior to measuring the
amount of corrosion on the pipes. The pH readings are given here. Describe how the researchers
could conduct the study to reduce the effect of the differences in the pH readings on the evalua-
tion of the difference in the two coatings’ corrosion protection.

pH