

This page intentionally left blank

INFORMATION SECURITY

This page intentionally left blank

INFORMATION SECURITY
Principles and Practice

Second Edition

Mark Stamp
San Jose State University

San Jose, CA

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as per-
mitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be ad-
dressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this book and specifically disclaim any implied warranties of merchantabili-
ty or fitness for a particular purpose. No warranty may be created or extended by sales representatives or
written sales materials. The advice and strategies contained herein may not be suitable for your situation.
You should consult with a professional where appropriate. Neither the publisher nor author shall be li-
able for any loss of profit or any other commercial damages, including but not limited to special, inci-
dental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Stamp, Mark.
Information security: principles and practice / Mark Stamp. — 2nd ed.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-62639-9 (hardback)

1. Computer security. I. Title.
QA76.9.A25S69 2011
005.8—dc22 2010045221

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To Miles, Austin, and Melody, with love.

This page intentionally left blank

Contents

Preface xv

About The Author xix

Acknowledgments xxi

1 Introduction 1

1.1 The Cast of Characters 1
1.2 Alice's Online Bank 2

1.2.1 Confidentiality, Integrity, and Availability 2
1.2.2 Beyond CIA 3

1.3 About This Book 4
1.3.1 Cryptography 5
1.3.2 Access Control 6
1.3.3 Protocols 7
1.3.4 Software 8

1.4 The People Problem 8
1.5 Principles and Practice 9
1.6 Problems 10

1 Crypto 17

2 Crypto Basics 19

2.1 Introduction 19
2.2 How to Speak Crypto 20
2.3 Classic Crypto 22

2.3.1 Simple Substitution Cipher 22
2.3.2 Cryptanalysis of a Simple Substitution 24
2.3.3 Definition of Secure 25
2.3.4 Double Transposition Cipher 26
2.3.5 One-Time Pad 27
2.3.6 Project VENONA 31

vii

CONTENTS

2.3.7 Codebook Cipher 32
2.3.8 Ciphers of the Election of 1876 35

2.4 Modern Crypto History 37
2.5 A Taxonomy of Cryptography 40
2.6 A Taxonomy of Cryptanalysis 41
2.7 Summary 42
2.8 Problems 43

3 Symmetric Key Crypto 51

3.1 Introduction 51
3.2 Stream Ciphers 52

3.2.1 A5/1 53
3.2.2 RC4 55

3.3 Block Ciphers 57
3.3.1 Feistel Cipher 57
3.3.2 DES 58
3.3.3 Triple DES 65
3.3.4 AES 67
3.3.5 Three More Block Ciphers 69
3.3.6 TEA 70
3.3.7 Block Cipher Modes 72

3.4 Integrity 76
3.5 Summary 78
3.6 Problems 79

4 Public Key Crypto 89

4.1 Introduction 89
4.2 Knapsack 91
4.3 RSA 95

4.3.1 Textbook RSA Example 97
4.3.2 Repeated Squaring 98
4.3.3 Speeding Up RSA 99

4.4 Diffie-Hellman 100
4.5 Elliptic Curve Cryptography 102

4.5.1 Elliptic Curve Math 103
4.5.2 ECC Diffie-Hellman 105
4.5.3 Realistic Elliptic Curve Example 106

4.6 Public Key Notation 107
4.7 Uses for Public Key Crypto 107

4.7.1 Confidentiality in the Real World 108
4.7.2 Signatures and Non-repudiation 108
4.7.3 Confidentiality and Non-repudiation 109

4.8 Public Key Infrastructure 112

CONTENTS ix

4.9 Summary 114
4.10 Problems 115

5 Hash Functions++ 125

5.1 Introduction 125
5.2 What is a Cryptographic Hash Function? 126
5.3 The Birthday Problem 128
5.4 A Birthday Attack 129
5.5 Non-Cryptographic Hashes 130
5.6 Tiger Hash 132
5.7 HMAC 136
5.8 Uses for Hash Functions 139

5.8.1 Online Bids 139
5.8.2 Spam Reduction 140

5.9 Miscellaneous Crypto-Related Topics 141
5.9.1 Secret Sharing 142
5.9.2 Random Numbers 145
5.9.3 Information Hiding 148

5.10 Summary 153
5.11 Problems 153

6 Advanced Cryptanalysis 167

6.1 Introduction 167
6.2 Enigma 169

6.2.1 Enigma Cipher Machine 169
6.2.2 Enigma Keyspace 172
6.2.3 Rotors 174
6.2.4 Enigma Attack 176

6.3 RC4 as Used in WEP 179
6.3.1 RC4 Algorithm 180
6.3.2 RC4 Cryptanalytic Attack 181
6.3.3 Preventing Attacks on RC4 185

6.4 Linear and Differential Cryptanalysis 186
6.4.1 Quick Review of DES 186
6.4.2 Overview of Differential Cryptanalysis 187
6.4.3 Overview of Linear Cryptanalysis 190
6.4.4 Tiny DES 192
6.4.5 Differential Cryptanalysis of TDES 194
6.4.6 Linear Cryptanalysis of TDES 199
6.4.7 Implications Block Cipher Design 202

6.5 Lattice Reduction and the Knapsack 203
6.6 RSA Timing Attacks 210

6.6.1 A Simple Timing Attack 211

x CONTENTS

6.6.2 Kocher's Timing Attack 214
6.7 Summary 218
6.8 Problems 218

II Access Control 227

7 Authentication 229

7.1 Introduction 229
7.2 Authentication Methods 230
7.3 Passwords 231

7.3.1 Keys Versus Passwords 232
7.3.2 Choosing Passwords 232
7.3.3 Attacking Systems via Passwords 234
7.3.4 Password Verification 235
7.3.5 Math of Password Cracking 237
7.3.6 Other Password Issues 240

7.4 Biometrics 242
7.4.1 Types of Errors 244
7.4.2 Biometrie Examples 244
7.4.3 Biometrie Error Rates 250
7.4.4 Biometrie Conclusions 250

7.5 Something You Have 251
7.6 Two-Factor Authentication 252
7.7 Single Sign-On and Web Cookies 252
7.8 Summary 254
7.9 Problems 254

8 Authorization 265

8.1 Introduction 265
8.2 A Brief History of Authorization 266

8.2.1 The Orange Book 266
8.2.2 The Common Criteria 269

8.3 Access Control Matrix 271
8.3.1 ACLs and Capabilities 272
8.3.2 Confused Deputy 273

8.4 Multilevel Security Models 274
8.4.1 Bell-LaPadula 276
8.4.2 Biba's Model 278

8.5 Compartments 279
8.6 Covert Channel 281
8.7 Inference Control 283
8.8 CAPTCHA 285

CONTENTS xi

8.9 Firewalls 287
8.9.1 Packet Filter 288
8.9.2 Stateful Packet Filter 290
8.9.3 Application Proxy 291
8.9.4 Personal Firewall 293
8.9.5 Defense in Depth 293

8.10 Intrusion Detection Systems 294
8.10.1 Signature-Based IDS 296
8.10.2 Anomaly-Based IDS 297

8.11 Summary 301
8.12 Problems 302

III Protocols 311

9 Simple Authentication Protocols 313

9.1 Introduction 313
9.2 Simple Security Protocols 315
9.3 Authentication Protocols 317

9.3.1 Authentication Using Symmetric Keys 320
9.3.2 Authentication Using Public Keys 323
9.3.3 Session Keys 325
9.3.4 Perfect Forward Secrecy 327
9.3.5 Mutual Authentication, Session Key, and PFS 329
9.3.6 Timestamps 330

9.4 Authentication and TCP 332
9.5 Zero Knowledge Proofs 335
9.6 The Best Authentication Protocol? 339
9.7 Summary 339
9.8 Problems 340

10 Real-World Security Protocols 351

10.1 Introduction 351
10.2 SSH 352
10.3 SSL 353

10.3.1 SSL and the Man-in-the-Middle 356
10.3.2 SSL Connections 357
10.3.3 SSL Versus IPSec 358

10.4 IPSec 359
10.4.1 IKE Phase 1: Digital Signature 361
10.4.2 IKE Phase 1: Symmetric Key 363
10.4.3 IKE Phase 1: Public Key Encryption 364
10.4.4 IPSec Cookies 366

xii CONTENTS

10.4.5 IKE Phase 1 Summary 366
10.4.6 IKE Phase 2 367
10.4.7 IPSec and IP Datagrams 368
10.4.8 Transport and Tunnel Modes 369
10.4.9 ESP and AH 370

10.5 Kerberos 372
10.5.1 Kerberized Login 374
10.5.2 Kerberos Ticket 375
10.5.3 Kerberos Security 376

10.6 WEP 377
10.6.1 WEP Authentication 377
10.6.2 WEP Encryption 378
10.6.3 WEP Non-Integrity 379
10.6.4 Other WEP Issues 379
10.6.5 WEP: The Bottom Line 380

10.7 GSM 381
10.7.1 GSM Architecture 381
10.7.2 GSM Security Architecture 383
10.7.3 GSM Authentication Protocol 385
10.7.4 GSM Security Flaws 386
10.7.5 GSM Conclusions 388
10.7.6 3GPP 389

10.8 Summary 389
10.9 Problems 390

IV Software 401

11 Software Flaws and Malware 403

11.1 Introduction 403
11.2 Software Flaws 404

11.2.1 Buffer Overflow 407
11.2.2 Incomplete Mediation 418
11.2.3 Race Conditions 419

11.3 Malware 421
11.3.1 Brain 422
11.3.2 Morris Worm 422
11.3.3 Code Red 424
11.3.4 SQL Slammer 425
11.3.5 Trojan Example 426
11.3.6 Malware Detection 427
11.3.7 The Future of Malware 429
11.3.8 Cyber Diseases Versus Biological Diseases 432

CONTENTS xiii

11.4 Botnets 433
11.5 Miscellaneous Software-Based Attacks 433

11.5.1 Salami Attacks 434
11.5.2 Linearization Attacks 434
11.5.3 Time Bombs 436
11.5.4 Trusting Software 436

11.6 Summary 437
11.7 Problems 438

12 Insecurity in Software 447

12.1 Introduction 447
12.2 Software Reverse Engineering 448

12.2.1 Reversing Java Bytecode 450
12.2.2 SRE Example 451
12.2.3 Anti-Disassembly Techniques 455
12.2.4 Anti-Debugging Techniques 456
12.2.5 Software Tamper Resistance 457
12.2.6 Metamorphism 2.0 459

12.3 Digital Rights Management 460
12.3.1 What is DRM? 460
12.3.2 A Real-World DRM System 464
12.3.3 DRM for Streaming Media 467
12.3.4 DRM for a P2P Application 469
12.3.5 Enterprise DRM 470
12.3.6 DRM Failures 471
12.3.7 DRM Conclusions 472

12.4 Software Development 472
12.4.1 Open Versus Closed Source Software 473
12.4.2 Finding Flaws 476
12.4.3 Other Software Development Issues 477

12.5 Summary 481
12.6 Problems 481

13 Operating Systems and Security 491

13.1 Introduction 491
13.2 OS Security Functions 492

13.2.1 Separation 492
13.2.2 Memory Protection 492
13.2.3 Access Control 494

13.3 Trusted Operating System 495
13.3.1 MAC, DAC, and More 495
13.3.2 Trusted Path 497
13.3.3 Trusted Computing Base 498

xiv CONTENTS

13.4 Next Generation Secure Computing Base 500
13.4.1 NGSCB Feature Groups 502
13.4.2 NGSCB Compelling Applications 503
13.4.3 Criticisms of NGSCB 504

13.5 Summary 506
13.6 Problems 506

Appendix 511

A-l Network Security Basics 511
A-l.l Introduction 511
A-1.2 The Protocol Stack 512
A-l.3 Application Layer 514
A-l.4 Transport Layer 516
A-l.5 Network Layer 519
A-1.6 Link Layer 521
A-l.7 Conclusions 523

A-2 Math Essentials 523
A-2.1 Introduction 523
A-2.2 Modular Arithmetic 524
A-2.3 Permutations 526
A-2.4 Probability 526
A-2.5 Linear Algebra 527
A-2.6 Conclusions 529

Annotated Bibliography 531

Index 572

Preface

Please sir or madam won't you read my book?
It took me years to write, won't you take a look?

— Lennon and McCartney

I hate black boxes. One of my goals in writing this book was to illuminate
some of those black boxes that are so popular in information security books
today. On the other hand, I don't want to bore you to death with trivial
details (if that's what you want, go read some RFCs). As a result, I often
ignore details that I deem irrelevant to the topic at hand. You can judge
whether I've struck the proper balance between these two competing goals.

I've strived to keep the presentation moving along so as to cover a broad
selection of topics. My goal is to cover each item in just enough detail so that
you can appreciate the basic security issue at hand, while not getting bogged
down in details. I've also attempted to regularly emphasize and reiterate
the main points so that crucial information doesn't slip by below the radar
screen.

Another goal of mine was to present the topic in a reasonably lively and
interesting way. If any computing subject should be exciting and fun, it's
information security. Security is happening now and it's in the news—it's
clearly alive and kicking.

I've also tried to inject a little humor into the material. They say that
humor is derived from pain, so judging by the quality of my jokes, I'd say
that I've led a charmed life. In any case, most of the really bad jokes are in
footnotes so they shouldn't be too distracting.

Some security textbooks offer a large dollop of dry useless theory. Reading
one of those books is about as exciting as reading a calculus textbook. Other
books offer a seemingly random collection of apparently unrelated facts, giv-
ing the impression that security is not really a coherent subject at all. Then
there are books that present the topic as a collection of high-level managerial
platitudes. Finally, some texts focus on the human factors in security. While
all of these approaches have their place, I believe that, first and foremost, a

xv

XVI PREFACE

security engineer must have a solid understanding of the inherent strengths
and weaknesses of the underlying technology.

Information security is a huge topic, and unlike more established fields,
it's not clear what material should be included in a book like this, or how
best to organize it. I've chosen to organize this book around the following
four major themes:

• Cryptography

• Access Control
• Protocols
• Software

In my usage, these themes are fairly elastic. For example, under the
heading of access control I've included the traditional topics of authentica-
tion and authorization, along with such nontraditional topics as firewalls and
CAPTCHAs. The software theme is particularly flexible, and includes such
diverse topics as secure software development, malware, software reverse en-
gineering, and operating systems.

Although this book is focused on practical issues, I've tried to cover
enough of the fundamental principles so that you will be prepared for further
study in the field. In addition, I've strived to minimize the background re-
quirements as much as possible. In particular, the mathematical formalism
has been kept to a bare minimum (the Appendix contains a review of all
necessary math topics). Despite this self-imposed limitation, I believe this
book contains more substantive cryptography than most security books out
there. The required computer science background is also minimal—an in-
troductory computer organization course (or comparable experience) is more
than sufficient. Some programming experience is assumed and a rudimentary
knowledge of assembly language would be helpful in a couple of sections, but
it's not mandatory. Networking basics arise in a few sections. The Appendix
contains a brief overview of networking that provides more than sufficient
background material.

If you are an information technology professional who's trying to learn
more about security, I would suggest that you read the entire book. However,
if you want to avoid the material that's most likely to slow you down and is
not critical to the overall flow of the book, you can safely skip Section 4.5, all
of Chapter 6 (although Section 6.6 is highly recommended), and Section 8.4.

If you are teaching a security class, you need to realize that this book has
more material than can be covered in a one-semester course. The schedule
that I generally follow in my undergraduate security class appears in Table 1.
This schedule allows ample time to cover a few of the optional topics.

If the syllabus in Table 1 is too busy, you could cut Section 8.9 of Chap-
ter 8 and some of the topics in Chapters 12 and 13. Of course, many other
variations on the syllabus are possible.

PREFACE XVll

Chapter
1. Introduction
2. Classic Cryptography
3. Symmetric Key Crypto
4. Public Key Crypto
5. Hash Functions++

6. Advanced Cryptanalysis
7. Authentication
8. Authorization

9. Authentication Protocols
10. Real-World Protocols
11. Software Flaws and Malware
12. Insecurity in Software
13. OS and Security
Total

Hours
1
3
4
4
3

0
4
2

4
4
4
4
3
40

Comments
All
All
Omit Section 3.3.5
Omit Section 4.5
Omit 5.6
Omit attack details in 5.7
Omit Section 5.9.1
Omit entire chapter
All
Omit 8.4.1 and 8.4.2
Omit 8.10
Omit 9.4
Omit either WEP or GSM
All
Omit 12.3
All, time permitting

Table 1: Suggested Syllabus

Security is not a spectator sport—doing a large number of homework
problems is essential to learning the material in this book. Many topics are
fleshed out in the problems and additional topics are often introduced. The
bottom line is that the more problems you solve, the more you'll learn.

A security course based on this book is an ideal venue for individual
or group projects. Chapter 6 is a good source for crypto projects, while
the annotated bibliography provides a starting point to search for additional
project topics. In addition, many homework problems lend themselves well
to class discussions or in-class assignments (see, for example, Problem 19 in
Chapter 10 or Problem 33 in Chapter 11).

The textbook website is at

http ://www.es.sj su.edu/~stamp/infosec/

where you'll find PowerPoint slides, all of the files mentioned in the home-
work problems, errata, and so on. If I were teaching this class for the first
time, I would particularly appreciate the PowerPoint slides, which have been
thoroughly "battle tested" and improved over several iterations. In addi-
tion, a solutions manual is available to instructors (sorry, students) from the
publisher.

It is also worth noting how the Appendices fit in. Appendix A-l, Network
Security Basics, is relevant to Sections 8.9 and 8.10 of Chapter 8 and also for

XVlll PREFACE

all of Part III. Even if students have a solid foundation in networking, it's
probably worthwhile to review this material, since networking terminology is
not always consistent and the focus here is on security.

The Math Essentials of Appendix A-2 are assumed in various places
throughout the text. Elementary modular arithmetic (Appendix A-2.2) arises
in a few sections of Chapter 3 and Chapter 5, while some of the relatively
advanced concepts are required in Chapter 4 and Section 9.5 of Chapter 9.
I've found that the vast majority of my students need to brush up on modular
arithmetic basics. It only takes about 20 to 30 minutes of class time to cover
the material on modular arithmetic and that will be time well spent prior to
diving into public key cryptography. Trust me.

Permutations, which are briefly discussed in Appendix A-2.3, are most
prominent in Chapter 3, while elementary discrete probability (Appendix A-
2.4) appears in several places. The elementary linear algebra in Appendix A-
2.5 is only required in Section 6.5.

Just as any large and complex piece of software must have bugs, this book
inevitably has errors. I would like to hear about any errors—large or small—
that you find. I will maintain a reasonably up-to-date errata on the textbook
website. Also, don't hesitate to provide any suggestions you might have for
future editions of this book.

What's New for the Second Edition?

Cats right themseJves; books don't.
— John Ay cock

One major change for this second edition is that the number and quality of
the homework problems have both greatly increased. In addition to the new-
and-improved homework problems, new topics have been added, some new
background material has been included, virtually all of the existing material
has been updated and clarified, and all known errors have been corrected.
Examples of new topics include a practical RS A timing attack, a discussion of
botnets, and coverage of security certification. Examples of added background
material include a section on the Enigma cipher and coverage of the classic
"orange book" view of security.

Information security is a rapidly evolving field and there have been some
significant changes since the first edition of this book was published in 2005.
Nevertheless, the basic structure of the book remains intact. I believe the
organization and list of topics has held up well over the past five years.
Consequently, the changes to the content for this second edition are more
evolutionary than revolutionary.

Mark Stamp
San Jose State University

About The Author

I've got nearly 20 years of experience in information security, including ex-
tensive work in industry and government. My work experience includes more
than seven years at the National Security Agency followed by two years at a
Silicon Valley startup company. While I can't say too much about my work
at NSA, I can tell you that my job title was Cryptologie Mathematician.
In industry I helped design and develop a digital rights management security
product. This real-world work was sandwiched between academic jobs. While
in academia, my research interests have included a wide variety of security
topics.

When I returned to academia in 2002, it seemed to me that none of the
available security textbooks had much connection with the real world. I felt
that I could write an information security book that would fill this gap, while
also containing information that would be useful to working IT professionals.
Based on the feedback I've received, the first edition was apparently a success.

I believe that this second edition will prove even more valuable in its dual
role as a textbook and as a resource for working professionals, but then I'm
biased. I can say that many of my former students who are now at leading
Silicon Valley technology companies tell me that the information they learned
in my courses has been useful to them. And I certainly wish that a book like
this had been available when I worked in industry, since my colleagues and I
would have benefitted from it.

I do have a life outside of information security.1 My family includes my
wife, Melody, and two wonderful sons, Austin (whose initials are AES), and
Miles (whose initials are not DES, thanks to Melody). We enjoy the outdoors,
with regular local trips involving such activities as bicycling, hiking, camping,
and fishing. I also spend way too much time working on my fixer-upper house
in the Santa Cruz mountains.

1Well, sort of...

xix

This page intentionally left blank

Acknowledgments

My work in information security began when I was in graduate school. I
want to thank my thesis advisor, Clyde F. Martin, for introducing me to this
fascinating subject.

In my seven years at NSA, I learned more about security than I could
have learned in a lifetime anywhere else. From my time in industry, I want
to thank Joe Pasqua and Paul Clarke for giving me the chance to work on a
fascinating and challenging project.

The following San Jose State University students helped greatly with
the first edition: Fiona Wong, Martina Simova, Deepali Holankar, Xufen
Gao, Subha Rajagopalan, Neerja Bhatnager, Amit Mathur, Ali Hushyar,
Smita Thaker, Puneet Mishra, Jianning Yang, Konstantin Skachkov, Jian
Dai, Thomas Niki, Ikai Lan, Thu Nguyen, Samuel Reed, Yue Wang, David
Stillion, Edward Yin, and Randy Fort.

Richard Low, a colleague here at SJSU, provided helpful feedback on an
early version of the manuscript. David Blockus (God rest his soul) deserves
special mention for providing detailed comments on each chapter at a partic-
ularly critical juncture in the writing of the first edition.

For this second edition, many of my SJSU masters students "volunteered"
to serve as proofreaders. The following students all contributed their time
and energy to correct errors in the manuscript: Naidele Manjunath, Mausami
Mungale, Deepti Kundu, Jianrui (Louis) Zhang, Abhishek Shah, Sushant
Priyadarshi, Mahim Patel, Lin Huang, Eilbroun Benjamin, Neha Samant,
Rashmi Muralidhar, Kenny Zhang, Jyotsna Krishnaswamy, Ronak Shah,
Gauri Gokhale, Arnold Suvatne, Ashish Sharma, Ankit Patel, Annie Hii,
Namrata Buddhadev, Sujandharan Venkatachalam, and Sathya Anandan. In
addition, Piyush Upadhyay found several errors in the first edition.

Many other people made helpful comments and suggestions. Here, I would
like to specifically thank Bob Harris (Penn State University) for the visual
crypto example and exercise, and a very special thanks goes to John Trono
(Saint Michael's College) for his many detailed comments and questions.

Undoubtedly, errors remain. Of course, all remaining flaws are my re-
sponsibility alone.

xxi

This page intentionally left blank

Chapter 1

Introduction

"Begin a t the beginning, " the King said, very gravely,

"and go on till you come to the end: then stop."

— Lewis Carroll, Alice in Wonderland

1.1 The Cast of Characters

Following tradition, Alice and Bob, who are pictured in Figure 1.1, are the
good guys. Occasionally we'll require additional good guys, such as Charlie
and Dave.

Alice Bob

Figure 1.1: Alice and Bob.

Trudy, pictured in Figure 1.2, is a generic bad "guy" who is trying to
attack the system in some way. Some authors employ a team of bad guys
where the name implies the particular nefarious activity. In this usage, Trudy
is an "intruder" and Eve is an "eavesdropper" and so on. To simplify things,
we'll use Trudy as our all-purpose bad guy.1

xYou might be wondering why a picture of Tweedledee and Tweedledum is used to
represent Trudy. After all, Trudy is typically a female name, so why two bad guys instead
of one bad girl? One possible reason is that, occasionally, we need two bad guys, so
it's convenient to have both Tweedledee and Tweedledum available. Another plausible

1

2 INTRODUCTION

Figure 1.2: Trudy.

Alice, Bob, Trudy, and the rest of the gang need not be humans. For
example, one of many possible scenarios would have Alice as a laptop, Bob a
server, and Trudy a human.

1.2 Alice's Online Bank

Suppose that Alice starts an online banking business, appropriately named
Alice's Online Bank,2 or AOB. What are Alice's information security con-
cerns? If Bob is Alice's customer, what are his information security con-
cerns? Are Bob's concerns the same as Alice's? If we look at AOB from
Trudy's perspective, what security vulnerabilities might we see?

First, let's consider the traditional triumvirate of confidentiality, integrity,
and availability, or CIA,3 in the context of Alice's Bank. Then we'll point
out some of the many other possible security concerns.

1.2.1 Confidentiality, Integrity, and Availability

Confidentiality deals with preventing unauthorized reading of information.
AOB probably wouldn't care much about the confidentiality of the informa-
tion it deals with, except for the fact that its customers certainly do. For
example, Bob doesn't want Trudy to know how much he has in his savings
account. Alice's Bank would also face legal problems if it failed to protect
the confidentiality of such information.

Integrity deals with preventing, or at least detecting, unauthorized "writ-
ing" (i.e., changes to data). Alice's Bank must protect the integrity of account
information to prevent Trudy from, say, increasing the balance in her account
or changing the balance in Bob's account. Note that confidentiality and in-
tegrity are not the same thing. For example, even if Trudy cannot read the
data, she might be able to modify this unreadable data, which, if undetected,

explanation is that you never know who might be acting as "Trudy." While these would
be good reasons for choosing the Tweedle brothers, the reality is that your easily amused
author finds the picture, well, amusing.

2Not to be confused with "Alice's Restaurant" [135].
3No, not that CIA.. .

1.2 ALICE'S ONLINE BANK 3

would destroy its integrity. In this case, Trudy might not know what changes
she had made to the data (since she can't read it), but she might not care—
sometimes just causing trouble is good enough.

Denial of service, or DoS, attacks are a relatively recent concern. Such
attacks try to reduce access to information. As a result of the rise in DoS
attacks, data availability has become a fundamental issue in information secu-
rity. Availability is an issue for both Alice's Bank and Bob—if AOB's website
is unavailable, then Alice can't make money from customer transactions and
Bob can't get his business done. Bob might then take his business elsewhere.
If Trudy has a grudge against Alice, or if she just wants to be malicious, she
might attempt a denial of service attack on Alice's Online Bank.

1.2.2 Beyond CIA

Confidentiality, integrity, and availability are only the beginning of the in-
formation security story. Beginning at the beginning, consider the situation
when customer Bob logs on to his computer. How does Bob's computer de-
termine that "Bob" is really Bob and not Trudy? And when Bob logs into
his account at Alice's Online Bank, how does AOB know that "Bob" is really
Bob, and not Trudy? Although these two authentication problems appear
to be similar on the surface, under the covers they are actually completely
different.

Authentication on a standalone computer typically requires that Bob's
password be verified. To do so securely, some clever techniques from the
field of cryptography are required. On the other hand, authentication over
a network is open to many kinds of attacks that are not usually relevant
on a standalone computer. Potentially, the messages sent over a network
can be viewed by Trudy. To make matters worse, Trudy might be able to
intercept messages, alter messages, and insert messages of her own making. If
so, Trudy can simply replay Bob's old messages in an effort to, say, convince
AOB that she is really Bob. Since information security people are professional
paranoids,4 we always assume the worst. In any case, authentication over a
network requires careful attention to protocol, that is, the composition and
ordering of the exchanged messages. Cryptography also has an important
role to play in security protocols.

Once Bob has been authenticated by Alice's Bank, then Alice must en-
force restrictions on Bob's actions. For example, Bob can't look at Charlie's
account balance or install new accounting software on the AOB system. How-
ever, Sam, the AOB system administrator, can install new accounting soft-
ware. Enforcing such restrictions goes by the name of authorization. Note
that authorization places restrictions on the actions of authenticated users.

4Rumor has it that the security people at Yahoo proudly carry the title of "Paranoids."

4 INTRODUCTION

Since authentication and authorization both deal with issues of access to
resources, we'll lump them together under the clever title of access control.

All of the information security mechanisms discussed so far are imple-
mented in software. And, if you think about it, other than the hardware,
what isn't software in a modern computing system? Today, software systems
tend to be large, complex, and rife with bugs. A software bug is not just an
annoyance, it is a potential security issue, since it may cause the system to
misbehave. Of course, Trudy loves misbehavior.

What software flaws are security issues, and how are they exploited? How
can AOB be sure that its software is behaving correctly? How can AOB's
software developers reduce (or, ideally, eliminate) security flaws in their soft-
ware? We'll examine these software development related questions (and much
more) in Chapter 11.

Although bugs can (and do) give rise to security flaws, these problems
are created unintentionally by well-meaning developers. On the other hand,
some software is written with the intent of doing evil. Examples of such
malicious software, or malware, includes the all-too-familiar computer viruses
and worms that plague the Internet today. How do these nasty beasts do what
they do, and what can Alice's Online Bank do to limit their damage? What
can Trudy do to increase the nastiness of such pests? We'll also consider
these and related questions in Chapter 11.

Of course, Bob has many software concerns, too. For example, when Bob
enters his password on his computer, how does he know that his password
has not been captured and sent to Trudy? If Bob conducts a transaction at
www.alicesonlinebank.com, how does he know that the transaction he sees
on his screen is the same transaction that actually goes to the bank? That is,
how can Bob be confident that his software is behaving as it should, instead
of as Trudy would like it to behave? We'll consider these questions as well.

When discussing software and security, we'll need to consider operating
system, or OS, topics. Operating systems are themselves large and complex
pieces of software and OSs are responsible for enforcing much of the security
in any system. So, some basic knowledge of OSs is necessary to fully appre-
ciate the challenges of information security. We'll also briefly consider the
concept of a trusted operating system, that is, an operating system that we
can actually have reasonable confidence is doing the right thing.

1.3 About This Book

Lampson [180] believes that real-world security boils down to the following.

• Specification/policy — What is the system supposed to do?

• Implementation/mechanism — How does it do it?

1.3 ABOUT THIS BOOK 5

• Correctness/assurance — Does it really work?

Your humble author would humbly5 add a fourth category:

• Human nature — Can the system survive "clever" users?

The focus of this book is primarily on the implementation/mechanism front.
Your fearless author believes this is appropriate, nay essential, for an intro-
ductory course, since the strengths, weaknesses, and inherent limitations of
the mechanisms directly affect all other aspects of security. In other words,
without a reasonable understanding of the mechanisms, it is not possible to
have an informed discussion of other security issues.

The material in this book is divided into four major parts. The first part
deals with cryptography, while the next part covers access control. Part III
is on protocols, while the final part deals with the vast and relatively ill-
defined topic of software. Hopefully, the previous discussion of Alice's Online
Bank6 has convinced you that these major topics are all relevant to real-world
information security.

In the remainder of this chapter, we'll give a quick preview of each of these
four major topics. Then the chapter concludes with a summary followed by
some lovely homework problems.

1.3.1 Cryptography

Cryptography or "secret codes" are a fundamental information security tool.
Cryptography has many uses, including providing confidentiality and in-
tegrity, among other vital information security functions. We'll discuss cryp-
tography in detail, since this is essential background for any sensible discus-
sion of information security.

We'll begin our coverage of cryptography with a look at a handful of classic
cipher systems. In addition to their obvious historic and entertainment value,
these classic ciphers illustrate the fundamental principles that are employed
in modern digital cipher systems, but in a more user-friendly format.

With this background, we'll be prepared to study modern cryptography.
Symmetric key cryptography and public key cryptography both play major
roles in information security, and we'll spend an entire chapter on each. We'll
then turn our attention to hash functions, which are another fundamental se-
curity tool. Hash functions are used in many different contexts in information
security, some of which are surprising and not always intuitive.

Then we'll briefly consider a few special topics that are related to cryp-
tography. For example, we'll discuss information hiding, where the goal is
for Alice and Bob to communicate without Trudy even knowing that any

5This sentence is brought to you by the Department of Redundancy Department.
6You did read that, right?

6 INTRODUCTION

information has been passed. This is closely related to the concept of digital
watermarking, which we also cover briefly.

The final chapter on cryptography deals with cryptanalysis, that is, the
methods used to break cipher systems. Although this is relatively technical
and specialized information, understanding these attack methods makes clear
many of the design principles behind modern cryptographic systems.

1.3.2 Access Control

As mentioned above, access control deals with authentication and authoriza-
tion. In the area of authentication, we'll consider the many issues related to
passwords. Passwords are the most often used form of authentication today,
but this is primarily because passwords are cheap, and definitely not because
they are the most secure option.7

We'll consider how to securely store passwords. Then we'll delve into
the issues surrounding secure password selection. Although it is possible to
select reasonably strong passwords that are relatively easy to remember, it's
surprisingly difficult to enforce such policies on clever users. In any case,
weak passwords present a major security vulnerability in most systems.

The alternatives to passwords include biometrics and smartcards. We'll
consider some of the security benefits of these alternate forms of authentica-
tion. In particular, we'll discuss the details of several biometrie authentication
methods.

Authorization deals with restrictions placed on authenticated users. Once
Alice's Bank is convinced that Bob is really Bob, it must enforce restrictions
on Bob's actions. The two classic methods for enforcing such restrictions are
so-called access control lists8 and capabilities. We'll look at the plusses and
minuses of each of these methods.

Authorization leads naturally to a few relatively specialized topics. We'll
discuss multilevel security (and the related topic of compartments). For ex-
ample, the United States government and military has TOP SECRET and
SECRET information—some users can see both types of information, while
other users can only see the SECRET information, and some can't view ei-
ther. If both types of information are stored on a single system, how can
we enforce such restrictions? This is a thorny authorization issue that has
potential implications beyond classified military systems.

Multilevel security leads naturally into the rarified air of security mod-
eling. The idea behind such modeling is to lay out the essential security
requirements of a system. Ideally, by verifying a few simple properties we

7 If someone asks you why some weak security measure is used when better options are
available, the correct answer is invariably "money."

8Access control list, or ACL, is one of many overloaded terms that arise in the field of
information security.

1.3 ABOUT THIS BOOK 7

would know that a given system satisfies a particular security model. If so,
the system would automatically inherit all of the security properties that
are known to hold for such a model. We'll only present two of the simplest
security models, both of which arise in the context of multilevel security.

Multilevel security also provides an opportunity to discuss covert channels
and inference control. Covert channels are unintended channels of commu-
nication. Such channels are common in the real world and create potential
security problems. Inference control, on the other hand, refers to attempts to
limit the sensitive information that can unintentionally leak out of a database
due to legitimate user queries. Both covert channels and inference control are
difficult problems to deal with effectively in real-world systems.

Since firewalls act as a form of access control for the network, we stretch
the usual definition of access control to include firewalls. Regardless of the
type of access control employed, attacks are bound to occur. An intrusion
detection system (IDS) is designed to detect attacks in progress. So we include
a brief discussion of IDS techniques after our discussion of firewalls.

1.3.3 Protocols

We'll then cover security protocols. First, we consider the general problem
of authentication over a network. Many examples will be provided, each of
which illustrates a particular security pitfall. For example, replay is a critical
problem, and so we must consider effective ways to prevent such attacks.

Cryptography will prove essential in authentication protocols. We'll give
example of protocols that use symmetric cryptography, as well as examples
that rely on public key cryptography. Hash functions also have an important
role to play in security protocols.

Our study of simple authentication protocols will illustrate some of the
subtleties that can arise in the field of security protocols. A seemingly in-
significant change to a protocol can completely change its security. We'll also
highlight several specific techniques that are commonly used in real-world
security protocols.

Then we'll move on to study several real-world security protocols. First,
we look at the so-called Secure Shell, or SSH, which is a relatively simple
example. Next, we consider the Secure Socket Layer, or SSL, which is used
extensively to secure e-commerce on the Internet today. SSL is an elegant
and efficient protocol.

We'll also discuss IPSec, which is another Internet security protocol. Con-
ceptually, SSL and IPSec share many similarities, but the implementations
differ greatly. In contrast to SSL, IPSec is complex and it's often said to
be over-engineered. Apparently due to its complexity, some fairly significant
security issues are present in IPSec—despite a lengthy and open development
process. The contrast between SSL and IPSec illustrates some of the inherent

8 INTRODUCTION

challenges and tradeoffs that arise when developing security protocols.
Another real-world protocol that we'll consider is Kerberos, which is an

authentication system based on symmetric cryptography. Kerberos follows a
much different approach than either SSL or IPSec.

We'll also discuss two wireless security protocols, WEP and GSM. Both
of these protocols have many security flaws, including problems with the un-
derlying cryptography and issues with the protocols themselves, which make
them interesting case studies.

1.3.4 Software

In the final part of the book, we'll take a look at some aspects of security and
software. This is a huge topic, and in three chapters we barely do more than
scratch the surface. For starters, we'll discuss security flaws and malware,
which were mentioned above.

We'll also consider software reverse engineering, which illustrates how
a dedicated attacker can deconstruct software, even without access to the
source code. We then apply our newfound hacker's knowledge to the problem
of digital rights management, which provides a good example of the limits
of security in software, particularly when that software executes in a hostile
environment.

Our final software-related topic is operating systems (OSs). The OS is
the arbiter of many security operations, so it's important to understand how
the OS enforces security. We also consider the requirements of a so-called
trusted OS, where "trusted" means that we can have confidence that the OS
is performing properly, even when under attack. With this background in
hand, we consider a recent attempt by Microsoft to develop a trusted OS for
the PC platform.

1.4 The People Problem

Users are surprisingly adept at damaging the best laid security plans. For
example, suppose that Bob wants to purchase an item from amazon. com. Bob
can use his Web browser to securely contact Amazon using the SSL protocol
(discussed in Part III), which relies on various cryptographic techniques (see
Part I). Access control issues arise in such a transaction (Part II), and all of
these security mechanisms are enforced in software (Part IV). So far, so good.
However, we'll see in Chapter 10 that a practical attack on this transaction
that will cause Bob's Web browser to issue a warning. If Bob heeds the
warning, no attack will occur. Unfortunately, if Bob is a typical user, he will
ignore the warning, which has the effect of negating this sophisticated security
scheme. That is, the security can be broken due to user error, despite the fact

1.5 PRINCIPLES AND PRACTICE 9

that the cryptography, protocols, access control, and software all performed
flawlessly.

To take just one more example, consider passwords. Users want to choose
easy to remember passwords, but this also makes it easier for Trudy to guess
passwords—as discussed in Chapter 7. A possible solution is to assign strong
passwords to users. However, this is generally a bad idea since it is likely to
result in passwords being written down and posted in prominent locations,
likely making the system less secure than if users were allowed to choose their
own (weaker) passwords.

As mentioned above, the primary focus of this book is on understanding
security mechanisms—the nuts and bolts of security. Yet in several places
throughout the book, various "people problems" arise. It would be possible
to write an entire volume on this single topic, but the bottom line is that,
from a security perspective, the best solution is to remove the humans from
the equation as much as possible. In fact, we will see some specific examples
of this as well.

For more information on the role that humans play in information security,
a good source is Ross Anderson's book [14]. Anderson's book is filled with
case studies of security failures, many of which have at least one of their roots
somewhere in human nature.

1.5 Principles and Practice

This book is not a theory book. While theory certainly has its place, in your
opinionated author's opinion, many aspects of information security are not
yet ripe for a meaningful theoretical treatment.9 Of course, some topics are
inherently more theoretical than others. But even the more theoretical se-
curity topics can be understood without getting deeply into the theory. For
example, cryptography can be (and often is) taught from a highly mathemat-
ical perspective. However, with rare exception, a little elementary math is all
that is needed to understand important cryptographic principles.

Your practical author has consciously tried to keep the focus on practical
issues, but at a deep enough level to give the reader some understanding of—
and appreciation for—the underlying concepts. The goal is to get into some
depth without overwhelming the reader with trivial details. Admittedly, this
is a delicate balancing act and, no doubt, many will disagree that a proper
balance has been struck here or there. In any case, the book touches on a large
number of security issues related to a wide variety of fundamental principles,

9To take but one example, consider the infamous buffer overflow attack, which is certainly
the most serious software security flaw of all time (see Section 11.2.1 of Chapter 11). What
is the grand theory behind this particular exploit? There isn't any—it's simply due to a
quirk in the way that memory is laid out in modern processors.

10 INTRODUCTION

and this breadth necessarily comes at the expense of some rigor and detail.
For those who yearn for a more theoretical t reatment of the subject, Bishop's
book [34] is the obvious choice.

1.6 Problems

The problem is not that there are problems. The problem is
expecting otherwise and thinking that having problems is a problem.

— Theodore I. Rubin

1. Among the fundamental challenges in information security are confi-
dentiality, integrity, and availability, or CIA.

a. Define each of these terms: confidentiality, integrity, availability.

b. Give a concrete example where confidentiality is more important
than integrity.

c. Give a concrete example where integrity is more important than
confidentiality.

d. Give a concrete example where availability is the overriding con-
cern.

2. From a bank's perspective, which is usually more important, the in-
tegrity of its customer's data or the confidentiality of the data? From
the perspective of the bank's customers, which is more important?

3. Instead of an online bank, suppose that Alice provides an online chess
playing service known as Alice's Online Chess (AOC). Players, who
pay a monthly fee, log into AOC where they are matched with another
player of comparable ability.

a. Where (and why) is confidentiality important for AOC and its
customers?

b. Why is integrity necessary?

c. Why is availability an important concern?

4. Instead of an online bank, suppose that Alice provides an online chess
playing service known as Alice's Online Chess (AOC). Players, who
pay a monthly fee, log into AOC where they are matched with another
player of comparable ability.

a. Where should cryptography be used in AOC?

b. Where should access control used?

1.6 PROBLEMS 11

c. Where would security protocols be used?

d. Is software security a concern for AOC? Why or why not?

5. Some authors distinguish between secrecy, privacy, and confidentiality.
In this usage, secrecy is equivalent to our use of the term confidentiality,
whereas privacy is secrecy applied to personal data, and confidentiality
(in this misguided sense) refers to an obligation not to divulge certain
information.

a. Discuss a real-world situation where privacy is an important secu-
rity issue.

b. Discuss a real-world situation where confidentiality (in this incor-
rect sense) is a critical security issue.

6. RFID tags are extremely small devices capable of broadcasting a num-
ber over the air that can be read by a nearby sensor. RFID tags are
used for tracking inventory, and they have many other potential uses.
For example, RFID tags are used in passports and it has been suggested
that they should be put into paper money to prevent counterfeiting. In
the future, a person might be surrounded by a cloud of RFID numbers
that would provide a great deal of information about the person.

a. Discuss some privacy concerns related to the widespread use of
RFID tags.

b. Discuss security issues, other than privacy, that might arise due to
the widespread use of RFID tags.

7. Cryptography is sometimes said to be brittle, in the sense that it can
be very strong, but when it breaks, it (generally) completely shat-
ters. In contrast, some security features can "bend" without breaking
completely—security may be lost as a result of the bending, but some
useful level of security remains.

a. Other than cryptography, give an example where security is brittle.

b. Provide an example where security is not brittle, that is, the secu-
rity can bend without completely breaking.

8. Read Diffie and Hellman's classic paper [90].

a. Briefly summarize the paper.

b. Diffie and Hellman give a system for distributing keys over an
insecure channel (see Section 3 of the paper). How does this system
work?

12 INTRODUCTION

c. Diffie and Hellman also conjecture that a "one way compiler"
might be used to construct a public key cryptosystem. Do you
believe this is a plausible approach? Why or why not?

9. The most famous World War II cipher machine was the German Enigma
(see also Problem 10).

a. Draw a diagram illustrating the inner workings of the Enigma.

b. The Enigma was broken by the Allies and intelligence gained from
Enigma intercepts was invaluable. Discuss a significant World
War II event where broken Enigma messages played a major role.

10. The German Enigma is the most famous World War II cipher machine
(see also Problem 9). The cipher was broken by the Allies and intel-
ligence gained from Enigma messages proved invaluable. At first, the
Allies were very careful when using the information gained from broken
Enigma messages—sometimes the Allies did not use information that
could have given them an advantage. Later in the war, however, the
Allies (in particular, the Americans) were much less careful, and they
tended to use virtually all information obtained from broken Enigma
messages.

a. The Allies were cautious about using information gained from bro-
ken Enigma messages for fear that the Germans would realize the
cipher was broken. Discuss two different approaches that the Ger-
mans might have taken if they had realized that the Enigma was
broken.

b. At some point in the war, it should have become obvious to the
Germans that the Enigma was broken, yet the Enigma was used
until the end of the war. Why did the Nazis continue to use the
Enigma?

11. When you want to authenticate yourself to your computer, most likely
you type in your username and password. The username is considered
public knowledge, so it is the password that authenticates you. Your
password is something you know.

a. It is also possible to authenticate based on something you are, that
is, a physical characteristic. Such a characteristic is known as a
biometrie. Give an example of biometric-based authentication.

b. It is also possible to authenticate based on something you have,
that is, something in your possession. Give an example of authen-
tication based on something you have.

1.6 PROBLEMS 13

c. Two-factor authentication requires that two of the three authenti-
cation methods (something you know, something you have, some-
thing you are) be used. Give an example from everyday life where
two-factor authentication is used. Which two of the three are used?

12. CAPTCHAs [319] are often used in an attempt to restrict access to
humans (as opposed to automated processes).

a. Give a real-world example where you were required to solve a
CAPTCHA to gain access to some resource. What do you have to
do to solve the CAPTCHA?

b. Discuss various technical methods that might be used to break the
CAPTCHA you described in part a.

c. Outline a non-technical method that might be used to attack the
CAPTCHA from part a.

d. How effective is the CAPTCHA in part a? How user-friendly is
the CAPTCHA?

e. Why do you hate CAPTCHAs?

13. Suppose that a particular security protocol is well designed and secure.
However, there is a fairly common situation where insufficient informa-
tion is available to complete the security protocol. In such cases, the
protocol fails and, ideally, a transaction between the participants, say,
Alice and Bob, should not be allowed to occur. However, in the real
world, protocol designers must decide how to handle cases where pro-
tocols fail. As a practical matter, both security and convenience must
be considered. Comment on the relative merits of each of the follow-
ing solutions to protocol failure. Be sure to consider both the relative
security and user-friendliness of each.

a. When the protocol fails, a brief warning is given to Alice and Bob,
but the transaction continues as if the protocol had succeeded,
without any intervention required from either Alice or Bob.

b. When the protocol fails, a warning is given to Alice and she decides
(by clicking a checkbox) whether the transaction should continue
or not.

c. When the protocol fails, a notification is given to Alice and Bob
and the transaction terminates.

d. When the protocol fails, the transaction terminates with no expla-
nation given to Alice or Bob.

14. Automatic teller machines (ATMs) are an interesting case study in secu-
rity. Anderson [14] claims that when ATMs were first developed, most

14 INTRODUCTION

attention was paid to high-tech attacks. However, most real-world at-
tacks on ATMs have been decidedly low tech.

a. Examples of high-tech attacks on ATMs would be breaking the
encryption or authentication protocol. If possible, find a real-world
case where a high-tech attack on an ATM has actually occurred
and provide the details.

b. Shoulder surfing is an example of a low-tech attack. In this sce-
nario, Trudy stands behind Alice in line and watches the numbers
Alice presses when entering her PIN. Then Trudy bonks Alice in
the head and takes her ATM card. Give another example of a
low-tech attack on an ATM that has actually occurred.

15. Large and complex software systems invariably have a large number of
bugs.

a. For honest users, such as Alice and Bob, buggy software is certainly
annoying but why is it a security issue?

b. Why does Trudy love buggy software?

c. In general terms, how might Trudy use bugs in software to break
the security of a system?

16. Malware is software that is intentionally malicious, in the sense that it
is designed to do damage or break the security of a system. Malware
comes in many familiar varieties, including viruses, worms, and Trojans.

a. Has your computer ever been infected with malware? If so, what
did the malware do and how did you get rid of the problem? If
not, why have you been so lucky?

b. In the past, most malware was designed to annoy users. Today,
it is often claimed that most malware is written for profit. How
could malware possibly be profitable?

17. In the movie Office Space [223], software developers attempt to modify
company software so that for each financial transaction, any leftover
fraction of a cent goes to the developers, instead of going to the com-
pany. The idea is that for any particular transaction, nobody will notice
the missing fraction of a cent, but over time the developers will accu-
mulate a large sum of money. This type of attack is sometimes known
as a salami attack.

a. Find a real-world example of a salami attack.

b. In the movie, the salami attack fails. Why?

1.6 PROBLEMS 15

18. Some commercial software is closed source, meaning that the source
code is not available to users. On the other hand, some software is
open source, meaning that the source code is available to users.

a. Give an example of software that you use (or have used) that is
closed source.

b. Give an example of software that you use (or have used) that is
open source.

c. For open source software, what can Trudy do to search for security
flaws in the software?

d. For closed source software, what can Trudy do to search for secu-
rity flaws in the software?

e. For open source software, what can Alice do to make the software
more secure?

f. For closed source software, what can Alice do to make the software
more secure?

g. Which is inherently more secure, open source software or closed
source software? Why?

19. It's sometimes said that complexity is the enemy of security.

a. Give an example of commercial software to which this statement
applies, that is, find an example of software that is large and com-
plex and has had significant security problems.

b. Find an example of a security protocol to which this statement
applies.

20. Suppose that this textbook was sold online (as a PDF) by your money-
grubbing author for, say, $5. Then the author would make more money
off of each copy sold than he currently does10 and people who purchase
the book would save a lot of money.

a. What are the security issues related to the sale of an online book?

b. How could you make the selling of an online book more secure,
from the copyright holder's perspective?

c. How secure is your approach in part b? What are some possible
attacks on your proposed system?

21. The PowerPoint slides at [255] describe a security class project where
students successfully hacked the Boston subway system.

10Believe it or not.

16 INTRODUCTION

a. Summarize each of the various attacks. What was the crucial
vulnerability that enabled each attack to succeed?

b. The students planned to give a presentation at the self-proclaimed
"hacker's convention," Defcon 16 [80], where they would have pre-
sented the PowerPoint slides now available at [255]. At the re-
quest of the Boston transit authority, a judge issued a temporary
restraining order (since lifted) that prevented the students from
talking about their work. Do you think this was justified, based
on the material in the slides?

c. What are war dialing and war driving? What is war carting?

d. Comment on the production quality of the "melodramatic video
about the warcart" (a link to the video can be found at [16]).

Part I

Crypto

This page intentionally left blank

Chapter 2

Crypto Basics

MXDXBVTZWVMXNSPBQXLIMSCCSGXSCJXBOVQXCJZMOJZCVC

TVWJCZAAXZBCSSCJXBQCJZCOJZCNSPOXBXSBTVWJC

JZDXGXXMOZQMSCSCJXBOVQXCJZMOJZCNSPJZHGXXMOSPLH

JZDXZAAXZBXHCSCJXTCSGXSCJXBOVQX

— plaintext from Lewis Carroll, Alice in Wonderland

The solution is by no means so difficult as you might
be led to imagine from the first hasty inspection of the characters.

These characters, as any one might readily guess,
form a cipher—that is to say, they convey a meaning...

— Edgar Allan Poe, The Gold Bug

2.1 Introduction

In this chapter we'll discuss some of the basic elements of cryptography. This
discussion will lay the foundation for the remaining crypto chapters which,
in turn, underpin much of the material throughout the book. We'll avoid
mathematical rigor as much as possible. Nevertheless, there is enough detail
here so that you will not only understand the "what" but you will also have
some appreciation for the "why."

After this introductory chapter, the remaining crypto chapters focus on:

• Symmetric key cryptography

• Public key cryptography

• Hash functions

• Advanced cryptanalysis

A handful of special topics are also covered.

19

20 CRYPTO BASICS

2.2 How to Speak Crypto

The basic terminology of crypto includes the following.

• Cryptology — the art and science of making and breaking "secret codes."

• Cryptography — the making of "secret codes."

• Cryptanalysis — the breaking of "secret codes."

• Crypto — a synonym for any or all of the above (and more), where the
precise meaning should be clear from context.

A cipher or crypto system is used to encrypt data. The original unen-
crypted data is known as plaintext, and the result of encryption is ciphertext.
We decrypt the ciphertext to recover the original plaintext. A key is used to
configure a cryptosystem for encryption and decryption.

In a symmetric cipher, the same key is used to encrypt and to decrypt,
as illustrated by the black box cryptosystem in Figure 2.I.1 There is also
a concept of public key cryptography where the encryption and decryption
keys are different. Since different keys are used, it's possible to make the
encryption key public—thus the name public key.2 In public key crypto,
the encryption key is, appropriately, known as the public key, whereas the
decryption key, which must remain secret, is the private key. In symmetric
key crypto, the key is known as a symmetric key. We'll avoid the ambiguous
term secret key.

plaintext-

key key

encrypt — / W W w W V — * decrypt

ciphertext

Figure 2.1: Crypto as a Black Box

■ plaintext

For an ideal cipher, it is infeasible to recover the plaintext from the ci-
phertext without the key. That is, even if the attacker, Trudy, has complete
knowledge of the algorithms used and lots of other information (to be made
more precise later), she can't recover the plaintext without the key. That's
the goal, although reality sometimes differs.

1This is the only black box you'll find in this book!
2Public key crypto is also known as asymmetric crypto, in reference to the fact that the

encryption and decryption keys are different.

2.2 HOW TO SPEAK CRYPTO 21

A fundamental tenet of cryptography is that the inner workings of a cryp-
tosystem are completely known to the attacker, Trudy, and the only secret
is a key. This is known as Kerckhoffs' Principle, which, believe it or not,
was named after a guy named Kerckhoffs. In the year 1883, Kerckhoffs, a
Dutch linguist and cryptographer, laid out six principles of cipher design and
use [164]. The principle that now bears his name states that a cipher "must
not be required to be secret, and it must be able to fall into the hands of the
enemy without inconvenience" [165], that is, the design of the cipher is not
secret.

What is the point of Kerckhoffs' Principle? After all, it must certainly
be more difficult for Trudy to attack a cryptosystem if she doesn't know
how the cipher works. So, why would we want to make Trudy's life easier?
There are (at least) a couple of problems with relying on a secret design
for your security. For one, the details of "secret" cryptosystems seldom, if
ever, remain secret for long. Reverse engineering can be used to recover
algorithms from software, and even algorithms embedded in tamper-resistant
hardware are sometimes subject to reverse engineering attacks and exposure.
And, even more worrisome is the fact that secret crypto-algorithms have a
long history of failing to be secure once the algorithms have been exposed
to public scrutiny—see [29] for a relatively recent example where Microsoft
violated Kerckhoffs' Principle.

Cryptographers will not deem a crypto-algorithm worthy of use until it has
withstood extensive public analysis by many cryptographers over an extended
period of time. The bottom line is that any cryptosystem that does not satisfy
Kerckhoffs' Principle is suspect. In other words, ciphers are presumed guilty
until "proven" innocent.

Kerckhoffs' Principle is often extended to cover various aspects of security
well beyond cryptography. In other contexts, this basic principle is usually
taken to mean that the security design itself is open to public scrutiny. The
belief is that "more eyeballs" are more likely to expose more security flaws
and therefore ultimately result in a system that is more secure. Although
Kerckhoffs' Principle (in both its narrow crypto form and in a broader con-
text) seems to be universally accepted in principle, there are many real-world
temptations to violate this fundamental tenet, almost invariably with dis-
astrous consequences. Throughout this book we'll see several examples of
security failures that were directly caused by a failure to heed the venerable
Mr. Kerckhoffs.

In the next section, we look briefly at a few classic cryptosystems. Al-
though the history of crypto is a fascinating topic [159], the purpose of this
material is to provide an elementary introduction to some of the crucial con-
cepts that arise in modern cryptography. In other words, pay attention since
we will see all of these concepts again in the next couple of chapters and in
many cases, in later chapters as well.

22 CRYPTO BASICS

2.3 Classic Crypto

In this section, we examine four classic ciphers, each of which illustrates a
feature that is relevant to modern cryptosystems. First on our agenda is
the simple substitution, which is one of the oldest cipher systems—dating
back at least 2,000 years—and one that is good for illustrating some basic
attacks. We then turn our attention to a type of double transposition cipher,
which includes important concepts that are used in modern ciphers. We also
discuss classic codebooks, since many modern ciphers can be viewed as the
"electronic" equivalent of codebooks. Finally, we consider the so-called one-
time pad, a practical cipher that is provably secure. No other cipher in this
book (or in common use) is provably secure.

2.3.1 Simple Subst i tut ion Cipher

First, we consider a particularly simple implementation of a simple substitu-
tion cipher. In the simplest case, the message is encrypted by substituting
the letter of the alphabet n places ahead of the current letter. For example,
with n = 3, the substitution—which acts as the key—is

plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z
ciphertext: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

where we've followed the convention that the plaintext is lowercase, and the
ciphertext is uppercase. In this example, the key could be given succinctly
as "3" since the amount of the shift is, in effect, the key.

Using the key 3, we can encrypt the plaintext message

fourscoreandsevenyearsago (2-1)

by looking up each plaintext letter in the table above and then substituting
the corresponding letter in the ciphertext row, or by simply replacing each
letter by the letter that is three positions ahead of it in the alphabet. For the
particular plaintext in (2.1), the resulting ciphertext is

IRXUVFRUHDAGVHYHABHDUVDIR.

To decrypt this simple substitution, we look up the ciphertext letter in the
ciphertext row and replace it with the corresponding letter in the plaintext
row, or we can shift each ciphertext letter backward by three. The simple
substitution with a shift of three is known as the Caesar's cipher.3

3Historians generally agree that the Caesar's cipher was named after the Roman dictator,
not the salad.

2.3 CLASSIC CRYPTO 23

There is nothing magical about a shift by three—any shift will do. If we
limit the simple substitution to shifts of the alphabet, then the possible keys
are n G {0,1,2,..., 25}. Suppose Trudy intercepts the ciphertext message

CSYEVIXIVQMREXIH

and she suspect that it was encrypted with a simple substitution cipher using
a shift by n. Then she can try each of the 26 possible keys, "decrypting" the
message with each putative key and checking whether the resulting putative
plaintext makes sense. If the message really was encrypted via a shift by n,
Trudy can expect to find the true plaintext—and thereby recover the key—
after 13 tries, on average.

This brute force attack is something that Trudy can always attempt. Pro-
vided that Trudy has enough time and resources, she will eventually stumble
across the correct key and break the message. This most elementary of all
crypto attacks is known as an exhaustive key search. Since this attack is
always an option, it's necessary (although far from sufficient) that the num-
ber of possible keys be too large for Trudy to simply try them all in any
reasonable amount of time.

How large of a keyspace is large enough? Suppose Trudy has a fast com-
puter (or group of computers) that's able to test 240 keys each second.4 Then
a keyspace of size 256 can be exhausted in 216 seconds, or about 18 hours,
whereas a keyspace of size 264 would take more than half a year for an ex-
haustive key search, and a keyspace of size 2128 would require more than nine
quintillion years. For modern symmetric ciphers, the key is typically 128 bits
or more, giving a keyspace of size

2 1 2 8

or more.
Now, back to the simple substitution cipher. If we only allow shifts of

the alphabet, then the number of possible keys is far too small, since Trudy
can do an exhaustive key search very quickly. Is there any way that we can
increase the number of keys? In fact, there is no need not to limit the simple
substitution to a shifting by n, since any permutation of the 26 letters will
serve as a key. For example, the following permutation, which is not a shift
of the alphabet, gives us a key for a simple substitution cipher:

plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z
ciphertext: Z P B Y J R G K F L X Q N W V D H M S U T O I A E C

In general, a simple substitution cipher can employ any permutation of the
alphabet as a key, which implies that there are 26! « 288 possible keys. With

4In 1998 the Electronic Frontier Foundation (EFF) built a special-purpose key cracking
machine for attacking the Data Encryption Standard (DES, which we'll discuss in the next
chapter). This machine, which cost $220,000, consisted of about 43,200 processors, each
of which ran at 40 MHz and, overall, it was capable of testing about 2.5 million keys per
second [156]. Extrapolating this to a state-of-the-art PC with a single 4 GHz processor,
Trudy could test fewer than 230 keys per second on one such machine. So, if she had access
to 1000 such machines, she could test about 240 keys per second.

24 CRYPTO BASICS

Trudy's superfast computer that tests 240 keys per second, trying all possible
keys for the simple substitution would take more than 8900 millennia. Of
course, she would expect to find the correct key half that time, or just 4450
millennia. Since 288 keys is far more than Trudy can try in any reasonable
amount of time, this cipher passes the crucial first requirement of any practical
cipher, namely, the keyspace is big enough so that an exhaustive key search
is infeasible. Does this mean that a simple substitution cipher is secure? The
answer is a resounding no, as the attack described in the next section clearly
illustrates.

2.3.2 Cryptanalysis of a Simple Subst i tut ion

Suppose Trudy intercepts the following ciphertext, which she suspects was
produced by a simple substitution cipher, where the key could be any per-
mutation of the alphabet:

PBFPVYFBQXZTYFPBFEQJHDXXQVAPTPQJKTOYQWIPBWLXTOXBTFXCÌWA
XBVCXQWAXFQJVWLEQNTOZQGGQLFXQWAKVWLXQWAEBIPBFXFqVXGTVJV
WLBTPQWAEBFPBFHCVLXBQUFEWLXGDPEQVPQGVPPBFTIXPFHXZHVFAG
FOTHFEFBQUFTDHZBQPOTHXTYFTODXQHFTDPTOGHFqPBQWAqjJTODXqH , »
FOQPWTBDHHIXqVAPBFZqHCFWPFHPBFIPBqWKFABVYYDZBOTHPBqPqjT ^ ' '
qOTOGHFqAPBFEqjHDXXqVAVXEBqPEFZBVFOJIWFFACFCCFHQWAUVWFL
qHGFXVAFXqHFUFHILTTAVWAFFAWTEVDITDHFHFqAITIXPFHXAFqHEFZ
qWGFLVWPTOFFA

Since it 's too much work for Trudy to try all 28 8 possible keys, can she
be more clever? Assuming the plaintext is English, Trudy can make use of
the English letter frequency counts in Figure 2.2 together with the frequency
counts for the ciphertext in (2.2), which appear in Figure 2.3.

A B C D E F 6 H I J K L M N O P Q R S T U V W X Y Z

Figure 2.2: English Letter Frequency Counts

From the ciphertext frequency counts in Figure 2.3, we see that "F" is the
most common letter in the encrypted message and, according to Figure 2.2,
"E" is the most common letter in the English language. Trudy therefore

2.3 CLASSIC CRYPTO 25

A B C D E F e H I J K L M N O P Q R S T U V W X Y Z

Figure 2.3: Ciphertext Frequency Counts

surmises that it's likely that "F" has been substituted for "E." Continuing in
this manner, Trudy can try likely substitutions until she recognizes words, at
which point she can be confident in her guesses.

Initially, the easiest word to determine might be the first word, since
Trudy doesn't know where inter-word spaces belong in the text. Since the
third plaintext letter appears to be "e," and given the high frequency counts
of the first two letter, Trudy might reasonably guess (correctly, as it turns
out) that the first word of the plaintext is "the." Making these substitutions
into the remaining ciphertext, she will be able to guess more letters and the
puzzle will begin to unravel. Trudy will likely make some missteps along the
way, but with sensible use of the statistical information available, she will
find the plaintext in considerably less time than 4450 millennia.

This attack on the simple substitution shows that a large keyspace is not
sufficient to ensure security. This attack also shows that cipher designers must
guard against clever attacks. But how can we protect against all such attacks,
since new attacks are developed all the time? The answer is that we can't
and, as a result, a cipher must be subjected to extensive analysis by skilled
cryptographers before we can trust it—the more skilled cryptographers who
have tried to break a cipher and failed, the more confidence we have in the
system.

2.3.3 Definition of Secure

There are several reasonable definitions of a secure cipher. Ideally, we would
like to have a rigorous mathematical proof that there is no feasible attack
on a system, but such ciphers are few and far between and provably secure
ciphers are impractical for most uses.

Lacking a proof that a cipher is secure, we could require that the best-
known attack on the system is impractical, in the sense of being computa-
tionally infeasible. While this would seem to be the most crucial property,
we'll use a slightly different definition. We say that a cryptosystem is secure

26 CRYPTO BASICS

if the best-known attack requires as much work as an exhaustive key search.
In other words, no shortcut attack is known.

Note that by our definition, a secure cipher with a small number of keys
could be easier to break than an insecure one with a large number of keys.
While this may seem counterintuitive, there is a method to the madness. The
rationale for our definition is that a cipher can never offer more security than
an exhaustive key search, so the key size could be considered its "advertised"
level of security. If a shortcut attack is known, the algorithm fails to provide
its advertised level of security, as indicated by the key length. In short, a
shortcut attack indicates that the cipher has a design flaw.

Note also that in practice, we must select a cipher that is secure (in the
sense of our definition) and has a large enough key space so that an exhaustive
key search is impractical. Both factors are necessary when choosing a cipher
to protect sensitive data.

2.3.4 Double Transposition Cipher

In this section we discuss another classic cipher that illustrates some impor-
tant basic concepts. The double transposition presented in this section is a
weaker form of the usual double transposition cipher. We use this form of
the cipher since it provides a slightly simpler means of illustrating all of the
points that we want to make.

To encrypt with a double transposition cipher, we first write the plaintext
into an array of a given size and then permute the rows and columns accord-
ing to specified permutations. For example, suppose we write the plaintext
attackatdawn into a 3 x 4 array:

a t t a
c k a t
d a w n

Now if we transpose (or permute) the rows according to (1,2,3) —> (3,2,1)
and then transpose the columns according to (1,2,3,4) —» (4,2,1,3), we
obtain

n a d w
t k c a .
a t a t

The ciphertext is then read from the final array:

NADWTKCAATAT (2.3)

For the double transposition, the key consists of the size of the matrix and
the row and column permutations. Anyone who knows the key can simply put

a t t a
c k a t
d a w n

d a w n
c k a t
a t t a

2.3 CLASSIC CRYPTO 27

the ciphertext into the appropriate sized matrix and undo the permutations
to recover the plaintext For example, to decrypt (2.3), the ciphertext is first
put into a 3 x 4 array. Then the columns are numbered as (4,2,1,3) and
rearranged to (1,2,3,4), and the rows are numbered (3,2,1) and rearranged
into (1,2,3),

" N A D W
T K C A

_ A T A T

and we see that we have recovered the plaintext, namely, attackatdawn.
The bad news is that, unlike a simple substitution, the double transposi-

tion does nothing to disguise the letters that appear in the message. The good
news is that the double transposition appears to thwart an attack that relies
on the statistical information contained in the plaintext, since the plaintext
statistics are disbursed throughout the ciphertext.

Even this simplified version of the double transposition is not a trivial
cipher to break. The idea of smearing plaintext information through the
ciphertext is so useful that it is employed by modern block ciphers, as we will
see in the next chapter.

2.3.5 One-Time Pad

The one-time pad, which is also known as the Vernam cipher, is a provably
secure cryptosystem. Historically it has been used in various times and places,
but it's not practical for most situations. However, it does nicely illustrate
some important concepts that we'll see again later.

For simplicity, let's consider an alphabet with only eight letters. Our
alphabet and the corresponding binary representation of letters appear in
Table 2.1. It's important to note that the mapping between letters and bits
is not secret. This mapping serves a similar purpose as, say, the ASCII code,
which is not much of a secret either.

Table 2.1: Abbreviated Alphabet

letter
binary

e
000

li

001
i

010
k

011
1

100
r

101
s

110
t

111

Suppose that Alice, who recently got a job as a spy, wants to use a one-
time pad to encrypt the plaintext message

D A W N
C K A T
A T T A

A T T A
C K A T
D A W N

h e i l h i t l e r .

28 CRYPTO BASICS

She first consults Table 2.1 to convert the plaintext letters to the bit string

001 000 010 100 001 010 111 100 000 101.

The one-time pad key consists of a randomly selected string of bits that is

the same length as the message. The key is then XORed with the plaintext

to yield the ciphertext. For the mathematically inclined, a fancier way to say

this is that we add the plaintext and key bits modulo 2.

We denote the XOR of bit x with bit y as x φ y. Since x φ y Θ y = x,

decryption is accomplished by XOR-ing the same key with the ciphertext.

Modern symmetric ciphers utilize this magical property of the XOR in various

ways, as we'll see in the next chapter.

Now suppose that Alice has the key

111 101 110 101 111 100 000 101 110 000

which is of the proper length to encrypt her message above. Then to encrypt,

Alice computes the ciphertext as

h e i l h i t l e r

plaintext: 001 000 010 100 001 010 111 100 000 101

key: 111 101 110 101 111 100 000 101 110 000

ciphertext: 110 101 100 001 110 110 111 001 110 101

s r l h s s t h s r

Converting these ciphertext bits back into letters, the ciphertext message to

be transmitted is s r lh s s ths r .

When her fellow spy, Bob, receives Alice's message, he decrypts it using

the same shared key and thereby recovers the plaintext:

s r l h s s t h s r

ciphertext: 110 101 100 001 110 110 111 001 110 101

key: 111 101 110 101 111 100 000 101 110 000

plaintext: 001 000 010 100 001 010 111 100 000 101

h e i l h i t l e r

Let's consider a couple of scenarios. First, suppose that Alice has an

enemy, Charlie, within her spy organization. Charlie claims that the actual

key used to encrypt Alice's message is

101 111 000 101 111 100 000 101 110 000.

Bob decrypts the ciphertext using the key given to him by Charlie and obtains

s r l h s s t h s r

ciphertext: 110 101 100 001 110 110 111 001 110 101

"key": 101 111 000 101 111 100 000 101 110 000

"plaintext": 011 010 100 100 001 010 111 100 000 101

k i l l h i t l e r

2.3 CLASSIC CRYPTO 29

Bob, who doesn't really understand crypto, orders that Alice be brought in
for questioning.

Now let's consider a different scenario. Suppose that Alice is captured by
her enemies, who have also intercepted the ciphertext. The captors are eager
to read the message and Alice is "encouraged" to provide the key for this
super-secret message. Alice claims that she is actually a double agent and to
prove it she provides the "key"

111 101 000 Oil 101 110 001 011 101 101.

When Alice's captors "decrypt" the ciphertext using this "key," they find

s r l h s s t h s r
ciphertext: 110 101 100 001 110 110 111 001 110 101

"key": 111 101 000 011 101 110 001 011 101 101
"plaintext": 001 000 100 010 011 000 110 010 011 000

h e 1 i k e s i k e

Alice's captors, who are not very knowledgeable about crypto, congratulate
Alice for her patriotism and release her.

While not a proof, these examples do indicate why the one-time pad is
provably secure. The bottom line is that if the key is chosen at random, and
used only once, then an attacker who sees the ciphertext has no information
about the message itself (other than its length, which could be padded). That
is, given the ciphertext, any "plaintext" of the same length can be generated
by a suitable choice of "key," and all possible plaintexts are equally likely. So
the ciphertext provides no meaningful information at all about the plaintext.
Prom a cryptographer's point of view, it doesn't get any better than that.

Of course, we are assuming that the one-time pad cipher is used correctly.
The key (or pad) must be chosen at random, used only once, and must be
known only to the Alice and Bob.

Since we can't do better than provable security, why don't we always use
the one-time pad? Unfortunately, the cipher is impractical for most appli-
cations. Why is this the case? The crucial problem is that the pad is the
same length as the message and since the pad is the key, it must be securely
shared with the intended recipient before the ciphertext can be decrypted. If
we can securely transmit the pad, why not simply transmit the plaintext by
the same means and do away with the encryption?

Below, we'll see an historical example where it actually did make sense
to use a one-time pad—in spite of its limitations. However, for modern high
data-rate systems, a one-time pad cipher would be totally impractical.

While we're at it, why is it that the one-time pad can only be used once?
Suppose we have two plaintext messages Pi and Pi and we encrypted these
as as Ci = P\ ®K and C2 = Pi ®K, that is, we have two messages encrypted

30 CRYPTO BASICS

with the same "one-time" pad K. In the cryptanalysis business, this is known

as a depth. With one-time pad ciphertexts in depth, we see that

Ci Θ C2 = Pi Θ K θ P2 Θ K = Pi Θ P2

and the key has disappeared from the problem. In this case, the ciphertext

does yield some information about the underlying plaintext. Another way to

see this is consider an exhaustive key search. If the pad is only used once, then

the attacker has no way to know whether the guessed key is correct or not.

But if two messages are in depth, for the correct key, both putative plaintexts

must make sense. This provides the attacker with a means to distinguish the

correct key from incorrect guesses. The problem only gets worse (or better,

from Trudy's perspective) the more times the key is reused.

Let's consider an example of one-time pad encryptions that are in depth.

Using the same bit encoding as in Table 2.1, suppose we have

Pi = l i ke = 100010011000 and P2 = k i t e = 011010111000

and both are encrypted with the same key K = 110 011 101 111. Then

l i k e

Pi: 100 010 011 000

K: 110 011 101 111

d: 010 001 110 111

i h s t

and

k i t e

P2: 011 010 111 000

K: 110 011 101 111

C2: 101 001 010 111

r h. i t

If Trudy the cryptanalyst knows that the messages are in depth, she im-

mediately sees that the second and fourth letters of Pi and P2 are the same,

since the corresponding ciphertext letters are identical. But far more devas-

tating is the fact that Trudy can now guess a putative message Pi and check

her results using P2. Suppose that Trudy (who only has C\ and C2) sus-

pects that Pi = k i l l = 011010100100. Then she can find the corresponding

putative key:

k i l l

putative Pi: 011 010 100 100

Ci: 010 001 110 111

putative K: 001 011 010 011

2.3 CLASSIC CRYPTO 31

and she can then use this K to "decrypt" C2 and obtain

C2: 101 001 010 111
putative K: 001 Oil 010 Oil
putative P2: 100 010 000 100

l i e i

Since this K does not yield a sensible decryption for P2, Trudy can safely
assume that her guess for Pi was incorrect. When Trudy eventually guesses
Pi = l ike she will obtain the correct key K and decrypt to find P2 = k i t e ,
thereby confirming the correctness of the key and, therefore, the correctness
of both decryptions.

2.3.6 Project V E N O N A

The so-called VENONA project [315] provides an interesting example of a
real-world use of the one-time pad. In the 1930s and 1940s, spies from the
Soviet Union who entered the United States brought with them one-time pad
keys. When it was time to report back to their handlers in Moscow, these
spies used their one-time pads to encrypt their messages, which could then
be safely sent back to Moscow. These spies were extremely successful, and
their messages dealt with the most sensitive U.S. government secrets of the
time. In particular, the development of the first atomic bomb was a focus of
much of the espionage. The Rosenbergs, Alger Hiss, and many other well-
known traitors—and many who were never identified—figure prominently in
VENONA messages.

The Soviet spies were well trained and never reused the key, yet many of
the intercepted ciphertext messages were eventually decrypted by American
cryptanalysts. How can that be, given that the one-time pad is provably
secure? In fact, there was a flaw in the method used to generate the pads,
so that, in effect, long stretches of the keys were repeated. As a result, many
messages were in depth, which enabled the successful cryptanalysis of much
VENONA traffic.

Part of one interesting VENONA decrypt is given in Table 2.2. This
message refers to David Greenglass and his wife Ruth. LIBERAL is Julius
Rosenberg who, along with his wife Ethyl, was eventually executed for his role
in nuclear espionage.5 The Soviet codename for the atomic bomb was, appro-
priately, ENORMOUS. For any World War II-era history buff, the VENONA
decrypts at [315] make for fascinating reading.

5David Greenglass served ten years of a fifteen year sentence for his part in the
crime. He later claimed that he lied in crucial testimony about Ethyl Rosenberg's level
of involvement—testimony that was probably decisive in her being sentenced to death.

32 CRYPTO BASICS

Table 2.2: V E N O N A Decrypt of Message of September 21, 1944

[e*/, Ruth] learned that her husband [v] was called up by the army

but he was not sent to the front. He is a mechanical engineer

and is now working at the ENORMOUS [ENORMOZ] [vi] plant in

SANTA FE, New Mexico.

[45 groups unrecoverable]

detain VOLOK [vii] who is working in a plant on ENORMOUS. He is a

FELLOWCOUNTRYMAN [ZEMLYaK] [viii]. Yesterday he learned that

they had dismissed him from his work. His active work in

progressive organizations in the past was cause of his dismissal.

In the FELLOWCOUNTRYMAN line LIBERAL is in touch with CHESTER [ix].

They meet once a month for the payment of dues. CHESTER is

interested in whether we are satisfied with the collaboration and

whether there are not any misunderstandings. He does not inquire

about specific items of work [KONKRETNAYa RABOTA]. In as much

as CHESTER knows about the role of LIBERAL'S group we beg consent

to ask C. through LIBERAL about leads from among people who are

working on ENOURMOUS and in other technical fields.

2.3.7 Codebook Cipher

A classic codebook cipher is, literally, a dictionary-like book containing (plain-
text) words and their corresponding (ciphertext) codewords. To encrypt a
given word, the cipher clerk would simply look up the word in the codebook
and replace it with the corresponding codeword. Decryption, using the in-
verse codebook, was equally straightforward. Table 2.3 contains an excerpt
from a famous codebook used by Germany during World War I.

For example, to use the codebook in Table 2.3 to encrypt the German
word Februar, the entire word would be replaced with the 5-digit codeword
13605. This codebook was used for encryption, while the corresponding in-
verse codebook, arranged with the 5-digit codewords in numerical order, was
used for decryption. A codebook is a form of a substitution cipher, but the
substitutions are far from simple, since substitutions are for entire words, or
in some cases, entire phrases.

The codebook illustrated in Table 2.3 was used to encrypt the famous
Zimmermann telegram. At the height of World War I in 1917, the German
Foreign Minister, Arthur Zimmermann, sent an encrypted telegram to the
German ambassador in Mexico City. The ciphertext message, which appears
in Figure 2.4 [227], was intercepted by the British. At the time, the British
and French were at war with Germany, but the U.S. was neutral [307].

2.3 CLASSIC CRYPTO 33

Table 2.3: Excerpt from a German Codebook

Plaintext
Februar
fest
finanzielle
folgender
Frieden
Friedenschluss

Ciphertext
13605
13732
13850
13918
17142
17149

Figure 2.4: The Zimmermann Telegram

The Russians had recovered a damaged version of the German code-
book, and the partial codebook had been passed on to the British. Through
painstaking analyses, the British were able to fill in the gaps in the codebook
so that by the time they obtained the Zimmermann telegram, they could
decrypt it [83]. The telegram stated that the German government was plan-
ning to begin unrestricted submarine warfare and had concluded that this
would likely lead to war with the United States. As a result, Zimmermann
told his ambassador that Germany should try to recruit Mexico as an ally to
fight against the United States. The incentive for Mexico was that it would
"reconquer the lost territory in Texas, New Mexico and Arizona." When the
Zimmermann telegram was released in the U.S., public opinion turned against
Germany and, after the sinking of the Lusitania, the U.S. declared war.

34 CRYPTO BASICS

The British were initially hesitant to release the Zimmermann telegram
since they feared that the Germans would realize that their cipher was broken
and, presumably, stop using it. However, after decrypting the Zimmermann
telegram, the British took a closer look at other intercepted messages that
had been sent at about the same time. To their amazement, they found that
a variant of the incendiary telegram had been sent unencrypted.6 The version
of the Zimmermann telegram that the British subsequently released closely
matched the unencrypted version of the telegram. As the British hoped,
the Germans concluded that their codebook had not been compromised and
continued to use it for sensitive messages throughout the war.

The security of a classic codebook cipher depends primarily on the phys-
ical security of the book itself. That is, the book must be protected from
capture by the enemy. In addition, statistical attacks analogous to those
used to break a simple substitution cipher apply to codebooks, although the
amount of data required is much larger. The reason that a statistical attack
on a codebook is more difficult is due to the fact that the size of the "alpha-
bet" is much larger, and consequently far more data must be collected before
the statistical information can rise above the noise.

As late as World War II, codebooks were in widespread use. Cryptogra-
phers realized that these ciphers were subject to statistical attack, so code-
books needed to be periodically replaced with new codebooks. Since this was
an expensive and risky process, techniques were developed to extend the life
of a codebook. To accomplish this, a so-called additive was generally used.

Suppose that for a particular codebook cipher, the codewords are all 5-
digit numbers. Then the corresponding additive book would consist of a long
list of randomly generated 5-digit numbers. After a plaintext message had
been converted to a series of 5-digit codewords, a starting point in the additive
book would be selected and beginning from that point, the sequence of 5-
digit additives would be added to the codewords to create the ciphertext. To
decrypt, the same additive sequence would be subtracted from the ciphertext
before looking up the codeword in the codebook. Note that the additive
book—as well as the codebook itself—is required to encrypt or decrypt a
message.

Often, the starting point in the additive book was selected at random
by the sender and sent in the clear (or in a slightly obfuscated form) at the
start of the transmission. This additive information was part of the message
indicator, or MI. The MI included any non-secret information needed by the
intended recipient to decrypt the message.

If the additive material was only used once, the resulting cipher would
be equivalent to a one-time pad and therefore, provably secure. However, in

6 Apparently, the message had not initially attracted attention because it was not en-
crypted. The lesson here is that, ironically, encryption with a weak cipher may be worse
than no encryption at all. We have more to say about this issue in Chapter 10.

2.3 CLASSIC CRYPTO 35

practice, the additive was reused many times and, therefore, any messages
sent with overlapping additives would have their codewords encrypted with
the same key, where the key consists of the codebook and the specific additive
sequence. Therefore, any messages with overlapping additive sequences could
be used to gather the statistical information needed to attack the underlying
codebook. In effect, the additive book dramatically increased the amount of
ciphertext required to mount a statistical attack on the codebook, which is
precisely the effect the cryptographers had hoped to achieve.

Modern block ciphers use complex algorithms to generate ciphertext from
plaintext (and vice versa), but at a higher level, a block cipher can be viewed
as a codebook, where each key determines a distinct codebook. That is, a
modern block cipher consists of an enormous number of distinct codebooks,
with the codebooks indexed by the key. The concept of an additive also lives
on, in the form of an initialization vector, or IV, which is often used with
block ciphers (and sometimes with stream ciphers as well). Block ciphers are
discussed in detail in the next chapter.

2.3.8 Ciphers of the Election of 1876

The U.S. presidential election of 1876 was a virtual dead heat. At the time,
the Civil War was still fresh in people's minds, Radical Reconstruction was
ongoing in the former Confederacy, and the nation was still bitterly divided.

The contestants in the election were Republican Rutherford B. Hayes and
Democrat Samuel J. Tilden. Tilden had obtained a slight plurality of the
popular vote, but it is the Electoral College that determines the winner of
the presidency. In the Electoral College, each state sends a delegation and for
almost every state, the entire delegation is supposed to vote for the candidate
who received the largest number of votes in that particular state.7

In 1876, the electoral college delegations of four states8 were in dispute,
and these held the balance. A commission of 15 members was appointed
to determine which state delegations were legitimate, and thus determine
the presidency. The commission decided that all four states should go to
Hayes and he became president of the United States. Tilden's supporters
immediately charged that Hayes' people had bribed officials to turn the vote
in his favor, but no evidence was forthcoming.

Some months after the election, reporters discovered a large number of
encrypted messages that had been sent from Tilden's supporters to officials in
the disputed states. One of the ciphers used was a partial codebook together

7However, there is no legal requirement for an Electoral College delegate to vote for a
particular candidate, and on occasion a "faithless elector" will vote contrary to the popular
vote in his or her state.

8Foreshadowing the election of 2000, one of these four disputed states was, believe it or
not, Florida.

36 CRYPTO BASICS

Table 2.4: Election of 1876 Codebook

Plaintext Ciphertext
Greenbacks Copenhagen
Hayes Greece
votes Rochester
Tilden Russia
telegram Warsaw

with a transposition on the words. The codebook was only applied to im-
portant words and the transposition was a fixed permutation for all messages
of a given length. The allowed message lengths were 10, 15, 20, 25, and 30
words, with all messages padded to one of these lengths. A snippet of the
codebook appears in Table 2.4.

The permutation used for a message of 10 words was

9,3,6,1,10,5,2,7,4,8.

One actual ciphertext message was

Warsaw they read a l l unchanged l a s t are i d i o t s can ' t s i t u a t i o n

which was decrypted by undoing the permutation and substituting telegram
for Warsaw to obtain

Can't read last telegram.

Situation unchanged.

They are all idiots.

The cryptanalysis of this weak cipher was relatively easy to accomplish [124].
Since a permutation of a given length was used repeatedly, many messages
of particular length were in depth—with respect to the permutation as well
as the codebook. A cryptanalyst could therefore compare all messages of
the same length, making it relatively easy to discover the fixed permutation,
even without knowledge of the partial codebook. Of course, the analyst first
had to be clever enough to consider the possibility that all messages of a
given length were using the same permutation, but, with this insight, the
permutations were easily recovered. The codebook was then deduced from
context and also with the aid of some unencrypted messages that provided
context for the ciphertext messages.

And what did these decrypted messages reveal? The reporters who broke
the messages were amused to discover that Tilden's supporters had tried to

2.4 MODERN CRYPTO HISTORY 37

bribe officials in the disputed states. The irony here—or not, depending on
your perspective—is that Tilden's people were guilty of precisely the same
crime of which they had accused Hayes.

By any measure, this cipher was poorly designed and weak. One lesson
is that the overuse of a key can be an exploitable flaw. In this case, each
time a permutation was reused, it gave the cryptanalyst more information
that could be collated to recover the permutation. In modern cipher systems,
we try to limit the use of a key so that we do not allow a cryptanalyst to
accumulate too much information and to limit the damage if a particular key
is exposed.

2.4 Modern Crypto History

Don't let yesterday take up too much of today.
— Abraham Lincoln

Throughout the 20th century, cryptography played an important role in ma-
jor world events. Late in the 20th century, cryptography became a critical
technology for commercial and business communications as well, and it re-
mains so today.

The Zimmermann telegram is one of the first examples from the last
century of the role that cryptanalysis has had in political and military affairs.
In this section, we mention a few other historical highlights from the past
century. For more on the history of cryptography, the best source is Kahn's
book [159].

In 1929, Secretary of State Henry L. Stimson ended the U.S. government's
official cryptanalytic activity, justifying his actions with the immortal line,
"Gentlemen do not read each other's mail" [291]. This would prove to be a
costly mistake in the run-up to the attack on Pearl Harbor.

Prior to the Japanese attack of December 7, 1941, the United States had
restarted its cryptanalytic programs. The successes of allied cryptanalysts
during the World War II era were remarkable, and this period is often seen as
the golden age of cryptanalysis. Virtually all significant Axis cryptosystems
were broken by the Allies and the value of the intelligence obtained from these
systems is difficult to overestimate.

In the Pacific theatre, the so-called Purple cipher was used for high level
Japanese government communication. This cipher was broken by Ameri-
can cryptanalysts before the attack on Pearl Harbor, but the intelligence
gained (code named MAGIC) provided no clear indication of the impending
attack [82]. The Japanese Imperial Navy used a cipher known as JN-25, which
was also broken by the Americans. The intelligence from JN-25 was almost

38 CRYPTO BASICS

certainly decisive in the extended battle of Coral Sea and Midway, where an
inferior American force was able to to halt the advance of the Japanese in
the Pacific for the first time. The Japanese Navy was never able to recover
from the losses inflicted during this crucial battle.

In Europe, the German Enigma cipher (code named ULTRA) was a major
source of intelligence for the Allies during the war [104, 118]. It is often
claimed that the ULTRA intelligence was so valuable that Churchill decided
not to inform the British city of Coventry of an impending attack by the
German Luftwaffe, since the primary source of information on the attack
came from Enigma decrypts [69]. Churchill was supposedly concerned that a
warning might tip off the Germans that their cipher had been broken. That
this did not occur has been well documented. Nevertheless, it was a challenge
to utilize valuable ULTRA intelligence without giving away the fact that the
Enigma had been broken [42].

The Enigma was initially broken by Polish cryptanalysts. After the fall of
Poland, these cryptanalysts escaped to France, but shortly thereafter France
fell to the Nazis. The Polish cryptanalysts eventually made their way to
England, where they provided their knowledge to British cryptanalysts.9 A
British team that included the computing pioneer, Alan Turing, developed
improved attacks on the Enigma [104].

A picture of the Enigma appears in Figure 2.5. Additional details on the
inner workings of the Enigma are given in the problems at the end of this
chapter and a cryptanalytic attack is presented in Chapter 6.

Figure 2.5: An Enigma Cipher (Courtesy of T. B. Perera and the Enigma
Museum)

Remarkably, the Polish cryptanalysts were not allowed to continue their work on the
Enigma in Britian.

2.4 MODERN CRYPTO HISTORY 39

In the post-World War II era, cryptography slowly moved from a black art
into the realm of science. The publication of Claude Shannon's seminal 1949
paper, Information Theory of Secrecy Systems [267], marks the turning point.
Shannon proved that the one-time pad is secure and he also offered two
fundamental cipher design principles: confusion and diffusion. These two
principles have guided symmetric cipher design ever since.

In Shannon's use, confusion is, roughly speaking, defined as obscuring
the relationship between the plaintext and ciphertext. On the other hand,
diffusion is the idea of spreading the plaintext statistics through the cipher-
text. A simple substitution cipher and a one-time pad employ only confusion,
whereas a double transposition is a diffusion-only cipher. Since the one-time
pad is provably secure, evidently confusion alone is enough, while it appears
that diffusion alone is not.

These two concepts—confusion and diffusion—are as relevant today as
they were on the day that they were originally published. In subsequent
chapters, it will become clear that these concepts remain crucial to modern
block cipher design.

Until recently, cryptography was primarily the domain of the government
and military. That changed dramatically in the 1970s, due in large part to
the computer revolution which led to the need to protect large amounts of
electronic data. By the mid-1970s, even the U.S. government realized that
there was a legitimate commercial need for secure cryptography. Further-
more, it was clear that the commercial products of the day were severely
lacking. So, the National Bureau of Standards, or NBS,10 issued a request
for cryptographic algorithms. The idea was that NBS would select an algo-
rithm that would then become an official U.S. government standard. The
ultimate result of this ill-conceived process was a cipher known as the Data
Encryption Standard, or DES.

It's impossible to overemphasize the role that DES has played in the
modern crypto history. We'll have much more to say about DES in the next
chapter.

Post-DES, academic interest in cryptography grew rapidly. Public key
cryptography was discovered (or, more precisely, rediscovered) shortly after
the arrival of DES. By the 1980s there were annual CRYPTO conferences,
which are a consistent source of high-quality work in the field. In the 1990s
the Clipper Chip and the development of a replacement for the aging DES
were two of the many crypto highlights.

Governments continue to fund major organizations that work in crypto
and related fields. However, it's clear that the crypto genie has escaped from
its classified bottle, never to be put back.

10NBS has since been rechristened as the National Institute of Standards and Technology,
or NIST, perhaps in an effort to recycle three-letter acronyms and thereby delay their
eventual exhaustion by government agencies.

40 CRYPTO BASICS

2.5 A Taxonomy of Cryptography

In the next three chapters, we'll focus on three broad categories of ciphers:
symmetric ciphers, public key cryptosystems, and hash functions. Here, we
give a very brief overview of these different categories.

Each of the classic ciphers discussed above is a symmetric cipher. Modern
symmetric ciphers can be subdivided into stream ciphers and block ciphers.
Stream ciphers generalize the one-time pad approach, sacrificing provable
security for a key that is manageable. Block ciphers are, in a sense, the
generalization of classic codebooks. In a block cipher, the key determines the
codebook, and as long as the key remains fixed, the same codebook is used.
Conversely, when the key changes, a different codebook is selected.

While stream ciphers dominated in the post-World War II era, today
block ciphers are the kings of the symmetric crypto world—with a few no-
table exceptions. Generally speaking, block ciphers are easier to optimize for
software implementations, while stream ciphers are usually most efficient in
hardware.

As the name suggests, in public key crypto, encryption keys can be made
public. For each public key, there is a corresponding decryption key that is
known as a private key. Not surprisingly, the private key is not public—it
must remain private.

If you post your public key on the Internet, anyone with an Internet
connection can encrypt a message for you, without any prior arrangement
regarding the key. This is in stark contrast to a symmetric cipher, where the
participants must agree on a key in advance. Prior to the adoption of public
key crypto, secure delivery of symmetric keys was the Achilles heel of mod-
ern cryptography. A spectacular case of a failed symmetric key distribution
system can be seen in the exploits of the Walker family spy ring. The Walker
family sold cryptographic keys used by the U.S. military to the Soviet Union
for nearly two decades before being discovered [81, 96]. Public key cryptog-
raphy does not completely eliminate the key distribution problem, since the
private key must be in the hands of the appropriate user, and no one else.

Public key cryptography has another somewhat surprising and extremely
useful feature, for which there is no parallel in the symmetric key world.
Suppose a message is "encrypted" with the private key instead of the public
key. Since the public key is public, anyone can decrypt this message. At
first glance such encryption might seem pointless. However, it can serve as a
digital form of a handwritten signature—anyone can verify the signature, but
only the signer could have created the signature. As with all of these topics,
we'll have much more to say about digital signatures in a later chapter.

Anything we can do with a symmetric cipher we can also accomplish with
a public key cryptosystem. Public key crypto also enables us to do things
that cannot be accomplished with a symmetric cipher. So why not use public

2.6 A TAXONOMY OF CRYPTANALYSIS 41

key crypto for everything? The primary reason is efficiency—symmetric key
crypto is orders of magnitude faster than public key. As a result, symmetric
crypto is used to encrypt the vast majority of data today. Yet public key
crypto has several critical roles to play in modern information security.

The third major crypto category we'll consider is cryptographic hash func-
tions.11 These functions take an input of any size and produce an output of
a fixed size. In addition, hash functions must satisfy some very stringent re-
quirements. For example, if the input changes in one or more bits, the output
should change in about half of its bits. For another, it must be computation-
ally infeasible to find any two inputs that hash to the same output. It may
not be obvious that such a function is useful—or that such functions actually
exist—but we'll see that they do exist and that they turn out to be extremely
useful for a surprisingly wide array of problems.

2.6 A Taxonomy of Cryptanalysis

The goal of cryptanalysis is to recover the plaintext, the key, or both. By
Kerckhoffs' Principle, we assume that Trudy, the cryptanalyst, has complete
knowledge of the inner workings of the algorithm. Another basic assumption
is that Trudy has access to the ciphertext—otherwise, why would we bother
to encrypt? If Trudy only knows the algorithms and the ciphertext, then
she must conduct a ciphertext only attack. This is the most disadvantageous
possible scenario from Trudy's perspective.

Trudy's chances of success might improve if she has access to known plain-
text. That is, Trudy might know some of the plaintext and observe the corre-
sponding ciphertext. These matched plaintext-ciphertext pairs might provide
information about the key. Of course, if all of the plaintext were known, there
would be little point in recovering the key. But it's often the case that Trudy
has access to (or can guess) some of the plaintext. For example, many kinds
of data include stereotypical headers (email being a good example). If such
data is encrypted, the attacker can likely guess some of the plaintext that
corresponds to some of the ciphertext.

Surprisingly often, Trudy can actually choose the plaintext to be en-
crypted and see the corresponding ciphertext. Not surprisingly, this goes by
the name of chosen plaintext attack. How is it possible for Trudy to choose
the plaintext? In later chapters, we'll see that some security protocols en-
crypt anything that is sent and return the corresponding ciphertext. It's also
possible that Trudy could have limited access to a cryptosystem, allowing her
to encrypt plaintext of her choice. For example, Alice might forget to log out
of her computer when she takes her lunch break. Trudy could then encrypt

11 Not to be confused with hash functions that you may have seen in other computing
contexts.

42 CRYPTO BASICS

some selected messages before Alice returns. This type of "lunchtime attack"
takes many forms.

Potentially more advantageous for the attacker is an adaptively chosen
plaintext attack. In this scenario, Trudy chooses the plaintext, views the
resulting ciphertext, and chooses the next plaintext based on the observed
ciphertext. In some cases, this can make Trudy's job significantly easier.

Related key attacks are also significant in some applications. The idea
here is to look for a weakness in the system when the keys are related in some
special way.

There are other types of attacks that cryptographers occasionally worry
about—mostly when they feel the need to publish another academic paper.
In any case, a cipher can only be considered secure if no successful shortcut
attack is known.

Finally, there is one particular attack scenario that applies to public key
cryptography, but not the symmetric key case. Suppose Trudy intercepts a
ciphertext that was encrypted with Alice's public key. If Trudy suspects that
the plaintext message was either "yes" or "no," then she can encrypt both
of these putative plaintexts with Alice's public key. If either matches the
ciphertext, then the message has been broken. This is known as a forward
search. Although a forward search is not applicable against a symmetric
cipher, we'll see that this approach can be used to attack hash functions in
some applications.

We've previously seen that the size of the keyspace must be large enough
to prevent an attacker from trying all possible keys. The forward search
attack implies that in public key crypto, we must also ensure that the size
of the plaintext message space is large enough so that the attacker cannot
simply encrypt all possible plaintext messages. In practice, this is easy to
achieve, as we'll see in Chapter 4.

2.7 Summary

In this chapter we covered several classic cryptosystems, including the sim-
ple substitution, the double transposition, codebooks, and the one-time pad.
Each of these illustrates some important points that we'll return to again in
later chapters. We also discussed some elementary aspects of cryptography
and cryptanalysis.

In the next chapter we'll turn our attention to modern symmetric key
ciphers. Subsequent chapters cover public key cryptography, hash functions,
and cryptanalysis. Cryptography will appear again in later parts of the book.
In particular, cryptography is a crucial ingredient in security protocols. Con-
trary to some authors' misguided efforts, the fact is that there's no avoiding
cryptography in information security.

2.8 PROBLEMS 43

2.8 Problems

1. In the field of information security, Kerckhoffs' Principle is like moth-
erhood and apple pie, all rolled up into one.

a. Define Kerckhoffs' Principle in the context of cryptography.

b. Give a real-world example where Kerckhoffs' Principle has been
violated. Did this cause any security problems?

c. Kerckhoffs' Principle is sometimes applied more broadly than its
strict cryptographic definition. Give a definition of Kerckhoffs'
Principle that applies more generally.

2. Edgar Allan Poe's 1843 short story, "The Gold Bug," features a crypt-
analytic attack.

a. What type of cipher is broken and how?

b. What happens as a result of this cryptanalytic success?

3. Given that the Caesar's cipher was used, find the plaintext that corre-
sponds to the following ciphertext:

VSRQJHEREVTXDUHSDQWU.

4. Find the plaintext and the key, given the ciphertext

CSYEVIXIVqMREXIH.

Hint: The key is a shift of the alphabet.

5. Suppose that we have a computer that can test 240 keys each second.

a. What is the expected time (in years) to find a key by exhaustive
search if the keyspace is of size 288?

b. What is the expected time (in years) to find a key by exhaustive
search if the keyspace is of size

2 112 ?

c. What is the expected time (in years) to find a key by exhaustive
search if the keyspace is of size 2256?

6. The weak ciphers used during the election of 1876 employed a fixed
permutation of the words for a given length sentence. To see that this is
weak, find the permutation of (1 ,2 ,3 , . . . , 10) that was used to produce
the scrambled sentences below, where "San Francisco" is treated as a
single word. Note that the same permutation was used for all three
sentences.

44 CRYPTO BASICS

first try try if you and don't again at succeed
only you you you as believe old are are as
winter was in the I summer ever San Francisco coldest spent

7. The weak ciphers of the election of 1876 used a partial codebook and
a permutation of the words. Modify this approach so that it is more
secure.

8. This problem deals with the concepts of confusion and diffusion

a. Define the terms confusion and diffusion as used in cryptography.

b. Which classic cipher discussed in this chapter employs only confu-
sion?

c. Which classic cipher discussed in this chapter employs only diffu-
sion?

d. Which cipher discussed in this chapter employs both confusion and
diffusion?

9. Recover the plaintext and key for the simple substitution example that
appears in (2.2) on page 24.

10. Determine the plaintext and key for the ciphertext that appears in
the Alice in Wonderland quote at the beginning of this chapter. Hint:
The message was encrypted with a simple substitution cipher and the
plaintext has no spaces or punctuation.

11. Decrypt the following message that was encrypted using a simple sub-
stitution cipher:

GBSXUCGSZQGKGSQPKQKGLSKASPCGBGBKGUKGCEUKUZKGGBSQEICA

CGKGCEUERWKLKUPKQQGCIICUAEUVSHqKGCEUPCGBCGQOEVSHUNSU

GKUZCGQSNLSHEHIEEDCUOGEPKHZGBSNKCUGSUKUASERLSKASCUGB

SLKACRCACUZSSZEUSBEXHKRGSHWKLKUSQSKCHQTXKZHEUQBKZAEN

NSUASZFENFCUOCUEKBXGBSWKLKUSQSKNFKQQKZEHGEGBSXUCGSZQ

GKGSQKUZBCQAEIISKOXSZSICVSHSZGEGBSQSAHSGKHMERQGKGSKR

EHNKIHSLIMGEKHSASUGKNSHCAKUNSQQKOSPBCISGBCqHSLIMQGKG

SZGBKGCGQSSNSZXQSISQQGEAEUGCUXSGBSSJCqGCUOZCLIENKGCA

USOEGCKGCEUqCGAEUGKCUSZUEGBHSKGEHBCUGERPKHEHKHNSZKGGKAD

12. Write a program to help an analyst decrypt a simple substitution cipher.
Your program should take the ciphertext as input, compute letter fre-
quency counts, and display these for the analyst. The program should
then allow the analyst to guess a key and display the results of the
corresponding "decryption" with the putative key.

2.8 PROBLEMS 45

13. Extend the program described in Problem 12 so that it initially tries to
decrypt the message. One sensible way to proceed is to use the com-
puted letter frequencies and the known frequencies of English for an
initial guess at the key. Then from the resulting putative decryption,
count the number of dictionary words that appear and use this as a
score. Next, for each letter in the key, try swapping it with the letter
that is adjacent (with respect to frequency counts) and recompute the
score. If the score improves, update the key; if not, don't change the
putative key. Iterate this process until the score does not improve for an
entire pass through the alphabet. At this point you will give your puta-
tive decryption to the analyst. To aid the analyst in the manual phase,
your program must maintain all of the functionality of the program in
Problem 12.

14. Encrypt the message

we are all together

using a double transposition cipher (of the type described in the text)
with 4 rows and 4 columns, using the row permutation

(1,2,3,4)—> (2,4,1,3)

and the column permutation

(1,2,3,4)—* (3,1,2,4).

15. Decrypt the ciphertext

IAUTMDCSMNIMREBOTNELSTRHEREOAEVMWIH

TSEEATMAEOHWHSYCEELTTEOHMUOUFEHTRFT

This message was encrypted with a double transposition (of the type
discussed in the text) using a matrix of 7 rows and 10 columns. Hint:
The first word is "there."

16. Outline an automated attack on a double transposition cipher (of the
type discussed in the text), assuming that the size of the matrix is
known.

17. A double transposition cipher can be made much stronger by using the
following approach. First, the plaintext is put into an n x m array,
as described in the text. Next, permute the columns, and then write
out the intermediate ciphertext column by column. That is, column 1
gives the first n ciphertext letters, column 2 gives the next n, and so
on. Then repeat the process, that is, put the intermediate ciphertext

46 CRYPTO BASICS

into a n n x m array, permute the columns, and write out the ciphertext
column by column. Use this approach, with a 3 x 4 array, and permuta-
tions (2,3,1,4) and (4, 2,1,3) to encrypt the plaintext attackatdawn.

18. Using the letter encodings in Table 2.1, the following two ciphertext
messages were encrypted with the same one-time pad:

KHHLTK and KTHLLE.

Find all possible plaintexts for each message and the corresponding
one-time pad.

19. Using the letter encodings in Table 2.1, the following ciphertext message
was encrypted with a one-time pad:

KITLKE.

a. If the plaintext is "thrill," what is the key?

b. If the plaintext is "tiller," what is the key?

20. Suppose that you have a message consisting of 1024 bits. Design a
method that will extend a key that is 64 bits long into a string of 1024
bits, so that the resulting 1024 bits can be XORed with the message,
just like a one-time pad. Is the resulting cipher as secure as a one-time
pad? Is it possible for any such cipher to be as secure as a one-time
pad?

21. Design a codebook cipher that can encrypt any block of bits, not just
specific words. Your cipher should include many possible codebooks,
with a key used to determine which codebook will be employed to en-
crypt (or decrypt) a particular message. Discuss some possible attacks
on your cipher.

22. Suppose that the following is an excerpt from the decryption codebook
for a classic codebook cipher.

123
199
202
221
233
332
451

once
or
maybe
twice
time
upon
a

Decrypt the following ciphertext:

242, 554, 650, 464, 532, 749, 567

2.8 PROBLEMS 47

assuming that the following additive sequence was used to encrypt the
message:

119, 222, 199, 231, 333, 547, 346

23. An affine cipher is a type of simple substitution where each letter is en-
crypted according to the rule c = (a-p + b) mod 26 (see the Appendix
for a discussion of mod). Here, p, c, a, and b are each numbers in the
range 0 to 25, where p represents the plaintext letter, c the ciphertext
letter, and a and b are constants. For the plaintext and ciphertext,
0 corresponds to "a," 1 corresponds to "b," and so on. Consider the
ciphertext QJKES REOGH GXXRE OXEO, which was generated using an
affine cipher. Determine the constants a and b and decipher the mes-
sage. Hint: Plaintext "t" encrypts to ciphertext "H" and plaintext "o"
encrypts to ciphertext "E."

24. A Vigenère cipher uses a sequence of "shift-by-n" simple substitutions,
where the shifts are indexed using a keyword, with "A" representing
a shift-by-0, "B" representing a shift-by-l, etc. For example, if the
keyword is "DOG," then the first letter is encrypted using a simple
substitution with a shift-by-3, the second letter is encrypted using a
shift-by-14, the third letter is encrypted using a shift-by-6, and the
pattern is repeated—the fourth letter is encrypted using a shift-by-3,
the fifth letter is encrypted using a shift-by-14, and so on. Cryptanalyze
the following ciphertext, i.e., determine the plaintext and the key. This
particular message was encrypted using a Vigenère cipher with a 3-letter
English keyword:

CTMYR DOIBS RESRR RIJYR EBYLD IYMLC CYQXS RRMLQ FSDXF

OWFKT CYJRR IQZSM X

25. Suppose that on the planet Binary, the written language uses an alpha-
bet that contains only two letters X and Y. Also, suppose that in the
Binarian language, the letter X occurs 75% of the time, while Y occurs
25% of the time. Finally, assume that you have two messages in the
Binary language, and the messages are of equal length.

a. If you compare the corresponding letters of the two messages, what
fraction of the time will the letters match?

b. Suppose that one of the two messages is encrypted with a simple
substitution, where X is encrypted as Y and Y is encrypted as X. If
you now compare the corresponding letters of the two messages—
one encrypted and one not—what fraction of the time will the
letters match?

48 CRYPTO BASICS

c. Suppose that both of the messages are encrypted with a simple
substitution, where X is encrypted as Y and Y is encrypted as X. If
you now compare the corresponding letters of the two messages—
both of which are encrypted—what fraction of the time will the
letters match?

d. Suppose instead that you are given two randomly generated "mes-
sages" that use only the two letters X and Y. If you compare the
corresponding letters of the two messages, what fraction of the
time will the letters match?

e. What is the index of coincidence (IC)? Hint: See, for example,
[148].

f. How can the index of coincidence be used to determine the length
of the keyword in a Vigenère cipher (see Problem 24 for the defi-
nition of a Vigenère cipher)?

26. In the this chapter, we discussed a forward search attack.

a. Explain how to conduct a forward search attack.

b. How can you prevent a forward search attack against a public key
cryptosystem?

c. Why can't a forward search attack be used to break a symmetric
cipher?

27. Consider a "one-way" function h. Then, given the value y = h(x), it is
computationally infeasible to find x directly from y.

a. Suppose that Alice computes y = h(x), where x is Alice's salary, in
dollars. If Trudy obtains y, how can she determine Alice's salary xl
Hint: Adapt the forward search attack to this problem.

b. Why does your attack not violate the one-way property of h?

c. How could Alice prevent this attack ? We assume that Trudy has
access to the output of the function h, Trudy knows that the input
includes Alice's salary, and Trudy knows the format of the input.
Also, no keys are available, so Alice cannot encrypt the output
value.

28. Suppose that a particular cipher uses a 40-bit key, and the cipher is
secure (i.e., there is no known shortcut attack).

a. How much work, on average, is an exhaustive search attack?

b. Outline an attack, assuming that known plaintext is available.

c. How would you attack this cipher in the ciphertext-only case?

2.8 PROBLEMS 49

29. Suppose that Alice encrypted a message with a secure cipher that uses a
40-bit key. Trudy knows the ciphertext and Trudy knows the algorithm,
but she does not know the plaintext or the key. Trudy plans to do an
exhaustive search attack, that is, she will try each possible key until she
finds the correct key.

a. How many keys, on average, must Trudy try before she finds the
correct one?

b. How will Trudy know when she has found the correct key? Note
that there are too many solutions for Trudy to manually examine
each one—she must have some automated approach to determining
whether a putative key is correct or not.

c. How much work is your automated test in part b?

d. How many false alarms do you expect from your test in part b?
That is, how often will an incorrect key produce a putative decrypt
that will pass your test?

This page intentionally left blank

Chapter 3

Symmetric Key Crypto

The chief forms of beauty are order and symmetry...
— Aristotle

"You boil it in sawdust: you salt it in glue:
You condense it with locusts and tape:

Still keeping one principal object in view—
To preserve its symmetrical shape. "

— Lewis Carroll, The Hunting of the Snark

3.1 Introduction

In this chapter, we discuss the two branches of the symmetric key crypto
family tree: stream ciphers and block ciphers. Stream ciphers generalize the
idea of a one-time pad, except that we trade provable security for a relatively
small (and manageable) key. The key is stretched into a long stream of bits,
which is then used just like a one-time pad. Like their one-time pad brethren,
stream ciphers employ (in Shannon's terminology) confusion only.

Block ciphers can be viewed as the modern successors to the classic code-
book ciphers, where the key determines the codebook. The internal workings
of block cipher algorithms can be fairly intimidating, so it is useful to keep in
mind that a block cipher is really just an "electronic" version of a codebook.
Internally, block ciphers employ both confusion and diffusion.

We'll take a fairly close look at two stream cipher algorithms, A5/1 and
RC4, both of which have been widely deployed. The A5/1 algorithm (used in
GSM cell phones) is a good representative of a large class of stream ciphers
that are based in hardware. RC4 is used in many places, including the SSL
and WEP protocols. RC4 is virtually unique among stream ciphers since it
is designed for efficient implementation in software.

51

52 SYMMETRIC KEY CRYPTO

In the block cipher realm, we'll look closely at DES, since it's relatively
simple (by block cipher standards) and it's the granddaddy of them all, mak-
ing it the block cipher to which all others are compared. We'll also take a brief
look at a few other popular block ciphers. Then we'll examine some of the
many ways that block ciphers are used for confidentiality and we'll consider
the role of block ciphers in the equally important area of data integrity.

Our goal in this chapter is to introduce symmetric key ciphers and gain
some familiarity with their inner workings and their uses. That is, we'll
focus more on the "how" than the "why." To understand why block ciphers
are designed the way they are, some aspects of advanced cryptanalysis are
essential. We cover the ideas behind such cryptanalysis in Chapter 6.

3.2 Stream Ciphers

A stream cipher takes a key K of n bits in length and stretches it into a
long keystream. This keystream is then XORed with the plaintext P to
produce ciphertext C. Through the magic of the XOR, the same keystream
is used to recover the plaintext P from the ciphertext C. Note that the use
of the keystream is identical to the use of the pad (or key) in a one-time pad
cipher. An excellent introduction to stream ciphers can be found in Rueppel's
book [254], and for leads into some very challenging research problems in the
field, see [153].

The function of a stream cipher can be viewed simply as

StreamCipher(.ftr) = S,

where K is the key and S represents the resulting keystream. Remember, the
keystream is not ciphertext, but is instead simply a string of bits that we use
like a one-time pad.

Now, given a keystream S = so, s\, s2 . ■., and plaintext P = Po,pi,P2 ■ ■ ■
we generate the ciphertext C = co,ci,C2 . . . by XOR-ing the corresponding
bits, that is,

Co = PO Θ SO, Ci = Pi Θ S1 ; C2 = P2 Θ S2 ,

To decrypt ciphertext C, the keystream S is again used, that is,

PO = Co Θ S0 , Pl = C\ Θ Si , pi = C2 Θ S2,

Provided that both the sender and receiver have the same stream cipher al-

gorithm and that both know the key K, this system provides a practical

generalization of the one-time pad. However, the resulting cipher is not prov-

ably secure (as discussed in the problems at the end of the chapter), so we

have traded provable security for practicality.

3.2 STREAM CIPHERS 53

3.2.1 A 5 / 1

The first stream cipher that we'll examine is A5/1, which is used for confiden-

tiality in GSM cell phones (GSM is discussed in Chapter 10). This algorithm

has an algebraic description, but it also can be illustrated via a relatively

simple wiring diagram. We give both descriptions here.

A5/1 employs three linear feedback shifl registers [126], or LFSRs, which

we'll label X, Y, and Z. Register X holds 19 bits, {XQ,X\, ... ,x\s)- The

register Y holds 22 bits, (yo, 2/i, · · ·, t/21), and Z holds 23 bits, (zo, zi,..., 222)·

Of course, all computer geeks love powers of two, so it's no accident that the

three LFSRs hold a total of 64 bits.

Not coincidentally, the A5/1 key K is also 64 bits. The key is used as the

initial fill of the three registers, that is, the key is used as the initial values

in the three registers. After these three registers are filled with the key,1 we

are ready to generate the keystream. But before we can describe how the

keystream is generated, we need to say a little more about the registers X,

Y, and Z.

When register X steps, the following series of operations occur:

t = £13 θ ΧΙ6 Θ Xu Θ £18

Xi = Xi-i for i = 18,17,16,.. . , 1

x0 = t

Similarly, for registers Y and Z, each step consists of

t = 2/20 Θ 2/21

W = W _ i f o r t = 21,20,19. . . , l

2/0 = *

and

t = Ζγ θ Ζ20 Θ 221 Θ .222

Zi = Zi-! for i = 22,21,20,. . . , 1

z0 = t

respectively.

Given three bits x, y, and z, define ma,](x,y, z) to be the majority vote

function, that is, if the majority of x, y, and z are 0, the function returns 0;

otherwise it returns 1. Since there are an odd number of bits, there cannot

be a tie, so this function is well defined.

1We've simplified things a little. In reality, the registers are filled with the key, and then

there is an involved run up (i.e., initial stepping procedure) that is used before we generate

any keystream bits. Here, we ignore the runup process.

54 SYMMETRIC KEY CRYPTO

In A5/1, for each keystream bit that we generate, the following takes

place. First, we compute

rn = mai{xs,yio,zio).

Then the registers X, Y, and Z step (or not) as follows:

• If #8 = m then X steps.

• If i/io = m then Y steps.

• If 2io = m then Z steps.

Finally, a single keystream bit s is generated as

S = Xl8®V21®Z22,

which can then be XORed with the plaintext (if encrypting) or XORed with

the ciphertext (if decrypting). We then repeat the entire process to generate

as many key stream bits as are required.

Note that when a register steps, its fill changes due to the bit shifting.

Consequently, after generating one keystream bit, the fills of at least two

of the registers X, Y, Z have changed, which implies that new bits are in

positions £8, j/io, and ζχς,. Therefore, we can repeat this process and generate

a new keystream bit.

Although this may seem like a complicated way to generate a single

keystream bit, A5/1 is easily implemented in hardware and can generate

bits at a rate proportional to the clock speed. Also, the number of keystream

bits that can be generated from a single 64-bit key is virtually unlimited—

although eventually the keystream will repeat. The wiring diagram for the

A5/1 algorithm is illustrated in Figure 3.1. See, for example, [33] for a more

detailed discussion of A5/1.

X

Y

z

Figure 3.1: A5/1 Keystream Generator

3.2 STREAM CIPHERS 55

The A5/1 algorithm is our representative example of a large class of stream
ciphers that are based on shift registers and implemented in hardware. These
systems were once the kings of symmetric key crypto, but in recent years
the block cipher has clearly taken the crown. And where a stream cipher is
needed today, it is likely to be RC4, which we'll discuss below.

Why has there been a mass migration away from stream ciphers towards
block ciphers? In the bygone era of slow processor speeds, shift register
based stream ciphers were necessary to keep pace with relatively high data-
rate systems (such as audio). In the past, software-based crypto could not
generate bits fast enough for such applications. Today, however, there are few
applications for which software-based crypto is not appropriate. In addition,
block ciphers are relatively easy to design and they can do everything stream
ciphers can do, and more. These are the primary reasons why block ciphers
are on the ascendancy.

3.2.2 RC4

RC4 is a stream cipher, but it's a completely different beast than A5/1. The
RC4 algorithm is optimized for software implementation, whereas A5/1 is
designed for hardware, and RC4 produces a keystream byte at each step,
whereas A5/1 only produces a single keystream bit. All else being equal
(which, of course, it never is), generating a byte at each step is much better
than generating a single bit.

The RC4 algorithm is remarkably simple, because it is essentially just a
lookup table containing a permutation of all possible 256 byte values. The
crucial trick that makes it a strong cipher is that each time a byte of keystream
is produced, the lookup table is modified in such a way that the table always
contains a permutation of {0,1 ,2 , . . . , 255}. Because of this constant updat-
ing, the lookup table—and hence the cipher itself—presents the cryptanalyst
with a moving target.

The entire RC4 algorithm is byte based. The first phase of the algorithm
initializes the lookup table using the key. We'll denote the key as key[i],
for i = 0 , 1 , . . . , N — 1, where each key[i] is a byte. We denote the lookup
table as S[i], where each S[i] is also a byte. Pseudo-code for the initialization
of the permutation S appears in Table 3.1. One interesting feature of RC4 is
that the key can be of any length from 1 to 256 bytes. And again, the key is
only used to initialize the permutation S. Note that the 256-byte array K is
filled by simply repeating the key until the array is full.

After the initialization phase, each keystream byte is generated following
the algorithm that appears in Table 3.2. The output, which we've denoted
here as keystreamByte, is a single byte that can be XORed with plaintext
(to encrypt) or XORed with ciphertext (to decrypt). We'll mention another
possible application for RC4 keystream bytes in Chapter 5.

56 SYMMETRIC KEY CRYPTO

Table 3.1: RC4 Initialization

for i = 0 to 255
S[t] = i
K[i] = keyfz mod N]

next i
3 = 0
f or i = 0 to 255

j = (j + s[i] + K[i]) mod 256
swap(5[i],5L?1)

next i
i = j = 0

The RC4 algorithm—which can be viewed as a self-modifying lookup
table—is elegant, simple, and efficient in software. However, there is an
attack that is feasible against certain uses of RC4 [112, 195, 294], but the
attack is infeasible if we discard the first 256 keystream bytes that are gen-
erated. This could be achieved by simply adding an extra 256 steps to the
initialization phase, where each additional step generates—and discards—a
keystream byte following the algorithm in Table 3.2. As long as Alice and
Bob both implement these additional steps, they can use RC4 to communicate
securely.

Table 3.2: RC4 Keystream Byte

i = (i + l) mod 256
j = (j + S[i]) mod 256
Bwap(5[t],S[i])
t = (S[i\ + S\j\) mod 256
keystreamByte = S[t]

RC4 is used in many applications, including SSL and WEP. However, the
algorithm is fairly old and is not optimized for 32-bit processors (in fact, it's
optimized for ancient 8-bit processors). Nevertheless, RC4 is sure to be a
major player in the crypto arena for many years to come.

Stream ciphers were once king of the hill, but they are now relatively
rare, in comparison to block ciphers. Some have even gone so far as to de-
clare the death of stream ciphers [74] and, as evidence, they point to the
fact that there has been almost no serious effort to develop new stream ci-
phers in recent years. However, today there are an increasing number of

3.3 BLOCK CIPHERS 57

significant applications where dedicated stream ciphers are more appropriate
than block ciphers. Examples of such applications include wireless devices,
severely resource-constrained devices, and extremely high data-rate systems.
Undoubtedly, the reports of the death of stream ciphers have been greatly
exaggerated.

3.3 Block Ciphers

An iterated block cipher splits the plaintext into fixed-sized blocks and gen-
erates fixed-sized blocks of ciphertext. In most designs, the ciphertext is
obtained from the plaintext by iterating a function F over some number of
rounds. The function F, which depends on the output of the previous round
and the key K, is known as the round function, not because of its shape, but
because it is applied over multiple rounds.

The design goals for block ciphers are security and efficiency. It's not
too difficult to develop a reasonably secure block cipher or an efficient block
cipher, but to design one that is secure and efficient requires a high form of
the cryptographer's art.

3.3.1 Feistel Cipher

A Feistel cipher, named after block cipher pioneer Horst Feistel, is a general
cipher design principle, not a specific cipher. In a Feistel cipher, the plaintext
block P is split into left and right halves,

P=(L0,Ro),

and for each round i = 1,2,... ,n, new left and right halves are computed
according to the rules

Li = Ri-i (3.1)

Ri=Li-i®F(Ri-1,Ki) (3.2)

where K{ is the subkey for round i. The subkey is derived from the key K
according to a specified key schedule algorithm. Finally, the ciphertext C is
the output of the final round, namely,

C = \Ln, Rn)·

Instead of trying to memorize equations (3.1) and (3.2), it's much easier
to simply remember how each round of a Fiestel cipher works. Note that
equation (3.1) tells us that the "new" left half is the "old" right half. On
the other hand, equation (3.2) says that the new right half is the old left half
XORed with a function of the old right half and the key.

58 SYMMETRIC KEY CRYPTO

Of course, it 's necessary to be able to decrypt the ciphertext. The beauty
of a Feistel cipher is tha t we can decrypt, regardless of the particular round
function F. Thanks to the magic of the XOR, we can solve equations (3.1)
and (3.2) for R4-1 and Lj_i , respectively, which allows us to run the process
backwards. Tha t is, for i = n, n — 1 , . . . , 1, the decryption rule is

Ri-i = Li

Li-1=Ri®F(Ri-i,Ki).

The final result of this decryption process is the plaintext P = (LQ,RQ), as
desired.

Again, any round function F will work in a Feistel cipher, provided tha t
the output of F produces the correct number of bits. It is particularly nice
that there is no requirement that the function F be invertible. However, a
Feistel cipher will not be secure for all possible choices of F. For example,
the round function

F(Ri-i,Ki) = 0 for all . r V i and Ki (3.3)

is a legitimate round function since we can encrypt and decrypt with this F.
However, Trudy would be very happy if Alice and Bob decide to use a Feistel
cipher with the round function in (3.3).

Note tha t all questions about the security of a Feistel cipher boil down to
questions about the round function and the key schedule. The key schedule
is usually not a major issue, so most of the analysis can be focused on F.

3 . 3 . 2 D E S

Now there was an algorithm to study;
one that the NSA said was secure.

— Bruce Schneier, in reference to DES

The Data Encryption Standard, affectionately known as DES,2 was developed
way back in the computing dark ages of the 1970s. The design is based on the
so-called Lucifer cipher, a Feistel cipher developed by a team at IBM. DES is
a surprisingly simple block cipher, but the story of how Lucifer became DES
is anything but simple.

By the mid 1970s, it was clear even to U.S. government bureaucrats that
there was a legitimate commercial need for secure crypto. At the time, the

2People "in the know" pronounce DES so as to rhyme with "fez" or "pez," not as the
three letters D-E-S. Of course, you can say Data Encryption Standard, but that would be
very uncool.

3.3 BLOCK CIPHERS 59

computer revolution was underway, and the amount—and sensitivity—of dig-
ital data was rapidly increasing.

In the mid 1970s, crypto was poorly understood outside of classified mil-
itary and government circles, and they weren't talking (and, for the most
part, that's still the case). The upshot was that businesses had no way to
judge the merits of a crypto product and the quality of most such products
was very poor.

Into this environment, the National Bureau of Standards, or NBS (now
known as NIST) issued a request for cipher proposals. The winning sub-
mission would become a U.S. government standard and almost certainly a de
facto industrial standard. Very few reasonable submissions were received, and
it quickly became apparent that IBM's Lucifer cipher was the only serious
contender.

At this point, NBS had a problem. There was little crypto expertise at
NBS, so they turned to the government's crypto experts, the super-secret
National Security Agency, or NSA.3 The NSA designs and builds the crypto
that is used by the U.S. military and government for highly sensitive infor-
mation. However, the NSA also wears a black hat, since it conducts signals
intelligence, or SIGINT, where it tries to obtain intelligence information from
foreign sources.

The NSA was reluctant to get involved with DES but, under pressure,
eventually agreed to study the Lucifer design and offer an opinion, provided
its role would not become public. When this information came to public
light [273] (as is inevitable in the United States4) many were suspicious that
NSA had placed a backdoor into DES so that it alone could break the cipher.
Certainly, the black hat SIGINT mission of NSA and a general climate of
distrust of government fueled such fears. In the defense of NSA, it's worth
noting that 30 years of intense cryptanalysis has revealed no backdoor in
DES. Nevertheless, this suspicion tainted DES from its inception.

Lucifer eventually became DES, but not before a few subtle—and a few
not so subtle—changes were made. The most obvious change was that the key
length was apparently reduced from 128 bits to 64 bits. However, upon careful
analysis, it was found that 8 of the 64 key bits were effectively discarded, so
the actual key length is a mere 56 bits. As a result of this modification, the
expected work for an exhaustive key search was reduced from 2127 to 255. By
this measure, DES is 272 times easier to break than Lucifer.

3NSA is so super-secret that its employees joke that the acronym NSA stands for No
Such Agency.

4 Your secretive author once attended a public talk by the Director of NSA, aka DIRNSA.
At this talk the DIRNSA made a comment to the effect, "Do you want to know what
problems we're working on now?" Of course, the audience gave an enthusiastic "Yes!"
hoping that they might be about to hear the deepest darkest secrets of the super-secret spy
agency. The DIRNSA responded, "Read the front page of the New York Times."

60 SYMMETRIC KEY CRYPTO

Understandably, the suspicion was that NSA had had a hand in purposely

weakening DES. However, subsequent cryptanalysis of the algorithm has re-

vealed attacks that require slightly less work than trying 255 keys and, as a

result, DES is probably just about as strong with a key of 56 bits as it would

be with the longer Lucifer key.

The subtle changes to Lucifer involved the substitution boxes, or S-boxes,

which are described below. These changes in particular fueled the suspicion of

a backdoor. But it has become clear over time that the modifications to the

S-boxes actually strengthened the algorithm by offering protection against

cryptanalytic techniques that were unknown (at least outside of NSA, and

they're not talking) until many years later. The inescapable conclusion is that

whoever modified the Lucifer algorithm (NSA, that is) knew what they were

doing and, in fact, significantly strengthened the algorithm. See [215, 273]

for more information on the role of NSA in the development of DES.

Now it's time for the nitty gritty details of the DES algorithm. DES is a

Feistel cipher with the following numerology:

• 16 rounds

• 64-bit block length

• 56-bit key

• 48-bit subkeys

Each round of DES is relatively simple—at least by the standards of block

cipher design. The DES S-boxes are one of its most important security fea-

tures. We'll see that S-boxes (or similar) are a common feature of modern

block cipher designs. In DES, each S-box maps 6 bits to 4 bits, and DES

employs eight distinct S-boxes. The S-boxes, taken together, map 48 bits

to 32 bits. The same S-boxes are used at each round of DES and each S-box

is implemented as a lookup table.

Since DES is a Feistel cipher, encryption follows the formulas given in

equations (3.1) and (3.2). A single round of DES is illustrated in the wiring

diagram in Figure 3.2, where each number indicates the number of bits that

follow a particular "wire."

Unravelling the diagram in Figure 3.2, we see that the DES round func-

tion F can be written as

FiRi-uKi) = P-box(S-boxes(Expand(i?i_i) Θ Ki)). (3.4)

With this round function, DES can be seen to be a Feistel cipher as defined

in equations (3.1) and (3.2). As required by equation (3.1), the new left half

is simply the old right half. The round function F is the composition of the

expansion permutation, addition of subkey, S-boxes, and P-box, as given in

equation (3.4).

3.3 BLOCK CIPHERS 61

L

32 \

32/

L

R

/ '
•j

r

| / e xpan

e.

/ 4 8

V Ì
P>«

48
l

Λ\ · -box

■ '

- /
$2

\ Pbox

\
*<c

32

32
• <

R

K,

48

key

28

shift

28

1

'

28

shift

28 28
1 '

\ < îompre ss/

'

28

'

key

Figure 3.2: One Round of DES

The expansion permutation expands its input from 32 to 48 bits, and the
subkey is XORed with the result. The S-boxes then compress these 48 bits
down to 32 bits before the result is passed through the P-box. The P-box
output is XORed with the old left half to obtain the new right half.

Next, we'll describe each of the components of F in precise detail, as well
as the algorithm used to calculate the subkey K{. But it's important to keep
the big picture in mind and to realize that the overall structure of DES is
actually fairly simple. In fact, some of the DES operations are of no security
benefit whatsoever, and if these were stripped away to reveal the essential
security features, the algorithm becomes even simpler.

Throughout this discussion—and elsewhere in this book—we'll adopt the
convention that bits are numbered from left to right, beginning with the index
zero.5 The 48-bit output of the DES expansion permutation consists of the
following bits.

31 0 1 2 3 4 3 4 5 6 7 8
7 8 9 10 11 12 11 12 13 14 15 16
15 16 17 18 19 20 19 20 21 22 23 24
23 24 25 26 27 28 27 28 29 30 31 0

5Your author is not a dinosaur (i.e., FORTRAN programmer), so the indexing starts
at 0, not 1.

62 SYMMETRIC KEY CRYPTO

where the 32-bit input is, according to our convention, numbered as

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Each of the eight DES S-boxes maps 6 bits to 4 bits, and, consequently,
each can be viewed as an array of 4 rows and 16 columns, with one nibble
(4-bit value) stored in each of the 64 positions. When viewed in this way, each
S-box has been constructed so that each of its four rows is a permutation of
the hexadecimal digits 0,1,2,... ,E,F. The DES S-box number 1 appears in
Table 3.3, where the six-bit input to the S-box is denoted bob^b^b^,. Note
that the first and last input bits are used to index the row, while the middle
four bits index the column. Also note that we've given the output in hex.
For those who just can't get enough of S-boxes, all eight DES S-boxes can be
found on the textbook website.

Table 3.3: DES S-box 1

hh
0
1
2
3

0
E
0
4
F

1
4
F
1

c

2
D
7
E
8

3
1
4
8
2

4
2
E
D
4

5
F
2
6
9

6
B
D
2
1

&1&2&3&4

7 8 9
8 3 A
1 A 6
B F C
7 5 B

A
6
C
9
3

B
C
B
7
E

C
5
9
3
A

D
9
5
A
0

E
0
3
5
6

F
7
8
0
D

The DES permutation box, or P-box, contributes little to the security
of the cipher and its real purpose seems to have been lost to the mists of
history. One plausible explanation is that the designers wanted to make DES
more difficult to implement in software since the original design called for
hardware-based implementation. It was apparently hoped that DES would
remain a hardware-only algorithm, perhaps in the belief that this would allow
the algorithm to remain secret. In fact, the S-boxes themselves were originally
classified, so undoubtedly the goal was to keep them secret. But, predictably,
the DES S-boxes were reverse engineered and they became public knowledge
almost immediately. For the record, the P-box permutation is

15 6 19 20 28 11 27 16 0 14 22 25 4 17 30 9
1 7 23 13 31 26 2 8 18 12 29 5 21 10 3 24

The only significant remaining part of DES is the key schedule algorithm,
which is used to generate the subkeys. This is a somewhat convoluted process,
but the ultimate result is simply that 48 of the 56 bits of key are selected at

3.3 BLOCK CIPHERS 63

each round. The details are relevant, since block cipher designs have been

attacked due flawed key schedule algorithms.

As usual, we'll number the 56-bit DES key from left-to-right, beginning

with 0. We first extract 28 of the DES key bits, permute them, and call the

result LK. Initially, LK consists of the following DES key bits:

49 42 35 28 21 14 7

0 50 43 36 29 22 15

8 1 51 44 37 30 23

16 9 2 52 45 38 31

The remaining 28 bits of the DES key are permuted and assigned to the

variable RK. Initially, RK consists of the following DES key bits:

55 48 41 34 27 20 13

6 54 47 40 33 26 19

12 5 53 46 39 32 25

18 11 4 24 17 10 3

Before we can precisely state the key schedule algorithm, we need a few

more items. Define the permutation LP as

13 16 10 23 0 4 2 27 14 5 20 9

22 18 11 3 25 7 15 6 26 19 12 1

and RP as

12 23 2 8 18 26 1 11 22 16 4 19

15 20 10 27 5 24 17 13 21 7 0 3

Finally, define

_ ί 1 ifi e {1,2,9,16}

* { 2 otherwise.

The DES key schedule algorithm, which is used to generate the 48-bit subkeys,

appears in Table 3.4.

Note that when writing code to implement DES, we would probably not

want to implement the key schedule algorithm as it appears in Table 3.4.

It would be more efficient to use the key schedule algorithm to determine

each Ki (in terms of the original DES key) and simply hardcode these values

into our program.

For completeness, there are two other features of DES that we should

mention. An initial permutation is applied to the plaintext before round one,

and its inverse is applied after the final round. Also, when encrypting, the

halves are swapped after last round, so the actual ciphertext is (Rie, Lie),

not (Li6,i?i6)- Neither of these quirks serve any security purpose and we'll

64 SYMMETRIC KEY CRYPTO

Table 3.4: DES Key Schedule Algorithm

for each round i = l,2,...,n
LK = cyclically left shift LK by rj bits
RK = cyclically left shift RK by r{ bits
The left half of subkey Ki consists of bits LP of LK
The right half of subkey Ki consists of bits RP of RK

next i

ignore them in the remaining discussion. However, these are part of the DES
algorithm, so they must be implemented if you want to call the resulting
cipher DES.

A few words on the security of DES may be enlightening. First, math-
ematicians are very good at solving linear equations, and the only part of
DES that is not linear is the S-boxes. Due to those annoying mathemati-
cians, linear ciphers are inherently weak, so the S-boxes are fundamental to
the security of DES. Actually, the expansion permutation has an important
security role to play and, to a lesser extent, so does the key schedule. All of
this will become clearer after we discuss linear and differential cryptanalytic
attacks in Chapter 6. For more details on the design of the DES cipher,
see [258].

Despite the concern over the design of DES—particularly the role of the
NSA in the process—DES has clearly stood the test of time [181]. Today,
DES is vulnerable simply because the key is too small, not because of any
noteworthy shortcut attack. Although some attacks have been developed
that, in theory, require somewhat less work than an exhaustive key search, all
practical DES crackers6 built to date simply try all keys until they stumble
across the correct one, that is, an exhaustive key search. The inescapable
conclusion is that the designers of DES knew what they were doing.

We'll have more to say about DES when we study advanced cryptanalysis
in Chapter 6. In fact, the historic importance of DES is hard to overstate.
DES can be viewed as the impetus behind the development of modern sym-
metric crypto, which makes it all the more ironic that NSA was the unwilling
godfather of DES.

Next, we describe triple DES, which is often used to effectively extend
the key length of DES. We'll follow this with a quick overview of a few other
block ciphers. Then we discuss one truly simple block cipher in a bit more
detail.

Not to be confused with Ritz crackers.

3.3 BLOCK CIPHERS 65

3.3.3 Triple D E S

Before moving on to other block ciphers, we discuss a popular variant of

DES known as triple DES, or 3DES. But before that, we need some notation.

Let P be a block of plaintext, K a key, and C the corresponding block of

ciphertext. For DES, C and P are each 64 bits, while K is 56 bits, but our

notation applies in general. The notation that we'll adopt for the encryption

of P with key K is

C = E(P, K)

while the corresponding decryption is denoted

P = D(C,K).

Note that for the same key, encryption and decryption are inverse operations,

that is,

P = D{E(P,K),K) and C = E(D(C,K),K).

However, in general,

P^D{E{P,K!),K2) and C φ E(D(C,K1),K2),

when K\ φ K2.
At one time, DES was nearly ubiquitous, but its key length is insufficient

today. But for DES-philes, all is not lost—there is a clever way to use DES

with a larger key length. Intuitively, it seems that double DES might be the

thing to do, that is,

C = E(E(P,K1),K2). (3.5)

This would seem to offer the benefits of a 112 bit key (two 56-bit DES keys),

with the only drawback being a loss of efficiency due to the two DES opera-

tions.

However, there is a meet-in-the-middle attack on double DES that renders

it more or less equivalent to single DES. Although the attack may not be

entirely practical, it's too close for comfort. This attack is a chosen plaintext

attack, meaning that we assume the attacker can always choose a specific

plaintext P and obtain the corresponding ciphertext C.

So, suppose Trudy selects a particular plaintext P and obtains the cor-

responding ciphertext C, which for double DES is C = E{E{P,Ki),K2).

Trudy's goal is to find the keys Κχ and K2. Toward this goal, Trudy first

pre-computes a table of size 256 containing the pairs E(P, K) and K for all

possible key values K. Trudy sorts this table on the values E(P,K). Now

using her table and the ciphertext value C, Trudy decrypts C with keys K

until she finds a value X = D(C,K) that is in table. Then, because of the

way the table was constructed, we have X = E(P, K) for some K and Trudy

now has

D(C,K) = E(P,K),

66 SYMMETRIC KEY CRYPTO

where K and K are known. That Trudy has found the 112-bit key can be
seen by encrypting both sides with the key K, which gives

C = E(E(P,K),K),

that is, in equation (3.5), we have K\ = K and K<i = K.
This attack on double DES requires that Trudy pre-compute, sort, and

store an enormous table of 256 elements. But the table computation is one-
time work,7 so if we use this table many times (by attacking double DES
many times) the work for computing the table can be amortized over the
number of attacks. Neglecting the work needed to pre-compute the table, the
work consists of computing D(C, K) until we find a match in the table. This
has an expected work of 255, just as in an exhaustive key search attack on
single DES. So, in a sense, double DES is no more secure than single DES.

Since double DES isn't secure, will triple DES fare any better? Before
worrying about attacks, we need to define triple DES. It seems that the logical
approach to triple DES would be

C = E(E(E(P,K1),K2),K3)

but this is not the way it's done. Instead, triple DES is defined as

C = E(D(E(P,K1),K2),K1).

Note that triple DES only uses two keys, and encrypt-decrypt-encrypt, or
EDE, is used instead of encrypt-encrypt-encrypt, or EEE. The reason for
only using two keys is that 112 bits is sufficient, and three keys does not add
much security (see Problem 42). But why EDE instead of EEE? Surprisingly,
the answer is backwards compatibility—if 3DES is used with K\ = K2 = K
then it collapses to single DES, since

C = E(D(E(P, K), K),K) = E(P, K).

Now, what about attacks on triple DES? We can say with certainty that
a meet-in-the-middle attack of the type used against double DES is imprac-
tical since the table pre-computation is infeasible or the per attack work is
infeasible—see Problem 42 for more details.

Triple DES remains fairly popular today. However, with the coming of
the Advanced Encryption Standard and other modern alternatives, triple
DES should, like any old soldier, slowly fade away.

7The pre-computation work is one time, provided that chosen plaintext is available. If
we only have known plaintext, then we would need to compute the table each time we
conduct the attack—see Problem 18.

3.3 BLOCK CIPHERS 67

3.3.4 A E S

By the 1990s it was apparent to everyone—even the U.S. government—that
DES had outlived its usefulness. The crucial problem with DES is that the
key length of 56 bits is susceptible to an exhaustive key search. Special-
purpose DES crackers have been built that can recover DES keys in a matter
of hours, and distributed attacks using volunteer computers on the Internet
have succeeded in finding DES keys [98].

In the early 1990s, NIST, which is the present incarnation of NBS, issued
a call for crypto proposals for what would become the Advanced Encryption
Standard, or AES. Unlike the DES call for proposals of 20 years earlier, NIST
was inundated with quality proposals. The field of candidates was eventually
reduced to a handful of finalists, and an algorithm known a Rijndael (pro-
nounced something like "rain doll") was ultimately selected. See [182] for
information on the AES competition and [75] for the details on the Rijndael
algorithm.

The AES competition was conducted in a completely open manner and,
unlike the DES competition, the NSA was openly involved as one of the
judges. As a result, there are no plausible claims of a backdoor having been
inserted into the AES. In fact, AES is highly regarded in the cryptographic
community. Shamir has stated that he believes data encrypted with a 256-bit
AES key will be "secure forever," regardless of any conceivable advances in
computing technology [73].

Like DES, the AES is an iterated block cipher. Unlike DES, the AES
algorithm is not a Feistel cipher. The major implication of this fact is that in
order to decrypt, the AES operations must be invertible. Also unlike DES, the
AES algorithm has a highly mathematical structure. We'll only give a quick
overview of the algorithm—large volumes of information on all aspects of
AES are readily available—and we'll largely ignore the elegant mathematical
structure. In any case, it is a safe bet that no crypto algorithm in history
has received as much scrutiny in as short of a period of time as the AES.
See [7, 75] for more details on the Rijndael algorithm.

Some of the pertinent facts of AES are as follows.

• The block size is 128 bits.8

• Three key lengths are available: 128, 192, or 256 bits.

• The number of rounds varies from 10 to 14, depending on the key length.

• Each round consists of four functions, in three layers—the functions are
listed below, with the layer in parentheses.

8The Rijndael algorithm actually supports block sizes of 128, 192, or 256 bits, indepen-
dent of the key length. However, the larger block sizes are not part of the official AES.

68 SYMMETRIC KEY CRYPTO

— ByteSub (nonlinear layer)

— Shif tRow (linear mixing layer)

— MixColumn (nonlinear layer)

— AddRoundKey (key addition layer)

AES treats the 128-bit block as a 4 x 4 byte array:

dOO GOl O02 Ö03

aio a n au o-u
G20 a 2 1 022 «23

. «30 «31 032 «33 _

The ByteSub operation is applied to each byte a^·, that is, 6y = ByteSub(ajj).
The result is the array of bij as illustrated below:

Ö00 Û01 «02 O03

aio a n ai2 ai3
Ü20 a 2 1 Ü22 θ23

. a30 a 3 i Ü32 033

ByteSub, which is roughly the AES equivalent of the DES S-boxes, can
be viewed as a nonlinear—but invertible—composition of two mathemati-
cal functions, or it can be viewed simply as a lookup table. We'll take the
latter view. The ByteSub lookup table appears in Table 3.5. For example,
ByteSub(3c) = eb since eb appears in row 3 and column c of Table 3.5.

Table 3.5: AES ByteSub

0 1 2 3 4 5 6 7 8 9 a b c d e f
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

63
ca
b7
04
09
53
dO
51
cd
60
eO
e7
ba
70
el
8c

7c
82
fd
c7
83
dl
ef
a3
0c
81
32
c8
78
3e
f8
al

77
c9
93
23
2c
00
aa
40
13
4f
3a
37
25
b5
98
89

7b
7d
26
c3
la
ed
fb
8f
ec
dc
0a
6d
2e
66
11
Od

f2
fa
36
18
lb
20
43
92
5f
22
49
8d
lc
48
69
bf

6b
59
3f
96
6e
fc
4d
9d
97
2a
06
d5
a6
03
d9
e6

6f
47
f7
05
5a
bl
33
38
44
90
24
4e
b4
f6
8e
42

c5
fO
cc
9a
aO
5b
85
f5
17
88
5c
a9
c6
Oe
94
68

30
ad
34
07
52
6a
45
be
c4
46
c2
6c
e8
61
9b
41

01
d4
a5
12
3b
cb
f9
b6
a7
ee
d3
56
dd
35
le
99

67
a2
e5
80
d6
be
02
da
7e
b8
ac
f4
74
57
87
2d

2b
af
fl
e2
b3
39
7f
21
3d
14
62
ea
If
b9
e9
Of

fe
9c
71
eb
29
4a
50
10
64
de
91
65
4b
86
ce
bO

d7
a4
d8
27
e3
4c
3c
ff
5d
5e
95
7a
bd
cl
55
54

ab
72
31
b2
2f
58
9f
f3
19
Ob
e4
ae
8b
Id
28
bb

76
cO
15
75
84
cf
a8
d2
73
db
79
08
8a
9e
df
16

ByteSub

^00 &01 ^02 &03

bw bn bu bi3

ί>20 &21 ^22 &23

ί"30 ^31 &32 &33

3.3 BLOCK CIPHERS 69

The ShiftRow operation is a cyclic shift of the bytes in each row of the 4 x 4
byte array. This operation is given by

aoo aoi a02 ao3
aio a n ai2 «13
O20 Ö21 0122 Ö23
«30 a31 a32 0-33

ShiftRow

dOO Ö01 «02 &03

a n an ai3 aio
θ22 a23 Ö20 &21
^33 Gt30 Û31 <*32

that is, the first row doesn't shift, the second row circular left-shifts by one
byte, the third row left-shifts by two bytes, and the last row left-shifts three
bytes. Note tha t ShiftRow is inverted by simply shifting in the opposite
direction.

Next, the MixColumn operation is applied to each column of the 4 x 4 byte
array as indicated below:

«Oi

0-2%
MixColumn

bo
hi
b*
hi

fo r i = 0 ,1 ,2 ,3 .

MixColumn consists of shift and XOR operations, and it 's most efficiently im-
plemented as a lookup table. The overall operation is nonlinear but invertible,
and, as with ByteSub, it serves a similar purpose as the DES S-boxes.

The AddRoundKey operation is straightforward. Similar to DES, a key
schedule algorithm is used to generate a subkey for each round. Let kij be
the 4 x 4 subkey array for a particular round. Then the subkey is XORed
with the current 4 x 4 byte array α^ as illustrated below:

aoo Ûfl l Û-02 &03

aio a n 012 ^13
Ü20 Ö21 0-22 0,23

O3O Ö31 «32 «33

fcoo foi ^02 ko3

ho hi kn ^13

ho &21 &22 &23
&30 &31 &32 &33

OOO °01 °02 &03

»io on bn bls

O20 °21 ί»22 023

O3O O31 632 633

We'll ignore the AES key schedule but, as with any block cipher, it 's a

significant part of the security of the algorithm. Finally, as we noted above,

the four functions, ByteSub, ShiftRow, MixColumn, and AddRoundKey, are all

invertible. As a result, the entire algorithm is invertible, and consequently

AES can decrypt as well as encrypt.

3 . 3 . 5 T h r e e M o r e B l o c k C i p h e r s

In this section, we briefly consider three well-known block cipher algorithms,

namely, the International Da ta Encryption Algorithm (IDEA), Blowfish, and

RC6. Each of these has some particular noteworthy design feature. In the

70 SYMMETRIC KEY CRYPTO

next section we'll take a closer look at the Tiny Encryption Algorithm, or
TEA [323].

IDEA is the handiwork of James L. Massey, one of the great—if some-
what lesser-known—cryptographers of modern times. The most innovative
feature of IDEA is its use of mixed mode arithmetic. The algorithm combines
addition modulo two (also known as XOR) with addition modulo 216 and
the Lai-Massey multiplication, which is "almost" multiplication modulo 216.
These operations together produce the necessary nonlinearity, and as a result
no explicit S-box is required. Massey was apparently the first to use this
approach, which is common today. See [201] for more details on the design
of IDEA.

Blownsh is one of Bruce Schneier's favorite crypto algorithms, no doubt
because he invented it. Schneier is a well-known cryptographer and an enter-
taining writer on all things security-related. The interesting quirk of Blownsh
is its use of key dependent S-boxes—instead of having fixed S-boxes, Blowfish
generates its S-boxes based on the key. It can be shown that typical Blowfish
S-boxes are strong. See [262] for more information on Blowfish.

RC6 is due to Ron Rivest, whose crypto accomplishments are truly re-
markable, including the public key system RSA and the previously mentioned
RC4 stream cipher, as well as one of the most popular hash functions, MD5.
The unusual aspect of RC6 is its use of data-dependent rotations [247]. It is
highly unusual to rely on the data as an essential part of the operation of a
crypto algorithm. RC6 was one of the AES finalists, although it ultimately
lost out to Rjindael.

These three ciphers illustrate a small sample of the many variations that
have been used in the quest for the ideal balance between security and per-
formance in block ciphers. In Chapter 6 we discuss linear and differential
cryptanalysis, which makes the fundamental trade-offs inherent in block ci-
pher design more explicit.

3.3.6 T E A

The final block cipher that we'll consider is the Tiny Encryption Algorithm
(TEA). The wiring diagrams that we've displayed so far might lead you to
conclude that block ciphers are necessarily complex. TEA nicely illustrates
that such is not the case.

TEA uses a 64-bit block length and a 128-bit key. The algorithm assumes
a computing architecture with 32-bit words—all operations are implicitly
modulo 232 and any bits beyond the 32nd position are automatically trun-
cated. The number of rounds is variable but must be relatively large. The
conventional wisdom is that 32 rounds is secure. However, each round of TEA
is more like two rounds of a Feistel cipher (such as DES), so this is roughly
equivalent to 64 rounds of DES. That's a lot of rounds.

3.3 BLOCK CIPHERS 71

In block cipher design, there is an inherent trade-off between the complex-
ity of each round and the number of rounds required. Ciphers such as DES
try to strike a balance between these two, while AES reduces the number of
rounds as much as possible, at the expense of having a more complex round
function. In a sense, TEA can be seen as living at the opposite extreme of
AES, since TEA uses a very simple round function. But as a consequence
of its simple rounds, the number of rounds must be large to achieve a high
level of security. Pseudo-code for TEA encryption—assuming 32 rounds are
used—appears in Table 3.6, where "<C" is a left (non-cyclic) shift and " » "
is a right (non-cyclic) shift.

Table 3.6: TEA Encryption

(Ä"[0], Ä"[l], K[2], K[3]) = 128 bit key
(L, R) = p l a in tex t (64-bit block)
de l t a = 0x9e3779b9
sum = 0
for i = 1 t o 32

sum = sum + d e l t a
L = L + {((R < 4) + K[0]) Θ (R + sum) Θ ((R » 5) + K[l]))

R = R+ (((L < 4) + K[2]) (B(L + sum) θ ((L > 5) + K[S\))

next i

cipher text = (L, R)

One interesting thing to notice about TEA is that it's not a Feistel cipher,

and so we need separate encryption and decryption routines. However, TEA

is about as close to a Feistel cipher as it is possible to be without actually

being one—TEA uses addition and subtraction instead of XOR. But the need

for separate encryption and decryption routines is a minor concern with TEA,

since so few lines of code are required, and the algorithm is reasonably effi-

cient even with the large number of rounds. The TEA decryption algorithm,

assuming 32 rounds, appears in Table 3.7.

There is a somewhat obscure related key attack on TEA [163]. That is, if

a cryptanalyst knows that two TEA messages are encrypted with keys that

are related to each other in some very special way, then the plaintext can be

recovered. This is a low-probability attack that in most circumstances can

probably safely be ignored. But in case you are worried about this attack,

there is a slightly more complex variant of TEA, known as extended TEA, or

XTEA [218], that overcomes this potential problem. There is also a simplified

version of TEA, known as STEA, that is extremely weak and is used to

illustrate certain types of attacks [208].

72 SYMMETRIC KEY CRYPTO

Table 3.7: TEA Decryption

(Ä'[0],Ä'[1],Ä'[2],Ä'[3])= 128 bit key
(L, R) = c ipher text (64-bit block)
d e l t a = 0x9e3779b9
sum = d e l t a -C 5
for i = 1 to 32

R = R - (((£, < 4) + K[2\) Θ (L + sum) Θ {(L > 5) + #[3]))

L = L- (((R < 4) + ΛΓ[0]) Θ (R + sum) Θ ((Ä » 5) + K[l}))
sum = sum — d e l t a

next i
p la in t ex t = (L, R)

3.3.7 Block Cipher Modes

Using a stream cipher is easy—you generate a keystream that is the same
length as the plaintext (or ciphertext) and XOR. Using a block cipher is
also easy, provided that you have exactly one block to encrypt. But how
should multiple blocks be encrypted with a block cipher? It turns out that
the answer is not as straightforward as it might seem.

Suppose we have multiple plaintext blocks, say,

Po,Pi,P2,....

For a fixed key K, a block cipher is a codebook, since it creates a fixed
mapping between plaintext and ciphertext blocks. Following the codebook
idea, the obvious thing to do is to use a block cipher in so-called electronic
codebook mode, or ECB. In ECB mode, we encrypt using the formula

Ci = E(Pi,K) fori = 0,1,2,....

Then we can decrypt according to

Pi = D{d, K) for i = 0 ,1 ,2 ,

This approach works, but there are serious security issues with ECB mode
and, as a result, it should never be used in practice.

Suppose ECB mode is used, and an attacker observes that Ci = Cj. Then
the attacker knows that Pi = Pj. Although this may seem innocent enough,
there are cases where the attacker will know part of the plaintext, and any
match with a known block reveals another block. But even if the attacker does
not know Pi or Pj, some information has been revealed, namely, that these
two plaintext blocks are the same, and we don't want to give the cryptanalyst
anything for free—especially if there is an easy way to avoid it.

3.3 BLOCK CIPHERS 73

Massey [196] gives a dramatic illustration of the consequences of this seem-

ingly minor weakness. We give a similar example in Figure 3.3, which shows

an (uncompressed) image of Alice next to the same image encrypted in ECB

mode. Every block of the right-hand image in Figure 3.3 has been encrypted,

Figure 3.3: Alice and ECB Mode

but the blocks that were the same in the plaintext are the same in the ECB-

encrypted ciphertext. Note that it does not matter which block cipher is

used—the curious result in Figure 3.3 only depends on the fact that ECB

mode was used, not on the details of the algorithm. In this case, it's not

difficult for Trudy to guess the plaintext from the ciphertext.

The ECB mode problem illustrated in Figure 3.3 is the basis for the

"new ciphertext-only attack" discussed in [95]. The purveyors of this "new"

version of a well-known attack have created a video in which they provide a

demonstration of the results, along with a large dose of marketing hype [239].

Fortunately, there are better ways to use a block cipher, which avoid the

weakness of ECB mode. We'll discuss the most common method, cipher block

chaining mode, or CBC. In CBC mode, the ciphertext from a block is used to

obscure the plaintext of the next block before it is encrypted. The encryption

formula for CBC mode is

d = E(Pi Θ Ci-!,K) for i = 0 ,1 ,2 , . . . , (3.6)

which is decrypted via

Pi = D(d, K) Θ d-! for i = 0 ,1 ,2 , (3.7)

74 SYMMETRIC KEY CRYPTO

The first block requires special handling since there is no ciphertext block C-\.
An initialization vector, or IV, is used to take the place of the mythical C_i.
Since the ciphertext is not secret, and since the IV plays a role analogous to a
ciphertext block, it need not be secret either. But the IV should be randomly
selected.

Using the IV, the first block is CBC encrypted as

Co = E(P0®lV,K),

with the formula in equation (3.6) used for the remaining blocks. The first
block is decrypted as

Po = D{C0,K)®lV,

with the formula in equation (3.7) used to decrypt all remaining blocks. Since
the IV need not be secret, it's usually randomly generated at encryption
time and sent (or stored) as the first "ciphertext" block. In any case, when
decrypting, the IV must be handled appropriately.

The benefit of CBC mode is that identical plaintext will not yield iden-
tical ciphertext. This is dramatically illustrated by comparing Alice's image
encrypted using ECB mode—which appears in Figure 3.3—with the image
of Alice encrypted in CBC mode, which appears in Figure 3.4.

Figure 3.4: Alice Prefers CBC Mode

Due to the chaining, a possible concern with CBC mode is error propa-
gation. When the ciphertext is transmitted, garbles can occur—a 0 bit could
become a 1 bit or vice versa. If a single transmission error made the plaintext

3.3 BLOCK CIPHERS 75

unrecoverable, then CBC would be useless in practice. Fortunately, this is

not the case.

Suppose the ciphertext block d is garbled to, say, G φ Ci. Then

Pi φ D(G, Κ) φ Ci-i and Pi+1 φ D(Ci+1, K)®G

but

Pi+2 = D(Ci+2,K)®Ci+1

and all subsequent blocks are decrypted correctly. That is, each plaintext

block only depends on two consecutive ciphertext blocks, so errors do not

propagate beyond two blocks. However, the fact that a single-bit error can

cause two entire blocks to be garbled is a serious concern in high error-rate

environments such as wireless. Stream ciphers do not have this problem—a

single garbled ciphertext bit results in a single garbled plaintext bit—and that

is one reason why stream ciphers are often preferred in wireless applications.

Another concern with a block cipher is a cut-and-paste attack. Suppose

the plaintext

MoneyuforuAliceuiSu$1000

Moneyuf oruTrudyu i su$2UUu

where "u" is a blank space, is to be encrypted with a block cipher that has

a 64-bit block size. Assuming that each character requires 8 bits (e.g., 8-bit

ASCII), the plaintext blocks are

Po = Moneyufo

Pi = r u Al ice u

P2 = isu$1000

P3 = Moneyuf 0

Pi = ruTrudyu

P5 = isu$2uuu

Suppose this data is encrypted using ECB mode.9 Then the ciphertext blocks

are computed as Ci = E(Pi, K) for i = 0 , 1 , . . . , 5.

Now suppose that Trudy knows that ECB mode is used, she knows the

general structure of the plaintext, and she knows that she will receive $2.

But Trudy doesn't know how much Alice will receive—though she suspects

it's much more than $2. If Trudy can rearrange the order of the ciphertext

blocks to

Co,Ci,C5,C3,C4,C2, (3.8)

then Bob will decrypt this as

Of course, you should never use ECB mode. However, this same problem arises with

other modes (and types of ciphers), but it's easiest to illustrate using ECB mode.

76 SYMMETRIC KEY CRYPTO

MoneyuforuAliceuisu$2uuu

MoneyuforuTrudyuisu$1000

which is clearly a preferable outcome from Trudy's perspective.
You might think that CBC mode would eliminate the cut-and-paste at-

tack. If so, you'd be wrong. With CBC mode, a cut-and-paste attack is still
possible, although it's slightly more difficult and some data will be corrupted.
This is explored further in the problems at the end of the chapter.

It is also possible to use a block cipher to generate a keystream, which
can then be used just like a stream cipher keystream. There are several
acceptable ways to accomplish this feat, but we'll only mention the most
popular, namely, counter mode, or CTR. As with CBC mode, CTR mode
employs an initialization vector, or IV. The CTR encryption formula is

Ci = Pi®E(TV + i,K)

and decryption is accomplished via10

Pi = d®E(IV + i,K).

CTR mode is often used when random access is required. While random
access is also fairly straightforward with CBC mode, in some cases CBC
mode would not be desirable for random access—see Problem 27.

Beyond ECB, CBC, and CTR, there are many other block cipher modes;
see [258] for descriptions of the more common ones. However, the three modes
discussed here certainly account for the vast majority of block cipher usage.

Finally, it is worth noting that data confidentiality comes in two slightly
different flavors. On the one hand, we encrypt data so that it can be trans-
mitted over an insecure channel. On the other hand, we encrypt data that
is stored on an insecure media, such as a computer hard drive. Symmetric
ciphers can be used to solve either of these two closely related problems. In
addition, symmetric key crypto can also be used to protect data integrity, as
we see in the next section.

3.4 Integrity

Whereas confidentiality deals with preventing unauthorized reading, integrity
is concerned with detecting unauthorized writing. For example, suppose that
you electronically transfer funds from one one account to another. You may
not want others to know about this transaction, in which case encryption
will effectively provide the desired confidential. But, whether you are con-
cerned about confidentiality or not, you certainly want the transaction to be
accurately received. This is where integrity comes into the picture.

10The use of the encryption "E" for both the encryption and decryption formulas is not
a typo.

3.4 INTEGRITY 77

In the previous section, we studied block ciphers and their use for confi-

dentiality. Here we show that block ciphers can also provide data integrity.

It is important to realize that confidentiality and integrity are two very dif-

ferent concepts. Encryption with any cipher—from the one-time pad to mod-

ern block ciphers—does not protect the data from malicious or inadvertent

changes. If Trudy changes the ciphertext or if garbles occur in transmission,

the integrity of the data has been lost and we want to be able to automati-

cally detect that a change has occurred. We've seen several examples—and

you should be able to give several more—to show that encryption does not

assure integrity.

A message authentication code, or MAC, uses a block cipher to ensure

data integrity. The procedure is simply to encrypt the data in CBC mode,

discarding all ciphertext blocks except the final one. This final ciphertext

block, which is known as the CBC residue, serves as the MAC. Then the

formula for the MAC, assuming N blocks of data, PQ, Pi, P2,..., PN-I, is

given by

Co = E(P0 ΘIV, K), Ci = E{Pi ® C0, K),...,

CN-i = Ε(ΡΝ-ι Θ CW-2, K) = MAC.

Note that we use an initialization vector, and that a shared symmetric key is

required.

For simplicity, suppose that Alice and Bob require integrity, but they are

not concerned with confidentiality. Then using a key K that Alice and Bob

share, Alice computes the MAC and send the plaintext, the IV, and the MAC

to Bob. Upon receiving the message, Bob computes the MAC using the key

and received IV and plaintext. If his computed "MAC" matches the received

MAC, then he is satisfied with the integrity of the data. On the other hand,

if Bob's computed MAC does not match the received MAC, then Bob knows

that something is amiss. Again, as in CBC mode, the sender and receiver

must share a symmetric key K in advance.

Why does this MAC computation work? Suppose Alice sends

IV, Po, Pi, Pi,P3, MAC

to Bob. Now, if Trudy changes plaintext block Pi to, say, Q during trans-

mission, then when Bob attempts to verify the MAC, he computes

Co = E(P0 ΘIV, K), Ci = E(Q φ C0, K), C2 = E{P2 Θ Ci, K),

C3 = E(P3 ®C2,K) = "MAC" φ MAC.

The reason this works is because any change to a plaintext block propagates

into subsequent blocks in the process of computing the MAC.

78 SYMMETRIC KEY CRYPTO

Recall that with CBC decryption a change in a ciphertext block only
affects two of the recovered plaintext blocks. In contrast, the MAC takes
advantage of the fact that for CBC encryption, any change in the plaintext
almost certainly propagates through to the final block. This is the crucial
property that enables a MAC to provide integrity.

Often confidentiality and integrity are both required. To accomplish this,
we could compute a MAC with one key, then encrypt the data with another
key. However, this is twice as much work as is needed for either confidential-
ity or integrity alone. For the sake of efficiency, it would be useful to obtain
both confidentiality and integrity protection with a single CBC encryption
of the data. So, suppose we CBC encrypt the data once and send the re-
sulting ciphertext and the computed "MAC." Then we would send the entire
ciphertext, along with the final ciphertext block (again). That is, the final
ciphertext block would be duplicated and sent twice. Obviously, sending the
same thing twice cannot provide any additional security. Unfortunately, there
is no obvious way to obtain both confidentiality and integrity with a single
encryption of the data. These topics are explored further in the problems at
the end of the chapter.

Computing a MAC based on CBC encryption is not the only way to
provide for data integrity. A hashed MAC, or HMAC, is another standard
approach to integrity and a digital signature is yet another option. We'll
discuss the HMAC in Chapter 5 and digital signatures in Chapters 4 and 5.

3.5 Summary

In this chapter we've covered a great deal of material on symmetric key cryp-
tography. There are two distinct types of symmetric ciphers: stream ciphers
and block ciphers. We briefly discussed two stream ciphers, A5/1 and RC4.
Recall that stream ciphers generalize the one-time pad, where provable secu-
rity is traded for practicality.

Block ciphers, on the other hand, can be viewed as the "electronic" equiva-
lent of a classic codebook. We discussed the block cipher DES in considerable
detail and briefly mentioned several other block ciphers. We then consid-
ered various modes of using block ciphers (specifically, ECB, CBC, and CTR
modes). We also showed that block ciphers—using CBC mode—can provide
data integrity.

In later chapters we'll see that symmetric ciphers are also useful in authen-
tication protocols. As an aside, it's interesting to note that stream ciphers,
block ciphers, and hash functions (covered in a later chapter) are all equiva-
lent in the sense that anything you can do with one, you can accomplish with
the other two, although in some cases it would be fairly unnatural to actually
do so. For this reason, these three are equivalent cryptographic "primitives."

3.6 PROBLEMS 79

Symmetrie key cryptography is a big topic and we've only scratched the
surface here. But, armed with the background from this chapter, we'll be
prepared to tackle any issues involving symmetric ciphers that arise in later
chapters.

Finally, to really understand the reasoning behind block cipher design,
it's necessary to delve more deeply into the field of cryptanalysis. Chapter 6,
which deals with advanced cryptanalysis, is highly recommended for anyone
who wants to gain a deeper understanding of block cipher design principles.

3.6 Problems

1. A stream cipher can be viewed as a generalization of a one-time pad.
Recall that the one-time pad is provably secure. Why can't we prove
that a stream cipher is secure using the same argument that was used
for the one-time pad?

2. This problem deals with stream ciphers.

a. If we generate a sufficiently long keystream, the keystream must
eventually repeat. Why?

b. Why is it a security concern if the keystream repeats?

3. Suppose that Alice uses a stream cipher to encrypt plaintext P, obtain-
ing ciphertext C, and Alice then sends C to Bob. Suppose that Trudy
happens to know the plaintext P, but Trudy does not know the key K
that was used in the stream cipher.

a. Show that Trudy can easily determine the keystream that was used
to encrypt P.

b. Show that Trudy can, in effect, replace P with plaintext of her
choosing, say, P'. That is, show that Trudy can create a ciphertext
message C" so that when Bob decrypts C' he will obtain P'.

4. This problem deals with the A5/1 cipher. For each part, justify your
answer.

a. On average, how often does the X register step?

b. On average, how often does the Y register step?

c. On average, how often does the Z register step?

d. On average, how often do all three registers step?

e. On average, how often do exactly two registers step?

f. On average, how often does exactly one register step?

80 SYMMETRIC KEY CRYPTO

g. On average, how often does no register step?

5. Implement the A5/1 algorithm. Suppose that, after a particular step,
the values in the registers are

X = (x0,xi,..., xis) = (1010101010101010101)

Y = (i/o, 2/1, ■··, 2/21) = (1100110011001100110011)

Z = {z0, z i , . . . , z22) = (11100001111000011110000)

List the next 32 keystream bits and give the contents of X, Y, and Z
after these 32 bits have been generated.

6. For bits x, y, and z, the function maj(x, y, z) is defined to be the major-
ity vote, that is, if two or more of the three bits are 0, then the function
returns 0; otherwise, it returns 1. Write the truth table for this function
and derive the boolean function that is equivalent to maj(a;,j/,z).

7. The RC4 cipher consists of a lookup table S, which contains 256 byte
values, and two indices, i and j .

a. The lookup table S is initialized to contain the identity permuta-
tion 0 ,1 ,2 , . . . , 255 and at each step of the algorithm, S contains
a permutation. How is this achieved? That is, why does S always
contain a permutation?

b. Where is RC4 used in the real world?

8. This problem deals with the RC4 stream cipher.

a. Find a reasonable upper bound on the size of the RC4 state space.
That is, find an upper bound for the number of different states that
are possible for the RC4 cipher. Hint: The RC4 cipher consists
of a lookup table S, and two indices i and j . Count the number
of possible distinct tables S and the number of distinct indices i
and j , then compute the product of these numbers.

b. Why is the size of the state space relevant when analyzing a stream
cipher?

9. Implement the RC4 algorithm. Suppose the key consists of the following
seven bytes: (OxlA, 0x2B, 0x3C, 0x4D, 0x5E, 0x6F, 0x77). For each of the
following, give S in the form of a 16 x 16 array where each entry is in
hex.

a. List the permutation S and indices i and j after the initialization
phase has completed.

3.6 PROBLEMS 81

b. List the permutation S and indices i and j after the first 100 bytes

of keystream have been generated.

c. List the permutation S and indices i and j after the first 1000

bytes of keystream have been generated.

10. Suppose that Trudy has a ciphertext message that was encrypted with

the RC4 cipher—see Tables 3.1 and 3.2. For RC4, the encryption for-

mula is given by c; = pi Θ fcj, where fc; is the ith byte of the keystream,

Pi is the ith byte of the plaintext, and Cj is the ith byte of the cipher-

text. Suppose that Trudy knows the first ciphertext byte, and the first

plaintext byte, that is, Trudy knows Co and po-

a. Show that Trudy can determine the first byte of the keystream ko.

b. Show that Trudy can replace CQ with CQ, where c0 decrypts to a

byte of Trudy's choosing, say, p'Q.

c. Suppose that a CRC [326] is used to detect errors in transmission.

Can Trudy's attack in part b still succeed? Explain.

d. Suppose that a cryptographic integrity check is used (either a

MAC, HMAC, or digital signature). Can Trudy's attack in part b

still succeed? Explain.

11. This problem deals with a Feistel Cipher.

a. Give the definition of a Feistel Cipher.

b. Is DES a Feistel Cipher?

c. Is AES a Feistel Cipher?

d. Why is the Tiny Encryption Algorithm, TEA, "almost" a Feistel

Cipher?

12. Consider a Feistel cipher with four rounds. Then the plaintext is de-

noted as P = (Lo, -Ro) and the corresponding ciphertext is C = (L4, R4).

What is the ciphertext C, in terms of Lo, RQ, and the subkey, for each

of the following round functions?

a. F(RÌ-I,KÌ) = 0

b. F(Ri-1,Ki) = Ri-1

c. F(Ri-1,Ki) = Ki

d. F(Ri-1,Ki) = Ri-1®Ki

13. Within a single round, DES employs both confusion and diffusion.

a. Give one source of confusion within a DES round.

b. Give one source of diffusion within a DES round.

82 SYMMETRIC KEY CRYPTO

14. This problem deals with the DES cipher.

a. How many bits in each plaintext block?

b. How many bits in each ciphertext block?

c. How many bits in the key?

d. How many bits in each subkey?

e. How many rounds?

f. How many S-boxes?

g. An S-box requires how many bits of input?

h. An S-box generates how many bits of output?

15. DES swaps the output of the final round, that is, the ciphertext is
not C = {Lie, RIQ) but instead it is C = (Rie, Lie). What is the
purpose of this swap?

16. Recall the attack on double DES discussed in the text. Suppose that
we instead define double DES as C — D(E(P,Ki),K2). Describe a
meet-in-the-middle attack on this cipher.

17. Recall that for a block cipher, a key schedule algorithm determines the
subkey for each round, based on the key K. Let K = (fcofci&2 · · · ^55)
be a 56-bit DES key.

a. List the 48 bits for each of the 16 DES subkeys K\, Ki, ■ ■ ■, Kie,
in terms of the key bits fcj.

b. Make a table that contains the number of subkeys in which each
key bit ki is used.

c. Can you design a DES key schedule algorithm in which each key
bit is used an equal number of times?

18. Recall the meet-in-the-middle attack on double DES discussed in this
chapter. Assuming that chosen plaintext is available, this attack recov-
ers a 112-bit key with about the same work needed for an exhaustive
search to recover a 56-bit key, that is, about 255.

a. If we only have known plaintext available, not chosen plaintext,
what changes do we need to make to the double DES attack?

b. What is the work factor for the known plaintext version of the
meet-in-the-middle double DES attack?

19. AES consists of four functions in three layers.

a. Which of the four functions are primarily for confusion and which
are primarily for diffusion? Justify your answer.

3.6 PROBLEMS 83

b. Which of the three layers are for confusion and which are for dif-

fusion? Justify your answer.

20. Implement the Tiny Encryption Algorithm (TEA).

a. Use your TEA algorithm to encrypt the 64-bit plaintext block

0x0123456789ABCDEF

using the 128-bit key

0xA56BABCD00000000FFFFFFFFABCDEF01.

Decrypt the resulting ciphertext and verify that you obtain the

original plaintext.

b. Using the key in part a, encrypt and decrypt the following message

using each of the three block cipher modes discussed in the text

(ECB mode, CBC mode, and CTR mode).

Four score and seven years ago our fathers brought forth

on this continent, a new nation, conceived in Liberty,

and dedicated to the proposition that all men are created

equal.

21. Give a diagram analogous to that in Figure 3.2 for the TEA cipher.

22. Recall that an initialization vector (IV) need not be secret.

a. Does an IV need to be random?

b. Discuss possible security disadvantages (or advantages) if IVs are

selected in sequence instead of being generated at random.

23. Draw diagrams to illustrate encryption and decryption in CBC mode.

Note that these diagrams are independent of the particular block cipher

that is used.

24. The formula for counter mode encryption is

Ci = Pi®EQV + i,K).

Suppose instead we use the formula

Ci = Pi®E(K,W + i).

Is this secure? If so, why? If not, why not?

25. Suppose that we use a block cipher to encrypt according to the rule

Co = IV Θ E(PQ, K), d = Co e E(PU K), C2 = C1® E{P2, K), ...

84 SYMMETRIC KEY CRYPTO

a. What is the corresponding decryption rule?

b. Give two security disadvantages of this mode as compared to CBC
mode.

26. Suppose that ten ciphertext blocks are encrypted in CBC mode. Show
that a cut-and-paste attack is possible. That is, show that it is possible
to rearrange the blocks so that some of the blocks decrypt correctly, in
spite of the fact that the blocks are not in the correct order.

27. Explain how to do random access on data encrypted in CBC mode.
Are there any significant disadvantages of using CBC mode for random
access as compared to CTR mode?

28. CTR mode generates a keystream using a block cipher. Devise another
method for using a block cipher as a stream cipher. Does your method
support random access?

29. Suppose that the ciphertext in equation (3.8) had been encrypted in
CBC mode instead of ECB mode. If Trudy believes ECB mode is used
and tries the same cut-and-paste attack discussed in the text, which
blocks decrypt correctly?

30. Obtain the files Alice.bmp and Alice . jpg from the textbook website.

a. Use the TEA cipher to encrypt Alice.bmp in ECB mode, leaving
the first 10 blocks unencrypted. View the encrypted image. What
do you see? Explain the result.

b. Use the TEA cipher to encrypt Al ice . jpg in ECB mode, leaving
the first 10 blocks unencrypted. View the encrypted image. What
do you see? Explain the result.

31. Suppose that Alice and Bob decide to always use the same IV instead
of choosing IVs at random.

a. Discuss a security problem this creates if CBC mode is used.

b. Discuss a security problem this creates if CTR mode is used.

c. If the same IV is always used, which is more secure, CBC or CTR
mode?

32. Suppose that Alice and Bob use CBC mode encryption.

a. What security problems arise if they always use a fixed initializa-
tion vector (IV), as opposed to choosing IVs at random? Explain.

3.6 PROBLEMS 85

b. Suppose that Alice and Bob choose IVs in sequence, that is, they

first use 0 as an IV, then they use 1 as their IV, then 2, and so on.

Does this create any security problems as compared to choosing

the IVs at random?

33. Give two ways to encrypt a partial block using a block cipher. Your

first method should result in ciphertext that is the size of a complete

block, while your second method should not expand the data. Discuss

any possible security concerns for your two methods.

34. Recall that a MAC is given by the CBC residue, that is, the last cipher-

text block when the data is encrypted in CBC mode. Given data X,

key K, and an IV, define F(X) to be the MAC of X.

a. Is F one-way, that is, given F(X) is it possible to determine ΧΊ

b. Is F collision resistant, that is, given F(X) is it possible to find a

value Y such that F(Y) = F(X)7

35. Suppose Alice uses DES to compute a MAC. She then sends the plain-

text, the IV, and the corresponding MAC to Bob. If Trudy alters one

block of plaintext before Bob receives it, what is the probability that

Bob will not detect the change?

36. Alice has four blocks of plaintext, Po,Pi,P2,P3, which she encrypts

using CBC mode to obtain CQ,C\,C2,CZ. She then sends the IV and

ciphertext to Bob. Upon receiving the ciphertext, Bob plans to verify

the integrity as follows. He'll first decrypt to obtain the putative plain-

text, and then he'll re-encrypt this plaintext using CBC mode and the

received IV. If he obtains the same C3 as the final ciphertext block, he

will trust the integrity of the plaintext.

a. Suppose that Trudy changes C\ to X, leaving all other blocks and

the IV unchanged. Will Bob detect that the data lacks integrity?

b. Suppose that Trudy changes C3 to the value Y, leaving all other

blocks and the IV unchanged. Will Bob detect that the data lacks

integrity?

c. Is Bob's integrity checking method secure?

37. Using CBC mode, Alice encrypts four blocks of plaintext, PQ, P\, P2, P3

and she sends the resulting ciphertext blocks, CQ,C\,C2,CZ, and the

IV to Bob. Suppose that Trudy is able to change any of the cipher-

text blocks before they are received by Bob. If Trudy knows Pi, show

that she can replace P\ with X. Hint: Determine C so that if Trudy

replaces Co with C, when Bob decrypts C\, he will obtain X instead

of Pi.

86 SYMMETRIC KEY CRYPTO

38. Suppose we encrypt in CBC mode using the key K and we compute a

MAC using the key K ® X, where X is a known constant. Assuming

the ciphertext and the MAC are sent from Alice to Bob, show that Bob

will detect a cut-and-paste attack.

39. Suppose Alice has four blocks of plaintext, Po, -Pi, P2, -P3· She computes

a MAC using key K\, and then CBC encrypts the data using key K2

to obtain CQ,C\,C2,C3. Alice sends the IV, the ciphertext, and the

MAC to Bob. Trudy intercepts the message and replaces C\ with X

so that Bob receives IV, C$,X, 62,63, and the MAC. Bob attempts to

verify the integrity of the data by decrypting (using key K2) and then

computing a MAC (using key K\) on the putative plaintext.

a. Show that Bob will detect Trudy's tampering.

b. Suppose that Alice and Bob only share a single symmetric key K.

They agree to let K\ = K and K2 = K (BY, where Y is known

to Alice, Bob, and Trudy. Assuming Alice and Bob use the same

scheme as above, does this create any security problem?

40. Suppose that Alice and Bob have access to two secure block ciphers,

say, Cipher A and Cipher B, where Cipher A uses a 64-bit key, while

Cipher B uses a 128-bit key. Alice prefers Cipher A, while Bob wants the

additional security provided by a 128-bit key, so he insists on Cipher B.

As a compromise, Alice proposes that they use Cipher A, but they

encrypt each message twice, using two independent 64-bit keys. Assume

that no shortcut attack is available for either cipher. Is Alice's approach

as secure as Bob's?

41. Suppose that Alice has a secure block cipher, but the cipher only uses

an 8-bit key. To make this cipher "more secure," Alice generates a

random 64-bit key K, and iterates the cipher eight times, that is, she

encrypts the plaintext P according to the rule

C = E(E(E(E(E(E(E(E(P, K0), Kx), K2), K3), KA), K5), K6), K7),

where Ko, K\,..., Κγ are the bytes of the 64-bit key K.

a. Assuming known plaintext is available, how much work is required

to determine the key K1

b. Assuming a ciphertext-only attack, how much work is required to

break this encryption scheme?

42. Suppose that we define triple 3DES with a 168-bit key as

C = E(E(E(P,K1),K2),K3).

3.6 PROBLEMS 87

Suppose that we can compute and store a table of size 256, and a chosen
plaintext attack is possible. Show that this triple 3DES is no more
secure than the usual 3DES, which only uses a 112-bit key. Hint: Mimic
the meet-in-the-middle attack on double DES.

43. Suppose that you know a MAC value X and the key K that was used to
compute the MAC, but you do not know the original message. (It may
be instructive to compare this problem to Problem 16 in Chapter 5.)

a. Show that you can construct a message M that also has its MAC
equal to X. Note that we are assuming that you know the key K
and the same key is used for both MAC computations.

b. How much of the message M are you free to choose?

This page intentionally left blank

Chapter 4

Public Key Crypto

You should not live one way in private, another in public.
— Publilius Syrus

Three may keep a secret, if two of them are dead.
— Ben Franklin

4.1 Introduction

In this chapter, we delve into the remarkable subject of public key cryptog-
raphy. Public key crypto is sometimes know as asymmetric cryptography, or
two key cryptography, or even non-secret key cryptography, but we'll stick
with public key cryptography.

In symmetric key cryptography, the same key is used to both encrypt and
decrypt the data. In public key cryptography, one key is used to encrypt
and a different key is used to decrypt and as a result, the encryption key
can be made public. This eliminates one of the most vexing problems of
symmetric key crypto, namely, how to securely distribute the symmetric key.
Of course, there is no free lunch, so public key crypto has its own issues when
it comes to dealing with keys (see the section on public key infrastructure,
below). Nevertheless, public key crypto is a big "win" in many real-world
applications.

Actually, public key cryptography is usually defined more broadly than
the two-key encryption and decryption description given in the previous para-
graph. Any system that has cryptographic application and involves some
crucial information being made public is likely to be considered a public key
cryptosystem. For example, one popular public key system discussed in this
chapter can only be used to establish a shared symmetric, not to encrypt or
decrypt anything.

89

90 PUBLIC KEY CRYPTO

Public key crypto is a relative newcomer, having been invented by cryp-
tographers working for GCHQ (the British equivalent of NSA) in the late
1960s and early 1970s and, independently, by academic researchers shortly
thereafter [191]. The government cryptographers clearly did not grasp the
full potential of their discovery, and it lay dormant until the academicians
pushed it into the limelight. The ultimate effect has been nothing short of
a revolution in cryptography. It is amazing that public key crypto is such
a recent discovery, given that humans have been using symmetric crypto for
thousands of years.

In this chapter, we'll examine most of the most important and widely
used public key cryptosystems. Actually, relatively few public key systems
are known, and fewer still are widely used. In contrast, there exists a vast
number of symmetric ciphers, and a fairly significant number of these get used
in practice. Each public key system is based on a very special mathematical
structure, making it extraordinarily difficult to develop new systems.1

A public key cryptosystem is based on a trap door one-way function.
"One-way" means that the function is easy to compute in one direction but
hard to compute (i.e., computationally infeasible) in the other. The "trap
door" feature ensures that an attacker cannot use the public information to
recover the private information. Factoring is a relevant example—it is a one-
way function since it's relatively easy to, say, generate two prime numbers p
and q and compute their product N = pq, but given a sufficiently large value
of N, it is difficult to find the factors p and q. We can also build a trap door
based on factoring, but we defer a discussion of that to later in this chapter
(see the section on RSA).

Recall that in symmetric key crypto, the plaintext is P and the ciphertext
is C. But in public key crypto, tradition has it that we encrypt a message M,
although, strangely, the result is still ciphertext C. Below, we follow this
tradition.

To do public key crypto, Bob must have a key pair consisting of a public
key and a corresponding private key. Anyone can use Bob's public key to
encrypt a message intended for Bob's eyes only, but only Bob can decrypt
the message, since, by assumption only Bob has his private key.

Bob can also apply his digital signature to a message M by "encrypting"
it with his private key. Note that anybody can "decrypt" the message since
this only requires Bob's public key, which is public. You might reasonably
wonder what possible use this could be. In fact, it is one of the most useful
features of public key crypto.

A digital signature is like a handwritten signature—only more so. Bob is
the only one who can digitally sign as Bob, since he is the only one with access
to his private key. While in principle only Bob can write his handwritten

1 Public key cryptosystems definitely do not grow on trees.

4.2 KNAPSACK 91

signature,2 in practice only Bob can digitally sign as Bob. Anyone with
access to Bob's public key can verify Bob's digital signature, which is much
more practical than hiring a handwriting expert to verify Bob's non-digital
signature.

The digital version of Bob's signature has some additional advantages
over the handwritten version. For one thing, a digital signature is firmly tied
to the document itself, whereas a handwritten signature can be photocopied
onto another document. No photocopying attack is possible with a digital
signature. Even more significant is the fact that, generally speaking, it's
not feasible to forge a digital signature without the private key. In the non-
digital world, a forgery of Bob's signature might only be detectable by a
trained expert (if at all), while a digital signature forgery can be easily and
automatically detected by anyone since verification only requires Bob's public
key, and everyone has access to public keys.

Next, we'll discuss in detail several public key cryptosystems. The first one
that we'll consider is the knapsack cryptosystem. This is appropriate since the
knapsack was one of the first practical proposed public key systems. Although
the knapsack that we'll present is known to be insecure, it's relatively easy
to comprehend and nicely illustrates all of the important features of such a
system. After the knapsack, we discuss the gold standard of public key crypto,
namely, RSA. We'll then conclude our brief tour of public key systems with a
look at the DifRe-Hellman key exchange, which is also widely used in practice.

We then discuss elliptic curve cryptography, or ECC. Note that ECC is
not a cryptosystem per se, but instead it offers a different realm in which to
do the math that arises in public key systems. The advantage of ECC is that
it's more efficient (in both time and space) and so it's favored in resource-
constrained environments such as wireless and handheld devices. In fact, all
recent U.S. government public key standards are ECC-based.

Public key cryptography is inherently more mathematical than symmet-
ric key. So now would be a good time to review the math topics found in
the Appendix. In particular, a working knowledge of elementary modular
arithmetic is assumed in this chapter.

4.2 Knapsack

In their seminal paper [90], Diffie and Hellman conjectured that public key
cryptography was possible, but they "only" offered a key exchange algorithm,
not a viable system for encryption and decryption. Shortly thereafter, the
Merkle-Hellman knapsack cryptosystem was proposed by—believe it or not—
Merkle and Hellman. We'll meet Hellman again later, but it is worth noting
that Merkle was also one of the founders of public key cryptography. He wrote

2What happens in practice is a different story.

92 PUBLIC KEY CRYPTO

a groundbreaking paper [202] that foreshadowed public key cryptography.

Merkle's paper was submitted for publication at about the same time as Dime

and Hellman's paper, although it appeared much later. For some reason,

Merkle's contribution usually does not receive the attention it deserves.

The Merkle-Hellman knapsack cryptosystem is based on a problem3 that

is known to be NP-complete [119]. This seems to make it an ideal candidate

for a secure public key cryptosystem.

The knapsack problem can be stated as follows. Given a set of n weights

labeled as

Wo,Wi , . . . ,W n - i

and a desired sum S, find ao, a\..., ora_i, where each Oj £ {0,1}, so that

S = α0Wo + a\W\ -\ h an_iW„_i,

provided this is possible. For example, suppose the weights are

85,13,9,7,47,27,99,86

and the desired sum is S = 172. Then a solution to the problem exists and

is given by

a = (00,01,02,03,04,05,06,07) = (11001100)

since 85 + 13 + 47 + 27 = 172.

Although the general knapsack problem is known to be NP-complete,

there is a special case that can be solved in linear time. A superincreasing

knapsack is similar to the general knapsack except that, when the weights

are arranged from least to greatest, each weight is greater than sum of all

previous weights. For example,

3,6,11,25,46,95,200,411 (4.1)

is a superincreasing knapsack. Solving a superincreasing knapsack problem

is easy. Suppose we are given the set of weights in equation (4.1) and the

sum S = 309. To solve this, we simply start with the largest weight and

work toward the smallest to recover the Oj in linear time. Since S < 411, we

have 07 = 0. Then since S > 200, we must have oe = 1, since the sum of

all remaining weights is less than 200. Then we compute S = S — 200 = 109

and this is our new target sum. Since S > 95, we have 05 = 1 and we

compute S = 109—95 = 14. Continuing in this manner, we find a = 10100110,

which we can easily verify solves the problem since 3 + 11 + 95 + 200 = 309.

3Ironically, the knapsack cryptosystem is not based on the knapsack problem. Instead it's

based on a more restricted problem, known as subset sum. Nevertheless, the cryptosystem

is universally known as the knapsack. Eschewing our usual pedantic nature, we'll refer to

both the cryptosystem and the underlying problem as knapsacks.

4.2 KNAPSACK 93

Next, we outline the steps in the procedure used to construct a knap-
sack cryptosystem. The process begins with a superincreasing knapsack from
which we generate a public and private key pair. After listing the steps, we'll
illustrate the process with a specific example.

1. Generate a superincreasing knapsack.

2. Convert the superincreasing knapsack into a general knapsack.

3. The public key is the general knapsack.

4. The private key is the superincreasing knapsack together with the con-
version factors.

Below, we'll see that it's easy to encrypt using the general knapsack and,
with access to the private key, it's easy to decrypt. However, without the
private key, it appears that Trudy must solve an NP-complete problem—the
knapsack problem—to recover the plaintext from the ciphertext.

Now we'll present a specific example. For this example, we'll follow the
numbering in the steps listed above.

1. For this example, we'll choose the superincreasing knapsack

(2,3,7,14,30,57,120,251).

2. To convert the superincreasing knapsack into a general knapsack, we
must choose a multiplier m and a modulus n so that m and n are rela-
tively prime and n is greater than the sum of all elements in the super-
increasing knapsack. For this example, we select the multiplier m = 41
and the modulus n = 491. Then the general knapsack is computed from
the superincreasing knapsack by modular multiplication:

2m = 2 · 41 = 82 mod 491
3m = 3 ■ 41 = 123 mod 491

7m = 7 · 41 = 287 mod 491

14m = 14 · 41 = 83 mod 491
30m = 30 · 41 = 248 mod 491

57m = 57 · 41 = 373 mod 491

120m = 120 ■ 41 = 10 mod 491
251m = 251 · 41 = 471 mod 491

The resulting knapsack is (82,123,287,83,248,373,10,471). Note that
this knapsack does indeed appear to be a general knapsack.4

4Appearances can be deceiving.

94 PUBLIC KEY CRYPTO

3. The public key is the general knapsack,

Public key: (82,123,287,83,248,373,10,471).

4. The private key is the superincreasing knapsack together with the mul-
tiplicative inverse of the conversion factor, i.e., m~l mod n. For this
example, we have

Private key: (2,3,7,14,30,57,120,251) and 41" 1 mod 491 = 12.

Suppose Bob's public and private key pair are those given in step 3 and
step 4, respectively. Suppose that Alice wants to encrypt the message (in
binary) M = 10010110 for Bob. Then she uses the 1 bits in her message
to select the elements of the general knapsack that are summed to give the
ciphertext. In this case, Alice computes

C = 82 + 83 + 373 + 10 = 548.

To decrypt this ciphertext, Bob uses his private key to find

C ■ m" 1 mod n = 548 · 12 mod 491 = 193.

Bob then solves the superincreasing knapsack for 193. Since Bob has the
private key, this is an easy (linear time) problem from which Bob recovers
the message in binary M = 10010110 or, in decimal, M = 150.

Note that in this example, we have

548 = 82 + 83 + 373 + 10

and it follows that

548m"1 = 82m"1 -I- 83m"1 + 373m"1 + 10m"1

= 2mm"1 + 14mm"1 + 57mm_1 + 120mm_1

= 2 + 14 + 57 + 120

= 193 mod 491.

This example shows that multiplying by m" 1 transforms the ciphertext—
which lives in the realm of the general knapsack—into the superincreasing
realm, where it's easy for Bob to solve for the weights. Proving that the
decryption formula works in general is equally straightforward.

Without the private key, attacker Trudy can break a message if she can
find a subset of the elements of the public key that sum to the ciphertext
value C. In the example above, Trudy must find a subset of the knapsack
(82,123,287,83,248,373,10,471) that sums precisely to 548. This appears to
be a general knapsack problem, which is known to be a very difficult problem.

4.3 RSA 95

The trapdoor in the knapsack cryptosystem occurs when we convert the
superincreasing knapsack into the general knapsack using modular arithmetic,
since the conversion factors are unavailable to an attacker. The one-way
feature lies in the fact that it is easy to encrypt with the general knapsack,
but it's apparently hard to decrypt without the private key. Of course, with
the private key, we can convert the problem into a superincreasing knapsack
problem that is easy to solve.

The knapsack appears to be just what the doctor ordered. First, it is
fairly easy to construct a public and private key pair. And given the public
key, it is easy to encrypt, while knowledge of the private key makes it easy to
decrypt. Finally, without the private key it appears that Trudy will be forced
to solve an NP-complete problem.

Alas, this clever knapsack cryptosystem is insecure. It was broken by
Shamir (who else?) in 1983 using an Apple II computer [265]. The attack
relies on a technique known as lattice reduction that we discuss in detail in
Chapter 6. The bottom line is that the "general knapsack" that is derived
from the superincreasing knapsack is not really a general knapsack—in fact,
it's a very special and highly structured case of the knapsack. The lattice
reduction attack is able to take advantage of this structure to easily recover
the plaintext (with a high probability).

Much research has been done on the knapsack problem since the demise
of the Merkle-Hellman knapsack. Today, there are knapsack variants that
appear to be secure, but people are reluctant to use them since the name
"knapsack" is forever tainted. For more information on knapsack cryptosys-
tems, see [88, 179, 222].

4.3 RSA

Like any worthwhile public key cryptosystem, RSA is named after its puta-
tive inventors, Rivest, Shamir, and Adleman. We've met Rivest and Shamir
previously, and we'll hear from both again. In fact, Rivest and Shamir are
two of the giants of modern crypto. However, the RSA concept was actually
originated by Cliff Cocks of GCHQ a few years before R, S, and A indepen-
dently reinvented it [191]. This does not in any way diminish the achievement
of Rivest, Shamir, and Adleman, since the GCHQ work was classified and was
not even widely known within the classified crypto community—it was viewed
more as a curiosity than as a practical system.5

If you've ever wondered why there is so much interest in factoring large
numbers, it's because RSA can be broken by factoring. However, it's not
known for certain that factoring is difficult in the sense that, say, the knapsack

5It is also worth noting that the spies seem to have never even considered the concept
of a digital signature.

96 PUBLIC KEY CRYPTO

problem is difficult. In true cryptographic fashion, the factoring problem on

which RSA rests is hard because lots of smart people have looked at it, and

apparently nobody has found an efficient solution.

To generate an RSA public and private key pair, choose two large prime

numbers p and q and form their product N = pq. Next, choose e relatively

prime to the product (p — l)(q — 1). Finally, find the multiplicative inverse

of e modulo (p — l)(q — 1) and denote this inverse as d. At this point, we

have N, which is the product of the two primes p and q, as well as e and d,

which satisfy ed — 1 mod (p — l)(q — 1). Now forget the factors p and q.

The number N is the modulus, and e is the encryption exponent while d

is the decryption exponent. The RSA key pair consists of

Public key: (N,e)

and

Private key: d.

In RSA, encryption and decryption are accomplished via modular expo-

nentiation. To encrypt with RSA, we treat the plaintext message M as a

number and raise it to the power e, modulo N, that is,

C = Me mod N.

To decrypt C, modular exponentiation using the decryption exponent d does

the trick, that is,

M = Cd mod N.

It's probably not obvious that RSA decryption actually works—we'll prove

that it does shortly. Assume for a moment that RSA does work. Now, if

Trudy can factor the modulus N (which is public) she will obtain p and q.

Then she can use the other public value e to easily find the private value d

since ed=\ mod (p—l)(q—l) and finding modular inverses is computationally

easy. In other words, factoring the modulus enables Trudy to recover the

private key, which breaks RSA. However, it is not known whether factoring

is the only way to break RSA.

Does RSA really work? Given C = Me mod N, we must show that

M = Cd mod N = Med mod N. (4.2)

To do so, we need the following standard result from number theory [43]:

Euler's Theorem: If x is relatively prime to n then χΊ>(ηϊ = 1 mod n

Recall that e and d were chosen so that

ed = 1 mod (p — l)(q — 1).

4.3 RSA 97

Furthermore, N = pq, which implies

#JV) = (p - l) (« - l)

(see the Appendix if you are not familiar with the φ function). These two

facts together imply that

ed - 1 = 1ΐφ{Ν)

for some integer k. We don't need to know the precise value of k.

Now we have all of the necessary pieces of the puzzle to verify that RSA

decryption works. Observe that

Cd = Med = M^ed~^+1 = M ■ M e d _ 1

= M · Mfc*(JV) = M ■ lk = M mod N. (4.3)

In the first line of equation (4.3) we simply added zero to the exponent
and in the second line we used Euler's Theorem to eliminate the ominous-
looking ΜΨ(ΝΪ term. This confirms that the RSA decryption exponent does,

in fact, decrypt the ciphertext C. Of course, the game was rigged since e

and d were chosen so that Euler's Theorem would make everything come out

as desired in the end. That's just the way mathematicians do things.

4.3.1 Textbook R S A Example

Let's consider a simple RSA example. To generate, say, Alice's keypair,

we'll select the two "large" primes p = 11 and q = 3. Then the modulus

is N = pq = 33 and (p — l)(q — 1) = 20. Next, we choose the encryption

exponent e = 3, which is, as required, relatively prime to (p — l)(q — 1).

We then compute the corresponding decryption exponent, which in this case

is d = 7, since ed = 3 ■ 7 = 1 mod 20. Now, we have

Alice's public key: (N, e) = (33,3)

and
Alice's private key: d = 7.

As usual, Alice's public key is public but only Alice has access to her private
key.

Now suppose Bob wants to send Alice a message M. Further, suppose
that as a number, the message is M = 15. Bob looks up Alice's public
key (TV, e) = (33,3) and computes the ciphertext as

C = Me mod N = 153 = 3375 = 9 mod 33,

which he then sends to Alice.

98 PUBLIC KEY CRYPTO

To decrypt the ciphertext C = 9, Alice uses her private key d = 7 to find

M = Cd mod N = 97 = 4,782,969 = 144,938 · 33 + 15 = 15 mod 33.

Alice has thereby recovered the original message M = 15 from the cipher-
text C = 9.

There are a couple of major problems with this textbook RSA example.
For one, the "large" primes are not large—it would be trivial for Trudy to
factor the modulus. In the real world, the modulus N is typically at least 1024
bits, with a 2048-bit or large modulus often used.

An equally serious problem with most textbook RSA examples (ours in-
cluded) is that they are subject to a forward search attack, as discussed
in Chapter 2. Recall that in a forward search, Trudy can guess a pos-
sible plaintext message M and encrypt it with the public key. If the re-
sult matches the ciphertext C, then Trudy has recovered the plaintext M.
The way to prevent this attack (and several others) is to pad the message
with random bits. For simplicity, we do not discuss padding here, but it
is worth noting that several padding schemes are in common use, includ-
ing the oddly named PKCS#lvl .5 [91] and Optimal Asymmetric Encryption
Padding (OAEP) [226]. Any real-world RSA implementation must use a
padding scheme such as one of these.

4.3.2 Repeated Squaring

Modular exponentiation of large numbers with large exponents is an expensive
proposition. To make this more manageable (and thereby make RSA more
efficient and practical), several tricks are commonly used. The most basic
trick is the method of repeated squaring (also known as square and multiply).

For example, suppose we want to compute 520. Naively, we would simply
multiply 5 by itself 20 times and then reduce the result modulo 35, that is,

520 = 95,367,431,640,625 = 25 mod 35. (4.4)

However, this method results in an enormous value prior to the modular
reduction, in spite of the fact that the final answer is restricted to the range 0
to 34.

Now suppose we want to do RSA encryption C = Me mod N or decryp-
tion M = Cd mod N. In a secure implementation of RSA, the modulus N is at
least 1024 bits. As a result, for typical values of e or d, the numbers involved
will be so large that it is impossible to compute Me mod N by the naive
approach in equation (4.4). Fortunately, the method of repeated squaring
allows us to compute such an exponentiation without creating unmanageably
large numbers at any intermediate step.

4.3 RSA 99

Repeated squaring works by building up the exponent one bit at a time.
At each step we double the current exponent and if the binary expansion has
a 1 in the corresponding position, we also add one to the exponent.

How can we double (and add one) to an exponent? Basic properties of
exponentiation tell us that if we square xy, we obtain (xy)2 = x2y and that x ■
xy — xy+i_ Consequently, we can easily double or add one to any exponent.
Prom the basic properties of modular arithmetic (see the Appendix), we know
that we can reduce any intermediate results by the modulus, and thereby
avoid extremely large numbers.

An example is worth a thousand words. Consider again 520. First, note
that the exponent 20 is, in binary, 10100. The exponent 10100 can be built
up one bit at a time, beginning from the high-order bit, as

(0,1,10,101,1010,10100) = (0,1,2,5,10,20).

As a result, the exponent 20 can be constructed by a series of steps, where
each step consists of doubling and, when the next bit in the binary expansion
of 20 is a 1, adding one, that is,

1 = 0 - 2 + 1
2 = 1-2
5 = 2-2 + 1

10 = 5 · 2
20 = 10 · 2

Now to compute 520, repeated squaring proceeds as

(50)2 · 51 = 5 mod 35

(51)2 = 52 = 25 mod 35

(52)2 · 51 = 252 · 5 = 3125 = 10 mod 35

(55)2 = 102 = 100 = 30 mod 35

(510)2 = 302 = 900 = 25 mod 35

Note that a modular reduction occurs at each step.
Although there are many steps in the repeated squaring algorithm, each

step is simple, efficient, and we never have to deal with a number that is
greater than the cube of the modulus. Compare this to equation (4.4), where
we had to deal with an enormous intermediate value.

4.3.3 Speeding U p R S A

Another trick that can be employed to speed up RSA is to use the same
encryption exponent e for all users. As far as anyone knows, this does not

5J =

52 =

55 =

510 =

520 =

100 PUBLIC KEY CRYPTO

weaken RSA in any way. The decryption exponents (the private keys) of
different users will be different, since different p, q, and consequently N are
chosen for each key pair.

Amazingly, a suitable choice for the common encryption exponent is e = 3.
With this choice of e, each public key encryption only requires two multipli-
cations. However, the private key operations remain expensive since there is
no special structure for d. This is often acceptable since many encryptions
may be done by a central server, while the decryption is effectively distributed
among the clients. Of course, if the server needs to compute digital signa-
tures, then a small e does not reduce its workload. Although the math would
work, it would certainly be a bad idea to choose a common value of d for all
users.

With an encryption exponent of e = 3, the following cube root attack is
possible. If the plaintext M satisfies M < iV1/3, then C = Me = M3 , that
is, the mod N operation has no effect. As a result, an attacker can simply
compute the usual cube root of C to obtain M. In practice, this is easily
avoided by padding M with enough bits so that, as a number, M > N1'3.

If multiple users all have e = 3 as their encryption exponent, another type
of the cube root attack exists. If the same message M is encrypted with three
different users' public keys, yielding, say, ciphertext Co, C\, and C2, then the
Chinese Remainder Theorem [43] can be used to recover the message M. This
is also easily avoided in practice by randomly padding each message M or
by including some user-specific information in each M, so that the messages
actually differ.

Another popular common encryption exponents is e = 21 6+1. With this e,
each encryption requires only 17 steps of the repeated squaring algorithm. An
advantage of e = 216 + 1 is that the same encrypted message must be sent
to 216 + 1 users before the Chinese Remainder Theorem attack can succeed.

Next, we'll examine the Diffie-Hellman key exchange algorithm, which is
a very different sort of public key algorithm. Whereas RSA relies on the
difficulty of factoring, Diffie-Hellman is based on the so-called discrete log
problem.

4.4 Diffie-Hellman

The Diffie-Hellman key exchange algorithm, or DH for short, was invented by
Malcolm Williamson of GCHQ and shortly thereafter it was independently
reinvented by its namesakes, Whitfield Diffie and Martin Hellman [191].

The version of DH that we discuss here is a key exchange algorithm be-
cause it can only be used to establish a shared secret. The resulting shared
secret is generally used as a shared symmetric key. It's worth emphasizing
that, in this book, the words "Diffie-Hellman" and "key exchange" always

4.4 DIFFIE-HELLMAN 101

go together—DH is not for encrypting or signing, but instead it allows users
to establish a shared symmetric key. This is no mean feat, since this key
establishment problem is one of the fundamental problems in symmetric key
cryptography.

The security of DH relies on the computational difficulty of the discrete
log problem. Suppose you are given g and x = gk. Then to determine k you
would compute the logarithm, log„(a;). Now given g, p, and gk mod p, the
problem of finding k is analogous to the logarithm problem, but in a discrete
setting. This discrete version of the logarithm problem is, not surprisingly,
known as the discrete log problem. As far as is known, the discrete log
problem is very difficult to solve, although, as with factoring, it is not known
to be, say, NP-complete.

The mathematical setup for DH is relatively simple. Let p be prime and
let g be a generator, which means that for any xE{l,2,...,p— 1} there exists
an exponent n such that x = gn mod p. The prime p and the generator g are
public.

For the actual key exchange, Alice randomly selects a secret exponent a
and Bob randomly selects a secret exponent b. Alice computes ga mod p and
sends the result to Bob, and Bob computes gb mod p and sends the result to
Alice. Then Alice computes

{gb)a mod p = gab mod p

and Bob computes
(ga)b mod p = gab mod p

and gab mod p is the shared secret, which is typically used as a symmetric
key. The DH key exchange is illustrated in Figure 4.1.

ga mod p
- ►
gb mod p

Alice, a Bob, b

Figure 4.1: Diffie-Hellman Key Exchange

The attacker Trudy can see ga mod p and gb mod p, and it seems that
she is tantalizingly close to knowing the secret gab mod p. However,

ga-gb = ga+h^9ahmoap

Apparently, Trudy needs to find either a or b, which appears to require that
she solve a difficult discrete log problem. Of course, if Trudy can find a or 6

102 PUBLIC KEY CRYPTO

or gab mod p by any other means, the system is broken. But, as far as is
known, the only way to break DH is to solve the discrete log problem.

There is a fundamental problem with the DH algorithm—it is susceptible
to a man-in-the-middle, or MiM, attack.6 This is an active attack where
Trudy places herself between Alice and Bob and captures messages from
Alice to Bob and vice versa. With Trudy thusly placed, the DH exchange
can be easily subverted. In the process, Trudy establishes a shared secret,
say, gat mod p with Alice, and another shared secret gbt mod p with Bob, as
illustrated in Figure 4.2. Neither Alice nor Bob has any clue that anything
is amiss, yet Trudy is able to read or change any messages passing between
Alice and Bob.7

ga mod p g* mod p

g* mod p gb mod p
M M

Alice, a Trudy, t Bob, b

Figure 4.2: Dime-Hellman Man-in-the-Middle Attack

The MiM attack in Figure 4.2 is a serious concern when using DH. There
are several possible ways to prevent the attack, including the following:

1. Encrypt the DH exchange with a shared symmetric key.

2. Encrypt the DH exchange with public keys.

3. Sign the DH values with private keys.

At this point, you should be baffled. After all, why would we need to use DH
to establish a symmetric key if we already have a shared symmetric key (as
in 1) or a public key pair (as in 2 and 3)? This is an excellent question to
which we'll give an excellent answer when we discuss protocols in Chapters 9
and 10.

4.5 Elliptic Curve Cryptography

Elliptic curves provide an alternative domain for performing the complex
mathematical operations required in public key cryptography. So, for exam-
ple, there is an elliptic curve version of Dime-Hellman.

6Your politically incorrect author refuses to use the term "middleperson" attack.
7The underlying problem here is that the participants are not authenticated. In this

example, Alice does not know she's talking to Bob and vice versa. It will be a few more
chapters before we discuss authentication protocols.

4.5 ELLIPTIC CURVE CRYPTOGRAPHY 103

The advantage of elliptic curve cryptography (ECC) is that fewer bits
are needed to achieve the same level of security. On the down side, elliptic
curve math is more complex, and consequently each mathematical operation
on an elliptic curve is somewhat more expensive. Overall, elliptic curves offer
a significant computational advantage over standard modular arithmetic and
current U.S. government standards reflect this—all recent public key stan-
dards are ECC-based. In addition, ECC is especially important in resource-
constrained environments such as handheld devices.

What is an elliptic curve? An elliptic curve E is the graph of a function
of the form

E : y2 = x3 + ax + b,

together with a special point at infinity, denoted oo. The graph of a typical
elliptic curve appears in Figure 4.3.

Figure 4.3: An Elliptic Curve

4.5.1 Elliptic Curve M a t h

Figure 4.3 also illustrates the method used to do arithmetic on an elliptic
curve. The "sum" of two points on an elliptic curve has both a geometric and
arithmetic interpretation. Geometrically, the sum of the points P\ and Pi is
defined as follows: First, a line is drawn through the two points. This line
usually intersects the curve in one other point. If so, this intersection point
is reflected about the x axis to obtain the point P3, which is defined to be
the sum, that is,

P3 = -Pi + P2.

This is illustrated in Figure 4.3. Also, addition is the only mathematical
operation on elliptic curves that is required.

For cryptography, we want to deal with a discrete set of points. This
is easily accomplished by including a "mod p" in the generic elliptic curve

104 PUBLIC KEY CRYPTO

equation, that is,
y = x + ax + b (mod p).

For example, consider the elliptic curve

y2 = x3 + 2a; + 3 (mod 5). (4.5)

We can list all of the points (x, y) on this curve by substituting all values
for x and solving for corresponding y value or values. Since we are working
modulo 5, we only need to consider x = 0,1,2,3,4. In this case, we obtain
the following points:

x = 0 =>■ y2 = 3 = > no solution mod 5

x = 1 =>■ y = 6 = 1 =>■ y = 1,4 mod 5

x = 2 = ^ y 2 = 15 = 0 = > t / = 0 mod 5

x = 3 ==>■ y = 36 = 1 ==> 2/ = 1,4 mod 5

x = 4 =*> y2 = 75 = 0 = > y = 0 mod 5

That is, we find that the points on the elliptic curve in equation (4.5) are

(1,1) (1,4) (2,0) (3,1) (3,4) (4,0) and oo. (4.6)

Next, we again consider the problem of adding two points on a curve.
We need a more computer-friendly approach than the geometric definition
discussed above. The algorithm for algebraically adding two points on an
elliptic curve appears in Table 4.1.

Table 4.1: Addition on an Elliptic Curve mod p

Given: curve E: y2 = χΛ + ax + b (mod p)

Pi = (xi,yi) and P2 = (2:2,2/2) on E

Find: P3 = {x3,y3) = Pi + P2

Algorithm:

X3 = m2 — x\ — X2 (mod p)

2/3 = m(xi - x3) - 2/1 (mod p)

' mod p if Pi φ P2

mod p if Pi = P2

Special case 1 : If m = 00 then P3 = 00

Special case 2: 00 + P = P for all P

where m - i (îo ~ îft) ■ (*2 - a*) - 1
w h e r e m - j (3 a ; 2 + f l) . (2 y i) - i m 0 (

Let's apply the algorithm in Table 4.1 to find the points P3 = (1,4)+ (3,1)
on the curve in equation (4.5). First, we compute

m = (1 - 4)/(3 - 1) = - 3 · 2 - 1 = - 3 · 3 = 1 mod 5.

4.5 ELLIPTIC CURVE CRYPTOGRAPHY 105

Then

and

x3 = l2 - 1 - 3 = - 3 = 2 mod 5

y3 = 1(1 - 2) - 4 = - 5 = 0 mod 5.

Therefore, on the curve y2 = a;3+2x+3 (mod 5), we have (1,4)+(3,1) = (2,0).
Note that this sum, the point (2,0), is also on the elliptic curve.

4.5.2 E C C Diff ie-Hellman

Now that we can do addition on elliptic curves, let's consider the ECC version
of the Dime-Hellman key exchange. The public information consists of a curve
and a point on the curve. We'll select the curve

y2 = x3 + llx + b (mod 167), (4.7)

leaving b to be determined momentarily. Next, we select any point (x,y)
and determine b so that this point lies on the resulting curve. In this case,
we'll choose, say, (x, y) = (2,7). Then substituting x = 2 and y = 7 into
equation (4.7) we find b = 19. The public information is

Public: y2 = x3 + l l x + 19 (mod 167) and the point (2,7). (4.8)

Alice and Bob each must randomly select their own secret multipliers.8

Suppose Alice selects A = 15 and Bob selects B = 22. Then Alice computes

4(2,7) = 15(2,7) = (102,88),

where all arithmetic is done on the curve in equation (4.8). Alice sends her
computed result to Bob. Bob computes

5(2,7) = 22(2,7) = (9,43),

which he sends to Alice. Now Alice multiplies the value she received from
Bob by her secret multiplier A, that is,

4(9,43) = 15(9,43) = (131,140).

Similarly, Bob computes

£(102,88) = 22(102,88) = (131,140)

and Alice and Bob have established a shared secret, suitable for use as a
symmetric key. Note that this elliptic curve version of Diffie-Hellman works

Since we know how to do addition on an elliptic curve, we do multiplication as repeated
addition.

106 PUBLIC KEY CRYPTO

since AB ■ P = BA · P, where A and B are multipliers and P is the speci-
fied point on the curve. The security of this method rests on the fact that,
although Trudy can see A ■ P and B ■ P, she (apparently) must find A οτ Β

before she can determine the shared secret. As far as is known, this elliptic

curve version of DH is as difficult to break as the regular DH. Actually, for a

given number of bits, the elliptic curve version is much harder to break, which

allows for the use of smaller values to obtain an equivalent level of security.

Since the values are smaller, the arithmetic is more efficient.

All is not lost for Trudy. She can take some comfort in the fact that

the ECC version of DH is just as susceptible to a MiM attack as any other

Diffie-Hellman key exchange.

4.5.3 Realist ic Elliptic Curve Example

To provide some idea of the magnitude of the numbers used in real-world

ECC, we present a realistic example. This example appears as part of the

Certicom ECCp-109 challenge problem [52], and it is discussed in Jao's excel-

lent survey [154]. Note that the numbers are given in decimal and no commas

appear within the numbers.

Let

p = 564538252084441556247016902735257

a = 321094768129147601892514872825668

b = 430782315140218274262276694323197

and consider the elliptic curve E : y2 = x3 + ax + b (mod p). Let P be the

point

(97339010987059066523156133908935,149670372846169285760682371978898)

which is on E, and let k = 281183840311601949668207954530684. Then

adding the point P to itself k times, which we denote as kP, we obtain the

point

(44646769697405861057630861884284,522968098895785888047540374779097)

which is also on the curve E.

While these numbers are indeed large, they are downright puny in com-

parison to the numbers that must be used in a non-elliptic curve public key

system. For example, a modest-sized RSA modulus has 1024 bits, which cor-

responds to more than 300 decimal digits. In contrast, the numbers in the

elliptic curve example above only have about l/10th as many digits.

There are many good sources of information on the hot topic of elliptic

curve cryptography. For an accessible treatment see [251] or see [35] for more

of the mathematical details.

4.6 PUBLIC KEY NOTATION 107

4.6 Public Key Notat ion

Before discussing the uses of public key crypto, we need to settle on some
reasonable notation. Since public key systems typically have two keys per
user, adapting the notation that we used for symmetric key crypto would be
awkward. In addition, a digital signature is an encryption (with the private
key), but yet the same operation is a decryption when applied to ciphertext.
If we're not careful, this notation thing could get complicated.

We'll adopt the following notation for public key encryption, decryption,
and signing [162].

• Encrypt message M with Alice's public key: C = {M}A]jce.

• Decrypt ciphertext C with Alice's private key: M = [Cilice·

• The notation for Alice signing9 message M is S = [Mj^hce·

Note that curly brackets represent public key operations, square brackets
are for private key operations, and the subscript tells us whose key is being
used. This is somewhat awkward but, in your notationally challenged author's
opinion, it is the least bad of the possibilities. Finally, since public and private
key operations cancel each other out,

[WAliceklice = { W] Alice} Alice = M.

Never forget that the public key is public and, consequently, anyone can
compute {Malice· O n the other hand, the private key is private, so only
Alice can compute [C]Alice o r [M]Alice· The implication is that anyone can
encrypt a message for Alice, but only Alice can decrypt the ciphertext. In
terms of signing, only Alice can sign M, but, since the public key is public,
anyone can verify the signature. We'll have more to say about signatures and
verification after we discuss hash functions in the next chapter.

4.7 Uses for Public Key Crypto

Anything you can do with a symmetric cipher you can do with public key
crypto, only slower. This includes confidentiality, in the form of transmitting
data over an insecure channel or securely storing data on an insecure media.
We can also use public key crypto for integrity—a signature plays the role of
a MAC in the symmetric case.

In addition, there are things that we can do with public keys that have no
analog in the symmetric crypto world. Specifically, public key crypto offers

9Actually, this is not the correct way to digitally sign a message; see Section 5.2 of
Chapter 5.

108 PUBLIC KEY CRYPTO

two major advantages over symmetric key crypto. The first is that, with
public key crypto, we don't need to established a shared key in advance.10

The second major advantage is that digital signatures provide integrity (see
Problem 35) and non-repudiation. We look a little closer at these two topics
below.

4.7.1 Confidentiality in the Real World

The primary advantage of symmetric key cryptography over public key is
efficiency.11 In the realm of confidentiality, the primary advantage of public
key cryptography is the fact that no shared key is required.

Is it possible to get the best of both worlds? That is, can we have the
efficiency of symmetric key crypto and yet not have to share keys in advance?
The answer is an emphatic yes. The way to achieve this highly desirable result
is with a hybrid cryptosystem, where public key crypto is used to establish a
symmetric key and the resulting symmetric key is then used to encrypt the
data. A hybrid cryptosystem is illustrated in Figure 4.4.

{KJöob
».

E(Bob's data, K)

E(Alice's data, K)

Alice Bob
Figure 4.4: Hybrid Cryptosystem

The hybrid cryptosystem in Figure 4.4 is only for illustrative purposes. In
fact, Bob has no way to know that he's talking to Alice—since anyone can do
public key operations—so he would be foolish to encrypt sensitive data and
send it to "Alice" following this protocol. We'll have much more to say about
secure authentication and key establishment protocols in upcoming chapters.
Hybrid crypto (with secure authentication) is widely used in practice today.

4.7.2 Signatures and Non-repudiat ion

As mentioned above, a digital signature can be used for integrity. Recall
that a MAC is a way to provide integrity that uses a symmetric key. So, a
signature is as good as a MAC when it comes to integrity. In addition, a digital

10Of course, we do need to get the private keys to the participants beforehand, so the key
distribution problem has not been completely eliminated—it has just taken on a different
form.

11A secondary benefit is that no public key infrastructure, or PKI, is required. We'll
discuss PKI below.

4.7 USES FOR PUBLIC KEY CRYPTO 109

signature provides non-repudiation, which is something that symmetric keys
by their very nature cannot provide.

To understand non-repudiation, let's first consider an integrity example
in the symmetric key case. Suppose Alice orders 100 shares of stock from
her favorite stockbroker, Bob. To ensure the integrity of her order, Alice
computes a MAC using a shared symmetric key KAB- Now suppose that
shortly after Alice places the order—but before she has paid any money to
Bob—the stock loses all of its value. At this point Alice could claim that she
did not place the order, that is, she could repudiate the transaction.

Can Bob prove that Alice placed the order? If all he has is the MAC,
then he cannot. Since Bob also knows the symmetric key KAB, n e could have
forged the message in which "Alice" placed the order. Note that Bob knows
that Alice placed the order (since he didn't forge it), but he can't prove it in
a court of law.

Now consider the same scenario, but suppose Alice uses a digital signa-
ture instead of a MAC. As with the MAC, the signature provides an integrity
check. Again, suppose that the stock loses its value and Alice tries to repu-
diate the transaction. Can Bob prove that the order came from Alice? Yes
he can, since only Alice has access to her private key.12 Therefore, digital
signatures provide integrity and non-repudiation, while a MAC can only be
used for integrity. This is simply due to the fact that the symmetric key is
known to both Alice and Bob, whereas Alice's private key is only known to
Alice.13 We'll have more to say about signatures and integrity in the next
chapter.

4.7.3 Confidentiality and Non-repudiat ion

Suppose that Alice and Bob have public keys available and Alice wants to
send a message M to Bob. For confidentiality, Alice would encrypt M with
Bob's public key, and for integrity and non-repudiation, Alice can sign M
with her private key. But suppose that Alice, who is very security conscious,
wants both confidentiality and non-repudiation. Then she can't just sign M
as that will not provide confidentiality, and she can't just encrypt M as that
won't provide integrity. The solution seems straightforward enough—Alice
can sign and encrypt the message before sending it to Bob, that is,

{[-MlAliceJBob-

12Of course, we are assuming that Alice's private key has not been lost or compromised.
In any case, if the keys are in the wrong hands then all bets are off.

13One may be the loneliest number, but when it comes to non-repudiation, two is much
worse than one.

110 PUBLIC KEY CRYPTO

Or would it be better for Alice to encrypt M first and then sign the result?
That is, should Alice compute

[{-MlBobUlice

instead? Can the order possibly matter? Is this something that only an
anal-retentive cryptographer could care about?

Let's consider a couple of different scenarios, similar to those found in [77].
First, suppose that Alice and Bob are romantically involved. Alice decides to
send the message

M = "I love you"

to Bob and she decides to use the sign and encrypt approach. So, Alice sends
Bob the message

{[M] Alice) Bob·
Subsequently, Alice and Bob have a lovers' tiff and Bob, in an act of spite,
decrypts the signed message to obtain [M] Alice a n d re-encrypts it using Char-
lie's public key, that is,

{[•M]Alice}charlie·
Bob then sends this message to Charlie, as illustrated in Figure 4.5. Of course,
Charlie thinks that Alice is in love with him, which causes a great deal of
embarrassment for both Alice and Charlie, much to Bob's delight.

{[MJAiiceWi {[M]Alice}charlie

Alice Bob Charlie

Figure 4.5: Pitfall of Sign and Encrypt

Alice, having learned her lesson from this bitter experience, vows to never
sign and encrypt again. When she wants confidentiality and non-repudiation,
Alice will always encrypt then sign.

Some time later, after Alice and Bob have resolved their earlier issues,
Alice develops a great new theory that she wants to communicate to Bob.
This time her message is [55]

M = "Brontosauruses are thin at one end, much much thicker

in the middle, then thin again at the other end",

which she dutifully encrypts then signs

[{-MjBoblAlice

4.7 USES FOR PUBLIC KEY CRYPTO 111

before sending it to Bob.
However, Charlie, who is still angry with Bob and Alice, has set himself

up as a man-in-the-middle so that he is able to intercept all traffic between
Alice and Bob. Charlie knows that Alice is working on a great new theory,
and he also knows that Alice only encrypts important messages. Charlie
suspects that this encrypted and signed message is important and somehow
related to Alice's important new theory. So, Charlie uses Alice's public key
to compute {M}B01J, which he then signs before sending it to Bob, that is,
Charlie sends

[{-Mlßoblcharlie

to Bob. This scenario is illustrated in Figure 4.6.

Charlie

Alice Charlie Bob

Figure 4.6: Pitfall of Encrypt and Sign

When Bob receives the message from Charlie, he assumes that this great
new theory is Charlie's, and he immediately gives Charlie a promotion. When
Alice learns that Charlie has taken credit for her great new theory, she swears
never to encrypt and sign again.

Note that in the first scenario, Charlie assumed that {[MJ^ucelcharlie
must have been sent from Alice to Charlie. That's not a valid assumption—
Charlie's public key is public, so anyone could have done the encryption. In
fact, the only thing Charlie really knows is that at some point Alice signed M.
The problem here is that Charlie has apparently forgotten that public keys
are public.

In the second scenario, Bob assumed that [{M}B0b]charlie must have orig-
inated with Charlie, which is also not a valid assumption. Again, since public
keys are public, anybody could've encrypted M with Bob's public key. It is
true that Charlie must have signed this encrypted message, but that does not
imply that Charlie actually encrypted it (or even knows what the plaintext
message says).

In both of these cases, the underlying problem is that the recipient does
not clearly understand the way that public key cryptography works. There
are some inherent limitations to public key crypto, most of which are due to
the fact that anyone can do public key operations, that is, anyone can encrypt
a message and anyone can verify a signature. This fact can be a source of
confusion if you are not careful.

112 PUBLIC KEY CRYPTO

4.8 Public Key Infrastructure

A public key infrastructure, or PKI, is the sum total of everything required
to securely use public keys in the real world. It's surprisingly difficult and
involved to assemble all of the necessary pieces of a PKI into a working whole.
For a discussion of some of the risks inherent in PKI, see [101].

A digital certificate (or public key certificate or, for short, certificate)
contains a user's name along with the user's public key and this is signed by
a certificate authority, or CA. For example, Alice's certificate contains14

M = ("Alice", Alice's public key) and S = [M]CA .

To verify this certificate, Bob would compute {S}CA a n d verify that this
matches M.

The CA acts as a trusted third party, or TTP. By signing the certificate,
the CA is vouching for the fact it gave the corresponding private key to Alice.
That is, the CA created a public and private key pair and it put the public
key in Alice's certificate. Then the CA signed the certificate (using its private
key) and it gave the private key to Alice. If you trust the CA, you believe
that it actually gave the private key to Alice, and not to anyone else.

A subtle but important point here is that the CA is not vouching for the
identity of the holder of the certificate. Certificates act as public keys and,
consequently, they are public knowledge. So, for example, Trudy could send
Alice's public key to Bob and claim to be Alice. Bob must not fall for this
trick.

When Bob receives a certificate, he must verify the signature. If the
certificate is signed by a CA that Bob trusts, then he uses that CA's public
key for verification. On the other hand, if Bob does not trust the CA, then
the certificate is useless to him. Anyone can create a certificate and claim to
be anyone else. Bob must trust the CA and verify the signature before he
can assume the certificate is valid.

But what exactly does it mean for Alice's certificate to be valid? And
what useful information does this provide to Bob? Again, by signing the
certificate, the CA is vouching for the fact that it gave the private key to
Alice, and not to anyone else. In other words, the public key in the certificate
is actually Alice's public key, in the sense that Alice—and only Alice—has
the corresponding private key.

To finish beating this dead horse, after verifying the signature, Bob trusts
that Alice has the corresponding private key. It's critical that Bob does not
assume anything more than this. For example, Bob learns nothing about the

14This formula is slightly simplified. Actually, we also need to use a hash function when
we sign, but we don't yet know about hash functions. We'll give the precise formula for
digital signatures in the next chapter. Regardless, this simplified signature illustrates all of
the important concepts related to certificates.

4.8 PUBLIC KEY INFRASTRUCTURE 113

sender of the certificate—certificates are public information, so anyone could
have sent it to Bob. In later chapters we'll discuss security protocols, where
we will see how Bob can use a valid certificate to verify the identity of the
sender, but that requires more than simply verifying the signature on the
certificate.

In addition to the required public key, a certificate could contain just
about any other information that is deemed useful to the participants. How-
ever, the more information, the more likely the certificate will become invalid.
For example, it might be tempting for a corporation to include the employee's
department and phone number in a certificate. But then the inevitable reor-
ganization will invalidate the certificate.

If a CA makes a mistake, the consequences can be dire. For example,
VeriSign15 once issued a signed certificate for Microsoft to someone else [136],
that is, VeriSign gave the private key to someone other than Microsoft. That
"someone else" could then have acted (electronically, that is) as Microsoft.
This particular error was quickly detected, and the certificate was revoked,
apparently before any damage was done.

This raises an important PKI issue, namely, certificate revocation. Cer-
tificates are usually issued with an expiration date. But if a private key is
compromised, or it is discovered that a certificate was issued in error, the
certificate must be revoked immediately. Most PKI schemes require peri-
odic distribution of certificate revocation lists, or CRLs, which are supposed
to be used to filter out compromised certificates. In some situations, this
could place a significant burden on users, which could to lead to mistakes
and security flaws.

To summarize, any PKI must deal with the following issues:

• Key generation and management

• Certificate authorities (CAs)

• Certificate revocation

Next, we'll briefly discuss a few of the many PKI trust models that are used
today. The basic issue is deciding who you are willing to trust as a CA. Here,
we follow the terminology in [162].

Perhaps the most obvious trust model is the monopoly model, where one
universally trusted organization is the CA for the known universe. This ap-
proach is naturally favored by whoever happens to be the biggest commercial
CA at the time (currently, VeriSign). Some have suggested that the govern-
ment should play the role of the monopoly CA. However, believe it or not,
many people don't trust the government.

Today, VeriSign is the largest commercial source for digital certificates [316].

114 PUBLIC KEY CRYPTO

One major drawback to the monopoly model is that it creates a big target
for attack. If the monopoly CA is ever compromised, the entire PKI system
fails. And if you don't trust the CA, then the system is useless for you.

The oligarchy model is one step away from the monopoly model. In this
model, there are multiple trusted CAs. In fact, this is the approach that
is used today—a Web browser might be configured with 80 or more CA
certificates. A security-conscious user such as Alice is free to decide which
of the CAs she is willing to trust and which she is not. On the other hand,
a more typical user like Bob will trust whatever CAs are configured in the
default settings on his browser.

At the opposite extreme from the monopoly model is the anarchy model.
In this model, anyone can be a CA, and it's up to the users to decide which
CAs they want to trust. In fact, this approach is used in PGP, where it goes
by the name "web of trust."

The anarchy model can place a significant burden on users. For example,
suppose you receive a certificate signed by Frank and you don't know Frank,
but you do trust Bob and Bob says Alice is trustworthy and Alice vouches
for Frank. Should you trust Frank? This is clearly beyond the patience of
the average user, who is likely to simply trust everybody or nobody so as to
avoid headaches like this.

There are many other PKI trust models, most of which try to provide
reasonable flexibility while putting a minimal burden on end users. The fact
that there is no generally agreed upon trust model is itself one of the major
problems with PKI.

4.9 Summary

In this chapter, we've covered most of the most important public key crypto
topics. We began with the knapsack, which has been broken, but provides
a nice introductory example. We then discussed RSA and Diffie-Hellman in
some detail.

We also discussed elliptic curve cryptography (ECC), which promises to
play an ever-increasing role in the future. Remember that ECC is not a
particular type of cryptosystem, but instead it offers another way to do the
math in public key cryptography.

We then considered signing and non-repudiation, which are major benefits
of public key cryptography. And we presented the idea of a hybrid cryptosys-
tem, which is the way that public key crypto is used in the real world for
confidentiality. We also discussed the critical—and often confused—topic of
digital certificates. It is important to realize exactly what a certificate does
and does not provide. Finally, we took a very brief look at PKI, which is
often a major roadblock to the deployment of public key crypto.

4.10 PROBLEMS 115

This concludes our overview of public key cryptography. We will see many
applications of public key crypto in later sections of the book. In particular,
many of these topics will resurface when we discuss security protocols.

4.10 Problems

1. This problem deals with digital certificates (aka public key certificates).

a. What information must a digital certificate contain?

b. What additional information can a digital certificate contain?

c. Why might it be a good idea to minimize the amount of informa-
tion in a digital certificate?

2. Suppose that Bob receives Alice's digital certificate from someone claim-
ing to be Alice.

a. Before Bob verifies the signature on the certificate, what does he
know about the identity of the sender of the certificate?

b. How does Bob verify the signature on the certificate and what
useful information does Bob gain by verifying the signature?

c. After Bob verifies the signature on the certificate, what does he
know about the identity of the sender of the certificate?

3. When encrypting, public key systems operate in a manner analogous
to a block cipher in ECB mode. That is, the plaintext is chopped into
blocks and each block is encrypted independently.

a. Why is ECB mode a bad idea when encrypting with a block cipher?
Why is a chaining mode, such as CBC, a much better way to use
a block cipher?

b. Why is it not necessary to perform any sort of chaining mode when
using public key encryption?

c. Could your reasoning in part b be applied to block ciphers? Why
or why not?

4. Suppose Alice's RSA public key is (e, N) and her private key is d. Alice
wants to sign the message M, that is, she wants to compute [M]yyice.
Give the mathematical formula that she will use.

5. In equation (4.3) we proved that RSA encryption works, that is, we
showed [{M}Aiice]Alice = M. Give the analogous proof that RSA sig-
nature verification works, that is, {[M]Aiice}AliCe = ^·

116 PUBLIC KEY CRYPTO

6. Suppose that Alice's RSA public key is (N, e) = (33,3) and her private
key is d = 7.

a. If Bob encrypts the message M = 19 using Alice's public key, what
is the ciphertext CI Show that Alice can decrypt C to obtain M.

b. Let S be the result when Alice digitally signs the message M = 25.
What is 5? If Bob receives M and S, explain the process Bob will
use to verify the signature and show that in this particular case,
the signature verification succeeds.

7. Why is it a bad idea to use the same RSA key pair for both signing and
decryption?

8. To speed up RSA, it is possible to choose e = 3 for all users. However,
this creates the possibility of a cube root attack as discussed in this
chapter.

a. Explain the cube root attack and how to prevent it.

b. For (N, e) = (33,3) and d = 7, show that the cube root attack
works when M = 3 but not not when M = 4.

9. Recall that with the RSA public key system it is possible to choose the
same encryption exponent, e, for all users. For the sake of efficiency,
sometimes a common value of e = 3 is used. Assume this is the case.

a. What is the cube root attack on RSA and when does it succeed?

b. Give two different ways of preventing the cube root attack. Both
of your proposed fixes must still provide improved efficiency over
the case where a common encryption exponent e = 3 is not used.

10. Consider the RSA public key cryptosystem. The best generally known
attack is to factor the modulus, and the best known factoring algorithm
(for a sufficiently large modulus) is the number field sieve. In terms of
bits, the work factor for the number field sieve is

f(n) = 1.9223n1/3(log2n)2/3,

where n is the number of bits in the number being factored. For ex-
ample, since /(390) « 60, the work required to factor a 390-bit RSA
modulus is roughly equivalent to the work needed for an exhaustive
search to recover a 61-bit symmetric key.

a. Graph the function f(n) for 1 < n < 10,000.

b. A 1024-bit RSA modulus N provides roughly the same security as
a symmetric key of what length?

4.10 PROBLEMS 117

c. A 2048-bit RSA modulus N provides roughly the same security as
a symmetric key of what length?

d. What size of modulus N is required to have security roughly com-
parable to a 256-bit symmetric key?

11. On the diagram of the Diffie-Hellman key exchange in Figure 4.1, clearly
indicate which information is public and which is private.

12. Suppose Bob and Alice share a symmetric key K. Draw a diagram to
illustrate a variant of the Dime-Hellman key exchange between Bob and
Alice that prevents the man-in-the-middle attack.

13. Consider the Diffie-Hellman key exchange protocol. Suppose that Alice
sends her Diffie-Hellman value, ga mod p, to Bob. Further, suppose that
Bob wants the resulting shared secret to be a specific value X. Can Bob
choose his Diffie-Hellman value so that, following the protocol, Alice will
compute the shared secret XI If so, provide precise details and if not,
why not?

14. Suppose that Alice and Bob share a 4-digit PIN number, X. To es-
tablish a shared symmetric key, Bob proposes the following protocol:
Bob will generate a random key K that he will encrypt using the PIN
number X, that is, E(K, X). Bob will send E(K, X) to Alice, who will
decrypt it using the shared PIN number X to obtain K. Alice and Bob
will then use the symmetric key K to protect their subsequent conver-
sation. However, Trudy can easily determine K by a brute force attack
on the PIN number X, so this protocol is insecure. Modify the protocol
to make it more secure. Note that Alice and Bob only share the 4-digit
PIN number X and they do not have access to any other symmetric
key or public keys. Hint: Use Diffie-Hellman.

15. A digital signature provides for data integrity and a MAC provides for
data integrity. Why does a signature also provides for non-repudiation
while a MAC does not?

16. A hybrid cryptosystem uses both public key and symmetric key cryp-
tography to obtain the benefits of each.

a. Illustrate a hybrid system using Diffie-Hellman as the public key
system and DES as the symmetric cipher.

b. Illustrate a hybrid system using RSA as the public key system and
AES as the symmetric cipher.

17. Illustrate a man-in-the-middle attack on the ECC version of Diffie-
Hellman.

118 PUBLIC KEY CRYPTO

18. Suppose that Alice signs the message M = "I love you" and then en-

crypts it with Bob's public key before sending it to Bob. As discussed

in the text, Bob can decrypt this to obtain the signed message and then

encrypt the signed message with, say, Charlie's public key and forward

the resulting ciphertext to Charlie. Could Alice prevent this "attack"

by using symmetric key cryptography?

19. When Alice sends a message M to Bob, she and Bob agree to use the

following protocol:

(i) Alice computes S = [Mj^hce-

(ii) Alice sends (M, S) to Bob.

(iii) Bob computes V = {SJAlice-

(iv) Bob accepts the signature as valid provided V = M.

With this protocol it's possible for Trudy to forge Alice's signature

on a random "message" as follows. Trudy generates a value R. She

then computes ΛΓ = {.R} Alice an(^ s e n ds (N, R) to Bob. Following the

protocol above, Bob computes V = {A} Alice a n c iî since V = N, Bob
accepts the signature. Bob then believes that Alice sent him the signed
nonsense "message" N. As a result, Bob gets very annoyed with Alice.

a. Is this attack a serious concern, or just an annoyance? Justify your
answer.

b. Suppose we modify the protocol as follows:

(i) Alice computes S = [F(M)]^]ice.

(ii) Alice sends (M, S) to Bob.

(iii) Bob computes V = {>S}Alice·
(iv) Bob accepts the signature as valid provided V = F(M).

What conditions must the function F satisfy so as to prevent this
annoying attack?

20. Suppose that Bob's knapsack private key consists of (3,5,10, 23) along
with the multiplier m _ 1 = 6 and modulus n = 47.

a. Find the plaintext given the ciphertext C = 20. Give your answer
in binary.

b. Find the plaintext given the ciphertext C = 29. Give your answer
in binary.

c. Find m and the public key.

21. Suppose that for the knapsack cryptosystem, the superincreasing knap-
sack is (3,5,12,23) with n = 47 and m = 6.

4.10 PROBLEMS 119

a. Give the public and private keys.

b. Encrypt the message M = 1110 (given in binary). Give your result
in decimal.

22. Consider the knapsack cryptosystem. Suppose the public key consists
of (18,30,7,26) and n = 47.

a. Find the private key, assuming m = 6.

b. Encrypt the message M = 1101 (given in binary). Give your result
in decimal.

23. Prove that for the knapsack cryptosystem, it is always possible to de-
crypt the ciphertext in linear time, provided that you know the private
key.

24. For the knapsack example given in the text, the ciphertext was not
reduced modulo n.

a. Show that for the specific example given in this chapter, the knap-
sack also works if the ciphertext is reduced modulo n.

b. Show that this is always the case, that is, show that it makes
no difference to the recipient whether the ciphertext was reduced
modulo n or not.

c. Is either case (reducing the ciphertext modulo n or not) preferable
from Trudy's perspective?

25. The man-in-the-middle attack on Diffie-Hellman is illustrated in Fig-
ure 4.2. Suppose that Trudy wants to establish a single Diffie-Hellman
value, gabt mod p, that she, Alice, and Bob all share. Does the attack
illustrated below succeed? Justify your answer.

ga mod p g31 mod p

gM mod p gb mod p
< <4

Alice, a Trudy, t Bob, b

26. This problem deals with Diffie-Hellman.

a. Why is g — 1 not an allowable choice for gì

b. Why is g = p — 1 not an allowable choice for gì

120 PUBLIC KEY CRYPTO

27. In RSA, a common encryption exponent of e = 3 or e = 216 + 1 is
sometimes used. The RSA math will also works if we use a common
decryption exponent of, say, d = 3. Why would it be a bad idea to
use d = 3 as a common decryption exponent? Can you find a secure
common decryption exponent d? Explain.

28. If Trudy can factor the modulus N, then she can break the RSA public
key cryptosystem. The complexity class for the factorization problem is
not known. Suppose that someone proves that integer factorization is a
"really hard problem," in the sense that it belongs to a class of (appar-
ently) intractable problems. What would be the practical importance
of such a discovery?

29. In the RSA cryptosystem, it is possible that M = C, that is, the plain-
text and the ciphertext may be identical.

a. Is this a security concern in practice?

b. For modulus N = 3127 and encryption exponent e = 17, find at
least one message M that encrypts to itself.

30. Suppose that Bob uses the following variant of RSA. He first chooses N,
then he finds two encryption exponents eo and e\ and the correspond-
ing decryption exponents do and di. He asks Alice to encrypt her mes-
sage M to him by first computing Co = Me° mod N, then encrypt-
ing Co to obtain the ciphertext, C\ = CQ1 mod N. Alice then sends C\
to Bob. Does this double encryption increase the security as compared
to a single RSA encryption? Why or why not?

31. Alice receives a single ciphertext C from Bob, which was encrypted
using Alice's RSA public key. Let M be the corresponding plaintext.
Alice challenges Trudy to recover M under the following rules. Alice
sends C to Trudy, and Alice agrees to decrypt one ciphertext that was
encrypted with Alice's public key, provided that it is not C, and give
the resulting plaintext to Trudy. Is it possible for Trudy to recover M?

32. Suppose that you are given the following RSA public keys, which are
of the form (e,N).

User name Public key
Alice (3,5356488760553659)
Bob (3,8021928613673473)

Charlie (3,56086910298885139)

You also know that Dave has encrypted the same message M (without
padding) using each of these public keys, where the message, which

4.10 PROBLEMS 121

contains only uppercase and lowercase English letters, is encoded with
the method16 used at [144]. Suppose that Dave's ciphertext messages
are the following:

Recipient Ciphertext
Alice 4324345136725864
Bob 2102800715763550

Charlie 46223668621385973

a. Use the Chinese Remainder Theorem to find M.

b. Are there other feasible ways to find M?

33. As mentioned in this chapter, "textbook" RSA is subject to a forward
search attack. An easy way to prevent this attack is to pad the plaintext
with random bits before encrypting. This problem shows that there is
another RSA issue that is also prevented by padding the plaintext.
Suppose that Alice's RSA public key is (TV, e) and her private key is d.
Bob encrypts the message M (without padding) using Alice's public
key to obtain the ciphertext C = Me mod TV. Bob sends C to Alice
and, as usual, Trudy intercepts C.

a. Suppose that Alice will decrypt one message of Trudy's choos-
ing, provided that it is not C. Show that Trudy can easily de-
termine M. Hint: Trudy chooses r and asks Alice to decrypt the
ciphertext C" = Cre mod TV.

b. Why is this "attack" prevented by padding the message?

34. Suppose that Trudy obtains two RSA ciphertext messages, both of
which were encrypted with Alice's public key, that is, Co = Mfi mod TV
and C\ = M\ mod TV. Trudy does not know Alice's private key or
either plaintext message.

a. Show that Trudy can easily determine (Mo · M\)e mod TV.

b. Can Trudy also determine (M0 + M\)e mod TV?

c. Due to the property in part a, RSA is said to be homomorphic
with respect to multiplication. Recently, a fully homomorphic en-
cryption scheme has been demonstrated, that is, the multiplicative
homomorphic property (part a) and the additive homomorphic
property (part b) both hold [67]. Discuss some significant poten-
tial uses for a practical fully homomorphic encryption scheme.

16Note that at [144], letters are encoded in the following nonstandard way: Each lowercase
letter is converted to its uppercase ASCII equivalent, and uppercase letters are converted
to (decimal) according to A = 33, B = 34, . . . , Z = 58.

122 PUBLIC KEY CRYPTO

35. This problem deals with digital signatures.

a. How and why does a digital signature provide integrity?

b. How and why does a digital signature provide non-repudiation?

36. In the context of cryptography,

a. Define non-repudiation.

b. Give an example—different from the one given in this chapter—

where non-repudiation is critical.

37. A digital signature or a MAC can be used to provide a cryptographic
integrity check.

a. Suppose that Alice and Bob want to use a cryptographic integrity
check. Which would you recommend that they use, a MAC or a
digital signature? Why?

b. Suppose that Alice and Bob require a cryptographic integrity check
and they also require non-repudiation. Which would you recom-
mend that Alice and Bob use, a MAC or a digital signature? Why?

38. Alice wants to be "extra secure," so she proposes to Bob that they
compute a MAC, then digitally sign the MAC.

a. Does Alice's method provide a cryptographic integrity check? Why
or why not?

b. Does Alice's method provide for non-repudiation? Why or why
not?

c. Is Alice's method a good idea? Why or why not?

39. In this chapter, we showed that you can prevent a forward search attack
on a public key cryptosystem by padding with random bits.

a. Why would we like to minimize the amount of random padding?

b. How many bits of random padding are needed? Justify your an-
swer.

c. Other than padding, is there another simple and practical method
for preventing a forward search attack?

40. Consider the elliptic curve

E : y2 =x3 + 7x + b (mod 11).

a. Determine ò so that the point P = (4,5) is on the curve E.

b. Using the b found in part a, list all points on E.

4.10 PROBLEMS 123

c. Using the b found in part a, find the sum (4,5) + (5,4) on E.

d. Using the 6 found in part a, find the point 3(4,5).

41. Consider the elliptic curve

E: y2 = x3 + Ila; + 19 (mod 167).

Verify that the point P = (2,7) is on E.

Suppose this E and P = (2,7) are used in an ECC Diffie-Hellman
key exchange, where Alice chooses the secret value A = 12 and
Bob chooses the secret value B = 31. What value does Alice send
to Bob? What does Bob send to Alice? What is the shared secret?

42. The Elgamal digital signature scheme employs a public key consisting
of the triple {y,p,g) and a private key x, where these numbers satisfy

y = gx mod p. (4.9)

To sign a message M, choose a random number k such that k has no
factor in common with p — 1 and compute

a = gk mod p.

Then find a value s that satisfies

M = xa + ks mod (p — 1)

which is easy to do using the Euclidean Algorithm. The signature is
verified provided that

y
aas = gM mod p. (4.10)

a. Select values (y,p,g) and x that satisfy equation (4.9). Choose a
message M, compute the signature, and verify that equation (4.10)
holds.

b. Prove that the math in Elgamal works, that is, prove that equa-
tion (4.10) always holds for appropriately chosen values. Hint: Use
Fermat's Little Theorem, which states that if p is prime and p does
not divide z, then zp~l = 1 mod p.

a.

b.

This page intentionally left blank

Chapter 5

Hash Functions++

"I'm sure [my memory] only works one way." Alice remarked.
"I can't remember things before they happen."

"It's a poor sort of memory that only works backwards," the Queen remarked.
"What sort of things do you remember best?" Alice ventured to ask.

"Oh, things that happened the week after next, "
the Queen replied in a careless tone.

— Lewis Carroll, Through the Looking Glass

A boat, beneath a sunny sky
Lingering onward dreamily

In an evening of July —

Children three that nestle near,
Eager eye and willing ear,

— Lewis Carroll, Through the Looking Glass

5.1 Introduction

This chapter covers cryptographic hash functions, followed by a brief discus-
sion of a few crypto-related odds and ends. At first glance, cryptographic
hash functions seem to be fairly esoteric. However, these functions turn out
to be surprisingly useful in a surprisingly wide array of information security
contexts. We consider the standard uses for cryptographic hash functions
(digital signatures and hashed MACs), as well as a couple of non-standard
but clever uses for hash functions (online bids and spam reduction). These
two examples represent the tip of the iceberg when it comes to clever uses for
hash functions.

125

126 HASH FUNCTIONS++

There exists a semi-infinite supply of crypto-related side issues that could

reasonably be covered here. To keep this chapter to a reasonable length, we

only discuss a handful of these many interesting and useful topics, and each of

these is only covered briefly. The topics covered include secret sharing (with

a quick look at the related subject of visual cryptography), cryptographic

random numbers, and information hiding (i.e., steganography and digital

watermarks).

5.2 What is a Cryptographic Hash Function?

In computer science, "hashing" is an overloaded term. In cryptography, hash-

ing has a very precise meaning, so for the time being, it would be best to forget

about any other concepts of hashing that may be clouding your mind.

A cryptographic hash function h(x) must provide all of the following.

• Compression — For any size input x, the output length of y = h(x) is

small. In practice, the output is a fixed size (e.g., 160 bits), regardless

of the length of the input.

• Efficiency — It must be easy to compute h(x) for any input x. The

computational effort required to compute h{x) will, of course, grow

with the length of x, but it cannot grow too fast.

• One-way — Given any value y, it's computationally infeasible to find a

value a; such that h{x) = y. Another way to say this is that there is no

feasible way to invert the hash.

• Weak collision resistance — Given x and h(x), it's infeasible to find

any y, with y φ x, such that h(y) = h(x). Another way to state

this requirement is that it is not feasible to modify a message without

changing its hash value.

• Strong collision resistance — It's infeasible to find any x and y, such

that x φ y and h(x) = h(y). That is, we cannot find any two inputs

that hash to the same output.

Many collisions must exist since the input space is much larger than the

output space. For example, suppose a particular hash function generates a

128-bit output. If we consider, say, all possible 150-bit input values then,

on average, 222 (that is, more than 4,000,000) of these input values hash to

each possible output value. The collision resistance properties says that all of

these collisions are computationally hard to find. This is asking a lot, and it

might seem that, as a practical matter, no such function could possibly exist.

Remarkably, practical cryptographic hash functions do indeed exist.

5.2 WHAT IS A CRYPTOGRAPHIC HASH FUNCTION? 127

Hash functions are extremely useful in security. One particularly im-
portant use of hash functions arises in the computation of digital signa-
tures. In the previous chapter, we said that Alice signs a message M by
using her private key to "encrypt," that is, she computes S = [M]Aiice· If
Alice sends M and S to Bob, then Bob can verify the signature by verifying
that M = {Sj-Aiice- However, if M is large, [M]Auce is costly to compute—
not to mention the bandwidth needed to send M and S, which are both large.
In contrast, when computing a MAC, the encryption is fast and we only need
to send the message along with few additional check bits (i.e., the MAC).

Suppose Alice has a cryptographic hash function h. Then h(M) can
be viewed as a "fingerprint" of the file M, that is, h(M) is much smaller
than M but it identifies M. If M' differs from M, even by just a single
bit, then the hashes will almost certainly differ.1 Furthermore, the collision
resistance properties imply that it is not feasible to replace M with any
different message M' such that h(M) = h(M').

Now, given a cryptographic function h, Alice will sign M by first hash-
ing M then signing the hash, that is, Alice computes S = [h(M)]/^nœ. Hashes
are efficient (comparable to block cipher algorithms), and only a small num-
ber of bits need to be signed, so the efficiency here is comparable to that of
a MAC.

Then Alice can send Bob M and S, as illustrated in Figure 5.1. Bob
verifies the signature by hashing M and comparing the result to the value
obtained when Alice's public key is applied to S. That is, Bob verifies
that h(M) = {S^Alice· Note that only the message M and a small num-
ber of additional check bits, namely S, need to be sent from Alice to Bob.
Again, this compares favorably to the overhead required when a MAC is used.

M,S = [h(M)]Alice

Alice Bob
computes verifies
S = [h(M)]Alice h(M)={S}Alice

Figure 5.1: The Correct Way to Sign

Is this new-and-improved signature scheme secure? Assuming there are
no collisions, signing h(M) is as good as signing M. In fact, it is actually

1What if the hash values should happen to be the same? Well, then you have found
a collision, which means that you've broken the hash function and you are henceforth a
famous cryptographer, so it's a no-lose situation.

128 HASH FUNCTIONS++

more secure to sign the hash than to just sign the message itself. But it
is important to realize that the security of the signature now depends on
the security of both the public key system and the hash function—if either
is weak, the signature scheme can be broken. These and other issues are
considered in the homework problems at the end of this chapter.

5.3 The Birthday Problem

The so-called birthday problem is a fundamental issue in many areas of cryp-
tography. We discuss it here, since it's particularly relevant to hashing.

Before we get to the birthday problem, we first consider the following
warm-up exercise. Suppose you are in a room with N other people. How
large must N be before you expect to find at least one other person with
the same birthday as you? An equivalent way to state this is: How large
must N be before the probability that someone has the same birthday as
you is greater than 1/2? As with many discrete probability calculations, it's
easier to compute the probability of the complement, that is, the probability
that none of the N people has the same birthday as you, and subtract the
result from one.

Your birthday is on one particular day of the year. If a person does not
have the same birthday as you, his or her birthday must be on one of the
other 364 days. Assuming all birthdays are equally likely, the probability that
a randomly selected person does not have the same birthday as you is 364/365.
Then the probability that all N people do not have the same birthday as you
is (364/365)^ and, consequently, the probability that at least one person has
the same birthday as you is

1 - (364/365)^.

Setting this expression equal to 1/2 and solving for TV, we find N = 253.
Since there are 365 days in a year, we might expect the answer to be on the
order of 365, which it is, so this seems plausible.

Now we consider the real birthday problem. Again, suppose there are N
people in a room. We want to answer the question: How large must N be
before we expect two or more people will have the same birthday? In other
words, how many people must be in the room so that the probability is greater
than 1/2 that two or more have the same birthday? As usual, it's easier to
solve for the probability of the complement and subtract that result from one.
In this case, the complement is that all N people have different birthdays.

Number the N people in the room 1,2,3, . . . , N. Person 1 has a birthday
on one of the 365 days of the year. If all people have different birthdays, then
person 2 must have a birthday that differs from person 1, that is, person 2
can have a birthday on any of the remaining 364 days. Similarly, person 3 can

5.4 A BIRTHDAY ATTACK 129

have a birthday on any of the remaining 363 days, and so on. Assuming that
all birthdays are equally likely, and taking the complement, the probability
of interest is

1 - 365/365 · 364/365 ■ 363/365 · · ■ (365 -N + l)/365.

Setting this expression equal to 1/2 and solving for N, we find N = 23.
The birthday problem is often referred to as the birthday paradox, and at

first glance it does seem paradoxical that with only 23 people in a room, we
expect to find two or more with the same birthday. However, a few moments'
thought makes the result much less paradoxical. In this problem, we are
comparing the birthdays of all pairs of people. With N people in a room, the
number of comparisons is N(N—1)/2 « N2. Since there are only 365 different
possible birthdays, we expect to find a match, roughly, when N2 = 365, that
is, when N = \/365 « 19. Viewed in this light, the birthday paradox is not
so paradoxical.

What do birthdays have to do with cryptographic hash functions? Sup-
pose that a hash function h(x) produces an output that is N bits long. Then
there are 2N different possible hash values. For a good cryptographic hash
function, we would expect that all output values are (more or less) equally
likely. Then, since v 2 ^ = 2N'2, the birthday problem immediately implies
that if we hash about 2N>2 different inputs, we can expect to find a collision,
that is, we expect to find two inputs that hash to the same value. This brute
force method of breaking a hash function is analogous to an exhaustive key
search attack on a symmetric cipher.

The implication here is that a secure hash that generates an TV-bit output
can be broken with a brute force work factor of about 2N'2. In contrast, a
secure symmetric key cipher with a key of length N can be broken with a
work factor of 2ΛΓ_1. Consequently, the output of a hash function must be

about twice the number of bits as a symmetric cipher key for an equivalent

level of security—assuming both are secure, i.e., no shortcut attack exists for

either.

5.4 A Birthday Attack

The role of hashing in digital signature computations was discussed above.

Recall that if M is the message that Alice wants to sign, then she com-

putes S = [h(M)]A\ice and sends S and M to Bob.

Suppose that the hash function h generates an n-bit output. As discussed

in [334], Trudy can, in principle, conduct a birthday attack as follows.

• Trudy selects an "evil" message E that she wants Alice to sign, but

which Alice is unwilling to sign. For example, the message might state

that Alice agrees to give all of her money to Trudy.

130 HASH FUNCTIONS++

• Trudy also creates an innocent message I that she is confident Alice

is willing to sign. For example, this could be a routine message of the

type that Alice regularly signs.

• Then Trudy generates 2 n ' 2 variants of the innocent message by making

minor editorial changes. These innocent messages, which we denote li,

for i = 0 , 1 , . . . , 2™/2 — 1, all have the same meaning as / , but since the

messages differ, their hash values differ.

• Similarly, Trudy creates 2™/2 variants of the evil message, which we

denoted Ei, for i = 0 , 1 , . . . , 2n'2 — 1. These messages all convey the

same meaning as the original evil message E, but their hashes differ.

• Trudy hashes all of the evil messages Ei and all of the innocent mes-

sages li. By the birthday problem, she can expect to find a collision,

say, h(Ej) = h(Ik). Given such a collision, Trudy sends /& to Alice, and

asks Alice to sign it. Since this message appears to be innocent, Alice

signs it and returns Ik and [/i(ifc)]Alice t o Trudy. Since h(Ej) = h(Ik),

it follows that [ft(i^)]Alice = [̂ (-̂ OlAlice an<l· consequently, Trudy has,

in effect, obtained Alice's signature on the evil message Ej.

Note that, in this attack, Trudy has obtained Alice's signature on a mes-

sage of Trudy's choosing without attacking the underlying public key system

in any way. This attack is a brute force attack on the hash function h, as

it is used for computing digital signatures. To prevent this attack, we could

choose a hash function for which n, the size of the hash function output, is

so large that Trudy cannot compute 2™/2 hashes.

5.5 Non-Cryptographic Hashes

Before looking into the inner workings of a specific cryptographic hash func-

tion, we'll first consider a few simple non-cryptographic hashes. Many non-

cryptographic hashes have their uses, but none is suitable for cryptographic

applications.

Consider the data

X = (ΛΤθι^1)^2, · · · ,Xn-l),

where each JQ is a byte. We can define a hash function h(X) by

h{X) = (X0 + Xi + X2 + · · ■ + Xn-i) mod 256.

This certainly provides compression, since any size of input is compressed to
an 8-bit output. However, hash would be easy to break (in the crypto sense),
since the birthday problem tells us that if we hash just 24 = 16 randomly

5.5 NON-CRYPTOGRAPHIC HASHES 131

selected inputs, we can expect to find a collision. In fact, it's even worse than
that, since collisions are easy to construct directly. For example, swapping
two bytes will always yield a collision, such as

ft(10101010,00001111) = /i(00001111,10101010) = 10111001.

Not only is the hash output length too small, but the algebraic structure
inherent in this approach is a fundamental weakness.

As another example of a non-cryptographic hash, consider the following.
Again, we write the data as bytes,

X = (Xo,Xi,Ä2,- ■ ■ ,Xn-i)-

Here, we'll define the hash h(X) as

h(X) = {nX0 + {n- 1)Χχ + (n- 2)X2 + ... + 2X„_2 + Xn-i) mod 256.

Is this hash secure? At least it gives different results when the byte order is

swapped, for example,

/i(10101010,00001111) φ /i(00001111,10101010).

But, again, we still have the birthday problem issue and it also happens to

be relatively easy to construct collisions. For example,

ft(00000001,00001111) = /i(00000000,00010001) = 00010001.

Despite the fact that this is not a secure cryptographic hash, it's useful in a

particular non-cryptographic application known as Rsync; see [253] for the

details.

An example of a non-cryptographic hash that is sometimes mistakenly

used as a cryptographic hash is the cyclic redundancy check, or CRC [326].

The CRC calculation is essentially long division, with the remainder acting

as the CRC "hash" value. In contrast to ordinary long division, in a CRC we

use XOR in place of subtraction.

In a CRC calculation, the divisor is specified as part of the algorithm and

the data acts as the dividend. For example, suppose the given divisor is 10011

and the data of interest happens to be 10101011. Then we append four 0s

to the data (one less than the number of bits in the divisor) and do the long

division as follows:

132 HASH FUNCTIONS++

10110110
10011)101010110000

10011
11001
10011
10101
10011

11000
10011
10110
10011

1010

The CRC checksum is the remainder of the long division—in this case, 1010.
For this choice of divisor, it's easy to find collisions, and in fact it's easy to
construct collisions for any CRC [290].

WEP [38] mistakenly uses a CRC checksum where a cryptographic in-
tegrity check is required. This flaw opens the door to many attacks on the
protocol. CRCs and similar checksum methods are only designed to detect
transmission errors—not to detect intentional tampering with the data. That
is, random transmission errors will almost certainly be detected (within cer-
tain parameters), but an intelligent adversary can easily change the data so
that the CRC value is unchanged and, consequently, the tampering will go
undetected. In cryptography, we must protect against an intelligent adversary
(Trudy), not just random acts of nature.

5.6 Tiger Hash

Now we turn our attention to a specific cryptographic hash algorithm known
as Tiger. While Tiger is not a particularly popular hash, it is a little easier
to digest than some of the big-name hashes.

Before diving into to inner workings of Tiger, it is worth mentioning a bit
about the two most popular cryptographic hashes of today. Until recently,
the most popular hash in the world was undoubtedly MD5. The "MD" in
MD5 does not stand for Medicinae Doctor, but instead it is an abbreviation
for message digest. Believe it or not, MD5 is the successor to MD4, which
itself was the successor to MD2. The earlier MDs are no longer considered
secure, due to the fact that collisions have been found. In fact, MD5 collisions
are easy to find—you can generate one in a few seconds on a PC [244].2 All of
the MDs were invented by crypto guru Ron Rivest. MD5 produces a 128-bit
output.

2See Problem 25 for an example of an MD5 collision.

5.6 TIGER HASH 133

The other contender for title of world's most popular hash function is
SHA-1 which is a U.S. government standard. Being a government standard,
SHA is, of course, a clever 3-letter acronym—SHA stands for Secure Hash
Algorithm. You might ask, why is it SHA-1 instead of just SHA? In fact,
there was a SHA (now known as SHA-0), but it apparently had a minor flaw,
as SHA-1 came quickly on the heels of SHA, with some minor modifications
but without explanation.

The SHA-1 algorithm is actually very similar to MD5. The major prac-
tical difference between the two is that SHA-1 generates a 160-bit output,
which provides a significant margin of safety over MD5. Cryptographic hash
functions such as MD5 and SHA-1 hash messages in blocks, where each block
passes through some number of rounds. In this sense, they're very reminis-
cent of block ciphers. For the details on these two hash functions, a good
source is Schneier [258].

A hash function is considered secure provided no collisions have been
found. As with block ciphers, efficiency is also a major concern in the design
of hash functions. If, for example, it's more costly to compute the hash of M
than to sign M, the hash function is not very useful, at least for digital
signatures.

A desirable property of any cryptographic hash function is the so-called
avalanche effect. The goal is that any small change in the input should cascade
and cause a large change in the output—just like an avalanche. Ideally, any
change in the input will result in output values that are uncorrelated, and an
attacker will then be forced to conduct an exhaustive search for collisions.

The avalanche effect should occur after a few rounds, yet we would like
the rounds to be as simple and efficient as possible. In a sense, the designers
of hash functions face similar trade-offs as the designers of iterated block
ciphers.

The MD5 and SHA-1 algorithms are not particularly enlightening, as they
both seem to consist of a more-or-less random collection of transformations.
Instead of discussing either of these in detail, we'll look closely at the Tiger
hash. Tiger, which was developed by Ross Anderson and Eli Biham, seems
to have a more structured design than SHA-1 or MD5. In fact, Tiger can be
given in a form that looks very similar a block cipher [10].

Tiger was designed to be "fast and strong" and hence the name. It was
also designed for optimal performance on 64-bit processors and it can serve as
a replacement for MD5, SHA-1, or any other hash with an equal or smaller
output.3

Like MD5 and SHA-1, the input to Tiger is divided into 512-bit blocks,
with the input padded to a multiple of 512 bits, if necessary. Unlike MD5 or

3For any secure hash, you can truncate the output to produce a smaller hash value.
There can be no shortcut attack on any subset of the bits, otherwise there would be a
shortcut attack on the full-sized hash.

134 HASH FUNCTIONS++

SHA-1, the output of Tiger is 192 bits. The numerology behind the choice
of 192 is that Tiger is designed for 64-bit processors and 192 bits is exactly
three 64-bit words. In Tiger, all intermediate steps also consist of 192 bit
values.

Tiger's block cipher influence can be seen in the fact that it employs four
S-boxes, each of which maps 8 bits to 64 bits. Tiger also employs a "key
schedule" algorithm that, since there is no key, is applied to the input block,
as described below.

The input X is padded to a multiple of 512 bits and written as

X = P^Oi-Xli·· -,-Xn-l), (5-1)

where each Xi is 512 bits. The Tiger algorithm employs one outer round for
each Xi, where one such round is illustrated in Figure 5.2. Each of a, b, and c
in Figure 5.2 is 64 bits and the initial values of (a, b, c) for the first round are,
in hex:

a = 0x0123456789ABCDEF

b = 0xFEDCBA9876543210

c = 0xF096A5B4C3B2E187

The final (a, ò, e) output from one round is the initial triple for the subsequent
round and the final (a, b, c) from the final round is the 192-bit hash value.
From this perspective, Tiger indeed looks very much like a block cipher.

Notice that the input to the first outer round F5 is (a, b, c). Labeling the
output of F5 as (a,b,c), the input to F7 is (c,a,b). Similarly, if we label the
output of F-j as (a, 6, c), then the input to Fg is (6, c,a). Each function Fm

in Figure 5.2 consists of eight inner rounds as illustrated in Figure 5.3. We
let W denote the 512 bit input to the inner rounds, where

W = (w0,wi,...,w7),

with each u>i being 64 bits. Note that all lines in Figure 5.3 represent 64 bit
quantities.

The input values for the /m , i , for i = 0,1, 2 , . . . , 7, are

(a, b, e), (b, c, a), (c, a, b), (a, b, c), (b, c, a), (c, a, b), (a, b, c), (b, c, a),

respectively, where the output of fm,i-i is labeled (a, 6, c). Each /TO;, depends
on a, b, c, Wi, and m, where Wi is the ith 64-bit sub-block of the 512-bit
input W. The subscript m of fm,i is a multiplier, as discussed below.

We write c as

c = (e 0 ,c i , . . . ,c 7) ,

5.6 TIGER HASH 135

a b c

" " "

F5

w
F7

/Y

►

F9

Θ
a h

+

" ' ' "

a b C

Xi

1
* VA/
" VV

1
key schedule

1
• \Λ/
* W

1
key schedule

1
* \Λ/ « VV

Figure 5.2: Tiger Outer Round

where each c, is a single byte. Then /m)j is given by

c = c Θ Wi

a = a- (SO[co] θ 5i[c2] Θ S2M Φ ^[ce])

b = b+ (S3[ci] Θ 52[c3] Θ SI[CB] Θ Soler])

b = 6· m

where each Si is an S-box (i.e., lookup table) mapping 8 bits to 64 bits. These

S-boxes are large, so we won't list them here—for more details on the S-boxes,

see [10].

The only remaining item to discuss is the so-called key schedule. Let W

be the 512-bit input to the key schedule algorithm. As above, we write W

as W = (wo,w\,..., wr) where each Wi is 64 bits. Let w)j be the binary

complement of Wi. Then the key schedule is given in Table 5.1, where the

output is given by the final W = (WQ, ui\,..., W7).

To summarize, the Tiger hash consists of 24 rounds, which can be viewed

as three outer rounds, each of which has eight inner rounds. All intermediate

hash values are 192 bits.

It's claimed that the S-boxes are designed so that each input bit affects

each of a, b, and c after just three of the 24 rounds. Also, the key schedule

algorithm is designed so that any small change in the message will affect

many bits in the intermediate hash values. The multiplication in the final

136 HASH FUNCTIONS++

a b c

▼ ▼ T

Wo

*m,2

m

'm7

" , * , *
a b c

Figure 5.3: Tiger Inner Round for Fm

step of /m>i is also a critical feature of the design. Its purpose is to ensure
that each input to an S-box in one round is mixed into many S-boxes in
the next round. Together, the S-boxes, key schedule, and multiply ensure a
strong avalanche effect [10].

Tiger clearly borrows many ideas from block cipher design, including S-
boxes, multiple rounds, mixed mode arithmetic, a key schedule, and so on.
At a higher level, we can even say that Tiger employs Shannon's principles
of confusion and diffusion.

5.7 HMAC

Recall that for message integrity we can compute a message authentication
code, or MAC, where the MAC is computed using a block cipher in CBC
mode. The MAC is the final encrypted block, which is also known as the
CBC residue. Since a hash function effectively gives us a fingerprint of a file,
we should also be able to use a hash to verify message integrity.

Can Alice protect the integrity of M by simply computing h(M) and
sending both M and h(M) to Bob? Note that if M changes, Bob will detect
the change, provided that h(M) has not changed (and vice versa). However,
if Trudy replaces M with M' and also replaces h(M) with h(M'), then Bob
will have no way to detect the tampering. All is not lost—we can use a hash
function to provide integrity protection, but it must involve a key to prevent

w0

w2

w7

5.7HMAC 137

Table 5.1: Tiger "Key Schedule"

w0
 :

W\ ■

W2 ■

w 3 ■■

W4 ■

w5 ■

w6

wr
w0

W\

W2

w3

W4

w5

we
u>r

= w0

= W\

- {w7Θ 0xA5A5A5A5A5A5A5A5)

®w0

= X2 + W\

= W 3

= WA

= w5

= we

= wr

= w0

= W\

= W2

- {W2

®W3

+ Wi

- {w5

®w6

+ wr

- {wo

ffiwi

= W3 + W2

= Wi

= w5

= we

= wr

- {w3

®Wi

+ w5

Θ (wi < 19))

φ (w4 > 23))

φ {w7 < 19))

Θ (w2 » 23))

- {weΘ 0x0123456789ABCDEF)

Trudy from changing the hash value. Perhaps the most obvious approach

would be to have Alice encrypt the hash value with a symmetric cipher,

E(h{M),K), and send this to Bob. However, a slightly different approach is

actually used to compute a hashed MAC, or HMAC.

Instead of encrypting the hash, we directly mix the key into M when

computing the hash. How should we mix the key into the HMAC? Two

obvious approaches are to prepend the key to the message, or append the

key to the message: h{K,M) and h{M,K), respectively. Surprisingly, both

of these methods create the potential for subtle attacks.

Suppose we choose to compute an HMAC as h(K,M). Most crypto-

graphic hashes hash the message in blocks—for MD5, SHA-1, and Tiger, the

block size is 512 bits. As a result, if M = {B\, B2), where each Bi is 512 bits,

then

h{M) = F{F(A, B1),B2) = F(h(Bi), B2) (5.2)

for some function F, where A is a fixed initial constant. For example, in

the Tiger hash, the function F consists of the outer rounds illustrated in

Figure 5.2, with each Bi corresponding to a 512-bit block of input and A

corresponding to the 192-bit initial value {a,b,c).

If Trudy chooses M' so that M' = (M,X), Trudy might be able to use

equation (5.2) to find h{K,M') from h(K,M) without knowing K since,

4Yet another example of the "no free lunch" principle...

138 HASH FUNCTIONS++

for K, M, and X of the appropriate size,

h(K, M') = h(K, M, X) = F(h{K, M),X), (5.3)

where the function F is known.

So, is h(M, K) a better choice? It does prevent the previous attack.

However, if it should happen that there is a known collision for the hash

function h, that is, if there exists some M' with h(M') = h(M), then by

equation (5.2), we have

h{M, K) = F{h(M), K) = F{h(M'), K) = h{M\ K) (5.4)

provided that M and M' are each a multiple of the block size. Perhaps this

is not as serious of a concern as the previous case—if such a collision exists,

the hash function is considered insecure. But we can easily eliminate any

potential for this attack, so we should do so.

In fact, we can prevent both of these potential problems by using a slightly

more sophisticated method to mix the key into the hash. As described in

RFC 2104 [174], the approved method for computing an HMAC is as follows.5

Let B be the block length of hash, in bytes. For all popular hashes (MD5,

SHA-1, Tiger, etc.), B = 64. Next, define

ipad = 0x36 repeated B times

and

opad = 0x5C repeated B times.

Then the HMAC of M is defined to be

HMAC(M, K) = H{K Θ opad, H(K φ ipad, M)).

This approach thoroughly mixes the key into the resulting hash. While

two hashes are required to compute an HMAC, note that the second hash will

be computed on a small number of bits—the output of the first hash with the

modified key appended. So, the work to compute these two hashes is only

marginally more than the work needed to compute h{M).

An HMAC can be used to protect message integrity, just like a MAC

or digital signature. HMACs also have several other uses, some of which

5RFCs exist for a reason, as your author discovered when he was asked to implement

an HMAC. After looking up the definition of the HMAC in a reputable book (which shall

remain nameless) and writing code to implement the algorithm, your careful author decided

to have a peek at RFC 2104. To his surprise, this supposedly reputable book had a typo,

meaning that his HMAC would have failed to work with any correctly implemented HMAC.

If you think that RFCs are nothing more than the ultimate cure for insomnia, you are

mistaken. Yes, most RFCs do seem to be cleverly designed to maximize their sleep-inducing

potential but, nevertheless, they just might save your job.

5.8 USES FOR HASH FUNCTIONS 139

we'll mention in later chapters. It is worth noting that in some applica-
tions, some people (including your occasionally careless author) get sloppy
and use a "keyed hash" instead of an HMAC. Generally, a keyed hash is of
the form h(M,K). But, at least for message integrity, you should definitely
stick with the RFC-approved HMAC.

5.8 Uses for Hash Functions

Some standard applications that employ hash functions include authentica-
tion, message integrity (using an HMAC), message fingerprinting, error detec-
tion, and digital signature efficiency. There are a large number of additional
clever and sometimes surprising uses for cryptographic hash functions. Below
we'll consider two interesting examples where hash functions can be used to
solve security-related problems. It also happens to be true that anything you
can do with a symmetric key cipher, you can do with a cryptographic hash
function, and vice versa. That is, in some abstract sense, symmetric ciphers
and hash functions are equivalent. Nevertheless, as a practical matter, it is
useful to have both symmetric ciphers and hash functions.

Next, we briefly consider the use of hash functions to securely place bids
online. Then we'll discuss an interesting approach to spam reduction that
relies on hashing.

5.8.1 Online Bids

Suppose an item is for sale online and Alice, Bob, and Charlie all want to
place bids. The idea here is that these are supposed to be sealed bids, that
is, each bidder gets one chance to submit a secret bid and only after all bids
have been received are the bids revealed. As usual, the highest bidder wins.

Alice, Bob, and Charlie don't necessarily trust each other and they defi-
nitely don't trust the online service that accepts the bids. In particular, each
bidder is understandably concerned that the online service might reveal their
bid to the other bidders—either intentionally or accidentally. For example,
suppose Alice places a bid of $10.00 and Bob bids $12.00. If Charlie is able
to discover the values of these bids prior to placing his bid (and prior to the
deadline for bidding), he could bid $12.01 and win. The point here is that
nobody wants to be the first (or second) to place their bid, since there might
be an advantage to bidding later.

In an effort to allay these fears, the online service proposes the following
scheme. Each bidder will determine their bids, say, bid A for Alice, bid B
for Bob, and C for Charlie, keeping their bids secret. Then Alice will sub-
mit h{A), Bob will submit h(B), and Charlie will submit h(C). Once all three
hashed bids have been received, the hash values will be posted online for all

140 HASH FUNCTIONS++

to see. At this point all three participants will submit their actual bids, that
is, A, B, and C.

Why is this better than the naive scheme of submitting the bids directly?
If the cryptographic hash function is secure, it's one-way, so there appears to
be no disadvantage to submitting a hashed bid prior to a competitor. And
since it is infeasible to determine a collision, no bidder can change their bid
after submitting their hash value. That is, the hash value binds the bidder
to his or her original bid, without revealing any information about the bid
itself. If there is no disadvantage in being the first to submit a hashed bid,
and there is no way to change a bid once a hash value has been submitted,
then this scheme prevents the cheating that could have resulted following the
naïve approach.

However, this online bidding scheme has a problem—it is subject to a
forward search attack. Fortunately, there is an easy fix that will prevent a
forward search, with no cryptographic keys required (see Problem 17 at the
end of this chapter).

5.8.2 Spam Reduction

Another interesting use of hashing arises in the following proposed spam re-
duction technique. Spam is defined as unwanted and unsolicited bulk email.6

In this scheme, Alice will refuse to accept an email until she has proof that
the sender expended sufficient effort to create the email. Here, "effort" will
be measured in terms of computing resources, in particular, CPU cycles. For
this to be practical, it must be easy for the recipient, Alice, to verify that a
sender did indeed do the work, yet it must not be feasible for the sender to
cheat by not doing the required work. Note that such a scheme would not
eliminate spam, but it would limit the amount of such email that any user
can send.

Let M be an email message and let T be the current time. The message M
includes the sender's and intended recipient's email addresses, but does not
include any additional addresses. The sender of message M must determine
a value R such that

h(M, R, T) = (OÇL^, X). (5.5)
N

That is, the sender must find a value R so that the hash in equation (5.5) has
zeros in all of its first N output bits. Once this is done, the sender sends the
triple (M,R,T). Before Alice, the recipient, accepts the email, she needs to
verify that the time T is recent, and that h(M, R, T) begins with N zeros.

Again, the sender chooses random values R and hashes each until he finds
a hash value that begins with TV zeros. Therefore, the sender will need to

6Spam, Spam, Spam, Spam.. . lovely Spam! wonderful Spam! [55]

5.9 MISCELLANEOUS CRYPTO-RELATED TOPICS 141

compute, on average, about 2 hashes. On the other hand, the recipient
can verify that h(M, R, T) begins with N zeros by computing a single hash—
regardless of the size of N. So the work for the sender (measured in terms of
hashes) is about 2^, while the work for the recipient is always a single hash.
That is, the sender's work increases exponentially in N while the recipient's
work is negligible, regardless of the value of N.

To make this scheme practical, we would need to choose N so that the
work level is acceptable for normal email users but unacceptably high for
spammers. With this scheme, it might also be possible for users to select
their own individual value of N to match their personal tolerance for spam.
For example, if Alice hates spam, she could choose, say, N = 40. While
this would likely deter spammers, it might also deter many legitimate email
senders. If Bob, on the other hand, doesn't mind receiving some spam and
ae never wants to deter a legitimate email sender, he might set his value to,
say, N = 10.

Spammers are sure to dislike such a scheme. Legitimate bulk emailers also
might not like this scheme, since they would need to spend resources (i.e.,
money) to compute vast numbers of hashes. In any case, this is a plausible
approach to increasing the cost of sending bulk email.

5.9 Miscellaneous Crypto-Related Topics

In this section, we discuss a few interesting7 crypto-related topics that don't
fit neatly into the categories discussed so far. First, we'll consider Shamir's
secret sharing scheme. This is a conceptually simple procedure that can be
used to split a secret among users. We'll also discuss the related topic of
visual cryptography.

Then we consider randomness. In crypto, we often need random keys,
random large primes, and so on. We'll discuss some of the problems of actually
generating random numbers and we present an example to illustrate a pitfall
of poor random number selection.

Finally, we'll briefly consider the topic of information hiding, where the
goal is to hide information8 in other data, such as embedding secret informa-
tion in a JPEG image. If only the sender and receiver know that information
is hidden in the data, the information can be passed without anyone but
the participants suspecting that communication has occurred. Information
hiding is a large topic and we'll only scratch the surface.

7The topics are interesting to your narcissistic author, and that 's all that really matters.
8Duh!

142 HASH FUNCTIONS++

5.9.1 Secret Sharing

Suppose Alice and Bob want to share a secret S in the sense that:

• Neither Alice nor Bob alone (nor anyone else) can determine S with a
probability better than guessing.

• Alice and Bob together can easily determine S.

At first glance, this seems to present a difficult problem. However, it's easily
solved, and the solution essentially derives from the fact that two points
determine a line. Note that we call this a secret sharing scheme, since there
are two participants and both must cooperate to recover the secret S.

Suppose the secret S is a real number. Draw a line L in the plane through
the point (0, S) and give Alice a point A = (XQ, YQ) on L and give Bob another
point B = (X\, Y\), which also lies on the line L. Then neither Alice nor Bob
individually has any information about S, since an infinite number of lines
pass through a single point. But together, the two points A and B uniquely
determine L, and therefore the y-intercept, and hence the value S. This
example is illustrated in the "2 out of 2" scheme that appears in Figure 5.4.

3 out of 3

Figure 5.4: Secret Sharing Schemes

It's easy to extend this idea to an "m out of n" secret sharing scheme,
for any m < n, where n is the number of participants, any m of which can

5.9 MISCELLANEOUS CRYPTO-RELATED TOPICS 143

cooperate to recover the secret. For m = 2, a line always works. For example,

a "2 out of 3" scheme appears in Figure 5.4.

A line, which is a polynomial of degree one, is uniquely determined by two

points, whereas a parabola, which is a polynomial of degree two, is uniquely

determined by three points. In general, a polynomial of degree m — 1 is

uniquely determined by m points. This elementary fact is what allows us to

construct an m out of n secret sharing scheme for any m < n. For example,

a "3 out of 3" scheme is illustrated in Figure 5.4. The general "m out of n"

concept should now be clear.

Since we want to store these quantities on computers, we would like to

deal with discrete quantities instead of real numbers. Fortunately, this secret

sharing scheme works equally well if the arithmetic is done modulo p [264].

This elegant and secure secret sharing concept is due to the "S" in RSA

(Shamir, that is). The scheme is said to be absolutely secure or information

theoretic secure (see Problem 34) and it doesn't get any better than that.

5.9.1.1 Key Escrow

One particular application where secret sharing would be useful is in the

key escrow problem [85, 86]. Suppose that we require users to store their

keys with an official escrow agency. The government could then get access

to keys as an aid to criminal investigations.9 Some people (mostly in the

government), once viewed key escrow as a desirable way to put crypto into

a similar category as, say, traditional telephone lines, which can be tapped

with a court order. At one time the U.S. government tried to promote key

escrow and even went so far as to develop a system (Clipper and Capstone)

that included key escrow as a feature.10 The key escrow idea was widely

disparaged, and it was eventually abandoned—see [59] for a brief history of

the Clipper chip.

One concern with key escrow is that the escrow agency might not be

trustworthy. It is possible to ameliorate this concern by having several escrow

agencies and allow users to split the key among n of these, so that m of the n

must cooperate to recover the key. Alice could, in principle, select escrow

agencies that she considers most trustworthy and have her secret split among

these using an m out of n secret sharing scheme.

Shamir's secret sharing scheme could be used to implement such a key

escrow scheme. For example, suppose n = 3 and m = 2 and Alice's key is S.

Then the "2 out of 3" scheme illustrated in Figure 5.4 could be used where,

for example, Alice might choose to have the Department of Justice hold the

point (XQ,YO), the Department of Commerce hold (Χι,Υι), and Fred's Key

9Presumably, only with a court order.
10Some opponents of key escrow like to say that the U.S. government's attempt at key

escrow failed because they tried to promote a security flaw as a feature.

144 HASH FUNCTIONS++

Escrow, Inc., hold (X2,Y2)· Then at least two of these three escrow agencies
would need to cooperate to determine Alice's key S.

5.9.1.2 Visual Cryptography

Naor and Shamir [214] proposed an interesting visual secret sharing scheme.
The scheme is absolutely secure, as is the polynomial-based secret sharing
scheme discussed above. In visual secret sharing (aka visual cryptography),
no computation is required to decrypt the underlying image.

In the simplest case, we start with a black-and-white image and create two
transparencies, one for Alice and one for Bob. Each individual transparency
appears to be a collection of random black and white subpixels, but if Alice
and Bob overlay their transparencies, the original image appears (with some
loss of contrast). In addition, either transparency alone yields no information
about the underlying image.

How is this accomplished? Figure 5.5 shows various ways that an in-
dividual pixel can be split into "shares," where one share goes to Alice's
transparency and the corresponding share goes to Bob's.

Pixel Share 1 Share 2 Overlay

- D a a a
■ ■ i ■

- ■ II ■
Figure 5.5: Pixel Shares

For example, if a specific pixel is white, then we can flip a coin to de-
cide whether to use row "a" or row "b" from Figure 5.5. Then, say, Alice's
transparency gets share 1 from the selected row (either a or b), while Bob's
transparency gets share 2. Note that the shares are put in Alice's and Bob's
transparencies at the same position corresponding to the pixel in the original
image. In this case, when Alice's and Bob's transparencies are overlaid, the
resulting pixel will be half-black/half-white. In the case of a black pixel, we
flip a coin to select between rows "c" and "d" and we again use the selected
row to determine the shares.

5.9 MISCELLANEOUS CRYPTO-RELATED TOPICS 145

Note that if the original pixel was black, the overlaid shares always yield
a black pixel. On the other hand, if the original pixel was white, the overlaid
shares will yield a half-white/half-black pixel, which will be perceived as gray.
This results in a loss of contrast (black and gray versus black and white), but
the original image is still clearly discernible. For example, in Figure 5.6 we
illustrate a share for Alice and a share for Bob, along with the resulting
overlaying of the two shares. Note the loss of contrast, as compared to the
original image.

Figure 5.6: Alice's Share, Bob's Share, and Overlay Image (Courtesy of Bob
Harris)

The visual secret sharing example described here is a "2 out of 2" scheme.
Similar techniques can be used to develop more general "m out of n" schemes.
As mentioned above, the security of these schemes is absolute, in the same
sense that secret sharing based on polynomials is absolutely secure (see Prob-
lem 36).

For a nice interactive example of visual secret sharing, see [141]. For more
information on various technical aspects of visual cryptography, Stinson's
website [292] is the place to go.

5.9.2 R a n d o m Numbers

In cryptography, random numbers are needed to generate symmetric keys,
RSA key pairs (i.e., randomly selected large primes), and Diffie-Hellman se-
cret exponents. In a later chapter, we'll see that random numbers have an
important role to play in security protocols as well.

Random numbers are, of course, used in many non-security applications
such as simulations and various statistical applications. In such cases, the
random numbers usually only need to be statistically random, that is, they
must be, in some statistical sense, indistinguishable from random.

146 HASH FUNCTIONS++

However, cryptographic random numbers must be statistically random and
they must also satisfy a much more stringent requirement—they must be
unpredictable. Are cryptographers just being difficult (as usual) or is there
a legitimate reason for demanding so much more of cryptographic random
numbers?

To see that unpredictability is important in crypto applications, consider
the following example. Suppose that a server generates symmetric keys for
users. Further, suppose the following keys are generated for the listed users:

• KA for Alice

• KB for Bob

• KQ for Charlie

• KB for Dave

Now, if Alice, Bob, and Charlie don't like Dave, they can pool their informa-
tion to see if it will help them determine Dave's key. That is, Alice, Bob, and
Charlie could use knowledge of their keys, KA, KB, and KQ, to see if it helps
them determine Dave's key KD. If KD can be predicted from knowledge of
the keys KA, KB, and Kc, then the security of the system is compromised.

Commonly used pseudo-random number generators are predictable, i.e.,
given a sufficient number of output values, subsequent values can be easily
determined. Consequently, pseudo-random number generators are not appro-
priate for cryptographic applications.

5.9.2.1 Texas Hold 'em Poker

Now let's consider a real-world example that nicely illustrates the wrong way
to generate random numbers. ASF Software, Inc., developed an online version
of the card game known as Texas Hold 'em Poker [128]. In this game, each
player is first dealt two cards, face down. Then a round of betting takes
place, followed by three community cards being dealt face up—all players
can see the community cards and use them in their hand. After another
round of betting, one more community card is revealed, then another round
of betting. Finally, a final community card is dealt, after which additional
betting can occur. Of the players who remain at the end, the winner is the
one who can make the best poker hand from his two cards together with the
five community cards. The game is illustrated in Figure 5.7.

In an online version of the game, random numbers are required to shuf-
fle a virtual deck of cards. The AFS poker software had a serious flaw in
the way that random numbers were used to shuffle the deck of cards. As a
result, the program did not produce a truly random shuffle, and it was pos-
sible for a player to determining the entire deck in real time. A player who

5.9 MISCELLANEOUS CRYPTO-RELATED TOPICS 147

Player's hand Community cards in center of the table

Figure 5.7: Texas Hold 'Em Poker

could take advantage of this flaw could cheat, since he would know all of the
other players' hands, as well as the future community cards before they were
revealed.

How was it possible to determine the shuffle? First, note that there
are 52! > 2225 distinct shuffles of a 52-card deck. The AFS poker program
used a "random" 32-bit integer to determine the shuffle. Consequently, the
program could generate no more than 232 different shuffles out of the more
than 2225 possible. This was an inexcusable flaw, but if this was the only flaw,
it would have likely remained a theoretical problem, not a practical attack.

To generate the "random" shuffle, the program used the pseudo-random
number generator, or PRNG, built into the Pascal programming language.
Furthermore, the PRNG was reseeded with each shuffle, with the seed value
being a known function of the number of milliseconds since midnight. Since
the number of milliseconds in a day is

24 · 60 · 60 · 1000 < 227,

less than 227 distinct shuffles could actually occur.
Trudy, the attacker, could do even better. If she synchronized her clock

with the server, Trudy could reduce the number of shuffles that needed to
be tested to less than 218. These 218 possible shuffles could all be generated
in real time and tested against the community cards to determine the actual
shuffle for the hand currently in play. In fact, after the first set of community
cards were revealed, Trudy could determine the shuffle uniquely and she would
then know the final hands of all other players—even before any of the other
players knew their own final hand!

The AFS Texas Hold 'em Poker program is an extreme example of the
ill effects of using predictable random numbers where unpredictable random
numbers are required. In this example, the number of possible random shuffles
was so small that it was possible to determine the shuffle and thereby break
the system.

How can we generate cryptographic random numbers? Since a secure
stream cipher keystream is not predictable, the keystream generated by, say,

148 HASH FUNCTIONS++

the RC4 cipher must be a good source of cryptographic random numbers. Of
course, there's no free lunch, so the selection of the key—which is like the
initial seed value for RC4—remains a critical issue.

5.9.2.2 Generating Random Bits

True randomness is not only hard to find, it's hard to define. Perhaps the
best we can do is the concept of entropy, as developed by Claude Shannon.
Entropy is a measure of the uncertainty or, conversely, the predictability of
a sequence of bits. We won't go into the details here, but a good discussion
of entropy can be found in [305].

Sources of true randomness do exist. For example, radioactive decay is
random. However, nuclear computers are not very popular, so we'll need
to find another source. Hardware devices are available that can be used to
gather random bits based on various physical and thermal properties that are
known to be unpredictable. Another source of randomness is the infamous
lava lamp [200], which achieves its randomness from its chaotic behavior.

Since software is (hopefully) deterministic, true random numbers must be
generated external to any code. In addition to the special devices mentioned
above, reasonable sources of randomness include mouse movements, keyboard
dynamics, certain network activity, and so on. It is possible to obtain some
high-quality random bits by such methods, but the quantity of such bits is
limited. For more information on these topics, see [134].

Randomness is an important and often overlooked topic in security. It's
worth remembering that, "The use of pseudo-random processes to generate
secret quantities can result in pseudo-security" [162].

5.9.3 Information Hiding

In this section we'll discuss the two faces of information hiding, namely,
steganography and digital watermarking. Steganography, or hidden writing,
is the attempt to hide the fact that information is being transmitted. Water-
marks also generally involve hidden information, but for a slightly different
purpose. For example, a copyright holder might hide a digital watermark
(containing some identifying information) in digital music in a vain effort to
prevent music piracy.11

Steganography has a long history, particularly in warfare—until modern
times, steganography was used far more than cryptography. In a story related
by Herodotus (circa 440 BC), a Greek general shaved the head of a slave and

11 Apparently, the use of the word piracy in this context is supposed to conjure images of
Blackbeard (complete with parrot and pegleg) viciously attacking copyright holders with
swords and cannons. Of course, the truth is that the pirates are mostly just teenagers
who—for better or for worse—have little or no concept of actually paying for music.

5.9 MISCELLANEOUS CRYPTO-RELATED TOPICS 149

wrote a message on the slave's head warning of a Persian invasion. After his
hair had grown back and covered the message, the slave was sent through
enemy lines to deliver the message to another Greek general.12

The modern version of steganography involves hiding information in me-
dia such as image files, audio data, or even software [288]. This type of
information hiding can also be viewed as a form of covert channel—a topic
we'll return to when we discuss multilevel security in Chapter 8.

As mentioned above, digital watermarking is information hiding for a
somewhat different purpose. There are several varieties of watermarks but
one example consists of inserting an "invisible" identifier in the data. For
example, an identifier could be added to digital music in the hope that if
a pirated version of the music appears, the watermark could be read from
it and the purchaser—and presumed pirate—could be identified. Such tech-
niques have been developed for virtually all types of digital media, as well
as for software. In spite of their obvious potential, digital watermarking has
received only limited practical application, and there have been some spec-
tacular failures [71].

Digital watermarks can be categorized in many different ways. For exam-
ple, we can consider the following types of watermarks:

• Invisible — Watermarks that are not supposed to be perceptible in the
media.

• Visible — Watermarks that are meant to be observed, such as a stamp
of TOP SECRET on a document.

Watermarks can also be categorized as follows:

• Robust — Watermarks that are designed to remain readable even if they
are attacked.

• Fragile — Watermarks that are supposed to be destroyed or damaged
if any tampering occurs.

For example, we might like to insert a robust invisible mark in digital music
in the hope of detecting piracy. Then when pirated music appears on the In-
ternet, perhaps we can trace it back to its source. Or we might insert a fragile
invisible mark into an audio file. In this case, if the watermark is unreadable,
the recipient knows that tampering has occurred. This latter approach is
essential an integrity check. Various other combinations of watermarks might
also be considered.

Many modern currencies include (non-digital) watermarks. Several cur-
rent and recent U.S. bills, including the $20 bill pictured in Figure 5.8, have

12To put this into terms that the reader will understand, the problem with this technique
is that the bandwidth is too low...

150 HASH FUNCTIONS++

visible watermarks. In this $20 bill, the image of President Jackson is em-
bedded in the paper itself (in the right-hand section of the bill) and is visible
when held up to a light. This visible watermark is designed to make counter-
feiting more difficult, since special paper is required to duplicate this easily
verified watermark.

Figure 5.8: Watermarked Currency

One example of an invisible watermarking scheme that has been proposed
is to insert information into a photograph in such a way that if the photo were
damaged it would be possible to reconstruct the entire image from a small
surviving piece of the original [168]. It has been claimed that every square
inch of a photo could contain enough information to reconstruct the entire
photograph, without adversely affecting the quality of the image.

Now. let's consider a concrete example of a simple approach to steganog-
raphy. This particular example is applicable to digital images. For this ap-
proach, we'll use images that employ the well-known 24 bits color scheme—
one byte each for red, green, and blue, denoted R, G, and B, respectively.
For example, the color represented by (R, G, B) = (0x7E, 0x52,0x90) is much
different than (R, G,B) = (OxFE, 0x52,0x90), even though the colors only
differ by one bit. On the other hand, the color (R, G, B) = (OxAB, 0x33, OxFO)
is indistinguishable from (R, G,B) = (OxAB, 0x33, OxFl), yet these two colors
also differ by only a single bit. In fact, the low-order RGB bits are unimpor-
tant, since they represent imperceptible changes in color. Since the low-order
bits don't matter, we can use them for any purposes we choose, including
information hiding.

Consider the two images of Alice in Figure 5.9. The left-most Alice con-
tains no hidden information, whereas the right-most Alice has the entire Alice
in Wonderland book (in PDF format) embedded in the low-order RGB bits.
To the human eye, the two images appear identical at any resolution. While
this example is visually stunning, it's important to remember that if we com-
pare the bits in these two images, the differences would be obvious. In par-
ticular, it's easy for an attacker to write a computer program to extract the
low-order RGB bits—or to overwrite the bits with garbage and thereby de-
stroy the hidden information, without doing any damage to the image. This
example highlights one of the fundamental problems in information hiding,

5.9 MISCELLANEOUS CRYPTO-RELATED TOPICS 151

namely, that it is difficult to apply Kerckhoffs' Principle in a meaningful way
without giving the attacker a significant advantage.

Figure 5.9: A Tale of Two Alices

Another simple steganography example might help to further demystify
the concept. Consider an HTML file that contains the following text, taken
from the well-known poem, "The Walrus and the Carpenter," [50] which
appears in Lewis Carroll's Through the Looking-Glass and What Alice Found
There:

"The time has come," the Walrus said,
"To talk of many things:
Of shoes and ships and sealing wax
Of cabbages and kings
And why the sea is boiling hot
And whether pigs have wings."

In HTML, the RGB font colors are specified by a tag of the form

 . . .

where r r is the value of R in hexadecimal, gg is G in hex, and bb is B in
hex. For example, the color black is represented by #000000, whereas white
is #FFFFFF.

Since the low-order bits of R, G, and B won't affect the perceived color,
we can hide information in these bits, as shown in the HTML snippet in

152 HASH FUNCTIONS++

Table 5.2. Reading the low-order bits of the RGB colors yields the "hidden"
information 110 010 110 Oil 000 101.

Table 5.2: Simple Steganography Example

"The time has come,"
the Walrus said,

"To talk of many things :</fontxbr>
0f shoes and ships and sealing wax

0f cabbages and kings</fontxbr>
And why the sea is boiling hot

And whether pigs have wings."

Hiding information in the low-order RGB bits of HTML color tags is
obviously not as impressive as hiding Alice in Wonderland in Alice's image.
However, the process is virtually identical in each case. Furthermore, neither
method is at all robust—an attacker who knows the scheme can read the
hidden information as easily as the recipient. Or an attacker could instead
destroy the information by replacing the file with another one that is identical,
except that the low-order RGB bits have been randomized. In the latter case,
if the image is not being used to pass information, the attacker's actions are
likely to go undetected since the appearance of the image contained in the
file has not changed

It is tempting to hide information in bits that don't matter, since doing so
will be invisible, in the sense that the content will not be affected. But relying
only on the unimportant bits makes it easy for an attacker who knows the
scheme to read or destroy the information. While the bits that don't matter in
image files may not be as obvious to humans as low-order RGB bits in HTML
tags, such bits are equally susceptible to attack by anyone who understands
the image format.

The conclusion here is that for information hiding to be robust, the infor-
mation must reside in bits that do matter. But this creates a serious challenge,
since any changes to bits that do matter must be done very carefully for the
information hiding to remain "invisible."

As noted above, if Trudy knows the information hiding scheme, she can
recover the hidden information as easily as the intended recipient. Water-
marking schemes therefore generally encrypt the hidden information before
embedding it in a file. But even so, if Trudy understands how the scheme
works, she can almost certainly damage or destroy the information. This fact
has driven developers to rely on secret proprietary watermarking schemes,
which runs contrary to the spirit of Kerckhoffs' Principle. This has, pre-
dictably, resulted in many approaches that fail badly when exposed to the
light of day.

5.10 SUMMARY 153

Further complicating the steganographer's life, an unknown watermarking
scheme can often be diagnosed by a collusion attack. That is, the original
object and a watermarked object (or several different watermarked objects)
can be compared to determine the bits that carry the information and, in the
process, the attacker can often learn something about how the scheme works.
As a result, watermarking schemes often use spread spectrum techniques
to better hide the information-carrying bits. Such approaches only make the
attacker's job more difficult—they do not eliminate the threat. The challenges
and perils of watermarking are nicely illustrated by the attacks on the Secure
Digital Music Initiative, or SDMI, scheme, as described in [71].

The bottom line is that digital information hiding is much more difficult
than it appears at first glance. Information hiding is an active research topic,
and although none of the work to date has lived up to the hype, the implica-
tions of a robust scheme would be enormous. The field of information hiding
is extremely old, but the digital version is relatively young, so there may still
be hope for significant progress.

5.10 Summary

In this chapter, we discussed cryptographic hash functions in some detail. We
described one specific hash algorithm (Tiger) and considered the correct way
to compute a hashed MAC (HMAC). A couple of non-standard applications
of hash functions were also discussed.

After covering hash functions, a few crypto-like topics that don't fit nicely
into any of the other chapters were presented. Shamir's secret sharing scheme
offers a secure method for sharing a secret in any m out of n arrangement.
Naor and Shamir's visual cryptography provides a similarly secure means for
sharing an image file. Random numbers, a topic that is of critical security
importance, was also covered and we gave an example that illustrates the
pitfalls of failing to use good random numbers.

The chapter concluded with a brief discussion of information hiding. Digi-
tal steganography and digital watermarking are both interesting and evolving
fields with potential application to some very challenging security problems.

5.11 Problems

1. As discussed in this chapter, a cryptographic hash function must satisfy
all of the following properties:

• Compression

• Efficiency

• One-way

154 HASH FUNCTIONS++

• Weak collision resistance

• Strong collision resistance

a. Suppose that a hash function fails to provide compression but pro-
vides all of the other required properties. Give an application
where a cryptographic hash function should be used, but where
this hash function would fail to be useful.

b. Repeat part a, but assume that all properties hold except for effi-
ciency.

c. Repeat part a, but assume that all properties hold except for one-
way.

d. Repeat part a, but assume that all properties hold except for the
collision resistance properties.

2. Justify the following statements concerning cryptographic hash func-
tions.

a. Strong collision resistance implies weak collision resistance.

b. Strong collision resistance does not imply one-way.

3. Suppose that a secure cryptographic hash function generates hash val-
ues that are n bits in length. Explain how a brute force attack could
be implemented. What is the expected work factor?

4. How many collisions would you expect to find in the following cases?

a. Your hash function generates a 12-bit output and you hash 1024
randomly selected messages.

b. Your hash function generates an n-bit output and you hash m
randomly selected messages.

5. Suppose that h is a secure hash that generates an n-bit hash value.

a. What is the expected number of hashes that must be computed to
find one collision?

b. What is the expected number of hashes that must be computed to
find 10 collisions? That is, what is the expected number of hashes
that must be computed to find pairs (XÌ,ZÌ) with h(xi) = h(zi),
fori = 0 ,1 ,2 , . . . , 9?

c. What is the expected number of hashes that must be computed to
find m collisions?

5.11 PROBLEMS 155

6. A fc-way collision is a set of values xo, x\,..., Xk-i that all hash to the

same value, that is,

h(x0) = h(xi) = · · · = h(xk-i).

Suppose that h is a secure hash that generates an n-bit hash value.

a. What is the expected number of hashes that must be computed to

find one fc-way collision?

b. What is the expected number of hashes that must be computed to

find two fc-way collision?

c. What is the expected number of hashes that must be computed to

find m distinct fc-way collisions?

7. Recall the digital signature birthday attack discussed in Section 5.4.

Suppose we modify the hashing scheme as follows: Given a message M

that Alice wants to sign, she randomly selects R, then she computes

the signature as S = [h(M, R)]A\ice, and sends (M, R, S) to Bob. Does

this prevent the attack? Why or why not?

8. Consider a CRC that uses the divisor 10011. Find two collisions with

10101011, that is, find two other data values that produce the same

CRC checksum as 10101011.

9. Consider a CRC that uses the divisor 10011. Suppose the data value

is 11010110. Trudy wants to change the data to 111*****, where "*"

indicates that she doesn't care about the bit in that position, and she

wants the resulting checksum to be the same as for the original data.

Determine all data values Trudy could choose.

10. Fill in the number of bits on each line of the Tiger hash outer round in

Figure 5.2.

11. Let h be the Tiger hash and let F be the Tiger outer round in Figure 5.2.

a. For M = (Bi,B2,Bs), where each Bi is 512 bits, give the analog

of equation (5.2).

b. Now suppose M = {Βι,Β^, ■ ■ ■ ,Bn) where each Bi is 512 bits.
Show that h(M) = F(h{Bi, B2,..., B„-i) , Bn).

12. A program implementing your crafty author's Bobcat hash algorithm
can be found on the textbook website. This hash is essentially a scaled-
down version of Tiger—whereas the Tiger hash produces a 192-bit out-
put (three 64-bit words), the Bobcat hash produces a 48-bit value (three
16-bit words).

156 HASH FUNCTIONS++

a. Find a collision for the 12-bit version of Bobcat, where you truncate
the 48-bit hash value to obtain a 12-bit hash. How many hashes
did you compute before you found your first 12-bit collision?

b. Find a collision for the full 48-bit Bobcat hash.

13. Alice likes to use the Tiger hash algorithm, which produces a 192-bit
hash value. However, for a particular application, Alice only requires a
64-bit hash. Answer the following questions, assuming that the Tiger
hash is secure.

a. Is it safe for Alice to simply truncate the Tiger hash, that is, can
she use the first 64 bits of the 192-bit output? Why or why not?

b. Is it acceptable for Alice to take every third bit of the Tiger hash?
Why or why not?

c. Is it secure for Alice to take the three 64-bit words of the Tiger
hash and XOR them together? Why or why not?

14. Consider equation (5.3).

a. Show that the equation holds if K, M, and X are all multiples of
the hash block length (commonly, 64 bytes).

b. For which other sizes of K, M, and X does the equation hold?

c. Show that equation (5.4) holds for any size of M, M', and K,
provided that h{M) = h(M').

15. Does a MAC work as an HMAC? That is, does a MAC satisfy the same
properties that an HMAC satisfies?

16. Suppose that you know the output of an HMAC is X and the key is K,
but you do not know the message M. Can you construct a message M'
that has its HMAC equal to X, using the key K? If so, give an algorithm
for constructing such a message. If not, why not? Note that we are
assuming that you know the key K, and the same key is used for both
HMAC computations. (It may be instructive to compare this problem
to Problem 43 of Chapter 3.)

17. Recall the online bid method discussed in Section 5.8.1.

a. What property or properties of a secure hash function h does this
scheme rely on to prevent cheating?

b. Suppose that Charlie is certain that Alice and Bob will both sub-
mit bids between $10,000 and $20,000. Describe a forward search
attack that Charlie can use to determine Alice's bid and Bob's bid
from their respective hash values.

5.11 PROBLEMS 157

c. Is the attack in part b a practical security concern?

d. How can the bidding procedure be modified to prevent a forward
search such as that in part b?

18. Recall the spam reduction method discussed in Section 5.8.2.

a. What property or properties of a secure hash function does this
scheme rely on to reduce spam?

b. In Section 5.8.2, it is stated that "The message M includes the
sender's and intended recipient's email addresses, but does not
include any additional addresses." Suppose we relax this so that we
only require that the message M includes the intended recipient's
email address. Find an attack on this modified spam reduction
system, that is, show that a spammer could still send spam without
doing a large amount of work.

19. Suppose that you have a secure block cipher, but no hash function.
Also, no key is available. For simplicity, assume that the block cipher
has key length and block length both equal to n.

a. How can you use the block cipher as a cryptographic hash function,
assuming that you only need to hash one block of exactly n bits?

b. How can you use the block cipher as a cryptographic hash function
when the message consists of multiple n-bit blocks?

20. Suppose that Alice wants to encrypt a message for Bob, where the
message consists of three plaintext blocks, Po, Pi, and Pi- Alice and
Bob have access to a hash function and a shared symmetric key K, but
no cipher is available. How can Alice securely encrypt the message so
that Bob can decrypt it?

21. Alice's computer needs to have access to a symmetric key KA· Consider
the following two methods for deriving and storing the key KA-

(i) The key is generated as KA = h(Alice's password). The key is
not stored on Alice's computer. Instead, whenever KA is required,
Alice enters her password and the key is generated.

(ii) The key KA is initially generated at random, and it is then stored
as E(KA,K), where K = ^(Alice's password). Whenever KA is
required, Alice enters her password, which is hashed to generate K
and K is then used to decrypt the key KA-

Give one significant advantage of method (i) as compared to (ii), and
one significant advantage of (ii) as compared to (i).

158 HASH FUNCTIONS++

22. Suppose that Sally (a server) needs access to a symmetric key for user
Alice and another symmetric key for Bob and another symmetric key for
Charlie. Then Sally could generate symmetric keys Kj±, KB, and Kc
and store these in a database. An alternative is key diversification,
where Sally generates and stores a single key Ks- Then Sally generates
the key KA as needed by computing KA = /i(Alice, Ks), with keys KB
and Kc generated in a similar manner. Give one significant advantage
and one significant disadvantage of key diversification as compared to
storing keys in a database.

23. We say that a function T is incremental if it satisfies the following
property: Having once applied T to M, the time required to update the
result upon modification of M is proportional to the amount of modi-
fication done to M. Suppose we have an incremental hash function H.

a. Discuss one application where this incremental hash H would be
superior to a standard (non-incremental) hash function.

b. Suppose a message M can only be modified by appending more
bits, that is, the modified message M' is M' = (M, X), for some X.
Given a cryptographic hash function h, define an incremental cryp-
tographic hash function H based on h.

24. Suppose Bob and Alice want to flip a coin over a network. Alice pro-
poses the following protocol.

(i) Alice randomly selects a value X e {0,1}.

(ii) Alice generates a 256-bit random symmetric key K.

(iii) Using the AES cipher, Alice computes Y = E(X,R,K), where R
consists of 255 randomly selected bits.

(iv) Alice sends Y to Bob.

(v) Bob guesses a value Z £ {0,1} and tells Alice.

(vi) Alice gives the key K to Bob who computes (X, R) = D(Y, K).

(vii) If X = Z then Bob wins, otherwise Alice wins.

This protocol is insecure.

a. Explain how Alice can cheat.

b. Using a cryptographic hash function h, modify this protocol so
that Alice can't cheat.

25. The MD5 hash is considered broken, since collisions have been found
and, in fact, a collision can be constructed in a few seconds on a

5.11 PROBLEMS 159

PC [244]. Find all bit positions where the following two messages dif-

fer.13 Verify that the MD5 hashes of these two messages are the same.

00000000

00000010

00000020

00000030

00000040

00000050

00000060

00000070

dl

2f

55

08

96

35

75

ed

31

ca

ad

51

0b

73

27

74

dd

b5

34

25

Id

9a

7f

cb

02

87

06

e8

dl

c7

79

dd

c5

12

09

f7

dc

fO

30

5f

e6

46

f4

cd

41

eb

d5

c5

ee

7e

b3

c9

7b

fd

5c

d3

c4

ab

02

9f

9c

0c

eb

6d

69

40

83

d9

θ4

30

22

bl

3d

04

e4

Id

d8

29

e8

9b

9a

58

88

bd

97

fl

ad

0a

06

3e

83

f2

f4

66

ba

d8

98

b8

25

80

5a

dl

79

35

af

fb

71

37

65

09

cc

cc

f9

7f

41

3c

55

bl

15

a7

5c

89

5a

5b

d5

8f

5c

e3

and

00000000

00000010

00000020

00000030

00000040

00000050

00000060

00000070

dl

2f

55

08

96

35

75

ed

31

ca

ad

51

0b

73

27

74

dd

b5

34

25

Id

9a

7f

cb

02

07

06

e8

dl

47

79

dd

c5

12

09

f7

dc

fO

30

5f

e6

46

f4

cd

41

eb

d5

c5

ee

7e

b3

c9

7b

fd

5c

d3

c4

ab

02

9f

9c

Oc

eb

6d

69

40

83

d9

e4

30

22

bl

3d

04

e4

Id

d8

29

e8

9b

9a

58

88

bd

97

fl

ad

Oa

06

3e

83

72

f4

66

ba

58

98

b8

25

80

5a

dl

79

35

af

fb

fl

37

65

09

4c

cc

f9

7f

41

3c

55

bl

15

a7

5c

89

5a

5b

d5

8f

5c

e3

26. The MD5 collision in Problem 25 is said to be meaningless since the

two messages appear to be random bits, that is, they do not carry

any meaning. Currently, it is not possible to generate a meaningful

collision using the MD5 collision attack. For this reason, it is some-

times claimed that MD5 collisions are not a significant security threat.

The goal of this problem is convince you otherwise. Obtain the file

MD5_collision.zip from the textbook website and unzip the folder to

obtain the two Postscript files, rec2.ps and auth2.ps.

a. What message is displayed when you view rec2 .ps in a Postscript

viewer? What message is displayed when you view auth2.ps in a

Postscript viewer?

b. What is the MD5 hash of rec2.ps? What is the MD5 hash of

auth2.ps? Why is this a security problem? Give a specific at-

tack that Trudy can easily conduct in this particular case. Hint:

Consider a digital signature.

c. Modify rec2. ps and auth2. ps so that they display different mes-

sages than they currently do, but they hash to the same value.

What are the resulting hash values?

d. Since it is not possible to generate a meaningful MD5 collision,

how is it possible for two (meaningful) messages to have the same

13The left-most column represents the byte position (in hex) of the first byte in that row

and is not part of the data. Also, the data itself is given in hexadecimal.

160 HASH FUNCTIONS++

MD5 hash value? Hint: Postscript has a conditional statement of

the form

(X)(y)eq{T0}{T1}ifelse

where To is displayed if the text X is identical to Y and Τχ is

displayed otherwise.

27. Suppose that you receive an email from someone claiming to be Alice,

and the email includes a digital certificate that contains

M = ("Alice", Alice's public key) and [h(M)]CA,

where CA is a certificate authority.

a. How do you verify the signature? Be precise.

b. Why do you need to bother to verify the signature?

c. Suppose that you trust the CA who signed the certificate. Then,

after verifying the signature, you will assume that only Alice pos-

sesses the private key that corresponds to the public key contained

in the certificate. Assuming that Alice's private key has not been

compromised, why is this a valid assumption?

d. Assuming that you trust the CA who signed the certificate, after

verifying the signature, what do you know about the identity of

the sender of the certificate?

28. Recall that we use both a public key system and a hash function when

computing digital signatures.

a. Precisely how is a digital signature computed and verified?

b. Suppose that the public key system used to compute and verify

signatures is insecure, but the hash function is secure. Show that

you can forge signatures.

c. Suppose that the hash function used to compute and verify signa-

tures is insecure, but the public key system is secure. Show that

you can forge signatures.

29. This problem deals with digital signatures.

a. Precisely how is a digital signature computed and verified?

b. Show that a digital signature provides integrity protection.

c. Show that a digital signature provides non-repudiation.

30. Suppose that Alice wants to sign the message M and send the result to

Bob.

5.11 PROBLEMS 161

a. In terms of our standard notation, what does Alice compute?

b. What does Alice send to Bob and how does Bob verify the signa-
ture?

31. In the previous chapter, we discussed the idea behind a forward search
attack on a public key cryptosystems. In certain applications, a forward
search attack can be used against a hash function.

a. What is a forward search attack on public key encryption, and how
is it prevented?

b. Describe one plausible use for a hash function where a forward
search attack is feasible.

c. How can you prevent a forward search attack on a hash function?

32. Suppose that we have a block cipher and want to use it as a hash func-
tion. Let X be a specified constant and let M be a message consisting
of a single block, where the block size is the size of the key in the block
cipher. Define the hash of M as Y = E(X, M). Note that M is being
used in place of the key in the block cipher.

a. Assuming that the underlying block cipher is secure, show that
this hash function satisfies the collision resistance and one-way
properties of a cryptographic hash function.

b. Extend the definition of this hash so that messages of any length
can be hashed. Does your hash function satisfy all of the properties
of a cryptographic hash?

c. Why must a block cipher used as a cryptographic hash be resistant
to a "chosen key" attack? Hint: If not, given plaintext P, we can
find two keys K0 and Kx such that E(P,K0) = E(P,Ki). Show
that such a block cipher is insecure when used as a hash function.

33. Consider a "2 out of 3" secret sharing scheme.

a. Suppose that Alice's share of the secret is (4,10/3), Bob's share
is (6,2), and Charlie's share is (5,8/3). What is the secret S?
What is the equation of the line?

b. Suppose that the arithmetic is taken modulo 13, that is, the equa-
tion of the line is of the form ax + by = c (mod 13). If Alice's share
is (2,2), Bob's share is (4,9), and Charlie's share is (6,3), what is
the secret 5? What is the equation of the line, mod 13?

34. Recall that we define a cipher to be secure if the best known attack
is an exhaustive key search. If a cipher is secure and the key space is
large, then the best known attack is computationally infeasible—for a

162 HASH FUNCTIONS++

practical cipher, this is the ideal situation. However, there is always
the possibility that a clever new attack could change a formerly secure
cipher into an insecure cipher. In contrast, Shamir's polynomial-based
secret sharing scheme is information theoretically secure, in the sense
that there is no possibility of a shortcut attack. In other words, secret
sharing is guaranteed to be secure forever.

a. Suppose we have a "2 out of 2" secret sharing scheme, where Alice
and Bob share a secret S. Why can't Alice determine any infor-
mation about the secret from her share of the secret?

b. Suppose we have an "m out of n" secret sharing scheme. Any set
of m — 1 participants can't determine any information about the
secret S. Why?

35. Obtain the file v i s u a l . z i p from the textbook website and extract the
files.

a. Open the file v isual .h tml in your favorite browser and carefully
overlay the two shares. What image do you see?

b. Use the program with a different image file to create shares. Note
that the image must be a gif file. Give a screen snapshot showing
the original image, the shares, and the overlaid shares.

36. Recall that we define a cipher to be secure if the best known attack
is an exhaustive key search. If a cipher is secure and the key space is
large, then the best known attack is computationally infeasible—for a
practical cipher, this is the best possible scenario. However, there is
always the possibility that a clever new attack could change a formerly
secure cipher into an insecure cipher. In contrast, Naor and Shamir's
visual secret sharing scheme is information theoretically secure, in the
sense that there is no possibility of a shortcut attack—it is guaranteed
to be secure (by our definition) forever.

a. Consider the "2 out of 2" visual secret sharing scheme discussed
in this chapter. Why can't Alice determine any information about
the secret from her share of the secret?

b. How might a more general "m out of n" visual secret sharing
scheme work?

c. For an "m out of n" visual secret sharing scheme, what would
happen to the contrast of the recovered image for large m, with n
a small value? For large n with m small? For large m and n?

37. Suppose that you have a text file and you plan to distribute it to several
different people. Describe a simple non-digital watermarking method

5.11 PROBLEMS 163

that you could use to place a distinct invisible watermark in each copy
of the file. Note that in this context, "invisible" does not imply that the
watermark is literally invisible—instead, it means that the watermark
is not obvious to the reader.

38. Suppose that you enroll in a course where the required text is a hard-
copy manuscript written by the instructor. Being of simple mind, the
instructor has inserted a simple-minded invisible watermark into each
copy of the manuscript. The instructor claims that given any copy
of the manuscript, he can easily determine who originally received the
manuscript. The instructor challenges the class to solve the following
problems.14

(i) Determine the watermarking scheme used,

(ii) Make the watermarks unreadable.

Note that, in this context, "invisible" does not imply that the water-
mark is literally invisible—instead, it means that the watermark is not
obvious to the reader.

a. Discuss several possible methods the instructor could have used to
watermark the manuscripts.

b. How would you solve problem (i)?

c. How would you solve (ii), assuming that you have solved (i)?

d. Suppose that you are unable to solve (i). What could you do that
would likely enable you to solve (ii) without having solved (i)?

39. Part of a Lewis Carroll poem appears in the second quote at the begin-
ning of this chapter. Although the poem doesn't actually have a title,
it's generally referenced by its opening line, A Boat Beneath a Sunny
Sky.

a. Give the entire poem.

b. This poem contains a hidden message. What is it?

40. This problem deals with RGB colors.

a. Verify that the RGB colors

(0x7E,0x52,0x90) and (0x7E,0x52,0x10),

which differ in only a single bit position, are visibly different. Ver-
ify that the colors

(OxAB, 0x32, OxFl) and (OxAB, 0x33, OxFl),

14This problem is based on a true story.

164 HASH FUNCTIONS++

which also differ in only a single bit position, are indistinguishable.
Why is this the case?

b. What is the highest-order bit position that doesn't matter? That
is, what is the highest bit positions can be changed without making
a perceptible change in the color?

41. Obtain the image file alice.bmp from the textbook website.

a. Use a hex editor to hide the information a t tack at dawn in the
file.

b. Provide a hex edit view showing the bits that were modified and
their location in the file, as well as the corresponding unmodified
bits.

c. Provide screen snapshots of the original bmp file, as well as the
bmp file containing the hidden message.

42. Obtain the file s tego .z ip from the textbook website.

a. Use the program stegoRead to extract the hidden file contained
in aliceStego.bmp.

b. Use the programs to insert another file into a different (uncom-
pressed) image file and extract the information.

c. Provide screen snapshots of the image file from part b, both with
and without the hidden information.

43. Obtain the file s tego .z ip from the textbook website.

a. Write a program, stegoDestroy.c, that will destroy any informa-
tion hidden in a file, assuming that the information hiding method
in s tego.c might have been used. Your program should take a
bmp file as input, and produce a bmp file as output. Visually, the
output file must be identical to the input file.

b. Test your program on aliceStego.bmp. Verify that the output
file image is undamaged. What information does stegoRead. c
extract from your output file?

44. Obtain the file s tego. z ip from the textbook website.

a. How does the program stego.c hide information in an image file?

b. How could you damage the information hidden in a file without
visually damaging the image, assuming the program stego. c was
used?

c. How could this information hiding technique be made more resis-
tant to attack?

5.11 PROBLEMS 165

45. Obtain the file s tego .z ip from the textbook website.

a. Why does this information hiding method only apply to uncom-
pressed image files?

b. Explain how you could modify this approach to work on a com-
pressed image format, such as jpg.

46. Write a program to hide information in an audio file and to extract your
hidden information.

a. Describe your information hiding method in detail.

b. Compare an audio file that has no hidden information to the same
file containing hidden information. Can you discern any difference
in the quality of the audio?

c. Discuss possible attacks on your information hiding system.

47. Write a program to hide information in a video file and to extract the
hidden information.

a. Describe your information hiding method in detail.

b. Compare a video file that has no hidden information to the same
file containing hidden information. Can you discern any difference
in the quality of the video?

c. Discuss possible attacks on your information hiding system.

48. This problem deals with the uses of random numbers in cryptography.

a. Where are random numbers used in symmetric key cryptography?

b. Where are random numbers used in RSA and Diffie-Hellman?

49. According to the text, random numbers used in cryptography must be
unpredictable.

a. Why are statistically random numbers (which are often used in
simulations) not sufficient for cryptographic applications?

b. Suppose that the keystream generated by a stream cipher is pre-
dictable in the sense that if you are given n keystream bits, you
can determine all subsequent keystream bits. Is this a practical
security concern? Why or why not?

This page intentionally left blank

Chapter 6

Advanced Cryptanalysis

For there is nothing covered, that shall not be revealed;
neither hid, that shall not be known.

— Luke 12:2

The magic words are squeamish ossifrage
— Solution to RSA challenge problem

posed in 1977 by Ron Ri vest, who
estimated that breaking the message

would require 40 quadrillion years.
It was broken in 1994.

6.1 Introduction

Perhaps the best ways to gain a strong understanding of cryptography is by
trying to break ciphers. As an added bonus, breaking ciphers puts us in the
role of our all-purpose attacker, Trudy, and we need to think like Trudy if we
are going to make our systems more secure.

In previous chapters, we've seen a few simple cryptanalytic attacks. In
this chapter, we kick it up a few notches and examine some relatively involved
attacks. Specifically, we'll discuss the following cryptanalytic attacks.

• An attack on the most famous World War II cipher, the Enigma

• The attack on RC4, as used in WEP

• Linear and differential cryptanalysis of a block cipher

• The lattice reduction attack on the knapsack

• A timing attack on RSA

167

168 ADVANCED CRYPTANALYSIS

In World War II, the Nazis believed the Enigma cipher was invincible.
Polish and British cryptanalysts proved otherwise. The idea behind the at-
tack we describe was used to break Enigma messages, and yielded invaluable
intelligence during the war. The attack illustrates some of the shortcomings
of pre-modern ciphers.

Next, we consider an attack on RC4. This attack is specific to the way
that RC4 is used in WEP. In this case, a relatively straightforward attack
exists, in spite of the fact that RC4 is considered a strong cipher. While this
might seem contradictory, the problem arises from the precise details of the
way that RC4 is used in WEP. This example shows that a strong cipher can
be broken if it is used improperly.

Linear and differential cryptanalysis are generally not practical means of
attacking ciphers directly. Instead, they are used to analyze block ciphers for
design weaknesses and, as a result, modern block ciphers are built with these
techniques in mind. Therefore, to understand the design principles employed
in block ciphers today, it is necessary to have some understanding of linear
and differential cryptanalysis.

In Chapter 4, we mentioned the attack on the knapsack public key cryp-
tosystem. In this chapter, we'll give more details on the attack. We do not
present all of the mathematical nuances, but we provide sufficient informa-
tion to understand the concept behind the attack and to write a program
to implement the attack. It is a relatively straightforward attack that nicely
illustrates the role that mathematics and algorithms can play in breaking
cryptosystems.

A side channel is an unintended source of information. Recently, it has
been shown that power usage or precise timings can often reveal informa-
tion about an underlying computation. Timing attacks are particularly rele-
vant for public key systems, since the computations involved are costly, and
therefore take a relatively long time. Small differences in timings can reveal
information about the private key.

Side channel attacks have been used successfully against several public key
systems, and we'll discuss a couple of timing attacks on RSA. These attacks
are representative of some of the most interesting and surprising cryptanalytic
techniques developed in the recent past.

The attacks covered in this chapter represent only a small sample of the
many interesting cryptanalytic techniques that are known. For more exam-
ples, of "applied" cryptanalysis, that is, attacks that break real ciphers and
produce plaintext, see the book by Stamp and Low [284]. In fact, this chap-
ter can be viewed as a warmup exercise for [284]. In contrast, Swenson's
book [295] is an excellent source for details on modern block cipher crypt-
analysis, where "attacks" mostly serve the role of helping cryptographers
build better ciphers, rather than breaking ciphers in the sense of producing
plaintext.

6.2 ENIGMA 169

6.2 Enigma

I cannot forecast to you the action of Russia.
It is a riddle wrapped in a mystery inside an enigma:

but perhaps there is a key.
— Winston Churchill

The Enigma cipher was used by Nazi Germany prior to and throughout
World War II. The forerunner of the military Enigma machine was devel-
oped by Arthur Scherbius as a commercial device. The Enigma was patented
in the 1920s but it continued to evolve over time and the German military ver-
sions were significantly different than the original design. In reality, "Enigma"
represents a family of cipher machines, but "the Enigma" invariably refers to
the specific German military cipher machine that we discuss here.1

It is estimated that approximately 100,000 Enigma machines were con-
structed, about 40,000 of those during World War II. The version of Enigma
that we describe here was used by the German Army throughout World
War II [104]. The device was used to send tactical battlefield messages and
for high-level strategic communications.

The Enigma was broken by the Allies, and the intelligence it provided
was invaluable—as evidence by its cover name, ULTRA. The Germans had
an unwavering belief that the Enigma was unbreakable, and they continued
to use it for vital communications long after there were clear indications that
it had been compromised. Of course, it's impossible to precisely quantify the
effect of Enigma decrypts on the outcome of the war, but it is not farfetched to
suggest that the intelligence provided by Enigma decrypts may have shortened
the war in Europe by a year, saving hundreds of thousands of lives [308].

6.2.1 Enigma Cipher Machine

A picture of an Enigma cipher machine appears in Figure 2.5 in Chapter 2.
Note the keyboard—essentially, a mechanical typewriter—and the "light-
board" of letters. Analogous to an old-fashioned telephone switchboard, the
front panel has cables that connect pairs of letters. This switchboard (or plug-
board) is known by its German name, stecker. There are also three rotors
visible near the top of the machine.

Before encrypting a message, the operator had to initialize the device. The
initial settings include various rotor settings and the stecker cable pluggings.
These initial settings constitute the key.

1In fact, several variants of "the Enigma" were used by the German military and gov-
ernment. For example, the Army version used three rotors while the Naval version had four
rotors.

170 ADVANCED CRYPTANALYSIS

Once the machine had been initialized, the message was typed on the key-
board and as each plaintext letter was typed, the corresponding ciphertext
letter was illuminated on the lightboard. The ciphertext letters were writ-
ten down as they appeared on the lightboard and subsequently transmitted,
usually by voice over radio.

To decrypt, the recipient's Enigma had to be initialize in exactly the same
way as the sender's. Then when the ciphertext was typed into the keyboard,
the corresponding plaintext letters would appear on the lightboard.

The cryptographically significant components of the Enigma are illus-
trated in Figure 6.1. These components and the ways that they interact are
described below.

Figure 6.1: Enigma Diagram

To encrypt, a plaintext letter is entered on the keyboard. This letter first
passes through the stecker, then, in turn, through each of the three rotors,
through the reflector, back through each of the three rotors, back through
the stecker, and finally, the resulting ciphertext letter is illuminated on the
lightboard. Each rotor—as well as the reflector—consists of a hard-wired
permutation of the 26 letters. Rotors as cryptographic elements are discussed
in detail below in Section 6.2.3.

In the example illustrated in Figure 6.1, the plaintext letter C is typed on
the keyboard, which is mapped to S due to the stecker cable connecting C to S.
The letter S then passes through the rotors, the reflector, and back through
the rotors. The net effect of all the rotors and the reflector is a permutation
of the alphabet. In the example in Figure 6.1, S has been permuted to Z,

6.2 ENIGMA 171

which then becomes L due to the stecker cable between L and Z. Finally, the
letter L is illuminated on the lightboard.

We use the following notation for the various permutations in the Enigma:

Rr = rightmost rotor

Km = middle rotor

Re = leftmost rotor

T = reflector

S = stecker

With this notation, from Figure 6.1 we see that

y = S^R^R^R^TRiRmRrSix)

= (ReRmRrS)-1T(ReRmRr)S{x), (6.1)

where x is a plaintext letter, and y is the corresponding ciphertext letter.
If that's all there were to the Enigma, it would be nothing more than

a glorified simple substitution cipher, with the initial settings determining
the permutation. However, each time a keyboard letter is typed, the right-
most rotor steps one position, and the other rotors step in an odometer-like
fashion—almost [48, 137] ? That is, the middle rotor steps once for each 26
steps of the right rotor and the left rotor steps once for each 26 steps of the
middle rotor. The reflector can be viewed as a fixed rotor since it permutes
the letters, but it doesn't rotate. The overall effect is that the permutation
changes with each letter typed. Note that, due to the odometer effect, the
permutations Rr, Rm, and Re vary, but T and S do not.

Figure 6.2 illustrates the stepping of a single Engima rotor. This example
shows the direction that the rotors step. From the operator's perspective, the
letters appear in alphabetical order.

The Enigma is a substitution cipher where each letter is encrypted based
on a permutation of the alphabet. But the Enigma is far from simple since,
whenever a letter is encrypted (or decrypted), the odometer effect causes
the permutation to change. Such a cipher is known as a poly-alphabetic
substitution cipher. For the Enigma, the number of possible "alphabets"
(i.e., permutations) is enormous.

2The "almost" is due to the mechanical system used to step the rotors, which causes the
middle rotor to occasionally step twice in succession. Whenever a rotor steps, it causes the
rotor to its right to also step. Suppose that the middle rotor just stepped to the position
that engages the ratchet mechanism that will cause the leftmost rotor to step when the next
letter is typed. Then when the next letter is typed, the left rotor will step, and this will also
cause the middle rotor to step again. The middle rotor thereby steps twice in succession,
violating the odometer effect. Note that this same ratcheting mechanism causes the right
rotor to step whenever the middle rotor steps, but since the right rotor already steps for
each letter typed, there is no noticeable effect on the right rotor.

172 ADVANCED CRYPTANALYSIS

Figure 6.2: Enigma Rotor

6.2.2 E n i g m a K e y s p a c e

The cryptographically significant components of the Enigma cipher are the
stecker, the three rotors, and the reflector. The Enigma key consists of the
initial settings for these components when the cipher is used to encrypt or
decrypt a particular message. The variable settings that comprise the key
are:

1. The choice of rotors.

2. The position of a movable ring on each of the two rightmost rotors.
This ring allows the outer part of the rotor (labeled with the 26 letters)
to rotate with respect to the inner part of the ring (where the actual
permutation is wired).3 Rotating this ring shifts the point at which the
odometer effect occurs relative to the letters on the rotors.

3. The initial position of each rotor.

4. The number and plugging of the wires in the stecker.

5. The choice of reflector.

As mentioned above, each rotor implements a permutation of the 26 letters
of the alphabet. The movable rings can be set to any of the 26 positions
corresponding to the letters.

Each rotor is initially set to one of the 26 positions on the rotor, which are
labeled with A through Z. The stecker is similar to an old-fashioned telephone
switchboard, with 26 holes, each labeled with a letter of the alphabet. The
stecker can have from 0 to 13 cables, where each cable connects a pair of
letters. The reflector implements a permutation of the 26 letters, with the
restriction that no letter can be permuted to itself, since this would cause a
short circuit. Consequently, the reflector is equivalent to a stecker with 13
cables.

3This is analogous to rotating the position of a car tire relative to the rim.

6.2 ENIGMA 173

Since there are three rotors, each containing a permutation of the 26

letters, there are

26! · 26! · 26! « 2265

ways to select and place rotors in the machine. In addition, the number of

ways to set the two movable rings—which determine when the odometer-like

effects occurs—is 26 · 26 « 29·4.

The initial position of each of these rotors can be set to any one of 26

positions, so there are 26-26-26 = 2 1 4 1 ways to initialize the rotors. However,

this number should not be included in our count, since the different initial

positions are all equivalent to some other rotor in some standard position.

That is, if we assume that each rotor is initially set to, say, A, then setting a

particular rotor to, say, B, is equivalent to some other rotor initially set to A.

Consequently, the factor of 2265 obtained in the previous paragraph includes

all possible rotors in all possible initial positions.

Finally, we must consider the stecker. Let F(p) be the number of ways to

plug p cables in the stecker. From Problem 2, we have

F (p) = Q ^ (2 p - l) (2 p - 3) 1.

The values of F(p) are tabulated in Table 6.1.

Table 6.1: Stecker Combinations

F(0) =

F (2) *

F (4) *

F (6) f t

F (8) *

F(10)

F(12)

= 2"

i 215-5

i 22 7 ·3

ί 236-5

i 2 4 3 3

« 24 7 ·1

« 24 6 ·5

F (l) *

F(3)*

F(S)*

F (7) «

F (9) *

F (l l)

F(13)

i2 8 - a

i 22 1 ·7

i 23 2 ·2

i 24 υ ·2

i 24 5 ·6

« 247·1

« 242·1

Summing the entries in Table 6.1, we find that there are more than 2 4 8 9

possible stecker configurations. Note that maximum occurs with 11 cables and

that .F(IO) ~ 247·1. As mentioned above, the Enigma reflector is equivalent

to a stecker with 13 cables. Consequently, there are .F(13) « 242·8 different

reflectors.

Combining all of these results, we find that, in principle, the size of the

Enigma keyspace is about

2265 . 29-4 . 248-9 · 242·8 « 2366

That is, the theoretical keyspace of the Enigma is equivalent to a 366 bit

key. Since modern ciphers seldom employ more than a 256 bit key, this

174 ADVANCED CRYPTANALYSIS

gives some indication as to why the Germans had such great—but ultimately
misplaced—confidence in the Enigma.

However, this astronomical number of keys is misleading. From Prob-
lem 1, we see that under the practical limitations of actual use by the German
military, only about 277 Enigma keys were available. This is still an enormous
number and an exhaustive key search would have been out of the question
using 1940s technology. Fortunately for the civilized world, shortcut attacks
exist. But before we discuss an attack, we first take a brief detour to consider
rotors as cryptographic elements.

6.2.3 R o t o r s

Rotors were used in many cipher machines during the first half of the 20th
century—the Enigma is the most famous, but there were many others. An-
other interesting example of a rotor cipher machine is the American World
War II-era machine Sigaba. The Sigaba cipher is a fascinating design that
proved to be much stronger than Enigma. For a detailed cryptanalysis of
Sigaba, see [280] or for a slightly abbreviated version see [284].

From a crypto-engineering standpoint, the appeal of a rotor is that it
is possible to generate a large number of distinct permutations in a robust
manner from a simple electro-mechanical device. Such considerations were
important in the pre-computer era. In fact, the Enigma was an extremely
durable piece of hardware, which was widely used in battlefield situations.

Hardware rotors are easy to understand, but it is slightly awkward to
specify the permutations that correspond to the various positions of the rotor.
A good analysis of these issues can be found in [184]. Here, we briefly discuss
some of the main issues.

For simplicity, consider a rotor with four letters, A through D. Assuming
the signal travels from left to right, the rotor illustrated in Figure 6.3 per-
mutes ABCD to CDBA, that is, A is permuted to C, B is permuted to D, C is
permuted to B, and D is permuted to A. The inverse permutation, DCAB in
our notation, can be obtained by simply passing a signal through the rotors
from right-to-left instead of left-to-right. This is a useful feature, since we can
decrypt with the same hardware used to encrypt. The Enigma takes this one
step further.4 That is, the Enigma machine is its own inverse, which implies
that the same machine with exactly the same settings can be used to encrypt
and decrypt (see Problem 5).

Suppose that the rotor in Figure 6.3 steps once. Note that only the rotor
itself—represented by the rectangle—rotates, not the electrical contacts at
the edge of the rotor. In this example, we assume that the rotor steps "up,"
that is, the contact that was at B is now at A and so on, with the contact

4No pun intended (for a change...).

6.2 ENIGMA 175

Figure 6.3: Rotor

that was at A wrapping around to D. The shift of the rotor in Figure 6.3 is
illustrated in Figure 6.4. The resulting shifted permutation is CADB, which is,
perhaps, not so obvious considering that the original permutation was CDBA.

Figure 6.4: Stepped Rotor

In general, it is not difficult to determine the rotor shift of a permutation.
The crucial point is that it's the offsets, or displacements, that shift. For
example, in the permutation CDBA, the offsets are as follows: The letter A is
permuted to C, which is an offset of 2 positions, the letter B is permuted to D,
which is an offset of 2, the letter C is permuted to B, which is an offset of 3
(around the rotor), and D is permuted to A, which is an offset of 1. That is, the
sequence of offsets for the permutation CDBA is (2,2,3,1). Cyclically shifting
this sequence yields (2,3,1,2), which corresponds to the permutation CADB,
and this is indeed the rotor shift that appears in Figure 6.4.

Again, physical rotors are actually very simple devices, but they are some-
what awkward to deal with in the abstract. For some additional exercise
working with rotors, see Problem 12.

As mentioned above, one of the primary advantages of rotors is that they
provide a simple electro-mechanical means to generate a large number of dif-
ferent permutations. Combining multiple rotors in series increases the num-
ber of permutations exponentially. For example, in Figure 6.5, C is permuted
to A, while a shift of rotor L, denoted by a(L) and illustrated in Figure 6.6,
causes C to be permuted to B. That is, stepping any single rotor changes the
overall permutation.

With this three-rotor scheme, we can generate a cycle of 64 permutations
of the letters ABCD by simply stepping through the 64 settings for the three

176 ADVANCED CRYPTANALYSIS

Figure 6.6: Rotor L Steps

rotors. Of course, not all of these permutations will be unique, since there
are only 24 distinct permutations of the four letters ABCD. Also, by selecting
different initial settings for the rotors, we can generate a different sequence of
permutations. Furthermore, by selecting a different set of rotors (or reorder-
ing the given rotors), we can generate different sequences of permutations.
As with a single rotor, it's easy to obtain the inverse permutations from a
series of rotors by simply passing the signal through the rotors in the opposite
direction. The inverse permutations are needed for decryption.

6.2.4 Enigma Attack

Polish cryptanalysts led by Marian Rejewski, Henryk Zygalski, and Jerzy
Rózycki were the first to successfully attack the Enigma [305]. Their challenge
was greatly complicated by the fact that they did not know which rotors
were in use. Through some clever mathematics, and a small but crucial
piece of espionage [4], they were able to recover the rotor permutations from
ciphertext. This certainly ranks as one of the greatest cryptanalytic successes
of the era.

When Poland fell to the Nazis in 1939, Rejewski, Zygalski, and Rózycki
fled to France. After France fell under the Nazi onslaught, the Poles contin-
ued their cryptanalytic work from unoccupied Vichy France. The brilliant
cryptanalytic work of Rejewski's team eventually made its way to Britain,

6.2 ENIGMA 177

where the British were rightly amazed. A group of British cryptanalysts that
included Gordon Welchman and computing pioneer Alan Turing took up the
Enigma challenge.

The Enigma attack that we describe here is similar to one developed by
Turing, but somewhat simplified. This attack requires known plaintext, which
in World War II terminology was known as a crib.

The essential idea is that, initially, we can ignore the stecker and make a
guess for the remainder of the key! From Problem 1, there are less than 230

such guesses. For each of these, we use information derived from a crib (known
plaintext) to eliminate incorrect guesses. This attack, which has a work factor
on the order 230, could be easily implemented on a modern computer, but it
would have been impractical using World War II technology.

Suppose that we have the plaintext and corresponding ciphertext that
appears in Table 6.2. We make use of this data in the attack described
below.

Table 6.2: Enigma Known Plaintext Example

0 1 2 3 4 5 6 7 8 91011121314151617181920212223
Plaintext

Ciphertext
O B E R K O M M A N D O D E R W E H R M A C H T
Z M G E R F E W M L K M T A W X T S W V U I N Z

Let S(x) be the result of the letter x passing through the stecker from
the keyboard. Then S~1(x) is the result of x passing through the stecker in
the other direction. For a given initial setting, let Pi be the permutation at
step i, that is, Pi is the permutation determined by the composition of the
three rotors, followed by the reflector, followed by the three rotors—in the
opposite direction—at step i. Then, using the notation in equation (6.1), the
overall permutation is given by

Pi = S Rr Rm Rg TRtRmRrS,

where, to simplify the notation, we ignore the dependence of Re, Rm, and Rr
on the step i.

Note that since Pi is a permutation, its inverse, P~ , exists. Also, as
noted above, due to the rotation of the rotors, the permutation varies with
each letter typed. Consequently, Pi does indeed depend on i.

The Enigma attack we present here exploits "cycles" that occur in the
known plaintext and corresponding ciphertext. Consider, for example, the
column labeled 8 in Table 6.2. The plaintext letter A passes through the
stecker, then through P§ and, finally, through S~l to yield the ciphertext M,
that is, S_1P8S(A) = M, which we can rewrite as P8S(A) = S(M).

178 ADVANCED CRYPTANALYSIS

Prom the known plaintext in Table 6.2, we have

P85(A) = S (fi)

P65(M) = 5(E)

P135(E) = 5(A).

These three equations can be combined to yield the cycle

5(E) = P6P8P135(E). (6.2)

Now suppose that we select one of the possible initial settings for the
machine, ignoring the stecker. Then all Pj and P~l that correspond to this
setting are known. Next, suppose that we guess, say, 5(E) = G, that is, we
guess that E and G are connected by a cable in the stecker plugboard. If it's
actually true that the stecker has a wire connecting E and G, and if our guess
for the initial settings of the machine is correct, then from equation (6.2) we
must have

G = P6P8Pi3(G). (6.3)

If we try all 26 choices for 5(E) and equation (6.2) is never satisfied, then
we know that our guess for the rotor settings is incorrect and we can eliminate
this choice. We would like to use this observation to reduce the number of
rotor settings, ideally, to just one. However, if we find any guess for 5(E) for
which equation (6.2) holds, then we cannot rule out the current rotor settings.
Unfortunately, there are 26 possible guesses for 5(E) and, for each, there is
a 1/26 chance that equation (6.2) holds at random. Consequently, we obtain
no reduction in the number of possible keys when using just one cycle.

Fortunately, all is not lost. If we can find an additional cycle involv-
ing 5(E), then we can use this in combination with equation (6.2) to reduce
the number of possible rotor settings. We're in luck, since we can combine
the four equations,

5(E) = P35(R)

5(W) = P145(R)

5(W) = P75(M)

5(E) = P65(M)

to obtain
5(E) = P3Pf4

1P7P6-15(E).

Now if we guess, say, 5(E) = G, we have two equations that must hold if this
guess is correct. There are still 26 choices for 5(E), but with two cycles, there
is only a (1/26)2 chance that they both hold at random. Therefore, with two
cycles in 5(E), we can reduce the number of viable machine settings (that

6.3 RC4 AS USED IN WEP 179

is, keys) by a factor of 26. We can easily develop an attack based on these
observations.

To reiterate, the crucial observation here is that, once we specify the rotor
settings, all permutations PQ,P\, P2, ■ ■ ■ and P^1, P^1, P^1,... are known.
Then if we substitute a putative value for S(E), we can immediately check
the validity of all cycle equations that are available. For an incorrect guess
of S(E) (or incorrect rotor settings) there is a 1/26 chance any given cycle
will hold true. But with n cycles, there is only a (1/26)" chance that all cycle
equations will hold true. Consequently, with n cycles involving 5(E), we can
reduce the number of possible initial rotor settings by a factor of 26n _ 1 . Since
there are only about 230 rotor settings, with enough cycles, we can reduce
the number of possible rotor settings to one, which is the key.

Amazingly, by recovering the initial rotor settings in this manner, stecker
values are also recovered—essentially for free. However, any stecker values
that do not contribute to a cycle will remain unknown, but once the rotor
settings have been determined, the remaining unknown stecker settings are
easy to determine (see Problem 7). It is interesting to note that, in spite
of an enormous number of possible settings, the stecker contributes virtually
nothing to the security of the Enigma.

It is important to realize that the attack described here would have been
impractical using 1940s technology. The practical attacks of World War II
required that the cryptanalyst reduce the number of cases to be tested to a
much smaller number than 230. Many clever techniques were developed to
squeeze as much information as possible from ciphertext. In addition, much
effort was expended finding suitable cribs (i.e., known plaintext) since all of
the practical attacks required known plaintext.

6.3 RC4 as Used in W E P

Suddenly she came upon a little three-legged table, all made of solid glass:
there was nothing on it but a tiny golden key...

— Alice in Wonderland

RC4 is described in Section 3.2.2 of Chapter 3 and WEP is described in
Section 10.6 of Chapter 10. Here, we provide a detailed description of the
cryptanalytic attack that is mentioned in Section 10.6. Note that the RC4
algorithm is considered secure when used properly. However, WEP, which is
widely viewed as the "Swiss cheese" of security protocols, somehow managed
to implement nearly all of its security functions insecurely, including RC4.
As a result, there is a feasible attack on RC4 encryption as used in WEP.
Before studying this attack, you might want to preview Section 10.6.

180 ADVANCED CRYPTANALYSIS

WEP encrypts data with the stream cipher RC4 using a long-term key
that seldom (if ever) changes. To avoid repeated keystreams, an initialization
vector, or IV, is sent in the clear with each message, where each packet is
treated as a new message. The IV is mixed with the long-term key to produce
the message key. The upshot is that the cryptanalyst, Trudy, gets to see
the IVs, and any time an IV repeats, Trudy knows that the same keystream
is being used to encrypt the data. Since the IV is only 24 bits, repeated IVs
occur relatively often. A repeated IV implies a repeated keystream, and a
repeated keystream is bad—at least as bad as reuse of a one-time pad. That
is, a repeated keystream provides statistical information to the attacker who
could then conceivably liberate the keystream from the ciphertext. Once the
keystream for a packet is known, it can be used to decrypt any packet that
uses the same IV.

However, in WEP, there are several possible shortcuts that make an at-
tacker's life easier, as discussed in Section 10.6. Here, we discuss a cryptana-
lytic attack on the RC4 stream cipher as it is used in WEP. Again, this attack
is only possible due to the specific way that WEP uses RC4—specifically, the
way that it creates the session key from an initialization vector IV and the
long-term key.5

This cryptanalytic attack has a small work factor, and it will succeed
provided that a sufficient number of IVs are observed. This clever attack,
which can be considered a type of related key attack, is due to Fluhrer, Mantin,
and Shamir [112].

6.3.1 R C 4 Algori thm

RC4 is simplicity itself. At any given time, the state of the cipher consists of
a lookup table S containing a permutation of all byte values, 0 ,1 ,2 , . . . , 255,
along with two indices i and j . When the cipher is initialized, the permutation
is scrambled using a key, denoted key[i], for i = 0 , 1 , . . . , N — 1, which can be
of any length from 0 to 256 bytes. In the initialization routine, the lookup
table S is modified (based on the key) in such a way that S always contains a
permutation of the the byte values. The RC4 initialization algorithm appears
in Table 6.3.

The RC4 keystream is generated one byte at a time. An index is deter-
mined based on the current contents of S, and the indexed byte is selected
as the keystream byte. Similar to the initialization routine, at each step
the permutation S is modified so that S always contains a permutation of
{0,1 ,2 , . . . , 255}. The keystream generation algorithm appears in Table 6.4.
For more details on the RC4 algorithm, see Section 3.2.2.

5The attack does highlight a shortcoming in the RC4 initialization process—a shortcom-
ing that can be fixed without modifying the underlying RC4 algorithm.

6.3 RC4 AS USED IN WEP 181

Table 6.3: RC4 Initialization

for i = 0 to 255
Si = i
Ki = key[i (mod N)}

next %
j = 0
for i = 0 to 255

j = U + Si + Ki) (mod 256)
s wap (S», Sj)

next i
i = j = Q

Table 6.4: RC4 Keystream Generator

i = {i + l) (mod 256)
J = 0' + Si) (mod 256)
s wap (Si, Sj)
t={Si + Sj) (mod 256)
keystreamByte = St

6.3.2 RC4 Cryptanalytic Attack

In 2000, Fluhrer, Mantin, and Shamir [112] published a practical attack on
RC4 encryption as it is used in WER In WEP, a non-secret 24-bit initializa-
tion vector, denoted as IV, is prepended to a long-term key and the result is
used as the RC4 key. Note that the role of the IV in WEP encryption is some-
what similar to the role that an IV plays in various block cipher encryption
modes (see Section 3.3.7 of Chapter 3). The WEP IV is necessary to prevent
messages from being sent in depth. Recall that two ciphertext messages are
in depth if they were encrypted using the same key. Messages in depth are a
serious threat to a stream cipher.

We assume that Trudy, the cryptanalyst, knows many WEP ciphertext
messages (packets) and their corresponding IVs. Trudy would like to recover
the long-term key. The Fluhrer-Mantin-Shamir attack provides a clever, effi-
cient, and elegant way to do just that. This attack has been successfully used
to break real WEP traffic [294].

Suppose that for a particular message, the three-byte initialization vector
is of the form

IV =(3,255, V), (6.4)

where V can be any byte value. Then these three IV bytes become KQ, K\,

182 ADVANCED CRYPTANALYSIS

and K2 in the RC4 initialization algorithm of Table 6.3, while A3 is the first

byte of the unknown long-term key. That is, the message key is

K= (3,255, V,K3, Ki,...), (6.5)

where V is known to Trudy, but Kz,Ki,K§,... are unknown. To understand

the attack, we need to carefully consider what happens to the table 5 during

the RC4 initialization phase when K is of the form in equation (6.5).

In the RC4 initialization algorithm, which appears in Table 6.3, we first

set S to the identity permutation, so that we have

i

st

0 1 2 3 4 5 . . .

0 1 2 3 4 5 . . .

Suppose that K is of the form in (6.5). Then at the i = 0 initialization step,

we compute the index j = 0 + So + Ko = 3 and elements i and j are swapped,

resulting in the table

i

Si

0 1 2 3 4 5 . . .

3 1 2 0 4 5 . . .

At the next step, i = 1 and , 7 = 3 + 5Ί + .ΚΊ = 3 + 1 + 255 = 3, since the

addition is modulo 256. Elements i and j are again swapped, giving

i

Si

0 1 2 3 4 5 . . .

3 0 2 1 4 5 . . .

At step i = 2 we have j = 3 + S2 + K2 = 3 + 2 + V = 5 + V and after the

swap,

0 1 3 4 5 5 + V

3 0 5 + V 1 4 5 . . . 2

At the next step, i = 3 and j = 5 + V + S3 + K3 = 6 + V + K3, where Ks

is unknown. After swapping, the lookup table is

i

Si

C 1 2

3 0 5 + V

i . . . 5 + V

3 4 5 . . .

6 + ^ + ^3 4 5 . . .

. . . 6 + ^ + ^ 3 · · ·

1

assuming that, after reduction modulo 256, we have 6 + V + K3 > 5 + V. If

this is not the case, then 6 + ^ + ^ 3 will appear to the left of 5 4- V, which

has no effect on the success of the attack.

Now suppose for a moment that the RC4 initialization algorithm were to

stop after the i = 3 step. Then, if we generate the first byte of the keystream

6.3 RC4 AS USED IN WEP 183

according to the algorithm in Table 6.4, we find i = 1 and j = Si = S\ = 0,
so that t = S\ + So = 0 + 3 = 3. Then the first keystream byte would be

keystreamByte = S3 = (6 + V + K3) (mod 256). (6.6)

Assuming that Trudy knows (or can guess) the first byte of the plaintext, she
can determine the first byte of the keystream. If this is the case, Trudy can
simply solve equation (6.6) to obtain the first unknown key byte, since

K3 = (keystreamByte -6-V) (mod 256). (6.7)

Unfortunately (for Trudy), the initialization phase is 256 steps instead
of just four. But notice that as long as So, Si and 53 are not altered in
any subsequent initialization step, then equation (6.7) will hold. What is
the chance that these three elements remain unchanged? The only way that
an element can change is if it is swapped for another element. From i = 4
to i = 255 of the initialization, the i index will not affect any of these elements
since it steps regularly from 4 to 255. If we treat the j index as random, then
at each step the probability that the three indices of concern are all unaffected
is 253/256. The probability that this holds for all of the final 252 initialization
steps is, therefore,

(if —
Consequently, we expect equation (6.7) to hold slightly more than 5% of the
time. Then with a sufficient number of IVs of the form in equation (6.4)
Trudy can determine K3 from equation (6.7), assuming she knows the first
keystream byte in each case.

What is a sufficient number of IVs to recover K3? If we observe n en-
crypted packets, each with an IV of the form in equation (6.4), then we
expect to solve for the actual K3 using equation (6.7) for about 0.05n of
these. For the remaining 0.95n of the cases, we expect the result of the sub-
traction in equation (6.7) to be a random value in {0,1 ,2 , . . . , 255}. Then
the expected number of times that any particular value other than A3 ap-
pears is about 0.95n/256, and the correct value will have an expected count
of 0.05n + 0.95n/256 « 0.05n. We need to choose n large enough so that we
can, with high probability, distinguish K3 from the random "noise." If we
choose n = 60, then we expect to see K3 three times, while it is unlikely that
we will see any random value more than twice (see also Problem 13).

This attack is easily extended to recover the remaining unknown key bytes.
We illustrate the next step—assuming that Trudy has recovered A3, we show
that she can recover the key byte K4. In this case, Trudy will look for
initialization vectors of the form

IY=(4,255,V), (6.8)

184 ADVANCED CRYPTANALYSIS

where V can be any value. Then, at the i = 0 step of the initialization,
j = 0 + 5Q + Kç> = 4 and elements i and j are swapped, resulting in

i
Si

0
4

1
1

2
2

3
3

4
0

5 . . .
5 . . .

At the next step, i = 1 and j = 4 + S\ + K\ = 4 (since the addition is
mod 256) and elements Si and S4 are swapped, giving

0 1 2 3 4 5 . . .
4 0 2 3 1 5 . . .

At step i = 2 we have j = 4 + S2 + Ki = 6 + V, and after the swap

0 1 2 3 4 5 . . . 6 + V . . .
4 0 6 + V 3 1 5 . . . 2

At the next step, i = 3 and j = 5 + V + S3 + K3 = 9 + V + K3, and K3 is
known. After swapping

i
Si

C 1 2
4 0 6 + V

i . . . 6 + V

3 4 5 . . .
9 + V + K3 1 5 . . .

. . . 9 + V + K3 . . .

assuming that 9 + V + K3>6 + V when the sums are taken mod 256.
Carrying this one step further, we have i = A and

j = 9 + V + K3 + S4+K4 = 10 + V + K3 + Ki,

where only K4 is unknown. After swapping, the table S is of the form

i
Si

0 1 2
4 0 6 + V

3
9 + V + K3

4 5 . . .
10 + V + K3 + K4 5 . . .

» . . . 6 + V . . . 9 + Ì/ + ÌÌ3 · · · 10 + ^ + ^ 3 + ^4 · · ·
2 . . . 3 . . . 1

If the initialization were to stop at this point (after the i = 4 step) then
for first byte of the keystream we would find i = 1 and j = Si = Si = 0, so
that t = Si + So = 4 + 0 = 4. The resulting keystream byte would be

keystreamByte = S4 = (10 + V + K3 + K4) (mod 256),

where the only unknown is K4. As a result,

K4 = (keystreamByte - 10 - V - A3) (mod 256). (6.9)

6.3 RC4 AS USED IN WEP 185

Of course, the initialization does not stop after the i = 4 step, but, as

in the K3 case, the chance that equation (6.9) holds is about 0.05. Conse-

quently, with a sufficient number of IVs of the form in equation (6.8), Trudy

can determine K\. Continuing, any number of key bytes can be recovered,

provided enough IVs of the correct form are available and Trudy knows the

first keystream byte of each corresponding packet.

This same technique can be extended to recover additional key bytes,

Κε,,Κβ, In fact, if a sufficient number of packets are available, a key of

any length can be recovered with a trivial amount of work. This is one reason

why WEP is said to be "unsafe at any key size" [321].

Consider once again the attack to recover the first unknown key byte K3.

It is worth noting that some IVs that are not of the form (3,255, V) will

be useful to Trudy. For example, suppose the IV is (2,253,0). Then after

the i = 3 initialization step, the array S is

i

Si

0 1 2 3 4 .

0 2 1 3 + K3 4 .

. 3 + K3 ...

3

If S\, S2, and S3 are not altered in the remaining initialization steps, the first

keystream byte will be 3 +A3, from which Trudy can recover A3. Notice that

for a given three-byte IV, Trudy can compute the initialization up through

the i = 3 step and, by doing so, she can easily determine whether a given IV

will be useful for her attack. Similar comments hold for subsequent key bytes.

By using all of the useful IVs, Trudy can reduce the number of packets she

must observe before recovering the key.

Finally, it is worth noting that it is also possible to recover the RC4 key

if the IV is appended to the unknown key instead of being prepended (as

in WEP); see [195] for the details.

6.3.3 Preventing Attacks on RC4

There are several possible ways to prevent attacks on RC4 that target its

initialization phase. The standard suggestion is to, in effect, add 256 steps

to the initialization process. That is, after the initialization in Table 6.3 has

run its course, generate 256 keystream bytes according to the RC4 keystream

generation algorithm in Table 6.4, discarding these bytes. After this pro-

cess has completed, generate the keystream in the usual way. If the sender

and receiver follow this procedure, the attack discussed in this section is not

feasible. Note that no modification to the inner workings of RC4 is required.

Also, there are many alternative ways to combine the key and IV that

would effectively prevent the attack described in this section; Problem 17

asks for such methods. As with so many other aspects of WEP, its designers

managed to choose one of the most insecure possible approaches to using the

RC4 cipher.

186 ADVANCED CRYPTANALYSIS

6.4 Linear and Differential Cryptanalysis

We sent the [DES] S-boxes off to Washington.
They came back and were all different.

— Alan Konheim, one of the designers of DES

I would say that, contrary to what some people believe, there is no evidence
of tampering with the DES so that the basic design was weakened.

— Adi Shamir

As discussed in Section 3.3.2, the influence of the Data Encryption Stan-
dard (DES) on modern cryptography can't be overestimated. For one thing,
both linear and differential cryptanalysis were developed to attack DES. As
mentioned above, these techniques don't generally yield practical attacks. In-
stead, linear and differential "attacks" point to design weaknesses in block
ciphers. These techniques have become basic analytic tools that are used to
analyze all block ciphers today.

Differential cryptanalysis is, at least in the unclassified realm, due to
Biham and Shamir (yes, that Shamir, yet again) who introduced the technique
in 1990. Subsequently, it has become clear that someone involved in the
design of DES (that is, someone at the National Security Agency) was aware
of differential cryptanalysis prior to the mid 1970s. Note that differential
cryptanalysis is a chosen plaintext attack, which makes it somewhat difficult
to actually apply in the real world.

Linear cryptanalysis was apparently developed by Matsui in 1993. Since
DES was not designed to offer optimal resistance to a sophisticated linear
cryptanalysis attacks, either NSA did not know about the technique in the
1970s, or they were not concerned about such an attack on the DES cipher.
Linear cryptanalysis is slightly more realistic as a real-world attack than
differential cryptanalysis, primarily because it is a known plaintext attack
instead of a chosen plaintext attack.

6.4.1 Quick Review of DES

We don't require all of the details of DES here, so we'll give a simplified
overview that only includes the essential facts that we'll need below. DES
has eight S-boxes, each of which maps six input bits, denoted z o ^ i ^ ^ a ^ s ,
to four output bits, denoted yoViyiys- For example, DES S-box number one,
in hexadecimal notation, appears in Table 6.5.

Figure 6.7 gives a much simplified view of DES, which is sufficient for our
purposes. Below, we are mostly interested in analyzing the nonlinear parts
of DES, so the diagram highlights the fact that the S-boxes are the only

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 187

Table 6.5: DES S-box Number One

X0X5

0

1

2

3

0

E

0

4

F

1

4

F

1

C

2

D

7

E

8

3

1

4

8

2

4

2

£

D

4

5

F

2

6

9

X\X2X%Xi

6 7 8 9

S 8 3 A

D 1 A 6

2 B F C

1 7 5 5

Λ

6

C

9

3

B

C

B

7

E

C

5

9

3

A

D

9

5

A

0

E

0

3

5

6

F

7

4

0

D

nonlinearity in DES. Figure 6.7 also illustrates the way that the subkey Ki

enters into a DES round. This will also be important in the discussion to

follow.

i

1

R

Linear stuff

XC

' ·
S-boxes

'

Linear stuff

'
F ί

K| subkey

Figure 6.7: Simplified View of DES

Next, we'll present a quick overview of differential cryptanalysis followed

by a similar overview of linear cryptanalysis. We'll then present a simplified

version of DES, which we've called Tiny DES, or TDES. We'll present both

linear and differential attacks on TDES.

6.4.2 Overview of Differential Cryptanalysis

Since differential cryptanalysis was developed to analyze DES, let's discuss

it in the context of DES. Recall that all of DES is linear except for the

188 ADVANCED CRYPTANALYSIS

S-boxes. We'll see that the linear parts of DES play a significant role in

its security, however, from a cryptanalytic point of view, the linear parts

are easy. Mathematicians are good at solving linear equations, so it is the

nonlinear parts that represent the major cryptanalytic hurdles. As a result,

both differential and linear cryptanalysis are focused on dealing with the

nonlinear parts of DES, namely, the S-boxes.

The idea behind a differential attack is to compare input and output

differences. For simplicity, we'll first consider a simplified S-box. Suppose

that a DES-like cipher uses the 3-bit to 2-bit S-box

column

row

0

1

00

10

00

01

01

10

10

11

01

11

00

11

where, for input bits XQXIX2, the bit XQ indexes the row, while x\x2 indexes

the column. Then, for example, Sbox(010) = 11, since the bits in row 0 and

column 10 are 11.

Consider the two inputs, X\ = 110 and X2 = 010, and suppose the key

is K = 011. Then Χχ®Κ= 101 and X2®K = 001 and we have

Sbox(Xi ® K) = 10 and Sbox(X2 θ Κ) = 01. (6.11)

Now suppose that K in equation (6.11) is unknown, but the inputs,

namely, X\ = 110 and X2 = 010, are known as well as the corresponding

outputs Sbox(X! φ K) = 10 and Sbox(X2 θ Κ) = 01. Then from the S-box

in (6.10) we see that Xi φ K e {000,101} and X2®K e {001,110}. Since Xx

and X2 are known, we have that

K e {110,011} n {011,100}

which implies that K = 011. This "attack" is essentially a known plaintext

attack on the single S-box in (6.10) for the key K. The same approach will

work on a single DES S-box.

However, attacking one S-box in one round of DES does not appear to

be particularly useful. In addition, the attacker will not know the input to

any round except for the first, and the attacker will not know the output of

any round but the last. The intermediate rounds appear to be beyond the

purview of the cryptanalyst.

For this approach to prove useful in analyzing DES, we must be able to

extend the attack to one complete round, that is, we must take into account

all eight S-boxes simultaneously. Once we have extended the attack to one

round, we must then extend the attack to multiple rounds. On the surface,

both of these appear to be daunting tasks.

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 189

However, we'll see that by focusing on input and output differences, it

becomes easy to make some S-boxes "active" and others "inactive." As a

result, we can, in some cases, extend the attack to a single round. To then

extend the attack to multiple rounds, we must choose the input difference

so that the output difference is in a useful form for the next round. This is

challenging and depends on the specific properties of the S-boxes, as well as

the linear mixing that occurs at each round.

The crucial point here is that we'll focus on input and output differences.

Suppose we know inputs X\ and X2. Then for input X\, the actual input to

the S-box is X\ Θ K and for input X2 the actual input to S-box is X2 θ Κ,

where the key K is unknown. Differences are defined modulo 2, implying that

the difference operation is the same as the sum operation, namely, XOR. Then

the S-box input difference is

(Xi θ Κ) Θ (X2 ®K) = X1® X2. (6.12)

Note that the input difference is independent of the key K. This is the

fundamental observation that enables differential cryptanalysis to work.

Let Y1 = Sbox(Xi Θ K) and let Y2 = Sbox(X2 θ Κ). Then the output

difference Y\ Θ Y2 is almost the input difference to next round. The goal

is to carefully construct the input difference, so that we can "chain" differ-

ences through multiple rounds. Since the input difference is independent of

the key—and since differential cryptanalysis is a chosen plaintext attack—we

have the freedom to choose the inputs so that the output difference has any

particular form that we desire.

Another crucial element of a differential attack is that an S-box input

difference of zero always results in an output difference of zero. Why is this

the case? An input difference of zero simply means that the input values,

say, X\ and X2, are the same, in which case the output values Y\ and Y2

must be the same, that is, Y\ φ Υ2 = 0. The importance of this elementary

observation is that we can make S-boxes "inactive" with respect to differential

cryptanalysis by choosing their input differences to be zero.

A final observation is that it is not necessary that things happen with

certainty. In other words, if an outcome only occurs with some nontrivial

probability, then we may be able to develop a probabilistic attack that will

still prove useful in recovering the key.

Given any S-box, we can analyze it for useful input differences as follows.

For each possible input value X, find all pairs X\ and X2 such that

X = X1 Θ X2

and compute the corresponding output differences

Y = Yi®Y2,

190 ADVANCED CRYPTANALYSIS

where
Yi = Sbox(Xi) and Y2 = Sbox(Xi).

By tabulating the resulting counts, we can find the most biased input val-

ues. For example for the S-box in (6.10), this analysis yields the results in

Table 6.6.

Table 6.6: S-box Difference Analysis

Xi®X2

000

001

010

011

100

101

110

111

Sbox(Xi) Θ Sbox(X2)

00 01

8 0

0 0

0 8

0 0

0 0

4 4

0 0

4 4

10 11

0 0

4 4

0 0

4 4

4 4

0 0

4 4

0 0

For any S-box, an input difference of 000 is not interesting—the input

values are the same and the S-box is "inactive" (with respect to differences),

since the output values must be the same. For the example in Table 6.6,

an input difference of 010 always gives an output of 01, which is the most

biased possible result. And, as noted in equation (6.12), by selecting, say,

X\ θ Χ2 = 010, the actual input difference to the S-box would be 010 since

the key K drops out of the difference.

Differential cryptanalysis of DES is fairly complex. To illustrate the tech-

nique more concretely, but without all of the complexity inherent in DES,

we'll present a scaled-down version of DES that we call Tiny DES, or TDES.

Then we'll perform differential and linear cryptanalysis on TDES. But first

we present a quick overview of linear cryptanalysis.

6.4.3 Overview of Linear Cryptanalysis

Ironically, linear cryptanalysis—like differential cryptanalysis—is focused on

the nonlinear part of a block cipher. Although linear cryptanalysis was de-

veloped a few years after differential cryptanalysis, it's conceptually simpler,

it's more effective on DES, and it only requires known plaintext—as opposed

to chosen plaintext.

In differential cryptanalysis, we focused on input and output differences.

In linear cryptanalysis, the objective is to approximate the nonlinear part

of a cipher with linear equations. Since mathematicians are good at solving

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 191

linear equations, if we can find such approximations, it stands to reason that

we can use these to attack the cipher. Since the only nonlinear part of DES

is its S-boxes, linear cryptanalysis will be focused on the S-boxes.

Consider again the simple S-box in (6.10). We denote the three input

bits as XQX\X2 and the two output bits as yoyi- Then XQ determines the row,

and x\X2 determines the column. In Table 6.7, we've tabulated the number

of values for which each possible linear approximation holds. Note that any

table entry that is not 4 indicates a nonrandom output.

Table 6.7: S-box Linear Analysis

input bits

0

x0

Χχ

XI

X0 ®Xl

X0 ®X2

Xl ®X2

Ι θ Φ ΐ ΐ ® Χ2

2/0
4

4

4

4

4

0

4

4

output bits

2/1 2/o Θ 2/1
4

4

6

4

2

4

6

6

4

4

2

4

2

4

6

2

The results in Table 6.7 show that, for example, yo = ^ο Θ X2 Θ 1 with

probability 1 and yo φ y\ = x\ Θ X2 with probability 3/4. Using information

such as this, in our analysis we can replace the S-boxes by linear functions.

The result is that, in effect, we've traded the nonlinear S-boxes for linear

equations, where the linear equations do not hold with certainty, but instead

the equations hold with some nontrivial probability.

For these linear approximations to be useful in attacking a block cipher

such as DES, we'll try to extend this approach so that we can solve linear

equations for the key. As with differential cryptanalysis, we must somehow

"chain" these results through multiple rounds.

How well can we approximate a DES S-box with linear functions? Each

DES S-boxes was designed so that no linear combination of inputs is a good

approximation to a single output bit. However, there are linear combinations

of output bits that can be approximated by linear combinations of input bits.

As a result, there is potential for success in the linear cryptanalysis of DES.

As with differential cryptanalysis, the linear cryptanalysis of DES is com-

plex. To illustrate a linear attack, we'll next describe TDES, a scaled-down

DES-like cipher. Then we'll perform differential and linear cryptanalysis on

TDES.

192 ADVANCED CRYPTANALYSIS

6.4.4 Tiny D E S

Tiny DES, or TDES, is a DES-like cipher that is simpler and easier to analyze
than DES. TDES was designed by your contriving author to make linear and
differential attacks easy to study—it is a contrived cipher that is trivial to
break. Yet it's similar enough to DES to illustrate the principles.

TDES is a much simplified version of DES with the following numerology.

• A 16-bit block size

• A 16-bit key size

• Four rounds

• Two S-boxes, each mapping 6 bits to 4 bits

• A 12-bit subkey in each round

TDES has no P-box, initial or final permutation. Essentially, we have elimi-
nated all features of DES that contribute nothing to its security, while at the
same time scaling down the block and key sizes.

Note that the small key and block sizes imply that TDES cannot offer any
real security, regardless of the underlying algorithm. Nevertheless, TDES will
be a useful design for illustrating linear and differential attacks, as well as the
larger issues of block cipher design.

TDES is a Feistel cipher and we denote the plaintext as (Lo,Ro). Then
for i = 1,2,3,4,

Li = Ri-i

Ri=Li-i®F(Ri-1,Ki)

where the ciphertext is {L^Ri). A single round of TDES is illustrated in
Figure 6.8, where the numbers of bits are indicated on each line. Next, we'll
completely describe all of the pieces of the TDES algorithm.

TDES has two S-boxes, denoted SboxLeft(X) and SboxRight(X). Both
S-boxes map 6 bits to 4 bits, as in standard DES. The parts of TDES that
we'll be most interested in are the S-boxes and their input. To simplify the
notation, we'll define the function

F(R, K) = Sboxes(expand(Ä) Θ K), (6.13)

where

Sboxes(:ro:Ei:E2 . . . xn) = (SboxLef t(:co:Ei... £5), SboxRight(a;6Z7 . . . xn)).

The expansion permutation is given by

expand(i?) = expand(rori... r-j) = {ri^rirxr^rjrar^rQr^rQrz). (6-14)

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 193

L R

ί '

key

expand shift

12

XOR*
K,

12

8 / \

L

SboxLeft

4

'

SboxRight

\/<

XOR

R

8

shift

8 8

\compresi

key

Figure 6.8: One Round of Tiny DES

We denote the left TDES S-box by SboxLeft(X). In hexadecimal, this

S-box is

(6.15)

X0X5

0

1

2

3

0 1 2 3

6 9 A 3

9 E B A

8 1 C 2

9 0 2 5

4

4

4

D

A

5

D

5

3

D

6 7 89ABCDEF

7 8 E 1 2 B 5 C F 0

0 7 8 6 3 2 C D 1 F

E F 0 9 5 A 4 B 6 7

6 E 1 8 B C 3 4 7 F

whereas the right S-box, SboxRight (X), is

:ΕΙ:Τ2:Τ3:Τ4

Z0Z5

0

1

2

3

0 1 2 3 4

C 5 0 A E

1 C 9 6 3

F A E 6 D

0 A 3 C 8

5

7

£

8

2

6

2

£

2

1

7

8

2

4

£7

8 9 , 4 . B C . D £ F

D 4 3 9 6 F 1 S

F 8 4 5 D A 0 7

1 7 9 0 3 5 B C

9 7 F 6 B 5 D A

(6.16)

As with DES, each row in a TDES S-box is a permutation of the hexadecimal

digits 0 ,1 ,2 , . . . ,E,F.

The TDES key schedule is very simple. The 16-bit key is denoted

K = kokikihkik^k^kikQkwkiik^ki^kinki^

194 ADVANCED CRYPTANALYSIS

and the subkey is generated as follows. Let

LK = k(jk\... ki

RK = kskg ... /eis

and for each round i = 1,2,3,4,

LK = rotate LK left by 2

RK = rotate RK left by 1.

Then Ki is obtained by selecting bits 0,2,3,4,5, 7,9,10,11,13,14, and 15 of

the current (LK,RK). The subkeys Ki can be given explicitly as follows:

K\ = k2k4k5kekYkikioknknkuki5k8

K2 = kikekrkohkzknknkukisksfa

Kz = kek0kik2k3k5ki2ki3kukskgki0

Ki = k0k2k3k4k5k7ki3ki4ki5kgkiokn.

In the next section, we'll describe a differential attack on TDES. After

that, we'll describe a linear attack on TDES. These attacks illustrate the

crucial principles that apply to differential and linear cryptanalysis of DES

and other block ciphers.

6.4.5 Differential Cryptanalysis of T D E S

Our differential attack on TDES will focus on the right S-box, which appears

above in (6.16). Suppose that we tabulate SboxRight(Xi) SSboxRight(X2)

for all pairs X1 and X2, where Χχ Θ X2 = 001000. Then we find that

X1@X2 = 001000 =*> SboxRight^x) φ SboxRight(X2) = 0010 (6.17)

with probability 3/4. Recall that for any S-box,

Xx e X2 = 000000 =*► SboxRight(Xi)eSboxRight(X2) = 0000. (6.18)

Our goal is to make use of these observations to develop a viable differential
attack on TDES.

Differential cryptanalysis is a chosen plaintext attack. Suppose we encrypt
two chosen plaintext blocks, P = (L, R) and P = (L, R) that satisfy

P θ P = (L, R) Θ (L, R) = 0000 0000 0000 0010 = 0x0002. (6.19)

Then P and P differ in the one specified bit and agree in all other bit posi-

tions. Let's carefully analyze what happens to this difference as P and P are

encrypted with TDES.

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 195

First, consider

F(R, K) Θ F(R, Κ) = Sboxes(expand(.R) φ Κ) φ Sboxes(expand(ß) θ Κ).

From the definition of expand in (6.14) we see that

expand(0000 0010) = 000000 001000.

Since expand is linear, if Χχ φ Χ2 = 0000 0010 then

expand(Xi) Θ expand(X2) = expand(Xi θ Χ2)

= expand(0000 0010)

= 000000 001000. (6.20)

For the chosen plaintext in equation (6.19) we have R®R = 0000 0010. Then

from the observation in equation (6.20) it follows that

F{R, K) e F(R, K) = Sboxes(expand(Ä) @K)® Sboxes(expand(Ä) φ Κ)

= (SboxLef t(A Θ K), SboxRight(5 θ Κ))

Θ (SboxLef t(Ä Θ K), SboxRight(ß φ Κ))

= (SboxLef t(A Θ K) φ SboxLef t(Ä ®K)),

(SboxRight(ß ®Κ)φ SboxRight(5 θ Κ)),

where A φ Ä = 000000 and B θ Β = 001000. This result, together with

equations (6.17) and (6.18), imply

F{R, K) Θ F(R, K) = 0000 0010

with probability 3/4.

In summary, if R Θ R = 0000 0010, then for any (unknown) subkey K,

we have

F{R, K) Θ F(R, K) = 0000 0010 (6.21)

with probability 3/4. In other words, for certain input values, the output

difference of the round function is the same as the input difference, with a

high probability. Next, we'll show that we can chain this results through

multiple rounds of TDES.

Since differential cryptanalysis is a chosen plaintext attack, we'll choose P

and P to satisfy equation (6.19). In Table 6.8, we carefully analyze the TDES

encryption of such plaintext values. By the choice of P and P, we have

Ro Θ Ro = 0000 0010 and L0 Θ L0 = 0000 0000.

Then from equation (6.21),

Äi Θ Ri = 0000 0010

196 ADVANCED CRYPTANALYSIS

with probability 3/4. From this result it follows that

R2 Θ Ri = (Li Θ F{Ri, Κ2)) θ (Li θ F{R1,K2))

= {L1®L1)®(F{R1,K2)®F{Rl,K2))

= {Ro®Ro)®{F{R1,K2)(BF{R1,K2))

= 0000 0010 θ 0000 0010

= 0000 0000

with probability (3/4)2 = 9/16 = 0.5625. The results given in Table 6.8 for

R3 Θ R3 and Ri ® R4 are obtained in a similar manner.

Table 6.8: Differential Cryptanalysis of TDES

{LQ,RQ) = P

Li = Ro

Ri=L0®F{Ro,Ki)

L2 = Ri

R2 = Li®F{Ri,K2)

L3 = R2

R3=L2®F{R2,K3)

Li = Rs

Ri = L3®F{R3,K4)

C = {Li,Ri)

{L0,Ro) = P

Li = R0

Ri=L0®F{Ro,Ki)

L2 = i?l

R2 = Li®F{Ri,K2)

L3 = -R2
R3 = L2®F{R2,K3)

Li = A3

Ri=L3®F{R3,K4)

C — {Li, Ri)

P®P = 0x0002

{Li, Ri) ®{Li,Ri)= 0x0202

{L2,R2)®{L2,R2) = 0x0200

{L3, R3) ®{L3,R3)= 0x0002

{Li, R4) ® {L4, R4) = 0x0202

C Φ C = 0x0202

Prob.

3/4

(3/4)2

(3/4)2

(3/4)3

We can derive an algorithm from Table 6.8 to recover some of the un-

known key bits. We'll choose P and P as in equation (6.19) and obtain the

corresponding ciphertext C and C. Since TDES is a Feistel cipher,

R4 = L3®F{R3,K4) and R4 = L3 ®F{R3,K4).

In addition, L4 = R3 and £4 = R3. Consequently,

R4 = L3 0 F{LA, KA) and R4 = L3® F{L4,KA),

which can be rewritten as

L3 = Ri Θ F{LA, Ki) and L3 = R4 Θ F(L4 , X4).

Now if

C®C = 0x0202, (6.22)

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 197

then from Table 6.8 we almost certainly have L3 0 L3 = 0000 0000, that is,

L3 = L3. It follows that

R4 Θ F{L4, K4) = R4 Θ F{L4, K4)

which we rewrite as

R4 Θ R4 = F{L4, K4) e F(L4, K4). (6.23)

Note that, in equation (6.23), the only unknown is the subkey K4. Next, we

show how to use this result to recover some of the bits of K4.

For a chosen plaintext pair that satisfies equation (6.19), if the resulting

ciphertext pairs satisfy equation (6.22), then we know that equation (6.23)

holds. Then since

C Θ C = (L4, -R4) Θ {L4, R4) = 0x0202,

we have

R4 Θ R4 = 0000 0010 (6.24)

and we also have

L4 Θ L4 = 0000 0010. (6.25)

Let

L4 = W1W3W5W7 and L4 = ïdxhhïdddi■

Then equation (6.25) implies that ti = U for i = 0,1,2,3,4,5, 7 and £Q ψ ί§.

Now substituting equation (6.24) into equation (6.23) and expanding the

definition of F, we find

0000 0010 = (sboxLef ί(£4ί7£2£ι^7 Θ k0k2k3k4k5k7),

SboxRight(Islildddi, Φ Α^ιΑδΑ^ιοΑίι ι))

Θ (sboxLeft(£4^2^i4^7 Θ k0k2k3k4k5k7),

SboxRight{ïohhldoh Θ fci3fci4fci5fc9fciofcii)). (6.26)

The left four bits of equation (6.26) give us

0000 = SboxLef t (£4^24^7 Θ kQk2k3k4k5k7)

Θ SboxLef t{i4i7i2hhh Θ k0k2k3k4k5k7),

which holds for any choice of the bits kok2k3k4ksk7, since 4 = li for all ί φ 6.

Therefore, we gain no information about the subkey K4 from the left S-box.

198 ADVANCED CRYPTANALYSIS

On the other hand, the right four bits of equation (6.26) give us

0010 = S b o x R i g h t (4 4 4 4 4 4 Θ k13kuki5k9kwku)

Θ S b o x R i g h t (4 4 4 4 4 4 Θ kukuki5k9kwkn), (6-27)

which must hold for the correct choice of subkey bits kukuki^kgkiokn and

will only hold with some probability for an incorrect choice of these subkey

bits. Since the right S-box and the bits of L4 and L4 are known, we can

determine the unknown subkey bits that appear in equation (6.27). The

algorithm for recovering these key bits is given in Table 6.9.

Table 6.9: Algorithm to Recover Subkey Bits

count[z] = 0, for i = 0 , 1 , . . . , 63

for i = 1 to iterations

Choose P and P with P Θ P = 0x0002

Obtain corresponding C = CQC\ ... C15 and C = coci. . . C15

if C Θ C = 0x0202 then

li — Ci and £; = Cj for i = 0 , 1 , . . . , 7

for K = 0 to 63

if 0010 = = (SboxRight (4 4 4 4 4 4 Θ K)

Θ S b o x R i g h t (4 4 4 4 4 4 Θ K)) then

increment count [K]

end if

next K

end if

next i

Each time the for loop in Table 6.9 is executed, count[K] will be incre-

mented for the correct subkey bits, that is, for K = k\zkuk\^kgkiokii, while

for other indices K the count will be incremented with some probability.

Consequently, the maximum counts indicate possible subkey values. There

may be more than one such maximum count, but with a sufficient number of

iterations, the number of such counts should be small.

In one particular test case of the algorithm in Table 6.9, we generated 100

pairs P and P that satisfy P Θ P = 0x0002. We found that 47 of the

resulting ciphertext pairs satisfied C Θ C = 0x0202, and for each of these we

tried all 64 possible 6-bit subkeys as required by the algorithm in Table 6.9.

In this experiment, we found that each of the four putative subkeys 000001,

001001, 110000, and 000111 had the maximum count of 47, while no other

had a count greater than 39. We conclude that subkey K4 must be one of

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 199

these four values. Then from the definition of K\ we have

ki3kuki5k9kwkn € {000001,001001,110000,111000},

which is equivalent to

kl3kuk9kiokn e {00001,11000}. (6.28)

In this case, the key is

K = 1010 1001 1000 0111,

so that fci3fci4fcgfcio/cii = 11000, which appears in equation (6.28), as ex-
pected.

Of course, if we're the attacker, we don't know the key, so, to complete the
recovery of K, we could exhaustively search over the remaining 211 unknown
key bits, and for each of these try both of the possibilities in equation (6.28).
For each of these 212 putative keys K, we would try to decrypt the ciphertext,
and for the correct key, we will recover the plaintext. We expect to try about
half of the possibilities—about 211 keys—before finding the correct key K.

The total expected work to recover the entire key K by this method is
about 211 encryptions, plus the work required for the differential attack, which
is insignificant in comparison. As a result, we can recover the entire 16-bit
key with a work factor of about 211 encryptions, which is much better than
an exhaustive key search, since an exhaustive search has an expected work
of 215 encryptions. This shows that a shortcut attack exists, and as a result
TDES is insecure.

6.4.6 Linear Cryptanalysis of T D E S

The linear cryptanalysis of TDES is simpler than the differential cryptanal-
ysis. Whereas the differential cryptanalysis of TDES focused on the right
S-box, our linear cryptanalysis attack will focus on the left S-box, which
appears above in (6.15).

With the notation

Î/0Z/1Î/2Z/3 = Sb0-X.L&tt{xQXiX2X3XiXÎ,),

it's easy to verify that for the left S-box of TDES, the linear approximations

yi = x2 and y2 = X3 (6.29)

each hold with probability 3/4. To develop a linear attack based on these
equations, we must be able to chain these results through multiple rounds.

200 ADVANCED CRYPTANALYSIS

Denote the plaintext by P = (LO,RQ) and let RQ = ΓΟΓΙΓ2Γ3Γ4Γ5Γ6Γ7·

Then the expansion permutation is given by

expand(iîo) = expaxLd(rorir2r3r4r5r6r7) = Τ4Τ1Τ2Τ\τ^τ-ΐΤοΤ2^τ^τΰτ^. (6.30)

From the definition of F in equation (6.13), we see that the input to the S-

boxes in round one is given by expand(i?o) @K\. Then, from equation (6.30)

and the definition of subkey Κχ, we see that the input to the left S-box in

round one is

Γ4Γ7Γ2ΓιΓ5Γ7 φ k^kik^k-jki.

Let 2/02/12/22/3 be the round-one output of the left S-box. Then equa-

tion (6.29) implies that

2/1 = r2 Θ fc5 and 2/2 = n Θ k6, (6.31)

where each equality holds with probability 3/4. In other words, for the left

S-box, output bit number 1 is input bit number 2, XORed with a bit of key,

and output bit number 2 is input bit number 1, XORed with a key bit, where

each of these hold with probability 3/4.

In TDES (as in DES) the output of the S-boxes is XORed with the bits

of the old left half. Let LQ = ^o î̂ 2^3^4^5^6^7 and let R\ = f^f^f^ifh^T·

Then the the output of the left S-box from round one is XORed with £o^i^3

to yield f o r ^ r ^ . Combining this notation with equation (6.31), we have

h = r2 Θ h Θ t\ and f2 = n Θ k6 Θ £2, (6.32)

where each of these equations holds with probability 3/4. An analogous

result holds for subsequent rounds, where the specific key bits depend on the

subkey Ki.

As a result of equation (6.32), we can chain the linear approximation in

equation (6.29) through multiple rounds. This is illustrated in Table 6.10.

Since linear cryptanalysis is a known plaintext attack, the attacker knows the

plaintext P = P0P1P2 ■ ■ -Pis and corresponding ciphertext C = CQC\C2 ■ ■ ■ C15.
The final row in Table 6.10 follows from the fact L4 = C0C1C2C3C4C5C6C7.

We can rewrite these equations as

fco Θ fci = α Θ pio (6.33)

and

k7®k2 = C2®p$ (6.34)

where both hold with probability (3/4)3. Since c\, c2, pg, and pio are all

known, we have obtained some information about the key bits fco, fci, k2,

and fc7.

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 201

Table 6.10: Linear Cryptanalysis of TDES

(L0,Ro) = (ρο-··Ρ7,Ρ8·

Li = Ro
R1=L0®F(R0,K1)

Li = R\

R2 = L1®F(R1,K2)

L% = R2

R3 = L2®F{R2,K3)

Li = R3

R4 = L3®F{R3,K4)

C = {L4,R4)

•Pis) Bits 1 and 2 (numbered from 0)

Ρθ,Ριο
Pi Θ Pio ® fa, p2®pg®k6

Pi Θ Pio Θ fa, p2®P9®k6

P2®k6®k7, pi ®k5®k0

P2®k6®k7, pi ®k5®k0

Pio ®k0® fa, pg®k7® k2

Pio® ko® fa, p9®k7®k2

c\ = Pio Θ k0 Θ fa, c2 =pg®k7® k2

Probability

1

3/4

3/4

(3/4)2

(3/4)2

(3/4)3

(3/4)3

(3/4)3

It's easy to implement a linear attack based on the results in Table 6.10.

We are given the known plaintexts P = P0P1P2 ■ ■ ■ P15 along with the corre-
sponding ciphertext C = c®c\C2 .. .C15. For each such pair, we increment a
counter depending on whether

c\ Θ Pio = 0 or ci Θ Pio = 1

and another counter depending on whether

C2 Θ P9 = 0 Or C2 Θ P9 = 1·

Using 100 known plaintexts the following results were obtained:

c\ Θ pio = 0 occurred 38 times

ci Θ pio = 1 occurred 62 times

C2 θ Ρ9 = 0 occurred 62 times

C2 θ Ρ9 = 1 occurred 38 times.

In this case, we conclude from equation (6.33) that

fco ® fa = 1

and from equation (6.34) that

k7 φ fc2 = 0.

In this example, the actual key is

K = 1010 0011 0101 0110,

202 ADVANCED CRYPTANALYSIS

and it's easily verified that ko Θ k\ = 1 and kj φ fo = 0 as we determined via

the linear attack.

In this linear attack, we have only recovered the equivalent of two bits

of information. To recover the entire key K, we could do an exhaustive key

search for the remaining unknown bits. This would require an expected work

of about 213 encryptions and the work for the linear attack, which is negligible

in comparison. While this may not seem too significant, it is a shortcut attack,

and so it shows that TDES is insecure according to our definition.

6.4.7 Implications Block Cipher Des ign

Since there is no way to prove that a practical cipher is secure and since it's

difficult to protect against unknown attacks, cryptographers focus on prevent-

ing known attacks. For block ciphers, the known attacks are, primarily, linear

and differential cryptanalysis—and variations on these approaches. Thus the

primary goal in block cipher design is to make linear and differential attacks

infeasible.

How can cryptographers make linear and differential attacks more diffi-

cult? For an iterated block cipher, there is a fundamental trade-off between

the number of rounds and the complexity of each round. That is, a simple

round function will generally require a larger number of rounds to achieve

the same degree of confusion and diffusion as a more complex function could

achieve in fewer iterations.

In both linear and differential attacks, any one-round success probability

that is less than 1 will almost certainly diminish with each subsequent round.

Consequently, all else being equal, a block cipher with more rounds will be

more secure from linear and differential attacks.

Another way to make linear and differential attacks more difficult is to

have a high degree of confusion. That is, we can strive to reduce the success

probability per round. For a DES-like cipher, this is equivalent to building

better S-boxes. All else being equal—which it never is—more confusion means

more security.

On the other hand, better diffusion will also tend to make linear and

differential attacks harder to mount. In both types of attacks, it is necessary

to chain results through multiple rounds, and better diffusion will make it

harder to connect one-round successes into usable chains.

In TDES, the number of rounds is small, and, as a result, the one-round

success probabilities are not sufficiently diminished during encryption. Also,

the TDES S-boxes are poorly designed, resulting in limited confusion. Finally,

the TDES expand permutation—the only source of diffusion in the cipher—

does a poor job of mixing the bits of one round into the next round. All of

these combine to yield a cipher that is highly susceptible to both linear and

differential attacks.

6.5 LATTICE REDUCTION AND THE KNAPSACK 203

To complicate the lives of block cipher designers, they must construct

ciphers that are secure and efficient. One of the fundamental issues that

block cipher designers must contend with is the inherent trade-off between the

number of rounds and the complexity of each round. That is, a block cipher

with a simple round structure will tend to provide limited mixing (diffusion)

and limited nonlinearity (confusion), and consequently more rounds will be

required.

The Tiny Encryption Algorithm (TEA) is a good example of a block

cipher with a simple round structure. Since each round of TEA is extremely

simple, the resulting confusion and diffusion properties are fairly weak, which

necessitates a large number of rounds. At the other extreme, each round

of the Advanced Encryption Standard (AES) has strong linear mixing and

excellent nonlinear properties. So a relatively small number of AES rounds

are needed, but each AES round is more complex than a round of TEA.

Finally, DES could be viewed as residing in between these two extremes.

6.5 Lattice Reduction and the Knapsack

Every private in the French army carries a Field Marshal wand in his knapsack.

— Napoleon Bonaparte

In this section we present the details of the attack on the original Merkle-

Hellman knapsack cryptosystem. This knapsack cryptosystem is discussed in

Section 4.2 of Chapter 4. For a more rigorous (but still readable) presentation

of the attack discussed here, see [175]. Note that some elementary linear

algebra is required in this section. The Appendix contains a review of the

necessary material.

Let b\,b2,...,bn be vectors in Rm, that is, each bi is a (column) vector

consisting of exactly m real numbers. A lattice is the set of all multiples of

the vector 6j of the form

otibi + αφι Λ l· anbn,

where each a; in an integer.

For example, consider the vectors

" - 1 '

1 and 62 =
" 1 "

2

Since 61 and 62 are linearly independent, any point in the plane can be written

as Ct\b\ + ο,φι for some real numbers a.\ and OLI- We say that the plane R2

is spanned by the pair (61, 62)· If we restrict a\ and c*2 to integers, then the

resulting span, that is, all points of the form cciòi +0:262) is a lattice. A lattice

204 ADVANCED CRYPTANALYSIS

consists of a discrete set of points. For example, the lattice spanned by the
the vectors in equation (6.35) is illustrated in Figure 6.9.

Figure 6.9: A Lattice in the Plane

Many combinatorial problems can be reduced to the problem of finding a
"short" vector in a lattice. The knapsack is one such problem. Short vectors
in a lattice can be found using a technique known as lattice reduction.

Before discussing the lattice reduction attack on the knapsack, let's first
consider another combinatorial problem that can be solved using this tech-
nique. The problem that we'll consider is the exact cover, which can be stated
as follows. Given a set S and a collection of subsets of S, find a collection
of these subsets where each element of S is in exactly one subset. It's not
always possible to find such a collection of subsets, but if it is, we'll see that
the solution is a short vector in a particular lattice.

Consider the following example of the exact cover problem. Let

S = {0,1,2,3,4,5,6}

and suppose we are given 13 subsets of S, which we label so through sn as
follows:

so = {0,1,3}, S! = {0,1,5}, S2 = {0,2,4}, s3 = {0,2,5},

S4 = {0,3,6}, s5 = {1,2,4}, s6 = {1,2,6}, s7 = {1,3,5},

s8 = {l,4,6},s9 = {l},sio = {2,5,6},sii = {3,4,5},si2 = {3,4,6}.

Denote the number of elements of S by m and the number of subsets by n.
In this example, we have m = 7 and n = 13. Can we find a collection of
these 13 subsets where each element of S is in exactly one subset?

There are 213 different collections of the 13 subsets, so we could exhaus-
tively search through all possible collections until we find such a collection—or

6.5 LATTICE REDUCTION AND THE KNAPSACK 205

until we've tried them all, in which case we would conclude that no such col-

lection exists. But if there are too many subsets, then we need an alternative

approach.

One alternative is to try a heuristic search technique. There are many

different types of heuristic search strategies, but what they all have in common

is that they search through the set of possible solutions in a nonrandom

manner. The goal of such a search strategy is to search in a "smart" way to

improve the odds of finding a solution sooner than an exhaustive search.

Lattice reduction can be viewed as a form of heuristic search. As a result,

we are not assured of finding a solution using lattice reduction, but for many

problems this techniques yields a solution with a high probability, yet the

work required is small in comparison to an exhaustive search.

Before we can apply the lattice reduction method, we first need to rewrite

the exact cover problem in matrix form. We define an m x n matrix A,

where α̂ - = 1 if element i of S is in subset Sj and otherwise α ·̂ = 0. Also, we

define B to be a vector of length m consisting of all Is. Then, if we can solve

the matrix equation AU = B for a vector U of 0s and Is, we have solved the

exact cover problem.

For the exact cover example above, the matrix equation AU = B has the

form

' 1

1

0

1

0

0

0

1

1

0

0

0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

1

0

1

0

0

1

0

0

1

0

1

1

0

1

0

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

0

1

0

0

0

0

1

0

1

0

0

0

0

0

0

0

1

0

1

1

1

and we seek a solution U where each Uj s {0,1}, that is, itj = 1 if the

subset Si is in the exact cover and ttj = 0 if subset s; is not in the exact

cover. In this particular case, it's easy to verify that a solution is given

by U = [0001000001001], that is, S3, S9, and S12 form an exact cover of the

set S.

We have shown that the exact cover problem can be restated as finding

a solution U to a matrix equation AU = B, where U consists entirely of 0s

and Is. This is not a standard linear algebra problem, since solutions to linear

equations are not restricted to contain only 0s and Is. This turns out to be

a problem that can be solved using lattice reduction techniques. But first we

need an elementary fact from linear algebra.

0 0

0 0

0 0

1 1

0 0

1 0

0 1

«1

«2

U3

«4

«5

ω6

M7

« 1 0

MU

" 1 2

206 ADVANCED CRYPTANALYSIS

Suppose AU = B, where A is a matrix and U and B are column vectors.
Let a\, 02 , . . . , an denote the columns of A and u\, u2, ■ ■ ■, un the elements
of U. Then

B = uiai + u2a2 + ■ · ■ + unan. (6.36)

For example,

3 4 '
1 5

' 2 '
6

= 2
' 3

1
+ 6

" 4 '
5 =

' 30 "
32

Now given AU = B, consider the matrix equation

*nxn
J i m x n

Ortxl

~Bmxi

Unxl

l l x l

t^nxl

Umxl

which we denote as MV = W. Multiplying, we find that U = U (which is
not very informative) and the nontrivial equation AU — B = 0. Therefore,
finding a solution V to MV = W is equivalent to finding a solution U to the
original equation AU = B.

The benefit of rewriting the problem as MV = W is that the columns of M
are linearly independent. This is easily seen to be the case, since the n x n
identity matrix appears in the upper left, and the final column begins with n
zeros.

Let co,ci,C2,...,cn be the n + 1 columns of M and let VQ, vi,V2,-..,vn

be the elements of V. Then, by the observation in equation (6.36),

W = VQCQ + V\Ci ' VnCn- (6.37)

Let L be the lattice spanned by Co, c\, C2,..., c„, the columns of M. Then L
consists of all integer multiples of the columns of M. Recall that MV = W,
where

u0

Ui

W Un-l
0

0

Our goal is to find U. However, instead of solving linear equations for V, we
can solve for U by finding W. By equation (6.37), this desired solution W is
in the lattice L.

The Euclidean length of a vector Y = (yo, y\,...,yn-i) € R™ is given by
the formula

6.5 LATTICE REDUCTION AND THE KNAPSACK 207

Then the length of W is

\\W\\ = yjul + u\ + ---+ul_1 < yfr.

Since most vectors in L will have a length far greater than %/n, we see that W
is a short vector in the lattice L. Furthermore, W has a very special form,
with its first n entries all equal to 0 or 1 and its last m entries all equal
to 0. These facts distinguish W from typical vectors in L. Can we use this
information to find W, which would give us a solution to the exact cover
problem?

In fact, there is an algorithm known as the LLL algorithm [169, 189] (be-
cause it was invented by three guys whose names start with "L") to efficiently
find short vectors in a lattice. Our strategy will be to use LLL to find short
vectors in L, the lattice spanned by the columns of M. Then we'll examine
these short vectors to see whether any have the special form of W. If we find
such a vector, then it is highly probably that we have found a solution U to
the original problem.

Pseudo-code for the LLL algorithm appears in Table 6.11, where the
(n + m) x (n + 1) matrix M has columns bo, b\, b%,..., bn and the columns
of matrix X are denoted XQ, X \ , X2 ■ ■ ■, Xn and the elements of Y are denoted
as yij. Note that the yij can be negative, so care must be taken when imple-
menting the floor function in [j/y + 1/2J.

For completeness, we've given the Gram-Schmidt orthogonalization algo-
rithm in Table 6.12. Combined, these two algorithms only require about 30
lines of pseudo-code.

It's important to realize there is no guarantee that the LLL algorithm will
find the desired vector W. But for certain types of problems, the probability
of success is high.

By now, you may be wondering what any of this has to do with the
knapsack cryptosystem. Next, we'll show that we can attack the knapsack
via lattice reduction.

Let's consider the superincreasing knapsack

S = [s0, β ι , . . . , e7] = [2,3,7,14,30,57,120,251]

and choose the multiplier m = 41 and modulus n = 491 (note that this is

the same knapsack example that appears in Section 4.2 of Chapter 4). Next,

we observe that m _ 1 = 12 mod 491. Now to find the corresponding public

knapsack, we compute ti = 41SJ mod 491 for i = 0 , 1 , . . . , 7, and the result is

T = [t0, i i , · · ·, t7] = [82,123,287,83,248,373,10,471].

This yields the knapsack cryptosystem defined by

Public key: T

208 ADVANCED CRYPTANALYSIS

Table 6.11: LLL Algorithm

/ / find short vectors in the lattice spanned
/ / by columns of M = (bo, b\,..., bn)
loop forever

(X,Y) = GS{M)
for j = 1 to n

for i = j — 1 to 0
if \yij\ > 1/2 then

bj =bJ - IVij + !/2Jö<
end if

next i
next j
(X, Y) = GS(M)
for j = 0 to n — 1

if \\xj+i + Vjj+iXjW2 < 11 Nil I2

swap(6j,6j+i)
goto abc

end if
next j
return(M)

abc: continue
end loop

and
Private key: S and m mod n.

For example, 10010110 is encrypted as

1 · t0 + 0 · ii + 0 · t2 + 1 · h + 0 · U + 1 ■ t5 + 1 · t6 + 0 · t7

= 82 + 83 + 373 + 10

= 548.

To decrypt the ciphertext 548, the holder of the private key computes

548 ■ 12 = 193 mod 491

and then uses the superincreasing knapsack S to easily solve for the plain-
text 10010110.

In this particular example, the attacker Trudy knows the public key T and
the ciphertext 548. Trudy can break the system if she can find Uj 6 {0,1} so
that

82it0 + 123ui + 287u2 + 83u3 + 248u4 + 373u5 + 10u6 + 471u7 = 548. (6.38)

6.5 LATTICE REDUCTION AND THE KNAPSACK 209

Table 6.12: Gram-Schmidt Algorithm

/ / Gram-Schmidt M = (6o, ò i , . . . , bn)
GS(M)

xo = bo
for j = 1 to n

x
j
 =

 "j

for i = 0 to j — 1
yij = (xi-bj)/\\xi\\2

Xj — Xj fJijXi
next z

next j
return(X,y)

endGS

To put this problem into the correct framework for lattice reduction, we
rewrite the problem in matrix form as

T-U = 548,

where T is the public knapsack and U = [uo,ui,...,uj] appears in equa-
tion (6.38). This has the same form as AU = B discussed above, so we
rewrite this to put it into the form MV = W, which is then suitable for the
LLL algorithm. In this case, we have

M =
hx8 08x1
Tlx8 —Cixi

" 1

0
0
0
0
0
0
0

.82

0
1
0
0
0
0
0
0
123

0
0
1
0
0
0
0
0
287

0
0
0
1
0
0
0
0

83

0
0
0
0
1
0
0
0

248

0
0
0
0
0
1
0
0

373

0
0
0
0
0
0
1
0

10

0
0
0
0
0
0
0
1

471

0 "

0
0
0
0
0
0
0

-548.

We can now apply LLL to the matrix M to find short vectors in the lattice
spanned by the columns of M. The output of LLL, which we denote by M'
is a matrix of short vectors in the lattice spanned by the columns of M. In

210 ADVANCED CRYPTANALYSIS

this example, LLL yields

' - 1
0
0
1
0
0
0
0
1

- 1
- 1

1
- 1

0
0
0
0

- 1

0
1

- 1
- 1

1
0
0
0
1

1
0
0
1
0
1
1
0
0

0
1
0
0

- 2
1
0
0
0

1
- 1

0
- 1
- 1

1
0
0
1

0
0

- 1
0
0
1

- 1
1

- 1

0
0
1

- 1
1

- 1
0
1
2

1 "
0
2
0
0
1

- 1
- 1

0 .

The 4th column of M' has the correct form to be a solution to the knapsack
problem. For this column, Trudy obtains the putative solution

U= [1,0,0,1,0,1,1,0]

and using the public key and the ciphertext, she can then easily verify that the
putative solution 10010110 is, in fact, the correct solution. One interesting
aspect of this particular attack is that Trudy can find the plaintext from the
ciphertext without recovering the private key.

The lattice reduction attack on the knapsack is fast and efficient—it was
originally demonstrated using an Apple II computer in 1983 [265]. Although
the attack is not always successful, the probability of success against the
original Merkle-Hellman knapsack is high.

Lattice reduction was a surprising method of attack on the knapsack cryp-
tosystem. The lesson here is that clever mathematics (and algorithms) can
sometimes break cryptosystems.

6.6 RSA Timing Attacks

All things entail rising and falling timing.
You must be able to discern this.

— Miyamoto Musashi

Often it's possible to attack a cipher without directly attacking the algo-
rithm [89]. Many processes produce unintended "side channels" that leak
information. This incidental information can arise due to the way that a
computation is performed, the media used, the power consumed, electromag-
netic emanations, and so on. In some cases, this information can be used to
recover a cryptographic key.

Paul Kocher, the father of side channel attacks [166], originally developed
the technique as a way to demonstrate the vulnerablity of smartcards. Kocher

6.6 RSA TIMING ATTACKS 211

singlehandedly delayed the widespread acceptance of smartcards by several
years.

A large potential source of side channel information arises from so-called
unintended emanations. There is an entire branch of security devoted to emis-
sions security, or EMSEC, which also goes by the name of TEMPEST [199].
For example, Anderson [14] describes how electromagnetic fields, or EMF,
from a computer screen can allow the screen image to be reconstructed at a
distance.

Smartcards have been attacked via their EMF emanations as well as by
differential power analysis, or DPA, which exploits the fact that some com-
putations require more energy consumption than others [167]. Attacks on
EMF emissions and DPA attacks are passive. More active attacks often go
by the name of differential fault analysis, or DFA, where faults are induced
with the goal of recovering information [11]. For example, excessive power
may be put into a device to induce a fault. Such attacks may or may not be
destructive. A smartcard used in some GSM cell phones could be attacked
using DFA techniques [228].

In this section, we'll examine two timing attack on RSA. The first ap-
proach is impractical, but provides a relatively simple illustration of the con-
cept, while the second attack has been used in the real world to break real
systems.

Timing attacks exploit the fact that some computations in RSA take
longer than others. By carefully measuring the time that an operation takes,
we can determine the RSA private key, or at least some bits of the key [329].
More advanced versions of timing attacks have been used to successfully at-
tack the RSA implementation in OpenSSL over a network connection [41].
For a discussion of timing attacks that apply to more general RSA implemen-
tations, see [284].

6.6.1 A Simple Timing Attack

Let M be a message that Alice is to sign using her private key d. Suppose
that Alice signs M itself,6 that is, Alice computes Md mod N. As usual,
Trudy's goal is to recover d. We'll assume that d is n + 1 bits in length,
with n unknown bits, and we'll denote the bits of d as

d = dodi... dn where do = 1.

Recall that the method of repeated squaring provides an efficient means
of computing modular exponentiation. Suppose repeated squaring is used

6The astute reader will recall that in Chapter 5 we said that Alice signs h(M), not M.
However, in security protocols, it's common to sign a random challenge without any hash
being used—see Chapters 9 and 10. Many timing attacks arise in the context of security
protocols, so here we'll consider the case where the message M is signed, without any hash.

212 ADVANCED CRYPTANALYSIS

to compute Md mod N. Pseudo-code for the repeated squaring algorithm
appears in Table 6.13.

Table 6.13: Repeated Squaring

x = M
for j = 1 to n

x = mod(x2,./V)
if dj = = 1 then

x = mod(a;M, N)
end if

next j
re tu rn x

Suppose that the mod(x,N) function in Table 6.13 is implemented as
shown in Table 6.14. For efficiency, the expensive mod operation, denoted by
"%," is only executed if a modular reduction is actually required.

Table 6.14: Efficient Mod Function

function mod(:r, N)
if x > = N

x = x % N
end if
re turn x

Now consider the repeated squaring algorithm in Table 6.13. If dj = 0,
then x = mod(x2,N), but if dj = 1 then two operations occur, namely,
x = mod(a;2,iV) and x = mod(xM,N). As a result, the computation times
might differ when dj = 0 compared with when dj = 1. Can Trudy take
advantage of this to recover Alice's private key?

We'll assume that Trudy can conduct a "chosen plaintext" attack, that is,
Alice will sign messages of Trudy's choosing. Suppose clever Trudy chooses
two values, Y and Z, with Y3 < N and Z2 < N < Z3 and Alice signs both.

Let x = Y and consider the j = 1 step in the repeated squaring algorithm
of Table 6.13. We have

x = mod(x2,N)

and since x2 = Y2 < Y3 < N, the "%" operation does not occur. Then,
if d\ = 1, we have

x = mod(xY,N),

6.6 RSA TIMING ATTACKS 213

and since xY = Y3<N, again the "%" operation does not occur. Of course,

if d\ = 0, this "%" operation does not occur either.

Now let x = Z and consider the j' = 1 step in the algorithm of Table 6.13.

In this case, we have

x = mod(a; , N)

and, since x2 = Z2 < N, the "%" operation does not occur. But if d\ = 1,

we have

x = mod(xZ, N)

and the "%" operation occurs, since xZ = Z3 > N. However, if d\ = 0, then

this "%" operation does not occur. That is, an additional "%" operation

occurs only if d\ = 1. As a result, if d\ = 1 then the j = 1 step requires

more computation and will take longer to complete for Z than for Y. If, on

the other hand, d\ = 0, the j = 1 computation step will take about the same

amount of time for both Z and Y. Using this fact, can Trudy recover the

bit d\ of the private key d?

The problem for Trudy is that the repeated squaring algorithm does not

stop after the j = 1 step. So, any timing difference in the j = 1 step might be

swamped by timing differences that occur at later steps. But suppose Trudy

can repeat this experiment many times with distinct Y and Z values, all of

which satisfy the conditions given above, namely, Y3 < N and Z2 < N < Z3.

Then if d\ = 0, on average, Trudy would expect the Y and Z signatures to

take about the same time. On the other hand, if di = 1, then Trudy would

expect the Z signatures to take longer than the Y signatures, on average.

That is, timing differences for later steps in the algorithm would tend to

cancel out, allowing the timing difference (or not) for the j = 1 step show

through the noise. The point is that Trudy will need to rely on statistics

gathered over many test cases to make this attack reliable.

Trudy can use the following algorithm to determine the unknown private

key bit d\. For i = 0 , 1 , . . . ,m — 1, Trudy chooses Yi with Y3 < N. Let yi

be the time required for Alice to sign Yi, that is, the time required to com-

pute Yf mod N, for i = 0 , 1 , . . . , m — 1. Then Trudy computes the average

timing

y = (yo + 2/1 H l· ym-i)/m.

Next, for i = 0 , 1 , . . . , m - 1, Trudy chooses Zi with Zf < N < Zf. Let Zi

be the time required to compute Zf mod N, for i = 0 , 1 , . . . , m — 1. Again,

Trudy computes the average timing

z = (z0 + z\ Λ Y zm-i)/m.

Now if z > y + ε then Trudy would assume that d\ = 1, and otherwise she

would assume d\ = 0, where an appropriate value for e could be determined

by experimentation.

214 ADVANCED CRYPTANALYSIS

Once d\ has been recovered, Trudy can use an analogous process to find c?2i
although for this next step the Y and Z values will need to be chosen to
satisfy different criteria. And once cfo is known, Trudy can proceed to cfo and
so on—see Problem 31.

The attack discussed in this section is only practical for recovering the
first few bits of the private key. Next, we discuss a more realistic timing
attack that has been used to recover RSA private keys from smartcards and
other resource-constrained devices.

6.6.2 Kocher's Timing Attack

The basic idea behind Kocher's timing attack [166] is elegant, yet reasonably
straightforward. Suppose that the repeated squaring algorithm in Table 6.15
is used for modular exponentiation in RSA. Also, suppose that the time
taken by the multiplication operation, s = s ■ x (mod N) in Table 6.15, varies
depending on the values of s and x. Furthermore, we assume the attacker
is able to determine the timings that will occur, given particular values of s
and x.

Table 6.15: Repeated Squaring

/ / Compute y = xd (mod N),
/ / where d = d§d\d<i... dn in binary, with do = 1

s — x
for i = 1 to n

s = s2 (mod N)
if di = = 1 then

s = s ■ x (mod N)
end i f

next i
return(s)

Kocher views this as a signal detection problem, where the "signal" con-
sists of the timing variations, which are dependent on the unknown private
key bits di, for i = 1,2,..., n. The signal is corrupted by "noise," which is
the result of the unknown private key bits, di. The objective is to recover the
bits di one (or a few) at a time, beginning with the first unknown bit di. In
practice, it is not necessary to recover all of the bits, since an algorithm due
to Coppersmith [68] is feasible once a sufficient number of the high-order bits
of d are known.

Suppose we have successfully determined bits do, d\,..., d^-i and we want
to determine bit dk- Then we randomly select several ciphertexts, say, Cj,

6.6 RSA TIMING ATTACKS 215

for j = 0 ,1 ,2 , . . . , m — 1, and for each we obtain the timing T(Cj) for the
decryption (or signature) C^ (mod N). For each of these ciphertext val-
ues, we can precisely emulate the repeated squaring algorithm in Table 6.15
for i = 1,2,..., k — 1, and at the i = k step we can emulate both of the
possible bit values, <4 = 0 and d* = 1. Then we tabulate the differences
between the measured timing and both of the emulated results. Kocher's
crucial observation is that the statistical variance of the differences will be
smaller for the correct choice of c4 than for the incorrect choice.

For example, suppose we are trying to obtain a private key that is only
eight bits in length. Then

d = (do,di,d2,d3,d4,d,5,de,dr) with do = I.

Furthermore, suppose that we are certain that

<VM2c/3 G {1010,1001}.

Then we generate some number of random ciphertexts Cj, and for each we
obtain the corresponding timing T(Cj). We can emulate the first four steps
of the repeated squaring algorithm for both

dod^d^ = 1010 and dod^ds = 1001

for each of these ciphertexts. For a given timing T(Cj), let t(be the actual
time taken in step I for the squaring and multiplying steps of the repeated
squaring algorithm. That is, t(includes the timing of s = s2 (mod N) and,
\idi = 1) it also includes s = s-Cj (mod N) (see the algorithm in Table 6.15).
Also, let ti be the time obtained when emulating the square and multiply
steps for an assumed private exponent bit I. For m > t, define the shorthand
notation

te...m = te + tt+i + ■ ■ ■ + tm.

Of course, t(depends on the precise bits emulated, but to simplify the no-
tation we do not explicitly state this dependence (it should be clear from
context).

Now suppose we select four ciphertexts, Co, C\,C<i, C3, and we obtain the
timing results in Table 6.16. In this example we see that for dod^d^ = 1010
we have a mean timing of

E(T(Cj) - Î0...3) = (7 + 6 + 6 + 5)/4 = 6,

while the corresponding variance is

var(T(C,·) - Î0...3) = (l2 + 02 + 02 + (- l) 2) /4 = 1/2.

On the other hand, for dod^ds = 1001, we have

E(T(Cj) - Î0...3) = 6,

216 ADVANCED CRYPTANALYSIS

but the variance is

var(T(Q) - Î0...3) = ((- l) 2 + l2 + (-1)2 + l2) /4 = 1.

Although the mean is the same in both cases, Kocher's attack tells us that
the smaller variance indicates that dodid^d^ = 1010 is the correct answer.
But this begs the question of why we should observe a smaller variance in
case of a correct guess for dodid^dz.

Table 6.16: Timings

3 T{CÓ)

0 12
1 11
2 12
3 13

Emulate 1010

*0...3 T(Cj) - to...3
5 7
5 6
6 6
8 5

Emulate 1001

io...3 T(Cj) - io...3
7 5
4 7
7 5
6 7

Consider T(Cj), the timing of a particular computation Cj (mod N) in
Table 6.16. As above, for this T(Cj), let te be the emulated timing for the
square and multiply steps corresponding to the fth bit of the private ex-
ponent. Also, let t(be the actual timing of the square and multiply steps
corresponding to the ith bit of the private exponent. Let u include all tim-
ing not accounted for in the t(. The value u can be viewed as representing
the measurement "error." In the example above, we assumed the private
exponent d is eight bits, so for this case

T{Cj) =t0 + ti+t2 + ---+t7 + u.

Now suppose that the high-order bits of d are dodid^da = 1010. Then for
the timing T(Cj) we have

var(T(Cj) - io...3) = var(i4) + var(i5) + var(i6) + var(iy) + var(u),

since t(= te, for I = 0,1,2,3 and, consequently, there is no variance due
to these emulated timings t(. Note that here we are assuming the tg are
independent and that the measurement error u is independent of the te, which
appear to be valid assumptions. If we denote the common variance of each te
by var(t), we have

vax(T(Cj) - Ì0...3) = 4 var(i) + var(it).

However, if dod^d^ = 1010, but we emulate dod^ds = 1001, then
from the point of the first dj that is in error, our emulation will fail, giving

6.6 RSA TIMING ATTACKS 217

us essentially random timing results. In this case, the first emulation error
occurs at ^2 so that we find

var(T - i0...3) = var(i2 - i2) + var(i3 - f3) + var(i4) + var(i5)

+ var(i6) + var(f7) + var(u)

« 6 var(i) + var(w)

since the emulated timings Ï2 and Î3 can vary from the actual timings t2

and Ì3, respectively. That is, we see a larger variance when our guess for the
private key bits is incorrect.

Although conceptually simple, Kocher's technique gives a powerful and
practical approach to conducting a timing attack on an RSA implementa-
tion that uses repeated squaring (but not more advanced techniques). For
the attack to succeed, the variance of the error term u must not vary too
greatly between the different cases that are tested. Assuming that a simple
repeated squaring algorithm is employed, this would almost certainly be the
case since u only includes loop overhead and timing error. For more advanced
modular exponentiation techniques, var(u) could differ greatly for different
emulated bits, effectively masking the timing information needed to recover
the bits of d.

The amount of data required for Kocher's attack (that is, the number
of chosen decryptions that must be timed) depends on the error term u.
However, the timings can be reused as bits of d are determined, since, given
additional bits of d, only the emulation steps need to change. Therefore, the
required number of timings is not nearly as daunting as it might appear at
first blush. Again, this attack has been used to break real systems.

The major limitation to Kocher's attack is that it has only been success-
fully applied to RSA implementations that only use repeated squaring. Most
RSA implementations also use various other techniques (Chinese Remainder
Theorem, Montgomery multiplication, Karatsuba multiplication) to speed up
the modular exponentiations. Only in highly resource-constrained environ-
ments (such as smartcards) is repeated squaring used without any of these
other techniques.

In [166], Kocher argues that his timing attack should work for RSA imple-
mentations that employ techniques other than repeated squaring. However,
Schindler [257] (among others) disputes this assertion. In any case, differ-
ent timing techniques have been developed that succeed against more highly
optimized RSA implementations. As previously noted, the RSA implemen-
tation in a recent version of OpenSSL was broken using a timing attack due
to Brumley and Boneh [41].

The lesson of side channel attacks is an important one that extends far
beyond the details of any particular attack. Side channels demonstrate that
even if crypto is secure in theory, it may not be so in practice. That is, it's not

218 ADVANCED CRYPTANALYSIS

sufficient to analyze a cipher in isolation—for a cipher to be considered secure
in practice, it must be analyzed in the context of a specific implementation
and the larger system in which it resides. Many of these factors don't directly
relate to the mathematical properties of the cipher itself. Schneier has a good
article that addresses some of these issues [261].

Side channel attacks nicely illustrate that attackers don't always play by
the (presumed) rules. Attackers will try to exploit the weakest link in any
security system. The best way to protect against such attacks is to think like
an attacker and find these weak links before Trudy does.

6.7 Summary

In this chapter, we presented several advanced cryptanalytic attacks and tech-
niques. We started with a classic World War II cipher, the Enigma, where the
attack illustrated a "divide and conquer" approach. That is, an important
component of the device (the stecker) could be split off from the rest of the
cipher with devastating consequences. Then we considered a stream cipher
attack, specifically, RC4 as used in WEP. This attack showed that even a
strong cipher can be broken if used incorrectly.

In the block cipher realm, we discussed differential and linear cryptanal-
ysis and these attacks were applied to TDES, a simplified version of DES.
Some knowledge of these topics is necessary to understand the fundamental
trade-offs in block cipher design.

Next, we presented a classic attack on the Merkle-Hellman knapsack pub-
lic key cryptosystem. This attack nicely illustrates the impact that mathe-
matical advances and clever algorithms can have on cryptography.

Side channel attacks have become important in recent years. It's crucial
to be aware of such attacks, which go beyond the traditional concept of crypt-
analysis, since they represent a real threat to otherwise secure ciphers. We
discussed specific side channel attacks on RSA.

As usual, we've only scratched the surface in this chapter. Many other
cryptanalytic attacks and techniques have been developed, and cryptanalysis
remains an active area of research. The cryptanalytic attacks discussed here
provide a reasonably representative sample of the methods that are used to
attack and analyze ciphers.

6.8 Problems

1. In World War II, the German's usually used 10 cables on the stecker,
only five different rotors were in general use, one reflector was in com-
mon use, and the reflector and five rotors were known to the Allies.

6.8 PROBLEMS 219

a. Under these restrictions, show that there are only about 277 pos-
sible Enigma keys.

b. Show that if we ignore the stecker, under these restrictions there
are fewer than 230 settings.

2. Let F(p), for p = 0,1, 2 , . . . , 13, be the number of ways to plug p cables
into the Enigma stecker. Show that

F(p)=(^)-(2p-l).(2p-3) 1.

3. Recall that for the Enigma attack described in Section 6.2.4, we found
the cycles

S(E) = P6P8P13S(E)

and

5(E) = P6P^P7P^S(E).

Find two more independent cycles involving S(E) that can be obtained
from the matched plaintext and ciphertext in Table 6.2.

4. How many pairs of cycles are required to uniquely determine the Enigma
rotor settings?

5. In the text, we mentioned that the Enigma cipher is its own inverse.

a. Prove that the Enigma is its own inverse. Hint: Suppose that
the ith plaintext letter is x, and that the corresponding ith ci-
phertext letter is y. This implies that when the ith letter typed
into the keyboard is x, the letter y is illuminated on the lightboard.
Show that for the same key settings, if the ith letter typed into the
keyboard is y, then the letter x is illuminated on the lightboard.

b. What is the advantage of a cipher machine that is its own inverse
(such as the Enigma), as compared to a cipher that is not (such
as Purple and Sigaba)?

6. This problem deals with the Enigma cipher.

a. Show that a ciphertext letter cannot be the same as the corre-
sponding plaintext letter.

b. Explain how the restriction in part a gives the cryptanalyst an
advantage when searching for a crib.7

7In modern parlance, a crib is known as known plaintext.

220 ADVANCED CRYPTANALYSIS

7. Consider the Enigma attack discussed in the text and suppose that
only cycles of 5(E) are used to recover the correct rotor settings. Then,
after the attack is completed, only the stecker value of 5(E) is known.
Using only the matched plaintext and ciphertext in Table 6.2, how many
additional stecker values can be recovered?

8. Write a program to simulate the Enigma cipher. Use your program to
answer the following questions, where the rotor and reflector permuta-
tions are known to be

Re = EKMFLGDQVZNTOWYHXUSPAIBRCJ

Rm = BDFHJLCPRTXVZNYEIWGAKMUSQO

Rr = ESOVPZJAYQUIRHXLNFTGKDCMWB

T = YRUHQSLDPXNGOKMIEBFZCWVJAT

where Re is the left rotor, Rm is the middle rotor, R,. is the right rotor,
and T is the reflector. The "notch" that causes the odometer effect is
at position Q for Re, V for Rm, and J for Rr. For example, the middle
rotor steps when the right rotor steps from V to W.

a. Recover the initial rotor settings given the following matched plain-
text and ciphertext.

i
Plaintext

Ciphertext

i
Plaintext

Ciphertext

0 1 2 3 4 5 6 7 8 9 101112131415161718192021
A D H 0 C A D L 0 C Q U I D P R 0 Q U 0 S 0
S W Z S O F C J M D C V U G E L H S M B G G

22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 4142 43
L I T T L E T I M E S 0 M U C H T 0 K N 0 W
N B S M Q T Q Z I Y D D X K Y N E W J K Z R

b. Recover as many of the stecker settings as is possible from the
known plaintext.

9. Suppose tha t the same Enigma rotors (in the same order) and reflector
are used as in Problem 8, and the stecker has no cables connected.
Solve for the initial rotor settings and recover the plaintext given the
following ciphertext.

ERLORYROGGPBIMYNPRMHOUQYQETRQXTYUGGEZVBFPRIJGXRSSCJTXJBMW
JRRPKRHXYMWYGNGYMHZURYEYYXTTHCNIRYTPVHABJLBLNUZATWXEMKRI
WWEZIZNBEOQDDDCJRZZTLRLGPIFYPHUSMBCAMNODVYSJWKTZEJCKPQYYN
ZQKKJRQQHXLFCHHFRKDHHRTYILGGXXVBLTMPGCTUWPAIXOZOPKMNRXPMO
AMSUTIFOWDFBNDNLWWLNRWMPWWGEZKJNH

Hint: The plaintext is English.

6.8 PROBLEMS 221

10. Develop a ciphertext-only attack on the Enigma, assuming that all you

know about the plaintext is that it is English. Analyze the work factor

of your proposed attack and also estimate the minimum amount of

ciphertext necessary for your attack to succeed. Assume that Enigma

rotors, the rotor order, the movable ring positions, and the reflector

are all known. Then you need to solve for the initial settings of the

three rotors and the Stecker. Hint: Since E is the most common letter

in English, guess that the plaintext is EEEEEE... and use this "noisy"

plaintext to solve for the rotor and stecker settings.

11. Suggest modifications to the Enigma design that would make the attack

discussed in Section 6.2 infeasible. Your objective is to make minor

modifications to the design.

12. Consider a rotor with a hardwired permutation of {0 ,1 ,2 , . . . , n — 1}.

Denote this permutation as P = (ρο,ρι,... ,pn-i), where P permutes i

to pi. Let di be the displacement of pi, that is, di = pi — i (mod n).

Find a formula for the elements of the fcth rotor shift of P, which we

denote Pk, where the shift is in the same direction as the rotors described

in Section 6.2.3. Your formula must be in terms of pt and di.

13. In the RC4 attack, suppose that 60 IVs of the form (3,255, V) are

available. Empirically determine the probability that the key byte K3

can be distinguished. What is the smallest number of IVs for which

this probability is greater than 1/2?

14. In equations (6.7) and (6.9) we showed how to recover RC4 key bytes K3

and K4, respectively.

a. Assuming that key bytes K3 through Kn-\ have been recovered,

what is the desired form of the IVs that will be used to recover Kn?

b. For Kn, what is the formula corresponding to (6.7) and (6.9)?

15. For the attack on RC4 discussed in Section 6.3, we showed that the prob-

ability that (6.7) holds is (253/256)252. What is the probability that

equation (6.9) holds? What is the probability that the corresponding

equation holds for Kn1

16. In the discussion of the attack on RC4 keystream byte K3 we showed

that IVs of the form (3,255, V) are useful to the attacker. We also

showed that IVs that are not of this form are sometimes useful to the

attacker, and we gave the specific example of the (2,253,0). Find an IV

of yet another form that is useful in the attack on K3.

17. The attack on RC4 discussed in this chapter illustrates that prepending

an IV to a long-term key is insecure. In [112] it is shown that appending

222 ADVANCED CRYPTANALYSIS

the IV to the long-term key is also insecure. Suggest more secure ways

to combine a long-term key with an IV for use as an RC4 key.

18. Suppose that Trudy has a ciphertext message that was encrypted with

the RC4 cipher. Since RC4 is a stream cipher, the actual encryption for-

mula is given by Cj = Pi®ki, where k\ is the ith byte of the keystream, pi

is the ith byte of the plaintext, Cj is the ith byte of the ciphertext. Sup-

pose that Trudy knows the first ciphertext byte, and the first plaintext

byte, that is, Trudy knows CQ and po-

a. Show that Trudy also knows the first byte of the keystream used

to encrypt the message, that is, she knows ko.

b. Suppose that Trudy also happens to know that the first three bytes

of the key are (K0, K]_,K2) = (2, 253,0). Show that Trudy can de-

termine the next byte of the key, A3, with a probability of success

of about 0.05. Note that from part a, Trudy knows the first byte

of the keystream. Hint: Suppose that the RC4 initialization algo-

rithm were to stop after the i = 3 step. Write an equation that

you could solve to determine the first byte of the key. Then show

that this equation holds with a probability of about 0.05 when the

entire 256-step initialization algorithm is used.

c. If Trudy sees several messages encrypted with the same key that

was used in part b, how can Trudy improve on the attack to re-

cover A3? That is, how can Trudy recover the key byte K3 with

a much higher probability of success (ideally, with certainty)?

d. Assuming that the attack in part b (or part c) succeeds, and Trudy

recovers K3, extend the attack so that Trudy can recover K4, with

some reasonable probability of success. What is the probability

that this step of the attack succeeds?

e. Extend the attack in part d to recover the remaining key bytes,

that is, Κζ, Kg, Show that this attack has essentially the same

work factor regardless of the length of the key.

f. Show that the attack in part a (and hence, the attack in parts

a through e) also works if the first three key bytes are of the

form (K0, Ku K2) = (3,255, V) for any byte V.

g. Why is this attack relevant to the (in)security of WEP?

19. The file outDif f (available at the textbook website) contains 100 cho-

sen plaintext pairs P and P that satisfy P θ Ρ = 0x0002, along with

the corresponding TDES-encrypted ciphertext pairs C and C. Use this

information to determine the key bits k^, ku, k\$, kg, k\o, kn using the

differential cryptanalysis attack on TDES that is described in this chap-

ter. Then use your knowledge of these key bits to exhaustively search

6.8 PROBLEMS 223

for the remaining key bits. Give the key as K = k^k-^kì ■ ■ · fcis in hex-
adecimal.

20. The file outLin, which is available at the textbook website, contains 100
known plaintext P along with the corresponding TDES-encrypted ci-
phertext C. Use this information to determine the value of fco Θ fci

and k<i Θ kf using the linear cryptanalysis attack on TDES that is de-

scribed in this chapter. Then use your knowledge of these key bits to

exhaustively search for the remaining key bits. Give the key in hex-

adecimal as K = kok\k,2 · ■ · fci5-

21. Find a 16-bit key that encrypts

plaintext = 0x1223 = 0001001000100011

to
ciphertext = 0x5B0C = 0101101100001100

using the cipher TDES.

22. Suppose that a DES-like cipher uses the S-box below.

00
01
10
11

0
4
6
8
A

1

6
4
5
2

2

8
A
0
6

3

9
B
B
9

4

E
3
D
F

5

5
0
6
4

6
A
7
E
0

7
C
E
C
E

8

0
2
F
D

9

2
C
7
5

A

F
8
4
7

B

B
9
9
C

C
1
D
A
8

D

7
5
2
B

E

D
F
1
3

F

3
1
3
1

If the input to this S-box is 011101, what is the output? If inputs XQ
and X\ yield outputs lo and Y\, respectively, and XQ Θ X\ = 000001,

what is the most likely value for Υό ® ^Ί a n d what is its probability?

23. Consider the S-box below. For the input XQXIX?, the bit xç> indexes the
row, while 2:1X2 is the column index. We denote the output by yoyi-

0
1

00
10
11

01
01
00

10

00
01

11

11
10

Find the best linear approximation to y\ in terms of xo, x\, and x%-
With what probability does this approximation hold?

24. Construct a difference table analogous to that in Table 6.6 for S-box 1
of DES. The DES S-box 1 appears in Table 3.3 of Chapter 3. What is
the most biased difference and what is the bias?

224 ADVANCED CRYPTANALYSIS

25. Construct a difference table analogous to that in Table 6.6 for the right

S-box of TDES. Verify the results in equation (6.17). What is the second

most biased difference, and what is the bias?

26. Construct a linear approximation table analogous to that in Table 6.7

for S-box 1 of DES. The DES S-box 1 appears in Table 3.3 of Chapter 3.

Note that your table will have 64 rows and 15 columns. What is the

best linear approximation, and how well does it approximate?

27. Construct a linear approximation table analogous to that in Table 6.7

for the left S-box of TDES. Verify the results in equation (6.29). What

is the next best linear approximation and how well does it approximate?

28. Recall the linear cryptanalysis of TDES discussed in Section 6.4.6. As-

sume that equation (6.33) holds with probability (3/4)3 « 0.42. Also as-

sume that the key satisfies fco®fci = 0. Then if we conduct the attack us-

ing 100 known plaintexts, what are the expected counts for c\ θριο = 0

and c\ Θ pio = 1? Compare your answer with the empirical results

presented in the text. Why do you think the theoretical and empirical

results differ?

29. Suppose that Bob's knapsack public key is

T = [168,280,560,393,171,230,684,418].

Suppose that Alice encrypts a message with Bob's public key and the

resulting ciphertext is C\ = 1135. Implement the LLL attack and use

your program to solve for the plaintext Ρχ. For the same public key,

find the plaintext P2 for the ciphertext C2 = 2055. Can you determine

the private key?

30. Suppose that Bob's knapsack public key is

T = [2195,4390,1318,2197,7467,5716,3974,3996,7551,668].

Suppose that Alice encrypts a message with Bob's public key and the

resulting ciphertext is C\ = 8155. Implement the LLL attack and use

your program to solve for the plaintext Pi. For the same public key,

find the plaintext P2 for the ciphertext C2 = 14748. Can you determine

the private key?

31. Consider the "simple" timing attack on RSA discussed in Section 6.6.1.

a. Extend the timing attack to recover the bit d?,. That is, assuming

that bit d\ has been recovered, what conditions must Y and Z

satisfy so that the attack presented in the text can be used to

determine cfe?

6.8 PROBLEMS 225

b. Extend the attack to recover d3, assuming that d\ and d2 have

been recovered.

c. In practice, we need to recover about half of the private key bits.

Why is this attack not a practical means for recovering such a large

number of private key bits?

32. Suppose that in Kocher's timing attack, we obtain the timings T(Cj)

and the emulated timings io...2 for dod\d2 G {100,101,110, 111}, as given

in the table below.

3
0

1

2

3

4

5

6

7

ncj)
20

21

19

22

24

23

21

19

100

5

4

1

2

10

11

1

7

to.
101

7

7

6

8

6

5

1

1

.2

110

5

4

4

5

8

7

6

2

111

8

1

7

2

8

7

5

3

a. What is the most likely value of dod\d2 and why?

b. Why does this attack not succeed if CRT or Montgomery multi-

plication is used?

33. Write a program to recover the 64-bit key for STEA (Simplified TEA)

given one known plaintext block and the corresponding ciphertext block.

The STEA algorithm and a description of the attack on STEA can be

found at [208].

34. If DES were a group [117], then given keys K\ and K2, there would

exist a key K% such that

E(P, K3) = E(E{P, K1),K2) for all plaintext P, (6.39)

and we could also find such a key K3 if any of the encryptions were

replaced by decryptions. If equation (6.39) holds, then triple DES is no

more secure than single DES. It was established in [45] that DES is not

a group and, consequently, triple DES is more secure than single DES.

Show that TDES is not a group. Hint: Select TDES keys Κλ and K2.

You will be finished if you can verify that there does not exist any

key K3 for which E(P,K3) = E(E(P,Ki),K2) for all possible choices

of P .

This page intentionally left blank

Part II

Access Control

This page intentionally left blank

Chapter 7

Authentication

Guard: Halt! Who goes there?
Arthur: It is I, Arthur, son of Uther Pendragon,
from the castle of Camelot. King of the Britons,
defeater of the Saxons, sovereign of all England!

— Monty Python and the Holy Grail

Then said they unto him, Say now Shibboleth:
and he said Sibboleth: for he could not frame to pronounce it right.

Then they took him, and slew him at the passages of Jordan:
and there fell at that time of the Ephraimites forty and two thousand.

— Judges 12:6

7.1 Introduction

We'll use the term access control as an umbrella for any security issues related
to access of system resources. Within this broad definition, there are two areas
of primary interest, namely, authentication and authorization.

Authentication is the process of determining whether a user (or other en-
tity) should be allowed access to a system. In this chapter, our focus is on the
methods used by humans to authenticate to local machines. Another type of
authentication problem arises when the authentication information must pass
through a network. While it might seem that these two authentication prob-
lems are closely related, in fact, they are almost completely different. When
networks are involved, authentication is almost entirely an issue of security
protocols. We'll defer our discussion of protocols to Chapters 9 and 10.

By definition, authenticated users are allowed access to system resources.
However, an authenticated user is generally not given carte blanche access to
all system resources. For example, we might only allow a privileged user—

229

230 AUTHENTICATION

such as an administrator—to install software on a system. How do we restrict
the actions of authenticated users? This is the field of authorization, which is
covered in the next chapter. Note that authentication is a binary decision—
access is granted or it is not—while authorization is all about a more fine-
grained set of restrictions on access to various system resources.

In security, terminology is far from standardized. In particular, the term
access control is often used as a synonym for authorization. However, in our
usage, access control is more broadly defined, with both authentication and
authorization falling under the heading of access control. These two parts of
access control can be summarized as follows.

• Authentication: Are you who you say you are?1

• Authorization: Are you allowed to do that?

7.2 Authentication Methods

In this chapter we address various methods that are commonly used to au-
thenticate a human to a machine. That is, we want to convince a dumb
machine that someone or something claiming to be Alice is indeed Alice and
not, say, Trudy. That is, we want to answer the question, "Are you who you
say you are?" Of course, we'd like to do this in as secure manner as possible.

A human can be authenticated to a machine based on any of the following2

"somethings" [14].

• Something you know

• Something you have

• Something you are

A password is an example of "something you know." We'll spend some time
discussing passwords, and in the process show that passwords represent a
weak link in many modern information security systems.

An example of "something you have" is an ATM card or a smartcard.
The "something you are" category is synonymous with the rapidly expanding
field of biometrics. For example, today you can purchase a laptop that scans
your thumbprint and uses the result for authentication. We'll discuss a few
biometrie methods later in this chapter. But first up are passwords.

1Try saying that three times, fast.
2Additional "somethings" are sometimes proposed. For example, one wireless access

point authenticates a user by the fact that the user pushes a button on the device. This
shows that the user has physical access to the device, and could be viewed as authentication
by "something you do."

7.3 PASSWORDS 231

7.3 Passwords

Your password must be at least 18770 characters
and cannot repeat any of your previous 30689 passwords.

— Microsoft Knowledge Base Article 276304

An ideal password is something that you know, something that a computer
can verify that you know, and something nobody else can guess—even with
access to unlimited computing resources. We'll see that in practice it's diffi-
cult to even come close to this ideal.

Undoubtedly you are familiar with passwords. It's virtually impossible
to use a computer today without accumulating a significant number of pass-
words. You probably log into your computer by entering a username and
password, in which case you have obviously used a password. In addition,
many other things that we don't call "password" act as passwords. For exam-
ple, the PIN number used with an ATM card is, in effect, a password. And
if you forget your password, a user-friendly website might authenticate you
based on your social security number, your mother's maiden name, or your
date of birth, in which case, these things are acting as passwords. A problem
with such passwords is that they are often not secret.

If left to their own devices, users tend to select bad passwords, which
makes password cracking surprisingly easy. In fact, we'll provide some ba-
sic mathematical arguments to show that it's inherently difficult to achieve
security via passwords.

From a security perspective, a solution to the password problem would be
to instead use randomly generated cryptographic keys. The work of cracking
such a "password" would be equivalent to an exhaustive key search, in which
case our passwords could be made at least as strong as our cryptography.
The problem with such an approach is that humans must remember their
passwords and we're not good at remembering randomly selected bits.

We're getting ahead of ourselves. Before discussing the numerous prob-
lems with passwords, we consider why passwords are so popular. Why is
authentication based on "something you know" so much more popular than
the more secure "somethings" (i.e., "something you have" and "something you
are")? The answer, as always, is cost3 and, secondarily, convenience. Pass-
words are free, while smartcards and biometrie devices cost money. Also, it's
more convenient for an overworked system administrator to reset a password
than to provide a new smartcard or issue a user a new thumb.

3Students claim that when your Socratic author asks a question in his security class, the
correct answer is invariably either "money" or "it depends."

232 AUTHENTICATION

7.3.1 Keys Versus Passwords

We've already claimed that cryptographic keys would solve the password
problem. To see why this is so, let's compare keys to passwords. On the
one hand, suppose our generic attacker, Trudy, is confronted with a 64-bit
cryptographic key. Then there are 264 possible keys, and, if the key was
chosen at random (and assuming there is no shortcut attack), Trudy must on
average try 263 keys before she expects to find the correct one.

On the other hand, suppose Trudy is confronted with a password that is
known to be eight characters long, with 256 possible choices for each charac-
ter. Then there are 2568 = 264 possible passwords. At first glance, cracking
such passwords might appear to be equivalent to the key search problem.
Unfortunately (or, from Trudy's perspective, fortunately) users don't select
passwords at random, because users must remember their passwords. As a
result, a user is far more likely to choose an 8-character dictionary word such
as

password

than, say,

kf&Yw!a[

So, in this case Trudy can make far fewer than 263 guesses and have a high
probability of successfully cracking a password. For example, a carefully
selected dictionary of 220 « 1,000,000 passwords would likely give Trudy a
reasonable probability of cracking a given password. On the other hand, if
Trudy attempted to find a randomly generated 64-bit key by trying only 220

possible keys, her chance of success would be a mere 220/264 = 1/244, or less
than 1 in 17 trillion. The bottom line is that the non-randomness of password
selection is at the root of the problems with passwords.

7.3.2 Choosing Passwords

Not all passwords are created equal. For example, everyone would probably
agree that the following passwords are weak:

• Frank

• Pikachu

• 10251960

• AustinStamp

especially if your name happens to be Frank, or Austin Stamp, or your birth-
day is on 10/25/1960.

7.3 PASSWORDS 233

Security often rests on passwords and, consequently, users should have
passwords that are difficult to guess. However, users must be able to remem-
ber their passwords. With that in mind, are the following passwords better
than the weak passwords above?

• jfIej(43j-EmmL+y

• 09864376537263

• POkemON

• FSa7Yago

The first password, j f Iej (43j-EmmL+y, would certainly be difficult for Trudy
to guess, but it would also be difficult for Alice to remember. Such a password
is likely to end up on the proverbial post-it note stuck to the front of Alice's
computer. This could make Trudy's job much easier than if Alice had selected
a "less secure" password.

The second password on the list above is also probably too much for most
users to remember. Even the highly trained U.S. military personal responsible
for launching nuclear missiles are only required to remember 12-digit firing
codes [14].

The password POkemON might be difficult to guess, since it's not a standard
dictionary word due to the digits and the upper case letters. However, if the
user were known to be a fan of Pokémon, this password might be relatively
easy prey.

The final password, FSa7Yago, might appear to reside in the difficult to
guess, but too difficult to remember category. However, there is a trick to
help the user remember it—it's based on a passphrase. That is, FSa7Yago is
derived from the phrase "four score and seven years ago." Consequently, this
password should be relatively easy for Alice to remember, and yet relatively
difficult for Trudy to guess.

An interesting password experiment is described in [14]. Users were di-
vided into three groups, and given the following advice regarding password
selection:

• Group A — Select passwords consisting of at least six characters, with
at least one non-letter. This is fairly typical password selection advice.

• Group B — Select passwords based on passphrases.

• Group C — Select passwords consisting of eight randomly selected char-
acters.

The experimenters tried to crack the resulting passwords for each of the three
groups. The results were as follows:

234 A UTHENTICATION

• Group A — About 30% of passwords were easy to crack. Users in this
group found their passwords easy to remember.

• Group B — About 10% of the passwords were cracked, and, as with
users in Group A, users in this group found their passwords easy to
remember.

• Group C — About 10% of the passwords were cracked. Not surprisingly,
the users in this group found their passwords difficult to remember.

These results clearly indicate that passphrases provide the best option for
password selection, since the resulting passwords are relatively difficult to
crack yet easy to remember.

This password experiment also demonstrated that user compliance is hard
to achieve. In each of groups A, B, and C, about one-third of the users did
not comply with the instructions. Assuming that non-compliant users tend
to select passwords similar to Group A, about one-third of these passwords
would be easy to crack. The bottom line is that nearly 10% of passwords are
likely to be easy to crack, regardless of the advice given.

In some situations, it makes sense to assign passwords, and if this is the
case, noncompliance with the password policy is a non-issue. The trade-off
here is that users are likely to have a harder time remembering assigned
passwords as compared to passwords they select themselves.

Again, if users are allowed to choose passwords, then the best advice is to
choose passwords based on passphrases. In addition, system administrators
should use a password-cracking tool to test for weak passwords, since attackers
certainly will.

It is also sometimes suggested that periodic password changes should be
required. However, users can be very clever at avoiding such requirements,
invariably to the detriment of security. For example, Alice might simply
"change" her password without changing it. In response to such users, the
system could remember, say, five previous passwords. But a clever user like
Alice will soon learn that she can cycle through five password changes and
then reset her password to its original value. Or, if Alice is required to choose a
new password each month she might select, say, f rankOl in January, f rank02

in February, and so on. Forcing reluctant users to choose reasonably strong
passwords is not as simple as it might seem.

7.3.3 Attacking Systems via Passwords

Suppose that Trudy is an outsider, that is, she has no access to a particular
system. A common attack path for Trudy would be

outsider —> normal user —> administrator.

7.3 PASSWORDS 235

In other words, Trudy will initially seek access to any account on the system
and then attempt to upgrade her level of privilege. In this scenario, one weak
password on a system—or in the extreme, one weak password on an entire
network—could be enough for the first stage of the attack to succeed. The
bottom line is that one weak password may be one too many.

Another interesting issue concerns the proper response when attempted
password cracking is detected. For example, systems often lock users out after
three bad passwords attempts. If this is the case, how long should the system
lock? Five seconds? Five minutes? Until the administrator manually resets
the service? Five seconds might be insufficient to deter an automated attack.
If it takes more than five seconds for Trudy to make three password guesses
for every user on the system, then she could simply cycle through all accounts,
making three guesses on each. By the time she returns to a particular user's
account, more than five seconds will have elapsed and she will be able to
make three more guesses without any delay. On the other hand, five minutes
might open the door to a denial of service attack, where Trudy is able to
lock accounts indefinitely by periodically making three password guesses on
an account. The correct answer to this dilemma is not readily apparent.

7.3.4 Password Verification

Next, we consider the important issue of verifying that an entered password
is correct. For a computer to determine the validity of a password, it must
have something to compare against. That is, the computer must have access
to the correct password in some form. But it's probably a bad idea to simply
store the actual passwords in a file, since this would be a prime target for
Trudy. Here, as in many other areas in information security, cryptography
provides a sound solution.

It might be tempting to encrypt the password file with a symmetric key.
However, to verify passwords, the file must be decrypted, so the decryption
key must be as accessible as the file itself. Consequently, if Trudy can steal
the password file, she can probably steal the key as well. Consequently,
encryption is of little value here.

So, instead of storing raw passwords in a file or encrypting the password
file, it's more secure to store hashed passwords. For example, if Alice's pass-
word is FSa7Yago, we could store

y = /i(FSa7Yago)

in a file, where h is a secure cryptographic hash function. Then when someone
claiming to be Alice enters a password x, it is hashed and compared to y, and
if y = h(x) then the entered password is assumed to be correct and the user
is authenticated.

236 AUTHENTICATION

The advantage of hashing passwords is that if Trudy obtains the pass-
word file, she does not obtain the actual passwords—instead she only has
the hashed passwords. Note that we are relying on the one-way property of
cryptographic hash functions to protect the passwords. Of course, if Trudy
knows the hash value y, she can conduct a forward search attack by guessing
likely passwords x until she finds an x for which y = h(x), at which point she
will have cracked the password. But at least Trudy has work to do after she
has obtained the password file.

Suppose Trudy has a dictionary containing N common passwords, say,

do,di,d,2, ■ ■. , djv-i ·

Then she could precompute the hash of each password in the dictionary,

2/0 = h{d0), y\ = h{d\),..., J/ΛΓ-Ι = h(dN-i).

Now if Trudy gets access to a password file containing hashed passwords,

she only needs to compare the entries in the password file to the entries

in her precomputed dictionary of hashes. Furthermore, the precomputed

dictionary could be reused for each password file, thereby saving Trudy the

work of recomputing the hashes. And if Trudy is feeling particularly generous,

she could post her dictionary of common passwords and their corresponding

hashes online, saving all other attackers the work of computing these hashes.

From the good guy's point of view, this is a bad thing, since the work of

computing the hashes has been largely negated. Can we prevent this attack,

or at least make Trudy's job more difficult?

Recall that to prevent a forward search attack on public key encryption,

we append random bits to the message before encrypting. We can accom-

plish a similar effect with passwords by appending a non-secret random value,

known as a salt, to each password before hashing. A password salt is analo-

gous to the initialization vector, or IV, in, say, cipher block chaining (CBC)

mode encryption. Whereas an IV is a non-secret value that causes identical

plaintext blocks to encrypt to different ciphertext values, a salt is a non-secret

value that causes identical password to hash to different values.

Let p be a newly entered password. We generate a random salt value s

and compute y = h(p, s) and store the pair (s, y) in the password file. Note

that the salt s is no more secret than the hash value. Now to verify an

entered password x, we retrieve (s, y) from the password file, compute h(x, s),

and compare this result with the stored value y. Note that salted password

verification is just as easy as it was in the unsalted case. But Trudy's job has

become much more difficult. Suppose Alice's password is hashed with salt

value sa and Bob's password is hashed with salt value s^. Then, to test Alice's

password using her dictionary of common passwords, Trudy must compute

the hash of each word in her dictionary with salt value sa, but to attack

7.3 PASSWORDS 237

Bob's password, Trudy must recompute the hashes using salt value s;,. For a
password file with N users, Trudy's work has just increased by a factor of N.
Consequently, a precomputed file of hashed passwords is no longer useful for
Trudy. She can't be pleased with this turn of events.4

7.3.5 Math of Password Cracking

Now we'll take a look at the math behind password cracking. Throughout
this section, we'll assume that all passwords are eight characters in length
and that there are 128 choices for each character, which implies there are

1288 = 256

possible passwords. We'll also assume that passwords are stored in a password
file that contains 210 hashed passwords, and that Trudy has a dictionary of 220

common passwords. From experience, Trudy expects that any given password
will appear in her dictionary with a probability of about 1/4. Also, work is
measured by the number of hashes computed. Note that comparisons are
free—only hash calculations count as work.

Under these assumptions, we'll determine the probability of successfully
cracking a password in each of the following four cases.

I. Trudy wants to determine Alice's password (perhaps Alice is the ad-
ministrator). Trudy does not use her dictionary of likely passwords.

II. Trudy wants to determine Alice's password. Trudy does use her dictio-
nary of common passwords.

III. Trudy will be satisfied to crack any password in the password file, with-
out using her dictionary.

IV. Trudy wants to find any password in the hashed password file, using
her dictionary.

In each case, we'll consider both salted and unsalted passwords.

Case I: Trudy has decided that she wants to crack Alice's password. Trudy,
who is somewhat absent-minded, has forgotten that she has a password dic-
tionary available. Without a dictionary of common passwords, Trudy has no
choice other than a brute force approach. This is precisely equivalent to an
exhaustive key search and hence the expected work is

o56 Icy Q 5 5

4Salting password hashes is as close to a free lunch as you'll come in information security.
Maybe the connection with a free lunch is why it's called a salt?

238 A UTHENTICATION

The result here is the same whether the passwords are salted or not,
unless someone has precomputed, sorted, and stored the hashes of all possible
passwords. If the hashes of all passwords are already known, then in the
unsalted case, there is no work at all—Trudy simply looks up the hash value
and finds the corresponding password. But, if the passwords are salted, there
is no benefit to having the password hashes. In any case, precomputing all
possible password hashes is a great deal of work, so for the remainder of this
discussion, we'll assume this is infeasible.

Case II: Trudy again wants to recover Alice's password, and she is going
to use her dictionary of common passwords. With probability 1/4, Alice's
password is in Trudy's dictionary. Suppose the passwords are salted. Fur-
thermore, suppose Alice's password is in Trudy's dictionary. Then Trudy
would expect to find Alice's password after hashing half of the words in the
dictionary, that is, after 219 tries. With probability 3/4 the password is not
in the dictionary, in which case Trudy would expect to find it after about 255

tries. Combining these cases gives Trudy an expected work of

i (2
1 9

)+- (2
5 5

) «2
54

·
6
.

Note that the expected work here is almost the same as in Case I, where
Trudy did not use her dictionary. However, in practice, Trudy would simply
try all the words in her dictionary and quit if she did not find Alice's password.
Then the work would be at most 220 and the probability of success would
be 1/4.

If the passwords are unsalted, Trudy could precompute the hashes of
all 220 passwords in her dictionary. Then this small one-time work could be
amortized over the number of times that Trudy uses this attack. That is, the
larger the number of attacks, the smaller the average work per attack.

Case III: In this case, Trudy will be satisfied to determine any of the 1024
passwords in the hashed password file. Trudy has again forgotten about her
password dictionary.

Let i/o, 2/1, - ■■ ,yio23 be the password hashes. We'll assume that all 210

passwords in the file are distinct. Let ρο,ρι,... ,P256-i De a list °f a n 256

possible passwords. As in the brute force case, Trudy needs to make 255

distinct comparisons before she expects to find a match.

If the passwords are not salted, then Trudy can compute h(po) and com-

pare it with each yt, for i = 0 ,1 ,2 , . . . , 1023. Next she computes h(pi) and

compares it with all j / , and so on. The point here is that each hash computa-

tion provides Trudy with 210 comparisons. Since work is measured in terms

of hashes, not comparisons, and 255 comparisons are needed, the expected

work is
955 /9IO _ 045

7.3 PASSWORDS 239

Now suppose the passwords are salted. Let s, denote the salt value corre-
sponding to hash password yi. Then Trudy computes h(po, so) and compares
it with yo· Next, she computes h(po,Si) and compares it with yi, she com-
putes h(po, S2) and compares it with 2/2 j and she continues in this manner up
to h(po, S1023)· Then Trudy must repeat this entire process with password p\
in place of po, and then with password pi and so on. The bottom line is
that each hash computation only yields one comparison and consequently the
expected work is 255, which is the same as in Case I above.

This case illustrates the benefit of salting passwords. However, Trudy has
not made use of her password dictionary, which is unrealistic.

Case IV: Finally, suppose that Trudy will be satisfied to recover any one
of the 1024 passwords in the hashed password file, and she will make use of
her password dictionary. First, note that the probability that at least one of
the 1024 passwords in the file appears in Trudy's dictionary is

o \ 1024

1-UI „ .

Therefore, we can safely ignore the case where no password from the file is in
Trudy's dictionary.

If the passwords are not salted, then Trudy could simply hash all password
in her dictionary and compare the results to all 1024 hashes in the password
file. Since we are certain that at least one of these passwords is in the dictio-
nary, Trudy's work is 220 and she is assured of finding at least one password.
However, if Trudy is a little more clever, she can greatly reduce this meager
work factor. Again, we can safely assume that at least one of the passwords
is in Trudy's dictionary. Consequently, Trudy only needs to make about 219

comparisons—half the size of her dictionary—before she expects to find a
password. As in Case III, each hash computation yields 210 comparisons, so
the expected work is only

219/210 = 29.

Finally, note that in this unsalted case, if the hashes of the dictionary pass-
words have been precomputed, no additional work is required to recover one
(or more) passwords. That is, Trudy simply compares the hashes in the file
to the hashes of her dictionary passwords and, in the process, she recovers
any passwords that appear in her dictionary.

Now we consider the most realistic case—Trudy has a dictionary of com-
mon passwords, she will be happy to recover any password from the pass-
word file, and the passwords in the file are salted. For this case, we let
2/012/1 > · · · J 2/1023 be the password hashes and so,Si, . . . ,Sio23 be the corre-
sponding salt values. Also, let do,di, · · · ,^220-i be the dictionary words.
Suppose that Trudy first computes ft (do, so) an<i compares it to 2/0, then she

240 A UTHENTICATION

compute h(d\,so) and compares it to yo, then she compute h(d2,so) and

compares it to yo, and so on. That is, Trudy first compares yo to all of her

(hashed) dictionary words. Of course, she must use salt so for these hashes.

If she does not recover the password corresponding to yo, then she repeats

the process using y\ and s\, and so on.

Note that if yo is in the dictionary (which has probability 1/4), Trudy

expects to find it after about 219 hashes, while if it is not in the dictionary

(probability 3/4) Trudy will compute 220 hashes. If Trudy finds yo in the

dictionary, then she's done. If not, Trudy will have computed 220 hashes

before she moves on to consider y\. Continuing in this manner, we find that

the expected work is about

i(
2l9

)
 +

 rK
2 2 0 + 2 l 9

)
 +

 ©
2
K

2
-

2 2 0 + 2 l 9
)
 +
 -

/ o \ 1023 1

+ (ί] Ì (l 0 2 3 - 2 2 0 + 2 1 9) < 2 2 2 .

This is somewhat disappointing, since it shows that, for very little work,
Trudy can expect to crack at least one password.

It can be shown (see Problems 24 and 25) that, under reasonable assump-
tions, the work needed to crack a (salted) password is approximately equal
to size of the dictionary divided by the probability that a given password is
in the dictionary. In our example here, the size of the dictionary is 220 while
the probability of finding a password is 1/4. So, the expected work should be
about

o20
£ _ 022
1/4 - 2

which is consistent with the calculation above. Note that this approximation
implies that we can increase Trudy's work by forcing her to have a larger
dictionary or by decreasing her probability of success (or both), which makes
intuitive sense. Of course, the obvious way to accomplish this is to choose
passwords that are harder to guess.

The inescapable conclusion is that password cracking is too easy, particu-
larly in situations where one weak password is sufficient to break the security
of an entire system. Unfortunately, when it comes to passwords, the numbers
strongly favor the bad guys.

7.3.6 Other Password Issues

As bad as it is, password cracking is only the tip of the iceberg when it comes
to problems with passwords. Today, most users need multiple passwords, but
users can't (or won't) remember a large number of passwords. This results
in a significant amount of password reuse, and any password is only as secure

7.3 PASSWORDS 241

as the least secure place it's used. If Trudy finds one of your passwords, she
would be wise to try it (and slight variations of it) in other places where you
use a password.

Social engineering is also a major concern with passwords.5 For example,
if someone calls you, claiming to be a system administrator who needs your
password to correct a problem with your account, would you give away your
password? According to a recent survey, 34% of users will give away their
password if you ask for it, and the number increases to 70% if you offer a
candy bar as incentive [232].

Keystroke logging software and similar Spyware are also serious threats
to password-based security [22]. The failure to change default passwords is a
major source of attacks as well [339].

An interesting question is, who suffers from bad passwords? The answer
is that it depends. If you choose your birthday for your ATM PIN number,
only you stand to lose.6 On the other hand, if you choose a weak password at
work, the entire company stands to lose. This explains why banks usually let
users choose any PIN number they desire for their ATM cards, but companies
generally try to force users to select reasonably strong passwords.

There are many popular password cracking tools including LOphtCrack [2]
(for Windows) and John the Ripper [157] (for Unix). These tools come with
preconfigured dictionaries, and it is easy to produce customized dictionaries.
These are good examples of the types of tools that are available to hackers.7

Since virtually no skill is required to leverage these powerful tools, the door
to password cracking is open to all, regardless of ability.

Passwords are one of the most severe real-world security problems today,
and this is unlikely to change any time soon. The bad guys clearly have the
advantages when it comes to passwords. In the next section, we'll look at
biometrics, which—together with smartcards ad similar devices—are often
touted as the best way to escape from the multitude of problems inherent
with passwords.

5Actually, social engineering is a major concern in all aspects of information security
where humans play a role. Your all-too-human author heard a talk about penetration
testing, where the tester was paid to probe the security of a major corporation. The tester
lied and forged a (non-digital) signature to obtain entry into corporate headquarters, where
he posed as a system administrator trainee. Secretaries and other employees were more
than happy to accept "help" from this fake SA trainee. As a result, the tester claimed to
have obtained almost all of the company's intellectual property (including such sensitive
information as the design of nuclear power plants) within two days. This attack consisted
almost entirely of social engineering.

6Perhaps the bank will lose too, but only if you live in the United States and you have
a very good lawyer.

7Of course, almost every hacker tool has legitimate uses. For example, password cracking
tools are valuable for system administrators, since they can use these tools to test the
strength of the passwords on their system.

242 AUTHENTICATION

7.4 Biometrics

You have all the characteristics of a popular politician:
a horrible voice, bad breeding, and a vulgar manner.

— Aristophanes

Biometrics represent the "something you are" method of authentication or, as
Schneier so aptly puts it, "you are your key" [260]. There are many different
types of biometrics, including such long-established methods as fingerprints.
Recently, biometrics based on speech recognition, gait (walking) recognition,
and even a digital doggie (odor recognition) have been developed. Biometrics
are currently a very active topic for research [151, 176].

In the information security arena, biometrics are seen as a more secure
alternative to passwords. For biometrics to be a practical replacement for
passwords, cheap and reliable systems are needed. Today, usable biometrie
systems exist, including laptops using thumbprint authentication, palm print
systems for secure entry into restricted facilities, the use of fingerprints to
unlock car doors, and so on. But given the potential of biometrics—and
the well-known weaknesses of password-based authentication—it's perhaps
surprising that biometrics are not more widely used.

An ideal biometrie would satisfy all of the following:

• Universal — A biometrie should apply to virtually everyone. In reality,
no biometrie applies to everyone. For example, a small percentage of
people do not have readable fingerprints.

• Distinguishing — A biometrie should distinguish with virtual certainty.
In reality, we can't hope for 100% certainty, although, in theory, some
methods can distinguish with very low error rates.

• Permanent — Ideally, the physical characteristic being measured should
never change. In practice, it's sufficient if the characteristic remains
stable over a reasonably long period of time.

• Collectable — The physical characteristic should be easy to collect with-
out any potential to cause harm to the subject. In practice, collectabil-
ity often depends heavily on whether the subject is cooperative or not.

• Reliable, robust, and user-friendly — These are just some of the addi-
tional real-world considerations for a practical biometrie system. Some
biometrics that have shown promise in laboratory conditions have sub-
sequently failed to deliver similar performance in practice.

Biometrics are also applied in various identification problems. In the iden-
tification problem we are trying to answer the question "Who are you?," while

7.4 BIOMETRICS 243

for the authorization problem, we want to answer the question, "Are you who
you say you are?" That is, in identification, the goal is to identify the subject
from a list of many possible subjects. This occurs, for example, when a sus-
picious fingerprint from a crime scene is sent to the FBI fingerprint database
for comparison with all of the millions of fingerprint records currently on file.

In the identification problem, the comparison is one-to-many whereas for
authentication, the comparison is one-to-one. For example, if someone claim-
ing to be Alice uses a thumbprint mouse biometrie, the captured thumbprint
image is only compared with the stored thumbprint of Alice. The identi-
fication problem is inherently more difficult and subject to a much higher
error rate due to the larger number of comparisons that must be made. That
is, each comparison carries with it a probability of an error, so the more
comparisons required, the higher the error rate.

There are two phases to a biometrie system. First, there is an enrollment
phase, where subjects have their biometrie information gathered and entered
into a database. Typically, during this phase very careful measurement of
the pertinent physical information is required. Since this is one-time work
(per subject), it's acceptable if the process is slow and multiple measurements
are required. In some fielded systems, enrollment has proven to be a weak
point since it may be difficult to obtain results that are comparable to those
obtained under laboratory conditions.

The second phase in a biometrie system is the recognition phase. This
occurs when the biometrie detection system is used in practice to determine
whether (for the authentication problem) to authenticate the user or not.
This phase must be quick, simple, and accurate.

We'll assume that subjects are cooperative, that is, they're willing to
have the appropriate physical characteristic measured. This is a reasonable
assumption in the authentication case, since authentication is generally re-
quired for access to certain information resources or for entry into an other-
wise restricted area.

For the identification problem, it is often the case that subjects are un-
cooperative. For example, consider a facial recognition system used for iden-
tification. Las Vegas casinos use such systems to detect known cheaters as
they attempt to enter a casino [300]. Another fanciful proposed use of facial
recognition is to spot terrorists in airports.8 In such cases, the enrollment con-
ditions may be far from ideal, and in the recognition phase, the subjects are
certainly uncooperative as they likely do everything possible to avoid detec-
tion. Of course, uncooperative subjects can only serve to make the underlying
biometrie problem more difficult. For the remainder of this discussion we'll
focus on the authentication problem and we'll assume that the subjects are
cooperative.

Apparently, terrorists are welcome in casinos, as long as they don't cheat.

244 AUTHENTICATION

7.4.1 Types of Errors

There are two types of errors that can occur in biometrie recognition. Suppose
Bob poses as Alice and the system mistakenly authenticates Bob as Alice. The
rate at which such misauthentication occurs is the fraud rate. Now suppose
that Alice tries to authenticate as herself, but the system fails to authenticate
her. The rate at which this type of error occurs is the insult rate [14].

For any biometrie, we can decrease the fraud or insult rate at the expense
of the other. For example, if we require a 99% voiceprint match, then we can
obtain a low fraud rate, but the insult rate will be high, since a speaker's
voice will naturally change slightly from time to time. On the other hand, if
we set the threshold at a 30% voiceprint match, the the fraud rate will likely
be high, but the system will have a low insult rate.

The equal error rate is the rate for which the fraud and insult rates are
the same. That is, the parameters of the system are adjusted until the fraud
rate and insult rate are precisely in balance. This is a useful measure for
comparing different biometrie systems.

7.4.2 Biometrie Examples

In this section, we'll briefly discuss three common biometrics. First, we'll
consider fingerprints, which, in spite of their long history, are relative new-
comers in computing applications. Then we'll discuss palm prints and iris
scans.

7.4.2.1 Fingerprints

Fingerprints were used in ancient China as a form of signature, and they have
served a similar purpose at other times in history. But the use of fingerprints
as a scientific form of identification is a much more recent phenomenon.

A significant analysis of fingerprints occurred in 1798 when J. C. Mayer
suggested that fingerprints might be unique. In 1823, Johannes Evangelist
Purkinje discussed nine fingerprint patterns, but this work was a biological
treatise and did not suggest using fingerprints as a form of identification.
The first modern use of fingerprints for identification occurred in 1858 in
India, when Sir William Hershel used palm prints and fingerprints as forms
of signatures on contracts.

In 1880, Dr. Henry Faulds published an article in Nature that discussed
the use of fingerprints for identification purposes. In Mark Twain's Life on
the Mississippi, which was published in 1883, a murderer is identified by a fin-
gerprint. However, the widespread use of fingerprinting only became possible
in 1892 when Sir Francis Galton developed a classification system based on
"minutia" that enabled efficient searching, and he verified that fingerprints
do not change over time [188].

7.4 BIOMETRICS 245

Examples of the different types of minutia in Galton's classification system
appear in Figure 7.1. Galton's system allowed for an efficient solution to the
identification problem in the pre-computer era.9

Loop (double) Whorl Arch

Figure 7.1: Examples of Galton's Minutia

Today, fingerprints are routinely used for identification, particularly in
criminal cases. It is interesting to note that the standard for determining a
match varies widely. For example, in Britain fingerprints must match in 16
points, whereas in the United States, no fixed number of points are required
to match.10

A fingerprint biometrie works by first capturing an image of the finger-
print. The image is then enhanced using various image-processing techniques,
and various points are identified and extracted from the enhanced image. This
process is illustrated in Figure 7.2.

Figure 7.2: Automatic Extraction of Minutia

The points extracted by the biometrie system are compared in a manner
that is somewhat analogous to the manual analysis of fingerprints. For au-
thentication, the extracted points are compared with the claimed user's stored

9Fingerprints were classified into one of 1024 "bins." Then, given a fingerprint from
an unknown subject, a binary search based on the minutia quickly focused the effort of
matching the print on one of these bins. Consequently, only a very small subset of recorded
fingerprints needed to be carefully compared to the unknown fingerprint.

10This is a fine example of the way that the U.S. generously ensures full employment for
lawyers—they can always argue about whether fingerprint evidence is admissible or not.

246 AUTHENTICATION

information, which was previously captured during the enrollment phase. The
system then determines whether a statistical match occurs, with some prede-
termined level of confidence. This fingerprint comparison process is illustrated
in Figure 7.3.

Figure 7.3: Minutia Comparison

7.4.2.2 Hand Geometry

Another popular biometrie is hand geometry, which is particularly popular for
entry into secure facilities [138, 256]. In this system, the shape of the hand is
carefully measured, including the width and length of the hand and fingers.11

The paper [152] describes 16 such measurements, of which 14 are illustrated
in Figure 7.4 (the other two measure the thickness of the hand). Human
hands are not nearly as unique as fingerprints, but hand geometry is easy and
quick to measure, while being sufficiently robust for many authentication uses.
However, hand geometry would probably not be suitable for identification,
since the number of false matches would be high.

One advantage of hand geometry systems is that they are fast, taking less
than one minute in the enrollment phase and less than five seconds in the
recognition phase. Another advantage is that human hands are symmetric,
so if the enrolled hand is, say, in a cast, the other hand can be used by placing
it palm side up. Some disadvantages of hand geometry include that it cannot
be used on the young or the very old, and, as we'll discuss in a moment, the
system has a relatively high equal error rate.

7.4.2.3 Iris Scan

A biometrie that is, in theory, one of the best for authentication is the iris
scan. The development of the iris (the colored part of the eye) is chaotic,
which implies that minor variations lead to large differences. There is lit-
tle or no genetic influence on the iris pattern, so that the measured pattern

11Note that palm print systems do not read your palm. For that, you'll have to see your
local chiromancer.

7.4 BIOMETRICS 247

Figure 7.4: Hand Geometry Measurements

is uncorrelated for identical twins and even for the two eyes of one individ-
ual. Another desirable property is that the pattern is stable throughout a
lifetime [149].

The development of iris scan technology is relatively new. In 1936, the
idea of using the human iris for identification was suggested by Frank Burch.
In the 1980s, the idea resurfaced in James Bond films, but it was not until 1986
that the first patents appeared—a sure sign that people foresaw money to be
made on the technology. In 1994, John Daugman, a researcher at Cambridge
University, patented what is generally accepted as the best approach currently
available [76].

Iris scan systems require sophisticated equipment and software. First, an
automated iris scanner locates the iris. Then a black and white photo of
the eye is taken. The resulting image is processed using a two-dimensional
wavelet transform, the result of which is a 256-byte (that is, 2048-bit) iris
code.

Two iris codes are compared based on the Hamming distance between the
codes. Suppose that Alice is trying to authenticate using an iris scan. Let x
be the iris code computed from Alice's iris in the recognition phase, while y
is Alice's iris code stored in the scanner's database, which was gathered dur-
ing the enrollment phase. Then x and y are compared by computing the
distance d(x, y) defined by

. number of non-match bits . .
number of bits compared '

For example, d(0010,0101) = 3/4 and d(101111,101001) = 1/3.
For an iris scan, d(x, y) is computed on the 2048-bit iris code. A perfect

match yields d(x, y) — 0, but we can't expect perfection in practice. Under

248 AUTHENTICATION

laboratory conditions, for the same iris the expected distance is 0.08, and for
different irises the expect distance is 0.50. The usual thresholding scheme
is to accept the comparison as a match if the distance is less than 0.32 and
otherwise consider it a non-match [76]. An image of an iris appears in Fig-
ure 7.5.

Figure 7.5: An Iris Scan

Define the match cases to be those where, for example, Alice's data from
the enrollment phase is compared to her scan data from the recognition phase.
Define the no-match cases to be when, for example, Alice's enrollment data
is compared to Bob's recognition phase data (or vice versa). Then the left
histogram in Figure 7.6 represents match data, while the right histogram
represents no-match data. Note that the match data provides information
relevant to the insult rate, whereas the no-match data provides information
relevant to the fraud rate.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

distance

Figure 7.6: Histogram of Iris Scan Results [149]

The iris scan is often cited as the ultimate biometrie for authentication.
The histogram in Figure 7.6, which is based on 2.3 million comparisons, tends

7.4 BIOMETRICS 249

to support this view, since the overlapping region between the "same" (match)
and "different" (no-match) cases appears to be virtually nonexistent. Note
that the overlap represents the region where an error can occur. In reality,
there is some overlap between the histograms in in Figure 7.6, but the overlap
is extremely small.

The iris scan distances for the match data in Table 7.1 provide a more
detailed view of the same histogram marked as "same" in Figure 7.6. From
Figure 7.6, we see that the equal error rate (which corresponds to the crossover
point between the two graphs) occurs somewhere near distance 0.34. From
Table 7.1, this implies an equal error rate of about 10~5. For this biometrie,
we would certainly be willing to tolerate a slightly higher insult rate since
that would further reduce the fraud rate. Hence, the typical threshold used
is 0.32, as mentioned above.

Table 7.1: Iris Scan Match Scores and Error Rates [149]

Score

0.29
0.30
0.31
0.32
0.33
0.34
0.35

Probability

1 in 1.3 x 1010

1 in 1.5 x 109

1 in 1.8 x 108

1 in 2.6 x 107

1 in 4.0 x 106

1 in 6.9 x 105

1 in 1.3 x 105

Is it possible to attack an iris-scanning system? Suppose Bob has a good
photo of Alice's eye. Then he can claim to be Alice and try to use the photo to
trick the system into authenticating him as Alice. This attack is not at all far
fetched. In fact, an Afghan woman whose photo appeared on a famous Na-
tional Geographic magazine cover in 1984 was positively identified 17 years
later by comparing her then-current iris scan with an iris scan taken from
the 1984 photo. The woman had never seen the magazine, but she did re-
call being photographed. The magazine cover with the woman's photo and
the fascinating story of finding this person after years of war and chaos in
Afghanistan can be found at [28].

To prevent attacks based on a photo, an iris-scanning system could first
shine a light on the "eye" and verify that the pupil contracts before proceeding
with the iris scan. While this eliminates an attack that relies on a static
photo, it also might significantly increase the cost of the system. Given that
biometrics are in competition with passwords, and passwords are free, cost is
always an issue.

250 A UTHENTICATION

7.4.3 Biometrie Error Rates

Recall that the equal error rate—the point at which the fraud rate equals the
insult rate—is generally considered the best measure for comparing different
biometrie systems. The equal error rates for several popular biometrics are
given in Table 7.2.

Table 7.2: Biometrie Equal Error Rates [32]

Biometrie

fingerprint
hand geometry
voice recognition
iris scan
retina scan
signature recognition

Equal error rate

2.0 x 10"3

2.0 x 10"3

2.0 x 10"2

7.6 x 10"6

1.0 x 10"7

2.0 x 10"2

For fingerprint biometrie systems, the equal error rate may seem high.
However, most fingerprint biometrics are relatively cheap devices that do not
achieve anything near the theoretical potential for fingerprint matching. On
the other hand, hand geometry systems are relatively expensive and sophisti-
cated devices, so they probably do achieve something close to the theoretical
potential.

In theory, iris scanning has an equal error rate of about 10 - 5 . But to
achieve such spectacular results, the enrollment phase must be extremely
accurate. If the real-world enrollment environment is not up to laboratory
standards, then the results might not be so impressive.

Undoubtedly many inexpensive biometrics systems fare worse than the
results given in Table 7.2. And biometrics in general have a very poor record
with respect to the inherently difficult identification problem.

7.4.4 Biometrie Conclusions

Biometrics clearly have many potential advantages over passwords. In par-
ticular, biometrics are difficult, although not impossible, to forge. In the case
of fingerprints, Trudy could steal Alice's thumb, or, in a less gruesome attack,
Trudy might be able to use a copy of Alice's fingerprint. Of course, a more
sophisticated system might be able to detect such an attack, but then the
system will be more costly, thereby reducing its desirability as a replacement
for passwords.12

12Unfortunately for security, passwords are likely to remain free for the foreseeable future.

7.5 SOMETHING YOU HAVE 251

There are also many potential software-based attacks on authentication.
For example, it may be possible to subvert the software that does the compar-
ison or to manipulate the database that contains the enrollment data. Such
attacks apply to most authentication systems, regardless of whether they are
based on biometrics, passwords, or other techniques.

While a broken cryptographic key or password can be revoked and re-
placed, it's not clear how to revoke a broken biometrie. This and other
biometrie pitfalls are discussed by Schneier [260].

Biometrics have a great deal of potential as a substitute for passwords,
but biometrics are not foolproof. And given the enormous problems with
passwords and the vast potential of biometrics, it's perhaps surprising that
biometrics are not more widely used today. This should change in the future
as biometrics become more robust and inexpensive.

7.5 Something You Have

Smartcards or other hardware tokens can be used for authentication. Such
authentication is based on the "something you have" principle. A smartcard
is a credit card sized device that includes a small amount of memory and
computing resources, so that it is able to store cryptographic keys or other
secrets, and perhaps even do some computations on the card. A special-
purpose smartcard reader, as shown in Figure 7.7, is used to read the key
stored on the card. Then the key can be used to authenticate the user. Since
a key is used, and keys are selected at random, password guessing attacks can
be eliminated.13

Figure 7.7: A Smartcard Reader (Courtesy of Athena, Inc.)

There are several other examples of authentication based on "something
you have," including a laptop computer (or its MAC address), an ATM card,
or a password generator. Here, we give an example of a password generator.

13Well, a PIN might be required to access the key, so password issues might still arise.

252 AUTHENTICATION

A password generator is a small device that the user must have (and use)
to log in to a system. Suppose that Alice has a password generator, and she
wants to authenticate herself to Bob. Bob sends a random "challenge" R to
Alice, which Alice then inputs into the password generator along with her
PIN number. The password generator then produces a response, which Alice
transmits to Bob. If the response is correct, Bob is convinced that he's indeed
talking to Alice, since only Alice is supposed to have the password generator.
This process is illustrated in Figure 7.8.

Figure 7.8: Password Generator

For a challenge-response authentication scheme to work, Bob must be able
to verify that Alice's response is correct. For the example in Figure 7.8, Bob
and the password generator must both have access to the key K, since the
password generator needs the key to compute the hash, and Bob needs the
key to verify Alice's response. Alice accesses the key K only indirectly—by
entering her PIN into the key generator. We'll see more examples of the
use of challenge-response mechanisms in the upcoming chapters on security
protocols.

7.6 Two-Factor Authenticat ion

In fact, the password generator scheme in Figure 7.8 requires both "something
you have" (the password generator) and "something you know" (the PIN).
Any authentication method that requires two out of the three "somethings" is
known as two-factor authentication. Another example of a two-factor authen-
tication is an ATM card, where the user must have the card and know the PIN
number. Other examples of two-factor authentication include a credit card
together with a signature, a biometrie thumbprint system that also requires
a password, and a cell phone that requires a PIN.

7.7 Single Sign-On and Web Cookies

Before concluding this chapter, we briefly mention two additional authentica-
tion topics. First, we discuss single sign-on, which is a topic of considerable

7.7 SINGLE SIGN-ON AND WEB COOKIES 253

practical importance. We'll also briefly mention Web cookies, which are often
used as a weak form of authentication.

Users find it troublesome to enter their authentication information (typ-
ically, passwords) repeatedly. For example, when browsing the Web, it is
not uncommon that many different websites require passwords. While this is
sensible from a security perspective, it places a burden on users who must ei-
ther remember different passwords for many different websites or compromise
their security by reusing passwords.

A more convenient solution would be to have Alice authenticate once and
then have a successful result automatically "follow" her wherever she goes
on the Internet. That is, the initial authentication would require Alice's par-
ticipation, but subsequent authentications would happen behind the scenes.
This is known as single sign-on, and single sign-on for the Internet has been
a topic of some interest for several years.

As with many computing topics, there are competing and incompatible
approaches to single sign-on for the Internet. As is often the case, there
is the Microsoft way, and the "everybody else" way. The approach favored
by Microsoft goes by the name of Passport [171, 203], while the method
preferred by (nearly) everybody else is the Liberty Alliance [100, 192]. The
latter approach is based on the Security Assertion Markup Language, or
SAML [78].

Certainly, a secure single sign-on for the Internet would be a major con-
venience. However, it does not appear that any such method is likely to gain
widespread acceptance any time soon. It is worth noting that we will see
a single sign-on architecture in Chapter 10 when we discuss the Kerberos
security protocol.

Finally, we mention Web cookies, which have some interesting security
implications. When Alice is surfing the Web, websites often provide Alice's
browser with a Web cookie, which is simply a numerical value that is stored
and managed by Alice's browser. The website also stores the cookie, which
is used to index a database that retains information about Alice.

When Alice returns to a website for which she has a cookie, the cookie
is automatically passed by her browser to the website. The website can then
access its database to remember important information about Alice. In this
way, cookies maintain state across sessions. Since the Web uses HTTP, which
is a stateless protocol, cookies are also used to maintain state within a session.

In a sense, cookies can act as a single sign-on method for a website. That
is, a website can authenticate "Alice" based on the possession of Alice's Web
cookie. Or, in a slightly stronger version, a password is used to initially au-
thenticate Alice, after which the cookie is considered sufficient. Either way,
this is a fairly weak form of authentication, but it illustrates the often irre-
sistible temptation to use whatever is available and convenient as a security
mechanism, whether it is secure or not.

254 A UTHENTICATION

7.8 Summary

You can authenticate to a machine based on "something you know," "some-
thing you have," or "something you are." Passwords are synonymous with
the "something you know" method of authentication. In this chapter, we dis-
cussed passwords at length. The bottom line is that passwords are far from
an ideal method of authentication, but they are likely to remain popular for
the foreseeable future, since passwords are the lowest cost option.

We also discussed authentication based on "something you are," i.e., bio-
metrics. It is clear that biometrics offer the potential for much higher security
than passwords. However, biometrics cost money, and they are not entirely
without problems.

We briefly mentioned "something you have" methods of authentication,
as well as two-factor authentication, which combines any two of the three
methods. Finally, we briefly discussed single sign-on and Web cookies.

In the next chapter, we'll discuss authorization, which deals with restric-
tions placed on authenticated users. The authentication problem returns to
the fore in Chapters 9 and 10, where we cover security protocols. We'll see
that authentication over a network is a whole nother can of worms.

7.9 Problems

1. As discussed in this chapter, relatively strong passwords can be derived
from passphrases.

a. Give two passwords derived from the passphrase "Gentlemen do
not read other gentlemen's mail."

b. Give two passwords derived from the passphrase "Are you who
you say you are?"

2. For each of the following passwords, give a passphrase that the password
could have been derived from.

a. PokeGCTall

b. 4s&7yrsa

c. gimmeliborD

d. IcntgetNOsat

3. In the context of biometrics, define the terms fraud rate and insult rate.
In statistics, which of these is a Type I error and which is a Type II
error?

7.9 PROBLEMS 255

4. In some applications, a passcode consisting of some number of digits is
required (for example, a PIN). Using the number-to-letter conversion
on a telephone,

a. What passcode corresponds to the password "hello"?

b. Find as many passwords as you can that correspond to the pass-
code 5465, where each password is an English dictionary word.

5. Suppose that on a particular system, all passwords are 10 characters,
there are 64 choices for each character, and the system has a password
file containing 512 hashed passwords. Furthermore, Trudy has a dic-
tionary of 220 common passwords. Provide pseudo-code for an efficient
attack on the password file in the following cases.

a. The password hashes are not salted.

b. The password hashes are salted.

6. This problem deals with storing passwords in a file.

a. Why is it a good idea to hash passwords that are stored in a file?

b. Why is it a much better idea to hash passwords stored in a file
than to encrypt the password file?

c. What is a salt and why should a salt be used whenever passwords
are hashed?

7. On a particular system, all passwords are 8 characters, there are 128
choices for each character, and there is a password file containing the
hashes of 210 passwords. Trudy has a dictionary of 230 passwords, and
the probability that a randomly selected password is in her dictionary
is 1/4. Work is measured in terms of the number of hashes computed.

a. Suppose that Trudy wants to recover Alice's password. Using her
dictionary, what is the expected work for Trudy to crack Alice's
password, assuming the passwords are not salted?

b. Repeat part a, assuming the passwords are salted.

c. What is the probability that at least one of the passwords in the
password file appears in Trudy's dictionary?

8. Suppose you are a merchant and you decide to use a biometrie finger-
print device to authenticate people who make credit card purchases at
your store. You can choose between two different systems: System A
has a fraud rate of 1% and an insult rate of 5%, while System B has a
fraud rate of 5% and an insult rate of 1%.

a. Which system is more secure and why?

256 A UTHENTICATION

b. Which system is more user-friendly and why?

c. Which system would you choose and why?

9. Research has shown that most people cannot accurately identify an
individual from a photo. For example, one study found that most people
will accept an ID with any photo that has a picture of a person of the
same gender and race as the presenter.

a. It has also been demonstrated that when photos are included on
credit cards, the fraud rate drops significantly. Explain this ap-
parent contradiction.

b. Your easily amused author frequents an amusement park that pro-
vides each season passholder with a plastic card similar to a credit
card. The park takes a photo of each season passholder, but the
photo does not appear on the card. Instead, when the card is pre-
sented for admission to the park, the photo appears on a screen
that is visible to the park attendant. Why might this approach be
better than putting the photo on the card?

10. Suppose all passwords on a given system are 8 characters and that
each character can be any one of 64 different values. The passwords
are hashed (with a salt) and stored in a password file. Now suppose
Trudy has a password cracking program that can test 64 passwords per
second. Trudy also has a dictionary of 230 common passwords and the
probability that any given password is in her dictionary is 1/4. The
password file on this system contains 256 password hashes.

a. How many different passwords are possible?

b. How long, on average, will it take Trudy to crack the administra-
tor's password?

c. What is the probability that at least one of the 256 passwords in
the password file is in the dictionary?

d. What is the expected work for Trudy to recover any one of the
passwords in the password file?

11. Let h be a secure cryptographic hash function. For this problem, a
password consists of a maximum of 14-characters and there are 32 pos-
sible choices for each character. If a password is less than 14 characters,
it's padded with nulls until it is exactly 14 characters. Let P be the
resulting 14 character password. Consider the following two password
hashing schemes.

(i) The password P is split into two parts, with X equal to the first 7
characters and Y equal to the last 7 characters. The password is
stored as (h(X), h(Y)). No salt is used.

7.9 PROBLEMS 257

(ii) The password is stored as h(P). Again, no salt is used.

Note that the method in scheme (i) is used in Windows to store the
so-called LANMAN password.

a. Assuming a brute force attack, how much easier is it to crack the
password if scheme (i) is used as compared with scheme (ii)?

b. If scheme (i) is used, why might a 10-character password be less
secure than a 7-character password?14

12. Suppose that passwords are stored as follows, where there are 128 pos-
sible choices for each character: If a password exceeds 16 characters, it
is truncated to 16 characters. If à password is less than 16 characters, it
is padded with "A" until it is exactly 16 characters. The resulting 16-
character password is split into two parts, Xo and X\, where XQ consists
of the first six characters and X\ consists of the last 10 characters. The
password is hashed as lo = h(Xo,So) and Y\ = h(Xi,Si), where So
and Si are each 64-bit salt values. The values (Yo,So) and (Y\,Si) are
stored for use in password verification.

a. Precisely how are (YO,SQ) and (Yi,S\) used to verify an entered
password?

b. What is the expected work for an exhaustive search to recover one
particular password (for example, the administrator's password)?

c. How would you attack a password in a way that could provide a
significant shortcut over an exhaustive search or a standard dic-
tionary attack? Explain.

13. Many websites require users to register before they can access informa-
tion or services. Suppose that you register at such a website, but when
you return later you've forgotten your password. The website then asks
you to enter your email address, which you do. Later, you receive your
original password via email.

a. Discuss several security concerns with this approach to dealing
with forgotten passwords.

b. The correct way to deal with passwords is to store salted hashes
of passwords. Does this website use the correct approach? Justify
your answer.

14In fact, the standard advice for LANMAN passwords is that users should choose either
a 7-character password, or a 14-character password, since anything in between these two
lengths is less secure.

258 AUTHENTICATION

14. Alice forgets her password. She goes to the system administrator's
office, and the admin resets her password and gives Alice the new pass-
word.

a. Why does the SA reset the password instead of giving Alice her
previous (forgotten) password?

b. Why should Alice re-reset her password immediately after the SA
has reset it?

c. Suppose that after the SA resets Alice's password, she remembers
her previous password. Alice likes her old password, so she resets it
to its previous value. Would it be possible for the SA to determine
that Alice has chosen the same password as before? Why or why
not?

15. Consider the password generator in Figure 7.8.

a. If R is repeated, is the protocol secure?

b. If R is predictable, is the protocol secure?

16. Describe attacks on an authentication scheme based on Web cookies.

17. Briefly outline the most significant technical differences between Pass-
port and Liberty Alliance.

18. MAC address are globally unique and they don't change except in rare
instances where hardware changes.

a. Explain how the MAC address on your computer could be used as
a "something you have" form of authentication.

b. How could you use the MAC address as part of a two-factor au-
thentication scheme?

c. How secure is your authentication scheme in part a? How much
more secure is your authentication scheme in part b?

19. Suppose you have six accounts, each of which requires a password, and
you choose distinct passwords for each account.

a. If the probability that any given password is in Trudy's password
dictionary is 1/4, what is the probability that at least one of your
passwords is in Trudy's dictionary?

b. If the probability that any one of your passwords is in Trudy's
dictionary is reduced to 1/10, what is the probability that at least
one of your passwords is in Trudy's dictionary?

7.9 PROBLEMS 259

20. Suppose that you have n accounts, each of which requires a password.
Trudy has a dictionary and the probability that a password appears in
Trudy's dictionary is p.

a. If you use the same password for all n accounts, what is the prob-
ability that your password appears in Trudy's dictionary?

b. If you use distinct passwords for each of your n accounts, what
is the probability that at least one of your passwords appears in
Trudy's dictionary? Show that if n = 1, your answer agrees with
your answer to part a.

c. Which is more secure, choosing the same password for all accounts,
or choosing different passwords for each account? Why? See also
Problem 21.

21. Suppose that Alice uses two distinct passwords—one strong password
for sites where she believes security is important (e.g., her online bank),
and one weak password for sites where she does not care much about
security (e.g., social networking sites).

a. Alice believes this is a reasonable compromise between security
and convenience. What do you think?

b. What are some practical difficulties that might arise with such an
approach?

22. Suppose Alice requires passwords for eight different accounts. She could
choose the same password for all of these accounts. With just a single
password to remember, Alice might be more likely to choose a strong
password. On the other hand, Alice could choose different passwords for
each account. With distinct passwords, she might be tempted to choose
weaker passwords since this might make it easier for her to remember
all of her passwords.

a. What are the trade-offs between one well-chosen password versus
several weaker passwords?

b. Is there a third approach that is more secure than either of these
options?

23. Consider Case I from Section 7.3.5.

a. If the passwords are unsalted, how much work is it for Trudy to
precompute all possible hash values?

b. If each password is salted with a 16-bit value, how much work is
it for Trudy to precompute all possible hash values?

260 A UTHENTICATION

c. If each password is salted with a 64-bit value, how much work is
it for Trudy to precompute all possible hash values?

24. Suppose that Trudy has a dictionary of 2™ passwords and the probabil-
ity that a given password is in her dictionary is p. If Trudy obtains a
file containing a large number of salted password hashes, show that the
expected work to recover a password is bounded by 2 n _ 1 (1 + 2(1— p)/p)-
Hint: As in Section 7.3.5, Case IV, ignore the highly improbable case
where none of the passwords in the file appears in Trudy's dictio-
nary. Then make use of the fact that Y^LQXk = 1/(1 — x) and also
Y^kLi kxk = x/(l — x)2, provided \x\ < 1.

25. For password cracking, generally the most realistic situation is Case IV
of Section 7.3.5. In this case, the amount of work that Trudy must
do to determine a password depends on the size öf the dictionary, the
probability that a given password is in the dictionary, and the size of the
password file. Suppose Trudy's dictionary is of size 2™, the probability
that a password is in the dictionary is p, and the password file is of
size M. Show that if p is small and M is sufficiently large, then Trudy's
expected work is about 2"/p. Hint: Use the result of Problem 24.

26. Suppose that when a fingerprint is compared with one other (non-
matching) fingerprint, the chance of a false match is 1 in 1010, which is
approximately the error rate when 16 points are required to determine
a match (the British legal standard). Suppose that the FBI fingerprint
database contains 107 fingerprints.

a. How many false matches will occur when 100,000 suspect finger-
prints are each compared with the entire database?

b. For any individual suspect, what is the chance of a false match?

27. Suppose DNA matching could be done in real time.

a. Describe a biometrie for secure entry into a restricted facility based
on this technique.

b. Discuss one security concern and one privacy concern with your
proposed system in part a.

28. This problem deals with biometrics.

a. What is the difference between the authentication problem and
the identification problem?

b. Which is the inherently easier problem, authentication or identifi-
cation? Why?

7.9 PROBLEMS 261

29. This problem deals with biometrics.

a. Define fraud rate.

b. Define insult rate.

c. What is the equal error rate, how is it determined, and why is it
useful?

30. Gait recognition is a biometrie that distinguishes based on the way a
person walks, whereas a digital doggie is a biometrie that distinguishes
based on odor.

a. Describe an attack on gait recognition when it's used for identifi-
cation.

b. Describe an attack on a digital doggie when it's used for identifi-
cation.

31. Recently, facial recognition has been touted as a possible method for,
say, identifying terrorists in airports. As mentioned in the text, fa-
cial recognition is used by Las Vegas casinos in an attempt to detect
cheaters. Note that in both of these cases the biometrie is being used
for identification (not authentication), presumably with uncooperative
subjects.

a. Discuss an attack on facial recognition when used by a casino to
detect cheaters.

b. Discuss a countermeasure that casinos might employ to reduce the
effectiveness of your attack in part a.

c. Discuss a counter-countermeasure that attackers might employ to
reduce the effectiveness of your countermeasure in b.

32. In one episode of the television show MythBusters, three successful at-
tacks on fingerprint biometrics are demonstrated [213].

a. Briefly discuss each of these attacks.

b. Discuss possible countermeasures for each of the attacks in part a.
That is, discuss ways that the biometrie systems could be made
more robust against the specific attacks.

33. This problem deals with possible attacks on a hand geometry biometrie
system.

a. Discuss analogous attacks to those in Problem 32 but for a hand
geometry biometrie system.

262 A UTHENTICATION

b. In your judgment, which would be more difficult to break, the
fingerprint door lock in Problem 32, or an analogous system based
on hand geometry? Justify your answer.

34. A retina scan is an example of a well-known biometrie that was not
discussed in this chapter.

a. Briefly outline the history and development of the retina scan bio-
metric. How does a modern retina scan system work?

b. Why, in principle, can a retina scan be extremely effective?

c. List several pros and cons of retina scanning as compared to a
fingerprint biometrie.

d. Suppose that your company is considering installing a biometrie
system that every employee will use every time they enter their
office building. Your company will install either a retina scan or
an iris scan system. Which would you prefer that they choose?
Why?

35. A sonogram is a visual representation of sound. Obtain and install a
speech analysis tool that can generate sonograms.15

a. Examine several sonograms of your voice, each time saying "open
sesame." Qualitatively, how similar are the sonograms?

b. Examine several sonograms of someone else saying "open sesame."
How similar are these sonograms to each other?

c. In what ways do your sonograms from part a differ from those in
part b?

d. How would you go about trying to develop a reliable biometrie
based on voice recognition? What characteristics of the sonograms
might be useful for distinguishing speakers?

36. This problem deals with possible attacks on an iris scan biometrie sys-
tem.

a. Discuss analogous attacks to those in Problem 32 on an iris scan
biometrie system.

b. Why would it be significantly more difficult to break an iris scan
system than the fingerprint door lock in Problem 32?

c. Given that an iris scan biometrie is inherently stronger than a
fingerprint-based biometrie system, why are fingerprint biometrics
far more popular?

15Your audacious author uses Audacity [20] to record speech and Sonogram [272] to
generate sonograms and analyze the resulting audio files. Both of these are freeware.

7.9 PROBLEMS 263

37. Suppose that a particular iris scan systems generates 64-bit iris codes
instead of the standard 2048-bit iris codes mentioned in this chapter.
During the enrollment phase, the following iris codes (in hex) are de-
termined.

User

Alice

Bob
Charlie

Iris code

BE439AD598EF5147

9C8B7A1425369584

885522336699CCBB

During the recognition phase, the following iris codes are obtained.

User Iris code
~~Ü C975A2132E89CEAF
V DB9A8675342FEC15

W A6039AD5F8CFD965

X 1DCA7A54273497CC

Y AF8B6C7D5E3F0F9A

Use the iris codes above to answer the following questions.

a. Use the formula in equation (7.1) to compute the following dis-
tances:

(/(Alice, Bob), d(Alice, Charlie), d(Bob, Charlie).

b. Assuming that the same statistics apply to these iris codes as
the iris codes discussed in Section 7.4.2.3, which of the users,
U,V,W,X,Y, is most likely Alice? Bob? Charlie? None of the
above?

38. A popular "something you have" method of authentication is the RSA
SecurlD [252]. The SecurelD system is often deployed as a USB key.
The algorithm used by SecurlD is similar to that given for the pass-
word generator illustrated in Figure 7.8. However, no challenge R is
sent from Bob to Alice; instead, the current time T (typically, to a
resolution of one minute) is used. That is, Alice's password generator
computes h(K,T) and this is sent directly to Bob, provided Alice has
entered the correct PIN (or password).

a. Draw a diagram analogous to that in Figure 7.8 illustrating the
SecurlD algorithm.

b. Why do we need T? That is, why is the protocol insecure if we
remove T?

264 A UTHENTICATION

c. What are the advantages and disadvantages of using the time T
as compared to using a random challenge Rl

d. Which is more secure, using a random challenge R or the time T?
Why?

39. A password generator is illustrated in Figure 7.8.

a. Discuss possible cryptanalytic attacks on the password generator
scheme in Figure 7.8.

b. Discuss network-based attacks on the password generator scheme
in Figure 7.8.

c. Discuss possible non-technical attacks on the password generator
scheme in Figure 7.8.

40. In addition to the holy trinity of "somethings" discussed in this chapter
(something you know, are, or have), it is also possible to base authenti-
cation on "something you do." For example, you might need to press a
button on your wireless access point to reset it, proving that you have
physical access to the device.

a. Give another real-world example where authentication could be
based on "something you do."

b. Give an example of two-factor authentication that includes "some-
thing you do" as one of the factors.

Chapter 8

Authorization

It is easier to exclude harmful passions than to rule them,
and to deny them admittance than to control them after they have been admitted.

— Seneca

You can always trust the information given to you by people who are crazy;
they have an access to truth not available through regular channels.

— Sheila Ballantyne

8.1 Introduction

Authorization is the part of access control concerned with restrictions on the
actions of authenticated users. In our terminology, authorization is one aspect
of access control and authentication is another. Unfortunately, some authors
use the term "access control" as a synonym for authorization.

In the previous chapter we discussed authentication, where the issue is
one of establishing identity. In its most basic form, authorization deals with
the situation where we've already authenticated Alice and we want to enforce
restrictions on what she is allowed to do. Note that while authentication is
binary (either a user is authenticated or not), authorization can be a much
more fine grained process.

In this chapter, we'll extend the traditional notion of authorization to
include a few non-traditional topics. We'll discuss CAPTCHAs, which are
designed to restrict access to humans (as opposed to computers), and we'll
consider firewalls, which can be viewed as a form of access control for net-
works. We'll follow up the section on firewalls with a discussion of intrusion
detection systems, which come into play when firewalls fail to keep the bad
guys out.

265

266 AUTHORIZATION

8.2 A Brief History of Authorization
History is ... bunk.

— Henry Ford

Back in the computing dark ages,1 authorization was often considered the
heart of information security. Today, that seems like a rather quaint notion.
In any case, it is worth briefly considering the historical context from which
modern information security has arisen.

While cryptography has a long and storied history, other aspects of mod-
ern information security are relative newcomers. Here, we take a brief look
at the history of system certification, which, in some sense, represents the
modern history of authorization. The goal of such certification regimes is
to give users some degree of confidence that the systems they use actually
provide a specified level of security. While this is a laudable goal, in practice,
system certification is often laughable. Consequently, certification has never
really become a significant piece of the security puzzle—as a rule, only those
products that absolutely must be certified are. And why would any product
need to be certified? Governments, which created the certification regimes,
require certification for certain products that they purchase. So, as a prac-
tical matter, certification is generally only an issue if you are trying to sell
your product to the government.2

8.2.1 The Orange Book

The Trusted Computing System Evaluation Criteria (TCSEC), or "orange
book" [309] (so called because of the color of its cover) was published in 1983.
The orange book was one of a series of related books developed under the
auspices of the National Security Agency. Each book had a different colored
cover and collectively they are known as the "rainbow series." The orange
book primarily deals with system evaluation and certification and, to some
extent, multilevel security—a topic discussed later in this chapter.

Today, the orange book is of little, if any, practical relevance. Moreover,
in your opinionated author's opinion, the orange book served to stunt the
growth of information security by focusing vast amounts of time and resources
on some of the most esoteric and impractical aspects of security.3

Of course, not everyone is as enlightened as your humble author, and, in
some circles, there is still something of a religious fervor for the orange book

l r rhat is, before the Apple Macintosh was invented.
2It 's tempting to argue that certification is an obvious failure simply because there is

no evidence that the government is any more secure than anybody else, in spite of its use
of certified security products. However, your certifiable author will, for once, refrain from
making such a smug and unsubstantiated (but oddly satisfying) claim.

3Other than that, the orange book was a smashing success.

8.2 A BRIEF HISTORY OF AUTHORIZATION 267

and its view of the security universe. In fact, the faithful tend to believe that
if only the orange book way of thinking had prevailed, we'd all be much more
secure today.

So, is it worth knowing something about the orange book? Well, it's
always good to have some historical perspective on any subject. Also, as pre-
viously mentioned, there are some people who still take it seriously (although
fewer and fewer each day), and you may need to deal with such a person at
some point. In addition, it is possible that you may need to worry about
system certification.

The stated purpose of the orange book is to provide criteria for assess-
ing the effectiveness of the security provided by "automatic data processing
system products." The overriding goals, as given in [309], are:

a. To provide users with a yardstick with which to assess the degree of
trust that can be placed in computer systems for the secure processing
of classified or other sensitive information.

b. To provide guidance to manufacturers as to what to build into their
new, widely available trusted commercial products in order to satisfy
trust requirements for sensitive applications.

c. To provide a basis for specifying security requirements in acquisition
specifications.

In short, the orange book intended to provide a way to assess the security
of existing products and to provide guidance on how to build more secure
products. The practical effect was that the orange book provided the basis
for a certification regime that could be used to provide a security rating to
a security product. In typical governmental fashion, the certification was to
be determined by navigating through a complex and ill-defined maze of rules
and requirements.

The orange book proposes four broad divisions, labeled as D through A,
with D being the lowest and A the highest. Most of the divisions are split
into classes. For example, under the C division, we have classes Cl and C2.
The four divisions and their corresponding classes are as follows.

D. Minimal protection — This division contains only one class which is
reserved for those systems that can't meet the requirements for any
higher class. That is, these are the losers that couldn't make it into any
"real" class.

C. Discretionary protection — There are two classes here, both of which
provide some level of "discretionary" protection. That is, they don't
necessarily force security on users, but instead they provide some means
of detecting security breaches—specifically, there must be an audit ca-
pability. The two classes in this division are the following.

268 AUTHORIZATION

Cl. Discretionary security protection — In this class, a system must
provide "credible controls capable of enforcing access limitations
on an individual basis."4

C2. Controlled access protection — Systems in this class "enforce a
more finely grained discretionary access control than (Cl) sys-
tems." "5

B. Mandatory protection — This a big step up from C. The idea of the C
division is that users can break the security, but they might get caught.
However, for division B, the protection is mandatory, in the sense that
users cannot break the security even if they try. The B classes are the
following.

Bl. Labeled security protection — Mandatory access control is based
on specified labels. That is, all data carries some sort of label,
which determines which users can do what with the data. Also,
the access control is enforced in a way so that users cannot violate
it (i.e., the access control is mandatory).

B2. Structured protection — This adds covert channel protection (dis-
cussed later in this chapter) and a few other technical issues on
top of Bl.

B3. Security domains — On top of B2 requirements, this class adds
that the code that enforces security must "be tamperproof, and be
small enough to be subjected to analysis and tests." We'll have
much more to say about software issues in later chapters. For
now, it is worth mentioning that making software tamperproof is,
at best, difficult and expensive, and is seldom attempted in any
serious way.

A. Verified protection — This is the same as B3, except that so-called
formal methods must be used to, in effect, prove that the system does
what is claimed. In this division there is a class Al and a brief discussion
of what might lie beyond Al.

The A division was certainly very optimistic for a document published in
the 1980s, since the formal proofs that it envisions are not yet feasible for
systems of moderate or greater complexity. As a practical matter, satisfying
the C level requirements should be, in principle, almost trivial, but even
today, achieving any of the B (or higher) classes would be a challenging
task, except, perhaps, for certain straightforward applications (e.g., digital
signature software).

4 Hmm. . .
5Yes, of course, it's all so clear now...

8.2 A BRIEF HISTORY OF AUTHORIZATION 269

There is a second part to the orange book that covers the "rationale
and criteria," that is, it gives the reasoning behind the various requirements
outlined above, and it attempts to provide specific guidance on how to meet
the requirements. The rationale section includes a brief discussion of such
topics as a reference monitor and a trusted computing base—topics that we
will mention in our final chapter. There is also a brief discussion of the
Bell-LaPadula security model, which we cover later in this chapter.

The criteria (i.e., the guidelines) section is certainly much more specific
than the general discussion of the classes, but it is not clear that the guidelines
are really all that useful or sensible. For example, under the title of "testing
for division C" we have the following guidance, where "team" refers to the
security testing team [309].

The team shall independently design and implement at least five
system-specific tests in an attempt to circumvent the security
mechanisms of the system. The elapsed time devoted to testing
shall be at least one month and need not exceed three months.
There shall be no fewer than twenty hands-on hours spent car-
rying out system developer-defined tests and test team-defined
tests.

While this is specific, it's not difficult to imagine a scenario where one team
could accomplish more in a few hours of automated testing than another team
could accomplish in three months of manual testing.6

8.2.2 The Common Criteria

Formally, the orange book has been superseded by the cleverly named Com-
mon Criteria [65], which is an international government-sponsored standard
for certifying security products. The Common Criteria is similar to the orange
book in the sense that, as much as is humanly possible, it is ignored in prac-
tice. However, if you want to sell your security product to the government,
it may be necessary to obtain some specified level of Common Criteria cer-
tification. Even the lower-level Common Criteria certifications can be costly
to obtain (on the order of six figures, in U.S. dollars), and the higher-level
certifications are prohibitively expensive due to many fanciful requirements.

A Common Criteria certification yields a so-called Evaluation Assurance
Level (EAL) with a numerical rating from 1 to 7, that is, EAL1 through
EAL7, where the higher the number, the better. Note that a product with a
higher EAL is not necessarily more secure than a product with a lower (or no)
EAL. For example, suppose that product A is certified EAL4, while product B

6As an aside, your easily annoyed author finds it highly ironic and somewhat disturbing
that the same people who gave us the dubious orange book now want to set educational
standards in information security; see [216].

270 AUTHORIZATION

carries an EAL5 rating. All this means is that product A was evaluated for
EAL4 (and passed), while product B was actually evaluated for EAL5 (and
passed). It is possible that product A could actually have achieved EAL5 or
higher, but the developers simply felt it was not worth the cost and effort to
try for a higher EAL. The different EALs are listed below [106].

• EAL1 — Functionally Tested

• EAL2 — Structurally Tested

• EAL3 — Methodically Tested and Checked

• EAL4 — Methodically Designed, Tested, and Reviewed

• EAL5 — Semiformally Designed and Tested

• EAL6 — Semiformally Verified Design and Tested

• EAL7 — Formally Verified Design and Tested

To obtain an EAL7 rating, formal proofs of security must be provided,
and security experts carefully analyze the product. In contrast, at the lowest
EALs, the documentation is all that is analyzed. Of course, at an intermediate
level, something between these two extremes is required.

Certainly the most commonly sought-after Common Criteria certification
is EAL4, since it is generally the minimum required to sell to the government.
Interestingly, your hard-working author could find a grand total of precisely
two products certified at the highest Common Criteria level, EAL7. This is
not an impressive number considering that this certification regime has been
around for more than a decade and it is an international standard.

And who are these security "experts" who perform Common Criteria eval-
uations? The security experts work for government-accredited Common Cri-
teria Testing Laboratories—in the U.S. the accrediting agency is NIST.

We won't go into the details of Common Criteria certification here.7 In
any case, the Common Criteria will never evoke the same sort of passions
(pro or con) as the orange book. Whereas the orange book is, in a sense,
a philosophical statement claiming to provide the answers about how to do
security, the Common Criteria is little more than a mind-numbing bureau-
cratic hurdle that must be overcome if you want to sell your product to the
government. It is also worth noting that whereas the orange book is only
about 115 pages long, due to inflation, the Common Criteria documentation
exceeds 1000 pages. Consequently, few mortals will ever read the Common

7During your tireless author's two years at a small startup company, he spent an inor-
dinate amount of time studying the Common Criteria documentation—his company was
hoping to sell its product to the U.S. government. Because of this experience, mere mention
of the Common Criteria causes your usually hypoallergenic author to break out in hives.

8.3 ACCESS CONTROL MATRIX 271

Criteria, which is another reason why it will never evoke more than a yawn
from the masses.

Next, we consider the classic view of authorization. Then we look at
multilevel security (and related topics) before considering a few cutting-edge
topics, including firewalls, IDS, and CAPTCHAs.

8.3 Access Control Matrix

The classic view of authorization begins with Lampson's access control ma-
trix [5]. This matrix contains all of the relevant information needed by an
operating system to make decisions about which users are allowed to do what
with the various system resources.

We'll define a subject as a user of a system (not necessarily a human
user) and an object as a system resource. Two fundamental constructs in
the field of authorization are access control lists, or ACLs, and capabilities,
or C-lists. Both ACLs and C-lists are derived from Lampson's access control
matrix, which has a row for every subject and a column for every object.
Sensibly enough, the access allowed by subject S to object O is stored at
the intersection of the row indexed by S and the column indexed by O.
An example of an access control matrix appears in Table 8.1, where we use
UNIX-style notation, that is, x, r, and w stand for execute, read, and write
privileges, respectively.

Table 8.1: Access Control Matrix

Bob
Alice
Sam

Accounting
program

OS
rx
rx

rwx

rx

Accounting
program

rx
rx

rwx

rx

Accounting
data

r
r
r

rw

Insurance
data
—
rw
rw

rw

Payroll
data
—
rw
rw

r

Notice that in Table 8.1, the accounting program is treated as both an
object and a subject. This is a useful fiction, since we can enforce the restric-
tion that the accounting data is only modified by the accounting program.
As discussed in [14], the intent here is to make corruption of the accounting
data more difficult, since any changes to the accounting data must be done
by software that, presumably, includes standard accounting checks and bal-
ances. However, this does not prevent all possible attacks, since the system
administrator, Sam, could replace the accounting program with a faulty (or
fraudulent) version and thereby break the protection. But this trick does

272 AUTHORIZATION

allow Alice and Bob to access the accounting data without allowing them to
corrupt it—either intentionally or unintentionally.

8.3.1 ACLs and Capabilities

Since all subjects and all objects appear in the access control matrix, it con-
tains all of the relevant information on which authorization decisions can be
based. However, there is a practical issue in managing a large access control
matrix. A system could have hundreds of subjects (or more) and tens of
thousands of objects (or more), in which case an access control matrix with
millions of entries (or more) would need to be consulted before any operation
by any subject on any object. Dealing with such a large matrix could impose
a significant burden on the system.

To obtain acceptable performance for authorization operations, the access
control matrix can be partitioned into more manageable pieces. There are
two obvious ways to split the access control matrix. First, we could split
the matrix into its columns and store each column with its corresponding
object. Then, whenever an object is accessed, its column of the access control
matrix would be consulted to see whether the operation is allowed. These
columns are known as access control lists, or ACLs. For example, the ACL
corresponding to insurance data in Table 8.1 is

(Bob, —), (Alice, rw), (Sam, rw), (accounting program, rw).

Alternatively, we could store the access control matrix by row, where each
row is stored with its corresponding subject. Then, whenever a subject tries
to perform an operation, we can consult its row of the access control matrix
to see if the operation is allowed. This approach is know as capabilities, or
C-lists. For example, Alice's C-list in Table 8.1 is

(OS, rx), (accounting program, rx), (accounting data, r) ,
(insurance data, rw), (payroll data, rw).

It might seem that ACLs and C-lists are equivalent, since they simply
provide different ways of storing the same information. However, there are
some subtle differences between the two approaches. Consider the comparison
of ACLs and capabilities illustrated in Figure 8.1.

Note that the arrows in Figure 8.1 point in opposite directions, that is, for
ACLs, the arrows point from the resources to the users, while for capabilities,
the arrows point from the users to the resources. This seemingly trivial
difference has real significance. In particular, with capabilities, the association
between users and files is built into the system, while for an ACL-based
system, a separate method for associating users to files is required. This
illustrates one of the inherent advantages of capabilities. In fact, capabilities
have several security advantages over ACLs and, for this reason, C-lists are

8.3 ACCESS CONTROL MATRIX 273

Figure 8.1: ACLs versus Capabilities

much beloved within the academic research community [206]. In the next
section, we discuss one potential security advantage of capabilities over ACLs.
Then we move on to the topic of multilevel security.

8.3.2 Confused D e p u t y

The confused deputy is a classic security problem that arises in many con-
texts [139]. For our illustration of this problem, we consider a system with
two resources, a compiler and a file named BILL that contains critical billing
information, and one user, Alice. The compiler can write to any file, while
Alice can invoke the compiler and she can provide a filename where debug-
ging information will be written. However, Alice is not allowed to write to the
file BILL, since she might corrupt the billing information. The access control
matrix for this scenario appears in Table 8.2.

Table 8.2: Access Control Matrix for Confused Deputy Example

Alice
Compiler

Compiler BILL
x —
rx rw

Now suppose that Alice invokes the compiler, and she provides BILL as the
debug filename. Alice does not have the privilege to access the file BILL, so
this command should fail. However, the compiler, which is acting on Alice's
behalf, does have the privilege to overwrite BILL. If the compiler acts with
its privilege, then a side effect of Alice's command will be the trashing of the
BILL file, as illustrated in Figure 8.2.

274 AUTHORIZATION

Figure 8.2: Confused Deputy

Why is this problem known as the confused deputy? The compiler is
acting on Alice's behalf, so it is her deputy. The compiler is confused since it
is acting based on its own privileges when it should be acting based on Alice's
privileges.

With ACLs, it's more difficult (but not impossible) to avoid the con-
fused deputy. In contrast, with capabilities it's relatively easy to prevent this
problem, since capabilities are easily delegated, while ACLs are not. In a
capabilities-based system, when Alice invokes the compiler, she can simply
give her C-list to the compiler. The compiler then consults Alice's C-list when
checking privileges before attempting to create the debug file. Since Alice does
not have the privilege to overwrite BILL, the situation in Figure 8.2 can be
avoided.

A comparison of the relative advantages of ACLs and capabilities is in-
structive. ACLs are preferable when users manage their own files and when
protection is data oriented. With ACLs, it's also easy to change rights to a
particular resource. On the other hand, with capabilities it's easy to delegate
(and sub-delegate and sub-sub-delegate, and so on), and it's easier to add or
delete users. Due to the ability to delegate, it's easy to avoid the confused
deputy when using capabilities. However, capabilities are more complex to
implement and they have somewhat higher overhead—although it may not
be obvious, many of the difficult issues inherent in distributed systems arise
in the context of capabilities. For these reasons, ACLs are used in practice
far more often than capabilities.

8.4 Multilevel Security Models

In this section we briefly discuss security modeling in the context of multilevel
security. Security models are often presented at great length in information
security textbooks, but here we'll only mention two of the best-known models,
and we only present an overview of these models. For a more thorough
introduction to MLS and related security models, see [283] or Gollmann's
book [125].

8.4 MULTILEVEL SECURITY MODELS 275

In general, security models are descriptive, not proscriptive. That is,
these models tell us what needs to be protected, but they don't answer the
real question, that is, how to provide such protection. This is not a flaw in
the models, as they are designed to set a framework for protection, but it is
an inherent limitation on the practical utility of security modeling.

Multilevel security, or MLS, is familiar to all fans of spy novels, where
classified information often figures prominently. In MLS, the subjects are the
users (generally, human) and the objects are the data to be protected (for
example, documents). Furthermore, classifications apply to objects while
clearances apply to subjects.

The U.S. Department of Defense, or DoD, employs four levels of classifi-
cations and clearances, which can be ordered as

TOP SECRET > SECRET > CONFIDENTIAL > UNCLASSIFIED. (8.1)

For example, a subject with a SECRET clearance is allowed access to objects
classified SECRET or lower but not to objects classified TOP SECRET.
Apparently to make them more visible, security levels are generally rendered
in upper case.

Let O be an object and S a subject. Then O has a classification and S has
a clearance. The security level of O is denoted L(0), and the security level
of S is similarly denoted L(S). In the DoD system, the four levels shown above
in (8.1) are used for both clearances and classifications. Also, for a person
to obtain a SECRET clearance, a more-or-less routine background check is
required, while a TOP SECRET clearance requires an extensive background
check, a polygraph exam, a psychological profile, etc.

There are many practical problems related to the classification of infor-
mation. For example, the proper classification is not always clear, and two
experienced users might have widely differing views. Also, the level of gran-
ularity at which to apply classifications can be an issue. It's entirely possible
to construct a document where each paragraph, when taken individually, is
UNCLASSIFIED, yet the overall document is TOP SECRET. This problem
is even worse when source code must be classified, which is sometimes the
case within the DoD. The flip side of granularity is aggregation—an adversary
might be able to glean TOP SECRET information from a careful analysis of
UNCLASSIFIED documents.

Multilevel security is needed when subjects and objects at different levels
use the same system resources. The purpose of an MLS system is to enforce a
form of access control by restricting subjects so that they only access objects
for which they have the necessary clearance.

Military and government have long had an interest in MLS. The U.S.
government, in particular, has funded a great deal of research into MLS and,
as a consequence, the strengths and weaknesses of MLS are relatively well
understood.

276 AUTHORIZATION

Today, there are many potential uses for MLS outside of its traditional
classified government setting. For example, most businesses have information
that is restricted to, say, senior management, and other information that is
available to all management, while still other proprietary information is avail-
able to everyone within the company and, finally, some information is avail-
able to everyone, including the general public. If this information is stored
on a single system, the company must deal with MLS issues, even if they
don't realize it. Note that these categories correspond directly to the TOP
SECRET, SECRET, CONFIDENTIAL, and UNCLASSIFIED classifications
discussed above.

There is also interest in MLS in such applications as network firewalls.
The goal in such a case is to keep an intruder, Trudy, at a low level to limit
the damage that she can inflict after she breaches the firewall. Another MLS
application that we'll examine in more detail below deals with private medical
information.

Again, our emphasis here is on MLS models, which explain what needs
to be done but do not tell us how to implement such protection. In other
words, we should view these models as high-level descriptions, not as security
algorithms or protocols. There are many MLS models—we'll only discuss the
most elementary. Other models can be more realistic, but they are also more
complex and harder to analyze and verify.

Ideally, we would like to prove results about security models. Then any
system that satisfies the assumptions of the model automatically inherits all
of the results that have been proved about the model. However, we will not
delve so deeply into security models in this book.

8.4.1 Bell-LaPadula

The first security model that we'll consider is Bell-LaPadula, or BLP, which,
believe it or not, was named after its inventors, Bell and LaPadula. The
purpose of BLP is to capture the minimal requirements, with respect to con-
fidentiality, that any MLS system must satisfy. BLP consists of the following
two statements:

Simple Security Condition: Subject S can read object O if
and only if L(0) < L(S).

*-Property (Star Property): Subject S can write object O if and
only if L(S) < L(0).

The simple security condition merely states that Alice, for example, can-
not read a document for which she lacks the appropriate clearance. This
condition is clearly required of any MLS system.

8.4 MULTILEVEL SECURITY MODELS 277

The star property is somewhat less obvious. This property is designed
to prevent, say, TOP SECRET information from being written to, say, a
SECRET document. This would break MLS security since a user with a
SECRET clearance could then read TOP SECRET information. The writing
could occur intentionally or, for example, as the result of a computer virus.
In his groundbreaking work on viruses, Cohen mentions that viruses could be
used to break MLS security [60], and such attacks remain a very real threat
to MLS systems today.

The simple security condition can be summarized as "no read up," while
the star property implies "no write down." Consequently, BLP is sometimes
succinctly stated as "no read up, no write down." It's difficult to imagine a
security model that's any simpler.

Although simplicity in security is a good thing, BLP may be too simple.
At least that is the conclusion of McLean, who states that BLP is "so trivial
that it is hard to imagine a realistic security model for which it does not
hold" [198]. In an attempt to poke holes in BLP, McLean defined a "system
Z" in which an administrator is allowed to temporarily reclassify objects, at
which point they can be "written down" without violating BLP. System Z
clearly violates the spirit of BLP, but, since it is not expressly forbidden, it
is apparently allowed.

In response to McLean's criticisms, Bell and LaPadula fortified BLP with
a tranquility property. Actually, there are two versions of this property. The
strong tranquility property states that security labels can never change. This
removes McLean's system Z from the BLP realm, but it's also impractical
in the real world, since security labels must sometimes change. For example,
the DoD regularly declassifies documents, which would be impossible under
strict adherence to the strong tranquility property. For another example, it is
often desirable to enforce least privilege. If a user has, say, a TOP SECRET
clearance but is only browsing UNCLASSIFIED Web pages, it is desirable to
only give the user an UNCLASSIFIED clearance, so as to avoid accidentally
divulging classified information. If the user later needs a higher clearance,
his active clearance can be upgraded. This is known as the high water mark
principle, and we'll see it again when we discuss Biba's model, below.

Bell and Lapadula also offered a weak tranquility property in which a secu-
rity label can change, provided such a change does not violate an "established
security policy." Weak tranquility can defeat system Z, and it can allow for
least privilege, but the property is so vague as to be nearly meaningless for
analytic purposes.

The debate concerning BLP and system Z is discussed thoroughly in [34],
where the author points out that BLP proponents and McLean are each
making fundamentally different assumptions about modeling. This debate
gives rise to some interesting issues concerning the nature—and limits—of
modeling.

278 AUTHORIZATION

The bottom line regarding BLP is that it's very simple, and as a result it's
one of the few models for which it's possible to prove things about systems.
Unfortunately, BLP may be too simple to be of any practical benefit.

BLP has inspired many other security models, most of which strive to
be more realistic. The price that these systems pay for more reality is more
complexity. This makes most other models more difficult to analyze and more
difficult to apply, that is, it's more difficult to show that a real-world system
satisfies the requirements of the model.

8.4.2 Biba's Model

In this section, we'll look briefly at Biba's model. Whereas BLP deals with
confidentiality, Biba's model deals with integrity. In fact, Biba's model is
essentially an integrity version of BLP.

If we trust the integrity of object 0\ but not that of object O2, then if
object O is composed of 0\ and O2, we cannot trust the integrity of object O.
In other words, the integrity level of O is the minimum of the integrity of any
object contained in O. Another way to say this is that for integrity, a low
water mark principle holds. In contrast, for confidentiality, a high water mark
principle applies.

To state Biba's model formally, let 1(0) denote the integrity of object O
and I(S) the integrity of subject S. Biba's model is defined by the two
statements:

Write Access Rule: Subject S can write object O if and only
if 1(0) < I(S).

Biba's Model: A subject S can read the object O if and only
if I(S) < I(0).

The write access rule states that we don't trust anything that S writes
any more than we trust S. Biba's model states that we can't trust S any
more than the lowest integrity object that S has read. In essence, we are
concerned that S will be "contaminated" by lower integrity objects, so S is
forbidden from viewing such objects.

Biba's model is actually very restrictive, since it prevents S from ever
viewing an object at a lower integrity level. It's possible—and, in many
cases, perhaps desirable—to replace Biba's model with the following:

Low Water Mark Policy: If subject S reads object O, then
I(S) = mm(l(S),I(0)).

Under the low water mark principle, subject S can read anything, under
the condition that the integrity of subject S is downgraded after accessing an
object at a lower level.

8.5 COMPARTMENTS 279

Figure 8.3 illustrates the difference between BLP and Biba's model. Of
course the fundamental difference is that BLP is for confidentiality, which
implies a high water mark principle, while Biba is for integrity, which implies
a low water mark principle.

high BLP

1(0,) |-H L(0)

L(02)

low Confidentiality

Biba high

l(02) H KO)"

Integrity low

Figure 8.3: BLP versus Biba

8.5 Compartments

Multilevel security systems enforce access control (or information flow) "up
and down," where the security levels are ordered in a hierarchy, such as (8.1).
Usually, a simple hierarchy of security labels is not flexible enough to deal
with a realistic situation. In practice, it is usually necessary to also use
compartments to further restrict information flow "across" security levels.

We use the notation

SECURITY LEVEL {COMPARTMENT}

to denote a security level and its associated compartment or compartments.
For example, suppose that we have compartments CAT and DOG within the
TOP SECRET level. Then we would denote the resulting compartments as
TOP SECRET {CAT} and TOP SECRET {DOG}. Note that there is also
a TOP SECRET {CAT,DOG} compartment. While each of these compart-
ments is TOP SECRET, a subject with a TOP SECRET clearance can only
access a compartment if he or she is specifically allowed to do so. As a result,
compartments have the effect of restricting information flow across security
levels.

Compartments serve to enforce the need to know principle, that is, sub-
jects are only allowed access to the information that they must know for their
work. If a subject does not have a legitimate need to know everything at, say,

280 AUTHORIZATION

the TOP SECRET level, then compartments can be used to limit the TOP
SECRET information that the subject can access.

Why create compartments instead of simply creating a new classification
level? It may be the case that, for example, TOP SECRET {CAT} and TOP
SECRET {DOG} are not comparable, that is, neither

TOP SECRET {CAT} < TOP SECRET {DOG}

TOP SECRET {CAT} > TOP SECRET {DOG}

holds. Using a strict MLS hierarchy, one of these two conditions must hold
true.

Consider the compartments in Figure 8.4, where the arrows represent
">" relationships. In this example, a subject with a TOP SECRET {CAT}
clearance does not have access to information in the TOP SECRET {DOG}
compartment. In addition, a subject with a TOP SECRET {CAT} clearance
has access to the SECRET {CAT} compartment but not to the compartment
SECRET {CAT,DOG}, even though the subject has a TOP SECRET clear-
ance. Again, compartments provide a means to enforce the need to know
principle.

-TOP SECRET {CAT, DOG}

TOP SECRET {CAT} TOP SECRET {DOG}

"TOP SECRET -

♦SECRET {CAT, DOG}

SECRET {CAT} " ^ " " ^ ^ ^ ^ * SECRET {DOG}

"SECRET 5 ^^

Figure 8.4: Compartments Example

Multilevel security can be used without compartments and vice versa, but
the two are usually used together. An interesting example described in [14]
concerns the protection of personal medical records by the British Medical
Association, or BMA. The law that required protection of medical records
mandated a multilevel security system—apparently because lawmakers were
familiar with MLS. Certain medical conditions, such as AIDS, were considered
to be the equivalent of TOP SECRET, while other less sensitive information,
such as drug prescriptions, was considered SECRET. But if a subject had
been prescribed AIDS drugs, anyone with a SECRET clearance could eas-
ily deduce TOP SECRET information. As a result, all information tended

8.6 COVERT CHANNEL 281

to be classified at the highest level, and consequently all users required the
highest level of clearance, which defeated the purpose of the system. Even-
tually, the BMA system was changed to a system using only compartments,
which effectively solved the problem. Then, for example, AIDS prescription
information could be compartmented from general prescription information,
thereby enforcing the desired need to know principle.

In the next two sections we'll discuss covert channels and inference control.
Both of these topics are related to MLS, but covert channels, in particular,
arise in many different contexts.

8.6 Covert Channel

A covert channel is a communication path not intended as such by the sys-
tem's designers. Covert channels exist in many situations, but they are par-
ticularly prevalent in networks. Covert channels are virtually impossible to
eliminate, so the emphasis is instead on limiting the capacity of such channels.

MLS systems are designed to restrict legitimate channels of communica-
tion. But a covert channel provides another way for information to flow. It is
not difficult to give an example where resources shared by subjects at differ-
ent security levels can be used to pass information, and thereby violate the
security of an MLS system.

For example, suppose Alice has a TOP SECRET clearance while Bob only
has a CONFIDENTIAL clearance. If the file space is shared by all users, then
Alice and Bob can agree that if Alice wants to send a 1 to Bob, she will create
a file named, say, FileXYzW, and if she wants to send a 0 she will not create
such a file. Bob can check to see whether file FileXYzW exists, and if it does,
he knows Alice has sent him a 1, while if it does not, Alice has sent him
a 0. In this way, a single bit of information has been passed through a covert
channel, that is, through a means that was not intended for communication
by the designers of the system. Note that Bob cannot look inside the file
FileXYzW since he does not have the required clearance, but we are assuming
that he can query the file system to see if such a file exists.

A single bit leaking from Alice to Bob is not a concern, but Alice could
leak any amount of information by synchronizing with Bob. That is, Alice
and Bob could agree that Bob will check for the file FileXYzW once each
minute. As before, if the file does not exist, Alice has sent 0, and if it does
exists, Alice has sent a 1. In this way Alice can (slowly) leak TOP SECRET
information to Bob. This process is illustrated in Figure 8.5.

Covert channels are everywhere. For example, the print queue could be
used to signal information in much the same way as in the example above.
Networks are a rich source of covert channels, and several hacking tools exist
that exploit these covert channels—we'll mention one later in this section.

282 AUTHORIZATION

Figure 8.5: Covert Channel Example

Three things are required for a covert channel to exist. First, the sender
and receiver must have access to a shared resource. Second, the sender must
be able to vary some property of the shared resource that the receiver can ob-
serve. Finally, the sender and receiver must be able to synchronize their com-
munication. From this description, it's apparent that potential covert chan-
nels really are everywhere. Of course, we can eliminate all covert channels—
we just need to eliminate all shared resources and all communication. Obvi-
ously such a system would generally be of little use.

The conclusion here is that it's virtually impossible to eliminate all covert
channels in any useful system. The DoD apparently agrees, since their guide-
lines merely call for reducing covert channel capacity to no more than one
bit per second [131]. The implication is that DoD has given up trying to
eliminate covert channels.

Is a limit of one bit per second sufficient to prevent damage from covert
channels? Consider a TOP SECRET file that is 100 MB in size. Suppose the
plaintext version of this file is stored in a TOP SECRET file system, while
an encrypted version of the file—encrypted with, say, AES using a 256-bit
key—is stored in an UNCLASSIFIED location. Following the DoD guidelines,
suppose that we have reduced the covert channel capacity of this system to 1
bit per second. Then it would take more than 25 years to leak the entire
100 MB TOP SECRET document through a covert channel. However, it
would take less than 5 minutes to leak the 256-bit AES key through the same
covert channel. The conclusion is that reducing covert channel capacity might
be useful, but it will not be sufficient in all cases.

Next, we consider a real-world example of a covert channel. The Trans-
mission Control Protocol (TCP) is widely used on the Internet. The TCP
header, which appears in the Appendix in Figure A-3, includes a "reserved"
field which is reserved for future use, that is, it is not used for anything. This
field can easily be used to pass information covertly.

8.7 INFERENCE CONTROL 283

It's also easy to hide information in the TCP sequence number or ACK
field and thereby create a more subtle covert channel. Figure 8.6 illustrates
the method used by the tool Covert -TCP to pass information in the sequence
number. The sender hides the information in the sequence number X and
the packet—with its source address forged to be the address of the intended
recipient—is sent to an innocent server. When the server acknowledges the
packet, it unwittingly completes the covert channel by passing the information
contained in X to the intended recipient. Such stealthy covert channels are
often employed in network attacks [270].

Figure 8.6: Covert Channel Using TCP Sequence Number

8.7 Inference Control

Consider a database that includes information on college faculty in California.
Suppose we query the database and ask for the average salary of female
computer science professors at San Jose State University (SJSU) and we find
the answer is $100,000. We then query the database and ask for the number of
female computer science professors at SJSU, and the answer is one. Then we
could go to the SJSU computer science department website and determine the
identity of this person.8 In this example, specific information has leaked from
responses to general questions. The goal of inference control is to prevent
such leaks from happening, or at least minimize the leakage.

A database containing medical records would be of considerable interest to
researchers. For example, by searching for statistical correlations, it may be
possible to determine causes or risk factors for certain diseases. But patients
want to keep their medical information private. How can we allow access to
the statistically significant data while protecting privacy?

8In this case, no harm was done, since state employee salaries are public information in
California.

284 AUTHORIZATION

An obvious first step is to remove names and addresses from the medical
records. But this is not sufficient to ensure privacy as the college professor
example above clearly demonstrates. What more can be done to provide
stronger inference control while leaving the data accessible for legitimate re-
search uses?

Several techniques used in inference control are discussed in [14]. One
such technique is query set size control, in which no response is returned if
the size of the set it too small. This approach would make it more difficult
to determine the college professor's salary in the example above. However, if
medical research is focused on a rare disease, query set size control could also
prevent or distort important research.

Another technique is known as the N-respondent, k% dominance rule,
whereby data is not released if k% or more of the result is contributed by JV
or fewer subjects. For example, we might query the census database and ask
for the average net worth of individuals in Bill Gates' neighborhood. With
any reasonable setting for N and k no results would be returned. In fact, this
technique is actually applied to information collected by the United States
Census Bureau.

Another approach to inference control is randomization, that is, a small
amount of random noise is added to the data. This is problematic in situations
such as research into rare medical conditions, where the noise might swamp
legitimate data.

Many other methods of inference control have been proposed, but none
are completely satisfactory. It appears that strong inference control may be
impossible to achieve in practice, yet it seems obvious that employing some
inference control, even if it's weak, is better than no inference control at
all. Inference control will make Trudy's job more difficult, and it will almost
certainly reduce the amount of information that leaks, thereby limiting the
damage.

Does this same logic hold for crypto? That is, is it better to use weak
encryption or no encryption at all? Surprisingly, for crypto, the answer is
that, in most cases, you'd be better off not encrypting rather than using
a weak cipher. Today, most information is not encrypted, and encryption
tends to indicate important data. If there is a lot of data being sent and
most of it is plaintext (e.g., email sent over the Internet), then Trudy faces an
enormous challenge in attempting to filter interesting messages from this mass
of uninteresting data. However, if your data is encrypted, it would be much
easier to filter, since encrypted data looks random, whereas unencrypted data
tends to be highly structured.9 That is, if your encryption is weak, you may
have just solved Trudy's difficult filtering problem for her, while providing no
significant protection from a cryptanalytic attack [14].

'For one way around this problem, see [287].

8.8 CAPTCHA 285

8.8 CAPTCHA

The Turing test was proposed by computing pioneer (and breaker of the
Enigma) Alan Turing in 1950. The test has a human ask questions to a
human and a computer. The questioner, who can't see either the human
or the computer, can only submit questions by typing on a keyboard, and
responses are received on a computer screen. The questioner does not know
which is the computer and which is the human, and the goal is to distinguish
the human from the computer, based solely on the questions and answers. If
the human questioner can't solve this puzzle with a probability better than
guessing, the computer passes the Turing test. This test is the gold standard
in artificial intelligence, and no computer has yet passed the Turing test, but
occasionally some claim to be getting close.

A "completely automated public Turing test to tell computers and humans
apart," or CAPTCHA,10 is a test that a human can pass, but a computer can't
pass with a probability better than guessing [319]. This could be considered
as a sort of inverse Turing test. The assumptions here are that the test is
generated by a computer program and graded by a computer program, yet
no computer can pass the test, even if that computer has access to the source
code used to generate the test. In other words, a "CAPTCHA is a program
that can generate and grade tests that it itself cannot pass, much like some
professors" [319].

At first blush, it seems paradoxical that a computer can create and score
a test that it cannot pass. However, this becomes less of a paradox when we
look more closely the details of the process.

Since CAPTCHAs are designed to prevent non-humans from accessing
resources, a CAPTCHA can be viewed as a form of access control. According
to folklore, the original motivation for CAPTCHAs was an online poll that
asked users to vote for the best computer science graduate school. In this
version of reality, it quickly become obvious that automated responses from
MIT and Carnegie-Mellon were skewing the results [320] and researchers de-
veloped the idea of a CAPTCHA to prevent automated "bots" from stuffing
the ballot box. Today, CAPTCHAs are used in a wide variety of applications.
For example, free email services use CAPTCHAs to prevent spammers from
automatically signing up for large numbers of email accounts.

The requirements for a CAPTCHA include that it must be easy for most
humans to pass and it must be difficult or impossible for a machines to pass,
even if the machine has access to the CAPTCHA software. From the at-
tacker's perspective, the only unknown is some randomness that is used to
generate the specific CAPTCHA. It is also desirable to have different types

10CAPTCHAs are also known as "human interactive proofs," or HIPs. While CAPTCHA
may well rank as the worst acronym in the history of the universe, HIP is, well, just not
hip.

286 AUTHORIZATION

of CAPTCHAs in case some person cannot pass one particular type. For
example, many websites allow users to choose an audio CAPTCHA as an
alternative to the usual visual CAPTCHA.

An example of a CAPTCHA from [320] appears in Figure 8.7. In this
case, a human might be asked to find three words that appear in the image.
This is a relatively easy problem for humans and today it is also a fairly easy
problem for computers to solve—much stronger CAPTCHAs exist.

Figure 8.7: CAPTCHA (Courtesy of Luis von Ahn [320])

Perhaps surprisingly, in [56] it is shown that computers are actually better
than humans at solving all of the fundamental visual CAPTCHA problems,
with one exception—the so-called segmentation problem, i.e., the problem
of separating the letters from each other. Consequently, strong CAPTCHAs
tend to look more like Figure 8.8 than Figure 8.7.

Figure 8.8: A Strong CAPTCHA [47]

For a word-based visual CAPTCHA, we assume that Trudy knows the set
of possible words that could appear and she knows the general format of the
image, as well as the types of distortions that can be applied. From Trudy's
perspective, the only unknown is a random number that is used to select the
word or words and to distort the resulting image.

There are several types of visual CAPTCHAs of which Figures 8.7 and 8.8
are representative examples. There are also audio CAPTCHAs in which the
audio is distorted in some way. The human ear is very good at removing such
distortion, while automated methods are not so good. Currently, there are
no text-based CAPTCHAs.

The computing problems that must be solved to break CAPTCHAs can be
viewed as difficult problems from the domain of artificial intelligence, or AI.

8.9 FIREWALLS 287

For example, automatic recognition of distorted text is an AI problem, and
the same is true of problems related to distorted audio. If attackers are able
to break such CAPTCHAs, they have, in effect, solved a hard AI problem.
As a result, attacker's efforts are being put to good use.

Of course, the attackers may not play by the rules—so-called CAPTCHA
farming is possible, where humans are paid to solve CAPTCHAs. For ex-
ample, it has been widely reported that the lure of free pornography has
been successfully used to get humans to solve vast numbers of CAPTCHAs
at minimal cost to the attacker [172].

8.9 Firewalls

Suppose you want to meet with the chairperson of your local computer science
department. First, you will probably need to contact the computer science
department secretary. If the secretary deems that a meeting is warranted,
she will schedule it; otherwise, she will not. In this way, the secretary filters
out many requests that would otherwise occupy the chair's time.

A firewall acts a lot like a secretary for your network. The firewall ex-
amines requests for access to your network, and it decides whether they pass
a reasonableness test. If so, they are allowed through, and, if not, they are
refused.

If you want to meet the chair of the computer science department, the
secretary does a certain level of filtering; however, if you want to meet the
President of the United States,11 his secretary will perform a much different
level of filtering. This is somewhat analogous to firewalls, where some simple
firewalls only filter out obviously bogus requests and other types of firewalls
make a much greater effort to filter anything suspicious.

A network firewall, as illustrated in Figure 8.9, is placed between the
internal network, which might be considered relatively safe,12 and the external
network (the Internet), which is known to be unsafe. The job of the firewall
is to determine what to let into and out of the internal network. In this way,
a firewall provides access control for the network.

As with most of information security, for firewalls there is no standard
terminology. But whatever you choose to call them, there are essentially three
types of firewalls—marketing hype from firewall vendors not withstanding.
Each type of firewall filters packets by examining the data up to a particular
layer of the network protocol stack. If you are not familiar with networking
(and even if you are), now would be a good time to review the networking
material in the Appendix.

n P O T U S , that is.
12This is almost certainly not a valid assumption. It's estimated that about 80% of all

significant computer attacks are due to insiders [49].

288 AUTHORIZATION

Figure 8.9: Firewall

We'll adopt the following terminology for the classification of firewalls.

• A packet filter is a firewall that operates at the network layer.

• A stateful packet filter is a firewall that lives at the transport layer.

• An application proxy is, as the name suggests, a firewall that operates
at the application layer where it functions as a proxy.

8.9.1 Packet Filter

A packet filter firewall examines packets up to the network layer, as indicated
in Figure 8.10. As a result, this type of firewall can only filter packets based
on the information that is available at the network layer. The information
at this layer includes the source IP address, the destination IP address, the
source port, the destination port, and the TCP flag bits (SYN, ACK, RST,
etc.).13 Such a firewall can filter packets based on ingress or egress, that is,
it can have different filtering rules for incoming and outgoing packets.

The primary advantage of a packet filter is efficiency. Since packets only
need to be processed up to the network layer and only header information is
examined, the entire operation is inherently efficient. However, there are sev-
eral disadvantages to the simple approach employed by a packet filter. First,
the firewall has no concept of state, so each packet is treated independently
of all others. In particular, a packet filter can't examine a TCP connection.
We'll see in a moment that this is a serious limitation. In addition, a packet
filter firewall is blind to application data, which is where viruses and other
mal ware resides.

Packet filters are configured using access control lists, or ACLs. In this
context, "ACL" has a completely different meaning than in Section 8.3.1. An
example of a packet filter ACL appears in Table 8.3. Note that the purpose
of the ACL in Table 8.3 is to restrict incoming packets to Web responses,

13Yes, we're cheating. TCP is part of the transport layer, so the TCP flag bits are
not visible if we follow a strict definition of network layer. Nevertheless, it's OK to cheat
sometimes, especially in a security class.

8.9 FIREWALLS 289

Figure 8.10: Packet Filter

Table 8.3: Example ACL

Action
Allow
Allow
Deny

Source
IP

Inside
Outside

All

Dest
IP

Outside
Inside

All

Source
Port
Any
80
All

Dest
Port
80

> 1023
All

Protocol
HTTP
HTTP

All

Flag
Bits
Any
ACK
All

which should have source port 80. The ACL allows all outbound Web traffic,
which should be destined to port 80. All other traffic is forbidden.

How might Trudy take advantage of the inherent limitations of a packet
filter firewall? Before we can answer this question, we need a couple of fun
facts. Usually, a firewall (of any type) drops packets sent to most incoming
ports. That is, the firewall filters out and drops packets that are trying to
access services that should not be accessed. Because of this, the attacker,
Trudy, wants to know which ports are open through the firewall. These open
ports are where Trudy will concentrate her attack. So, the first step in any
attack on a firewall is usually a port scan, where Trudy tries to determine
which ports are open through the firewall.

Now suppose Trudy wants to attack a network that is protected by a
packet filter. How can Trudy conduct a port scan of the firewall? She could,
for example, send a packet that has the ACK bit set, without the prior two
steps of the TCP three-way handshake. Such a packet violates the TCP
protocol, since the initial packet in any connection must have the SYN bit
set. Since the packet filter has no concept of state, it will assume that this
packet is part of an established connection and let it through—provided that

290 AUTHORIZATION

it is sent to an open port. Then when this forged packet reaches a host on
the internal network, the host will realize that there is a problem (since the
packet is not part of an established connection) and respond with a RST
packet, which is supposed to tell the sender to terminate the connection.
While this process may seem harmless, it allows Trudy to scan for open ports
through the firewall. That is, Trudy can send an initial packet with the ACK
flag set to a particular port p. If no response is received, then the firewall is
not forwarding packets sent to port p. However, if a RST packet is received,
then the packet was allowed through port p into the internal network. This
technique, which is known as a TCP ACK scan, is illustrated in Figure 8.11.

Figure 8.11: TCP ACK Scan

From the ACK scan in Figure 8.11, Trudy has learned that port 1209 is
open through the firewall. To prevent this attack, the firewall would need
to remember existing TCP connections, so that it will know that the ACK
scan packets are not part of any legitimate connection. Next, we'll discuss
stateful packet filters, which keep track of connections and are therefore able
to prevent this ACK scan attack.

8.9.2 Stateful Packet Filter

As the name implies, a stateful packet filter adds state to a packet filter
firewall. This means that the firewall keeps track of TCP connections, and
it can remember UDP "connections" as well. Conceptually, a stateful packet
filter operates at the transport layer, since it is maintaining information about
connections. This is illustrated in Figure 8.12.

The primary advantage of a stateful packet filter is that, in addition to
all of the features of a packet filter, it also keeps track of ongoing connection.
This prevents many attacks, such as the TCP ACK scan discussed in the
previous section. The disadvantages of a stateful packet filter are that it
cannot examine application data, and, all else being equal, it's slower than a
packet filtering firewall since more processing is required.

8.9 FIREWALLS 291

Figure 8.12: Stateful Packet Filter

8.9.3 Application Proxy

A proxy is something that acts on your behalf. An application proxy fire-
wall processes incoming packets all the way up to the application layer, as
indicated in Figure 8.13. The firewall, acting on your behalf, is then able
to verify that the packet appears to be legitimate (as with a stateful packet
filter) and, in addition, that the actual data inside the packet is safe.

Figure 8.13: Application Proxy

The primary advantage of an application proxy is that it has a complete
view of connections and application data. Consequently, it can have as com-
prehensive of a view as the host itself could have. As a result, the application
proxy is able to filter bad data at the application layer (such as viruses) while
also filtering bad packets at the transport layer. The disadvantage of an ap-

292 AUTHORIZATION

plication proxy is speed or, more precisely, the potential lack thereof. Since
the firewall is processing packets to the application layer, examining the re-
sulting data, maintaining state, etc., it is doing a great deal more work than
packet filtering firewalls.

One interesting feature of an application proxy is that the incoming packet
is destroyed and a new packet is created in its place when the data passes
through the firewall. Although this might seem like a minor and insignificant
point, it's actually a security feature. To see why creating a new packet
is beneficial, we'll consider the tool known as Firewalk, which is designed
to scan for open ports through a firewall. While the purpose of Firewalk
is the same as the TCP ACK scan discussed above, the implementation is
completely different.

The time to live, or TTL, field in an IP packet header contains the number
of hops that the packet will travel before it is terminated. When a packet is
terminated due to the TTL field, an ICMP "time exceeded" error message is
sent back to the source.14

Suppose Trudy knows the IP address of the firewall, the IP address of one
system on the inside network, and the number of hops to the firewall. Then
she can send a packet to the IP address of the known host inside the firewall,
with the TTL field set to one more than the number of hops to the firewall.
Suppose Trudy sets the destination port of such a packet to p. If the firewall
does not let data through on port p, there will be no response. If, on the
other hand, the firewall does let data through on port p, Trudy will receive
a time exceeded error message from the first router inside the firewall that
receives the packet. Trudy can then repeat this process for different ports p
to determine open ports through the firewall. This port scan is illustrated
in Figure 8.14. Firewalk will succeed if the firewall is a packet filter or a
stateful packet filter. However, Firewalk won't succeed if the firewall is an
application proxy (see Problem 29).

Figure 8.14: Firewalk

14 And what happens to terminated packets? Of course, they die and go to packet heaven.

8.9 FIREWALLS 293

The net effect of an application proxy is that it forces Trudy to talk to the
proxy and convince it to forward her messages. Since the proxy is likely to be
well configured and carefully managed—compared with a typical host—this
may prove difficult.

8.9.4 Personal Firewall

A personal firewall is used to protect a single host or a small network, such
as a home network. Any of the three methods discussed above (packet filter,
stateful packet filter, or application proxy) could be used, but generally such
firewalls are relatively simple for the sake of efficiency and ease of configura-
tion.

8.9.5 Defense in Depth

Finally, we consider a network configuration that includes several layers of
protection. Figure 8.15 gives a schematic for a network that includes a packet
filter firewall, an application proxy, and personal firewalls, as well as a demil-
itarized zone, or DMZ.

Figure 8.15: Defense in Depth

The packet filter in Figure 8.15 is used to prevent common attacks on the
systems in the DMZ. The systems in the DMZ are those that must be exposed
to the outside world. These systems receive most of the outside traffic, so a
simple packet filter is used for the sake of efficiency. The systems in the DMZ
must be carefully maintained by the administrator since they are the most
exposed to attack. However, if an attack succeeds on a system in the DMZ,
the consequences for the company are annoying, but they will probably not
be life threatening, since the internal network is largely unaffected.

In Figure 8.15, an application proxy firewall sits between the internal
network and the DMZ. This provides the strongest possible firewall protection

294 AUTHORIZATION

for the internal network. The amount of traffic into the internal network is
likely to be relatively small, so an application proxy in this position will not
create a bottleneck. As a final layer of protection, personal firewalls could be
deployed on the individual hosts inside the corporate network.

The architecture in Figure 8.15 is an example of defense in depth, which
is a good security strategy in general—if one layer of the defense is breached,
there are more layers that the attacker must overcome. If Trudy is skilled
enough to break through one level, then she may have the necessary skills to
penetrate other levels. But it's likely to take her some time to do so and the
longer it takes, the more time an administrator has to detect Trudy's attack
in progress.

Regardless of the strength of the firewall (or firewalls), some attacks by
outsiders will succeed. In addition, attacks by insiders are a serious threat
and firewalls are of limited value against such attacks. In any case, when an
attack succeeds, we would like to detect it as soon as possible. In the next
section we'll discuss this intrusion detection problem.

8.10 Intrusion Detection Systems

The primary focus of computer security tends to be intrusion prevention,
where the goal is to keep the Trudys of the world out of your system or
network. Authentication can be viewed as a means to prevent intrusions, and
firewalls are certainly a form of intrusion prevention, as are most types of
virus protection. Intrusion prevention is the information security analog of
locking the doors on your car.

But even if you lock the doors on your car, it might still get stolen.
In information security, no matter how much effort you put into intrusion
prevention, occasionally the bad guys will be successful and an intrusion will
occur.

What should we do when intrusion prevention fails? Intrusion detection
systems, or IDSs, are a relatively recent development in information security.
The purpose of such a system is to detect attacks before, during, and after
they occurr.

The basic approach employed by IDSs is to look for "unusual" activity.
In the past, an administrator would scan through log files looking for signs
of unusual activity—automated intrusion detection is a natural outgrowth of
manual log file analysis.

It is also worth noting that intrusion detection is currently an active re-
search topic. As with any relatively new technology, there are many claims in
the field that have yet to be substantiated. At this point, it's far from clear
how successful or useful some of these techniques will prove, particularly in
the face of increasingly sophisticated attacks.

8.10 INTRUSION DETECTION SYSTEMS 295

Before discussing the main threads in IDS, we mention in passing that
intrusion response is a related topic of practical importance. That is, once
an intrusion is detected, we want to respond to it. In some cases we obtain
specific information and a reasonable response is fairly obvious. For example,
we might detect a password guessing attack aimed at a specific account, in
which case we could respond by locking the account. However, it's not always
so straightforward. We'll see below that in some cases IDSs provide little
specific information on the nature of an attack. In such cases, determining
the proper response is not easy, since we may not be sure of the specifics of
the attack. In any case, we won't deal further with intrusion response here.

Who are the intruders that an IDS is trying to detect? An intruder could
be a hacker who got through your network defenses and is now launching an
attack on the internal network. Or, even more insidious, the intrusion could
be due to an evil insider, such as a disgruntled employee.

What sorts of attacks might an intruder launch? An intruder with limited
skills (i.e., a "script kiddie") would likely attempt a well-known attack or a
slight variation on such an attack. A more skilled attacker might be capable
of launching a significant variation on a well-known attack, or a little-known
attack or an entirely new attack. Often, the attacker will simply use the
breached system as a base from which to launch attacks on other systems.

Broadly speaking, there are two approaches to intrusion detection.

• Signature-based IDSs detect attacks based on specific known signatures
or patterns. This is analogous to signature-based virus detection, which
we'll discuss in Chapter 11.

• Anomaly-based IDSs attempt to define a baseline of normal behavior
and provide a warning whenever the system strays too far from this
baseline.

We'll have more to say about signature-based and anomaly-based intrusion
detection below.

There are also two basic architectures for IDSs.

• Host-based IDSs apply their detection method or methods to activity
that occurs on hosts. These systems have the potential to detect attacks
that are visible at hosts (e.g., buffer overflows or escalation of privilege).
However, host-based systems have little or no view of network activities.

• Network-based IDSs apply their detection methods to network traffic.
These systems are designed to detect attacks such as denial of service,
port scans, probes involving malformed packets, etc. Such systems have
some obvious overlap with firewalls. Network-based systems have little
or no direct view of host-based attacks.

296 AUTHORIZATION

Of course, various combinations of these categories of IDSs are possible. For
example a host-based system could use both signature-based and anomaly-
based techniques, or a signature-based system might employ aspects of both
host-based and network-based detection.

8.10.1 Signature-Based IDS

Failed login attempts may be indicative of a password cracking attack, so an
IDS might consider UN failed login attempts in M seconds" an indication, or
signature, of an attack. Then anytime that N or more failed login attempts
occur within M seconds, the IDS would issue a warning that a password
cracking attack is suspected to be in progress.

If Trudy happens to know that Alice's IDS issues a warning whenever N or
more failed logins occur within M seconds, then Trudy can safely guess N — 1
passwords every M seconds. In this case, the signature detection would slow
Trudy's password guessing attack, but it would not completely prevent the
attack. Another concern with such a scheme is that N and M must be set
so that the number of false alarms is not excessive.

Many techniques are used to make signature-based detection more robust,
where the usual approach is to detect "almost" signatures. For example, if
about N login attempts occur in about M seconds, then the system could
warn of a possible password cracking attack, perhaps with a degree of confi-
dence based on the number of attempts and the time interval. But it's not
always easy to determine reasonable values for "about." Statistical analy-
sis and heuristics are useful, but much care must be taken to minimize the
false alarm rate. False alarms will quickly undermine confidence in any se-
curity system—like the boy who cried wolf, the security system that screams
"attack" when none is present, will soon be ignored.

The advantages of signature-based detection include simplicity, efficiency
(provided the number of signatures is not excessive), and an excellent ability
to detect known attacks. Another major benefit is that the warning that
is issued is specific, since the signature matches a specific attack pattern.
With a specific warning, an administrator can quickly determine whether the
suspected attack is real or a false alarm and, if it is real, the admin can usually
respond appropriately.

The disadvantages of signature detection include the fact that the signa-
ture file must be current, the number of signatures may become large thereby
reducing efficiency, and most importantly, the system can only detect known
attacks. Even slight variations on known attack will likely be missed by
signature-based systems.

Anomaly-based IDSs attempt to overcome the shortcomings of signature-
based schemes. But no anomaly-based scheme available today could reason-
ably claim to be a replacement for signature-based detection. That is, an

8.10 INTRUSION DETECTION SYSTEMS 297

anomaly-based system can supplement the performance of a signature-based
system, but it is not a replacement for signature detection.

8.10.2 Anomaly-Based IDS

Anomaly-based IDSs look for unusual or abnormal behavior. There are sev-
eral major challenges inherent in such an approach. First, we must determine
what constitutes normal behavior for a system, and this must occur when the
system is behaving normally. Second, the definition of normal must adapt as
system usage changes and evolves, otherwise the number of false alarms will
grow. Third, there are difficult statistical thresholding issues involved. For
example, we must have a good idea of how far abnormal is away from normal.

Statistics are obviously necessary in the development of an anomaly-based
IDS. Recall that the mean defines the statistical norm while the variance gives
us a way to measure the distribution of the data about the mean. The mean
and variance together gives us a way to determine abnormal behavior.

How can we measure normal system behavior? Whatever characteristics
we decide to measure, we must take the measurements during times of repre-
sentative behavior. In particular, we must not set the baseline measurements
during an attack or else an attack will be considered normal. Measuring ab-
normal or, more precisely, determining how to separate normal variations in
behavior from an attack, is an equally challenging problem. Abnormal must
be measured relative to some specific value of normal. We'll consider abnor-
mal as synonymous with attack, although in reality there are other possible
causes of abnormal behavior, which further complicates the situation.

Statistical discrimination techniques are used to separate normal from
abnormal. Examples of such techniques include Bayesian analysis, linear
discriminant analysis (LDA), quadratic discriminant analysis (QDA), neural
nets, and hidden Markov models (HMM), among others. In addition, some
anomaly detection researchers employ advanced modeling techniques from the
fields of artificial intelligence and artificial immune systems. Such approaches
are beyond the scope of our discussion here.

Next, we'll consider two simplified examples of anomaly detection. The
first example is simple, but not very realistic, whereas the second is slightly
less simple and correspondingly more realistic.

Suppose that we monitor the use of the three commands

open, read, close.

We find that under normal use, Alice uses the series of commands

open, read, close, open, open, read, close.

For our statistic, we'll consider pairs of consecutive commands and try to
devise a measure of normal behavior for Alice. From Alice's series of com-

298 AUTHORIZATION

mands, we observe that, of the six possible ordered pairs or commands, four
pairs appear to be normal for Alice, namely,

(open.read), (read,close), (close,open), (open,open),

while the other two pairs,

(read,open), (close,read),

are not normally used by Alice. We can use this observation to identify
potentially unusual behavior by "Alice" that might indicate an intruder is
posing as Alice. We can then monitor the use of these three commands by
Alice. If the ratio of abnormal to normal pairs is "too high," we would warn
the administrator that an attack may be in progress.

This simple anomaly detection scheme can be improved. For example, we
could include the expected frequency of each normal pair in the calculation,
and if the observed pairs differ significantly from the expected distribution, we
would warn of a possible attack. We might also try to improve the anomaly
detection by using more than two consecutive commands, or by including
more commands, or by including other user behavior in the model, or by
using a more sophisticated statistical discrimination technique.

For a slightly more plausible anomaly detection scheme, let's focus on file
access. Suppose that, over an extended period of time, Alice has accessed
four files, Fo, F\, Fi, Î3 , at the rates Ho, Hi, Hi, H3, respectively, where the
observed values of the Hi are given in Table 8.4.

Table 8.4: Alice's Initial File Access Rates

Hp Hi Hi Hz
0.10 0.40 0.40 0.10

Now suppose that, over a recent time interval, Alice has accessed file Fi
at the rate Ai, for i = 0,1,2,3, as given in Table 8.5. Do Alice's recent file
access rates represent normal use? To decide, we need some way to compare
her long-term access rates to the current rates. To answer this question, we'll
employ the statistic

S = (H0- A0f + (Hi - Ai)2 + (Hi - A2)
2 + (H3 - A3)

2, (8.2)

where we define S < 0.1 as normal. In this example, we have

S = (0.1 - 0.1)2 + (0.4 - 0.4)2 + (0.4 - 0.3)2 -I- (0.1 - 0.2)2 = 0.02,

and we conclude that Alice's recent use is normal—at least according to this
one statistic.

8.10 INTRUSION DETECTION SYSTEMS 299

Table 8.5: Alice's Recent File Access Rates

A0 Αχ A2 A3

0.10 0.40 0.30 0.20

Alice's file access rates can be expected to vary over time, and we need to

account for this in our IDS. We'll do so by updating Alice's long-term history

values Hi according to the formula

Hi = 0.2-Ai+ 0.S-Hi fori = 0,1,2,3. (8.3)

That is, we update the historical access rates based on a moving average that

combines the previous values with the recently observed rates—the previous

values are weighted at 80%, while the current values are weighted 20%. Using

the data in Tables 8.4 and 8.5, we find that the updated values of Ho and Hi

are unchanged, whereas

H2 = 0.2 · 0.3 + 0.8 ■ 0.4 = 0.38 and i /3 = 0.2 · 0.2 + 0.8 · 0.1 = 0.12.

These updated values appear in Table 8.6.

Table 8.6: Alice's Updated File Access Rates

Hp H\ H2 H3
0.10 0.40 0.38 0.12

Suppose that over the next time interval Alice's measured access rates are
those given in Table 8.7. Then we compute the statistic S using the values
in Tables 8.6 and 8.7 and the formula in equation (8.2) to find

S = (0.1 - 0.1)2 + (0.4 - 0.3)2 + (0.38 - 0.3)2 + (0.12 - 0.3)2 = 0.0488.

Since S = 0.0488 < 0.1 we again conclude that this is normal use for Alice.
Again, we update Alice's long-term averages using the formula in (8.3) and

Table 8.7: Alice's More Recent File Access Rates

Ao A-ί A2 A3

0.10 0.30 0.30 0.30

300 AUTHORIZATION

Table 8.8: Alice's Second Updated Access Rates

Hp Hi H2 H3
0.10 0.38 0.364 0.156

the data in Tables 8.6 and 8.7. In this case, we obtain the results that appear
in Table 8.8.

Comparing Alice's long-term file access rates in Table 8.4 with her long-
term averages after two updates, as given in Table 8.8, we see that the rates
have changed significantly over time. Again, it is necessary that an anomaly-
based IDS adapts over time, otherwise we will have a large number of false
alarms (and a very annoyed system administrator) as Alice's actual behavior
changes. However, this also presents an opportunity for the attacker, Trudy.

Since the Hi values slowly evolve to match Alice's behavior, Trudy can
pose as Alice and remain undetected, provided she doesn't stray too far from
Alice's usual behavior. But even more worrisome is the fact that Trudy can
eventually convince the anomaly detection algorithm that her evil behavior is
normal for Alice, provided Trudy has enough patience. For example, suppose
that Trudy, posing as Alice, wants to always access file F3. Then, initially,
she can access file F3 at a slightly higher rate than is normal for Alice. After
the next update of the Hi values, Trudy will be able to access file F3 at an
even higher rate without triggering a warning from the anomaly detection
software, and so on. By going slowly, Trudy will eventually convince the
anomaly detector that it's normal for "Alice" to only access file F3.

Note that H3 = 0.1 in Table 8.4 and, two iterations later, H3 = 0.156 in
Table 8.8. These changes did not trigger a warning by the anomaly detector.
Does this change represent a new usage pattern by Alice, or does it indicate
an attempt by Trudy to trick the anomaly detector by going slow?

To make this anomaly detection scheme more robust, we should also incor-
porate the variance. In addition, we would certainly need to measure more
than one statistic. If we measured N different statistics, S\,S2,---SN, we
might combine them according to a formula such as

T = (Si + S2 + S3 + ... + SN)/N

and make the determination of normal or abnormal based on the statistic T.
This would provide a more comprehensive view of normal behavior and make
it more difficult for Trudy, as she would need to approximate more of Alice's
normal behavior. A similar—although much more sophisticated—approach
is used in a popular IDS known as NIDES [9, 155]. NIDES incorporates both
anomaly-based and signature-based IDSs. A good elementary introduction
to NIDES, as well as several other IDSs, can be found in [304].

8.11 SUMMARY 301

Robust anomaly detection is a difficult problem for a number of reasons.
For one, system usage and user behavior constantly evolves and, therefore, so
must the anomaly detector. Without allowing for such changes in behavior,
false alarms would soon overwhelm the administrator, who would quickly lose
confidence in the system. But an evolving anomaly detector means that it's
possible for Trudy to slowly convince the anomaly detector that an attack is
normal.

Another fundamental issue with anomaly detection is that a warning of
abnormal behavior may not provide any useful specific information to the
administrator. A vague warning that the system may be under attack could
make it difficult to take concrete action. In contrast, a signature-based IDS
will provide the administrator with precise information about the nature of
the suspected attack.

The primary potential advantage of anomaly detection is that there is a
chance of detecting previously unknown attacks. It's also sometimes argued
that anomaly detection can be more efficient than signature detection, par-
ticularly if the signature file is large. In any case, the current generation of
anomaly detectors must be used in combination with a signature-based IDS
since they are not sufficiently robust to act as standalone systems.

Anomaly-based intrusion detection is an active research topic, and many
security professionals have high hopes for its ultimate success. Anomaly de-
tection is often cited as key future security technology [120]. But it appears
that the hackers are not convinced, at least based on the title of a talk pre-
sented at a recent Defcon15 conference: "Why anomaly-based intrusion de-
tection systems are a hacker's best friend" [79].

The bottom line is that anomaly detection is a difficult and tricky problem.
It also appears to have parallels with the field of artificial intelligence. Nearly
a third of a century has passed since we were promised "robots on your
doorstep" [327] and such predictions appear no more plausible today than
at the time they were originally made. If anomaly-based intrusion detection
proves to be anywhere near as challenging as AI, it may never live up to its
claimed potential.

8.11 Summary

In this chapter we reviewed some of the history of authorization, with the
focus on certification regimes. Then we covered the basics of traditional au-
thorization, namely, Lampson's access control matrix, ACLs, and capabilities.
The confused deputy problem was used to highlight the differences between
ACLs and capabilities. We then presented some of the security issues re-

15Defcon is the oldest, largest, and best-known hackers convention. It's held in Las Vegas
each August, and it's inexpensive, totally chaotic, lots of fun, and hot (literally).

302 AUTHORIZATION

lated to multilevel security (MLS) and compartments, as well as the topics
of covert channels and inference control. MLS naturally led us into the rari-
fied air of security modeling, where we briefly considered Bell-LaPadula and
Biba's Model.

After covering the basics of security modeling, we pulled our heads out
of the clouds, put our feet back on terra firma, and proceeded to discuss a
few important non-traditional access control topics, including CAPTCHAs
and firewalls. We concluded the chapter by stretching the definition of access
control to cover intrusion detection systems (IDS). Many of the issues we
discussed with respect to IDSs will resurface when we cover virus detection
in Chapter 11.

8.12 Problems

1. On page 269 there is an example of orange book guidelines for testing
at the so-called C division. Your skeptical author implies that these
guidelines are somewhat dubious.

a. Why might the guidelines that appear on page 269 not be partic-
ularly sensible or useful?

b. Find three more examples of useless guidelines that appear in
Part II of the orange book [309]. For each of these, summarize
the guideline and give reasons why you feel it is not particularly
sensible or useful.

2. The seven Common Criteria EALs are listed in Section 8.2.2. For each
of these seven levels, summarize the testing required to achieve that
level of certification.

3. In this chapter we discussed access control lists (ACLs) and capabilities
(aka C-lists).

a. Give two advantaged of capabilities over ACLs.

b. Give two advantages of ACLs over capabilities.

4. In the text, we argued that it's easy to delegate using capabilities.

a. It is also possible to delegate using ACLs. Explain how this would
work.

b. Suppose Alice delegates to Bill who then delegates to Charlie who,
in turn, delegates to Dave. How would this be accomplished using
capabilities? How would this be accomplished using ACLs? Which
is easier and why?

c. Which is better for delegation, ACLs or capabilities? Why?

8.12 PROBLEMS 303

5. Suppose Alice wants to temporarily delegate her C-list (capabilities) to
Bob. Alice decides that she will digitally sign her C-list before giving
it to Bob.

a. What are the advantages, if any, of such an approach?

b. What are the disadvantages, if any, of such an approach?

6. Briefly discuss one real-world application not mentioned in the text
where multilevel security (MLS) would be useful.

7. What is the "need to know" principle and how can compartments be
used to enforce this principle?

8. Suppose that you work in a classified environment where MLS is em-
ployed and you have a TOP SECRET clearance.

a. Describe a potential covert channel involving the User Datagram
Protocol (UDP).

b. How could you minimize your covert channel in part a, while still
allowing network access and communication by users with different
clearances?

9. The high water mark principle and low water mark principle both apply
in the realm of multilevel security.

a. Define the high water mark principle and the low water mark prin-
ciple in the context of MLS.

b. Is BLP consistent with a high water mark principle, a low water
mark principle, both, or neither? Justify your answer.

c. Is Biba's Model consistent with a high water mark principle, a low
water mark principle, both, or neither? Justify your answer.

10. This problem deals with covert channels.

a. Describe a covert channel involving the print queue and estimate
the realistic capacity of your covert channel.

b. Describe a subtle covert channel involving the TCP network pro-
tocol.

11. We briefly discussed the following methods of inference control: query
set size control; ./V-respondent, k% dominance rule; and randomization.

a. Explain each of these three methods of inference control.

b. Briefly discuss the relative strengths and weaknesses of each of
these methods.

304 AUTHORIZATION

12. Inference control is used to reduce the amount of private information
that can leak as a result of database queries.

a. Discuss one practical method of inference control not mentioned
in the book.

b. How could you attack the method of inference control given in your
solution to part a?

13. A botnet consists of a number of compromised machines that are all
controlled by an evil botmaster [39, 146].

a. Most botnets are controlled using the Internet Relay Chat (IRC)
protocol. What is IRC and why is it particularly useful for con-
trolling a botnet?

b. Why might a covert channel be useful for controlling a botnet?

c. Design a covert channel that could provide a reasonable means for
a botmaster to control a botnet.

14. Read and briefly summarize each of the following sections from the
article on covert channels at [131]: 2.2, 3.2, 3.3, 4.1, 4.2, 5.2, 5.3, 5.4.

15. Ross Anderson claims that "Some kinds of security mechanisms may be
worse than useless if they can be compromised" [14].

a. Does this statement hold true for inference control? Why or why
not?

b. Does this hold true for encryption? Why or why not?

c. Does this hold true for methods that are used to reduce the ca-
pacity of covert channels? Why or why not?

16. Combine BLP and Biba's Model into a single MLS security model that
covers both confidentiality and integrity.

17. BLP can be stated as "no read up, no write down." What is the anal-
ogous statement for Biba's Model?

18. Consider the visual CAPTCHA known as Gimpy [249].

a. Explain how EZ Gimpy and Hard Gimpy work.

b. How secure is EZ Gimpy compared to Hard Gimpy?

c. Discuss the most successful known attack on each type of Gimpy.

19. This problem deals with visual CAPTCHAs.

8.12 PROBLEMS 305

a. Describe an example of a real-world visual CAPTCHA not dis-
cussed in the text and explain how this CAPTCHA works, that is,
explain how a program would generate the CAPTCHA and score
the result, and what a human would need to do to pass the test.

b. For the CAPTCHA in part a, what information is available to an
attacker?

20. Design and implement your own visual CAPTCHA. Outline possible
attacks on your CAPTCHA. How secure is your CAPTCHA?

21. This problem deals with audio CAPTCHAs.

a. Describe an example of a real-world audio CAPTCHA and explain
how this CAPTCHA works, that is, explain how a program would
generate the CAPTCHA and score the result, and what a human
would need to do to pass the test.

b. For the CAPTCHA in part a, what information is available to an
attacker?

22. Design and implement your own audio CAPTCHA. Outline possible
attacks on your CAPTCHA. How secure is your CAPTCHA?

23. In [56] it is shown that computers are better than humans at solving
all of the fundamental visual CAPTCHA problems, with the exception
of the segmentation problem.

a. What are the fundamental visual CAPTCHA problems?

b. With the exception of the segmentation problem, how can com-
puters solve each of these fundamental problems?

c. Intuitively, why is the segmentation problem more difficult for com-
puters to solve?

24. The reCAPTCHA project is an attempt to make good use of the ef-
fort humans put into solving CAPTCHAs [322]. In reCAPTCHA, a
user is shown two distorted words, where one of the words is an ac-
tual CAPTCHA, but the other is a word—distorted to look like a
CAPTCHA—that an optical character recognition (OCR) program was
unable to recognize. If the real CAPTCHA is solved correctly, then the
reCAPTCHA program assumes that the other word was also solved cor-
rectly. Since humans are good at correcting OCR errors, reCAPTCHA
can be used, for example, to improve the accuracy of digitized books.

a. It is estimated that about 200,000,000 CAPTCHAs are solved
daily. Suppose that each of these is a reCAPTCHA and each
requires about 10 seconds to solve. Then, in total, about how

306 AUTHORIZATION

much time would be spent by users solving OCR problems each
day? Note that we assume two CAPTCHAs are solved for one
reCAPTCHA, so 200,000,000 CAPTCHAs represents 100,000,000
reCAPTCHAs.

b. Suppose that when digitizing a book, on average, about 10 hours
of human effort is required to fix OCR problems. Under the as-
sumptions in part a, how long would it take to correct all of
the OCR problems created when digitizing all books in the Li-
brary of Congress? The Library of Congress has about 32,000,000
books, and we assume that every CAPTCHA in the world is a
reCAPTCHA focused on this specific problem.

c. How could Trudy attack a reCAPTCHA system? That is, what
could Trudy do to make the results obtained from a reCAPTCHA
less reliable?

d. What could the reCAPTCHA developer do to minimize the effect
of attacks on the system?

25. It has been widely reported that spammers sometimes pay humans to
solve CAPTCHAs [293].

a. Why would spammers want to solve lots of CAPTCHAs?

b. What is the current cost, per CAPTCHA solved (in U.S. dollars),
to have humans solve CAPTCHAs?

c. How might you entice humans to solve CAPTCHAs for you with-
out paying them any money?

26. In this chapter, we discussed three types of firewalls: packet filter, state-
ful packet filter, and application proxy.

a. At which layer of the Internet protocol stack does each of these

firewalls operate?

b. What information is available to each of these firewalls?

c. Briefly discuss one practical attack on each of these firewalls.

27. Commercial firewalls do not generally use the terminology packet filter,
stateful packet filter, or application proxy. However, any firewall must
be one of these three types, or a combination thereof. Find information
on a commercial firewall product and explain (using the terminology of
this chapter) which type of firewall it really is.

28. If a packet filter firewall does not allow reset (RST) packets out, then
the TCP ACK scan described in the text will not succeed.

a. What are some drawbacks to this approach?

8.12 PROBLEMS 307

b. Could the TCP ACK scan attack be modified to work against such
a system?

29. In this chapter it's stated that Firewalk, a port scanning tool, will
succeed if the firewall is a packet filter or a stateful packet filter, but it
will fail if the firewall is an application proxy.

a. Why is this the case? That is, why does Firewalk succeed when
the firewall is a packet filter or stateful packet filter, but fail when
the firewall is an application proxy?

b. Can Firewalk be modified to work against an application proxy?

30. Suppose that a packet filter firewall resets the TTL field to 255 for each
packet that it allows through the firewall. Then the Firewalk port
scanning tool described in the this chapter will fail.

a. Why does Firewalk fail in this case?

b. Does this proposed solution create any problems?

c. Could Firewalk be modified to work against such a firewall?

31. An application proxy firewall is able to scan all incoming application
data for viruses. It would be more efficient to have each host scan the
application data it receives for viruses, since this would effectively dis-
tribute the workload among the hosts. Why might it still be preferable
to have the application proxy perform this function?

32. Suppose incoming packets are encrypted with a symmetric key that is
known only to the sender and the intended recipient. Which types of
firewall (packet filter, stateful packet filter, application proxy) will work
with such packets and which will not? Justify your answers.

33. Suppose that packets sent between Alice and Bob are encrypted and
integrity protected by Alice and Bob with a symmetric key known only
to Alice and Bob.

a. Which fields of the IP header can be encrypted and which cannot?

b. Which fields of the IP header can be integrity protected and which
cannot?

c. Which of the firewalls—packet filter, stateful packet filter, appli-
cation proxy—will work in this case, assuming all IP header fields
that can be integrity protected are integrity protected, and all IP
header fields that can be encrypted are encrypted? Justify your

answer.

308 AUTHORIZATION

34. Suppose that packets sent between Alice and Bob are encrypted and in-
tegrity protected by Alice's firewall and Bob's firewall with a symmetric
key known only to Alice's firewall and Bob's firewall.

a. Which fields of the IP header can be encrypted and which cannot?

b. Which fields of the IP header can be integrity protected and which
cannot?

c. Which of the firewalls—packet filter, stateful packet filter, appli-
cation proxy—will work in this case, assuming all IP header fields
that can be integrity protected are integrity protected, and all IP
header fields that can be encrypted are encrypted? Justify your
answer.

35. Defense in depth using firewalls is illustrated in Figure 8.15. List other
security applications where defense in depth is a sensible strategy.

36. Broadly speaking, there are two distinct types of intrusion detection
systems, namely, signature-based and anomaly-based.

a. List the advantages of signature-based intrusion detection, as com-
pared to anomaly-based intrusion detection.

b. List the advantages of an anomaly-based IDS, in contrast to a
signature-based IDS.

c. Why is effective anomaly-based IDS inherently more challenging
than signature-based detection?

37. A particular vendor uses the following approach to intrusion detection.16

The company maintains a large number of honeypots distributed across
the Internet. To a potential attacker, these honeypots look like vulnera-
ble systems. Consequently, the honeypots attract many attacks and, in
particular, new attacks tend to show up on the honeypots soon after—
sometimes even during—their development. Whenever a new attack is
detected at one of the honeypots, the vendor immediately develops a
signature and distributes the resulting signature to all systems using its
product. The actual derivation of the signature is generally a manual
process.

a. What are the advantages, if any, of this approach as compared to
a standard signature-based system?

b. What are the advantages, if any, of this approach as compared to
a standard anomaly-based system?

'This problem is based on a true story, just like many Hollywood movies...

8.12 PROBLEMS 309

c. Using the terminology given in this chapter, the system outlined
in this problem would be classified as a signature-based IDS, not
an anomaly-based IDS. Why?

d. The definition of signature-based and anomaly-based IDS are not
standardized.17 The vendor of the system outlined in this problem
refers to it as an anomaly-based IDS. Why might they insist on
calling it an anomaly-based IDS, when your well-nigh infallible
author would classify it as a signature-based system?

38. The anomaly-based intrusion detection example presented in this chap-
ter is based on file-use statistics.

a. Many other statistics could be used as part of an anomaly-based
IDS. For example, network usage would be a sensible statistic to
consider. List five other statistics that could reasonably be used
in an anomaly-based IDS.

b. Why might it be a good idea to combine several statistics rather
than relying on just a few?

c. Why might it not be a good idea to combine several statistics
rather than relying on just a few?

39. Recall that the anomaly-based IDS example presented in this chapter
is based on file-use statistics. The expected file use percentages (the Hi
values in Table 8.4) are periodically updated using equation (8.3), which
can be viewed as a moving average.

a. Why is it necessary to update the expected file use percentages?

b. When we update the expected file use percentages, it creates a
potential avenue of attack for Trudy. How and why is this the
case?

c. Discuss a different generic approach to constructing and updating
an anomaly-based IDS.

40. Suppose that at the time interval following the results in Table 8.8,
Alice's file-use statistics are given by AQ = 0.05, A\ = 0.25, A2 = 0.25,
and As = 0.45.

a. Is this normal for Alice?
17Lack of standard terminology is a problem throughout most of the fields in information

security (crypto being one of the few exceptions). It's important to be aware of this situa-
tion, since differing definitions is a common source of confusion. Of course, this problem is
not unique to information security—differing definitions also cause confusion in many other
fields of human endeavor. For proof, ask any two randomly selected economists about the
current state of the economy.

310 AUTHORIZATION

b. Compute the updated values of i/o through H3.

41. Suppose that we begin with the values of Ho through H3 that appear
in Table 8.4.

a. What is the minimum number of iterations required until it is
possible to have H2 > 0.9 without the IDS triggering a warning at
any step?

b. What is the minimum number of iterations required until it is
possible to have H3 > 0.9 without the IDS triggering a warning at
any step?

42. Consider the results given in Table 8.6.

a. For the subsequent time interval, what is the largest possible value
for A3 that will not trigger a warning from the IDS?

b. Give values for Ao, Ai, and A2 that are compatible with the solu-
tion to part a.

c. Compute the statistic S, using the solutions from parts a and b,
and the Hi values in Table 8.6.

Part III

Protocols

This page intentionally left blank

Chapter 9

Simple Authentication
Protocols

"I quite agree with you," said the Duchess; "and the moral of that is—
'Be what you would seem to be'—or,

if you'd like it put more simply—'Never imagine yourself not to be
otherwise than what it might appear to others that what you were

or might have been was not otherwise than what you
had been would have appeared to them to be otherwise. ' "

— Lewis Carroll, Alice in Wonderland

Seek simplicity, and distrust it.
— Alfred North Whitehead

9.1 Introduction

Protocols are the rules tha t are followed in some particular interaction. For
example, there is a protocol that you follow if you want to ask a question in
class, and it goes something like this:

1. You raise your hand.

2. The teacher calls on you.

3. You ask your question.

4. The teacher says, "I don't know."1

There are a vast number of human protocols, some of which can be very
intricate, with numerous special cases to consider.

1Well, at least that's the way it works in your oblivious author's classes.

313

314 SIMPLE AUTHENTICATION PROTOCOLS

In the context of networking, protocols are the rules followed in networked
communication systems. Examples of formal networking protocols include
HTTP, FTP, TCP, UDP, PPP, and there are many, many more. In fact, the
study of networks is largely the study of networking protocols.

Security protocols are the communication rules followed in security appli-
cations. In Chapter 10 we'll look closely at several real-world security proto-
cols including SSH, SSL, IPSec, WEP, and Kerberos. In this chapter, we'll
consider simplified authentication protocols so that we can better understand
the fundamental security issues involved in the design of such protocols. If
you want to delve a little deeper than the material presented in this chapter,
the paper [3] has a discussion of some security protocol design principles.

In Chapter 7, we discussed methods that are used, primarily, to authen-
ticate humans to a machines. In this chapter, we'll discuss authentication
protocols. Although it might seem that these two authentication topics must
be closely related, in fact, they are almost completely different. Here, we'll
deal with the security issues related to the messages that are sent over a net-
work to authenticate the participants. We'll see examples of well-known types
of attacks on protocols and we'll show how to prevent these attacks. Note
that our examples and analysis are informal and intuitive. The advantage of
this approach is that we can cover all of the basic concepts quickly and with
minimal background, but the price we pay is that some rigor is sacrificed.

Protocols can be subtle—often, a seemingly innocuous change makes a
significant difference. Security protocols are particularly subtle, since the
attacker can actively intervene in the process in a variety of ways. As an
indication of the challenges inherent in security protocols, many well-known
security protocols—including WEP, GSM, and even IPSec—have significant
security issues. And even if the protocol itself is not flawed, a particular
implementation can be.

Obviously, a security protocol must meet some specified security require-
ments. But we also want protocols to be efficient, both in computational cost
and bandwidth usage. An ideal security protocol would not be too fragile,
that is, the protocol would function correctly even when an attacker actively
tries to break it. In addition, a security protocol should continue to work even
if the environment in which it's deployed changes. Of course, it's impossi-
ble to protect against every possible eventuality, but protocol developers can
try to anticipate likely changes in the environment and build in protections.
Some of the most serious security challenges today are due to the fact that
protocols are being used in environments for which they were not initially
designed. For example, many Internet protocols were designed for a friendly,
academic environment, which is about as far from the reality of the modern
Internet as possible. Ease of use and ease of implementation are also desirable
features of security protocols. Obviously, it's going to be difficult to design
an ideal protocol.

9.2 SIMPLE SECURITY PROTOCOLS 315

9.2 Simple Security Protocols

The first security protocol that we consider is a protocol that could be used
for entry into a secure facility, such as the National Security Agency. Em-
ployees are given a badge that they must wear at all times when in the secure
facility. To enter the building, the badge is inserted into a card reader and
the employee must provide a PIN number. The secure entry protocol can be
described as follows.

1. Insert badge into reader.

2. Enter PIN.

3. Is the PIN correct?

• Yes: Enter the building.

• No: Get shot by a security guard.2

When you withdraw money from an ATM machine, the protocol is vir-
tually identical to the secure entry protocol above, but without the violent
ending:

1. Insert ATM card into reader

2. Enter PIN

3. Is the PIN correct?

• Yes: Conduct your transactions

• No: Machine eats your ATM card

The military has a need for many specialized security protocols. One
example is an identify friend or foe (IFF) protocol. These protocols are
designed to help prevent friendly-fire incidents—where soldiers accidentally
attack soldiers on their own side—while not seriously hampering the fight
against the enemy.

A simple example of an IFF protocol appears in Figure 9.1. This protocol
was reportedly used by the South African Air Force, or SAAF, when fighting
in Angola in the mid-1970s [14]. The South Africans were fighting Angola for
control of Namibia (known as Southwest Africa at the time). The Angolan
side was flying Soviet MiG aircraft, piloted by Cubans.3

2 Of course, this is an exaggeration—you get three tries before being shot by the security
guard.

3This was one of the hot wars that erupted during the Cold War. Early in the war, the
South Africans were amazed by the skill of the "Angolan" pilots. They eventually realized
the pilots were actually Cuban when satellite photos revealed baseball diamonds.

316 SIMPLE AUTHENTICATION PROTOCOLS

The IFF protocol in Figure 9.1 works as follows. When the SAAF radar
detects an aircraft approaching its base, a random number, or challenge, N is
sent to the aircraft. All SAAF aircraft have access to a key K that they use to
encrypt the challenge, E(N, K), which is computed and sent back to the radar
station. Time is of the essence, so all of this happens automatically, without
human intervention. Since enemy aircraft do not know K, they cannot send
back the required response. It would seem that this protocol gives the radar
station a simple way to determine whether an approaching aircraft is a friend
(let it land) or foe (shoot it down).

Figure 9.1: Identify Friend or Foe (IFF)

Unfortunately for those manning the radar station, there is a clever at-
tack on the IFF system in Figure 9.1. Anderson has dubbed this attack the
MiG-in-the-middle [14], which is a pun on man-in-the-middle. The scenario
for the attack, which is illustrated in Figure 9.2, is as follows. While an
SAAF Impala fighter is flying a mission over Angola, a Cuban-piloted MiG
aircraft (the foe of the SAAF) loiters just outside of the range of the SAAF
radar. When the Impala fighter is within range of a Cuban radar station
in Angola, the MiG is told to move within range of the SAAF radar. As
specified by the protocol, the SAAF radar sends the challenge N to the MiG.
To avoid being shot down, the MiG needs to respond with E{N,K), and
quickly. Because the MiG does not know the key K, its situation appears
hopeless. However, the MiG can forward the challenge N to its radar station
in Angola, which, in turn, forwards the challenge to the SAAF Impala. The
Impala fighter—not realizing that it has received the challenge from an enemy
radar site—responds with E{N,K). At this point, the Cuban radar relays
the response E(N, K) to the MiG, which can then provide it to the SAAF
radar. Assuming this all happens fast enough, the SAAF radar will signal
that the MiG is a friend, with disastrous consequences for the SAAF radar
station and its operators.

Although it nicely illustrates an interesting security failure, it seems that
this MiG-in-the-middle attack never actually occurred [15]. In any case, this
is our first illustration of a security protocol failure, but it certainly won't be
the last.

9.3 AUTHENTICATION PROTOCOLS 317

Figure 9.2: MiG-in-the-Middle

9.3 Authentication Protocols

"I can't explain myself, I'm afraid, Sir, " said Alice,
"because I'm not myself you see."

— Lewis Carroll, Alice in Wonderland

Suppose that Alice must prove to Bob that she's Alice, where Alice and Bob
are communicating over a network. Keep in mind that Alice can be a human
or a machine, and ditto for Bob. In fact, in this networked scenario, Alice
and Bob will almost invariably be machines, which has important implications
that we'll consider in a moment.

In many cases, it's sufficient for Alice to prove her identity to Bob, without
Bob proving his identity to Alice. But sometimes mutual authentication is
necessary, that is, Bob must also prove his identity to Alice. It seems obvious
that if Alice can prove her identity to Bob, then precisely the same protocol
can be used in the other direction for Bob to prove his identity to Alice. We'll
see that, in security protocols, the obvious approach is not always secure.

In addition to authentication, a session key is inevitably required. A ses-
sion key is a symmetric key that will be used to protect the confidentiality
and/or integrity of the current session, provided the authentication succeeds.
Initially, we'll ignore the session key so that we can concentrate on authenti-
cation.

In certain situations, there may be other requirements placed on a security
protocol. For example, we might require that the protocol use public keys, or
symmetric keys, or hash functions. In addition, some situations might call for

318 SIMPLE AUTHENTICATION PROTOCOLS

a protocol that provides anonymity or plausible deniability (discussed below)
or other not-so-obvious features.

We've previously considered the security issues associated with authenti-
cation on standalone computer systems. While such authentication presents
its own set of challenges (hashing, salting, etc.), from the protocol perspec-
tive, it's straightforward. In contrast, authentication over a network requires
very careful attention to protocol issues. When a network is involved, nu-
merous attacks are available to Trudy that are generally not a concern on a
standalone computer. When messages are sent over a network, Trudy can
passively observe the messages and she can conduct various active attacks
such as replaying old messages, inserting, deleting, or changing messages. In
this book, we haven't previously encountered anything comparable to these
types of attacks.

Our first attempt at authentication over a network is the protocol in
Figure 9.3. This three-message protocol requires that Alice (the client) first
initiate contact with Bob (the server) and state her identity. Then Bob asks
for proof of Alice's identity, and Alice responds with her password. Finally,
Bob uses Alice's password to authenticate Alice.

"I'm Alice"

Prove it

My password is "frank"

Alice Bob

Figure 9.3: Simple Authentication

Although the protocol in Figure 9.3 is certainly simple, it has some major
flaws. For one thing, if Trudy is able to observe the messages that are sent, she
can later replay the messages to convince Bob that she is Alice, as illustrated
in Figure 9.4. Since we are assuming these messages are sent over a network,
this replay attack is a serious threat.

"I'm Alice"

Prove it

My password is "frank"

Trudy Bob

Figure 9.4: Replay Attack

9.3 AUTHENTICATION PROTOCOLS 319

Another issue with the too-simple authentication in Figure 9.3 is that
Alice's password is sent in the clear. If Trudy observes the password when
it is sent from Alice's computer, then Trudy knows Alice's password. This
is even worse than a replay attack since Trudy can then pose as Alice on
any site where Alice has reused this particular password. Another password
issue with this protocol is that Bob must know Alice's password before he
can authenticate her.

This simple authentication protocol is also inefficient, since the same effect
could be accomplished in a single message from Alice to Bob. So, this protocol
is a loser in every respect. Finally, note that the protocol in Figure 9.3 does
not attempt to provide mutual authentication, which may be required in some
cases.

For our next attempt at an authentication protocol, consider Figure 9.5.
This protocol solves some of the problems of our previous simple authentica-
tion protocol. In this new-and-improved version, a passive observer, Trudy,
will not learn Alice's password and Bob no longer needs to know Alice's
password—although he must know the hash of Alice's password.

"I'm Alice"
►

Prove it

h(Alice's password)

Bob

Figure 9.5: Simple Authentication with a Hash

The major flaw in the protocol of Figure 9.5 is that it's still subject to a
replay attack, where Trudy records Alice's messages and later replays them to
Bob. In this way, Trudy could be authenticated as Alice, without knowledge
of Alice's password.

To authenticate Alice, Bob will need to employ a challenge-response mech-
anism. That is, Bob will send a challenge to Alice, and the response from
Alice must be something that only Alice can provide and that Bob can verify.
To prevent a replay attack, Bob can incorporate a "number used once," or
nonce, in the challenge. That is, Bob will send a unique challenge each time,
and the challenge will be used to compute the appropriate response. Bob can
thereby distinguish the current response from a replay of a previous response.
In other words, the nonce is used to ensure the freshness of the response. This
approach to authentication with replay prevention is illustrated in Figure 9.6.

First, we'll design an authentication protocol using Alice's password. A
password is something only Alice should know and Bob can verify—assuming
that Bob knows Alice's password, that is.

<#

Alice

320 SIMPLE AUTHENTICATION PROTOCOLS

"I'm Alice"
►

. Nonce

Something that could only be

Alice f rom Alice (and Bob can verify) Bob

Figure 9.6: Generic Authentication

Our first serious attempt at an authentication protocol that is resistant
to replay appears is Figure 9.7. In this protocol, the nonce sent from Bob
to Alice is the challenge. Alice must respond with the hash of her password
together with the nonce, which, assuming Alice's password is secure, serves to
prove that the response was generated by Alice. Note that the nonce proves
that the response is fresh and not a replay.

"I'm Alice"
►

Nonce

h(Alice's password, Nonce)

Alice Bob

Figure 9.7: Challenge-Response

One problem with the protocol in Figure 9.7 is that Bob must know
Alice's password. Furthermore, Alice and Bob typically represent machines
rather than users, so it makes no sense to use passwords. After all, passwords
are little more than a crutch used by humans because we are incapable of
remembering keys. That is, passwords are about the closest thing to a key
that humans can remember. So, if Alice and Bob are actually machines, they
should be using keys instead of passwords.

9.3.1 Authent icat ion Using Symmetr ic Keys

Having liberated ourselves from passwords, let's design a secure authentica-
tion protocol based on symmetric key cryptography. Recall that our notation
for encrypting is C = E(P, K) where P is plaintext, K is the key, and C is
the ciphertext, while the notation for decrypting is P = D(C, K). When dis-
cussing protocols, we are primarily concerned with attacks on protocols, not
attacks on the cryptography used in protocols. Consequently, in this chapter
we'll assume that the underlying cryptography is secure.

9.3 AUTHENTICATION PROTOCOLS 321

Suppose that Alice and Bob share the symmetric key KAB- AS in sym-
metric cryptography, we assume that nobody else has access to KAB- Alice
will authenticate herself to Bob by proving that she knows the key, without
revealing the key to Trudy. In addition, the protocol must provide protection
against a replay attack.

Our first symmetric key authentication protocol appears in Figure 9.8.
This protocol is analogous to our previous password-based challenge-response
protocol, but instead of hashing a nonce with a password, we've encrypted
the nonce R with the shared symmetric key KAB-

"I'm Alice"
►

« 5
E(R,KAB)

Alice * Bob

Figure 9.8: Symmetric Key Authentication Protocol

The symmetric key authentication protocol in Figure 9.8 allows Bob to
authenticate Alice, since Alice can encrypt R with KAB, Trudy cannot, and
Bob can verify that the encryption was done correctly—Bob knows KAB-
This protocol prevents a replay attack, thanks to the nonce R, which ensures
that each response is fresh. The protocol lacks mutual authentication, so
our next task will be to develop a mutual authentication protocol based on
symmetric keys.

Our first attempt at mutual authentication appears in Figure 9.9. This
protocol is certainly efficient, and it does use symmetric key cryptography,
but it has an obvious flaw. The third message in this protocol is simply a
replay of the second, and consequently it proves nothing about the sender,
be it Alice or Trudy.

"I'm Alice", R

M Ε(Π,ΚΛΒ)

E(R,KAB)

Alice Bob

Figure 9.9: Mutual Authentication?

A more plausible approach to mutual authentication would be to use the

secure authentication protocol in Figure 9.8 and repeat the process twice,

322 SIMPLE AUTHENTICATION PROTOCOLS

once for Bob to authenticate Alice and once more for Alice to authenticate
Bob. We've illustrated this approach in Figure 9.10, where we've combined
some messages for the sake of efficiency.

"I'm Alice", RA

- ►
Rß' E(RA'KAB)

E (R B- K AB) .

* Bob

Figure 9.10: Secure Mutual Authentication?

Perhaps surprisingly, the protocol in Figure 9.10 is insecure—it is subject
to an attack that is analogous to the MiG-in-the-middle attack discussed
previously. In this attack, which is illustrated in Figure 9.11, Trudy initiates
a conversation with Bob by claiming to be Alice and sends a challenge RA
to Bob. Following the protocol, Bob encrypts the challenge RA and sends
it, along with his challenge RB, to Trudy. At this point Trudy appears
to be stuck, since she doesn't know the key KAB, and therefore she can't
respond appropriately to Bob's challenge. However, Trudy cleverly opens a
new connection to Bob where she again claims to be Alice and this time sends
Bob his own "random" challenge RB- Bob, following the protocol, responds
with E(RB, KAB), which Trudy can now use to complete the first connection.
Trudy can leave the second connection to time out, since she has—in the first
connection—convinced Bob that she is Alice.

<4

Alice

Figure 9.11: Trudy's Attack

9.3 AUTHENTICATION PROTOCOLS 323

The conclusion is that a non-mutual authentication protocol may not be
secure for mutual authentication. Another conclusion is that protocols (and
attacks on protocols) can be subtle. Yet another conclusion is that "obvious"
changes to protocols can cause unexpected security problems.

In Figure 9.12, we've made a couple of minor changes to the insecure
mutual authentication protocol of Figure 9.10. In particular, we've encrypted
the user's identity together with the nonce. This change is sufficient to prevent
Trudy's previous attack since she cannot use a response from Bob for the third
message—Bob will realize that he encrypted it himself.

"I'm Alice", RA

- ►
t RB, E("Bob",RA,KAB)

E("Alice",RB,KAB) ^

Alice Bob

Figure 9.12: Strong Mutual Authentication Protocol

One lesson here is that it's a bad idea to have the two sides in a protocol do
exactly the same thing, since this might open the door to an attack. Another
lesson is that small changes to a protocol can result in big changes in its
security.

9.3.2 Authentication Using Public Keys

In the previous section we devised a secure mutual authentication protocol
using symmetric keys. Can we accomplish the same thing using public key
cryptography? First, recall our public key notation. Encrypting a message M
with Alice's public key is denoted C = {M}Ai;ce while decrypt C with Alice's
private key, and thereby recovering the plaintext M, is denoted M = [C]Alice·
Signing is also a private key operation. Of course, encryption and decryption
are inverse operation, as are signing and signature verification, that is

[WAlicelAlice = M and { [M] A l i c e } A l i c e = M.

It's always important to remember that in public key cryptography, anybody
can do public key operations, while only Alice can use her private key.4

Our first attempt at authentication using public key cryptography appears
in Figure 9.13. This protocol allows Bob to authenticate Alice, since only
Alice can do the private key operation that is necessary to reply with R in
the third message. Also, assuming that the nonce R is chosen (by Bob) at

4Repeat to yourself 100 times: The public key is public.

324 SIMPLE AUTHENTICATION PROTOCOLS

random, a replay attack is not feasible. That is, Trudy cannot replay R from
a previous iteration of the protocol, since the random challenge will almost
certainly not be the same in a subsequent iteration.

However, if Alice uses the same key pair to encrypt as she uses for authen-
tication, then there is a potential problem with the protocol in Figure 9.13.
Suppose Trudy has previously intercepted a message encrypted with Alice's
public key, say, C = {Malice- Then Trudy can pose as Bob and send C to
Alice in message two, and Alice will decrypt it and send the plaintext back to
Trudy. From Trudy's perspective, it doesn't get any better than that. The
moral of the story is that you should not use the same key pair for signing as
you use for encryption.

"I'm Alice"
►

{R/Alice
4

R
*

Alice Bob

Figure 9.13: Authentication with Public Key Encryption

The authentication protocol in Figure 9.13 uses public key encryption. Is
it possible to accomplish the same feat using digital signatures? In fact, it is,
as illustrated in Figure 9.14.

"I'm Alice"

R

<

[RUlice

Alice

Figure 9.14: Authentication via Digital Signature

The protocol in Figure 9.14 has similar security issues as the public key
encryption protocol in Figure 9.13. In Figure 9.14, if Trudy can pose as Bob,
she can get Alice to sign anything. Again, the solution to this problem is
to always use different key pairs for signing and encryption. Finally, note
that, from Alice's perspective, the protocols in Figures 9.13 and 9.14 are
identical, since in both cases she applies her private key to whatever shows
up in message two.

Bob

9.3 AUTHENTICATION PROTOCOLS 325

9.3.3 Session Keys

Along with authentication, we invariably require a session key. Even when a
symmetric key is used for authentication, we want to use a distinct session
keys to encrypt data within each connection. The purpose of a session key
is to limit the amount of data encrypted with any one particular key, and it
also serves to limit the damage if one session key is compromised. A session
key is used to provide confidentiality or integrity protection (or both) to the
messages.

We want to establish the session key as part of the authentication proto-
col. That is, when the authentication is complete, we will also have securely
established a shared symmetric key. Therefore, when analyzing an authenti-
cation protocol, we need to consider attacks on the authentication itself, as
well as attacks on the session key.

Our next goal is to design an authentication protocol that also provides a
shared symmetric key. It looks to be straightforward to include a session key
in our secure public key authentication protocol. Such a protocol appears in
Figure 9.15.

"I'm Alice", R

{R.K/Alice
M

{R+1.KW,
Alice

Figure 9.15: Authentication and a Session Key

One possible concern with the protocol of Figure 9.15 is that it does not
provide for mutual authentication—only Alice is authenticated.5 But before
we tackle that issue, can we modify the protocol in Figure 9.15 so that it
uses digital signatures instead of public key encryption? This also seems
straightforward, and the result appears in Figure 9.16.

However, there is a fatal flaw in the protocol of Figure 9.16. Since the
key is signed, anybody can use Bob's (or Alice's) public key and find the
session key K. A session key that is public knowledge is definitely not secure.
But before we dismiss this protocol entirely, note that it does provide mutual
authentication, whereas the public key encryption protocol in Figure 9.15
does not. Can we combine these protocols so as to achieve both mutual

5 One strange thing about this protocol is that the key K acts as Bob's challenge to Alice
and the nonce R is useless. But there is a method to the madness, which will become clear
shortly.

*>

Bob

326 SIMPLE AUTHENTICATION PROTOCOLS

"I'm Alice", R

[R»K]ßob
<

[R +1 ,K]Alice

Alice

Figure 9.16: Signature-Based Authentication and Session Key

authentication and a secure session key? The answer is yes, and there are a
couple of ways to do so.

Suppose that, instead of signing or encrypting the messages, we sign and
encrypt the messages. Figure 9.17 illustrates such a sign and encrypt protocol.
This appears to provide the desired secure mutual authentication and a secure
session key.

"I'm Alice", R

{[R.K]Bob)Alice

* Bob

Figure 9.17: Mutual Authentication and Session Key

Since the protocol in Figure 9.17 provides mutual authentication and a
session key using sign and encrypt, surely encrypt and sign must work, too.
An encrypt and sign protocol appears in Figure 9.18.

"I'm Alice", R

[{R,K}AHce]Bob

<
[{R +1 .K^bUiJce

Alice

Figure 9.18: Encrypt and Sign Mutual Authentication

Note that the values {-R,-ft'}Alice a n d {R + l ,^}ßob m Figure 9.18 are
available to anyone who has access to Alice's or Bob's public keys (which,
by assumption, is anybody who wants them). Since this is not the case
in Figure 9.17, it might seem that sign and encrypt somehow reveals less

Bob

Alice

■►

Bob

9.3 AUTHENTICATION PROTOCOLS 327

information than encrypt and sign. However, it appears that an attacker
must break the public key encryption to recover K in either case and, if so,
there is no security difference between the two. Recall that when analyzing
protocols, we assume all crypto is strong, so breaking the encryption is not
an option for Trudy.

9.3.4 Perfect Forward Secrecy

Now that we have conquered mutual authentication and session key estab-
lishment (using public keys), we turn our attention to perfect forward secrecy,
or PFS. What is PFS? Rather than answer directly, we'll look at an exam-
ple that illustrates what PFS is not. Suppose that Alice encrypts a message
with a shared symmetric key KAB and sends the resulting ciphertext to Bob.
Trudy can't break the cipher to recover the key, so out of desperation she sim-
ply records all of the messages encrypted with the key KAB- NOW suppose
that at some point in the future Trudy manages to get access to Alice's com-
puter, where she finds the key KAB- Then Trudy can decrypt the recorded
ciphertext messages. While such an attack may seem unlikely, the problem
is potentially significant since, once Trudy has recorded the ciphertext, the
encryption key remains a vulnerability into the future. To avoid this problem,
Alice and Bob must both destroy all traces of KAB once they have finished
using it. This might not be as easy as it seems, particularly if KAB is a long-
term key that Alice and Bob will need to use in the future. Furthermore,
even if Alice is careful and properly manages her keys, she would have to rely
on Bob to do the same (and vice versa).

PFS makes such an attack impossible. That is, even if Trudy records all
ciphertext messages and she later recovers all long-term secrets (symmetric
keys and/or private keys), she cannot decrypt the recorded messages. While
it might seem that this is an impossibility, it is not only possible, but actually
fairly easy to achieve in practice.

Suppose Bob and Alice share a long-term symmetric key KAB- Then
if they want PFS, they definitely can't use KAB as their encryption key.
Instead, Alice and Bob must agree on a session key Ks and forget Ks after
it's no longer needed, i.e., after the current session ends. So, as in our previous
protocols, Alice and Bob must find a way to agree on a session key Ks, by
using their long-term symmetric key KAB- However, for PFS we have the
added condition that if Trudy later finds KAB, she cannot determine Ks,
even if she recorded all of the messages exchanged by Alice and Bob.

Suppose that Alice generates a session key Ks and sends E(Ks, KAB) to
Bob, that is, Alice simply encrypts the session key and sends it to Bob. If we
are not concerned with PFS, this would be a sensible way to establish a session
key in conjunction with an authentication protocol. However, this approach,
which is illustrated in Figure 9.19, does not provide PFS. If Trudy records

328 SIMPLE AUTHENTICATION PROTOCOLS

all of the messages and later recovers KAB, she can decrypt E(Ks, KAB) to
recover the session key Ks, which she can then use to decrypt the recorded
ciphertext messages. This is precisely the attack that PFS is supposed to
prevent.

E(KS, KAB)

E(messages, Ks)

Alice, KAB Bob, KAB

Figure 9.19: Naïve Attempt at PFS

There are actually several ways to achieve PFS, but the most elegant
approach is to use an ephemeral Diffie-Hellman key exchange. As a reminder,
the standard Diffie-Hellman key exchange protocol appears in Figure 9.20.
In this protocol, g and p are public, Alice chooses her secret exponent a and
Bob chooses his secret exponent b. Then Alice sends ga mod p to Bob and
Bob sends gb mod p to Alice. Alice and Bob can each compute the shared
secret gab mod p. Recall that the crucial weakness with Diffie-Hellman is
that it is subject to a man-in-the-middle attack, as discussed in Section 4.4
of Chapter 4.

ga mod p

gbmodp

Alice, a Bob, b

Figure 9.20: Diffie-Hellman

If we are to use Diffie-Hellman for PFS,6 we must prevent the man-in-the-
middle attack, and, of course, we must somehow assure PFS. The aforemen-
tioned ephemeral Diffie-Hellman can accomplish both. To prevent the MiM
attack, Alice and Bob can use their shared symmetric key KAB to encrypt the
Diffie-Hellman exchange. Then to get PFS, all that is required is that, once
Alice has computed the shared session key Ks = gab mod p, she must forget

Your acronym-loving author was tempted to call this protocol DH4PFS or maybe
EDH4PFS but, for once, he showed restraint.

9.3 AUTHENTICATION PROTOCOLS 329

her secret exponent a and, similarly, Bob must forget his secret exponent 6.
This protocol is illustrated in Figure 9.21.

E(ga mod p, KAB)

E(gb mod p, KAB)

Alice, a Bob, b

Figure 9.21: Ephemeral Diffie-Hellman for PFS

One interesting feature of the PFS protocol in Figure 9.21 is that once
Alice and Bob have forgotten their respective secret exponents, even they
can't reconstruct the session key Ks- If Alice and Bob can't recover the
session key, certainly Trudy can be no better off. If Trudy records the con-
versation in Figure 9.21 and later is able to find KAB, she will not be able
to recover the session key Kg unless she can break Diffie-Hellman. Assuming
the underlying crypto is strong, we have satisfied our requirements for PFS.

9.3.5 Mutual Authent icat ion, Session Key, and P F S

Now let's put it all together and design a mutual authentication protocol
that establishes a session key with PFS. The protocol in Figure 9.22, which
is a slightly modified form of the encrypt and sign protocol from Figure 9.18,
appears to fill the bill. It is a good exercise to give convincing arguments
that Alice is actually authenticated (explaining exactly where and how that
happens and why Bob is convinced he's talking to Alice), that Bob is authen-
ticated, that the session key is secure, that PFS is provided, and that there
are no obvious attacks.

"I'm Alice", R.

A ^

„ RB> KRA. 9b m o d Police] Bob

[{RB, ga mod pJ^J
Alice .

Alice Bob
Figure 9.22: Mutual Authentication, Session Key and PFS

Now that we've developed a protocol that satisfies all of our security
requirements, we can turn our attention to questions of efficiency. That is,
we'll try to reduce the number of messages in the protocol or increase the

330 SIMPLE AUTHENTICATION PROTOCOLS

efficiency in some other way, such as by reducing the number of public key
operations.

9.3.6 T imestamps

A timestamp T is a time value, typically expressed in milliseconds. With some
care, a timestamp can be used in place of a nonce, since a current timestamp
ensures freshness. The benefit of a timestamp is that we don't need to waste
any messages exchanging nonces, assuming that the current time is known
to both Alice and Bob. Timestamps are used in many real-world security
protocols, such as Kerberos, which we discuss in the next chapter.

Along with the potential benefit of increased efficiency, timestamps create
some security issues as well.7 For one thing, the use of timestamps implies
that time is a security-critical parameter. For example, if Trudy can attack
Alice's system clock (or whatever Alice relies on for the current time), she
may cause Alice's authentication to fail. A related problem is that we can't
rely on clocks to be perfectly synchronized, so we must allow for some clock
skew, that is, we must accept any timestamp that is close to the current time.
In general, this can open a small window of opportunity for Trudy to conduct
a replay attack—if she acts within the allowed clock skew a replay will be
accepted. It is possible to close this window completely, but the solution puts
an additional burden on the server (see Problem 27). In any case, we would
like to minimize the clock skew without causing excessive failures due to time
inconsistencies between Alice and Bob.

To illustrate the benefit of a timestamp, consider the authentication pro-
tocol in Figure 9.23. This protocol is essentially the timestamp version of the
sign and encrypt protocol in Figure 9.17. Note that by using a timestamp,
we're able to reduce the number of messages by a third.

■I'm Alice", { [Τ , Κ] Α Ι ^ ?

{ [T +1 .K]Bob}Alice

Alice Bob

Figure 9.23: Authentication Using a Timestamp

The authentication protocol in Figure 9.23 uses a timestamp together

with sign and encrypt and it appears to be secure. So it would seem obvious

that the timestamp version of encrypt and sign must also be secure. This

protocol is illustrated in Figure 9.24.

7This is yet another example of the "no free lunch" principle.

9.3 AUTHENTICATION PROTOCOLS 331

"I'm Alice", [{T .KJBJ
Alice

[{T+1,K}Alice]Bob

Alice Bob

Figure 9.24: Encrypt and Sign Using a Timestamp

Unfortunately, with protocols, the obvious is not always correct. In fact,

the protocol in Figure 9.24 is subject to attack. Trudy can recover {Γ, ^JBob

by applying Alice's public key. Then Trudy can open a connection to Bob

and send {T, i^}ßob m message one, as illustrated in Figure 9.25. Following
the protocol, Bob will then send the key K to Trudy in a form that Trudy
can decrypt. This is not good, since K is the session key shared by Alice and
Bob.

Figure 9.25: Trudy's Attack on Encrypt and Sign

The attack in Figure 9.25 shows that our encrypt and sign protocol is not
secure when we use a timestamp. But our sign and encrypt protocol is secure
when a timestamp is used. In addition, the nonce versions of both sign and
encrypt as well as encrypt and sign are secure (see Figures 9.17 and 9.18).
These examples nicely illustrate that, when it comes to security protocols, we
should never take anything for granted.

Is the flawed protocol in Figure 9.24 fixable? In fact, there are several
minor modifications that will make this protocol secure. For example, there's
no reason to return the key K in the second message, since Alice already
knows K and the only purpose of this message is to authenticate Bob. The
timestamp in message two is sufficient to authenticate Bob. This secure
version of the protocol is illustrated in Figure 9.26 (see also Problem 21).

In the next chapter, we'll discuss several well-known, real-world security
protocols. These protocols use the concepts that we've presented in this
chapter. But before moving on to the real world of Chapter 10, we briefly
look at a couple of additional protocol topics. First, we'll consider a weak

332 SIMPLE AUTHENTICATION PROTOCOLS

"I'm Alice", [{ Τ , Κ } ^ ,

fT+1]Bob

Alice Bob

Figure 9.26: Secure Encrypt and Sign with a Timestamp

form of authentication that relies on TCP which, unfortunately, is sometimes

used in practice. Finally, we discuss the Fiat-Shamir zero knowledge protocol.

We'll encounter Fiat-Shamir again in the final chapter.

9.4 Authentication and TCP

In this section we'll take a quick look at how TCP is sometimes used for

authentication. TCP was not designed to be used in this manner and, not

surprisingly, this authentication method is not secure. But it does illustrate

some interesting network security issues.

There is an undeniable temptation to use the IP address in a TCP con-

nection for authentication.8 If we could make this work, then we wouldn't

need any of those troublesome keys or pesky authentication protocols.

Below, we'll give an example of TCP-based authentication and we illus-

trate an attack on the scheme. But first we briefly review the TCP three-way

handshake, which is illustrated in Figure 9.27. The first message is a synchro-

nization request, or SYN, whereas the second message, which acknowledges

the synchronization request, is a SYN-ACK, and the third message—which

can also contain data—acknowledges the previous message, and is simply

known as an ACK.

SYN, SEQ a

SYN, ACKa+1,SEQb

ACK b+1, data

: ►
Alice Bob

Figure 9.27: TCP 3-Way Handshake

8As we'll see in the next chapter, the IPSec protocol relies on the IP address for user
identity in one of its modes. So, even people who should know better cannot always resist
the temptation.

9.4 AUTHENTICATION AND TCP 333

Suppose that Bob decides to rely on the completed three-way handshake
to verify that he is connected to a specific IP address, which he knows belongs
to Alice. Then, in effect, he is using the TCP connection to authenticate Alice.
Since Bob sends the SYN-ACK to Alice's IP address, it's tempting to assume
that the corresponding ACK must have come from Alice. In particular, if
Bob verifies that ACK ò + 1 appears in message three, he has some reason
to believe that Alice, at her known IP address, has received message two
and responded, since message two contains SEQ 6 and nobody else should
know b. An underlying assumption here is that Trudy can't see the SYN-
ACK packet—otherwise she would know ό and she could easily forge the

ACK. Clearly, this is not a strong form of authentication. However, as a

practical matter, it might actually be difficult for Trudy to intercept the

message containing b. So, if Trudy cannot see b, is the protocol secure?

Even if Trudy cannot see the initial SEQ number b, she might be able to

make a reasonable guess. If so, the attack scenario illustrated in Figure 9.28

may be feasible. In this attack, Trudy first sends an ordinary SYN packet to

Bob, who responds with a SYN-ACK. Trudy examines the SEQ value òi in
this SYN-ACK packet. Suppose that Trudy can use &i to predict Bob's next
initial SEQ value Ò2·9 Then Trudy can send a packet to Bob with the source
IP address forged to be Alice's IP address. Bob will send the SYN-ACK to
Alice's IP address which, by assumption, Trudy can't see. But, if Trudy can
guess &2) she can complete the three-way handshake by sending ACK 62 + 1
to Bob. As a result, Bob will believe that data received from Trudy on this
particular TCP connection actually came from Alice.

Figure 9.28: TCP "Authentication" Attack

9In practice, Trudy could send many SYN packets to Bob, trying to diagnose his initial
sequence number generation scheme before actually attempting to guess a value.

334 SIMPLE AUTHENTICATION PROTOCOLS

Note that Bob always responds to Alice's IP address and, by assumption,
Trudy cannot see his responses. But Bob will accept data from Trudy, think-
ing it came from Alice, as long as the connection remains active. However,
when the data sent by Bob to Alice's IP address reaches Alice, Alice will ter-
minate the connection since she has not completed the three-way handshake.
To prevent this from happening, Trudy could mount a denial of service at-
tack on Alice by sending enough messages so that Bob's messages can't get
through—or, even if they do get through, Alice can't respond. This denial
of service is illustrated Figure 9.28. Of course, if Alice happens to be offline,
Trudy could conduct the attack without having to do this denial of service
on Alice.

This attack is well known, and as a result initial SEQ numbers are sup-
posed to be generated at random. So, how random are initial SEQ numbers?
Surprisingly, they're often not very random at all. For example, Figure 9.29
provides a visual comparison of random initial SEQ numbers versus the highly
biased initial SEQ numbers generated under an early version of Mac OS X.
The Mac OS X numbers are biased enough that the attack in Figure 9.28
would have a reasonable chance of success. Many other vendors fail to gener-
ate random initial SEQ numbers, as can be seen from the fascinating pictures
at [335].

Random SEQ numbers |^ac QQ X

Figure 9.29: Plots of Initial SEQ Numbers (Courtesy of Michal Zalewski [335])

Even if initial SEQ numbers are random, it's a bad idea to rely on a
TCP connection for authentication. A much better approach would be to
employ a secure authentication protocol after the three-way handshake has
completed. Even a simple password scheme would be far superior to relying
on TCP. But, as often occurs in security, the TCP authentication method is
sometimes used in practice simply because it's there, it's convenient, and it
doesn't annoy users—not because it's secure.

9.5 ZERO KNOWLEDGE PROOFS 335

9.5 Zero Knowledge Proofs

In this section we'll discuss a fascinating authentication scheme developed by
Fiege, Fiat, and Shamir [111] (yes, that Shamir), but usually known simply
as Fiat-Shamir. We'll mention this method again in Chapter 13 when we
discuss Microsoft's trusted operating system.

In a zero knowledge proof,10 or ZKP, Alice wants to prove to Bob that she
knows a secret without revealing any information about the secret—neither
Trudy nor Bob can learn anything about the secret. Bob must be able to
verify that Alice knows the secret, even though he gains no information about
the secret. On the face of it, this sounds impossible. However, there is an
interactive probabilistic process whereby Bob can verify that Alice knows a
secret to an arbitrarily high probability. This is an example of an interactive
proof system.

Before describing such a protocol, we first consider Bob's Cave,11 which
appears in Figure 9.30. Suppose that Alice claims to know the secret phrase
("open sarsaparilla"12) that opens the door between R and S in Figure 9.30.
Can Alice convince Bob that she knows the secret phrase without revealing
any information about it?

Figure 9.30: Bob's Cave

Consider the following protocol. Alice enters Bob's Cave and flips a coin
to decide whether to position herself at point R or S. Bob then enters the
cave and proceeds to point Q. Suppose that Alice happens to be positioned
at point R. This situation is illustrated in Figure 9.31.

Then Bob flips a coin to randomly select one side or the other and asks
Alice to appear from that side. With the situation as in Figure 9.31, if Bob
happens to select side R, then Alice would appear at side R whether she
knows the secret phrase or not. But if Bob happens to choose side S, then
Alice can only appear on side S if she knows the secret phrase that opens

10Not to be confused with a "zero knowledge Prof."
11 Traditionally, Ali Baba's Cave is used here.
12Traditionally, the secret phrase is "open says me," which sounds a lot like "open

sesame." In the cartoon world, "open sesame" somehow became "open sarsaparilla" [242].

336 SIMPLE AUTHENTICATION PROTOCOLS

Figure 9.31: Bob's Cave Protocol

the door between R and S. In other words, if Alice doesn't know the secret
phrase, the probability that she can trick Bob into believing that she does
is | . This does not seem particularly useful, but if the protocol is repeated n
times, then the probability that Alice can trick Bob every time is only (|) n .
So, Alice and Bob will repeat the protocol n times and Alice must pass every
time before Bob will believe she knows the secret phrase.

Note that if Alice (or Trudy) does not know the secret phrase, there is
always a chance that she can trick Bob into believing that she does. How-
ever, Bob can make this probability as small as he desires by choosing n
appropriately. For example, with n — 20 there is less than a 1 in 1,000,000
chance that "Alice" would convince Bob that she knows the phrase when she
does not. Also, Bob learns nothing about the secret phrase in this protocol.
Finally, it is critical that Bob randomly chooses the side where he asks Alice
to appear—if Bob's choice is predictable, then Alice (or Trudy) would have
a better chance of tricking Bob and thereby breaking the protocol.

While Bob's Cave indicates that zero knowledge proofs are possible in
principle, cave-based protocols are not particularly popular. Can we achieve
the same effect without the cave? The answer is yes, thanks to the Fiat-
Shamir protocol.

Fiat-Shamir relies on the fact that finding a square root modulo N is
as difficult as factoring. Suppose N = pq, where p and q are prime. Alice
knows a secret S, which, of course, she must keep secret. The numbers N
and v = S2 mod N are public. Alice must convince Bob that she knows S
without revealing any information about S.

The Fiat-Shamir protocol, which is illustrated in Figure 9.32, works as
follows. Alice randomly selects a value r, and she computes x = r2 mod N.
In message one, Alice sends x to Bob. In message two, Bob chooses a random
value e G {0,1}, which he sends to Alice who, in turn, then computes the
quantity y = rSe mod N. In the third message Alice sends y to Bob. Finally,
Bob needs to verify that

y = xve mod N,

9.5 ZERO KNOWLEDGE PROOFS 337

which, if everyone has followed the protocol, holds true since

y2 = r
2S2e = r2(S2)e = xve mod TV. (9.1)

x = r2 mod N
►

e £{0,1}
/ = r*Se mod N
■ ►

Bob

Figure 9.32: Fiat-Shamir Protocol

In message two, Bob sends either e = 0 or e = 1. Let's consider these
cases separately. If Bob sends e = 1, then Alice responds with y = r-S mod N
in the third message, and equation (9.1) becomes

y2 = r2 ■ S2 = r2 ■ (S2) = x-vmodN.

Note that in this case, Alice must know the secret S.
On the other hand, if Bob sends e = 0 in message two, then Alice responds

in the third message with y = r mod N and equation (9.1) becomes

y2 = r2 = x mod N.

Note that in this case, Alice does not need to know the secret S. This may
seem strange, but it's roughly equivalent to the situation in Bob's Cave where
Alice did not need to open the secret passage to come out on the correct side.
Regardless, it is tempting to have Bob always send e = 1. However, we'll see
in a moment that that this would not be wise.

The first message in the Fiat-Shamir protocol is the commitment phase,
since Alice commits to her choice of r by sending x = r2 mod N to Bob. That
is, Alice cannot change her mind (she is committed to r), but she has not
revealed r, since finding modular square roots is hard. The second message is
the challenge phase—Bob is challenging Alice to provide the correct response.
The third message is the response phase, since Alice must respond with the
correct value. Bob then verifies the response using equation (9.1). These
phases correspond to the three steps in Bob's Cave protocol in Figure 9.31,
above.

The mathematics behind the Fiat-Shamir protocol works, that is, assum-
ing everyone follows the protocol, Bob can verify y2 = xve mod N from the

Alice
secret S
random r

338 SIMPLE AUTHENTICATION PROTOCOLS

information he receives. But this does not establish the security of the proto-

col. To do so, we must determine whether an attacker, Trudy, can convince

Bob that she knows Alice's secret S and thereby convince Bob that she is

Alice.

Suppose Trudy expects Bob to send the challenge e = 0 in message two.

Then Trudy can send x = r2 mod N in message one and y = r mod N in

message three. That is, Trudy simply follows the protocol in this case, since

she does not need to know the secret S.

On the other hand, if Trudy expects Bob to send e = 1, then she can

send x = r2v~l mod N in message one and y = r mod N in message three.

Following the protocol, Bob will compute y2 = r2 and xve = r2v~1v = r2

and he will find that equation (9.1) holds. Bob therefore accepts the result

as valid.

The conclusion here is that Bob must choose e G {0,1} at random (as

specified by the protocol). If so, then Trudy can only trick Bob with prob-

ability j , and, as with Bob's Cave, after n iterations, the probability that

Trudy can fool Bob is only (5)™.

So, Fiat-Shamir requires that Bob's challenge e € {0,1} be unpredictable.

In addition, Alice must generate a random r at each iteration of the protocol

or her secret S will be revealed (see Problem 40 at the end of this chapter).

Is the Fiat-Shamir protocol really zero knowledge? That is, can Bob—or

anyone else—learn anything about Alice's secret 5? Recall that v and N are

public, where v = S2 mod N. In addition, Bob sees r2 mod N in message

one, and, assuming e = 1, Bob sees rS mod N in message three. If Bob can

find r from r2 mod N, then he can find S. But finding modular square roots

is computationally infeasible. If Bob were somehow able to find such square

roots, he could obtain S directly from the public value v without bothering

with the protocol at all. While this is not a rigorous proof that Fiat-Shamir is

zero knowledge, it does indicate that there is nothing obvious in the protocol

itself that helps Bob (or anyone else) to determine Alice's secret S.

Is there an security benefit of Fiat-Shamir, or is it just fun and games for

mathematicians? If public keys are used for authentication, then each side

must know the other side's public key. At the start of the protocol, typically

Alice would not know Bob's public key, and vice versa. So, in many public

key-based protocols Bob sends his certificate to Alice. But the certificate

identifies Bob, and consequently this exchange would tell Trudy that Bob is

a party to the transaction. In other words, public keys make it hard for the

participants to remain anonymous.

A potential advantage of zero knowledge proofs is that they allow for

authentication with anonymity. In Fiat-Shamir, both sides must know the

public value v, but there is nothing in υ that identifies Alice, and there is

nothing in the messages that are passed that must identify Alice. This is

an advantage that has led Microsoft to include support for zero knowledge

9.6 THE BEST AUTHENTICATION PROTOCOL? 339

proofs in its Next Generation Secure Computing Base, or NGSCB, which
we'll discuss in Chapter 13. The bottom line is that Fiat-Shamir does have
some potential practical utility.

9.6 The Best Authentication Protocol?

In general there is no "best" authentication protocol. What is best for a
particular situation will depend on many factors. At a minimum, we need to
consider the following questions.

• What is the sensitivity of the application?

• How much delay is tolerable?

• Do we want to deal with time as a security critical parameter?

• What type of crypto is supported—public key, symmetric key, or hash
functions?

• Is mutual authentication required?

• Is a session key required?

• Is perfect forward secrecy desired?

• Is anonymity a concern?

In the next chapter, we'll see that there are additional issues that can influence
our choice of protocol.

9.7 Summary

In this chapter we discussed several different ways to authenticate and estab-
lish a session key over an insecure network. We can accomplish these feats
using symmetric keys, public keys, or hash functions (with symmetric keys).
We also learned how to achieve perfect forward secrecy, and we considered
the benefits (and potential drawbacks) of using timestamps.

Along the way, we came across many security pitfalls. You should now
have some appreciation for the subtle issues that can arise with security pro-
tocols. This will be useful in the next chapter where we look closely at several
real-world security protocols. We'll see that, despite extensive development
effort by lots of smart people, such protocols are not immune to some of the
security flaws highlighted in this chapter.

340 SIMPLE AUTHENTICATION PROTOCOLS

9.8 Problems

1. Modify the authentication protocol in Figure 9.12 so that it uses a hash
function instead of symmetric key encryption. The resulting protocol
must be secure.

2. The insecure protocol in Figure 9.24 was modified in Figure 9.26 to be
secure. Find two other distinct ways to slightly modify the protocol
in Figure 9.24 so that the resulting protocol is secure. Your protocols
must use a timestamp and "encrypt and sign."

3. We want to design a secure mutual authentication protocol based on a
shared symmetric key. We also want to establish a session key, and we
want perfect forward secrecy.

a. Design such a protocol that uses three messages.

b. Design such a protocol that uses two messages.

4. Consider the following mutual authentication protocol, where KAB is a
shared symmetric key.

"I'm Alice", R
►

E(R,KAB)

E(R+1,KAB)
r Bob

Give two different attacks that Trudy can use to convince Bob that she
is Alice.

5. Consider the attack on TCP authentication illustrated in Figure 9.28.
Suppose that Trudy cannot guess the initial sequence number 62 ex-
actly. Instead, Trudy can only narrow 62 down to one of, say, 1,000
possible values. How can Trudy conduct an attack so that she is likely
to succeed?

6. Timestamps can be used in place of nonces in security protocols.

a. What is the primary advantage of using timestamps?

b. What is the primary disadvantage of using timestamps?

7. Consider the following protocol, where CLNT and SRVR are constants,
and the session key is K = h(S, RA, RB)·

Alice ~

9.8 PROBLEMS 341

"I'm Alice", RA

Certificate, RB

{ S ^ , E(CLNT.K)

E(SRVR,K)
Alice + Bob

a. Does Alice authenticate Bob? Justify your answer.

b. Does Bob authenticate Alice? Justify your answer.

Consider the following protocol, where KAB is a shared symmetric key,

CLNT and SRVR are constants, and K = h(S,RA,Re) is the session

key.

"I'm Alice", RA

3s.
E(S, Κ^), E(CLNT.K) t

E(SRVR,K)
Alice ■* Bob

a. Does Alice authenticate Bob? Justify your answer.

b. Does Bob authenticate Alice? Justify your answer.

9. The following two-message protocol is designed for mutual authentica-
tion and to establish a session key K. Here, T is a timestamp.

"I'm Alice", \J]Miœ, {K>Bob

Alice Bob

This protocol is insecure. Illustrate a successful attack by Trudy.

10. Suppose R is a random challenge sent in the clear from Alice to Bob
and K is a symmetric key known only to Alice and Bob. Which of
the following are secure session keys and which are not? Justify your
answers.

a. R®K

b. E{R,K)

c. E(K,R)

342 SIMPLE AUTHENTICATION PROTOCOLS

d. h(K,R)

e. h{R,K)

11. Design a secure two-message authentication protocol that provides mu-
tual authentication and establishes a session key K. Assume that Alice
and Bob know each other's public keys beforehand. Does your protocol
protect the anonymity of Alice and Bob from a passive attacker (i.e., an
attacker who can only observe messages sent between Alice and Bob)?
If not, modify your protocol so that it does provide anonymity.

12. For some particular security protocol, suppose that Trudy can construct
messages that appear to any observer (including Alice and/or Bob) to
be valid messages between Alice and Bob. Then the protocol is said to
provide plausible deniability. The idea here is that Alice and Bob can
(plausibly) argue that any conversation they had using the protocol
never actually occurred—it could have been faked by Trudy. Consider
the following protocol, where K = II(RA, RB, S).

•4

"I'm Alice", [R J ^

[Releob
{ S W E(RA, K)

E(RR, K)
Alice ^ " Bob

Does this protocol provide plausible deniability? If so, why? If not,
slightly modify the protocol so that it does, while still providing mutual
authentication and a secure session key.

13. Consider the following protocol where K = 1I(RA,RB)·

"I'm Alice", { R ^

\™A> "B/Alice

E(RB, K)

Bob

Does this protocol provide for plausible deniability (see Problem 12)?
If so, why? If not, slightly modify the protocol so that it does, while
still providing mutual authentication and a secure session key.

14. Design a mutual authentication protocol that employs digital signatures
for authentication and provides plausible deniability (see Problem 12).

9.8 PROBLEMS 343

15. Is plausible deniability (see Problem 12) a feature or a security flaw?
Explain.

16. The following mutual authentication protocol is based on a shared sym-
metric key KAB-

"I'm Alice", RA

— - ►
^ Β - E(RA .KAB)

E(RB, KAB) t

Bob

Show that Trudy can attack the protocol to convince Bob that she

is Alice, where, as usual, we assume that the cryptography is secure.

Modify the protocol to prevent such an attack by Trudy.

17. Consider the following mutual authentication and key establishment

protocol, which employs a timestamp T and public key cryptography.

"I'm Alice", [{T,K>B0t,]Alice ^

[{T+1, IQAieJeob

Bob

Show that Trudy can attack the protocol to discover the key K where, as

usual, we assume that the cryptography is secure. Modify the protocol

to prevent such an attack by Trudy.

18. Consider the following mutual authentication and key establishment

protocol, which uses a timestamp T and public key cryptography.

Message 1

[T+llsot,

Bob

For each of the following cases, explain whether or not the resulting

protocol provides an effective means for secure mutual authentication

and a secure session key K. Ignore replay attacks based solely on the

clock skew.

-+

Alice

Alice

•4

Alice

a. Message 1: {[T,Ä"]Alice}Bob

344 SIMPLE AUTHENTICATION PROTOCOLS

b. Message 1

c. Message 1

d. Message 1

e. Message 1

{"Alice", [T^Al ice lBob

"Alice", {[T,jqAlice}Bob

T, "Alice", {[K]Alicebob

"Alice", {[TUiicebob and let K = h{T)

19. Consider the following three-message mutual authentication and key
establishment protocol, which is based on a shared symmetric key KAB-

Message 1

Message 2

Alice 5s ► Bob
KAB KAB

For each of the following cases, briefly explain whether or not the re-
sulting protocol provides an effective means for secure mutual authen-
tication and a secure session key K.

a. Message 1: E("Alice",K,RA,KAB), Message 2: RA, E(RB,KAB)

b. Message 1: "Alice", E(K,RA,KAB), Message 2: RA, E{RB,K)

c. Message 1: "Alice", E(K,RA,KAB), Message 2: RA, E(RB,KAB)

d. Message 1: "Alice", RA, Message 2: E(K,RA,RB,KAB)

20. Consider the following three-message mutual authentication and key
establishment protocol, which is based on public key cryptography.

Message 1

Message 2

Alice ► Bob

For each of the following cases, briefly explain whether or not the re-
sulting protocol provides an effective means for secure mutual authen-
tication and a secure session key K.

a. Message 1

b. Message 1

c. Message 1

d. Message 1

e. Message 1

{"Alice",K,RA}Boh , Message 2: RA, RB

"Alice", {K,RA}Boh, Message 2: RA, {RB}Alice

"Alice", {l^Bob, [RA]Alice, Message 2: RA, [i?s]Bob

RA, {"Alice",X}Bob, Message 2: [-R^Bob. {^sUlice

{"Alice",K,RA ,RB}B o h , Message 2: RA, {Äß}Aiice

9.8 PROBLEMS 345

21. Consider the following mutual authentication and key establishment
protocol (it may be instructive to compare this protocol to the protocol
in Figure 9.26).

fAlfce",[T,K|Afce}eob

{T+DA

Alice Bob

Suppose that Trudy pretends to be Bob. Further, suppose that Trudy
can guess the value of T to within 5 minutes, and the resolution of T is
to the nearest millisecond.

a. What is the probability that Trudy can send a correct response in
message two, causing Alice to erroneously authenticate Trudy as
Bob?

b. Give two distinct modifications to the protocol, each of which make
Trudy's attack more difficult, if not impossible.

22. Consider the following mutual authentication and key establishment
protocol, where the session key is given by K = gab mod p.

"I'm Alice", RA

RB. [RAIBOÖ. {9b mod p}Alk!e

<

[RJAiica. {9a mod p ^ „
Alice ► Bob

Suppose that Alice attempts to initiate a connection with Bob using
this protocol.

a. Show that Trudy can attack the protocol so that both of the fol-
lowing will occur.

i. Alice and Bob authenticate each other.

ii. Trudy knows Alice's session key.

Hint: Consider a man-in-the-middle attack.

b. Is this attack of any use to Trudy?

23. For each of the following cases, design a mutual authentication and key
establishment protocol that uses public key cryptography and minimizes
the number of messages.

346 SIMPLE AUTHENTICATION PROTOCOLS

a. Use a timestamp to authenticate Alice and a nonce to authenticate

Bob.

b. Use a nonce to authenticate Alice and a timestamp to authenticate

Bob.

24. Suppose we replace the third message of the protocol in Figure 9.22

with

{^BJBob. 9a mod p.

a. How can Trudy convince Bob that she is Alice, that is, how can

Trudy break the authentication?

b. Can Trudy convince Bob that she is Alice and also determine the

session key that Bob will use?

25. Suppose we replace the second message of the protocol in Figure 9.22

with

RB, [#Λ]Β<Λ. 9b mod p,

and we replace the third message with

[-Rßklice. 9a mod p.

a. Can Trudy convince Bob that she is Alice, that is, can Trudy break
the authentication?

b. Can Trudy determine the session key that Alice and Bob will use?

26. In the text, it is claimed that the protocol in Figure 9.18 is secure, while
the similar protocol in Figure 9.24 is not. Why does the attack on the
latter protocol not succeed against the former?

27. A timestamp-based protocol may be subject to a replay attack, provided
that Trudy can act within the clock skew. Reducing the acceptable clock
skew might make the attack more difficult, but it will not prevent the
attack unless the skew is zero, which is impractical. Assuming a non-
zero clock skew, what can Bob, the server, do to prevent attacks based
on the clock skew?

28. Modify the identify friend or foe (IFF) protocol discussed at the begin-
ning of the chapter so that it's no longer susceptible to the MiG-in-the-
middle attack.

29. Consider the authentication protocol below, which is based on knowl-
edge of a shared 4-digit PIN number. Here, Κργ^ = ft(PIN, RA,RB)-

9.8 PROBLEMS 347

I'm Alice, RA

E(Bob,RA,KPIN), RB

Alice E(Alice,RB,KPIN) ^ ß o b

PIN PIN

a. Suppose that Trudy passively observes one iteration of the pro-
tocol. Can she determine the 4-digit PIN number? Justify your
answer.

b. Suppose that the PIN number is replaced by a 256-bit shared sym-
metric key. Is the protocol secure? Why or why not?

30. Consider the authentication protocol below, which is based on knowl-
edge of a shared 4-digit PIN number. Here, -KpiN = /i(PIN).

I'm Alice, E(RA,Kp,N)

E(RA,RB,Kp|N)

Alice E (R B ' K P I N) ► Bob

PIN PIN

Suppose that Trudy passively observes one iteration of the protocol.
Can she then determine the 4-digit PIN? Justify your answer.

31. Consider the authentication protocol below, which is based on knowl-
edge of a shared 4-digit PIN number and uses Diffie-Hellman. Here,
KP I N = Λ(ΡΙΝ) and K = gab mod p.

I'm Alice, RA, E(g
a
 mod p, KPIN)^

E(g» mod p,KPIN),E(RA,K), RB

Alice Ì £ B £ > ► Bob

PIN, a PIN, b

a. Suppose that Trudy passively observes one iteration of the proto-
col. Can she then determine the 4-digit PIN number? Justify your
answer.

b. Suppose that Trudy can actively attack the protocol. Can she
determine the 4-digit PIN? Explain.

32. Describe a way to provide perfect forward secrecy that does not use
Diffie-Hellman.

348 SIMPLE AUTHENTICATION PROTOCOLS

33. Can you achieve an effect similar to perfect forward secrecy (as de-
scribed in this chapter) using only symmetric key cryptography? If so,
give such a protocol and, if not, why not?

34. Design a zero knowledge protocol analogy that uses Bob's Cave and
only requires one iteration for Bob to determine with certainty whether
or not Alice knows the secret phrase.

35. The analogy between Bob's Cave and the Fiat-Shamir protocol is not
entirely accurate. In the Fiat-Shamir protocol, Bob knows which value
of e will force Alice to use the secret value S, assuming Alice follows
the protocol. That is, if Bob chooses e = 1, then Alice must use the
secret value S to construct the correct response in message three, but
if Bob chooses e = 0, then Alice does not use S. As noted in the
text, Bob must choose e at random to prevent Trudy from breaking the
protocol. In the Bob's Cave analogy, Bob does not know whether Alice
was required to use the secret phrase or not (again, assuming that Alice
follows the protocol).

a. Modify the cave analogy so that Bob knows whether Alice used
the secret phrase or not, assuming that Bob is not allowed to see
which side Alice actually chooses. Bob's New-and-Improved Cave
protocol must still resist an attack by someone who does not know
the secret phrase.

b. Does your new cave analogy differ from the Fiat-Shamir protocol
in any significant way?

36. Suppose that in the Fiat-Shamir protocol in Figure 9.32 we have N = 63
and v = 43. Recall that Bob accepts an iteration of the protocol if he
verifies that y2 = x ■ ve mod N.

a. In the first iteration of the protocol, Alice sends x = 37 in message
one, Bob sends e = 1 in message two, and Alice sends y = 4 in
message three. Does Bob accept this iteration of the protocol?
Why or why not?

b. In the second iteration of the protocol, Alice sends x = 37, Bob
sends e = 0, and Alice sends y = 10. Does Bob accept this iteration
of the protocol? Why or why not?

c. Find Alice's secret value S. Hint: 10_1 = 19 mod 63.

37. Suppose that in the Fiat-Shamir protocol in Figure 9.32 we have N = 77
and v = 53.

9.8 PROBLEMS 349

a. Suppose that Alice sends x = 15 in message one, Bob sends e = 1
in message two, and Alice sends y = 5 in message three. Show
that Bob accepts this iteration of the protocol.

b. Suppose Trudy knows in advance that Bob will select e = 1 in
message two. If Trudy selects r = 10, what can she send for x in
message one and y in message three so that Bob accepts this iter-
ation of the protocol? Using your answer, show that Bob actually
accepts this iteration. Hint: 53 _ 1 = 16 mod 77.

38. Suppose that in the Fiat-Shamir protocol in Figure 9.32 we have N = 55
and Alice's secret is S = 9.

a. What is i>?

b. If Alice chooses r = 10, what does Alice send in the first message?

c. Suppose Alice chooses r = 10 and Bob sends e = 0 in message two.
What does Alice send in the third message?

d. Suppose Alice chooses r = 10 and Bob sends e = 1 in message two.
What does Alice send in the third message?

39. Consider the Fiat-Shamir protocol in Figure 9.32. Suppose that the
public values are TV = 55 and v = 5. Suppose Alice sends x = 4 in
the first message, Bob sends e = 1 in the second message, and Alice
sends y = 30 in message three. Show that Bob will verify Alice's re-
sponse in this case. Can you find Alice's secret 5?

40. In the Fiat-Shamir protocol in Figure 9.32, suppose that Alice gets lazy
and she decides to use the same "random" r for each iteration.

a. Show that Bob can determine Alice's secret S.

b. Why is this a security concern?

41. Suppose that in the Fiat-Shamir protocol, as illustrated in Figure 9.32,
we have N = 27,331 and v = 7339.

a. In the first iteration, Alice sends x = 21,684 in message one, Bob
sends e = 0 in message two, and Alice sends y = 657 in the third
message. Show that Bob verifies Alice's response in this case.

b. At the next iteration, Alice again sends x = 21,684 in message
one, but Bob sends e = 1 in message two, and Alice responds
with y = 26,938 in message three. Show that Bob again verifies
Alice's response.

c. Determine Alice's secret S. Hint: 657 - 1 = 208 mod 27,331.

Chapter 10

Real-World Security
Protocols

The wire protocol guys don't worry about security because
that's really a network protocol problem. The network protocol

guys don't worry about it because, reaJJy, it's an application problem.
The application guys don't worry about it because,

after all, they can just use the IP address and trust the network.
— Marcus J. Ranum

In the real world, nothing happens at the right place at the right time.
It is the job of journalists and historians to correct that.

— Mark Twain

10.1 Introduction

In this chapter, we'll discuss several widely used real-world security protocols.
First on the agenda is the Secure Shell, or SSH, which is used for a variety
of purposes. Next, we consider the Secure Socket Layer, or SSL, which is
currently the most widely used security protocol for Internet transactions.
The third protocol that we'll consider in detail is IPSec, which is a complex
protocol with some significant security issues. Then we will discuss Kerberos,
a popular authentication protocol based on symmetric key cryptography and
timestamps.

We conclude the chapter with two wireless protocols, WEP and GSM.
WEP is a seriously flawed security protocols, and we'll consider several well-
known attacks. The final protocol we'll cover is GSM, which is used to secure
mobile communications. The GSM protocol is provides an interesting case
study due to the large number and wide variety of known attacks.

351

352 REAL-WORLD SECURITY PROTOCOLS

10.2 SSH

The Secure Shell, SSH, creates a secure tunnel which can be used to secure
otherwise insecure commands. For example, in UNIX, the r log in command
is used for a remote login, that is, to log into a remote machine over a net-
work. Such a login typically requires a password and r log in simply sends
the password in the clear, which might be observed by a snooping Trudy. By
first establishing an SSH session, any inherently insecure command such as
r log in will be secure. That is, an SSH session provides confidentiality and
integrity protection, thereby eliminating Trudy's ability to obtain passwords
and other confidential information that would otherwise be sent unprotected.

SSH authentication can be based on public keys, digital certificates, or
passwords. Here, we give a slightly simplified version of SSH using digital
certificates.1 The other authentication options are covered in various home-
work problems at the end of this chapter.

SSH is illustrated in Figure 10.1, using the following notation:

certificate^ = Alice's certificate

certificates = Bob's certificate

CP = crypto proposed

CS = crypto selected

H = /i(Alice, Bob, CP, CS, RA, RB, ga mod p, gb mod p, gab mod p)

SB = [if] Bob

K = gab mod p

SA = [H, Alice, certificate^] Alice

As usual, h is a cryptographic hash function.

Alice, CP, RA

CS, RB

ga mod p

gb mod p, certificateB, SB

Alice + "—■ Bob
E(Alice, certificate^ SA, K)

Figure 10.1: Simplified SSH

' i n our simplified version, a few parameters have been omitted and a couple of book-
keeping messages have been eliminated.

10.3 SSL 353

In the first message in Figure 10.1, Alice identifies herself and she sends
information regarding the crypto parameters that she prefers (crypto algo-
rithms, key lengths, etc.), along with her nonce, RA- In message two, Bob
selects from Alice's crypto parameters and returns his selections, along with
his nonce, RB- In message three, Alice sends her Diffie-Hellman value, and
in message four, Bob responds with his Diffie-Hellman value, his certificate,
and SB, which consists of a signed hash value. At this point, Alice is able to
compute the key K, and in the final message, she sends an encrypted block
that contains her identity, her certificate, and her signed value SA-

In Figure 10.1, the signatures are intended to provide mutual authen-
tication. Note that the nonce RA is Alice's challenge to Bob, and SB is
Bob's response. That is, the nonce RA provides replay protection, and only
Bob can give the correct response since a signature is required (assuming, of
course, that his private key has not been compromised). A similar argument
shows that Alice is authenticated in the final message. So, SSH provides mu-
tual authentication. The security of SSH authentication, the security of the
key K, and some other quirks of SSH are considered further in the homework
problems at the end of this chapter.

10.3 SSL

The mythical "socket layer" lives between the application layer and the trans-
port layer in the Internet protocol stack, as illustrated in Figure 10.2. In prac-
tice, SSL most often deals with Web browsing, in which case the application
layer protocol is HTTP and the transport layer protocol is TCP.

Figure 10.2: Socket Layer

SSL is the protocol of choice for the vast majority of secure transactions
over the Internet. For example, suppose that you want to buy a book at

354 REAL-WORLD SECURITY PROTOCOLS

amazon.com. Before you provide your credit card information, you want to
be sure you are dealing with Amazon, that is, you must authenticate Amazon.
Generally, Amazon doesn't care who you are, as long as you have money. As
a result, the authentication need not be mutual.

After you are satisfied that you are dealing with Amazon, you will provide
private information, such as your credit card number, your address, and so on.
You probably want this information protected in transit—in most cases, you
want both confidentiality (to protect your privacy) and integrity protection
(to assure the transaction is received correctly).

The general idea behind SSL is illustrated in Figure 10.3. In this protocol,
Alice (the client) informs Bob (the server) that she wants to conduct a secure
transaction. Bob responds with his certificate. Alice then needs to verify the
signature on the certificate. Assuming the signature verifies, Alice will be
confident that she has Bob's certificate, although she cannot yet be certain
that she's talking to Bob. Then Alice will encrypt a symmetric key KAB with
Bob's public key and send the encrypted key to Bob. This symmetric key is
used to encrypt and integrity protect subsequent communications.

I'd like to talk to you securely ^

Here's my certificate

{KABW>

Alice < protectedHTTP ^ Bob

Figure 10.3: Too-Simple Protocol

The protocol in Figure 10.3 is not useful as it stands. For one thing, Bob
is not explicitly authenticated and the only way Alice could possibly know
she is talking to Bob is by checking to see that the encrypted data decrypts
correctly. This is not a desirable situation in any security protocol. Also
note that Alice is not authenticated to Bob at all, but in most cases, this is
reasonable for transactions on the Internet.

In Figure 10.4, we've given a reasonably complete view of the basic SSL
protocol. In this protocol,

S = the pre-master secret

K = h{S,RA,RB)

msgs = shorthand for "all previous messages"

CLNT = literal string

SRVR = literal string

10.3 SSL 355

where h is a secure hash function. The actual SSL protocol is more complex
than what appears in Figure 10.4 but this simplified version is sufficient for
our purposes. The complete SSL specification can be found at [271].

Can we talk?, cipher list, RA

Certificate, cipher, RB

-*

{S>B0b, E(h(msgs,CLNT,K),K)

h(msgs,SRVR,K)
-►

Alice *-
 D a t a P r o t e c t e d w i t n key_K_ Bob

Figure 10.4: Simplified SSL

Next, we briefly discuss each message in the simplified SSL protocol given
in Figure 10.4. In the first message, Alice informs Bob that she would like
to establish an SSL connection, and she passes a list of ciphers that she
supports, along with a nonce RA- In the second message, Bob responds with
his certificate, he selects one of the ciphers from the cipher list that Alice sent
in message one, and he sends a nonce RB-

In the third message, Alice sends the so-called pre-master secret S, which
she randomly generated, along with a hash that is encrypted with the key K.
In this hash, "msgs" includes all previous messages and CLNT is a literal
string.2 The hash is used as an integrity check to verify that the previous
messages have been received correctly.

In the fourth message, Bob responds with a similar hash. By computing
this hash herself, Alice can verify that Bob received the messages correctly,
and she can authenticate Bob, since only Bob could have decrypted S, which
is required to generate the key K. At this point, Alice has authenticated Bob,
and Alice and Bob have established a shared session key K, which they can
use to encrypt and integrity protect subsequent messages.

In reality, more than one key is derived from the hash h(S,RA,Rß)- In
fact, the following six quantities are generated from this hash.

• Two encryption keys, one for messages sent from the client to server,
and one for messages sent from the server to the client.

• Two integrity keys, used in the same way as the encryption keys.

Two initialization vectors (IVs), one for the client and one for the server.

2In this context, "msg" has nothing to do with the list of ingredients at a Chinese
restaurant.

356 REAL-WORLD SECURITY PROTOCOLS

In short, different keys are used in each direction. This could help to prevent
certain types of attacks where Trudy tricks Bob into doing something that
Alice should have done, or vice versa.

The attentive reader may wonder why /i(msgs, CLNT, K) is encrypted in
messages three and four. In fact, this adds no security, although it does add
extra work, so it could be considered a minor flaw in the protocol.

In the SSL protocol of Figure 10.4, Alice, the client, authenticates Bob,
the server, but not vice versa. With SSL, it is possible for the server to
authenticate the client. If this is desired, Bob sends a "certificate request"
in message two. However, this feature is generally not used, particularly in
e-commerce situations, since it requires users to have valid certificates. If the
server wants to authenticate the client, the server could instead require that
the client enter a valid password, in which case the resulting authentication
is outside the scope of the SSL protocol.

10.3.1 SSL and the Man-in-the-Middle

Hopefully, SSL prevents the man-in-the-middle, or MiM, attack illustrated
in Figure 10.5. But what mechanism in SSL prevents this attack? Recall
that Bob's certificate must be signed by a certificate authority. If Trudy
sends her own certificate instead of Bob's, the attack will fail when Alice
attempts to verify the signature on the certificate. Or, Trudy could make a
bogus certificate that says "Bob," keep the private key for herself, and sign
the certificate herself. Again, this will not pass muster when Alice tries to
verify the signature on "Bob's" certificate (which is really Trudy's certificate).
Finally, Trudy could simply send Bob's certificate to Alice, and Alice would
verify the signature on this certificate. However, this is not an attack since
it would not break the protocol—Alice would authenticate Bob, and Trudy
would be left out in the cold.

RA RA

certificate-!-, RB certificates, RB

{ S i W v . E ^ . K ^ {S2}ggb,E(X8,K8^

< h^.KQ | h(Y9,KP)

Alice ^ _ ^ Ë a Ë ' u i L ^ T r u d y <«_.E(Ëa î2'!9_^ Bob

Figure 10.5: Man-in-the-Middle Attack on SSL

However, the real world is not so kind to poor Alice. Typically, SSL is
used in a Web browsing session. Then, what happens when Trudy attempts
a MiM attack by sending a bogus certificate to Alice? The signature on the

10.3 SSL 357

certificate is not valid so the attack should fail. However, Alice does not
personally check the signature on the certificate—her browser does. And
what does Alice's browser do when it detects a problem with a certificate?
As you probably know from experience, the browser provides Alice with a
warning. Does Alice heed the warning? If she's like most users, Alice ignores
the warning and allows the connection to proceed.3 Note that when Alice
ignores this warning, she's opened the door to the MiM attack in Figure 10.5.
Finally, it's important to realize that while this attack is a very real threat,
it's not due to a flaw in the SSL protocol. Instead, it's caused by a flaw in
human nature, making a patch much more problematic.

10.3.2 SSL Connect ions

An SSL session is established as shown in Figure 10.4. This session establish-
ment protocol is relatively expensive, since public key operations are involved.

SSL was originally developed by Netscape, specifically for use in Web
browsing. The application layer protocol for the Web is HTTP, and two ver-
sions of it are in common usage, HTTP 1.0 and HTTP 1.1. With version 1.0,
it is not uncommon for a Web browser to open multiple parallel connections
so as to improve performance. Due to the public key operations, there would
be significant overhead if a new SSL session was established for each of these
HTTP connections. The designers of SSL were aware of this issue, so they
included an efficient protocol for opening new SSL connections provided that
an SSL session already exists. The idea is simple—after establishing one SSL
session, Alice and Bob share a session key K, which can then be used to
establish new connections, thereby avoiding expensive public key operations.

The SSL connection protocol appears in Figure 10.6. The protocol is
similar to the SSL session establishment protocol, except that the previously
established session key K is used instead of the public key operation that are
used in the session protocol.

session-ID, cipher list, RA

session-ID, cipher, RB

h(msgs,SRVR,K) '

h(msgs,CLNT,K)

A\lce Protected data Bob

Figure 10.6: SSL Connection Protocol

3If possible, Alice would probably disable the warning so that she'd never get this an-
noying "error" message again.

358 REAL-WORLD SECURITY PROTOCOLS

The bottom line here is that in SSL, one (expensive) session is required,
but then we can create any number of (cheap) connections. This is a useful
feature that was designed to improve the performance of the protocol when
used with HTTP 1.1.

10.3.3 SSL Versus IPSec

In the next section, we'll discuss IPSec, which is short for Internet Protocol
Security. The purpose of IPSec is similar to that of SSL, namely, security
over the network. However, the implementation of the two protocols is very
different. For one thing, SSL is relatively simple, while IPSec is relatively
complex.

It might seem logical to discuss IPSec in detail before contrasting it with
SSL. However, we might get so lost in the weeds with IPSec that we'd com-
pletely lose sight of SSL. So instead of waiting until after we discuss IPSec to
contrast the two protocols, we'll do so beforehand. You might consider this
a partial preview of IPSec.

The most obvious difference between SSL and IPSec is that the two pro-
tocols operate at different layers of the protocol stack. SSL (and its twin,4

the IEEE standard known as TLS), both live at the socket layer. As a result,
SSL resides in user space. IPSec, on the other hand, lives at the network layer
and is therefore not directly accessible from user space—it's in the domain of
the operating system. When viewed from a high level, this is the fundamental
distinction between SSL and IPSec.

Both SSL and IPSec provide encryption, integrity protection, and authen-
tication. SSL is relatively simple and well designed, whereas IPSec is complex
and, as a result, includes some significant flaws.

Since IPSec is part of the OS, it must be built-in at that level. In contrast,
SSL is part of user space, so it requires nothing special of the OS. IPSec also
requires no changes to applications, since all of the security magically happens
at the network layer. On the other hand, developers have to make a conscious
decision to use SSL.

SSL was built for Web application early on, and its primary use remains
secure Web transactions. IPSec is often used to secure a virtual private
network, or VPN, an application that creates a secure tunnel between the
endpoints. Also, IPSec is required in IP version 6 (IPv6), so if IPv6 ever
takes over the world, IPSec will be ubiquitous.

There is, understandably, a reluctance to retrofit applications for SSL.
There is, also understandably, a reluctance to use IPSec due to its complexity
(which creates some challenging implementation issues). The net result is that
the Net is less secure than it should be.

4They are fraternal twins, not identical twins.

10.4 IPSEC 359

10.4 IPSec

Figure 10.7 illustrates the primary logical difference between SSL and IPSec,
that is, one lives at the socket layer (SSL), while the other resides at the
network layer (IPSec). As mentioned above, the major advantage of IPSec is
that it's essentially transparent to applications. However, IPSec is a complex
protocol, which can perhaps best be described as over-engineered.

Figure 10.7: IPSec

IPSec has many dubious features, which makes implementation difficult.
Also, IPSec has some flaws, probably as a direct result of its complexity. In
addition, there are interoperability issues, due to the complexity of the IPSec
specification, which seems to run contrary to the point of having a standard.
Another complicating factor is that the IPSec specification is split into three
pieces, to be found in RFC 2407 [237], RFC 2408 [197], and RFC 2409 [140],
and these RFCs were written by disjoint sets of authors using different ter-
minology.

The two main parts to IPSec are

• The Internet Key Exchange, or IKE, which provides for mutual au-
thentication and a session key. There are two phases of IKE, which are
analogous to SSL sessions and connections.

• The Encapsulating Security Payload and Authentication Header, or
ESP/AH, which together make up the second part of IPSec. ESP5

provides encryption and integrity protection to IP packets, whereas AH
provides integrity only.

Technically, IKE is a standalone protocol that could live a life separate from
ESP/AH. However, since IKE's only application in the real world seems to

5Contrary to what you are thinking, this protocol cannot read your mind.

360 REAL-WORLD SECURITY PROTOCOLS

be in conjunction with IPSec, we lump them together under the name IPSec.
The comment about IPSec being over-engineered applies primarily to IKE.
The developers of IKE apparently thought they were creating the Swiss army
knife of security protocols—a protocol that would be used to solve every
conceivable authentication problem. This explains the multitude of options
and features built into IKE. However, since IKE is only used with IPSec,
any features or options that are not directly relevant to IPSec are simply
extraneous.

First, we'll consider IKE, then ESP/AH. IKE, the more complex of the
two, consists of two phases—cleverly called Phase 1 and Phase 2. Phase 1 is
the more complex of the two. In Phase 1, a so-called IKE security association,
or IKE-SA, is established, while in Phase 2, an IPSec security association,
IPSec-SA, is established. Phase 1 corresponds to an SSL session, whereas
Phase 2 is comparable to an SSL connection. In IKE, both Phase 1 and
Phase 2 must occur before we can do ESP/AH.

Recall that SSL connections serve a specific and useful purpose—they
make SSL more efficient when HTTP 1.0 is used. But, unlike SSL, in IPSec
there is no obvious need for two phases. And if multiple Phase 2s do not occur
(and they typically do not), then it would be more efficient to just require
Phase 1 with no Phase 2. However, this is not an option. Apparently, the
developers of IKE believed that their protocol was so self-evidently wonderful
that users would want to do multiple Phase 2s (one for IPSec, another for
something else, another for some other something else, and so on). This is
our first example of over-engineering in IPSec, and it won't be the last.

In IKE Phase 1, there are four different key options:

• Public key encryption (original version)

• Public key encryption (improved version)

• Digital signature

• Symmetric key

For each of these key options there is a main mode and an aggressive mode.
As a result, there are a staggering eight different versions of IKE Phase 1.
Do you need any more evidence that IPSec is over-engineered?

You may be wondering why there are public key encryption and digital
signature options in Phase 1. Surprisingly, the answer is not over-engineering.
Alice always knows her own private key, but she may not know Bob's public
key. With the signature version of IKE Phase 1, Alice does not need to have
Bob's public key in hand to start the protocol. In any protocol that uses
public key crypto, Alice will need Bob's public key to complete the protocol,
but in the signature mode, she can simultaneously begin the protocol and
search for Bob's public key. In contrast, in the public key encryption modes,

10.4 IPSEC 361

Alice needs Bob's public key immediately, so she must first find Bob's key
before she can begin the protocol. So, there could be an efficiency gain with
the signature option.

We'll discuss six of the eight Phase 1 variants, namely, digital signatures
(main and aggressive modes), symmetric key (main and aggressive modes),
and public key encryption (main and aggressive). We'll consider the original
version of public key encryption, since it's slightly simpler, although less
efficient, than the improved version.

Each of the Phase 1 variants use an ephemeral Diffie-Hellman key ex-
change to establish a session key. The benefit of this approach is that it
provides perfect forward secrecy (PFS). For each of the variants we discuss,
we'll use the following Diffie-Hellman notation. Let a be Alice's (ephemeral)
Diffie-Hellman exponent and let b be Bob's (ephemeral) Diffie-Hellman ex-
ponent. Let g be the generator and p the prime. Recall that p and g are
public.

10.4.1 IKE Phase 1: Digital Signature

The first Phase 1 variant that we'll consider is digital signature, main mode.
This six message protocol is illustrated in Figure 10.8, where

CP = crypto proposed

CS = crypto selected

IC = initiator cookie

RC = responder cookie

K = /i(IC, RC, gab mod p, RA, RB)

SKEYID = h(RA> RB,gab mod p)

proofs = [h(SKEYlO,ga mod p,gb mod p,IC,RC,CP, "Alice")]Alice

Here, h is a hash function and proof B is analogous to proof^.

IC.CP
IC,RC, CS

<-

IC.RC, ga mod

IC.RC, gb mod

IC,RC, E("Alice",

IC.RC, E("Bob",

P.RA

P.RB

proofA,

proofB)

■ K)

K) Alice \r. n r P^'Rnh" nmnf_ κ\ Bob

Figure 10.8: Digital Signature, Main Mode

362 REAL-WORLD SECURITY PROTOCOLS

Let's briefly consider each of the six messages that appear in Figure 10.8.
In the first message, Alice provides information on the ciphers that she sup-
ports and other crypto related information, along with a so-called cookie.6 In
message two, Bob selects from Alice's crypto proposal and sends the cookies,
which serve as an identifier for the remainder of the messages in the protocol.
The third message includes a nonce and Alice's Diffie-Hellman value. Bob
responds similarly in message four, providing a nonce and his Diffie-Hellman
value. In the final two messages, Alice and Bob authenticate each other using
digital signatures.

Recall that an attacker, Trudy, is said to be passive if she can only observe
messages sent between Alice and Bob. In contrast, if Trudy is an active
attacker, she can also insert, delete, alter, and replay messages. For the
protocol in Figure 10.8, a passive attacker cannot discern Alice or Bob's
identity. So this protocol provides anonymity, at least with respect to passive
attacks. Does this protocol also provide anonymity in the case of an active
attack? This question is considered in Problem 27, which means that the
answer is not to be found here.

Each key option has a main mode and an aggressive mode. The main
modes are supposed to provide anonymity, while the aggressive modes are not.
Anonymity comes at a price—aggressive mode only requires three messages,
as opposed to six messages for main mode.

The aggressive mode version of the digital signature key option appears
in Figure 10.9. Note that there is no attempt to hide the identities of Alice or
Bob, which simplifies the protocol considerably. The notation in Figure 10.9
is the same as that used in Figure 10.8.

IC, "Alice", ga mod p, RA, CP

IC.RC, "Bob", RB,
gb mod p, CS, proofB

IC.RC, proofA
Alice

Figure 10.9: Digital Signature, Aggressive Mode

One subtle difference between digital signature main and aggressive modes
is that in main mode it is possible to negotiate the values of g and p as part
of the "crypto proposed" and "crypto accepted" messages. However, this is
not the case in aggressive mode, since the Diffie-Hellman value ga mod p is
sent in the first message.

6Not to be confused with Web cookies or chocolate chip cookies. We have more to say
about these IPSec cookies in Section 10.4.4, below.

+>

#► Bob

10.4 IPSEC 363

As per the appropriate RFCs, for each key option main mode MUST be
implemented, while aggressive mode SHOULD be implemented. In [162], the
authors interpret this to mean that if aggressive mode is not implemented,
"you should feel guilty about it."

10.4.2 IKE Phase 1: Symmetric Key

The next version of Phase 1 that we'll consider is the symmetric key option—
both main mode and aggressive mode. As above, the main mode is a six-
message protocol, where the format is formally the same as in Figure 10.8,
above, except that the notation is interpreted as follows.

KAB = symmetric key shared in advance

K = h(IC, RC, gab mod p, RA, RB, KAB)

SKEYID = h(K,gab mod p)

proofs = /i(SKEYID, ga mod p, gb mod p, IC, RC, CP, Alice)

Again, the purported advantage of the complex six-message main mode
over the corresponding aggressive mode is that main mode is supposed to
provide anonymity. But there is a Catch-22 in this main mode. Note that
in message five Alice sends her identity, encrypted with key K. But Bob
has to use the key KAB to determine K. So Bob has to know to use the
key KAB before he knows that he's talking to Alice. However, Bob is a busy
server who deals with lots of users (Alice, Charlie, Dave, . . .) . How can Bob
possibly know that he is supposed to use the key he shares with Alice before
he knows he's talking to Alice? The answer is that he cannot, at least not
based on any information available within the protocol itself.

The developers of IPSec recognized this snafu. And their solution? Bob
is to rely on the IP address to determine which key to use. So, Bob must use
the IP address of incoming packets to determine who he's talking to before
he knows who he's talking to (or something like that . . .) . The bottom line is
that Alice's IP address acts as her identity.

There are a couple of problems with this approach. First, Alice must have
a static IP address—this mode fails if Alice's IP address changes. A more
fundamental issue is that the protocol is complex and uses six messages,
presumably to hide identities. But the protocol fails to hide identities, unless
you consider a static IP address to be secret. So it would seem pointless
to use symmetric key main mode instead of the simpler and more efficient
aggressive mode, which we describe next.7

IPSec symmetric key aggressive mode follows the same format as the
digital signature aggressive mode in Figure 10.9, with the key and signature

7Of course, main mode MUST be implemented, while aggressive mode SHOULD be
implemented. Go figure.

364 REAL-WORLD SECURITY PROTOCOLS

computed as in symmetric key main mode. As with the digital signature
variant, the main difference from main mode is that aggressive mode does
not attempt to hide identities. Since symmetric key main mode also fails to
effectively hide Alice's identity, this is not a serious limitation of aggressive
mode in this case.

10.4.3 IKE Phase 1: Public K e y Encryption

Next, we'll consider the public key encryption version of IKE Phase 1, both
main and aggressive modes. We've already seen the digital signature versions.
In the main mode of the encryption version, Alice must know Bob's public
key in advance and vice versa. Although it would be possible to exchange
certificates, that would reveal the identities of Alice and Bob, defeating the
primary advantage of main mode. So an assumption here is that Alice and
Bob have access to each other's certificates, without sending them over the
network.

The public key encryption main mode protocol is given in Figure 10.10,
where the notation is as in the previous modes, except

K = /i(IC, RC, gab mod p, RA, RB)

SKEYID = h(RA, RB, gab mod p)

proof A = h(SKEYÏD,ga mod p,gb mod p,IC,RC,CP, "Alice")

«+

IC.CP

IC.RC, CS

IC.RC, ga mod p, { R A W

IC.RC, gb mod p, {flati*

IC.RC, E(proofA,

IC,RC, E(proofB,

{"Alice'V,

.{"Bob»}Alice

K)

K) Alice m nn r=inmnt. κ\ Bob

Figure 10.10: Public Key Encryption, Main Mode

Public key encryption, aggressive mode, appears in Figure 10.11, where

the notation is similar to main mode. Interestingly, unlike the other aggressive

modes, public key encryption aggressive mode allows Alice and Bob to remain

anonymous. Since this is the case, is there any possible advantage of main

mode over aggressive mode? The answer is yes, but it's a minor issue (see

Problem 25 at the end of the chapter).

There is an interesting security quirk that arises in the public key encryp-

tion versions—both main and aggressive modes. For simplicity, let's consider

10.4 IPSEC 365

IC, CP, ga mod p,
{ " A l i c e - ^ ^ R ^ b

IC,RC, CS, gb mod p,
{"Bob"}Alice, {RB}A|icei proofB

IC,RC, proofA

► Bob

Figure 10.11: Public Key Encryption, Aggressive Mode

aggressive mode. Suppose Trudy generates DifEe-Hellman exponents a and 6
and random nonces RA and RB- Then Trudy can compute all of the remain-
ing quantities that appear in the protocol in Figure 10.11, namely, gab mod p,
K, SKEYID, proofs, and proofB. The reason that Trudy can do this is
because the public keys of Alice and Bob are public.

Why would Trudy go to the trouble of generating all of these values? Once
Trudy has done so, she can create an entire conversation that appears to be a
valid IPSec transaction between Alice and Bob, as indicated in Figure 10.12.
Amazingly, this conversation appears to be valid to any observer, including
Alice and/or Bob!

Figure 10.12: Trudy Making Mischief

Note that in Figure 10.12, Trudy is playing the roles of both Alice and Bob.
Here, Trudy does not convince Bob that she's Alice, she does not convince
Alice that she's Bob, nor does she determine a session key used by Alice and
Bob. So, this is a very different kind of attack than we have previously seen.
Or maybe it's not an attack at all.

But surely, the fact that Trudy can create a fake conversation that ap-
pears to be a legitimate connection between Alice and Bob is a security flaw.
Surprisingly, in this mode of IPSec it is considered a security feature, which
goes by the name of plausible deniability. A protocol that includes plausible
deniability allows Alice and Bob to deny that a conversation ever took place,

«4

Alice

366 REAL-WORLD SECURITY PROTOCOLS

since anyone could have faked the whole thing. In some situations, this could
be a desirable feature. On the other hand, in some situations it might be a
problem. For example, if Alice makes a purchase from Bob, she could later
repudiate it, unless Bob also required a digital signature from Alice.

10.4.4 IPSec Cookies

The cookies IC and RC that appear in the IPSec protocols above are officially
known as "anti-clogging tokens" in the relevant RFCs. These IPSec cookies
have no relation to Web cookies, which are used to maintain state across
HTTP sessions. Instead, the stated purpose of IPSec cookies is to make
denial of service, or DoS, attacks more difficult.

Consider TCP SYN flooding, which is a prototypical DoS attack. Each
TCP SYN request causes the server to do a little work (create a SEQ num-
ber, for example) and to keep some amount of state. That is, the server
must remember the so-called half-open connection so that it can complete
the connection when the corresponding ACK arrives in the third step of the
three-way handshake. It is this keeping of state that an attacker can exploit
to create a DoS. If the attacker bombards a server with a large number of SYN
packets and never completes the resulting half-open connections, the server
will eventually deplete its resources. When this occurs, the server cannot
handle legitimate SYN requests and a DoS results.

To reduce the threat of DoS in IPSec, the server Bob would like to remain
stateless as much as possible. The IPSec cookies are supposed to help Bob
remain stateless. However, they clearly fail to achieve their design goal. In
each of the main mode protocols, Bob must remember the crypto proposal,
CP, from message one, since it is required in message six when Bob com-
putes proofB. Consequently, Bob must keep state beginning with the first
message. The IPSec cookies therefore offer no significant DoS protection.

10.4.5 IKE Phase 1 Summary

Regardless of which of the eight versions is used, successful completion of IKE
Phase 1 results in mutual authentication and a shared session key. This is
known an an IKE Security Association (IKE-SA).

IKE Phase 1 is computationally expensive in any of the public key modes,
and the main modes also require six messages. Developers of IKE assumed
that it would be used for lots of things, not just IPSec (which explains the
over-engineering). So they included an inexpensive Phase 2, which must be
used after the IKE-SA has been established in Phase 1. That is, a separate
Phase 2 is required for each different application that will make use of the
IKE-SA. However, if IKE is only used for IPSec (as is the case in practice),
the potential efficiency provided by multiple Phase 2s is not realized.

10.4 IPSEC 367

IKE Phase 2 is used to establish a so-called IPSec Security Association, or
IPSec-SA. The IKE Phase 1 is more or less equivalent to establishing an SSL
session, whereas IKE Phase 2 is more or less equivalent to establishing an
SSL connection. Again, the designers of IPSec wanted to make it as flexible
as possible, since they assumed it would be used for lots of things other than
IPSec. In fact, IKE could conceivably be used for lots of things other than
IPSec, however, in practice, it's not.

10.4.6 IKE Phase 2

IKE Phase 2 is mercifully simple—at least in comparison to Phase 1. Before
IKE Phase 2 can occur, IKE Phase 1 must be completed, in which case a
shared session key K, the IPSec cookies, IC, RC, and the IKE-SA have all
been established and are known to Alice and Bob. Given that this is the case,
the IKE Phase 2 protocol appears in Figure 10.13, where the following holds
true.

• The crypto proposal includes ESP or AH (discussed below). This is
where Alice and Bob decide whether to use ESP or AH.

• SA is an identifier for the IKE-SA established in Phase 1.

• The hashes numbered 1, 2, and 3 depend on SKEYID, RA, RB, and
the IKE SA from Phase 1.

• The keys are derived from KEYMAT = /i(SKEYID,AA,#B,junk),
where the "junk" is known to all (including an attacker).

• The value of SKEYID depends on the Phase 1 key method.

• Optionally, PFS can be employed, using an ephemeral Diffie-Hellman
exchange.

Note that RA and RB in Figure 10.13 are not the same as those from
IKE Phase 1. As a result, the keys generated in each Phase 2 differ from the
Phase 1 key and from each other.

IC,RC,CP,E(hash1,SA,RA,K)

IC,RC,CS,E(hash2,SA,RB,K)

IC,RC,E(hash3,K)
Alice * Bob

Figure 10.13: IKE Phase 2

368 REAL-WORLD SECURITY PROTOCOLS

After completing IKE Phase 1, we have established an IKE-SA, and after
completing IKE Phase 2, we have established an IPSec-SA. After Phase 2,
both Alice and Bob have been authenticated and they have a shared session
key for use in the current connection.

Recall that in SSL, once we completed mutual authentication and had
established a session key, we were done. Since SSL deals with application
layer data, we simply encrypt and integrity protect in a standard way. In SSL,
the network is transparent to Alice and Bob because SSL lives at the socket
layer—which is really part of the application layer. This is one advantage to
dealing with application layer data.

In IPSec, protecting the data is not so straightforward. Assuming IPSec
authentication succeeds and we establish a session key, then we need to pro-
tect IP datagrams. The complication here is that protection must occur at
the network layer. But before we discuss this issue in detail, we need to
consider IP datagrams from the perspective of IPSec.

10.4.7 IPSec and IP Datagrams

An IP datagram consists of a header and data. The IP header is illustrated
in the Appendix in Figure A-5. If the options field is empty (as it usually
is), then the IP header consists of 20 bytes. For the purposes of IPSec, one
important point is that routers must see the destination address in the IP
header so that they can route the packet. Most other header fields are also
used in conjunction with routing the packet. Since the routers do not have
access to the session key, we cannot encrypt the IP header.

A second crucial point is that some of the fields in the IP header change
as the packet is forwarded. For example, the TTL field—which contains
the number of hops remaining before the packet dies—is decremented by
each router that handles the packet. Since the session key is not known to
the routers, any header fields that change cannot be integrity protected. In
IPSec-speak, the header fields that can change are known as mutable fields.

Next, we look inside an IP datagram. Consider, for example, a Web
browsing session. The application layer protocol for such traffic is HTTP,
and the transport layer protocol is TCP. In this case, IP encapsulates a TCP
packet, which encapsulates an HTTP packet as is illustrated in Figure 10.14.
The point here is that, from the perspective of IP (and hence, IPSec), the
data includes more than application layer data. In this example, the "data"
includes the TCP and HTTP headers, as well as the application layer data.
We'll see why this is relevant below.

As previously mentioned, IPSec uses either ESP or AH to protect an IP
datagram. Depending on which is selected, an ESP header or an AH header
is included in an IPSec-protected datagram. This header tells the recipient
to treat this as an ESP or AH packet, not as a standard IP datagram.

10.4 IPSEC 369

Figure 10.14: IP Datagram

10.4.8 Transport and Tunnel M o d e s

Independent of whether ESP or AH is used, IPSec employs either transport
mode or tunnel mode. In transport mode, as illustrated in Figure 10.15,
the new ESP/AH header is sandwiched between the IP header and the data.
Transport mode is more efficient since it adds a minimal amount of additional
header information. Note that in transport mode the original IP header
remains intact. The downside of transport mode is that a passive attacker
can see the headers. So, if Trudy observes an IPSec protected conversation
between Alice and Bob where transport mode is used, the headers will reveal
that Alice and Bob are communicating.8

Transport mode is designed for host-to-host communication, that is, when
Alice and Bob are communicating directly with each other using IPSec. This
is illustrated in Figure 10.16.

Figure 10.15: IPSec Transport Mode

Alice Bob

Figure 10.16: IPSec from Host-to-Host

In tunnel mode, as illustrated in Figure 10.17, the entire IP packet is
encapsulated in a new IP packet. One advantage of this approach is that the

Recall that we cannot encrypt the header.

370 REAL-WORLD SECURITY PROTOCOLS

original IP header is no longer visible to an attacker—assuming the packet is
encrypted. However, if Alice and Bob are communicating directly with each
other, the new IP header will be the same as the encapsulated IP header, so
hiding the original header would be pointless. However, IPSec is often used
from firewall to firewall, not from host to host. That is, Alice's firewall and
Bob's firewall communicate using IPSec, not Alice and Bob directly. Suppose
IPSec is being used from firewall to firewall. Using tunnel mode, the new IP
header will only reveal that the packet is being sent between Alice's firewall
and Bob's firewall. So, if the packet is encrypted, Trudy would know that
Alice's and Bob's firewalls are communicating, but she would not know which
specific hosts behind the firewalls are communicating.

Tunnel mode was designed for firewall-to-firewall communication. Again,
when tunnel mode is used from firewall to firewall—as illustrated in Fig-
ure 10.18—Trudy does not know which hosts are communicating. The disad-
vantage of tunnel mode is the overhead of an additional IP header.

Figure 10.18: IPSec from Firewall to Firewall

Technically, transport mode is not necessary, since we could encapsulate
the original IP packet in a new IPSec packet, even in the host-to-host case.
For firewall-to-firewall protected traffic, tunnel mode is necessary, as we must
preserve the original IP header so that the destination firewall can route the
packet to the destination host. But transport mode is more efficient, which
makes it preferable when traffic is protected from host to host.

10.4.9 E S P and A H

Once we've decided whether to use transport mode or tunnel mode, then we
must (finally) consider the type of protection we actually want to apply to

10.4 IPSEC 371

the IP datagrams. The choices are confidentiality, integrity, or both. But we
also must consider the protection, if any, to apply to the header. In IPSec,
the only choices are AH and ESP. So, what protection options do each of
these provide?

AH, the Authentication Header, provides integrity only, that is, AH pro-
vides no encryption. The AH integrity protection applies to everything be-
yond the IP header and some fields of the header. As previously mentioned,
not all fields of the IP header can be integrity protected (TTL, for example).
AH classifies IP header fields as mutable or immutable, and it applies its
integrity protection to all of the immutable fields.

In ESP, the Encapsulating Security Payload, both integrity and confi-
dentiality are required. Both the confidentiality and integrity protection are
applied to everything beyond the IP header, that is, the "data" from the
perspective of IP. No protection is applied to the IP header

Encryption is required in ESP. However, there is a trick whereby ESP
can be used for integrity only. In ESP, Alice and Bob negotiate the cipher
that they will use. One of the ciphers that MUST be supported is the NULL
cipher, described in RFC 2410 [123]. Here are some excerpts from this unusual
RFC.

• NULL encryption is a block cipher, the origins of which appear to be
lost in antiquity.

• Despite rumors, there is no evidence that NSA suppressed publication
of this algorithm.

• Evidence suggests it was developed in Roman times as an exportable
version of Caesar's cipher.

• NULL encryption can make use of keys of varying length.

• No IV is required.

• NULL encryption is defined by Null(P, K) = P for any plaintext P and
any key K.

This RFC proves that security people are strange.9

In ESP, if the NULL cipher is selected then no encryption is applied, but
the data is integrity protected. This case looks suspiciously similar to AH.
So, why does AH exist?

There are three reasons given to justify the existence of AH. As previously
noted, the IP header can't be encrypted since routers must see the header to
route packets. But AH does provide integrity protection to the immutable

'As if you didn't already know that.

372 REAL-WORLD SECURITY PROTOCOLS

fields in the IP header, whereas ESP provides no protection to the header.
That is, AH provides slightly more integrity protection than ESP/NULL.

A second reason for the existence of AH is that ESP encrypts everything
beyond the IP header, provided a non-NULL cipher is selected. If ESP is
used and the packet is encrypted, a firewall can't look inside the packet to,
for example, examine the TCP header. Perhaps surprisingly, ESP with NULL
encryption doesn't solve this problem. When the firewall sees the ESP header,
it will know that ESP is being used. However, the header does not tell the
firewall that the NULL cipher is used—that was negotiated between Alice
and Bob and is not included in the header. So, when a firewall sees that ESP
is used, it has no way to know whether the TCP header is encrypted or not.
In contrast, when a firewall sees that AH is used, it knows that nothing is
encrypted.

Neither of these reasons for the existence of AH is particularly persua-
sive. The designers of AH/ESP could have made minor modifications to the
protocol so that ESP alone could overcome these drawbacks. But there is a
more convincing reason given for the existence of AH. At one meeting where
the IPSec standard was being developed, "someone from Microsoft gave an
impassioned speech about how AH was useless . . ." and ".. . everyone in the
room looked around and said, Hmm. He's right, and we hate AH also, but
if it annoys Microsoft let's leave it in since we hate Microsoft more than we
hate AH" [162]. So now you know the rest of the story.

10.5 Kerberos

In Greek mythology, Kerberos is a three-headed dog that guards the entrance
to Hades.10 In security, Kerberos is a popular authentication protocol that
uses symmetric key cryptography and timestamps. Kerberos originated at
MIT and is based on work by Needham and Schroeder [217]. Whereas SSL
and IPSec are designed for the Internet, Kerberos is designed for a smaller
scale, such as on a local area network (LAN) or within a corporation.

Suppose we have N users, where each pair needs to be able to authenticate
each other. If our authentication protocol is based on public key cryptogra-
phy, then each user requires a public-private key pair and, consequently, N
key pairs are needed. On the other hand, if our authentication protocol is
based on symmetric keys, it would appear that each pair of users must share
a symmetric key, in which case N(N — l) /2 « N2 keys are required. Conse-
quently, authentication based on symmetric keys doesn't scale. However, by
relying on a Trusted Third Party (TTP), Kerberos only requires N symmetric
keys for N users. Users do not share keys with each other. Instead each user
shares one key with the KDC, that is, Alice and the KDC share KA, Bob

10The authors of [162] ask, "Wouldn't it make more sense to guard the exit?"

10.5 KERBEROS 373

and the KDC share KB, Carol and the KDC share Kc, and so on. Then,
the KDC acts as a go-between that enables any pair of users to communicate
securely with each other. The bottom line is that Kerberos uses symmetric
keys in a way that does scale.

The Kerberos TTP is a security critical component that must be protected
from attack. This is certainly a security issue, but in contrast to a system
that uses public keys, no public key infrastructure (PKI) is required.11 In
essence, the Kerberos TTP plays a similar role as a certificate authority in a
public key system.

The Kerberos TTP is known as the key distribution center, or KDC.12

Since the KDC acts as a TTP, if it's compromised, the security of the entire
system is compromised.

As noted above, the KDC shares a symmetric key KA with user Alice,
and it shares a symmetric key KB with Bob, and so on. The KDC also has
a master key Ä"KDC> which is known only to the KDC. Although it might
seem senseless to have a key that only the KDC knows, we'll see that this key
plays a critical role. In particular, the key ■K'KDC allows the KDC to remain
stateless, which eliminates most denial of service attacks. A stateless KDC is
a major security feature of Kerberos.

Kerberos is used for authentication and to establish a session key that
can subsequently be used for confidentiality and integrity. In principle, any
symmetric cipher can be used with Kerberos. However, in practice, it seems
the crypto algorithm of choice is the Data Encryption Standard (DES).

In Kerboros-speak, the KDC issues various types of tickets. Understand-
ing these tickets is critical to understanding Kerberos. A ticket contains the
keys and other information required to access network resource. One special
ticket that the KDC issues is the all-important ticket-granting ticket, or TGT.
A TGT, which is issued when a user initially logs into the system, acts as
the user's credentials. The TGT is then used to obtain (ordinary) tickets
that enable access to network resources. The use of TGTs is crucial to the
statelessness of Kerberos.

Each TGT contains a session key, the user ID of the user to whom the
TGT is issued, and an expiration time. For simplicity, we'll ignore the ex-
piration time, but it's worth noting that TGTs don't last forever. Every
TGT is encrypted with the key i^KDC- Recall that only the KDC knows the
key -ifKDC· As a result, a TGT can only be read by the KDC.

Why does the KDC encrypt a user's TGT with a key that only the KDC
knows and then send the result to the user? The alternative would be for
the KDC to maintain a database of which users are logged in, their session
keys, etc. That is, the TGT would have to maintain state. In effect, TGTs

11As we discussed in Chapter 4, PKI presents a substantial challenge in practice.
12The most difficult part about Kerberos is keeping track of all of the acronyms. There

are a lot more acronyms to come—we're just getting warmed up.

374 REAL-WORLD SECURITY PROTOCOLS

provides a simple, effective, and secure way to distribute this database to the
users. Then when, say, Alice presents her TGT to the KDC, the KDC can
decrypt it and, voila, it remembers everything it needs to know about Alice.13

The role of the TGT will become clear below. For now, just note that TGTs
are a clever design feature of Kerberos.

10.5.1 Kerberized Login

To understand Kerberos, let's first consider how a "Kerberized" login works,
that is, we'll examine the steps that occur when Alice logs in to a system where
Kerberos is used for authentication. As on most systems, Alice first enters
her username and password. In Kerberos, Alice's computer then derives the
key KA from Alice's password, where KA is the key that Alice and the KDC
share. Alice's computer uses KA to obtain Alice's TGT from the KDC.
Alice can then use her TGT (i.e., her credentials) to securely access network
resources. Once Alice has logged in, all of the security is automatic and takes
place behind the scenes, without any additional involvement by Alice.

A Kerberized login is illustrated in Figure 10.19, where the following no-
tation is used.

• The key KA is derived as KA = /i(Alice's password)

• The KDC creates the session key SA

• Alice's computer uses KA to obtain SA and the TGT; then Alice's
computer forgets KA

. TGT = E("Alice",SA;KKOC)

Alice wants ̂

Alice's a TGT

password ^ E(SA,TGT,KA)

Alice Computer KDC

Figure 10.19: Kerberized Login

13Your hapless author's ill-fated startup company had a similar situation, i.e., a database
of customer security-related information that had to be maintained (assuming the com-
pany had ever actually had any customers, that is). Instead of creating a security-critical
database, the company chose to encrypt each user's information with a key known only to
the company, then distribute this encrypted data to the appropriate user. Users then had
to present this encrypted data before they could access any security-related features of the
system. This is essentially the same trick used in Kerberos TGTs.

10.5 KERBEROS 375

One major advantage to the Kerberized login is that the entire security
process (beyond the password entry) is transparent to Alice. The major
disadvantage is that the reliance on the security of the KDC is total.

10.5.2 Kerberos Ticket

Once Alice's computer receives its TGT, it can then use the TGT to request
access to network resources. For example, suppose that Alice wants to talk
to Bob. Then Alice's computer presents its TGT to the KDC, along with an
authenticator. The authenticator is an encrypted timestamp that serves to
avoid a replay. After the KDC verifies Alice's authenticator, it responds with
a "ticket to Bob." Alice's computer then uses this ticket to Bob to securely
communicate directly with Bob's computer. Alice's acquisition of the ticket
to Bob is illustrated in Figure 10.20, where the following notation is used.

REQUEST = (TGT, authenticator)

authenticator = ^(timestamp, SA)

REPLY = £("Bob", KAB, ticket to Bob; SU)

ticket to Bob = E{"Alice",KAB; KB)

In Figure 10.20, the KDC obtains the key SA from the TGT and uses this
key to verify the timestamp. Also, the key KAB is the session key that Alice
and Bob will use for their session.

Talk to Bol

Alice Computer

Figure 10.20: Alice Gets Ticket to Bob

Once Alice has obtained the "ticket to Bob," she can then securely com-
municate with Bob. This process is illustrated in Figure 10.21, where the
ticket to Bob is as above and

authenticator = ^(timestamp, KAB).

Note that Bob decrypts "ticket to Bob" with his key KB to obtain KAB, which
he then uses to verify the timestamp. The key KAB is also used to protect
the confidentiality and integrity of the subsequent conversation between Alice
and Bob.

I want to
talk to Bob

REQUEST

REPLY

KDC

376 REAL-WORLD SECURITY PROTOCOLS

ticket to Bob, authenticator
►

E(timestamp +1 ,KAB)

Alice's Bob
Computer

Figure 10.21: Alice Contacts Bob

Since timestamps are used for replay prevention, Kerberos minimizes the
number of messages that must be sent. As we mentioned in the previous
chapter, the primary drawback to using timestamps is that time becomes a
security-critical parameter. Another issue with timestamps is that we can't
expect all clocks to be perfectly synchronized and therefore some clock skew
must be tolerated. In Kerberos, this clock skew is by default set to five
minutes, which seems like an eternity in a networked world.

10.5.3 Kerberos Security

Recall that, when Alice logs in, the KDC sends E(SA,T.GT;KA) to Alice,
where TGT = £ ("Alice", SU; # K D C) · Since the TGT is encrypted with the
key -KKDO

 w n v is the TGT encrypted again with the key ÄU? The answer
is that this is a minor flaw in Kerberos, since it's extra work that provides
no additional security. If the key X K D C ^S compromised, the entire security
of the system is broken, so there is no added benefit to encrypting the TGT
again after it's already encrypted with -Kj<DC·

Notice that, in Figure 10.20, Alice remains anonymous in the REQUEST.
This is a nice security feature that is a side benefit of the fact that the TGT
is encrypted with the key K K D C · That is, the KDC does not need to know
who is making the REQUEST before it can decrypt the TGT, since all TGTs
are encrypted with ÄRDC- Anonymity with symmetric keys can be difficult,
as we saw with the IPSec symmetric key main mode. But, in this part of
Kerberos, anonymity is easy.

In the Kerberos example above, why is "ticket to Bob" sent to Alice, when
Alice simply forwards it on to Bob? Apparently, it would be more efficient to
have the KDC send the ticket directly to Bob, and the designers of Kerberos
were certainly concerned with efficiency (e.g., they use timestamps instead of
nonces). However, if the ticket to Bob arrives at Bob before Alice initiates
contact, then Bob would have to remember the key KAB until it's needed.
That is, Bob would need to maintain state. Statelessness is an important
feature of Kerberos.

10.6 WEP 377

Finally, how does Kerberos prevent replay attacks? Replay prevention
relies on the timestamps that appear in the authenticators. But there is still
an issue of replay within the clock skew. To prevent such replay attacks, the
KDC would need to remember all timestamps received within the clock skew
interval. However, most Kerberos implementations apparently don't bother
to do this [162].

Before departing the realm of Kerberos, we consider a design alternative.
Suppose we have the KDC remember session keys instead of putting these in
the TGT. This design would eliminate the need for TGTs. But it would also
require the KDC to maintain state, and a stateless KDC is one of the most
impressive design features in Kerberos.

10.6 WEP

Wired Equivalent Privacy, or WEP, is a security protocol that was designed
to make a wireless local area network (LAN) as secure as a wired LAN. By
any measure, WEP is a seriously flawed protocol. As Tanenbaum so aptly
puts it [298]:

The 802.11 standard prescribes a data link-level security protocol
called WEP (Wired Equivalent Privacy), which is designed to
make the security of a wireless LAN as good as that of a wired
LAN. Since the default for a wired LAN is no security at all, this
goal is easy to achieve, and WEP achieves it as we shall see.

10.6.1 W E P Authent icat ion

In WEP, a wireless access point shares a single symmetric key with all users.
While it is not ideal to share one key among many users, it certainly does
simplify things for the access point. In any case, the actual WEP authenti-
cation protocol is a simple challenge-response, as illustrated in Figure 10.22,
where Bob is the access point, Alice is a user, and K is the shared symmetric
key.

Authentication Request

R
<

E(R, K) ^

Alice, K Bob, K

Figure 10.22: WEP Authentication

378 REAL-WORLD SECURITY PROTOCOLS

10.6.2 W E P Encryption

Once Alice has been authenticated, packets are encrypted using the RC4

stream cipher (see Section 3.2.2 for details on the RC4 algorithm), as illus-

trated in Figure 10.23. Each packet is encrypted with a key Κγγ = (IV, K),

where IV is a 3-byte initialization vector that is sent in the clear with the

packet, and K is the same key used for authentication. The goal here is to

encrypt packets with distinct keys, since reuse of the key would be a bad idea

(see Problem 36). Note that, for each packet, Trudy knows the 3-byte IV,

but she does not know K. So the encryption key varies and it's not known

by Trudy.

IV, E(packet,Klv)

Alice, K Bob, K

Figure 10.23: WEP Encryption

Since the IV is only three bytes long, and the key K seldom changes, the

encryption key fi jy = (IV, K) will repeat often (see Problems 37). Further-

more, whenever the key ifjy repeats, Trudy will know it, since the IV is

visible (assuming K has not changed). RC4 is a stream cipher, so a repeated

key implies reuse of the keystream, which is a serious problem. Further re-

peats of the same IV make Trudy's job even easier.

The number of repeated encryption keys could be reduced if K was

changed regularly. Unfortunately, the long-term key K seldom changes since,

in WEP, such a change is a manual process and the access point and all hosts

must update their keys. That is, there is no key update procedure built into

WEP.

The bottom line is that, whenever Trudy sees a repeated IV, she can safely

assume the same keystream was used. Since the IV is only 24 bits, repeats

will occur relatively often. And, since a stream cipher is used, a repeated

keystream is at least as bad as reuse of a one-time pad.

In addition to this small-IV problem, there is another distinct cryptan-

alytic attack on WEP encryption. While RC4 is considered a strong cipher

when used correctly, there is a practical attack that can be used to recover the

RC4 key from WEP ciphertext. This clever attack, which can be considered

a type of related key attack, is due to Fluhrer, Mantin, and Shamir [112].

This attack is discussed in detail in Section 6.3 of Chapter 6, or see [284] for

more information.

10.6 WEP 379

10.6.3 W E P Non-Integrity

WEP has numerous security problems, but one of the most egregious is that it
uses a cyclic redundancy check (CRC) for "integrity" protection. Recall that
a cryptographic integrity check is supposed to detect malicious tampering
with the data—not just transmission errors. While a CRC is a good error
detection method, it is useless for cryptographic integrity, since an intelligent
adversary can alter the data and, simultaneously, the CRC value so that the
integrity check is passed. This is precisely the attack that a true cryptographic
integrity check, such as a MAC, HMAC, or digital signature, will prevent.

This integrity problem is made worse by the fact that the data is encrypted
with a stream cipher. Because a stream cipher is used, WEP encryption is
linear, which allows Trudy to make changes directly to the ciphertext and
change the corresponding CRC value so that the receiver will not detect the
tampering. That is, Trudy does not need know the key or plaintext to make
undetectable changes to the data. Under this scenario, Trudy won't know
what changes she has made, but the point is that the data can be corrupted
in a way that neither Alice nor Bob can detect.

The problems only get worse if Trudy should happen to know some of the
plaintext. For example, suppose that Trudy knows the destination IP address
of a given WEP-encrypted packet. Then without any knowledge of the key,
Trudy can change the destination IP address to an IP address of her choosing
(for example, her own IP address), and change the CRC integrity check so
that her tampering will go undetected. Since WEP traffic is only encrypted
from the host to the wireless access point (and vice versa), when the altered
packet arrives at the access point, it will be decrypted and forwarded to
Trudy's preferred IP address. From the perspective of a lazy cryptanalyst, it
doesn't get any better than this. Again, this attack is made possible by the
lack of any real integrity check. The bottom line is that the WEP "integrity
check" provides no cryptographic integrity whatsoever.

10.6.4 Other W E P Issues

There are many more WEP security vulnerabilities. For example, if Trudy
can send a message over the wireless link and intercept the ciphertext, then
she will know the plaintext and the corresponding ciphertext, which enables
her to immediately recover the keystream. This same keystream will be used
to encrypt any message that uses the same IV, provided the long-term key
has not changed (which, as pointed out above, it seldom does).

Would Trudy ever know the plaintext of an encrypted message sent over
the wireless link? Perhaps Trudy could send an email message to Alice and
ask her to forward it to another person. If Alice does so, then Trudy could
intercepted the ciphertext message corresponding to the known plaintext.

380 REAL-WORLD SECURITY PROTOCOLS

Another issue is that, by default, a WEP access point broadcasts its SSID
(the Service Set Identifier), which acts as its ID. The client must use the SSID
when authenticating to the access point. One security feature of WEP makes
it possible to configure the access point so that it does not broadcast the
SSID, in which case the SSID acts something like a password that users must
know to authenticate to the access point. However, users send the SSID in
the clear when contacting the access point, and Trudy only needs to intercept
one such packet to discover the SSID "password." Even worse, there are tools
that will force WEP clients to de-authenticate, in which case the clients will
then automatically attempt to re-authenticate, in the process, sending the
SSID in the clear. Consequently, as long as there is at least one active user,
it's a fairly simple process for Trudy to obtain the SSID.

10.6.5 W E P : The B o t t o m Line

It's difficult—if not impossible—to view WEP as anything but a security
disaster. However, in spite of all of its multiple security problems, in some
circumstances it may be possible to make WEP moderately secure in practice.
Ironically, this has more to do with the inherent insecurity of WEP than with
any inherent security of WEP. Suppose that you configure your WEP access
points so that it encrypts the data, it does not broadcast its SSID, and you use
access control (i.e., only machines with specified MAC addresses are allowed
to use the access point). Then an attacker must expend some effort to gain
access—at a minimum, Trudy must break the encryption, spoof her MAC
address, and probably force users to de-authenticate so that she can obtain
the SSID. While there are tools to help with all of these tasks, it would likely
be much simpler for Trudy to find an unprotected WEP network. Like most
people, Trudy generally chooses the path of least resistance. Of course, if
Trudy has reason to specifically target your WEP installation (as opposed to
simply wanting free network access), you will be vulnerable as long as you
rely on WEP.

Finally, we note that there are more secure alternatives to WEP. For
example, Wi-Fi Protected Access (WPA) is significantly stronger, but it was
designed to use the same hardware as WEP, so some security compromises
were necessary. A few attacks on WPA are known but, as a practical matter,
it seems to be secure. There is also a WPA2 which, in principle, is somewhat
stronger than WPA, but it requires more powerful hardware. As with WPA,
there are some claimed attacks on WPA2, but these also appear to be of little
practical significance. Today, WEP can be broken in minutes whereas the
only serious threats against WPA and WPA2 are password cracking attacks.
If reasonably strong passwords are chosen, WPA and WPA2 both would be
considered practically secure, by any conceivable definition. In any case, both
WPA and WPA2 are vast improvements over WEP [325].

10.7 GSM 381

10.7 GSM

To date, many wireless protocols, such as WEP, have a poor track record
with respect to security [17, 38, 93]. In this section we'll discuss the security
of GSM cell phones. GSM illustrates some of the unique security problems
that arise in a wireless environment. It's also an excellent example of how
mistakes at the design phase are extremely difficult to correct later. But
before we delve into to GSM security, we need some background information
on the development of cell phone technology.

Back in the computing stone age (prior to the 1980s, that is) cell phones
were expensive, completely insecure, and as large as a brick. These first-
generation cell phones were analog, not digital, and there were few standards
and little or no thought was given to security.

The biggest security issue with early cell phones was their susceptibility
to cloning. These cell phones would send their identity in the clear when a
phone call was placed, and this identity was used to determine who to bill for
the phone call. Since the ID was sent over a wireless media, it could easily be
captured and then used to make a copy or clone, of the phone. This allowed
the bad guys to make free phone calls, which did not please cellular phone
companies, who ultimately had to bear the cost. Cell phone cloning became
a big business, with fake base stations created simply to harvest IDs [14].

Into this chaotic environment came GSM, which began in 1982 as Groupe
Spéciale Mobile, but in 1986 it was formally rechristened as Global System for
Mobile Communications.14 The founding of GSM marks the official beginning
of second-generation cell phone technology [142]. We'll have much more to
say about GSM security below.

Recently, third-generation cell phones have become popular. The 3rd
Generation Partnership Project, or 3GPP [1], is the trade group behind
3G phones. We'll briefly mention the security architecture promoted by the
3GPP after we complete our survey of GSM security.

10.7.1 GSM Architecture

The general architecture of GSM is illustrated in Figure 10.24, where the
following terminology is used.

• The mobile is the cell phone.

• The air interface is where the wireless transmission from the cell phone
to a base station occurs.

• The visited network typically includes multiple base stations and a base
station controller, which acts as a hub for connecting the base stations

This is a tribute to the universality of three-letter acronyms.

382 REAL-WORLD SECURITY PROTOCOLS

under its control to the rest of the GSM network. The base station
controller includes a visitor location registry, or VLR, which is used to
keep tabs on all mobiles currently active in the VLR's network.

• The public switched telephone network, or PSTN, is the ordinary (non-
cellular) telephone system. The PSTN is sometimes referred to as "land
lines" to distinguish it from the wireless network.

• The home network is the network where the mobile is registered. Each
mobile is associated with a unique home network. The home network
includes a home location registry, or HLR, which keeps track of the
most recent location of all mobiles listed in the HLR. The authentication
center, or AuC, maintains the crucial billing information for all mobiles
that belong to the corresponding HLR.

We'll discuss these pieces of the GSM puzzle in more detail below.

Figure 10.24: GSM Overview

Each GSM mobile phone contains a Subscriber Identity Module, or SIM,
which is a tamper-resistant smartcard. The SIM contains an International
Mobile Subscriber ID, or IMSI, which, not surprisingly, is used to identify
the mobile. The SIM also contains a 128-bit key that is known only by the
mobile and its home network. This key is universally know as Ki, so we'll
follow the standard notation.

The purpose of using a smartcard for the SIM is to provide an inexpensive
form of tamper-resistant hardware. The SIM card also provides two-factor
authentication, relying on "something you have" (the mobile containing the
SIM) and "something you know" in the form of a four-digit PIN. However,
the PIN is usually treated as an annoyance, and it's often not used.

Again, the visited network is the network where the mobile is currently
located. A base station is one cell in the cellular system, whereas the base

10.7 GSM 383

station controller manages a collection of cells. The VLR has information on
all mobiles currently visiting the base station controller's territory.

The home network stores a given mobile's crucial information, namely, its
IMSI and key Ki. Note that the IMSI and Ki are, in effect, the username
and "password" for the mobile when it wants to access the network to make a
call. The HLR keeps track of the most recent location of each of it's registered
mobiles, while the AuC contains each registered mobile's IMSI and key Ki.

10.7.2 G S M Security Architecture

Now we're ready to take a close look at the GSM security architecture. The
primary security goals set forth by the designers of GSM were the following.

• Make GSM as secure as ordinary telephones (the PSTN)

• Prevent cell phone cloning

Note that GSM was not designed to resist an active attack. At the time,
active attacks were considered infeasible, since the necessary equipment was
costly. However, today the cost of such equipment is little more than that of a
good laptop computer, so neglecting active attacks was probably shortsighted.
The designers of GSM considered the biggest threats to be insecure billing,
corruption, and similar low-tech attacks.

GSM attempts to deal with three security issues: anonymity, authenti-
cation, and confidentiality. In GSM, the anonymity is supposed to prevent
intercepted traffic from being used to identify the caller. Anonymity is not
particularly important to the phone companies, except to the extent that it
is important for customer confidence. Anonymity is something users might
reasonably expect from non-cellular phone calls.

Authentication, on the other hand, is of paramount importance to phone
companies, since correct authentication is necessary for proper billing. The
first-generation cloning problems can be viewed as an authentication failure.
As with anonymity, confidentiality of calls over the air interface is important
to customers, and so, to that extent, it's important to phone companies.

Next, we'll look at GSM's approach to anonymity, authentication, and
confidentiality in more detail. Then we'll discuss some of the many security
flaws in GSM.

10.7.2.1 Anonymity

GSM provides a very limited form of anonymity. The IMSI is sent in the
clear over the air interface at the start of a call. Then a random Temporary
Mobile Subscriber ID, or TMSI, is assigned to the caller, and the TMSI
is subsequently used to identify the caller. In addition, the TMSI changes
frequently. The net effect is that, if an attacker captures the initial part

384 REAL-WORLD SECURITY PROTOCOLS

of a call, the caller's anonymity will be compromised. But if the attacker
misses the initial part of the call, then the anonymity is, in a practical sense,
reasonably well protected. Although this is not a strong form of anonymity,
it may be sufficient for real-world situations where an attacker could have
difficulty filtering the IMSIs out of a large volume of traffic. It seems that
the GSM designers did not take anonymity too seriously.

10.7.2.2 Authentication

Prom the phone company's perspective, authentication is the most critical
aspect of the GSM security architecture. Authenticating the user to the base
station is necessary to ensure that the phone company will get paid for the
service they provide. In GSM, the caller is authenticated to the base station,
but the authentication is not mutual. That is, the GSM designers decided
that it was not necessary to verify the identity of the base station. We'll see
that this was a significant security oversight.

GSM authentication uses a simple challenge-response mechanism. The
caller's IMSI is received by the base station, which then passes it to the
caller's home network. Recall that the home network knows the caller's IMSI
and key Ki. The home network generates a random challenge, RAND, and
computes the "expected response," XRES = A3(RAND, Jfi), where A3 is a
hash function. Then the pair (RAND, XRES) is sent from the home network
to the base station. The base station sends the challenge, RAND, to the
mobile. The mobile's response is denoted SRES, where SRES is computed by
the mobile as SRES = A3(RAND, Ki). To complete the authentication, the
mobile sends SRES to the base station which verifies that SRES = XRES.
Note that in this authentication protocol, the caller's key Ki never leaves its
home network or the mobile. It's important that Trudy cannot obtain Ki,
since that would enable her to clone the caller's phone.

10.7.2.3 Confidentiality

GSM uses a stream cipher to encrypt the data. The reason for this choice is
due to the relatively high error rate in the cell phone environment, which is
typically about 1 in 1000 bits. With a block cipher, each transmission error
causes one or two plaintext blocks to be garbled (depending on the mode),
while a stream cipher garbles only those plaintext bits corresponding to the
specific ciphertext bits that are in error.15

The GSM encryption key is universally denoted as Kc, so we'll follow that
convention. When the home network receives the IMSI from the base station
controller, the home network computes Kc = A8(RAND,.ftTi), where A8 is

15It is possible to use error correcting codes to minimize the effects of transmission errors,
making block ciphers feasible. However, this adds another layer of complexity to the process.

10.7 GSM 385

another hash function. Then Kc is sent along with the pair RAND and XRES,
that is, the triple (RAND, XRES, Kc) is sent from the home network to the
base station.16

Once the base station receives the triple (RAND,XRES, Kc), it uses the
authentication protocol described above. If this succeeds, the mobile com-
putes Kc = A8(RANO, Ki). The base station already knows Kc, so the
mobile and base station have a shared symmetric key with which to encrypt
the conversation. As mentioned above, the data is encrypted with the A5/1
stream cipher. As with authentication, the caller's master key Ki never leaves
its home network.

10.7.3 GSM Authentication Protocol

The part of the GSM protocol that occurs between the mobile and the base
station is illustrated in Figure 10.25. A few security concerns with this pro-
tocol are as follows [228].

• The RAND is hashed together with Ki to produce the encryption
key Kc. Also, the value of RAND is hashed with Ki to generate SRES,
which a passive attacker can see. As a result, it's necessary that SRES
and Kc be uncorrelated—otherwise there would have been a shortcut
attack on Kc. These hash values will be uncorrelated if a secure cryp-
tographic hash function is used.

• It must not be possible to deduce Ki from known RAND and SRES
pairs, since such pairs are available to a passive attacker. This is anal-
ogous to a known plaintext attack with a hash function in place of a
cipher.

• It must not be possible to deduce Ki from chosen RAND and SRES
pairs, which is analogous to a chosen plaintext attack on the hash func-
tion. Although this attack might seem implausible, with possession of
the SIM card, an attacker can choose the RAND values and observe the
corresponding SRES values.17

Note that the encryption key Kc is sent from the home network to the base station.
Trudy may be able to obtain the encryption key by simply observing traffic sent over the
network. In contrast, the authentication key Ki never leaves the home network or the
mobile, so it is not subject to such an attack. This shows the relative importance the GSM
architects placed on authentication as compared to confidentiality.

17If this attack is feasible, it is a threat even if it's slow, since the person who sells the
phone would likely possess it for an extended period of time. On the other hand, if the
attack is fast, then a phone that is "lost" for a few minutes would be subject to cloning.

386 RE AL-WORLD SECURITY PROTOCOLS

Figure 10.25: GSM Authentication and Encryption

10.7.4 G S M Security Flaws

Next, we'll discuss security flaws in GSM—there are cryptographic flaws and
there are protocol flaws as well. But, arguably, the most serious problems
arise from invalid security assumptions made by the designers of GSM.

10.7.4.1 Crypto Flaws

There are several cryptographic flaws in GSM. The hashes A3 and A8 both
are based on a hash function known as COMP128. The hash COMP128
was developed as a secret design, in violation of Kerckhoffs' Principle. Not
surprisingly, COMP128 was later found to be weak—it can be broken by
150,000 chosen "plaintexts" [130]. What this means in practice is that an
attacker who has access to a SIM card can determine the key Ki in 2 to 10
hours, depending in the speed of the card. In particular, an unscrupulous
seller could determine Ki before selling a phone, then create clones that
would have their calls billed to the purchaser of the phone. Below, we'll
mention another attack on COMP128.

There are two different forms of the encryption algorithm A5, which are
known as A5/1 and A5/2. Recall that we discussed A5/1 in Chapter 3. As
with COMP128, both of these ciphers were developed in violation of Kerck-
hoffs' Principle and both are weak. The A5/2 algorithm is the weaker of the
two [26, 234] but feasible attacks on A5/1 are known [33].

10.7.4.2 Invalid Assumptions

There is a serious design flaw in the GSM protocol. A GSM phone call is
encrypted between the mobile and the base station but not from the base
station to the base station controller. Recall that a design goal of GSM
was to develop a system as secure as the public switched telephone network
(PSTN). As a result, if a GSM phone call is at some point routed over the
PSTN, then from that point on, no further special protection is required.
Consequently, the emphasis of GSM security is on protecting the phone call
over the air interface, between the mobile and the base station.

10.7 GSM 387

The designers of GSM assumed that once the call reached the base sta-
tion, it would be routed over the PSTN to the base station controller. This
is implied by the solid line between the base station and base station con-
troller in Figure 10.24. Due to this assumption, the GSM security protocol
does not protect the conversation when it is sent from the base station to
the base station controller. However, many GSM systems actually transmit
calls between a base station and its base station controller over a microwave
link [228]. Since microwave is a wireless media, it is possible (but not easy)
for an attacker to eavesdrop on unprotected calls over this link, rendering the
encryption over the air interface useless.

10.7.4.3 SIM Attacks

Several attacks have been developed on various generations of SIM cards.
In one optical fault induction attack, an attacker could force a SIM card to
divulge its Ki by using an ordinary flashbulb [269]. In another class of attacks,
known as partitioning attacks, timing and power consumption analysis could
be used to recover Ki using as few as eight adaptively chosen plaintexts [243].
As a result, an attacker who has possession of the SIM could recover Ki in
seconds and, consequently, a misplaced cell phone could be cloned in seconds.

10.7.4.4 Fake Base Station

Another serious flaw with the GSM protocol is the threat posed by a fake base
station. This attack, which is illustrated in Figure 10.26, exploits two flaws
in the protocol. First, the authentication is not mutual. While the caller
is authenticated to the base station (which is necessary for proper billing),
the designers of GSM felt it was not worth the extra effort to authenticate
the base station to the caller. Although they were aware of the possibility
of a fake base station, apparently the protocol designers believed that the
probability of such an attack was too remote to justify the (small) additional
cost of mutual authentication. The second flaw that this attack exploits is
that encryption over the air interface is not automatic. In fact, the base
station determines whether the call is encrypted or not, and the caller does
not know which is the case.

Figure 10.26: GSM Fake Base Station

388 REAL-WORLD SECURITY PROTOCOLS

In the attack illustrated in Figure 10.26, the fake base station sends a
random value to the mobile, which the mobile assumes is RAND. The mobile
replies with the corresponding SRES, which the fake base station discards,
since it does not intend to authenticate the caller (in fact, it cannot authenti-
cate the caller). The fake base station then tells the mobile not to encrypt the
call. Unbeknownst to either the caller or the recipient, the fake base station
then places a call to the the intended recipient and forwards the conversation
from the caller to the recipient and vice versa. The fake base station can then
eavesdrop on the entire conversation.

Note that in this fake base station attack, the fake base station would be
billed for the call, not the caller. The attack might be detected if the caller
complained about not being billed for the phone call. But, would anyone
complain about not receiving a bill?

Also, the fake base station is in position to send any RAND it chooses
and receives the corresponding SRES. Therefore, it can conduct a chosen
plaintext attack on the SIM without possessing the SIM card. The SIM attack
mentioned above that requires eight adaptively chosen plaintexts would be
feasible with a fake base station.

Another major flaw with the GSM protocol is that it provides no replay
protection. A compromised triple (RAND, XRES, Kc) can be replayed for-
ever. As a result, one compromised triple gives an attacker a key Kc that is
valid indefinitely. A clever fake base station? operator could even use a com-
promised triple to "protect" the conversation between the mobile and the
fake base station so that nobody else could eavesdrop on the conversation.

Finally, it's worth noting that denial of service is always an issue in a
wireless environment, since the signal can be jammed. But jamming is an
issue beyond the scope of a security protocol.

10.7.5 G S M Conclusions

From our discussion of GSM security flaws, it might seem that GSM is a
colossal security failure. However, GSM was certainly a commercial success,
which raises some questions about the financial significance of good security.
In any case, it is interesting to consider whether GSM achieved its security
design goals. Recall that the two goals set forth by the designers of GSM
were to eliminate the cloning that had plagued first-generation systems and
to make the air interface as secure as the PSTN. Although it is possible to
clone GSM phones, it never became a significant problem in practice. So it
would seem that GSM did achieve its first security goal.

Did GSM make the air interface as secure as the PSTN? There are attacks
on the GSM air interface (e.g., fake base station), but there are also attacks
on the PSTN (tapping a line) that are at least as severe. So it could be
argued that GSM achieved its second design goal, although this is debatable.

10.8 SUMMARY 389

The real problem with GSM security is that the initial design goals were
too limited. The major insecurities in GSM include weak crypto, SIM issues,
the fake base station attack, and a total lack of replay protection. In the
PSTN, the primary insecurity is tapping, though there are others threats, such
as attacks on cordless phones. Overall, GSM could reasonably be considered
a modest security success.

10.7.6 3GPP

The security design for third-generation cell phones was spearheaded by the
3GPP. This group clearly set their sights higher than the designers of GSM.
Perhaps surprisingly, the 3GPP security model is built on the foundation of
GSM. However, the 3GPP developers carefully patched all of the known GSM
vulnerabilities. For example, 3GPP includes mutual authentication and in-
tegrity protection of all signaling, including the "start encryption" command
for the base station to mobile communication. These improvements elimi-
nate the GSM-style fake base station attack. Also, in 3GPP, the keys can't
be reused and triples can't be replayed. The weak proprietary crypto al-
gorithms of GSM (COMP128, A5/1, and A5/2) have been replaced by the
strong encryption algorithm, KASUMI, which has undergone rigorous peer
review. In addition, the encryption has been extended from the mobile all
the way to the base station controller.

The history of mobile phones, from the first-generation through GSM and
now 3GPP, nicely illustrates the evolution that often occurs in security. As
the attackers develop new attacks, the defenders respond with new protec-
tions, which the attackers again probe for weaknesses. Ideally, this arms race
approach to security could be avoided by a careful design and analysis prior
to the initial development. However, it's unrealistic to believe that the de-
signers of first-generation cell phones could have imagined the mobile world
of today. Attacks such as the fake base station, which would have seemed
improbable at one time, are now easily implemented. With this in mind, we
should realize that, although 3GPP clearly promises more security than GSM
could deliver, it's possible that attacks will eventually surface. In short, the
security arms race continues.

10.8 Summary

In this chapter, we discussed several real-world security protocols in detail.
We first considered SSH, which is a fairly straightforward protocol. Then we
looked at SSL which is a well-designed protocol that is widely used on the
Internet.

We saw that IPSec is a complex protocol with some serious security issues.
The designers of IPSec over-engineered the protocol, which is the source of

390 RE AL-WORLD SECURITY PROTOCOLS

its complex. IPSec provides a good illustration of the maxim that complexity
is the enemy of security.

Kerberos is a widely deployed authentication protocol that relies on sym-
metric key cryptography and timestamps. The ability of the Kerberos KDC
to remain stateless is one of the many clever features of the protocol.

We finished the chapter with a discussion of two wireless protocols, WEP
and GSM. WEP is a seriously flawed protocol—one of its many problems is
the lack of any meaningful integrity check. You'd be hard pressed to find
a better example to illustrate the pitfalls that arise when integrity is not
protected.

GSM is another protocol with some major problems. The actual GSM
security protocol is simple, but it has a large number of flaws. While com-
plexity might be the enemy of security, GSM illustrates that simplicity isn't
necessarily security's best friend. Arguably, the most serious problem with
GSM is that its designers were not ambitious enough, since they didn't de-
sign GSM to withstand attacks that are easy today. This is perhaps excusable
given that some of these attacks seemed far fetched in 1982 when GSM was
developed. GSM also shows that it's difficult to overcome security flaws after
the fact.

The security of third-generation cell phones is built on the GSM model,
with all of the known security flaws in GSM having been patched. It will be
interesting to see how 3GPP security holds up in practice.

10.9 Problems

1. Consider the SSH protocol in Figure 10.1.

a. Explain precisely how and where Alice is authenticated. What
prevents a replay attack?

b. If Trudy is a passive attacker (i.e., she can only observe messages),
she cannot determine the key K. Why?

c. Show that if Trudy is an active attacker (i.e., she can actively send
messages) and she can impersonate Bob, then she can determine
the key K that Alice uses in the last message. Explain why this
does not break the protocol.

d. What is the purpose of the encrypting the final message with the
key if?

2. Consider the SSH protocol in Figure 10.1. One variant of the protocol
allows us to replace Alice's certificate, certificate^, with Alice's pass-
word, password^. Then we must also remove SA from the final message.
This modification yields a version of SSH where Alice is authenticated
based on a password.

10.9 PROBLEMS 391

a. What does Bob need to know so that he can authenticate Alice?

b. Based on Problem 1, part b, we see that Trudy, as an active at-
tacker, can establish a shared symmetric key K with Alice. As-
suming this is the case, can Trudy then use K to determine Alice's
password?

c. What are the significant advantages and disadvantages of this ver-
sion of SSH, as compared to the version in Figure 10.1, which is
based on certificates?

3. Consider the SSH protocol in Figure 10.1. One variant of the protocol
allows us to replace certificate^ with Alice's public key. In this version
of the protocol, Alice must have a public/private key pair, but she is not
required to have a certificate. It is also possible to replace certificate^
with Bob's public key.

a. Suppose that Bob has a certificate, but Alice does not. What must
Bob do so that he can authenticate Alice?

b. Suppose that Alice has a certificate, but Bob does not. What must
Alice do so that she can authenticate Bob?

c. What are the significant advantages and disadvantages of this pub-
lic key version of SSH, as compared to the certificate version in
Figure 10.1?

4. Use Wireshark [328] to capture SSH authentication packets.

a. Identify the packets that correspond to the messages shown in
Figure 10.1.

b. What other SSH packets do you observe, and what do these packets
contain?

5. Consider the SSH specification, which can be found in RFC 4252 [331]
and RFC 4253 [333].

a. Which message or messages in Figure 10.1 correspond to the mes-
sage or messages labeled as SSHJVISG-KEXINIT in the protocol
specification?

b. Which message or messages in Figure 10.1 correspond to the mes-
sage or messages labeled as SSH_MSG_NEWKEYS in the protocol
specification?

c. Which message or messages in Figure 10.1 correspond to the mes-
sage or messages labeled as SSH-MSGJJSERAUTH in the protocol
specification?

392 REAL-WORLD SECURITY PROTOCOLS

d. In the actual SSH protocol, there are two additional messages that
would come between the fourth and fifth messages in Figure 10.1.
What are these messages and what purpose do they serve?

6. Consider the SSL protocol in Figure 10.4.

a. Suppose that the nonces RA and Rß are removed from the protocol
and we define K = h(S). What effect, if any, does this have on
the security of the authentication protocol?

b. Suppose that we change message four to

HMAC(msgs,SRVR,/sr).

What effect, if any, does this have on the security of the authenti-
cation protocol?

c. Suppose that we change message three to

{S}Boh, /i(msgs,CLNT,X).

What effect, if any, does this have on the security of the authenti-
cation protocol?

7. Consider the SSL protocol in Figure 10.4. Modify the protocol so that
the authentication is based on a digital signature. Your protocol must
provide secure authentication of the server Bob, and a secure session
key.

8. Consider the SSL protocol in Figure 10.4. This protocol does not allow
Bob to remain anonymous, since his certificate identifies him.

a. Modify the SSL session protocol so that Bob can remain anony-

mous with respect to a passive attacker.

b. Can you solve part a without increasing the number of messages?

9. The SSL protocol discussed in Section 10.3 uses public key cryptogra-
phy-

a. Design a variant of SSL that is based on symmetric key cryptog-
raphy.

b. What is the primary disadvantage of using symmetric keys for an
SSL-like protocol?

10. Use Wireshark [328] to capture SSL authentication packets.

a. Identify the packets that correspond to the messages shown in
Figure 10.4.

10.9 PROBLEMS 393

b. What do the other SSL packets contain?

11. SSL and IPSec are both designed to provide security over the network.

a. What are the primary advantages of SSL over IPSec?

b. What are the primary advantages of IPSec over SSL?

12. SSL and IPSec are both designed to provide security over the network.

a. What are the significant similarities between the two protocols?
b. What are the significant differences between the two protocols?

13. Consider a man-in-the-middle attack on an SSL session between Alice
and Bob.

a. At what point should this attack fail?

b. What mistake might Alice reasonably make that would allow this
attack to succeed?

14. In Kerberos, Alice's key KA, which is shared by Alice and the KDC, is
computed (on Alice's computer) as KA = /i(Alice's password). Al-
ternatively, this could have been implemented as follows. Initially,
the key KA is randomly generated on Alice's computer. The key is
stored on Alice's computer as E(KA, K) where the key K is computed
as K = h(Alice's password). The key KA is also stored on the KDC.

a. What are the advantages to this alternate approach of generating
and storing KA?

b. Are there any disadvantages to computing and storing E(KA, K)l

15. Consider the Kerberos interaction discussed in Section 10.5.2.

a. Why is the ticket to Bob encrypted with KQI
b. Why is "Alice" included in the (encrypted) ticket to Bob?

c. In the REPLY message, why is the ticket to Bob encrypted with
the key SU?

d. Why is the ticket to Bob sent to Alice (who must then forward it
to Bob) instead of being sent directly to Bob?

16. Consider the Kerberized login discussed in this chapter.

a. What is a TGT and what is its purpose?

b. Why is the TGT sent to Alice instead of being stored on the KDC?

c. Why is the TGT encrypted with KKOC?

394 REAL-WORLD SECURITY PROTOCOLS

d. Why is the TGT encrypted with K& when it is sent from the KDC
to Alice's computer?

17. This problem deals with Kerberos.

a. Why can Alice remain anonymous when requesting a ticket to
Bob?

b. Why can Alice not remain anonymous when requesting a TGT
from the KDC?

c. Why can Alice remain anonymous when she sends the "ticket to
Bob" to Bob?

18. Suppose we use symmetric keys for authentication and each of N users
must be able to authenticate any of the other N — 1 users. Evidently,
such a system requires one symmetric key for each pair of users, or on
the order of N2 keys. On the other hand, if we use public keys, only N
key pairs are required, but we must then deal with PKI issues.

a. Kerberos authentication uses symmetric keys, yet only N keys are
required for N users. How is this accomplished?

b. In Kerberos, no PKI is required. But, in security, there is no free
lunch, so what's the tradeoff?

19. Dog race tracks often employ Automatic Betting Machines (ABMs),18

which are somewhat analogous to ATM machines. An ABM is a termi-
nal where Alice can place her own bets and scan her winning tickets.
An ABM does not accept or dispense cash. Instead, an ABM only ac-
cepts and dispenses vouchers. A voucher can also be purchased from a
special voucher machine for cash, but a voucher can only be redeemed
for cash by a human teller.

A voucher includes 15 hexadecimal digits, which can be read by a hu-
man or scanned by a machine—the machine reads a bar code on the
voucher. When a voucher is redeemed, the information is recorded in a
voucher database and a paper receipt is printed. For security reasons,
the (human) teller must submit the paper receipt which serves as the
physical record that the voucher was cashed.

A voucher is valid for one year from its date of issue. However, the
older that a voucher is, the more likely that it has been lost and will
never be redeemed. Since vouchers are printed on cheap paper, they
are often damaged to the point where they fail to scan, and they can
even be difficult for human tellers to process manually.

Not to be confused with anti-ballistic missiles.

10.9 PROBLEMS 395

A list of all outstanding vouchers is kept in a database. Any human
teller can read the first 10 hex digits from this database for any out-
standing voucher. But, for security reasons, the last five hex digits are
not available to tellers.

If Ted, a teller, is asked to cash a valid voucher that doesn't scan, he
must manually enter its hex digits. Using the database, it's generally
easy for Ted to match the first 10 hex digits. However, the last five hex
digits must be determined from the voucher itself. Determining these
last five hex digits can be difficult, particularly if the voucher is in poor
condition.

To help overworked tellers, Carl, a clever programmer, added a wildcard
feature to the manual voucher entry program. Using this feature, Ted
(or any other teller) can enter any of the last five hex digits that are
readable and "*" for any unreadable digits. Carl's program will then
inform Ted whether an outstanding voucher exists that matches in the
digits that were entered, ignoring any position with a "*." Note that
this program does not give Ted the missing digits, but instead, it simply
returns a yes or no answer.

Suppose that Ted is given a voucher for which none of the last five hex
digits can be read.

a. Without the wildcard feature, how many guesses must Ted make,
on average, to recover the last five hex digits of this particular
voucher?

b. Using the wildcard feature, how many guesses, on average, must
Ted make to recover the last 5 hex digits of this voucher?

c. How could Dave, a dishonest teller, exploit the wildcard feature to
cheat the system?

d. What is the risk for Dave? That is, how might Dave get caught
under the current system?

e. Modify the current system so that it allows tellers to securely and
efficiently deal with vouchers that fail to scan automatically, but
also makes it impossible (or at least more difficult) for Dave to
cheat the system.

20. IPSec is a much more complex protocol than SSL, which is often at-
tributed to the fact that IPSec is over-engineered. Suppose that IPSec
was not over-engineered. Then would IPSec still be more complex than
SSL? In other words, is IPSec inherently more complex than SSL, or
not?

396 REAL-WORLD SECURITY PROTOCOLS

21. IKE has two phases, Phase 1 and Phase 2. In IKE Phase 1, there are
four key options and, for each of these, there is a main mode and an
aggressive mode.

a. What are the primary differences between main mode and aggres-
sive mode?

b. What is the primary advantage of the Phase 1 digital signature
key option over Phase 1 public key encryption?

22. IKE has two phases, Phase 1 and Phase 2. In IKE Phase 1, there are
four key options and, for each of these, there is a main mode and an
aggressive mode.

a. Explain the difference between Phase 1 and Phase 2.

b. What is the primary advantage of Phase 1 public key encryption
main mode over Phase 1 symmetric key encryption main mode?

23. IPSec cookies are also known as anti-clogging tokens.

a. What is the intended security purpose of IPSec cookies?

b. Why do IPSec cookies fail to fulfill their intended purpose?

c. Redesign the IPSec Phase 1 symmetric key signing main mode so
that the IPSec cookies do serve their intended purpose.

24. In IKE Phase 1 digital signature main mode, proof^ and proofg are
signed by Alice and Bob, respectively. However, in IKE Phase 1, public
key encryption main mode, proof^ and proofB are neither signed nor
encrypted with public keys. Why is it necessary to sign these values in
digital signature mode, yet it is not necessary to public key encrypt (or
sign) them in public key encryption mode?

25. As noted in the text, IKE Phase 1 public key encryption aggressive
mode19 allows Alice and Bob to remain anonymous. Since anonymity
is usually given as the primary advantage of main mode over aggressive
mode, is there any reason to ever use public key encryption main mode?

26. IKE Phase 1 uses ephemeral Diffie-Hellman for perfect forward secrecy
(PFS). Recall that in our example of PFS in Section 9.3.4 of Chapter 9,
we encrypted the Diffie-Hellman values with a symmetric key to prevent
the man-in-the-middle attack. However, the Diffie-Hellman values are
not encrypted in IKE. Is this a security flaw? Explain.

19Don't try saying "IKE Phase 1 public key encryption aggressive mode" all at once or
you might give yourself a hernia.

10.9 PROBLEMS 397

27. We say that Trudy is a passive attacker if she can only observe the
messages sent between Alice and Bob. If Trudy is also able to insert,
delete, or modify messages, we say that Trudy is an active attacker.
If, in addition to being an active attacker, Trudy is able to establish a
legitimate connection with Alice or Bob, then we say that Trudy is an
insider. Consider IKE Phase 1 digital signature main mode.

a. As a passive attacker, can Trudy determine Alice's identity?

b. As a passive attacker, can Trudy determine Bob's identity?

c. As an active attacker, can Trudy determine Alice's identity?

d. As an active attacker, can Trudy determine Bob's identity?

e. As an insider, can Trudy determine Alice's identity?

f. As an insider, can Trudy determine Bob's identity?

28. Repeat Problem 27 for symmetric key encryption, main mode.

29. Repeat Problem 27 for public key encryption, main mode.

30. Repeat Problem 27 for public key encryption, aggressive mode.

31. Recall that IPSec transport mode was designed for host-to-host commu-
nication, while tunnel mode was designed for firewall-to-firewall com-
munication.

a. Why does IPSec tunnel mode fail to hide the header information
when used from host to host?

b. Does IPSec tunnel mode also fail to hide the header information
when used from firewall to firewall? Why or why not?

32. Recall that IPSec transport mode was designed for host-to-host commu-
nication, while tunnel mode was designed for firewall-to-firewall com-
munication.

a. Can transport mode be used for firewall-to-firewall communica-
tion? Why or why not?

b. Can tunnel mode be used for host-to-host communication? Why
or why not?

33. ESP requires both encryption and integrity, yet it is possible to use ESP
for integrity only. Explain this apparent contradiction.

34. What are the significant differences, if any, between AH and ESP with
NULL encryption?

398 REAL-WORLD SECURITY PROTOCOLS

35. Suppose that IPSec is used from host to host as illustrated in Fig-
ure 10.16, but Alice and Bob are both behind firewalls. What problems,
if any, does IPSec create for the firewalls under the following assump-
tions.

a. ESP with non-NULL encryption is used.

b. ESP with NULL encryption is used.

c. AH is used.

36. Suppose that we modify WEP so that it encrypts each packet using RC4
with the key K, where K is the same key that is used for authentication.

a. Is this a good idea? Why or why not?

b. Would this approach be better or worse than Kjy = (IV, K), as
is actually done in WEP?

37. WEP is supposed to protect data sent over a wireless link. As discussed
in the text, WEP has many security flaws, one of which involves its use
of initialization vectors, or IVs. WEP IVs are 24 bits long. WEP uses
a fixed long-term key K. For each packet, WEP sends an IV in the
clear along with the encrypted packet, where the packet is encrypted
with a stream cipher using the key Kjy = (IV, K), that is, the IV is
pre-pended to the long-term key K. Suppose that a particular WEP
connection sends packets containing 1500 bytes over an 11 Mbps link.

a. If the IVs are chosen at random, what is the expected amount of
time until the first IV repeats? What is the expected amount of
time until some IV repeats?

b. If the IVs are not selected at random but are instead selected in
sequence, say, IV j = i, for i = 0 ,1 ,2 , . . . ,22 4 — 1, what is the
expected amount of time until the first IV repeats? What is the
expected amount of time until some IV is repeated?

c. Why is a repeated IV a security concern?

d. Why is WEP "unsafe at any key length" [321]? That is, why is
WEP no more secure if K is 256 bits than if K is 40 bits? Hint:
See [112] for more information.

38. On page 379 it is claimed that if Trudy knows the destination IP address
of a WEP-encrypted packet, she can change the IP address to any
address of her choosing, and the access point will send the packet to
Trudy's selected IP address.

a. Suppose that C is the encrypted IP address, P is the plaintext IP
address (which is known to Trudy), and X is the IP address where

10.9 PROBLEMS 399

Trudy wants the packet sent. In terms of C, P, and X, what will
Trudy insert in place of C?

b. What else must Trudy do for this attack to succeed?

39. WEP also incorporates a couple of security features that were only
briefly mentioned in the text. In this problem, we consider two of these
features.

a. By default, a WEP access point broadcasts its SSID, which acts
as the name (or ID) of the access point. A client must send the
SSID to the access point (in the clear) before it can send data to
the access point. It is possible to set WEP so that it does not
broadcast the SSID, in which case the SSID is supposed to act like
a password. Is this a useful security feature? Why or why not?

b. It is possible to configure the access point so that it will only accept
connections from devices with specified MAC addresses. Is this a
useful security feature? Why or why not?

40. After the terrorist attacks of September 11, 2001, it was widely reported
that the Russian government ordered all GSM base stations in Russia
to transmit all phone calls unencrypted.

a. Why would the Russian government have given such an order?

b. Are these news reports consistent with the technical description of

the GSM security protocol given in this chapter?

41. Modify the GSM security protocol, which appears in Figure 10.25, so
that it provides mutual authentication.

42. In GSM, each home network has an AuC database containing user
keys Ki. Instead, a process known as key diversification could be used.
Key diversification works as follows. Let ftbea secure cryptographic
hash function and let KM be a master key known only to the AuCs. In
GSM, each user has a unique ID known as an IMSI. In this key diversi-
fication scheme, a user's key Ki would be given by Ki = H{KM, IMSI),
and this key would be stored on the mobile. Then given any IMSI, the
AuC would compute the key as Ki = h(KM,ÌMSl).

a. What is the primary advantage of key diversification?

b. What is the primary disadvantage of key diversification?

c. Why do you think the designers of GSM chose not to employ key

diversification?

43. Give a secure one-message protocol that prevents cell phone cloning and
establishes a shared encryption key. Mimic the GSM protocol.

400 REAL-WORLD SECURITY PROTOCOLS

44. Give a secure two-message protocol that prevents cell phone cloning,
prevents a fake base station attack, and establishes a shared session
key. Mimic the GSM protocol.

Part IV

Software

This page intentionally left blank

Chapter 11

Software Flaws and Malware

If automobiles had followed the same development cycle as the computer,
a Rolls-Royce would today cost $100, get a million miles per gallon,

and explode once a year, killing everyone inside.
— Robert X. Cringely

My software never has bugs. It just develops random features.
— Anonymous

11.1 Introduction

Why is software an important security topic? Is it really on par with crypto,
access control, and protocols? For one thing, virtually all of information
security is implemented in software. If your software is subject to attack,
all of your other security mechanisms are vulnerable. In effect, software is
the foundation on which all other security mechanisms rest. We'll see that
software provides a poor foundation on which to build security—comparable
to building your house on quicksand.1

In this chapter, we'll discuss several software security issues. First, we
consider unintentional software flaws that can cause security problems [183].
Then we consider malicious software, or malware, which is intentionally de-
signed to be bad. We'll also discuss the future of malware, and we'll mention
a few other types of software-based attacks.

Software is a big subject, so we continue with software-related security
topics in the next two chapters. Even with three chapters worth of material
we can, as usual, do little more than scratch the surface.

'Or, in an analogy that is much closer to your fearless author's heart, it's like building
a house on a hillside in earthquake country.

403

404 SOFTWARE FLAWS AND MALWARE

11.2 Software Flaws

Bad software is everywhere [143]. For example, the NASA Mars Lander,
which cost $165 million, crashed into Mars due to a software error related to
converting between English and metric units of measure [150]. Another infa-
mous example is the Denver airport baggage handling system. Bugs in this
software delayed the airport opening by 11 months at a cost of more than $1
million per day [122].2 Software failures also plagued the MV-22 Osprey, an
advanced military aircraft—lives were lost due to this faulty software [178].
Attacks on smart electric meters, which have the potential to incapacitate
the power grid, have been blamed on buggy software [127]. There are many
many more examples of such problems.

In this section, we're interested in the security implications of software
flaws. Since faulty software is everywhere, it shouldn't be surprising that the
bad guys have found ways to take advantage of this situation.

Normal users find software bugs and flaws more or less by accident. Such
users hate buggy software, but out of necessity, they've learned to live with
it. Users are surprisingly good at making bad software work.

Attackers, on the other hand, look at buggy software as an opportunity,
not a problem. They actively search for bugs and flaws in software, and they
like bad software. Attackers try to make software misbehave, and flaws can
prove very useful in this regard. We'll see that buggy software is at the core
of many (if not most) attacks.

It's generally accepted among computer security professionals that com-
plexity is the enemy of security [74], and modern software is extremely com-
plex. In fact, the complexity of software has far outstripped the abilities of
humans to manage the complexity. The number of lines of code (LOC) in
a piece of software is a crude measure of its complexity—the more lines of
code, the more complex. The numbers in Table 11.1 highlight the extreme
complexity of large-scale software projects.

Conservative estimates place the number of bugs in commercial software
at about 0.5 per 1,000 LOC [317]. A typical computer might have 3,000
executable files, each of which contains the equivalent of, perhaps, 100,000
LOC, on average. Then, on average, each executable has 50 bugs, which
implies about 150,000 bugs living in a single computer.

If we extend this calculation to a a medium-sized corporate network with
30,000 nodes, we'd expect to find about 4.5 billion bugs in the network. Of

2The automated baggage handling system proved to be an "unmitigated failure" [87]
and it was ultimately abandoned in 2005. As an aside, it's interesting to note that this
expensive failure was only the tip of the iceberg in terms of cost overruns and delays for
the overall airport project. And, you might be wondering, what happened to the person
responsible for this colossal waste of taxpayer money? He was promoted to U.S. Secretary
of Transportation [170].

11.2 SOFTWARE FLAWS 405

Table 11.1: Approximate Lines of Code

System
Netscape

Space shuttle
Linux kernel 2.6.0

Windows XP
Mac OS X 10.4

Boeing 777

LOC
17 million
10 million
5 million

40 million
86 million

7 million

course, many of these bugs would be duplicates, but 4.5 billion is still a
staggering number.

Now suppose that only 10% of bugs are security critical and that only 10%
of these are remotely exploitable. Then our typical corporate network "only"
has 4.5 million serious security flaws that are directly attributable to bad
software!

The arithmetic of bug counting is good news for the bad guys and very bad
news for the good guys. We'll return to this topic later, but the crucial point
is that we are not going to eliminate software security flaws any time soon—
if ever. We'll discuss ways to reduce the number and severity of flaws, but
many flaws will inevitably remain. The best we can realistically hope for is to
effectively manage the security risk created by buggy and complex software.
In almost any real-world situation, absolute security is often unobtainable,
and software is definitely no exception.3

In this section, we'll focus on program flaws. These are unintentional
software bugs that can have security implications. We'll consider the following
specific classes of flaws.

• Buffer overflow

• Race conditions

• Incomplete mediation

After covering these unintentional flaws, we'll turn our attention to malicious
software, or malware. Recall that malware is designed to do bad things.

A programming mistake, or bug, is an error. When a program with an
error is executed, the error might (or might not) cause the program to reach

3One possible exception is cryptography—if you use strong crypto, and use it correctly,
you are as close to absolutely secure as you will ever be. However, crypto is usually only
one part of a security system, so even if your crypto is perfect, many vulnerabilities will
likely remain. Unfortunately, people often equate crypto with information security, which
leads some to mistakenly expect absolute security.

406 SOFTWARE FLAWS AND MALWARE

an incorrect internal state, which is known as a fault A fault might (or
might not) cause the system to depart from its expected behavior, which is a
failure [235]. In other words, an error is a human-created bug, while a fault
is internal to the software, and a failure is externally observable.

For example, the C program in Table 11.2 has an error, since buffer [20]
has not been allocated. This error might cause a fault, where the program
reaches an incorrect internal state. If a fault occurs, it might lead to a failure,
where the program behaves incorrectly (e.g., the program crashes). Whether
a fault occurs, and whether this leads to a failure, depends on what resides in
the memory location where buffer [20] is written. If that particular mem-
ory location is not used for anything important, the program might execute
normally, which makes debugging challenging.

Table 11.2: A Flawed Program

in t main(){
in t buffer [10];
buffer [20] = 3 7 ; }

Distinguishing between errors, faults, and failures is a little too pedantic
for our purposes. So, for the remainder of this section, we use the term flaw
as a synonym for all three. The severity should be apparent from context.

One of the primary goals in software engineering is to ensure that a pro-
gram does what it's supposed to do. However, for software to be secure, a
much higher standard is required—secure software software must do what it's
supposed to do and nothing more [317]. It's difficult enough just trying to
ensure that a program does what it's supposed to do. Trying to ensure that
a program does "nothing more" is asking for a lot more.

Next, we'll consider three specific types of program flaws that can create
significant security vulnerabilities. The first of these is the infamous stack-
based buffer overflow, also known as smashing the stack. Stack smashing has
been called the attack of the decade for the 1990s [14] and it's likely to be
the attack of the decade for the current decade, regardless of which decade
happens to be current. There are several variants of the buffer overflow
attack we discuss. These variants are considered in problems at the end of
the chapter.

The second class of software flaws we'll consider are race conditions. These
are common, but generally much more difficult to exploit than buffer over-
flows. The third major software vulnerability that we consider is incomplete
mediation. This is the flaw that often makes buffer overflow conditions ex-
ploitable. There are other types of software flaws, but these three represent
the most common sources of problems.

11.2 SOFTWARE FLAWS 407

11.2.1 Buffer Overflow

Alice says, "My cup runneth over, what a mess. "
Trudy says, "Alice's cup runneth over, what a blessing."

— Anonymous

Before we discuss buffer overflow attacks in detail, let's consider a scenario
where such an attack might arise. Suppose that a Web form asks the user
to enter data, such as name, age, date of birth, and so on. The entered
information is then sent to a server and the server writes the data entered
in the "name" field to a buffer4 that can hold N characters. If the server
software does not verify that the length of the name is at most N characters,
then a buffer overflow might occur.

It's reasonably likely that any overflowing data will overwrite something
important and cause the computer to crash (or thread to die). If so, Trudy
might be able to use this flaw to launch a denial of service (DoS) attack.
While this could be a serious issue, we'll see that a little bit of cleverness on
Trudy's part can turn a buffer overflow into a much more devastating attack.
Specifically, it is sometimes possible for Trudy to execute code of her choosing
on the affected machine. It's remarkable that a common programming bug
can lead to such an outcome.

Consider again the C source code that appears in Table 11.2. When
this code is executed, a buffer overflow occurs. The severity of this par-
ticular buffer overflow depends on what resided in memory at the location
corresponding to buffer [20] before it was overwritten. The buffer overflow
might overwrite user data or code, or it could overwrite system data or code,
or it might overwrite unused space.

Consider, for example, software that is used for authentication. Ulti-
mately, the authentication decision resides in a single bit. If a buffer overflow
overwrites this authentication bit, then Trudy can authenticate herself as,
say, Alice. This situation is illustrated in Figure 11.1, where the "F" in the
position of the boolean flag indicates failed authentication.

suffer

Boolean flag

u

Figure 11.1: Buffer and a Boolean Flag

4Why is it a "buffer" and not an "array"? Obviously, it's because we're talking about
buffer overflow, not array overflow...

408 SOFTWARE FLAWS AND MALWARE

If a buffer overflow overwrites the memory position where the boolean flag
is stored, Trudy can overwrite "F" (i.e., a 0 bit) with "T" (i.e., a 1 bit), and
the software will believe that Trudy has been authenticated. This attack is
illustrated in Figure 11.2.

Figure 11.2: Simple Buffer Overflow

Before we can discuss the more sophisticated forms of the buffer over-
flow attack, we give a quick overview of memory organization for a typical
modern processor. A simplified view of memory—which is sufficient for our
purposes—appears in Figure 11.3. The text section is for code, while the data
section holds static variables. The heap is for dynamic data, while the stack
can be viewed as "scratch paper" for the processor. For example, dynamic
local variables, parameters to functions, and the return address of a function
call are all stored on the stack. The stack pointer, or SP, indicates the top
of the stack. Notice that the stack grows up from the bottom in Figure 11.3,
while the heap grows down.

Figure 11.3: Memory Organization

11.2.1.1 Smashing the Stack

Smashing the stack refers to a particularly devastating attack that relies on a
buffer overflow. For a stack smashing attack, Trudy is interested in the stack

11.2 SOFTWARE FLAWS 409

during a function call. To see how the stack is used during a function call,
consider the simple example in Table 11.3.

Table 11.3: Code Example

void func(int a, in t b){
char buffer[10] ;

}
void main(){

func (l , 2) ;

}

When the function fune in Table 11.3 is called, the values that are pushed
onto the stack appear in Figure 11.4. Here, the stack is being used to provide
space for the array buffer while the function executes. The stack also holds
the return address where control will resume after the function finishes exe-
cuting. Note that buffer is positioned above the return address on the stack,
that is, buffer is pushed onto the stack after the return address. As a result,
if the buffer overflows, the overflowing data will overwrite the return address.
This is the crucial fact that makes the buffer overflow attack so lethal.

Figure 11.4: Stack Example

The buffer in Table 11.3 holds 10 characters. What happens if we put
more than 10 characters into buffer? The buffer will overflow, analogous to
the way that a 5-gallon gas tank will overflow if we try to add 10 gallons of
gas. In both cases, the overflow will likely cause a mess. In the buffer overflow
case, Figure 11.4 shows that the buffer will overflow into the space where the

410 SOFTWARE FLAWS AND MALWARE

return address is located, thereby "smashing" the stack. Our assumption
here is that Trudy has control over the bits that go into buffer (e.g., the
"name" field in a Web form).

If Trudy overflows buffer so that the return address is overwritten with
random bits, the program will jump to a random memory location when
the function has finished executing. In this case, which is illustrated in Fig-
ure 11.5, the most likely outcome is that the program crashes.

Figure 11.5: Buffer Overflow Causes a Problem

Trudy might be satisfied with simply crashing a program. But Trudy is
clever enough to realize that there's much more potential to cause trouble in
this situation. Since Trudy can overwrite the return address with a random
address, can she also overwrite it with a specific address of her choosing?
Often, the answer is yes. If so, what specific address might Trudy want to
choose?

With some trial and error, Trudy can probably overwrite the return ad-
dress with the address of the start of buffer. Then the program will try to
"execute" the data stored in the buffer. Why might this be useful to Trudy?
Recall that Trudy can choose the data that goes into the buffer. So, if Trudy
can fill the buffer with "data" that is valid executable code, Trudy can exe-
cute this code on the victim's machine. The bottom line is that Trudy gets
to execute code of her choosing on the victim's computer. This has to be bad
for security. This clever version of the stack smashing attack is illustrated in
Figure 11.6.

It's worth reflecting on the buffer overflow attack illustrated in Figure 11.6.
Due to an unintentional programming error, Trudy can, in some cases, over-
write the return address, causing code of her choosing to execute on a remote
machine. The security implications of such an attack are mind-boggling.

11.2 SOFTWARE FLAWS 411

Figure 11.6: Evil Buffer Overflow

From Trudy's perspective, there are a couple of difficulties with this stack
smashing attack. First, Trudy may not know the precise address of the evil
code she has inserted into buffer, and second, she may not know the precise
location of the return address on the stack. Neither of these presents an
insurmountable obstacle.

Two simple tricks make a buffer overflow attack much easier to mount.
For one, Trudy can precede the injected evil code with a NOP "landing pad"
and, for another, she can insert the desired return address repeatedly. Then,
if any of the multiple return addresses overwrite the actual return address,
execution will jump to the specified address. And if this specified address
lands on any of the inserted NOPs, the evil code will be executed immediately
after the last NOP in the landing pad. This improved stack smashing attack
is illustrated in Figure 11.7.

For a buffer overflow attack to succeed, obviously the program must con-
tain a buffer overflow flaw. Not all buffer overflows are exploitable, but those
that are enable Trudy to inject code into the system. That is, if Trudy finds
an exploitable buffer overflow, she can execute code of her choosing on the
affected system. Trudy will probably have some work to do to develop a
useful attack, but it certainly can be done. And there are plenty of sources
available online to help Trudy hone her skills—the standard reference is [8].

11.2.1.2 Stack Smashing Example

In this section, we'll examine code that contains an exploitable buffer overflow
and we'll demonstrate an attack. Of course, we'll be working from Trudy's
perspective.

412 SOFTWARE FLAWS AND MALWARE

Figure 11.7: Improved Evil Buffer Overflow

Suppose that Trudy is confronted with a program that asks for a serial
number—a serial number that Trudy doesn't know. Trudy wants to use the
program, but she's too cheap to pay money to obtain a valid serial number.5

Trudy does not have access to the source code, but she does possess the
executable.

When Trudy runs the program and enters an incorrect serial number,
the program halts without providing any further information, as indicated in
Figure 11.8. Trudy proceeds to try a few different serial numbers, but, as
expected, she is unable to guess the correct serial number.

Figure 11.8: Serial Number Program

Trudy then tries entering unusual input values to see how the program
reacts. She is hoping that the program will misbehave in some way and that
she might have a chance of exploiting the incorrect behavior. Trudy realizes
she's in luck when she observes the result in Figure 11.9. This result indicates

5In the real world, Trudy would be wise to Google for a serial number. But let's assume
that Trudy can't find a valid serial number online.

11.2 SOFTWARE FLAWS 413

that the program has a buffer overflow. Note that 0x41 is the ASCII code for
the character "A." By carefully examining the error message, Trudy realizes
that she has overwritten exactly two bytes of the return address with the
character A.

Figure 11.9: Buffer Overflow in Serial Number Program

Trudy then disassembles6 the exe file and obtains the assembly code that
appears in Figure 11.10. The significant information in this code is the "Serial
number is correct" string, which appears at address 0x401034. If Trudy can
overwrite the return address with the address 0x401034, then the program
will jump to "Serial number is correct" and she will have obtained access to
the code, without having any knowledge of the correct serial number.

Figure 11.10: Disassembled Serial Number Program

But Trudy can't directly enter a hex address for the serial number, since
the input is interpreted as ASCII text. Trudy consults an ASCII table where
she finds that 0x401034 is "@~P4" in ASCII, where " T " is control-P. Confi-
dent of success, Trudy starts the program, then enters just enough characters

6We'll have more to say about disassemblers in the next chapter when we cover software
reverse engineering.

414 SOFTWARE FLAWS AND MALWARE

so that she is poised to overwrite the return address, and then she enters
"@~P4." To her surprise, Trudy obtains the results in Figure 11.11.

Figure 11.11: Failed Buffer Overflow Attack

A careful examination of the error message shows that the address where
the error arose was 0x341040. Apparently, Trudy caused the program to
jump to this address instead of her intended address of 0x401034. Trudy
notices that the intended address and the actual address are byte-reversed.
The problem here is that the machine Trudy is dealing with uses the little
endian convention, so that the low-order byte is first and the high-order byte
comes last. That is, the address that Trudy wants, namely, 0x401034, is
stored internally as 0x341040. So Trudy changes her attack slightly and
overwrites the return address with 0x341040, which in ASCII is "4"P@."
With this change, Trudy is successful, as shown in Figure 11.12.

Figure 11.12: Successful Buffer Overflow Attack

The point of this example is that without knowledge of the serial number,
and without access to the source code, Trudy was able to break the security
of the software. The only tool she used was a disassembler to determine the
address that she needed to use to overwrite the return address. In principle,
this address could be found by trial and error, although that would be tedious,
at best. If Trudy has the executable in her possession, she would be foolish
not to employ a disassembler—and Trudy is no fool.

For the sake of completeness, we provide the C source code, bo. c, corre-
sponding to the executable, bo.exe. This source code appears in Table 11.4.

11.2 SOFTWARE FLAWS 415

Table 11.4: Source Code for Serial Number Example

mainO

{
char in[75] ;
printf("\nEnter Serial Number\n");

scanfC'/.s", in);

if(!strncmp(in, "S123N456", 8))

{
printf("Serial number is correct An");

}
}

Again, Trudy was able to complete her buffer overflow attack without
access to the source code in Table 11.4. We provide the source code here for
reference.

Finally, note that in this buffer overflow example, Trudy did not execute
code on the stack. Instead, she simply overwrote the return address, which
caused the program to execute code that already existed at the specified
address. That is, no code injection was employed, which greatly simplfies the
attack. This version of stack smashing is usually referred to as a return-to-libc
attack.

11.2.1.3 Stack Smashing Prevention

There are several possible ways to prevent stack smashing attacks. One ap-
proach is to eliminate all buffer overflows from software. However, this is
more difficult than it sounds and even if we eliminate all such bugs from new
software, there is a huge base of existing software that is riddled with buffer
overflows.

Another option is to detect buffer overflows as they occur and respond
accordingly. Some programming languages do this automatically. Yet another
option is to not allow code to execute on the stack. Finally, if we randomize
the location where code is loaded into memory, then the attacker cannot know
the address where the buffer or other code is located, which would prevent
most buffer overflow attacks. In this section, we'll briefly discuss these various
options.

An easy way to minimize the damage caused by many stack-based buffer
overflows is to make the stack non-executable, that is, do not allow code to

416 SOFTWARE FLAWS AND MALWARE

execute on the stack. Some hardware (and many operating systems) support
this no execute, or NX bit [129]. Using the NX bit, memory can be flagged so
that code can't execute in specified locations. In this way the stack (as well
as the heap and data sections) can be protected from many buffer overflow
attacks. Recent versions of Microsoft Windows support the NX bit [311].

As the NX approach becomes more widely deployed and used, we should
see a decline in the number and severity of buffer overflow attacks. However,
NX will not prevent all buffer overflow attacks. For example, the return-to-
libc attack discussed in the previous section would not be affected. For more
information on NX and its security implications, see [173].

Using safe programming languages such as Java or C # will eliminate most
buffer overflows at the source. These languages are safe because at runtime
they automatically check that all memory accesses are within the declared
array bounds. Of course, there is a performance penalty for such checking,
and for that reason much code will continue to be written in C, particularly
for applications destined for resource-constrained devices. In contrast to these
safe languages, there are several C functions that are known to be unsafe and
these functions are the source of the vast majority of buffer overflow attacks.
There are safer alternatives to all of the unsafe C functions, so the unsafe
functions should never be used—see the problems at the end of the chapter
for more details.

Runtime stack checking can be used to prevent stack smashing attacks. In
this approach, when the return address is popped off of the stack, it's checked
to verify that it hasn't changed. This can be accomplished by pushing a
special value onto the stack immediately after the return address. Then when
Trudy attempts to overwrite the return address, she must first overwrite this
special value, which provides a means for detecting the attack. This special
value is usually known as a canary, in reference to the coal miner's canary.7

The use of a canary for stack smashing detection is illustrated in Figure 11.13.

Note that if Trudy can overwrite an anti-stack-smashing canary with itself,
then her attack will go undetected. Can we prevent the canary from being
overwritten with itself?

A canary can be a constant, or a value that depends on the return address.
A specific constant that is sometimes used is OxOOOaffOd. This constant
includes 0x00 as the first byte since this is the string terminating byte. Any
string that overflows a buffer and includes 0x00 will be terminated at that
point and no more of the stack will be overwritten. Consequently, an attacker
can't use a string input to overwrite the constant OxOOOaf f Od with itself, and
any other value that overwrites the canary will be detected. The other bytes
in this constant serve to prevent other types of buffer overflow attacks.

7Coal miners would take a canary with them underground into the mine. If the canary
died, the coal miners knew there was a problem with the air and they needed to get out of
the mine as soon as possible.

11.2 SOFTWARE FLAWS 417

Figure 11.13: Canary

Microsoft recently added a canary feature to its C++ compiler based on
the approach discussed in [246]. Any program compiled with the /GS com-
piler flag will use a canary—or, in Microsoft-speak, a "security cookie"—to
detect buffer overflows at runtime. But the initial Microsoft implementation
was apparently flawed. When the canary died, the program passed con-
trol to a user-supplied handler function. It was discovered that an attacker
could specify this handler function, thereby executing arbitrary code on the
victim machine [245], although the severity of this attack was disputed by
Microsoft [187]. Assuming the claimed attack was valid, then all buffer over-
flows compiled under the /GS option were exploitable, even those that would
not have been exploitable without the /GS option. In other words, the cure
was worse than the disease.

Another option for minimizing the effectiveness of buffer overflow attacks
is Address Space Layout Randomization, or ASLR [105]. This technique is
used in recent Windows operating systems and several other modern OSs.
ASLR relies on the fact that buffer overflow attacks are fairly delicate. That
is, to execute code on the stack, Trudy usually overwrites the return address
with a hard-coded specific address that causes execution to jump to the spec-
ified location. When ASLR is used, programs are loaded into more or less
random locations in memory, so that any address that Trudy has hard-coded
into her attack is only likely to be correct a small percentage of the time.
Then Trudy's attack will only succeed a correspondingly small percentage of
the time.

However, in practice, only a relatively small number of "random" layouts
are used. Vista, for example, uses 256 distinct layouts and, consequently,

418 SOFTWARE FLAWS AND MALWARE

a given buffer overflow attacks should have a natural success probability of
about 1/256. However, due to a weakness in the implementation, Vista does
not choose from these 256 possible layouts uniformly, which results in a sig-
nificantly greater chance of success for a clever attacker [324]. In addition, a
so-called de-randomization attack on certain specific ASLR implementations
is discussed in [263].

11.2.1.4 Buffer Overflow: The Last Word

Buffer overflow was unquestionably the attack of the decade for each of the
past several decades. For example, buffer overflow has been the enabling
vulnerability in many major malware outbreaks. This, in spite of the fact
that buffer overflow attacks have been well known since the 1970s, and it's
possible to prevent most such attacks by using the NX bit approach and/or
safe programming languages and/or ASLR. Even with an unsafe language
such as C, buffer overflow attacks can be greatly reduced by using the safer
versions of the unsafe functions.

Can we hope to relegate buffer overflow attacks to the scrapheap of his-
tory? Developers must be educated, and tools for preventing and detecting
buffer overflow conditions must be used. If it's available on a given plat-
form, the NX bit should certainly be employed and ASLR is a very promising
technology. Unfortunately, buffer overflows will remain a problem for the fore-
seeable future because of the large amount of legacy code and older machines
that will continue to be in service.

11.2.2 Incomplete Mediat ion

The C function s t rcpy(buffer , input) copies the contents of the input
string input to the array buffer. As we discovered above, a buffer overflow
will occur if the length of input is greater than the length of buffer. To pre-
vent such a buffer overflow, the program must validate the input by checking
the length of input before attempting to write it to buffer. Failure to do so
is an example of incomplete mediation.

As a somewhat more subtle example, consider data that is input to a Web
form. Such data is often transferred to the server by embedding it in a URL,
so that's the method we'll employ here. Suppose the input is validated on
the client before constructing the required URL.

For example, consider the following URL:

h t tp ://www.things.com/orders/final&custID=l12&
num=55A&qty=20&price=10&shipping=5&total=205

On the server, this URL is interpreted to mean that the customer with ID
number 112 has ordered 20 of item number 55, at a cost of $10 each, with

11.2 SOFTWARE FLAWS 419

a $5 shipping charge, giving a total cost of $205. Since the input was checked
on the client, the developer of the server software believes it would be wasted
effort to check it again on the server.

However, instead of using the client software, Trudy can directly send a
URL to the server. Suppose Trudy sends the following URL to the server:

h t t p ://www.things.com/orders/final&custID=112&
num=55A&qty=20&price=10&shipping=5&total=25

If the server doesn't bother to validate the input, Trudy can obtain the same
order as above, but for the bargain basement price of $25 instead of the
legitimate price of $205.

Recent research [79] revealed numerous buffer overflows in the Linux ker-
nel, and most of these were due to incomplete mediation. This is perhaps
somewhat surprising since the Linux kernel is usually considered to be very
good software. After all, it is open source, so anyone can look for flaws in
the code (we'll have more to say about this in the next chapter) and it is the
kernel, so it must have been written by experienced programmers. If these
software flaws are common in such code, they are undoubtedly more common
in most other code.

There are tools available to help find likely cases of incomplete mediation.
These tools should be more widely used, but they are not a cure-all since this
problem can be subtle, and therefore difficult to detect automatically. As
with most security tools, these tools can also be useful for the bad guys.

11.2.3 Race Condit ions

Ideally, security processes should be atomic, that is, they should occur all
at once. So-called race conditions can arise when a security-critical process
occurs in stages. In such cases, an attacker may be able to make a change
between the stages and thereby break the security. The term race condition
refers to a "race" between the attacker and the next stage of the process,
although it's not so much a race as a matter of careful timing for the attacker.

The race condition that we'll consider occurs in an outdated version of
the Unix command mkdir, which creates a new directory. With this version
of mkdir, the directory is created in stages—there is a stage that determines
authorization followed by a stage that transfers ownership. If Trudy can make
a change after the authorization stage but before the transfer of ownership,
then she can, for example, become the owner of some directory that she
should not be able to access.

The way that this version of mkdir is supposed to work is illustrated in
Figure 11.14. Note that mkdir is not atomic and that is the source of the
race condition.

420 SOFTWARE FLAWS AND MALWARE

Figure 11.14: How mkdir is Supposed to Work

Trudy can exploit this particular mkdir race condition if she can some-
how implement the attack that is illustrated in Figure 11.15. In this attack
scenario, after the space for the new directory is allocated, a link is estab-
lished from the the password file (which Trudy is not authorized to access) to
this newly created space, before ownership of the new directory is transferred
to Trudy. Note that this attack is not really a race, but instead it requires
careful (or lucky) timing by Trudy.

Figure 11.15: Attack on mkdir Race Condition

Today, race conditions are probably fairly common and with the trend
towards increased parallelism, they are sure to become even more preva-
lent. However, real-world attacks based on race conditions are rare—attackers
clearly favor buffer overflows.

Why are attacks based on race conditions a rarity? For one thing, exploit-
ing a race condition requires careful timing. In addition, each race condition
is unique, so there is no standard formula for such an attack. In comparison
to, say, buffer overflow attacks, race conditions are certainly more difficult to
exploit. Consequently, as of today buffer overflows are the low hanging fruit
and are therefore favored by attackers. However, if the number of buffer over-
flows is reduced, or buffer overflows are made sufficiently difficult to exploit,
it's a safe bet that we will see a corresponding increase in attacks based on
race conditions. This is yet another illustration of Stamp's Principle: there
is job security in security.

11.3 MALWARE 421

11.3 Malware

Solicitations malefactors!
— Plankton

In this section, we'll discuss software that is designed to break security. Since
such software is malicious in its intent, it goes by the name of malware.
Here, we mostly just cover the basics—for more details, the place to start is
Aycock's fine book [21].

Malware can be subdivided into many different categories. We'll use the
following classification system, although there is considerable overlap between
the various types.

• A virus is malware that relies on someone or something else to propagate
from one system to another. For example, an email virus attaches itself
to an email that is sent from one user to another. Until recently, viruses
were the most popular form of malware.8

• A worm is like a virus except that it propagates by itself without the
need for outside assistance. This definition implies that a worm uses a
network to spread its infection.

• A trojan horse, or trojan, is software that appears to be one thing but
has some unexpected functionality. For example, an innocent-looking
game could do something malicious while the victim is playing.

• A trapdoor or backdoor allows unauthorized access to a system.

• A rabbit is a malicious program that exhausts system resources. Rabbits
could be implemented using viruses, worms, or other means.

• Spyware is a type of malware that monitors keystrokes, steals data or
files, or performs some similar function [22].

Generally, we won't be too concerned with placing a particular piece of mal-
ware into its precise category. We'll use the term virus as shorthand for a
virus, worm, or other such malware. It is worth noting that many "viruses"
(in popular usage of the term) are not viruses in the technical sense.

Where do viruses live on a system? It should come as no surprise that boot
sector viruses live in the boot sector, where they are able to take control early
in the boot process. Such a virus can then take steps to mask its presence
before it can be detected. From a virus writer's perspective, the boot sector
is a good place to be.

8The term "virus" is sometimes reserved for parasitic malware, that is, malware that
relies on other code to perform its intended function.

422 SOFTWARE FLAWS AND MALWARE

Another class of viruses are memory resident, meaning that they stay in
memory. Rebooting the system may be necessary to flush these viruses out.
Viruses also can live in applications, macros, data, library routines, compilers,
debuggers, and even in virus checking software.

By computing standards, malware is ancient. The first substantive work
on viruses was done by Fred Cohen in the 1980s [62], who clearly demon-
strated that malware could be used to attack computer systems.9

Arguably, the first virus of any significance to appear in the wild was
the so-called Brain virus of 1986. Brain did nothing malicious, and it was
considered little more than a curiosity. As a result, it did not awaken people to
the security implications of malware. That complacency was shaken in 1988
when the Morris Worm appeared. In spite of its early date, the Morris Worm
remains one of the more interesting pieces of malware to date, and we'll have
more to say about it below. The other examples of malware that we'll discuss
in some detail are Code Red, which appeared in 2001, and SQL Slammer,
which appeared in January of 2003. We'll also present a simple example of
a trojan and we'll discuss the future of malware. For more details on many
aspects of malware—including good historical insights—see [66].

11.3.1 Brain

The Brain virus of 1986 was more annoying than harmful. Its importance lies
in the fact that it was first, and as such it became a prototype for many later
viruses. But because it was not malicious, there was little reaction by users.
In retrospect, Brain provided a clear warning of the potential for malware to
cause damage, but at the time that warning was mostly ignored. In any case,
computing systems remained extremely vulnerable to malware.

Brain placed itself in the boot sector and other places on the system. It
then screened all disk access so as to avoid detection and to maintain its
infection. Each time the disk was read, Brain would check the boot sector
to see if it was infected. If not, it would reinstall itself in the boot sector
and elsewhere. This made it difficult to completely remove the virus. For
more details on Brain, see Chapter 7 of Robert Slade's excellent history of
viruses [66].

11.3.2 Morris Worm

Information security changed forever when the eponymous Morris Worm at-
tacked the Internet in 1988 [37, 229]. It's important to realize that the Inter-
net of 1988 was nothing like the Internet of today. Back then, the Internet was
populated by academics who exchanged email and used t e l n e t for remote

9 Cohen credited Len Adleman (the "A" in RSA) with coining the term "virus."

11.3 MALWARE 423

access to supercomputers. Nevertheless, the Internet had reached a critical
mass that made it vulnerable to self-sustaining worm attacks.

The Morris Worm was a cleverly designed and sophisticated piece of soft-
ware that was written by a lone graduate student at Cornell University.10

Morris claimed that his worm was a test gone bad. In fact, the most serious
consequence of the worm was due to a flaw (according to Morris). In other
words, the worm had a bug.

The Morris Worm was apparently supposed to check whether a system
was already infected before trying to infect it. But this check was not always
done, and so the worm tried to re-infect already infected systems, which led
to resource exhaustion. So the (unintended) malicious effect of the Morris
Worm was essentially that of a so-called rabbit.

Morris' worm was designed to do the following three things.

• Determine where it could spread its infection

• Spread its infection wherever possible

• Remain undiscovered

To spread its infection, the Morris worm had to obtain remote access
to machines on the network. To gain access, the worm attempted to guess
user account passwords. If that failed, it tried to exploit a buffer overflow
in fingerd (part of the Unix f inger utility), and it also tried to exploit a
trapdoor in sendmail. The flaws in f ingerd and sendmail were well known
at the time but not often patched.

Once access had been obtained to a machine, the worm sent a bootstrap
loader to the victim. This loader consisted of 99 lines of C code that the
victim machine compiled and executed. The bootstrap loader then fetched
the rest of the worm. In this process, the victim machine even authenticated
the sender.

The Morris worm went to great lengths to remain undetected. If the trans-
mission of the worm was interrupted, all of the code that had been transmitted
was deleted. The code was also encrypted when it was downloaded, and the
downloaded source code was deleted after it was decrypted and compiled.
When the worm was running on a system, it periodically changed its name
and process identifier (PID), so that a system administrator would be less
likely to notice anything unusual.

It's no exaggeration to say that the Morris Worm shocked the Internet
community of 1988. The Internet was supposed to be able to survive a nuclear
attack, yet it was brought to its knees by a graduate student and a few

10As if to add a conspiratorial overtone to the the entire affair, Morris' father worked at
the super-secret National Security Agency at the time [248].

424 SOFTWARE FLAWS AND MALWARE

hundred lines of C code. Few, if any, had imagined that the Internet was so
vulnerable to such an attack.

The results would have been much worse if Morris had chosen to have
his worm do something truly malicious. In fact, it could be argued that the
greatest damage was caused by the widespread panic the worm created—
many users simply pulled the plug, believing it to be the only way to protect
their system. Those who stayed online were able to receive some information
and therefore recovered more quickly than those who chose to rely on the
infallible "air gap" firewall.

As a direct result of the Morris Worm, the Computer Emergency Re-
sponse Team (CERT) [51] was established, which continues to be a primary
clearinghouse for timely computer security information. While the Morris
Worm did result in increased awareness of the vulnerability of the Internet,
curiously, only limited actions were taken to improve security. This event
should have served as a wakeup call and could well have led to a complete
redesign of the security architecture of the Internet. At that point in his-
tory, such a redesign effort would have been relatively easy, whereas today
it is completely infeasible. In that sense, the Morris Worm can be seen as a
missed opportunity.

After the Morris Worm, viruses became the mainstay of malware writers.
Only relatively recently have worms reemerged in a big way. Next, we'll
consider two worms that indicate some of the trends in malware.

11.3.3 Code Red

When Code Red appeared in July of 2001, it infected more than 300,000
systems in about 14 hours. Before Code Red had run its course, it infected
several hundred thousand more, out of an estimated 6,000,000 susceptible
systems worldwide. To gain access to a system, the Code Red worm exploited
a buffer overflow in Microsoft IIS server software. It then monitored traffic
on port 80, looking for other potential targets.

The action of Code Red depended on the day of the month. From day 1
to 19, it tried to spread its infection, then from day 20 to 27 it attempted a
distributed denial of service (DDoS) attack on www.whitehouse.gov. There
were many copycat versions of Code Red, one of which included a trapdoor
for remote access to infected systems. After infection, this variant flush all
traces of the worm, leaving only the trapdoor.

The speed at which Code Red infected the network was something new
and, as a result, it generated a tremendous amount of hype [72]. For example,
it was claimed that Code Red was a "beta test for information warfare" [235].
However, there was (and still is) no evidence to support such claims or any
of the other general hysteria that surrounded the worm.

11.3 MALWARE 425

11.3.4 SQL Slammer

The SQL Slammer worm burst onto the scene in January of 2003, when it
infected at least 75,000 systems within 10 minutes. At its peak, the number
of Slammer infections doubled every 8.5 seconds [209].

The graphs in Figure 11.16 show the increase in Internet traffic as a result
of Slammer. The graph on the bottom shows the increase over a period of
hours (note the initial spike), while the graph on the top shows the increase
over the first five minutes.

Hours After Outbreak

Figure 11.16: Slammer and Internet Traffic

The reason that Slammer created such a spike in Internet traffic is that
each infected site searched for new susceptible sites by randomly generating IP
addresses. A more efficient search strategy would have made more effective
use of the available bandwidth. We'll return to this idea below when we
discuss the future of malware.

It's been claimed (with good supporting evidence) that Slammer spread
too fast for its own good, and effectively burned out the available bandwidth
on the Internet [92]. In other words, if Slammer had been able to throttle

426 SOFTWARE FLAWS AND MALWARE

itself slightly, it could have ultimately infected more systems and it might
have caused significantly more damage.

Why was Slammer so successful? For one thing, the entire worm fit into
a single 376-by te UDP packet. Firewalls are often configured to let sporadic
packets through, on the theory that a single small packet can do no harm by
itself. The firewall then monitors the "connection" to see whether anything
unusual occurs. Since it was generally expected that much more that 376
bytes would be required for an attack, Slammer succeeded in large part by
defying the assumptions of the security experts.

11.3.5 Trojan Example

In this section, we'll present a trojan, that is, a program that has some
unexpected function. This trojan comes from the Macintosh world, and it's
totally harmless, but its creator could just as easily have had this program
do something malicious [103]. In fact, the program could have done anything
that a user who executed the program could do.

This particular trojan appears to be audio data, in the form of an mp3 file
that we'll name f reeMusic .mp3. The icon for this file appears in Figure 11.17.
A user would expect that double clicking on this file would automatically
launch iTunes, and play the music contained in the mp3 file.

Figure 11.17: Icon for freeMusic.mp3

After double-clicking on the icon in Figure 11.17, iTunes launches (as
expected) and an mp3 file titled "Wild Laugh" is played (probably not
expected). Simultaneously, and unexpectedly, the message window in Fig-
ure 11.18 appears.

Figure 11.18: Unexpected Effect of freeMusic.mp3 Trojan

What just happened? This "mp3" file is a wolf in sheep's clothing—the
file freeMusic.mp3 is not an mp3 file at all. Instead it's an application (that

11.3 MALWARE 427

is, an executable file) that has had its icon changed so that it appears to be
an mp3 file. A careful look at freeMusic.mp3 reveals this fact, as shown in
Figure 11.19.

Figure 11.19: Trojan Revealed

Most users are unlikely to give a second thought to opening a file that
appears to be an mp3. This trojan only issues a harmless warning, but that's
because the author had no malicious intent and instead simply wanted to
illustrate a point [160].

11.3.6 Malware Detection

There are three general approaches that are used to detect malware. The first,
and most common, is signature detection, which relies on finding a pattern or
signature that is present in a particular piece of malware. A second approach
is change detection, which detects files that have changed. A file that has
unexpectedly changed might indicate an infection. The third approach is
anomaly detection, where the goal is to detect unusual or virus-like files or
behavior. We'll briefly discuss each of these approaches and consider their
relative advantages and disadvantages.

In Chapter 8, we discussed signature-based and anomaly-based intrusion
detection systems (IDSs). There are many parallels between IDSs and the
corresponding virus detection methods.

11.3.6.1 Signature Detection

A signature is generally a string of bits found in a file, which might include
wildcards. A hash value could also serve as a signature, but it would be less
flexible and easier for virus writers to defeat.

For example, according to [296], the signature used for the W32/Beast
virus is 83EB 0274 EBOE 740A 81EB 0301 0000. We can search for this sig-
nature in all files on a system. However, if we find the signature, we can't be
certain that we've found the virus, since other innocent files could contain the
same string of bits. If the bits in searched files were random, the chance of
such a false match would be 1/2112, which is negligible. However, computer

428 SOFTWARE FLAWS AND MALWARE

software and data is far from random, so there is probably some realistic
chance of a false match. This means that if a matching signature is found,
further testing may be required to be certain that it actually represents the
W32/Beast virus.

Signature detection is highly effective on malware that is known and for
which a common signature can be extracted. Another advantage of signature
detection is that it places a minimal burden on users and administrators,
since all that is required is to keep signature files up to date and periodically
scan for viruses.

A disadvantage of signature detection is that signature files can become
large—tens or hundreds of thousands of signatures is the norm—which can
make scanning slow. Also, the signature files must be kept up to date. A more
fundamental problem is that we can only detect known signatures. Even a
slight variant of a known virus might be missed.

Today, signature detection is by far the most popular malware detection
method. As a result, virus writers have developed some sophisticated means
for avoiding signature detection. We'll have more to say about this below.

11.3.6.2 Change Detection

Since malware must reside somewhere, if we detect a change somewhere on
a system, then it may indicate an infection. That is, if we detect that a file
has changed, it may be infected with a virus. We'll refer to this approach as
change detection.

How can we detect changes? Hash functions are useful in this regard.
Suppose we compute hashes of all files on a system and securely store these
hash values. Then at regular intervals we can recompute the hashes and
compare the new values with the stored values. If a file has changed in one
or more bits—as it will in the case of a virus infection—we'll find that the
computed hash does not match the previously computed hash value.

One advantage of change detection is that there are virtually no false
negatives, that is, if a file has been infected, we'll detect a change. Another
major advantage is that we can detect previously unknown malware (a change
is a change, whether it's caused by a known or unknown virus).

However, the disadvantages to change detection are many. Files on a
system often change and as a result there will be many false positives, which
places a heavy burden on users and administrators. If a virus is inserted into a
file that changes often, it will be more likely to slip through a change detection
regimen. And what should be done when a suspicious change is detected? A
careful analysis of log files might prove useful. But, in the end, it might be
necessary to fall back to a signature scan, in which case the advantages of
change detection have been largely negated.

11.3 MALWARE 429

11.3.6.3 Anomaly Detection

Anomaly detection is aimed at finding any unusual or virus-like or other
potentially malicious activity or behavior. We discussed this idea in detail
Chapter 8 when we covered intrusion detection systems (IDSs), so we only
briefly discuss the concepts here.

The fundamental challenge with anomaly detection lies in determining
what is normal and what is unusual, and being able to distinguish between
the two. Another serious difficulty is that the definition of normal can change,
and the system must adapt to such changes, or it will likely overwhelm users
with false alarms.

The major advantage of anomaly detection is that there is some hope of
detecting previously unknown malware. But, as with change detection, the
disadvantages are many. For one, anomaly detection is largely unproven in
practice. Also, as discussed in the IDS section of Chapter 8, a patient attacker
may be able to make an anomaly appear to be normal. In addition, anomaly
detection is not robust enough to be used as a standalone detection system,
so it is usually combined with a signature detection system.

In any case, many people have very high hopes for the ultimate success
of anomaly detection. However, today anomaly detection is primarily a chal-
lenging research problem rather than a practical security solution.

Next, we'll discuss some aspects of the future of malware. This discussion
should make it clear that better malware detection tools will be needed, and
sooner rather than later.

11.3.7 The Future of Malware

What does the future hold for malware? Below, we'll briefly consider a few
possible attacks. Given the resourcefulness of malware developers, we can
expect to see attacks based on these or similar ideas in the future [24, 289].

But before we discuss the future, let's briefly consider the past. Virus writ-
ers and virus detectors have been locked in mortal combat since the first virus
detection software appeared. For each advance in detection, virus writers have
responded with strategies that make their handiwork harder to detect.

One of the first responses of virus writers to the success of signature de-
tection systems was encrypted malware. If an encrypted worm uses a different
key each time it propagates, there will be no common signature. Often the
encryption is extremely weak, such as a repeated XOR with a fixed bit pat-
tern. The purpose of the encryption is not confidentiality, but to simply mask
any possible signature.

The Achilles heel of encrypted malware is that it must include decryp-
tion code, and this code is subject to signature detection. The decryption
routine typically includes very little code, making it more difficult to obtain

430 SOFTWARE FLAWS AND MALWARE

a signature, and yielding more cases requiring secondary testing. The net
result is that signature scanning can be applied, but it will be slower than for
unencrypted malware.

The next step in the evolution of malware was the use of polymorphic
code. In a polymorphic virus the body is encrypted and the decryption code
is morphed. Consequently, the signature of the virus itself (i.e., the body) is
hidden by encryption, while the decryption code has no common signature
due to the morphing.

Polymorphic malware can be detected using emulation. That is, suspi-
cious code can be executed in an emulator. If the code is malware, it must
eventually decrypt itself, at which point standard signature detection can be
applied to the body. This type of detection will be much slower than a simple
signature scan due to the emulation.

Metamorphic malware takes polymorphism to the limit. A metamorphic
worm mutates before infecting a new system.11 If the mutation is sufficient,
such a worm can likely avoid any signature-based detection system. Note
that the mutated worm must do the same thing as the original worm, but yet
its internal structure must be different enough to avoid detection. Detection
of metamorphic software is currently a challenging research problem [297].

Let's consider how a metamorphic worm might replicate [79]. First, the
worm could disassemble itself and then strip the resulting code to a base
form. Randomly selected blocks of code could be inserted into the assembly.
These variations could include, for example, rearranging jumps and inserting
dead code. The resulting code would then be assembled to obtain a worm
with the same functionality as the original, but it would be unlikely to have
a common signature.

While the metamorphic generator described in the previous paragraph
sounds plausible, in reality it is surprisingly difficult to produce highly meta-
morphic code. As of the time of this writing, the hacker community has
produce a grand total of one reasonably metamorphic generator. These and
related topics are discussed in the series of papers [193, 279, 312, 330].

Another distinct approach that virus writers have pursued is speed. That
is, viruses such as Code Red and Slammer have tried to infect as many ma-
chines as possible in as short of a time as possible. This can also be viewed as
an attack aimed at defeating signature detection, since a rapid attack would
not allow time for signatures to be extracted and distributed.

According to the late pop artist Andy Warhol, "In the future everybody
will be world-famous for 15 minutes" [301]. A Warhol worm is designed to
infect the entire Internet in 15 minutes or less. Recall that Slammer infected
a large number of systems in 10 minutes. Slammer burned out the available

11 Metamorphic malware is sometimes called "body polymorphic," since polymorphism is
applied to the entire virus body.

11.3 MALWARE 431

bandwidth due to the way that it searched for susceptible hosts, and as a
result, Slammer was too bandwidth-intensive to have infected the entire In-
ternet in 15 minutes. A true Warhol worm must do "better" than Slammer.
How is this possible?

One plausible approach is the following. The malware developer would do
preliminary work to develop an initial "hit list" of sites that are susceptible
to the particular exploit used by the worm. Then the worm would be seeded
with this hit list of vulnerable IP addresses. Many sophisticated tools exist
for identifying systems and these could help to pinpoint systems that are
susceptible to a given attack.

When this Warhol worm is launched, each of the sites on its initial hit list
will be infected since they are all known to be vulnerable. Then each of these
infected sites can scan a predetermined part of IP address space looking for
additional victims. This approach would avoid duplication and the resulting
wasted bandwidth that caused Slammer to bog down.

Depending on the size of the initial hit list, the approach described above
could conceivably infect the entire Internet in 15 minutes or less. No worm
this sophisticated has yet been seen in the wild. Even Slammer relied on
randomly generated IP addresses to spread its infection.

Is it possible to do "better" than a Warhol worm? That is, can the entire
Internet be infected in significantly less than 15 minutes? A flash worm is
designed to infect the entire Internet almost instantly.

Searching for vulnerable IP addresses is the slow part of any worm attack.
The Warhol worm described above uses a smarter search strategy, where it
relies on an initial list of susceptible systems. A flash worm could take this
approach to the limit by embedding all susceptible IP addresses into the
worm.

A great deal of work would be required to predetermine all vulnerable IP
addresses, but there are hacker tools available that would significantly reduce
the burden. Once all vulnerable IP addresses are known, the list could be
partitioned between several initial worm variants. This would still result in
large worms [79], but each time the worm replicates, it would split the list of
addresses embedded within it, as illustrated in Figure 11.20. Within a few
generations the worm would be reduced to a reasonable size. The strength of
this approach is that it results in virtually no wasted time or bandwidth.

It has been estimated that a well-designed flash worm could infect the
entire Internet in as little as 15 seconds! Since this is much faster than
humans could possibly respond, any defense against such an attack must
be automated. A conjectured defense against flash worms [79] would be to
deploy many personal intrusion detection systems and to have a master IDS
monitor these personal IDSs. When the master IDS detects unusual activity,
it can let it proceed on a few nodes, while temporarily blocking it elsewhere.
If the sacrificial nodes are adversely affected, then an attack is in progress,

432 SOFTWARE FLAWS AND MALWARE

Figure 11.20: A Flash Worm

and it can be blocked elsewhere. On the other hand, if it's a false alarm, the
other nodes are only delayed slightly. This defensive strategy shares many of
the challenges associated with anomaly-based intrusion detection systems, as
discussed in Chapter 8.

11.3.8 Cyber Diseases Versus Biological Diseases

It's currently fashionable to make biological analogies with computing. There
are many such analogies that are applied to the field of security. In the field
of malware and in particular, computer viruses, the analogy is fairly obvious.

There clearly are similarities between biological and computer "diseases."
For example, in nature, if there are too few susceptible individuals, a disease
will die out. A somewhat similar situation exists on the Internet, where too
few susceptible systems may not allow a worm to become self-sustaining,
particularly if the worm is randomly searching for vulnerable IP addresses.

There are, however, some significant differences between cyber diseases
and biological diseases. For example, there is virtually no sense of distance
on the Internet, so many of the models developed for biological diseases don't
apply to cyber diseases.12 Also, in nature, diseases attack more or less at
random, while in computer systems hackers often specifically target the most
desirable or vulnerable systems. As a result, computer attacks are potentially
more focused and damaging than biological diseases. The important point
here is that, although the biological analogy is useful, it cannot be taken too
literally.

Finally, we note in passing that cell phones have not been plagued with
malware to nearly the same degree as computer systems. Various explana-
tions for this phenomenon have been given, with two of the more plausible
being the relative diversity of mobile systems and inherently stronger security
architectures. For a discussion of the Android security architecture and some
of the difficulties of mounting a successful attack, see [211].

12However, with some cell phone attacks, proximity is required (e.g., attacks that rely
on Bluetooth) while network-based attacks are also possible. So, cell phone attacks could
include aspects of both biological viruses and computer viruses.

11.4 BOTNETS 433

11.4 Botnets

A botnet is a collection of a large number of compromised machines under
the control of a botmaster. The name derives from the fact that individual
compromised machines are known as bots (shorthand for robots). In the past,
such machines were often known as zombies.

Until recently, botmasters typically employed the Internet Relay Chat
(IRC) protocol to manage their bots. However, newer botnets often use Peer-
to-Peer (P2P) architectures since these are more difficult for authorities to
track and shut down.

Botnets have proven ideal tools for sending spam and for launching dis-
tributed denial of service (DDoS) attacks. For example, a botnet was used
in a highly-publicized denial of service attack on Twitter that was appar-
ently aimed at silencing one well-known blogger from the Republic of Geor-
gia [207].13

Botnets are a hot security topic, but at this point in time their activities
in the wild are not completely understood. For example, there are wildly
differing estimates for the sizes of various botnets [224].

Finally, it is often claimed that in the past most attacks were conducted
primarily for fame within the hacker community, or for ideological reasons, or
by script kiddies with little knowledge of what they were actually doing. That
is, attacks were essentially just malicious pranks. In contrast (or so the claim
goes), today attacks are primarily for profit. Some even believe that organized
crime is behind most current attacks. The profit motive is plausible since
earlier widespread attacks (Code Red, Slammer, etc.) were first and foremost
designed to make headlines, whereas botnets strive to remain undetected. In
addition, botnets are ideal for use in various subtle attack-for-hire scenarios.
Of course, you should always be skeptical of those who hype any supposed
threat, especially when they have a vested interest in the hype becoming
conventional wisdom.14

11.5 Miscellaneous Software-Based Attacks

In this section we'll consider a few software-based attacks that don't fit neatly
into any of our previous discussion. While there are numerous such attacks,
we'll restrict our attention to a few representative examples. The topics we'll
discuss are salami attacks, linearization attacks, time bombs, and the general
issue of trusting software.

13Of course, this raised suspicion that Russian government intelligence agencies were
behind the attack. However, the attack accomplished little, other than greatly increasing
the fame of the attackee, so it's difficult to believe that any intelligence agency would be so
stupid. On the other hand, "government intelligence" is an oxymoron.

14Or, more succinctly, "Beware the prophet seeking profit" [205].

434 SOFTWARE FLAWS AND MALWARE

11.5.1 Salami Attacks

In a salami attack, a programmer slices off a small amount of money from
individual transactions, analogous to the way that you might slice off thin
pieces from a salami.15 These slices must be difficult for the victim to detect.
For example, it's a matter of computing folklore that a programmer at a
bank can use a salami attack to slice off fractional cents leftover from interest
calculations. These fractional cents—which are not noticed by the customers
or the bank—are deposited in the programmer's account. Over time, such an
attack could prove highly lucrative for the dishonest programmer.

There are many confirmed cases of salami attacks. The following examples
all appear in [158]. In one documented case, a programmer added a few cents
to every employee payroll tax withholding calculation, but credited the extra
money to his own tax. As a result, this programmer got a hefty tax refund. In
another example, a rent-a-car franchise in Florida inflated gas tank capacity
so it could overcharge customers for gas. An employee at a Taco Bell location
reprogrammed the cash register for the late-night drive-through line so that
$2.99 specials registered as $0.01. The employee then pocketed the $2.98
difference—a rather large slice of salami!

In a particularly clever salami attack, four men who owned a gas station
in Los Angeles hacked a computer chip so that it overstated the amount of gas
pumped. Not surprisingly, customers complained when they had to pay for
more gas than their tanks could hold. But this scam was hard to detect, since
the gas station owners were clever. They had programmed the chip to give
the correct amount of gas whenever exactly 5 or 10 gallons was purchased,
because they knew from experience that inspectors usually ask for 5 or 10
gallons. It took multiple inspections before they were caught.

11.5.2 Linearization Attacks

Linearization is an approach that is applicable in a wide range of attacks, from
traditional lock picking to state-of-the-art crypt analysis. Here, we consider
an example related to breaking software, but it is important to realize that
this concept has wide application.

Consider the program in Table 11.5, which checks an entered number to
determine whether it matches the correct serial number. In this case, the
correct serial number happens to be S123N456. For efficiency, the program-
mer decided to check one character at a time and to quit checking as soon as
one incorrect character is found. From a programmer's perspective, this is a
perfectly reasonable way to check the serial number, but it might open the
door to an attack.

15Or the name might derive from the fact that a salami consists of bunch of small unde-
sirable pieces that are combined to yield something of value.

11.5 MISCELLANEOUS SOFTWARE-BASED ATTACKS 435

Table 11.5: Serial Number Program

int main(int axgc, const char *argv[])

{
int i;

char serial[9]="S123N456\n";
i f (s t r l e n (a r g v [l]) < 8)

printf("\nError try again.\n\n");

exit(O);

for(i = 0; i < 8; ++i)

i f (a r g v [l] [i] != s e r i a l [i]) break;

i f (i == 8)

printf("\nSerial number is correct!\n\n");

}

How can Trudy take advantage the code in Table 11.5? Note that the
correct serial number will take longer to process than any incorrect serial
number. More precisely, the more leading characters that are correct, the
longer the program will take to check the number. So, a putative serial
number that has the first character correct will take longer than any that has
an incorrect first character. Therefore, Trudy can select an eight-character
string and vary the first character over all possibilities. If she can time the
program precisely enough, she will find that the string beginning with S takes
the most time. Trudy can then fix the first character as S and vary the second
character, in which case she will find that a second character of 1 takes the
longest. Continuing, Trudy can recover the serial number one character at a
time. That is, Trudy can attack the serial number in linear time, instead of
searching an exponential number of cases.

How great is the advantage for Trudy in this linearization attack? Suppose
the serial number is eight characters long and each character has 128 possible
values. Then there are 1288 = 256 possible serial numbers. If Trudy must
randomly guess complete serial numbers, she would obtain the serial number
in about 255 tries, which is an enormous amount of work. On the other hand,
if she can use a linearization attack, an average of only 128/2 = 64 guesses

436 SOFTWARE FLAWS AND MALWARE

are required for each letter, for a total expected work of about 8 · 64 = 29.
This makes an otherwise infeasible attack into a trivial attack.

A real-world example of a linearization attack occurred in TENEX [235],
a timeshare system used in ancient times.16 In TENEX, passwords were
verified one character at a time, so the system was subject to a linearization
attack similar to the one described above. However, careful timing was not
even necessary. Instead, it was possible to arrange for a "page fault" to
occur when the next unknown character was guessed correctly. Then a user-
accessible page fault register would tell the attacker that a page fault had
occurred and, therefore, that the next character had been guessed correctly.
This attack could be used to crack any password in seconds.

11.5.3 T ime Bombs

Time bombs are another interesting class of software-based attacks. We'll
illustrate the concept with an infamous example. In 1986, Donald Gene
Burleson told his employer to stop withholding taxes from his paycheck. Since
this isn't legal, the company refused. Burleson, a tax protester, made it
known that he planned to sue his company. Burleson used company time and
resources to prepare his legal case against his company. When the company
discovered what Burleson was doing, they fired him [240].

It later came to light that Burleson had been developing malicious soft-
ware. After he was fired, Burleson triggered his "time bomb" software, which
proceeded to delete thousands of records from the company's computer.

The Burleson story doesn't end here. Out of fear of embarrassment, the
company was reluctant to pursue a legal case, despite their losses. Then in
a bizarre twist, Burleson sued his former employer for back pay, at which
point the company finally sued Burleson. The company eventually won, and
in 1988 Burleson was fined $11,800. The case took two years to prosecute at
a cost of tens of thousands of dollars and resulted in little more than a slap
on the wrist. The light sentence was likely due to the fact that laws regarding
computer crime were unclear at that early date. In any case, this was one
of the first computer crime cases in the United States, and many cases since
have followed a similar pattern. In particular, companies are often reluctant
to pursue such cases for fear that it will damage their reputation.

11.5.4 Trusting Software

Finally, we consider a philosophical question with practical significance: Can
you ever trust software? In the fascinating article [303], the following thought
experiment is discussed. Suppose that a C compiler has a virus. When

16The 1960s and 1970s, that is. In computing, that 's the age when dinosaurs roamed the
earth.

11.6 SUMMARY 437

compiling the login program, this virus creates a backdoor in the form of an
account with a known password. Also, if the C compiler is recompiled, the
virus incorporates itself into the newly compiled C compiler.

Now suppose that you suspect that your system is infected with a virus.
You want to be absolutely certain that you fix the problem, so you decide
to start over from scratch. You recompile the C compiler, then use it to
recompile the operating system, which includes the login program. You
haven't gotten rid of the problem, since the backdoor was once again compiled
into the login program.

Analogous situations could arise in the real world. For example, imagine
that an attacker is able to hide a virus in your virus scanning software. Or
consider the damage that could be done by a successful attack on online virus
signature updates—or other automated software updates.

Software-based attacks might not be obvious, even to an expert who ex-
amines the source code line by line. For example, in the Underhanded C
Contest, the rules state in part that [70]

.. .in this contest you must write code that is as readable, clear,
innocent and straightforward as possible, and yet it must fail to
perform at its apparent function. To be more specific, it should
do something subtly evil.

Some of the programs submitted to this contest are extremely subtle and they
demonstrate that it is possible to make evil code look innocent.

We'll return to the theme of trusting software when we discuss operating
systems in Chapter 13. Specifically, we will outline an ambitious design for a
trusted operating system.

11.6 Summary

In this chapter, we discussed some of the security threats that arise from
software. The threats considered here come in two basic flavors. The plain
vanilla flavor consists of unintentional software flaws that attackers can some-
times exploit. The classic example of such a flaw is the buffer overflow, which
we discussed in some detail. Another common flaw with security implications
is a race condition.

The more exotic flavor of software security threats arise from intention-
ally malicious software, or malware. Such malware includes the viruses and
worms that plague users today, as well as trojans and backdoors. Malware
writers have developed highly sophisticated techniques for avoiding detection,
and they appear set to push the envelope much further in the near future.
Whether detection tools are up to the challenge posed by the next generation
of malware is an open question.

438 SOFTWARE FLAWS AND MALWARE

11.7 Problems

1. With respect to security, it's been said that complexity, extensibility,
and connectivity are the "trinity of trouble" [143]. Define each of these
terms and explain why each represents a potential security problem.

2. What is a validation error, and how can such an error lead to a security
flaw?

3. Provide a detailed discussion of one real-world virus or worm that was
not covered in the text.

4. What is a race condition? Discuss an example of a real-world race
condition, other than the mkdir example presented in the text.

5. One type of race condition is known as a time-of-check-to-time-of-use,
or TOCTTOU (pronounced "TOOK too").

a. What is a TOCTTOU race condition and why is it a security issue?

b. Is the mkdir race condition discussed in this chapter an example
of a TOCTTOU race condition?

c. Give two real-world examples of TOCTTOU race conditions.

6. Recall that a canary is a special value that is pushed onto the stack
after the return address.

a. How is a canary used to prevent stack smashing attacks?

b. How was Microsoft's implementation of this technique, the /GS
compiler option, flawed?

7. Discuss one real-world example of a buffer overflow that was exploited
as part of a successful attack.

8. Explain how a heap-based buffer overflow works, in contrast to the
stack-based buffer overflow discussed in this chapter.

9. Explain how an integer overflow works, in contrast to the stack-based
buffer overflow discussed in this chapter.

10. Read the article [311] and explain why the author views the NX bit as
only one small part of the solution to the security problems that plague
computers today.

11. As discussed in the text, the C function strcpy is unsafe. The C func-
tion strncpy is a safer version of strcpy. Why is strncpy safer but
not safe?

11.7 PROBLEMS 439

12. Suppose that Alice's system employs the NX bit method of protecting

against buffer overflow attacks. If Alice's system uses software that

is known to harbor multiple buffer overflows, would it be possible for

Trudy to conduct a denial of service attack against Alice by exploiting

one of these buffer overflows? Explain.

13. Suppose that the NX bit method of protecting against buffer overflow

attacks is employed.

a. Will the buffer overflow illustrated in Figure 11.5 succeed?

b. Will the attack in Figure 11.6 succeed?

c. Why will the return-to-libc buffer overflow example discussed in

Section 11.2.1.2 succeed?

14. List all unsafe C functions and explain why each is unsafe. List the

safer alternative to each and explain whether each is safe or only safer,

as compared to its unsafe alternative.

15. In addition to stack-based buffer overflow attacks (i.e., smashing the

stack), heap overflows can also be exploited. Consider the following C

code, which illustrates a heap overflow.

in t mainO

{

in t diff , s ize = 8;

char *bufl, *buf2;

bufi = (char *)mal loc(s ize) ;

buf2 = (char *)mal loc(s ize) ;

diff = buf2 - buf i ;

memset(buf2, '2', s i z e) ;

printfCBEFORE: buf2 = %s ", buf 2) ;

memset(bufl, Ί ' , diff + 3) ;

printf("AFTER: buf 2 = */.s ", buf 2) ;

re turn 0;

}

a. Compile and execute this program. What is printed?

b. Explain the results you obtained in part a.

c. Explain how a heap overflow might be exploited by Trudy.

16. In addition to stack-based buffer overflow attacks (i.e., smashing the

stack), integer overflows can also be exploited. Consider the following

C code, which illustrates an integer overflow [36].

440 SOFTWARE FLAWS AND MALWARE

int copy .something (char *buf, int len)

{
char kbuf[800];
if(len > sizeof(kbuf))

{
return -1;

}
return memcpy(kbuf, buf, len);

}
a. What is the potential problem with this code? Hint: The last

argument to the function memcpy is interpreted as an unsigned
integer.

b. Explain how an integer overflow might be exploited by Trudy.

17. Obtain the file overflow.zip from the textbook website and extract
the Windows executable.

a. Exploit the buffer overflow so that you bypass its serial number
check. Turn in a screen capture to verify your success.

b. Determine the correct serial number.

18. Consider the following protocol for adding money to a debit card.

(i) User inserts debit card into debit card machine.

(ii) Debit card machine determines current value of card (in dollars),
which is stored in variable x.

(m) User inserts dollars into debit card machine and the value of the
inserted dollars is stored in variable y.

(iv) User presses enter button on debit card machine.

(v) Debit card machine writes value of x + y dollars to debit card and
ejects card.

Recall the discussion of race conditions in the text. This particular
protocol has a race condition.

a. What is the race condition in this protocol?

b. Describe a possible attack that exploits the race condition.

c. How could you change the protocol to eliminate the race condition,
or at least make it more difficult to exploit?

19. Recall that a trojan horse is a program that has unexpected function-
ality.

11.7 PROBLEMS 441

a. Write your own trojan horse, where the unexpected functionality
is completely harmless.

b. How could your trojan program be modified to do something ma-
licious?

20. Recall that a computer virus is malware that relies on someone or some-
thing (other than itself) to propagate from one system to another.

a. Write your own computer virus, where the "malicious" activity is
completely harmless.

b. Explain how your virus could be modified to do something mali-
cious.

21. Recall that a worm is a type of malware similar to a virus except that
a worm propagates by itself.

a. Write your own worm, where the "malicious" activity is completely
harmless.

b. Explain how your worm could be modified to do something mali-
cious.

22. Virus writers use encryption, polymorphism, and metamorphism to
evade signature detection.

a. What are the significant differences between encrypted worms and
polymorphic worms?

b. What are the significant differences between polymorphic worms
and metamorphic worms?

23. This problem deals with metamorphic software.

a. Define metamorphic software.

b. Why would a virus writer employ metamorphic techniques?

c. How might metamorphic software be used for good instead of evil?

24. Suppose that you are asked to design a metamorphic generator. Any
assembly language program can be given as input to your generator,
and the output must be a metamorphic version of the input program.
That is, your generator must produce a morphed version of the input
program and this morphed code must be functionally equivalent to the
input program. Furthermore, each time your generator is applied to the
same input program, it must, with high probability, produce a distinct
metamorphic copy. Finally, the more variation in the metamorphic
copies, the better. Outline a plausible design for such a metamorphic
generator.

442 SOFTWARE FLAWS AND MALWARE

25. Suppose that you are asked to design a metamorphic worm, where each
time the worm propagates, it must first produce a morphed version of
itself. Furthermore, all morphed versions must, with high probability,
be distinct, and the more variation within the metamorphic copies, the
better. Outline a plausible design for such a metamorphic worm.

26. A metamorphic worm that generates its own morphed copies is some-
times said to "carry its own metamorphic engine" (see Problem 25). In
some situations it might be possible to instead use a standalone meta-
morphic generator (see Problem 24) to produce the metamorphic copies,
in which case the worm would not need to carry its own metamorphic
engine.

a. Which of these two types of metamorphic worms would be easier
to implement and why?

b. Which of these two types of metamorphic worms would likely be
easier to detect and why?

27. A polymorphic worm uses code morphing techniques to obfuscate its
decryption code while a metamorphic worm uses code morphing tech-
niques to obfuscate the entire worm. Apart than the amount of code
that must be morphed, why is it more difficult to develop a metamor-
phic worm than a polymorphic worm? Assume that in either case the
worm must carry its own morphing engine (see Problems 25 and 26).

28. In the paper [330] several metamorphic malware generators are tested.
Curiously, all but one of the generators fail to produce any significant
degree of metamorphism. Viruses from each of these weak metamor-
phic generators are easily detected using standard signature detection
techniques. However, one metamorphic generator, known as NGVCK,
is shown to produce highly metamorphic viruses, and these success-
fully evade signature detection by commercial virus scanners. Finally,
the authors show that, in spite of the high degree of metamorphism,
NGVCK viruses are relatively easy to detect using machine learning
techniques—specifically, hidden Markov models [278].

a. These results tend to indicate that the hacker community has, with
rare exception, failed to produce highly metamorphic malware.
Why do you suppose this is the case?

b. It might seem somewhat surprising that the highly metamorphic
NGVCK viruses can be detected. Provide a plausible explanation
as to why these viruses can be detected.

c. Is it possible to produce undetectable metamorphic viruses? If so,
how? If not, why not?

11.7 PROBLEMS 443

29. In contrast to a flash worm, a slow worm is designed to slowly spread
its infection while remaining undetected. Then, at a preset time, all
of the slow worms could emerge and do something malicious. The net
effect would be similar to that of a flash worm.

a. Discuss one weakness (from Trudy's perspective) of a slow worm
as compared with a flash worm.

b. Discuss one weakness (also from Trudy's perspective) of a flash
worm compared with a slow worm.

30. It has been suggested that from the perspective of signature detection,
malware now far outnumbers goodware. That is, the number of sig-
natures required to detect malicious programs exceeds the number of
legitimate programs.

a. Is it plausible that there could be more malware than legitimate
programs? Why or why not?

b. Assuming there is more malware than goodware, design an im-
proved signature-based detection system.

31. Provide a brief discussion of each of the following botnets. Include a
description of the command and control architecture and provide rea-
sonable estimates for the maximum size and current size of each.

a. Mariposa

b. Conficker

c. Kraken

d. Srizbi

32. Phatbot, Agobot, and XtremBot all belong to the same botnet family.

a. Pick one of these variants and discuss its command and control
structure.

b. These botnets are open source projects that are distributed under
the GNU General Public License (GPL). This is highly unusual
for malware—most malware writers are arrested and jailed if they
are caught. Why do you suppose that the authors of these botnets
are not punished?

33. In this chapter, the claim is made that "botnets are ideal for use in
various attack-for-hire scenarios." Spam and various DoS attacks are
the usual examples given for the uses of botnets. Give examples of other
types of attacks (other than spam and DoS, that is) for which botnets
would be useful.

444 SOFTWARE FLAWS AND MALWARE

34. After infecting a system, some viruses take steps to cleanse the system
of any (other) malware. That is, they remove any malware that has
previously infected the system, apply security patches, update signature
files, etc.

a. Why would it be in a virus writer's interest to protect a system
from other malware?

b. Discuss some possible defenses against malware that includes such
anti-malware provisions.

35. Consider the code that appears in Table 11.5.

a. Provide pseudo-code for a linearization attack on the code in Ta-
ble 11.5.

b. What is the source of the problem with this code, that is, why is
the code susceptible to attack?

36. Consider the code in Table 11.5, which is susceptible to a linearization
attack. Suppose that we modify the program as follows:

int main(int arge, const char *argv[])

{
int i;

boolean f lag = t r u e ;
char serial[9]="S123N456\n";
i f (s t r l e n (a r g v [l]) < 8)
{

printf("\nError try again.\n\n");

exit(O);

}
for(i = 0 ; i < 8; ++i)

{
i f (a r g v [l] [i] != s e r i a l [i]) f lag = f a l s e ;

}
i f (f l ag)
{

printf("\nSerial number is correct!\n\n");

}
}

Note that we never break out of the for loop early, yet we can still
determine whether the correct serial number was entered. Explain why
this modified version of the program is still susceptible to a linearization
attack.

11.7 PROBLEMS 445

37. Consider the code in Table 11.5, which is susceptible to a linearization
attack. Suppose that we modify the program so that it computes the
hash of the putative serial number and we compare this hash to the
hash of the actual serial number. Is this modified program susceptible
to a linearization attack? Explain.

38. Consider the code in Problem 36, which is susceptible to a linearization
attack. Suppose that we modify the program so that it computes a
random delay within each iteration of the loop.

a. This program is still susceptible to a linearization attack. Why?

b. An attack on this modified program would be more difficult than

an attack on the code that appears in Problem 36. Why?

39. Consider the code in Table 11.5, which is susceptible to a linearization
attack. Suppose that we modify the program as follows:

in t main(int arge, const char *argv[])

{
i n t i ;
char serial[9]="S123N456\n";
i f (s t r cmp(a rgv[l] , s e r i a l) == 0)
{

printf("\nSerial number is correct!\n\n");

}

}
Note that we are using the library function stremp to compare the input
string to the actual serial number.

a. Is this version of the program immune to a linearization attack?
Why or why not?

b. How is stremp implemented? That is, how does it determine
whether the two strings are identical or not?

40. Obtain the Windows executable contained in l i n e a r . z i p (available at
the textbook website).

a. Use a linearization attack to determine the correct eight-digit serial
number.

b. How many guesses did you need to find the serial number?

c. What is the expected number of guesses that would have been
required if the code was not vulnerable to a linearization attack?

41. Suppose that a bank does 1000 currency exchange transactions per day.

446 SOFTWARE FLAWS AND MALWARE

a. Describe a salami attack on such transactions.

b. How much money would Trudy expect to make using this salami
attack in a day? In a week? In a year?

c. How might Trudy get caught?

42. Consider the code in Table 11.5, which is susceptible to a linearization
attack. Suppose that we modify the program as follows:

in t main(int arge, const char *argv[])

{
in t i ;
int count = 0;
char serial[9]="S123N456\n";
i f (s t r l e n (a r g v [l]) < 8)
{

printf("\nError try again.\n\n");

exit(0);

}
for(i = 0; i < 8; ++i)

{
if(argv[l][i] != serial[i])

count = count + 0;

else

count = count + 1;

}
if(count == 8)

{
printf("\nSerial number is correct!\n\n");

}

}
Note that we never break out of the for loop early, yet we can still
determine whether the correct serial number was entered. Is this version
of the program immune to a linearization attack? Explain.

43. Modify the code in Table 11.5 so that it is immune to a linearization
attack. Note that the resulting program must take exactly the same
amount of time to execute for any incorrect input. Hint: Do not use
any predefined functions (such as stremp or strnemp) to compare the
input with the correct serial number.

44. Read the article "Reflections on Trusting Trust" [303] and summarize
the author's main points.

Chapter 12

Insecurity in Software

Every time I write about the impossibility of effectively protecting digital files
on a general-purpose computer, I get responses from people decrying the

death of copyright. "How will authors and artists get paid for their work?"
they ask me. Truth be told, I don't know. I feel rather like the physicist

who just explained relativity to a group of would-be interstellar travelers,
only to be asked: "How do you expect us to get to the stars, then?"

I'm sorry, but I don't know that, either.
— Bruce Schneier

So much time and so little to do! Strike that. Reverse it. Thank you.
— Willy Wonka

12.1 Introduction

In this chapter, we begin with software reverse engineering, or SRE. To fully
appreciate the inherent difficulty of implementing security in software, we
must look at software the way that attackers do. Serious attackers use SRE
techniques to find and exploit flaws—or create new flaws—in software.

After our brief look at SRE, we'll discuss digital rights management, or
DRM, which provides a good example of the limitation of relying on software
for security. DRM illustrates the impact of SRE on software-based security.

The last major topic of this chapter is software development. It was
tempting to label this section "secure software development," but truly secure
software is difficult to achieve in practice. We'll discuss methods to improve
the security of software, but we'll also see why most of the advantages lie
with the bad guys. Finally, we briefly consider the relative security merits of
open source versus closed source software.

447

448 INSECURITY IN SOFTWARE

12.2 Software Reverse Engineering

SRE or software reverse engineering—which is also known as reverse code en-
gineering or, simply, reversing—can be used for good or for not so good. The
good uses include understanding malware [336, 337] or legacy code [57]. Here,
we're primarily interested in the not-so-good uses, which include removing us-
age restrictions from software, finding and exploiting software flaws, cheating
at games, breaking DRM systems, and many, many other attacks on software.

We'll assume that the reverse engineer is our old friend Trudy. For the
most part, we assume that Trudy only has an executable, or exe, that was
generated by compiling, say, a C program. That is, Trudy does not have
access to the source code. We will consider one Java reversing example, but
unless obfuscation techniques have been applied, Java class files are trivial
to reverse to obtain (nearly) the original source code. And even using ob-
fuscation may not make Java significantly more difficult to reverse. On the
other hand, "native code" (i.e., hardware-specific machine code) is inherently
more difficult to reverse. For one thing, the best we can realistically do is
disassemble an exe and, consequently, Trudy must analyze the program as
assembly code, not as a higher-level language.

Of course, Trudy's ultimate goal is to break things. So, Trudy might
reverse the software as a step toward finding a weakness or otherwise devising
an attack. Often, however, Trudy wants to modify the software to bypass
some annoying security feature. Before Trudy can modify the software, SRE
is a necessary first step.

SRE is usually focused on software that runs under Microsoft Windows.
Consequently, much of our discussion here is Windows-specific.

Essential reverse engineering tools include a disassembler and a debugger.
A disassembler converts an executable into assembly code, as best it can, but
a disassembler can't always disassemble code correctly, since, for example,
it's not always possible to distinguish code from data. This implies that in
general, it's not possible to disassemble an exe file and reassemble the result
into a functioning executable. This will make Trudy's task slightly more
challenging but by no means insurmountable.

A debugger is used to set break points, which allows Trudy to step through
the code as it executes. For any reasonably complex program, a debugger is
a necessary tool for understanding the code.

OllyDbg [225] includes a highly regarded debugger, disassembler, and hex
editor [173]. OllyDbg is more than sufficient for all of the problems that
appear in this chapter and, best of all, it's free. IDA Pro is a powerful dis-
assembler and debugger [147]. IDA Pro costs a few hundred dollars (there is
a free trial version) and it is generally considered to have the best disassem-
bler available. Hackman [299] is an inexpensive shareware disassembler and
debugger that might also be worth considering.

12.2 SOFTWARE REVERSE ENGINEERING 449

A hex editor can be used to directly modify, or patch,1 an exe file. Today,
all self-respecting debuggers include a built-in hex editor, so you may not
need a standalone hex editor. But, if you should need a separate hex editor,
UltraEdit and HIEW are among the most popular shareware choices.

Several other more specialized tools are sometimes useful for reverse engi-
neering. Examples of such tools include Regmon, which monitors all accesses
of the Windows registry, and Filemon, which, as you might have guessed,
monitors all accesses of files. Both of these tools are available from Microsoft
as freeware. VMWare [318]—which allows a user to set up virtual machines—
is a powerful tool that is particularly useful if you want to reverse engineer
malware while minimizing the risk of damaging your system.

Does Trudy really need a disassembler and a debugger? Note that the
disassembler gives Trudy a static view of the code, which can be used to
obtain an overview of the program logic. After perusing the disassembled
code, Trudy can zero in on areas that are likely to be of interest. But without
a debugger, Trudy would have a difficult time skipping over the boring parts
of the code. Trudy would, in effect, be forced to mentally execute the code
so that she could know the state of registers, variable values, flag bits, etc.,
at some particular point in the code. Trudy may be clever, but this would be
an insurmountable obstacle for all but the simplest program.

As all software developers know, a debugger allows Trudy to set break
points. In this way, Trudy can treat uninteresting parts of the code as a
black box and skip directly to the interesting parts. Also, as we mentioned
above, not all code disassembles correctly, and for such cases a debugger is
required. The bottom line is that both a disassembler and a debugger are
required for any serious SRE task.

The necessary technical skills required for SRE include a working knowl-
edge of the target assembly language and some experience with the necessary
tools—primarily a debugger. For Windows, some knowledge of the Windows
Portable Executable, or PE, file format is also important [236]. These skills
are beyond the scope of this book—see [99] or [161] for more information.
Below we'll restrict our attention to simple SRE examples. These examples
illustrate the concepts, but do not require any significant knowledge of as-
sembly, any knowledge of the PE file format, etc.

Finally, SRE requires boundless patience and optimism, since the work
can be extremely tedious and labor intensive. There are few automated tools,
which means that SRE is essentially a manual process that requires many
long hours spent slogging through assembly code. From Trudy's perspective,
however, the payoff can be well worth the effort.

1Here, "patch" means that we directly modify the binary without recompiling the code.
Note that this is a different meaning than "patch" in the context of security patches that
are applied to code.

450 INSECURITY IN SOFTWARE

12.2.1 Reversing Java B y t e c o d e

Before we consider a "real" SRE example, let's take a quick look at a Java
example. When you compile Java source code, it's converted into bytecode
and this bytecode is executed by the the Java virtual machine, or JVM. In
comparison to, say, the C programming language, the advantage of Java's
approach is that the bytecode is more or less machine independent, while the
primary disadvantage is a loss of efficiency.

When it comes to reversing, Java bytecode makes Trudy's life much easier.
A great deal more information is retained in bytecode than native code, so it is
possible to decompile bytecode with great accuracy. There are tools available
that will convert Java bytecode into Java source code, and the resulting source
code is likely to be very similar to the original source code. There are tools
available to obfuscate Java, thereby making Trudy's job more challenging,
but none are particularly strong—even highly obfuscated Java bytecode is
generally easier to reverse than un-obfuscated machine code.

For example, consider the Java program in Figure 12.1. Note that this
program computes and prints the first n Fibonacci numbers, where n is spec-
ified by the user.

Figure 12.1: Java Program

The program in Figure 12.1 was compiled into bytecode and the result-
ing class file was decompiled using Fernflower, an online tool [110]. This
decompiled Java file appears in Figure 12.2.

12.2 SOFTWARE REVERSE ENGINEERING 451

Figure 12.2: Decompiled Java Program

Note that the original Java source in Figure 12.1 is almost identical to
the decompiled Java code in Figure 12.2. The significant differences are that
the comments have been lost and the variable names have changed. These
differences make the decompiled program slightly more difficult to understand
than the original. Nevertheless, Trudy would certainly prefer to decipher code
like that in Figure 12.2 rather than deal with assembly code.2

As mentioned above, there are tools to obfuscate Java. These tools can
obfuscate the control flow and data, insert junk code, and so on. It is even
possible to encrypt the bytecode. However, none of these tools seem to be
particularly strong—see the homework problems for some examples.

12.2.2 S R E Example

The native code SRE example that we'll consider only requires the use of a
disassembler and a hex editor. We'll disassemble the executable to understand
the code. Then we'll use the hex editor to patch the code to change its
behavior. It's important to realize that this is a very simple example—to do
SRE in the real world, a debugger would certainly be required.

For our SRE example, we'll consider code that requires a serial number.
The attacker Trudy doesn't know the serial number, and when she guesses
(incorrectly) she obtains the results in Figure 12.3.

2If you don't believe it, take a look at the next section.

452 INSECURITY IN SOFTWARE

Figure 12.3: Serial Number Program

Trudy could try to brute force guess the serial numbers but that's unlikely
to succeed. Being a dedicate reverser, Trudy decides the first thing she'll
do is to disassemble s e r i a l . exe . A small part of the resulting IDA Pro
disassembly appears in Figure 12.4.

Figure 12.4: Serial Number Program Disassembly

The line at address 0x401022 in Figure 12.4 indicates that the correct
serial number is S123N456. Trudy tries this serial number and finds that it is
indeed correct, as indicated in Figure 12.5.

Figure 12.5: Correct Serial Number

But Trudy suffers from short-term memory loss, and she has particular
trouble remembering serial numbers. Therefore, Trudy would like to patch
the executable s e r i a l . e x e so that she doesn't need to remember the serial
number. Trudy looks again at the disassembly in Figure 12.4, and she notices
that the t e s t instruction at address 0x401030 is significant due to the jump
instruction, j z at 0x401032 that immediately follows. That is, if the jump
occurs, the program will jump elsewhere, bypassing the error message. This
has to be good, since Trudy doesn't want to see "Incorrect serial number."

12.2 SOFTWARE REVERSE ENGINEERING 453

At this point, Trudy must rely on her knowledge of assembly code (or
her ability to Google for such knowledge). The instruction t e s t eax,eax
computes a binary AND of the eax register with itself. Depending on the
result, this instruction causes various flag bits to be set. One of these flag
bits is the zero flag, which is set if t e s t eax, eax results in zero. That is,
the instruction t e s t eax, eax causes the zero flag to be set to one provided
that eax AND eax is zero. With this in mind, Trudy might want to consider
ways to force the zero flag bit to be set so that she can bypassing the dreaded
"Incorrect serial number" message.

There are many possible ways for Trudy to patch the code. But, whatever
approach is used, care must be taken or else the resulting code will not behave
as expected. Trudy must take care to only replace bytes. In particular, Trudy
cannot insert additional bytes or remove any bytes, since doing so would cause
subsequent instructions to be misaligned, that is, the instructions would not
align properly, which would almost certainly cause the program to crash.

Trudy decides that she will try to modify the t e s t instruction so that the
zero flag bit will always be set. If she can accomplish this, then the remainder
of the code can be left unchanged. After some thought, Trudy realizes that
if she replaces t e s t eax,eax with xor eax,eax, then the zero flag bit will
alway be set to one. This works regardless of what is in the eax register,
since whenever something is XORed with itself, the result is zero, which will
cause the zero flag bit to be set to one. Trudy should then be able to bypass
the "Incorrect serial number" message, regardless of which serial number she
enters at the prompt.

So, Trudy has determined that changing t e s t to xor will cause the
program to behave as she wants. However, Trudy still needs to determine
whether she can actually patch the code to make this change without causing
any unwanted side effect. In particular, she must be careful not to insert or
delete bytes.

Trudy next examines the bits of the exe file (in hex) at address 0x401030
and she observes the results displayed in Figure 12.6, which tells her that t e s t
eax,eax is, in hex, 0x85C0 Relying on her favorite assembly code refer-
ence manual, Trudy learns that xor eax,eax is, in hex, 0x33C0 Trudy
realizes she's in luck, since she only needs to change one byte in the exe-
cutable to make her desired change. Again, it's crucial that she does not
need to insert or delete any bytes, as doing so would almost certainly cause
the resulting code to fail.

Figure 12.6: Hex View of s e r i a l . exe

454 INSECURITY IN SOFTWARE

Trudy then uses her favorite hex editor to patch se r i a l . exe . Since the
addresses in the hex editor won't necessarily match those in the disassembler,
she searches through s e r i a l . exe to find the bits 0x85C07411684C, as can be
seen in Figure 12.6. Since this is the only occurrence of the bit string in the
file, she knows this is the right location. She then changes the byte 0x85
to 0x33 and she saves the resulting file as ser ia lPatch .exe .

Note that in OllyDbg, for example, patching the code is easier, since
Trudy just needs to change the t e s t instruction to xor in the debugger and
save the result. That is, no hex editor is required. In any case, a comparison
of the original and the patched exécutables appears in Figure 12.7.

Figure 12.7: Hex View of Original and Patched

Trudy then executes the patched code ser ia lPatch .exe and enters an
incorrect serial number. The results in Figure 12.8 show that the patched
program accepted an incorrect serial number.

Figure 12.8: Patched Executable

Finally, we've disassembled both s e r i a l . e x e and ser ia lPatch .exe with
the comparison given in Figure 12.9. These snippets of code show that the
patching achieved its desired results.

Kaspersky's book [161] is a good source for more information on SRE
techniques and the book [233] has a readable introduction to some aspects of
SRE. However, the best SRE book available is Eilam's [99]. There are many
online SRE resources, perhaps the best of which is at [57].

Next, we'll briefly consider ways to make SRE attacks more difficult. Al-
though it's impossible to prevent such attacks on an open system such as a
PC, we can make life more difficult for Trudy. A good, but dated, source of
information on anti-SRE techniques is [53].

12.2 SOFTWARE REVERSE ENGINEERING 455

Figure 12.9: Disassembly of Original and Patched

First, we'll consider anti-disassembly techniques, that is, techniques that
can be used to confuse a disassembler. Our goal here is to give the attacker an
incorrect static view of the code or, better yet, no static view at all. Below,
we'll also consider anti-debugging techniques that can be used to obscure the
attacker's dynamic view of the code. Then in Section 12.2.5 we'll discuss
some tamper-resistance techniques that can be applied to software to make
the code more difficult for an attacker to understand and therefore more
difficult to patch.

12.2.3 Anti-Disassembly Techniques

There are several well-known anti-disassembly methods.3 For example, it's
possible to encrypt the executable file—when the exe file is in encrypted form,
it can't be disassembled correctly. But there is a chicken and egg problem
here that is similar to the situation that occurs with encrypted viruses. That
is, the code must be decrypted before it can be executed. A clever attacker
can use the decryption code to gain access to the decrypted executable.

Another simple, but not too effective, anti-disassembly trick is false dis-
assembly [317] which is illustrated in Figure 12.10. In this example, the top
part of the figure indicates the actual flow of the program, while the bottom
part indicates the false disassembly that will occur if the disassembler is not
too smart. In the top part of Figure 12.10, the second instruction causes the
program to jump over the junk, which consists of invalid instructions. If a dis-
assembler tries to disassemble these invalid instructions, it will get confused

3Your verbose author was tempted to call this section "anti-disassemblymentarianism."
Fortunately, he resisted the temptation.

456 INSECURITY IN SOFTWARE

and it may even incorrectly disassemble many instructions beyond the end of
the junk, since the actual instructions are not aligned properly. However, if
Trudy carefully studies this false disassembly, she will eventually realize that
in s t 2 jumps into the middle of in s t 4, and she can then undo the effects.
In fact, quality disassemblers will not be seriously confused by such a simple
trick, but slightly more complex examples can have some limited effect.

inst 1 jmp junk
1

inst 3
i

inst 4 .. .

inst 1 inst 2 inst 3 inst 4 inst 5 inst 6 ...

Figure 12.10: False Disassembly

A more sophisticated anti-disassembly trick is self-modifying code. As
the name suggests, self-modifying code modifies its own executable in real
time [61]. This is a highly effective way to confuse a disassembler, but it's
also likely to confuse the developers, since it's difficult to implement, highly
error prone, and well-nigh impossible to maintain. Another supposed anti-
disassembly approach is discussed in [19].

12.2.4 Ant i -Debugging Techniques

There are several methods that can be used to make debugging more difficult.
Since debuggers use specific debug registers, a program can monitor the use
of these registers and stop (or misbehave) if they are used. That is, a program
can monitor for inserted breakpoints, which is a telltale sign of a debugger.

Debuggers don't handle threads well so when properly implemented, in-
teracting threads can offer a relatively strong means for confusing a debugger.
In [338] it is shown that by introducing "junk" threads and intentional dead-
lock among some of these, only a small percentage of the useful code is ever
visible in OllyDbg.4 Furthermore, the code that is visible varies with each
run in an unpredictable way. The overhead associated with this approach is
fairly high, so it would not be appropriate for the entire code base of a large
application. However, this technique could be applied to protect a highly
sensitive code section such as that used for entering and checking a serial
number.

There are many other debugger-unfriendly tricks, most of which are highly
debugger-specific. For example, one anti-debugging technique is illustrated

4This does not mean that OllyDbg is a bad debugger—this same trick confuses other
popular debuggers at least as much as it confuses OllyDbg.

12.2 SOFTWARE REVERSE ENGINEERING 457

in Figure 12.11. The top part of the figure gives the series of instructions that
are to be executed. Suppose that for efficiency, when the processor fetches
ins t 1, it also prefetches ins t 2, i n s t 3, and i n s t 4. Also, suppose that
when the debugger is running, it does not prefetch instructions. Then we
can take advantage of this difference to confuse the debugger, as illustrated
in the bottom half of Figure 12.11, where inst 1 overwrites the memory
location of inst 4. When the program is not being debugged, this causes no
problem since ins t 1 through ins t 4 are all fetched at the same time. But
if the debugger does not prefetch i n s t 4, it will be confused when it tries to
execute the junk that has overwritten inst 4 [317].

inst 1 inst 2 inst 3 inst 4 inst 5 inst 6 .. .

insti inst 2 inst 3 junk insto inst 6 .. .

J

Figure 12.11: Anti-Debugging Example

There are some potential problems with the anti-debugging method in
Figure 12.11. First, if the program tries to execute this segment of code more
than once (say, within a loop), the junk code will be executed. Also, this
code is extremely platform dependent. Finally, if Trudy has enough patience
and skill, she will eventually unravel this trick and eliminate its effect.

12.2.5 Software Tamper Resistance

In this section, we discuss several methods that can be employed to make
software more tamper resistant. The goal of tamper resistance is to make
patching more difficult, either by making the code more difficult to understand
or by making the code fail if it's patched. The techniques we'll discuss have
been used in practice, but as with most software protection methods, there's
little (if any) empirical evidence to support their effectiveness.

12.2.5.1 Guards

It's possible to have a program hash sections of itself as it executes and
compare the computed hash values with the known hash values of the original
code. If tampering (e.g., patching) occurs, a hash check will fail and the
program can take evasive action. These hash checks are sometimes known as
guards. Guards can be viewed as a way to make the code fragile in the sense
that the code breaks when tampering occurs.

458 INSECURITY IN SOFTWARE

Research has shown that by using guards it's possible to obtain good
coverage of software with a minimal performance penalty [54, 145]. But there
are some subtle issues. For example, if all guards are identical, then it would
be relatively easy for an attacker to automatically detect and remove them.
For more information on some issues related to guards, see [268]. Finally, it
seems that guards would be ideally suited for use with interacting threads (as
discussed above in Section 12.2.4), which could provide a relatively strong
defense against tampering.

12.2.5.2 Obfuscation

Another popular form of tamper resistance is code obfuscation. Here, the
goal is to make the code difficult to understand. The rationale is that if
Trudy can't understand the code, she will have a difficult time patching it.
In a sense, code obfuscation is the opposite of good software engineering
practices.

As a simple example, spaghetti code can be viewed as a form of obfusca-
tion. There has been much research into more robust methods of obfuscation,
and one of the strongest appears to be the opaque predicate [64]. For example,
consider the following pseudo-code:

int x,y;

i f ((x - y) (x-y) > (x2 -2xy + y2)){...}

Notice that the i f conditional is always false, since

{x - y)(x - y) = x2 - 2xy + y1

for any values of x and y. But an attacker might waste a significant amount
of time analyzing the dead code that follows this if conditional. While this
particular opaque predicate is not particularly opaque, many non-obvious
examples have been developed. Again, this technique will not prevent an
attack, but it can substantially increase the time and effort required for a
successful attack.

Code obfuscation has sometimes been promoted as a powerful general-
purpose security technique. In fact, in Diffie and Hellman's original concep-
tion of public key cryptography, they suggested a "one-way compiler" (i.e., an
obfuscating compiler) as a possible path toward developing such a cryptosys-
tem [90]. However, obfuscation did not turn out to be useful in public key
crypto, and recently it has been convincingly argued that obfuscation cannot
provide strong protection in the same sense as, say, cryptography [25]. Nev-
ertheless, obfuscation might still have a significant practical benefit in a field
such as software protection.

12.2 SOFTWARE REVERSE ENGINEERING 459

For example, consider a piece of software that is used to determine au-
thentication. Ultimately, authentication is a one-bit decision, regardless of
the precise details of the method used. Therefore, somewhere in the authen-
tication software there is, effectively, a single bit that determines whether
authentication succeeds or fails. If Trudy can find this bit, she can force au-
thentication to always succeed and thereby break the security. Obfuscation
can make Trudy's job of finding this crucial bit into a challenging game of
"hide and seek" in software. Obfuscation can, in effect, smear this one bit
of information over a large body of code, thereby forcing Trudy to analyze
a considerable amount of code. If the time and difficulty required to under-
stand the obfuscated code is sufficiently high, Trudy might give up. If so, the
obfuscation has served a useful purpose.

Obfuscation can also be combined with other methods, including any of
the anti-disassembly, anti-debugging, or anti-patching techniques discussed
above. All of these will tend to increase Trudy's work. However, it is unreal-
istic to believe that we can drive the cost so high that an army of persistent
attackers cannot eventually break our code.

12.2.6 Metamorphism 2.0

The usual practice in software development is to distribute identical copies,
or clones, of a particular piece of software. This has obvious benefits with
regard to development, maintainability, and so on. But software cloning has
some negative security implications. In particular, if an attack is found on
any one copy, the exact same attack will work on all copies. That is, the
software has no break once, break everywhere resistance, or BOBE resistance
(this is sometimes rendered as "break once run anywhere," or BORA).

In the previous chapter, we saw that metamorphic software is used by
virus writers in to avoid detection. Might a similar technique be used for
good instead of evil? For example, suppose we develop a piece of software,
but instead of distributing cloned copies, we distribute metamorphic copies.
That is, each copy of our software differs internally, but all copies are func-
tionally identical [285]. This is analogous to the metamorphic malware that
we discussed in Chapter 11.

Suppose we distribute N cloned copies of a particular piece of software.
Then one successful attack breaks all N clones. In other words, this software
has no BOBE resistance. On the other hand, if we distribute N metamorphic
copies of the software, where each of these N is functionally identical, but
they differ in their internal structure, then an attack on one instance will
not necessarily work against any other instances. The strength of such an
approach depends heavily on how different the non-clones are, but in the
best case, N times as much work is required to break all N instances. This
is the best possible situation with respect to BOBE resistance.

460 INSECURITY IN SOFTWARE

Thanks to open platforms and SRE, we cannot prevent attacks on soft-
ware. Arguably, the best we can hope for is increased BOBE resistance.
Metamorphism is one possible way to achieve a reasonable level of BOBE
resistance.

An analogy is often made between software diversity and genetic diversity
in biological systems [61, 115, 114, 194, 221, 230, 231, 277]. For example, if
all plants in a field are genetically identical, then one disease can wipe out
the entire field. But if the plants are genetically diverse, then one disease will
only kill some of the plants. This is essentially the same reasoning that lies
behind metamorphic software.

To illustrate the potential benefits of metamorphism, suppose that our
software has a common program flaw, say, an exploitable buffer overflow. If
we clone this software, then one successful buffer overflow attack will work
against all copies of the software. Suppose instead that the software is meta-
morphic. Then even if the buffer overflow exists in all instances, the same
attack will almost certainly not work against many of the instances, since
buffer overflow attacks are—as we saw in Chapter 11—fairly delicate.

Metamorphic software is an intriguing concept that has been used in some
applications [46, 275]. The use of metamorphism raises concerns regarding
software development, software upgrades, and so on. Note that metamor-
phism does not prevent SRE, but it can provide significant BOBE resistance.
Metamorphism is best known for its use in malware, but perhaps it's not just
for evil anymore.

12.3 Digital Rights Management

Digital rights management, or DRM, provides a good example of the lim-
itations of doing security in software. Most of the topics discussed in the
previous sections of this chapter are relevant to the DRM problem.

In this section, we'll discuss what DRM is, and is not. Then we'll de-
scribe an actual DRM system designed to protect PDF documents within a
corporate environment. We'll also briefly outline a DRM system designed to
protect streaming media, and we'll discuss a proposed peer-to-peer applica-
tion that employs DRM.

12.3.1 W h a t is D R M ?

At its most fundamental level, DRM can be viewed as an attempt to provide
"remote control" over digital content. That is, we would like to distribute
digital content, but we want to retain some control over its use after it has
been delivered [121].

Suppose Trudy wants to sell her new book, For the Hack of It, in digital
form online. There is a huge potential market on the Internet, Trudy can

12.3 DIGITAL RIGHTS MANAGEMENT 461

keep all of the profits, and nobody will need to pay any shipping charges, so
this seems like an ideal solution. However, after a few moments of reflection,
Trudy realizes that there is a serious problem. What happens if, say, Alice
buys Trudy's digital book and then redistributes it for free online? In the
worst case, Trudy might only sell one copy [274, 276].

The fundamental problem is that it's trivial to make a perfect copy of
digital content and almost as easy to redistribute it. This is a major change
from the pre-digital era, when copying a book was costly and redistributing it
was difficult. For an excellent discussion of the challenges faced in the digital
age compared with those of the pre-digital era, see the paper [31].

In this section, we'll focus on the digital book example. However, similar
comments hold for other digital media, including audio and video.

Persistent protection is a buzzword for the ideal level of DRM protection.
That is, we want to protect the digital content so that the protection stays
with the content after it's delivered. Examples of the kinds of persistent
protection restrictions that we might want to enforce on a digital book include
the following:

• No copying

• Read once

• Do not open until Christmas

• No forwarding

What can be done to enforce persistent protection? One option is to rely
on the honor system, whereby we do not actually force users to obey the
rules but instead simply request that they do so. Since most people are good,
honest, decent, law-abiding, and trustworthy, we might expect this to work
well. Or maybe not.

Perhaps surprisingly, the honor system has actually been tried. Stephen
King, the horror novel writer, published his book The Plant online in install-
ments [94, 250]. King said that he would only continue to publish installments
if a high enough rate of readers paid.

Of the planned seven installments of The Plant, only the first six ap-
peared online. Stephen King's spokesman claimed that the rate of payers
had dropped so low that Mr. King would not publish the remaining part on-
line, leaving some angry customers who had paid for 6/7ths of a book [250].
Before dismissing the honor system entirely, it's worth noting that shareware
essentially follows the honor system model.

Another option is to give up on enforcing DRM on an open platform such
as a PC. In the previous section, we saw that SRE attacks render software
on a PC vulnerable. Consequently, if we try to enforce persistent protection
through software on an open platform, we are likely doomed to failure.

462 INSECURITY IN SOFTWARE

However, the lure of Internet sales has created an interest in DRM, even
if it can't be made perfectly robust. We'll also see that companies have an
interest in DRM as a way to comply with certain government regulations.

If we decide that it's worthwhile to attempt DRM on a PC, one option is to
build a weak software-based system. Several of these have been deployed, and
most are extremely weak. For example, such a DRM system for protecting
digital documents might be defeated by a user who is knowledgeable enough
to operate a screen capture program.

Another option would be to develop a "strong" software-based DRM sys-
tem. In the next section we'll describe a system that strives for just such a
level of protection. This design is based on a real DRM system developed by
your multifaceted author for MediaSnap, Inc., as discussed in [275].

A fairly high level of DRM protection can be achieved on a closed system,
such as a game system. These systems are very good at enforcing restrictions
similar to the persistent protection requirements mentioned above. There
have been efforts to include closed system features in PCs. In large part,
this work is motivated by the desire to provide reasonably robust DRM on
the PC. We'll return to this topic in Chapter 13 when we discuss Microsoft's
Next Generation Secure Computing Base, or NGSCB. In this chapter, we'll
only consider software-based DRM.

It is sometimes claimed—or at least strongly implied—that cryptography
is the solution to the DRM problem. That this is not the case can easily be
seen by considering the generic black box crypto diagram in Figure 12.12,
which illustrates a symmetric key system.

key key

plaintext- encrypt — M T W m r - » decrypt
1 ciphertext

■ plaintext

Figure 12.12: Cryptography and DRM

In the standard crypto scenario, the attacker Trudy has access to the
ciphertext and perhaps some plaintext and some side-channel information. In
the DRM scenario, we are trying to enforce persistent protection on a remote
computer. What's more, the legitimate recipient is a potential attacker.

Suppose Trudy is the legitimate recipient of a DRM-protected document.
Then Trudy has access to everything within the dashed box in Figure 12.12.
In particular, Trudy has access to the key. We certainly can't expect crypto
to solve our problem if we give the attacker the key!

12.3 DIGITAL RIGHTS MANAGEMENT 463

With DRM, it's necessary to use encryption so that the data can be
securely delivered, and so that Trudy can't trivially remove the persistent
protection. But if Trudy is clever, she won't attack the crypto directly. In-
stead, she will try to find the key, which is hidden somewhere in the software
(or at least available to the software at some point in the process). One of
the fundamental problems in DRM can be reduced to the problem of playing
hide and seek with a key in software [266].

Out of necessity, software-based DRM systems rely largely on security by
obscurity, that is, the security resides in the fact that Trudy doesn't com-
pletely understand the system. In a sense, this is the opposite of Kerckhoffs'
Principle. Security by obscurity is generally considered a derogatory term in
the security field, since once the obscurity is gone, so is the security. However,
in software-based DRM, there is often no other viable option.

Software obfuscation and the other techniques discussed in the previous
section are examples of security by obscurity. It's always preferable not to
rely on security by obscurity, but, when there is no other option, then we
need to consider whether we can derive any useful measure of security from
some clever application of obscurity.5

Current DRM systems also rely heavily on secret designs, in clear violation
of the spirit of Kerckhoffs' Principle. Of course, this is partly due to the
reliance on obscurity, but even a general overview of the security architecture
is unavailable for most DRM systems, unless it has been provided by some
outside source. For example, details on Apple's Fairplay DRM system were
not available from Apple, but can be found, for example, in [313].

There is a fundamental limit on the effectiveness of any DRM system,
since the so-called analog hole is always present. That is, when the content is
rendered, it can be captured in analog form—for example, when digital music
is played, it can be recorded using a microphone, regardless of the strength of
the DRM protection. Similarly, a digital book can be captured in unprotected
form using a digital camera to photograph the pages displayed on a computer
screen. Such attacks are outside the boundaries of a DRM system.

Another interesting feature of DRM is the degree to which human nature
matters. For software-based systems, it's clear that absolute DRM security
is impossible, so the challenge is to develop something that might work in
practice. Whether this is possible or not depends heavily on the context,
as we'll see in the examples discussed below. The bottom line is that DRM
is not strictly a technical problem. While this is also true of many security

5In spite of its bad name, security by obscurity is used surprisingly often in the real
world. For example, system administrators often rename important system files so that
they are more difficult for an attacker to locate. If Trudy breaks into the system, it will
take her some time to locate these important files, and the longer it takes, the better chance
we have of detecting her presence. So, it does make sense to use obscurity in situations
such as this.

464 INSECURITY IN SOFTWARE

topics (passwords, the MiM "attack" on SSL, etc.), it's more obvious in DRM
than in many other areas.

We've mentioned several times that strong software-based DRM is impos-
sible. Let's be explicit as to why this is the case. From the previous SRE
sections, it should be clear that we can't really hide a secret in software, since
we can't prevent SRE. A user with full administrator privilege can eventu-
ally break any anti-SRE protection and thereby attack DRM software that
is trying to enforce persistent protection. In other words, SRE is the "killer
app" for attacking software-based DRM.

Next we describe a real-world DRM system designed to protect PDF
documents. Then we discuss a system designed to protect streaming media,
another system designed for a P2P environment, and, finally, the role of DRM
within a corporate environment. Other DRM systems are described in [241]
and [314].

12.3.2 A Real-World D R M Sys tem

The information in this section is based on a DRM system designed and
developed by MediaSnap, Inc., a small Silicon Valley startup company. The
system is intended for use with digital documents that will be distributed via
email.

There are two major components to the MediaSnap DRM systems, a
server component that we'll call the Secure Document Server, or SDS, and
the client software, which is a software plugin to the Adobe PDF reader.

Suppose Alice wants to send a DRM-protected document to Bob. Alice
first creates the document, then attaches it to an email. She selects the
recipient, Bob, in the usual way, and she uses a special pull down menu on
her email client to select the desired level of persistent protection. She then
sends the email.

The entire email, including any attachments, is converted to PDF and it
is then encrypted (using standard crypto techniques) and sent to the SDS.
It is the SDS that applies the desired persistent protection to the document.
The SDS then packages the document so that only Bob can access it using
his client DRM software—it is the client software that will attempt to enforce
the persistent protection. The resulting document is then emailed to Bob.
This process is illustrated in Figure 12.13.

A key is required to access the DRM-protected document, and this key is
stored on the SDS. Whenever Bob wants to access the protected document,
he must first authenticate to the SDS and only then will the key be sent from
the SDS to Bob. Once Bob gets the key, he can access the document, but
only through the DRM software. This process is illustrated in Figure 12.14.

There are security issues both on the server side and on the client side.
The SDS must protect keys and authenticate users, and it must apply the

12.3 DIGITAL RIGHTS MANAGEMENT 465

Figure 12.13: DRM for PDF Documents

Figure 12.14: Accessing Protected Documents

required persistent protection to documents. The client software must pro-
tect keys, authenticate users, and enforce the persistent protection, all while
operating in a potentially hostile environment. The SDS resides at corporate
headquarters and is relatively secure. The DRM client software, on the other
hand, is readily available to any attacker. The discussion below concerns the
client software.

The high-level design of the client software is illustrated in Figure 12.15.
The software has an outer layer that attempts to create a tamper-resistant
barrier. This includes anti-disassembly and anti-debugging techniques, some
of which were discussed above. For example, the executable code is encrypted,
and false disassembly is used to protect the part of the code that performs
the decryption. In addition, the executable code is only decrypted in small
slices so that it's more difficult for an attacker to obtain the entire code in
plaintext form.

The anti-debugging technique is fairly sophisticated, although the basic
idea is simply to monitor for the use of the debug registers. One obvious
attack on such a scheme is essentially a man-in-the-middle, where the attacker
debugs the code but responds to the anti-debugging software in such a way
that it appears no debugger is running.

We know from the previous section that tamper-resistance techniques can
delay an attacker, but they can't prevent a persistent attacker from eventual
success. The software inside the tamper-resistant layer is heavily obfuscated
to further delay an attacker who has penetrated the tamper-resistant outer
layer.

466 INSECURITY IN SOFTWARE

Figure 12.15: DRM Software Design

The obfuscation is applied to security critical operations, including key
management, authentication, and cryptography. The authentication infor-
mation is cached, since we don't want to ask the user to repeatedly enter a
password (or other means of authentication). Each time the authentication
data is cached, it is cached in a different location in memory and in a different
form.

The digital content is encrypted using the Advanced Encryption Standard
(AES) block cipher. Unfortunately, standard crypto is difficult to obfuscate
since the algorithms are well known and the implementations are standard-
ized for efficiency and to prevent implementation errors. As a result, the
MediaSnap system also employs a "scrambling" algorithm, which is essen-
tially a proprietary cipher. This scrambling is used in addition to—and not
in place of—a strong cipher, so there is no violation of Kerckhoffs' Principle.

The scrambling algorithm, which is itself obfuscated, presents a much
more substantial SRE challenge than a standard cipher, such as AES. The
keys are also obfuscated by splitting them into multiple parts and hiding
some parts in data and other parts in code. In short, the MediaSnap system
employs multiple layers of obfuscation.

Another security feature implemented by the system is an anti-screen cap-
ture technique, which is somewhat analogous to the anti-debugging technique
mentioned above. Digital watermarking is also employed. As we learned in
Chapter 5, watermarking is designed to provide the ability to trace stolen
content. However, in practice, watermarking has proven to be of relatively
limited value, particularly if the attacker knows the watermarking scheme.

The MediaSnap DRM software employs metamorphism for BOBE resis-
tance. The metamorphism is implemented in several places, most notably in
the scrambling algorithms. We'll have more to say about this below when we
discuss a DRM application designed to protect streaming media.

The MediaSnap DRM system employs a wide variety of software protec-
tion techniques. It is almost certainly one of the most advanced software-
based DRM systems ever attempted. The only significant protection mecha-

12.3 DIGITAL RIGHTS MANAGEMENT 467

nism not employed is the guards or "fragilization" technique discussed above,
and the only reason guards are not used is that they're not easily incorporated
with encrypted executable code.

One major security concern that we did not yet mention is the role of
the operating system. In particular, if we can't trust the operating system to
behave correctly, then our DRM client software can be undercut by attacks
on the operating system. The topic of trusted operating systems is the focus
of the next chapter.

12.3.3 D R M for Streaming Media

Suppose we want to stream digital audio or video over the Internet, and this
digital media is to be viewed in real time. If we want to charge money for
this service, how can we protect the content from capture and redistribution?
This sounds like a job for DRM. The DRM system we describe here follows
the design given in [282].

Possible attacks on streaming media include spoofing the stream between
the endpoints, man-in-the-middle, replay or redistribution of the data, and
capturing the plaintext at the client. We are concerned primarily with the
latter attack. The threat here arises from unauthorized software that is used
to capture the plaintext stream on the client.

The most innovative feature of our proposed design is the use of scrambling
algorithms, which are encryption-like algorithms, as described in the previous
section. We'll assume that we have a large number of distinct scrambling
algorithms at our disposal and we'll use these to achieve a significant degree
of metamorphism.

Each instance of the client software comes equipped with a large num-
ber of scrambling algorithms included. Each client has a distinct subset of
scrambling algorithms chosen from a master set of all scrambling algorithms,
and the server knows this master set. The client and server must negotiate
a specific scrambling algorithm to be used for a particular piece of digital
content. We'll describe this negotiation process below.

We'll also encrypt the content so that we don't need to rely on the scram-
bling algorithm for cryptographic strength. The purpose of the scrambling is
metamorphism—and BOBE resistance—not cryptographic security.

The data is scrambled and then encrypted on the server. On the client, the
data must be decrypted and then de-scrambled. The de-scrambling occurs in
a proprietary device driver, just prior to rendering the content. The purpose
of this approach is to keep the plaintext away from the attacker, Trudy, until
the last possible moment prior to rendering.

In the design discussed here, Trudy is faced with a proprietary device
driver and each copy of the software has a unique set of hardcoded scrambling
algorithms. Therefore, Trudy is faced with a significant SRE challenge and

468 INSECURITY IN SOFTWARE

each copy of the client software presents a distinct challenge. Consequently,
the overall system should have good BOBE resistance.

Suppose the server knows N different scrambling algorithms, denoted
so, si,..., sjv-i· Each client is equipped with a subset of these algorithms.
For example, a particular client might have the scrambling algorithms

L I S T = {Si2, S45, 32, S37, «23, S31}.

This LIST is stored on the client as E(LIST, ÄTserver), where ifserver is a
key that only the server knows. The primary benefit of this approach is
that the database that maps clients to their scrambling algorithms is dis-
tributed among the clients, eliminating a potential burden on the server.
Notice that this approach is reminiscent of the way Kerberos uses TGTs to
manage security-critical information.

To negotiate a scrambling algorithm, the client sends its LIST to the
server. The server then decrypts the LIST and chooses one of the algorithms
that is built into the client. The server must then securely communicate
its scrambling algorithm choice to the client. This process is illustrated in
Figure 12.16, where the server has selected the mth scrambling algorithm on
the client's LIST. Here, the key K is a session key that has been established
between the client and server.

E(LIST, Kse^er)

M E(m,K)

scramble (encrypted) data
Alice using Alice's m-th algorithm Bob

(client) (server)

Figure 12.16: Scrambling Algorithm Selection

The metamorphism provided by the scrambling algorithms is deeply em-
bedded in the system and tied to all of the data. Furthermore, if the server
knows that a particular scrambling algorithm is broken, the server won't se-
lect it. And if a particular client has too many broken algorithms, the server
will force a software upgrade before agreeing to distribute the content.

The server can also distribute the client software (or some crucial compo-
nent of it) immediately prior to distributing the content. This would make
it more difficult for Trudy to capture the streamed media in real time, due
to the limited time available to attack the software. Of course, Trudy could
record the stream and then attack the software at her leisure. However, in
many situations, an attack that is not close to real time would be of little
concern.

12.3 DIGITAL RIGHTS MANAGEMENT 469

Since the scrambling algorithms are unknown to the attacker, they require
a significant effort to reverse engineer, whereas a standard crypto algorithm
does not need to be reverse engineered at all—the attacker only needs to
find the key. As we mentioned above, it could be argued that such use
of scrambling algorithms is just security by obscurity. But in this particular
application, it appears to be of some value since it improves BOBE resistance.

12.3.4 D R M for a P 2 P Applicat ion

Today, much digital content is delivered via peer-to-peer, or P2P, networks.
For example, such networks contain large amounts of illegal, or pirated, music.
The following scheme is designed to gently coerce users into paying a small
fee for legal content that is distributed over a P2P network. Note that this
P2P network may contain large amounts of illegal content in addition to the
legal content.

The scheme we describe here is based on the work of Exploit Systems [108].
But before we discuss this application in detail, let's briefly review how a P2P
network works.

Suppose Alice has joined a P2P network, and she requests some music,
say, "Relay" by The Who. Then a query for this song floods through the
network, and any peer who has the song—and is willing to share it—responds
to Alice. This is illustrated in Figure 12.17. In this example, Alice can choose
to download the song from either Carol or Pat.

Figure 12.17: P2P Network

Figure 12.18 illustrates the same scenario in a P2P network that includes
a special peer that we'll call a peer offering service, or POS. The POS acts
much like any other peer, except that it has only legal—and DRM-protected—
music.

When Alice makes her request on a P2P network with a POS, it appears
to her that she has received responses from Bill, Ben, Carol, Joe, and Pat.
If Alice selects to download the music from Bill, Ben, or Joe, she will receive
DRM protected content for which she will be required to pay a small fee
before she can listen to the music. On the other hand, if Alice selects either
Carol or Pat, she receives the music for free, just as in the P2P network
without the POS.

470 INSECURITY IN SOFTWARE

For the POS concept to work, it must not be apparent to Alice whether
a peer is an ordinary peer or a POS peer. In addition, the POS must have
a significant percentage of its peers appear in the top ten responses. Let's
assume that these technical challenges can be resolved in favor of the POS.

Now suppose Alice first selects Bill, Ben, or Joe. Then after downloading
the music and discovering that she must pay, Alice is free to select another
peer and, perhaps, another, until she finds one that has pirated (i.e., free)
music. But is it worth Alice's time to download the song repeatedly just to
avoid paying? If the music is priced low enough, perhaps not. In addition,
the legal (DRM-protected) version can offer extras that might further entice
Alice to pay a small fee.

Figure 12.18: P2P Network with POS

The POS idea is clever, since it piggybacks on existing P2P networks.
And in the POS scenario, relatively weak DRM is sufficient. As long as it's
more trouble for Alice to break the DRM than to click and wait for another
download, the DRM has served its purpose.

12.3.5 Enterprise D R M

There are government regulations that require companies to protect certain
types of private information and there are similar regulations regarding many
types of business records. For example, the Health Insurance Portability
and Accountability Act, or HIPAA, requires that companies protect personal
medical records. HIPAA stipulates fines of up to $10,000 per incident (i.e.,
per record) for failing to provide sufficient protection. Companies that deal
with medical records often need to make such records accessible to certain
employees, but, due to HIPAA, they also must be careful that these records
do not leak to unauthorized recipients. DRM can help to solve this problem.

The Sarbanes-Oxley Act, or SOA, requires that companies must preserve
certain documents, such as information that might be relevant to insider
trading stock violations. Again, DRM could be used here to be sure that
such information is protected as required by law. The bottom line is that
DRM-like protections are needed by corporations for regulatory compliance.

12.3 DIGITAL RIGHTS MANAGEMENT 471

We refer to this as enterprise DRM to distinguish it from the e-commerce
scenarios discussed above.

Prom a technical point of view, the enterprise DRM security requirements
are similar to those for e-commerce. But the motivation for enterprise DRM
is entirely different, since the purpose is to prevent a company from losing
money (due to fines) instead of being an avenue for making money (as in e-
commerce). More significantly, the human dimension is completely different.
In an enterprise setting the threat of reprisals (getting fired or sued) are
far more plausible than in the e-commerce setting. Also, the required level of
protection is different. In enterprise DRM, a corporation has likely shown due
diligence and thereby complied with the regulations, provided that an active
attack on the DRM system is required to break its security. A moderate level
of DRM is sufficient in this case. From a technical perspective, enterprise
DRM is very much a solvable problem.

In e-commerce, the strength of the DRM system is the predominate con-
cern. But in the enterprise setting, other more mundane issues are more
important [286]. For example, policy management is an important concern.
That is, it must be easy for an administrator to set policies for individual
users, groups, etc. Authentication issues are also significant, since the DRM
system must interface with an existing corporate authentication system, and
the system must prevent authentication spoofing. From a technical perspec-
tive, these are not major obstacles.

DRM for e-commerce and enterprise DRM face similar technical hurdles.
But because the human dimension is so different, one is virtually unsolvable
(at least for software-based systems), while the other is fairly easy.

12.3.6 DRM Failures

There are far too many examples of failed e-commerce DRM systems to list
them all here, but we'll mention a few. One infamous system could be de-
feated by a felt-tip pen [97], while another was defeated by holding down the
shift key while downloading the content [6].

The Secure Digital Music Initiative, or SDMI, is an interesting case. Prior
to implementing SDMI on real-world systems, the SDMI Consortium posted
a series of challenge problems online, presumably to show how secure their
system would be in practice. A group of researchers was able to completely
break the security of the SDMI, and for their hard work they were rewarded
with the threat of multiple lawsuits. Eventually the attackers' results were
published, and they make fascinating reading—particularly with respect to
the inherent limitations of watermarking schemes [71].

Major corporations have put forth DRM systems that were easily broken.
For example, Adobe eBooks security was defeated [23, 133], and as in the case
of SDMI, the attacker's reward consisted of unenforceable legal threats [310].

472 INSECURITY IN SOFTWARE

Another poor DRM system was Microsoft's MS-DRM (version 2). Mi-
crosoft violated Kerckhoffs' Principle, which resulted in a fatally flawed block
cipher algorithm. The attacker in this case was "Beale Screamer" [29], who
avoided legal reprisals, presumably due to his anonymity.

12.3.7 D R M Conclusions

DRM illustrates the limitations of doing security in software, particularly
when that software must function in a hostile environment. Such software
is vulnerable to attack, and the protection options are extremely limited. In
other words, the attacker has nearly all of the advantages.

Tamper-resistant hardware and a trusted operating system can make a
significant difference. We'll discuss these topics more in Chapter 13.

In the next section, we shift gears to discuss security issues related to
software development. Much of our discussion will be focused through the
lens of the open source versus closed source software debate.

12.4 Software Development

The standard approach to software development is to develop and release a
product as quickly as possible. While some testing is done, it is almost never
sufficient, so the code is patched as flaws are discovered by users.6 In security,
this is known as penetrate and patch.

Penetrate and patch is a bad way to develop software in general, and a
terrible way to develop secure software. Since it's a security liability, why
is this the standard software development paradigm? There is more to it
than simply an ethical failing by software developers. In software, whoever
is first to market is likely to become the market leader, even if their product
ultimately is inferior to the competition. And in the computing world, the
market leader tends to dominate more so than in most fields. This first to
market advantage creates an overwhelming incentive to sell software before
it's been thoroughly tested.

There also seems to be an implicit assumption that if you patch bad soft-
ware long enough it will eventually become good software. This is sometimes
referred to as the penetrate and patch fallacy [317]. Why is this a fallacy? For
one thing, there is huge body of empirical evidence to the contrary—regardless
of the number of service packs applied, software continues to exhibit serious
flaws. In fact, patches often add new flaws. And software is a moving tar-
get due to new versions, new features, changing environment, new uses, new
attacks, and so on.

6Note that "patch" has a slightly different meaning here than in the SRE context. Here,
it means "to fix bugs," whereas in SRE it refers to a change made directly to the executable
code to add, remove, or modify certain features of the software.

12.4 SOFTWARE DEVELOPMENT 473

Another contributing factor toward the current sorry state of software
security is that users generally find it easier and safer to follow the leader.
For example, a system administrator probably won't get fired if his system
has a serious flaw, provided everybody else has the same flaw. On the other
hand, that same administrator might not receive much credit if his system
works normally while other systems are having problems.

Yet another major impetus for doing things like everybody else is that ad-
ministrators and users have more people they can ask for support. Together,
these perverse economic incentives are sometimes collectively referred to as
network economics [14].

Secure software development is difficult and costly. Development must
be done carefully, with security in mind from the beginning. And, as we'll
make somewhat precise below, an extraordinarily large amount of testing is
required to achieve reasonably low bug rates. It's certainly cheaper and easier
to let customers do the testing, particularly when there is no serious economic
disincentive to do so, and, due to network economics, there is an enormous
incentive to rush to market.

Why is there no economic disincentive for flawed software? Even if a
software flaw causes major losses to a corporation, the software vendor has
no legal liability. Few, if any, other products enjoy a comparable legal status.
In fact it's sometimes suggested that holding software vendors legally liable
for the adverse effects of their products would be a market-friendly way to
improve the quality of software. But software vendors have so far successfully
argued that such liability would stifle innovation. In any case, it's far from
certain that such an approach would have any serious impact on the overall
quality of software. Even if software quality did improve, the cost might
be greater than anticipated and there would certainly be some unintended
negative consequences.

12.4.1 Open Versus Closed Source Software

We'll look at some of the security problems inherent in software through the
prism of the open source versus closed source debate. Some of the conclusions
will probably surprise you.

With open source software, the source code is available to users. For
example, the Linux operating system is open source. With closed source
software, on the other hand, the source code is not available to the general
public. Windows is an example of closed source software. In this section,
we want to examine the relative security strengths and weaknesses of open
source and closed source software.

The primary claimed security advantages of open source software can be
summarized as "more eyeballs," that is, more people can look at the code,
so fewer flaws should remain undiscovered. This is really just a variant on

474 INSECURITY IN SOFTWARE

Kerckhoffs' Principle, and what self-respecting security person could possibly
argue with that?

However, upon closer examination, the benefit of more eyeballs becomes
more questionable, at least with respect to software security. First, how many
of these eyeballs are looking for security flaws? And how many are focused
on the low-level (tedious, boring) parts of the code, which are more likely to
harbor security flaws? Also, how many of these eyeballs belong to people who
are knowledgable about security—those who would have a realistic chance of
discovering subtle security flaws?

Another issue with open source is that attackers can also look for flaws
in the source code. Conceivably, an ingenious evil coder might even be able
to insert a security flaw into an open source project. While this may sound
far-fetched, the Underhanded C Contest shows that it's possible to write evil
code that looks innocent [70].

An interesting open source case study is wu-f tp . This open source soft-
ware is of modest size, at about 8,000 lines of code, and it implements a
security-critical application (file transfer). Yet this software was widely de-
ployed and in use for ten years before serious security flaws were discov-
ered [317]. More generally, the open source movement appears to have done
little to reduce security flaws. Perhaps the fundamental problem is that open
source software also follows the penetrate and patch model of development.
However, there is some evidence that open source software is significantly less
buggy than closed source [84].

If open source software has its security issues, certainly closed source
software is worse. Or is it? The security flaws in closed source are not
as visible to attackers, which could be viewed as providing some protection
(although it could be argued that this is just a form of security by obscurity).
But does this provide any significant protection? Given the record of attacks
on closed source software, it is clear that many exploits do not require source
code—our simple S RE example in Section 12.2 illustrates why this is the
case. Although it is possible to analyze closed source code, it's a lot more
work than for open source software.

Advocates of open source often cite the Microsoft fallacy as a reason why
open source software is inherently superior to closed source [317]. This fallacy
can be summarized as follows.

1. Microsoft makes bad software.

2. Microsoft software is closed source.

3. Therefore all closed source software is bad.

While it is always tempting to blame everything on Microsoft, this one doesn't
hold water. For one thing, it's not logically correct. Perhaps the real issue is
the fact that Microsoft follows the penetrate and patch model.

12.4 SOFTWARE DEVELOPMENT 475

Next, we'll take a little closer look at the security of open source and
closed source software. But before we get to that, it's reasonable to pon-
der why Microsoft software is successfully attacked so often. Is there some
fundamental problem with Microsoft software?

Microsoft is obviously a big target for any attacker—an attacker who
wants the most bang for the buck is naturally attracted to Microsoft. While
there are few exploits against, say, Mac OS X, this almost certainly has
more to do with the fact that it receives less attention from hackers (and,
not coincidentally, the hacker tools are much less well developed) than any
inherent security advantage of OS X. An attack on OS X would do far less
damage overall and therefore bring less "glory" to the attacker. Even from the
perspective of stealthy attacks, such as botnets, there is much more incentive
to attack a big target like Microsoft—numbers matter.

Now let's consider the security implications of open and closed source soft-
ware from a slightly more theoretical angle. It can be shown that the probabil-
ity of a security failure after t units of testing is about K/t, where K is a con-
stant, and this approximation holds over a large range of values for t [12]. The
constant if is a measure of the initial quality of the software—the smaller K,
the better the software was initially. This formula implies that the mean time
between failure, or MTBF, is given by

MTBF = t/K. (12.1)

That is, the average amount of time until some software security flaw rears
its ugly head and causes problems is t/K, where t is the amount of time that
has been spent testing the software. The bottom line is that software security
improves with testing, but it only improves linearly.

The implication of equation (12.1) is bad news for the good guys. For
example, to achieve a level of, say, 1,000,000 hours between security failures,
software must be tested for (on the order of) 1,000,000 hours.

Is it really true that software only improves linearly with testing? Empiri-
cal results have shown that this is the case, and it is the conventional wisdom
of many in the software field that this is reality for large and complex software
systems [14].

What does equation (12.1) imply about the security of open source versus
closed source software? Consider a large and complex open source project.
Then we would expect this project to satisfy equation (12.1). Now suppose
this same project was instead closed source. Then it would be reasonable to
expect that the flaws are harder to find than in the open source case. For
simplicity, suppose the flaws are twice as hard to find in the closed source
case. Then it might seem that

MTBF = 2t/K. (12.2)

476 INSECURITY IN SOFTWARE

If this is correct, closed source software is twice as secure as open source.
However, equation (12.2) is not correct, since the closed source testing is only
half as effective as in the open source case, that is, we need to test twice as
long to expose the same number of bugs. In other words, the closed source
software has more security flaws, but they are harder to find. In fact, if the
flaws are twice as hard to find, then our testing is only half as effective and we
arrive back at equation (12.1). This Zen-like argument shows that, in some
sense, the security of open and closed source software is indistinguishable—
see [12] for more details.

It might be argued that closed source software has open source alpha
testing, where flaws are found at the higher open source rate, since devel-
opers have access to the software. This alpha testing is followed by closed
source beta testing and use, where customers actually use the software and,
effectively, test it in the process. This combination would seem to yield the
best of both worlds—fewer bugs due to the open source alpha testing with
the remaining bugs harder to find due to the code being closed source. How-
ever, in the larger scheme of things, alpha testing is a small part of the total
testing, particularly with the pressures to rush to market. Although this
argument could, in principle, give an edge to closed source, in practice it's
probably not a significant advantage. The surprising conclusion here is that
open and closed source software are probably about the same from a security
perspective.

12.4.2 Finding Flaws

A fundamental security problem with software testing is that the good guys
must find almost all security flaws, whereas Trudy only needs to find one that
the good guys haven't yet found. This implies that software reliability is far
more challenging in security than in software engineering in general.

An example from [14] nicely illustrates this asymmetric warfare between
attacker and defender. Recall that the mean time between failure is given
by MTBF = t/K. For the sake of argument, suppose there are 106 security
flaws in a large and complex software project and assume that for each in-
dividual flaw, MTBF = 109 hours. That is, any specific flaw is expected to
show up after about a billion hours of use. Then, since there are 106 flaws,
we would expect to observe one flaw for every 109/106 = 103 hours of testing
or use.

Suppose that the good guys hire 10,000 testers who spend a total of 107

hours testing, and they find, as expected, 104 flaws. Evil Trudy, by herself,
spends 103 hours testing and finds one flaw. Since the good guys found
only 1% of the flaws, the chance that they found Trudy's specific bug is
only 1%. This is not good. As we've seen in other areas of security, the math
overwhelmingly favors the bad guys.

12.4 SOFTWARE DEVELOPMENT 477

12.4.3 Other Software Development Issues

Software development generally includes the following steps [235]: specify,
design, implement, test, review, document, manage, and maintain. Most
of these topics are beyond the scope of this book, but in this section, we'll
mention a few software development issues that have a significant impact on
security.

Secure software development is not easy, as our previous discussion of
testing indicates. And testing is only part of the development process. To
improve security, much more time and effort are required throughout the
entire development process. Unfortunately, there is little or no economic
incentive for this today.

Next, we'll briefly discuss the following security-critical software develop-
ment topics:

• Design

• Hazard analysis

• Peer review

• Testing

• Configuration management

• Postmortem for mistakes

We've already discussed testing, but we'll have more to say about some other
testing-related issues below.

The design phase is critical for security since a careful initial design can
avoid high-level errors that are difficult—if not impossible—to correct later.
Perhaps the most important point is to design security features in from the
start, since retrofitting security is difficult, if not impossible. Internet pro-
tocols offer an excellent illustration of this difficulty. IPv4, for example, has
no built-in security, while the new-and-improved version, IPv6, makes IPSec
mandatory. However, the transition to IPv6 is proving slow to nonexistent
and, consequently, the Internet remains much less secure than it could be.

Usually an informal approach is used at the design phase, but so-called
formal methods can sometimes be applied [40]. Using formal methods, it's
possible to rigorously prove that a design is correct. Unfortunately, formal
methods are generally too difficult to be practical in most real-world situa-
tions.

To build secure software, the threats must be considered in advance. This
is where the field of hazard analysis comes into play. There are several in-
formal ways to approach this problem, such as developing a hazard list con-
taining potential security problems, or simply making a list of "what ifs."

478 INSECURITY IN SOFTWARE

A slightly more systematic approach is Schneier's attack tree concept, where
possible attacks are organized into a tree-like structure [259]. A nice feature
of this approach is that you can prune entire branches of attacks if you can
prevent the attacks closer to the root of the tree.

There are several other approaches to hazard analysis, including haz-
ard and operability studies (HAZOP), failure modes and effective analysis
(FMEA), and fault tree analysis (FTA) [235]. We'll not discuss these topics
here.

Peer review is also a useful tool for improving security. There are three
levels of peer review which, from most informal to most formal, are sometimes
called review, walk-through, and inspection. Each level of review is useful, and
there is good empirical evidence that peer review is effective [235].

Next, we'll discuss testing, but from a different perspective than above in
Section 12.4. Testing occurs at different levels of the development process,
which can be categorize as follows:

• Module testing — Small sections of the code are tested individually.

• Component testing — A few modules are combined and tested together.

• Unit testing — Many components are combined for testing.

• Integration testing — Everything is put everything together and tested
as a whole.

At each of these levels, security flaws can be uncovered. For example, fea-
tures that interact in a new or unexpected way may evade detection at the
component level but be exposed during integration testing.

Another way to view testing is based on its purpose. We can define
categories as follows:

• Function testing — Here, we verify that the system functions as re-
quired.

• Performance testing — Requirements such as speed and resource use
are verified.

• Acceptance testing — The customer is actively involved.

• Installation testing — Not surprisingly, this is testing done at install
time.

• Regression testing — Testing that is done after any significant change
to the system.

12.4 SOFTWARE DEVELOPMENT 479

Again, security vulnerabilities can be exposed during any of these types of
testing.

Another useful testing technique is active fault detection, where instead
of simply waiting for a system to fail, the tester actively tries to make it fail.
This is the approach that an attacker will follow and it might uncover security
flaws that a more passive approach would miss.

An interesting concept is fault injection, where faults are inserted into
the process, even if there is no obvious way for such a fault to occur. This
might, for example, reveal buffer overflow problems that would otherwise go
unnoticed if the testing is restricted to expected inputs.

Bug injection can enable testers to obtain an estimate on the number of
bugs remaining in code. Suppose we insert 100 bugs into our code and our
testers find 30 of these. Further, suppose that in addition to these 30 bugs,
our testers find 300 other bugs. Since the testers found 30% of the inserted
bugs, it might be reasonable to assume that they also found 30% of the actual
bugs. If so, then roughly 700 bugs would remain, after removing all of the
discovered bugs and the 70 remaining inserted bugs. Of course, this assumes
that the injected bugs are similar to the naturally occurring bugs, which is
probably not entirely valid. Nevertheless, bug injection may provide a useful
estimate of the number of bugs and, indirectly, the number of security flaws.

A testing case history is given in [235]. In this example, the system
had 184,000 lines of code. Flaws were found at the following rates:

• 17.3% were found when inspecting the system design.

• 19.1% were found inspecting component design.

• 15.1% were found during code inspection.

• 29.4% were found during integration testing.

• 16.6% were found during system and regression testing.

The conclusion is that many kinds of testing must be conducted and that
overlapping testing is helpful.

Configuration management, that is, how we deal with changes to a sys-
tem, can also be a security-critical issue. Several types of changes can occur,
and these changes can be categorized as follows: minor changes are needed
to maintain daily functioning, adaptive changes are more substantial mod-
ifications, while perfective changes are improvements to the software, and,
finally, preventive changes, which are intended to prevent any loss of perfor-
mance [235]. Any such changes to a system can introduce new security flaws
or expose existing flaws, either directly as a result of the new software, or due
to interactions with the existing software base.

480 INSECURITY IN SOFTWARE

After identifying and fixing any security flaw, it is important to carefully
analyze the flaw. This sort of postmortem analysis is the best way to learn
from the problem and thereby increase the odds that a similar problem will
be avoided in the future. In security, we always learn more when things go
wrong than when they go right. If we fail to analyze those cases where we
know that things went wrong, then we've missed a significant opportunity.
Postmortem analysis may be the most underutilized method in all of security
engineering.

As we observed earlier in this chapter, security testing is far more de-
manding than non-security testing. In the latter case, we need to verify that
the system does what it's supposed to, while in security testing we must verify
that the system does what it is supposed to and nothing more. That is, there
can be no unintended "features," since any such feature provides a potential
avenue of attack.

In any realistic scenario, it's almost certainly impossible to do exhaustive
testing. Furthermore, the MTBF formula discussed in Section 12.4.1 indicates
that an extraordinarily large amount of testing would be required to achieve
a high level of security. So, is secure software really as hopeless as it seems?
Fortunately, there may be a loophole. If we can eliminate an entire class of
potential security flaws with one (or a few) tests, then the statistical model
that the MTBF is based on will break down [14]. For example, if we have a
test (or a few tests) that enable us to find all buffer overflows, then we can
eliminate this entire class of serious flaws with a relatively small amount of
work. This is the holy grail of software testing in general, and security testing
in particular.

The bottom line on secure software development is that network eco-
nomics and penetrate and patch are the biggest enemies of secure software.
Unfortunately, there is generally little incentive for secure software develop-
ment, and until that changes, we probably can't expect major improvements
in security. In those cases where security is a high priority, it is possible to de-
velop reasonably secure software, but there is most definitely a cost. That is,
proper development practices can minimize security flaws, but secure devel-
opment is a costly and time-consuming proposition.7 For all of these reasons
(and more), you should not expect to see a dramatic improvements in software
security anytime soon.

Even with the best software development practices, security flaws will still
exist. Since absolute security is almost never possible in the real world, it
should not be surprising that absolute security in software is not realistic.
In any case, the goal of secure software development—as in most areas of
security—is to minimize and manage the risks.

7As you probably realize, it's that annoying "no free lunch" thing yet again.

12.5 SUMMARY 481

12.5 Summary

In this chapter we showed that security in software is difficult to achieve. We
focused on three topics, namely, reverse engineering, digital rights manage-
ment, and software development.

Software reverse engineering (SRE) illustrates what an attacker can do to
software. Even without access to the source code, an attacker can understand
and modify your code. Making very limited use of the available tools, we were
able to easily defeat the security of a program. While there are things that
can be done to make reverse engineering more difficult, as a practical matter,
most software is wide open to SRE-based attacks.

We then discussed digital rights management (DRM), which illustrates the
futility of attempting to enforce strong security measures through software.
After our look at SRE, this should not have come as a surprise.

Finally, we discussed the difficulties involved in secure software devel-
opment. Although we looked at the problem from the perspective of open
source versus closed source software, from any perspective secure software de-
velopment is extremely challenging. Some elementary math confirms that the
attacker has most of the advantages. Nevertheless, it is possible—although
difficult and costly—to develop reasonably secure software. Unfortunately,
today secure software is the exception rather than the rule.

12.6 Problems

1. Obtain the file SRE.zip from the textbook website and extract the
Windows executable.

a. Patch the code so that any serial number results in the message
"Serial number is correct!!!" Turn in a screen capture showing
your results.

b. Determine the correct serial number.

2. For the SRE example in Section 12.2.2, we patched the code by changing
a t e s t instruction to xor.

a. Give at least two ways—other than changing t e s t to xor—that
Trudy could patch the code so that any serial number will work.

b. Changing the j z instruction that appears at address 0x401032 in
Figure 12.4 to jnz is not a correct solution to part a. Why not?

3. Obtain the file unknown.zip from the textbook website and extract the
Java class file unknown.class.

a. Use CafeBabe [44] to reverse this class file.

482 INSECURITY IN SOFTWARE

b. Analyze the code to determine what the program does.

4. Obtain the file Decorator.zip from the textbook website and extract
the file Decorator.jar. This program is designed to evaluate a stu-
dent's application for admission based on various test scores. Applicants
applying to medical school must include their score on the MCAT test
score, while applicants to law school must include their score on the
LSAT test. Applicants to the graduate school (which includes Law and
Medicine) must include their score on the GRE test, and foreign appli-
cants must include their score on the TOEFL exam. An applicant is
accepted if his or her GPA is above 3.5 and they exceed a set thresh-
old for their required tests (MCAT, LSAT, GRE, TOEFL). Since the
school is locate in California, the requirements are more lenient for Cal-
ifornia residents. This program creates six applicants of which two are
not accepted because of their low score. Finally, the program was ob-
fuscated using ProGuard (using only options under the "obfuscation"
button, i.e., no shrinking, optimization, etc., were applied); see [58] for
a detailed solution to a similar example.

a. Patch the program so that the two applicants who were not ac-
cepted are accepted. Accomplish this by lowering the thresholds
in their respective failing categories to the values of their scores.

b. Using the result from part a, further patch the code so that a
California resident who was accepted (in the original program) is
now rejected.

5. Obtain the file encrypted.zip from the textbook website and extract
the file encrypted, jar. This application was encrypted using Sand-
Mark [63], with the "obfuscate" tab and "Class Encryptor" option se-
lected and, possibly, other obfuscation options.

a. Generate a decompiled version of this program directly from the
obfuscated (and encrypted) code. Hint: Do not attempt to use a
cryptanalytic attack to break the encryption. Instead, look for an
unencrypted class file. This is a custom class loader that decrypts
the encrypted files before they are executed. Reverse this custom
class loader and modify it so that it prints out the class files in
plaintext.

b. How could you make this encryption scheme more difficult to
break?

6. Obtain the file deadbeef.zip from the textbook website and extract
the C source file deadbeef. c.

12.6 PROBLEMS 483

a. Modify the program so that it tests for a debugger using the Win-
dows function IsDebuggerPresent. The program should silently
terminate if a debugger is detected, whether or not the correct
serial number is entered.

b. Show that you can determine the serial number using a debugger,
in spite of the IsDebuggerPresent () function. Briefly explain
how you were able to bypass the IsDebuggerPresent () check.

7. Obtain the file mystery.zip from the textbook website and extract the
Windows executable mystery.exe.

a. What is the output when you run the program with each of the
following usernames, assuming an incorrect serial number in each
case?

i. mark

ii. markstamp

iii. markkram

b. Analyze the code to determine all restrictions, if any, on valid
usernames. You will need to disassemble and/or debug the code.

c. This program uses an anti-debugging technique, namely, the Win-
dows system function IsDebuggerPresent () . Analyze the code to
determine what the program does in case a debugger is detected.
Why is this better than simply terminating the program?

d. Patch the program so that you can debug it. That is, you need to
nullify the effect of IsDebuggerPresent () .

e. By debugging the code, determine the corresponding valid serial
number for each valid username that appears in part a. Hint:
Debug the program and enter a username along with any serial
number. At some point the program will compute the valid serial
number corresponding to the entered username—it does this so
that it can compare to the entered serial number. If you set a
breakpoint at the correct location, the valid serial number will be
stored in a register, which you can then observe.

f. Create a patched version of the code, mysteryPatch. exe that ac-
cepts any username/serial number pair.

8. Obtain mystery.zip from the textbook website and extract the Win-
dows executable mystery.exe. As mentioned in Problem 7, part e,
the program contains code that generates a valid serial number cor-
responding to any valid username. Such an algorithm is known as a
key generator, or simply a keygen. If Trudy has a functioning copy of
the keygen algorithm, she can generate an unlimited number of valid

484 INSECURITY IN SOFTWARE

username/serial number pairs. In principle, it would be possible for
Trudy to analyze a keygen algorithm and write her own (functionally
equivalent) standalone keygen program from scratch. However, keygen
algorithms are generally complex, making such an attack difficult in
practice. But all is not lost (at least from Trudy's perspective). It is
often possible—and relatively simple—to "rip" the keygen algorithm
from a program. That is, an attacker can extract the assembly code
representing the keygen algorithm and embed it directly in a C pro-
gram, thereby creating a standalone keygen utility, without having to
understand the details of the algorithm.

a. Rip the keygen algorithm from mystery.exe, that is, extract the
keygen assembly code and use it directly in your own standalone
keygen program. Your program must take any valid username as
input and produce the corresponding valid serial number. Hint:
In Visual C++ assembly code can be embedded directly in a C
program by using the asm directive. You may need to initialize
certain register values to make the ripped code function correctly.

b. Use your program from part a to generate a serial number for the
username markkram. Verify that your serial number is correct by
testing it in the original mystery. exe program.

9. This problem deals with software reverse engineering (SRE).

a. Suppose debugging is impossible. Is SRE still possible?

b. Suppose disassembly is impossible. Is SRE still possible?

10. How can the the anti-debugging technique illustrated in Figure 12.11
be implemented so that it also provides anti-disassembly protection?

11. Why are guards incompatible with encrypted object code?

12. Recall that an opaque predicate is a "conditional" that is actually not
a conditional. That is, the conditional always evaluates to the same
result, but it is not obvious that this is the case.

a. Why is an opaque predicate a useful defense against reverse engi-
neering attacks?

b. Give an example—different from that given in the text—of an
opaque predicate based on a mathematical identity.

c. Give an example of an opaque predicate based on an input string.

13. The goal of this problem is to show that you can convert any conditional
into an opaque predicate.

12.6 PROBLEMS 485

a. Given the conditional

if (a < b)

// do something

else

// do something else

slightly modify the if statement so that the do something branch
always executes.

b. Explain why your solution to part a will work in general.

c. How stealthy is your approach, that is, how difficult would it be
for an attacker to (automatically) detect your opaque predicates?
Could you make your approach stealthier?

14. Opaque predicates have been proposed as a method for watermarking
software [18, 212].

a. How might such a watermarking technique be implemented?

b. Consider possible attacks on such a watermarking scheme.

15. Describe in detail one anti-disassembly method not discussed in this
chapter.

16. Describe in detail one anti-debugging method not discussed in the text.

17. Consider a DRM system implemented in software on a PC.

a. Define persistent protection.

b. Why is encryption necessary, but not sufficient, to provide persis-
tent protection?

18. Consider a DRM system implemented in software on a PC. As discussed
in the text, such systems are inherently insecure. Suppose that in an
alternate universe such a system could be made highly secure.

a. How would such a system benefit copyright holders?

b. How could such a system be used to enhance privacy? Give a

concrete example.

19. Suppose that it's impossible to patch some particular software that
implements DRM protection. Is the DRM system then secure?

20. Some DRM systems have been implemented on open systems and some
have been implemented in closed systems.

a. What is the primary advantage of implementing DRM on a closed
system?

486 INSECURITY IN SOFTWARE

b. What is the primary advantage to implementing DRM on an open
platform?

21. Once a user authenticates, it is sometimes desirable to have the program
keep this authentication information available, so that we do not need
to bother the user to authenticate repeatedly.8

a. Devise a method for a program to cache authentication informa-
tion, where the information is stored in a different form each time
it's cached.

b. Is there any security advantage to your approach in part a, as
compared to simply storing the information the same each time?

22. Above, we discuss break-once, break-everywhere (BOBE) resistance.

a. Why is BOBE resistance desirable for software in general, and
DRM systems in particular?

b. In the text, it is argued that metamorphism can increase BOBE re-
sistance. Discuss one other method that could be used to increase
BOBE resistance.

23. In [266], it's shown that keys are easy to find when hidden in data, since
keys are random and most data is not.

a. Devise a more secure method for hiding a key in data.

b. Devise a method for storing a key K in data and in software.
That is, both the code and the data are required to reconstruct
the key K.

24. In an analogy to genetic diversity in biological systems, it is sometimes
argued that metamorphism can increase the resistance of software to
certain types of attacks, such as buffer overflow.

a. Why should metamorphic software be more resistant to buffer over-
flow attacks? Hint: See [281].

b. Discuss other types of attacks that metamorphism might help to
prevent.

c. From a development perspective, what difficulties does metamor-
phism present?

25. The Platform for Privacy Preferences Project (P3P) is supposed to
enable "smarter privacy tools for the web" [238]. Consider the P3P
implementation outlined in the papers [185, 186].

This could be viewed as a form of single sign-on.

12.6 PROBLEMS 487

a. Discuss the possible privacy benefits of such a system.

b. Discuss attacks on such a P3P implementation.

26. Suppose that a particular system has 1,000,000 bugs, each with MTBF
of 10,000,000 hours. The good guys work for 10,000 hours and find
1,000 bugs.

a. If Trudy works for 10 hours and finds 1 bug, what is the probability
that Trudy's bug was not found by the good guys?

b. If Trudy works for 30 hours and finds 3 bugs, what is the prob-
ability that at least one of her bugs was not found by the good
guys?

27. Suppose that a large and complex piece of software has 10,000 bugs,
each with an MTBF of 1,000,000 hours. Then you expect to find a
particular bug after 1,000,000 hours of testing, and—since there are
10,000 bugs—you expect to find one bug for every 100 hours of testing.
Suppose the good guys do 200,000 hours of testing while the bad "guy,"
Trudy, does 400 hours of testing.

a. How many bugs should Trudy find? How many bugs should the
good guys find?

b. What is the probability that Trudy finds at least one bug that the
good guys did not?

28. It can be shown that the probability of a security failure after t hours
of testing is approximately K/t for some constant K. This implies that
the mean time between failures (MTBF) is about t/K after t hours of
testing. So, security improves with testing, but it only improves linearly.
One implication is that to ensure an average of, say, 1,000,000 hours
between security failures, we must test for (on the order of) 1,000,000
hours. Suppose that an open source software project has a MTBF
oît/K. If this same project were instead closed source, we might suspect
that each bug would be twice as hard for an attacker to find. If this is
true, it would appear that the MTBF in the closed source case is 2t/K
and hence the closed source project will be twice as secure for a given
amount of testing t. Discuss some flaws with this reasoning.

29. This problem compares closed systems and open systems.

a. Define "open system" and give an example of an open system.

b. Define "closed system" and give an example of a closed system.

c. What are the advantages of open systems, as compared to closed
systems?

488 INSECURITY IN SOFTWARE

d. What are the advantages of closed systems, as compared to open
systems?

30. Suppose that a particular open source project has MTBF = t/K. With-
out access to the source code, you believe that bugs in the software are
three times as hard to find as in the open source case. If this is true,
what would the MTBF be if this project were closed source?

31. Suppose that MTBF = t2/K, instead of t/K. Then would there be
an advantage to closed source software over open source, or vice versa,
assuming that bugs are twice as hard to find in the closed source case?

32. Suppose that there are 100 security flaws in a particular software project
and we can list these flaws in such a way that security flaw i requires i
hours of testing to find. That is, it takes one hour to find flaw number
one, two more hours to find flaw number two, three more hours to find
flaw number three, and so on. What is the MTBF for this system?

33. As a deterrent to Microsoft's new Evil Death Star [210], the citizens of
planet Earth have decided to build their own Good Death Star. The
good citizens of Earth are debating whether to keep their Good Death
Star plans secret or make the plans public.

a. Give several reasons that tend to support keeping the plans secret.

b. Give several reasons that tend to support making the plans public.

c. Which case do you find more persuasive, keeping the plans secret
or making the plans public? Why?

34. Suppose that you insert 100 typos into a textbook manuscript. Your
editor finds 25 of these typos and, in the process, she also finds 800
other typos.

a. Assuming that you remove all of the discovered typos and the 75
other typos that you inserted, estimate the number of typos re-
maining in the manuscript.

b. What does this have to do with software security?

35. Suppose that you are asked to approximate the number of unknown
bugs that remain in a particular piece of software. You insert 100 bugs
into the software and then have your QA team test the software. In
testing, your team discovers 40 of the bugs that you inserted, along
with 120 bugs that you did not insert.

a. Use these results to estimate the number of undiscovered bugs
that remain in the program, assuming that you remove all of the
discovered bugs as well as the 60 remaining bugs that you inserted.

12.6 PROBLEMS 489

b. Why might this test give inaccurate results?

36. Suppose that a large software company, Software Monopoly, or SM, is
about to release a new software product called Doors, affectionately
known as SM-Doors. The software for Doors is estimated to have
1,000,000 security flaws. It is also estimated that each security flaw
that remains in the software upon release will cost SM about $20, due
to lost sales resulting from damage to its reputation. SM pays its devel-
opers $100 per hour during the alpha testing phase, and at this phase,
developers find flaws at a rate of about 1 flaw for every 10 hours of test-
ing. In effect, customers act as beta testers when they find additional
flaws in Doors. Suppose that SM charges $500 per copy of Doors and
the estimated market for Doors is about 2,000,000 units. What is the
optimal amount of alpha testing for SM to conduct?

37. Repeat Problem 36 assuming that developers find flaws at a rate of
N/100,000 per hour of testing, where N is the number of flaws re-
maining in the software, and all other parameters are the same as in
Problem 36. Note that this implies it is more difficult for developers to
find flaws as the number of flaws decreases, which is probably more re-
alistic than the linear assumption in Problem 36. Hint: You may want
to use the fact that

£ - J L - « a (l n & - l n (& - n)) .

This page intentionally left blank

Chapter 13

Operating Systems and
Security

UNIX is basically a simple operating system,
but you have to be a genius to understand the simplicity.

— Dennis Ritchie

And it is a mark of prudence never to trust wholly
in those things which have once deceived us.

— Rene Descartes

13.1 Introduction

In this chapter, we'll look at some of the security issues related to operating
systems (OSs). OSs are large and complex pieces of software. Recall that in
Chapter 12 we argued that there are almost certain to be security flaws in
any large and complex computer program. But here we are concerned with
the security protection provided by the OS, not with the very real threat of
bad OS software. That is, we are concerned with the role of the OS as the
security enforcer. This is a large topic that ties into many other aspects of
security and we'll just barely scratch the surface.

First, we'll describe the primary security-related functions of any modern
operating system. Then we'll discuss the notion of a trusted OS, and we'll
conclude with a look at Microsoft's fairly recent effort to develop a trusted
operating system, which goes by the catchy name of the Next Generation
Secure Computing Base, or better yet, NGSCB.

491

492 OPERATING SYSTEMS AND SECURITY

13.2 OS Security Functions

An OS must deal with potential security issues whether they arise accidentally
or as part of a malicious attack. Modern OSs are designed for multi-user
environments and multi-tasking operations. Consequently, an OS must, at a
minimum, deal with separation, memory protection, and access control. We
briefly discuss each of these three topics below.

13.2.1 Separation

Arguably the most fundamental security issue for a modern OS is that of
separation. That is, the OS must keep users and processes separate from
each other.

There are several ways that separation can be enforced [235], including
the following:

• Physical separation — Users are restricted to separate devices. This
provides a strong form of separation, but it is often impractical.

• Temporal separation— Processes are separated in time. This eliminates
many problems that arise due to concurrency and simplifies the job of
the OS. However, there is a loss of efficiency.

• Logical separation — For example, each process might be allocated its
own "sandbox." A process is free to do almost anything within its
sandbox, but it can do almost nothing outside of its sandbox.

• Cryptographic separation — Crypto can be used to make information
unintelligible to an outsider.

Of course, various combinations of these methods can be used.

13.2.2 Memory Protect ion

Another fundamental issue an OS must deal with is memory protection. This
includes protection for the memory that the OS itself uses as well as the
memory of user processes. A fence, or fence address, is one option for memory
protection. A fence is a particular address that users and their processes
cannot cross—only the OS can operate on one side of the fence, and users are
restricted to the other side.

A fence could be static, in which case there is a fixed fence address. How-
ever, this places a strict limit on the size of the OS, which is a major drawback
(or benefit, depending on your perspective). Alternatively, a dynamic fence
can be used, which can be implemented using a fence register to specify the
current fence address.

13.2 OS SECURITY FUNCTIONS 493

In addition to a fence, base and bounds registers can be used. These
registers contain the lower and upper address limits of a particular user (or
process) space. The base and bounds register approach implicitly assumes
that the user (or process) space is contiguous in memory.

The OS must determine what protection to apply to a specific memory
location. In some cases it might be sufficient to apply the same protection
to all of a user's (or process's) memory. At the other extreme, tagging spec-
ifies the protection for each individual address. While this is as fine-grained
protection as possible, it introduces significant overhead. The overhead can
be reduced by tagging sections of the address space instead of each individ-
ual address. In any case, another drawback to tagging is compatibility, since
tagging schemes are not in common use.

The most common methods of memory protection are segmentation and
paging. While these are not as flexible as tagging, they're much more efficient.
We briefly discuss each of these next.

Segmentation, as illustrated in Figure 13.1, divides the memory into log-
ical units, such as individual procedures or the data in one array. Then
appropriate access control can be enforced on each segments. A benefit of
segmentation is that any segment can be placed in any memory location—
provided the location is large enough to hold it. Of course, the OS must
keep track of the locations of all segments, which is accomplished using
<segment,offset> pairs, where the cleverly named segment specifies the
segment, and the offset is the starting address of the specified segment.

Figure 13.1: Segmentation

Other benefits of segmentation include the fact that segments can be
moved to different locations in memory and they can also be moved in and out
of memory. With segmentation, all address references must go through the
OS, so the OS can, in this respect, achieve complete mediation. Depending

494 OPERATING SYSTEMS AND SECURITY

on the access control applied to particular segments, users can share access
to some segments or users can be restricted to specific segments.

One serious drawback to segmentation is that the segments are of variable
sizes. As a result, before the OS tries to reference any element of a given
segment it must know the size of the segment so that it can be sure that
the requested address is within the segment. But some segments—such as
those that include dynamic memory allocation—can grow during execution.
Consequently, the OS must keep track of dynamic segment sizes. And due
the variability of segment sizes, memory fragmentation is a potential problem.
Finally, when memory is compacted to make better use of the available space,
the segmentation tables change. In short, segmentation is complex and places
a significant burden on the OS.

Paging is like segmentation, except that all segments are of a fixed size,
as illustrated in Figure 13.2. With paging, access to a particular page uses a
pair of the form <page, of f set>. The advantages of paging over segmentation
include no fragmentation, improved efficiency, and the fact that there are no
variable sizes to worry about. The disadvantages are that there is, in general,
no logical unity to pages, which makes it more difficult to determine the
proper access control to apply to a given page.

Figure 13.2: Paging

13.2.3 Access Control

OSs are the ultimate enforcers of access control. This is one reason why the
OS is such an attractive target for attack—a successful attack on the OS
can effectively nullify any protection built in at a higher level. We discussed
access control in Chapter 8 and we'll briefly return to the subject in the next
section when we discuss the concept of a trusted OS.

13.3 TRUSTED OPERATING SYSTEM 495

13.3 Trusted Operating System

There's none deceived but he that trusts.
— Benjamin Franklin

A system is trusted if we rely on it for security. In other words, if a trusted
system fails to provide the expected security, then the security of the system
is broken.

In this context, there is a distinction between trust and security. Trust
implies reliance, that is, trust is binary choice—either we trust or we don't.
Security, on the other hand, is a judgment of the effectiveness of a particular
mechanisms. Security should be judged relative to a clearly specified policy
or statement.

Note that security depends on trust. For example, a trusted component
that fails to provide the expected level of security will break the overall se-
curity of the system. Ideally, we only trust secure systems, and all trust
relationships are explicit.

Since a trusted system is one that we rely on for security, an untrusted
system must be one that we don't rely on for security. As a consequence, if all
untrusted systems are compromised, the security of the system is unaffected.
A curious implication of this simple observation is that only a trusted system
can break security. Hold this thought, since we'll have more to say about it
in the next section.

What should a trusted OS do? Since any OS must deal with separa-
tion, memory protection, and access control, at a minimum, a trusted OS
must do these things securely. Any list of generic good security principles
would likely include the following: least privilege (e.g., the low watermark
principle), simplicity, open design (e.g., Kerckhoffs' Principle), complete me-
diation, whitelisting (as opposed to blacklisting), separation, and ease of use.
We might expect a trusted OS to securely deal with many of these issues.
However, most commercial OSs are feature-rich, which tends to lead to com-
plexity and poor security. Modern commercial OSs are not to be trusted.

13.3.1 MAC, DAC, and More

As mentioned above and illustrated in Figure 13.3, any OS must provide
some degree of separation, memory protection, and access control. On the
other hand, since we rely on a trusted OS for our security, it will almost
certainly need to go beyond the minimal security operations. Specific security
measures that we would like to see from a trusted OS likely include mandatory
access control, discretionary access control, object reuse protection, complete
mediation, trusted path, and logs. A trusted OS is illustrated in Figure 13.4.

496 OPERATING SYSTEMS AND SECURITY

Figure 13.3: Operating System Overview

Mandatory access control, or MAC, is access that is not controlled by
the owner of an object. For example, Alice does not decide who holds a
TOP SECRET clearance, so she can't completely control the access to a
document classified at this level. In contrast, discretionary access control,
or DAC, is the type of access control that is determined by the owner of an
object. For example, in UNIX file protection, the owner of a file controls
read, write, and execute privileges.

If both DAC and MAC apply to an object, MAC is "stronger." For
example, suppose Alice owns a document marked TOP SECRET. Then Alice
can set the DAC since she owns the document. However, regardless of the
DAC settings, if Bob only has a SECRET clearance, he can't access the
document because he doesn't meet the MAC requirements. On the other
hand, if the DAC is stricter than the MAC, then the DAC would determine
the access.

A trusted OS must also prevent information from leaking from one user to
another. Any OS will use some form of memory protection and access control,
but we require strong protection from a trusted OS. For example, when the OS
allocates space for a file, that same space may have previously been used by
a different user's process. If the OS takes no additional precautions, the bits
that remain from the previous process could be accessible and thereby leak
information. A trusted OS must take steps to prevent this from occurring.

A related problem is magnetic remanence, where faint images of previously
stored data can sometimes be read, even after the space has been overwrit-
ten by new data. To minimize the chance of this occurring, the DoD sets
guidelines that require memory to be overwritten repeatedly with different
bit patterns before it's considered safe to allow another process access to that
space [132].

13.3 TRUSTED OPERATING SYSTEM 497

Figure 13.4: Trusted Operating System Overview

13.3.2 Trusted P a t h

When you enter your password at the login prompt, what happens to that
password? We know what is supposed to happen to the password (hashed
with a salt, etc.), but what actually happens depends on the software that
is running on your system. How can you be sure that software is not doing
something evil, such as writing your password to a file that will later be
emailed to Trudy? This is the trusted path problem, and as Ross Anderson
puts it in [14]:

I don't know how to be confident even of a digital signature I
make on my own PC, and I've worked in security for over fifteen
years. Checking all of the software in the critical path between
the display and the signature software is way beyond my patience.

Ideally, a trusted OS would provide strong assurance of a trusted path. If so,
one benefit is that we could have confidence in a digital signature on a PC.

The OS is also responsible for logging security-related events. This sort
of information is necessary to detect attacks and for postmortem analysis.
Logging is not as simple as it might seem. In particular, it is not always
obvious precisely what to log. If we log too much, then we might overwhelm
any human who must examine the data, and we could even overwhelm auto-
mated systems that try to find the relevant needle in this haystack of data.
For example, should we log incorrect passwords? If so, then "almost" pass-
words would appear in the log file, and log files would themselves be security
critical. If not, it may be harder to detect when a password-guessing attack
is in progress.

498 OPERATING SYSTEMS AND SECURITY

13.3.3 Trusted Comput ing Base

The kernel is the lowest-level part of the OS. The kernel is responsible for syn-
chronization, inter-process communication, message passing, interrupt han-
dling, and so on. A security kernel is the part of the kernel that deals with
security.

Why have a dedicated security kernel? Since all accesses must go through
the kernel, it's the ideal place for access control. It's also good practice to
have security-critical functions in one location. By locating all such functions
in one place, security functions are easier to test and modify.

One of the primary motivations for an attack on the OS is that the attacker
can get below higher-level security functions and thereby bypass these security
features. By putting as many security functions as possible at the OSs lowest
layer, it may be more difficult for an attacker to get below these functions.

The reference monitor is the part of the security kernel that deals with
access control. The reference monitor mediates all access between subjects
and objects, as illustrated in Figure 13.5. Ideally, this crucial part of the
security kernel would be tamper resistant, and it should also be analyzable,
small, and simple, since an error at this level could be devastating to the
security of the entire system.

Figure 13.5: Reference Monitor

The trusted computing base, or TCB, is everything in the OS that we
rely on to enforce security. Our definition of trust implies that, if everything
outside TCB were subverted, our trusted OS would still be secure.

Security-critical operations will likely occur in many places within the
OS. Ideally, we would design the security kernel first and then build the OS
around it. Unfortunately, reality is usually just the opposite, as security tends
to be an afterthought instead of a primary design goal. However, there are
examples of OSs that have been designed from scratch, with security as a
main objective. One such OS is SCOMP, which was developed by Honey-
well. SCOMP has less than 10,000 lines of code in its security kernel, and
it strives for simplicity and analyzability [116]. Contrast this to, say, Win-
dows XP, which has some 40,000,000 lines of code and numerous dubious
(from a security point of view) features.

Ideally the TCB should gather all security functions into an identifiable
layer. For example, the TCB illustrated in Figure 13.6 is a poor design, since

13.3 TRUSTED OPERATING SYSTEM 499

security-critical features are spread throughout the OS. Here, any change in a
security feature may have unintended consequences in other OS functionality,
and the individual security operations are difficult to analyze, particularly
with respect to their interactions.

Figure 13.6: Poor TCB Design

The TCB illustrated in Figure 13.7 is preferable, since all security func-
tions are collected in a well-defined security kernel [235]. In this design, the
security impact of any change in one security function can be analyzed by
studying its effect on the security kernel. Also, an attacker who subverts OS
operations at a higher level will not have defeated the TCB operations.

Figure 13.7: Good TCB Design

In summary, the TCB consists of everything in the OS that we rely on for
security. If everything outside the TCB is subverted, we're still secure, but if
anything in the TCB is subverted, then the security is likely broken.

500 OPERATING SYSTEMS AND SECURITY

In the next section we'll examine NGSCB, which is an ambitious effort
by Microsoft to develop a trusted OS for the PC platform. DRM was the
original motivation for NGSCB, but it has wide security implications [107].

13.4 Next Generation Secure Computing Base

Microsoft's Next Generation Secure Computing Base, or NGSCB (which is,
strangely, pronounced "en scub"), was originally slated to be part of the
"Longhorn" OS (i.e., Windows Vista). But it appears that most of the fea-
tures of NGSCB won't appear until a later release, if ever.1 Regardless, the
concept is intriguing and it might yet find widespread application.

NGSCB is designed to work with special hardware, which is to be devel-
oped by the Trusted Computing Group, or TCG, led by Intel [306]. NGSCB
is the part of Windows that will interface with the TCG hardware. TCG
was formerly known as the Trusted Computing Platform Alliance, or TCPA,
and NGSCB was formerly known as Palladium. It's been theorized that the
name changes are due to bad publicity surrounding the initial discussion of
TCPA/Palladium [190].

The original motivation for TCPA/Palladium was digital rights manage-
ment. Due to the negative reaction this received, TCG/NGSCB now down-
plays the DRM connection, although it clearly remains a motivating factor.
Today, TCG/NGSCB is promoted as a general security-enhancing technol-
ogy, with DRM being just one of many potential applications. But, as we'll
see below, not everyone is convinced that this is a good idea. Depending
on who you ask, TCG/NGSCB—which is often shortened to TC—stands for
"trusted computing" [219] or "treacherous computing" [13].

The underlying goal of TCG/NGSCB is to provide some of the strengths
of a closed system on the open PC platform [102, 220]. Closed systems, such as
game consoles and smartcards, are very good at protecting secrets, primarily
due to their tamper-resistant features. As a result, closed systems are good
at forcing people to pay money for the use of copyrighted information, such
as game software. The drawback to closed systems is their limited flexibility.
In contrast, open systems such as PCs offer incredible flexibility, but, as we
have seen, they do a poor job of protecting secrets. This is primarily because
open systems have no real means to defend their own software. Ron Rivest
has aptly described NGSCB as a "virtual set-top box inside your PC" [74].

The TCG is supposed to provide tamper-resistant hardware that might
someday be standard on PCs. Conceptually, this can be viewed as a smart-
card embedded within the PC hardware. This tamper-resistant hardware

1Only one application of this technology appears to have been implemented so far.
The "secure startup" feature in Vista and Windows 7 is said to use some features of
NGSCB [204].

13.4 NEXT GENERATION SECURE COMPUTING BASE 501

provides a secure place to store cryptographic keys or other secrets. These
secrets can be secured, even from a user with full administrator privileges.
To date, nothing comparable exists for PCs.

It is important to realize that the TCG tamper-resistant hardware is in
addition to all of the usual PC hardware, not in place of it. To take advantage
of this special hardware, the PC will have two OSs—its usual OS and a special
trusted OS to deal with the TCG hardware. NGSCB is Microsoft's version
of this trusted OS.

According to Microsoft, the design goals of NGSCB are twofold. First, it
is to provide high assurance, that is, users can have a high degree of confidence
that NGSCB will behave correctly, even when it's under attack. The second
goal is to provide authenticated operation. To protect the secrets stored in
the tamper-resistant hardware, it's critical that only trusted software can
access the TCG hardware. By carefully validating (i.e., authenticating) all
software, NGSCB can provide a high degree of trust. Protection against
hardware tampering is not a design goal of NGSCB, since that is the domain
of the TCG.

Specific details concerning NGSCB are sketchy, and, based on the avail-
able information, Microsoft has not yet resolved all of the fine points. As a
result, the following information is somewhat speculative. The details might
become clearer in the future.

The high-level architecture of NGSCB is illustrated in Figure 13.8. The
"left-hand side," or LHS, is where the usual, untrusted, Windows OS lives,
while the "right-hand side," or RHS, is where the trusted OS resides. The
Nexus is the trusted computing base, or TCB, of the NGSCB. So-called Nexus
Computing Agents, or NCAs, are the only software components that are al-
lowed to communicate between the (trusted) Nexus and (untrusted) LHS [27].
The NCAs are a critical component of NGSCB—as critical as the Nexus.

Figure 13.8: NGSCB Overview

502 OPERATING SYSTEMS AND SECURITY

13.4.1 N G S C B Feature Groups

NGSCB includes the following four major "feature groups."

• Strong process isolation — Prevents processes from interfering with each
other.

• Sealed storage — The tamper-resistant hardware where secrets (that is,
keys) can be securely stored.

• Secure path — Provides a protected path to and from the mouse, key-
board, and monitor.

• Attestation — A clever feature allows for "things" to be securely au-
thenticated.

Attestation allows the TCB to be securely extended via NCAs. All four fea-
ture groups are primarily aimed at protecting against malicious code. Next,
we'll describe each of these feature groups in a little more detail.

13.4.1.1 Process Isolation

Process isolation is enforced by "curtained memory," which appears to be
little more than a buzzword. In any case, the trusted OS (the Nexus) must
be protected from the untrusted OS as well as from the BIOS, device drivers,
and other low-level operations that could be used to attack it. Curtained
memory is the name for the memory protection scheme that provides such
protection.

Process isolation also applies to the NCAs. The NCAs must be isolated
from any software that they don't trust. These trust relationships are deter-
mined by users—to an extent. That is, a user can disable a trusted NCAs,
but a user cannot make an untrusted NCA trusted. If the latter were possible,
then the security of the trusted OS could be easily broken.

13.4.1.2 Sealed Storage

Sealed storage contains a secret, which is most likely a key (or keys). If
software X wants to access the secret, as an integrity check, a hash of X is
computed. The confidentiality of the secret is protected since it can only be
accessed by trusted software while the integrity of the secret is assured since
it resides in the sealed storage.

13.4.1.3 Secure Path

The details of the secure path feature are also vague. It's claimed that for
input, the path from the keyboard to the Nexus and the path from the mouse

13.4 NEXT GENERATION SECURE COMPUTING BASE 503

to the Nexus are both "secure"—but exactly how this is implemented is not
entirely clear. Apparently, digital signatures are used so that the Nexus can
verify the integrity of the data [302]. For output, there is a similar secure
path from the Nexus to the screen, although here the signature verification
would seem to be more exposed.

13.4.1.4 Attestation

The most innovative feature of NGSCB is attestation, which provides for
the secure authentication of "things," such as devices, services, and, most
importantly, software. This is separate from user authentication. Attestation
is accomplished using public key cryptography, and it relies on a certified key
pair, where the private key—which is not user accessible—lives in the sealed
storage.

The TCB can be extended via attestation of NCAs. A new NC A is trusted
provided that it passes the attestation check, which enables new applications
to be added to an NGSCB system. This is a major feature, and we'll have
more to say about it below.

One issue with attestation is that, since it uses public key cryptography,
certificates must be exchanged. Since public keys reveal users' identities,
anonymity is lost in this approach. To protect anonymity, NGSCB provides
support for a trusted third party, or TTP. The TTP verifies the signature
and vouches for it. Anonymity can be preserved in this way—although the
TTP will know the signer's identity.

It is also claimed that NGSCB provides support for zero knowledge proofs.
As we discussed in Chapter 9, zero knowledge proofs allow us to verify
that a user knows a secret without revealing any information about the se-
cret. According to Microsoft, when using zero knowledge proofs in NGSCB,
"anonymity is preserved unconditionally" [27].

13.4.2 N G S C B Compell ing Applications

What good is TCG/NGSCB? There are several compelling applications, but
here we'll mention only two. First, suppose that Alice types a document on
her computer. She can then move the document to the RHS (the trusted
space), read the document carefully, then digitally sign the document before
moving it back to the (untrusted) LHS. In this way, Alice can be confident of
what she actually signed, which, as indicated by Ross Anderson's quote on
page 497, is almost impossible on a non-NGSCB computer today.

A second application where NGSCB is useful is DRM. One fundamental
problem that is solved by NGSCB is that of protecting a secret or key. In
Chapter 12 we saw that it's impossible to securely protect a key in software.

504 OPERATING SYSTEMS AND SECURITY

By using tamper-resistant hardware (sealed storage) and other NGSCB fea-
tures, protecting a key is much more plausible.

The NGSCB secure path also prevents certain DRM attacks. For exam-
ple, with DRM-protected digital documents, an attacker could use a screen
capture to scrape protected data from the screen. This would be much more
difficult with the NGSCB secure path in place.

NBSCB also allows for the positive identification of users. Although this
can be done without a trusted OS, there is a much higher degree of assurance
with NGSCB, since the user's ID (in the form of a private key) is embedded
in the secure storage.

13.4.3 Criticisms of N G S C B

Microsoft isn 't evil, they just make really crappy operating systems.
— Linus Torvalds

According to Microsoft, everything you know and love about Windows will
still work in the LHS of an NGSCB system. Microsoft also insists that the
user is in charge, since the user determines all of the following:

• Which Nexus (if any) will run on the system

• Which NCAs are allowed to run on the system

• Which NCAs are allowed to identify the system

In addition, there is no way for an external process to enable a Nexus or
NCA. This is to allay the fear that Microsoft would be in charge of an NGSCB
computer. In addition, the Nexus code is open source. Finally, the Nexus
does not block, delete, or censor any data—although NCAs do. For example,
if a particular NCA is part of a DRM system, then it must "censor" any data
for which user Alice has not paid. But each NCA on Alice's system must be
authorized by Alice, so she could choose not to authorize the particular NCA
that deals with DRM. Of course, she won't have access to DRM-protected
content if she does not authorize the required NCA.

Microsoft goes to great lengths to argue that NGSCB is harmless. The
most likely reason for this is that many people seem to be convinced that
NGSCB is anything but harmless.

There are many NGSCB critics, but here we'll only consider two. The
first is Ross Anderson, whose criticisms can be found at [13]. Anderson is
one of the harshest TCG/NGSCB critics and perhaps the most influential.
We'll then discuss the criticisms of Clark Thomborson, whose criticisms are
less well known but raise some interesting fundamental issues [302].

13.4 NEXT GENERATION SECURE COMPUTING BASE 505

Anderson's primary beef seems to be that when NGSCB is used, a dig-
ital object can be controlled by its creator, not by the user of the machine
where it currently resides. For example, suppose Alice writes a book, Bob in
Wonderland. With NGSCB, she can specify the NCA that must be used to
access the digital form of this book. Of course, Bob can refuse to accept the
NCA, but in that case his access is denied. And if Bob allows the NCA on
his system, he may have restrictions placed on his actions (such as, he cannot
use a screen capture, he cannot email the book, etc.).

It's worth noting that such restrictions are exactly what is needed in cer-
tain applications such as multilevel security (MLS). But Anderson's argument
is that such restrictions are inappropriate as part of a general-purpose tool,
such as a PC. Anderson gives the following simple example: suppose Mi-
crosoft Word encrypts all documents with a key that is only made available
to Microsoft products. Then it would be even more difficult to stop using
Microsoft products than it is today.

Anderson also claims that files from a compromised machine could be
blacklisted (for example, to prevent music piracy). To illustrate this point, he
gives an example similar to the following. Suppose that every student at San
Jose State University (SJSU) uses a single pirated copy of Microsoft Word.
If Microsoft blacklists this copy and thereby prevents it from working on all
NGSCB machines, then SJSU students will simply avoid using NGSCB. But
if Microsoft instead makes all NGSCB machines refuse to open documents
created with this copy of Word, then SJSU users can't share documents with
any NGSCB user. This could be a way to coerce SJSU students into using
legitimate copies of Word.

Anderson makes some rather strange statements in [13], including the
following:

The Soviet Union tried to register and control all typewriters.
NGSCB attempts to register and control all computers.

And there is an even more "interesting" statement:

In 2010 President Clinton may have two red buttons on her desk—
one that sends missiles to China and another that turns off all of
the PCs in China...

Fortunately, this Orwellian prediction was way off the mark (in every respect).
In any case, it's not clear to your usually paranoid author exactly how NGSCB
would enable either scenario. Nevertheless, these are the kinds of concerns
that an influential critic has raised.

Clark Thomborson has raised some issues that strike at the heart of the
NGSCB concept [302]. In his view, NGSCB should be seen as a security
guard. By passive observation, a real-world security guard can learn a great

506 OPERATING SYSTEMS AND SECURITY

deal about the workings of the facility he or she is guarding.2 The NGSCB
security guard is similar to a human security guard, in the sense that it can
learn something about a user's sensitive information by passive observation.

So, how can Alice be sure that NGSCB is not spying on her? Microsoft
would probably argue that this can't happen since the Nexus software is
public, the NCAs can be debugged (as required for application development),
and, besides, NGSCB is strictly an "opt in" technology. But there may be a
loophole here. The release versions of NCAs can't be debugged and the debug
and release versions will necessarily have different hash values. Consequently,
the release version of an NCA could conceivably do something that the debug
version does not do—such as spy on Alice.

The bottom line with regard to TCG/NGCSB is that it's an attempt
to embed a trusted OS within an open platform. Without something sim-
ilar, there is a legitimate concern that the PC may lose out, particularly
in entertainment-related areas, where copyright holders might insist on the
security of closed-system solutions.

NGSCB critics worry that users will lose control over their PCs—or be
spied on by their PC. But it could reasonably be argued that users must
choose to opt in, and, if a user does not opt in, nothing has been lost. So,
what's the big deal?

However, NGSCB is a trusted system, and as we noted above, only a
trusted system can break your security. When put in this light, NGSCB
deserves careful scrutiny.

13.5 Summary

In this chapter, we considered operating system security and, more specifi-
cally, the role of a trusted OS. We then discussed Microsoft's NGSCB, which
is an attempt to build a trusted OS for the PC platform. NGSCB has impli-
cations for many security-related fields, including digital rights management,
a topic we covered in some detail in Chapter 12. NGSCB has its critics and
we discussed some of their criticisms. We also considered possible counterar-
guments to the criticisms.

13.6 Problems

1. Expand and define each of the following acronyms: TCG, TCB, PITA,
MAC, DAC, NGSCB.

2 Recently, a former security guard at a major apartment complex took your author's
class. This student confirmed that as a security guard, he learned a lot about the residents
of the apartment complex, simply by passive observation. Your puritanical author would
like to share some of these observations, but he cannot since this book is rated "G."

13.6 PROBLEMS 507

2. This problem deals with the definition of a trusted system.

a. What does it mean to say that a system is "trusted"?

b. Do you agree with the statement, "Only a trusted system can
break your security" ? Why or why not?

3. In this chapter we discussed segmentation and paging.

a. What are the significant differences between segmentation and
paging?

b. Give one significant security advantage of segmentation over pag-
ing.

c. What is the primary advantage of paging over segmentation?

4. Explain how paging and segmentation could be combined in one system.

5. This problem deals with mandatory access control (MAC) and discre-
tionary access control (DAC).

a. Define the terms mandatory access control and discretionary access
control.

b. What are the significant differences between MAC and DAC?

c. Give two specific examples where mandatory access control is used

and give two examples where discretionary access control is used.

6. Why would Trudy almost certainly prefer to subvert the OS rather than
successfully attack one particular application?

7. In this chapter we briefly compared blacklisting and whitelisting.

a. What is blacklisting?

b. What is whitelisting?

c. As a general security principle, which is preferable, whitelisting or
blacklisting? Why?

d. Which is likely to be more convenient for users, blacklisting or
whitelisting? Why?

8. Recall that a trusted computing base (TCB) consists of everything in
the OS that we rely on to enforce security. Which parts of NBSCB
comprise its TCB?

9. In this chapter, a few compelling applications of NGSCB are mentioned,
including "what you see is what you sign," digital rights management
(DRM), and multilevel security (MLS). Discuss one additional com-
pelling application of a trusted OS such as NGSCB.

508 OPERATING SYSTEMS AND SECURITY

10. Explain how NGSCB helps to solve some of the fundamental problems
in digital rights management (DRM).

11. Explain how NGSCB helps to solve some of the fundamental problems
in multilevel security (MLS).

12. A trusted OS, such as NGSCB, would make multilevel security (MLS)
much more feasible. Given that this is the case, the military and gov-
ernment are likely to be interested in NGSCB. Why might businesses
also be interested in NGSCB?

13. Some people believe that businesses will find NGSCB useful and that
NGSCB will become commonplace in PCs as a result. If this is the
case, then most PCs will eventually have a trusted operating system,
but not because consumers find it particularly useful. Do you think this
is likely to occur? Why or why not?

14. It is sometimes argued that digital rights management (DRM) is, in
some sense, the modern incarnation of multilevel security (MLS).

a. List some significant similarities between DRM and MLS.

b. List some significant differences between DRM and MLS.

15. Suppose that you happen to have a secure multilevel security (MLS)
system. Could this system be used to enforce digital rights management
(DRM)?

16. Suppose that you have a secure digital rights management (DRM) sys-
tem. Could this system be used to enforce multilevel security (MLS)?

17. This problem deals with NGSCB.

a. What is attestation and what is its purpose?

b. What are NCAs and what two purposes do they serve?

18. In the text, we mentioned two critics of NGSCB, namely, Ross Anderson
and Clark Thomborson.

a. Summarize Ross Anderson's criticisms of NGSCB.

b. Summarize Clark Thomborson's criticisms of NGSCB.

c. Which of these two critics do you find more compelling and why?

19. In Chapter 12, we discussed software reverse engineer. It's also possible
to reverse engineer most hardware. Since this is the case, would DRM be
any more secure on an NGSCB system than on a non-NGSCB system?

13.6 PROBLEMS 509

20. Give two real-world examples of closed systems. How well does each
protect its software?

21. Give two real-world examples of open systems. How well does each
protect its software?

22. Is each of the following an open system or a closed system? For each
system, give an example of a real-world attack that has occurred.

a. PC

b. Cell phone

c. iPod

d. Xbox

e. Kindle (an e-book reader)

23. Find an influential critic of NGSCB (other than the critics mentioned
in the text) and summarize his or her arguments against NGSCB.

24. Find a supporter of NGSCB and summarize his or her arguments in
favor of NGSCB.

25. Read the discussion of "treacherous computing" at [13] and summarize
the author's main points.

26. Public key crypto is used in NGSCB for attestation. One concern with
this approach is that anonymity might be lost. Recall that in Kerberos,
Alice's anonymity is protected (e.g., when Alice sends her TGT to the
KDC, she doesn't need to identify herself). Since anonymity is a con-
cern, would it make sense for NGSCB to use an approach similar to
Kerberos?

27. Why is the NGSCB sealed storage integrity check implemented using
hashing instead of public key signing?

28. Why is NGSCB attestation implemented using digital signatures in-
stead of hashing?

29. In NGSCB, how do each of the following help to protect against mali-
cious software?

a. Process isolation

b. Sealed storage

c. Secure path

d. Attestation

510 OPERATING SYSTEMS AND SECURITY

30. Give two reasons why NGSCB attestation is necessary.

31. In NGSCB, each of the four "feature groups" is, apparently, necessary
but not sufficient to ensure security. Discuss a specific attack that
is difficult or impossible on an NGSCB system, but is easy when the
specified feature group is missing.

a. Process isolation

b. Sealed storage

c. Secure path

d. Attestation

32. Explain Rivest's comment that TCG/NGSCB is like "a virtual set-top
box inside your PC."

33. Suppose that students take in-class tests on their own laptop computers.
When they finish answering the questions, they email their results to
the instructor using a wireless Internet connection. Assume that the
wireless access point is accessible during the test.

a. Discuss ways that students might attempt to cheat.

b. How could NGSCB be used to make cheating more difficult?

c. How might students attempt to cheat on an NGSCB system?

34. Google's Native Client (NaCl) is a technology designed to allow un-
trusted code to run securely in a Web browser [332]. The primary
advantage is speed, but there are many security issues, some of which
are reminiscent of issues faced by NGSCB.

a. Outline the NaCl security architecture.

b. NaCl uses a "trampoline" to transfer control from untrusted code
to trusted code. Explain how this works.

c. Compare and contrast the security approach used in NaCl with
each of the following: Xax, CFI, Active X.

APPENDIX

This appendix includes two sections. The first section contains an abbreviated
introduction to networking, with the emphasis on security issues. The second
section provides a quick review of the basic math that is used in various parts
of this book.

A-l Network Security Basics

There are three kinds of death in this world.
There's heart death, there's brain death, and there's being off the network.

— Guy Almes

A-1.1 Introduction

In this section, we give a condensed introduction to networking, presented
through the prism of security. Networking is a large and complex topic. Here,
we'll cover the minimal amount of information that is required elsewhere in
this textbook, and we'll also add a few passing comments on network-specific
security issues tha t are of independent interest.

A network consists of hosts and routers. The term host is a catchall for
a wide variety of network-connected devices, including laptops, desktop com-
puters, servers, cell phones, PDAs, etc. The purpose of the network is to
transfer data between the hosts. Ideally, we'd like the network to be trans-
parent to users. We're primarily concerned with the mother of all networks,
the Internet.1

A network has an edge and a core. The hosts mentioned above live at
the edge, while the core consists of an interconnected mesh of routers. The
purpose of the core is to route da ta through the network from host to host.
A generic network diagram appears in Figure A- l .

1And, of course, everyone knows that the Internet was invented by Al Gore.

511

512 APPENDIX

Figure A-1: Network

The Internet is a packet switched network, meaning that the data is sent
in discrete chunks known as packets. In contrast, the traditional telephone
system is a circuit switched network. For each telephone call, a dedicated
circuit—with dedicated bandwidth—is established between the end points.
Packet switched networks can make more efficient use of the available band-
width, although there is some additional complexity, and things get particu-
larly involved if circuit switched-like behavior is desired.

The study of modern networking is largely the study of networking proto-
cols. Networking protocols precisely specify communication rules employed
by the network. For the Internet, the details are usually spelled out in RFCs,
which are, in effect, Internet standards.2

Protocols can be classified in many different ways, but one classification
that is particularly relevant in security is stateless versus stateful. Stateless
protocols don't "remember" anything, while stateful protocols do have some
"memory." Many security problems are related to state. For example, denial
of service, or DoS, attacks often take advantage of stateful protocols, while
stateless protocols can also have their own security issues, as we'll see below.

A-1.2 The Protocol Stack

It's standard practice to view networks in terms of layers, where each layer is
responsible for some particular operations. When these layers are all stacked
up, the result is, not surprisingly, known as a protocol stack. It's important

2RFC stands for Request for Comments. However, authors of RFCs are not actually re-
questing comments. Instead, RFCs act as Internet standards. But curiously, most RFCs are
not official Internet standards and, in fact, only a relatively few RFCs have been promoted
to the level of official Internet standards. How does a lowly RFC become a high-falutin'
Internet standard? Well, it's all spelled out in in RFC 2026, which is itself not an Internet
standard. Confused?

APPENDIX 513

to realize that a protocol stack is more conceptual than an actual physical

construct. Nevertheless, the idea of a protocol stack does simplify the study

of networks—although newcomers to networking are excused for not believing

it. The infamous OSI reference model includes seven layers, but we'll strip it

down to the layers that matter, which only leaves the following five:

• The application layer is responsible for handling the application data

that is sent from host to host. Examples of application layer protocols

include HTTP, SMTP, FTP, and Gnutella.

• The transport layer deals with logical end-to-end transport of the data.

The transport layer protocols of interest are TCP and UDP.

• The network layer is responsible for routing data through the network.

IP is the network layer protocol that matters most to us.

• The link layer handles the transferring of data over individual links

within the network. There are many link layer protocols, but we'll only

mention two, Ethernet and ARP.

• The physical layer sends the bits over the physical media. If you want

to know about the physical layer, take an electrical engineering course.

Conceptually, a packet of data passes down the protocol stack (from the

application layer to the physical layer) at the source and then back up the

protocol stack at the destination. Routers in the core of the network must

process packets up to the network layer so they can make sensible routing

decisions. Layering is illustrated in Figure A-2.

Figure A-2: Layering in Action

Suppose that X is a freshly minted packet of application data. As X

goes down protocol stack, each protocol adds additional information, usually

in the form of a header, which includes information required by the protocol

being used at that particular layer. Let HA be the header added at the

application layer. Then the application layer passes (ΗΑ,Χ) down the stack

to the transport layer. If Hj· is the transport layer header, then {HT, {HA, X))

is passed to the network layer where another header, say, Ηχ is added to

514 APPENDIX

give (iîjv, (HT, (HA, X)))- Finally, the link layer adds a header, Hi, and the
packet

(HL,(HN,(HT,(HA,X))))

is passed to the physical layer. In particular, note that the application layer
header is the innermost header, which might seem backward until you think
about it a little bit. When the packet is processed up the protocol stack at the
destination (or at a router), the headers are stripped off layer by layer—like
peeling an onion—and the information in each header is used to determine
the proper course of action by the corresponding protocol.

Next, we'll take a brief look at each of the layers. We'll follow [177] and
go down the protocol stack from the application layer to the link layer.

A-1.3 Application Layer

Typical network applications include Web browsing, email, file transfer, P2P,
and so on. These are distributed applications that run on hosts. The hosts
would prefer the network to be completely transparent.

As mentioned above, HTTP, SMTP, IMAP, FTP, and Gnutella are ex-
amples of application layer protocols. Note that the protocol is only one part
of an application. For example, an email application includes an email client
(such as Outlook or Thunderbird), a sending host, a receiving host, email
servers, and various networking protocols such as SMTP and POP3.

Most applications are designed for the client-server paradigm, where the
client is the host that requests a service and the server is the host that
responds to the request. In other words, the client is the one who speaks
first and the server is the one trying to fulfill the request. For example, if
you request a Web page, you are the client and the Web server is the server,
which only seems right. However, in some cases the distinction between
client and server is not so obvious. For example, in a file-sharing application,
your computer is a client when you request a file, and it is a server when
someone downloads a file from you. Both of these events could even occur
simultaneously, in which case you would be both a client and a server at the
same time.

Peer-to-peer, or P2P, file sharing applications offer something of an alter-
native to the traditional client-server model. In the P2P model, hosts act as
both clients and servers, as mentioned in the previous paragraph. But the
real challenge in P2P lies in locating a "server" with the content that a client
desires. There are several interesting approaches to this problem. For exam-
ple, some P2P systems distribute the database that maps available content
to hosts among certain special peers, whereas others simply flood each re-
quest through the network. In the latter case, hosts with the desired content
respond directly to the requester. For example, KaZaA uses the distributed
database approach, while Gnutella employs query flooding.

APPENDIX 515

Next, we'll briefly discuss a few specific application layer protocols. First,
let's consider HTTP, the HyperText Transfer Protocol, which is the appli-
cation layer protocol used when you browse the Web. As mentioned above,
the client requests a Web page and the server responds to the request. Since
HTTP is a stateless protocol, Web cookies were developed as a tasty way
to maintain state. When you initially contact a Web site, the Web site can
choose to provide your browser with a cookie (assuming your browser is will-
ing to accept it). A cookie is simply an identifier that is used to index a
database maintained by the Web server. When your browser subsequently
sends HTTP messages to the Web server, your browser will automatically
pass the cookie to the server. The server can then consult its database and
thereby remember information about you. In this way, Web cookies make it
possible to maintain state within a single session as well as across sessions.

Web cookies are also sometimes used as a very weak form of authenti-
cation and cookies enable such modern conveniences as shopping carts and
recommendation lists. However, cookies do raise some privacy concerns, since
a Web site with memory (which is enabled by cookies) can learn a great deal
about you. This problem only gets worse if multiple sites pool their infor-
mation, since they can probably gain a fairly complete picture of your Web
persona.

Another interesting application layer protocol is SMTP, the Simple Mail
Transfer Protocol, which is used to transfer email from the sender to the
recipient's email server. Then POP3, IMAP, or HTTP (for Web mail) is used
to transfer the messages from the email server to the recipient. An SMTP
email server can act as a server or a client when email is transferred over the
network.

As with many application protocols, SMTP commands are human read-
able. For example, the commands in Table A-l are legitimate SMTP com-
mands that were typed as part of a telnet session—the user typed the lines
beginning with C while the server responded with the lines marked as S.
This particular session resulted in a spoofed email being sent to your gullible
author at stampQcs.sjsu.edu from arnoldQca.gov.

Another application layer protocol with security implications is DNS, the
Domain Name Service. The primary purpose of DNS is to convert a friendly
human-readable name, such as www. google. com, into its equivalent 32-bit
IP address (discussed below), which computers and routers prefer. DNS is
implemented as a distributed heirarchical database. There are only 13 "root"
DNS servers worldwide and a successful attack on these would cripple the
Internet. This is perhaps as close to a single point of failure as exits in the
Internet today. Attacks on root servers have succeeded, however, because of
the distributed nature of the DNS, it would be necessary for such an attack
to continue for an extended period of time before it would seriously affect the
Internet. No attack on DNS has had such staying power—at least not yet.

516 APPENDIX

Table A-l: Spoofed email in SMTP

C: telnet eniac.cs.sjsu.edu 25
S : 220 eniac.sj su.edu
C: HELO ca.gov
S: 250 Hello ca.gov, pleased to meet you

C: MAIL FROM: <arnoldQca.gov>

S: 250 arnoldQca.gov... Sender ok

C: RCPT TO: <stampQcs.sjsu.edu>

S: 250 stampQcs.sjsu.edu ... Recipient ok

C: DATA

S: 354 Enter mail, end with "." on a line by itself

C: It is my pleasure to inform you that you

C: are terminated

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 eniac.sjsu.edu closing connection

A-1.4 Transport Layer

The network layer (discussed below) offers unreliable, "best effort" delivery of
packets. This means that the network layer attempts to get packets to their
destination, but if a packet fails to arrive (or its data is corrupted or a packet
arrives out of order or . . .) , the network takes no responsibility, much like the
U.S. Postal Service. Any improved service beyond this limited best effort—
such as the reliable delivery of packets—must be implemented somewhere
above the network layer. Also, such additional service must be implemented
on the hosts, since the core of the network only offers this best-effort delivery
service. Reliable delivery of packets is the primary purpose of the transport
layer.

Before we dive into the transport layer it's worth pondering why the
network layer is allowed to be unreliable by design. Recall that we are dealing
with a packet switched network. Consequently, it's possible that hosts will put
more packets into the network than it can handle. Routers include buffers to
store extra packets until they can be forwarded, but these buffers are finite—
when a router's buffer is full, the router has no choice but to drop packets.
The data in packets can also get corrupted in transit. And, since routing
is a dynamic process, it's possible that packets in one particular connection
can follow different paths. When this occurs, the packets can arrive at the
destination in a different order than they were sent by the source. It's the
job of the transport layer to deal with such reliability issues. The bottom
line is that routing packets through the core of the network is difficult, so the

APPENDIX 517

designers of the Internet decided to minimize the burden at this level, and

thus the minimal best effort approach at the network layer.

There are two transport layer protocols of importance: TCP and UDP.

The Transmission Control Protocol, or TCP, provides for reliable delivery.

TCP will make sure that your packets arrive, that they are sequenced in the

correct order, and that the data has not been corrupted. To oversimplify

things, the way that TCP provides these services is by including sequence

numbers in packets and telling the sender to retransmit packets when prob-

lems are detected. Note that TCP runs on hosts, and all communication is

over the same (unreliable) network where the data is sent. The format of the

TCP header appears in Figure A-3.

32 bits

,0 8 16 31,
L.,,1. 1— i 1,—J..-J— -Λ—Ι ' ■ ■ ' i i i 1 , . j . .i ,j 1 1 1 1 1 1

Source Port Destination Port

Sequence Number

Offset reserved U A P R S F

Checksum

Window

Urgent Pointer

Options Padding

Data (variable length)

Figure A-3: TCP Header

TCP assures that packets arrive at their destination and that they are
processed in order. TCP also makes sure that packets are not sent too fast
for the receiver, which is known as flow control. In addition, TCP provides
network-wide congestion control. This congestion control feature is complex,
but one interesting aspect is that it attempts to give every host a fair share
of the available bandwidth. That is, if congestion is detected, every TCP
connection will get about the same amount of the available bandwidth. Of
course, everyone wants more than their fair share, so hosts can (and do) try to
cheat this congestion control feature by opening multiple TCP connections.

TCP is said to be connection-oriented, which means that TCP contacts
the server before sending data. That is, TCP checks that the destination
server is alive and listening on the appropriate port. It's important to realize
that this TCP "connection" is only a logical connection—no true dedicated
connection takes place.

518 APPENDIX

The TCP connection establishment is of particular importance. A so-
called three-way handshake is used, where the three messages that are ex-
changed are the following:

• SYN — The client requests "synchronization" with the server.

• SYN-ACK — The server acknowledges receipt of the SYN request.

• ACK — The client acknowledges the SYN-ACK. This third message
can also include data. For example, if the client is Web browsing, the
client could include the request for a specific Web page along with the
ACK message.

The three-way handshake is illustrated in Figure A-4.

Figure A-4: TCP 3-Way Handshake

TCP also provides for orderly tearing down of connections. Connections
are terminated by a process involving a FIN (finish) packet or by a single
RST (reset) packet.

The TCP three-way handshake makes denial of service, or DoS, attacks
possible. Whenever a SYN packet is received, the server must remember
the so-called "half-open" connection. This remembering consumes a small
amount of server resources. As a result, too many half-open connections will
cause server resources to be exhausted, at which point the server can no longer
respond to new connections.

A straightforward DoS attack that is launched from a single machine using
a single IP address is relatively easy to defend against—the intended victim
can simply ignore or block any IP address that sends too many TCP requests.
The attacker could make the attack difficult to block by spoofing the source IP
addresses to make it appear that the requests are coming from many different
machines. However, the amount of traffic needed to significantly affect the
victim is likely to be more than one machine can generate. Consequently, most
successful DoS attacks are actually distributed denial of service, or DDoS,
attack. In a DDoS attack, many different machines are used to overwhelm
the victim. If a large number of machines are used in a DDoS attack, then
the generated traffic may be sufficient to prevent the victim from responding
to legitimate requests. The distributed nature of such an attack makes it
difficult to defend against.

APPENDIX 519

The transport layer includes another protocol of note, the User Datagram
Protocol, or UDP. Whereas TCP provides everything and the kitchen sink,
UDP is a truly minimal no-frills service. The benefit of UDP is that it re-
quires minimal overhead, but the tradeoff is that it provides no assurance that
packets arrive, no assurance packets are in the proper order, and so on. In
other words, UDP adds little to the unreliable network over which it operates.

Why does UDP exist? UDP is more efficient since it has a smaller header,
but the major potential benefit derives from the fact that UDP has no flow
control or congestion control. Due to the lack of these controls, there are no
restrictions to slow down the sender. However, if packets are sent too fast,
they will be dropped—either at an intermediate router or at the destination.
So, how can UDP be a good thing? In some applications, delay is not tolera-
ble, but it is acceptable to lose some fraction of the packets. Streaming audio
and video fit this description, and for these applications UDP is generally
preferable to TCP. In effect, UDP allows an application to get more than its
fair share of the bandwidth, at the risk of packets getting dropped. Finally,
it's worth noting that reliable data transfer over UDP is possible, but the
reliability must be built in by the developer at the application layer. This
would seem to provide the best of both worlds—reliability with no bandwidth
limitations—at the expense of a more complex application layer protocol.

A-1.5 Network Layer

The network layer is the crucial layer for the core of network. Recall that
the core is an interconnected mesh of routers, and the purpose of the network
layer is to provide the information needed to route packets through this mesh.
The network layer protocol of interest here is the Internet Protocol, or IP. As
mentioned above, IP follows a best effort approach. Note that IP must run in
every host and router in the network. The format of the IP header appears
in Figure A-5.

In addition to network layer protocols, routers also run routing protocols.
The purpose of a routing protocol is to determine the best path to use when
sending a packet. There are many routing protocols, but the most popular
are RIP, OSPF, and BGP. These protocols are very interesting, but we won't
discuss them here.

Every host on the Internet must be associated with a 32-bit IP address.
Unfortunately, there are not enough IP addresses for the number of hosts,
and as a result many tricks are employed to effectively extend the IP address
space. IP addresses are given in so-called dotted decimal notation of the form
W.X.Y.Z, where each value is between 0 and 255. For example, 195.72.180.27
is a valid IP address. Note that a host's IP address can—and often does—
change.

Although each host has a 32-bit IP address, there can be many processes

520 APPENDIX

32 bits
0 8 16 31,

Version IHL Type of Service

Identification

TTL Protocol

Total Length

IFF Fragment Offset

Header Checksum

Source IP Address

Destination IP Address

Options

Figure A-5: IP Header

running on a single host. For example, you could browse the Web, send
email, and do a file transfer all at the same time. To effectively communicate
across the network, it's necessary to distinguish these processes. The way
this is accomplished is by assigning each process a 16-bit port number. The
port numbers below 1024 are said to be well known, and they're reserved for
specific applications. For example, port 80 is used for HTTP and port 110 is
for POP3. The port numbers from 1024 to 65535 are dynamic and assigned
as needed. An IP address together with a port number defines a socket, and
a socket uniquely identifies a process on the Internet.

The IP header is used by routers to determine the proper route for a
packet through the network. The header includes fields for the source and
destination IP addresses. There is also a time-to-live, or TTL, field that limits
the number of hops that a packet can travel before it dies and goes to packet
heaven. This prevents wayward packets from bouncing around the Internet
for all of eternity. There are also fields that deal with fragmentation, which
is our next topic.

Each link on the Internet limits the maximum size of packets. If a packet
is too big, it's the router's job to split it into smaller packets. This process in
known as fragmentation. To prevent multiple fragmentation and reassembly
steps, the fragments are only reassembled at the their destination.

Fragmentation creates many security issues. One problem is that the
actual purpose of a packet is easily disguised by breaking it into fragments.
The fragments can be arranged to overlap when reassembled, which further
exacerbates this problem. The result is that the receiving host can only
determine the purpose of a packet after it has received all of the fragments

APPENDIX 521

and reassembled the pieces. A firewall has a great deal more work to do when
dealing with fragmented packets. As a result, fragmentation opens the door
to DoS and many other types of attacks.

Currently, we use IP version 4, that is, IPv4. It has many shortcomings,
including too-small 32-bit addresses and poor security (fragmentation being
just one example). As a result, a new-and-improved version, IP version 6
(IPv6), has been developed. IPv6 includes 128-bit addresses—which gives
a virtually inexhaustible supply of IP addresses—and strong security in the
form of IPSec. Unfortunately, IPv6 is a classic example of how not to develop
a replacement protocol. There is no natural way to migrate from IPv4 to IPv6
and, consequently, IPv6 has yet to take hold on a large scale [30].

A-1.6 Link Layer

The link layer is responsible for getting the packet over each individual link
in the network. That is, the link layer deals with getting a packet from a host
to a router, from a router to a router, from a router to a host or, locally, from
one host to another host. As a packet traverses the network, different links
can be completely different. For example, a single packet might travel over
Ethernet, a wired point-to-point line, and a wireless microwave link when
traveling from its source to its destination.

In each host, the link layer and physical layer are implemented in a semi-
autonomous adapter known as a Network Interface Card, or NIC—examples
include Ethernet cards and wireless 802.11 cards. The NIC is (mostly) out of
the host's control, and that's why it's said to be semi-autonomous.

One link layer protocol of particular importance is Ethernet. Ethernet
is a multiple access protocol, meaning that it's used when many hosts are
competing for a shared resource. Such situations occur on a local area net-
work, or LAN. In Ethernet, if two packets are transmitted by different hosts
at essentially the same time, they can collide, in which case both packets are
corrupted. The packets must then be resent. The challenge is to efficiently
handle collisions in a distributed environment. There are many possible ways
to deal with a shared media, but Ethernet is by far the most popular method.
In any respectable networking course, a significant amount of time is devoted
to Ethernet, but we won't go into the details here.

While IP addresses are used at the network layer, the link layer has its
own addressing scheme. We'll refer to link layer addresses as MAC addresses,
but they are also known as LAN addresses, physical addresses, etc. MAC
addresses are 48 bits, and they're globally unique. The MAC address is
embedded in the NIC, and, unlike an IP address, it cannot change (unless
a new NIC is installed). MAC addresses are used to forward packets at the
link layer.

Why do we need both IP addresses and MAC addresses? An analogy is

522 APPENDIX

often made to home addresses and social security numbers. A home address
is like an IP address, since it can change. On the other hand, even if you
move, your social security number stays the same, which makes it analogous
to a MAC address. However, this doesn't really answer the question. In fact,
it would be conceivable to do away with MAC addresses, but it is somewhat
more efficient to use these two forms of addressing. Fundamentally, the dual
addressing is necessary due to layering, which requires that the link layer
should work with any network layer addressing scheme. In fact, some network
layer protocols (such as IPX) do not use IP addresses and the link layer
requires no modification to work with such protocols. The bottom line is that
a strict adherence to layering requires that we have two distinct addressing
schemes.

There are many interesting and significant link layer protocols. We've
mentioned Ethernet and we'll mention just one more, namely, the Address
Resolution Protocol, or ARP. The primary purpose of ARP is to find the
MAC address that corresponds to a given IP address for hosts on the same
LAN. Each node has its own ARP table, which contains the mapping between
IP addresses and MAC addresses. This ARP table—which is also known as
an ARP cache—is generated automatically. The entries expire after a period
of time (typically, 20 minutes) so they must be refreshed periodically. Believe
it or not, ARP is the protocol used to determine ARP table entries.

How does ARP work? When a node doesn't know a particular IP-to-
MAC mapping, it broadcasts an ARP request message to every node on the
LAN. The appropriate node on the LAN (i.e., the node with the given IP
address) responds with an ARP reply. The requesting node can then fill in
the corresponding entry in its ARP cache.

ARP is a stateless protocol, and as such, a node does not maintain a
record of ARP requests that it has sent. As a consequence, a node will
accept any ARP reply that it receives, even if it made no corresponding ARP
request. This opens the door to an attack by a malicious host on the LAN.
This attack, known as ARP cache poisoning, is illustrated in Figure A-6. In
this example, the host with MAC address CC-CC-CC-CC-CC-CC has sent a
bogus ARP reply to both of the other hosts, and they have updated their
ARP caches accordingly. As a result, whenever AA-AA-AA-AA-AA-AA and
BB-BB-BB-BB-BB-BB send packets to each other, the packets will first pass
through the hands of the evil host CC-CC-CC-CC-CC-CC, who can alter the
messages, delete the messages, or simply pass them along unchanged. This
type of attack is known as a man-in-the-middle, or MiM, regardless of the
gender of the attacker.

Recall that TCP provides an example of a stateful protocol that is subject
to attack. ARP, on the other hand, is an example of a vulnerable stateless
protocol. So stateless and stateful protocols both have the potential for se-
curity vulnerabilities.

APPENDIX 523

ARP cache ARP cache

Figure A-6: ARP Cache Poisoning

A-1.7 Conc lus ions

In this section, we've barely scratched the surface of the vast topic that is
networking. Tanenbaum [298] presents a good introduction to a wide range of
networking topics, and his book is well suited to independent study. Another
good introductory textbook on networking is Kurose and Ross [177]. A more
detailed discussion of networking protocols can be found in [113]. If more
details are needed than what is available in [113], consult the appropriate
RFCs.

A-2 Ma th Essentials

7/5ths of all people don't understand fractions.
— Anonymous

A-2 .1 I n t r o d u c t i o n

This section contains a brief overview of the math topics that are relevant
to understanding the material presented in this book. First, we cover some
modular arithmetic basics. Modular arithmetic figures prominently in the
field of public key cryptography. We then discuss a few very basic facts about
permutations. Permutations are a fundamental building block of ciphers—
from classic ciphers to modern block ciphers. Next, we consider a few concepts
from discrete probability and, finally, we provide a quick introduction to linear
algebra. Chapter 6 contains the details of the lattice-reduction attack on the
knapsack cryptosystem, and that's the only place where linear algebra is used
in this book.

524 APPENDIX

A-2.2 Modular Ari thmet ic

For integers x and n, the value of a; modulo n, which is abbreviated x mod n, is
defined to be the remainder when x is divided by n. Note that the remainder
when a number is divided by n must be one of the values 0 ,1 ,2 . . . , n — 1, so
these are the only possible results when you are asked to compute x mod n.

In non-modular arithmetic, the number line is used to represent the rel-
ative positions of the numbers. For modular arithmetic, a mod n "clock"
labeled with the integers 0 ,1 ,2 . . . , n — 1 serves a similar purpose, and for
this reason modular arithmetic can be viewed as clock arithmetic. For exam-
ple, the mod 6 clock appears in Figure A-7.

Ô
3

Figure A-7: Number "Line" Mod 6

The notation for modular arithmetic is flexible—we can write x mod n = y
or x = y mod n o n (mod n) = y or x = y (mod n). The point here is that
if a "mod n" appears anywhere in an equation, the entire equation is taken
modulo n. It is common to say that we "reduce" x mod n, and if you really
want to impress your friends, you can say modulo n instead of mod n.

A basic property of modular addition is

((a mod n) + (b mod n)) mod n= (a + b) mod n,

so that, for example,

(7 + 12) mod 6 = 19 mod 6 = 1 mod 6

and
(7 + 12) mod 6 = (1 + 0) mod 6 = 1 mod 6.

That is, we can apply the mod operations any place (or places) we please
and the result will not change. Often, for computational efficiency (or conve-
nience) we do the modular reductions in some not-so-obvious order.

The same property holds true for modular multiplication, that is,

((a mod n)(b mod n)) mod n = ab mod n.

APPENDIX 525

For example,
(7 · 4) mod 6 = 28 mod 6 = 4 mod 6

and
(7 · 4) mod 6 = (1 ■ 4) mod 6 = 4 mod 6.

This simple property is critical for effective modular exponentiation, and
modular exponentiation is the fundamental computation used in the RSA
public key cryptosystem.

Modular inverses play an important role in public key cryptography. In
ordinary (non-modular) addition, the additive inverse of x is the number
that we add to x to get 0. Of course, in non-modular arithmetic, that's just a
fancy way of saying that the additive inverse of x is — x. The additive inverse
of x mod n is denoted —x mod n, but we have to use the definition to make
sense of the " — ". Recall that when working modulo n, the only numbers
that exist are 0 ,1 ,2 , . . . , n — 1. Then, from the definition, —x mod n is the
number in this range that we add to x to obtain 0 mod n. For example,
—2 mod 6 = 4, since 2 + 4 = 0 mod 6. That is, —2 = 4 mod 6, which can also
be seen by starting at 0 on the mod 6 clock and going counterclockwise by 2.

In ordinary arithmetic, the multiplicative inverse of a;, denoted as a;-1, is
the number that we multiply by x to obtain 1. In the non-modular world, this
is easy, since x _ 1 = 1/x, provided that x φ 0. But in the modular case there

are no fractions, so things are not as straightforward. From the definition, the

multiplicative inverse of a; mod n, which is denoted x"1 mod n, is the number

that we multiply by x to obtain 1 mod n. For example, 3 _ 1 mod 7 = 5, since

3-5 = 1 mod 7. That is, 3 - 1 = 5 mod 7.

What is 2 _ 1 mod 6? Since we are working mod 6, the only possible choices

are 0,1,2,3,4,5, and it's easy to verify by an exhaustive search that none of

these satisfy the definition. Consequently, 2 does not have a multiplicative in-

verse, modulo 6, which shows that for modular arithmetic, there are numbers

other than 0 that do not have multiplicative inverses.

When does a (modular) multiplicative inverse exist? To answer that, we

must delve slightly deeper. A number p is said to be prime if it has no

factors other than 1 and p. We say that two numbers x and y are relatively

prime if they have no common factor other than 1. For example, 8 and 9

are relatively prime, although neither 8 nor 9 is prime. It can be shown

that x~l mod y exists if and only if x and y are relatively prime. When

the modular inverse exists, it's easy to find—in a computational sense—using

the Euclidean algorithm [43]. It's also easy (computationally) to tell when a

modular inverse doesn't exist, that is, it's easy to test whether x and y are

relatively prime.

For our discussion of public key cryptography, we require one additional

result from number theory. The totient function (or Euler's totient function),

which is denoted as φ(η), is the number of positive integers less than n that

526 APPENDIX

are relatively prime to n. For example, φ(Α) = 2 since 4 is relatively prime

to 3 and 1, but not 2. Also, φ(5) = 4 since 5 is relatively prime to 1,2,3

and 4, while φ(12) = 4, since the only positive integers less than 12 that are

relatively prime to 12 are 1, 5, 7, and 11.

For any prime number p, it's easy to see that φ(ρ) = p — 1. Furthermore,

it is fairly easy to show that if p and q are prime, then φ{pq) = (p — l)(q —

1); see Burton's fine book [43] for the details. These elementary properties

of φ(η) are used in Section 4.3 of Chapter 4, which covers the RSA public

key cryptosystem.

A-2.3 P e r m u t a t i o n s

Let 5 be a given set. Then a permutation of S is an ordered list of the elements

of S, where each element appears exactly once. For example, (3,1,4,0,5,2)

is a permutation of {0,1,2,3,4,5}, but (3,1,4,0,5) is not and neither is the

list (3,1,4,2,5,2).

It's easy to count the number of permutations of a set of n elements: there

are n ways to choose the first element of the permutation, n — 1 selections

remain for the next element, and so on. Consequently, there are n! permuta-

tions of any set of n elements. For example, there are 24 permutations of the

set {0,1,2,3}.

Permutations play a prominent role in cryptography. Classic ciphers are

often based on permutations, while many modern block ciphers also make

heavy use of permutations.

A-2.4 Probabil ity

In this book, we only require a few elementary facts from the field of discrete

probability. Let S = {0,1,2, . . . ,N — 1} represent the set of all possible

outcomes of some experiment. If each outcome is equally likely, then the

probability of the event X, where X C S, is

P(X) = number of elements in X/number of elements in S.

For example, if we roll two dice, the set S can be taken to be the 36 equally

likely ordered pairs

S = {(1,1), (1 ,2) , . . . , (1,6), (2,1), (2 ,2) , . . . , (6,6)}.

Then when we roll two dice we find, for example,

P(sum equal 7) = 6/36 = 1/6,

since 6 of the elements in S sum to 7.

APPENDIX 527

Often, it's easier to compute the probability of X using the fact

P(X) = 1 - ^(complement of X),

where the complement of X is the set of elements in S that are not in X. For

example, when rolling two dice,

P(sum > 3) = 1 - P(number < 3) = 1 - 3/36 = 11/12.

Although there are many good sources of information on discrete prob-

ability, probably your author's favorite is the ancient—but excellent—book

by Feller [109]. Feller covers all of the basics and many interesting and useful

advanced topics, all in a very readable and engaging style.

A-2.5 Linear Algebra

In Chapter 6, the discussion of the attack on the knapsack cryptosystem

requires a small amount of linear algebra. Here, we present only the mini-

mum amount of linear algebra required to understand the material in that

particular section.

We write v € R™ to denote a vector containing n components, where each

element is a real number. For example,

v= [vi,V2,V3,v4] = [4,7/3,13,-3/2] e R4.

The dot product of two vectors u, υ € R™, is

u ■ v = u\v\ + U2V2 H h unvn.

Note that the dot product only applies to vectors of the same length and the
result of the dot product is a number, not a vector.

A matrix is an n x m array of numbers. For example,

A =
3 4 2
1 7 9

(A-l)

is a 2 x 3 matrix, and we sometimes write Λ.2χ3 to emphasize the dimensions.

We denote the element in the ith. row and j th column of A as ay. For

example, in the matrix A, above, a\t2 = 4.

To multiply a matrix by a number, we simply multiply each element of

the matrix by the number. For example, for the matrix A in equation (A-l),

we have

3A
3-3 3-4 3-2

3-1 3-7 3-9

9 12 6

3 21 27

528 APPENDIX

Addition of matrices is only defined if the matrices have the same dimensions.
If so, the corresponding elements are simply added. For example,

3 2 '
1 5 +

" - 1 4 '
6 2 =

' 2 6 "
7 7 _

Matrix multiplication, on the other hand, is less intuitive than matrix
addition or multiplication by a number. Given matrices Amxn and B^xe,
the product C = AB is only defined if n = k, in which case the product C
is m x I. When the product is defined, the element in row i and column j
of C, that is, Cij, is given by the dot product of the ith row of A with the j th
column of B. For example, for the matrix A in (A-l) and

the product

BA = C2x3 =

B =
- 1
2

2
- 3

' [- 1 , 2] -

[2,-3]·

' 3
1
o
Ò

1

[-1,2]·

[2,-3]·

" - 1 10 16
3 -13 23

[-1,2]·

[2,-3]·

Note that for these two matrices, the product AB is undefined, which shows
that matrix multiplication is, in general, not commutative.

The identity matrix Inxn has Is on the main diagonal, and 0s elsewhere.
Note that the identity matrix is always a square matrix, that is, a matrix
with an equal numbers of rows and columns. For example, the 3 x 3 identity
matrix is

1 0 0
0 1 0
0 0 1

For a square matrix A, the identity matrix of the appropriate size is the
multiplicative identity, that is, AI = IA = A.

We can also define block matrices, where the elements are themselves ma-
trices. We can multiply block matrices provided that the dimensions meet
the requirements for matrix multiplications, and the dimensions on all of the
individual blocks that are to be multiplied also are appropriate for multipli-
cation. For example, if

M = inxn t^nxl

■Amxn " m x l
and V Unxi

T\xl

APPENDIX 529

then

MV = \ *
nxe

 1 ,
' m x i

where X = U + CT and Y = AU + BT. You should verify that all of these
operations are defined.

We'll require only one more result from linear algebra. Suppose x and y
are vectors in Rn. Then we say that x and y are linearly independent provided
that the only scalars (i.e., numbers) a and ß for which

ax + ßy = 0

are a = ß = 0. For example,

1
- 1

and
' 1 "

2

are linearly independent. Linear independence extends to more than two
vectors. The importance of linear independence derives from the fact that
if a set of vectors are linearly independent, then none of the vectors can be
written as a linear combination of the other vectors, that is, none of the
vectors can be written as a sum of multiples of the other vectors in the set.
This is the sense in which the vectors are independent.

A-2.6 Conclusions

That concludes our brief review of the math used in this book. Hopefully,
you're still awake. In any case, the math required in this text is minimal, so
fear not if some of the details discussed here appear somewhat opaque. You
can simply review this material as needed if you run into any mathematical
speed bumps on your way to security enlightenment.

This page intentionally left blank

Annotateci Bibliography

If you can't annoy somebody, there is little point in writing.
— Kingsley Amis

[1] 3GPP home page, at www.3gpp.org/
Cited on page 381

[2] ©stake LC 5, at en.wikipedia.org/wiki/Sstake
Cited on page 241

• Prior to being acquired by Symantec, ©stake was a leading security
company. At one time they made news for supposedly firing a top-
notch security expert for his implicit criticism of Microsoft (see,
for example, dc.internet.com/news/article.php/308390l).

[3] M. Abadi and R. Needham, Prudent engineering practice for crypto-
graphic protocols, IEEE Transactions on Software Engineering, Vol. 22,
No. 1, pp. 6-15, January 1996.
Cited on page 314

[4] E. Aboufadel, Work by the Poles to break the Enigma codes, at
faculty.gvsu.edu/aboufade/web/enigma/polish.htm
Cited on page 176

• A brief description of the brilliant work by the Polish cryptana-
lysts.

[5] Access control matrix, at
en.wikipedia.org/wiki/Access_Control_Matrix
Cited on page 271

[6] E. Ackerman, Student skirts CD's piracy guard, SiliconValley.com, at
technews.acm.org/articles/2003-5/1008w.html#item2
Cited on page 471

531

532 ANNOTATED BIBLIOGRAPHY

• The classic "hold down the shift key" attack on a DRM system.

[7] AES algorithm (Rijndael) information, at
csrc.nist.gov/archive/aes/indexl.html
Cited on page 67

• A good place to tap into the wealth of information available on
Rijndael and the AES.

[8] Aleph One, Smashing the stack for fun and profit, Phrack, Volume
Seven, Issue Forty-Nine, File 14 of 16, at
www.phrack.com/issues.html?issue=49&id=14tonode=txt
Cited on page 411

• The first widely available and hacker-friendly source of information
on buffer overflow attacks.

[9] D. Anderson, T. Frivold, and A. Valdes, Next-generation intrusion de-
tection expert system (NIDES): summary, at
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.5956
Cited on page 300

• This is one in a series of papers about NIDES.

[10] R. Anderson and E. Biham, Tiger: a fast new hash function, at
www.cs.technion.ac.il/~biham/Reports/Tiger/
Cited on pages 133 and 135

• Two crypto experts present the details of their hash function.

[11] R. J. Anderson and M. G. Kuhn, Improved differential fault analysis,
at jya.com/akdfa.txt
Cited on page 211

• Along with most other security topics under the sun, Ross Ander-
son is an expert on side channel attacks.

[12] R. Anderson, Security in Open versus Closed Systems — The Dance of
Boltzmann, Coase and Moore, at
www.cl.cam.ac.uk/~rjal4/Papers/toulouse.pdf
Cited on pages 475 and 476

• This paper gives an interesting and fairly elementary argument
that—from a security perspective—there's no significant difference
between open and closed source software. This is Ross Anderson
at his best.

ANNOTATED BIBLIOGRAPHY 533

[13] R. Anderson, TCPA/Palladium frequently asked questions, at
www.cl.cam.ac.uk/~rjal4/tcpa-faq.html
Cited on pages 500, 505, and 509

[14] R. Anderson, Security Engineering, Wiley, 2001, at
www.cl.cam.ac.uk/"rjal4/book.html
Cited on pages 9, 13, 211, 230, 233, 244, 271, 280, 284, 304, 316, 381,
406, 473, 475, 476, 480, and 497

• Ross Anderson is the reigning God of information security and
this book is his Bible. For the nitty-gritty details, you'll have to
go elsewhere, but for the big picture, this is very good. There is
also a second edition that covers some new ground. However, this
first edition is available for free at the given link.

[15] R. Anderson, Security Engineering Errata, at
www.cl.cam.ac.uk/~rjal4/errata.html
Cited on page 316

• This is worth reading just for Anderson's description of the pub-
lishing process. Here you'll also learn (among other things) that
the MiG-in-the-middle attack never actually occurred.

[16] Z. Anderson, Warcart, at web.mit.edu/zacka/www/warcart.html
Cited on page 16

[17] W. A. Arbaugh, N. Shankar, and Y. C. J. Wan, Your 802.11 wireless
network has no clothes, at www.cs.umd.edu/~waa/wireless.pdf
Cited on page 381

• Well-written description of the many security flaws in 802.11.

[18] G. Arboit, A method for watermarking Java programs via opaque pred-
icates, at crypto.cs.mcgill.ca/~garboit/sp-paper.pdf
Cited on page 485

[19] D. Aucsmith, Tamper resistant software: an implementation, Proceed-
ings of the First International Information Hiding Workshop, Lecture
Notes in Computer Science 1174, Springer-Verlag, Cambridge, UK,
pp. 317-334, 1996.
Cited on pages 456 and 562

• Difficult to read and impossible for mere mortals like myself to
comprehend. I challenge anyone to make sense of this, even with
Aucsmith's patent as backup.

534 ANNOTATED BIBLIOGRAPHY

[20] Audacity, The free, cross-platform sound editor, at
audac i ty . sourceforge .ne t /
Cited on page 262

[21] J. Aycock, Computer Viruses and Malware, Advances in Information
Security, Vol. 22, Springer-Verlag, 2006.
Cited on page 421

• A well-written, humorous, and easily accessible introduction to
malware.

[22] J. Aycock, Spyware and Adware, Springer-Verlag, 2010.
Cited on pages 241 and 421

• Another excellent malware book from John Aycock.

[23] D. V. Bailey, Inside eBook security, Dr. Dobb's Journal, November
2001, at www.drdobbs.com/184404845
Cited on page 471

• The weakness of eBook security is exposed.

[24] I. Balepin, Superworms and cryptovirology: a deadly combination, at
wwwcsif .cs.ucdavis.edu/~balepin/fi les/worms-cryptovirology.pdf
Cited on page 429

• The future of malware is considered.

[25] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan
and K. Yang, On the (im)possibility of obfuscating programs (extended
abstract) , in J. Kilian, editor, Advances in Cryptology - CRYPTO 2001,
Lecture Notes in Computer Science 2139, at
www.iacr.org/archive/crypto200l/2139000l.pdf
Cited on page 458

• This paper created quite a stir when published. The upshot is that ,
in some sense, obfuscation can probably never "really" be secure.
There is some debate as to whether the model used is realistic,
and what "really" really means.

[26] E. Barkan, E. Biham, and N. Keller, Instant ciphertext-only cryptanal-
ysis of GSM encrypted communication, at
cryptome.org/gsm-crack-bbk.pdf
Cited on page 386

• Attacks on the GSM protocol as well as attacks on A5/2 and A 5 / 1 .

ANNOTATED BIBLIOGRAPHY 535

[27] M. Barrett and C. Thomborson, Using NGSCB to mitigate existing
software threats, at www.cs.auckland.ac.nz/~cthombor/Pubs/cses.pdf
Cited on pages 501 and 503

[28] BBC News, Afghan girl found after 17 years, at
news.bbc.co.uk/ l /hi /world/south_asia/1870382.stm
Cited on page 249

[29] Beale Screamer, Microsoft's digital rights management scheme—
technical details, at

web .e las t ic .o rg /~fche /mir rors /c ryptome.org /bea le -sc i -c rypt .h tm
Cited on pages 21 and 472

• Interesting and well written, at least by hacker standards.

[30] D. J. Bernstein, The IPv6 mess, at cr .yp. to/djbdns/ ipv6mess.html

Cited on page 521

[31] P. Biddle et al., The darknet and the future of content distribution, at
crypto.Stanford.edu/DRM2002/darknet5.doc
Cited on page 461

• A true classic. Anyone interested in DRM must read this.

[32] Biometrics comparison chart, at
c t l . ncsc. dn i . us/biomet'/.20web/BMCompare. html
Cited on page 250

[33] A. Biryukov, A. Shamir, and D. Wagner, Real time cryptanalysis of
A5/1 on a PC, at

home.in.tum.de/~gerold/KryptDokumente/a5_Angriff/a51-bsw.htm
Cited on pages 54 and 386

• An efficient attack on A5/1 that requires huge amounts of storage.

[34] M. Bishop, Computer Security: Art and Science, Addison Wesley, 2003.
Cited on pages 10 and 277

• In my humble opinion, this book often crosses the line into the
realm of theory for the sake of theory. The book is definitely not
an easy read. The best sections are those on topics tha t are theo-
retical by their very nature. For example, the discussion of security
modeling is excellent.

[35] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in Cryptography,
Cambridge University Press, 2000.
Cited on page 106

536 ANNOTATED BIBLIOGRAPHY

• The mathematical results are all there but without the proofs.

[36] blexim, Basic Integer Overflows, Phrack Magazine, Volume OxOb, Issue
0x3c, Phile # 0 x 0 a of 0x10, at
www.phrack.com/issues.html?issue=60&id=10
Cited on page 439

[37] L. Boettger, The Morris worm: how it affected computer security and
lessons learned by it, at
hackersnews.org/hackerhistory/morrisworm.html
Cited on page 422

[38] N. Borisov, I. Goldberg, and D. Wagner, Intercepting mobile commu-
nications: the insecurity of 802.11, at
www.isaac.cs .berkeley.edu/isaac/wep-draft .pdf
Cited on pages 132 and 381

• A good source for information concerning the many flaws of W E P .

[39] Botnet, at en.wikipedia .org/wiki /Botnet
Cited on page 304

[40] J. Bowen, Formal methods, The World Wide Web Virtual Library, at
formalmethods.wikia.com/wiki/Jonathan_Bowen
Cited on page 477

[41] D. Brumley and D. Boneh, Remote timing attacks are practical, at
c rypto .s tanford .edu/~dabo/papers /ss l - t iming.pdf
Cited on pages 211 and 217

• A nice paper describing a side-channel attack on the RSA imple-
mentation in OpenSSL.

[42] S. Budiansky, Battle of Wits: The Complete Story of Codebreaking in
World War II, The Free Press, 2000.
Cited on page 38

• An excellent and highly readable book. The historical accuracy is
first rate, and the author has good insight into both the technical
aspects and the human side of intelligence gathering. My only
quibble is tha t the subtitle is somewhat misleading, since the focus
is clearly on the Enigma and the British.

[43] D. M. Burton, Elementary Number Theory, fourth edition, Wm.
C. Brown, 1998.
Cited on pages 96, 100, 525, and 526

ANNOTATED BIBLIOGRAPHY 537

[44] Cafebabe bytecode editor, at
cafebabe.sourceforge.net / index.html
Cited on page 481

• If you want to see just how easy it is to reverse engineer a Java
program, try this tool on your favorite c l a s s file.

[45] K. W. Campbell and M. J. Wiener, DES is not a group, Advances in
Cryptology, CRYPTO '92, Springer-Verlag, 1993, pp. 512-520.
Cited on page 225

• Definitive proof—though late in coming—that triple DES really is
more secure than single DES.

[46] P. Capitani , Software tamper-proofing deployed 2-year anniversary re-
port, Macrovision Corporation, at
www.es.sj su.edu/faculty/stamp/DRM/

DRM'/,20papers/Sof tware_Tamper-Proof ing. ppt

Cited on page 460

• Some good information on DRM techniques, based on real-world
experiences.

[47] CAPTCHA, at

en.wikipedia.org/wiki/CAPTCHA
Cited on page 286

[48] A. Carlson, Simulating the Enigma cypher machine, at
homepages.tesco.net/~andycarlson/enigma/simulating_enigma.html
Cited on page 171

• Describes the double stepping well.

[49] J. Carr, Strategies & issues: thwarting insider attacks, Network Maga-
zine, September 4, 2002.
Cited on page 287

[50] L. Carroll, Alice's Adventures in Wonderland, at
www.sabian.org/alice.htm
Cited on page 151

[51] CERT coordination center, at www.cert.org/
Cited on page 424

[52] Certicom Corporation, Certicom ECC Challenge, November 1997, at
www.certicom.com/index.php/the-certicom-ecc-challenge
Cited on page 106

538 ANNOTATED BIBLIOGRAPHY

[53] P. Cerven, Crackproof Your Software: Protect Your Software Against
Crackers, No Starch Press, 2002.
Cited on page 454

• Easily the best available book for information on anti-disassembly
and anti-debugging techniques. A new edition would be valuable
since the material is heavily focused on Windows 98.

[54] H. Chang and M. J. Atallah, Protecting software code by guards, Work-
shop on Security and Privacy in Digital Rights Management 2001.
Cited on pages 458 and 548

• Surprisingly similar to the paper [145], which was presented at the
same conference.

[55] G. Chapman et al., The Complete Monty Python's Flying Circus: All
the Words, vols. 1 and 2, Pantheon, 1989.
Cited on pages 110 and 140

[56] K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski, Computers
beat Humans at Single Character Recognition in Reading based Human
Interaction Proofs (HIPs), Microsoft Research, at
www.ceas.cc/2005/papers/160.pdf
Cited on pages 286 and 305

• A very interesting paper that shows that computers are better
than humans at solving all of the basic visual CAPTCHA/HIP
problems, with the exception of the segmentation problem. The
obvious implication is that a strong CAPTCHA must rely primar-
ily on the segmentation problem for its security.

[57] T. Cipresso, Software Reverse Engineering Education, Master's Thesis,
Department of Computer Science, San Jose State University, 2009, at
reversingproject.info/
Cited on pages 448 and 454

• An excellent overview of the uses of SRE (both good and bad),
along with several detailed examples (with complete, animated
solutions). I've used these examples as the basis for a software
reverse engineering course, and they are also ideal for self-study.

[58] T. Cipresso, Java bytecode anti-reversing exercise, at
reversingproject.info/?page_id=65
Cited on page 482

[59] Clipper chip, at en.wikipedia.org/wiki/Clipper_chip
Cited on page 143

ANNOTATED BIBLIOGRAPHY 539

[60] F. B. Cohen, Experiments with computer viruses, 1984, at
www.al l .net /books/virus/par t5 .html
Cited on page 277

• Discussion of early virus experiments by the father of the computer

virus.

[61] F. B. Cohen, Operating system protection through program evolution,
at a l l .ne t /books / IP /evo lve .h tml
Cited on pages 456 and 460

• A fascinating idea, tha t has implications far beyond operating sys-
tems.

[62] F . B. Cohen, A Short Course on Computer Viruses, second edition,
Wiley, 1994.
Cited on page 422

• A nice book, but the material is dated.

[63] C. Collberg, SandMark: a tool for the study of software protection
mechanisms, at sandmark.cs.arizona.edu/
Cited on page 482

[64] C. S. Collberg and C. Thomborson, Watermarking, tamper-proofing
and obfuscation—tools for software protection, IEEE Transactions on
Software Engineering, Vol. 28, No. 8, August 2002.
Cited on page 458

• These authors are the originators of most of the sophisticated

methods of software obfuscation.

[65] Common Criteria — The Common Criteria portal, at
www.commoncriteriaportal.org/
Cited on page 269

[66] Computer Knowledge, Virus tutorial, at
www.cknow.com/cms/vtutor/cknow-virus-tutorial.html
Cited on page 422

• A wide ranging and fairly thorough discussion of many issues re-
lated to malware. Robert Slade's history of viruses—which is cur-
rent up to about the year 2000—is included.

[67] M. Cooney, IBM touts encryption innovation: New technology performs
calculations on encrypted da ta without decrypting it, Computer World,
June 25, 2009, at

540 ANNOTATED BIBLIOGRAPHY

www.Computerworld.com/action/article.do?command=viewArticle
Basic&articleId=9134823&source=CTWNLE_nlt_security_2009-06-25
Cited on page 121

[68] D. Coppersmith, Small solutions to polynomial equations, and low
exponent RSA vulnerabilities, Journal of Cryptology, Vol. 10, 1997,
pp. 233-260.
Cited on page 214

[69] Coventry blitz, at en.wikipedia.org/wiki /Coventry_Bli tz

Cited on page 38

[70] S. Craver, The underhanded C contest, at
underhanded.xcott.com/
Cited on page 437

• An amusing contest with some incredible examples of innocent-
looking code doing malicious things.

[71] S. A. Craver et. al., Reading between the lines: lessons learned from the
SDMI challenge, Proceedings of the 10th USENIX Security Symposium,
Washington, DC, August 13-17, 2001, at
www.usenix.org/events/sec01/craver.pdf
Cited on pages 149, 153, and 471

• One of the best security papers you'll ever read. The authors de-
molish the security of the proposed SDMI system. If you think
watermarking is easy, or if you're tempted to ignore Kerckhoffs'
Principle, you'll change your mind after reading this.

[72] R. X. Cringely, Calm before the storm, at
www.pbs.org/cringely/p_lpit/2001/pulpit_20010730_000422.html
Cited on page 424

[73] Cryptographer's Panel, RSA Conference 2002, at
www.es.sj su.edu/~ stamp/cv/tripreports/RSA2002.html
Cited on page 67

[74] Cryptographer's Panel, RSA Conference 2004, at
www.es.sj su.edu/~stamp/cv/tripreports/RSA04.html
Cited on pages 56, 404, and 500

[75] J. Daemen and V. Rijmen, The Rijndael block cipher, at
c s rc .n i s t . gov /a rch ive /aes / index .h tml
Cited on page 67

ANNOTATED BIBLIOGRAPHY 541

[76] J. Daugman, How iris recognition works, at
www.cl.cam.ac.uk/users/jgdlOOO/irisrecog.pdf

Cited on page 247

[77] D. Davis, Defective sign & encrypt in S/MIME, P K C S # 7 , MOSS, PEM,

PGP, and XML, at

world.std.com/~dtd/sign_encrypt/sign_encrypt7.html

Cited on page 110

[78] E. X. DeJesus, SAML brings security to XML, XML Magazine, Vol-
ume 3, No. 1, January 11, 2002, pp. 35-37.
Cited on page 253

[79] Defcon 11, at www.cs .s jsu .edu/~stamp/cv/ t r iprepor ts /defconl l .h tml

Cited on pages 301, 419, 430, and 431

• My "trip report" about Defcon 11.

[80] Defcon 16, at www.defcon.org/html/defcon-16/dc-16-post.html

Cited on page 16

[81] Definition of John Anthony Walker, at
www.wordiq.com/definition/John_Anthony_Walker
Cited on page 40

[82] Definition of Purple code, at www.wordiq.com/definition/Purple_code

Cited on page 37

[83] Definition of Zimmermann Telegram, at
www.wordiq.com/definition/Zimmermann_Telegram

Cited on page 33

[84] M. Delio, Linux: fewer bugs than rivals, Wired, December 2004, at
www.wired.com/software/coolapps/news/2004/12/66022
Cited on page 474

[85] D. E. Denning and D. K. Branstad, A taxonomy for key escrow encryp-
tion systems, Communications of the ACM, Vol. 39, No. 3, March 1996,
at www.cose.georgetown.edu/~denning/crypto/Taxonomy.html
Cited on page 143

[86] D. E. Denning, Descriptions of key escrow systems, at
www.cose.georgetown.edu/~denning/crypto/Appendix.html
Cited on page 143

[87] Denver International Airport, at
en.wikipedia.org/wiki /Denver_Internat ional_Airport
Cited on page 404

542 ANNOTATED BIBLIOGRAPHY

[88] Y. Desmedt, Wha t happened with knapsack cryptographic schemes?,
Performance Limits in Communication, Theory and Practice,
J. K. Skwirzynski, ed., Kluwer, pp. 113-134, 1988.
Cited on page 95

[89] J. F. Dhem et. al., A practical implementation of the timing attack, at
www.cs.jhu.edu/"fabian/courses/CS600.624/Timing-full.pdf
Cited on page 210

[90] W. Dime and M. Hellman, New directions in cryptography, IEEE
Transactions on Information Theory, Vol. IT-22, No. 6, pp. 644-654,
November 1976, at

www.cs.j hu.edu/~rubin/courses /sp03/papers /di f f ie .hellman.pdf

Cited on pages 91, 458, and 555

• Dime and Hellman's classic paper, where they argue (correctly, as

it turned out) tha t public key cryptography is possible.

[91] DI Management, RSA Algorithm, at
www.di-mgt.com.au/rsa_alg.html#pkcslschemes
Cited on page 98

[92] I. Dubrawsky, Effects of Internet worms on routing, RSA Confer-

ence 2004, at
www.es.sj su.edu/facul ty/s tamp/cv/ t r ipreports /RSA04.html
Cited on page 425

[93] I. Dubrawsky and L. Hayden, Wireless LANs and privacy, at
www.isoc.org/inet2002/inet-technologyprogram.shtml
Cited on page 381

[94] D. Dumars, Stephen King's The Plant withers, at
www.mania.com/stephen-kings-plant-withers_article_26476.html

Cited on page 461

[95] J. E. Dunn, Encrypted image backups open to new attack, Techworld,

October 2008, at

www.techworld.com/security/news/index.cfm?newsid=105263

Cited on page 73

[96] P. Earley, Family of spies: The John Walker Jr. spy case, The Crime
Library, at www.crimelibrary.com/spies/walker/
Cited on page 40

[97] Easy solution to bypass latest CD-audio protection, at
www.cdfreaks.com/news/4068
Cited on page 471

ANNOTATED BIBLIOGRAPHY 543

• The classic "felt-tip pen" attack.

[98] E F F DES cracker, at
en.wikipedia.org/wiki/EFF_DES_cracker

Cited on page 67

[99] E. Eilam, Reversing: Secrets of Reverse Engineering, Wiley, 2005.
Cited on pages 449, 454, 548, and 558

• The best book available on reversing—at least until your humble
author finishes his reverse engineering tex tbook. . .

[100] G. Ellison, J. Hodges, and S. Landau, Risks presented by single sign-on
architectures, October 18, 2002, at research.sun.com/liberty/RPSS0A/
Cited on page 253

[101] C. Ellison and B. Schneier, Ten risks of PKI: what you're not being told
about public key infrastructure, Computer Security Journal, Vol. 16,
No. 1, pp. 1-7, 2000, at www.schneier.com/paper-pki.html
Cited on page 112

[102] P. England et. al., A trusted open platform, IEEE Computer, pp. 5 5 -
62, July 2003.
Cited on page 500

• A general description of N G S C B / T C G at an early stage in its
development.

[103] A. C. Engst, Mac OS X trojan technique: beware of geeks bearing gifts,
TidBITS, No. 726, April 2004, at
db . t idb i t s .com/ge tb i t s .acg i? tbar t=07636
Cited on pages 426 and 549

• A proof-of-concept trojan for the Mac. See [160] for additional
context.

[104] Enigma machine, at en.wikipedia.org/wiki/Enigma_machine
Cited on pages 38 and 169

[105] U. Erlingsson, Y. Younan, and F . Piessens, Low-level Software Secu-
rity by Example, to appear in Handbook of Communications Security,
Springer-Verlag, 2009.
Cited on page 417

• An excellent survey of low-level software vulnerabilities and de-
fenses.

544 ANNOTATED BIBLIOGRAPHY

[106] Evaluation assurance level, at
en.wikipedia.org/wiki/Evaluation_Assurance_Level
Cited on page 270

[107] D. B. Everett, Trusted computing platforms, at
www.netproject.com/presentations/TCPA/david_everett.pdf
Cited on page 500

[108] Exploit Systems, Inc., at www.exploitsystems.com/
Cited on page 469

• An unsuccessful—yet clever—approach to making money from the
pirates who inhabit peer-to-peer networks.

[109] W. Feller, An Introduction to Probability Theory and Its Applications,
third edition, Wiley, 1968.
Cited on page 527

• The best source for information on discrete probability.

[110] Fernflower — Java Decompiler, at www.reversed-java.com/fernflower/
Cited on page 450

[111] U. Fiege, A. Fiat, and A. Shamir, Zero knowledge proofs of identity,
Proceedings of the Nineteenth Annual ACM Conference on Theory of
Computing, pp. 210-217, 1987.
Cited on page 335

[112] S. Fluhrer, I. Mantin and A. Shamir, Weaknesses in the key scheduling
algorithm of RC4, at www.drizzle.com/~aboba/IEEE/rc4_ksaproc.pdf
Cited on pages 56, 180, 221, 378, 398, 554, and 569

• Several attacks on RC4 are discussed, including a devastating at-
tack on the encryption in WER This paper suffers from some typos
and a lack of detail. See Mantin's thesis [195] for a more readable
and complete version.

[113] B. A. Forouzan, TCP/IP Protocol Suite, second edition, McGraw Hill,
2003.
Cited on page 523

• Forouzan has digested the relevant RFCs and provides the impor-
tant points in a readable form—no mean feat.

[114] S. Forrest, S. A. Hofmeyr, and A. Somayaji, Computer immunology,
Communications of the ACM, Vol. 40, No. 10, pp. 88-96, October 1997.
Cited on page 460

ANNOTATED BIBLIOGRAPHY 545

• A somewhat "far out" view of the role tha t biological analogies
can play in security.

[115] S. Forrest, A. Somayaji, and D. H. Ackley, Building diverse computer
systems, a t www.cs.unm.edu/~forrest/publications/hotos-97.pdf
Cited on page 460

[116] L. Fraim, SCOMP: A solution to the multilevel security problem, IEEE
Computer, pp. 26-34, July 1983.
Cited on page 498

• One of the few serious a t tempts to develop a trusted operating
system.

[117] J. Fraleigh, A First Course in Abstract Algebra, Addison Wesley, sev-
enth edition, 2002.
Cited on page 225

[118] K. Gaj and A. Orlowski, Facts and myths of Enigma: breaking stereo-
types, at

ece.gmu.edu/courses/ECE543/viewgraphs_F03/EUR0CRYPT_2003.pdf
Cited on page 38

[119] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman & Company, 1979.
Cited on page 92

[120] B. Gates, Keynote address, RSA Conference 2004, at
www.es.sj su.edu/facui ty/s tamp/cv/ t r ipreports /RSA04.html
Cited on page 301

[121] D. Geer, comments from "Who will kill online privacy first—the lawyers
or the techies?", at

www.cs.sj su.edu/~stamp/cv/tripreports/RSA2002.html
Cited on page 460

[122] W. W. Gibbs, Software's chronic crisis, Trends in Computing, Scientific
American, September 1994, p. 86, at

www.eis.gsu.edu/~mmoore/CIS3300/handouts/SciAmSept1994.html
Cited on page 404

[123] R. Glenn and S. Kent, RFC 2410 — The NULL encryption algorithm
and its use with IPsec, at www.faqs.org/rfcs/rfc2410.html
Cited on page 371

• Good nerdy humor.

546 ANNOTATED BIBLIOGRAPHY

[124] D. B. Glover, Secret Ciphers of the 1876 Presidential Election, Aegean
Park Press, 1991.
Cited on page 36

[125] D. Gollmann, Computer Security, Wiley, 1999.
Cited on page 274

• A fairly theoretical treatment of most topics. Includes an excellent
discussion of security modeling.

[126] S. W. Golomb, Shift Register Sequences, Aegean Park Press, 1982.
Cited on page 53

[127] D. Goodin, Buggy 'smart meters' open door to power-grid botnet: Grid-
burrowing worm only the beginning, The Register, at
www.theregister.co.uk/2009/06/12/smart_grid_security_risks/
Cited on page 404

[128] S. Goodwin, Internet gambling software flaw discovered by Reliable
Software Technologies software security group, at
www.cigital.com/news/index.php?pg=art&artid=20
Cited on page 146

• A nice description of an attack on an online version of Texas hold
'em poker.

[129] E. Grevstad, CPU-based security: the NX bit, at
hardware.earthweb.com/chips/article.php/3358421
Cited on page 416

[130] GSM cloning, at www.isaac.cs.berkeley.edu/isaac/gsm.html
Cited on page 386

[131] A guide to understanding covert channel capacity analysis of a trusted
system, National computer security center, November 1993, at
www.fas.org/irp/nsa/rainbow/tg030.htm
Cited on pages 282 and 304

[132] A guide to understanding data remanence in automated information
systems, NCSC-TG-025, at
www.cerberussystems.com/INF0SEC/stds/ncsctg25.htm
Cited on page 496

[133] B. Guignard, How secure is PDF?, at
www-2.cs.emu.edu/~dst/Adobe/Gallery/PDFsecurity.pdf
Cited on page 471

ANNOTATED BIBLIOGRAPHY 547

• A brief explanation of the ElcomSoft utility to remove P D F se-
curity. Correctly concludes tha t "your encrypted P D F files offer
about as much strength as dried egg shells!"

[134] E. Guisado, Secure random numbers, at
emgu i . com/ar t ic les / rng / index , html
Cited on page 148

[135] A. Guthrie, "Alice's Restaurant," lyrics at
www.ar lo .ne t / ly r i cs /a l i ces . sh tml
Cited on page 2

[136] Hacker may be posing as Microsoft, USA Today, February 6, 2002, at
www.usatoday.com/tech/techinvestor/2001-03-22-microsoft.htm
Cited on page 113

• Discusses a Microsoft certificate tha t went astray.

[137] D. Hamer, Enigma: actions involved in the 'double-stepping' of the
middle rotor, Cryptologia, Vol. 21, No. 1, January 1997, pp. 47-50, at
www.eclipse.net/~dhamer/downloads/rotorpdf.zip
Cited on page 171

[138] Hand based biometrics, Biometrie Technology Today, pp. 9-11, July &
August 2003.
Cited on page 246

[139] N. Hardy, The confused deputy (or why capabilities might have been in-
vented), at www.skyhiinter.com/marcs/capabilitylntro/confudep.html
Cited on page 273

• This paper is itself confusing, but it 's worth understanding.

[140] D. Harkins and D. Carrel, RFC 2409 — The Internet key exchange
(IKE), at www.faqs.org/rfcs/rfc2409.html
Cited on page 359

[141] B. Harris, Visual cryptography, two levels, personal correspondence.

Cited on page 145

[142] History of GSM, at www.cellular.co.za/gsmhistory.htm

Cited on page 381

[143] G. Hoglund and G. McGraw, Exploiting Software, Addison Wesley,
2004.
Cited on pages 404, 438, and 550

548 ANNOTATED BIBLIOGRAPHY

• In spite of some good reviews, this book is, in your author 's humble
opinion, not on par with Kaspersky's book [161] or Eilam's fine
book [99].

[144] J. J. Holt and J. W. Jones, Discovering number theory, Section 9.4:
Going farther: RSA, at
www.math.mtu.edu/mathlab/COURSES/holt/dnt/phi4.html
Cited on page 121

• A small part of an excellent set of number theory notes—all avail-
able online.

[145] B. Home et, al., Dynamic self-checking techniques for improved tamper
resistance, Workshop on Security and Privacy in Digital Rights Man-
agement 2001.
Cited on pages 458 and 538

• Very similar to the "guards" paper [54]. Interestingly, both papers
were presented at the same conference and both are undoubtedly
patented.

[146] HotBots '07, USENIX first workshop on hot topics in understanding
botnets, at www.usenix.org/event/hotbots07/tech/
Cited on page 304

[147] IDA Pro disassembler, at www.hex-rays.com/idapro/
Cited on page 448

• The best disassembler in the known universe, it also includes a
good debugger.

[148] Index of Coincidence, Wikipedia, at
en.wikipedia.org/wiki /Index_of.coincidence
Cited on page 48

[149] Iridian Technologies, Iris recognition: science behind the technology, at
www.llid.com/pages/383-science-behind-the-technology
Cited on pages 247 and 248

[150] D. Isbell, M. Hardin, and J. Underwood, Mars climate team finds likely
cause of loss, at
science.ksc.nasa.gov/mars/msp98/news/mco990930.html
Cited on page 404

[151] A. Jain, L. Hong, and S. Pankanti, Biometrie Identification, Commu-
nications of the ACM, Vol. 43, No. 2, pp. 91-98, 2000.
Cited on page 242

ANNOTATED BIBLIOGRAPHY 549

[152] A. Jain, A. Ross, and S. Pankanti, Proceedings of the 2nd AVBPA
Conference, Washington, DC, March 22-24, pp. 166-171, 1999.
Cited on page 246

[153] C. J. A. Jansen, Investigations on Nonlinear Streamcipher Systems:
Construction and Evaluation Methods, PhD thesis, Technical University
of Delft, 1989.
Cited on page 52

• An unusual and hard to find manuscript. Some very difficult re-
search problems are discussed.

[154] D. Jao, Elliptic curve cryptography, in Handbook of Communication
and Information Security, Springer-Verlag, 2009.
Cited on page 106

[155] H. S. Javitz and A. Valdes, The NIDES statistical component descrip-
tion and justification.
Cited on page 300

• One of many NIDES papers available online.

[156] John Gilmore on the EFF DES cracker, at
www.coniputer.org/interiiet/v2ii5/w5news-des.htm
Cited on page 23

[157] John the Ripper password cracker, at www.openwall.com/john/
Cited on page 241

[158] M. E. Kabay, Salami fraud, Network World Security Newsletter,
July 24, 2002, at
www.nwfusion.com/newsletters/sec/2002/01467137.html
Cited on page 434

[159] D. Kahn, The Codebreakers: The Story of Secret Writing, revised edi-
tion, Scribner, 1996.
Cited on pages 21 and 37

• The source for crypto history prior to its original publication date
of 1967. Supposedly, it was updated in 1996, but little new infor-
mation was added.

[160] L. Kahney, OS X trojan horse is a nag, at
www.wired.com/news/mac/0,2125,63000,00.html?tw=rss.TEK
Cited on pages 427 and 543

• Additional discussion of this harmless trojan can be found at [103].

550 ANNOTATED BIBLIOGRAPHY

[161] K. Kaspersky, Hacker Disassembling Uncovered, A-List, 2003.
Cited on pages 449, 454, 548, and 558

• A good resource for anyone interested in software reverse engineer-
ing. Far superior to [143], although it does suffer somewhat from
poor writing, as do most "hacker" publications.

[162] C. Kaufman, R. Perlman, and M. Speciner, Network Security, second
edition, Prentice Hall, 2002.
Cited on pages 107, 113, 148, 363, 372, and 377

• Excellent coverage of networking protocols as well as good—
though brief—coverage of many relevant crypto topics. Chapter 11
alone is worth the price of the book. Overall, the content is consis-
tently first rate, with the possible exception of the IPSec chapters.

[163] J. Kelsey, B. Schneier, and D. Wagner, Related-key cryptanalysis of
3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA, ICICS
'97 Proceedings, Springer-Verlag, November 1997.
Cited on page 71

[164] A. Kerckhoffs, La cryptographie militaire, Journal des Sciences Mili-
taires, Vol. IX, pp. 5-83, January 1883, pp. 161-191, February 1883.
Cited on page 21

[165] Kerckhoffs' law, at en.wikipedia.org/wiki/Kerckhoffs'_law
Cited on page 21

[166] P. C. Kocher, Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems, at
www.cryptography.com/resources/whitepapers/TimingAttacks.pdf
Cited on pages 210, 214, and 217

[167] P. Kocher, J. Jaffe, and B. Jun, Differential power analysis, Advances
in Cryptology — CRYPTO '99, Vol. 1666 of Lecture Notes in Computer
Science, M. Wiener, editor, Springer-Verlag, pp. 388-397, 1999, at
www.cryptography.com/resources/whitepapers/DPA.html
Cited on page 211

• One of the few papers written by Kocher on side channel attacks.
This is curious, since he is clearly a leader in the field.

[168] Kodak research and development, at
www.kodak.com/US/en/corp/researchDevelopment/worldwide/index.jhtml
Cited on page 150

ANNOTATED BIBLIOGRAPHY 551

[169] F. Koeune, Some interesting references about LLL, at
www. d i ce . u c l . ac . be/~f koeune/LLL. html
Cited on page 207

[170] D. Kopel, Pëna's new airport still a failure, at
davekopel.org/Misc/0pEds/op021997.htm
Cited on page 404

[171] D. P. Kormann and A. D. Rubin, Risks of the Passport single signon
protocol, at avirubin.com/passport .html
Cited on page 253

[172] M. Kotadia, Spammers use free porn to bypass Hotmail protection, ZD
Net UK, May 6, 2004, at

news.zdnet .co.uk/internet/securi ty/0,39020375,39153933,00.htm

Cited on page 287

[173] J. Koziol et al., The Shellcoder's Handbook, Wiley, 2004.
Cited on pages 416 and 448

• For a long time, there were few books that made any serious at-
tempt to discuss hacking techniques. Of course, hackers knew (or
could learn) about such techniques, so this lack of information only
hindered the good guys while doing little or nothing to deter the
bad guys. Recently, however, there has been a flood of "hacking"
books and this book is among the best of the genre.

[174] H. Krawczyk, M. Bellare and R. Canett i , RFC 2104 — HMAC: Keyed-
hashing for message authentication, at
www.faqs.org/rfcs/rfc2104.html
Cited on page 138

[175] D. L. Kreher and D. R. Stinson, Combinatorial Algorithms, CRC Press,
1999.
Cited on page 203

• The best available mathematical discussion of the lattice reduction
attack on the knapsack. However, be forewarned tha t this book has
many typos, which is death for an algorithms book.

[176] M. Kuhn, Security—biometrie identification, at
www.cl .cam.ac.uk/Teaching/2003/Securi ty/guestsl ides/

s l ides-biometr ic-4up.pdf
Cited on page 242

552 ANNOTATED BIBLIOGRAPHY

[177] J. F. Kurose and K. W. Ross, Computer Networking, Addison Wesley,
2003.
Cited on pages 514 and 523

• A good textbook for an introduction to networking class. For self-
study, I prefer Tanenbaum [298].

[178] P. B. Ladkin, Osprey, cont'd, The Risks Digest, Vol. 21, issue 41, 2001,
at catless.ncl.ac.uk/Risks/21.41.html#subj7
Cited on page 404

[179] M. K. Lai, Knapsack cryptosystems: the past and the future,
March 2001, at www.cecs.uci.edu/-mingl/knapsack.html
Cited on page 95

[180] B. W. Lampson, Computer security in the real world, IEEE Computer,
pp. 37-46, June 2004.
Cited on page 4

[181] S. Landau, Standing the test of time: the Data Encryption Standard,
Notices of the AMS, Vol. 47, No. 3, pp. 341-349, March 2000.
Cited on page 64

• A good technical description of DES. As the title suggests, this
paper should have (finally) put to rest all of the nonsense about a
back door in DES.

[182] S. Landau, Communications security for the twenty-first century: the
Advanced Encryption Standard, Notices of the AMS, Vol. 47, No. 4,
pp. 450-459, April 2000.
Cited on page 67

• This paper has good detail on the Rijndael algorithm, as well as
an overview of the other AES finalists.

[183] C. E. Landwehr et al., A taxonomy of computer program security flaws,
with examples, ACM Computing Surveys, Vol. 26, No. 3, pp. 211-254,
September 1994.
Cited on page 403

[184] M. Lee, Cryptanalysis of the SIGABA, Master's Thesis, University of
California, Santa Barbara, June 2003.
Cited on page 174

• An excellent overview of rotors as cryptographic elements and a
good description of Sigaba. However, the cryptanalysis only covers
reduced-rotor versions of the cipher, which are qualitatively much
different than the full Sigaba.

ANNOTATED BIBLIOGRAPHY 553

[185] H.-H. Lee and M. Stamp, P3P privacy enhancing agent, Proceedings of
the 3rd ACM Workshop on Secure Web Services (SWS'06), Alexandria,
Virginia, November 3, 2006, pp. 109-110, at
www.cs.sjsu.edu/faculty/stamp/papers/swslOp-lee.pdf
Cited on page 486

[186] H.-H. Lee and M. Stamp, An agent-based privacy enhancing model,
Information Management & Computer Security, Vol. 16, No. 3, 2008,
pp. 305-319, atwww.cs.sjsu.edu/faculty/stamp/papers/PEA_final .doc
Cited on page 486

[187] R. Lemos, Spat over MS 'flaw' gets heated, ZD Net UK News, at
news.zdnet.co.uk/software/developer/0,39020387,2104559,00.htm
Cited on pages 417 and 559

• The debate over the implementation of Microsoft's buffer overflow
prevention technique. It is claimed that the "cure" was worse than
the disease.

[188] C. J. Lennard and T. Patterson, History of fingerprinting, at
www.policensw.com/info/fingerprints/finger01.html
Cited on page 244

[189] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovàsz, Factoring polynomials
with rational coefficients, Math. Ann., 261, 1982.
Cited on page 207

• The LLL lattice reduction algorithm.

[190] J. Lettice, Bad publicity, clashes trigger MS Palladium name change,
The Register, at www.theregister.co.uk/content/4/29039.html
Cited on page 500

• What's in a name? That which we call NGSCB by any other name
would smell like Palladium.

[191] S. Levy, The open secret, Wired, issue 7.04, April 1999, at
www.wired.com/wired/archive/7.04/crypto_pr.html
Cited on pages 90, 95, and 100

• So you think DifHe, Hellman, Merkle, Rivest, Shamir, and Adle-
man invented public key cryptography? Think again.

[192] Liberty alliance project, at www.projectliberty.org/
Cited on page 253

554 ANNOTATED BIBLIOGRAPHY

[193] D. Lin, Hunting for undetectable metamorphic viruses, Master's Thesis,
Department of Computer Science, San Jose State University, 2010, at
www.cs.sjsu.edu/faculty/stamp/students/lin_da.pdf
Cited on page 430

• This paper gives a metamorphic generator that produces variants
that cannot be detected using signature detection or the machine
learning techniques discussed in [330].

[194] A. Main, Application security: building in security during the develop-
ment stage, at www.cloakware.com/downloads/news/
Cited on page 460

[195] I. Mantin, Analysis of the stream cipher RC4, at
www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/Mantinl.zip
Cited on pages 56, 185, and 544

• A clearer and more detailed description of the RC4 attacks pre-
sented in [112].

[196] J. L. Massey, Design and analysis of block ciphers, EIDMA Minicourse
8-12 May 2000.
Cited on page 73

• Some excellent insights by one of the lesser-known giants of cryp-
tography.

[197] D. Maughan et al., RFC 2408 — Internet security association and key
management protocol (ISAKMP), at www.faqs.org/rfcs/rfc2408.html
Cited on page 359

[198] J. McLean, A comment on the "basic security theorem" of Bell and La-
Padula, Information Processing Letters, Vol. 20, No. 2, February 1985.
Cited on page 277

• McLean attacks BLR

[199] J. McNamara, The complete, unofficial TEMPEST information page,
at www.eskimo.com/~joelm/tempest.html
Cited on page 211

[200] T. McNichol, Totally random: how two math geeks with a lava lamp
and a webcam are about to unleash chaos on the Internet, Wired, Is-
sue 11.08, August 2003, at
www.wired.com/wired/archive/11.08/random.html
Cited on page 148

ANNOTATED BIBLIOGRAPHY 555

[201] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography, CRC Press, 1997, Chapter 7, at
www.cacr.math.uwaterloo.ca/hac/about/chap7.pdf
Cited on page 70

• More precise than Schneier's book [258], but in need of a second
edition.

[202] R. Merkle, Secure communications over insecure channels, Communi-
cations of the ACM, April 1978, pp. 294-299 (submitted in 1975), at
www.itas.fzk.de/mahp/weber/merkle.htm
Cited on page 92

• Given its submission date, this paper should be at least as famous
as Dime and Hellman's [90]. However, due to its absurdly late
publication date, it 's not.

[203] Microsoft .NET Passport: one easy way to sign in online, at
www.pas spo r t . ne t
Cited on page 253

[204] Microsoft shared source initiative, at
www.microsoft.com/resources/ngscb/default.mspx

Cited on page 500

[205] D. Miller, Beware the prophet seeking profit, at
www.exercisereports.com/2009/11/27/

"beware- the-prophet -seeking-prof i t -" /
Cited on page 433

[206] M. S. Miller, K.-P. Yee, and J. Shapiro, Capability myths demolished,
at zesty.ca/capmyths/
Cited on page 273

• Capabilities are loved by academics, as this paper illustrates. How-
ever, in typical academic fashion, the paper ignores the significant
practical challenges that arise when capabilities are actually im-
plemented.

[207] E. Mills, Twitter, Facebook attack targeted one user, CNET News, at
news.cnet.com/8301-27080_3-10305200-245.html
Cited on page 433

[208] F . Mirza, Block ciphers and cryptanalysis

Cited on pages 71 and 225

556 ANNOTATED BIBLIOGRAPHY

• A good paper that uses STEA (simplified TEA) as an example to

illustrate certain cryptanalytic attacks.

[209] D. Moore et al., The spread of the Sapphire/Slammer worm, at
www.caida.org/publicat ions/papers/2003/sapphire/sapphire .html

Cited on page 425

[210] A. Muchnick, Microsoft nearing completion of Death Star, at
bbspot.com/News/2002/05/deathstar.html
Cited on page 488

• Geeky humor at its best.

[211] D. Mulani, How smart is your Android smartphone?, Master 's Thesis,
Department of Computer Science, San Jose State University, 2010, at
www.es.sj su.edu/faculty/s tamp/students/mulani_deepika.pdf
Cited on page 432

[212] G. Myles and C. Collberg, Software watermarking via opaque predi-
cates, at sandmark.cs .ar izona.edu/ginger_pubs_talks/ icecr7.pdf
Cited on page 485

[213] MythBusters, excerpt at
www.metacafe.com/watch/252534/myth_busters_finger_print_lock/

Cited on page 261

• A very interesting series of attacks on fingerprint biometrics, in-
cluding successful attacks on a system that the manufacturer (fool-
ishly) claimed had "never been broken."

[214] M. Naor and A. Shamir, Visual cryptography, Eurocrypt '94, at
www.wisdom.weizmann.ac.il/~naor/topic.html#Visual_Cryptography

Cited on page 144

[215] National Security Agency, at en.wikipedia.org/wiki/NSA
Cited on page 60

[216] National Security Agency, Centers of Academic Excellence, at
www.nsa.gov/ia/academic_outreach/nat_cae/index.shtml
Cited on page 269

[217] R. Needham and M. Schroeder, Using encryption for authentication
in large networks of computers Communications of the ACM, Vol. 21,
No. 12, pp. 993-999, 1978.
Cited on page 372

• This is the foundation on which Kerberos was built.

ANNOTATED BIBLIOGRAPHY 557

[218] R. M. Needham and D. J. Wheeler, Tea extensions, at
www.cl.cam.ac.uk/ftp/users/dj w3/xtea.ps
Cited on page 71

• An "extended" version of TEA tha t eliminates an obscure related
key attack.

[219] Next-generation secure computing base, at
www. microsoft . com/resources/ngscb/def au l t .mspx

Cited on page 500

[220] NGSCB: Trusted computing base and software authentication, at
www.microsoft.com/resources/ngscb/documents/ngscb_tcb.doc
Cited on page 500

[221] J. R. Nickerson et al., The encoder solution to implementing tamper

resistant software, at

www.cert.org/research/isw/isw2001/papers/Nickerson-12-09.pdf

Cited on page 460

[222] A. M. Odlyzko, The rise and fall of knapsack cryptosystems, at
www.dtc.umn.edu/"Odlyzko/doc/arch/knapsack.survey.pdf
Cited on page 95

[223] Office Space, at en.wikipedia.org/wiki/Office_Space
Cited on page 14

[224] G. Ollmann, Size matters — measuring a botnet operator's pinkie,

Virus Bulletin: VB2010, at

www. v i rusb tn . com/conf ere_.ee/vb2010/abstracts/0_lmann. xml

Cited on page 433

[225] OllyDbg, at www.ollydbg.de/
Cited on page 448

[226] Optimal asymmetric encryption padding, at
en.wikipedia.org/wiki/Optimal_Asymmetric_Encryption_Padding

Cited on page 98

[227] Our Documents—High-resolution PDFs of Zimmermann Telegram
(1917), at www.ourdoc_ments.gov/doc.php?flash=true_doc=60_page=pdf
Cited on page 32

[228] P. S. Pagliusi, A contemporary foreword on GSM security, in G. Davida,
Y. Frankel, and O. Rees, editors, Infrastructure Security: International
Conference—InfraSec 2002, Bristol, UK, October 1-3, 2002, Lecture
Notes in Computer Science 2437, pp. 129-144, Springer-Verlag, 2002.
Cited on pages 211, 385, and 387

558 ANNOTATED BIBLIOGRAPHY

• This is a comprehensive and highly readable description of the
major security flaws in GSM.

[229] J. C. Panettieri, Who let the worms out? — the Morris worm, eWeek,
March 12, 2001, at www.eweek.com/article2/0,1759,1245602,00.asp
Cited on page 422

[230] D. B. Parker, Automated crime, at
www.windowsecurity.com/whitepapers/Automated_Crime_.html
Cited on page 460

[231] D. B. Parker, Automated security, at
www.windowsecurity.com/whitepapers/Automated_Crime_.html
Cited on page 460

• A security guru discusses the use of metamorphism to enhance
security.

[232] Passwords revealed by sweet deal, BBC News, April 20, 2004, at
news.bbc.co.uk/2/hi/technology/3639679.stm
Cited on page 241

• Most users reveal passwords for a candy bar.

[233] C. Peikari and A. Chuvakin, Security Warrior, O'Reilly, 2004.
Cited on page 454

• A reasonably interesting book with some real software hacking ex-
amples. However, Kaspersky's book [161] is much more thorough,
and much better, as is Eilam's book [99].

[234] S. Petrovic and A. Fuster-Sabater, Cryptanalysis of the A5/2 algorithm,
at ep r in t . i ac r .o rg /2000 /052 /
Cited on page 386

[235] C. P. Pfleeger and S. L. Pfleeger, Security in Computing, third edition,
Prentice Hall, 2003.
Cited on pages 406, 424, 436, 477, 478, 479, 492, and 499

• Particularly good for OS security and some software issues. How-
ever, much of the information is dated—the book is ancient by
computing standards, having been originally published in 1989.

[236] M. Pietrek, An in-depth look into the Win32 portable executable file
format, at msdn.microsoft.com/en-us/magazine/cc301805.aspx
Cited on page 449

ANNOTATED BIBLIOGRAPHY 559

[237] D. Piper, RFC 2407 — The Internet IP security domain of interpreta-
tion for ISAKMP, at www.faqs.org/rfcs/rfc2407.html
Cited on page 359

[238] Platform for Privacy Preferences Project (P3P), at www.w3.org/p3p
Cited on page 486

[239] PMC Ciphers, at
www.turbocrypt.com/eng/content/TurboCrypt/Backup-Attack.html
Cited on page 73

[240] A. Pressman, Wipe 'em out, then sue for back pay, at
www. internetwright. com/drp/RiskAssess. htm
Cited on page 436

• An interesting description of an insider attack. Most interesting of
all is the response by the company, which probably remains fairly
typical today.

[241] P. Priyadarshini and M. Stamp, Digital rights management for un-
trusted peer-to-peer networks, Handbook of Research on Secure Mul-
timedia Distribution, IGI Global, March 2009, at
www.es.sj su.edu/faculty/stamp/papers/Pallavi_paper.doc
Cited on page 464

[242] J. Raley, Ali Baba Bunny — 1957, Jenn Raley's Bugs Bunny page, at
www. j enn98. com/bugs/1957-1. html
Cited on page 335

• Bugs Bunny and Daffy Duck in Ali Baba's cave.

[243] J. R. Rao, et al., Partitioning attacks: or how to rapidly clone some
GSM cards, 2002 IEEE Symposium on Security and Privacy, May 12-
15, 2002.
Cited on page 387

[244] A real MD5 collision, Educated Guesswork, August 2004 archives, at
www.rtfm.com/movabletype/archives/2004_08.html#001055
Cited on pages 132 and 159

[245] C. Ren, M. Weber, and G. McGraw, Microsoft compiler flaw technical
note, at www.cigital.com/news/index.php?pg=art&artid=70
Cited on page 417

• A discussion of an attack on Microsoft's buffer overflow prevention
technique. Microsoft argued that the claimed attack was exagger-
ated [187].

560 ANNOTATED BIBLIOGRAPHY

[246] G. Richarte, Four different tricks to bypass StackShield and StackGuard
protection
Cited on page 417

[247] R. L. Rivest et al., The RC6 block cipher, at
www.secinf.net/cryptography/The_RC6_Block_Cipher.html
Cited on page 70

[248] Robert Morris, at www.rotten, com/ l ib ra ry /b io /hackers / rober t -mor r i s /
Cited on page 423

• The creator of the Morris Worm.

[249] S. Robinson, Up to the challenge: computer scientists crack a set of
AI-based puzzles, SIAM News, Vol. 35, No. 9, November 2002, at
www.siam.org/siamnews/ll-02/gimpy.htm
Cited on page 304

[250] M. J. Rose, Stephen King's 'Plant ' uprooted, Wired, November 28,
2000, at www.wired.com/news/culture/0,1284,40356,00.html
Cited on page 461

[251] M. Rosing, Implementing Elliptic Curve Cryptography, Manning Pub-
lications, 1998.
Cited on page 106

• A good elementary introduction to elliptic curve cryptography.

[252] RSA SecurlD, at www.rsa.com/node.aspx?id=l 156
Cited on page 263

[253] Rsync Open source software project, at samba.anu.edu.au/rsync/
Cited on page 131

[254] R. A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag,
1986.
Cited on page 52

• This book is a classic, which Rueppel wrote when he was Massey's
student.

[255] R. Ryan, Z. Anderson, and A. Chiesa, Anatomy of a subway hack, at
tech.mit.edu/V128/N30/subway/Defcon_Presentation.pdf
Cited on page 16

• A fascinating security analysis of the Boston subway system.

ANNOTATED BIBLIOGRAPHY 561

[256] R. Sanchez-Reillo, C. Sanchez-Avila and Ana Gonzalez-Marcos, Bio-
metric identification through hand geometry measurements, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 22,
No. 10, pp. 1168-1171, 2000.
Cited on page 246

[257] W. Schindler, A timing attack against RSA with the Chinese Remain-
der Theorem, CHES 2000, LNCS 1965, Ç. K. Koç and C. Paar, Eds.,
Springer-Verlag, 2000, pp. 109-124.
Cited on page 217

[258] B. Schneier, Applied Cryptography, second edition, Wiley, 1996.
Cited on pages 64, 76, 133, and 555

• This book is, for better or for worse, the crypto bible for working
security professionals.

[259] B. Schneier, Attack trees, Dr. Dobb's Journal, December 1999, at
www.schneier.com/paper-attacktrees-ddj-ft.html
Cited on page 478

• A practical and intuitive approach to "hazard analysis."

[260] B. Schneier, Biometrics: truths and fictions, at
www.schneier.com/crypto-gram-9808.html
Cited on pages 242 and 251

[261] B. Schneier, Risks of relying on cryptography, Inside Risks 112, Com-
munications of the ACM, Vol. 42, No. 10, October 1999, at
www.schneier.com/essay-021.html
Cited on page 218

• Schneier, in his own inimitable style, emphasizes the point that
attackers don't necessarily play by the rules.

[262] B. Schneier, The Blowfish encryption algorithm, at
www.schneier.com/blowfish.html
Cited on page 70

• Schneier describes his favorite crypto algorithm.

[263] H. Shacham, et al, On the Effectiveness of Address-Space Randomiza-
tion, at crypto.stanford.edu/~nagendra/papers/asrandom.ps
Cited on page 418

[264] A. Shamir, How to share a secret, Communications of the ACM, Vol. 22,
No. 11, pp. 612-613, November 1979, at

562 ANNOTATED BIBLIOGRAPHY

szabo.best.vwh.net/secret.html
Cited on page 143

[265] A. Shamir, A polynomial-time algorithm for breaking the basic Merkle-
Hellman cryptosystem, IEEE Transactions on Information Theory,
Vol. IT-30, No. 5, pp. 699-704, September 1984.
Cited on pages 95 and 210

• Shamir's clever attack on the original knapsack cryptosystem.

[266] A. Shamir and N. van Someren, Playing hide and seek with stored keys
Cited on pages 463 and 486

• This paper includes a simple and effective statistical test for dis-
tinguishing random from non-random.

[267] C. E. Shannon, Communication theory of secrecy systems, Bell System
Technical Journal, Vol. 28-4, pp. 656-715, 1949.
Cited on page 39

• The paper that started it all. Most of this paper remains surpris-
ingly relevant after more than 3/5 of a century.

[268] K. Skachkov, Tamper-resistant software: design and implementation,
at www.cs.sjsu.edu/faculty/stamp/students/TRSDIfinai.doc
Cited on page 458

• Discusses some of the issues related to tamper-resistant software
of Aucsmith [19] variety. A toy implementation is presented.

[269] S. Skorobogatov and R. Anderson, Optical fault induction attacks,
IEEE Symposium on Security and Privacy, 2002.
Cited on page 387

[270] E. Skoudis, Counter Hack, Prentice Hall, 2002.
Cited on page 283

• An excellent book that includes plenty of details on how a sophis-
ticated hacker analyzes and attacks a target. A must read for the
system administrators of the world.

[271] SSL 3.0 specification, at
www.lincoln.edu/math/rmyrick/ComputerNetworks/InetReference/

ssl-draft/3-SPEC.HTM
Cited on page 355

ANNOTATED BIBLIOGRAPHY 563

[272] Sonogram, Visible speech, at
www.dontcrack.com/freeware/downloads.php/id/266/software/Sonogram/
Cited on page 262

[273] Staff Report, U. S. Senate Select Committee on Intelligence, Un-
classified summary: involvement of NSA in the development of the
Data Encryption Standard, Staff Report, 98th Congress, 2nd Session,
April 1978.
Cited on pages 59 and 60

• Senate report that cleared NSA of any wrongdoing in the design
of DES. Needless to say, this did not convince the critics.

[274] M. Stamp, Digital rights management: for better or for worse?, Ex-
tremeTech, May 20, 2003.
Cited on page 461

• Tries to make the case that, in spite of its technical shortcomings,
DRM can facilitate e-commerce if the business model is right.

[275] M. Stamp, Digital rights management: the technology behind the hype,
Journal of Electronic Commerce Research, Vol. 4, No. 3, 2003, at
www.csulb.edu/web/j ournals/j ecr/issues/20033/paper3.pdf
Cited on pages 460 and 462

• Perhaps the most detailed description of a fielded commercial
DRM system ever published.

[276] M. Stamp, Risks of digital rights management, Inside Risks 147, Com-
munications of the ACM, Vol. 45, No. 9, p. 120, September 2002, at
www.csl.sri.com/users/neumann/insiderisks.html#147
Cited on page 461

• This article highlights some of the obvious difficulties of doing
DRM in software.

[277] M. Stamp, Risks of monoculture, Inside Risks 165, Communications of
the ACM, Vol. 47, No. 3, p. 120, March 2004, at
www. csl . s r i . com/users/neumaim/insiderisks04. html#165
Cited on page 460

• An intuitive discussion of the potential security benefits of diverse
software.

[278] M. Stamp, A revealing introduction to hidden Markov models, at
www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf
Cited on page 442

564 ANNOTATED BIBLIOGRAPHY

[279] M. Stamp, S. Attaluri, and S. McGhee, Profile hidden Markov models
and metamorphic virus detection, Journal in Computer Virology, Vol. 5,
No. 2, May 2009, pp. 151-169.
Cited on page 430

[280] M. Stamp and W. O. Chan, SIGABA: Cryptanalysis of the full
keyspace, Cryptologia, Vol. 31, No. 3, July 2007, pp. 201-222.
Cited on page 174

[281] M. Stamp and X. Gao, Metamorphic software for buffer overflow mit-
igation, Proceedings of the 2005 Conference on Computer Science and
its Applications, at
www.es.sj su.edu/faculty/stamp/papers/BufferOverflow.doc
Cited on page 459

[282] M. Stamp and D. Holankar, Secure streaming media and digital rights
management, Proceedings of the 2004 Hawaii International Conference
on Computer Science, January 2004, at
www.cs.sjsu.edu/~stamp/cv/papers/hawaii.pdf
Cited on page 467

• A nice protocol (OK, I'm biased...) for delivering DRM-protected
streaming media that includes many of the software protection
tricks discussed in this book.

[283] M. Stamp and A. Hushyar, Multilevel security models, The Handbook
of Information Security, H. Bidgoli, editor, Wiley, 2006.
Cited on page 274

• This paper gives an overview of many different security models. It
likely contains more than you'll ever want to know about security
modeling.

[284] M. Stamp and R. M. Low, Applied Cryptanalysis: Breaking Ciphers in
the Real World, Wiley, 2007.
Cited on pages 168, 174, 211, and 378

• A personal favorite of mine...

[285] M. Stamp and P. Mishra, Software uniqueness: how and why, Proceed-
ings of the 2003 Conference on Computer Science and its Applications,
at
www.es.sj su.edu/~stamp/cv/papers/iccsaPuneet.html
Cited on page 459

ANNOTATED BIBLIOGRAPHY 565

[286] M. Stamp and E. J. Sebes, Enterprise digital rights management:
Ready for primetime?, Business Communications Review, pp. 52-55,
March 2004.
Cited on page 471

• Makes the case tha t DRM within an enterprise is a much different
beast than DRM for e-commerce.

[287] M. Stamp, M. Simova, and C. Pollett, Stealthy ciphertext, Proceedings
of 3rd International Conference on Internet Computing (ICOMP'05),
Las Vegas, Nevada, June 27-30, 2005, at
www.es.sj su .edu/ facul ty / s tamp/papers / s tea l thy .pdf
Cited on page 284

[288] M. Stamp and S. Thaker, Software watermarking via assembly code
transformations, Proceedings of the 2004 Conference on Computer Sci-
ence and its Applications, June 2004, at
www.cs.sj su .edu/facui ty/s tamp/papers / iccsaSmita .doc
Cited on page 149

[289] S. Staniford, V. Paxson, and N. Weaver, How to Own the Internet in
your spare time, at
www. i c i r . o rg /vem/papers /cdc-usenix-sec02/
Cited on page 429

• Excellent article on the future of malware.

[290] M. Stigge, et al, Reversing CRC — Theory and Practice, at
s a r . i n f o n n a t i k . h u - b e r l i n . d e / r e s e a r c h / p u b l i c a t i o n s /

SAR-PR-2006-05/SAR-PR-2006-05_.pdf

Cited on page 132

[291] H. L. Stimson and M. Bundy, On Active Service in Peace and War,
Hippocrene Books, 1971.
Cited on page 37

[292] D. Stinson, Doug Stinson's visual cryptography page, at
www.cacr.math.uwaterloo.ca/~dstinson/visual.html
Cited on page 145

• An excellent introduction to a fascinating topic.

[293] B. Stone, Breaking Google captchas for some extra cash, New York
Times, March 13, 2008, at
bi ts .blogs.nyt imes.com/2008/03/13/

breaking-google-captchas-for-3-a-day/
Cited on page 306

566 ANNOTATED BIBLIOGRAPHY

[294] A. Stubblefield, J. Ioannidis, and A. D. Rubin, Using the Fluhrer,
Mantin and Shamir attack to break WEP, at
www.isoc.org/isoc/conferences/ndss/02/papers/stubbl.pdf
Cited on pages 56 and 181

[295] C. Swenson, Modern Cryptanalysis: Techniques for Advanced Code
Breaking, Wiley, 2008.
Cited on page 168

[296] P. Ször, The Art of Computer Virus Defense and Research, Symantec
Press, 2005.
Cited on page 427

[297] P. Ször and P. Ferrie, Hunting for metamorphic, Symantec Corporation
White Paper, at www.peterszor.com/metamorp.pdf
Cited on page 430

• An excellent discussion of polymorphism and metamorphism,
along with various detection techniques.

[298] A. S. Tanenbaum, Computer Networks, fourth edition, Prentice Hall,
2003.
Cited on pages 377, 523, and 552

• Probably the best networking book for self-study or casual reading.
The book is comprehensive, yet Tanenbaum has plenty of stories
to keep the reader interested and awake.

[299] TechnoLogismiki, Hackman, at
www.technologismiki.com/en/index-h.html
Cited on page 448

[300] D. Terdiman, Vegas gung-ho on gambling tech, Wired, September 19,
2003, at www.wired.com/news/print/0,1294,60499,00.html
Cited on page 243

[301] The Warhol, at www.warhol.org/
Cited on page 430

[302] C. Thomborson and M. Barrett, NGSCB: a new tool for securing ap-
plications, at
www.cs.auckland.ac.nz/~cthombor/Pubs/barrettNZISF120804.pdf
Cited on pages 503, 504, and 505

[303] K. Thompson, Reflections on trusting trust, Communication of the
ACM, Vol. 27, No. 8, pp. 761-763, August 1984.
Cited on pages 436 and 446

ANNOTATED BIBLIOGRAPHY 567

• A classic paper tha t probes the limits of security in software.

[304] B. C. Tjaden, Fundamentals of Secure Computing Systems, Franklin,
Beedle & Associates, 2004.
Cited on page 300

• An introductory information security textbook. The chapter on
intrusion detection is well worth the (modest) price of the book.

[305] W. A. Trappe and L. C. Washington, Introduction to Cryptography with
Coding Theory, Prentice Hall, 2002.
Cited on pages 148 and 176

• An excellent and mathematically sound introduction to many as-
pects of cryptography.

[306] Trusted Computing Group, at www.trustedcomputinggroup.org/home
Cited on page 500

[307] B. W. Tuchman, The Zimmermann Telegram, Ballantine Books, 1985.
Cited on page 32

• An entertaining historical account by one of the better writers of
popular history.

[308] Ultra, at en .wikipedia .org /wiki /Ul t ra

Cited on page 169

[309] United States Department of Defense, Trusted Computing System Eval-
uation Criteria, 1983, at

c s rc .n i s t .gov /pub l ica t ions /h i s to ry /dod85 .pdf

Cited on pages 266, 267, 269, and 302

• The infamous "orange book." Like most government publications,

this one is a sure cure for insomnia.

[310] US v. ElcomSoft & Sklyarov FAQ, at
www.eff.org/IP/DMCA/US_v_Elcomsoft/us_v_elcomsoft_faq.html
Cited on page 471

[311] R. Vamosi, Windows X P SP2 more secure? Not so fast, at
reviews.zdnet.co.uk/software/os/0,39024180,39163696,00.htm
Cited on pages 416 and 438

[312] S. Venkatachalam, Detecting undetectable computer viruses, Master 's
Thesis, Department of Computer Science, San Jose State University,
2010, at

568 ANNOTATED BIBLIOGRAPHY

www.cs.sjsu.edu/faculty/stamp/students/
venkatachalam_suj andharan.pdf

Cited on page 430

[313] R. Venkataramu, Analysis and enhancement of Apple's Fairplay digital
rights management, Master's Thesis, Department of Computer Science,
San Jose State University, 2007, at
www.cs.sjsu.edu/facuity/stamp/students/

RamyaVenkataramu_CS298Report.pdf
Cited on page 463

[314] R. Venkataramu and M. Stamp, P2PTunes: A peer-to-peer digital
rights management system, Handbook of Research on Secure Multime-
dia Distribution, IGI Global, March 2009, at
www.cs.sjsu.edu/faculty/stamp/papers/Ramya_paper.doc
Cited on page 464

[315] VENONA, at www.nsa.gov/public_info/declass/venona/index.shtml
Cited on page 31

• VENONA is an interesting topic, both for the crypto and for the
historical material. Many of those who vehemently denied they
had any role in espionage are implicated by VENONA decrypts.
Also, of the hundreds of traitors mentioned (by cover name) in the
decrypts, the true identities of most remain unknown.

[316] VeriSign, Inc., at www.verisign.com/
Cited on page 113

• The leading commercial certificate authority (CA).

[317] J. Viega and G. McGraw, Building Secure Software, Addison Wesley,
2002.
Cited on pages 404, 406, 455, 457, 472, and 474

• This is a worthwhile book that provides considerable detail on is-
sues related to secure software development. About the only con-
ceivable criticism is that it provides no evidence of the effectiveness
of its suggestions.

[318] VMware is virtual infrastructure, at www..vmware.com/
Cited on page 449

[319] L. von Ahn, M. Blum, and J. Langford, Telling humans and comput-
ers apart automatically, Communications of the ACM, Vol. 47, No. 2,
pp. 57-60, February 2004, at

ANNOTATED BIBLIOGRAPHY 569

www.cs.emu.edu/~biglou/captcha_cacm.pdf

Cited on pages 13 and 285

• A fascinating, informative and entertaining article. This is the
place to start your research into CAPTCHAs.

[320] L. von Ahn et al., The CAPTCHA project, at www.captcha.net/

Cited on page 286

[321] J. R. Walker, Unsafe at any key size; an analysis of the W E P encapsu-
lation, at www.dis.org/wl/pdf/unsafe.pdf
Cited on pages 185 and 398

• A clever title and a good description of the some of the problems
created by W E P ' s use of IVs. However, one of the most serious
problems is the devastating cryptanalytic attack discussed in [112],
which is not mentioned here.

[322] What is reCAPTCHA?, at
recaptcha.net / learnmore.html

Cited on page 305

[323] D. J. Wheeler and R. M. Needham, TEA, a tiny encryption algorithm,
at www.cix.co.uk/~klockstone/tea.pdf
Cited on page 70

• Less than four pages to present TEA in all of its wonderful sim-

plicity.

[324] 0 . Whitehouse, An Analysis of Address Space Layout Randomization
on Windows Vista, at
www.Symantec.com/avcenter/reference/

Address_Space_Layout_Randomization.pdf

Cited on page 418

• A readable analysis of the randomness (or lack thereof) in ASLR
as implemented in Windows Vista.

[325] Wi-Fi Protected Access, at
en.wikipedia.org/wiki/Wi-Fi_Protected_Access

Cited on page 380

[326] R. N. Williams, A painless guide to CRC error detection algorithms, at
www.ross.net/crc/crcpaper.html
Cited on pages 81 and 131

570 ANNOTATED BIBLIOGRAPHY

[327] N. Winkless and I. Browning, Robots on Your Doorstep, Robotics Press,
1978.
Cited on page 301

• While it seems dated today, this classic and off-beat book presents
the conventional wisdom of its time in an unconventional way.

[328] Wireshark, at www.wireshark.org/
Cited on pages 391 and 392

[329] W. Wong, Revealing your secrets through the fourth dimension, ACM
Crossroads, at
www.es.sj su.edu/faculty/stamp/students/wing.html
Cited on page 211

• An elementary and highly readable description of the basic ideas
behind RSA timing attacks.

[330] W. Wong and M. Stamp, Hunting for metamorphic engines, Journal in
Computer Virology, Vol. 2, No. 3, December 2006, pp. 211-229.
Cited on pages 430, 442, and 554

• This paper covers some research problems related to metamorphic
malware. A number of real-world metamorphic generators are an-
alyzed and a reasonably practical detection technique is given.

[331] T. Ylonen, The Secure Shell (SSH) Authentication Protocol, RFC 4252,
at www.ietf.org/rfc/rfc4252.txt
Cited on page 391

[332] B. Yee, et al., Native client: a sandbox for portable, untrusted x86
native code, at
nativeclient.googlecode.com/svn/data/docs_tarball/nacl/

googleclient/native_client/documentation/nacl_paper.pdf
Cited on page 510

[333] T. Ylonen, The Secure Shell (SSH) Transport Layer Protocol,
RFC 4253, at www.ietf.org/rfc/rfc4253.txt
Cited on page 391

[334] G. Yuval, How to swindle Rabin, Cryptologia, Vol. 3, No. 3, 1979,
pp. 187-189.
Cited on page 129

[335] M. Zalewski, Strange attractors and TCP/IP sequence number
analysis—one year later, at lcamtuf.coredump.cx/newtcp/
Cited on page 334

ANNOTATED BIBLIOGRAPHY 571

• Fascinating scatter plots of the distribution of T C P initial sequence
numbers for many different vendor's products. Many are extremely
non-random.

[336] L. Zeltser, Reverse engineering malware, at
www.zel tser .com/sans/gcih-pract ical /
Cited on pages 448 and 571

• An excellent discussion of malware as well as reverse engineering
principles. Highly recommended. See also [337].

[337] L. Zeltser, SANS malware FAQ: reverse engineering s r v c p . e x e , at
www.sans.org/resources/malwarefaq/srvcp.php
Cited on pages 448 and 571

• Much overlap with [336], but this one also includes a link to the
malware executable tha t is reverse engineered.

[338] J. Zhang, Improved software activation using multithreading, Master 's
Thesis, Department of Computer Science, San Jose State University,
2010, at www.cs.s jsu.edu/facul ty/s tamp/students/zhang_jianrui .pdf
Cited on page 456

[339] M. Zorz, Basic security with passwords, at
www.net-secur i ty .org/ar t ic le .php?id=l17
Cited on page 241

Index

3DES, see triple DES
3GPP, 381, 389
3rd Generation Partnership Project,

see 3GPP

A3/A5/A8, 53-55, 80, 384-386
access control, xvi, 4, 6-7, 229

and operating system, 494
access control list, see ACL
access control matrix, 271-272
ACK scan, 290, 306
ACL, 272, 302
Address Resolution Protocol, see ARP
Address Space Layout

Randomization, see ASLR
Adleman, Leonard, 95, 422
Adobe, 464

eBooks, 471
Advanced Encryption Standard, see

AES
AES, 67-69, 82, 117, 466

AddRoundKey, 69
block size, 67
ByteSub, 68
confusion and diffusion, 83
key length, 67
key schedule, 69
MixColumn, 69
number of rounds, 67
ShiftRow, 69
subkey, 69

AFS Software, Inc., 146
AH, 359, 371-372

and Microsoft, 372
Ali Baba's Cave, 335

Alice, 1
Alice's Restaurant, 2
Almes, Guy, 511
Amis, Kingsley, 531
Anderson, Ross, 476, 497, 503-505
anomaly detection, 427, 429
anonymity, 342
anti-debugging, 456
anti-disassembly, 455
Apple II, 95, 210
application layer, 513-515
Aristophanes, 242
Aristotle, 51
ARP, 522

cache poisoning, 522
ASLR, 417
asymmetric cryptography, 89
ATM, 13

card, 231
machine, 315

attack tree, 478
authentication, 3, 229-231, 394

and TCP, 332-334
two-factor, 252

Authentication Header, see AH
authorization, 3, 6, 230
availability, 3
avalanche effect, 133
Aycock, John, xviii, 421

backdoor, 421
Ballantyne, Sheila, 265
Bell-LaPadula, see BLP
Biba's model, 278-279, 303, 304

low water mark policy, 278

INDEX 573

write access rule, 278
Biham, Eli, 186
biometrie, 242-251

attack, 250
authentication, 242
enrollment phase, 243
equal error rate, 244
error rate, 250
errors, 244
fingerprint, 244
fraud rate, 244
hand geometry, 246
ideal, 242
identification, 242
insult rate, 244
iris scan, 246-249
recognition phase, 243

birthday paradox, see birthday
problem

birthday problem, 128-129
and hash functions, 129

block cipher, 40, 57-76
bit errors, 75
cut-and-paste attack, 75, 84, 86
design, 202-203
modes of operation, 72-76
round function, 57

Blowfish, 70
S-box, 70

BLP, 276-279, 303, 304
simple security condition, 276
star property, 276
strong tranquility, 277
system Z, 277
weak tranquility, 277

BMA, see British Medical Association
Bob, 1
Bob's Cave, 335-336, 348
Bobcat hash, 155
BOBE, 459

resistance, 467, 486
Boeing 777, 405
Bonaparte, Napoleon, 203

botmaster, 433
botnet, 433, 443
Brain, 422
break once break everywhere resistant,

see BOBE
British Medical Association, 280
buffer overflow, 9, 407-414, 440

example, 411-415
prevention, 415-417

Burleson, Donald Gene, 436

C-list, see capabilities
C# , 416
CA, see certificate authority
Caesar's cipher, 22, 43
Caesar, Julius, 22
canary, 416, 417
capabilities, 272, 302

and digital signatures, 303
delegate, 302

CAPTCHA, 13, 285-287, 305
Gimpy, 304

Carroll, Lewis, 1, 19, 51,125, 313, 317
Catch-22, 363
CBC mode, 73-76, 78, 85, 236

and random access, 84
cut-and-paste attack, 84
repeated IV, 84
residue, 77, 85

cell phone
cloning, 381, 399
first generation, 381
second generation, 381
third generation, 381

CERT, 424
certificate

authority, 112
revocation, 113

certificate revocation list, see CRL
challenge-response, 316, 319, 320
change detection, 427-428
Chinese Remainder Theorem, 100, 217
chosen plaintext attack, 212

574 INDEX

Churchill, Winston, 38
CIA, 2
cipher, 20
cipher block chaining mode, see

mode
ciphertext, 20
Civil War, 35
Clinton, President, 505
Clipper chip, 39, 143
clock arithmetic, 524
clock skew, 330, 346
closed system, 462, 485
Cocks, Cliff, 95
Code Red, 422, 424
codebook cipher, 32-35, 46

additive, 34
Cohen, Fred, 422
Common Criteria, 269-271
compartments, 6, 279-281, 303
Computer Emergency Response Team,

see CERT
computer virus, see virus
confidentiality, 2, 10, 11, 109

and integrity, 78
confused deputy, 273-274
confusion, see confusion and diffusion
confusion and diffusion, 39, 44, 51

in AES, 82
in DES, 81

cookie, 253, 258, 515
Coral Sea, 38
counter mode, see CTR mode
Coventry, 38
covert channel, 7, 281-283, 303, 304

and TCP, 282, 283
existence, 282

Covert-TCP, 283
CRC, 131-132, 155, 379

collision, 155
crib, 177, 179
Cringely, Robert X., 403
CRL, 113
cryptanalysis, 20

adaptively chosen plaintext, 42
chosen plaintext, 41
depth, 30-31, 36, 181
differential, 187-190
forward search, 42, 48, 122, 236
known plaintext, 41
linear, 190-191
related key, 42
taxonomy, 41

crypto, 20
as a black box, 20
terminology, 20

CRYPTO conferences, 39
cryptography, xvi, 3, 5, 20

taxonomy, 40
cryptology, 20
cryptosystem, 20
CTR mode, 76, 83, 84

and random access, 76
cyber disease, 432
cyclic redundancy check, see CRC

DAC, see discretionary access control
data confidentiality, see

confidentiality
Data Encryption Standard, see DES
data integrity, see integrity
Daugman, John, 247
DDoS, 433
debit card protocol, 440
debugger, 448
decrypt, 20
defense in depth, 293, 308
demilitarized zone, see DMZ
denial of service, see DoS
Denver airport, 404
Department of Defense, see DoD
depth, 30-31, 36, 181
DES, 23, 39, 58-64, 67, 82, 85, 117,

186-187
confusion and diffusion, 81
double, see double DES
group, 225

INDEX 575

key schedule, 62-64
S-box, 60, 62, 64, 188
subkey, 57, 60, 62, 63, 82
triple, see triple DES

Descartes, Rene, 491
differential cryptanalysis, 186-190

and TDES, 194-199
Dime, Whitfield, 91, 458
Diffie-Hellman, 91, 100-102, 117

and MiM, 119
ECC, 105-106, 117
elliptic curve, 102
ephemeral, 328, 329, 361
MiM attack, 102

diffusion, see confusion and diffusion
digital certificate, 112-113, 115
digital doggie, 261
digital rights management, see DRM
digital signature, 40, 90,109, 115,117,

123, 324, 325, 361, 379
protocol, 118

digital watermark, 148-150
and Kerckhoffs' Principle, 152
fragile, 149
invisible, 149
robust, 149
visible, 149

disassembler, 413, 448
discrete log, 101, 102
discretionary access control, 495-496
distributed denial of service, see DDoS
DMZ, 293
DNS, 515
DoD, 275, 277

and covert channel, 282
classifications and clearances, 275

dog track problem, see voucher
Domain Name Service, see DNS
DoS, 3, 366
double DES, 65-66, 82

attack, 65
double transposition cipher, 26-27, 45
DRM, 460-472, 485

analog hole, 463
and cryptography, 462
and human nature, 463
and Kerckhoffs' Principle, 463
and P2P, 469-470
and PDF, 465
and POS, 469
and SRE, 464
as hide and seek, 463
enterprise, 470-471
Exploit Systems, 469
failure, 471
MediaSnap system, 464-467
persistent protection, 461, 485
streaming media, 467-469

ECB mode, 72-73, 75
ECC, 91, 102

Diffie-Hellman, 102,105-106,117,
123

EFF, see Electronic Frontier
Foundation

election of 1876
cipher, 35-37, 43, 44

electoral college, 35
electronic codebook mode, see ECB

mode
Electronic Frontier Foundation, 23
Elgamal, 123
elliptic curve, 103-106

addition, 103
example, 106

elliptic curve cryptography, see ECC
email, 422, 497, 510, 514

spoofed, 515
virus, 421

Encapsulating Security Payload, see
ESP

encrypt, 20
encrypt and sign, see public key

cryptography
encryption

weak, 284

576 INDEX

endian
little, 414

Enigma, 12, 38,168-174, 176-179, 218
221

attack, 176-179
cycles, 177
encryption, 170
key, 169
keyspace, 172-174
movable ring, 172
reflector, 171
rotor, 171
stecker, 169, 173, 178
ULTRA, 169

ENORMOUS, 31
entropy, 148
ephemeral Difne-Hellman, 328, 329
ESP, 359, 371-372

null encryption, 371
Ethernet, 521
Euclidean Algorithm, 525
Euler's Theorem, 96
exact cover, 204
exhaustive key search, 23, 24, 26, 43
extended TEA, see XTEA

Feistel cipher, 57-58, 67, 71, 81, 192
Feistel, Horst, 57
Feller, William, 527
fence address, 492
Fiat-Shamir, 335-339, 348, 349

challenge, 337
commitment, 337
response, 337

fingerprint, 244, 260
minutia, 245

Firewalk, 292, 307
firewall, 7, 287-294, 306, 307, 426

and defense in depth, 293
and MLS, 276
application proxy, 288, 291-293,

307
packet filter, 288-290

personal, 293
stateful packet filter, 288, 290-

291
flash worm, 431-432

conjectured defense, 431
FMEA, 478
Ford, Henry, 266
formal methods, 477
Franklin, Benjamin, 89, 495
fraud rate, 254
freshness, 319
FTA, 478

gait recognition, 261
Galton, Sir Francis, 244
GCHQ, 90, 95, 100
generator, 101
Global System for Mobile

Communications, see GSM
Gram-Schmidt, 207, 209
Greenglass, David, 31
Groupe Speciale Mobile, see GSM
GSM, 8, 53, 381-389, 399

air interface, 381
anonymity, 383-384
authentication, 384
authentication center (AuC), 382
authentication protocol, 385
base station, 381
COMP128, 386
confidentiality, 384-385
crypto flaws, 386
design goals, 383
fake base station, 387-388
flashbulb, 387
home location registry (HLR), 382
IMSI, 382, 384
invalid assumptions, 386-387
key, 382
mobile, 381
optical fault indection, 387
partitioning attack, 387
PIN, 382

INDEX 577

security architecture, 383
SIM attacks, 387
SIM card, 382
system architecture, 381
visited network, 381
VLR, 382

Hamming distance, 247
hand geometry, 246-247
hash function, 40, 41, 126-132

and CRC, 131
and digital signature, 127
and encryption, 157
and symmetric cipher, 129
as fingerprint, 127
avalanche effect, 133
birthday problem, 129
Bobcat, see Bobcat hash
coin flip, 158
collision, 126, 154, 155
collision resistance, 126
compression, 126
efficiency, 126
incremental, 158
fc-way collision, 155
non-cryptographic, 130
one-way, 126
online auction, 156
online bid, 139-140
secure, 129
spam reduction, 140-141
Tiger, see Tiger hash
uses, 139

hashed MAC, see HMAC
hashed message authentication code,

see HMAC
Hayes, Rutherford B., 35-37
hazard analysis, 477
HAZOP, 478
Health Insurance Portability and

Accountability Act, see
HIPAA

heap, 408

heap overflow, 439
Hellman, Martin, 91, 458
Herodotus, 148
hex editor, 449
high water mark principle, 277, 303
HIPAA, 470
Hiss, Alger, 31
HMAC, 78, 136-139, 379

RFC 2104, 138
Honeywell, 498
hosts, 511
HTTP, 253, 353, 515
hybrid cryptosystem, 108, 117
Hypertext Transfer Protocol, see

HTTP

ICMP, 292
IDEA, 70
identify friend or foe, see IFF
IDS, 7, 294-296

anomaly-based, 295, 297-301, 310
host-based, 295
network-based, 295
signature-based, 295-297

IFF, 315, 316, 346
IKE, 359-366, 396

Phase 1, 360-366
Phase 2, 367-368
security association, 360

IMAP, 515
incomplete mediation, 418-419
incremental transformation, 158
inference control, 7, 283-284, 304
information hiding, 148
initialization vector, see IV
insult rate, 254
integer overflow, 439
integrity, 2, 10, 76-78, 117
International Data Encryption

Algorithm, see IDEA
Internet, 511, 512, 515
Internet Key Exchange, see IKE

578 INDEX

Internet Message Access Protocol, see
IMAP

Internet Protocol, see IP
intrusion detection system, see IDS
intrusion prevention, 294
intrusion response, 295
IP, 519-521

address, 332, 515, 519
best effort, 519
fragmentation, 520
header, 520
version 4, 521
version 6, 358, 521

IPSec, 7, 332, 359
and IP header, 368
cookie, 362, 366, 396
security association, 367
transport mode, 369-370
tunnel mode, 369-370, 397
versus SSL, 358

IPv6, see IP
iris scan, 246-249

iris code, 247
IsDebuggerPresent, 483
iTunes, 426
IV, 35, 74, 83, 236, 355

repeated, 84

Java, 416, 448
bytecode, 450
JVM, 450
SRE, 450, 481

John the Ripper, 241

Kahn, David, 37
Karatsuba multiplication, 217
Kerberos, 8, 330, 372-374, 509

KDC, 373, 375, 376
key, 393

login, 374-375
replay prevention, 377
security, 376-377
stateless, 373

TGT, 373-376
ticket, 373, 375
TTP, 373

Kerckhoffs' Principle, 21, 41, 151, 152,
386, 463, 466, 472, 474, 495

key, 20, 53
key diversification, 158, 399
key escrow, 143-144
keystream, 52
King, Stephen, 461
knapsack, 224

cryptosystem, 91-95, 118, 119
problem, 92
superincreasing, 92, 207

Kocher, Paul, 210
Konheim, Alan, 186

LOphtCrack, 241
Lai-Massey multiplication, 70
LAN, 521
lattice, 203, 204
lattice reduction, 95, 203-207

attack, 203-210
Lennon, John, xv
LFSR, see shift register
Liberty Alliance, 253
Lincoln, Abraham, 37
linear algebra, 527-529
linear cryptanalysis, 186, 190-191

and TDES, 199-202
linear feedback shift register, see shift

register
linear independence, 529
linearization attack, 434-436, 445

TENEX, 436
link layer, 513, 521-522
Linux, 405
LLL algorithm, 207, 208, 224
local area network, see LAN
logging, 497
Longhorn, 500
low water mark principle, 303
Lucifer cipher, 58-60

INDEX 579

Luftwaffe, 38
lunchtime attack, 42

MAC, 379
and integrity, 77-78, 85, 86, 117,

136
and repudiation, 109

MAC address, 521-522
Mac OS X, 334, 475
MAGIC, see Purple
magnetic remanence, 496
majority vote function, 53, 80
malware, 4, 8, 14, 421

detection, 427-429
encrypted, 429
future, 429
metamorphic, 430
polymorphic, 430

mandatory access control, 495-496
Mars lander, 404
Massey, James L., 70, 73
matrix, 527

addition, 528
block, 528-529
identity, 528
multiplication, 528
square, 528

Matsui, Mitsuru, 186
McCartney, Paul, xv
McLean, John, 277
MD5, 70, 132

collision, 132, 159
mean time between failure, see]V
MediaSnap, Inc., 462, 464
memory protection, 492-494
Merkle, Ralph, 91, 92
Merkle-Hellman knapsack, see

knapsack cryptosystem
message authentication code, se

MAC
message indicator, see MI
MI, 34
Microsoft

canary, 417
Death Star, 488
fallacy, 474
knowledge base article 276304, 231
MS-DRM, 472
Passport, 253

Midway, 38
MiG-in-the-middle attack, 316, 317
MiM attack, 102, 117, 328
mkdir, 419, 420
MLS, 6-7, 274-276, 280, 303
modular arithmetic, 95, 524-526

addition, 524
exponentiation, 96, 98
inverse, 94, 525
multiplication, 93, 524
repeated squaring, 211

Montgomery multiplication, 217
Monty Python, 229
more eyeballs, 21, 473
Morris Worm, 422-424

and NSA, 423
mp3, 426
MTBF, 475-476, 480, 487
multilateral security, see

compartments
multilevel security, see MLS
Musashi, Miyamoto, 210
mutual authentication, 321-323, 325,

329, 341
MV-22 Osprey, 404

National Bureau of Standards, see NBS
National Institute of Standards and

Technology, see NIST
National Security Agency, see NSA
native code, 448
NBS, 39, 59, 67
need to know, 279, 303
Netscape, 357, 405
network

circuit switched, 512
client, 514

580 INDEX

core, 511
edge, 511
P2P, 469, 470, 514
packet switched, 512
server, 514

network economics, 473, 480
network interface card, see NIC
network layer, 513, 519-521
Next Generation Secure Computing

Base, see NGSCB
NGSCB, 339, 462, 500-506

and closed systems, 500
and DRM, 500, 508
and TTP, 503
and ZKP, 503
applications, 503-504
attestation, 503, 509
criticisms, 504-506
design goals, 501
feature groups, 502
malware, 509
NCA, 501, 504
Nexus, 501, 504
overview, 501
process isolation, 502
sealed storage, 502
secure path, 502

NIC, 521
NIDES, 300
NIST, 39, 59, 67
non-repudiation, 109-111, 117
nonce, 319, 330, 355
NP-complete, 92, 101
NSA, xix, 59, 64, 67, 90, 186, 315

and DES, 59
and SIGINT, 59

NULL cipher, 371
number used once, see nonce
NX bit, 416, 438

object, 271
Office Space, 14
one way function, 90

one-time pad, 27-31, 46, 79
VENONA, 31

opaque predicate, 458
open system, 454, 486
operating system, 4, 8

trusted, 8, 495-499
orange book, 266-269
OS, see operating system
OSI reference model, 513

P2P, 433, 514
paging, 493-494
Palladium, 500
Pascal, 147
password, 6, 231-241, 319

and passphrase, 233
attack, 235, 255, 256
dictionary, 232, 236
generator, 251, 252, 258, 263, 264
hash, 235
keystroke logging, 241
LANMAN, 257
math of cracking, 237-240
salt, 236
selection, 232-234
social engineering, 241
verification, 235-237
versus key, 232

Pearl Harbor, 37
Peer-to-Peer, see P2P
penetrate and patch, 472, 480

fallacy, 472
perfect forward secrecy, see PFS
permutation, 526

and DES, 60-63
and RC4, 55
and TDES, 192

PFS, 327-329, 340, 347
PGP, 114
photo ID, 256
physical layer, 513
PIN, 231, 241, 252, 255, 315
PKI, 108, 112-114

INDEX 581

anarchy model, 114
monopoly model, 113
oligarchy model, 114
trust model, 113-114

plaintext, 20
Plankton, 421
plausible deniability, 342, 365
Poe, Edgar Allan, 19, 43
Pokémon, 233
poker

Texas hold 'em, 146-147
Polish cryptanalysts, 38
poly-alphabetic substitution cipher, 171
POP3, 515
port number, 520
port scan, 289
POS, 470

Post Office Protocol, see POP3
prime number, 525
privacy, 11
probability, 526-527
protocol, xvi, 3, 7-8

header, 513
stack, 512-514
stateful, 512
stateless, 512

PSTN, 382
public key certificate, see digital

certificate
public key cryptography, 20, 323

encrypt and sign, 110, 111, 326
330-332, 340

forward search, 122
key pair, 90
notation, 107
private key, 20, 90
public key, 20, 90
sign and encrypt, 110, 326, 330
uses, 107

public key infrastructure, see PKI
public switched telephone

network, see PSTN
Purple, 37-38

Rózycki, Jerzy, 176
rabbit, 421
race condition, 419-420, 440
random numbers, 145-148

cryptographic, 146
randomness, see random numbers
Ranum, Marcus J., 351
RC4, 55-56, 70, 80, 148, 168, 179-

185, 378
attack, 56, 181-185
initialization, 56, 180, 181
key, 180
keystream, 56, 180, 181

RC6, 70
reference monitor, 498
Rejewski, Marian, 176
related key attack, 180
relatively prime, 525
repeated squaring, 98-99, 211, 212,

214
replay attack, 319, 346
return-to-libc, 415
reversing, see SRE
RFC, 512
RFC 2104, 138
RFC 2407, 359
RFC 2408, 359
RFC 2409, 359
RFC 2410, 371
RFID tags, 11
RGB colors, 163
Rijndael, 67
Ritchie, Dennis, 491
Rivest, Ron, 70, 95, 167, 500
Rosenberg, Ethyl, 31
Rosenberg, Julius, 31
rotors, 174-176, 221
router, 511, 516
routing protocols, 519
RSA, 70, 91, 95-97, 117, 120

common encryption exponent, 100
cube root attack, 100, 116
decryption exponent, 96

582 INDEX

efficiency, 99
encryption exponent, 96
example, 97-98
key pair, 96
modulus, 96
private key, 96
public key, 96
signature verification, 115, 116
timing attack, 211-218, 224

Rubin, Theodore I., 10
Rueppel, Rainer, 52

S-box
analysis, 190

salami attack, 434, 446
salt, 255
SAML, 253
Sarbanes-Oxley Act, see SOA
Scherbius, Arthur, 169
Schneier, Bruce, 58, 70, 447, 478
SCOMP, 498
Screamer, Beale, 472
script kiddie, 295
SDMI, 153, 471
secrecy, 11
secret key, 20
secret sharing, 142-143
secure cipher, 25
Secure Digital Music Initiative, see

SDMI
Secure Sockets Layer, see SSL
Security Assertion Markup Language,

see SAML
security by obscurity, 463
security kernel, 498
security modeling, 6, 274
segmentation, 493-494
Seneca, 265
separation, 492
session key, 325, 329, 331
SHA-1, 133
Shamir, Adi, 67, 95, 143, 180, 181,

186, 335, 378

Shannon, Claude, 39, 51, 148
shift register, 53

initial fill, 53
side channel attack, 210-211, 217
SIGINT, 59
sign and encrypt, see public key

cryptography
signature detection, 427-428
Silicon Valley, xix
Simple Mail Transfer Protocol, see

SMTP
simple substitution cipher, 22-25, 44

cryptanalysis, 24-25
simplified TEA, see STEA
single sign-on, 252-253
slow worm, 443
smartcard, 251

reader, 251
smash the stack, see buffer overflow
SMTP, 515
SOA, 470
socket, 520
socket layer, 353
software, xvi, 4, 8

active fault detection, 479
and trust, 436
bug injection, 479, 488
bugs, 404
cloned, 459
closed source, 473, 476, 488
configuration management, 479
design, 477
development, 472-480
error, 405
failure, 406
fault, 406
fault injection, 479
flaws, 8, 404, 476
genetic diversity, 460
guards, 457, 484
metamorphic, 430, 459
obfuscation, 458
open source, 473, 488

INDEX 583

peer review, 478
postmortem analysis, 480
tamper resistance, 457
testing, 478-479

software reverse engineering, see S
space shuttle, 405
SQL Slammer, 422, 425-426

and Internet traffic, 425
and UDP, 426

square and multiply, see repeated
squaring

SRE, 8, 448-454, 474, 481, 484
example, 451
Java, 450, 481

SSH, 7, 352-353
SSL, 7, 51, 56, 353-356, 392

and HTTP, 357
connection, 357
MiM attack, 356, 393
pre-master secret, 355
session, 357
versus IPSec, 358

stack, 408, 409
pointer, 408

STEA, 71, 225
steganography, 148-149

and HTML, 151-152
and RGB colors, 150-152
collusion attack, 153

Stimson, Henry L., 37
stream cipher, 40, 52, 56, 79
strong collision resistance, 126
subject, 271
substitution cipher

Vigenère, 47
superincreasing knapsack, 92
Swiss cheese, 179
symmetric cipher, 20
symmetric key

key diversification, 158
storage, 157

symmetric key cryptography, 320
notation, 65

Syrus, Publilius, 89
system Z, 277

tagging, 493
TCB, 498-499, 507
TCG, 500-501
TCP, 353, 517-518

ACK, 518
ACK scan, 290
authentication, 332-334, 340
congestion control, 517
connection oriented, 517
DoS attack, 518
FIN, 518
flow control, 517
half-open connection, 518
header, 517
RST, 518
SEQ number, 333, 334
SYN, 518
SYN-ACK, 518
three-way handshake, 332, 518

TCPA, 500
TCSEC, 266-269
TDES, 192-194, 223

differential cryptanalysis, 222
linear cryptanalysis, 223, 224

TEA, 70-71, 81, 83
decryption, 72
encryption, 71

TENEX, 436
Texas hold 'em poker, 146-147
Thomborson, Clark, 505
Tiger hash, 133-136

inner round, 134, 136
key schedule, 135, 137
outer round, 134, 135, 155
S-boxes, 135

Tilden, Samuel J., 35-37
time bomb attack, 436
time to live, see TTL
timestamp, 330-332, 340, 341
timing attack

584 INDEX

Kocher's, 214-217
Tiny DES, see TDES
Tiny Encryption Algorithm, see TEA
Torvalds, Linus, 504
totient function, 525
transport layer, 513, 516-519
trap door one way function, 90
trapdoor, see backdoor
trinity of trouble, 438
triple DES, 65-66, 86
trojan, 421, 426-427, 441
Trudy, 1
trust versus security, 495
trusted computing base, see TCB
Trusted Computing Group, see TCG
Trusted Computing Platform Alliance,

see TCPA
Trusted Computing System

Evaluation Criteria, see
TCSEC

trusted OS, see operating system
trusted path, 497
trusted third party, see TTP
TTL, 292, 307, 368, 371, 520
TTP, 112
Turing test, 285
Turing, Alan, 38, 177, 285
Twain, Mark, 244, 351
two-factor authentication, 252

U.S. Postal Service, 516
UDP, 303, 519
ULTRA, see Enigma

VENONA, 31
decrypt, 32

VeriSign, 113
Vernam cipher, 27, see one-time pad
virus, 421, 422

boot sector, 421
memory resident, 422

Vista, 500
visual cryptography, 144-145

voucher, 394

Walker spy ring, 40
Warhol worm, 430-431
watermark, see digital watermark
weak collision resistance, 126
Web cookies, see cookies
Welchman, Gordon, 177
WEP, 8, 51, 56, 132, 168, 179-180,

377-381, 398
initialization vector, 180,181, 379

Whitehead, Alfred North, 313
Williamson, Malcolm J., 100
Windows, 405, 498, 500

PE file format, 449
Wonka, Willy, 447
worm, 421, 422, 424, 425, 430
wu-ftp, 474

XTEA, 71

zero knowledge prof, see Stamp, Mark
zero knowledge proof, see ZKP
Zimmermann telegram, 32-34
Zimmermann, Arthur, 32
ZKP, 335-339
zombie, 433
Zygalski, Henryk, 176

