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Preface 

Please sir or madam won't you read my book? 
It took me years to write, won't you take a look? 

— Lennon and McCartney 

I hate black boxes. One of my goals in writing this book was to illuminate 
some of those black boxes that are so popular in information security books 
today. On the other hand, I don't want to bore you to death with trivial 
details (if that's what you want, go read some RFCs). As a result, I often 
ignore details that I deem irrelevant to the topic at hand. You can judge 
whether I've struck the proper balance between these two competing goals. 

I've strived to keep the presentation moving along so as to cover a broad 
selection of topics. My goal is to cover each item in just enough detail so that 
you can appreciate the basic security issue at hand, while not getting bogged 
down in details. I've also attempted to regularly emphasize and reiterate 
the main points so that crucial information doesn't slip by below the radar 
screen. 

Another goal of mine was to present the topic in a reasonably lively and 
interesting way. If any computing subject should be exciting and fun, it's 
information security. Security is happening now and it's in the news—it's 
clearly alive and kicking. 

I've also tried to inject a little humor into the material. They say that 
humor is derived from pain, so judging by the quality of my jokes, I'd say 
that I've led a charmed life. In any case, most of the really bad jokes are in 
footnotes so they shouldn't be too distracting. 

Some security textbooks offer a large dollop of dry useless theory. Reading 
one of those books is about as exciting as reading a calculus textbook. Other 
books offer a seemingly random collection of apparently unrelated facts, giv-
ing the impression that security is not really a coherent subject at all. Then 
there are books that present the topic as a collection of high-level managerial 
platitudes. Finally, some texts focus on the human factors in security. While 
all of these approaches have their place, I believe that, first and foremost, a 

xv 
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security engineer must have a solid understanding of the inherent strengths 
and weaknesses of the underlying technology. 

Information security is a huge topic, and unlike more established fields, 
it's not clear what material should be included in a book like this, or how 
best to organize it. I've chosen to organize this book around the following 
four major themes: 

• Cryptography 

• Access Control 
• Protocols 
• Software 

In my usage, these themes are fairly elastic. For example, under the 
heading of access control I've included the traditional topics of authentica-
tion and authorization, along with such nontraditional topics as firewalls and 
CAPTCHAs. The software theme is particularly flexible, and includes such 
diverse topics as secure software development, malware, software reverse en-
gineering, and operating systems. 

Although this book is focused on practical issues, I've tried to cover 
enough of the fundamental principles so that you will be prepared for further 
study in the field. In addition, I've strived to minimize the background re-
quirements as much as possible. In particular, the mathematical formalism 
has been kept to a bare minimum (the Appendix contains a review of all 
necessary math topics). Despite this self-imposed limitation, I believe this 
book contains more substantive cryptography than most security books out 
there. The required computer science background is also minimal—an in-
troductory computer organization course (or comparable experience) is more 
than sufficient. Some programming experience is assumed and a rudimentary 
knowledge of assembly language would be helpful in a couple of sections, but 
it's not mandatory. Networking basics arise in a few sections. The Appendix 
contains a brief overview of networking that provides more than sufficient 
background material. 

If you are an information technology professional who's trying to learn 
more about security, I would suggest that you read the entire book. However, 
if you want to avoid the material that's most likely to slow you down and is 
not critical to the overall flow of the book, you can safely skip Section 4.5, all 
of Chapter 6 (although Section 6.6 is highly recommended), and Section 8.4. 

If you are teaching a security class, you need to realize that this book has 
more material than can be covered in a one-semester course. The schedule 
that I generally follow in my undergraduate security class appears in Table 1. 
This schedule allows ample time to cover a few of the optional topics. 

If the syllabus in Table 1 is too busy, you could cut Section 8.9 of Chap-
ter 8 and some of the topics in Chapters 12 and 13. Of course, many other 
variations on the syllabus are possible. 
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Chapter 
1. Introduction 
2. Classic Cryptography 
3. Symmetric Key Crypto 
4. Public Key Crypto 
5. Hash Functions++ 

6. Advanced Cryptanalysis 
7. Authentication 
8. Authorization 

9. Authentication Protocols 
10. Real-World Protocols 
11. Software Flaws and Malware 
12. Insecurity in Software 
13. OS and Security 
Total 

Hours 
1 
3 
4 
4 
3 

0 
4 
2 

4 
4 
4 
4 
3 
40 

Comments 
All 
All 
Omit Section 3.3.5 
Omit Section 4.5 
Omit 5.6 
Omit attack details in 5.7 
Omit Section 5.9.1 
Omit entire chapter 
All 
Omit 8.4.1 and 8.4.2 
Omit 8.10 
Omit 9.4 
Omit either WEP or GSM 
All 
Omit 12.3 
All, time permitting 

Table 1: Suggested Syllabus 

Security is not a spectator sport—doing a large number of homework 
problems is essential to learning the material in this book. Many topics are 
fleshed out in the problems and additional topics are often introduced. The 
bottom line is that the more problems you solve, the more you'll learn. 

A security course based on this book is an ideal venue for individual 
or group projects. Chapter 6 is a good source for crypto projects, while 
the annotated bibliography provides a starting point to search for additional 
project topics. In addition, many homework problems lend themselves well 
to class discussions or in-class assignments (see, for example, Problem 19 in 
Chapter 10 or Problem 33 in Chapter 11). 

The textbook website is at 

http ://www.es.sj su.edu/~stamp/infosec/ 

where you'll find PowerPoint slides, all of the files mentioned in the home-
work problems, errata, and so on. If I were teaching this class for the first 
time, I would particularly appreciate the PowerPoint slides, which have been 
thoroughly "battle tested" and improved over several iterations. In addi-
tion, a solutions manual is available to instructors (sorry, students) from the 
publisher. 

It is also worth noting how the Appendices fit in. Appendix A-l, Network 
Security Basics, is relevant to Sections 8.9 and 8.10 of Chapter 8 and also for 
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all of Part III. Even if students have a solid foundation in networking, it's 
probably worthwhile to review this material, since networking terminology is 
not always consistent and the focus here is on security. 

The Math Essentials of Appendix A-2 are assumed in various places 
throughout the text. Elementary modular arithmetic (Appendix A-2.2) arises 
in a few sections of Chapter 3 and Chapter 5, while some of the relatively 
advanced concepts are required in Chapter 4 and Section 9.5 of Chapter 9. 
I've found that the vast majority of my students need to brush up on modular 
arithmetic basics. It only takes about 20 to 30 minutes of class time to cover 
the material on modular arithmetic and that will be time well spent prior to 
diving into public key cryptography. Trust me. 

Permutations, which are briefly discussed in Appendix A-2.3, are most 
prominent in Chapter 3, while elementary discrete probability (Appendix A-
2.4) appears in several places. The elementary linear algebra in Appendix A-
2.5 is only required in Section 6.5. 

Just as any large and complex piece of software must have bugs, this book 
inevitably has errors. I would like to hear about any errors—large or small— 
that you find. I will maintain a reasonably up-to-date errata on the textbook 
website. Also, don't hesitate to provide any suggestions you might have for 
future editions of this book. 

What's New for the Second Edition? 

Cats right themseJves; books don't. 
— John Ay cock 

One major change for this second edition is that the number and quality of 
the homework problems have both greatly increased. In addition to the new-
and-improved homework problems, new topics have been added, some new 
background material has been included, virtually all of the existing material 
has been updated and clarified, and all known errors have been corrected. 
Examples of new topics include a practical RS A timing attack, a discussion of 
botnets, and coverage of security certification. Examples of added background 
material include a section on the Enigma cipher and coverage of the classic 
"orange book" view of security. 

Information security is a rapidly evolving field and there have been some 
significant changes since the first edition of this book was published in 2005. 
Nevertheless, the basic structure of the book remains intact. I believe the 
organization and list of topics has held up well over the past five years. 
Consequently, the changes to the content for this second edition are more 
evolutionary than revolutionary. 

Mark Stamp 
San Jose State University 
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Chapter 1 

Introduction 

"Begin a t the beginning, " the King said, very gravely, 

"and go on till you come to the end: then stop." 

— Lewis Carroll, Alice in Wonderland 

1.1 The Cast of Characters 

Following tradition, Alice and Bob, who are pictured in Figure 1.1, are the 
good guys. Occasionally we'll require additional good guys, such as Charlie 
and Dave. 

Alice Bob 

Figure 1.1: Alice and Bob. 

Trudy, pictured in Figure 1.2, is a generic bad "guy" who is trying to 
attack the system in some way. Some authors employ a team of bad guys 
where the name implies the particular nefarious activity. In this usage, Trudy 
is an "intruder" and Eve is an "eavesdropper" and so on. To simplify things, 
we'll use Trudy as our all-purpose bad guy.1 

xYou might be wondering why a picture of Tweedledee and Tweedledum is used to 
represent Trudy. After all, Trudy is typically a female name, so why two bad guys instead 
of one bad girl? One possible reason is that, occasionally, we need two bad guys, so 
it's convenient to have both Tweedledee and Tweedledum available. Another plausible 
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2 INTRODUCTION 

Figure 1.2: Trudy. 

Alice, Bob, Trudy, and the rest of the gang need not be humans. For 
example, one of many possible scenarios would have Alice as a laptop, Bob a 
server, and Trudy a human. 

1.2 Alice's Online Bank 

Suppose that Alice starts an online banking business, appropriately named 
Alice's Online Bank,2 or AOB. What are Alice's information security con-
cerns? If Bob is Alice's customer, what are his information security con-
cerns? Are Bob's concerns the same as Alice's? If we look at AOB from 
Trudy's perspective, what security vulnerabilities might we see? 

First, let's consider the traditional triumvirate of confidentiality, integrity, 
and availability, or CIA,3 in the context of Alice's Bank. Then we'll point 
out some of the many other possible security concerns. 

1.2.1 Confidentiality, Integrity, and Availability 

Confidentiality deals with preventing unauthorized reading of information. 
AOB probably wouldn't care much about the confidentiality of the informa-
tion it deals with, except for the fact that its customers certainly do. For 
example, Bob doesn't want Trudy to know how much he has in his savings 
account. Alice's Bank would also face legal problems if it failed to protect 
the confidentiality of such information. 

Integrity deals with preventing, or at least detecting, unauthorized "writ-
ing" (i.e., changes to data). Alice's Bank must protect the integrity of account 
information to prevent Trudy from, say, increasing the balance in her account 
or changing the balance in Bob's account. Note that confidentiality and in-
tegrity are not the same thing. For example, even if Trudy cannot read the 
data, she might be able to modify this unreadable data, which, if undetected, 

explanation is that you never know who might be acting as "Trudy." While these would 
be good reasons for choosing the Tweedle brothers, the reality is that your easily amused 
author finds the picture, well, amusing. 

2Not to be confused with "Alice's Restaurant" [135]. 
3No, not that CIA.. . 
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would destroy its integrity. In this case, Trudy might not know what changes 
she had made to the data (since she can't read it), but she might not care— 
sometimes just causing trouble is good enough. 

Denial of service, or DoS, attacks are a relatively recent concern. Such 
attacks try to reduce access to information. As a result of the rise in DoS 
attacks, data availability has become a fundamental issue in information secu-
rity. Availability is an issue for both Alice's Bank and Bob—if AOB's website 
is unavailable, then Alice can't make money from customer transactions and 
Bob can't get his business done. Bob might then take his business elsewhere. 
If Trudy has a grudge against Alice, or if she just wants to be malicious, she 
might attempt a denial of service attack on Alice's Online Bank. 

1.2.2 Beyond CIA 

Confidentiality, integrity, and availability are only the beginning of the in-
formation security story. Beginning at the beginning, consider the situation 
when customer Bob logs on to his computer. How does Bob's computer de-
termine that "Bob" is really Bob and not Trudy? And when Bob logs into 
his account at Alice's Online Bank, how does AOB know that "Bob" is really 
Bob, and not Trudy? Although these two authentication problems appear 
to be similar on the surface, under the covers they are actually completely 
different. 

Authentication on a standalone computer typically requires that Bob's 
password be verified. To do so securely, some clever techniques from the 
field of cryptography are required. On the other hand, authentication over 
a network is open to many kinds of attacks that are not usually relevant 
on a standalone computer. Potentially, the messages sent over a network 
can be viewed by Trudy. To make matters worse, Trudy might be able to 
intercept messages, alter messages, and insert messages of her own making. If 
so, Trudy can simply replay Bob's old messages in an effort to, say, convince 
AOB that she is really Bob. Since information security people are professional 
paranoids,4 we always assume the worst. In any case, authentication over a 
network requires careful attention to protocol, that is, the composition and 
ordering of the exchanged messages. Cryptography also has an important 
role to play in security protocols. 

Once Bob has been authenticated by Alice's Bank, then Alice must en-
force restrictions on Bob's actions. For example, Bob can't look at Charlie's 
account balance or install new accounting software on the AOB system. How-
ever, Sam, the AOB system administrator, can install new accounting soft-
ware. Enforcing such restrictions goes by the name of authorization. Note 
that authorization places restrictions on the actions of authenticated users. 

4Rumor has it that the security people at Yahoo proudly carry the title of "Paranoids." 
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Since authentication and authorization both deal with issues of access to 
resources, we'll lump them together under the clever title of access control. 

All of the information security mechanisms discussed so far are imple-
mented in software. And, if you think about it, other than the hardware, 
what isn't software in a modern computing system? Today, software systems 
tend to be large, complex, and rife with bugs. A software bug is not just an 
annoyance, it is a potential security issue, since it may cause the system to 
misbehave. Of course, Trudy loves misbehavior. 

What software flaws are security issues, and how are they exploited? How 
can AOB be sure that its software is behaving correctly? How can AOB's 
software developers reduce (or, ideally, eliminate) security flaws in their soft-
ware? We'll examine these software development related questions (and much 
more) in Chapter 11. 

Although bugs can (and do) give rise to security flaws, these problems 
are created unintentionally by well-meaning developers. On the other hand, 
some software is written with the intent of doing evil. Examples of such 
malicious software, or malware, includes the all-too-familiar computer viruses 
and worms that plague the Internet today. How do these nasty beasts do what 
they do, and what can Alice's Online Bank do to limit their damage? What 
can Trudy do to increase the nastiness of such pests? We'll also consider 
these and related questions in Chapter 11. 

Of course, Bob has many software concerns, too. For example, when Bob 
enters his password on his computer, how does he know that his password 
has not been captured and sent to Trudy? If Bob conducts a transaction at 
www.alicesonlinebank.com, how does he know that the transaction he sees 
on his screen is the same transaction that actually goes to the bank? That is, 
how can Bob be confident that his software is behaving as it should, instead 
of as Trudy would like it to behave? We'll consider these questions as well. 

When discussing software and security, we'll need to consider operating 
system, or OS, topics. Operating systems are themselves large and complex 
pieces of software and OSs are responsible for enforcing much of the security 
in any system. So, some basic knowledge of OSs is necessary to fully appre-
ciate the challenges of information security. We'll also briefly consider the 
concept of a trusted operating system, that is, an operating system that we 
can actually have reasonable confidence is doing the right thing. 

1.3 About This Book 

Lampson [180] believes that real-world security boils down to the following. 

• Specification/policy — What is the system supposed to do? 

• Implementation/mechanism — How does it do it? 
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• Correctness/assurance — Does it really work? 

Your humble author would humbly5 add a fourth category: 

• Human nature — Can the system survive "clever" users? 

The focus of this book is primarily on the implementation/mechanism front. 
Your fearless author believes this is appropriate, nay essential, for an intro-
ductory course, since the strengths, weaknesses, and inherent limitations of 
the mechanisms directly affect all other aspects of security. In other words, 
without a reasonable understanding of the mechanisms, it is not possible to 
have an informed discussion of other security issues. 

The material in this book is divided into four major parts. The first part 
deals with cryptography, while the next part covers access control. Part III 
is on protocols, while the final part deals with the vast and relatively ill-
defined topic of software. Hopefully, the previous discussion of Alice's Online 
Bank6 has convinced you that these major topics are all relevant to real-world 
information security. 

In the remainder of this chapter, we'll give a quick preview of each of these 
four major topics. Then the chapter concludes with a summary followed by 
some lovely homework problems. 

1.3.1 Cryptography 

Cryptography or "secret codes" are a fundamental information security tool. 
Cryptography has many uses, including providing confidentiality and in-
tegrity, among other vital information security functions. We'll discuss cryp-
tography in detail, since this is essential background for any sensible discus-
sion of information security. 

We'll begin our coverage of cryptography with a look at a handful of classic 
cipher systems. In addition to their obvious historic and entertainment value, 
these classic ciphers illustrate the fundamental principles that are employed 
in modern digital cipher systems, but in a more user-friendly format. 

With this background, we'll be prepared to study modern cryptography. 
Symmetric key cryptography and public key cryptography both play major 
roles in information security, and we'll spend an entire chapter on each. We'll 
then turn our attention to hash functions, which are another fundamental se-
curity tool. Hash functions are used in many different contexts in information 
security, some of which are surprising and not always intuitive. 

Then we'll briefly consider a few special topics that are related to cryp-
tography. For example, we'll discuss information hiding, where the goal is 
for Alice and Bob to communicate without Trudy even knowing that any 

5This sentence is brought to you by the Department of Redundancy Department. 
6You did read that, right? 
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information has been passed. This is closely related to the concept of digital 
watermarking, which we also cover briefly. 

The final chapter on cryptography deals with cryptanalysis, that is, the 
methods used to break cipher systems. Although this is relatively technical 
and specialized information, understanding these attack methods makes clear 
many of the design principles behind modern cryptographic systems. 

1.3.2 Access Control 

As mentioned above, access control deals with authentication and authoriza-
tion. In the area of authentication, we'll consider the many issues related to 
passwords. Passwords are the most often used form of authentication today, 
but this is primarily because passwords are cheap, and definitely not because 
they are the most secure option.7 

We'll consider how to securely store passwords. Then we'll delve into 
the issues surrounding secure password selection. Although it is possible to 
select reasonably strong passwords that are relatively easy to remember, it's 
surprisingly difficult to enforce such policies on clever users. In any case, 
weak passwords present a major security vulnerability in most systems. 

The alternatives to passwords include biometrics and smartcards. We'll 
consider some of the security benefits of these alternate forms of authentica-
tion. In particular, we'll discuss the details of several biometrie authentication 
methods. 

Authorization deals with restrictions placed on authenticated users. Once 
Alice's Bank is convinced that Bob is really Bob, it must enforce restrictions 
on Bob's actions. The two classic methods for enforcing such restrictions are 
so-called access control lists8 and capabilities. We'll look at the plusses and 
minuses of each of these methods. 

Authorization leads naturally to a few relatively specialized topics. We'll 
discuss multilevel security (and the related topic of compartments). For ex-
ample, the United States government and military has TOP SECRET and 
SECRET information—some users can see both types of information, while 
other users can only see the SECRET information, and some can't view ei-
ther. If both types of information are stored on a single system, how can 
we enforce such restrictions? This is a thorny authorization issue that has 
potential implications beyond classified military systems. 

Multilevel security leads naturally into the rarified air of security mod-
eling. The idea behind such modeling is to lay out the essential security 
requirements of a system. Ideally, by verifying a few simple properties we 

7 If someone asks you why some weak security measure is used when better options are 
available, the correct answer is invariably "money." 

8Access control list, or ACL, is one of many overloaded terms that arise in the field of 
information security. 
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would know that a given system satisfies a particular security model. If so, 
the system would automatically inherit all of the security properties that 
are known to hold for such a model. We'll only present two of the simplest 
security models, both of which arise in the context of multilevel security. 

Multilevel security also provides an opportunity to discuss covert channels 
and inference control. Covert channels are unintended channels of commu-
nication. Such channels are common in the real world and create potential 
security problems. Inference control, on the other hand, refers to attempts to 
limit the sensitive information that can unintentionally leak out of a database 
due to legitimate user queries. Both covert channels and inference control are 
difficult problems to deal with effectively in real-world systems. 

Since firewalls act as a form of access control for the network, we stretch 
the usual definition of access control to include firewalls. Regardless of the 
type of access control employed, attacks are bound to occur. An intrusion 
detection system (IDS) is designed to detect attacks in progress. So we include 
a brief discussion of IDS techniques after our discussion of firewalls. 

1.3.3 Protocols 

We'll then cover security protocols. First, we consider the general problem 
of authentication over a network. Many examples will be provided, each of 
which illustrates a particular security pitfall. For example, replay is a critical 
problem, and so we must consider effective ways to prevent such attacks. 

Cryptography will prove essential in authentication protocols. We'll give 
example of protocols that use symmetric cryptography, as well as examples 
that rely on public key cryptography. Hash functions also have an important 
role to play in security protocols. 

Our study of simple authentication protocols will illustrate some of the 
subtleties that can arise in the field of security protocols. A seemingly in-
significant change to a protocol can completely change its security. We'll also 
highlight several specific techniques that are commonly used in real-world 
security protocols. 

Then we'll move on to study several real-world security protocols. First, 
we look at the so-called Secure Shell, or SSH, which is a relatively simple 
example. Next, we consider the Secure Socket Layer, or SSL, which is used 
extensively to secure e-commerce on the Internet today. SSL is an elegant 
and efficient protocol. 

We'll also discuss IPSec, which is another Internet security protocol. Con-
ceptually, SSL and IPSec share many similarities, but the implementations 
differ greatly. In contrast to SSL, IPSec is complex and it's often said to 
be over-engineered. Apparently due to its complexity, some fairly significant 
security issues are present in IPSec—despite a lengthy and open development 
process. The contrast between SSL and IPSec illustrates some of the inherent 
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challenges and tradeoffs that arise when developing security protocols. 
Another real-world protocol that we'll consider is Kerberos, which is an 

authentication system based on symmetric cryptography. Kerberos follows a 
much different approach than either SSL or IPSec. 

We'll also discuss two wireless security protocols, WEP and GSM. Both 
of these protocols have many security flaws, including problems with the un-
derlying cryptography and issues with the protocols themselves, which make 
them interesting case studies. 

1.3.4 Software 

In the final part of the book, we'll take a look at some aspects of security and 
software. This is a huge topic, and in three chapters we barely do more than 
scratch the surface. For starters, we'll discuss security flaws and malware, 
which were mentioned above. 

We'll also consider software reverse engineering, which illustrates how 
a dedicated attacker can deconstruct software, even without access to the 
source code. We then apply our newfound hacker's knowledge to the problem 
of digital rights management, which provides a good example of the limits 
of security in software, particularly when that software executes in a hostile 
environment. 

Our final software-related topic is operating systems (OSs). The OS is 
the arbiter of many security operations, so it's important to understand how 
the OS enforces security. We also consider the requirements of a so-called 
trusted OS, where "trusted" means that we can have confidence that the OS 
is performing properly, even when under attack. With this background in 
hand, we consider a recent attempt by Microsoft to develop a trusted OS for 
the PC platform. 

1.4 The People Problem 

Users are surprisingly adept at damaging the best laid security plans. For 
example, suppose that Bob wants to purchase an item from amazon. com. Bob 
can use his Web browser to securely contact Amazon using the SSL protocol 
(discussed in Part III), which relies on various cryptographic techniques (see 
Part I). Access control issues arise in such a transaction (Part II), and all of 
these security mechanisms are enforced in software (Part IV). So far, so good. 
However, we'll see in Chapter 10 that a practical attack on this transaction 
that will cause Bob's Web browser to issue a warning. If Bob heeds the 
warning, no attack will occur. Unfortunately, if Bob is a typical user, he will 
ignore the warning, which has the effect of negating this sophisticated security 
scheme. That is, the security can be broken due to user error, despite the fact 
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that the cryptography, protocols, access control, and software all performed 
flawlessly. 

To take just one more example, consider passwords. Users want to choose 
easy to remember passwords, but this also makes it easier for Trudy to guess 
passwords—as discussed in Chapter 7. A possible solution is to assign strong 
passwords to users. However, this is generally a bad idea since it is likely to 
result in passwords being written down and posted in prominent locations, 
likely making the system less secure than if users were allowed to choose their 
own (weaker) passwords. 

As mentioned above, the primary focus of this book is on understanding 
security mechanisms—the nuts and bolts of security. Yet in several places 
throughout the book, various "people problems" arise. It would be possible 
to write an entire volume on this single topic, but the bottom line is that, 
from a security perspective, the best solution is to remove the humans from 
the equation as much as possible. In fact, we will see some specific examples 
of this as well. 

For more information on the role that humans play in information security, 
a good source is Ross Anderson's book [14]. Anderson's book is filled with 
case studies of security failures, many of which have at least one of their roots 
somewhere in human nature. 

1.5 Principles and Practice 

This book is not a theory book. While theory certainly has its place, in your 
opinionated author's opinion, many aspects of information security are not 
yet ripe for a meaningful theoretical treatment.9 Of course, some topics are 
inherently more theoretical than others. But even the more theoretical se-
curity topics can be understood without getting deeply into the theory. For 
example, cryptography can be (and often is) taught from a highly mathemat-
ical perspective. However, with rare exception, a little elementary math is all 
that is needed to understand important cryptographic principles. 

Your practical author has consciously tried to keep the focus on practical 
issues, but at a deep enough level to give the reader some understanding of— 
and appreciation for—the underlying concepts. The goal is to get into some 
depth without overwhelming the reader with trivial details. Admittedly, this 
is a delicate balancing act and, no doubt, many will disagree that a proper 
balance has been struck here or there. In any case, the book touches on a large 
number of security issues related to a wide variety of fundamental principles, 

9To take but one example, consider the infamous buffer overflow attack, which is certainly 
the most serious software security flaw of all time (see Section 11.2.1 of Chapter 11). What 
is the grand theory behind this particular exploit? There isn't any—it's simply due to a 
quirk in the way that memory is laid out in modern processors. 
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and this breadth necessarily comes at the expense of some rigor and detail. 
For those who yearn for a more theoretical t reatment of the subject, Bishop's 
book [34] is the obvious choice. 

1.6 Problems 

The problem is not that there are problems. The problem is 
expecting otherwise and thinking that having problems is a problem. 

— Theodore I. Rubin 

1. Among the fundamental challenges in information security are confi-
dentiality, integrity, and availability, or CIA. 

a. Define each of these terms: confidentiality, integrity, availability. 

b. Give a concrete example where confidentiality is more important 
than integrity. 

c. Give a concrete example where integrity is more important than 
confidentiality. 

d. Give a concrete example where availability is the overriding con-
cern. 

2. From a bank's perspective, which is usually more important, the in-
tegrity of its customer's data or the confidentiality of the data? From 
the perspective of the bank's customers, which is more important? 

3. Instead of an online bank, suppose that Alice provides an online chess 
playing service known as Alice's Online Chess (AOC). Players, who 
pay a monthly fee, log into AOC where they are matched with another 
player of comparable ability. 

a. Where (and why) is confidentiality important for AOC and its 
customers? 

b. Why is integrity necessary? 

c. Why is availability an important concern? 

4. Instead of an online bank, suppose that Alice provides an online chess 
playing service known as Alice's Online Chess (AOC). Players, who 
pay a monthly fee, log into AOC where they are matched with another 
player of comparable ability. 

a. Where should cryptography be used in AOC? 

b. Where should access control used? 
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c. Where would security protocols be used? 

d. Is software security a concern for AOC? Why or why not? 

5. Some authors distinguish between secrecy, privacy, and confidentiality. 
In this usage, secrecy is equivalent to our use of the term confidentiality, 
whereas privacy is secrecy applied to personal data, and confidentiality 
(in this misguided sense) refers to an obligation not to divulge certain 
information. 

a. Discuss a real-world situation where privacy is an important secu-
rity issue. 

b. Discuss a real-world situation where confidentiality (in this incor-
rect sense) is a critical security issue. 

6. RFID tags are extremely small devices capable of broadcasting a num-
ber over the air that can be read by a nearby sensor. RFID tags are 
used for tracking inventory, and they have many other potential uses. 
For example, RFID tags are used in passports and it has been suggested 
that they should be put into paper money to prevent counterfeiting. In 
the future, a person might be surrounded by a cloud of RFID numbers 
that would provide a great deal of information about the person. 

a. Discuss some privacy concerns related to the widespread use of 
RFID tags. 

b. Discuss security issues, other than privacy, that might arise due to 
the widespread use of RFID tags. 

7. Cryptography is sometimes said to be brittle, in the sense that it can 
be very strong, but when it breaks, it (generally) completely shat-
ters. In contrast, some security features can "bend" without breaking 
completely—security may be lost as a result of the bending, but some 
useful level of security remains. 

a. Other than cryptography, give an example where security is brittle. 

b. Provide an example where security is not brittle, that is, the secu-
rity can bend without completely breaking. 

8. Read Diffie and Hellman's classic paper [90]. 

a. Briefly summarize the paper. 

b. Diffie and Hellman give a system for distributing keys over an 
insecure channel (see Section 3 of the paper). How does this system 
work? 
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c. Diffie and Hellman also conjecture that a "one way compiler" 
might be used to construct a public key cryptosystem. Do you 
believe this is a plausible approach? Why or why not? 

9. The most famous World War II cipher machine was the German Enigma 
(see also Problem 10). 

a. Draw a diagram illustrating the inner workings of the Enigma. 

b. The Enigma was broken by the Allies and intelligence gained from 
Enigma intercepts was invaluable. Discuss a significant World 
War II event where broken Enigma messages played a major role. 

10. The German Enigma is the most famous World War II cipher machine 
(see also Problem 9). The cipher was broken by the Allies and intel-
ligence gained from Enigma messages proved invaluable. At first, the 
Allies were very careful when using the information gained from broken 
Enigma messages—sometimes the Allies did not use information that 
could have given them an advantage. Later in the war, however, the 
Allies (in particular, the Americans) were much less careful, and they 
tended to use virtually all information obtained from broken Enigma 
messages. 

a. The Allies were cautious about using information gained from bro-
ken Enigma messages for fear that the Germans would realize the 
cipher was broken. Discuss two different approaches that the Ger-
mans might have taken if they had realized that the Enigma was 
broken. 

b. At some point in the war, it should have become obvious to the 
Germans that the Enigma was broken, yet the Enigma was used 
until the end of the war. Why did the Nazis continue to use the 
Enigma? 

11. When you want to authenticate yourself to your computer, most likely 
you type in your username and password. The username is considered 
public knowledge, so it is the password that authenticates you. Your 
password is something you know. 

a. It is also possible to authenticate based on something you are, that 
is, a physical characteristic. Such a characteristic is known as a 
biometrie. Give an example of biometric-based authentication. 

b. It is also possible to authenticate based on something you have, 
that is, something in your possession. Give an example of authen-
tication based on something you have. 
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c. Two-factor authentication requires that two of the three authenti-
cation methods (something you know, something you have, some-
thing you are) be used. Give an example from everyday life where 
two-factor authentication is used. Which two of the three are used? 

12. CAPTCHAs [319] are often used in an attempt to restrict access to 
humans (as opposed to automated processes). 

a. Give a real-world example where you were required to solve a 
CAPTCHA to gain access to some resource. What do you have to 
do to solve the CAPTCHA? 

b. Discuss various technical methods that might be used to break the 
CAPTCHA you described in part a. 

c. Outline a non-technical method that might be used to attack the 
CAPTCHA from part a. 

d. How effective is the CAPTCHA in part a? How user-friendly is 
the CAPTCHA? 

e. Why do you hate CAPTCHAs? 

13. Suppose that a particular security protocol is well designed and secure. 
However, there is a fairly common situation where insufficient informa-
tion is available to complete the security protocol. In such cases, the 
protocol fails and, ideally, a transaction between the participants, say, 
Alice and Bob, should not be allowed to occur. However, in the real 
world, protocol designers must decide how to handle cases where pro-
tocols fail. As a practical matter, both security and convenience must 
be considered. Comment on the relative merits of each of the follow-
ing solutions to protocol failure. Be sure to consider both the relative 
security and user-friendliness of each. 

a. When the protocol fails, a brief warning is given to Alice and Bob, 
but the transaction continues as if the protocol had succeeded, 
without any intervention required from either Alice or Bob. 

b. When the protocol fails, a warning is given to Alice and she decides 
(by clicking a checkbox) whether the transaction should continue 
or not. 

c. When the protocol fails, a notification is given to Alice and Bob 
and the transaction terminates. 

d. When the protocol fails, the transaction terminates with no expla-
nation given to Alice or Bob. 

14. Automatic teller machines (ATMs) are an interesting case study in secu-
rity. Anderson [14] claims that when ATMs were first developed, most 
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attention was paid to high-tech attacks. However, most real-world at-
tacks on ATMs have been decidedly low tech. 

a. Examples of high-tech attacks on ATMs would be breaking the 
encryption or authentication protocol. If possible, find a real-world 
case where a high-tech attack on an ATM has actually occurred 
and provide the details. 

b. Shoulder surfing is an example of a low-tech attack. In this sce-
nario, Trudy stands behind Alice in line and watches the numbers 
Alice presses when entering her PIN. Then Trudy bonks Alice in 
the head and takes her ATM card. Give another example of a 
low-tech attack on an ATM that has actually occurred. 

15. Large and complex software systems invariably have a large number of 
bugs. 

a. For honest users, such as Alice and Bob, buggy software is certainly 
annoying but why is it a security issue? 

b. Why does Trudy love buggy software? 

c. In general terms, how might Trudy use bugs in software to break 
the security of a system? 

16. Malware is software that is intentionally malicious, in the sense that it 
is designed to do damage or break the security of a system. Malware 
comes in many familiar varieties, including viruses, worms, and Trojans. 

a. Has your computer ever been infected with malware? If so, what 
did the malware do and how did you get rid of the problem? If 
not, why have you been so lucky? 

b. In the past, most malware was designed to annoy users. Today, 
it is often claimed that most malware is written for profit. How 
could malware possibly be profitable? 

17. In the movie Office Space [223], software developers attempt to modify 
company software so that for each financial transaction, any leftover 
fraction of a cent goes to the developers, instead of going to the com-
pany. The idea is that for any particular transaction, nobody will notice 
the missing fraction of a cent, but over time the developers will accu-
mulate a large sum of money. This type of attack is sometimes known 
as a salami attack. 

a. Find a real-world example of a salami attack. 

b. In the movie, the salami attack fails. Why? 
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18. Some commercial software is closed source, meaning that the source 
code is not available to users. On the other hand, some software is 
open source, meaning that the source code is available to users. 

a. Give an example of software that you use (or have used) that is 
closed source. 

b. Give an example of software that you use (or have used) that is 
open source. 

c. For open source software, what can Trudy do to search for security 
flaws in the software? 

d. For closed source software, what can Trudy do to search for secu-
rity flaws in the software? 

e. For open source software, what can Alice do to make the software 
more secure? 

f. For closed source software, what can Alice do to make the software 
more secure? 

g. Which is inherently more secure, open source software or closed 
source software? Why? 

19. It's sometimes said that complexity is the enemy of security. 

a. Give an example of commercial software to which this statement 
applies, that is, find an example of software that is large and com-
plex and has had significant security problems. 

b. Find an example of a security protocol to which this statement 
applies. 

20. Suppose that this textbook was sold online (as a PDF) by your money-
grubbing author for, say, $5. Then the author would make more money 
off of each copy sold than he currently does10 and people who purchase 
the book would save a lot of money. 

a. What are the security issues related to the sale of an online book? 

b. How could you make the selling of an online book more secure, 
from the copyright holder's perspective? 

c. How secure is your approach in part b? What are some possible 
attacks on your proposed system? 

21. The PowerPoint slides at [255] describe a security class project where 
students successfully hacked the Boston subway system. 

10Believe it or not. 
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a. Summarize each of the various attacks. What was the crucial 
vulnerability that enabled each attack to succeed? 

b. The students planned to give a presentation at the self-proclaimed 
"hacker's convention," Defcon 16 [80], where they would have pre-
sented the PowerPoint slides now available at [255]. At the re-
quest of the Boston transit authority, a judge issued a temporary 
restraining order (since lifted) that prevented the students from 
talking about their work. Do you think this was justified, based 
on the material in the slides? 

c. What are war dialing and war driving? What is war carting? 

d. Comment on the production quality of the "melodramatic video 
about the warcart" (a link to the video can be found at [16]). 
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Crypto 
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Chapter 2 

Crypto Basics 

MXDXBVTZWVMXNSPBQXLIMSCCSGXSCJXBOVQXCJZMOJZCVC 

TVWJCZAAXZBCSSCJXBQCJZCOJZCNSPOXBXSBTVWJC 

JZDXGXXMOZQMSCSCJXBOVQXCJZMOJZCNSPJZHGXXMOSPLH 

JZDXZAAXZBXHCSCJXTCSGXSCJXBOVQX 

— plaintext from Lewis Carroll, Alice in Wonderland 

The solution is by no means so difficult as you might 
be led to imagine from the first hasty inspection of the characters. 

These characters, as any one might readily guess, 
form a cipher—that is to say, they convey a meaning... 

— Edgar Allan Poe, The Gold Bug 

2.1 Introduction 

In this chapter we'll discuss some of the basic elements of cryptography. This 
discussion will lay the foundation for the remaining crypto chapters which, 
in turn, underpin much of the material throughout the book. We'll avoid 
mathematical rigor as much as possible. Nevertheless, there is enough detail 
here so that you will not only understand the "what" but you will also have 
some appreciation for the "why." 

After this introductory chapter, the remaining crypto chapters focus on: 

• Symmetric key cryptography 

• Public key cryptography 

• Hash functions 

• Advanced cryptanalysis 

A handful of special topics are also covered. 
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2.2 How to Speak Crypto 

The basic terminology of crypto includes the following. 

• Cryptology — the art and science of making and breaking "secret codes." 

• Cryptography — the making of "secret codes." 

• Cryptanalysis — the breaking of "secret codes." 

• Crypto — a synonym for any or all of the above (and more), where the 
precise meaning should be clear from context. 

A cipher or crypto system is used to encrypt data. The original unen-
crypted data is known as plaintext, and the result of encryption is ciphertext. 
We decrypt the ciphertext to recover the original plaintext. A key is used to 
configure a cryptosystem for encryption and decryption. 

In a symmetric cipher, the same key is used to encrypt and to decrypt, 
as illustrated by the black box cryptosystem in Figure 2.I.1 There is also 
a concept of public key cryptography where the encryption and decryption 
keys are different. Since different keys are used, it's possible to make the 
encryption key public—thus the name public key.2 In public key crypto, 
the encryption key is, appropriately, known as the public key, whereas the 
decryption key, which must remain secret, is the private key. In symmetric 
key crypto, the key is known as a symmetric key. We'll avoid the ambiguous 
term secret key. 

plaintext-

key key 

encrypt — / W W w W V — * decrypt 

ciphertext 

Figure 2.1: Crypto as a Black Box 

■ plaintext 

For an ideal cipher, it is infeasible to recover the plaintext from the ci-
phertext without the key. That is, even if the attacker, Trudy, has complete 
knowledge of the algorithms used and lots of other information (to be made 
more precise later), she can't recover the plaintext without the key. That's 
the goal, although reality sometimes differs. 

1This is the only black box you'll find in this book! 
2Public key crypto is also known as asymmetric crypto, in reference to the fact that the 

encryption and decryption keys are different. 
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A fundamental tenet of cryptography is that the inner workings of a cryp-
tosystem are completely known to the attacker, Trudy, and the only secret 
is a key. This is known as Kerckhoffs' Principle, which, believe it or not, 
was named after a guy named Kerckhoffs. In the year 1883, Kerckhoffs, a 
Dutch linguist and cryptographer, laid out six principles of cipher design and 
use [164]. The principle that now bears his name states that a cipher "must 
not be required to be secret, and it must be able to fall into the hands of the 
enemy without inconvenience" [165], that is, the design of the cipher is not 
secret. 

What is the point of Kerckhoffs' Principle? After all, it must certainly 
be more difficult for Trudy to attack a cryptosystem if she doesn't know 
how the cipher works. So, why would we want to make Trudy's life easier? 
There are (at least) a couple of problems with relying on a secret design 
for your security. For one, the details of "secret" cryptosystems seldom, if 
ever, remain secret for long. Reverse engineering can be used to recover 
algorithms from software, and even algorithms embedded in tamper-resistant 
hardware are sometimes subject to reverse engineering attacks and exposure. 
And, even more worrisome is the fact that secret crypto-algorithms have a 
long history of failing to be secure once the algorithms have been exposed 
to public scrutiny—see [29] for a relatively recent example where Microsoft 
violated Kerckhoffs' Principle. 

Cryptographers will not deem a crypto-algorithm worthy of use until it has 
withstood extensive public analysis by many cryptographers over an extended 
period of time. The bottom line is that any cryptosystem that does not satisfy 
Kerckhoffs' Principle is suspect. In other words, ciphers are presumed guilty 
until "proven" innocent. 

Kerckhoffs' Principle is often extended to cover various aspects of security 
well beyond cryptography. In other contexts, this basic principle is usually 
taken to mean that the security design itself is open to public scrutiny. The 
belief is that "more eyeballs" are more likely to expose more security flaws 
and therefore ultimately result in a system that is more secure. Although 
Kerckhoffs' Principle (in both its narrow crypto form and in a broader con-
text) seems to be universally accepted in principle, there are many real-world 
temptations to violate this fundamental tenet, almost invariably with dis-
astrous consequences. Throughout this book we'll see several examples of 
security failures that were directly caused by a failure to heed the venerable 
Mr. Kerckhoffs. 

In the next section, we look briefly at a few classic cryptosystems. Al-
though the history of crypto is a fascinating topic [159], the purpose of this 
material is to provide an elementary introduction to some of the crucial con-
cepts that arise in modern cryptography. In other words, pay attention since 
we will see all of these concepts again in the next couple of chapters and in 
many cases, in later chapters as well. 
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2.3 Classic Crypto 

In this section, we examine four classic ciphers, each of which illustrates a 
feature that is relevant to modern cryptosystems. First on our agenda is 
the simple substitution, which is one of the oldest cipher systems—dating 
back at least 2,000 years—and one that is good for illustrating some basic 
attacks. We then turn our attention to a type of double transposition cipher, 
which includes important concepts that are used in modern ciphers. We also 
discuss classic codebooks, since many modern ciphers can be viewed as the 
"electronic" equivalent of codebooks. Finally, we consider the so-called one-
time pad, a practical cipher that is provably secure. No other cipher in this 
book (or in common use) is provably secure. 

2.3.1 Simple Subst i tut ion Cipher 

First, we consider a particularly simple implementation of a simple substitu-
tion cipher. In the simplest case, the message is encrypted by substituting 
the letter of the alphabet n places ahead of the current letter. For example, 
with n = 3, the substitution—which acts as the key—is 

plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z 
ciphertext: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

where we've followed the convention that the plaintext is lowercase, and the 
ciphertext is uppercase. In this example, the key could be given succinctly 
as "3" since the amount of the shift is, in effect, the key. 

Using the key 3, we can encrypt the plaintext message 

fourscoreandsevenyearsago (2-1) 

by looking up each plaintext letter in the table above and then substituting 
the corresponding letter in the ciphertext row, or by simply replacing each 
letter by the letter that is three positions ahead of it in the alphabet. For the 
particular plaintext in (2.1), the resulting ciphertext is 

IRXUVFRUHDAGVHYHABHDUVDIR. 

To decrypt this simple substitution, we look up the ciphertext letter in the 
ciphertext row and replace it with the corresponding letter in the plaintext 
row, or we can shift each ciphertext letter backward by three. The simple 
substitution with a shift of three is known as the Caesar's cipher.3 

3Historians generally agree that the Caesar's cipher was named after the Roman dictator, 
not the salad. 
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There is nothing magical about a shift by three—any shift will do. If we 
limit the simple substitution to shifts of the alphabet, then the possible keys 
are n G {0,1,2,..., 25}. Suppose Trudy intercepts the ciphertext message 

CSYEVIXIVQMREXIH 

and she suspect that it was encrypted with a simple substitution cipher using 
a shift by n. Then she can try each of the 26 possible keys, "decrypting" the 
message with each putative key and checking whether the resulting putative 
plaintext makes sense. If the message really was encrypted via a shift by n, 
Trudy can expect to find the true plaintext—and thereby recover the key— 
after 13 tries, on average. 

This brute force attack is something that Trudy can always attempt. Pro-
vided that Trudy has enough time and resources, she will eventually stumble 
across the correct key and break the message. This most elementary of all 
crypto attacks is known as an exhaustive key search. Since this attack is 
always an option, it's necessary (although far from sufficient) that the num-
ber of possible keys be too large for Trudy to simply try them all in any 
reasonable amount of time. 

How large of a keyspace is large enough? Suppose Trudy has a fast com-
puter (or group of computers) that's able to test 240 keys each second.4 Then 
a keyspace of size 256 can be exhausted in 216 seconds, or about 18 hours, 
whereas a keyspace of size 264 would take more than half a year for an ex-
haustive key search, and a keyspace of size 2128 would require more than nine 
quintillion years. For modern symmetric ciphers, the key is typically 128 bits 
or more, giving a keyspace of size 

2 1 2 8 

or more. 
Now, back to the simple substitution cipher. If we only allow shifts of 

the alphabet, then the number of possible keys is far too small, since Trudy 
can do an exhaustive key search very quickly. Is there any way that we can 
increase the number of keys? In fact, there is no need not to limit the simple 
substitution to a shifting by n, since any permutation of the 26 letters will 
serve as a key. For example, the following permutation, which is not a shift 
of the alphabet, gives us a key for a simple substitution cipher: 

plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z 
ciphertext: Z P B Y J R G K F L X Q N W V D H M S U T O I A E C 

In general, a simple substitution cipher can employ any permutation of the 
alphabet as a key, which implies that there are 26! « 288 possible keys. With 

4In 1998 the Electronic Frontier Foundation (EFF) built a special-purpose key cracking 
machine for attacking the Data Encryption Standard (DES, which we'll discuss in the next 
chapter). This machine, which cost $220,000, consisted of about 43,200 processors, each 
of which ran at 40 MHz and, overall, it was capable of testing about 2.5 million keys per 
second [156]. Extrapolating this to a state-of-the-art PC with a single 4 GHz processor, 
Trudy could test fewer than 230 keys per second on one such machine. So, if she had access 
to 1000 such machines, she could test about 240 keys per second. 
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Trudy's superfast computer that tests 240 keys per second, trying all possible 
keys for the simple substitution would take more than 8900 millennia. Of 
course, she would expect to find the correct key half that time, or just 4450 
millennia. Since 288 keys is far more than Trudy can try in any reasonable 
amount of time, this cipher passes the crucial first requirement of any practical 
cipher, namely, the keyspace is big enough so that an exhaustive key search 
is infeasible. Does this mean that a simple substitution cipher is secure? The 
answer is a resounding no, as the attack described in the next section clearly 
illustrates. 

2.3.2 Cryptanalysis of a Simple Subst i tut ion 

Suppose Trudy intercepts the following ciphertext, which she suspects was 
produced by a simple substitution cipher, where the key could be any per-
mutation of the alphabet: 

PBFPVYFBQXZTYFPBFEQJHDXXQVAPTPQJKTOYQWIPBWLXTOXBTFXCÌWA 
XBVCXQWAXFQJVWLEQNTOZQGGQLFXQWAKVWLXQWAEBIPBFXFqVXGTVJV 
WLBTPQWAEBFPBFHCVLXBQUFEWLXGDPEQVPQGVPPBFTIXPFHXZHVFAG 
FOTHFEFBQUFTDHZBQPOTHXTYFTODXQHFTDPTOGHFqPBQWAqjJTODXqH , » 
FOQPWTBDHHIXqVAPBFZqHCFWPFHPBFIPBqWKFABVYYDZBOTHPBqPqjT ^ ' ' 
qOTOGHFqAPBFEqjHDXXqVAVXEBqPEFZBVFOJIWFFACFCCFHQWAUVWFL 
qHGFXVAFXqHFUFHILTTAVWAFFAWTEVDITDHFHFqAITIXPFHXAFqHEFZ 
qWGFLVWPTOFFA 

Since it 's too much work for Trudy to try all 28 8 possible keys, can she 
be more clever? Assuming the plaintext is English, Trudy can make use of 
the English letter frequency counts in Figure 2.2 together with the frequency 
counts for the ciphertext in (2.2), which appear in Figure 2.3. 

A B C D E F 6 H I J K L M N O P Q R S T U V W X Y Z 

Figure 2.2: English Letter Frequency Counts 

From the ciphertext frequency counts in Figure 2.3, we see that "F" is the 
most common letter in the encrypted message and, according to Figure 2.2, 
"E" is the most common letter in the English language. Trudy therefore 
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A B C D E F e H I J K L M N O P Q R S T U V W X Y Z 

Figure 2.3: Ciphertext Frequency Counts 

surmises that it's likely that "F" has been substituted for "E." Continuing in 
this manner, Trudy can try likely substitutions until she recognizes words, at 
which point she can be confident in her guesses. 

Initially, the easiest word to determine might be the first word, since 
Trudy doesn't know where inter-word spaces belong in the text. Since the 
third plaintext letter appears to be "e," and given the high frequency counts 
of the first two letter, Trudy might reasonably guess (correctly, as it turns 
out) that the first word of the plaintext is "the." Making these substitutions 
into the remaining ciphertext, she will be able to guess more letters and the 
puzzle will begin to unravel. Trudy will likely make some missteps along the 
way, but with sensible use of the statistical information available, she will 
find the plaintext in considerably less time than 4450 millennia. 

This attack on the simple substitution shows that a large keyspace is not 
sufficient to ensure security. This attack also shows that cipher designers must 
guard against clever attacks. But how can we protect against all such attacks, 
since new attacks are developed all the time? The answer is that we can't 
and, as a result, a cipher must be subjected to extensive analysis by skilled 
cryptographers before we can trust it—the more skilled cryptographers who 
have tried to break a cipher and failed, the more confidence we have in the 
system. 

2.3.3 Definition of Secure 

There are several reasonable definitions of a secure cipher. Ideally, we would 
like to have a rigorous mathematical proof that there is no feasible attack 
on a system, but such ciphers are few and far between and provably secure 
ciphers are impractical for most uses. 

Lacking a proof that a cipher is secure, we could require that the best-
known attack on the system is impractical, in the sense of being computa-
tionally infeasible. While this would seem to be the most crucial property, 
we'll use a slightly different definition. We say that a cryptosystem is secure 
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if the best-known attack requires as much work as an exhaustive key search. 
In other words, no shortcut attack is known. 

Note that by our definition, a secure cipher with a small number of keys 
could be easier to break than an insecure one with a large number of keys. 
While this may seem counterintuitive, there is a method to the madness. The 
rationale for our definition is that a cipher can never offer more security than 
an exhaustive key search, so the key size could be considered its "advertised" 
level of security. If a shortcut attack is known, the algorithm fails to provide 
its advertised level of security, as indicated by the key length. In short, a 
shortcut attack indicates that the cipher has a design flaw. 

Note also that in practice, we must select a cipher that is secure (in the 
sense of our definition) and has a large enough key space so that an exhaustive 
key search is impractical. Both factors are necessary when choosing a cipher 
to protect sensitive data. 

2.3.4 Double Transposition Cipher 

In this section we discuss another classic cipher that illustrates some impor-
tant basic concepts. The double transposition presented in this section is a 
weaker form of the usual double transposition cipher. We use this form of 
the cipher since it provides a slightly simpler means of illustrating all of the 
points that we want to make. 

To encrypt with a double transposition cipher, we first write the plaintext 
into an array of a given size and then permute the rows and columns accord-
ing to specified permutations. For example, suppose we write the plaintext 
attackatdawn into a 3 x 4 array: 

a t t a 
c k a t 
d a w n 

Now if we transpose (or permute) the rows according to (1,2,3) —> (3,2,1) 
and then transpose the columns according to (1,2,3,4) —» (4,2,1,3), we 
obtain 

n a d w 
t k c a . 
a t a t 

The ciphertext is then read from the final array: 

NADWTKCAATAT (2.3) 

For the double transposition, the key consists of the size of the matrix and 
the row and column permutations. Anyone who knows the key can simply put 

a t t a 
c k a t 
d a w n 

d a w n 
c k a t 
a t t a 
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the ciphertext into the appropriate sized matrix and undo the permutations 
to recover the plaintext For example, to decrypt (2.3), the ciphertext is first 
put into a 3 x 4 array. Then the columns are numbered as (4,2,1,3) and 
rearranged to (1,2,3,4), and the rows are numbered (3,2,1) and rearranged 
into (1,2,3), 

" N A D W 
T K C A 

_ A T A T 

and we see that we have recovered the plaintext, namely, attackatdawn. 
The bad news is that, unlike a simple substitution, the double transposi-

tion does nothing to disguise the letters that appear in the message. The good 
news is that the double transposition appears to thwart an attack that relies 
on the statistical information contained in the plaintext, since the plaintext 
statistics are disbursed throughout the ciphertext. 

Even this simplified version of the double transposition is not a trivial 
cipher to break. The idea of smearing plaintext information through the 
ciphertext is so useful that it is employed by modern block ciphers, as we will 
see in the next chapter. 

2.3.5 One-Time Pad 

The one-time pad, which is also known as the Vernam cipher, is a provably 
secure cryptosystem. Historically it has been used in various times and places, 
but it's not practical for most situations. However, it does nicely illustrate 
some important concepts that we'll see again later. 

For simplicity, let's consider an alphabet with only eight letters. Our 
alphabet and the corresponding binary representation of letters appear in 
Table 2.1. It's important to note that the mapping between letters and bits 
is not secret. This mapping serves a similar purpose as, say, the ASCII code, 
which is not much of a secret either. 

Table 2.1: Abbreviated Alphabet 

letter 
binary 

e 
000 

li 

001 
i 

010 
k 

011 
1 

100 
r 

101 
s 

110 
t 

111 

Suppose that Alice, who recently got a job as a spy, wants to use a one-
time pad to encrypt the plaintext message 

D A W N 
C K A T 
A T T A 

A T T A 
C K A T 
D A W N 

h e i l h i t l e r . 
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She first consults Table 2.1 to convert the plaintext letters to the bit string 

001 000 010 100 001 010 111 100 000 101. 

The one-time pad key consists of a randomly selected string of bits that is 

the same length as the message. The key is then XORed with the plaintext 

to yield the ciphertext. For the mathematically inclined, a fancier way to say 

this is that we add the plaintext and key bits modulo 2. 

We denote the XOR of bit x with bit y as x φ y. Since x φ y Θ y = x, 

decryption is accomplished by XOR-ing the same key with the ciphertext. 

Modern symmetric ciphers utilize this magical property of the XOR in various 

ways, as we'll see in the next chapter. 

Now suppose that Alice has the key 

111 101 110 101 111 100 000 101 110 000 

which is of the proper length to encrypt her message above. Then to encrypt, 

Alice computes the ciphertext as 

h e i l h i t l e r 

plaintext: 001 000 010 100 001 010 111 100 000 101 

key: 111 101 110 101 111 100 000 101 110 000 

ciphertext: 110 101 100 001 110 110 111 001 110 101 

s r l h s s t h s r 

Converting these ciphertext bits back into letters, the ciphertext message to 

be transmitted is s r lh s s ths r . 

When her fellow spy, Bob, receives Alice's message, he decrypts it using 

the same shared key and thereby recovers the plaintext: 

s r l h s s t h s r 

ciphertext: 110 101 100 001 110 110 111 001 110 101 

key: 111 101 110 101 111 100 000 101 110 000 

plaintext: 001 000 010 100 001 010 111 100 000 101 

h e i l h i t l e r 

Let's consider a couple of scenarios. First, suppose that Alice has an 

enemy, Charlie, within her spy organization. Charlie claims that the actual 

key used to encrypt Alice's message is 

101 111 000 101 111 100 000 101 110 000. 

Bob decrypts the ciphertext using the key given to him by Charlie and obtains 

s r l h s s t h s r 

ciphertext: 110 101 100 001 110 110 111 001 110 101 

"key": 101 111 000 101 111 100 000 101 110 000 

"plaintext": 011 010 100 100 001 010 111 100 000 101 

k i l l h i t l e r 
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Bob, who doesn't really understand crypto, orders that Alice be brought in 
for questioning. 

Now let's consider a different scenario. Suppose that Alice is captured by 
her enemies, who have also intercepted the ciphertext. The captors are eager 
to read the message and Alice is "encouraged" to provide the key for this 
super-secret message. Alice claims that she is actually a double agent and to 
prove it she provides the "key" 

111 101 000 Oil 101 110 001 011 101 101. 

When Alice's captors "decrypt" the ciphertext using this "key," they find 

s r l h s s t h s r 
ciphertext: 110 101 100 001 110 110 111 001 110 101 

"key": 111 101 000 011 101 110 001 011 101 101 
"plaintext": 001 000 100 010 011 000 110 010 011 000 

h e 1 i k e s i k e 

Alice's captors, who are not very knowledgeable about crypto, congratulate 
Alice for her patriotism and release her. 

While not a proof, these examples do indicate why the one-time pad is 
provably secure. The bottom line is that if the key is chosen at random, and 
used only once, then an attacker who sees the ciphertext has no information 
about the message itself (other than its length, which could be padded). That 
is, given the ciphertext, any "plaintext" of the same length can be generated 
by a suitable choice of "key," and all possible plaintexts are equally likely. So 
the ciphertext provides no meaningful information at all about the plaintext. 
Prom a cryptographer's point of view, it doesn't get any better than that. 

Of course, we are assuming that the one-time pad cipher is used correctly. 
The key (or pad) must be chosen at random, used only once, and must be 
known only to the Alice and Bob. 

Since we can't do better than provable security, why don't we always use 
the one-time pad? Unfortunately, the cipher is impractical for most appli-
cations. Why is this the case? The crucial problem is that the pad is the 
same length as the message and since the pad is the key, it must be securely 
shared with the intended recipient before the ciphertext can be decrypted. If 
we can securely transmit the pad, why not simply transmit the plaintext by 
the same means and do away with the encryption? 

Below, we'll see an historical example where it actually did make sense 
to use a one-time pad—in spite of its limitations. However, for modern high 
data-rate systems, a one-time pad cipher would be totally impractical. 

While we're at it, why is it that the one-time pad can only be used once? 
Suppose we have two plaintext messages Pi and Pi and we encrypted these 
as as Ci = P\ ®K and C2 = Pi ®K, that is, we have two messages encrypted 
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with the same "one-time" pad K. In the cryptanalysis business, this is known 

as a depth. With one-time pad ciphertexts in depth, we see that 

Ci Θ C2 = Pi Θ K θ P2 Θ K = Pi Θ P2 

and the key has disappeared from the problem. In this case, the ciphertext 

does yield some information about the underlying plaintext. Another way to 

see this is consider an exhaustive key search. If the pad is only used once, then 

the attacker has no way to know whether the guessed key is correct or not. 

But if two messages are in depth, for the correct key, both putative plaintexts 

must make sense. This provides the attacker with a means to distinguish the 

correct key from incorrect guesses. The problem only gets worse (or better, 

from Trudy's perspective) the more times the key is reused. 

Let's consider an example of one-time pad encryptions that are in depth. 

Using the same bit encoding as in Table 2.1, suppose we have 

Pi = l i ke = 100010011000 and P2 = k i t e = 011010111000 

and both are encrypted with the same key K = 110 011 101 111. Then 

l i k e 

Pi: 100 010 011 000 

K: 110 011 101 111 

d: 010 001 110 111 

i h s t 

and 

k i t e 

P2: 011 010 111 000 

K: 110 011 101 111 

C2: 101 001 010 111 

r h. i t 

If Trudy the cryptanalyst knows that the messages are in depth, she im-

mediately sees that the second and fourth letters of Pi and P2 are the same, 

since the corresponding ciphertext letters are identical. But far more devas-

tating is the fact that Trudy can now guess a putative message Pi and check 

her results using P2. Suppose that Trudy (who only has C\ and C2) sus-

pects that Pi = k i l l = 011010100100. Then she can find the corresponding 

putative key: 

k i l l 

putative Pi: 011 010 100 100 

Ci: 010 001 110 111 

putative K: 001 011 010 011 
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and she can then use this K to "decrypt" C2 and obtain 

C2: 101 001 010 111 
putative K: 001 Oil 010 Oil 
putative P2: 100 010 000 100 

l i e i 

Since this K does not yield a sensible decryption for P2, Trudy can safely 
assume that her guess for Pi was incorrect. When Trudy eventually guesses 
Pi = l ike she will obtain the correct key K and decrypt to find P2 = k i t e , 
thereby confirming the correctness of the key and, therefore, the correctness 
of both decryptions. 

2.3.6 Project V E N O N A 

The so-called VENONA project [315] provides an interesting example of a 
real-world use of the one-time pad. In the 1930s and 1940s, spies from the 
Soviet Union who entered the United States brought with them one-time pad 
keys. When it was time to report back to their handlers in Moscow, these 
spies used their one-time pads to encrypt their messages, which could then 
be safely sent back to Moscow. These spies were extremely successful, and 
their messages dealt with the most sensitive U.S. government secrets of the 
time. In particular, the development of the first atomic bomb was a focus of 
much of the espionage. The Rosenbergs, Alger Hiss, and many other well-
known traitors—and many who were never identified—figure prominently in 
VENONA messages. 

The Soviet spies were well trained and never reused the key, yet many of 
the intercepted ciphertext messages were eventually decrypted by American 
cryptanalysts. How can that be, given that the one-time pad is provably 
secure? In fact, there was a flaw in the method used to generate the pads, 
so that, in effect, long stretches of the keys were repeated. As a result, many 
messages were in depth, which enabled the successful cryptanalysis of much 
VENONA traffic. 

Part of one interesting VENONA decrypt is given in Table 2.2. This 
message refers to David Greenglass and his wife Ruth. LIBERAL is Julius 
Rosenberg who, along with his wife Ethyl, was eventually executed for his role 
in nuclear espionage.5 The Soviet codename for the atomic bomb was, appro-
priately, ENORMOUS. For any World War II-era history buff, the VENONA 
decrypts at [315] make for fascinating reading. 

5David Greenglass served ten years of a fifteen year sentence for his part in the 
crime. He later claimed that he lied in crucial testimony about Ethyl Rosenberg's level 
of involvement—testimony that was probably decisive in her being sentenced to death. 
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Table 2.2: V E N O N A Decrypt of Message of September 21, 1944 

[e*/, Ruth] learned that her husband [v] was called up by the army 

but he was not sent to the front. He is a mechanical engineer 

and is now working at the ENORMOUS [ENORMOZ] [vi] plant in 

SANTA FE, New Mexico. 

[45 groups unrecoverable] 

detain VOLOK [vii] who is working in a plant on ENORMOUS. He is a 

FELLOWCOUNTRYMAN [ZEMLYaK] [viii]. Yesterday he learned that 

they had dismissed him from his work. His active work in 

progressive organizations in the past was cause of his dismissal. 

In the FELLOWCOUNTRYMAN line LIBERAL is in touch with CHESTER [ix]. 

They meet once a month for the payment of dues. CHESTER is 

interested in whether we are satisfied with the collaboration and 

whether there are not any misunderstandings. He does not inquire 

about specific items of work [KONKRETNAYa RABOTA]. In as much 

as CHESTER knows about the role of LIBERAL'S group we beg consent 

to ask C. through LIBERAL about leads from among people who are 

working on ENOURMOUS and in other technical fields. 

2.3.7 Codebook Cipher 

A classic codebook cipher is, literally, a dictionary-like book containing (plain-
text) words and their corresponding (ciphertext) codewords. To encrypt a 
given word, the cipher clerk would simply look up the word in the codebook 
and replace it with the corresponding codeword. Decryption, using the in-
verse codebook, was equally straightforward. Table 2.3 contains an excerpt 
from a famous codebook used by Germany during World War I. 

For example, to use the codebook in Table 2.3 to encrypt the German 
word Februar, the entire word would be replaced with the 5-digit codeword 
13605. This codebook was used for encryption, while the corresponding in-
verse codebook, arranged with the 5-digit codewords in numerical order, was 
used for decryption. A codebook is a form of a substitution cipher, but the 
substitutions are far from simple, since substitutions are for entire words, or 
in some cases, entire phrases. 

The codebook illustrated in Table 2.3 was used to encrypt the famous 
Zimmermann telegram. At the height of World War I in 1917, the German 
Foreign Minister, Arthur Zimmermann, sent an encrypted telegram to the 
German ambassador in Mexico City. The ciphertext message, which appears 
in Figure 2.4 [227], was intercepted by the British. At the time, the British 
and French were at war with Germany, but the U.S. was neutral [307]. 
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Table 2.3: Excerpt from a German Codebook 

Plaintext 
Februar 
fest 
finanzielle 
folgender 
Frieden 
Friedenschluss 

Ciphertext 
13605 
13732 
13850 
13918 
17142 
17149 

Figure 2.4: The Zimmermann Telegram 

The Russians had recovered a damaged version of the German code-
book, and the partial codebook had been passed on to the British. Through 
painstaking analyses, the British were able to fill in the gaps in the codebook 
so that by the time they obtained the Zimmermann telegram, they could 
decrypt it [83]. The telegram stated that the German government was plan-
ning to begin unrestricted submarine warfare and had concluded that this 
would likely lead to war with the United States. As a result, Zimmermann 
told his ambassador that Germany should try to recruit Mexico as an ally to 
fight against the United States. The incentive for Mexico was that it would 
"reconquer the lost territory in Texas, New Mexico and Arizona." When the 
Zimmermann telegram was released in the U.S., public opinion turned against 
Germany and, after the sinking of the Lusitania, the U.S. declared war. 
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The British were initially hesitant to release the Zimmermann telegram 
since they feared that the Germans would realize that their cipher was broken 
and, presumably, stop using it. However, after decrypting the Zimmermann 
telegram, the British took a closer look at other intercepted messages that 
had been sent at about the same time. To their amazement, they found that 
a variant of the incendiary telegram had been sent unencrypted.6 The version 
of the Zimmermann telegram that the British subsequently released closely 
matched the unencrypted version of the telegram. As the British hoped, 
the Germans concluded that their codebook had not been compromised and 
continued to use it for sensitive messages throughout the war. 

The security of a classic codebook cipher depends primarily on the phys-
ical security of the book itself. That is, the book must be protected from 
capture by the enemy. In addition, statistical attacks analogous to those 
used to break a simple substitution cipher apply to codebooks, although the 
amount of data required is much larger. The reason that a statistical attack 
on a codebook is more difficult is due to the fact that the size of the "alpha-
bet" is much larger, and consequently far more data must be collected before 
the statistical information can rise above the noise. 

As late as World War II, codebooks were in widespread use. Cryptogra-
phers realized that these ciphers were subject to statistical attack, so code-
books needed to be periodically replaced with new codebooks. Since this was 
an expensive and risky process, techniques were developed to extend the life 
of a codebook. To accomplish this, a so-called additive was generally used. 

Suppose that for a particular codebook cipher, the codewords are all 5-
digit numbers. Then the corresponding additive book would consist of a long 
list of randomly generated 5-digit numbers. After a plaintext message had 
been converted to a series of 5-digit codewords, a starting point in the additive 
book would be selected and beginning from that point, the sequence of 5-
digit additives would be added to the codewords to create the ciphertext. To 
decrypt, the same additive sequence would be subtracted from the ciphertext 
before looking up the codeword in the codebook. Note that the additive 
book—as well as the codebook itself—is required to encrypt or decrypt a 
message. 

Often, the starting point in the additive book was selected at random 
by the sender and sent in the clear (or in a slightly obfuscated form) at the 
start of the transmission. This additive information was part of the message 
indicator, or MI. The MI included any non-secret information needed by the 
intended recipient to decrypt the message. 

If the additive material was only used once, the resulting cipher would 
be equivalent to a one-time pad and therefore, provably secure. However, in 

6 Apparently, the message had not initially attracted attention because it was not en-
crypted. The lesson here is that, ironically, encryption with a weak cipher may be worse 
than no encryption at all. We have more to say about this issue in Chapter 10. 
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practice, the additive was reused many times and, therefore, any messages 
sent with overlapping additives would have their codewords encrypted with 
the same key, where the key consists of the codebook and the specific additive 
sequence. Therefore, any messages with overlapping additive sequences could 
be used to gather the statistical information needed to attack the underlying 
codebook. In effect, the additive book dramatically increased the amount of 
ciphertext required to mount a statistical attack on the codebook, which is 
precisely the effect the cryptographers had hoped to achieve. 

Modern block ciphers use complex algorithms to generate ciphertext from 
plaintext (and vice versa), but at a higher level, a block cipher can be viewed 
as a codebook, where each key determines a distinct codebook. That is, a 
modern block cipher consists of an enormous number of distinct codebooks, 
with the codebooks indexed by the key. The concept of an additive also lives 
on, in the form of an initialization vector, or IV, which is often used with 
block ciphers (and sometimes with stream ciphers as well). Block ciphers are 
discussed in detail in the next chapter. 

2.3.8 Ciphers of the Election of 1876 

The U.S. presidential election of 1876 was a virtual dead heat. At the time, 
the Civil War was still fresh in people's minds, Radical Reconstruction was 
ongoing in the former Confederacy, and the nation was still bitterly divided. 

The contestants in the election were Republican Rutherford B. Hayes and 
Democrat Samuel J. Tilden. Tilden had obtained a slight plurality of the 
popular vote, but it is the Electoral College that determines the winner of 
the presidency. In the Electoral College, each state sends a delegation and for 
almost every state, the entire delegation is supposed to vote for the candidate 
who received the largest number of votes in that particular state.7 

In 1876, the electoral college delegations of four states8 were in dispute, 
and these held the balance. A commission of 15 members was appointed 
to determine which state delegations were legitimate, and thus determine 
the presidency. The commission decided that all four states should go to 
Hayes and he became president of the United States. Tilden's supporters 
immediately charged that Hayes' people had bribed officials to turn the vote 
in his favor, but no evidence was forthcoming. 

Some months after the election, reporters discovered a large number of 
encrypted messages that had been sent from Tilden's supporters to officials in 
the disputed states. One of the ciphers used was a partial codebook together 

7However, there is no legal requirement for an Electoral College delegate to vote for a 
particular candidate, and on occasion a "faithless elector" will vote contrary to the popular 
vote in his or her state. 

8Foreshadowing the election of 2000, one of these four disputed states was, believe it or 
not, Florida. 
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Table 2.4: Election of 1876 Codebook 

Plaintext Ciphertext 
Greenbacks Copenhagen 
Hayes Greece 
votes Rochester 
Tilden Russia 
telegram Warsaw 

with a transposition on the words. The codebook was only applied to im-
portant words and the transposition was a fixed permutation for all messages 
of a given length. The allowed message lengths were 10, 15, 20, 25, and 30 
words, with all messages padded to one of these lengths. A snippet of the 
codebook appears in Table 2.4. 

The permutation used for a message of 10 words was 

9,3,6,1,10,5,2,7,4,8. 

One actual ciphertext message was 

Warsaw they read a l l unchanged l a s t are i d i o t s can ' t s i t u a t i o n 

which was decrypted by undoing the permutation and substituting telegram 
for Warsaw to obtain 

Can't read last telegram. 

Situation unchanged. 

They are all idiots. 

The cryptanalysis of this weak cipher was relatively easy to accomplish [124]. 
Since a permutation of a given length was used repeatedly, many messages 
of particular length were in depth—with respect to the permutation as well 
as the codebook. A cryptanalyst could therefore compare all messages of 
the same length, making it relatively easy to discover the fixed permutation, 
even without knowledge of the partial codebook. Of course, the analyst first 
had to be clever enough to consider the possibility that all messages of a 
given length were using the same permutation, but, with this insight, the 
permutations were easily recovered. The codebook was then deduced from 
context and also with the aid of some unencrypted messages that provided 
context for the ciphertext messages. 

And what did these decrypted messages reveal? The reporters who broke 
the messages were amused to discover that Tilden's supporters had tried to 
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bribe officials in the disputed states. The irony here—or not, depending on 
your perspective—is that Tilden's people were guilty of precisely the same 
crime of which they had accused Hayes. 

By any measure, this cipher was poorly designed and weak. One lesson 
is that the overuse of a key can be an exploitable flaw. In this case, each 
time a permutation was reused, it gave the cryptanalyst more information 
that could be collated to recover the permutation. In modern cipher systems, 
we try to limit the use of a key so that we do not allow a cryptanalyst to 
accumulate too much information and to limit the damage if a particular key 
is exposed. 

2.4 Modern Crypto History 

Don't let yesterday take up too much of today. 
— Abraham Lincoln 

Throughout the 20th century, cryptography played an important role in ma-
jor world events. Late in the 20th century, cryptography became a critical 
technology for commercial and business communications as well, and it re-
mains so today. 

The Zimmermann telegram is one of the first examples from the last 
century of the role that cryptanalysis has had in political and military affairs. 
In this section, we mention a few other historical highlights from the past 
century. For more on the history of cryptography, the best source is Kahn's 
book [159]. 

In 1929, Secretary of State Henry L. Stimson ended the U.S. government's 
official cryptanalytic activity, justifying his actions with the immortal line, 
"Gentlemen do not read each other's mail" [291]. This would prove to be a 
costly mistake in the run-up to the attack on Pearl Harbor. 

Prior to the Japanese attack of December 7, 1941, the United States had 
restarted its cryptanalytic programs. The successes of allied cryptanalysts 
during the World War II era were remarkable, and this period is often seen as 
the golden age of cryptanalysis. Virtually all significant Axis cryptosystems 
were broken by the Allies and the value of the intelligence obtained from these 
systems is difficult to overestimate. 

In the Pacific theatre, the so-called Purple cipher was used for high level 
Japanese government communication. This cipher was broken by Ameri-
can cryptanalysts before the attack on Pearl Harbor, but the intelligence 
gained (code named MAGIC) provided no clear indication of the impending 
attack [82]. The Japanese Imperial Navy used a cipher known as JN-25, which 
was also broken by the Americans. The intelligence from JN-25 was almost 
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certainly decisive in the extended battle of Coral Sea and Midway, where an 
inferior American force was able to to halt the advance of the Japanese in 
the Pacific for the first time. The Japanese Navy was never able to recover 
from the losses inflicted during this crucial battle. 

In Europe, the German Enigma cipher (code named ULTRA) was a major 
source of intelligence for the Allies during the war [104, 118]. It is often 
claimed that the ULTRA intelligence was so valuable that Churchill decided 
not to inform the British city of Coventry of an impending attack by the 
German Luftwaffe, since the primary source of information on the attack 
came from Enigma decrypts [69]. Churchill was supposedly concerned that a 
warning might tip off the Germans that their cipher had been broken. That 
this did not occur has been well documented. Nevertheless, it was a challenge 
to utilize valuable ULTRA intelligence without giving away the fact that the 
Enigma had been broken [42]. 

The Enigma was initially broken by Polish cryptanalysts. After the fall of 
Poland, these cryptanalysts escaped to France, but shortly thereafter France 
fell to the Nazis. The Polish cryptanalysts eventually made their way to 
England, where they provided their knowledge to British cryptanalysts.9 A 
British team that included the computing pioneer, Alan Turing, developed 
improved attacks on the Enigma [104]. 

A picture of the Enigma appears in Figure 2.5. Additional details on the 
inner workings of the Enigma are given in the problems at the end of this 
chapter and a cryptanalytic attack is presented in Chapter 6. 

Figure 2.5: An Enigma Cipher (Courtesy of T. B. Perera and the Enigma 
Museum) 

Remarkably, the Polish cryptanalysts were not allowed to continue their work on the 
Enigma in Britian. 
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In the post-World War II era, cryptography slowly moved from a black art 
into the realm of science. The publication of Claude Shannon's seminal 1949 
paper, Information Theory of Secrecy Systems [267], marks the turning point. 
Shannon proved that the one-time pad is secure and he also offered two 
fundamental cipher design principles: confusion and diffusion. These two 
principles have guided symmetric cipher design ever since. 

In Shannon's use, confusion is, roughly speaking, defined as obscuring 
the relationship between the plaintext and ciphertext. On the other hand, 
diffusion is the idea of spreading the plaintext statistics through the cipher-
text. A simple substitution cipher and a one-time pad employ only confusion, 
whereas a double transposition is a diffusion-only cipher. Since the one-time 
pad is provably secure, evidently confusion alone is enough, while it appears 
that diffusion alone is not. 

These two concepts—confusion and diffusion—are as relevant today as 
they were on the day that they were originally published. In subsequent 
chapters, it will become clear that these concepts remain crucial to modern 
block cipher design. 

Until recently, cryptography was primarily the domain of the government 
and military. That changed dramatically in the 1970s, due in large part to 
the computer revolution which led to the need to protect large amounts of 
electronic data. By the mid-1970s, even the U.S. government realized that 
there was a legitimate commercial need for secure cryptography. Further-
more, it was clear that the commercial products of the day were severely 
lacking. So, the National Bureau of Standards, or NBS,10 issued a request 
for cryptographic algorithms. The idea was that NBS would select an algo-
rithm that would then become an official U.S. government standard. The 
ultimate result of this ill-conceived process was a cipher known as the Data 
Encryption Standard, or DES. 

It's impossible to overemphasize the role that DES has played in the 
modern crypto history. We'll have much more to say about DES in the next 
chapter. 

Post-DES, academic interest in cryptography grew rapidly. Public key 
cryptography was discovered (or, more precisely, rediscovered) shortly after 
the arrival of DES. By the 1980s there were annual CRYPTO conferences, 
which are a consistent source of high-quality work in the field. In the 1990s 
the Clipper Chip and the development of a replacement for the aging DES 
were two of the many crypto highlights. 

Governments continue to fund major organizations that work in crypto 
and related fields. However, it's clear that the crypto genie has escaped from 
its classified bottle, never to be put back. 

10NBS has since been rechristened as the National Institute of Standards and Technology, 
or NIST, perhaps in an effort to recycle three-letter acronyms and thereby delay their 
eventual exhaustion by government agencies. 
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2.5 A Taxonomy of Cryptography 

In the next three chapters, we'll focus on three broad categories of ciphers: 
symmetric ciphers, public key cryptosystems, and hash functions. Here, we 
give a very brief overview of these different categories. 

Each of the classic ciphers discussed above is a symmetric cipher. Modern 
symmetric ciphers can be subdivided into stream ciphers and block ciphers. 
Stream ciphers generalize the one-time pad approach, sacrificing provable 
security for a key that is manageable. Block ciphers are, in a sense, the 
generalization of classic codebooks. In a block cipher, the key determines the 
codebook, and as long as the key remains fixed, the same codebook is used. 
Conversely, when the key changes, a different codebook is selected. 

While stream ciphers dominated in the post-World War II era, today 
block ciphers are the kings of the symmetric crypto world—with a few no-
table exceptions. Generally speaking, block ciphers are easier to optimize for 
software implementations, while stream ciphers are usually most efficient in 
hardware. 

As the name suggests, in public key crypto, encryption keys can be made 
public. For each public key, there is a corresponding decryption key that is 
known as a private key. Not surprisingly, the private key is not public—it 
must remain private. 

If you post your public key on the Internet, anyone with an Internet 
connection can encrypt a message for you, without any prior arrangement 
regarding the key. This is in stark contrast to a symmetric cipher, where the 
participants must agree on a key in advance. Prior to the adoption of public 
key crypto, secure delivery of symmetric keys was the Achilles heel of mod-
ern cryptography. A spectacular case of a failed symmetric key distribution 
system can be seen in the exploits of the Walker family spy ring. The Walker 
family sold cryptographic keys used by the U.S. military to the Soviet Union 
for nearly two decades before being discovered [81, 96]. Public key cryptog-
raphy does not completely eliminate the key distribution problem, since the 
private key must be in the hands of the appropriate user, and no one else. 

Public key cryptography has another somewhat surprising and extremely 
useful feature, for which there is no parallel in the symmetric key world. 
Suppose a message is "encrypted" with the private key instead of the public 
key. Since the public key is public, anyone can decrypt this message. At 
first glance such encryption might seem pointless. However, it can serve as a 
digital form of a handwritten signature—anyone can verify the signature, but 
only the signer could have created the signature. As with all of these topics, 
we'll have much more to say about digital signatures in a later chapter. 

Anything we can do with a symmetric cipher we can also accomplish with 
a public key cryptosystem. Public key crypto also enables us to do things 
that cannot be accomplished with a symmetric cipher. So why not use public 
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key crypto for everything? The primary reason is efficiency—symmetric key 
crypto is orders of magnitude faster than public key. As a result, symmetric 
crypto is used to encrypt the vast majority of data today. Yet public key 
crypto has several critical roles to play in modern information security. 

The third major crypto category we'll consider is cryptographic hash func-
tions.11 These functions take an input of any size and produce an output of 
a fixed size. In addition, hash functions must satisfy some very stringent re-
quirements. For example, if the input changes in one or more bits, the output 
should change in about half of its bits. For another, it must be computation-
ally infeasible to find any two inputs that hash to the same output. It may 
not be obvious that such a function is useful—or that such functions actually 
exist—but we'll see that they do exist and that they turn out to be extremely 
useful for a surprisingly wide array of problems. 

2.6 A Taxonomy of Cryptanalysis 

The goal of cryptanalysis is to recover the plaintext, the key, or both. By 
Kerckhoffs' Principle, we assume that Trudy, the cryptanalyst, has complete 
knowledge of the inner workings of the algorithm. Another basic assumption 
is that Trudy has access to the ciphertext—otherwise, why would we bother 
to encrypt? If Trudy only knows the algorithms and the ciphertext, then 
she must conduct a ciphertext only attack. This is the most disadvantageous 
possible scenario from Trudy's perspective. 

Trudy's chances of success might improve if she has access to known plain-
text. That is, Trudy might know some of the plaintext and observe the corre-
sponding ciphertext. These matched plaintext-ciphertext pairs might provide 
information about the key. Of course, if all of the plaintext were known, there 
would be little point in recovering the key. But it's often the case that Trudy 
has access to (or can guess) some of the plaintext. For example, many kinds 
of data include stereotypical headers (email being a good example). If such 
data is encrypted, the attacker can likely guess some of the plaintext that 
corresponds to some of the ciphertext. 

Surprisingly often, Trudy can actually choose the plaintext to be en-
crypted and see the corresponding ciphertext. Not surprisingly, this goes by 
the name of chosen plaintext attack. How is it possible for Trudy to choose 
the plaintext? In later chapters, we'll see that some security protocols en-
crypt anything that is sent and return the corresponding ciphertext. It's also 
possible that Trudy could have limited access to a cryptosystem, allowing her 
to encrypt plaintext of her choice. For example, Alice might forget to log out 
of her computer when she takes her lunch break. Trudy could then encrypt 

11 Not to be confused with hash functions that you may have seen in other computing 
contexts. 
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some selected messages before Alice returns. This type of "lunchtime attack" 
takes many forms. 

Potentially more advantageous for the attacker is an adaptively chosen 
plaintext attack. In this scenario, Trudy chooses the plaintext, views the 
resulting ciphertext, and chooses the next plaintext based on the observed 
ciphertext. In some cases, this can make Trudy's job significantly easier. 

Related key attacks are also significant in some applications. The idea 
here is to look for a weakness in the system when the keys are related in some 
special way. 

There are other types of attacks that cryptographers occasionally worry 
about—mostly when they feel the need to publish another academic paper. 
In any case, a cipher can only be considered secure if no successful shortcut 
attack is known. 

Finally, there is one particular attack scenario that applies to public key 
cryptography, but not the symmetric key case. Suppose Trudy intercepts a 
ciphertext that was encrypted with Alice's public key. If Trudy suspects that 
the plaintext message was either "yes" or "no," then she can encrypt both 
of these putative plaintexts with Alice's public key. If either matches the 
ciphertext, then the message has been broken. This is known as a forward 
search. Although a forward search is not applicable against a symmetric 
cipher, we'll see that this approach can be used to attack hash functions in 
some applications. 

We've previously seen that the size of the keyspace must be large enough 
to prevent an attacker from trying all possible keys. The forward search 
attack implies that in public key crypto, we must also ensure that the size 
of the plaintext message space is large enough so that the attacker cannot 
simply encrypt all possible plaintext messages. In practice, this is easy to 
achieve, as we'll see in Chapter 4. 

2.7 Summary 

In this chapter we covered several classic cryptosystems, including the sim-
ple substitution, the double transposition, codebooks, and the one-time pad. 
Each of these illustrates some important points that we'll return to again in 
later chapters. We also discussed some elementary aspects of cryptography 
and cryptanalysis. 

In the next chapter we'll turn our attention to modern symmetric key 
ciphers. Subsequent chapters cover public key cryptography, hash functions, 
and cryptanalysis. Cryptography will appear again in later parts of the book. 
In particular, cryptography is a crucial ingredient in security protocols. Con-
trary to some authors' misguided efforts, the fact is that there's no avoiding 
cryptography in information security. 
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2.8 Problems 

1. In the field of information security, Kerckhoffs' Principle is like moth-
erhood and apple pie, all rolled up into one. 

a. Define Kerckhoffs' Principle in the context of cryptography. 

b. Give a real-world example where Kerckhoffs' Principle has been 
violated. Did this cause any security problems? 

c. Kerckhoffs' Principle is sometimes applied more broadly than its 
strict cryptographic definition. Give a definition of Kerckhoffs' 
Principle that applies more generally. 

2. Edgar Allan Poe's 1843 short story, "The Gold Bug," features a crypt-
analytic attack. 

a. What type of cipher is broken and how? 

b. What happens as a result of this cryptanalytic success? 

3. Given that the Caesar's cipher was used, find the plaintext that corre-
sponds to the following ciphertext: 

VSRQJHEREVTXDUHSDQWU. 

4. Find the plaintext and the key, given the ciphertext 

CSYEVIXIVqMREXIH. 

Hint: The key is a shift of the alphabet. 

5. Suppose that we have a computer that can test 240 keys each second. 

a. What is the expected time (in years) to find a key by exhaustive 
search if the keyspace is of size 288? 

b. What is the expected time (in years) to find a key by exhaustive 
search if the keyspace is of size 

2 112 ? 

c. What is the expected time (in years) to find a key by exhaustive 
search if the keyspace is of size 2256? 

6. The weak ciphers used during the election of 1876 employed a fixed 
permutation of the words for a given length sentence. To see that this is 
weak, find the permutation of (1 ,2 ,3 , . . . , 10) that was used to produce 
the scrambled sentences below, where "San Francisco" is treated as a 
single word. Note that the same permutation was used for all three 
sentences. 
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first try try if you and don't again at succeed 
only you you you as believe old are are as 
winter was in the I summer ever San Francisco coldest spent 

7. The weak ciphers of the election of 1876 used a partial codebook and 
a permutation of the words. Modify this approach so that it is more 
secure. 

8. This problem deals with the concepts of confusion and diffusion 

a. Define the terms confusion and diffusion as used in cryptography. 

b. Which classic cipher discussed in this chapter employs only confu-
sion? 

c. Which classic cipher discussed in this chapter employs only diffu-
sion? 

d. Which cipher discussed in this chapter employs both confusion and 
diffusion? 

9. Recover the plaintext and key for the simple substitution example that 
appears in (2.2) on page 24. 

10. Determine the plaintext and key for the ciphertext that appears in 
the Alice in Wonderland quote at the beginning of this chapter. Hint: 
The message was encrypted with a simple substitution cipher and the 
plaintext has no spaces or punctuation. 

11. Decrypt the following message that was encrypted using a simple sub-
stitution cipher: 

GBSXUCGSZQGKGSQPKQKGLSKASPCGBGBKGUKGCEUKUZKGGBSQEICA 

CGKGCEUERWKLKUPKQQGCIICUAEUVSHqKGCEUPCGBCGQOEVSHUNSU 

GKUZCGQSNLSHEHIEEDCUOGEPKHZGBSNKCUGSUKUASERLSKASCUGB 

SLKACRCACUZSSZEUSBEXHKRGSHWKLKUSQSKCHQTXKZHEUQBKZAEN 

NSUASZFENFCUOCUEKBXGBSWKLKUSQSKNFKQQKZEHGEGBSXUCGSZQ 

GKGSQKUZBCQAEIISKOXSZSICVSHSZGEGBSQSAHSGKHMERQGKGSKR 

EHNKIHSLIMGEKHSASUGKNSHCAKUNSQQKOSPBCISGBCqHSLIMQGKG 

SZGBKGCGQSSNSZXQSISQQGEAEUGCUXSGBSSJCqGCUOZCLIENKGCA 

USOEGCKGCEUqCGAEUGKCUSZUEGBHSKGEHBCUGERPKHEHKHNSZKGGKAD 

12. Write a program to help an analyst decrypt a simple substitution cipher. 
Your program should take the ciphertext as input, compute letter fre-
quency counts, and display these for the analyst. The program should 
then allow the analyst to guess a key and display the results of the 
corresponding "decryption" with the putative key. 
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13. Extend the program described in Problem 12 so that it initially tries to 
decrypt the message. One sensible way to proceed is to use the com-
puted letter frequencies and the known frequencies of English for an 
initial guess at the key. Then from the resulting putative decryption, 
count the number of dictionary words that appear and use this as a 
score. Next, for each letter in the key, try swapping it with the letter 
that is adjacent (with respect to frequency counts) and recompute the 
score. If the score improves, update the key; if not, don't change the 
putative key. Iterate this process until the score does not improve for an 
entire pass through the alphabet. At this point you will give your puta-
tive decryption to the analyst. To aid the analyst in the manual phase, 
your program must maintain all of the functionality of the program in 
Problem 12. 

14. Encrypt the message 

we are all together 

using a double transposition cipher (of the type described in the text) 
with 4 rows and 4 columns, using the row permutation 

(1,2,3,4)—> (2,4,1,3) 

and the column permutation 

(1,2,3,4)—* (3,1,2,4). 

15. Decrypt the ciphertext 

IAUTMDCSMNIMREBOTNELSTRHEREOAEVMWIH 

TSEEATMAEOHWHSYCEELTTEOHMUOUFEHTRFT 

This message was encrypted with a double transposition (of the type 
discussed in the text) using a matrix of 7 rows and 10 columns. Hint: 
The first word is "there." 

16. Outline an automated attack on a double transposition cipher (of the 
type discussed in the text), assuming that the size of the matrix is 
known. 

17. A double transposition cipher can be made much stronger by using the 
following approach. First, the plaintext is put into an n x m array, 
as described in the text. Next, permute the columns, and then write 
out the intermediate ciphertext column by column. That is, column 1 
gives the first n ciphertext letters, column 2 gives the next n, and so 
on. Then repeat the process, that is, put the intermediate ciphertext 
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into a n n x m array, permute the columns, and write out the ciphertext 
column by column. Use this approach, with a 3 x 4 array, and permuta-
tions (2,3,1,4) and (4, 2,1,3) to encrypt the plaintext attackatdawn. 

18. Using the letter encodings in Table 2.1, the following two ciphertext 
messages were encrypted with the same one-time pad: 

KHHLTK and KTHLLE. 

Find all possible plaintexts for each message and the corresponding 
one-time pad. 

19. Using the letter encodings in Table 2.1, the following ciphertext message 
was encrypted with a one-time pad: 

KITLKE. 

a. If the plaintext is "thrill," what is the key? 

b. If the plaintext is "tiller," what is the key? 

20. Suppose that you have a message consisting of 1024 bits. Design a 
method that will extend a key that is 64 bits long into a string of 1024 
bits, so that the resulting 1024 bits can be XORed with the message, 
just like a one-time pad. Is the resulting cipher as secure as a one-time 
pad? Is it possible for any such cipher to be as secure as a one-time 
pad? 

21. Design a codebook cipher that can encrypt any block of bits, not just 
specific words. Your cipher should include many possible codebooks, 
with a key used to determine which codebook will be employed to en-
crypt (or decrypt) a particular message. Discuss some possible attacks 
on your cipher. 

22. Suppose that the following is an excerpt from the decryption codebook 
for a classic codebook cipher. 

123 
199 
202 
221 
233 
332 
451 

once 
or 
maybe 
twice 
time 
upon 
a 

Decrypt the following ciphertext: 

242, 554, 650, 464, 532, 749, 567 
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assuming that the following additive sequence was used to encrypt the 
message: 

119, 222, 199, 231, 333, 547, 346 

23. An affine cipher is a type of simple substitution where each letter is en-
crypted according to the rule c = (a-p + b) mod 26 (see the Appendix 
for a discussion of mod). Here, p, c, a, and b are each numbers in the 
range 0 to 25, where p represents the plaintext letter, c the ciphertext 
letter, and a and b are constants. For the plaintext and ciphertext, 
0 corresponds to "a," 1 corresponds to "b," and so on. Consider the 
ciphertext QJKES REOGH GXXRE OXEO, which was generated using an 
affine cipher. Determine the constants a and b and decipher the mes-
sage. Hint: Plaintext "t" encrypts to ciphertext "H" and plaintext "o" 
encrypts to ciphertext "E." 

24. A Vigenère cipher uses a sequence of "shift-by-n" simple substitutions, 
where the shifts are indexed using a keyword, with "A" representing 
a shift-by-0, "B" representing a shift-by-l, etc. For example, if the 
keyword is "DOG," then the first letter is encrypted using a simple 
substitution with a shift-by-3, the second letter is encrypted using a 
shift-by-14, the third letter is encrypted using a shift-by-6, and the 
pattern is repeated—the fourth letter is encrypted using a shift-by-3, 
the fifth letter is encrypted using a shift-by-14, and so on. Cryptanalyze 
the following ciphertext, i.e., determine the plaintext and the key. This 
particular message was encrypted using a Vigenère cipher with a 3-letter 
English keyword: 

CTMYR DOIBS RESRR RIJYR EBYLD IYMLC CYQXS RRMLQ FSDXF 

OWFKT CYJRR IQZSM X 

25. Suppose that on the planet Binary, the written language uses an alpha-
bet that contains only two letters X and Y. Also, suppose that in the 
Binarian language, the letter X occurs 75% of the time, while Y occurs 
25% of the time. Finally, assume that you have two messages in the 
Binary language, and the messages are of equal length. 

a. If you compare the corresponding letters of the two messages, what 
fraction of the time will the letters match? 

b. Suppose that one of the two messages is encrypted with a simple 
substitution, where X is encrypted as Y and Y is encrypted as X. If 
you now compare the corresponding letters of the two messages— 
one encrypted and one not—what fraction of the time will the 
letters match? 
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c. Suppose that both of the messages are encrypted with a simple 
substitution, where X is encrypted as Y and Y is encrypted as X. If 
you now compare the corresponding letters of the two messages— 
both of which are encrypted—what fraction of the time will the 
letters match? 

d. Suppose instead that you are given two randomly generated "mes-
sages" that use only the two letters X and Y. If you compare the 
corresponding letters of the two messages, what fraction of the 
time will the letters match? 

e. What is the index of coincidence (IC)? Hint: See, for example, 
[148]. 

f. How can the index of coincidence be used to determine the length 
of the keyword in a Vigenère cipher (see Problem 24 for the defi-
nition of a Vigenère cipher)? 

26. In the this chapter, we discussed a forward search attack. 

a. Explain how to conduct a forward search attack. 

b. How can you prevent a forward search attack against a public key 
cryptosystem? 

c. Why can't a forward search attack be used to break a symmetric 
cipher? 

27. Consider a "one-way" function h. Then, given the value y = h(x), it is 
computationally infeasible to find x directly from y. 

a. Suppose that Alice computes y = h(x), where x is Alice's salary, in 
dollars. If Trudy obtains y, how can she determine Alice's salary xl 
Hint: Adapt the forward search attack to this problem. 

b. Why does your attack not violate the one-way property of h? 

c. How could Alice prevent this attack ? We assume that Trudy has 
access to the output of the function h, Trudy knows that the input 
includes Alice's salary, and Trudy knows the format of the input. 
Also, no keys are available, so Alice cannot encrypt the output 
value. 

28. Suppose that a particular cipher uses a 40-bit key, and the cipher is 
secure (i.e., there is no known shortcut attack). 

a. How much work, on average, is an exhaustive search attack? 

b. Outline an attack, assuming that known plaintext is available. 

c. How would you attack this cipher in the ciphertext-only case? 
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29. Suppose that Alice encrypted a message with a secure cipher that uses a 
40-bit key. Trudy knows the ciphertext and Trudy knows the algorithm, 
but she does not know the plaintext or the key. Trudy plans to do an 
exhaustive search attack, that is, she will try each possible key until she 
finds the correct key. 

a. How many keys, on average, must Trudy try before she finds the 
correct one? 

b. How will Trudy know when she has found the correct key? Note 
that there are too many solutions for Trudy to manually examine 
each one—she must have some automated approach to determining 
whether a putative key is correct or not. 

c. How much work is your automated test in part b? 

d. How many false alarms do you expect from your test in part b? 
That is, how often will an incorrect key produce a putative decrypt 
that will pass your test? 



 

This page intentionally left blank



 
Chapter 3 

Symmetric Key Crypto 

The chief forms of beauty are order and symmetry... 
— Aristotle 

"You boil it in sawdust: you salt it in glue: 
You condense it with locusts and tape: 

Still keeping one principal object in view— 
To preserve its symmetrical shape. " 

— Lewis Carroll, The Hunting of the Snark 

3.1 Introduction 

In this chapter, we discuss the two branches of the symmetric key crypto 
family tree: stream ciphers and block ciphers. Stream ciphers generalize the 
idea of a one-time pad, except that we trade provable security for a relatively 
small (and manageable) key. The key is stretched into a long stream of bits, 
which is then used just like a one-time pad. Like their one-time pad brethren, 
stream ciphers employ (in Shannon's terminology) confusion only. 

Block ciphers can be viewed as the modern successors to the classic code-
book ciphers, where the key determines the codebook. The internal workings 
of block cipher algorithms can be fairly intimidating, so it is useful to keep in 
mind that a block cipher is really just an "electronic" version of a codebook. 
Internally, block ciphers employ both confusion and diffusion. 

We'll take a fairly close look at two stream cipher algorithms, A5/1 and 
RC4, both of which have been widely deployed. The A5/1 algorithm (used in 
GSM cell phones) is a good representative of a large class of stream ciphers 
that are based in hardware. RC4 is used in many places, including the SSL 
and WEP protocols. RC4 is virtually unique among stream ciphers since it 
is designed for efficient implementation in software. 

51 
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In the block cipher realm, we'll look closely at DES, since it's relatively 
simple (by block cipher standards) and it's the granddaddy of them all, mak-
ing it the block cipher to which all others are compared. We'll also take a brief 
look at a few other popular block ciphers. Then we'll examine some of the 
many ways that block ciphers are used for confidentiality and we'll consider 
the role of block ciphers in the equally important area of data integrity. 

Our goal in this chapter is to introduce symmetric key ciphers and gain 
some familiarity with their inner workings and their uses. That is, we'll 
focus more on the "how" than the "why." To understand why block ciphers 
are designed the way they are, some aspects of advanced cryptanalysis are 
essential. We cover the ideas behind such cryptanalysis in Chapter 6. 

3.2 Stream Ciphers 

A stream cipher takes a key K of n bits in length and stretches it into a 
long keystream. This keystream is then XORed with the plaintext P to 
produce ciphertext C. Through the magic of the XOR, the same keystream 
is used to recover the plaintext P from the ciphertext C. Note that the use 
of the keystream is identical to the use of the pad (or key) in a one-time pad 
cipher. An excellent introduction to stream ciphers can be found in Rueppel's 
book [254], and for leads into some very challenging research problems in the 
field, see [153]. 

The function of a stream cipher can be viewed simply as 

StreamCipher(.ftr) = S, 

where K is the key and S represents the resulting keystream. Remember, the 
keystream is not ciphertext, but is instead simply a string of bits that we use 
like a one-time pad. 

Now, given a keystream S = so, s\, s2 . ■., and plaintext P = Po,pi,P2 ■ ■ ■ 
we generate the ciphertext C = co,ci,C2 . . . by XOR-ing the corresponding 
bits, that is, 

Co = PO Θ SO, Ci = Pi Θ S1 ; C2 = P2 Θ S2 , . . . . 

To decrypt ciphertext C, the keystream S is again used, that is, 

PO = Co Θ S0 , Pl = C\ Θ Si , pi = C2 Θ S2, 

Provided that both the sender and receiver have the same stream cipher al-

gorithm and that both know the key K, this system provides a practical 

generalization of the one-time pad. However, the resulting cipher is not prov-

ably secure (as discussed in the problems at the end of the chapter), so we 

have traded provable security for practicality. 
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3.2.1 A 5 / 1 

The first stream cipher that we'll examine is A5/1, which is used for confiden-

tiality in GSM cell phones (GSM is discussed in Chapter 10). This algorithm 

has an algebraic description, but it also can be illustrated via a relatively 

simple wiring diagram. We give both descriptions here. 

A5/1 employs three linear feedback shifl registers [126], or LFSRs, which 

we'll label X, Y, and Z. Register X holds 19 bits, {XQ,X\, ... ,x\s)- The 

register Y holds 22 bits, (yo, 2/i, · · ·, t/21), and Z holds 23 bits, (zo, zi,..., 222)· 

Of course, all computer geeks love powers of two, so it's no accident that the 

three LFSRs hold a total of 64 bits. 

Not coincidentally, the A5/1 key K is also 64 bits. The key is used as the 

initial fill of the three registers, that is, the key is used as the initial values 

in the three registers. After these three registers are filled with the key,1 we 

are ready to generate the keystream. But before we can describe how the 

keystream is generated, we need to say a little more about the registers X, 

Y, and Z. 

When register X steps, the following series of operations occur: 

t = £13 θ ΧΙ6 Θ Xu Θ £18 

Xi = Xi-i for i = 18,17,16,.. . , 1 

x0 = t 

Similarly, for registers Y and Z, each step consists of 

t = 2/20 Θ 2/21 

W = W _ i f o r t = 21,20,19. . . , l 

2/0 = * 

and 

t = Ζγ θ Ζ20 Θ 221 Θ .222 

Zi = Zi-! for i = 22,21,20,. . . , 1 

z0 = t 

respectively. 

Given three bits x, y, and z, define ma,](x,y, z) to be the majority vote 

function, that is, if the majority of x, y, and z are 0, the function returns 0; 

otherwise it returns 1. Since there are an odd number of bits, there cannot 

be a tie, so this function is well defined. 

1We've simplified things a little. In reality, the registers are filled with the key, and then 

there is an involved run up (i.e., initial stepping procedure) that is used before we generate 

any keystream bits. Here, we ignore the runup process. 
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In A5/1, for each keystream bit that we generate, the following takes 

place. First, we compute 

rn = mai{xs,yio,zio). 

Then the registers X, Y, and Z step (or not) as follows: 

• If #8 = m then X steps. 

• If i/io = m then Y steps. 

• If 2io = m then Z steps. 

Finally, a single keystream bit s is generated as 

S = Xl8®V21®Z22, 

which can then be XORed with the plaintext (if encrypting) or XORed with 

the ciphertext (if decrypting). We then repeat the entire process to generate 

as many key stream bits as are required. 

Note that when a register steps, its fill changes due to the bit shifting. 

Consequently, after generating one keystream bit, the fills of at least two 

of the registers X, Y, Z have changed, which implies that new bits are in 

positions £8, j/io, and ζχς,. Therefore, we can repeat this process and generate 

a new keystream bit. 

Although this may seem like a complicated way to generate a single 

keystream bit, A5/1 is easily implemented in hardware and can generate 

bits at a rate proportional to the clock speed. Also, the number of keystream 

bits that can be generated from a single 64-bit key is virtually unlimited— 

although eventually the keystream will repeat. The wiring diagram for the 

A5/1 algorithm is illustrated in Figure 3.1. See, for example, [33] for a more 

detailed discussion of A5/1. 

X 

Y 

z 

Figure 3.1: A5/1 Keystream Generator 
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The A5/1 algorithm is our representative example of a large class of stream 
ciphers that are based on shift registers and implemented in hardware. These 
systems were once the kings of symmetric key crypto, but in recent years 
the block cipher has clearly taken the crown. And where a stream cipher is 
needed today, it is likely to be RC4, which we'll discuss below. 

Why has there been a mass migration away from stream ciphers towards 
block ciphers? In the bygone era of slow processor speeds, shift register 
based stream ciphers were necessary to keep pace with relatively high data-
rate systems (such as audio). In the past, software-based crypto could not 
generate bits fast enough for such applications. Today, however, there are few 
applications for which software-based crypto is not appropriate. In addition, 
block ciphers are relatively easy to design and they can do everything stream 
ciphers can do, and more. These are the primary reasons why block ciphers 
are on the ascendancy. 

3.2.2 RC4 

RC4 is a stream cipher, but it's a completely different beast than A5/1. The 
RC4 algorithm is optimized for software implementation, whereas A5/1 is 
designed for hardware, and RC4 produces a keystream byte at each step, 
whereas A5/1 only produces a single keystream bit. All else being equal 
(which, of course, it never is), generating a byte at each step is much better 
than generating a single bit. 

The RC4 algorithm is remarkably simple, because it is essentially just a 
lookup table containing a permutation of all possible 256 byte values. The 
crucial trick that makes it a strong cipher is that each time a byte of keystream 
is produced, the lookup table is modified in such a way that the table always 
contains a permutation of {0,1 ,2 , . . . , 255}. Because of this constant updat-
ing, the lookup table—and hence the cipher itself—presents the cryptanalyst 
with a moving target. 

The entire RC4 algorithm is byte based. The first phase of the algorithm 
initializes the lookup table using the key. We'll denote the key as key[i], 
for i = 0 , 1 , . . . , N — 1, where each key[i] is a byte. We denote the lookup 
table as S[i], where each S[i] is also a byte. Pseudo-code for the initialization 
of the permutation S appears in Table 3.1. One interesting feature of RC4 is 
that the key can be of any length from 1 to 256 bytes. And again, the key is 
only used to initialize the permutation S. Note that the 256-byte array K is 
filled by simply repeating the key until the array is full. 

After the initialization phase, each keystream byte is generated following 
the algorithm that appears in Table 3.2. The output, which we've denoted 
here as keystreamByte, is a single byte that can be XORed with plaintext 
(to encrypt) or XORed with ciphertext (to decrypt). We'll mention another 
possible application for RC4 keystream bytes in Chapter 5. 
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Table 3.1: RC4 Initialization 

for i = 0 to 255 
S[t] = i 
K[i] = keyfz mod N] 

next i 
3 = 0 
f or i = 0 to 255 

j = (j + s[i] + K[i]) mod 256 
swap(5[i],5L?1) 

next i 
i = j = 0 

The RC4 algorithm—which can be viewed as a self-modifying lookup 
table—is elegant, simple, and efficient in software. However, there is an 
attack that is feasible against certain uses of RC4 [112, 195, 294], but the 
attack is infeasible if we discard the first 256 keystream bytes that are gen-
erated. This could be achieved by simply adding an extra 256 steps to the 
initialization phase, where each additional step generates—and discards—a 
keystream byte following the algorithm in Table 3.2. As long as Alice and 
Bob both implement these additional steps, they can use RC4 to communicate 
securely. 

Table 3.2: RC4 Keystream Byte 

i = (i + l) mod 256 
j = (j + S[i]) mod 256 
Bwap(5[t],S[i]) 
t = (S[i\ + S\j\) mod 256 
keystreamByte = S[t] 

RC4 is used in many applications, including SSL and WEP. However, the 
algorithm is fairly old and is not optimized for 32-bit processors (in fact, it's 
optimized for ancient 8-bit processors). Nevertheless, RC4 is sure to be a 
major player in the crypto arena for many years to come. 

Stream ciphers were once king of the hill, but they are now relatively 
rare, in comparison to block ciphers. Some have even gone so far as to de-
clare the death of stream ciphers [74] and, as evidence, they point to the 
fact that there has been almost no serious effort to develop new stream ci-
phers in recent years. However, today there are an increasing number of 
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significant applications where dedicated stream ciphers are more appropriate 
than block ciphers. Examples of such applications include wireless devices, 
severely resource-constrained devices, and extremely high data-rate systems. 
Undoubtedly, the reports of the death of stream ciphers have been greatly 
exaggerated. 

3.3 Block Ciphers 

An iterated block cipher splits the plaintext into fixed-sized blocks and gen-
erates fixed-sized blocks of ciphertext. In most designs, the ciphertext is 
obtained from the plaintext by iterating a function F over some number of 
rounds. The function F, which depends on the output of the previous round 
and the key K, is known as the round function, not because of its shape, but 
because it is applied over multiple rounds. 

The design goals for block ciphers are security and efficiency. It's not 
too difficult to develop a reasonably secure block cipher or an efficient block 
cipher, but to design one that is secure and efficient requires a high form of 
the cryptographer's art. 

3.3.1 Feistel Cipher 

A Feistel cipher, named after block cipher pioneer Horst Feistel, is a general 
cipher design principle, not a specific cipher. In a Feistel cipher, the plaintext 
block P is split into left and right halves, 

P=(L0,Ro), 

and for each round i = 1,2,... ,n, new left and right halves are computed 
according to the rules 

Li = Ri-i (3.1) 

Ri=Li-i®F(Ri-1,Ki) (3.2) 

where K{ is the subkey for round i. The subkey is derived from the key K 
according to a specified key schedule algorithm. Finally, the ciphertext C is 
the output of the final round, namely, 

C = \Ln, Rn)· 

Instead of trying to memorize equations (3.1) and (3.2), it's much easier 
to simply remember how each round of a Fiestel cipher works. Note that 
equation (3.1) tells us that the "new" left half is the "old" right half. On 
the other hand, equation (3.2) says that the new right half is the old left half 
XORed with a function of the old right half and the key. 
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Of course, it 's necessary to be able to decrypt the ciphertext. The beauty 
of a Feistel cipher is tha t we can decrypt, regardless of the particular round 
function F. Thanks to the magic of the XOR, we can solve equations (3.1) 
and (3.2) for R4-1 and Lj_i , respectively, which allows us to run the process 
backwards. Tha t is, for i = n, n — 1 , . . . , 1, the decryption rule is 

Ri-i = Li 

Li-1=Ri®F(Ri-i,Ki). 

The final result of this decryption process is the plaintext P = (LQ,RQ), as 
desired. 

Again, any round function F will work in a Feistel cipher, provided tha t 
the output of F produces the correct number of bits. It is particularly nice 
that there is no requirement that the function F be invertible. However, a 
Feistel cipher will not be secure for all possible choices of F. For example, 
the round function 

F(Ri-i,Ki) = 0 for all . r V i and Ki (3.3) 

is a legitimate round function since we can encrypt and decrypt with this F. 
However, Trudy would be very happy if Alice and Bob decide to use a Feistel 
cipher with the round function in (3.3). 

Note tha t all questions about the security of a Feistel cipher boil down to 
questions about the round function and the key schedule. The key schedule 
is usually not a major issue, so most of the analysis can be focused on F. 

3 . 3 . 2 D E S 

Now there was an algorithm to study; 
one that the NSA said was secure. 

— Bruce Schneier, in reference to DES 

The Data Encryption Standard, affectionately known as DES,2 was developed 
way back in the computing dark ages of the 1970s. The design is based on the 
so-called Lucifer cipher, a Feistel cipher developed by a team at IBM. DES is 
a surprisingly simple block cipher, but the story of how Lucifer became DES 
is anything but simple. 

By the mid 1970s, it was clear even to U.S. government bureaucrats that 
there was a legitimate commercial need for secure crypto. At the time, the 

2People "in the know" pronounce DES so as to rhyme with "fez" or "pez," not as the 
three letters D-E-S. Of course, you can say Data Encryption Standard, but that would be 
very uncool. 
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computer revolution was underway, and the amount—and sensitivity—of dig-
ital data was rapidly increasing. 

In the mid 1970s, crypto was poorly understood outside of classified mil-
itary and government circles, and they weren't talking (and, for the most 
part, that's still the case). The upshot was that businesses had no way to 
judge the merits of a crypto product and the quality of most such products 
was very poor. 

Into this environment, the National Bureau of Standards, or NBS (now 
known as NIST) issued a request for cipher proposals. The winning sub-
mission would become a U.S. government standard and almost certainly a de 
facto industrial standard. Very few reasonable submissions were received, and 
it quickly became apparent that IBM's Lucifer cipher was the only serious 
contender. 

At this point, NBS had a problem. There was little crypto expertise at 
NBS, so they turned to the government's crypto experts, the super-secret 
National Security Agency, or NSA.3 The NSA designs and builds the crypto 
that is used by the U.S. military and government for highly sensitive infor-
mation. However, the NSA also wears a black hat, since it conducts signals 
intelligence, or SIGINT, where it tries to obtain intelligence information from 
foreign sources. 

The NSA was reluctant to get involved with DES but, under pressure, 
eventually agreed to study the Lucifer design and offer an opinion, provided 
its role would not become public. When this information came to public 
light [273] (as is inevitable in the United States4) many were suspicious that 
NSA had placed a backdoor into DES so that it alone could break the cipher. 
Certainly, the black hat SIGINT mission of NSA and a general climate of 
distrust of government fueled such fears. In the defense of NSA, it's worth 
noting that 30 years of intense cryptanalysis has revealed no backdoor in 
DES. Nevertheless, this suspicion tainted DES from its inception. 

Lucifer eventually became DES, but not before a few subtle—and a few 
not so subtle—changes were made. The most obvious change was that the key 
length was apparently reduced from 128 bits to 64 bits. However, upon careful 
analysis, it was found that 8 of the 64 key bits were effectively discarded, so 
the actual key length is a mere 56 bits. As a result of this modification, the 
expected work for an exhaustive key search was reduced from 2127 to 255. By 
this measure, DES is 272 times easier to break than Lucifer. 

3NSA is so super-secret that its employees joke that the acronym NSA stands for No 
Such Agency. 

4 Your secretive author once attended a public talk by the Director of NSA, aka DIRNSA. 
At this talk the DIRNSA made a comment to the effect, "Do you want to know what 
problems we're working on now?" Of course, the audience gave an enthusiastic "Yes!" 
hoping that they might be about to hear the deepest darkest secrets of the super-secret spy 
agency. The DIRNSA responded, "Read the front page of the New York Times." 
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Understandably, the suspicion was that NSA had had a hand in purposely 

weakening DES. However, subsequent cryptanalysis of the algorithm has re-

vealed attacks that require slightly less work than trying 255 keys and, as a 

result, DES is probably just about as strong with a key of 56 bits as it would 

be with the longer Lucifer key. 

The subtle changes to Lucifer involved the substitution boxes, or S-boxes, 

which are described below. These changes in particular fueled the suspicion of 

a backdoor. But it has become clear over time that the modifications to the 

S-boxes actually strengthened the algorithm by offering protection against 

cryptanalytic techniques that were unknown (at least outside of NSA, and 

they're not talking) until many years later. The inescapable conclusion is that 

whoever modified the Lucifer algorithm (NSA, that is) knew what they were 

doing and, in fact, significantly strengthened the algorithm. See [215, 273] 

for more information on the role of NSA in the development of DES. 

Now it's time for the nitty gritty details of the DES algorithm. DES is a 

Feistel cipher with the following numerology: 

• 16 rounds 

• 64-bit block length 

• 56-bit key 

• 48-bit subkeys 

Each round of DES is relatively simple—at least by the standards of block 

cipher design. The DES S-boxes are one of its most important security fea-

tures. We'll see that S-boxes (or similar) are a common feature of modern 

block cipher designs. In DES, each S-box maps 6 bits to 4 bits, and DES 

employs eight distinct S-boxes. The S-boxes, taken together, map 48 bits 

to 32 bits. The same S-boxes are used at each round of DES and each S-box 

is implemented as a lookup table. 

Since DES is a Feistel cipher, encryption follows the formulas given in 

equations (3.1) and (3.2). A single round of DES is illustrated in the wiring 

diagram in Figure 3.2, where each number indicates the number of bits that 

follow a particular "wire." 

Unravelling the diagram in Figure 3.2, we see that the DES round func-

tion F can be written as 

FiRi-uKi) = P-box(S-boxes(Expand(i?i_i) Θ Ki)). (3.4) 

With this round function, DES can be seen to be a Feistel cipher as defined 

in equations (3.1) and (3.2). As required by equation (3.1), the new left half 

is simply the old right half. The round function F is the composition of the 

expansion permutation, addition of subkey, S-boxes, and P-box, as given in 

equation (3.4). 
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Figure 3.2: One Round of DES 

The expansion permutation expands its input from 32 to 48 bits, and the 
subkey is XORed with the result. The S-boxes then compress these 48 bits 
down to 32 bits before the result is passed through the P-box. The P-box 
output is XORed with the old left half to obtain the new right half. 

Next, we'll describe each of the components of F in precise detail, as well 
as the algorithm used to calculate the subkey K{. But it's important to keep 
the big picture in mind and to realize that the overall structure of DES is 
actually fairly simple. In fact, some of the DES operations are of no security 
benefit whatsoever, and if these were stripped away to reveal the essential 
security features, the algorithm becomes even simpler. 

Throughout this discussion—and elsewhere in this book—we'll adopt the 
convention that bits are numbered from left to right, beginning with the index 
zero.5 The 48-bit output of the DES expansion permutation consists of the 
following bits. 

31 0 1 2 3 4 3 4 5 6 7 8 
7 8 9 10 11 12 11 12 13 14 15 16 
15 16 17 18 19 20 19 20 21 22 23 24 
23 24 25 26 27 28 27 28 29 30 31 0 

5Your author is not a dinosaur (i.e., FORTRAN programmer), so the indexing starts 
at 0, not 1. 
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where the 32-bit input is, according to our convention, numbered as 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Each of the eight DES S-boxes maps 6 bits to 4 bits, and, consequently, 
each can be viewed as an array of 4 rows and 16 columns, with one nibble 
(4-bit value) stored in each of the 64 positions. When viewed in this way, each 
S-box has been constructed so that each of its four rows is a permutation of 
the hexadecimal digits 0,1,2,... ,E,F. The DES S-box number 1 appears in 
Table 3.3, where the six-bit input to the S-box is denoted bob^b^b^,. Note 
that the first and last input bits are used to index the row, while the middle 
four bits index the column. Also note that we've given the output in hex. 
For those who just can't get enough of S-boxes, all eight DES S-boxes can be 
found on the textbook website. 

Table 3.3: DES S-box 1 

hh 
0 
1 
2 
3 

0 
E 
0 
4 
F 

1 
4 
F 
1 

c 

2 
D 
7 
E 
8 

3 
1 
4 
8 
2 

4 
2 
E 
D 
4 

5 
F 
2 
6 
9 

6 
B 
D 
2 
1 

&1&2&3&4 

7 8 9 
8 3 A 
1 A 6 
B F C 
7 5 B 

A 
6 
C 
9 
3 

B 
C 
B 
7 
E 

C 
5 
9 
3 
A 

D 
9 
5 
A 
0 

E 
0 
3 
5 
6 

F 
7 
8 
0 
D 

The DES permutation box, or P-box, contributes little to the security 
of the cipher and its real purpose seems to have been lost to the mists of 
history. One plausible explanation is that the designers wanted to make DES 
more difficult to implement in software since the original design called for 
hardware-based implementation. It was apparently hoped that DES would 
remain a hardware-only algorithm, perhaps in the belief that this would allow 
the algorithm to remain secret. In fact, the S-boxes themselves were originally 
classified, so undoubtedly the goal was to keep them secret. But, predictably, 
the DES S-boxes were reverse engineered and they became public knowledge 
almost immediately. For the record, the P-box permutation is 

15 6 19 20 28 11 27 16 0 14 22 25 4 17 30 9 
1 7 23 13 31 26 2 8 18 12 29 5 21 10 3 24 

The only significant remaining part of DES is the key schedule algorithm, 
which is used to generate the subkeys. This is a somewhat convoluted process, 
but the ultimate result is simply that 48 of the 56 bits of key are selected at 
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each round. The details are relevant, since block cipher designs have been 

attacked due flawed key schedule algorithms. 

As usual, we'll number the 56-bit DES key from left-to-right, beginning 

with 0. We first extract 28 of the DES key bits, permute them, and call the 

result LK. Initially, LK consists of the following DES key bits: 

49 42 35 28 21 14 7 

0 50 43 36 29 22 15 

8 1 51 44 37 30 23 

16 9 2 52 45 38 31 

The remaining 28 bits of the DES key are permuted and assigned to the 

variable RK. Initially, RK consists of the following DES key bits: 

55 48 41 34 27 20 13 

6 54 47 40 33 26 19 

12 5 53 46 39 32 25 

18 11 4 24 17 10 3 

Before we can precisely state the key schedule algorithm, we need a few 

more items. Define the permutation LP as 

13 16 10 23 0 4 2 27 14 5 20 9 

22 18 11 3 25 7 15 6 26 19 12 1 

and RP as 

12 23 2 8 18 26 1 11 22 16 4 19 

15 20 10 27 5 24 17 13 21 7 0 3 

Finally, define 

_ ί 1 ifi e {1,2,9,16} 

* { 2 otherwise. 

The DES key schedule algorithm, which is used to generate the 48-bit subkeys, 

appears in Table 3.4. 

Note that when writing code to implement DES, we would probably not 

want to implement the key schedule algorithm as it appears in Table 3.4. 

It would be more efficient to use the key schedule algorithm to determine 

each Ki (in terms of the original DES key) and simply hardcode these values 

into our program. 

For completeness, there are two other features of DES that we should 

mention. An initial permutation is applied to the plaintext before round one, 

and its inverse is applied after the final round. Also, when encrypting, the 

halves are swapped after last round, so the actual ciphertext is (Rie, Lie), 

not (Li6,i?i6)- Neither of these quirks serve any security purpose and we'll 
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Table 3.4: DES Key Schedule Algorithm 

for each round i = l,2,...,n 
LK = cyclically left shift LK by rj bits 
RK = cyclically left shift RK by r{ bits 
The left half of subkey Ki consists of bits LP of LK 
The right half of subkey Ki consists of bits RP of RK 

next i 

ignore them in the remaining discussion. However, these are part of the DES 
algorithm, so they must be implemented if you want to call the resulting 
cipher DES. 

A few words on the security of DES may be enlightening. First, math-
ematicians are very good at solving linear equations, and the only part of 
DES that is not linear is the S-boxes. Due to those annoying mathemati-
cians, linear ciphers are inherently weak, so the S-boxes are fundamental to 
the security of DES. Actually, the expansion permutation has an important 
security role to play and, to a lesser extent, so does the key schedule. All of 
this will become clearer after we discuss linear and differential cryptanalytic 
attacks in Chapter 6. For more details on the design of the DES cipher, 
see [258]. 

Despite the concern over the design of DES—particularly the role of the 
NSA in the process—DES has clearly stood the test of time [181]. Today, 
DES is vulnerable simply because the key is too small, not because of any 
noteworthy shortcut attack. Although some attacks have been developed 
that, in theory, require somewhat less work than an exhaustive key search, all 
practical DES crackers6 built to date simply try all keys until they stumble 
across the correct one, that is, an exhaustive key search. The inescapable 
conclusion is that the designers of DES knew what they were doing. 

We'll have more to say about DES when we study advanced cryptanalysis 
in Chapter 6. In fact, the historic importance of DES is hard to overstate. 
DES can be viewed as the impetus behind the development of modern sym-
metric crypto, which makes it all the more ironic that NSA was the unwilling 
godfather of DES. 

Next, we describe triple DES, which is often used to effectively extend 
the key length of DES. We'll follow this with a quick overview of a few other 
block ciphers. Then we discuss one truly simple block cipher in a bit more 
detail. 

Not to be confused with Ritz crackers. 
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3.3.3 Triple D E S 

Before moving on to other block ciphers, we discuss a popular variant of 

DES known as triple DES, or 3DES. But before that, we need some notation. 

Let P be a block of plaintext, K a key, and C the corresponding block of 

ciphertext. For DES, C and P are each 64 bits, while K is 56 bits, but our 

notation applies in general. The notation that we'll adopt for the encryption 

of P with key K is 

C = E(P, K) 

while the corresponding decryption is denoted 

P = D(C,K). 

Note that for the same key, encryption and decryption are inverse operations, 

that is, 

P = D{E(P,K),K) and C = E(D(C,K),K). 

However, in general, 

P^D{E{P,K!),K2) and C φ E(D(C,K1),K2), 

when K\ φ K2. 
At one time, DES was nearly ubiquitous, but its key length is insufficient 

today. But for DES-philes, all is not lost—there is a clever way to use DES 

with a larger key length. Intuitively, it seems that double DES might be the 

thing to do, that is, 

C = E(E(P,K1),K2). (3.5) 

This would seem to offer the benefits of a 112 bit key (two 56-bit DES keys), 

with the only drawback being a loss of efficiency due to the two DES opera-

tions. 

However, there is a meet-in-the-middle attack on double DES that renders 

it more or less equivalent to single DES. Although the attack may not be 

entirely practical, it's too close for comfort. This attack is a chosen plaintext 

attack, meaning that we assume the attacker can always choose a specific 

plaintext P and obtain the corresponding ciphertext C. 

So, suppose Trudy selects a particular plaintext P and obtains the cor-

responding ciphertext C, which for double DES is C = E{E{P,Ki),K2). 

Trudy's goal is to find the keys Κχ and K2. Toward this goal, Trudy first 

pre-computes a table of size 256 containing the pairs E(P, K) and K for all 

possible key values K. Trudy sorts this table on the values E(P,K). Now 

using her table and the ciphertext value C, Trudy decrypts C with keys K 

until she finds a value X = D(C,K) that is in table. Then, because of the 

way the table was constructed, we have X = E(P, K) for some K and Trudy 

now has 

D(C,K) = E(P,K), 
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where K and K are known. That Trudy has found the 112-bit key can be 
seen by encrypting both sides with the key K, which gives 

C = E(E(P,K),K), 

that is, in equation (3.5), we have K\ = K and K<i = K. 
This attack on double DES requires that Trudy pre-compute, sort, and 

store an enormous table of 256 elements. But the table computation is one-
time work,7 so if we use this table many times (by attacking double DES 
many times) the work for computing the table can be amortized over the 
number of attacks. Neglecting the work needed to pre-compute the table, the 
work consists of computing D(C, K) until we find a match in the table. This 
has an expected work of 255, just as in an exhaustive key search attack on 
single DES. So, in a sense, double DES is no more secure than single DES. 

Since double DES isn't secure, will triple DES fare any better? Before 
worrying about attacks, we need to define triple DES. It seems that the logical 
approach to triple DES would be 

C = E(E(E(P,K1),K2),K3) 

but this is not the way it's done. Instead, triple DES is defined as 

C = E(D(E(P,K1),K2),K1). 

Note that triple DES only uses two keys, and encrypt-decrypt-encrypt, or 
EDE, is used instead of encrypt-encrypt-encrypt, or EEE. The reason for 
only using two keys is that 112 bits is sufficient, and three keys does not add 
much security (see Problem 42). But why EDE instead of EEE? Surprisingly, 
the answer is backwards compatibility—if 3DES is used with K\ = K2 = K 
then it collapses to single DES, since 

C = E(D(E(P, K), K),K) = E(P, K). 

Now, what about attacks on triple DES? We can say with certainty that 
a meet-in-the-middle attack of the type used against double DES is imprac-
tical since the table pre-computation is infeasible or the per attack work is 
infeasible—see Problem 42 for more details. 

Triple DES remains fairly popular today. However, with the coming of 
the Advanced Encryption Standard and other modern alternatives, triple 
DES should, like any old soldier, slowly fade away. 

7The pre-computation work is one time, provided that chosen plaintext is available. If 
we only have known plaintext, then we would need to compute the table each time we 
conduct the attack—see Problem 18. 
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3.3.4 A E S 

By the 1990s it was apparent to everyone—even the U.S. government—that 
DES had outlived its usefulness. The crucial problem with DES is that the 
key length of 56 bits is susceptible to an exhaustive key search. Special-
purpose DES crackers have been built that can recover DES keys in a matter 
of hours, and distributed attacks using volunteer computers on the Internet 
have succeeded in finding DES keys [98]. 

In the early 1990s, NIST, which is the present incarnation of NBS, issued 
a call for crypto proposals for what would become the Advanced Encryption 
Standard, or AES. Unlike the DES call for proposals of 20 years earlier, NIST 
was inundated with quality proposals. The field of candidates was eventually 
reduced to a handful of finalists, and an algorithm known a Rijndael (pro-
nounced something like "rain doll") was ultimately selected. See [182] for 
information on the AES competition and [75] for the details on the Rijndael 
algorithm. 

The AES competition was conducted in a completely open manner and, 
unlike the DES competition, the NSA was openly involved as one of the 
judges. As a result, there are no plausible claims of a backdoor having been 
inserted into the AES. In fact, AES is highly regarded in the cryptographic 
community. Shamir has stated that he believes data encrypted with a 256-bit 
AES key will be "secure forever," regardless of any conceivable advances in 
computing technology [73]. 

Like DES, the AES is an iterated block cipher. Unlike DES, the AES 
algorithm is not a Feistel cipher. The major implication of this fact is that in 
order to decrypt, the AES operations must be invertible. Also unlike DES, the 
AES algorithm has a highly mathematical structure. We'll only give a quick 
overview of the algorithm—large volumes of information on all aspects of 
AES are readily available—and we'll largely ignore the elegant mathematical 
structure. In any case, it is a safe bet that no crypto algorithm in history 
has received as much scrutiny in as short of a period of time as the AES. 
See [7, 75] for more details on the Rijndael algorithm. 

Some of the pertinent facts of AES are as follows. 

• The block size is 128 bits.8 

• Three key lengths are available: 128, 192, or 256 bits. 

• The number of rounds varies from 10 to 14, depending on the key length. 

• Each round consists of four functions, in three layers—the functions are 
listed below, with the layer in parentheses. 

8The Rijndael algorithm actually supports block sizes of 128, 192, or 256 bits, indepen-
dent of the key length. However, the larger block sizes are not part of the official AES. 
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— ByteSub (nonlinear layer) 

— Shif tRow (linear mixing layer) 

— MixColumn (nonlinear layer) 

— AddRoundKey (key addition layer) 

AES treats the 128-bit block as a 4 x 4 byte array: 

dOO GOl O02 Ö03 

aio a n au o-u 
G20 a 2 1 022 «23 

. «30 «31 032 «33 _ 

The ByteSub operation is applied to each byte a^·, that is, 6y = ByteSub(ajj). 
The result is the array of bij as illustrated below: 

Ö00 Û01 «02 O03 

aio a n ai2 ai3 
Ü20 a 2 1 Ü22 θ23 

. a30 a 3 i Ü32 033 

ByteSub, which is roughly the AES equivalent of the DES S-boxes, can 
be viewed as a nonlinear—but invertible—composition of two mathemati-
cal functions, or it can be viewed simply as a lookup table. We'll take the 
latter view. The ByteSub lookup table appears in Table 3.5. For example, 
ByteSub(3c) = eb since eb appears in row 3 and column c of Table 3.5. 

Table 3.5: AES ByteSub 

0 1 2 3 4 5 6 7 8 9 a b c d e f 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
a 
b 
c 
d 
e 
f 

63 
ca 
b7 
04 
09 
53 
dO 
51 
cd 
60 
eO 
e7 
ba 
70 
el 
8c 

7c 
82 
fd 
c7 
83 
dl 
ef 
a3 
0c 
81 
32 
c8 
78 
3e 
f8 
al 

77 
c9 
93 
23 
2c 
00 
aa 
40 
13 
4f 
3a 
37 
25 
b5 
98 
89 

7b 
7d 
26 
c3 
la 
ed 
fb 
8f 
ec 
dc 
0a 
6d 
2e 
66 
11 
Od 

f2 
fa 
36 
18 
lb 
20 
43 
92 
5f 
22 
49 
8d 
lc 
48 
69 
bf 

6b 
59 
3f 
96 
6e 
fc 
4d 
9d 
97 
2a 
06 
d5 
a6 
03 
d9 
e6 

6f 
47 
f7 
05 
5a 
bl 
33 
38 
44 
90 
24 
4e 
b4 
f6 
8e 
42 

c5 
fO 
cc 
9a 
aO 
5b 
85 
f5 
17 
88 
5c 
a9 
c6 
Oe 
94 
68 

30 
ad 
34 
07 
52 
6a 
45 
be 
c4 
46 
c2 
6c 
e8 
61 
9b 
41 

01 
d4 
a5 
12 
3b 
cb 
f9 
b6 
a7 
ee 
d3 
56 
dd 
35 
le 
99 

67 
a2 
e5 
80 
d6 
be 
02 
da 
7e 
b8 
ac 
f4 
74 
57 
87 
2d 

2b 
af 
fl 
e2 
b3 
39 
7f 
21 
3d 
14 
62 
ea 
If 
b9 
e9 
Of 

fe 
9c 
71 
eb 
29 
4a 
50 
10 
64 
de 
91 
65 
4b 
86 
ce 
bO 

d7 
a4 
d8 
27 
e3 
4c 
3c 
ff 
5d 
5e 
95 
7a 
bd 
cl 
55 
54 

ab 
72 
31 
b2 
2f 
58 
9f 
f3 
19 
Ob 
e4 
ae 
8b 
Id 
28 
bb 

76 
cO 
15 
75 
84 
cf 
a8 
d2 
73 
db 
79 
08 
8a 
9e 
df 
16 

ByteSub 

^00 &01 ^02 &03 

bw bn bu bi3 

ί>20 &21 ^22 &23 

ί"30 ^31 &32 &33 
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The ShiftRow operation is a cyclic shift of the bytes in each row of the 4 x 4 
byte array. This operation is given by 

aoo aoi a02 ao3 
aio a n ai2 «13 
O20 Ö21 0122 Ö23 
«30 a31 a32 0-33 

ShiftRow 

dOO Ö01 «02 &03 

a n an ai3 aio 
θ22 a23 Ö20 &21 
^33 Gt30 Û31 <*32 

that is, the first row doesn't shift, the second row circular left-shifts by one 
byte, the third row left-shifts by two bytes, and the last row left-shifts three 
bytes. Note tha t ShiftRow is inverted by simply shifting in the opposite 
direction. 

Next, the MixColumn operation is applied to each column of the 4 x 4 byte 
array as indicated below: 

«Oi 

0-2% 
MixColumn 

bo 
hi 
b* 
hi 

fo r i = 0 ,1 ,2 ,3 . 

MixColumn consists of shift and XOR operations, and it 's most efficiently im-
plemented as a lookup table. The overall operation is nonlinear but invertible, 
and, as with ByteSub, it serves a similar purpose as the DES S-boxes. 

The AddRoundKey operation is straightforward. Similar to DES, a key 
schedule algorithm is used to generate a subkey for each round. Let kij be 
the 4 x 4 subkey array for a particular round. Then the subkey is XORed 
with the current 4 x 4 byte array α^ as illustrated below: 

aoo Ûfl l Û-02 &03 

aio a n 012 ^13 
Ü20 Ö21 0-22 0,23 

O3O Ö31 «32 «33 

fcoo foi ^02 ko3 

ho hi kn ^13 

ho &21 &22 &23 
&30 &31 &32 &33 

OOO °01 °02 &03 

»io on bn bls 

O20 °21 ί»22 023 

O3O O31 632 633 

We'll ignore the AES key schedule but, as with any block cipher, it 's a 

significant part of the security of the algorithm. Finally, as we noted above, 

the four functions, ByteSub, ShiftRow, MixColumn, and AddRoundKey, are all 

invertible. As a result, the entire algorithm is invertible, and consequently 

AES can decrypt as well as encrypt. 

3 . 3 . 5 T h r e e M o r e B l o c k C i p h e r s 

In this section, we briefly consider three well-known block cipher algorithms, 

namely, the International Da ta Encryption Algorithm (IDEA), Blowfish, and 

RC6. Each of these has some particular noteworthy design feature. In the 
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next section we'll take a closer look at the Tiny Encryption Algorithm, or 
TEA [323]. 

IDEA is the handiwork of James L. Massey, one of the great—if some-
what lesser-known—cryptographers of modern times. The most innovative 
feature of IDEA is its use of mixed mode arithmetic. The algorithm combines 
addition modulo two (also known as XOR) with addition modulo 216 and 
the Lai-Massey multiplication, which is "almost" multiplication modulo 216. 
These operations together produce the necessary nonlinearity, and as a result 
no explicit S-box is required. Massey was apparently the first to use this 
approach, which is common today. See [201] for more details on the design 
of IDEA. 

Blownsh is one of Bruce Schneier's favorite crypto algorithms, no doubt 
because he invented it. Schneier is a well-known cryptographer and an enter-
taining writer on all things security-related. The interesting quirk of Blownsh 
is its use of key dependent S-boxes—instead of having fixed S-boxes, Blowfish 
generates its S-boxes based on the key. It can be shown that typical Blowfish 
S-boxes are strong. See [262] for more information on Blowfish. 

RC6 is due to Ron Rivest, whose crypto accomplishments are truly re-
markable, including the public key system RSA and the previously mentioned 
RC4 stream cipher, as well as one of the most popular hash functions, MD5. 
The unusual aspect of RC6 is its use of data-dependent rotations [247]. It is 
highly unusual to rely on the data as an essential part of the operation of a 
crypto algorithm. RC6 was one of the AES finalists, although it ultimately 
lost out to Rjindael. 

These three ciphers illustrate a small sample of the many variations that 
have been used in the quest for the ideal balance between security and per-
formance in block ciphers. In Chapter 6 we discuss linear and differential 
cryptanalysis, which makes the fundamental trade-offs inherent in block ci-
pher design more explicit. 

3.3.6 T E A 

The final block cipher that we'll consider is the Tiny Encryption Algorithm 
(TEA). The wiring diagrams that we've displayed so far might lead you to 
conclude that block ciphers are necessarily complex. TEA nicely illustrates 
that such is not the case. 

TEA uses a 64-bit block length and a 128-bit key. The algorithm assumes 
a computing architecture with 32-bit words—all operations are implicitly 
modulo 232 and any bits beyond the 32nd position are automatically trun-
cated. The number of rounds is variable but must be relatively large. The 
conventional wisdom is that 32 rounds is secure. However, each round of TEA 
is more like two rounds of a Feistel cipher (such as DES), so this is roughly 
equivalent to 64 rounds of DES. That's a lot of rounds. 
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In block cipher design, there is an inherent trade-off between the complex-
ity of each round and the number of rounds required. Ciphers such as DES 
try to strike a balance between these two, while AES reduces the number of 
rounds as much as possible, at the expense of having a more complex round 
function. In a sense, TEA can be seen as living at the opposite extreme of 
AES, since TEA uses a very simple round function. But as a consequence 
of its simple rounds, the number of rounds must be large to achieve a high 
level of security. Pseudo-code for TEA encryption—assuming 32 rounds are 
used—appears in Table 3.6, where "<C" is a left (non-cyclic) shift and " » " 
is a right (non-cyclic) shift. 

Table 3.6: TEA Encryption 

(Ä"[0], Ä"[l], K[2], K[3]) = 128 bit key 
(L, R) = p l a in tex t (64-bit block) 
de l t a = 0x9e3779b9 
sum = 0 
for i = 1 t o 32 

sum = sum + d e l t a 
L = L + {((R < 4) + K[0]) Θ (R + sum) Θ ((R » 5) + K[l])) 

R = R+ (((L < 4) + K[2]) (B(L + sum) θ ((L > 5) + K[S\)) 

next i 

cipher text = (L, R) 

One interesting thing to notice about TEA is that it's not a Feistel cipher, 

and so we need separate encryption and decryption routines. However, TEA 

is about as close to a Feistel cipher as it is possible to be without actually 

being one—TEA uses addition and subtraction instead of XOR. But the need 

for separate encryption and decryption routines is a minor concern with TEA, 

since so few lines of code are required, and the algorithm is reasonably effi-

cient even with the large number of rounds. The TEA decryption algorithm, 

assuming 32 rounds, appears in Table 3.7. 

There is a somewhat obscure related key attack on TEA [163]. That is, if 

a cryptanalyst knows that two TEA messages are encrypted with keys that 

are related to each other in some very special way, then the plaintext can be 

recovered. This is a low-probability attack that in most circumstances can 

probably safely be ignored. But in case you are worried about this attack, 

there is a slightly more complex variant of TEA, known as extended TEA, or 

XTEA [218], that overcomes this potential problem. There is also a simplified 

version of TEA, known as STEA, that is extremely weak and is used to 

illustrate certain types of attacks [208]. 
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Table 3.7: TEA Decryption 

(Ä'[0],Ä'[1],Ä'[2],Ä'[3])= 128 bit key 
(L, R) = c ipher text (64-bit block) 
d e l t a = 0x9e3779b9 
sum = d e l t a -C 5 
for i = 1 to 32 

R = R - (((£, < 4) + K[2\) Θ (L + sum) Θ {(L > 5) + #[3])) 

L = L- (((R < 4) + ΛΓ[0]) Θ (R + sum) Θ ((Ä » 5) + K[l})) 
sum = sum — d e l t a 

next i 
p la in t ex t = (L, R) 

3.3.7 Block Cipher Modes 

Using a stream cipher is easy—you generate a keystream that is the same 
length as the plaintext (or ciphertext) and XOR. Using a block cipher is 
also easy, provided that you have exactly one block to encrypt. But how 
should multiple blocks be encrypted with a block cipher? It turns out that 
the answer is not as straightforward as it might seem. 

Suppose we have multiple plaintext blocks, say, 

Po,Pi,P2,.... 

For a fixed key K, a block cipher is a codebook, since it creates a fixed 
mapping between plaintext and ciphertext blocks. Following the codebook 
idea, the obvious thing to do is to use a block cipher in so-called electronic 
codebook mode, or ECB. In ECB mode, we encrypt using the formula 

Ci = E(Pi,K) fori = 0,1,2,.... 

Then we can decrypt according to 

Pi = D{d, K) for i = 0 ,1 ,2 , . . . . 

This approach works, but there are serious security issues with ECB mode 
and, as a result, it should never be used in practice. 

Suppose ECB mode is used, and an attacker observes that Ci = Cj. Then 
the attacker knows that Pi = Pj. Although this may seem innocent enough, 
there are cases where the attacker will know part of the plaintext, and any 
match with a known block reveals another block. But even if the attacker does 
not know Pi or Pj, some information has been revealed, namely, that these 
two plaintext blocks are the same, and we don't want to give the cryptanalyst 
anything for free—especially if there is an easy way to avoid it. 
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Massey [196] gives a dramatic illustration of the consequences of this seem-

ingly minor weakness. We give a similar example in Figure 3.3, which shows 

an (uncompressed) image of Alice next to the same image encrypted in ECB 

mode. Every block of the right-hand image in Figure 3.3 has been encrypted, 

Figure 3.3: Alice and ECB Mode 

but the blocks that were the same in the plaintext are the same in the ECB-

encrypted ciphertext. Note that it does not matter which block cipher is 

used—the curious result in Figure 3.3 only depends on the fact that ECB 

mode was used, not on the details of the algorithm. In this case, it's not 

difficult for Trudy to guess the plaintext from the ciphertext. 

The ECB mode problem illustrated in Figure 3.3 is the basis for the 

"new ciphertext-only attack" discussed in [95]. The purveyors of this "new" 

version of a well-known attack have created a video in which they provide a 

demonstration of the results, along with a large dose of marketing hype [239]. 

Fortunately, there are better ways to use a block cipher, which avoid the 

weakness of ECB mode. We'll discuss the most common method, cipher block 

chaining mode, or CBC. In CBC mode, the ciphertext from a block is used to 

obscure the plaintext of the next block before it is encrypted. The encryption 

formula for CBC mode is 

d = E(Pi Θ Ci-!,K) for i = 0 ,1 ,2 , . . . , (3.6) 

which is decrypted via 

Pi = D(d, K) Θ d-! for i = 0 ,1 ,2 , . . . . (3.7) 



 

74 SYMMETRIC KEY CRYPTO 

The first block requires special handling since there is no ciphertext block C-\. 
An initialization vector, or IV, is used to take the place of the mythical C_i. 
Since the ciphertext is not secret, and since the IV plays a role analogous to a 
ciphertext block, it need not be secret either. But the IV should be randomly 
selected. 

Using the IV, the first block is CBC encrypted as 

Co = E(P0®lV,K), 

with the formula in equation (3.6) used for the remaining blocks. The first 
block is decrypted as 

Po = D{C0,K)®lV, 

with the formula in equation (3.7) used to decrypt all remaining blocks. Since 
the IV need not be secret, it's usually randomly generated at encryption 
time and sent (or stored) as the first "ciphertext" block. In any case, when 
decrypting, the IV must be handled appropriately. 

The benefit of CBC mode is that identical plaintext will not yield iden-
tical ciphertext. This is dramatically illustrated by comparing Alice's image 
encrypted using ECB mode—which appears in Figure 3.3—with the image 
of Alice encrypted in CBC mode, which appears in Figure 3.4. 

Figure 3.4: Alice Prefers CBC Mode 

Due to the chaining, a possible concern with CBC mode is error propa-
gation. When the ciphertext is transmitted, garbles can occur—a 0 bit could 
become a 1 bit or vice versa. If a single transmission error made the plaintext 
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unrecoverable, then CBC would be useless in practice. Fortunately, this is 

not the case. 

Suppose the ciphertext block d is garbled to, say, G φ Ci. Then 

Pi φ D(G, Κ) φ Ci-i and Pi+1 φ D(Ci+1, K)®G 

but 

Pi+2 = D(Ci+2,K)®Ci+1 

and all subsequent blocks are decrypted correctly. That is, each plaintext 

block only depends on two consecutive ciphertext blocks, so errors do not 

propagate beyond two blocks. However, the fact that a single-bit error can 

cause two entire blocks to be garbled is a serious concern in high error-rate 

environments such as wireless. Stream ciphers do not have this problem—a 

single garbled ciphertext bit results in a single garbled plaintext bit—and that 

is one reason why stream ciphers are often preferred in wireless applications. 

Another concern with a block cipher is a cut-and-paste attack. Suppose 

the plaintext 

MoneyuforuAliceuiSu$1000 

Moneyuf oruTrudyu i su$2UUu 

where "u" is a blank space, is to be encrypted with a block cipher that has 

a 64-bit block size. Assuming that each character requires 8 bits (e.g., 8-bit 

ASCII), the plaintext blocks are 

Po = Moneyufo 

Pi = r u Al ice u 

P2 = isu$1000 

P3 = Moneyuf 0 

Pi = ruTrudyu 

P5 = isu$2uuu 

Suppose this data is encrypted using ECB mode.9 Then the ciphertext blocks 

are computed as Ci = E(Pi, K) for i = 0 , 1 , . . . , 5. 

Now suppose that Trudy knows that ECB mode is used, she knows the 

general structure of the plaintext, and she knows that she will receive $2. 

But Trudy doesn't know how much Alice will receive—though she suspects 

it's much more than $2. If Trudy can rearrange the order of the ciphertext 

blocks to 

Co,Ci,C5,C3,C4,C2, (3.8) 

then Bob will decrypt this as 

Of course, you should never use ECB mode. However, this same problem arises with 

other modes (and types of ciphers), but it's easiest to illustrate using ECB mode. 
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MoneyuforuAliceuisu$2uuu 

MoneyuforuTrudyuisu$1000 

which is clearly a preferable outcome from Trudy's perspective. 
You might think that CBC mode would eliminate the cut-and-paste at-

tack. If so, you'd be wrong. With CBC mode, a cut-and-paste attack is still 
possible, although it's slightly more difficult and some data will be corrupted. 
This is explored further in the problems at the end of the chapter. 

It is also possible to use a block cipher to generate a keystream, which 
can then be used just like a stream cipher keystream. There are several 
acceptable ways to accomplish this feat, but we'll only mention the most 
popular, namely, counter mode, or CTR. As with CBC mode, CTR mode 
employs an initialization vector, or IV. The CTR encryption formula is 

Ci = Pi®E(TV + i,K) 

and decryption is accomplished via10 

Pi = d®E(IV + i,K). 

CTR mode is often used when random access is required. While random 
access is also fairly straightforward with CBC mode, in some cases CBC 
mode would not be desirable for random access—see Problem 27. 

Beyond ECB, CBC, and CTR, there are many other block cipher modes; 
see [258] for descriptions of the more common ones. However, the three modes 
discussed here certainly account for the vast majority of block cipher usage. 

Finally, it is worth noting that data confidentiality comes in two slightly 
different flavors. On the one hand, we encrypt data so that it can be trans-
mitted over an insecure channel. On the other hand, we encrypt data that 
is stored on an insecure media, such as a computer hard drive. Symmetric 
ciphers can be used to solve either of these two closely related problems. In 
addition, symmetric key crypto can also be used to protect data integrity, as 
we see in the next section. 

3.4 Integrity 

Whereas confidentiality deals with preventing unauthorized reading, integrity 
is concerned with detecting unauthorized writing. For example, suppose that 
you electronically transfer funds from one one account to another. You may 
not want others to know about this transaction, in which case encryption 
will effectively provide the desired confidential. But, whether you are con-
cerned about confidentiality or not, you certainly want the transaction to be 
accurately received. This is where integrity comes into the picture. 

10The use of the encryption "E" for both the encryption and decryption formulas is not 
a typo. 
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In the previous section, we studied block ciphers and their use for confi-

dentiality. Here we show that block ciphers can also provide data integrity. 

It is important to realize that confidentiality and integrity are two very dif-

ferent concepts. Encryption with any cipher—from the one-time pad to mod-

ern block ciphers—does not protect the data from malicious or inadvertent 

changes. If Trudy changes the ciphertext or if garbles occur in transmission, 

the integrity of the data has been lost and we want to be able to automati-

cally detect that a change has occurred. We've seen several examples—and 

you should be able to give several more—to show that encryption does not 

assure integrity. 

A message authentication code, or MAC, uses a block cipher to ensure 

data integrity. The procedure is simply to encrypt the data in CBC mode, 

discarding all ciphertext blocks except the final one. This final ciphertext 

block, which is known as the CBC residue, serves as the MAC. Then the 

formula for the MAC, assuming N blocks of data, PQ, Pi, P2,..., PN-I, is 

given by 

Co = E(P0 ΘIV, K), Ci = E{Pi ® C0, K),..., 

CN-i = Ε(ΡΝ-ι Θ CW-2, K) = MAC. 

Note that we use an initialization vector, and that a shared symmetric key is 

required. 

For simplicity, suppose that Alice and Bob require integrity, but they are 

not concerned with confidentiality. Then using a key K that Alice and Bob 

share, Alice computes the MAC and send the plaintext, the IV, and the MAC 

to Bob. Upon receiving the message, Bob computes the MAC using the key 

and received IV and plaintext. If his computed "MAC" matches the received 

MAC, then he is satisfied with the integrity of the data. On the other hand, 

if Bob's computed MAC does not match the received MAC, then Bob knows 

that something is amiss. Again, as in CBC mode, the sender and receiver 

must share a symmetric key K in advance. 

Why does this MAC computation work? Suppose Alice sends 

IV, Po, Pi, Pi,P3, MAC 

to Bob. Now, if Trudy changes plaintext block Pi to, say, Q during trans-

mission, then when Bob attempts to verify the MAC, he computes 

Co = E(P0 ΘIV, K), Ci = E(Q φ C0, K), C2 = E{P2 Θ Ci, K), 

C3 = E(P3 ®C2,K) = "MAC" φ MAC. 

The reason this works is because any change to a plaintext block propagates 

into subsequent blocks in the process of computing the MAC. 
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Recall that with CBC decryption a change in a ciphertext block only 
affects two of the recovered plaintext blocks. In contrast, the MAC takes 
advantage of the fact that for CBC encryption, any change in the plaintext 
almost certainly propagates through to the final block. This is the crucial 
property that enables a MAC to provide integrity. 

Often confidentiality and integrity are both required. To accomplish this, 
we could compute a MAC with one key, then encrypt the data with another 
key. However, this is twice as much work as is needed for either confidential-
ity or integrity alone. For the sake of efficiency, it would be useful to obtain 
both confidentiality and integrity protection with a single CBC encryption 
of the data. So, suppose we CBC encrypt the data once and send the re-
sulting ciphertext and the computed "MAC." Then we would send the entire 
ciphertext, along with the final ciphertext block (again). That is, the final 
ciphertext block would be duplicated and sent twice. Obviously, sending the 
same thing twice cannot provide any additional security. Unfortunately, there 
is no obvious way to obtain both confidentiality and integrity with a single 
encryption of the data. These topics are explored further in the problems at 
the end of the chapter. 

Computing a MAC based on CBC encryption is not the only way to 
provide for data integrity. A hashed MAC, or HMAC, is another standard 
approach to integrity and a digital signature is yet another option. We'll 
discuss the HMAC in Chapter 5 and digital signatures in Chapters 4 and 5. 

3.5 Summary 

In this chapter we've covered a great deal of material on symmetric key cryp-
tography. There are two distinct types of symmetric ciphers: stream ciphers 
and block ciphers. We briefly discussed two stream ciphers, A5/1 and RC4. 
Recall that stream ciphers generalize the one-time pad, where provable secu-
rity is traded for practicality. 

Block ciphers, on the other hand, can be viewed as the "electronic" equiva-
lent of a classic codebook. We discussed the block cipher DES in considerable 
detail and briefly mentioned several other block ciphers. We then consid-
ered various modes of using block ciphers (specifically, ECB, CBC, and CTR 
modes). We also showed that block ciphers—using CBC mode—can provide 
data integrity. 

In later chapters we'll see that symmetric ciphers are also useful in authen-
tication protocols. As an aside, it's interesting to note that stream ciphers, 
block ciphers, and hash functions (covered in a later chapter) are all equiva-
lent in the sense that anything you can do with one, you can accomplish with 
the other two, although in some cases it would be fairly unnatural to actually 
do so. For this reason, these three are equivalent cryptographic "primitives." 
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Symmetrie key cryptography is a big topic and we've only scratched the 
surface here. But, armed with the background from this chapter, we'll be 
prepared to tackle any issues involving symmetric ciphers that arise in later 
chapters. 

Finally, to really understand the reasoning behind block cipher design, 
it's necessary to delve more deeply into the field of cryptanalysis. Chapter 6, 
which deals with advanced cryptanalysis, is highly recommended for anyone 
who wants to gain a deeper understanding of block cipher design principles. 

3.6 Problems 

1. A stream cipher can be viewed as a generalization of a one-time pad. 
Recall that the one-time pad is provably secure. Why can't we prove 
that a stream cipher is secure using the same argument that was used 
for the one-time pad? 

2. This problem deals with stream ciphers. 

a. If we generate a sufficiently long keystream, the keystream must 
eventually repeat. Why? 

b. Why is it a security concern if the keystream repeats? 

3. Suppose that Alice uses a stream cipher to encrypt plaintext P, obtain-
ing ciphertext C, and Alice then sends C to Bob. Suppose that Trudy 
happens to know the plaintext P, but Trudy does not know the key K 
that was used in the stream cipher. 

a. Show that Trudy can easily determine the keystream that was used 
to encrypt P. 

b. Show that Trudy can, in effect, replace P with plaintext of her 
choosing, say, P'. That is, show that Trudy can create a ciphertext 
message C" so that when Bob decrypts C' he will obtain P'. 

4. This problem deals with the A5/1 cipher. For each part, justify your 
answer. 

a. On average, how often does the X register step? 

b. On average, how often does the Y register step? 

c. On average, how often does the Z register step? 

d. On average, how often do all three registers step? 

e. On average, how often do exactly two registers step? 

f. On average, how often does exactly one register step? 
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g. On average, how often does no register step? 

5. Implement the A5/1 algorithm. Suppose that, after a particular step, 
the values in the registers are 

X = (x0,xi,..., xis) = (1010101010101010101) 

Y = (i/o, 2/1, ■··, 2/21 ) = (1100110011001100110011) 

Z = {z0, z i , . . . , z22) = (11100001111000011110000) 

List the next 32 keystream bits and give the contents of X, Y, and Z 
after these 32 bits have been generated. 

6. For bits x, y, and z, the function maj(x, y, z) is defined to be the major-
ity vote, that is, if two or more of the three bits are 0, then the function 
returns 0; otherwise, it returns 1. Write the truth table for this function 
and derive the boolean function that is equivalent to maj(a;,j/,z). 

7. The RC4 cipher consists of a lookup table S, which contains 256 byte 
values, and two indices, i and j . 

a. The lookup table S is initialized to contain the identity permuta-
tion 0 ,1 ,2 , . . . , 255 and at each step of the algorithm, S contains 
a permutation. How is this achieved? That is, why does S always 
contain a permutation? 

b. Where is RC4 used in the real world? 

8. This problem deals with the RC4 stream cipher. 

a. Find a reasonable upper bound on the size of the RC4 state space. 
That is, find an upper bound for the number of different states that 
are possible for the RC4 cipher. Hint: The RC4 cipher consists 
of a lookup table S, and two indices i and j . Count the number 
of possible distinct tables S and the number of distinct indices i 
and j , then compute the product of these numbers. 

b. Why is the size of the state space relevant when analyzing a stream 
cipher? 

9. Implement the RC4 algorithm. Suppose the key consists of the following 
seven bytes: (OxlA, 0x2B, 0x3C, 0x4D, 0x5E, 0x6F, 0x77). For each of the 
following, give S in the form of a 16 x 16 array where each entry is in 
hex. 

a. List the permutation S and indices i and j after the initialization 
phase has completed. 
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b. List the permutation S and indices i and j after the first 100 bytes 

of keystream have been generated. 

c. List the permutation S and indices i and j after the first 1000 

bytes of keystream have been generated. 

10. Suppose that Trudy has a ciphertext message that was encrypted with 

the RC4 cipher—see Tables 3.1 and 3.2. For RC4, the encryption for-

mula is given by c; = pi Θ fcj, where fc; is the ith byte of the keystream, 

Pi is the ith byte of the plaintext, and Cj is the ith byte of the cipher-

text. Suppose that Trudy knows the first ciphertext byte, and the first 

plaintext byte, that is, Trudy knows Co and po-

a. Show that Trudy can determine the first byte of the keystream ko. 

b. Show that Trudy can replace CQ with CQ, where c0 decrypts to a 

byte of Trudy's choosing, say, p'Q. 

c. Suppose that a CRC [326] is used to detect errors in transmission. 

Can Trudy's attack in part b still succeed? Explain. 

d. Suppose that a cryptographic integrity check is used (either a 

MAC, HMAC, or digital signature). Can Trudy's attack in part b 

still succeed? Explain. 

11. This problem deals with a Feistel Cipher. 

a. Give the definition of a Feistel Cipher. 

b. Is DES a Feistel Cipher? 

c. Is AES a Feistel Cipher? 

d. Why is the Tiny Encryption Algorithm, TEA, "almost" a Feistel 

Cipher? 

12. Consider a Feistel cipher with four rounds. Then the plaintext is de-

noted as P = (Lo, -Ro) and the corresponding ciphertext is C = (L4, R4). 

What is the ciphertext C, in terms of Lo, RQ, and the subkey, for each 

of the following round functions? 

a. F(RÌ-I,KÌ) = 0 

b. F(Ri-1,Ki) = Ri-1 

c. F(Ri-1,Ki) = Ki 

d. F(Ri-1,Ki) = Ri-1®Ki 

13. Within a single round, DES employs both confusion and diffusion. 

a. Give one source of confusion within a DES round. 

b. Give one source of diffusion within a DES round. 
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14. This problem deals with the DES cipher. 

a. How many bits in each plaintext block? 

b. How many bits in each ciphertext block? 

c. How many bits in the key? 

d. How many bits in each subkey? 

e. How many rounds? 

f. How many S-boxes? 

g. An S-box requires how many bits of input? 

h. An S-box generates how many bits of output? 

15. DES swaps the output of the final round, that is, the ciphertext is 
not C = {Lie, RIQ) but instead it is C = (Rie, Lie). What is the 
purpose of this swap? 

16. Recall the attack on double DES discussed in the text. Suppose that 
we instead define double DES as C — D(E(P,Ki),K2). Describe a 
meet-in-the-middle attack on this cipher. 

17. Recall that for a block cipher, a key schedule algorithm determines the 
subkey for each round, based on the key K. Let K = (fcofci&2 · · · ^55) 
be a 56-bit DES key. 

a. List the 48 bits for each of the 16 DES subkeys K\, Ki, ■ ■ ■, Kie, 
in terms of the key bits fcj. 

b. Make a table that contains the number of subkeys in which each 
key bit ki is used. 

c. Can you design a DES key schedule algorithm in which each key 
bit is used an equal number of times? 

18. Recall the meet-in-the-middle attack on double DES discussed in this 
chapter. Assuming that chosen plaintext is available, this attack recov-
ers a 112-bit key with about the same work needed for an exhaustive 
search to recover a 56-bit key, that is, about 255. 

a. If we only have known plaintext available, not chosen plaintext, 
what changes do we need to make to the double DES attack? 

b. What is the work factor for the known plaintext version of the 
meet-in-the-middle double DES attack? 

19. AES consists of four functions in three layers. 

a. Which of the four functions are primarily for confusion and which 
are primarily for diffusion? Justify your answer. 
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b. Which of the three layers are for confusion and which are for dif-

fusion? Justify your answer. 

20. Implement the Tiny Encryption Algorithm (TEA). 

a. Use your TEA algorithm to encrypt the 64-bit plaintext block 

0x0123456789ABCDEF 

using the 128-bit key 

0xA56BABCD00000000FFFFFFFFABCDEF01. 

Decrypt the resulting ciphertext and verify that you obtain the 

original plaintext. 

b. Using the key in part a, encrypt and decrypt the following message 

using each of the three block cipher modes discussed in the text 

(ECB mode, CBC mode, and CTR mode). 

Four score and seven years ago our fathers brought forth 

on this continent, a new nation, conceived in Liberty, 

and dedicated to the proposition that all men are created 

equal. 

21. Give a diagram analogous to that in Figure 3.2 for the TEA cipher. 

22. Recall that an initialization vector (IV) need not be secret. 

a. Does an IV need to be random? 

b. Discuss possible security disadvantages (or advantages) if IVs are 

selected in sequence instead of being generated at random. 

23. Draw diagrams to illustrate encryption and decryption in CBC mode. 

Note that these diagrams are independent of the particular block cipher 

that is used. 

24. The formula for counter mode encryption is 

Ci = Pi®EQV + i,K). 

Suppose instead we use the formula 

Ci = Pi®E(K,W + i). 

Is this secure? If so, why? If not, why not? 

25. Suppose that we use a block cipher to encrypt according to the rule 

Co = IV Θ E(PQ, K), d = Co e E(PU K), C2 = C1® E{P2, K), ... 
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a. What is the corresponding decryption rule? 

b. Give two security disadvantages of this mode as compared to CBC 
mode. 

26. Suppose that ten ciphertext blocks are encrypted in CBC mode. Show 
that a cut-and-paste attack is possible. That is, show that it is possible 
to rearrange the blocks so that some of the blocks decrypt correctly, in 
spite of the fact that the blocks are not in the correct order. 

27. Explain how to do random access on data encrypted in CBC mode. 
Are there any significant disadvantages of using CBC mode for random 
access as compared to CTR mode? 

28. CTR mode generates a keystream using a block cipher. Devise another 
method for using a block cipher as a stream cipher. Does your method 
support random access? 

29. Suppose that the ciphertext in equation (3.8) had been encrypted in 
CBC mode instead of ECB mode. If Trudy believes ECB mode is used 
and tries the same cut-and-paste attack discussed in the text, which 
blocks decrypt correctly? 

30. Obtain the files Alice.bmp and Alice . jpg from the textbook website. 

a. Use the TEA cipher to encrypt Alice.bmp in ECB mode, leaving 
the first 10 blocks unencrypted. View the encrypted image. What 
do you see? Explain the result. 

b. Use the TEA cipher to encrypt Al ice . jpg in ECB mode, leaving 
the first 10 blocks unencrypted. View the encrypted image. What 
do you see? Explain the result. 

31. Suppose that Alice and Bob decide to always use the same IV instead 
of choosing IVs at random. 

a. Discuss a security problem this creates if CBC mode is used. 

b. Discuss a security problem this creates if CTR mode is used. 

c. If the same IV is always used, which is more secure, CBC or CTR 
mode? 

32. Suppose that Alice and Bob use CBC mode encryption. 

a. What security problems arise if they always use a fixed initializa-
tion vector (IV), as opposed to choosing IVs at random? Explain. 
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b. Suppose that Alice and Bob choose IVs in sequence, that is, they 

first use 0 as an IV, then they use 1 as their IV, then 2, and so on. 

Does this create any security problems as compared to choosing 

the IVs at random? 

33. Give two ways to encrypt a partial block using a block cipher. Your 

first method should result in ciphertext that is the size of a complete 

block, while your second method should not expand the data. Discuss 

any possible security concerns for your two methods. 

34. Recall that a MAC is given by the CBC residue, that is, the last cipher-

text block when the data is encrypted in CBC mode. Given data X, 

key K, and an IV, define F(X) to be the MAC of X. 

a. Is F one-way, that is, given F(X) is it possible to determine ΧΊ 

b. Is F collision resistant, that is, given F(X) is it possible to find a 

value Y such that F(Y) = F(X)7 

35. Suppose Alice uses DES to compute a MAC. She then sends the plain-

text, the IV, and the corresponding MAC to Bob. If Trudy alters one 

block of plaintext before Bob receives it, what is the probability that 

Bob will not detect the change? 

36. Alice has four blocks of plaintext, Po,Pi,P2,P3, which she encrypts 

using CBC mode to obtain CQ,C\,C2,CZ. She then sends the IV and 

ciphertext to Bob. Upon receiving the ciphertext, Bob plans to verify 

the integrity as follows. He'll first decrypt to obtain the putative plain-

text, and then he'll re-encrypt this plaintext using CBC mode and the 

received IV. If he obtains the same C3 as the final ciphertext block, he 

will trust the integrity of the plaintext. 

a. Suppose that Trudy changes C\ to X, leaving all other blocks and 

the IV unchanged. Will Bob detect that the data lacks integrity? 

b. Suppose that Trudy changes C3 to the value Y, leaving all other 

blocks and the IV unchanged. Will Bob detect that the data lacks 

integrity? 

c. Is Bob's integrity checking method secure? 

37. Using CBC mode, Alice encrypts four blocks of plaintext, PQ, P\, P2, P3 

and she sends the resulting ciphertext blocks, CQ,C\,C2,CZ, and the 

IV to Bob. Suppose that Trudy is able to change any of the cipher-

text blocks before they are received by Bob. If Trudy knows Pi, show 

that she can replace P\ with X. Hint: Determine C so that if Trudy 

replaces Co with C, when Bob decrypts C\, he will obtain X instead 

of Pi. 
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38. Suppose we encrypt in CBC mode using the key K and we compute a 

MAC using the key K ® X, where X is a known constant. Assuming 

the ciphertext and the MAC are sent from Alice to Bob, show that Bob 

will detect a cut-and-paste attack. 

39. Suppose Alice has four blocks of plaintext, Po, -Pi, P2, -P3· She computes 

a MAC using key K\, and then CBC encrypts the data using key K2 

to obtain CQ,C\,C2,C3. Alice sends the IV, the ciphertext, and the 

MAC to Bob. Trudy intercepts the message and replaces C\ with X 

so that Bob receives IV, C$,X, 62,63, and the MAC. Bob attempts to 

verify the integrity of the data by decrypting (using key K2) and then 

computing a MAC (using key K\) on the putative plaintext. 

a. Show that Bob will detect Trudy's tampering. 

b. Suppose that Alice and Bob only share a single symmetric key K. 

They agree to let K\ = K and K2 = K (BY, where Y is known 

to Alice, Bob, and Trudy. Assuming Alice and Bob use the same 

scheme as above, does this create any security problem? 

40. Suppose that Alice and Bob have access to two secure block ciphers, 

say, Cipher A and Cipher B, where Cipher A uses a 64-bit key, while 

Cipher B uses a 128-bit key. Alice prefers Cipher A, while Bob wants the 

additional security provided by a 128-bit key, so he insists on Cipher B. 

As a compromise, Alice proposes that they use Cipher A, but they 

encrypt each message twice, using two independent 64-bit keys. Assume 

that no shortcut attack is available for either cipher. Is Alice's approach 

as secure as Bob's? 

41. Suppose that Alice has a secure block cipher, but the cipher only uses 

an 8-bit key. To make this cipher "more secure," Alice generates a 

random 64-bit key K, and iterates the cipher eight times, that is, she 

encrypts the plaintext P according to the rule 

C = E(E(E(E(E(E(E(E(P, K0), Kx), K2), K3), KA), K5), K6), K7), 

where Ko, K\,..., Κγ are the bytes of the 64-bit key K. 

a. Assuming known plaintext is available, how much work is required 

to determine the key K1 

b. Assuming a ciphertext-only attack, how much work is required to 

break this encryption scheme? 

42. Suppose that we define triple 3DES with a 168-bit key as 

C = E(E(E(P,K1),K2),K3). 
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Suppose that we can compute and store a table of size 256, and a chosen 
plaintext attack is possible. Show that this triple 3DES is no more 
secure than the usual 3DES, which only uses a 112-bit key. Hint: Mimic 
the meet-in-the-middle attack on double DES. 

43. Suppose that you know a MAC value X and the key K that was used to 
compute the MAC, but you do not know the original message. (It may 
be instructive to compare this problem to Problem 16 in Chapter 5.) 

a. Show that you can construct a message M that also has its MAC 
equal to X. Note that we are assuming that you know the key K 
and the same key is used for both MAC computations. 

b. How much of the message M are you free to choose? 
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Chapter 4 

Public Key Crypto 

You should not live one way in private, another in public. 
— Publilius Syrus 

Three may keep a secret, if two of them are dead. 
— Ben Franklin 

4.1 Introduction 

In this chapter, we delve into the remarkable subject of public key cryptog-
raphy. Public key crypto is sometimes know as asymmetric cryptography, or 
two key cryptography, or even non-secret key cryptography, but we'll stick 
with public key cryptography. 

In symmetric key cryptography, the same key is used to both encrypt and 
decrypt the data. In public key cryptography, one key is used to encrypt 
and a different key is used to decrypt and as a result, the encryption key 
can be made public. This eliminates one of the most vexing problems of 
symmetric key crypto, namely, how to securely distribute the symmetric key. 
Of course, there is no free lunch, so public key crypto has its own issues when 
it comes to dealing with keys (see the section on public key infrastructure, 
below). Nevertheless, public key crypto is a big "win" in many real-world 
applications. 

Actually, public key cryptography is usually defined more broadly than 
the two-key encryption and decryption description given in the previous para-
graph. Any system that has cryptographic application and involves some 
crucial information being made public is likely to be considered a public key 
cryptosystem. For example, one popular public key system discussed in this 
chapter can only be used to establish a shared symmetric, not to encrypt or 
decrypt anything. 
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Public key crypto is a relative newcomer, having been invented by cryp-
tographers working for GCHQ (the British equivalent of NSA) in the late 
1960s and early 1970s and, independently, by academic researchers shortly 
thereafter [191]. The government cryptographers clearly did not grasp the 
full potential of their discovery, and it lay dormant until the academicians 
pushed it into the limelight. The ultimate effect has been nothing short of 
a revolution in cryptography. It is amazing that public key crypto is such 
a recent discovery, given that humans have been using symmetric crypto for 
thousands of years. 

In this chapter, we'll examine most of the most important and widely 
used public key cryptosystems. Actually, relatively few public key systems 
are known, and fewer still are widely used. In contrast, there exists a vast 
number of symmetric ciphers, and a fairly significant number of these get used 
in practice. Each public key system is based on a very special mathematical 
structure, making it extraordinarily difficult to develop new systems.1 

A public key cryptosystem is based on a trap door one-way function. 
"One-way" means that the function is easy to compute in one direction but 
hard to compute (i.e., computationally infeasible) in the other. The "trap 
door" feature ensures that an attacker cannot use the public information to 
recover the private information. Factoring is a relevant example—it is a one-
way function since it's relatively easy to, say, generate two prime numbers p 
and q and compute their product N = pq, but given a sufficiently large value 
of N, it is difficult to find the factors p and q. We can also build a trap door 
based on factoring, but we defer a discussion of that to later in this chapter 
(see the section on RSA). 

Recall that in symmetric key crypto, the plaintext is P and the ciphertext 
is C. But in public key crypto, tradition has it that we encrypt a message M, 
although, strangely, the result is still ciphertext C. Below, we follow this 
tradition. 

To do public key crypto, Bob must have a key pair consisting of a public 
key and a corresponding private key. Anyone can use Bob's public key to 
encrypt a message intended for Bob's eyes only, but only Bob can decrypt 
the message, since, by assumption only Bob has his private key. 

Bob can also apply his digital signature to a message M by "encrypting" 
it with his private key. Note that anybody can "decrypt" the message since 
this only requires Bob's public key, which is public. You might reasonably 
wonder what possible use this could be. In fact, it is one of the most useful 
features of public key crypto. 

A digital signature is like a handwritten signature—only more so. Bob is 
the only one who can digitally sign as Bob, since he is the only one with access 
to his private key. While in principle only Bob can write his handwritten 

1 Public key cryptosystems definitely do not grow on trees. 
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signature,2 in practice only Bob can digitally sign as Bob. Anyone with 
access to Bob's public key can verify Bob's digital signature, which is much 
more practical than hiring a handwriting expert to verify Bob's non-digital 
signature. 

The digital version of Bob's signature has some additional advantages 
over the handwritten version. For one thing, a digital signature is firmly tied 
to the document itself, whereas a handwritten signature can be photocopied 
onto another document. No photocopying attack is possible with a digital 
signature. Even more significant is the fact that, generally speaking, it's 
not feasible to forge a digital signature without the private key. In the non-
digital world, a forgery of Bob's signature might only be detectable by a 
trained expert (if at all), while a digital signature forgery can be easily and 
automatically detected by anyone since verification only requires Bob's public 
key, and everyone has access to public keys. 

Next, we'll discuss in detail several public key cryptosystems. The first one 
that we'll consider is the knapsack cryptosystem. This is appropriate since the 
knapsack was one of the first practical proposed public key systems. Although 
the knapsack that we'll present is known to be insecure, it's relatively easy 
to comprehend and nicely illustrates all of the important features of such a 
system. After the knapsack, we discuss the gold standard of public key crypto, 
namely, RSA. We'll then conclude our brief tour of public key systems with a 
look at the DifRe-Hellman key exchange, which is also widely used in practice. 

We then discuss elliptic curve cryptography, or ECC. Note that ECC is 
not a cryptosystem per se, but instead it offers a different realm in which to 
do the math that arises in public key systems. The advantage of ECC is that 
it's more efficient (in both time and space) and so it's favored in resource-
constrained environments such as wireless and handheld devices. In fact, all 
recent U.S. government public key standards are ECC-based. 

Public key cryptography is inherently more mathematical than symmet-
ric key. So now would be a good time to review the math topics found in 
the Appendix. In particular, a working knowledge of elementary modular 
arithmetic is assumed in this chapter. 

4.2 Knapsack 

In their seminal paper [90], Diffie and Hellman conjectured that public key 
cryptography was possible, but they "only" offered a key exchange algorithm, 
not a viable system for encryption and decryption. Shortly thereafter, the 
Merkle-Hellman knapsack cryptosystem was proposed by—believe it or not— 
Merkle and Hellman. We'll meet Hellman again later, but it is worth noting 
that Merkle was also one of the founders of public key cryptography. He wrote 

2What happens in practice is a different story. 
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a groundbreaking paper [202] that foreshadowed public key cryptography. 

Merkle's paper was submitted for publication at about the same time as Dime 

and Hellman's paper, although it appeared much later. For some reason, 

Merkle's contribution usually does not receive the attention it deserves. 

The Merkle-Hellman knapsack cryptosystem is based on a problem3 that 

is known to be NP-complete [119]. This seems to make it an ideal candidate 

for a secure public key cryptosystem. 

The knapsack problem can be stated as follows. Given a set of n weights 

labeled as 

Wo,Wi , . . . ,W n - i 

and a desired sum S, find ao, a\..., ora_i, where each Oj £ {0,1}, so that 

S = α0Wo + a\W\ -\ h an_iW„_i, 

provided this is possible. For example, suppose the weights are 

85,13,9,7,47,27,99,86 

and the desired sum is S = 172. Then a solution to the problem exists and 

is given by 

a = (00,01,02,03,04,05,06,07) = (11001100) 

since 85 + 13 + 47 + 27 = 172. 

Although the general knapsack problem is known to be NP-complete, 

there is a special case that can be solved in linear time. A superincreasing 

knapsack is similar to the general knapsack except that, when the weights 

are arranged from least to greatest, each weight is greater than sum of all 

previous weights. For example, 

3,6,11,25,46,95,200,411 (4.1) 

is a superincreasing knapsack. Solving a superincreasing knapsack problem 

is easy. Suppose we are given the set of weights in equation (4.1) and the 

sum S = 309. To solve this, we simply start with the largest weight and 

work toward the smallest to recover the Oj in linear time. Since S < 411, we 

have 07 = 0. Then since S > 200, we must have oe = 1, since the sum of 

all remaining weights is less than 200. Then we compute S = S — 200 = 109 

and this is our new target sum. Since S > 95, we have 05 = 1 and we 

compute S = 109—95 = 14. Continuing in this manner, we find a = 10100110, 

which we can easily verify solves the problem since 3 + 11 + 95 + 200 = 309. 

3Ironically, the knapsack cryptosystem is not based on the knapsack problem. Instead it's 

based on a more restricted problem, known as subset sum. Nevertheless, the cryptosystem 

is universally known as the knapsack. Eschewing our usual pedantic nature, we'll refer to 

both the cryptosystem and the underlying problem as knapsacks. 
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Next, we outline the steps in the procedure used to construct a knap-
sack cryptosystem. The process begins with a superincreasing knapsack from 
which we generate a public and private key pair. After listing the steps, we'll 
illustrate the process with a specific example. 

1. Generate a superincreasing knapsack. 

2. Convert the superincreasing knapsack into a general knapsack. 

3. The public key is the general knapsack. 

4. The private key is the superincreasing knapsack together with the con-
version factors. 

Below, we'll see that it's easy to encrypt using the general knapsack and, 
with access to the private key, it's easy to decrypt. However, without the 
private key, it appears that Trudy must solve an NP-complete problem—the 
knapsack problem—to recover the plaintext from the ciphertext. 

Now we'll present a specific example. For this example, we'll follow the 
numbering in the steps listed above. 

1. For this example, we'll choose the superincreasing knapsack 

(2,3,7,14,30,57,120,251). 

2. To convert the superincreasing knapsack into a general knapsack, we 
must choose a multiplier m and a modulus n so that m and n are rela-
tively prime and n is greater than the sum of all elements in the super-
increasing knapsack. For this example, we select the multiplier m = 41 
and the modulus n = 491. Then the general knapsack is computed from 
the superincreasing knapsack by modular multiplication: 

2m = 2 · 41 = 82 mod 491 
3m = 3 ■ 41 = 123 mod 491 

7m = 7 · 41 = 287 mod 491 

14m = 14 · 41 = 83 mod 491 
30m = 30 · 41 = 248 mod 491 

57m = 57 · 41 = 373 mod 491 

120m = 120 ■ 41 = 10 mod 491 
251m = 251 · 41 = 471 mod 491 

The resulting knapsack is (82,123,287,83,248,373,10,471). Note that 
this knapsack does indeed appear to be a general knapsack.4 

4Appearances can be deceiving. 
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3. The public key is the general knapsack, 

Public key: (82,123,287,83,248,373,10,471). 

4. The private key is the superincreasing knapsack together with the mul-
tiplicative inverse of the conversion factor, i.e., m~l mod n. For this 
example, we have 

Private key: (2,3,7,14,30,57,120,251) and 41" 1 mod 491 = 12. 

Suppose Bob's public and private key pair are those given in step 3 and 
step 4, respectively. Suppose that Alice wants to encrypt the message (in 
binary) M = 10010110 for Bob. Then she uses the 1 bits in her message 
to select the elements of the general knapsack that are summed to give the 
ciphertext. In this case, Alice computes 

C = 82 + 83 + 373 + 10 = 548. 

To decrypt this ciphertext, Bob uses his private key to find 

C ■ m" 1 mod n = 548 · 12 mod 491 = 193. 

Bob then solves the superincreasing knapsack for 193. Since Bob has the 
private key, this is an easy (linear time) problem from which Bob recovers 
the message in binary M = 10010110 or, in decimal, M = 150. 

Note that in this example, we have 

548 = 82 + 83 + 373 + 10 

and it follows that 

548m"1 = 82m"1 -I- 83m"1 + 373m"1 + 10m"1 

= 2mm"1 + 14mm"1 + 57mm_1 + 120mm_1 

= 2 + 14 + 57 + 120 

= 193 mod 491. 

This example shows that multiplying by m" 1 transforms the ciphertext— 
which lives in the realm of the general knapsack—into the superincreasing 
realm, where it's easy for Bob to solve for the weights. Proving that the 
decryption formula works in general is equally straightforward. 

Without the private key, attacker Trudy can break a message if she can 
find a subset of the elements of the public key that sum to the ciphertext 
value C. In the example above, Trudy must find a subset of the knapsack 
(82,123,287,83,248,373,10,471) that sums precisely to 548. This appears to 
be a general knapsack problem, which is known to be a very difficult problem. 
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The trapdoor in the knapsack cryptosystem occurs when we convert the 
superincreasing knapsack into the general knapsack using modular arithmetic, 
since the conversion factors are unavailable to an attacker. The one-way 
feature lies in the fact that it is easy to encrypt with the general knapsack, 
but it's apparently hard to decrypt without the private key. Of course, with 
the private key, we can convert the problem into a superincreasing knapsack 
problem that is easy to solve. 

The knapsack appears to be just what the doctor ordered. First, it is 
fairly easy to construct a public and private key pair. And given the public 
key, it is easy to encrypt, while knowledge of the private key makes it easy to 
decrypt. Finally, without the private key it appears that Trudy will be forced 
to solve an NP-complete problem. 

Alas, this clever knapsack cryptosystem is insecure. It was broken by 
Shamir (who else?) in 1983 using an Apple II computer [265]. The attack 
relies on a technique known as lattice reduction that we discuss in detail in 
Chapter 6. The bottom line is that the "general knapsack" that is derived 
from the superincreasing knapsack is not really a general knapsack—in fact, 
it's a very special and highly structured case of the knapsack. The lattice 
reduction attack is able to take advantage of this structure to easily recover 
the plaintext (with a high probability). 

Much research has been done on the knapsack problem since the demise 
of the Merkle-Hellman knapsack. Today, there are knapsack variants that 
appear to be secure, but people are reluctant to use them since the name 
"knapsack" is forever tainted. For more information on knapsack cryptosys-
tems, see [88, 179, 222]. 

4.3 RSA 

Like any worthwhile public key cryptosystem, RSA is named after its puta-
tive inventors, Rivest, Shamir, and Adleman. We've met Rivest and Shamir 
previously, and we'll hear from both again. In fact, Rivest and Shamir are 
two of the giants of modern crypto. However, the RSA concept was actually 
originated by Cliff Cocks of GCHQ a few years before R, S, and A indepen-
dently reinvented it [191]. This does not in any way diminish the achievement 
of Rivest, Shamir, and Adleman, since the GCHQ work was classified and was 
not even widely known within the classified crypto community—it was viewed 
more as a curiosity than as a practical system.5 

If you've ever wondered why there is so much interest in factoring large 
numbers, it's because RSA can be broken by factoring. However, it's not 
known for certain that factoring is difficult in the sense that, say, the knapsack 

5It is also worth noting that the spies seem to have never even considered the concept 
of a digital signature. 
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problem is difficult. In true cryptographic fashion, the factoring problem on 

which RSA rests is hard because lots of smart people have looked at it, and 

apparently nobody has found an efficient solution. 

To generate an RSA public and private key pair, choose two large prime 

numbers p and q and form their product N = pq. Next, choose e relatively 

prime to the product (p — l)(q — 1). Finally, find the multiplicative inverse 

of e modulo (p — l)(q — 1) and denote this inverse as d. At this point, we 

have N, which is the product of the two primes p and q, as well as e and d, 

which satisfy ed — 1 mod (p — l)(q — 1). Now forget the factors p and q. 

The number N is the modulus, and e is the encryption exponent while d 

is the decryption exponent. The RSA key pair consists of 

Public key: (N,e) 

and 

Private key: d. 

In RSA, encryption and decryption are accomplished via modular expo-

nentiation. To encrypt with RSA, we treat the plaintext message M as a 

number and raise it to the power e, modulo N, that is, 

C = Me mod N. 

To decrypt C, modular exponentiation using the decryption exponent d does 

the trick, that is, 

M = Cd mod N. 

It's probably not obvious that RSA decryption actually works—we'll prove 

that it does shortly. Assume for a moment that RSA does work. Now, if 

Trudy can factor the modulus N (which is public) she will obtain p and q. 

Then she can use the other public value e to easily find the private value d 

since ed=\ mod (p—l)(q—l) and finding modular inverses is computationally 

easy. In other words, factoring the modulus enables Trudy to recover the 

private key, which breaks RSA. However, it is not known whether factoring 

is the only way to break RSA. 

Does RSA really work? Given C = Me mod N, we must show that 

M = Cd mod N = Med mod N. (4.2) 

To do so, we need the following standard result from number theory [43]: 

Euler's Theorem: If x is relatively prime to n then χΊ>(ηϊ = 1 mod n 

Recall that e and d were chosen so that 

ed = 1 mod (p — l)(q — 1). 
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Furthermore, N = pq, which implies 

#JV) = ( p - l ) ( « - l ) 

(see the Appendix if you are not familiar with the φ function). These two 

facts together imply that 

ed - 1 = 1ΐφ{Ν) 

for some integer k. We don't need to know the precise value of k. 

Now we have all of the necessary pieces of the puzzle to verify that RSA 

decryption works. Observe that 

Cd = Med = M^ed~^+1 = M ■ M e d _ 1 

= M · Mfc*(JV) = M ■ lk = M mod N. (4.3) 

In the first line of equation (4.3) we simply added zero to the exponent 
and in the second line we used Euler's Theorem to eliminate the ominous-
looking ΜΨ(ΝΪ term. This confirms that the RSA decryption exponent does, 

in fact, decrypt the ciphertext C. Of course, the game was rigged since e 

and d were chosen so that Euler's Theorem would make everything come out 

as desired in the end. That's just the way mathematicians do things. 

4.3.1 Textbook R S A Example 

Let's consider a simple RSA example. To generate, say, Alice's keypair, 

we'll select the two "large" primes p = 11 and q = 3. Then the modulus 

is N = pq = 33 and (p — l)(q — 1) = 20. Next, we choose the encryption 

exponent e = 3, which is, as required, relatively prime to (p — l)(q — 1). 

We then compute the corresponding decryption exponent, which in this case 

is d = 7, since ed = 3 ■ 7 = 1 mod 20. Now, we have 

Alice's public key: (N, e) = (33,3) 

and 
Alice's private key: d = 7. 

As usual, Alice's public key is public but only Alice has access to her private 
key. 

Now suppose Bob wants to send Alice a message M. Further, suppose 
that as a number, the message is M = 15. Bob looks up Alice's public 
key (TV, e) = (33,3) and computes the ciphertext as 

C = Me mod N = 153 = 3375 = 9 mod 33, 

which he then sends to Alice. 
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To decrypt the ciphertext C = 9, Alice uses her private key d = 7 to find 

M = Cd mod N = 97 = 4,782,969 = 144,938 · 33 + 15 = 15 mod 33. 

Alice has thereby recovered the original message M = 15 from the cipher-
text C = 9. 

There are a couple of major problems with this textbook RSA example. 
For one, the "large" primes are not large—it would be trivial for Trudy to 
factor the modulus. In the real world, the modulus N is typically at least 1024 
bits, with a 2048-bit or large modulus often used. 

An equally serious problem with most textbook RSA examples (ours in-
cluded) is that they are subject to a forward search attack, as discussed 
in Chapter 2. Recall that in a forward search, Trudy can guess a pos-
sible plaintext message M and encrypt it with the public key. If the re-
sult matches the ciphertext C, then Trudy has recovered the plaintext M. 
The way to prevent this attack (and several others) is to pad the message 
with random bits. For simplicity, we do not discuss padding here, but it 
is worth noting that several padding schemes are in common use, includ-
ing the oddly named PKCS#lvl .5 [91] and Optimal Asymmetric Encryption 
Padding (OAEP) [226]. Any real-world RSA implementation must use a 
padding scheme such as one of these. 

4.3.2 Repeated Squaring 

Modular exponentiation of large numbers with large exponents is an expensive 
proposition. To make this more manageable (and thereby make RSA more 
efficient and practical), several tricks are commonly used. The most basic 
trick is the method of repeated squaring (also known as square and multiply). 

For example, suppose we want to compute 520. Naively, we would simply 
multiply 5 by itself 20 times and then reduce the result modulo 35, that is, 

520 = 95,367,431,640,625 = 25 mod 35. (4.4) 

However, this method results in an enormous value prior to the modular 
reduction, in spite of the fact that the final answer is restricted to the range 0 
to 34. 

Now suppose we want to do RSA encryption C = Me mod N or decryp-
tion M = Cd mod N. In a secure implementation of RSA, the modulus N is at 
least 1024 bits. As a result, for typical values of e or d, the numbers involved 
will be so large that it is impossible to compute Me mod N by the naive 
approach in equation (4.4). Fortunately, the method of repeated squaring 
allows us to compute such an exponentiation without creating unmanageably 
large numbers at any intermediate step. 
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Repeated squaring works by building up the exponent one bit at a time. 
At each step we double the current exponent and if the binary expansion has 
a 1 in the corresponding position, we also add one to the exponent. 

How can we double (and add one) to an exponent? Basic properties of 
exponentiation tell us that if we square xy, we obtain (xy)2 = x2y and that x ■ 
xy — xy+i_ Consequently, we can easily double or add one to any exponent. 
Prom the basic properties of modular arithmetic (see the Appendix), we know 
that we can reduce any intermediate results by the modulus, and thereby 
avoid extremely large numbers. 

An example is worth a thousand words. Consider again 520. First, note 
that the exponent 20 is, in binary, 10100. The exponent 10100 can be built 
up one bit at a time, beginning from the high-order bit, as 

(0,1,10,101,1010,10100) = (0,1,2,5,10,20). 

As a result, the exponent 20 can be constructed by a series of steps, where 
each step consists of doubling and, when the next bit in the binary expansion 
of 20 is a 1, adding one, that is, 

1 = 0 - 2 + 1 
2 = 1-2 
5 = 2-2 + 1 

10 = 5 · 2 
20 = 10 · 2 

Now to compute 520, repeated squaring proceeds as 

(50)2 · 51 = 5 mod 35 

(51)2 = 52 = 25 mod 35 

(52)2 · 51 = 252 · 5 = 3125 = 10 mod 35 

(55)2 = 102 = 100 = 30 mod 35 

(510)2 = 302 = 900 = 25 mod 35 

Note that a modular reduction occurs at each step. 
Although there are many steps in the repeated squaring algorithm, each 

step is simple, efficient, and we never have to deal with a number that is 
greater than the cube of the modulus. Compare this to equation (4.4), where 
we had to deal with an enormous intermediate value. 

4.3.3 Speeding U p R S A 

Another trick that can be employed to speed up RSA is to use the same 
encryption exponent e for all users. As far as anyone knows, this does not 

5J = 

52 = 

55 = 

510 = 

520 = 
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weaken RSA in any way. The decryption exponents (the private keys) of 
different users will be different, since different p, q, and consequently N are 
chosen for each key pair. 

Amazingly, a suitable choice for the common encryption exponent is e = 3. 
With this choice of e, each public key encryption only requires two multipli-
cations. However, the private key operations remain expensive since there is 
no special structure for d. This is often acceptable since many encryptions 
may be done by a central server, while the decryption is effectively distributed 
among the clients. Of course, if the server needs to compute digital signa-
tures, then a small e does not reduce its workload. Although the math would 
work, it would certainly be a bad idea to choose a common value of d for all 
users. 

With an encryption exponent of e = 3, the following cube root attack is 
possible. If the plaintext M satisfies M < iV1/3, then C = Me = M3 , that 
is, the mod N operation has no effect. As a result, an attacker can simply 
compute the usual cube root of C to obtain M. In practice, this is easily 
avoided by padding M with enough bits so that, as a number, M > N1'3. 

If multiple users all have e = 3 as their encryption exponent, another type 
of the cube root attack exists. If the same message M is encrypted with three 
different users' public keys, yielding, say, ciphertext Co, C\, and C2, then the 
Chinese Remainder Theorem [43] can be used to recover the message M. This 
is also easily avoided in practice by randomly padding each message M or 
by including some user-specific information in each M, so that the messages 
actually differ. 

Another popular common encryption exponents is e = 21 6+1. With this e, 
each encryption requires only 17 steps of the repeated squaring algorithm. An 
advantage of e = 216 + 1 is that the same encrypted message must be sent 
to 216 + 1 users before the Chinese Remainder Theorem attack can succeed. 

Next, we'll examine the Diffie-Hellman key exchange algorithm, which is 
a very different sort of public key algorithm. Whereas RSA relies on the 
difficulty of factoring, Diffie-Hellman is based on the so-called discrete log 
problem. 

4.4 Diffie-Hellman 

The Diffie-Hellman key exchange algorithm, or DH for short, was invented by 
Malcolm Williamson of GCHQ and shortly thereafter it was independently 
reinvented by its namesakes, Whitfield Diffie and Martin Hellman [191]. 

The version of DH that we discuss here is a key exchange algorithm be-
cause it can only be used to establish a shared secret. The resulting shared 
secret is generally used as a shared symmetric key. It's worth emphasizing 
that, in this book, the words "Diffie-Hellman" and "key exchange" always 
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go together—DH is not for encrypting or signing, but instead it allows users 
to establish a shared symmetric key. This is no mean feat, since this key 
establishment problem is one of the fundamental problems in symmetric key 
cryptography. 

The security of DH relies on the computational difficulty of the discrete 
log problem. Suppose you are given g and x = gk. Then to determine k you 
would compute the logarithm, log„(a;). Now given g, p, and gk mod p, the 
problem of finding k is analogous to the logarithm problem, but in a discrete 
setting. This discrete version of the logarithm problem is, not surprisingly, 
known as the discrete log problem. As far as is known, the discrete log 
problem is very difficult to solve, although, as with factoring, it is not known 
to be, say, NP-complete. 

The mathematical setup for DH is relatively simple. Let p be prime and 
let g be a generator, which means that for any xE{l,2,...,p— 1} there exists 
an exponent n such that x = gn mod p. The prime p and the generator g are 
public. 

For the actual key exchange, Alice randomly selects a secret exponent a 
and Bob randomly selects a secret exponent b. Alice computes ga mod p and 
sends the result to Bob, and Bob computes gb mod p and sends the result to 
Alice. Then Alice computes 

{gb)a mod p = gab mod p 

and Bob computes 
(ga)b mod p = gab mod p 

and gab mod p is the shared secret, which is typically used as a symmetric 
key. The DH key exchange is illustrated in Figure 4.1. 

ga mod p 
- ► 
gb mod p 

Alice, a Bob, b 

Figure 4.1: Diffie-Hellman Key Exchange 

The attacker Trudy can see ga mod p and gb mod p, and it seems that 
she is tantalizingly close to knowing the secret gab mod p. However, 

ga-gb = ga+h^9ahmoap 

Apparently, Trudy needs to find either a or b, which appears to require that 
she solve a difficult discrete log problem. Of course, if Trudy can find a or 6 
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or gab mod p by any other means, the system is broken. But, as far as is 
known, the only way to break DH is to solve the discrete log problem. 

There is a fundamental problem with the DH algorithm—it is susceptible 
to a man-in-the-middle, or MiM, attack.6 This is an active attack where 
Trudy places herself between Alice and Bob and captures messages from 
Alice to Bob and vice versa. With Trudy thusly placed, the DH exchange 
can be easily subverted. In the process, Trudy establishes a shared secret, 
say, gat mod p with Alice, and another shared secret gbt mod p with Bob, as 
illustrated in Figure 4.2. Neither Alice nor Bob has any clue that anything 
is amiss, yet Trudy is able to read or change any messages passing between 
Alice and Bob.7 

ga mod p g* mod p 

g* mod p gb mod p 
M M 

Alice, a Trudy, t Bob, b 

Figure 4.2: Dime-Hellman Man-in-the-Middle Attack 

The MiM attack in Figure 4.2 is a serious concern when using DH. There 
are several possible ways to prevent the attack, including the following: 

1. Encrypt the DH exchange with a shared symmetric key. 

2. Encrypt the DH exchange with public keys. 

3. Sign the DH values with private keys. 

At this point, you should be baffled. After all, why would we need to use DH 
to establish a symmetric key if we already have a shared symmetric key (as 
in 1) or a public key pair (as in 2 and 3)? This is an excellent question to 
which we'll give an excellent answer when we discuss protocols in Chapters 9 
and 10. 

4.5 Elliptic Curve Cryptography 

Elliptic curves provide an alternative domain for performing the complex 
mathematical operations required in public key cryptography. So, for exam-
ple, there is an elliptic curve version of Dime-Hellman. 

6Your politically incorrect author refuses to use the term "middleperson" attack. 
7The underlying problem here is that the participants are not authenticated. In this 

example, Alice does not know she's talking to Bob and vice versa. It will be a few more 
chapters before we discuss authentication protocols. 
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The advantage of elliptic curve cryptography (ECC) is that fewer bits 
are needed to achieve the same level of security. On the down side, elliptic 
curve math is more complex, and consequently each mathematical operation 
on an elliptic curve is somewhat more expensive. Overall, elliptic curves offer 
a significant computational advantage over standard modular arithmetic and 
current U.S. government standards reflect this—all recent public key stan-
dards are ECC-based. In addition, ECC is especially important in resource-
constrained environments such as handheld devices. 

What is an elliptic curve? An elliptic curve E is the graph of a function 
of the form 

E : y2 = x3 + ax + b, 

together with a special point at infinity, denoted oo. The graph of a typical 
elliptic curve appears in Figure 4.3. 

Figure 4.3: An Elliptic Curve 

4.5.1 Elliptic Curve M a t h 

Figure 4.3 also illustrates the method used to do arithmetic on an elliptic 
curve. The "sum" of two points on an elliptic curve has both a geometric and 
arithmetic interpretation. Geometrically, the sum of the points P\ and Pi is 
defined as follows: First, a line is drawn through the two points. This line 
usually intersects the curve in one other point. If so, this intersection point 
is reflected about the x axis to obtain the point P3, which is defined to be 
the sum, that is, 

P3 = -Pi + P2. 

This is illustrated in Figure 4.3. Also, addition is the only mathematical 
operation on elliptic curves that is required. 

For cryptography, we want to deal with a discrete set of points. This 
is easily accomplished by including a "mod p" in the generic elliptic curve 
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equation, that is, 
y = x + ax + b (mod p). 

For example, consider the elliptic curve 

y2 = x3 + 2a; + 3 (mod 5). (4.5) 

We can list all of the points (x, y) on this curve by substituting all values 
for x and solving for corresponding y value or values. Since we are working 
modulo 5, we only need to consider x = 0,1,2,3,4. In this case, we obtain 
the following points: 

x = 0 =>■ y2 = 3 = > no solution mod 5 

x = 1 =>■ y = 6 = 1 =>■ y = 1,4 mod 5 

x = 2 = ^ y 2 = 15 = 0 = > t / = 0 mod 5 

x = 3 ==>■ y = 36 = 1 ==> 2/ = 1,4 mod 5 

x = 4 =*> y2 = 75 = 0 = > y = 0 mod 5 

That is, we find that the points on the elliptic curve in equation (4.5) are 

(1,1) (1,4) (2,0) (3,1) (3,4) (4,0) and oo. (4.6) 

Next, we again consider the problem of adding two points on a curve. 
We need a more computer-friendly approach than the geometric definition 
discussed above. The algorithm for algebraically adding two points on an 
elliptic curve appears in Table 4.1. 

Table 4.1: Addition on an Elliptic Curve mod p 

Given: curve E: y2 = χΛ + ax + b (mod p) 

Pi = (xi,yi) and P2 = (2:2,2/2) on E 

Find: P3 = {x3,y3) = Pi + P2 

Algorithm: 

X3 = m2 — x\ — X2 (mod p) 

2/3 = m(xi - x3) - 2/1 (mod p) 

' mod p if Pi φ P2 

mod p if Pi = P2 

Special case 1 : If m = 00 then P3 = 00 

Special case 2: 00 + P = P for all P 

where m - i (îo ~ îft) ■ (*2 - a*) - 1 
w h e r e m - j ( 3 a ; 2 + f l ) . ( 2 y i ) - i m 0 ( 

Let's apply the algorithm in Table 4.1 to find the points P3 = (1,4)+ (3,1) 
on the curve in equation (4.5). First, we compute 

m = (1 - 4)/(3 - 1) = - 3 · 2 - 1 = - 3 · 3 = 1 mod 5. 
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Then 

and 

x3 = l2 - 1 - 3 = - 3 = 2 mod 5 

y3 = 1(1 - 2) - 4 = - 5 = 0 mod 5. 

Therefore, on the curve y2 = a;3+2x+3 (mod 5), we have (1,4)+(3,1) = (2,0). 
Note that this sum, the point (2,0), is also on the elliptic curve. 

4.5.2 E C C Diff ie-Hellman 

Now that we can do addition on elliptic curves, let's consider the ECC version 
of the Dime-Hellman key exchange. The public information consists of a curve 
and a point on the curve. We'll select the curve 

y2 = x3 + llx + b (mod 167), (4.7) 

leaving b to be determined momentarily. Next, we select any point (x,y) 
and determine b so that this point lies on the resulting curve. In this case, 
we'll choose, say, (x, y) = (2,7). Then substituting x = 2 and y = 7 into 
equation (4.7) we find b = 19. The public information is 

Public: y2 = x3 + l l x + 19 (mod 167) and the point (2,7). (4.8) 

Alice and Bob each must randomly select their own secret multipliers.8 

Suppose Alice selects A = 15 and Bob selects B = 22. Then Alice computes 

4(2,7) = 15(2,7) = (102,88), 

where all arithmetic is done on the curve in equation (4.8). Alice sends her 
computed result to Bob. Bob computes 

5(2,7) = 22(2,7) = (9,43), 

which he sends to Alice. Now Alice multiplies the value she received from 
Bob by her secret multiplier A, that is, 

4(9,43) = 15(9,43) = (131,140). 

Similarly, Bob computes 

£(102,88) = 22(102,88) = (131,140) 

and Alice and Bob have established a shared secret, suitable for use as a 
symmetric key. Note that this elliptic curve version of Diffie-Hellman works 

Since we know how to do addition on an elliptic curve, we do multiplication as repeated 
addition. 
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since AB ■ P = BA · P, where A and B are multipliers and P is the speci-
fied point on the curve. The security of this method rests on the fact that, 
although Trudy can see A ■ P and B ■ P, she (apparently) must find A οτ Β 

before she can determine the shared secret. As far as is known, this elliptic 

curve version of DH is as difficult to break as the regular DH. Actually, for a 

given number of bits, the elliptic curve version is much harder to break, which 

allows for the use of smaller values to obtain an equivalent level of security. 

Since the values are smaller, the arithmetic is more efficient. 

All is not lost for Trudy. She can take some comfort in the fact that 

the ECC version of DH is just as susceptible to a MiM attack as any other 

Diffie-Hellman key exchange. 

4.5.3 Realist ic Elliptic Curve Example 

To provide some idea of the magnitude of the numbers used in real-world 

ECC, we present a realistic example. This example appears as part of the 

Certicom ECCp-109 challenge problem [52], and it is discussed in Jao's excel-

lent survey [154]. Note that the numbers are given in decimal and no commas 

appear within the numbers. 

Let 

p = 564538252084441556247016902735257 

a = 321094768129147601892514872825668 

b = 430782315140218274262276694323197 

and consider the elliptic curve E : y2 = x3 + ax + b (mod p). Let P be the 

point 

(97339010987059066523156133908935,149670372846169285760682371978898) 

which is on E, and let k = 281183840311601949668207954530684. Then 

adding the point P to itself k times, which we denote as kP, we obtain the 

point 

(44646769697405861057630861884284,522968098895785888047540374779097) 

which is also on the curve E. 

While these numbers are indeed large, they are downright puny in com-

parison to the numbers that must be used in a non-elliptic curve public key 

system. For example, a modest-sized RSA modulus has 1024 bits, which cor-

responds to more than 300 decimal digits. In contrast, the numbers in the 

elliptic curve example above only have about l/10th as many digits. 

There are many good sources of information on the hot topic of elliptic 

curve cryptography. For an accessible treatment see [251] or see [35] for more 

of the mathematical details. 
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4.6 Public Key Notat ion 

Before discussing the uses of public key crypto, we need to settle on some 
reasonable notation. Since public key systems typically have two keys per 
user, adapting the notation that we used for symmetric key crypto would be 
awkward. In addition, a digital signature is an encryption (with the private 
key), but yet the same operation is a decryption when applied to ciphertext. 
If we're not careful, this notation thing could get complicated. 

We'll adopt the following notation for public key encryption, decryption, 
and signing [162]. 

• Encrypt message M with Alice's public key: C = {M}A]jce. 

• Decrypt ciphertext C with Alice's private key: M = [Cilice· 

• The notation for Alice signing9 message M is S = [Mj^hce· 

Note that curly brackets represent public key operations, square brackets 
are for private key operations, and the subscript tells us whose key is being 
used. This is somewhat awkward but, in your notationally challenged author's 
opinion, it is the least bad of the possibilities. Finally, since public and private 
key operations cancel each other out, 

[WAliceklice = { W] Alice} Alice = M. 

Never forget that the public key is public and, consequently, anyone can 
compute {Malice· O n the other hand, the private key is private, so only 
Alice can compute [C]Alice o r [M]Alice· The implication is that anyone can 
encrypt a message for Alice, but only Alice can decrypt the ciphertext. In 
terms of signing, only Alice can sign M, but, since the public key is public, 
anyone can verify the signature. We'll have more to say about signatures and 
verification after we discuss hash functions in the next chapter. 

4.7 Uses for Public Key Crypto 

Anything you can do with a symmetric cipher you can do with public key 
crypto, only slower. This includes confidentiality, in the form of transmitting 
data over an insecure channel or securely storing data on an insecure media. 
We can also use public key crypto for integrity—a signature plays the role of 
a MAC in the symmetric case. 

In addition, there are things that we can do with public keys that have no 
analog in the symmetric crypto world. Specifically, public key crypto offers 

9Actually, this is not the correct way to digitally sign a message; see Section 5.2 of 
Chapter 5. 
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two major advantages over symmetric key crypto. The first is that, with 
public key crypto, we don't need to established a shared key in advance.10 

The second major advantage is that digital signatures provide integrity (see 
Problem 35) and non-repudiation. We look a little closer at these two topics 
below. 

4.7.1 Confidentiality in the Real World 

The primary advantage of symmetric key cryptography over public key is 
efficiency.11 In the realm of confidentiality, the primary advantage of public 
key cryptography is the fact that no shared key is required. 

Is it possible to get the best of both worlds? That is, can we have the 
efficiency of symmetric key crypto and yet not have to share keys in advance? 
The answer is an emphatic yes. The way to achieve this highly desirable result 
is with a hybrid cryptosystem, where public key crypto is used to establish a 
symmetric key and the resulting symmetric key is then used to encrypt the 
data. A hybrid cryptosystem is illustrated in Figure 4.4. 

{KJöob 
». 

E(Bob's data, K) 

E(Alice's data, K) 

Alice Bob 
Figure 4.4: Hybrid Cryptosystem 

The hybrid cryptosystem in Figure 4.4 is only for illustrative purposes. In 
fact, Bob has no way to know that he's talking to Alice—since anyone can do 
public key operations—so he would be foolish to encrypt sensitive data and 
send it to "Alice" following this protocol. We'll have much more to say about 
secure authentication and key establishment protocols in upcoming chapters. 
Hybrid crypto (with secure authentication) is widely used in practice today. 

4.7.2 Signatures and Non-repudiat ion 

As mentioned above, a digital signature can be used for integrity. Recall 
that a MAC is a way to provide integrity that uses a symmetric key. So, a 
signature is as good as a MAC when it comes to integrity. In addition, a digital 

10Of course, we do need to get the private keys to the participants beforehand, so the key 
distribution problem has not been completely eliminated—it has just taken on a different 
form. 

11A secondary benefit is that no public key infrastructure, or PKI, is required. We'll 
discuss PKI below. 
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signature provides non-repudiation, which is something that symmetric keys 
by their very nature cannot provide. 

To understand non-repudiation, let's first consider an integrity example 
in the symmetric key case. Suppose Alice orders 100 shares of stock from 
her favorite stockbroker, Bob. To ensure the integrity of her order, Alice 
computes a MAC using a shared symmetric key KAB- Now suppose that 
shortly after Alice places the order—but before she has paid any money to 
Bob—the stock loses all of its value. At this point Alice could claim that she 
did not place the order, that is, she could repudiate the transaction. 

Can Bob prove that Alice placed the order? If all he has is the MAC, 
then he cannot. Since Bob also knows the symmetric key KAB, n e could have 
forged the message in which "Alice" placed the order. Note that Bob knows 
that Alice placed the order (since he didn't forge it), but he can't prove it in 
a court of law. 

Now consider the same scenario, but suppose Alice uses a digital signa-
ture instead of a MAC. As with the MAC, the signature provides an integrity 
check. Again, suppose that the stock loses its value and Alice tries to repu-
diate the transaction. Can Bob prove that the order came from Alice? Yes 
he can, since only Alice has access to her private key.12 Therefore, digital 
signatures provide integrity and non-repudiation, while a MAC can only be 
used for integrity. This is simply due to the fact that the symmetric key is 
known to both Alice and Bob, whereas Alice's private key is only known to 
Alice.13 We'll have more to say about signatures and integrity in the next 
chapter. 

4.7.3 Confidentiality and Non-repudiat ion 

Suppose that Alice and Bob have public keys available and Alice wants to 
send a message M to Bob. For confidentiality, Alice would encrypt M with 
Bob's public key, and for integrity and non-repudiation, Alice can sign M 
with her private key. But suppose that Alice, who is very security conscious, 
wants both confidentiality and non-repudiation. Then she can't just sign M 
as that will not provide confidentiality, and she can't just encrypt M as that 
won't provide integrity. The solution seems straightforward enough—Alice 
can sign and encrypt the message before sending it to Bob, that is, 

{[-MlAliceJBob-

12Of course, we are assuming that Alice's private key has not been lost or compromised. 
In any case, if the keys are in the wrong hands then all bets are off. 

13One may be the loneliest number, but when it comes to non-repudiation, two is much 
worse than one. 
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Or would it be better for Alice to encrypt M first and then sign the result? 
That is, should Alice compute 

[{-MlBobUlice 

instead? Can the order possibly matter? Is this something that only an 
anal-retentive cryptographer could care about? 

Let's consider a couple of different scenarios, similar to those found in [77]. 
First, suppose that Alice and Bob are romantically involved. Alice decides to 
send the message 

M = "I love you" 

to Bob and she decides to use the sign and encrypt approach. So, Alice sends 
Bob the message 

{[M] Alice) Bob· 
Subsequently, Alice and Bob have a lovers' tiff and Bob, in an act of spite, 
decrypts the signed message to obtain [M] Alice a n d re-encrypts it using Char-
lie's public key, that is, 

{[•M]Alice}charlie· 
Bob then sends this message to Charlie, as illustrated in Figure 4.5. Of course, 
Charlie thinks that Alice is in love with him, which causes a great deal of 
embarrassment for both Alice and Charlie, much to Bob's delight. 

{[MJAiiceWi {[M]Alice}charlie 

Alice Bob Charlie 

Figure 4.5: Pitfall of Sign and Encrypt 

Alice, having learned her lesson from this bitter experience, vows to never 
sign and encrypt again. When she wants confidentiality and non-repudiation, 
Alice will always encrypt then sign. 

Some time later, after Alice and Bob have resolved their earlier issues, 
Alice develops a great new theory that she wants to communicate to Bob. 
This time her message is [55] 

M = "Brontosauruses are thin at one end, much much thicker 

in the middle, then thin again at the other end", 

which she dutifully encrypts then signs 

[{-MjBoblAlice 



 

4.7 USES FOR PUBLIC KEY CRYPTO 111 

before sending it to Bob. 
However, Charlie, who is still angry with Bob and Alice, has set himself 

up as a man-in-the-middle so that he is able to intercept all traffic between 
Alice and Bob. Charlie knows that Alice is working on a great new theory, 
and he also knows that Alice only encrypts important messages. Charlie 
suspects that this encrypted and signed message is important and somehow 
related to Alice's important new theory. So, Charlie uses Alice's public key 
to compute {M}B01J, which he then signs before sending it to Bob, that is, 
Charlie sends 

[{-Mlßoblcharlie 

to Bob. This scenario is illustrated in Figure 4.6. 

Charlie 

Alice Charlie Bob 

Figure 4.6: Pitfall of Encrypt and Sign 

When Bob receives the message from Charlie, he assumes that this great 
new theory is Charlie's, and he immediately gives Charlie a promotion. When 
Alice learns that Charlie has taken credit for her great new theory, she swears 
never to encrypt and sign again. 

Note that in the first scenario, Charlie assumed that {[MJ^ucelcharlie 
must have been sent from Alice to Charlie. That's not a valid assumption— 
Charlie's public key is public, so anyone could have done the encryption. In 
fact, the only thing Charlie really knows is that at some point Alice signed M. 
The problem here is that Charlie has apparently forgotten that public keys 
are public. 

In the second scenario, Bob assumed that [{M}B0b]charlie must have orig-
inated with Charlie, which is also not a valid assumption. Again, since public 
keys are public, anybody could've encrypted M with Bob's public key. It is 
true that Charlie must have signed this encrypted message, but that does not 
imply that Charlie actually encrypted it (or even knows what the plaintext 
message says). 

In both of these cases, the underlying problem is that the recipient does 
not clearly understand the way that public key cryptography works. There 
are some inherent limitations to public key crypto, most of which are due to 
the fact that anyone can do public key operations, that is, anyone can encrypt 
a message and anyone can verify a signature. This fact can be a source of 
confusion if you are not careful. 
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4.8 Public Key Infrastructure 

A public key infrastructure, or PKI, is the sum total of everything required 
to securely use public keys in the real world. It's surprisingly difficult and 
involved to assemble all of the necessary pieces of a PKI into a working whole. 
For a discussion of some of the risks inherent in PKI, see [101]. 

A digital certificate (or public key certificate or, for short, certificate) 
contains a user's name along with the user's public key and this is signed by 
a certificate authority, or CA. For example, Alice's certificate contains14 

M = ("Alice", Alice's public key) and S = [M]CA . 

To verify this certificate, Bob would compute {S}CA a n d verify that this 
matches M. 

The CA acts as a trusted third party, or TTP. By signing the certificate, 
the CA is vouching for the fact it gave the corresponding private key to Alice. 
That is, the CA created a public and private key pair and it put the public 
key in Alice's certificate. Then the CA signed the certificate (using its private 
key) and it gave the private key to Alice. If you trust the CA, you believe 
that it actually gave the private key to Alice, and not to anyone else. 

A subtle but important point here is that the CA is not vouching for the 
identity of the holder of the certificate. Certificates act as public keys and, 
consequently, they are public knowledge. So, for example, Trudy could send 
Alice's public key to Bob and claim to be Alice. Bob must not fall for this 
trick. 

When Bob receives a certificate, he must verify the signature. If the 
certificate is signed by a CA that Bob trusts, then he uses that CA's public 
key for verification. On the other hand, if Bob does not trust the CA, then 
the certificate is useless to him. Anyone can create a certificate and claim to 
be anyone else. Bob must trust the CA and verify the signature before he 
can assume the certificate is valid. 

But what exactly does it mean for Alice's certificate to be valid? And 
what useful information does this provide to Bob? Again, by signing the 
certificate, the CA is vouching for the fact that it gave the private key to 
Alice, and not to anyone else. In other words, the public key in the certificate 
is actually Alice's public key, in the sense that Alice—and only Alice—has 
the corresponding private key. 

To finish beating this dead horse, after verifying the signature, Bob trusts 
that Alice has the corresponding private key. It's critical that Bob does not 
assume anything more than this. For example, Bob learns nothing about the 

14This formula is slightly simplified. Actually, we also need to use a hash function when 
we sign, but we don't yet know about hash functions. We'll give the precise formula for 
digital signatures in the next chapter. Regardless, this simplified signature illustrates all of 
the important concepts related to certificates. 
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sender of the certificate—certificates are public information, so anyone could 
have sent it to Bob. In later chapters we'll discuss security protocols, where 
we will see how Bob can use a valid certificate to verify the identity of the 
sender, but that requires more than simply verifying the signature on the 
certificate. 

In addition to the required public key, a certificate could contain just 
about any other information that is deemed useful to the participants. How-
ever, the more information, the more likely the certificate will become invalid. 
For example, it might be tempting for a corporation to include the employee's 
department and phone number in a certificate. But then the inevitable reor-
ganization will invalidate the certificate. 

If a CA makes a mistake, the consequences can be dire. For example, 
VeriSign15 once issued a signed certificate for Microsoft to someone else [136], 
that is, VeriSign gave the private key to someone other than Microsoft. That 
"someone else" could then have acted (electronically, that is) as Microsoft. 
This particular error was quickly detected, and the certificate was revoked, 
apparently before any damage was done. 

This raises an important PKI issue, namely, certificate revocation. Cer-
tificates are usually issued with an expiration date. But if a private key is 
compromised, or it is discovered that a certificate was issued in error, the 
certificate must be revoked immediately. Most PKI schemes require peri-
odic distribution of certificate revocation lists, or CRLs, which are supposed 
to be used to filter out compromised certificates. In some situations, this 
could place a significant burden on users, which could to lead to mistakes 
and security flaws. 

To summarize, any PKI must deal with the following issues: 

• Key generation and management 

• Certificate authorities (CAs) 

• Certificate revocation 

Next, we'll briefly discuss a few of the many PKI trust models that are used 
today. The basic issue is deciding who you are willing to trust as a CA. Here, 
we follow the terminology in [162]. 

Perhaps the most obvious trust model is the monopoly model, where one 
universally trusted organization is the CA for the known universe. This ap-
proach is naturally favored by whoever happens to be the biggest commercial 
CA at the time (currently, VeriSign). Some have suggested that the govern-
ment should play the role of the monopoly CA. However, believe it or not, 
many people don't trust the government. 

Today, VeriSign is the largest commercial source for digital certificates [316]. 



 

114 PUBLIC KEY CRYPTO 

One major drawback to the monopoly model is that it creates a big target 
for attack. If the monopoly CA is ever compromised, the entire PKI system 
fails. And if you don't trust the CA, then the system is useless for you. 

The oligarchy model is one step away from the monopoly model. In this 
model, there are multiple trusted CAs. In fact, this is the approach that 
is used today—a Web browser might be configured with 80 or more CA 
certificates. A security-conscious user such as Alice is free to decide which 
of the CAs she is willing to trust and which she is not. On the other hand, 
a more typical user like Bob will trust whatever CAs are configured in the 
default settings on his browser. 

At the opposite extreme from the monopoly model is the anarchy model. 
In this model, anyone can be a CA, and it's up to the users to decide which 
CAs they want to trust. In fact, this approach is used in PGP, where it goes 
by the name "web of trust." 

The anarchy model can place a significant burden on users. For example, 
suppose you receive a certificate signed by Frank and you don't know Frank, 
but you do trust Bob and Bob says Alice is trustworthy and Alice vouches 
for Frank. Should you trust Frank? This is clearly beyond the patience of 
the average user, who is likely to simply trust everybody or nobody so as to 
avoid headaches like this. 

There are many other PKI trust models, most of which try to provide 
reasonable flexibility while putting a minimal burden on end users. The fact 
that there is no generally agreed upon trust model is itself one of the major 
problems with PKI. 

4.9 Summary 

In this chapter, we've covered most of the most important public key crypto 
topics. We began with the knapsack, which has been broken, but provides 
a nice introductory example. We then discussed RSA and Diffie-Hellman in 
some detail. 

We also discussed elliptic curve cryptography (ECC), which promises to 
play an ever-increasing role in the future. Remember that ECC is not a 
particular type of cryptosystem, but instead it offers another way to do the 
math in public key cryptography. 

We then considered signing and non-repudiation, which are major benefits 
of public key cryptography. And we presented the idea of a hybrid cryptosys-
tem, which is the way that public key crypto is used in the real world for 
confidentiality. We also discussed the critical—and often confused—topic of 
digital certificates. It is important to realize exactly what a certificate does 
and does not provide. Finally, we took a very brief look at PKI, which is 
often a major roadblock to the deployment of public key crypto. 
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This concludes our overview of public key cryptography. We will see many 
applications of public key crypto in later sections of the book. In particular, 
many of these topics will resurface when we discuss security protocols. 

4.10 Problems 

1. This problem deals with digital certificates (aka public key certificates). 

a. What information must a digital certificate contain? 

b. What additional information can a digital certificate contain? 

c. Why might it be a good idea to minimize the amount of informa-
tion in a digital certificate? 

2. Suppose that Bob receives Alice's digital certificate from someone claim-
ing to be Alice. 

a. Before Bob verifies the signature on the certificate, what does he 
know about the identity of the sender of the certificate? 

b. How does Bob verify the signature on the certificate and what 
useful information does Bob gain by verifying the signature? 

c. After Bob verifies the signature on the certificate, what does he 
know about the identity of the sender of the certificate? 

3. When encrypting, public key systems operate in a manner analogous 
to a block cipher in ECB mode. That is, the plaintext is chopped into 
blocks and each block is encrypted independently. 

a. Why is ECB mode a bad idea when encrypting with a block cipher? 
Why is a chaining mode, such as CBC, a much better way to use 
a block cipher? 

b. Why is it not necessary to perform any sort of chaining mode when 
using public key encryption? 

c. Could your reasoning in part b be applied to block ciphers? Why 
or why not? 

4. Suppose Alice's RSA public key is (e, N) and her private key is d. Alice 
wants to sign the message M, that is, she wants to compute [M]yyice. 
Give the mathematical formula that she will use. 

5. In equation (4.3) we proved that RSA encryption works, that is, we 
showed [{M}Aiice]Alice = M. Give the analogous proof that RSA sig-
nature verification works, that is, {[M]Aiice}AliCe = ^· 
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6. Suppose that Alice's RSA public key is (N, e) = (33,3) and her private 
key is d = 7. 

a. If Bob encrypts the message M = 19 using Alice's public key, what 
is the ciphertext CI Show that Alice can decrypt C to obtain M. 

b. Let S be the result when Alice digitally signs the message M = 25. 
What is 5? If Bob receives M and S, explain the process Bob will 
use to verify the signature and show that in this particular case, 
the signature verification succeeds. 

7. Why is it a bad idea to use the same RSA key pair for both signing and 
decryption? 

8. To speed up RSA, it is possible to choose e = 3 for all users. However, 
this creates the possibility of a cube root attack as discussed in this 
chapter. 

a. Explain the cube root attack and how to prevent it. 

b. For (N, e) = (33,3) and d = 7, show that the cube root attack 
works when M = 3 but not not when M = 4. 

9. Recall that with the RSA public key system it is possible to choose the 
same encryption exponent, e, for all users. For the sake of efficiency, 
sometimes a common value of e = 3 is used. Assume this is the case. 

a. What is the cube root attack on RSA and when does it succeed? 

b. Give two different ways of preventing the cube root attack. Both 
of your proposed fixes must still provide improved efficiency over 
the case where a common encryption exponent e = 3 is not used. 

10. Consider the RSA public key cryptosystem. The best generally known 
attack is to factor the modulus, and the best known factoring algorithm 
(for a sufficiently large modulus) is the number field sieve. In terms of 
bits, the work factor for the number field sieve is 

f(n) = 1.9223n1/3(log2n)2/3, 

where n is the number of bits in the number being factored. For ex-
ample, since /(390) « 60, the work required to factor a 390-bit RSA 
modulus is roughly equivalent to the work needed for an exhaustive 
search to recover a 61-bit symmetric key. 

a. Graph the function f(n) for 1 < n < 10,000. 

b. A 1024-bit RSA modulus N provides roughly the same security as 
a symmetric key of what length? 
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c. A 2048-bit RSA modulus N provides roughly the same security as 
a symmetric key of what length? 

d. What size of modulus N is required to have security roughly com-
parable to a 256-bit symmetric key? 

11. On the diagram of the Diffie-Hellman key exchange in Figure 4.1, clearly 
indicate which information is public and which is private. 

12. Suppose Bob and Alice share a symmetric key K. Draw a diagram to 
illustrate a variant of the Dime-Hellman key exchange between Bob and 
Alice that prevents the man-in-the-middle attack. 

13. Consider the Diffie-Hellman key exchange protocol. Suppose that Alice 
sends her Diffie-Hellman value, ga mod p, to Bob. Further, suppose that 
Bob wants the resulting shared secret to be a specific value X. Can Bob 
choose his Diffie-Hellman value so that, following the protocol, Alice will 
compute the shared secret XI If so, provide precise details and if not, 
why not? 

14. Suppose that Alice and Bob share a 4-digit PIN number, X. To es-
tablish a shared symmetric key, Bob proposes the following protocol: 
Bob will generate a random key K that he will encrypt using the PIN 
number X, that is, E(K, X). Bob will send E(K, X) to Alice, who will 
decrypt it using the shared PIN number X to obtain K. Alice and Bob 
will then use the symmetric key K to protect their subsequent conver-
sation. However, Trudy can easily determine K by a brute force attack 
on the PIN number X, so this protocol is insecure. Modify the protocol 
to make it more secure. Note that Alice and Bob only share the 4-digit 
PIN number X and they do not have access to any other symmetric 
key or public keys. Hint: Use Diffie-Hellman. 

15. A digital signature provides for data integrity and a MAC provides for 
data integrity. Why does a signature also provides for non-repudiation 
while a MAC does not? 

16. A hybrid cryptosystem uses both public key and symmetric key cryp-
tography to obtain the benefits of each. 

a. Illustrate a hybrid system using Diffie-Hellman as the public key 
system and DES as the symmetric cipher. 

b. Illustrate a hybrid system using RSA as the public key system and 
AES as the symmetric cipher. 

17. Illustrate a man-in-the-middle attack on the ECC version of Diffie-
Hellman. 
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18. Suppose that Alice signs the message M = "I love you" and then en-

crypts it with Bob's public key before sending it to Bob. As discussed 

in the text, Bob can decrypt this to obtain the signed message and then 

encrypt the signed message with, say, Charlie's public key and forward 

the resulting ciphertext to Charlie. Could Alice prevent this "attack" 

by using symmetric key cryptography? 

19. When Alice sends a message M to Bob, she and Bob agree to use the 

following protocol: 

(i) Alice computes S = [Mj^hce-

(ii) Alice sends (M, S) to Bob. 

(iii) Bob computes V = {SJAlice-

(iv) Bob accepts the signature as valid provided V = M. 

With this protocol it's possible for Trudy to forge Alice's signature 

on a random "message" as follows. Trudy generates a value R. She 

then computes ΛΓ = {.R} Alice an(^ s e n ds (N, R) to Bob. Following the 

protocol above, Bob computes V = {A} Alice a n c iî since V = N, Bob 
accepts the signature. Bob then believes that Alice sent him the signed 
nonsense "message" N. As a result, Bob gets very annoyed with Alice. 

a. Is this attack a serious concern, or just an annoyance? Justify your 
answer. 

b. Suppose we modify the protocol as follows: 

(i) Alice computes S = [F(M)]^]ice. 

(ii) Alice sends (M, S) to Bob. 

(iii) Bob computes V = {>S}Alice· 
(iv) Bob accepts the signature as valid provided V = F(M). 

What conditions must the function F satisfy so as to prevent this 
annoying attack? 

20. Suppose that Bob's knapsack private key consists of (3,5,10, 23) along 
with the multiplier m _ 1 = 6 and modulus n = 47. 

a. Find the plaintext given the ciphertext C = 20. Give your answer 
in binary. 

b. Find the plaintext given the ciphertext C = 29. Give your answer 
in binary. 

c. Find m and the public key. 

21. Suppose that for the knapsack cryptosystem, the superincreasing knap-
sack is (3,5,12,23) with n = 47 and m = 6. 
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a. Give the public and private keys. 

b. Encrypt the message M = 1110 (given in binary). Give your result 
in decimal. 

22. Consider the knapsack cryptosystem. Suppose the public key consists 
of (18,30,7,26) and n = 47. 

a. Find the private key, assuming m = 6. 

b. Encrypt the message M = 1101 (given in binary). Give your result 
in decimal. 

23. Prove that for the knapsack cryptosystem, it is always possible to de-
crypt the ciphertext in linear time, provided that you know the private 
key. 

24. For the knapsack example given in the text, the ciphertext was not 
reduced modulo n. 

a. Show that for the specific example given in this chapter, the knap-
sack also works if the ciphertext is reduced modulo n. 

b. Show that this is always the case, that is, show that it makes 
no difference to the recipient whether the ciphertext was reduced 
modulo n or not. 

c. Is either case (reducing the ciphertext modulo n or not) preferable 
from Trudy's perspective? 

25. The man-in-the-middle attack on Diffie-Hellman is illustrated in Fig-
ure 4.2. Suppose that Trudy wants to establish a single Diffie-Hellman 
value, gabt mod p, that she, Alice, and Bob all share. Does the attack 
illustrated below succeed? Justify your answer. 

ga mod p g31 mod p 

gM mod p gb mod p 
< <4 

Alice, a Trudy, t Bob, b 

26. This problem deals with Diffie-Hellman. 

a. Why is g — 1 not an allowable choice for gì 

b. Why is g = p — 1 not an allowable choice for gì 
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27. In RSA, a common encryption exponent of e = 3 or e = 216 + 1 is 
sometimes used. The RSA math will also works if we use a common 
decryption exponent of, say, d = 3. Why would it be a bad idea to 
use d = 3 as a common decryption exponent? Can you find a secure 
common decryption exponent d? Explain. 

28. If Trudy can factor the modulus N, then she can break the RSA public 
key cryptosystem. The complexity class for the factorization problem is 
not known. Suppose that someone proves that integer factorization is a 
"really hard problem," in the sense that it belongs to a class of (appar-
ently) intractable problems. What would be the practical importance 
of such a discovery? 

29. In the RSA cryptosystem, it is possible that M = C, that is, the plain-
text and the ciphertext may be identical. 

a. Is this a security concern in practice? 

b. For modulus N = 3127 and encryption exponent e = 17, find at 
least one message M that encrypts to itself. 

30. Suppose that Bob uses the following variant of RSA. He first chooses N, 
then he finds two encryption exponents eo and e\ and the correspond-
ing decryption exponents do and di. He asks Alice to encrypt her mes-
sage M to him by first computing Co = Me° mod N, then encrypt-
ing Co to obtain the ciphertext, C\ = CQ1 mod N. Alice then sends C\ 
to Bob. Does this double encryption increase the security as compared 
to a single RSA encryption? Why or why not? 

31. Alice receives a single ciphertext C from Bob, which was encrypted 
using Alice's RSA public key. Let M be the corresponding plaintext. 
Alice challenges Trudy to recover M under the following rules. Alice 
sends C to Trudy, and Alice agrees to decrypt one ciphertext that was 
encrypted with Alice's public key, provided that it is not C, and give 
the resulting plaintext to Trudy. Is it possible for Trudy to recover M? 

32. Suppose that you are given the following RSA public keys, which are 
of the form (e,N). 

User name Public key 
Alice (3,5356488760553659) 
Bob (3,8021928613673473) 

Charlie (3,56086910298885139) 

You also know that Dave has encrypted the same message M (without 
padding) using each of these public keys, where the message, which 
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contains only uppercase and lowercase English letters, is encoded with 
the method16 used at [144]. Suppose that Dave's ciphertext messages 
are the following: 

Recipient Ciphertext 
Alice 4324345136725864 
Bob 2102800715763550 

Charlie 46223668621385973 

a. Use the Chinese Remainder Theorem to find M. 

b. Are there other feasible ways to find M? 

33. As mentioned in this chapter, "textbook" RSA is subject to a forward 
search attack. An easy way to prevent this attack is to pad the plaintext 
with random bits before encrypting. This problem shows that there is 
another RSA issue that is also prevented by padding the plaintext. 
Suppose that Alice's RSA public key is (TV, e) and her private key is d. 
Bob encrypts the message M (without padding) using Alice's public 
key to obtain the ciphertext C = Me mod TV. Bob sends C to Alice 
and, as usual, Trudy intercepts C. 

a. Suppose that Alice will decrypt one message of Trudy's choos-
ing, provided that it is not C. Show that Trudy can easily de-
termine M. Hint: Trudy chooses r and asks Alice to decrypt the 
ciphertext C" = Cre mod TV. 

b. Why is this "attack" prevented by padding the message? 

34. Suppose that Trudy obtains two RSA ciphertext messages, both of 
which were encrypted with Alice's public key, that is, Co = Mfi mod TV 
and C\ = M\ mod TV. Trudy does not know Alice's private key or 
either plaintext message. 

a. Show that Trudy can easily determine (Mo · M\)e mod TV. 

b. Can Trudy also determine (M0 + M\)e mod TV? 

c. Due to the property in part a, RSA is said to be homomorphic 
with respect to multiplication. Recently, a fully homomorphic en-
cryption scheme has been demonstrated, that is, the multiplicative 
homomorphic property (part a) and the additive homomorphic 
property (part b) both hold [67]. Discuss some significant poten-
tial uses for a practical fully homomorphic encryption scheme. 

16Note that at [144], letters are encoded in the following nonstandard way: Each lowercase 
letter is converted to its uppercase ASCII equivalent, and uppercase letters are converted 
to (decimal) according to A = 33, B = 34, . . . , Z = 58. 
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35. This problem deals with digital signatures. 

a. How and why does a digital signature provide integrity? 

b. How and why does a digital signature provide non-repudiation? 

36. In the context of cryptography, 

a. Define non-repudiation. 

b. Give an example—different from the one given in this chapter— 

where non-repudiation is critical. 

37. A digital signature or a MAC can be used to provide a cryptographic 
integrity check. 

a. Suppose that Alice and Bob want to use a cryptographic integrity 
check. Which would you recommend that they use, a MAC or a 
digital signature? Why? 

b. Suppose that Alice and Bob require a cryptographic integrity check 
and they also require non-repudiation. Which would you recom-
mend that Alice and Bob use, a MAC or a digital signature? Why? 

38. Alice wants to be "extra secure," so she proposes to Bob that they 
compute a MAC, then digitally sign the MAC. 

a. Does Alice's method provide a cryptographic integrity check? Why 
or why not? 

b. Does Alice's method provide for non-repudiation? Why or why 
not? 

c. Is Alice's method a good idea? Why or why not? 

39. In this chapter, we showed that you can prevent a forward search attack 
on a public key cryptosystem by padding with random bits. 

a. Why would we like to minimize the amount of random padding? 

b. How many bits of random padding are needed? Justify your an-
swer. 

c. Other than padding, is there another simple and practical method 
for preventing a forward search attack? 

40. Consider the elliptic curve 

E : y2 =x3 + 7x + b (mod 11). 

a. Determine ò so that the point P = (4,5) is on the curve E. 

b. Using the b found in part a, list all points on E. 
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c. Using the b found in part a, find the sum (4,5) + (5,4) on E. 

d. Using the 6 found in part a, find the point 3(4,5). 

41. Consider the elliptic curve 

E: y2 = x3 + Ila; + 19 (mod 167). 

Verify that the point P = (2,7) is on E. 

Suppose this E and P = (2,7) are used in an ECC Diffie-Hellman 
key exchange, where Alice chooses the secret value A = 12 and 
Bob chooses the secret value B = 31. What value does Alice send 
to Bob? What does Bob send to Alice? What is the shared secret? 

42. The Elgamal digital signature scheme employs a public key consisting 
of the triple {y,p,g) and a private key x, where these numbers satisfy 

y = gx mod p. (4.9) 

To sign a message M, choose a random number k such that k has no 
factor in common with p — 1 and compute 

a = gk mod p. 

Then find a value s that satisfies 

M = xa + ks mod (p — 1) 

which is easy to do using the Euclidean Algorithm. The signature is 
verified provided that 

y
aas = gM mod p. (4.10) 

a. Select values (y,p,g) and x that satisfy equation (4.9). Choose a 
message M, compute the signature, and verify that equation (4.10) 
holds. 

b. Prove that the math in Elgamal works, that is, prove that equa-
tion (4.10) always holds for appropriately chosen values. Hint: Use 
Fermat's Little Theorem, which states that if p is prime and p does 
not divide z, then zp~l = 1 mod p. 

a. 

b. 
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Chapter 5 

Hash Functions++ 

"I'm sure [my memory] only works one way." Alice remarked. 
"I can't remember things before they happen." 

"It's a poor sort of memory that only works backwards," the Queen remarked. 
"What sort of things do you remember best?" Alice ventured to ask. 

"Oh, things that happened the week after next, " 
the Queen replied in a careless tone. 

— Lewis Carroll, Through the Looking Glass 

A boat, beneath a sunny sky 
Lingering onward dreamily 

In an evening of July — 

Children three that nestle near, 
Eager eye and willing ear, 

— Lewis Carroll, Through the Looking Glass 

5.1 Introduction 

This chapter covers cryptographic hash functions, followed by a brief discus-
sion of a few crypto-related odds and ends. At first glance, cryptographic 
hash functions seem to be fairly esoteric. However, these functions turn out 
to be surprisingly useful in a surprisingly wide array of information security 
contexts. We consider the standard uses for cryptographic hash functions 
(digital signatures and hashed MACs), as well as a couple of non-standard 
but clever uses for hash functions (online bids and spam reduction). These 
two examples represent the tip of the iceberg when it comes to clever uses for 
hash functions. 

125 
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There exists a semi-infinite supply of crypto-related side issues that could 

reasonably be covered here. To keep this chapter to a reasonable length, we 

only discuss a handful of these many interesting and useful topics, and each of 

these is only covered briefly. The topics covered include secret sharing (with 

a quick look at the related subject of visual cryptography), cryptographic 

random numbers, and information hiding (i.e., steganography and digital 

watermarks). 

5.2 What is a Cryptographic Hash Function? 

In computer science, "hashing" is an overloaded term. In cryptography, hash-

ing has a very precise meaning, so for the time being, it would be best to forget 

about any other concepts of hashing that may be clouding your mind. 

A cryptographic hash function h(x) must provide all of the following. 

• Compression — For any size input x, the output length of y = h(x) is 

small. In practice, the output is a fixed size (e.g., 160 bits), regardless 

of the length of the input. 

• Efficiency — It must be easy to compute h(x) for any input x. The 

computational effort required to compute h{x) will, of course, grow 

with the length of x, but it cannot grow too fast. 

• One-way — Given any value y, it's computationally infeasible to find a 

value a; such that h{x) = y. Another way to say this is that there is no 

feasible way to invert the hash. 

• Weak collision resistance — Given x and h(x), it's infeasible to find 

any y, with y φ x, such that h(y) = h(x). Another way to state 

this requirement is that it is not feasible to modify a message without 

changing its hash value. 

• Strong collision resistance — It's infeasible to find any x and y, such 

that x φ y and h(x) = h(y). That is, we cannot find any two inputs 

that hash to the same output. 

Many collisions must exist since the input space is much larger than the 

output space. For example, suppose a particular hash function generates a 

128-bit output. If we consider, say, all possible 150-bit input values then, 

on average, 222 (that is, more than 4,000,000) of these input values hash to 

each possible output value. The collision resistance properties says that all of 

these collisions are computationally hard to find. This is asking a lot, and it 

might seem that, as a practical matter, no such function could possibly exist. 

Remarkably, practical cryptographic hash functions do indeed exist. 
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Hash functions are extremely useful in security. One particularly im-
portant use of hash functions arises in the computation of digital signa-
tures. In the previous chapter, we said that Alice signs a message M by 
using her private key to "encrypt," that is, she computes S = [M]Aiice· If 
Alice sends M and S to Bob, then Bob can verify the signature by verifying 
that M = {Sj-Aiice- However, if M is large, [M]Auce is costly to compute— 
not to mention the bandwidth needed to send M and S, which are both large. 
In contrast, when computing a MAC, the encryption is fast and we only need 
to send the message along with few additional check bits (i.e., the MAC). 

Suppose Alice has a cryptographic hash function h. Then h(M) can 
be viewed as a "fingerprint" of the file M, that is, h(M) is much smaller 
than M but it identifies M. If M' differs from M, even by just a single 
bit, then the hashes will almost certainly differ.1 Furthermore, the collision 
resistance properties imply that it is not feasible to replace M with any 
different message M' such that h(M) = h(M'). 

Now, given a cryptographic function h, Alice will sign M by first hash-
ing M then signing the hash, that is, Alice computes S = [h(M)]/^nœ. Hashes 
are efficient (comparable to block cipher algorithms), and only a small num-
ber of bits need to be signed, so the efficiency here is comparable to that of 
a MAC. 

Then Alice can send Bob M and S, as illustrated in Figure 5.1. Bob 
verifies the signature by hashing M and comparing the result to the value 
obtained when Alice's public key is applied to S. That is, Bob verifies 
that h(M) = {S^Alice· Note that only the message M and a small num-
ber of additional check bits, namely S, need to be sent from Alice to Bob. 
Again, this compares favorably to the overhead required when a MAC is used. 

M,S = [h(M)]Alice 

Alice Bob 
computes verifies 
S = [h(M)]Alice h(M)={S}Alice 

Figure 5.1: The Correct Way to Sign 

Is this new-and-improved signature scheme secure? Assuming there are 
no collisions, signing h(M) is as good as signing M. In fact, it is actually 

1What if the hash values should happen to be the same? Well, then you have found 
a collision, which means that you've broken the hash function and you are henceforth a 
famous cryptographer, so it's a no-lose situation. 
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more secure to sign the hash than to just sign the message itself. But it 
is important to realize that the security of the signature now depends on 
the security of both the public key system and the hash function—if either 
is weak, the signature scheme can be broken. These and other issues are 
considered in the homework problems at the end of this chapter. 

5.3 The Birthday Problem 

The so-called birthday problem is a fundamental issue in many areas of cryp-
tography. We discuss it here, since it's particularly relevant to hashing. 

Before we get to the birthday problem, we first consider the following 
warm-up exercise. Suppose you are in a room with N other people. How 
large must N be before you expect to find at least one other person with 
the same birthday as you? An equivalent way to state this is: How large 
must N be before the probability that someone has the same birthday as 
you is greater than 1/2? As with many discrete probability calculations, it's 
easier to compute the probability of the complement, that is, the probability 
that none of the N people has the same birthday as you, and subtract the 
result from one. 

Your birthday is on one particular day of the year. If a person does not 
have the same birthday as you, his or her birthday must be on one of the 
other 364 days. Assuming all birthdays are equally likely, the probability that 
a randomly selected person does not have the same birthday as you is 364/365. 
Then the probability that all N people do not have the same birthday as you 
is (364/365)^ and, consequently, the probability that at least one person has 
the same birthday as you is 

1 - (364/365)^. 

Setting this expression equal to 1/2 and solving for TV, we find N = 253. 
Since there are 365 days in a year, we might expect the answer to be on the 
order of 365, which it is, so this seems plausible. 

Now we consider the real birthday problem. Again, suppose there are N 
people in a room. We want to answer the question: How large must N be 
before we expect two or more people will have the same birthday? In other 
words, how many people must be in the room so that the probability is greater 
than 1/2 that two or more have the same birthday? As usual, it's easier to 
solve for the probability of the complement and subtract that result from one. 
In this case, the complement is that all N people have different birthdays. 

Number the N people in the room 1,2,3, . . . , N. Person 1 has a birthday 
on one of the 365 days of the year. If all people have different birthdays, then 
person 2 must have a birthday that differs from person 1, that is, person 2 
can have a birthday on any of the remaining 364 days. Similarly, person 3 can 
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have a birthday on any of the remaining 363 days, and so on. Assuming that 
all birthdays are equally likely, and taking the complement, the probability 
of interest is 

1 - 365/365 · 364/365 ■ 363/365 · · ■ (365 -N + l)/365. 

Setting this expression equal to 1/2 and solving for N, we find N = 23. 
The birthday problem is often referred to as the birthday paradox, and at 

first glance it does seem paradoxical that with only 23 people in a room, we 
expect to find two or more with the same birthday. However, a few moments' 
thought makes the result much less paradoxical. In this problem, we are 
comparing the birthdays of all pairs of people. With N people in a room, the 
number of comparisons is N(N—1)/2 « N2. Since there are only 365 different 
possible birthdays, we expect to find a match, roughly, when N2 = 365, that 
is, when N = \/365 « 19. Viewed in this light, the birthday paradox is not 
so paradoxical. 

What do birthdays have to do with cryptographic hash functions? Sup-
pose that a hash function h(x) produces an output that is N bits long. Then 
there are 2N different possible hash values. For a good cryptographic hash 
function, we would expect that all output values are (more or less) equally 
likely. Then, since v 2 ^ = 2N'2, the birthday problem immediately implies 
that if we hash about 2N>2 different inputs, we can expect to find a collision, 
that is, we expect to find two inputs that hash to the same value. This brute 
force method of breaking a hash function is analogous to an exhaustive key 
search attack on a symmetric cipher. 

The implication here is that a secure hash that generates an TV-bit output 
can be broken with a brute force work factor of about 2N'2. In contrast, a 
secure symmetric key cipher with a key of length N can be broken with a 
work factor of 2ΛΓ_1. Consequently, the output of a hash function must be 

about twice the number of bits as a symmetric cipher key for an equivalent 

level of security—assuming both are secure, i.e., no shortcut attack exists for 

either. 

5.4 A Birthday Attack 

The role of hashing in digital signature computations was discussed above. 

Recall that if M is the message that Alice wants to sign, then she com-

putes S = [h(M)]A\ice and sends S and M to Bob. 

Suppose that the hash function h generates an n-bit output. As discussed 

in [334], Trudy can, in principle, conduct a birthday attack as follows. 

• Trudy selects an "evil" message E that she wants Alice to sign, but 

which Alice is unwilling to sign. For example, the message might state 

that Alice agrees to give all of her money to Trudy. 
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• Trudy also creates an innocent message I that she is confident Alice 

is willing to sign. For example, this could be a routine message of the 

type that Alice regularly signs. 

• Then Trudy generates 2 n ' 2 variants of the innocent message by making 

minor editorial changes. These innocent messages, which we denote li, 

for i = 0 , 1 , . . . , 2™/2 — 1, all have the same meaning as / , but since the 

messages differ, their hash values differ. 

• Similarly, Trudy creates 2™/2 variants of the evil message, which we 

denoted Ei, for i = 0 , 1 , . . . , 2n'2 — 1. These messages all convey the 

same meaning as the original evil message E, but their hashes differ. 

• Trudy hashes all of the evil messages Ei and all of the innocent mes-

sages li. By the birthday problem, she can expect to find a collision, 

say, h(Ej) = h(Ik). Given such a collision, Trudy sends /& to Alice, and 

asks Alice to sign it. Since this message appears to be innocent, Alice 

signs it and returns Ik and [/i(ifc)]Alice t o Trudy. Since h(Ej) = h(Ik), 

it follows that [ft(i^)]Alice = [̂ (-̂ OlAlice an<l· consequently, Trudy has, 

in effect, obtained Alice's signature on the evil message Ej. 

Note that, in this attack, Trudy has obtained Alice's signature on a mes-

sage of Trudy's choosing without attacking the underlying public key system 

in any way. This attack is a brute force attack on the hash function h, as 

it is used for computing digital signatures. To prevent this attack, we could 

choose a hash function for which n, the size of the hash function output, is 

so large that Trudy cannot compute 2™/2 hashes. 

5.5 Non-Cryptographic Hashes 

Before looking into the inner workings of a specific cryptographic hash func-

tion, we'll first consider a few simple non-cryptographic hashes. Many non-

cryptographic hashes have their uses, but none is suitable for cryptographic 

applications. 

Consider the data 

X = (ΛΤθι^1)^2, · · · ,Xn-l), 

where each JQ is a byte. We can define a hash function h(X) by 

h{X) = (X0 + Xi + X2 + · · ■ + Xn-i) mod 256. 

This certainly provides compression, since any size of input is compressed to 
an 8-bit output. However, hash would be easy to break (in the crypto sense), 
since the birthday problem tells us that if we hash just 24 = 16 randomly 
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selected inputs, we can expect to find a collision. In fact, it's even worse than 
that, since collisions are easy to construct directly. For example, swapping 
two bytes will always yield a collision, such as 

ft(10101010,00001111) = /i(00001111,10101010) = 10111001. 

Not only is the hash output length too small, but the algebraic structure 
inherent in this approach is a fundamental weakness. 

As another example of a non-cryptographic hash, consider the following. 
Again, we write the data as bytes, 

X = (Xo,Xi,Ä2,- ■ ■ ,Xn-i)-

Here, we'll define the hash h(X) as 

h(X) = {nX0 + {n- 1)Χχ + (n- 2)X2 + ... + 2X„_2 + Xn-i) mod 256. 

Is this hash secure? At least it gives different results when the byte order is 

swapped, for example, 

/i(10101010,00001111) φ /i(00001111,10101010). 

But, again, we still have the birthday problem issue and it also happens to 

be relatively easy to construct collisions. For example, 

ft(00000001,00001111) = /i(00000000,00010001) = 00010001. 

Despite the fact that this is not a secure cryptographic hash, it's useful in a 

particular non-cryptographic application known as Rsync; see [253] for the 

details. 

An example of a non-cryptographic hash that is sometimes mistakenly 

used as a cryptographic hash is the cyclic redundancy check, or CRC [326]. 

The CRC calculation is essentially long division, with the remainder acting 

as the CRC "hash" value. In contrast to ordinary long division, in a CRC we 

use XOR in place of subtraction. 

In a CRC calculation, the divisor is specified as part of the algorithm and 

the data acts as the dividend. For example, suppose the given divisor is 10011 

and the data of interest happens to be 10101011. Then we append four 0s 

to the data (one less than the number of bits in the divisor) and do the long 

division as follows: 
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10110110 
10011)101010110000 

10011 
11001 
10011 
10101 
10011 

11000 
10011 
10110 
10011 

1010 

The CRC checksum is the remainder of the long division—in this case, 1010. 
For this choice of divisor, it's easy to find collisions, and in fact it's easy to 
construct collisions for any CRC [290]. 

WEP [38] mistakenly uses a CRC checksum where a cryptographic in-
tegrity check is required. This flaw opens the door to many attacks on the 
protocol. CRCs and similar checksum methods are only designed to detect 
transmission errors—not to detect intentional tampering with the data. That 
is, random transmission errors will almost certainly be detected (within cer-
tain parameters), but an intelligent adversary can easily change the data so 
that the CRC value is unchanged and, consequently, the tampering will go 
undetected. In cryptography, we must protect against an intelligent adversary 
(Trudy), not just random acts of nature. 

5.6 Tiger Hash 

Now we turn our attention to a specific cryptographic hash algorithm known 
as Tiger. While Tiger is not a particularly popular hash, it is a little easier 
to digest than some of the big-name hashes. 

Before diving into to inner workings of Tiger, it is worth mentioning a bit 
about the two most popular cryptographic hashes of today. Until recently, 
the most popular hash in the world was undoubtedly MD5. The "MD" in 
MD5 does not stand for Medicinae Doctor, but instead it is an abbreviation 
for message digest. Believe it or not, MD5 is the successor to MD4, which 
itself was the successor to MD2. The earlier MDs are no longer considered 
secure, due to the fact that collisions have been found. In fact, MD5 collisions 
are easy to find—you can generate one in a few seconds on a PC [244].2 All of 
the MDs were invented by crypto guru Ron Rivest. MD5 produces a 128-bit 
output. 

2See Problem 25 for an example of an MD5 collision. 
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The other contender for title of world's most popular hash function is 
SHA-1 which is a U.S. government standard. Being a government standard, 
SHA is, of course, a clever 3-letter acronym—SHA stands for Secure Hash 
Algorithm. You might ask, why is it SHA-1 instead of just SHA? In fact, 
there was a SHA (now known as SHA-0), but it apparently had a minor flaw, 
as SHA-1 came quickly on the heels of SHA, with some minor modifications 
but without explanation. 

The SHA-1 algorithm is actually very similar to MD5. The major prac-
tical difference between the two is that SHA-1 generates a 160-bit output, 
which provides a significant margin of safety over MD5. Cryptographic hash 
functions such as MD5 and SHA-1 hash messages in blocks, where each block 
passes through some number of rounds. In this sense, they're very reminis-
cent of block ciphers. For the details on these two hash functions, a good 
source is Schneier [258]. 

A hash function is considered secure provided no collisions have been 
found. As with block ciphers, efficiency is also a major concern in the design 
of hash functions. If, for example, it's more costly to compute the hash of M 
than to sign M, the hash function is not very useful, at least for digital 
signatures. 

A desirable property of any cryptographic hash function is the so-called 
avalanche effect. The goal is that any small change in the input should cascade 
and cause a large change in the output—just like an avalanche. Ideally, any 
change in the input will result in output values that are uncorrelated, and an 
attacker will then be forced to conduct an exhaustive search for collisions. 

The avalanche effect should occur after a few rounds, yet we would like 
the rounds to be as simple and efficient as possible. In a sense, the designers 
of hash functions face similar trade-offs as the designers of iterated block 
ciphers. 

The MD5 and SHA-1 algorithms are not particularly enlightening, as they 
both seem to consist of a more-or-less random collection of transformations. 
Instead of discussing either of these in detail, we'll look closely at the Tiger 
hash. Tiger, which was developed by Ross Anderson and Eli Biham, seems 
to have a more structured design than SHA-1 or MD5. In fact, Tiger can be 
given in a form that looks very similar a block cipher [10]. 

Tiger was designed to be "fast and strong" and hence the name. It was 
also designed for optimal performance on 64-bit processors and it can serve as 
a replacement for MD5, SHA-1, or any other hash with an equal or smaller 
output.3 

Like MD5 and SHA-1, the input to Tiger is divided into 512-bit blocks, 
with the input padded to a multiple of 512 bits, if necessary. Unlike MD5 or 

3For any secure hash, you can truncate the output to produce a smaller hash value. 
There can be no shortcut attack on any subset of the bits, otherwise there would be a 
shortcut attack on the full-sized hash. 
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SHA-1, the output of Tiger is 192 bits. The numerology behind the choice 
of 192 is that Tiger is designed for 64-bit processors and 192 bits is exactly 
three 64-bit words. In Tiger, all intermediate steps also consist of 192 bit 
values. 

Tiger's block cipher influence can be seen in the fact that it employs four 
S-boxes, each of which maps 8 bits to 64 bits. Tiger also employs a "key 
schedule" algorithm that, since there is no key, is applied to the input block, 
as described below. 

The input X is padded to a multiple of 512 bits and written as 

X = P^Oi-Xli·· -,-Xn-l), (5-1) 

where each Xi is 512 bits. The Tiger algorithm employs one outer round for 
each Xi, where one such round is illustrated in Figure 5.2. Each of a, b, and c 
in Figure 5.2 is 64 bits and the initial values of (a, b, c) for the first round are, 
in hex: 

a = 0x0123456789ABCDEF 

b = 0xFEDCBA9876543210 

c = 0xF096A5B4C3B2E187 

The final (a, ò, e) output from one round is the initial triple for the subsequent 
round and the final (a, b, c) from the final round is the 192-bit hash value. 
From this perspective, Tiger indeed looks very much like a block cipher. 

Notice that the input to the first outer round F5 is (a, b, c). Labeling the 
output of F5 as (a,b,c), the input to F7 is (c,a,b). Similarly, if we label the 
output of F-j as (a, 6, c), then the input to Fg is (6, c,a). Each function Fm 

in Figure 5.2 consists of eight inner rounds as illustrated in Figure 5.3. We 
let W denote the 512 bit input to the inner rounds, where 

W = (w0,wi,...,w7), 

with each u>i being 64 bits. Note that all lines in Figure 5.3 represent 64 bit 
quantities. 

The input values for the /m , i , for i = 0,1, 2 , . . . , 7, are 

(a, b, e), (b, c, a), (c, a, b), (a, b, c), (b, c, a), (c, a, b), (a, b, c), (b, c, a), 

respectively, where the output of fm,i-i is labeled (a, 6, c). Each /TO;, depends 
on a, b, c, Wi, and m, where Wi is the ith 64-bit sub-block of the 512-bit 
input W. The subscript m of fm,i is a multiplier, as discussed below. 

We write c as 

c = (e 0 ,c i , . . . ,c 7 ) , 
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Figure 5.2: Tiger Outer Round 

where each c, is a single byte. Then /m)j is given by 

c = c Θ Wi 

a = a- (SO[co] θ 5i[c2] Θ S2M Φ ^[ce]) 

b = b+ (S3[ci] Θ 52[c3] Θ SI[CB] Θ Soler]) 

b = 6· m 

where each Si is an S-box (i.e., lookup table) mapping 8 bits to 64 bits. These 

S-boxes are large, so we won't list them here—for more details on the S-boxes, 

see [10]. 

The only remaining item to discuss is the so-called key schedule. Let W 

be the 512-bit input to the key schedule algorithm. As above, we write W 

as W = (wo,w\,..., wr) where each Wi is 64 bits. Let w)j be the binary 

complement of Wi. Then the key schedule is given in Table 5.1, where the 

output is given by the final W = (WQ, ui\,..., W7). 

To summarize, the Tiger hash consists of 24 rounds, which can be viewed 

as three outer rounds, each of which has eight inner rounds. All intermediate 

hash values are 192 bits. 

It's claimed that the S-boxes are designed so that each input bit affects 

each of a, b, and c after just three of the 24 rounds. Also, the key schedule 

algorithm is designed so that any small change in the message will affect 

many bits in the intermediate hash values. The multiplication in the final 
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Figure 5.3: Tiger Inner Round for Fm 

step of /m>i is also a critical feature of the design. Its purpose is to ensure 
that each input to an S-box in one round is mixed into many S-boxes in 
the next round. Together, the S-boxes, key schedule, and multiply ensure a 
strong avalanche effect [10]. 

Tiger clearly borrows many ideas from block cipher design, including S-
boxes, multiple rounds, mixed mode arithmetic, a key schedule, and so on. 
At a higher level, we can even say that Tiger employs Shannon's principles 
of confusion and diffusion. 

5.7 HMAC 

Recall that for message integrity we can compute a message authentication 
code, or MAC, where the MAC is computed using a block cipher in CBC 
mode. The MAC is the final encrypted block, which is also known as the 
CBC residue. Since a hash function effectively gives us a fingerprint of a file, 
we should also be able to use a hash to verify message integrity. 

Can Alice protect the integrity of M by simply computing h(M) and 
sending both M and h(M) to Bob? Note that if M changes, Bob will detect 
the change, provided that h(M) has not changed (and vice versa). However, 
if Trudy replaces M with M' and also replaces h(M) with h(M'), then Bob 
will have no way to detect the tampering. All is not lost—we can use a hash 
function to provide integrity protection, but it must involve a key to prevent 

w0 

w2 

w7 
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Trudy from changing the hash value. Perhaps the most obvious approach 

would be to have Alice encrypt the hash value with a symmetric cipher, 

E(h{M),K), and send this to Bob. However, a slightly different approach is 

actually used to compute a hashed MAC, or HMAC. 

Instead of encrypting the hash, we directly mix the key into M when 

computing the hash. How should we mix the key into the HMAC? Two 

obvious approaches are to prepend the key to the message, or append the 

key to the message: h{K,M) and h{M,K), respectively. Surprisingly, both 

of these methods create the potential for subtle attacks. 

Suppose we choose to compute an HMAC as h(K,M). Most crypto-

graphic hashes hash the message in blocks—for MD5, SHA-1, and Tiger, the 

block size is 512 bits. As a result, if M = {B\, B2), where each Bi is 512 bits, 

then 

h{M) = F{F(A, B1),B2) = F(h(Bi), B2) (5.2) 

for some function F, where A is a fixed initial constant. For example, in 

the Tiger hash, the function F consists of the outer rounds illustrated in 

Figure 5.2, with each Bi corresponding to a 512-bit block of input and A 

corresponding to the 192-bit initial value {a,b,c). 

If Trudy chooses M' so that M' = (M,X), Trudy might be able to use 

equation (5.2) to find h{K,M') from h(K,M) without knowing K since, 

4Yet another example of the "no free lunch" principle... 
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for K, M, and X of the appropriate size, 

h(K, M') = h(K, M, X) = F(h{K, M),X), (5.3) 

where the function F is known. 

So, is h(M, K) a better choice? It does prevent the previous attack. 

However, if it should happen that there is a known collision for the hash 

function h, that is, if there exists some M' with h(M') = h(M), then by 

equation (5.2), we have 

h{M, K) = F{h(M), K) = F{h(M'), K) = h{M\ K) (5.4) 

provided that M and M' are each a multiple of the block size. Perhaps this 

is not as serious of a concern as the previous case—if such a collision exists, 

the hash function is considered insecure. But we can easily eliminate any 

potential for this attack, so we should do so. 

In fact, we can prevent both of these potential problems by using a slightly 

more sophisticated method to mix the key into the hash. As described in 

RFC 2104 [174], the approved method for computing an HMAC is as follows.5 

Let B be the block length of hash, in bytes. For all popular hashes (MD5, 

SHA-1, Tiger, etc.), B = 64. Next, define 

ipad = 0x36 repeated B times 

and 

opad = 0x5C repeated B times. 

Then the HMAC of M is defined to be 

HMAC(M, K) = H{K Θ opad, H(K φ ipad, M)). 

This approach thoroughly mixes the key into the resulting hash. While 

two hashes are required to compute an HMAC, note that the second hash will 

be computed on a small number of bits—the output of the first hash with the 

modified key appended. So, the work to compute these two hashes is only 

marginally more than the work needed to compute h{M). 

An HMAC can be used to protect message integrity, just like a MAC 

or digital signature. HMACs also have several other uses, some of which 

5RFCs exist for a reason, as your author discovered when he was asked to implement 

an HMAC. After looking up the definition of the HMAC in a reputable book (which shall 

remain nameless) and writing code to implement the algorithm, your careful author decided 

to have a peek at RFC 2104. To his surprise, this supposedly reputable book had a typo, 

meaning that his HMAC would have failed to work with any correctly implemented HMAC. 

If you think that RFCs are nothing more than the ultimate cure for insomnia, you are 

mistaken. Yes, most RFCs do seem to be cleverly designed to maximize their sleep-inducing 

potential but, nevertheless, they just might save your job. 
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we'll mention in later chapters. It is worth noting that in some applica-
tions, some people (including your occasionally careless author) get sloppy 
and use a "keyed hash" instead of an HMAC. Generally, a keyed hash is of 
the form h(M,K). But, at least for message integrity, you should definitely 
stick with the RFC-approved HMAC. 

5.8 Uses for Hash Functions 

Some standard applications that employ hash functions include authentica-
tion, message integrity (using an HMAC), message fingerprinting, error detec-
tion, and digital signature efficiency. There are a large number of additional 
clever and sometimes surprising uses for cryptographic hash functions. Below 
we'll consider two interesting examples where hash functions can be used to 
solve security-related problems. It also happens to be true that anything you 
can do with a symmetric key cipher, you can do with a cryptographic hash 
function, and vice versa. That is, in some abstract sense, symmetric ciphers 
and hash functions are equivalent. Nevertheless, as a practical matter, it is 
useful to have both symmetric ciphers and hash functions. 

Next, we briefly consider the use of hash functions to securely place bids 
online. Then we'll discuss an interesting approach to spam reduction that 
relies on hashing. 

5.8.1 Online Bids 

Suppose an item is for sale online and Alice, Bob, and Charlie all want to 
place bids. The idea here is that these are supposed to be sealed bids, that 
is, each bidder gets one chance to submit a secret bid and only after all bids 
have been received are the bids revealed. As usual, the highest bidder wins. 

Alice, Bob, and Charlie don't necessarily trust each other and they defi-
nitely don't trust the online service that accepts the bids. In particular, each 
bidder is understandably concerned that the online service might reveal their 
bid to the other bidders—either intentionally or accidentally. For example, 
suppose Alice places a bid of $10.00 and Bob bids $12.00. If Charlie is able 
to discover the values of these bids prior to placing his bid (and prior to the 
deadline for bidding), he could bid $12.01 and win. The point here is that 
nobody wants to be the first (or second) to place their bid, since there might 
be an advantage to bidding later. 

In an effort to allay these fears, the online service proposes the following 
scheme. Each bidder will determine their bids, say, bid A for Alice, bid B 
for Bob, and C for Charlie, keeping their bids secret. Then Alice will sub-
mit h{A), Bob will submit h(B), and Charlie will submit h(C). Once all three 
hashed bids have been received, the hash values will be posted online for all 
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to see. At this point all three participants will submit their actual bids, that 
is, A, B, and C. 

Why is this better than the naive scheme of submitting the bids directly? 
If the cryptographic hash function is secure, it's one-way, so there appears to 
be no disadvantage to submitting a hashed bid prior to a competitor. And 
since it is infeasible to determine a collision, no bidder can change their bid 
after submitting their hash value. That is, the hash value binds the bidder 
to his or her original bid, without revealing any information about the bid 
itself. If there is no disadvantage in being the first to submit a hashed bid, 
and there is no way to change a bid once a hash value has been submitted, 
then this scheme prevents the cheating that could have resulted following the 
naïve approach. 

However, this online bidding scheme has a problem—it is subject to a 
forward search attack. Fortunately, there is an easy fix that will prevent a 
forward search, with no cryptographic keys required (see Problem 17 at the 
end of this chapter). 

5.8.2 Spam Reduction 

Another interesting use of hashing arises in the following proposed spam re-
duction technique. Spam is defined as unwanted and unsolicited bulk email.6 

In this scheme, Alice will refuse to accept an email until she has proof that 
the sender expended sufficient effort to create the email. Here, "effort" will 
be measured in terms of computing resources, in particular, CPU cycles. For 
this to be practical, it must be easy for the recipient, Alice, to verify that a 
sender did indeed do the work, yet it must not be feasible for the sender to 
cheat by not doing the required work. Note that such a scheme would not 
eliminate spam, but it would limit the amount of such email that any user 
can send. 

Let M be an email message and let T be the current time. The message M 
includes the sender's and intended recipient's email addresses, but does not 
include any additional addresses. The sender of message M must determine 
a value R such that 

h(M, R, T) = (OÇL^, X). (5.5) 
N 

That is, the sender must find a value R so that the hash in equation (5.5) has 
zeros in all of its first N output bits. Once this is done, the sender sends the 
triple (M,R,T). Before Alice, the recipient, accepts the email, she needs to 
verify that the time T is recent, and that h(M, R, T) begins with N zeros. 

Again, the sender chooses random values R and hashes each until he finds 
a hash value that begins with TV zeros. Therefore, the sender will need to 

6Spam, Spam, Spam, Spam.. . lovely Spam! wonderful Spam! [55] 
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compute, on average, about 2 hashes. On the other hand, the recipient 
can verify that h(M, R, T) begins with N zeros by computing a single hash— 
regardless of the size of N. So the work for the sender (measured in terms of 
hashes) is about 2^, while the work for the recipient is always a single hash. 
That is, the sender's work increases exponentially in N while the recipient's 
work is negligible, regardless of the value of N. 

To make this scheme practical, we would need to choose N so that the 
work level is acceptable for normal email users but unacceptably high for 
spammers. With this scheme, it might also be possible for users to select 
their own individual value of N to match their personal tolerance for spam. 
For example, if Alice hates spam, she could choose, say, N = 40. While 
this would likely deter spammers, it might also deter many legitimate email 
senders. If Bob, on the other hand, doesn't mind receiving some spam and 
ae never wants to deter a legitimate email sender, he might set his value to, 
say, N = 10. 

Spammers are sure to dislike such a scheme. Legitimate bulk emailers also 
might not like this scheme, since they would need to spend resources (i.e., 
money) to compute vast numbers of hashes. In any case, this is a plausible 
approach to increasing the cost of sending bulk email. 

5.9 Miscellaneous Crypto-Related Topics 

In this section, we discuss a few interesting7 crypto-related topics that don't 
fit neatly into the categories discussed so far. First, we'll consider Shamir's 
secret sharing scheme. This is a conceptually simple procedure that can be 
used to split a secret among users. We'll also discuss the related topic of 
visual cryptography. 

Then we consider randomness. In crypto, we often need random keys, 
random large primes, and so on. We'll discuss some of the problems of actually 
generating random numbers and we present an example to illustrate a pitfall 
of poor random number selection. 

Finally, we'll briefly consider the topic of information hiding, where the 
goal is to hide information8 in other data, such as embedding secret informa-
tion in a JPEG image. If only the sender and receiver know that information 
is hidden in the data, the information can be passed without anyone but 
the participants suspecting that communication has occurred. Information 
hiding is a large topic and we'll only scratch the surface. 

7The topics are interesting to your narcissistic author, and that 's all that really matters. 
8Duh! 
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5.9.1 Secret Sharing 

Suppose Alice and Bob want to share a secret S in the sense that: 

• Neither Alice nor Bob alone (nor anyone else) can determine S with a 
probability better than guessing. 

• Alice and Bob together can easily determine S. 

At first glance, this seems to present a difficult problem. However, it's easily 
solved, and the solution essentially derives from the fact that two points 
determine a line. Note that we call this a secret sharing scheme, since there 
are two participants and both must cooperate to recover the secret S. 

Suppose the secret S is a real number. Draw a line L in the plane through 
the point (0, S) and give Alice a point A = (XQ, YQ) on L and give Bob another 
point B = (X\, Y\), which also lies on the line L. Then neither Alice nor Bob 
individually has any information about S, since an infinite number of lines 
pass through a single point. But together, the two points A and B uniquely 
determine L, and therefore the y-intercept, and hence the value S. This 
example is illustrated in the "2 out of 2" scheme that appears in Figure 5.4. 

3 out of 3 

Figure 5.4: Secret Sharing Schemes 

It's easy to extend this idea to an "m out of n" secret sharing scheme, 
for any m < n, where n is the number of participants, any m of which can 
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cooperate to recover the secret. For m = 2, a line always works. For example, 

a "2 out of 3" scheme appears in Figure 5.4. 

A line, which is a polynomial of degree one, is uniquely determined by two 

points, whereas a parabola, which is a polynomial of degree two, is uniquely 

determined by three points. In general, a polynomial of degree m — 1 is 

uniquely determined by m points. This elementary fact is what allows us to 

construct an m out of n secret sharing scheme for any m < n. For example, 

a "3 out of 3" scheme is illustrated in Figure 5.4. The general "m out of n" 

concept should now be clear. 

Since we want to store these quantities on computers, we would like to 

deal with discrete quantities instead of real numbers. Fortunately, this secret 

sharing scheme works equally well if the arithmetic is done modulo p [264]. 

This elegant and secure secret sharing concept is due to the "S" in RSA 

(Shamir, that is). The scheme is said to be absolutely secure or information 

theoretic secure (see Problem 34) and it doesn't get any better than that. 

5.9.1.1 Key Escrow 

One particular application where secret sharing would be useful is in the 

key escrow problem [85, 86]. Suppose that we require users to store their 

keys with an official escrow agency. The government could then get access 

to keys as an aid to criminal investigations.9 Some people (mostly in the 

government), once viewed key escrow as a desirable way to put crypto into 

a similar category as, say, traditional telephone lines, which can be tapped 

with a court order. At one time the U.S. government tried to promote key 

escrow and even went so far as to develop a system (Clipper and Capstone) 

that included key escrow as a feature.10 The key escrow idea was widely 

disparaged, and it was eventually abandoned—see [59] for a brief history of 

the Clipper chip. 

One concern with key escrow is that the escrow agency might not be 

trustworthy. It is possible to ameliorate this concern by having several escrow 

agencies and allow users to split the key among n of these, so that m of the n 

must cooperate to recover the key. Alice could, in principle, select escrow 

agencies that she considers most trustworthy and have her secret split among 

these using an m out of n secret sharing scheme. 

Shamir's secret sharing scheme could be used to implement such a key 

escrow scheme. For example, suppose n = 3 and m = 2 and Alice's key is S. 

Then the "2 out of 3" scheme illustrated in Figure 5.4 could be used where, 

for example, Alice might choose to have the Department of Justice hold the 

point (XQ,YO), the Department of Commerce hold (Χι,Υι), and Fred's Key 

9Presumably, only with a court order. 
10Some opponents of key escrow like to say that the U.S. government's attempt at key 

escrow failed because they tried to promote a security flaw as a feature. 
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Escrow, Inc., hold (X2,Y2)· Then at least two of these three escrow agencies 
would need to cooperate to determine Alice's key S. 

5.9.1.2 Visual Cryptography 

Naor and Shamir [214] proposed an interesting visual secret sharing scheme. 
The scheme is absolutely secure, as is the polynomial-based secret sharing 
scheme discussed above. In visual secret sharing (aka visual cryptography), 
no computation is required to decrypt the underlying image. 

In the simplest case, we start with a black-and-white image and create two 
transparencies, one for Alice and one for Bob. Each individual transparency 
appears to be a collection of random black and white subpixels, but if Alice 
and Bob overlay their transparencies, the original image appears (with some 
loss of contrast). In addition, either transparency alone yields no information 
about the underlying image. 

How is this accomplished? Figure 5.5 shows various ways that an in-
dividual pixel can be split into "shares," where one share goes to Alice's 
transparency and the corresponding share goes to Bob's. 

Pixel Share 1 Share 2 Overlay 

- D a a a 
■ ■ i ■ 

- ■ II ■ 
Figure 5.5: Pixel Shares 

For example, if a specific pixel is white, then we can flip a coin to de-
cide whether to use row "a" or row "b" from Figure 5.5. Then, say, Alice's 
transparency gets share 1 from the selected row (either a or b), while Bob's 
transparency gets share 2. Note that the shares are put in Alice's and Bob's 
transparencies at the same position corresponding to the pixel in the original 
image. In this case, when Alice's and Bob's transparencies are overlaid, the 
resulting pixel will be half-black/half-white. In the case of a black pixel, we 
flip a coin to select between rows "c" and "d" and we again use the selected 
row to determine the shares. 
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Note that if the original pixel was black, the overlaid shares always yield 
a black pixel. On the other hand, if the original pixel was white, the overlaid 
shares will yield a half-white/half-black pixel, which will be perceived as gray. 
This results in a loss of contrast (black and gray versus black and white), but 
the original image is still clearly discernible. For example, in Figure 5.6 we 
illustrate a share for Alice and a share for Bob, along with the resulting 
overlaying of the two shares. Note the loss of contrast, as compared to the 
original image. 

Figure 5.6: Alice's Share, Bob's Share, and Overlay Image (Courtesy of Bob 
Harris) 

The visual secret sharing example described here is a "2 out of 2" scheme. 
Similar techniques can be used to develop more general "m out of n" schemes. 
As mentioned above, the security of these schemes is absolute, in the same 
sense that secret sharing based on polynomials is absolutely secure (see Prob-
lem 36). 

For a nice interactive example of visual secret sharing, see [141]. For more 
information on various technical aspects of visual cryptography, Stinson's 
website [292] is the place to go. 

5.9.2 R a n d o m Numbers 

In cryptography, random numbers are needed to generate symmetric keys, 
RSA key pairs (i.e., randomly selected large primes), and Diffie-Hellman se-
cret exponents. In a later chapter, we'll see that random numbers have an 
important role to play in security protocols as well. 

Random numbers are, of course, used in many non-security applications 
such as simulations and various statistical applications. In such cases, the 
random numbers usually only need to be statistically random, that is, they 
must be, in some statistical sense, indistinguishable from random. 
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However, cryptographic random numbers must be statistically random and 
they must also satisfy a much more stringent requirement—they must be 
unpredictable. Are cryptographers just being difficult (as usual) or is there 
a legitimate reason for demanding so much more of cryptographic random 
numbers? 

To see that unpredictability is important in crypto applications, consider 
the following example. Suppose that a server generates symmetric keys for 
users. Further, suppose the following keys are generated for the listed users: 

• KA for Alice 

• KB for Bob 

• KQ for Charlie 

• KB for Dave 

Now, if Alice, Bob, and Charlie don't like Dave, they can pool their informa-
tion to see if it will help them determine Dave's key. That is, Alice, Bob, and 
Charlie could use knowledge of their keys, KA, KB, and KQ, to see if it helps 
them determine Dave's key KD. If KD can be predicted from knowledge of 
the keys KA, KB, and Kc, then the security of the system is compromised. 

Commonly used pseudo-random number generators are predictable, i.e., 
given a sufficient number of output values, subsequent values can be easily 
determined. Consequently, pseudo-random number generators are not appro-
priate for cryptographic applications. 

5.9.2.1 Texas Hold 'em Poker 

Now let's consider a real-world example that nicely illustrates the wrong way 
to generate random numbers. ASF Software, Inc., developed an online version 
of the card game known as Texas Hold 'em Poker [128]. In this game, each 
player is first dealt two cards, face down. Then a round of betting takes 
place, followed by three community cards being dealt face up—all players 
can see the community cards and use them in their hand. After another 
round of betting, one more community card is revealed, then another round 
of betting. Finally, a final community card is dealt, after which additional 
betting can occur. Of the players who remain at the end, the winner is the 
one who can make the best poker hand from his two cards together with the 
five community cards. The game is illustrated in Figure 5.7. 

In an online version of the game, random numbers are required to shuf-
fle a virtual deck of cards. The AFS poker software had a serious flaw in 
the way that random numbers were used to shuffle the deck of cards. As a 
result, the program did not produce a truly random shuffle, and it was pos-
sible for a player to determining the entire deck in real time. A player who 
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Player's hand Community cards in center of the table 

Figure 5.7: Texas Hold 'Em Poker 

could take advantage of this flaw could cheat, since he would know all of the 
other players' hands, as well as the future community cards before they were 
revealed. 

How was it possible to determine the shuffle? First, note that there 
are 52! > 2225 distinct shuffles of a 52-card deck. The AFS poker program 
used a "random" 32-bit integer to determine the shuffle. Consequently, the 
program could generate no more than 232 different shuffles out of the more 
than 2225 possible. This was an inexcusable flaw, but if this was the only flaw, 
it would have likely remained a theoretical problem, not a practical attack. 

To generate the "random" shuffle, the program used the pseudo-random 
number generator, or PRNG, built into the Pascal programming language. 
Furthermore, the PRNG was reseeded with each shuffle, with the seed value 
being a known function of the number of milliseconds since midnight. Since 
the number of milliseconds in a day is 

24 · 60 · 60 · 1000 < 227, 

less than 227 distinct shuffles could actually occur. 
Trudy, the attacker, could do even better. If she synchronized her clock 

with the server, Trudy could reduce the number of shuffles that needed to 
be tested to less than 218. These 218 possible shuffles could all be generated 
in real time and tested against the community cards to determine the actual 
shuffle for the hand currently in play. In fact, after the first set of community 
cards were revealed, Trudy could determine the shuffle uniquely and she would 
then know the final hands of all other players—even before any of the other 
players knew their own final hand! 

The AFS Texas Hold 'em Poker program is an extreme example of the 
ill effects of using predictable random numbers where unpredictable random 
numbers are required. In this example, the number of possible random shuffles 
was so small that it was possible to determine the shuffle and thereby break 
the system. 

How can we generate cryptographic random numbers? Since a secure 
stream cipher keystream is not predictable, the keystream generated by, say, 
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the RC4 cipher must be a good source of cryptographic random numbers. Of 
course, there's no free lunch, so the selection of the key—which is like the 
initial seed value for RC4—remains a critical issue. 

5.9.2.2 Generating Random Bits 

True randomness is not only hard to find, it's hard to define. Perhaps the 
best we can do is the concept of entropy, as developed by Claude Shannon. 
Entropy is a measure of the uncertainty or, conversely, the predictability of 
a sequence of bits. We won't go into the details here, but a good discussion 
of entropy can be found in [305]. 

Sources of true randomness do exist. For example, radioactive decay is 
random. However, nuclear computers are not very popular, so we'll need 
to find another source. Hardware devices are available that can be used to 
gather random bits based on various physical and thermal properties that are 
known to be unpredictable. Another source of randomness is the infamous 
lava lamp [200], which achieves its randomness from its chaotic behavior. 

Since software is (hopefully) deterministic, true random numbers must be 
generated external to any code. In addition to the special devices mentioned 
above, reasonable sources of randomness include mouse movements, keyboard 
dynamics, certain network activity, and so on. It is possible to obtain some 
high-quality random bits by such methods, but the quantity of such bits is 
limited. For more information on these topics, see [134]. 

Randomness is an important and often overlooked topic in security. It's 
worth remembering that, "The use of pseudo-random processes to generate 
secret quantities can result in pseudo-security" [162]. 

5.9.3 Information Hiding 

In this section we'll discuss the two faces of information hiding, namely, 
steganography and digital watermarking. Steganography, or hidden writing, 
is the attempt to hide the fact that information is being transmitted. Water-
marks also generally involve hidden information, but for a slightly different 
purpose. For example, a copyright holder might hide a digital watermark 
(containing some identifying information) in digital music in a vain effort to 
prevent music piracy.11 

Steganography has a long history, particularly in warfare—until modern 
times, steganography was used far more than cryptography. In a story related 
by Herodotus (circa 440 BC), a Greek general shaved the head of a slave and 

11 Apparently, the use of the word piracy in this context is supposed to conjure images of 
Blackbeard (complete with parrot and pegleg) viciously attacking copyright holders with 
swords and cannons. Of course, the truth is that the pirates are mostly just teenagers 
who—for better or for worse—have little or no concept of actually paying for music. 
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wrote a message on the slave's head warning of a Persian invasion. After his 
hair had grown back and covered the message, the slave was sent through 
enemy lines to deliver the message to another Greek general.12 

The modern version of steganography involves hiding information in me-
dia such as image files, audio data, or even software [288]. This type of 
information hiding can also be viewed as a form of covert channel—a topic 
we'll return to when we discuss multilevel security in Chapter 8. 

As mentioned above, digital watermarking is information hiding for a 
somewhat different purpose. There are several varieties of watermarks but 
one example consists of inserting an "invisible" identifier in the data. For 
example, an identifier could be added to digital music in the hope that if 
a pirated version of the music appears, the watermark could be read from 
it and the purchaser—and presumed pirate—could be identified. Such tech-
niques have been developed for virtually all types of digital media, as well 
as for software. In spite of their obvious potential, digital watermarking has 
received only limited practical application, and there have been some spec-
tacular failures [71]. 

Digital watermarks can be categorized in many different ways. For exam-
ple, we can consider the following types of watermarks: 

• Invisible — Watermarks that are not supposed to be perceptible in the 
media. 

• Visible — Watermarks that are meant to be observed, such as a stamp 
of TOP SECRET on a document. 

Watermarks can also be categorized as follows: 

• Robust — Watermarks that are designed to remain readable even if they 
are attacked. 

• Fragile — Watermarks that are supposed to be destroyed or damaged 
if any tampering occurs. 

For example, we might like to insert a robust invisible mark in digital music 
in the hope of detecting piracy. Then when pirated music appears on the In-
ternet, perhaps we can trace it back to its source. Or we might insert a fragile 
invisible mark into an audio file. In this case, if the watermark is unreadable, 
the recipient knows that tampering has occurred. This latter approach is 
essential an integrity check. Various other combinations of watermarks might 
also be considered. 

Many modern currencies include (non-digital) watermarks. Several cur-
rent and recent U.S. bills, including the $20 bill pictured in Figure 5.8, have 

12To put this into terms that the reader will understand, the problem with this technique 
is that the bandwidth is too low... 
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visible watermarks. In this $20 bill, the image of President Jackson is em-
bedded in the paper itself (in the right-hand section of the bill) and is visible 
when held up to a light. This visible watermark is designed to make counter-
feiting more difficult, since special paper is required to duplicate this easily 
verified watermark. 

Figure 5.8: Watermarked Currency 

One example of an invisible watermarking scheme that has been proposed 
is to insert information into a photograph in such a way that if the photo were 
damaged it would be possible to reconstruct the entire image from a small 
surviving piece of the original [168]. It has been claimed that every square 
inch of a photo could contain enough information to reconstruct the entire 
photograph, without adversely affecting the quality of the image. 

Now. let's consider a concrete example of a simple approach to steganog-
raphy. This particular example is applicable to digital images. For this ap-
proach, we'll use images that employ the well-known 24 bits color scheme— 
one byte each for red, green, and blue, denoted R, G, and B, respectively. 
For example, the color represented by (R, G, B) = (0x7E, 0x52,0x90) is much 
different than (R, G,B) = (OxFE, 0x52,0x90), even though the colors only 
differ by one bit. On the other hand, the color (R, G, B) = (OxAB, 0x33, OxFO) 
is indistinguishable from (R, G,B) = (OxAB, 0x33, OxFl), yet these two colors 
also differ by only a single bit. In fact, the low-order RGB bits are unimpor-
tant, since they represent imperceptible changes in color. Since the low-order 
bits don't matter, we can use them for any purposes we choose, including 
information hiding. 

Consider the two images of Alice in Figure 5.9. The left-most Alice con-
tains no hidden information, whereas the right-most Alice has the entire Alice 
in Wonderland book (in PDF format) embedded in the low-order RGB bits. 
To the human eye, the two images appear identical at any resolution. While 
this example is visually stunning, it's important to remember that if we com-
pare the bits in these two images, the differences would be obvious. In par-
ticular, it's easy for an attacker to write a computer program to extract the 
low-order RGB bits—or to overwrite the bits with garbage and thereby de-
stroy the hidden information, without doing any damage to the image. This 
example highlights one of the fundamental problems in information hiding, 
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namely, that it is difficult to apply Kerckhoffs' Principle in a meaningful way 
without giving the attacker a significant advantage. 

Figure 5.9: A Tale of Two Alices 

Another simple steganography example might help to further demystify 
the concept. Consider an HTML file that contains the following text, taken 
from the well-known poem, "The Walrus and the Carpenter," [50] which 
appears in Lewis Carroll's Through the Looking-Glass and What Alice Found 
There: 

"The time has come," the Walrus said, 
"To talk of many things: 
Of shoes and ships and sealing wax 
Of cabbages and kings 
And why the sea is boiling hot 
And whether pigs have wings." 

In HTML, the RGB font colors are specified by a tag of the form 

<font color="#rrggbb"> . . . </font> 

where r r is the value of R in hexadecimal, gg is G in hex, and bb is B in 
hex. For example, the color black is represented by #000000, whereas white 
is #FFFFFF. 

Since the low-order bits of R, G, and B won't affect the perceived color, 
we can hide information in these bits, as shown in the HTML snippet in 



 

152 HASH FUNCTIONS++ 

Table 5.2. Reading the low-order bits of the RGB colors yields the "hidden" 
information 110 010 110 Oil 000 101. 

Table 5.2: Simple Steganography Example 

<font color="#010100">"The time has come," 
the Walrus said,</font><br> 

<font color="#000100">"To talk of many things :</fontxbr> 
<font color="#010100">0f shoes and ships and sealing wax</font><br> 
<font color="#000101">0f cabbages and kings</fontxbr> 
<font color="#000000">And why the sea is boiling hot</font><br> 
<font color="#010001">And whether pigs have wings."</font><br> 

Hiding information in the low-order RGB bits of HTML color tags is 
obviously not as impressive as hiding Alice in Wonderland in Alice's image. 
However, the process is virtually identical in each case. Furthermore, neither 
method is at all robust—an attacker who knows the scheme can read the 
hidden information as easily as the recipient. Or an attacker could instead 
destroy the information by replacing the file with another one that is identical, 
except that the low-order RGB bits have been randomized. In the latter case, 
if the image is not being used to pass information, the attacker's actions are 
likely to go undetected since the appearance of the image contained in the 
file has not changed 

It is tempting to hide information in bits that don't matter, since doing so 
will be invisible, in the sense that the content will not be affected. But relying 
only on the unimportant bits makes it easy for an attacker who knows the 
scheme to read or destroy the information. While the bits that don't matter in 
image files may not be as obvious to humans as low-order RGB bits in HTML 
tags, such bits are equally susceptible to attack by anyone who understands 
the image format. 

The conclusion here is that for information hiding to be robust, the infor-
mation must reside in bits that do matter. But this creates a serious challenge, 
since any changes to bits that do matter must be done very carefully for the 
information hiding to remain "invisible." 

As noted above, if Trudy knows the information hiding scheme, she can 
recover the hidden information as easily as the intended recipient. Water-
marking schemes therefore generally encrypt the hidden information before 
embedding it in a file. But even so, if Trudy understands how the scheme 
works, she can almost certainly damage or destroy the information. This fact 
has driven developers to rely on secret proprietary watermarking schemes, 
which runs contrary to the spirit of Kerckhoffs' Principle. This has, pre-
dictably, resulted in many approaches that fail badly when exposed to the 
light of day. 
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Further complicating the steganographer's life, an unknown watermarking 
scheme can often be diagnosed by a collusion attack. That is, the original 
object and a watermarked object (or several different watermarked objects) 
can be compared to determine the bits that carry the information and, in the 
process, the attacker can often learn something about how the scheme works. 
As a result, watermarking schemes often use spread spectrum techniques 
to better hide the information-carrying bits. Such approaches only make the 
attacker's job more difficult—they do not eliminate the threat. The challenges 
and perils of watermarking are nicely illustrated by the attacks on the Secure 
Digital Music Initiative, or SDMI, scheme, as described in [71]. 

The bottom line is that digital information hiding is much more difficult 
than it appears at first glance. Information hiding is an active research topic, 
and although none of the work to date has lived up to the hype, the implica-
tions of a robust scheme would be enormous. The field of information hiding 
is extremely old, but the digital version is relatively young, so there may still 
be hope for significant progress. 

5.10 Summary 

In this chapter, we discussed cryptographic hash functions in some detail. We 
described one specific hash algorithm (Tiger) and considered the correct way 
to compute a hashed MAC (HMAC). A couple of non-standard applications 
of hash functions were also discussed. 

After covering hash functions, a few crypto-like topics that don't fit nicely 
into any of the other chapters were presented. Shamir's secret sharing scheme 
offers a secure method for sharing a secret in any m out of n arrangement. 
Naor and Shamir's visual cryptography provides a similarly secure means for 
sharing an image file. Random numbers, a topic that is of critical security 
importance, was also covered and we gave an example that illustrates the 
pitfalls of failing to use good random numbers. 

The chapter concluded with a brief discussion of information hiding. Digi-
tal steganography and digital watermarking are both interesting and evolving 
fields with potential application to some very challenging security problems. 

5.11 Problems 

1. As discussed in this chapter, a cryptographic hash function must satisfy 
all of the following properties: 

• Compression 

• Efficiency 

• One-way 
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• Weak collision resistance 

• Strong collision resistance 

a. Suppose that a hash function fails to provide compression but pro-
vides all of the other required properties. Give an application 
where a cryptographic hash function should be used, but where 
this hash function would fail to be useful. 

b. Repeat part a, but assume that all properties hold except for effi-
ciency. 

c. Repeat part a, but assume that all properties hold except for one-
way. 

d. Repeat part a, but assume that all properties hold except for the 
collision resistance properties. 

2. Justify the following statements concerning cryptographic hash func-
tions. 

a. Strong collision resistance implies weak collision resistance. 

b. Strong collision resistance does not imply one-way. 

3. Suppose that a secure cryptographic hash function generates hash val-
ues that are n bits in length. Explain how a brute force attack could 
be implemented. What is the expected work factor? 

4. How many collisions would you expect to find in the following cases? 

a. Your hash function generates a 12-bit output and you hash 1024 
randomly selected messages. 

b. Your hash function generates an n-bit output and you hash m 
randomly selected messages. 

5. Suppose that h is a secure hash that generates an n-bit hash value. 

a. What is the expected number of hashes that must be computed to 
find one collision? 

b. What is the expected number of hashes that must be computed to 
find 10 collisions? That is, what is the expected number of hashes 
that must be computed to find pairs (XÌ,ZÌ) with h(xi) = h(zi), 
fori = 0 ,1 ,2 , . . . , 9? 

c. What is the expected number of hashes that must be computed to 
find m collisions? 
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6. A fc-way collision is a set of values xo, x\,..., Xk-i that all hash to the 

same value, that is, 

h(x0) = h(xi) = · · · = h(xk-i). 

Suppose that h is a secure hash that generates an n-bit hash value. 

a. What is the expected number of hashes that must be computed to 

find one fc-way collision? 

b. What is the expected number of hashes that must be computed to 

find two fc-way collision? 

c. What is the expected number of hashes that must be computed to 

find m distinct fc-way collisions? 

7. Recall the digital signature birthday attack discussed in Section 5.4. 

Suppose we modify the hashing scheme as follows: Given a message M 

that Alice wants to sign, she randomly selects R, then she computes 

the signature as S = [h(M, R)]A\ice, and sends (M, R, S) to Bob. Does 

this prevent the attack? Why or why not? 

8. Consider a CRC that uses the divisor 10011. Find two collisions with 

10101011, that is, find two other data values that produce the same 

CRC checksum as 10101011. 

9. Consider a CRC that uses the divisor 10011. Suppose the data value 

is 11010110. Trudy wants to change the data to 111*****, where "*" 

indicates that she doesn't care about the bit in that position, and she 

wants the resulting checksum to be the same as for the original data. 

Determine all data values Trudy could choose. 

10. Fill in the number of bits on each line of the Tiger hash outer round in 

Figure 5.2. 

11. Let h be the Tiger hash and let F be the Tiger outer round in Figure 5.2. 

a. For M = (Bi,B2,Bs), where each Bi is 512 bits, give the analog 

of equation (5.2). 

b. Now suppose M = {Βι,Β^, ■ ■ ■ ,Bn) where each Bi is 512 bits. 
Show that h(M) = F(h{Bi, B2,..., B„-i) , Bn). 

12. A program implementing your crafty author's Bobcat hash algorithm 
can be found on the textbook website. This hash is essentially a scaled-
down version of Tiger—whereas the Tiger hash produces a 192-bit out-
put (three 64-bit words), the Bobcat hash produces a 48-bit value (three 
16-bit words). 
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a. Find a collision for the 12-bit version of Bobcat, where you truncate 
the 48-bit hash value to obtain a 12-bit hash. How many hashes 
did you compute before you found your first 12-bit collision? 

b. Find a collision for the full 48-bit Bobcat hash. 

13. Alice likes to use the Tiger hash algorithm, which produces a 192-bit 
hash value. However, for a particular application, Alice only requires a 
64-bit hash. Answer the following questions, assuming that the Tiger 
hash is secure. 

a. Is it safe for Alice to simply truncate the Tiger hash, that is, can 
she use the first 64 bits of the 192-bit output? Why or why not? 

b. Is it acceptable for Alice to take every third bit of the Tiger hash? 
Why or why not? 

c. Is it secure for Alice to take the three 64-bit words of the Tiger 
hash and XOR them together? Why or why not? 

14. Consider equation (5.3). 

a. Show that the equation holds if K, M, and X are all multiples of 
the hash block length (commonly, 64 bytes). 

b. For which other sizes of K, M, and X does the equation hold? 

c. Show that equation (5.4) holds for any size of M, M', and K, 
provided that h{M) = h(M'). 

15. Does a MAC work as an HMAC? That is, does a MAC satisfy the same 
properties that an HMAC satisfies? 

16. Suppose that you know the output of an HMAC is X and the key is K, 
but you do not know the message M. Can you construct a message M' 
that has its HMAC equal to X, using the key K? If so, give an algorithm 
for constructing such a message. If not, why not? Note that we are 
assuming that you know the key K, and the same key is used for both 
HMAC computations. (It may be instructive to compare this problem 
to Problem 43 of Chapter 3.) 

17. Recall the online bid method discussed in Section 5.8.1. 

a. What property or properties of a secure hash function h does this 
scheme rely on to prevent cheating? 

b. Suppose that Charlie is certain that Alice and Bob will both sub-
mit bids between $10,000 and $20,000. Describe a forward search 
attack that Charlie can use to determine Alice's bid and Bob's bid 
from their respective hash values. 
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c. Is the attack in part b a practical security concern? 

d. How can the bidding procedure be modified to prevent a forward 
search such as that in part b? 

18. Recall the spam reduction method discussed in Section 5.8.2. 

a. What property or properties of a secure hash function does this 
scheme rely on to reduce spam? 

b. In Section 5.8.2, it is stated that "The message M includes the 
sender's and intended recipient's email addresses, but does not 
include any additional addresses." Suppose we relax this so that we 
only require that the message M includes the intended recipient's 
email address. Find an attack on this modified spam reduction 
system, that is, show that a spammer could still send spam without 
doing a large amount of work. 

19. Suppose that you have a secure block cipher, but no hash function. 
Also, no key is available. For simplicity, assume that the block cipher 
has key length and block length both equal to n. 

a. How can you use the block cipher as a cryptographic hash function, 
assuming that you only need to hash one block of exactly n bits? 

b. How can you use the block cipher as a cryptographic hash function 
when the message consists of multiple n-bit blocks? 

20. Suppose that Alice wants to encrypt a message for Bob, where the 
message consists of three plaintext blocks, Po, Pi, and Pi- Alice and 
Bob have access to a hash function and a shared symmetric key K, but 
no cipher is available. How can Alice securely encrypt the message so 
that Bob can decrypt it? 

21. Alice's computer needs to have access to a symmetric key KA· Consider 
the following two methods for deriving and storing the key KA-

(i) The key is generated as KA = h(Alice's password). The key is 
not stored on Alice's computer. Instead, whenever KA is required, 
Alice enters her password and the key is generated. 

(ii) The key KA is initially generated at random, and it is then stored 
as E(KA,K), where K = ^(Alice's password). Whenever KA is 
required, Alice enters her password, which is hashed to generate K 
and K is then used to decrypt the key KA-

Give one significant advantage of method (i) as compared to (ii), and 
one significant advantage of (ii) as compared to (i). 
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22. Suppose that Sally (a server) needs access to a symmetric key for user 
Alice and another symmetric key for Bob and another symmetric key for 
Charlie. Then Sally could generate symmetric keys Kj±, KB, and Kc 
and store these in a database. An alternative is key diversification, 
where Sally generates and stores a single key Ks- Then Sally generates 
the key KA as needed by computing KA = /i(Alice, Ks), with keys KB 
and Kc generated in a similar manner. Give one significant advantage 
and one significant disadvantage of key diversification as compared to 
storing keys in a database. 

23. We say that a function T is incremental if it satisfies the following 
property: Having once applied T to M, the time required to update the 
result upon modification of M is proportional to the amount of modi-
fication done to M. Suppose we have an incremental hash function H. 

a. Discuss one application where this incremental hash H would be 
superior to a standard (non-incremental) hash function. 

b. Suppose a message M can only be modified by appending more 
bits, that is, the modified message M' is M' = (M, X), for some X. 
Given a cryptographic hash function h, define an incremental cryp-
tographic hash function H based on h. 

24. Suppose Bob and Alice want to flip a coin over a network. Alice pro-
poses the following protocol. 

(i) Alice randomly selects a value X e {0,1}. 

(ii) Alice generates a 256-bit random symmetric key K. 

(iii) Using the AES cipher, Alice computes Y = E(X,R,K), where R 
consists of 255 randomly selected bits. 

(iv) Alice sends Y to Bob. 

(v) Bob guesses a value Z £ {0,1} and tells Alice. 

(vi) Alice gives the key K to Bob who computes (X, R) = D(Y, K). 

(vii) If X = Z then Bob wins, otherwise Alice wins. 

This protocol is insecure. 

a. Explain how Alice can cheat. 

b. Using a cryptographic hash function h, modify this protocol so 
that Alice can't cheat. 

25. The MD5 hash is considered broken, since collisions have been found 
and, in fact, a collision can be constructed in a few seconds on a 
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PC [244]. Find all bit positions where the following two messages dif-

fer.13 Verify that the MD5 hashes of these two messages are the same. 

00000000 

00000010 

00000020 

00000030 

00000040 

00000050 

00000060 

00000070 

dl 

2f 

55 

08 

96 

35 

75 

ed 

31 

ca 

ad 

51 

0b 

73 

27 

74 

dd 

b5 

34 

25 

Id 

9a 

7f 

cb 

02 

87 

06 

e8 

dl 

c7 

79 

dd 

c5 

12 

09 

f7 

dc 

fO 

30 

5f 

e6 

46 

f4 

cd 

41 

eb 

d5 

c5 

ee 

7e 

b3 

c9 

7b 

fd 

5c 

d3 

c4 

ab 

02 

9f 

9c 

0c 

eb 

6d 

69 

40 

83 

d9 

θ4 

30 

22 

bl 

3d 

04 

e4 

Id 

d8 

29 

e8 

9b 

9a 

58 

88 

bd 

97 

fl 

ad 

0a 

06 

3e 

83 

f2 

f4 

66 

ba 

d8 

98 

b8 

25 

80 

5a 

dl 

79 

35 

af 

fb 

71 

37 

65 

09 

cc 

cc 

f9 

7f 

41 

3c 

55 

bl 

15 

a7 

5c 

89 

5a 

5b 

d5 

8f 

5c 

e3 

and 

00000000 

00000010 

00000020 

00000030 

00000040 

00000050 

00000060 

00000070 

dl 

2f 

55 

08 

96 

35 

75 

ed 

31 

ca 

ad 

51 

0b 

73 

27 

74 

dd 

b5 

34 

25 

Id 

9a 

7f 

cb 

02 

07 

06 

e8 

dl 

47 

79 

dd 

c5 

12 

09 

f7 

dc 

fO 

30 

5f 

e6 

46 

f4 

cd 

41 

eb 

d5 

c5 

ee 

7e 

b3 

c9 

7b 

fd 

5c 

d3 

c4 

ab 

02 

9f 

9c 

Oc 

eb 

6d 

69 

40 

83 

d9 

e4 

30 

22 

bl 

3d 

04 

e4 

Id 

d8 

29 

e8 

9b 

9a 

58 

88 

bd 

97 

fl 

ad 

Oa 

06 

3e 

83 

72 

f4 

66 

ba 

58 

98 

b8 

25 

80 

5a 

dl 

79 

35 

af 

fb 

fl 

37 

65 

09 

4c 

cc 

f9 

7f 

41 

3c 

55 

bl 

15 

a7 

5c 

89 

5a 

5b 

d5 

8f 

5c 

e3 

26. The MD5 collision in Problem 25 is said to be meaningless since the 

two messages appear to be random bits, that is, they do not carry 

any meaning. Currently, it is not possible to generate a meaningful 

collision using the MD5 collision attack. For this reason, it is some-

times claimed that MD5 collisions are not a significant security threat. 

The goal of this problem is convince you otherwise. Obtain the file 

MD5_collision.zip from the textbook website and unzip the folder to 

obtain the two Postscript files, rec2.ps and auth2.ps. 

a. What message is displayed when you view rec2 .ps in a Postscript 

viewer? What message is displayed when you view auth2.ps in a 

Postscript viewer? 

b. What is the MD5 hash of rec2.ps? What is the MD5 hash of 

auth2.ps? Why is this a security problem? Give a specific at-

tack that Trudy can easily conduct in this particular case. Hint: 

Consider a digital signature. 

c. Modify rec2. ps and auth2. ps so that they display different mes-

sages than they currently do, but they hash to the same value. 

What are the resulting hash values? 

d. Since it is not possible to generate a meaningful MD5 collision, 

how is it possible for two (meaningful) messages to have the same 

13The left-most column represents the byte position (in hex) of the first byte in that row 

and is not part of the data. Also, the data itself is given in hexadecimal. 
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MD5 hash value? Hint: Postscript has a conditional statement of 

the form 

(X)(y)eq{T0}{T1}ifelse 

where To is displayed if the text X is identical to Y and Τχ is 

displayed otherwise. 

27. Suppose that you receive an email from someone claiming to be Alice, 

and the email includes a digital certificate that contains 

M = ("Alice", Alice's public key) and [h(M)]CA, 

where CA is a certificate authority. 

a. How do you verify the signature? Be precise. 

b. Why do you need to bother to verify the signature? 

c. Suppose that you trust the CA who signed the certificate. Then, 

after verifying the signature, you will assume that only Alice pos-

sesses the private key that corresponds to the public key contained 

in the certificate. Assuming that Alice's private key has not been 

compromised, why is this a valid assumption? 

d. Assuming that you trust the CA who signed the certificate, after 

verifying the signature, what do you know about the identity of 

the sender of the certificate? 

28. Recall that we use both a public key system and a hash function when 

computing digital signatures. 

a. Precisely how is a digital signature computed and verified? 

b. Suppose that the public key system used to compute and verify 

signatures is insecure, but the hash function is secure. Show that 

you can forge signatures. 

c. Suppose that the hash function used to compute and verify signa-

tures is insecure, but the public key system is secure. Show that 

you can forge signatures. 

29. This problem deals with digital signatures. 

a. Precisely how is a digital signature computed and verified? 

b. Show that a digital signature provides integrity protection. 

c. Show that a digital signature provides non-repudiation. 

30. Suppose that Alice wants to sign the message M and send the result to 

Bob. 
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a. In terms of our standard notation, what does Alice compute? 

b. What does Alice send to Bob and how does Bob verify the signa-
ture? 

31. In the previous chapter, we discussed the idea behind a forward search 
attack on a public key cryptosystems. In certain applications, a forward 
search attack can be used against a hash function. 

a. What is a forward search attack on public key encryption, and how 
is it prevented? 

b. Describe one plausible use for a hash function where a forward 
search attack is feasible. 

c. How can you prevent a forward search attack on a hash function? 

32. Suppose that we have a block cipher and want to use it as a hash func-
tion. Let X be a specified constant and let M be a message consisting 
of a single block, where the block size is the size of the key in the block 
cipher. Define the hash of M as Y = E(X, M). Note that M is being 
used in place of the key in the block cipher. 

a. Assuming that the underlying block cipher is secure, show that 
this hash function satisfies the collision resistance and one-way 
properties of a cryptographic hash function. 

b. Extend the definition of this hash so that messages of any length 
can be hashed. Does your hash function satisfy all of the properties 
of a cryptographic hash? 

c. Why must a block cipher used as a cryptographic hash be resistant 
to a "chosen key" attack? Hint: If not, given plaintext P, we can 
find two keys K0 and Kx such that E(P,K0) = E(P,Ki). Show 
that such a block cipher is insecure when used as a hash function. 

33. Consider a "2 out of 3" secret sharing scheme. 

a. Suppose that Alice's share of the secret is (4,10/3), Bob's share 
is (6,2), and Charlie's share is (5,8/3). What is the secret S? 
What is the equation of the line? 

b. Suppose that the arithmetic is taken modulo 13, that is, the equa-
tion of the line is of the form ax + by = c (mod 13). If Alice's share 
is (2,2), Bob's share is (4,9), and Charlie's share is (6,3), what is 
the secret 5? What is the equation of the line, mod 13? 

34. Recall that we define a cipher to be secure if the best known attack 
is an exhaustive key search. If a cipher is secure and the key space is 
large, then the best known attack is computationally infeasible—for a 
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practical cipher, this is the ideal situation. However, there is always 
the possibility that a clever new attack could change a formerly secure 
cipher into an insecure cipher. In contrast, Shamir's polynomial-based 
secret sharing scheme is information theoretically secure, in the sense 
that there is no possibility of a shortcut attack. In other words, secret 
sharing is guaranteed to be secure forever. 

a. Suppose we have a "2 out of 2" secret sharing scheme, where Alice 
and Bob share a secret S. Why can't Alice determine any infor-
mation about the secret from her share of the secret? 

b. Suppose we have an "m out of n" secret sharing scheme. Any set 
of m — 1 participants can't determine any information about the 
secret S. Why? 

35. Obtain the file v i s u a l . z i p from the textbook website and extract the 
files. 

a. Open the file v isual .h tml in your favorite browser and carefully 
overlay the two shares. What image do you see? 

b. Use the program with a different image file to create shares. Note 
that the image must be a gif file. Give a screen snapshot showing 
the original image, the shares, and the overlaid shares. 

36. Recall that we define a cipher to be secure if the best known attack 
is an exhaustive key search. If a cipher is secure and the key space is 
large, then the best known attack is computationally infeasible—for a 
practical cipher, this is the best possible scenario. However, there is 
always the possibility that a clever new attack could change a formerly 
secure cipher into an insecure cipher. In contrast, Naor and Shamir's 
visual secret sharing scheme is information theoretically secure, in the 
sense that there is no possibility of a shortcut attack—it is guaranteed 
to be secure (by our definition) forever. 

a. Consider the "2 out of 2" visual secret sharing scheme discussed 
in this chapter. Why can't Alice determine any information about 
the secret from her share of the secret? 

b. How might a more general "m out of n" visual secret sharing 
scheme work? 

c. For an "m out of n" visual secret sharing scheme, what would 
happen to the contrast of the recovered image for large m, with n 
a small value? For large n with m small? For large m and n? 

37. Suppose that you have a text file and you plan to distribute it to several 
different people. Describe a simple non-digital watermarking method 
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that you could use to place a distinct invisible watermark in each copy 
of the file. Note that in this context, "invisible" does not imply that the 
watermark is literally invisible—instead, it means that the watermark 
is not obvious to the reader. 

38. Suppose that you enroll in a course where the required text is a hard-
copy manuscript written by the instructor. Being of simple mind, the 
instructor has inserted a simple-minded invisible watermark into each 
copy of the manuscript. The instructor claims that given any copy 
of the manuscript, he can easily determine who originally received the 
manuscript. The instructor challenges the class to solve the following 
problems.14 

(i) Determine the watermarking scheme used, 

(ii) Make the watermarks unreadable. 

Note that, in this context, "invisible" does not imply that the water-
mark is literally invisible—instead, it means that the watermark is not 
obvious to the reader. 

a. Discuss several possible methods the instructor could have used to 
watermark the manuscripts. 

b. How would you solve problem (i)? 

c. How would you solve (ii), assuming that you have solved (i)? 

d. Suppose that you are unable to solve (i). What could you do that 
would likely enable you to solve (ii) without having solved (i)? 

39. Part of a Lewis Carroll poem appears in the second quote at the begin-
ning of this chapter. Although the poem doesn't actually have a title, 
it's generally referenced by its opening line, A Boat Beneath a Sunny 
Sky. 

a. Give the entire poem. 

b. This poem contains a hidden message. What is it? 

40. This problem deals with RGB colors. 

a. Verify that the RGB colors 

(0x7E,0x52,0x90) and (0x7E,0x52,0x10), 

which differ in only a single bit position, are visibly different. Ver-
ify that the colors 

(OxAB, 0x32, OxFl) and (OxAB, 0x33, OxFl), 

14This problem is based on a true story. 
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which also differ in only a single bit position, are indistinguishable. 
Why is this the case? 

b. What is the highest-order bit position that doesn't matter? That 
is, what is the highest bit positions can be changed without making 
a perceptible change in the color? 

41. Obtain the image file alice.bmp from the textbook website. 

a. Use a hex editor to hide the information a t tack at dawn in the 
file. 

b. Provide a hex edit view showing the bits that were modified and 
their location in the file, as well as the corresponding unmodified 
bits. 

c. Provide screen snapshots of the original bmp file, as well as the 
bmp file containing the hidden message. 

42. Obtain the file s tego .z ip from the textbook website. 

a. Use the program stegoRead to extract the hidden file contained 
in aliceStego.bmp. 

b. Use the programs to insert another file into a different (uncom-
pressed) image file and extract the information. 

c. Provide screen snapshots of the image file from part b, both with 
and without the hidden information. 

43. Obtain the file s tego .z ip from the textbook website. 

a. Write a program, stegoDestroy.c, that will destroy any informa-
tion hidden in a file, assuming that the information hiding method 
in s tego.c might have been used. Your program should take a 
bmp file as input, and produce a bmp file as output. Visually, the 
output file must be identical to the input file. 

b. Test your program on aliceStego.bmp. Verify that the output 
file image is undamaged. What information does stegoRead. c 
extract from your output file? 

44. Obtain the file s tego. z ip from the textbook website. 

a. How does the program stego.c hide information in an image file? 

b. How could you damage the information hidden in a file without 
visually damaging the image, assuming the program stego. c was 
used? 

c. How could this information hiding technique be made more resis-
tant to attack? 
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45. Obtain the file s tego .z ip from the textbook website. 

a. Why does this information hiding method only apply to uncom-
pressed image files? 

b. Explain how you could modify this approach to work on a com-
pressed image format, such as jpg. 

46. Write a program to hide information in an audio file and to extract your 
hidden information. 

a. Describe your information hiding method in detail. 

b. Compare an audio file that has no hidden information to the same 
file containing hidden information. Can you discern any difference 
in the quality of the audio? 

c. Discuss possible attacks on your information hiding system. 

47. Write a program to hide information in a video file and to extract the 
hidden information. 

a. Describe your information hiding method in detail. 

b. Compare a video file that has no hidden information to the same 
file containing hidden information. Can you discern any difference 
in the quality of the video? 

c. Discuss possible attacks on your information hiding system. 

48. This problem deals with the uses of random numbers in cryptography. 

a. Where are random numbers used in symmetric key cryptography? 

b. Where are random numbers used in RSA and Diffie-Hellman? 

49. According to the text, random numbers used in cryptography must be 
unpredictable. 

a. Why are statistically random numbers (which are often used in 
simulations) not sufficient for cryptographic applications? 

b. Suppose that the keystream generated by a stream cipher is pre-
dictable in the sense that if you are given n keystream bits, you 
can determine all subsequent keystream bits. Is this a practical 
security concern? Why or why not? 
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Chapter 6 

Advanced Cryptanalysis 

For there is nothing covered, that shall not be revealed; 
neither hid, that shall not be known. 

— Luke 12:2 

The magic words are squeamish ossifrage 
— Solution to RSA challenge problem 

posed in 1977 by Ron Ri vest, who 
estimated that breaking the message 

would require 40 quadrillion years. 
It was broken in 1994. 

6.1 Introduction 

Perhaps the best ways to gain a strong understanding of cryptography is by 
trying to break ciphers. As an added bonus, breaking ciphers puts us in the 
role of our all-purpose attacker, Trudy, and we need to think like Trudy if we 
are going to make our systems more secure. 

In previous chapters, we've seen a few simple cryptanalytic attacks. In 
this chapter, we kick it up a few notches and examine some relatively involved 
attacks. Specifically, we'll discuss the following cryptanalytic attacks. 

• An attack on the most famous World War II cipher, the Enigma 

• The attack on RC4, as used in WEP 

• Linear and differential cryptanalysis of a block cipher 

• The lattice reduction attack on the knapsack 

• A timing attack on RSA 

167 
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In World War II, the Nazis believed the Enigma cipher was invincible. 
Polish and British cryptanalysts proved otherwise. The idea behind the at-
tack we describe was used to break Enigma messages, and yielded invaluable 
intelligence during the war. The attack illustrates some of the shortcomings 
of pre-modern ciphers. 

Next, we consider an attack on RC4. This attack is specific to the way 
that RC4 is used in WEP. In this case, a relatively straightforward attack 
exists, in spite of the fact that RC4 is considered a strong cipher. While this 
might seem contradictory, the problem arises from the precise details of the 
way that RC4 is used in WEP. This example shows that a strong cipher can 
be broken if it is used improperly. 

Linear and differential cryptanalysis are generally not practical means of 
attacking ciphers directly. Instead, they are used to analyze block ciphers for 
design weaknesses and, as a result, modern block ciphers are built with these 
techniques in mind. Therefore, to understand the design principles employed 
in block ciphers today, it is necessary to have some understanding of linear 
and differential cryptanalysis. 

In Chapter 4, we mentioned the attack on the knapsack public key cryp-
tosystem. In this chapter, we'll give more details on the attack. We do not 
present all of the mathematical nuances, but we provide sufficient informa-
tion to understand the concept behind the attack and to write a program 
to implement the attack. It is a relatively straightforward attack that nicely 
illustrates the role that mathematics and algorithms can play in breaking 
cryptosystems. 

A side channel is an unintended source of information. Recently, it has 
been shown that power usage or precise timings can often reveal informa-
tion about an underlying computation. Timing attacks are particularly rele-
vant for public key systems, since the computations involved are costly, and 
therefore take a relatively long time. Small differences in timings can reveal 
information about the private key. 

Side channel attacks have been used successfully against several public key 
systems, and we'll discuss a couple of timing attacks on RSA. These attacks 
are representative of some of the most interesting and surprising cryptanalytic 
techniques developed in the recent past. 

The attacks covered in this chapter represent only a small sample of the 
many interesting cryptanalytic techniques that are known. For more exam-
ples, of "applied" cryptanalysis, that is, attacks that break real ciphers and 
produce plaintext, see the book by Stamp and Low [284]. In fact, this chap-
ter can be viewed as a warmup exercise for [284]. In contrast, Swenson's 
book [295] is an excellent source for details on modern block cipher crypt-
analysis, where "attacks" mostly serve the role of helping cryptographers 
build better ciphers, rather than breaking ciphers in the sense of producing 
plaintext. 
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6.2 Enigma 

I cannot forecast to you the action of Russia. 
It is a riddle wrapped in a mystery inside an enigma: 

but perhaps there is a key. 
— Winston Churchill 

The Enigma cipher was used by Nazi Germany prior to and throughout 
World War II. The forerunner of the military Enigma machine was devel-
oped by Arthur Scherbius as a commercial device. The Enigma was patented 
in the 1920s but it continued to evolve over time and the German military ver-
sions were significantly different than the original design. In reality, "Enigma" 
represents a family of cipher machines, but "the Enigma" invariably refers to 
the specific German military cipher machine that we discuss here.1 

It is estimated that approximately 100,000 Enigma machines were con-
structed, about 40,000 of those during World War II. The version of Enigma 
that we describe here was used by the German Army throughout World 
War II [104]. The device was used to send tactical battlefield messages and 
for high-level strategic communications. 

The Enigma was broken by the Allies, and the intelligence it provided 
was invaluable—as evidence by its cover name, ULTRA. The Germans had 
an unwavering belief that the Enigma was unbreakable, and they continued 
to use it for vital communications long after there were clear indications that 
it had been compromised. Of course, it's impossible to precisely quantify the 
effect of Enigma decrypts on the outcome of the war, but it is not farfetched to 
suggest that the intelligence provided by Enigma decrypts may have shortened 
the war in Europe by a year, saving hundreds of thousands of lives [308]. 

6.2.1 Enigma Cipher Machine 

A picture of an Enigma cipher machine appears in Figure 2.5 in Chapter 2. 
Note the keyboard—essentially, a mechanical typewriter—and the "light-
board" of letters. Analogous to an old-fashioned telephone switchboard, the 
front panel has cables that connect pairs of letters. This switchboard (or plug-
board) is known by its German name, stecker. There are also three rotors 
visible near the top of the machine. 

Before encrypting a message, the operator had to initialize the device. The 
initial settings include various rotor settings and the stecker cable pluggings. 
These initial settings constitute the key. 

1In fact, several variants of "the Enigma" were used by the German military and gov-
ernment. For example, the Army version used three rotors while the Naval version had four 
rotors. 
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Once the machine had been initialized, the message was typed on the key-
board and as each plaintext letter was typed, the corresponding ciphertext 
letter was illuminated on the lightboard. The ciphertext letters were writ-
ten down as they appeared on the lightboard and subsequently transmitted, 
usually by voice over radio. 

To decrypt, the recipient's Enigma had to be initialize in exactly the same 
way as the sender's. Then when the ciphertext was typed into the keyboard, 
the corresponding plaintext letters would appear on the lightboard. 

The cryptographically significant components of the Enigma are illus-
trated in Figure 6.1. These components and the ways that they interact are 
described below. 

Figure 6.1: Enigma Diagram 

To encrypt, a plaintext letter is entered on the keyboard. This letter first 
passes through the stecker, then, in turn, through each of the three rotors, 
through the reflector, back through each of the three rotors, back through 
the stecker, and finally, the resulting ciphertext letter is illuminated on the 
lightboard. Each rotor—as well as the reflector—consists of a hard-wired 
permutation of the 26 letters. Rotors as cryptographic elements are discussed 
in detail below in Section 6.2.3. 

In the example illustrated in Figure 6.1, the plaintext letter C is typed on 
the keyboard, which is mapped to S due to the stecker cable connecting C to S. 
The letter S then passes through the rotors, the reflector, and back through 
the rotors. The net effect of all the rotors and the reflector is a permutation 
of the alphabet. In the example in Figure 6.1, S has been permuted to Z, 
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which then becomes L due to the stecker cable between L and Z. Finally, the 
letter L is illuminated on the lightboard. 

We use the following notation for the various permutations in the Enigma: 

Rr = rightmost rotor 

Km = middle rotor 

Re = leftmost rotor 

T = reflector 

S = stecker 

With this notation, from Figure 6.1 we see that 

y = S^R^R^R^TRiRmRrSix) 

= (ReRmRrS)-1T(ReRmRr)S{x), (6.1) 

where x is a plaintext letter, and y is the corresponding ciphertext letter. 
If that's all there were to the Enigma, it would be nothing more than 

a glorified simple substitution cipher, with the initial settings determining 
the permutation. However, each time a keyboard letter is typed, the right-
most rotor steps one position, and the other rotors step in an odometer-like 
fashion—almost [48, 137] ? That is, the middle rotor steps once for each 26 
steps of the right rotor and the left rotor steps once for each 26 steps of the 
middle rotor. The reflector can be viewed as a fixed rotor since it permutes 
the letters, but it doesn't rotate. The overall effect is that the permutation 
changes with each letter typed. Note that, due to the odometer effect, the 
permutations Rr, Rm, and Re vary, but T and S do not. 

Figure 6.2 illustrates the stepping of a single Engima rotor. This example 
shows the direction that the rotors step. From the operator's perspective, the 
letters appear in alphabetical order. 

The Enigma is a substitution cipher where each letter is encrypted based 
on a permutation of the alphabet. But the Enigma is far from simple since, 
whenever a letter is encrypted (or decrypted), the odometer effect causes 
the permutation to change. Such a cipher is known as a poly-alphabetic 
substitution cipher. For the Enigma, the number of possible "alphabets" 
(i.e., permutations) is enormous. 

2The "almost" is due to the mechanical system used to step the rotors, which causes the 
middle rotor to occasionally step twice in succession. Whenever a rotor steps, it causes the 
rotor to its right to also step. Suppose that the middle rotor just stepped to the position 
that engages the ratchet mechanism that will cause the leftmost rotor to step when the next 
letter is typed. Then when the next letter is typed, the left rotor will step, and this will also 
cause the middle rotor to step again. The middle rotor thereby steps twice in succession, 
violating the odometer effect. Note that this same ratcheting mechanism causes the right 
rotor to step whenever the middle rotor steps, but since the right rotor already steps for 
each letter typed, there is no noticeable effect on the right rotor. 
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Figure 6.2: Enigma Rotor 

6.2.2 E n i g m a K e y s p a c e 

The cryptographically significant components of the Enigma cipher are the 
stecker, the three rotors, and the reflector. The Enigma key consists of the 
initial settings for these components when the cipher is used to encrypt or 
decrypt a particular message. The variable settings that comprise the key 
are: 

1. The choice of rotors. 

2. The position of a movable ring on each of the two rightmost rotors. 
This ring allows the outer part of the rotor (labeled with the 26 letters) 
to rotate with respect to the inner part of the ring (where the actual 
permutation is wired).3 Rotating this ring shifts the point at which the 
odometer effect occurs relative to the letters on the rotors. 

3. The initial position of each rotor. 

4. The number and plugging of the wires in the stecker. 

5. The choice of reflector. 

As mentioned above, each rotor implements a permutation of the 26 letters 
of the alphabet. The movable rings can be set to any of the 26 positions 
corresponding to the letters. 

Each rotor is initially set to one of the 26 positions on the rotor, which are 
labeled with A through Z. The stecker is similar to an old-fashioned telephone 
switchboard, with 26 holes, each labeled with a letter of the alphabet. The 
stecker can have from 0 to 13 cables, where each cable connects a pair of 
letters. The reflector implements a permutation of the 26 letters, with the 
restriction that no letter can be permuted to itself, since this would cause a 
short circuit. Consequently, the reflector is equivalent to a stecker with 13 
cables. 

3This is analogous to rotating the position of a car tire relative to the rim. 
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Since there are three rotors, each containing a permutation of the 26 

letters, there are 

26! · 26! · 26! « 2265 

ways to select and place rotors in the machine. In addition, the number of 

ways to set the two movable rings—which determine when the odometer-like 

effects occurs—is 26 · 26 « 29·4. 

The initial position of each of these rotors can be set to any one of 26 

positions, so there are 26-26-26 = 2 1 4 1 ways to initialize the rotors. However, 

this number should not be included in our count, since the different initial 

positions are all equivalent to some other rotor in some standard position. 

That is, if we assume that each rotor is initially set to, say, A, then setting a 

particular rotor to, say, B, is equivalent to some other rotor initially set to A. 

Consequently, the factor of 2265 obtained in the previous paragraph includes 

all possible rotors in all possible initial positions. 

Finally, we must consider the stecker. Let F(p) be the number of ways to 

plug p cables in the stecker. From Problem 2, we have 

F ( p ) = Q ^ ( 2 p - l ) ( 2 p - 3 ) 1. 

The values of F(p) are tabulated in Table 6.1. 

Table 6.1: Stecker Combinations 

F(0) = 

F ( 2 ) * 

F ( 4 ) * 

F ( 6 ) f t 

F ( 8 ) * 

F(10) 

F(12) 

= 2" 

i 215-5 

i 22 7 ·3 

ί 236-5 

i 2 4 3 3 

« 24 7 ·1 

« 24 6 ·5 

F ( l ) * 

F(3)* 

F(S)* 

F ( 7 ) « 

F ( 9 ) * 

F ( l l ) 

F(13) 

i2 8 - a 

i 22 1 ·7 

i 23 2 ·2 

i 24 υ ·2 

i 24 5 ·6 

« 247·1 

« 242·1 

Summing the entries in Table 6.1, we find that there are more than 2 4 8 9 

possible stecker configurations. Note that maximum occurs with 11 cables and 

that .F(IO) ~ 247·1. As mentioned above, the Enigma reflector is equivalent 

to a stecker with 13 cables. Consequently, there are .F(13) « 242·8 different 

reflectors. 

Combining all of these results, we find that, in principle, the size of the 

Enigma keyspace is about 

2265 . 29-4 . 248-9 · 242·8 « 2366 

That is, the theoretical keyspace of the Enigma is equivalent to a 366 bit 

key. Since modern ciphers seldom employ more than a 256 bit key, this 
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gives some indication as to why the Germans had such great—but ultimately 
misplaced—confidence in the Enigma. 

However, this astronomical number of keys is misleading. From Prob-
lem 1, we see that under the practical limitations of actual use by the German 
military, only about 277 Enigma keys were available. This is still an enormous 
number and an exhaustive key search would have been out of the question 
using 1940s technology. Fortunately for the civilized world, shortcut attacks 
exist. But before we discuss an attack, we first take a brief detour to consider 
rotors as cryptographic elements. 

6.2.3 R o t o r s 

Rotors were used in many cipher machines during the first half of the 20th 
century—the Enigma is the most famous, but there were many others. An-
other interesting example of a rotor cipher machine is the American World 
War II-era machine Sigaba. The Sigaba cipher is a fascinating design that 
proved to be much stronger than Enigma. For a detailed cryptanalysis of 
Sigaba, see [280] or for a slightly abbreviated version see [284]. 

From a crypto-engineering standpoint, the appeal of a rotor is that it 
is possible to generate a large number of distinct permutations in a robust 
manner from a simple electro-mechanical device. Such considerations were 
important in the pre-computer era. In fact, the Enigma was an extremely 
durable piece of hardware, which was widely used in battlefield situations. 

Hardware rotors are easy to understand, but it is slightly awkward to 
specify the permutations that correspond to the various positions of the rotor. 
A good analysis of these issues can be found in [184]. Here, we briefly discuss 
some of the main issues. 

For simplicity, consider a rotor with four letters, A through D. Assuming 
the signal travels from left to right, the rotor illustrated in Figure 6.3 per-
mutes ABCD to CDBA, that is, A is permuted to C, B is permuted to D, C is 
permuted to B, and D is permuted to A. The inverse permutation, DCAB in 
our notation, can be obtained by simply passing a signal through the rotors 
from right-to-left instead of left-to-right. This is a useful feature, since we can 
decrypt with the same hardware used to encrypt. The Enigma takes this one 
step further.4 That is, the Enigma machine is its own inverse, which implies 
that the same machine with exactly the same settings can be used to encrypt 
and decrypt (see Problem 5). 

Suppose that the rotor in Figure 6.3 steps once. Note that only the rotor 
itself—represented by the rectangle—rotates, not the electrical contacts at 
the edge of the rotor. In this example, we assume that the rotor steps "up," 
that is, the contact that was at B is now at A and so on, with the contact 

4No pun intended (for a change...). 
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Figure 6.3: Rotor 

that was at A wrapping around to D. The shift of the rotor in Figure 6.3 is 
illustrated in Figure 6.4. The resulting shifted permutation is CADB, which is, 
perhaps, not so obvious considering that the original permutation was CDBA. 

Figure 6.4: Stepped Rotor 

In general, it is not difficult to determine the rotor shift of a permutation. 
The crucial point is that it's the offsets, or displacements, that shift. For 
example, in the permutation CDBA, the offsets are as follows: The letter A is 
permuted to C, which is an offset of 2 positions, the letter B is permuted to D, 
which is an offset of 2, the letter C is permuted to B, which is an offset of 3 
(around the rotor), and D is permuted to A, which is an offset of 1. That is, the 
sequence of offsets for the permutation CDBA is (2,2,3,1). Cyclically shifting 
this sequence yields (2,3,1,2), which corresponds to the permutation CADB, 
and this is indeed the rotor shift that appears in Figure 6.4. 

Again, physical rotors are actually very simple devices, but they are some-
what awkward to deal with in the abstract. For some additional exercise 
working with rotors, see Problem 12. 

As mentioned above, one of the primary advantages of rotors is that they 
provide a simple electro-mechanical means to generate a large number of dif-
ferent permutations. Combining multiple rotors in series increases the num-
ber of permutations exponentially. For example, in Figure 6.5, C is permuted 
to A, while a shift of rotor L, denoted by a(L) and illustrated in Figure 6.6, 
causes C to be permuted to B. That is, stepping any single rotor changes the 
overall permutation. 

With this three-rotor scheme, we can generate a cycle of 64 permutations 
of the letters ABCD by simply stepping through the 64 settings for the three 
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Figure 6.6: Rotor L Steps 

rotors. Of course, not all of these permutations will be unique, since there 
are only 24 distinct permutations of the four letters ABCD. Also, by selecting 
different initial settings for the rotors, we can generate a different sequence of 
permutations. Furthermore, by selecting a different set of rotors (or reorder-
ing the given rotors), we can generate different sequences of permutations. 
As with a single rotor, it's easy to obtain the inverse permutations from a 
series of rotors by simply passing the signal through the rotors in the opposite 
direction. The inverse permutations are needed for decryption. 

6.2.4 Enigma Attack 

Polish cryptanalysts led by Marian Rejewski, Henryk Zygalski, and Jerzy 
Rózycki were the first to successfully attack the Enigma [305]. Their challenge 
was greatly complicated by the fact that they did not know which rotors 
were in use. Through some clever mathematics, and a small but crucial 
piece of espionage [4], they were able to recover the rotor permutations from 
ciphertext. This certainly ranks as one of the greatest cryptanalytic successes 
of the era. 

When Poland fell to the Nazis in 1939, Rejewski, Zygalski, and Rózycki 
fled to France. After France fell under the Nazi onslaught, the Poles contin-
ued their cryptanalytic work from unoccupied Vichy France. The brilliant 
cryptanalytic work of Rejewski's team eventually made its way to Britain, 
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where the British were rightly amazed. A group of British cryptanalysts that 
included Gordon Welchman and computing pioneer Alan Turing took up the 
Enigma challenge. 

The Enigma attack that we describe here is similar to one developed by 
Turing, but somewhat simplified. This attack requires known plaintext, which 
in World War II terminology was known as a crib. 

The essential idea is that, initially, we can ignore the stecker and make a 
guess for the remainder of the key! From Problem 1, there are less than 230 

such guesses. For each of these, we use information derived from a crib (known 
plaintext) to eliminate incorrect guesses. This attack, which has a work factor 
on the order 230, could be easily implemented on a modern computer, but it 
would have been impractical using World War II technology. 

Suppose that we have the plaintext and corresponding ciphertext that 
appears in Table 6.2. We make use of this data in the attack described 
below. 

Table 6.2: Enigma Known Plaintext Example 

0 1 2 3 4 5 6 7 8 91011121314151617181920212223 
Plaintext 

Ciphertext 
O B E R K O M M A N D O D E R W E H R M A C H T 
Z M G E R F E W M L K M T A W X T S W V U I N Z 

Let S(x) be the result of the letter x passing through the stecker from 
the keyboard. Then S~1(x) is the result of x passing through the stecker in 
the other direction. For a given initial setting, let Pi be the permutation at 
step i, that is, Pi is the permutation determined by the composition of the 
three rotors, followed by the reflector, followed by the three rotors—in the 
opposite direction—at step i. Then, using the notation in equation (6.1), the 
overall permutation is given by 

Pi = S Rr Rm Rg TRtRmRrS, 

where, to simplify the notation, we ignore the dependence of Re, Rm, and Rr 
on the step i. 

Note that since Pi is a permutation, its inverse, P~ , exists. Also, as 
noted above, due to the rotation of the rotors, the permutation varies with 
each letter typed. Consequently, Pi does indeed depend on i. 

The Enigma attack we present here exploits "cycles" that occur in the 
known plaintext and corresponding ciphertext. Consider, for example, the 
column labeled 8 in Table 6.2. The plaintext letter A passes through the 
stecker, then through P§ and, finally, through S~l to yield the ciphertext M, 
that is, S_1P8S(A) = M, which we can rewrite as P8S(A) = S(M). 
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Prom the known plaintext in Table 6.2, we have 

P85(A) = S (fi) 

P65(M) = 5(E) 

P135(E) = 5(A). 

These three equations can be combined to yield the cycle 

5(E) = P6P8P135(E). (6.2) 

Now suppose that we select one of the possible initial settings for the 
machine, ignoring the stecker. Then all Pj and P~l that correspond to this 
setting are known. Next, suppose that we guess, say, 5(E) = G, that is, we 
guess that E and G are connected by a cable in the stecker plugboard. If it's 
actually true that the stecker has a wire connecting E and G, and if our guess 
for the initial settings of the machine is correct, then from equation (6.2) we 
must have 

G = P6P8Pi3(G). (6.3) 

If we try all 26 choices for 5(E) and equation (6.2) is never satisfied, then 
we know that our guess for the rotor settings is incorrect and we can eliminate 
this choice. We would like to use this observation to reduce the number of 
rotor settings, ideally, to just one. However, if we find any guess for 5(E) for 
which equation (6.2) holds, then we cannot rule out the current rotor settings. 
Unfortunately, there are 26 possible guesses for 5(E) and, for each, there is 
a 1/26 chance that equation (6.2) holds at random. Consequently, we obtain 
no reduction in the number of possible keys when using just one cycle. 

Fortunately, all is not lost. If we can find an additional cycle involv-
ing 5(E), then we can use this in combination with equation (6.2) to reduce 
the number of possible rotor settings. We're in luck, since we can combine 
the four equations, 

5(E) = P35(R) 

5(W) = P145(R) 

5(W) = P75(M) 

5(E) = P65(M) 

to obtain 
5(E) = P3Pf4

1P7P6-15(E). 

Now if we guess, say, 5(E) = G, we have two equations that must hold if this 
guess is correct. There are still 26 choices for 5(E), but with two cycles, there 
is only a (1/26)2 chance that they both hold at random. Therefore, with two 
cycles in 5(E), we can reduce the number of viable machine settings (that 
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is, keys) by a factor of 26. We can easily develop an attack based on these 
observations. 

To reiterate, the crucial observation here is that, once we specify the rotor 
settings, all permutations PQ,P\, P2, ■ ■ ■ and P^1, P^1, P^1,... are known. 
Then if we substitute a putative value for S(E), we can immediately check 
the validity of all cycle equations that are available. For an incorrect guess 
of S(E) (or incorrect rotor settings) there is a 1/26 chance any given cycle 
will hold true. But with n cycles, there is only a (1/26)" chance that all cycle 
equations will hold true. Consequently, with n cycles involving 5(E), we can 
reduce the number of possible initial rotor settings by a factor of 26n _ 1 . Since 
there are only about 230 rotor settings, with enough cycles, we can reduce 
the number of possible rotor settings to one, which is the key. 

Amazingly, by recovering the initial rotor settings in this manner, stecker 
values are also recovered—essentially for free. However, any stecker values 
that do not contribute to a cycle will remain unknown, but once the rotor 
settings have been determined, the remaining unknown stecker settings are 
easy to determine (see Problem 7). It is interesting to note that, in spite 
of an enormous number of possible settings, the stecker contributes virtually 
nothing to the security of the Enigma. 

It is important to realize that the attack described here would have been 
impractical using 1940s technology. The practical attacks of World War II 
required that the cryptanalyst reduce the number of cases to be tested to a 
much smaller number than 230. Many clever techniques were developed to 
squeeze as much information as possible from ciphertext. In addition, much 
effort was expended finding suitable cribs (i.e., known plaintext) since all of 
the practical attacks required known plaintext. 

6.3 RC4 as Used in W E P 

Suddenly she came upon a little three-legged table, all made of solid glass: 
there was nothing on it but a tiny golden key... 

— Alice in Wonderland 

RC4 is described in Section 3.2.2 of Chapter 3 and WEP is described in 
Section 10.6 of Chapter 10. Here, we provide a detailed description of the 
cryptanalytic attack that is mentioned in Section 10.6. Note that the RC4 
algorithm is considered secure when used properly. However, WEP, which is 
widely viewed as the "Swiss cheese" of security protocols, somehow managed 
to implement nearly all of its security functions insecurely, including RC4. 
As a result, there is a feasible attack on RC4 encryption as used in WEP. 
Before studying this attack, you might want to preview Section 10.6. 
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WEP encrypts data with the stream cipher RC4 using a long-term key 
that seldom (if ever) changes. To avoid repeated keystreams, an initialization 
vector, or IV, is sent in the clear with each message, where each packet is 
treated as a new message. The IV is mixed with the long-term key to produce 
the message key. The upshot is that the cryptanalyst, Trudy, gets to see 
the IVs, and any time an IV repeats, Trudy knows that the same keystream 
is being used to encrypt the data. Since the IV is only 24 bits, repeated IVs 
occur relatively often. A repeated IV implies a repeated keystream, and a 
repeated keystream is bad—at least as bad as reuse of a one-time pad. That 
is, a repeated keystream provides statistical information to the attacker who 
could then conceivably liberate the keystream from the ciphertext. Once the 
keystream for a packet is known, it can be used to decrypt any packet that 
uses the same IV. 

However, in WEP, there are several possible shortcuts that make an at-
tacker's life easier, as discussed in Section 10.6. Here, we discuss a cryptana-
lytic attack on the RC4 stream cipher as it is used in WEP. Again, this attack 
is only possible due to the specific way that WEP uses RC4—specifically, the 
way that it creates the session key from an initialization vector IV and the 
long-term key.5 

This cryptanalytic attack has a small work factor, and it will succeed 
provided that a sufficient number of IVs are observed. This clever attack, 
which can be considered a type of related key attack, is due to Fluhrer, Mantin, 
and Shamir [112]. 

6.3.1 R C 4 Algori thm 

RC4 is simplicity itself. At any given time, the state of the cipher consists of 
a lookup table S containing a permutation of all byte values, 0 ,1 ,2 , . . . , 255, 
along with two indices i and j . When the cipher is initialized, the permutation 
is scrambled using a key, denoted key[i], for i = 0 , 1 , . . . , N — 1, which can be 
of any length from 0 to 256 bytes. In the initialization routine, the lookup 
table S is modified (based on the key) in such a way that S always contains a 
permutation of the the byte values. The RC4 initialization algorithm appears 
in Table 6.3. 

The RC4 keystream is generated one byte at a time. An index is deter-
mined based on the current contents of S, and the indexed byte is selected 
as the keystream byte. Similar to the initialization routine, at each step 
the permutation S is modified so that S always contains a permutation of 
{0,1 ,2 , . . . , 255}. The keystream generation algorithm appears in Table 6.4. 
For more details on the RC4 algorithm, see Section 3.2.2. 

5The attack does highlight a shortcoming in the RC4 initialization process—a shortcom-
ing that can be fixed without modifying the underlying RC4 algorithm. 
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Table 6.3: RC4 Initialization 

for i = 0 to 255 
Si = i 
Ki = key[i (mod N)} 

next % 
j = 0 
for i = 0 to 255 

j = U + Si + Ki) (mod 256) 
s wap ( S», Sj) 

next i 
i = j = Q 

Table 6.4: RC4 Keystream Generator 

i = {i + l) (mod 256) 
J = 0' + Si) (mod 256) 
s wap ( Si, Sj) 
t={Si + Sj) (mod 256) 
keystreamByte = St 

6.3.2 RC4 Cryptanalytic Attack 

In 2000, Fluhrer, Mantin, and Shamir [112] published a practical attack on 
RC4 encryption as it is used in WER In WEP, a non-secret 24-bit initializa-
tion vector, denoted as IV, is prepended to a long-term key and the result is 
used as the RC4 key. Note that the role of the IV in WEP encryption is some-
what similar to the role that an IV plays in various block cipher encryption 
modes (see Section 3.3.7 of Chapter 3). The WEP IV is necessary to prevent 
messages from being sent in depth. Recall that two ciphertext messages are 
in depth if they were encrypted using the same key. Messages in depth are a 
serious threat to a stream cipher. 

We assume that Trudy, the cryptanalyst, knows many WEP ciphertext 
messages (packets) and their corresponding IVs. Trudy would like to recover 
the long-term key. The Fluhrer-Mantin-Shamir attack provides a clever, effi-
cient, and elegant way to do just that. This attack has been successfully used 
to break real WEP traffic [294]. 

Suppose that for a particular message, the three-byte initialization vector 
is of the form 

IV =(3,255, V), (6.4) 

where V can be any byte value. Then these three IV bytes become KQ, K\, 
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and K2 in the RC4 initialization algorithm of Table 6.3, while A3 is the first 

byte of the unknown long-term key. That is, the message key is 

K= (3,255, V,K3, Ki,...), (6.5) 

where V is known to Trudy, but Kz,Ki,K§,... are unknown. To understand 

the attack, we need to carefully consider what happens to the table 5 during 

the RC4 initialization phase when K is of the form in equation (6.5). 

In the RC4 initialization algorithm, which appears in Table 6.3, we first 

set S to the identity permutation, so that we have 

i 

st 

0 1 2 3 4 5 . . . 

0 1 2 3 4 5 . . . 

Suppose that K is of the form in (6.5). Then at the i = 0 initialization step, 

we compute the index j = 0 + So + Ko = 3 and elements i and j are swapped, 

resulting in the table 

i 

Si 

0 1 2 3 4 5 . . . 

3 1 2 0 4 5 . . . 

At the next step, i = 1 and , 7 = 3 + 5Ί + .ΚΊ = 3 + 1 + 255 = 3, since the 

addition is modulo 256. Elements i and j are again swapped, giving 

i 

Si 

0 1 2 3 4 5 . . . 

3 0 2 1 4 5 . . . 

At step i = 2 we have j = 3 + S2 + K2 = 3 + 2 + V = 5 + V and after the 

swap, 

0 1 3 4 5 5 + V 

3 0 5 + V 1 4 5 . . . 2 

At the next step, i = 3 and j = 5 + V + S3 + K3 = 6 + V + K3, where Ks 

is unknown. After swapping, the lookup table is 

i 

Si 

C 1 2 

3 0 5 + V 

i . . . 5 + V 

3 4 5 . . . 

6 + ^ + ^3 4 5 . . . 

. . . 6 + ^ + ^ 3 · · · 

1 

assuming that, after reduction modulo 256, we have 6 + V + K3 > 5 + V. If 

this is not the case, then 6 + ^ + ^ 3 will appear to the left of 5 4- V, which 

has no effect on the success of the attack. 

Now suppose for a moment that the RC4 initialization algorithm were to 

stop after the i = 3 step. Then, if we generate the first byte of the keystream 
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according to the algorithm in Table 6.4, we find i = 1 and j = Si = S\ = 0, 
so that t = S\ + So = 0 + 3 = 3. Then the first keystream byte would be 

keystreamByte = S3 = (6 + V + K3) (mod 256). (6.6) 

Assuming that Trudy knows (or can guess) the first byte of the plaintext, she 
can determine the first byte of the keystream. If this is the case, Trudy can 
simply solve equation (6.6) to obtain the first unknown key byte, since 

K3 = (keystreamByte -6-V) (mod 256). (6.7) 

Unfortunately (for Trudy), the initialization phase is 256 steps instead 
of just four. But notice that as long as So, Si and 53 are not altered in 
any subsequent initialization step, then equation (6.7) will hold. What is 
the chance that these three elements remain unchanged? The only way that 
an element can change is if it is swapped for another element. From i = 4 
to i = 255 of the initialization, the i index will not affect any of these elements 
since it steps regularly from 4 to 255. If we treat the j index as random, then 
at each step the probability that the three indices of concern are all unaffected 
is 253/256. The probability that this holds for all of the final 252 initialization 
steps is, therefore, 

(if — 
Consequently, we expect equation (6.7) to hold slightly more than 5% of the 
time. Then with a sufficient number of IVs of the form in equation (6.4) 
Trudy can determine K3 from equation (6.7), assuming she knows the first 
keystream byte in each case. 

What is a sufficient number of IVs to recover K3? If we observe n en-
crypted packets, each with an IV of the form in equation (6.4), then we 
expect to solve for the actual K3 using equation (6.7) for about 0.05n of 
these. For the remaining 0.95n of the cases, we expect the result of the sub-
traction in equation (6.7) to be a random value in {0,1 ,2 , . . . , 255}. Then 
the expected number of times that any particular value other than A3 ap-
pears is about 0.95n/256, and the correct value will have an expected count 
of 0.05n + 0.95n/256 « 0.05n. We need to choose n large enough so that we 
can, with high probability, distinguish K3 from the random "noise." If we 
choose n = 60, then we expect to see K3 three times, while it is unlikely that 
we will see any random value more than twice (see also Problem 13). 

This attack is easily extended to recover the remaining unknown key bytes. 
We illustrate the next step—assuming that Trudy has recovered A3, we show 
that she can recover the key byte K4. In this case, Trudy will look for 
initialization vectors of the form 

IY=(4,255,V), (6.8) 
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where V can be any value. Then, at the i = 0 step of the initialization, 
j = 0 + 5Q + Kç> = 4 and elements i and j are swapped, resulting in 

i 
Si 

0 
4 

1 
1 

2 
2 

3 
3 

4 
0 

5 . . . 
5 . . . 

At the next step, i = 1 and j = 4 + S\ + K\ = 4 (since the addition is 
mod 256) and elements Si and S4 are swapped, giving 

0 1 2 3 4 5 . . . 
4 0 2 3 1 5 . . . 

At step i = 2 we have j = 4 + S2 + Ki = 6 + V, and after the swap 

0 1 2 3 4 5 . . . 6 + V . . . 
4 0 6 + V 3 1 5 . . . 2 

At the next step, i = 3 and j = 5 + V + S3 + K3 = 9 + V + K3, and K3 is 
known. After swapping 

i 
Si 

C 1 2 
4 0 6 + V 

i . . . 6 + V 

3 4 5 . . . 
9 + V + K3 1 5 . . . 

. . . 9 + V + K3 . . . 

assuming that 9 + V + K3>6 + V when the sums are taken mod 256. 
Carrying this one step further, we have i = A and 

j = 9 + V + K3 + S4+K4 = 10 + V + K3 + Ki, 

where only K4 is unknown. After swapping, the table S is of the form 

i 
Si 

0 1 2 
4 0 6 + V 

3 
9 + V + K3 

4 5 . . . 
10 + V + K3 + K4 5 . . . 

» . . . 6 + V . . . 9 + Ì/ + ÌÌ3 · · · 10 + ^ + ^ 3 + ^4 · · · 
2 . . . 3 . . . 1 

If the initialization were to stop at this point (after the i = 4 step) then 
for first byte of the keystream we would find i = 1 and j = Si = Si = 0, so 
that t = Si + So = 4 + 0 = 4. The resulting keystream byte would be 

keystreamByte = S4 = (10 + V + K3 + K4) (mod 256), 

where the only unknown is K4. As a result, 

K4 = (keystreamByte - 10 - V - A3) (mod 256). (6.9) 
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Of course, the initialization does not stop after the i = 4 step, but, as 

in the K3 case, the chance that equation (6.9) holds is about 0.05. Conse-

quently, with a sufficient number of IVs of the form in equation (6.8), Trudy 

can determine K\. Continuing, any number of key bytes can be recovered, 

provided enough IVs of the correct form are available and Trudy knows the 

first keystream byte of each corresponding packet. 

This same technique can be extended to recover additional key bytes, 

Κε,,Κβ, In fact, if a sufficient number of packets are available, a key of 

any length can be recovered with a trivial amount of work. This is one reason 

why WEP is said to be "unsafe at any key size" [321]. 

Consider once again the attack to recover the first unknown key byte K3. 

It is worth noting that some IVs that are not of the form (3,255, V) will 

be useful to Trudy. For example, suppose the IV is (2,253,0). Then after 

the i = 3 initialization step, the array S is 

i 

Si 

0 1 2 3 4 . 

0 2 1 3 + K3 4 . 

. 3 + K3 ... 

3 

If S\, S2, and S3 are not altered in the remaining initialization steps, the first 

keystream byte will be 3 +A3, from which Trudy can recover A3. Notice that 

for a given three-byte IV, Trudy can compute the initialization up through 

the i = 3 step and, by doing so, she can easily determine whether a given IV 

will be useful for her attack. Similar comments hold for subsequent key bytes. 

By using all of the useful IVs, Trudy can reduce the number of packets she 

must observe before recovering the key. 

Finally, it is worth noting that it is also possible to recover the RC4 key 

if the IV is appended to the unknown key instead of being prepended (as 

in WEP); see [195] for the details. 

6.3.3 Preventing Attacks on RC4 

There are several possible ways to prevent attacks on RC4 that target its 

initialization phase. The standard suggestion is to, in effect, add 256 steps 

to the initialization process. That is, after the initialization in Table 6.3 has 

run its course, generate 256 keystream bytes according to the RC4 keystream 

generation algorithm in Table 6.4, discarding these bytes. After this pro-

cess has completed, generate the keystream in the usual way. If the sender 

and receiver follow this procedure, the attack discussed in this section is not 

feasible. Note that no modification to the inner workings of RC4 is required. 

Also, there are many alternative ways to combine the key and IV that 

would effectively prevent the attack described in this section; Problem 17 

asks for such methods. As with so many other aspects of WEP, its designers 

managed to choose one of the most insecure possible approaches to using the 

RC4 cipher. 
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6.4 Linear and Differential Cryptanalysis 

We sent the [DES] S-boxes off to Washington. 
They came back and were all different. 

— Alan Konheim, one of the designers of DES 

I would say that, contrary to what some people believe, there is no evidence 
of tampering with the DES so that the basic design was weakened. 

— Adi Shamir 

As discussed in Section 3.3.2, the influence of the Data Encryption Stan-
dard (DES) on modern cryptography can't be overestimated. For one thing, 
both linear and differential cryptanalysis were developed to attack DES. As 
mentioned above, these techniques don't generally yield practical attacks. In-
stead, linear and differential "attacks" point to design weaknesses in block 
ciphers. These techniques have become basic analytic tools that are used to 
analyze all block ciphers today. 

Differential cryptanalysis is, at least in the unclassified realm, due to 
Biham and Shamir (yes, that Shamir, yet again) who introduced the technique 
in 1990. Subsequently, it has become clear that someone involved in the 
design of DES (that is, someone at the National Security Agency) was aware 
of differential cryptanalysis prior to the mid 1970s. Note that differential 
cryptanalysis is a chosen plaintext attack, which makes it somewhat difficult 
to actually apply in the real world. 

Linear cryptanalysis was apparently developed by Matsui in 1993. Since 
DES was not designed to offer optimal resistance to a sophisticated linear 
cryptanalysis attacks, either NSA did not know about the technique in the 
1970s, or they were not concerned about such an attack on the DES cipher. 
Linear cryptanalysis is slightly more realistic as a real-world attack than 
differential cryptanalysis, primarily because it is a known plaintext attack 
instead of a chosen plaintext attack. 

6.4.1 Quick Review of DES 

We don't require all of the details of DES here, so we'll give a simplified 
overview that only includes the essential facts that we'll need below. DES 
has eight S-boxes, each of which maps six input bits, denoted z o ^ i ^ ^ a ^ s , 
to four output bits, denoted yoViyiys- For example, DES S-box number one, 
in hexadecimal notation, appears in Table 6.5. 

Figure 6.7 gives a much simplified view of DES, which is sufficient for our 
purposes. Below, we are mostly interested in analyzing the nonlinear parts 
of DES, so the diagram highlights the fact that the S-boxes are the only 
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Table 6.5: DES S-box Number One 

X0X5 

0 

1 

2 

3 

0 

E 

0 

4 

F 

1 

4 

F 

1 

C 

2 
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E 

8 

3 

1 

4 

8 

2 

4 

2 

£ 

D 

4 

5 

F 

2 

6 

9 

X\X2X%Xi 

6 7 8 9 

S 8 3 A 

D 1 A 6 

2 B F C 

1 7 5 5 

Λ 

6 

C 

9 

3 

B 

C 

B 

7 

E 

C 

5 

9 

3 

A 

D 

9 

5 

A 

0 

E 

0 

3 

5 

6 

F 

7 

4 

0 

D 

nonlinearity in DES. Figure 6.7 also illustrates the way that the subkey Ki 

enters into a DES round. This will also be important in the discussion to 

follow. 

i 

1 

R 

Linear stuff 

XC 

' · 
S-boxes 

' 

Linear stuff 

' 
F ί 

K| subkey 

Figure 6.7: Simplified View of DES 

Next, we'll present a quick overview of differential cryptanalysis followed 

by a similar overview of linear cryptanalysis. We'll then present a simplified 

version of DES, which we've called Tiny DES, or TDES. We'll present both 

linear and differential attacks on TDES. 

6.4.2 Overview of Differential Cryptanalysis 

Since differential cryptanalysis was developed to analyze DES, let's discuss 

it in the context of DES. Recall that all of DES is linear except for the 
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S-boxes. We'll see that the linear parts of DES play a significant role in 

its security, however, from a cryptanalytic point of view, the linear parts 

are easy. Mathematicians are good at solving linear equations, so it is the 

nonlinear parts that represent the major cryptanalytic hurdles. As a result, 

both differential and linear cryptanalysis are focused on dealing with the 

nonlinear parts of DES, namely, the S-boxes. 

The idea behind a differential attack is to compare input and output 

differences. For simplicity, we'll first consider a simplified S-box. Suppose 

that a DES-like cipher uses the 3-bit to 2-bit S-box 

column 

row 

0 

1 

00 

10 

00 

01 

01 

10 

10 

11 

01 

11 

00 

11 

where, for input bits XQXIX2, the bit XQ indexes the row, while x\x2 indexes 

the column. Then, for example, Sbox(010) = 11, since the bits in row 0 and 

column 10 are 11. 

Consider the two inputs, X\ = 110 and X2 = 010, and suppose the key 

is K = 011. Then Χχ®Κ= 101 and X2®K = 001 and we have 

Sbox(Xi ® K) = 10 and Sbox(X2 θ Κ) = 01. (6.11) 

Now suppose that K in equation (6.11) is unknown, but the inputs, 

namely, X\ = 110 and X2 = 010, are known as well as the corresponding 

outputs Sbox(X! φ K) = 10 and Sbox(X2 θ Κ) = 01. Then from the S-box 

in (6.10) we see that Xi φ K e {000,101} and X2®K e {001,110}. Since Xx 

and X2 are known, we have that 

K e {110,011} n {011,100} 

which implies that K = 011. This "attack" is essentially a known plaintext 

attack on the single S-box in (6.10) for the key K. The same approach will 

work on a single DES S-box. 

However, attacking one S-box in one round of DES does not appear to 

be particularly useful. In addition, the attacker will not know the input to 

any round except for the first, and the attacker will not know the output of 

any round but the last. The intermediate rounds appear to be beyond the 

purview of the cryptanalyst. 

For this approach to prove useful in analyzing DES, we must be able to 

extend the attack to one complete round, that is, we must take into account 

all eight S-boxes simultaneously. Once we have extended the attack to one 

round, we must then extend the attack to multiple rounds. On the surface, 

both of these appear to be daunting tasks. 
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However, we'll see that by focusing on input and output differences, it 

becomes easy to make some S-boxes "active" and others "inactive." As a 

result, we can, in some cases, extend the attack to a single round. To then 

extend the attack to multiple rounds, we must choose the input difference 

so that the output difference is in a useful form for the next round. This is 

challenging and depends on the specific properties of the S-boxes, as well as 

the linear mixing that occurs at each round. 

The crucial point here is that we'll focus on input and output differences. 

Suppose we know inputs X\ and X2. Then for input X\, the actual input to 

the S-box is X\ Θ K and for input X2 the actual input to S-box is X2 θ Κ, 

where the key K is unknown. Differences are defined modulo 2, implying that 

the difference operation is the same as the sum operation, namely, XOR. Then 

the S-box input difference is 

(Xi θ Κ) Θ (X2 ®K) = X1® X2. (6.12) 

Note that the input difference is independent of the key K. This is the 

fundamental observation that enables differential cryptanalysis to work. 

Let Y1 = Sbox(Xi Θ K) and let Y2 = Sbox(X2 θ Κ). Then the output 

difference Y\ Θ Y2 is almost the input difference to next round. The goal 

is to carefully construct the input difference, so that we can "chain" differ-

ences through multiple rounds. Since the input difference is independent of 

the key—and since differential cryptanalysis is a chosen plaintext attack—we 

have the freedom to choose the inputs so that the output difference has any 

particular form that we desire. 

Another crucial element of a differential attack is that an S-box input 

difference of zero always results in an output difference of zero. Why is this 

the case? An input difference of zero simply means that the input values, 

say, X\ and X2, are the same, in which case the output values Y\ and Y2 

must be the same, that is, Y\ φ Υ2 = 0. The importance of this elementary 

observation is that we can make S-boxes "inactive" with respect to differential 

cryptanalysis by choosing their input differences to be zero. 

A final observation is that it is not necessary that things happen with 

certainty. In other words, if an outcome only occurs with some nontrivial 

probability, then we may be able to develop a probabilistic attack that will 

still prove useful in recovering the key. 

Given any S-box, we can analyze it for useful input differences as follows. 

For each possible input value X, find all pairs X\ and X2 such that 

X = X1 Θ X2 

and compute the corresponding output differences 

Y = Yi®Y2, 
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where 
Yi = Sbox(Xi) and Y2 = Sbox(Xi). 

By tabulating the resulting counts, we can find the most biased input val-

ues. For example for the S-box in (6.10), this analysis yields the results in 

Table 6.6. 

Table 6.6: S-box Difference Analysis 

Xi®X2 

000 

001 

010 

011 

100 

101 

110 

111 

Sbox(Xi) Θ Sbox(X2) 

00 01 

8 0 

0 0 

0 8 

0 0 

0 0 

4 4 

0 0 

4 4 

10 11 

0 0 

4 4 

0 0 

4 4 

4 4 

0 0 

4 4 

0 0 

For any S-box, an input difference of 000 is not interesting—the input 

values are the same and the S-box is "inactive" (with respect to differences), 

since the output values must be the same. For the example in Table 6.6, 

an input difference of 010 always gives an output of 01, which is the most 

biased possible result. And, as noted in equation (6.12), by selecting, say, 

X\ θ Χ2 = 010, the actual input difference to the S-box would be 010 since 

the key K drops out of the difference. 

Differential cryptanalysis of DES is fairly complex. To illustrate the tech-

nique more concretely, but without all of the complexity inherent in DES, 

we'll present a scaled-down version of DES that we call Tiny DES, or TDES. 

Then we'll perform differential and linear cryptanalysis on TDES. But first 

we present a quick overview of linear cryptanalysis. 

6.4.3 Overview of Linear Cryptanalysis 

Ironically, linear cryptanalysis—like differential cryptanalysis—is focused on 

the nonlinear part of a block cipher. Although linear cryptanalysis was de-

veloped a few years after differential cryptanalysis, it's conceptually simpler, 

it's more effective on DES, and it only requires known plaintext—as opposed 

to chosen plaintext. 

In differential cryptanalysis, we focused on input and output differences. 

In linear cryptanalysis, the objective is to approximate the nonlinear part 

of a cipher with linear equations. Since mathematicians are good at solving 
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linear equations, if we can find such approximations, it stands to reason that 

we can use these to attack the cipher. Since the only nonlinear part of DES 

is its S-boxes, linear cryptanalysis will be focused on the S-boxes. 

Consider again the simple S-box in (6.10). We denote the three input 

bits as XQX\X2 and the two output bits as yoyi- Then XQ determines the row, 

and x\X2 determines the column. In Table 6.7, we've tabulated the number 

of values for which each possible linear approximation holds. Note that any 

table entry that is not 4 indicates a nonrandom output. 

Table 6.7: S-box Linear Analysis 

input bits 

0 

x0 

Χχ 

XI 

X0 ®Xl 

X0 ®X2 

Xl ®X2 

Ι θ Φ ΐ ΐ ® Χ2 

2/0 
4 

4 

4 

4 

4 

0 

4 

4 

output bits 

2/1 2/o Θ 2/1 
4 

4 

6 

4 

2 

4 

6 

6 

4 

4 

2 

4 

2 

4 

6 

2 

The results in Table 6.7 show that, for example, yo = ^ο Θ X2 Θ 1 with 

probability 1 and yo φ y\ = x\ Θ X2 with probability 3/4. Using information 

such as this, in our analysis we can replace the S-boxes by linear functions. 

The result is that, in effect, we've traded the nonlinear S-boxes for linear 

equations, where the linear equations do not hold with certainty, but instead 

the equations hold with some nontrivial probability. 

For these linear approximations to be useful in attacking a block cipher 

such as DES, we'll try to extend this approach so that we can solve linear 

equations for the key. As with differential cryptanalysis, we must somehow 

"chain" these results through multiple rounds. 

How well can we approximate a DES S-box with linear functions? Each 

DES S-boxes was designed so that no linear combination of inputs is a good 

approximation to a single output bit. However, there are linear combinations 

of output bits that can be approximated by linear combinations of input bits. 

As a result, there is potential for success in the linear cryptanalysis of DES. 

As with differential cryptanalysis, the linear cryptanalysis of DES is com-

plex. To illustrate a linear attack, we'll next describe TDES, a scaled-down 

DES-like cipher. Then we'll perform differential and linear cryptanalysis on 

TDES. 
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6.4.4 Tiny D E S 

Tiny DES, or TDES, is a DES-like cipher that is simpler and easier to analyze 
than DES. TDES was designed by your contriving author to make linear and 
differential attacks easy to study—it is a contrived cipher that is trivial to 
break. Yet it's similar enough to DES to illustrate the principles. 

TDES is a much simplified version of DES with the following numerology. 

• A 16-bit block size 

• A 16-bit key size 

• Four rounds 

• Two S-boxes, each mapping 6 bits to 4 bits 

• A 12-bit subkey in each round 

TDES has no P-box, initial or final permutation. Essentially, we have elimi-
nated all features of DES that contribute nothing to its security, while at the 
same time scaling down the block and key sizes. 

Note that the small key and block sizes imply that TDES cannot offer any 
real security, regardless of the underlying algorithm. Nevertheless, TDES will 
be a useful design for illustrating linear and differential attacks, as well as the 
larger issues of block cipher design. 

TDES is a Feistel cipher and we denote the plaintext as (Lo,Ro). Then 
for i = 1,2,3,4, 

Li = Ri-i 

Ri=Li-i®F(Ri-1,Ki) 

where the ciphertext is {L^Ri). A single round of TDES is illustrated in 
Figure 6.8, where the numbers of bits are indicated on each line. Next, we'll 
completely describe all of the pieces of the TDES algorithm. 

TDES has two S-boxes, denoted SboxLeft(X) and SboxRight(X). Both 
S-boxes map 6 bits to 4 bits, as in standard DES. The parts of TDES that 
we'll be most interested in are the S-boxes and their input. To simplify the 
notation, we'll define the function 

F(R, K) = Sboxes(expand(Ä) Θ K), (6.13) 

where 

Sboxes(:ro:Ei:E2 . . . xn) = (SboxLef t(:co:Ei... £5), SboxRight(a;6Z7 . . . xn)). 

The expansion permutation is given by 

expand(i?) = expand(rori... r-j) = {ri^rirxr^rjrar^rQr^rQrz). (6-14) 
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Figure 6.8: One Round of Tiny DES 

We denote the left TDES S-box by SboxLeft(X). In hexadecimal, this 

S-box is 

(6.15) 

X0X5 

0 

1 

2 

3 

0 1 2 3 

6 9 A 3 

9 E B A 

8 1 C 2 

9 0 2 5 

4 

4 

4 

D 

A 

5 

D 

5 

3 

D 

6 7 89ABCDEF 

7 8 E 1 2 B 5 C F 0 

0 7 8 6 3 2 C D 1 F 

E F 0 9 5 A 4 B 6 7 

6 E 1 8 B C 3 4 7 F 

whereas the right S-box, SboxRight (X), is 

:ΕΙ:Τ2:Τ3:Τ4 

Z0Z5 

0 

1 

2 

3 

0 1 2 3 4 

C 5 0 A E 

1 C 9 6 3 

F A E 6 D 

0 A 3 C 8 

5 

7 

£ 

8 

2 

6 

2 

£ 

2 

1 

7 

8 

2 

4 

£7 

8 9 , 4 . B C . D £ F 

D 4 3 9 6 F 1 S 

F 8 4 5 D A 0 7 

1 7 9 0 3 5 B C 

9 7 F 6 B 5 D A 

(6.16) 

As with DES, each row in a TDES S-box is a permutation of the hexadecimal 

digits 0 ,1 ,2 , . . . ,E,F. 

The TDES key schedule is very simple. The 16-bit key is denoted 

K = kokikihkik^k^kikQkwkiik^ki^kinki^ 
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and the subkey is generated as follows. Let 

LK = k(jk\... ki 

RK = kskg ... /eis 

and for each round i = 1,2,3,4, 

LK = rotate LK left by 2 

RK = rotate RK left by 1. 

Then Ki is obtained by selecting bits 0,2,3,4,5, 7,9,10,11,13,14, and 15 of 

the current (LK,RK). The subkeys Ki can be given explicitly as follows: 

K\ = k2k4k5kekYkikioknknkuki5k8 

K2 = kikekrkohkzknknkukisksfa 

Kz = kek0kik2k3k5ki2ki3kukskgki0 

Ki = k0k2k3k4k5k7ki3ki4ki5kgkiokn. 

In the next section, we'll describe a differential attack on TDES. After 

that, we'll describe a linear attack on TDES. These attacks illustrate the 

crucial principles that apply to differential and linear cryptanalysis of DES 

and other block ciphers. 

6.4.5 Differential Cryptanalysis of T D E S 

Our differential attack on TDES will focus on the right S-box, which appears 

above in (6.16). Suppose that we tabulate SboxRight(Xi) SSboxRight(X2) 

for all pairs X1 and X2, where Χχ Θ X2 = 001000. Then we find that 

X1@X2 = 001000 =*> SboxRight^x) φ SboxRight(X2) = 0010 (6.17) 

with probability 3/4. Recall that for any S-box, 

Xx e X2 = 000000 =*► SboxRight(Xi)eSboxRight(X2) = 0000. (6.18) 

Our goal is to make use of these observations to develop a viable differential 
attack on TDES. 

Differential cryptanalysis is a chosen plaintext attack. Suppose we encrypt 
two chosen plaintext blocks, P = (L, R) and P = (L, R) that satisfy 

P θ P = (L, R) Θ (L, R) = 0000 0000 0000 0010 = 0x0002. (6.19) 

Then P and P differ in the one specified bit and agree in all other bit posi-

tions. Let's carefully analyze what happens to this difference as P and P are 

encrypted with TDES. 
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First, consider 

F(R, K) Θ F(R, Κ) = Sboxes(expand(.R) φ Κ) φ Sboxes(expand(ß) θ Κ). 

From the definition of expand in (6.14) we see that 

expand(0000 0010) = 000000 001000. 

Since expand is linear, if Χχ φ Χ2 = 0000 0010 then 

expand(Xi) Θ expand(X2) = expand(Xi θ Χ2) 

= expand(0000 0010) 

= 000000 001000. (6.20) 

For the chosen plaintext in equation (6.19) we have R®R = 0000 0010. Then 

from the observation in equation (6.20) it follows that 

F{R, K) e F(R, K) = Sboxes(expand(Ä) @K)® Sboxes(expand(Ä) φ Κ) 

= (SboxLef t(A Θ K), SboxRight(5 θ Κ)) 

Θ (SboxLef t(Ä Θ K), SboxRight(ß φ Κ)) 

= (SboxLef t(A Θ K) φ SboxLef t(Ä ®K)), 

(SboxRight(ß ®Κ)φ SboxRight(5 θ Κ)), 

where A φ Ä = 000000 and B θ Β = 001000. This result, together with 

equations (6.17) and (6.18), imply 

F{R, K) Θ F(R, K) = 0000 0010 

with probability 3/4. 

In summary, if R Θ R = 0000 0010, then for any (unknown) subkey K, 

we have 

F{R, K) Θ F(R, K) = 0000 0010 (6.21) 

with probability 3/4. In other words, for certain input values, the output 

difference of the round function is the same as the input difference, with a 

high probability. Next, we'll show that we can chain this results through 

multiple rounds of TDES. 

Since differential cryptanalysis is a chosen plaintext attack, we'll choose P 

and P to satisfy equation (6.19). In Table 6.8, we carefully analyze the TDES 

encryption of such plaintext values. By the choice of P and P, we have 

Ro Θ Ro = 0000 0010 and L0 Θ L0 = 0000 0000. 

Then from equation (6.21), 

Äi Θ Ri = 0000 0010 
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with probability 3/4. From this result it follows that 

R2 Θ Ri = (Li Θ F{Ri, Κ2)) θ (Li θ F{R1,K2)) 

= {L1®L1)®(F{R1,K2)®F{Rl,K2)) 

= {Ro®Ro)®{F{R1,K2)(BF{R1,K2)) 

= 0000 0010 θ 0000 0010 

= 0000 0000 

with probability (3/4)2 = 9/16 = 0.5625. The results given in Table 6.8 for 

R3 Θ R3 and Ri ® R4 are obtained in a similar manner. 

Table 6.8: Differential Cryptanalysis of TDES 

{LQ,RQ) = P 

Li = Ro 

Ri=L0®F{Ro,Ki) 

L2 = Ri 

R2 = Li®F{Ri,K2) 

L3 = R2 

R3=L2®F{R2,K3) 

Li = Rs 

Ri = L3®F{R3,K4) 

C = {Li,Ri) 

{L0,Ro) = P 

Li = R0 

Ri=L0®F{Ro,Ki) 

L2 = i?l 

R2 = Li®F{Ri,K2) 

L3 = -R2 
R3 = L2®F{R2,K3) 

Li = A3 

Ri=L3®F{R3,K4) 

C — {Li, Ri) 

P®P = 0x0002 

{Li, Ri) ®{Li,Ri)= 0x0202 

{L2,R2)®{L2,R2) = 0x0200 

{L3, R3) ®{L3,R3)= 0x0002 

{Li, R4) ® {L4, R4) = 0x0202 

C Φ C = 0x0202 

Prob. 

3/4 

(3/4)2 

(3/4)2 

(3/4)3 

We can derive an algorithm from Table 6.8 to recover some of the un-

known key bits. We'll choose P and P as in equation (6.19) and obtain the 

corresponding ciphertext C and C. Since TDES is a Feistel cipher, 

R4 = L3®F{R3,K4) and R4 = L3 ®F{R3,K4). 

In addition, L4 = R3 and £4 = R3. Consequently, 

R4 = L3 0 F{LA, KA) and R4 = L3® F{L4,KA), 

which can be rewritten as 

L3 = Ri Θ F{LA, Ki) and L3 = R4 Θ F(L4 , X4). 

Now if 

C®C = 0x0202, (6.22) 
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then from Table 6.8 we almost certainly have L3 0 L3 = 0000 0000, that is, 

L3 = L3. It follows that 

R4 Θ F{L4, K4) = R4 Θ F{L4, K4) 

which we rewrite as 

R4 Θ R4 = F{L4, K4) e F(L4, K4). (6.23) 

Note that, in equation (6.23), the only unknown is the subkey K4. Next, we 

show how to use this result to recover some of the bits of K4. 

For a chosen plaintext pair that satisfies equation (6.19), if the resulting 

ciphertext pairs satisfy equation (6.22), then we know that equation (6.23) 

holds. Then since 

C Θ C = (L4, -R4) Θ {L4, R4) = 0x0202, 

we have 

R4 Θ R4 = 0000 0010 (6.24) 

and we also have 

L4 Θ L4 = 0000 0010. (6.25) 

Let 

L4 = W1W3W5W7 and L4 = ïdxhhïdddi■ 

Then equation (6.25) implies that ti = U for i = 0,1,2,3,4,5, 7 and £Q ψ ί§. 

Now substituting equation (6.24) into equation (6.23) and expanding the 

definition of F, we find 

0000 0010 = (sboxLef ί(£4ί7£2£ι^7 Θ k0k2k3k4k5k7), 

SboxRight(Islildddi, Φ Α^ιΑδΑ^ιοΑίι ι ) ) 

Θ (sboxLeft(£4^2^i4^7 Θ k0k2k3k4k5k7), 

SboxRight{ïohhldoh Θ fci3fci4fci5fc9fciofcii)). (6.26) 

The left four bits of equation (6.26) give us 

0000 = SboxLef t (£4^24^7 Θ kQk2k3k4k5k7) 

Θ SboxLef t{i4i7i2hhh Θ k0k2k3k4k5k7), 

which holds for any choice of the bits kok2k3k4ksk7, since 4 = li for all ί φ 6. 

Therefore, we gain no information about the subkey K4 from the left S-box. 
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On the other hand, the right four bits of equation (6.26) give us 

0010 = S b o x R i g h t ( 4 4 4 4 4 4 Θ k13kuki5k9kwku) 

Θ S b o x R i g h t ( 4 4 4 4 4 4 Θ kukuki5k9kwkn), (6-27) 

which must hold for the correct choice of subkey bits kukuki^kgkiokn and 

will only hold with some probability for an incorrect choice of these subkey 

bits. Since the right S-box and the bits of L4 and L4 are known, we can 

determine the unknown subkey bits that appear in equation (6.27). The 

algorithm for recovering these key bits is given in Table 6.9. 

Table 6.9: Algorithm to Recover Subkey Bits 

count[z] = 0, for i = 0 , 1 , . . . , 63 

for i = 1 to iterations 

Choose P and P with P Θ P = 0x0002 

Obtain corresponding C = CQC\ ... C15 and C = coci. . . C15 

if C Θ C = 0x0202 then 

li — Ci and £; = Cj for i = 0 , 1 , . . . , 7 

for K = 0 to 63 

if 0010 = = (SboxRight ( 4 4 4 4 4 4 Θ K) 

Θ S b o x R i g h t ( 4 4 4 4 4 4 Θ K)) then 

increment count [K] 

end if 

next K 

end if 

next i 

Each time the for loop in Table 6.9 is executed, count[K] will be incre-

mented for the correct subkey bits, that is, for K = k\zkuk\^kgkiokii, while 

for other indices K the count will be incremented with some probability. 

Consequently, the maximum counts indicate possible subkey values. There 

may be more than one such maximum count, but with a sufficient number of 

iterations, the number of such counts should be small. 

In one particular test case of the algorithm in Table 6.9, we generated 100 

pairs P and P that satisfy P Θ P = 0x0002. We found that 47 of the 

resulting ciphertext pairs satisfied C Θ C = 0x0202, and for each of these we 

tried all 64 possible 6-bit subkeys as required by the algorithm in Table 6.9. 

In this experiment, we found that each of the four putative subkeys 000001, 

001001, 110000, and 000111 had the maximum count of 47, while no other 

had a count greater than 39. We conclude that subkey K4 must be one of 
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these four values. Then from the definition of K\ we have 

ki3kuki5k9kwkn € {000001,001001,110000,111000}, 

which is equivalent to 

kl3kuk9kiokn e {00001,11000}. (6.28) 

In this case, the key is 

K = 1010 1001 1000 0111, 

so that fci3fci4fcgfcio/cii = 11000, which appears in equation (6.28), as ex-
pected. 

Of course, if we're the attacker, we don't know the key, so, to complete the 
recovery of K, we could exhaustively search over the remaining 211 unknown 
key bits, and for each of these try both of the possibilities in equation (6.28). 
For each of these 212 putative keys K, we would try to decrypt the ciphertext, 
and for the correct key, we will recover the plaintext. We expect to try about 
half of the possibilities—about 211 keys—before finding the correct key K. 

The total expected work to recover the entire key K by this method is 
about 211 encryptions, plus the work required for the differential attack, which 
is insignificant in comparison. As a result, we can recover the entire 16-bit 
key with a work factor of about 211 encryptions, which is much better than 
an exhaustive key search, since an exhaustive search has an expected work 
of 215 encryptions. This shows that a shortcut attack exists, and as a result 
TDES is insecure. 

6.4.6 Linear Cryptanalysis of T D E S 

The linear cryptanalysis of TDES is simpler than the differential cryptanal-
ysis. Whereas the differential cryptanalysis of TDES focused on the right 
S-box, our linear cryptanalysis attack will focus on the left S-box, which 
appears above in (6.15). 

With the notation 

Î/0Z/1Î/2Z/3 = Sb0-X.L&tt{xQXiX2X3XiXÎ,), 

it's easy to verify that for the left S-box of TDES, the linear approximations 

yi = x2 and y2 = X3 (6.29) 

each hold with probability 3/4. To develop a linear attack based on these 
equations, we must be able to chain these results through multiple rounds. 
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Denote the plaintext by P = (LO,RQ) and let RQ = ΓΟΓΙΓ2Γ3Γ4Γ5Γ6Γ7· 

Then the expansion permutation is given by 

expand(iîo) = expaxLd(rorir2r3r4r5r6r7) = Τ4Τ1Τ2Τ\τ^τ-ΐΤοΤ2^τ^τΰτ^. (6.30) 

From the definition of F in equation (6.13), we see that the input to the S-

boxes in round one is given by expand(i?o) @K\. Then, from equation (6.30) 

and the definition of subkey Κχ, we see that the input to the left S-box in 

round one is 

Γ4Γ7Γ2ΓιΓ5Γ7 φ k^kik^k-jki. 

Let 2/02/12/22/3 be the round-one output of the left S-box. Then equa-

tion (6.29) implies that 

2/1 = r2 Θ fc5 and 2/2 = n Θ k6, (6.31) 

where each equality holds with probability 3/4. In other words, for the left 

S-box, output bit number 1 is input bit number 2, XORed with a bit of key, 

and output bit number 2 is input bit number 1, XORed with a key bit, where 

each of these hold with probability 3/4. 

In TDES (as in DES) the output of the S-boxes is XORed with the bits 

of the old left half. Let LQ = ^o î̂ 2^3^4^5^6^7 and let R\ = f^f^f^ifh^T· 

Then the the output of the left S-box from round one is XORed with £o^i^3 

to yield f o r ^ r ^ . Combining this notation with equation (6.31), we have 

h = r2 Θ h Θ t\ and f2 = n Θ k6 Θ £2, (6.32) 

where each of these equations holds with probability 3/4. An analogous 

result holds for subsequent rounds, where the specific key bits depend on the 

subkey Ki. 

As a result of equation (6.32), we can chain the linear approximation in 

equation (6.29) through multiple rounds. This is illustrated in Table 6.10. 

Since linear cryptanalysis is a known plaintext attack, the attacker knows the 

plaintext P = P0P1P2 ■ ■ -Pis and corresponding ciphertext C = CQC\C2 ■ ■ ■ C15. 
The final row in Table 6.10 follows from the fact L4 = C0C1C2C3C4C5C6C7. 

We can rewrite these equations as 

fco Θ fci = α Θ pio (6.33) 

and 

k7®k2 = C2®p$ (6.34) 

where both hold with probability (3/4)3. Since c\, c2, pg, and pio are all 

known, we have obtained some information about the key bits fco, fci, k2, 

and fc7. 
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Table 6.10: Linear Cryptanalysis of TDES 

(L0,Ro) = (ρο-··Ρ7,Ρ8· 

Li = Ro 
R1=L0®F(R0,K1) 

Li = R\ 

R2 = L1®F(R1,K2) 

L% = R2 

R3 = L2®F{R2,K3) 

Li = R3 

R4 = L3®F{R3,K4) 

C = {L4,R4) 

•Pis) Bits 1 and 2 (numbered from 0) 

Ρθ,Ριο 
Pi Θ Pio ® fa, p2®pg®k6 

Pi Θ Pio Θ fa, p2®P9®k6 

P2®k6®k7, pi ®k5®k0 

P2®k6®k7, pi ®k5®k0 

Pio ®k0® fa, pg®k7® k2 

Pio® ko® fa, p9®k7®k2 

c\ = Pio Θ k0 Θ fa, c2 =pg®k7® k2 

Probability 

1 

3/4 

3/4 

(3/4)2 

(3/4)2 

(3/4)3 

(3/4)3 

(3/4)3 

It's easy to implement a linear attack based on the results in Table 6.10. 

We are given the known plaintexts P = P0P1P2 ■ ■ ■ P15 along with the corre-
sponding ciphertext C = c®c\C2 .. .C15. For each such pair, we increment a 
counter depending on whether 

c\ Θ Pio = 0 or ci Θ Pio = 1 

and another counter depending on whether 

C2 Θ P9 = 0 Or C2 Θ P9 = 1· 

Using 100 known plaintexts the following results were obtained: 

c\ Θ pio = 0 occurred 38 times 

ci Θ pio = 1 occurred 62 times 

C2 θ Ρ9 = 0 occurred 62 times 

C2 θ Ρ9 = 1 occurred 38 times. 

In this case, we conclude from equation (6.33) that 

fco ® fa = 1 

and from equation (6.34) that 

k7 φ fc2 = 0. 

In this example, the actual key is 

K = 1010 0011 0101 0110, 
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and it's easily verified that ko Θ k\ = 1 and kj φ fo = 0 as we determined via 

the linear attack. 

In this linear attack, we have only recovered the equivalent of two bits 

of information. To recover the entire key K, we could do an exhaustive key 

search for the remaining unknown bits. This would require an expected work 

of about 213 encryptions and the work for the linear attack, which is negligible 

in comparison. While this may not seem too significant, it is a shortcut attack, 

and so it shows that TDES is insecure according to our definition. 

6.4.7 Implications Block Cipher Des ign 

Since there is no way to prove that a practical cipher is secure and since it's 

difficult to protect against unknown attacks, cryptographers focus on prevent-

ing known attacks. For block ciphers, the known attacks are, primarily, linear 

and differential cryptanalysis—and variations on these approaches. Thus the 

primary goal in block cipher design is to make linear and differential attacks 

infeasible. 

How can cryptographers make linear and differential attacks more diffi-

cult? For an iterated block cipher, there is a fundamental trade-off between 

the number of rounds and the complexity of each round. That is, a simple 

round function will generally require a larger number of rounds to achieve 

the same degree of confusion and diffusion as a more complex function could 

achieve in fewer iterations. 

In both linear and differential attacks, any one-round success probability 

that is less than 1 will almost certainly diminish with each subsequent round. 

Consequently, all else being equal, a block cipher with more rounds will be 

more secure from linear and differential attacks. 

Another way to make linear and differential attacks more difficult is to 

have a high degree of confusion. That is, we can strive to reduce the success 

probability per round. For a DES-like cipher, this is equivalent to building 

better S-boxes. All else being equal—which it never is—more confusion means 

more security. 

On the other hand, better diffusion will also tend to make linear and 

differential attacks harder to mount. In both types of attacks, it is necessary 

to chain results through multiple rounds, and better diffusion will make it 

harder to connect one-round successes into usable chains. 

In TDES, the number of rounds is small, and, as a result, the one-round 

success probabilities are not sufficiently diminished during encryption. Also, 

the TDES S-boxes are poorly designed, resulting in limited confusion. Finally, 

the TDES expand permutation—the only source of diffusion in the cipher— 

does a poor job of mixing the bits of one round into the next round. All of 

these combine to yield a cipher that is highly susceptible to both linear and 

differential attacks. 
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To complicate the lives of block cipher designers, they must construct 

ciphers that are secure and efficient. One of the fundamental issues that 

block cipher designers must contend with is the inherent trade-off between the 

number of rounds and the complexity of each round. That is, a block cipher 

with a simple round structure will tend to provide limited mixing (diffusion) 

and limited nonlinearity (confusion), and consequently more rounds will be 

required. 

The Tiny Encryption Algorithm (TEA) is a good example of a block 

cipher with a simple round structure. Since each round of TEA is extremely 

simple, the resulting confusion and diffusion properties are fairly weak, which 

necessitates a large number of rounds. At the other extreme, each round 

of the Advanced Encryption Standard (AES) has strong linear mixing and 

excellent nonlinear properties. So a relatively small number of AES rounds 

are needed, but each AES round is more complex than a round of TEA. 

Finally, DES could be viewed as residing in between these two extremes. 

6.5 Lattice Reduction and the Knapsack 

Every private in the French army carries a Field Marshal wand in his knapsack. 

— Napoleon Bonaparte 

In this section we present the details of the attack on the original Merkle-

Hellman knapsack cryptosystem. This knapsack cryptosystem is discussed in 

Section 4.2 of Chapter 4. For a more rigorous (but still readable) presentation 

of the attack discussed here, see [175]. Note that some elementary linear 

algebra is required in this section. The Appendix contains a review of the 

necessary material. 

Let b\,b2,...,bn be vectors in Rm, that is, each bi is a (column) vector 

consisting of exactly m real numbers. A lattice is the set of all multiples of 

the vector 6j of the form 

otibi + αφι Λ l· anbn, 

where each a; in an integer. 

For example, consider the vectors 

" - 1 ' 

1 and 62 = 
" 1 " 

2 

Since 61 and 62 are linearly independent, any point in the plane can be written 

as Ct\b\ + ο,φι for some real numbers a.\ and OLI- We say that the plane R2 

is spanned by the pair (61, 62)· If we restrict a\ and c*2 to integers, then the 

resulting span, that is, all points of the form cciòi +0:262) is a lattice. A lattice 
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consists of a discrete set of points. For example, the lattice spanned by the 
the vectors in equation (6.35) is illustrated in Figure 6.9. 

Figure 6.9: A Lattice in the Plane 

Many combinatorial problems can be reduced to the problem of finding a 
"short" vector in a lattice. The knapsack is one such problem. Short vectors 
in a lattice can be found using a technique known as lattice reduction. 

Before discussing the lattice reduction attack on the knapsack, let's first 
consider another combinatorial problem that can be solved using this tech-
nique. The problem that we'll consider is the exact cover, which can be stated 
as follows. Given a set S and a collection of subsets of S, find a collection 
of these subsets where each element of S is in exactly one subset. It's not 
always possible to find such a collection of subsets, but if it is, we'll see that 
the solution is a short vector in a particular lattice. 

Consider the following example of the exact cover problem. Let 

S = {0,1,2,3,4,5,6} 

and suppose we are given 13 subsets of S, which we label so through sn as 
follows: 

so = {0,1,3}, S! = {0,1,5}, S2 = {0,2,4}, s3 = {0,2,5}, 

S4 = {0,3,6}, s5 = {1,2,4}, s6 = {1,2,6}, s7 = {1,3,5}, 

s8 = {l,4,6},s9 = {l},sio = {2,5,6},sii = {3,4,5},si2 = {3,4,6}. 

Denote the number of elements of S by m and the number of subsets by n. 
In this example, we have m = 7 and n = 13. Can we find a collection of 
these 13 subsets where each element of S is in exactly one subset? 

There are 213 different collections of the 13 subsets, so we could exhaus-
tively search through all possible collections until we find such a collection—or 
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until we've tried them all, in which case we would conclude that no such col-

lection exists. But if there are too many subsets, then we need an alternative 

approach. 

One alternative is to try a heuristic search technique. There are many 

different types of heuristic search strategies, but what they all have in common 

is that they search through the set of possible solutions in a nonrandom 

manner. The goal of such a search strategy is to search in a "smart" way to 

improve the odds of finding a solution sooner than an exhaustive search. 

Lattice reduction can be viewed as a form of heuristic search. As a result, 

we are not assured of finding a solution using lattice reduction, but for many 

problems this techniques yields a solution with a high probability, yet the 

work required is small in comparison to an exhaustive search. 

Before we can apply the lattice reduction method, we first need to rewrite 

the exact cover problem in matrix form. We define an m x n matrix A, 

where α̂ - = 1 if element i of S is in subset Sj and otherwise α ·̂ = 0. Also, we 

define B to be a vector of length m consisting of all Is. Then, if we can solve 

the matrix equation AU = B for a vector U of 0s and Is, we have solved the 

exact cover problem. 

For the exact cover example above, the matrix equation AU = B has the 

form 

' 1 

1 

0 

1 

0 

0 

0 

1 

1 

0 

0 

0 

1 

0 

1 
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0 
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1 
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0 
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1 

0 

0 

1 

0 

1 

1 
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1 

0 
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1 
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1 
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1 
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1 

0 

0 

1 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

1 

and we seek a solution U where each Uj s {0,1}, that is, itj = 1 if the 

subset Si is in the exact cover and ttj = 0 if subset s; is not in the exact 

cover. In this particular case, it's easy to verify that a solution is given 

by U = [0001000001001], that is, S3, S9, and S12 form an exact cover of the 

set S. 

We have shown that the exact cover problem can be restated as finding 

a solution U to a matrix equation AU = B, where U consists entirely of 0s 

and Is. This is not a standard linear algebra problem, since solutions to linear 

equations are not restricted to contain only 0s and Is. This turns out to be 

a problem that can be solved using lattice reduction techniques. But first we 

need an elementary fact from linear algebra. 

0 0 

0 0 

0 0 

1 1 

0 0 

1 0 

0 1 

«1 

«2 

U3 

«4 

«5 

ω6 

M7 

« 1 0 

MU 

" 1 2 
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Suppose AU = B, where A is a matrix and U and B are column vectors. 
Let a\, 02 , . . . , an denote the columns of A and u\, u2, ■ ■ ■, un the elements 
of U. Then 

B = uiai + u2a2 + ■ · ■ + unan. (6.36) 

For example, 

3 4 ' 
1 5 

' 2 ' 
6 

= 2 
' 3 

1 
+ 6 

" 4 ' 
5 = 

' 30 " 
32 

Now given AU = B, consider the matrix equation 

*nxn 
J i m x n 

Ortxl 

~Bmxi 

Unxl 

l l x l 

t^nxl 

Umxl 

which we denote as MV = W. Multiplying, we find that U = U (which is 
not very informative) and the nontrivial equation AU — B = 0. Therefore, 
finding a solution V to MV = W is equivalent to finding a solution U to the 
original equation AU = B. 

The benefit of rewriting the problem as MV = W is that the columns of M 
are linearly independent. This is easily seen to be the case, since the n x n 
identity matrix appears in the upper left, and the final column begins with n 
zeros. 

Let co,ci,C2,...,cn be the n + 1 columns of M and let VQ, vi,V2,-..,vn 

be the elements of V. Then, by the observation in equation (6.36), 

W = VQCQ + V\Ci ' VnCn- (6.37) 

Let L be the lattice spanned by Co, c\, C2,..., c„, the columns of M. Then L 
consists of all integer multiples of the columns of M. Recall that MV = W, 
where 

u0 

Ui 

W Un-l 
0 

0 

Our goal is to find U. However, instead of solving linear equations for V, we 
can solve for U by finding W. By equation (6.37), this desired solution W is 
in the lattice L. 

The Euclidean length of a vector Y = (yo, y\,...,yn-i) € R™ is given by 
the formula 
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Then the length of W is 

\\W\\ = yjul + u\ + ---+ul_1 < yfr. 

Since most vectors in L will have a length far greater than %/n, we see that W 
is a short vector in the lattice L. Furthermore, W has a very special form, 
with its first n entries all equal to 0 or 1 and its last m entries all equal 
to 0. These facts distinguish W from typical vectors in L. Can we use this 
information to find W, which would give us a solution to the exact cover 
problem? 

In fact, there is an algorithm known as the LLL algorithm [169, 189] (be-
cause it was invented by three guys whose names start with "L" ) to efficiently 
find short vectors in a lattice. Our strategy will be to use LLL to find short 
vectors in L, the lattice spanned by the columns of M. Then we'll examine 
these short vectors to see whether any have the special form of W. If we find 
such a vector, then it is highly probably that we have found a solution U to 
the original problem. 

Pseudo-code for the LLL algorithm appears in Table 6.11, where the 
(n + m) x (n + 1) matrix M has columns bo, b\, b%,..., bn and the columns 
of matrix X are denoted XQ, X \ , X2 ■ ■ ■, Xn and the elements of Y are denoted 
as yij. Note that the yij can be negative, so care must be taken when imple-
menting the floor function in [j/y + 1/2J. 

For completeness, we've given the Gram-Schmidt orthogonalization algo-
rithm in Table 6.12. Combined, these two algorithms only require about 30 
lines of pseudo-code. 

It's important to realize there is no guarantee that the LLL algorithm will 
find the desired vector W. But for certain types of problems, the probability 
of success is high. 

By now, you may be wondering what any of this has to do with the 
knapsack cryptosystem. Next, we'll show that we can attack the knapsack 
via lattice reduction. 

Let's consider the superincreasing knapsack 

S = [s0, β ι , . . . , e7] = [2,3,7,14,30,57,120,251] 

and choose the multiplier m = 41 and modulus n = 491 (note that this is 

the same knapsack example that appears in Section 4.2 of Chapter 4). Next, 

we observe that m _ 1 = 12 mod 491. Now to find the corresponding public 

knapsack, we compute ti = 41SJ mod 491 for i = 0 , 1 , . . . , 7, and the result is 

T = [t0, i i , · · ·, t7] = [82,123,287,83,248,373,10,471]. 

This yields the knapsack cryptosystem defined by 

Public key: T 
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Table 6.11: LLL Algorithm 

/ / find short vectors in the lattice spanned 
/ / by columns of M = (bo, b\,..., bn) 
loop forever 

(X,Y) = GS{M) 
for j = 1 to n 

for i = j — 1 to 0 
if \yij\ > 1/2 then 

bj =bJ - IVij + !/2Jö< 
end if 

next i 
next j 
(X, Y) = GS(M) 
for j = 0 to n — 1 

if \\xj+i + Vjj+iXjW2 < 11 Nil I2 

swap(6j,6j+i) 
goto abc 

end if 
next j 
return(M) 

abc: continue 
end loop 

and 
Private key: S and m mod n. 

For example, 10010110 is encrypted as 

1 · t0 + 0 · ii + 0 · t2 + 1 · h + 0 · U + 1 ■ t5 + 1 · t6 + 0 · t7 

= 82 + 83 + 373 + 10 

= 548. 

To decrypt the ciphertext 548, the holder of the private key computes 

548 ■ 12 = 193 mod 491 

and then uses the superincreasing knapsack S to easily solve for the plain-
text 10010110. 

In this particular example, the attacker Trudy knows the public key T and 
the ciphertext 548. Trudy can break the system if she can find Uj 6 {0,1} so 
that 

82it0 + 123ui + 287u2 + 83u3 + 248u4 + 373u5 + 10u6 + 471u7 = 548. (6.38) 
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Table 6.12: Gram-Schmidt Algorithm 

/ / Gram-Schmidt M = (6o, ò i , . . . , bn) 
GS(M) 

xo = bo 
for j = 1 to n 

x
j
 =

 "j 

for i = 0 to j — 1 
yij = (xi-bj)/\\xi\\2 

Xj — Xj fJijXi 
next z 

next j 
return(X,y) 

endGS 

To put this problem into the correct framework for lattice reduction, we 
rewrite the problem in matrix form as 

T-U = 548, 

where T is the public knapsack and U = [uo,ui,...,uj] appears in equa-
tion (6.38). This has the same form as AU = B discussed above, so we 
rewrite this to put it into the form MV = W, which is then suitable for the 
LLL algorithm. In this case, we have 

M = 
hx8 08x1 
Tlx8 —Cixi 

" 1 

0 
0 
0 
0 
0 
0 
0 

.82 

0 
1 
0 
0 
0 
0 
0 
0 
123 

0 
0 
1 
0 
0 
0 
0 
0 
287 

0 
0 
0 
1 
0 
0 
0 
0 

83 

0 
0 
0 
0 
1 
0 
0 
0 

248 

0 
0 
0 
0 
0 
1 
0 
0 

373 

0 
0 
0 
0 
0 
0 
1 
0 

10 

0 
0 
0 
0 
0 
0 
0 
1 

471 

0 " 

0 
0 
0 
0 
0 
0 
0 

-548. 

We can now apply LLL to the matrix M to find short vectors in the lattice 
spanned by the columns of M. The output of LLL, which we denote by M' 
is a matrix of short vectors in the lattice spanned by the columns of M. In 
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this example, LLL yields 

' - 1 
0 
0 
1 
0 
0 
0 
0 
1 

- 1 
- 1 

1 
- 1 

0 
0 
0 
0 

- 1 

0 
1 

- 1 
- 1 

1 
0 
0 
0 
1 

1 
0 
0 
1 
0 
1 
1 
0 
0 

0 
1 
0 
0 

- 2 
1 
0 
0 
0 

1 
- 1 

0 
- 1 
- 1 

1 
0 
0 
1 

0 
0 

- 1 
0 
0 
1 

- 1 
1 

- 1 

0 
0 
1 

- 1 
1 

- 1 
0 
1 
2 

1 " 
0 
2 
0 
0 
1 

- 1 
- 1 

0 . 

The 4th column of M' has the correct form to be a solution to the knapsack 
problem. For this column, Trudy obtains the putative solution 

U= [1,0,0,1,0,1,1,0] 

and using the public key and the ciphertext, she can then easily verify that the 
putative solution 10010110 is, in fact, the correct solution. One interesting 
aspect of this particular attack is that Trudy can find the plaintext from the 
ciphertext without recovering the private key. 

The lattice reduction attack on the knapsack is fast and efficient—it was 
originally demonstrated using an Apple II computer in 1983 [265]. Although 
the attack is not always successful, the probability of success against the 
original Merkle-Hellman knapsack is high. 

Lattice reduction was a surprising method of attack on the knapsack cryp-
tosystem. The lesson here is that clever mathematics (and algorithms) can 
sometimes break cryptosystems. 

6.6 RSA Timing Attacks 

All things entail rising and falling timing. 
You must be able to discern this. 

— Miyamoto Musashi 

Often it's possible to attack a cipher without directly attacking the algo-
rithm [89]. Many processes produce unintended "side channels" that leak 
information. This incidental information can arise due to the way that a 
computation is performed, the media used, the power consumed, electromag-
netic emanations, and so on. In some cases, this information can be used to 
recover a cryptographic key. 

Paul Kocher, the father of side channel attacks [166], originally developed 
the technique as a way to demonstrate the vulnerablity of smartcards. Kocher 
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singlehandedly delayed the widespread acceptance of smartcards by several 
years. 

A large potential source of side channel information arises from so-called 
unintended emanations. There is an entire branch of security devoted to emis-
sions security, or EMSEC, which also goes by the name of TEMPEST [199]. 
For example, Anderson [14] describes how electromagnetic fields, or EMF, 
from a computer screen can allow the screen image to be reconstructed at a 
distance. 

Smartcards have been attacked via their EMF emanations as well as by 
differential power analysis, or DPA, which exploits the fact that some com-
putations require more energy consumption than others [167]. Attacks on 
EMF emissions and DPA attacks are passive. More active attacks often go 
by the name of differential fault analysis, or DFA, where faults are induced 
with the goal of recovering information [11]. For example, excessive power 
may be put into a device to induce a fault. Such attacks may or may not be 
destructive. A smartcard used in some GSM cell phones could be attacked 
using DFA techniques [228]. 

In this section, we'll examine two timing attack on RSA. The first ap-
proach is impractical, but provides a relatively simple illustration of the con-
cept, while the second attack has been used in the real world to break real 
systems. 

Timing attacks exploit the fact that some computations in RSA take 
longer than others. By carefully measuring the time that an operation takes, 
we can determine the RSA private key, or at least some bits of the key [329]. 
More advanced versions of timing attacks have been used to successfully at-
tack the RSA implementation in OpenSSL over a network connection [41]. 
For a discussion of timing attacks that apply to more general RSA implemen-
tations, see [284]. 

6.6.1 A Simple Timing Attack 

Let M be a message that Alice is to sign using her private key d. Suppose 
that Alice signs M itself,6 that is, Alice computes Md mod N. As usual, 
Trudy's goal is to recover d. We'll assume that d is n + 1 bits in length, 
with n unknown bits, and we'll denote the bits of d as 

d = dodi... dn where do = 1. 

Recall that the method of repeated squaring provides an efficient means 
of computing modular exponentiation. Suppose repeated squaring is used 

6The astute reader will recall that in Chapter 5 we said that Alice signs h(M), not M. 
However, in security protocols, it's common to sign a random challenge without any hash 
being used—see Chapters 9 and 10. Many timing attacks arise in the context of security 
protocols, so here we'll consider the case where the message M is signed, without any hash. 
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to compute Md mod N. Pseudo-code for the repeated squaring algorithm 
appears in Table 6.13. 

Table 6.13: Repeated Squaring 

x = M 
for j = 1 to n 

x = mod(x2,./V) 
if dj = = 1 then 

x = mod(a;M, N) 
end if 

next j 
re tu rn x 

Suppose that the mod(x,N) function in Table 6.13 is implemented as 
shown in Table 6.14. For efficiency, the expensive mod operation, denoted by 
"%," is only executed if a modular reduction is actually required. 

Table 6.14: Efficient Mod Function 

function mod(:r, N) 
if x > = N 

x = x % N 
end if 
re turn x 

Now consider the repeated squaring algorithm in Table 6.13. If dj = 0, 
then x = mod(x2,N), but if dj = 1 then two operations occur, namely, 
x = mod(a;2,iV) and x = mod(xM,N). As a result, the computation times 
might differ when dj = 0 compared with when dj = 1. Can Trudy take 
advantage of this to recover Alice's private key? 

We'll assume that Trudy can conduct a "chosen plaintext" attack, that is, 
Alice will sign messages of Trudy's choosing. Suppose clever Trudy chooses 
two values, Y and Z, with Y3 < N and Z2 < N < Z3 and Alice signs both. 

Let x = Y and consider the j = 1 step in the repeated squaring algorithm 
of Table 6.13. We have 

x = mod(x2,N) 

and since x2 = Y2 < Y3 < N, the "%" operation does not occur. Then, 
if d\ = 1, we have 

x = mod(xY,N), 
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and since xY = Y3<N, again the "%" operation does not occur. Of course, 

if d\ = 0, this "%" operation does not occur either. 

Now let x = Z and consider the j' = 1 step in the algorithm of Table 6.13. 

In this case, we have 

x = mod(a; , N) 

and, since x2 = Z2 < N, the "%" operation does not occur. But if d\ = 1, 

we have 

x = mod(xZ, N) 

and the "%" operation occurs, since xZ = Z3 > N. However, if d\ = 0, then 

this "%" operation does not occur. That is, an additional "%" operation 

occurs only if d\ = 1. As a result, if d\ = 1 then the j = 1 step requires 

more computation and will take longer to complete for Z than for Y. If, on 

the other hand, d\ = 0, the j = 1 computation step will take about the same 

amount of time for both Z and Y. Using this fact, can Trudy recover the 

bit d\ of the private key d? 

The problem for Trudy is that the repeated squaring algorithm does not 

stop after the j = 1 step. So, any timing difference in the j = 1 step might be 

swamped by timing differences that occur at later steps. But suppose Trudy 

can repeat this experiment many times with distinct Y and Z values, all of 

which satisfy the conditions given above, namely, Y3 < N and Z2 < N < Z3. 

Then if d\ = 0, on average, Trudy would expect the Y and Z signatures to 

take about the same time. On the other hand, if di = 1, then Trudy would 

expect the Z signatures to take longer than the Y signatures, on average. 

That is, timing differences for later steps in the algorithm would tend to 

cancel out, allowing the timing difference (or not) for the j = 1 step show 

through the noise. The point is that Trudy will need to rely on statistics 

gathered over many test cases to make this attack reliable. 

Trudy can use the following algorithm to determine the unknown private 

key bit d\. For i = 0 , 1 , . . . ,m — 1, Trudy chooses Yi with Y3 < N. Let yi 

be the time required for Alice to sign Yi, that is, the time required to com-

pute Yf mod N, for i = 0 , 1 , . . . , m — 1. Then Trudy computes the average 

timing 

y = (yo + 2/1 H l· ym-i)/m. 

Next, for i = 0 , 1 , . . . , m - 1, Trudy chooses Zi with Zf < N < Zf. Let Zi 

be the time required to compute Zf mod N, for i = 0 , 1 , . . . , m — 1. Again, 

Trudy computes the average timing 

z = (z0 + z\ Λ Y zm-i)/m. 

Now if z > y + ε then Trudy would assume that d\ = 1, and otherwise she 

would assume d\ = 0, where an appropriate value for e could be determined 

by experimentation. 
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Once d\ has been recovered, Trudy can use an analogous process to find c?2i 
although for this next step the Y and Z values will need to be chosen to 
satisfy different criteria. And once cfo is known, Trudy can proceed to cfo and 
so on—see Problem 31. 

The attack discussed in this section is only practical for recovering the 
first few bits of the private key. Next, we discuss a more realistic timing 
attack that has been used to recover RSA private keys from smartcards and 
other resource-constrained devices. 

6.6.2 Kocher's Timing Attack 

The basic idea behind Kocher's timing attack [166] is elegant, yet reasonably 
straightforward. Suppose that the repeated squaring algorithm in Table 6.15 
is used for modular exponentiation in RSA. Also, suppose that the time 
taken by the multiplication operation, s = s ■ x (mod N) in Table 6.15, varies 
depending on the values of s and x. Furthermore, we assume the attacker 
is able to determine the timings that will occur, given particular values of s 
and x. 

Table 6.15: Repeated Squaring 

/ / Compute y = xd (mod N), 
/ / where d = d§d\d<i... dn in binary, with do = 1 

s — x 
for i = 1 to n 

s = s2 (mod N) 
if di = = 1 then 

s = s ■ x (mod N) 
end i f 

next i 
return(s) 

Kocher views this as a signal detection problem, where the "signal" con-
sists of the timing variations, which are dependent on the unknown private 
key bits di, for i = 1,2,..., n. The signal is corrupted by "noise," which is 
the result of the unknown private key bits, di. The objective is to recover the 
bits di one (or a few) at a time, beginning with the first unknown bit di. In 
practice, it is not necessary to recover all of the bits, since an algorithm due 
to Coppersmith [68] is feasible once a sufficient number of the high-order bits 
of d are known. 

Suppose we have successfully determined bits do, d\,..., d^-i and we want 
to determine bit dk- Then we randomly select several ciphertexts, say, Cj, 
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for j = 0 ,1 ,2 , . . . , m — 1, and for each we obtain the timing T(Cj) for the 
decryption (or signature) C^ (mod N). For each of these ciphertext val-
ues, we can precisely emulate the repeated squaring algorithm in Table 6.15 
for i = 1,2,..., k — 1, and at the i = k step we can emulate both of the 
possible bit values, <4 = 0 and d* = 1. Then we tabulate the differences 
between the measured timing and both of the emulated results. Kocher's 
crucial observation is that the statistical variance of the differences will be 
smaller for the correct choice of c4 than for the incorrect choice. 

For example, suppose we are trying to obtain a private key that is only 
eight bits in length. Then 

d = (do,di,d2,d3,d4,d,5,de,dr) with do = I. 

Furthermore, suppose that we are certain that 

<VM2c/3 G {1010,1001}. 

Then we generate some number of random ciphertexts Cj, and for each we 
obtain the corresponding timing T(Cj). We can emulate the first four steps 
of the repeated squaring algorithm for both 

dod^d^ = 1010 and dod^ds = 1001 

for each of these ciphertexts. For a given timing T(Cj), let t( be the actual 
time taken in step I for the squaring and multiplying steps of the repeated 
squaring algorithm. That is, t( includes the timing of s = s2 (mod N) and, 
\idi = 1) it also includes s = s-Cj (mod N) (see the algorithm in Table 6.15). 
Also, let ti be the time obtained when emulating the square and multiply 
steps for an assumed private exponent bit I. For m > t, define the shorthand 
notation 

te...m = te + tt+i + ■ ■ ■ + tm. 

Of course, t( depends on the precise bits emulated, but to simplify the no-
tation we do not explicitly state this dependence (it should be clear from 
context). 

Now suppose we select four ciphertexts, Co, C\,C<i, C3, and we obtain the 
timing results in Table 6.16. In this example we see that for dod^d^ = 1010 
we have a mean timing of 

E(T(Cj) - Î0...3) = (7 + 6 + 6 + 5)/4 = 6, 

while the corresponding variance is 

var(T(C,·) - Î0...3) = (l2 + 02 + 02 + ( - l ) 2 ) /4 = 1/2. 

On the other hand, for dod^ds = 1001, we have 

E(T(Cj) - Î0...3) = 6, 
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but the variance is 

var(T(Q) - Î0...3) = ( ( - l ) 2 + l2 + (-1)2 + l2) /4 = 1. 

Although the mean is the same in both cases, Kocher's attack tells us that 
the smaller variance indicates that dodid^d^ = 1010 is the correct answer. 
But this begs the question of why we should observe a smaller variance in 
case of a correct guess for dodid^dz. 

Table 6.16: Timings 

3 T{CÓ) 

0 12 
1 11 
2 12 
3 13 

Emulate 1010 

*0...3 T(Cj) - to...3 
5 7 
5 6 
6 6 
8 5 

Emulate 1001 

io...3 T(Cj) - io...3 
7 5 
4 7 
7 5 
6 7 

Consider T(Cj), the timing of a particular computation Cj (mod N) in 
Table 6.16. As above, for this T(Cj), let te be the emulated timing for the 
square and multiply steps corresponding to the fth bit of the private ex-
ponent. Also, let t( be the actual timing of the square and multiply steps 
corresponding to the ith bit of the private exponent. Let u include all tim-
ing not accounted for in the t(. The value u can be viewed as representing 
the measurement "error." In the example above, we assumed the private 
exponent d is eight bits, so for this case 

T{Cj) =t0 + ti+t2 + ---+t7 + u. 

Now suppose that the high-order bits of d are dodid^da = 1010. Then for 
the timing T(Cj) we have 

var(T(Cj) - io...3) = var(i4) + var(i5) + var(i6) + var(iy) + var(u), 

since t( = te, for I = 0,1,2,3 and, consequently, there is no variance due 
to these emulated timings t(. Note that here we are assuming the tg are 
independent and that the measurement error u is independent of the te, which 
appear to be valid assumptions. If we denote the common variance of each te 
by var(t), we have 

vax(T(Cj) - Ì0...3) = 4 var(i) + var(it). 

However, if dod^d^ = 1010, but we emulate dod^ds = 1001, then 
from the point of the first dj that is in error, our emulation will fail, giving 
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us essentially random timing results. In this case, the first emulation error 
occurs at ^2 so that we find 

var(T - i0...3) = var(i2 - i2) + var(i3 - f3) + var(i4) + var(i5) 

+ var(i6) + var(f7) + var(u) 

« 6 var(i) + var(w) 

since the emulated timings Ï2 and Î3 can vary from the actual timings t2 

and Ì3, respectively. That is, we see a larger variance when our guess for the 
private key bits is incorrect. 

Although conceptually simple, Kocher's technique gives a powerful and 
practical approach to conducting a timing attack on an RSA implementa-
tion that uses repeated squaring (but not more advanced techniques). For 
the attack to succeed, the variance of the error term u must not vary too 
greatly between the different cases that are tested. Assuming that a simple 
repeated squaring algorithm is employed, this would almost certainly be the 
case since u only includes loop overhead and timing error. For more advanced 
modular exponentiation techniques, var(u) could differ greatly for different 
emulated bits, effectively masking the timing information needed to recover 
the bits of d. 

The amount of data required for Kocher's attack (that is, the number 
of chosen decryptions that must be timed) depends on the error term u. 
However, the timings can be reused as bits of d are determined, since, given 
additional bits of d, only the emulation steps need to change. Therefore, the 
required number of timings is not nearly as daunting as it might appear at 
first blush. Again, this attack has been used to break real systems. 

The major limitation to Kocher's attack is that it has only been success-
fully applied to RSA implementations that only use repeated squaring. Most 
RSA implementations also use various other techniques (Chinese Remainder 
Theorem, Montgomery multiplication, Karatsuba multiplication) to speed up 
the modular exponentiations. Only in highly resource-constrained environ-
ments (such as smartcards) is repeated squaring used without any of these 
other techniques. 

In [166], Kocher argues that his timing attack should work for RSA imple-
mentations that employ techniques other than repeated squaring. However, 
Schindler [257] (among others) disputes this assertion. In any case, differ-
ent timing techniques have been developed that succeed against more highly 
optimized RSA implementations. As previously noted, the RSA implemen-
tation in a recent version of OpenSSL was broken using a timing attack due 
to Brumley and Boneh [41]. 

The lesson of side channel attacks is an important one that extends far 
beyond the details of any particular attack. Side channels demonstrate that 
even if crypto is secure in theory, it may not be so in practice. That is, it's not 
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sufficient to analyze a cipher in isolation—for a cipher to be considered secure 
in practice, it must be analyzed in the context of a specific implementation 
and the larger system in which it resides. Many of these factors don't directly 
relate to the mathematical properties of the cipher itself. Schneier has a good 
article that addresses some of these issues [261]. 

Side channel attacks nicely illustrate that attackers don't always play by 
the (presumed) rules. Attackers will try to exploit the weakest link in any 
security system. The best way to protect against such attacks is to think like 
an attacker and find these weak links before Trudy does. 

6.7 Summary 

In this chapter, we presented several advanced cryptanalytic attacks and tech-
niques. We started with a classic World War II cipher, the Enigma, where the 
attack illustrated a "divide and conquer" approach. That is, an important 
component of the device (the stecker) could be split off from the rest of the 
cipher with devastating consequences. Then we considered a stream cipher 
attack, specifically, RC4 as used in WEP. This attack showed that even a 
strong cipher can be broken if used incorrectly. 

In the block cipher realm, we discussed differential and linear cryptanal-
ysis and these attacks were applied to TDES, a simplified version of DES. 
Some knowledge of these topics is necessary to understand the fundamental 
trade-offs in block cipher design. 

Next, we presented a classic attack on the Merkle-Hellman knapsack pub-
lic key cryptosystem. This attack nicely illustrates the impact that mathe-
matical advances and clever algorithms can have on cryptography. 

Side channel attacks have become important in recent years. It's crucial 
to be aware of such attacks, which go beyond the traditional concept of crypt-
analysis, since they represent a real threat to otherwise secure ciphers. We 
discussed specific side channel attacks on RSA. 

As usual, we've only scratched the surface in this chapter. Many other 
cryptanalytic attacks and techniques have been developed, and cryptanalysis 
remains an active area of research. The cryptanalytic attacks discussed here 
provide a reasonably representative sample of the methods that are used to 
attack and analyze ciphers. 

6.8 Problems 

1. In World War II, the German's usually used 10 cables on the stecker, 
only five different rotors were in general use, one reflector was in com-
mon use, and the reflector and five rotors were known to the Allies. 
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a. Under these restrictions, show that there are only about 277 pos-
sible Enigma keys. 

b. Show that if we ignore the stecker, under these restrictions there 
are fewer than 230 settings. 

2. Let F(p), for p = 0,1, 2 , . . . , 13, be the number of ways to plug p cables 
into the Enigma stecker. Show that 

F(p)=(^)-(2p-l).(2p-3) 1. 

3. Recall that for the Enigma attack described in Section 6.2.4, we found 
the cycles 

S(E) = P6P8P13S(E) 

and 

5(E) = P6P^P7P^S(E). 

Find two more independent cycles involving S(E) that can be obtained 
from the matched plaintext and ciphertext in Table 6.2. 

4. How many pairs of cycles are required to uniquely determine the Enigma 
rotor settings? 

5. In the text, we mentioned that the Enigma cipher is its own inverse. 

a. Prove that the Enigma is its own inverse. Hint: Suppose that 
the ith plaintext letter is x, and that the corresponding ith ci-
phertext letter is y. This implies that when the ith letter typed 
into the keyboard is x, the letter y is illuminated on the lightboard. 
Show that for the same key settings, if the ith letter typed into the 
keyboard is y, then the letter x is illuminated on the lightboard. 

b. What is the advantage of a cipher machine that is its own inverse 
(such as the Enigma), as compared to a cipher that is not (such 
as Purple and Sigaba)? 

6. This problem deals with the Enigma cipher. 

a. Show that a ciphertext letter cannot be the same as the corre-
sponding plaintext letter. 

b. Explain how the restriction in part a gives the cryptanalyst an 
advantage when searching for a crib.7 

7In modern parlance, a crib is known as known plaintext. 
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7. Consider the Enigma attack discussed in the text and suppose that 
only cycles of 5(E) are used to recover the correct rotor settings. Then, 
after the attack is completed, only the stecker value of 5(E) is known. 
Using only the matched plaintext and ciphertext in Table 6.2, how many 
additional stecker values can be recovered? 

8. Write a program to simulate the Enigma cipher. Use your program to 
answer the following questions, where the rotor and reflector permuta-
tions are known to be 

Re = EKMFLGDQVZNTOWYHXUSPAIBRCJ 

Rm = BDFHJLCPRTXVZNYEIWGAKMUSQO 

Rr = ESOVPZJAYQUIRHXLNFTGKDCMWB 

T = YRUHQSLDPXNGOKMIEBFZCWVJAT 

where Re is the left rotor, Rm is the middle rotor, R,. is the right rotor, 
and T is the reflector. The "notch" that causes the odometer effect is 
at position Q for Re, V for Rm, and J for Rr. For example, the middle 
rotor steps when the right rotor steps from V to W. 

a. Recover the initial rotor settings given the following matched plain-
text and ciphertext. 

i 
Plaintext 

Ciphertext 

i 
Plaintext 

Ciphertext 

0 1 2 3 4 5 6 7 8 9 101112131415161718192021 
A D H 0 C A D L 0 C Q U I D P R 0 Q U 0 S 0 
S W Z S O F C J M D C V U G E L H S M B G G 

22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 4142 43 
L I T T L E T I M E S 0 M U C H T 0 K N 0 W 
N B S M Q T Q Z I Y D D X K Y N E W J K Z R 

b. Recover as many of the stecker settings as is possible from the 
known plaintext. 

9. Suppose tha t the same Enigma rotors (in the same order) and reflector 
are used as in Problem 8, and the stecker has no cables connected. 
Solve for the initial rotor settings and recover the plaintext given the 
following ciphertext. 

ERLORYROGGPBIMYNPRMHOUQYQETRQXTYUGGEZVBFPRIJGXRSSCJTXJBMW 
JRRPKRHXYMWYGNGYMHZURYEYYXTTHCNIRYTPVHABJLBLNUZATWXEMKRI 
WWEZIZNBEOQDDDCJRZZTLRLGPIFYPHUSMBCAMNODVYSJWKTZEJCKPQYYN 
ZQKKJRQQHXLFCHHFRKDHHRTYILGGXXVBLTMPGCTUWPAIXOZOPKMNRXPMO 
AMSUTIFOWDFBNDNLWWLNRWMPWWGEZKJNH 

Hint: The plaintext is English. 
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10. Develop a ciphertext-only attack on the Enigma, assuming that all you 

know about the plaintext is that it is English. Analyze the work factor 

of your proposed attack and also estimate the minimum amount of 

ciphertext necessary for your attack to succeed. Assume that Enigma 

rotors, the rotor order, the movable ring positions, and the reflector 

are all known. Then you need to solve for the initial settings of the 

three rotors and the Stecker. Hint: Since E is the most common letter 

in English, guess that the plaintext is EEEEEE... and use this "noisy" 

plaintext to solve for the rotor and stecker settings. 

11. Suggest modifications to the Enigma design that would make the attack 

discussed in Section 6.2 infeasible. Your objective is to make minor 

modifications to the design. 

12. Consider a rotor with a hardwired permutation of {0 ,1 ,2 , . . . , n — 1}. 

Denote this permutation as P = (ρο,ρι,... ,pn-i), where P permutes i 

to pi. Let di be the displacement of pi, that is, di = pi — i (mod n). 

Find a formula for the elements of the fcth rotor shift of P, which we 

denote Pk, where the shift is in the same direction as the rotors described 

in Section 6.2.3. Your formula must be in terms of pt and di. 

13. In the RC4 attack, suppose that 60 IVs of the form (3,255, V) are 

available. Empirically determine the probability that the key byte K3 

can be distinguished. What is the smallest number of IVs for which 

this probability is greater than 1/2? 

14. In equations (6.7) and (6.9) we showed how to recover RC4 key bytes K3 

and K4, respectively. 

a. Assuming that key bytes K3 through Kn-\ have been recovered, 

what is the desired form of the IVs that will be used to recover Kn? 

b. For Kn, what is the formula corresponding to (6.7) and (6.9)? 

15. For the attack on RC4 discussed in Section 6.3, we showed that the prob-

ability that (6.7) holds is (253/256)252. What is the probability that 

equation (6.9) holds? What is the probability that the corresponding 

equation holds for Kn1 

16. In the discussion of the attack on RC4 keystream byte K3 we showed 

that IVs of the form (3,255, V) are useful to the attacker. We also 

showed that IVs that are not of this form are sometimes useful to the 

attacker, and we gave the specific example of the (2,253,0). Find an IV 

of yet another form that is useful in the attack on K3. 

17. The attack on RC4 discussed in this chapter illustrates that prepending 

an IV to a long-term key is insecure. In [112] it is shown that appending 
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the IV to the long-term key is also insecure. Suggest more secure ways 

to combine a long-term key with an IV for use as an RC4 key. 

18. Suppose that Trudy has a ciphertext message that was encrypted with 

the RC4 cipher. Since RC4 is a stream cipher, the actual encryption for-

mula is given by Cj = Pi®ki, where k\ is the ith byte of the keystream, pi 

is the ith byte of the plaintext, Cj is the ith byte of the ciphertext. Sup-

pose that Trudy knows the first ciphertext byte, and the first plaintext 

byte, that is, Trudy knows CQ and po-

a. Show that Trudy also knows the first byte of the keystream used 

to encrypt the message, that is, she knows ko. 

b. Suppose that Trudy also happens to know that the first three bytes 

of the key are (K0, K]_,K2) = (2, 253,0). Show that Trudy can de-

termine the next byte of the key, A3, with a probability of success 

of about 0.05. Note that from part a, Trudy knows the first byte 

of the keystream. Hint: Suppose that the RC4 initialization algo-

rithm were to stop after the i = 3 step. Write an equation that 

you could solve to determine the first byte of the key. Then show 

that this equation holds with a probability of about 0.05 when the 

entire 256-step initialization algorithm is used. 

c. If Trudy sees several messages encrypted with the same key that 

was used in part b, how can Trudy improve on the attack to re-

cover A3? That is, how can Trudy recover the key byte K3 with 

a much higher probability of success (ideally, with certainty)? 

d. Assuming that the attack in part b (or part c) succeeds, and Trudy 

recovers K3, extend the attack so that Trudy can recover K4, with 

some reasonable probability of success. What is the probability 

that this step of the attack succeeds? 

e. Extend the attack in part d to recover the remaining key bytes, 

that is, Κζ, Kg, Show that this attack has essentially the same 

work factor regardless of the length of the key. 

f. Show that the attack in part a (and hence, the attack in parts 

a through e) also works if the first three key bytes are of the 

form (K0, Ku K2) = (3,255, V) for any byte V. 

g. Why is this attack relevant to the (in)security of WEP? 

19. The file outDif f (available at the textbook website) contains 100 cho-

sen plaintext pairs P and P that satisfy P θ Ρ = 0x0002, along with 

the corresponding TDES-encrypted ciphertext pairs C and C. Use this 

information to determine the key bits k^, ku, k\$, kg, k\o, kn using the 

differential cryptanalysis attack on TDES that is described in this chap-

ter. Then use your knowledge of these key bits to exhaustively search 
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for the remaining key bits. Give the key as K = k^k-^kì ■ ■ · fcis in hex-
adecimal. 

20. The file outLin, which is available at the textbook website, contains 100 
known plaintext P along with the corresponding TDES-encrypted ci-
phertext C. Use this information to determine the value of fco Θ fci 

and k<i Θ kf using the linear cryptanalysis attack on TDES that is de-

scribed in this chapter. Then use your knowledge of these key bits to 

exhaustively search for the remaining key bits. Give the key in hex-

adecimal as K = kok\k,2 · ■ · fci5-

21. Find a 16-bit key that encrypts 

plaintext = 0x1223 = 0001001000100011 

to 
ciphertext = 0x5B0C = 0101101100001100 

using the cipher TDES. 

22. Suppose that a DES-like cipher uses the S-box below. 

00 
01 
10 
11 

0 
4 
6 
8 
A 

1 

6 
4 
5 
2 

2 

8 
A 
0 
6 

3 

9 
B 
B 
9 

4 

E 
3 
D 
F 

5 

5 
0 
6 
4 

6 
A 
7 
E 
0 

7 
C 
E 
C 
E 

8 

0 
2 
F 
D 

9 

2 
C 
7 
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A 

F 
8 
4 
7 

B 

B 
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9 
C 

C 
1 
D 
A 
8 

D 

7 
5 
2 
B 

E 

D 
F 
1 
3 

F 

3 
1 
3 
1 

If the input to this S-box is 011101, what is the output? If inputs XQ 
and X\ yield outputs lo and Y\, respectively, and XQ Θ X\ = 000001, 

what is the most likely value for Υό ® ^Ί a n d what is its probability? 

23. Consider the S-box below. For the input XQXIX?, the bit xç> indexes the 
row, while 2:1X2 is the column index. We denote the output by yoyi-

0 
1 

00 
10 
11 

01 
01 
00 

10 

00 
01 

11 

11 
10 

Find the best linear approximation to y\ in terms of xo, x\, and x%-
With what probability does this approximation hold? 

24. Construct a difference table analogous to that in Table 6.6 for S-box 1 
of DES. The DES S-box 1 appears in Table 3.3 of Chapter 3. What is 
the most biased difference and what is the bias? 
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25. Construct a difference table analogous to that in Table 6.6 for the right 

S-box of TDES. Verify the results in equation (6.17). What is the second 

most biased difference, and what is the bias? 

26. Construct a linear approximation table analogous to that in Table 6.7 

for S-box 1 of DES. The DES S-box 1 appears in Table 3.3 of Chapter 3. 

Note that your table will have 64 rows and 15 columns. What is the 

best linear approximation, and how well does it approximate? 

27. Construct a linear approximation table analogous to that in Table 6.7 

for the left S-box of TDES. Verify the results in equation (6.29). What 

is the next best linear approximation and how well does it approximate? 

28. Recall the linear cryptanalysis of TDES discussed in Section 6.4.6. As-

sume that equation (6.33) holds with probability (3/4)3 « 0.42. Also as-

sume that the key satisfies fco®fci = 0. Then if we conduct the attack us-

ing 100 known plaintexts, what are the expected counts for c\ θριο = 0 

and c\ Θ pio = 1? Compare your answer with the empirical results 

presented in the text. Why do you think the theoretical and empirical 

results differ? 

29. Suppose that Bob's knapsack public key is 

T = [168,280,560,393,171,230,684,418]. 

Suppose that Alice encrypts a message with Bob's public key and the 

resulting ciphertext is C\ = 1135. Implement the LLL attack and use 

your program to solve for the plaintext Ρχ. For the same public key, 

find the plaintext P2 for the ciphertext C2 = 2055. Can you determine 

the private key? 

30. Suppose that Bob's knapsack public key is 

T = [2195,4390,1318,2197,7467,5716,3974,3996,7551,668]. 

Suppose that Alice encrypts a message with Bob's public key and the 

resulting ciphertext is C\ = 8155. Implement the LLL attack and use 

your program to solve for the plaintext Pi. For the same public key, 

find the plaintext P2 for the ciphertext C2 = 14748. Can you determine 

the private key? 

31. Consider the "simple" timing attack on RSA discussed in Section 6.6.1. 

a. Extend the timing attack to recover the bit d?,. That is, assuming 

that bit d\ has been recovered, what conditions must Y and Z 

satisfy so that the attack presented in the text can be used to 

determine cfe? 
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b. Extend the attack to recover d3, assuming that d\ and d2 have 

been recovered. 

c. In practice, we need to recover about half of the private key bits. 

Why is this attack not a practical means for recovering such a large 

number of private key bits? 

32. Suppose that in Kocher's timing attack, we obtain the timings T(Cj) 

and the emulated timings io...2 for dod\d2 G {100,101,110, 111}, as given 

in the table below. 

3 
0 

1 

2 

3 

4 

5 

6 

7 

ncj) 
20 

21 

19 

22 

24 

23 

21 

19 

100 

5 
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7 

7 

6 

8 

6 

5 

1 

1 

.2 

110 

5 

4 

4 

5 

8 

7 

6 

2 

111 

8 

1 

7 

2 

8 

7 

5 

3 

a. What is the most likely value of dod\d2 and why? 

b. Why does this attack not succeed if CRT or Montgomery multi-

plication is used? 

33. Write a program to recover the 64-bit key for STEA (Simplified TEA) 

given one known plaintext block and the corresponding ciphertext block. 

The STEA algorithm and a description of the attack on STEA can be 

found at [208]. 

34. If DES were a group [117], then given keys K\ and K2, there would 

exist a key K% such that 

E(P, K3) = E(E{P, K1),K2) for all plaintext P, (6.39) 

and we could also find such a key K3 if any of the encryptions were 

replaced by decryptions. If equation (6.39) holds, then triple DES is no 

more secure than single DES. It was established in [45] that DES is not 

a group and, consequently, triple DES is more secure than single DES. 

Show that TDES is not a group. Hint: Select TDES keys Κλ and K2. 

You will be finished if you can verify that there does not exist any 

key K3 for which E(P,K3) = E(E(P,Ki),K2) for all possible choices 

of P . 
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Chapter 7 

Authentication 

Guard: Halt! Who goes there? 
Arthur: It is I, Arthur, son of Uther Pendragon, 
from the castle of Camelot. King of the Britons, 
defeater of the Saxons, sovereign of all England! 

— Monty Python and the Holy Grail 

Then said they unto him, Say now Shibboleth: 
and he said Sibboleth: for he could not frame to pronounce it right. 

Then they took him, and slew him at the passages of Jordan: 
and there fell at that time of the Ephraimites forty and two thousand. 

— Judges 12:6 

7.1 Introduction 

We'll use the term access control as an umbrella for any security issues related 
to access of system resources. Within this broad definition, there are two areas 
of primary interest, namely, authentication and authorization. 

Authentication is the process of determining whether a user (or other en-
tity) should be allowed access to a system. In this chapter, our focus is on the 
methods used by humans to authenticate to local machines. Another type of 
authentication problem arises when the authentication information must pass 
through a network. While it might seem that these two authentication prob-
lems are closely related, in fact, they are almost completely different. When 
networks are involved, authentication is almost entirely an issue of security 
protocols. We'll defer our discussion of protocols to Chapters 9 and 10. 

By definition, authenticated users are allowed access to system resources. 
However, an authenticated user is generally not given carte blanche access to 
all system resources. For example, we might only allow a privileged user— 

229 



 

230 AUTHENTICATION 

such as an administrator—to install software on a system. How do we restrict 
the actions of authenticated users? This is the field of authorization, which is 
covered in the next chapter. Note that authentication is a binary decision— 
access is granted or it is not—while authorization is all about a more fine-
grained set of restrictions on access to various system resources. 

In security, terminology is far from standardized. In particular, the term 
access control is often used as a synonym for authorization. However, in our 
usage, access control is more broadly defined, with both authentication and 
authorization falling under the heading of access control. These two parts of 
access control can be summarized as follows. 

• Authentication: Are you who you say you are?1 

• Authorization: Are you allowed to do that? 

7.2 Authentication Methods 

In this chapter we address various methods that are commonly used to au-
thenticate a human to a machine. That is, we want to convince a dumb 
machine that someone or something claiming to be Alice is indeed Alice and 
not, say, Trudy. That is, we want to answer the question, "Are you who you 
say you are?" Of course, we'd like to do this in as secure manner as possible. 

A human can be authenticated to a machine based on any of the following2 

"somethings" [14]. 

• Something you know 

• Something you have 

• Something you are 

A password is an example of "something you know." We'll spend some time 
discussing passwords, and in the process show that passwords represent a 
weak link in many modern information security systems. 

An example of "something you have" is an ATM card or a smartcard. 
The "something you are" category is synonymous with the rapidly expanding 
field of biometrics. For example, today you can purchase a laptop that scans 
your thumbprint and uses the result for authentication. We'll discuss a few 
biometrie methods later in this chapter. But first up are passwords. 

1Try saying that three times, fast. 
2Additional "somethings" are sometimes proposed. For example, one wireless access 

point authenticates a user by the fact that the user pushes a button on the device. This 
shows that the user has physical access to the device, and could be viewed as authentication 
by "something you do." 
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7.3 Passwords 

Your password must be at least 18770 characters 
and cannot repeat any of your previous 30689 passwords. 

— Microsoft Knowledge Base Article 276304 

An ideal password is something that you know, something that a computer 
can verify that you know, and something nobody else can guess—even with 
access to unlimited computing resources. We'll see that in practice it's diffi-
cult to even come close to this ideal. 

Undoubtedly you are familiar with passwords. It's virtually impossible 
to use a computer today without accumulating a significant number of pass-
words. You probably log into your computer by entering a username and 
password, in which case you have obviously used a password. In addition, 
many other things that we don't call "password" act as passwords. For exam-
ple, the PIN number used with an ATM card is, in effect, a password. And 
if you forget your password, a user-friendly website might authenticate you 
based on your social security number, your mother's maiden name, or your 
date of birth, in which case, these things are acting as passwords. A problem 
with such passwords is that they are often not secret. 

If left to their own devices, users tend to select bad passwords, which 
makes password cracking surprisingly easy. In fact, we'll provide some ba-
sic mathematical arguments to show that it's inherently difficult to achieve 
security via passwords. 

From a security perspective, a solution to the password problem would be 
to instead use randomly generated cryptographic keys. The work of cracking 
such a "password" would be equivalent to an exhaustive key search, in which 
case our passwords could be made at least as strong as our cryptography. 
The problem with such an approach is that humans must remember their 
passwords and we're not good at remembering randomly selected bits. 

We're getting ahead of ourselves. Before discussing the numerous prob-
lems with passwords, we consider why passwords are so popular. Why is 
authentication based on "something you know" so much more popular than 
the more secure "somethings" (i.e., "something you have" and "something you 
are")? The answer, as always, is cost3 and, secondarily, convenience. Pass-
words are free, while smartcards and biometrie devices cost money. Also, it's 
more convenient for an overworked system administrator to reset a password 
than to provide a new smartcard or issue a user a new thumb. 

3Students claim that when your Socratic author asks a question in his security class, the 
correct answer is invariably either "money" or "it depends." 
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7.3.1 Keys Versus Passwords 

We've already claimed that cryptographic keys would solve the password 
problem. To see why this is so, let's compare keys to passwords. On the 
one hand, suppose our generic attacker, Trudy, is confronted with a 64-bit 
cryptographic key. Then there are 264 possible keys, and, if the key was 
chosen at random (and assuming there is no shortcut attack), Trudy must on 
average try 263 keys before she expects to find the correct one. 

On the other hand, suppose Trudy is confronted with a password that is 
known to be eight characters long, with 256 possible choices for each charac-
ter. Then there are 2568 = 264 possible passwords. At first glance, cracking 
such passwords might appear to be equivalent to the key search problem. 
Unfortunately (or, from Trudy's perspective, fortunately) users don't select 
passwords at random, because users must remember their passwords. As a 
result, a user is far more likely to choose an 8-character dictionary word such 
as 

password 

than, say, 

kf&Yw!a[ 

So, in this case Trudy can make far fewer than 263 guesses and have a high 
probability of successfully cracking a password. For example, a carefully 
selected dictionary of 220 « 1,000,000 passwords would likely give Trudy a 
reasonable probability of cracking a given password. On the other hand, if 
Trudy attempted to find a randomly generated 64-bit key by trying only 220 

possible keys, her chance of success would be a mere 220/264 = 1/244, or less 
than 1 in 17 trillion. The bottom line is that the non-randomness of password 
selection is at the root of the problems with passwords. 

7.3.2 Choosing Passwords 

Not all passwords are created equal. For example, everyone would probably 
agree that the following passwords are weak: 

• Frank 

• Pikachu 

• 10251960 

• AustinStamp 

especially if your name happens to be Frank, or Austin Stamp, or your birth-
day is on 10/25/1960. 
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Security often rests on passwords and, consequently, users should have 
passwords that are difficult to guess. However, users must be able to remem-
ber their passwords. With that in mind, are the following passwords better 
than the weak passwords above? 

• jfIej(43j-EmmL+y 

• 09864376537263 

• POkemON 

• FSa7Yago 

The first password, j f Iej (43j-EmmL+y, would certainly be difficult for Trudy 
to guess, but it would also be difficult for Alice to remember. Such a password 
is likely to end up on the proverbial post-it note stuck to the front of Alice's 
computer. This could make Trudy's job much easier than if Alice had selected 
a "less secure" password. 

The second password on the list above is also probably too much for most 
users to remember. Even the highly trained U.S. military personal responsible 
for launching nuclear missiles are only required to remember 12-digit firing 
codes [14]. 

The password POkemON might be difficult to guess, since it's not a standard 
dictionary word due to the digits and the upper case letters. However, if the 
user were known to be a fan of Pokémon, this password might be relatively 
easy prey. 

The final password, FSa7Yago, might appear to reside in the difficult to 
guess, but too difficult to remember category. However, there is a trick to 
help the user remember it—it's based on a passphrase. That is, FSa7Yago is 
derived from the phrase "four score and seven years ago." Consequently, this 
password should be relatively easy for Alice to remember, and yet relatively 
difficult for Trudy to guess. 

An interesting password experiment is described in [14]. Users were di-
vided into three groups, and given the following advice regarding password 
selection: 

• Group A — Select passwords consisting of at least six characters, with 
at least one non-letter. This is fairly typical password selection advice. 

• Group B — Select passwords based on passphrases. 

• Group C — Select passwords consisting of eight randomly selected char-
acters. 

The experimenters tried to crack the resulting passwords for each of the three 
groups. The results were as follows: 
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• Group A — About 30% of passwords were easy to crack. Users in this 
group found their passwords easy to remember. 

• Group B — About 10% of the passwords were cracked, and, as with 
users in Group A, users in this group found their passwords easy to 
remember. 

• Group C — About 10% of the passwords were cracked. Not surprisingly, 
the users in this group found their passwords difficult to remember. 

These results clearly indicate that passphrases provide the best option for 
password selection, since the resulting passwords are relatively difficult to 
crack yet easy to remember. 

This password experiment also demonstrated that user compliance is hard 
to achieve. In each of groups A, B, and C, about one-third of the users did 
not comply with the instructions. Assuming that non-compliant users tend 
to select passwords similar to Group A, about one-third of these passwords 
would be easy to crack. The bottom line is that nearly 10% of passwords are 
likely to be easy to crack, regardless of the advice given. 

In some situations, it makes sense to assign passwords, and if this is the 
case, noncompliance with the password policy is a non-issue. The trade-off 
here is that users are likely to have a harder time remembering assigned 
passwords as compared to passwords they select themselves. 

Again, if users are allowed to choose passwords, then the best advice is to 
choose passwords based on passphrases. In addition, system administrators 
should use a password-cracking tool to test for weak passwords, since attackers 
certainly will. 

It is also sometimes suggested that periodic password changes should be 
required. However, users can be very clever at avoiding such requirements, 
invariably to the detriment of security. For example, Alice might simply 
"change" her password without changing it. In response to such users, the 
system could remember, say, five previous passwords. But a clever user like 
Alice will soon learn that she can cycle through five password changes and 
then reset her password to its original value. Or, if Alice is required to choose a 
new password each month she might select, say, f rankOl in January, f rank02 

in February, and so on. Forcing reluctant users to choose reasonably strong 
passwords is not as simple as it might seem. 

7.3.3 Attacking Systems via Passwords 

Suppose that Trudy is an outsider, that is, she has no access to a particular 
system. A common attack path for Trudy would be 

outsider —> normal user —> administrator. 
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In other words, Trudy will initially seek access to any account on the system 
and then attempt to upgrade her level of privilege. In this scenario, one weak 
password on a system—or in the extreme, one weak password on an entire 
network—could be enough for the first stage of the attack to succeed. The 
bottom line is that one weak password may be one too many. 

Another interesting issue concerns the proper response when attempted 
password cracking is detected. For example, systems often lock users out after 
three bad passwords attempts. If this is the case, how long should the system 
lock? Five seconds? Five minutes? Until the administrator manually resets 
the service? Five seconds might be insufficient to deter an automated attack. 
If it takes more than five seconds for Trudy to make three password guesses 
for every user on the system, then she could simply cycle through all accounts, 
making three guesses on each. By the time she returns to a particular user's 
account, more than five seconds will have elapsed and she will be able to 
make three more guesses without any delay. On the other hand, five minutes 
might open the door to a denial of service attack, where Trudy is able to 
lock accounts indefinitely by periodically making three password guesses on 
an account. The correct answer to this dilemma is not readily apparent. 

7.3.4 Password Verification 

Next, we consider the important issue of verifying that an entered password 
is correct. For a computer to determine the validity of a password, it must 
have something to compare against. That is, the computer must have access 
to the correct password in some form. But it's probably a bad idea to simply 
store the actual passwords in a file, since this would be a prime target for 
Trudy. Here, as in many other areas in information security, cryptography 
provides a sound solution. 

It might be tempting to encrypt the password file with a symmetric key. 
However, to verify passwords, the file must be decrypted, so the decryption 
key must be as accessible as the file itself. Consequently, if Trudy can steal 
the password file, she can probably steal the key as well. Consequently, 
encryption is of little value here. 

So, instead of storing raw passwords in a file or encrypting the password 
file, it's more secure to store hashed passwords. For example, if Alice's pass-
word is FSa7Yago, we could store 

y = /i(FSa7Yago) 

in a file, where h is a secure cryptographic hash function. Then when someone 
claiming to be Alice enters a password x, it is hashed and compared to y, and 
if y = h(x) then the entered password is assumed to be correct and the user 
is authenticated. 
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The advantage of hashing passwords is that if Trudy obtains the pass-
word file, she does not obtain the actual passwords—instead she only has 
the hashed passwords. Note that we are relying on the one-way property of 
cryptographic hash functions to protect the passwords. Of course, if Trudy 
knows the hash value y, she can conduct a forward search attack by guessing 
likely passwords x until she finds an x for which y = h(x), at which point she 
will have cracked the password. But at least Trudy has work to do after she 
has obtained the password file. 

Suppose Trudy has a dictionary containing N common passwords, say, 

do,di,d,2, ■ ■. , djv-i · 

Then she could precompute the hash of each password in the dictionary, 

2/0 = h{d0), y\ = h{d\),..., J/ΛΓ-Ι = h(dN-i). 

Now if Trudy gets access to a password file containing hashed passwords, 

she only needs to compare the entries in the password file to the entries 

in her precomputed dictionary of hashes. Furthermore, the precomputed 

dictionary could be reused for each password file, thereby saving Trudy the 

work of recomputing the hashes. And if Trudy is feeling particularly generous, 

she could post her dictionary of common passwords and their corresponding 

hashes online, saving all other attackers the work of computing these hashes. 

From the good guy's point of view, this is a bad thing, since the work of 

computing the hashes has been largely negated. Can we prevent this attack, 

or at least make Trudy's job more difficult? 

Recall that to prevent a forward search attack on public key encryption, 

we append random bits to the message before encrypting. We can accom-

plish a similar effect with passwords by appending a non-secret random value, 

known as a salt, to each password before hashing. A password salt is analo-

gous to the initialization vector, or IV, in, say, cipher block chaining (CBC) 

mode encryption. Whereas an IV is a non-secret value that causes identical 

plaintext blocks to encrypt to different ciphertext values, a salt is a non-secret 

value that causes identical password to hash to different values. 

Let p be a newly entered password. We generate a random salt value s 

and compute y = h(p, s) and store the pair (s, y) in the password file. Note 

that the salt s is no more secret than the hash value. Now to verify an 

entered password x, we retrieve (s, y) from the password file, compute h(x, s), 

and compare this result with the stored value y. Note that salted password 

verification is just as easy as it was in the unsalted case. But Trudy's job has 

become much more difficult. Suppose Alice's password is hashed with salt 

value sa and Bob's password is hashed with salt value s^. Then, to test Alice's 

password using her dictionary of common passwords, Trudy must compute 

the hash of each word in her dictionary with salt value sa, but to attack 
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Bob's password, Trudy must recompute the hashes using salt value s;,. For a 
password file with N users, Trudy's work has just increased by a factor of N. 
Consequently, a precomputed file of hashed passwords is no longer useful for 
Trudy. She can't be pleased with this turn of events.4 

7.3.5 Math of Password Cracking 

Now we'll take a look at the math behind password cracking. Throughout 
this section, we'll assume that all passwords are eight characters in length 
and that there are 128 choices for each character, which implies there are 

1288 = 256 

possible passwords. We'll also assume that passwords are stored in a password 
file that contains 210 hashed passwords, and that Trudy has a dictionary of 220 

common passwords. From experience, Trudy expects that any given password 
will appear in her dictionary with a probability of about 1/4. Also, work is 
measured by the number of hashes computed. Note that comparisons are 
free—only hash calculations count as work. 

Under these assumptions, we'll determine the probability of successfully 
cracking a password in each of the following four cases. 

I. Trudy wants to determine Alice's password (perhaps Alice is the ad-
ministrator). Trudy does not use her dictionary of likely passwords. 

II. Trudy wants to determine Alice's password. Trudy does use her dictio-
nary of common passwords. 

III. Trudy will be satisfied to crack any password in the password file, with-
out using her dictionary. 

IV. Trudy wants to find any password in the hashed password file, using 
her dictionary. 

In each case, we'll consider both salted and unsalted passwords. 

Case I: Trudy has decided that she wants to crack Alice's password. Trudy, 
who is somewhat absent-minded, has forgotten that she has a password dic-
tionary available. Without a dictionary of common passwords, Trudy has no 
choice other than a brute force approach. This is precisely equivalent to an 
exhaustive key search and hence the expected work is 

o56 Icy Q 5 5 

4Salting password hashes is as close to a free lunch as you'll come in information security. 
Maybe the connection with a free lunch is why it's called a salt? 
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The result here is the same whether the passwords are salted or not, 
unless someone has precomputed, sorted, and stored the hashes of all possible 
passwords. If the hashes of all passwords are already known, then in the 
unsalted case, there is no work at all—Trudy simply looks up the hash value 
and finds the corresponding password. But, if the passwords are salted, there 
is no benefit to having the password hashes. In any case, precomputing all 
possible password hashes is a great deal of work, so for the remainder of this 
discussion, we'll assume this is infeasible. 

Case II: Trudy again wants to recover Alice's password, and she is going 
to use her dictionary of common passwords. With probability 1/4, Alice's 
password is in Trudy's dictionary. Suppose the passwords are salted. Fur-
thermore, suppose Alice's password is in Trudy's dictionary. Then Trudy 
would expect to find Alice's password after hashing half of the words in the 
dictionary, that is, after 219 tries. With probability 3/4 the password is not 
in the dictionary, in which case Trudy would expect to find it after about 255 

tries. Combining these cases gives Trudy an expected work of 

i ( 2
1 9

)+- (2
5 5

) «2
54

·
6
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Note that the expected work here is almost the same as in Case I, where 
Trudy did not use her dictionary. However, in practice, Trudy would simply 
try all the words in her dictionary and quit if she did not find Alice's password. 
Then the work would be at most 220 and the probability of success would 
be 1/4. 

If the passwords are unsalted, Trudy could precompute the hashes of 
all 220 passwords in her dictionary. Then this small one-time work could be 
amortized over the number of times that Trudy uses this attack. That is, the 
larger the number of attacks, the smaller the average work per attack. 

Case III: In this case, Trudy will be satisfied to determine any of the 1024 
passwords in the hashed password file. Trudy has again forgotten about her 
password dictionary. 

Let i/o, 2/1, - ■■ ,yio23 be the password hashes. We'll assume that all 210 

passwords in the file are distinct. Let ρο,ρι,... ,P256-i De a list °f a n 256 

possible passwords. As in the brute force case, Trudy needs to make 255 

distinct comparisons before she expects to find a match. 

If the passwords are not salted, then Trudy can compute h(po) and com-

pare it with each yt, for i = 0 ,1 ,2 , . . . , 1023. Next she computes h(pi) and 

compares it with all j / , and so on. The point here is that each hash computa-

tion provides Trudy with 210 comparisons. Since work is measured in terms 

of hashes, not comparisons, and 255 comparisons are needed, the expected 

work is 
955 /9IO _ 045 
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Now suppose the passwords are salted. Let s, denote the salt value corre-
sponding to hash password yi. Then Trudy computes h(po, so) and compares 
it with yo· Next, she computes h(po,Si) and compares it with yi, she com-
putes h(po, S2) and compares it with 2/2 j and she continues in this manner up 
to h(po, S1023)· Then Trudy must repeat this entire process with password p\ 
in place of po, and then with password pi and so on. The bottom line is 
that each hash computation only yields one comparison and consequently the 
expected work is 255, which is the same as in Case I above. 

This case illustrates the benefit of salting passwords. However, Trudy has 
not made use of her password dictionary, which is unrealistic. 

Case IV: Finally, suppose that Trudy will be satisfied to recover any one 
of the 1024 passwords in the hashed password file, and she will make use of 
her password dictionary. First, note that the probability that at least one of 
the 1024 passwords in the file appears in Trudy's dictionary is 

o \ 1024 

1-UI „ . 

Therefore, we can safely ignore the case where no password from the file is in 
Trudy's dictionary. 

If the passwords are not salted, then Trudy could simply hash all password 
in her dictionary and compare the results to all 1024 hashes in the password 
file. Since we are certain that at least one of these passwords is in the dictio-
nary, Trudy's work is 220 and she is assured of finding at least one password. 
However, if Trudy is a little more clever, she can greatly reduce this meager 
work factor. Again, we can safely assume that at least one of the passwords 
is in Trudy's dictionary. Consequently, Trudy only needs to make about 219 

comparisons—half the size of her dictionary—before she expects to find a 
password. As in Case III, each hash computation yields 210 comparisons, so 
the expected work is only 

219/210 = 29. 

Finally, note that in this unsalted case, if the hashes of the dictionary pass-
words have been precomputed, no additional work is required to recover one 
(or more) passwords. That is, Trudy simply compares the hashes in the file 
to the hashes of her dictionary passwords and, in the process, she recovers 
any passwords that appear in her dictionary. 

Now we consider the most realistic case—Trudy has a dictionary of com-
mon passwords, she will be happy to recover any password from the pass-
word file, and the passwords in the file are salted. For this case, we let 
2/012/1 > · · · J 2/1023 be the password hashes and so,Si, . . . ,Sio23 be the corre-
sponding salt values. Also, let do,di, · · · ,^220-i be the dictionary words. 
Suppose that Trudy first computes ft (do, so) an<i compares it to 2/0, then she 
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compute h(d\,so) and compares it to yo, then she compute h(d2,so) and 

compares it to yo, and so on. That is, Trudy first compares yo to all of her 

(hashed) dictionary words. Of course, she must use salt so for these hashes. 

If she does not recover the password corresponding to yo, then she repeats 

the process using y\ and s\, and so on. 

Note that if yo is in the dictionary (which has probability 1/4), Trudy 

expects to find it after about 219 hashes, while if it is not in the dictionary 

(probability 3/4) Trudy will compute 220 hashes. If Trudy finds yo in the 

dictionary, then she's done. If not, Trudy will have computed 220 hashes 

before she moves on to consider y\. Continuing in this manner, we find that 

the expected work is about 

i(
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This is somewhat disappointing, since it shows that, for very little work, 
Trudy can expect to crack at least one password. 

It can be shown (see Problems 24 and 25) that, under reasonable assump-
tions, the work needed to crack a (salted) password is approximately equal 
to size of the dictionary divided by the probability that a given password is 
in the dictionary. In our example here, the size of the dictionary is 220 while 
the probability of finding a password is 1/4. So, the expected work should be 
about 

o20 
£ _ 022 
1/4 - 2 

which is consistent with the calculation above. Note that this approximation 
implies that we can increase Trudy's work by forcing her to have a larger 
dictionary or by decreasing her probability of success (or both), which makes 
intuitive sense. Of course, the obvious way to accomplish this is to choose 
passwords that are harder to guess. 

The inescapable conclusion is that password cracking is too easy, particu-
larly in situations where one weak password is sufficient to break the security 
of an entire system. Unfortunately, when it comes to passwords, the numbers 
strongly favor the bad guys. 

7.3.6 Other Password Issues 

As bad as it is, password cracking is only the tip of the iceberg when it comes 
to problems with passwords. Today, most users need multiple passwords, but 
users can't (or won't) remember a large number of passwords. This results 
in a significant amount of password reuse, and any password is only as secure 
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as the least secure place it's used. If Trudy finds one of your passwords, she 
would be wise to try it (and slight variations of it) in other places where you 
use a password. 

Social engineering is also a major concern with passwords.5 For example, 
if someone calls you, claiming to be a system administrator who needs your 
password to correct a problem with your account, would you give away your 
password? According to a recent survey, 34% of users will give away their 
password if you ask for it, and the number increases to 70% if you offer a 
candy bar as incentive [232]. 

Keystroke logging software and similar Spyware are also serious threats 
to password-based security [22]. The failure to change default passwords is a 
major source of attacks as well [339]. 

An interesting question is, who suffers from bad passwords? The answer 
is that it depends. If you choose your birthday for your ATM PIN number, 
only you stand to lose.6 On the other hand, if you choose a weak password at 
work, the entire company stands to lose. This explains why banks usually let 
users choose any PIN number they desire for their ATM cards, but companies 
generally try to force users to select reasonably strong passwords. 

There are many popular password cracking tools including LOphtCrack [2] 
(for Windows) and John the Ripper [157] (for Unix). These tools come with 
preconfigured dictionaries, and it is easy to produce customized dictionaries. 
These are good examples of the types of tools that are available to hackers.7 

Since virtually no skill is required to leverage these powerful tools, the door 
to password cracking is open to all, regardless of ability. 

Passwords are one of the most severe real-world security problems today, 
and this is unlikely to change any time soon. The bad guys clearly have the 
advantages when it comes to passwords. In the next section, we'll look at 
biometrics, which—together with smartcards ad similar devices—are often 
touted as the best way to escape from the multitude of problems inherent 
with passwords. 

5Actually, social engineering is a major concern in all aspects of information security 
where humans play a role. Your all-too-human author heard a talk about penetration 
testing, where the tester was paid to probe the security of a major corporation. The tester 
lied and forged a (non-digital) signature to obtain entry into corporate headquarters, where 
he posed as a system administrator trainee. Secretaries and other employees were more 
than happy to accept "help" from this fake SA trainee. As a result, the tester claimed to 
have obtained almost all of the company's intellectual property (including such sensitive 
information as the design of nuclear power plants) within two days. This attack consisted 
almost entirely of social engineering. 

6Perhaps the bank will lose too, but only if you live in the United States and you have 
a very good lawyer. 

7Of course, almost every hacker tool has legitimate uses. For example, password cracking 
tools are valuable for system administrators, since they can use these tools to test the 
strength of the passwords on their system. 
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7.4 Biometrics 

You have all the characteristics of a popular politician: 
a horrible voice, bad breeding, and a vulgar manner. 

— Aristophanes 

Biometrics represent the "something you are" method of authentication or, as 
Schneier so aptly puts it, "you are your key" [260]. There are many different 
types of biometrics, including such long-established methods as fingerprints. 
Recently, biometrics based on speech recognition, gait (walking) recognition, 
and even a digital doggie (odor recognition) have been developed. Biometrics 
are currently a very active topic for research [151, 176]. 

In the information security arena, biometrics are seen as a more secure 
alternative to passwords. For biometrics to be a practical replacement for 
passwords, cheap and reliable systems are needed. Today, usable biometrie 
systems exist, including laptops using thumbprint authentication, palm print 
systems for secure entry into restricted facilities, the use of fingerprints to 
unlock car doors, and so on. But given the potential of biometrics—and 
the well-known weaknesses of password-based authentication—it's perhaps 
surprising that biometrics are not more widely used. 

An ideal biometrie would satisfy all of the following: 

• Universal — A biometrie should apply to virtually everyone. In reality, 
no biometrie applies to everyone. For example, a small percentage of 
people do not have readable fingerprints. 

• Distinguishing — A biometrie should distinguish with virtual certainty. 
In reality, we can't hope for 100% certainty, although, in theory, some 
methods can distinguish with very low error rates. 

• Permanent — Ideally, the physical characteristic being measured should 
never change. In practice, it's sufficient if the characteristic remains 
stable over a reasonably long period of time. 

• Collectable — The physical characteristic should be easy to collect with-
out any potential to cause harm to the subject. In practice, collectabil-
ity often depends heavily on whether the subject is cooperative or not. 

• Reliable, robust, and user-friendly — These are just some of the addi-
tional real-world considerations for a practical biometrie system. Some 
biometrics that have shown promise in laboratory conditions have sub-
sequently failed to deliver similar performance in practice. 

Biometrics are also applied in various identification problems. In the iden-
tification problem we are trying to answer the question "Who are you?," while 
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for the authorization problem, we want to answer the question, "Are you who 
you say you are?" That is, in identification, the goal is to identify the subject 
from a list of many possible subjects. This occurs, for example, when a sus-
picious fingerprint from a crime scene is sent to the FBI fingerprint database 
for comparison with all of the millions of fingerprint records currently on file. 

In the identification problem, the comparison is one-to-many whereas for 
authentication, the comparison is one-to-one. For example, if someone claim-
ing to be Alice uses a thumbprint mouse biometrie, the captured thumbprint 
image is only compared with the stored thumbprint of Alice. The identi-
fication problem is inherently more difficult and subject to a much higher 
error rate due to the larger number of comparisons that must be made. That 
is, each comparison carries with it a probability of an error, so the more 
comparisons required, the higher the error rate. 

There are two phases to a biometrie system. First, there is an enrollment 
phase, where subjects have their biometrie information gathered and entered 
into a database. Typically, during this phase very careful measurement of 
the pertinent physical information is required. Since this is one-time work 
(per subject), it's acceptable if the process is slow and multiple measurements 
are required. In some fielded systems, enrollment has proven to be a weak 
point since it may be difficult to obtain results that are comparable to those 
obtained under laboratory conditions. 

The second phase in a biometrie system is the recognition phase. This 
occurs when the biometrie detection system is used in practice to determine 
whether (for the authentication problem) to authenticate the user or not. 
This phase must be quick, simple, and accurate. 

We'll assume that subjects are cooperative, that is, they're willing to 
have the appropriate physical characteristic measured. This is a reasonable 
assumption in the authentication case, since authentication is generally re-
quired for access to certain information resources or for entry into an other-
wise restricted area. 

For the identification problem, it is often the case that subjects are un-
cooperative. For example, consider a facial recognition system used for iden-
tification. Las Vegas casinos use such systems to detect known cheaters as 
they attempt to enter a casino [300]. Another fanciful proposed use of facial 
recognition is to spot terrorists in airports.8 In such cases, the enrollment con-
ditions may be far from ideal, and in the recognition phase, the subjects are 
certainly uncooperative as they likely do everything possible to avoid detec-
tion. Of course, uncooperative subjects can only serve to make the underlying 
biometrie problem more difficult. For the remainder of this discussion we'll 
focus on the authentication problem and we'll assume that the subjects are 
cooperative. 

Apparently, terrorists are welcome in casinos, as long as they don't cheat. 
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7.4.1 Types of Errors 

There are two types of errors that can occur in biometrie recognition. Suppose 
Bob poses as Alice and the system mistakenly authenticates Bob as Alice. The 
rate at which such misauthentication occurs is the fraud rate. Now suppose 
that Alice tries to authenticate as herself, but the system fails to authenticate 
her. The rate at which this type of error occurs is the insult rate [14]. 

For any biometrie, we can decrease the fraud or insult rate at the expense 
of the other. For example, if we require a 99% voiceprint match, then we can 
obtain a low fraud rate, but the insult rate will be high, since a speaker's 
voice will naturally change slightly from time to time. On the other hand, if 
we set the threshold at a 30% voiceprint match, the the fraud rate will likely 
be high, but the system will have a low insult rate. 

The equal error rate is the rate for which the fraud and insult rates are 
the same. That is, the parameters of the system are adjusted until the fraud 
rate and insult rate are precisely in balance. This is a useful measure for 
comparing different biometrie systems. 

7.4.2 Biometrie Examples 

In this section, we'll briefly discuss three common biometrics. First, we'll 
consider fingerprints, which, in spite of their long history, are relative new-
comers in computing applications. Then we'll discuss palm prints and iris 
scans. 

7.4.2.1 Fingerprints 

Fingerprints were used in ancient China as a form of signature, and they have 
served a similar purpose at other times in history. But the use of fingerprints 
as a scientific form of identification is a much more recent phenomenon. 

A significant analysis of fingerprints occurred in 1798 when J. C. Mayer 
suggested that fingerprints might be unique. In 1823, Johannes Evangelist 
Purkinje discussed nine fingerprint patterns, but this work was a biological 
treatise and did not suggest using fingerprints as a form of identification. 
The first modern use of fingerprints for identification occurred in 1858 in 
India, when Sir William Hershel used palm prints and fingerprints as forms 
of signatures on contracts. 

In 1880, Dr. Henry Faulds published an article in Nature that discussed 
the use of fingerprints for identification purposes. In Mark Twain's Life on 
the Mississippi, which was published in 1883, a murderer is identified by a fin-
gerprint. However, the widespread use of fingerprinting only became possible 
in 1892 when Sir Francis Galton developed a classification system based on 
"minutia" that enabled efficient searching, and he verified that fingerprints 
do not change over time [188]. 
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Examples of the different types of minutia in Galton's classification system 
appear in Figure 7.1. Galton's system allowed for an efficient solution to the 
identification problem in the pre-computer era.9 

Loop (double) Whorl Arch 

Figure 7.1: Examples of Galton's Minutia 

Today, fingerprints are routinely used for identification, particularly in 
criminal cases. It is interesting to note that the standard for determining a 
match varies widely. For example, in Britain fingerprints must match in 16 
points, whereas in the United States, no fixed number of points are required 
to match.10 

A fingerprint biometrie works by first capturing an image of the finger-
print. The image is then enhanced using various image-processing techniques, 
and various points are identified and extracted from the enhanced image. This 
process is illustrated in Figure 7.2. 

Figure 7.2: Automatic Extraction of Minutia 

The points extracted by the biometrie system are compared in a manner 
that is somewhat analogous to the manual analysis of fingerprints. For au-
thentication, the extracted points are compared with the claimed user's stored 

9Fingerprints were classified into one of 1024 "bins." Then, given a fingerprint from 
an unknown subject, a binary search based on the minutia quickly focused the effort of 
matching the print on one of these bins. Consequently, only a very small subset of recorded 
fingerprints needed to be carefully compared to the unknown fingerprint. 

10This is a fine example of the way that the U.S. generously ensures full employment for 
lawyers—they can always argue about whether fingerprint evidence is admissible or not. 
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information, which was previously captured during the enrollment phase. The 
system then determines whether a statistical match occurs, with some prede-
termined level of confidence. This fingerprint comparison process is illustrated 
in Figure 7.3. 

Figure 7.3: Minutia Comparison 

7.4.2.2 Hand Geometry 

Another popular biometrie is hand geometry, which is particularly popular for 
entry into secure facilities [138, 256]. In this system, the shape of the hand is 
carefully measured, including the width and length of the hand and fingers.11 

The paper [152] describes 16 such measurements, of which 14 are illustrated 
in Figure 7.4 (the other two measure the thickness of the hand). Human 
hands are not nearly as unique as fingerprints, but hand geometry is easy and 
quick to measure, while being sufficiently robust for many authentication uses. 
However, hand geometry would probably not be suitable for identification, 
since the number of false matches would be high. 

One advantage of hand geometry systems is that they are fast, taking less 
than one minute in the enrollment phase and less than five seconds in the 
recognition phase. Another advantage is that human hands are symmetric, 
so if the enrolled hand is, say, in a cast, the other hand can be used by placing 
it palm side up. Some disadvantages of hand geometry include that it cannot 
be used on the young or the very old, and, as we'll discuss in a moment, the 
system has a relatively high equal error rate. 

7.4.2.3 Iris Scan 

A biometrie that is, in theory, one of the best for authentication is the iris 
scan. The development of the iris (the colored part of the eye) is chaotic, 
which implies that minor variations lead to large differences. There is lit-
tle or no genetic influence on the iris pattern, so that the measured pattern 

11Note that palm print systems do not read your palm. For that, you'll have to see your 
local chiromancer. 



 

7.4 BIOMETRICS 247 

Figure 7.4: Hand Geometry Measurements 

is uncorrelated for identical twins and even for the two eyes of one individ-
ual. Another desirable property is that the pattern is stable throughout a 
lifetime [149]. 

The development of iris scan technology is relatively new. In 1936, the 
idea of using the human iris for identification was suggested by Frank Burch. 
In the 1980s, the idea resurfaced in James Bond films, but it was not until 1986 
that the first patents appeared—a sure sign that people foresaw money to be 
made on the technology. In 1994, John Daugman, a researcher at Cambridge 
University, patented what is generally accepted as the best approach currently 
available [76]. 

Iris scan systems require sophisticated equipment and software. First, an 
automated iris scanner locates the iris. Then a black and white photo of 
the eye is taken. The resulting image is processed using a two-dimensional 
wavelet transform, the result of which is a 256-byte (that is, 2048-bit) iris 
code. 

Two iris codes are compared based on the Hamming distance between the 
codes. Suppose that Alice is trying to authenticate using an iris scan. Let x 
be the iris code computed from Alice's iris in the recognition phase, while y 
is Alice's iris code stored in the scanner's database, which was gathered dur-
ing the enrollment phase. Then x and y are compared by computing the 
distance d(x, y) defined by 

. number of non-match bits . . 
number of bits compared ' 

For example, d(0010,0101) = 3/4 and d(101111,101001) = 1/3. 
For an iris scan, d(x, y) is computed on the 2048-bit iris code. A perfect 

match yields d(x, y) — 0, but we can't expect perfection in practice. Under 
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laboratory conditions, for the same iris the expected distance is 0.08, and for 
different irises the expect distance is 0.50. The usual thresholding scheme 
is to accept the comparison as a match if the distance is less than 0.32 and 
otherwise consider it a non-match [76]. An image of an iris appears in Fig-
ure 7.5. 

Figure 7.5: An Iris Scan 

Define the match cases to be those where, for example, Alice's data from 
the enrollment phase is compared to her scan data from the recognition phase. 
Define the no-match cases to be when, for example, Alice's enrollment data 
is compared to Bob's recognition phase data (or vice versa). Then the left 
histogram in Figure 7.6 represents match data, while the right histogram 
represents no-match data. Note that the match data provides information 
relevant to the insult rate, whereas the no-match data provides information 
relevant to the fraud rate. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

distance 

Figure 7.6: Histogram of Iris Scan Results [149] 

The iris scan is often cited as the ultimate biometrie for authentication. 
The histogram in Figure 7.6, which is based on 2.3 million comparisons, tends 
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to support this view, since the overlapping region between the "same" (match) 
and "different" (no-match) cases appears to be virtually nonexistent. Note 
that the overlap represents the region where an error can occur. In reality, 
there is some overlap between the histograms in in Figure 7.6, but the overlap 
is extremely small. 

The iris scan distances for the match data in Table 7.1 provide a more 
detailed view of the same histogram marked as "same" in Figure 7.6. From 
Figure 7.6, we see that the equal error rate (which corresponds to the crossover 
point between the two graphs) occurs somewhere near distance 0.34. From 
Table 7.1, this implies an equal error rate of about 10~5. For this biometrie, 
we would certainly be willing to tolerate a slightly higher insult rate since 
that would further reduce the fraud rate. Hence, the typical threshold used 
is 0.32, as mentioned above. 

Table 7.1: Iris Scan Match Scores and Error Rates [149] 

Score 

0.29 
0.30 
0.31 
0.32 
0.33 
0.34 
0.35 

Probability 

1 in 1.3 x 1010 

1 in 1.5 x 109 

1 in 1.8 x 108 

1 in 2.6 x 107 

1 in 4.0 x 106 

1 in 6.9 x 105 

1 in 1.3 x 105 

Is it possible to attack an iris-scanning system? Suppose Bob has a good 
photo of Alice's eye. Then he can claim to be Alice and try to use the photo to 
trick the system into authenticating him as Alice. This attack is not at all far 
fetched. In fact, an Afghan woman whose photo appeared on a famous Na-
tional Geographic magazine cover in 1984 was positively identified 17 years 
later by comparing her then-current iris scan with an iris scan taken from 
the 1984 photo. The woman had never seen the magazine, but she did re-
call being photographed. The magazine cover with the woman's photo and 
the fascinating story of finding this person after years of war and chaos in 
Afghanistan can be found at [28]. 

To prevent attacks based on a photo, an iris-scanning system could first 
shine a light on the "eye" and verify that the pupil contracts before proceeding 
with the iris scan. While this eliminates an attack that relies on a static 
photo, it also might significantly increase the cost of the system. Given that 
biometrics are in competition with passwords, and passwords are free, cost is 
always an issue. 
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7.4.3 Biometrie Error Rates 

Recall that the equal error rate—the point at which the fraud rate equals the 
insult rate—is generally considered the best measure for comparing different 
biometrie systems. The equal error rates for several popular biometrics are 
given in Table 7.2. 

Table 7.2: Biometrie Equal Error Rates [32] 

Biometrie 

fingerprint 
hand geometry 
voice recognition 
iris scan 
retina scan 
signature recognition 

Equal error rate 

2.0 x 10"3 

2.0 x 10"3 

2.0 x 10"2 

7.6 x 10"6 

1.0 x 10"7 

2.0 x 10"2 

For fingerprint biometrie systems, the equal error rate may seem high. 
However, most fingerprint biometrics are relatively cheap devices that do not 
achieve anything near the theoretical potential for fingerprint matching. On 
the other hand, hand geometry systems are relatively expensive and sophisti-
cated devices, so they probably do achieve something close to the theoretical 
potential. 

In theory, iris scanning has an equal error rate of about 10 - 5 . But to 
achieve such spectacular results, the enrollment phase must be extremely 
accurate. If the real-world enrollment environment is not up to laboratory 
standards, then the results might not be so impressive. 

Undoubtedly many inexpensive biometrics systems fare worse than the 
results given in Table 7.2. And biometrics in general have a very poor record 
with respect to the inherently difficult identification problem. 

7.4.4 Biometrie Conclusions 

Biometrics clearly have many potential advantages over passwords. In par-
ticular, biometrics are difficult, although not impossible, to forge. In the case 
of fingerprints, Trudy could steal Alice's thumb, or, in a less gruesome attack, 
Trudy might be able to use a copy of Alice's fingerprint. Of course, a more 
sophisticated system might be able to detect such an attack, but then the 
system will be more costly, thereby reducing its desirability as a replacement 
for passwords.12 

12Unfortunately for security, passwords are likely to remain free for the foreseeable future. 
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There are also many potential software-based attacks on authentication. 
For example, it may be possible to subvert the software that does the compar-
ison or to manipulate the database that contains the enrollment data. Such 
attacks apply to most authentication systems, regardless of whether they are 
based on biometrics, passwords, or other techniques. 

While a broken cryptographic key or password can be revoked and re-
placed, it's not clear how to revoke a broken biometrie. This and other 
biometrie pitfalls are discussed by Schneier [260]. 

Biometrics have a great deal of potential as a substitute for passwords, 
but biometrics are not foolproof. And given the enormous problems with 
passwords and the vast potential of biometrics, it's perhaps surprising that 
biometrics are not more widely used today. This should change in the future 
as biometrics become more robust and inexpensive. 

7.5 Something You Have 

Smartcards or other hardware tokens can be used for authentication. Such 
authentication is based on the "something you have" principle. A smartcard 
is a credit card sized device that includes a small amount of memory and 
computing resources, so that it is able to store cryptographic keys or other 
secrets, and perhaps even do some computations on the card. A special-
purpose smartcard reader, as shown in Figure 7.7, is used to read the key 
stored on the card. Then the key can be used to authenticate the user. Since 
a key is used, and keys are selected at random, password guessing attacks can 
be eliminated.13 

Figure 7.7: A Smartcard Reader (Courtesy of Athena, Inc.) 

There are several other examples of authentication based on "something 
you have," including a laptop computer (or its MAC address), an ATM card, 
or a password generator. Here, we give an example of a password generator. 

13Well, a PIN might be required to access the key, so password issues might still arise. 



 

252 AUTHENTICATION 

A password generator is a small device that the user must have (and use) 
to log in to a system. Suppose that Alice has a password generator, and she 
wants to authenticate herself to Bob. Bob sends a random "challenge" R to 
Alice, which Alice then inputs into the password generator along with her 
PIN number. The password generator then produces a response, which Alice 
transmits to Bob. If the response is correct, Bob is convinced that he's indeed 
talking to Alice, since only Alice is supposed to have the password generator. 
This process is illustrated in Figure 7.8. 

Figure 7.8: Password Generator 

For a challenge-response authentication scheme to work, Bob must be able 
to verify that Alice's response is correct. For the example in Figure 7.8, Bob 
and the password generator must both have access to the key K, since the 
password generator needs the key to compute the hash, and Bob needs the 
key to verify Alice's response. Alice accesses the key K only indirectly—by 
entering her PIN into the key generator. We'll see more examples of the 
use of challenge-response mechanisms in the upcoming chapters on security 
protocols. 

7.6 Two-Factor Authenticat ion 

In fact, the password generator scheme in Figure 7.8 requires both "something 
you have" (the password generator) and "something you know" (the PIN). 
Any authentication method that requires two out of the three "somethings" is 
known as two-factor authentication. Another example of a two-factor authen-
tication is an ATM card, where the user must have the card and know the PIN 
number. Other examples of two-factor authentication include a credit card 
together with a signature, a biometrie thumbprint system that also requires 
a password, and a cell phone that requires a PIN. 

7.7 Single Sign-On and Web Cookies 

Before concluding this chapter, we briefly mention two additional authentica-
tion topics. First, we discuss single sign-on, which is a topic of considerable 
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practical importance. We'll also briefly mention Web cookies, which are often 
used as a weak form of authentication. 

Users find it troublesome to enter their authentication information (typ-
ically, passwords) repeatedly. For example, when browsing the Web, it is 
not uncommon that many different websites require passwords. While this is 
sensible from a security perspective, it places a burden on users who must ei-
ther remember different passwords for many different websites or compromise 
their security by reusing passwords. 

A more convenient solution would be to have Alice authenticate once and 
then have a successful result automatically "follow" her wherever she goes 
on the Internet. That is, the initial authentication would require Alice's par-
ticipation, but subsequent authentications would happen behind the scenes. 
This is known as single sign-on, and single sign-on for the Internet has been 
a topic of some interest for several years. 

As with many computing topics, there are competing and incompatible 
approaches to single sign-on for the Internet. As is often the case, there 
is the Microsoft way, and the "everybody else" way. The approach favored 
by Microsoft goes by the name of Passport [171, 203], while the method 
preferred by (nearly) everybody else is the Liberty Alliance [100, 192]. The 
latter approach is based on the Security Assertion Markup Language, or 
SAML [78]. 

Certainly, a secure single sign-on for the Internet would be a major con-
venience. However, it does not appear that any such method is likely to gain 
widespread acceptance any time soon. It is worth noting that we will see 
a single sign-on architecture in Chapter 10 when we discuss the Kerberos 
security protocol. 

Finally, we mention Web cookies, which have some interesting security 
implications. When Alice is surfing the Web, websites often provide Alice's 
browser with a Web cookie, which is simply a numerical value that is stored 
and managed by Alice's browser. The website also stores the cookie, which 
is used to index a database that retains information about Alice. 

When Alice returns to a website for which she has a cookie, the cookie 
is automatically passed by her browser to the website. The website can then 
access its database to remember important information about Alice. In this 
way, cookies maintain state across sessions. Since the Web uses HTTP, which 
is a stateless protocol, cookies are also used to maintain state within a session. 

In a sense, cookies can act as a single sign-on method for a website. That 
is, a website can authenticate "Alice" based on the possession of Alice's Web 
cookie. Or, in a slightly stronger version, a password is used to initially au-
thenticate Alice, after which the cookie is considered sufficient. Either way, 
this is a fairly weak form of authentication, but it illustrates the often irre-
sistible temptation to use whatever is available and convenient as a security 
mechanism, whether it is secure or not. 
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7.8 Summary 

You can authenticate to a machine based on "something you know," "some-
thing you have," or "something you are." Passwords are synonymous with 
the "something you know" method of authentication. In this chapter, we dis-
cussed passwords at length. The bottom line is that passwords are far from 
an ideal method of authentication, but they are likely to remain popular for 
the foreseeable future, since passwords are the lowest cost option. 

We also discussed authentication based on "something you are," i.e., bio-
metrics. It is clear that biometrics offer the potential for much higher security 
than passwords. However, biometrics cost money, and they are not entirely 
without problems. 

We briefly mentioned "something you have" methods of authentication, 
as well as two-factor authentication, which combines any two of the three 
methods. Finally, we briefly discussed single sign-on and Web cookies. 

In the next chapter, we'll discuss authorization, which deals with restric-
tions placed on authenticated users. The authentication problem returns to 
the fore in Chapters 9 and 10, where we cover security protocols. We'll see 
that authentication over a network is a whole nother can of worms. 

7.9 Problems 

1. As discussed in this chapter, relatively strong passwords can be derived 
from passphrases. 

a. Give two passwords derived from the passphrase "Gentlemen do 
not read other gentlemen's mail." 

b. Give two passwords derived from the passphrase "Are you who 
you say you are?" 

2. For each of the following passwords, give a passphrase that the password 
could have been derived from. 

a. PokeGCTall 

b. 4s&7yrsa 

c. gimmeliborD 

d. IcntgetNOsat 

3. In the context of biometrics, define the terms fraud rate and insult rate. 
In statistics, which of these is a Type I error and which is a Type II 
error? 
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4. In some applications, a passcode consisting of some number of digits is 
required (for example, a PIN). Using the number-to-letter conversion 
on a telephone, 

a. What passcode corresponds to the password "hello"? 

b. Find as many passwords as you can that correspond to the pass-
code 5465, where each password is an English dictionary word. 

5. Suppose that on a particular system, all passwords are 10 characters, 
there are 64 choices for each character, and the system has a password 
file containing 512 hashed passwords. Furthermore, Trudy has a dic-
tionary of 220 common passwords. Provide pseudo-code for an efficient 
attack on the password file in the following cases. 

a. The password hashes are not salted. 

b. The password hashes are salted. 

6. This problem deals with storing passwords in a file. 

a. Why is it a good idea to hash passwords that are stored in a file? 

b. Why is it a much better idea to hash passwords stored in a file 
than to encrypt the password file? 

c. What is a salt and why should a salt be used whenever passwords 
are hashed? 

7. On a particular system, all passwords are 8 characters, there are 128 
choices for each character, and there is a password file containing the 
hashes of 210 passwords. Trudy has a dictionary of 230 passwords, and 
the probability that a randomly selected password is in her dictionary 
is 1/4. Work is measured in terms of the number of hashes computed. 

a. Suppose that Trudy wants to recover Alice's password. Using her 
dictionary, what is the expected work for Trudy to crack Alice's 
password, assuming the passwords are not salted? 

b. Repeat part a, assuming the passwords are salted. 

c. What is the probability that at least one of the passwords in the 
password file appears in Trudy's dictionary? 

8. Suppose you are a merchant and you decide to use a biometrie finger-
print device to authenticate people who make credit card purchases at 
your store. You can choose between two different systems: System A 
has a fraud rate of 1% and an insult rate of 5%, while System B has a 
fraud rate of 5% and an insult rate of 1%. 

a. Which system is more secure and why? 
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b. Which system is more user-friendly and why? 

c. Which system would you choose and why? 

9. Research has shown that most people cannot accurately identify an 
individual from a photo. For example, one study found that most people 
will accept an ID with any photo that has a picture of a person of the 
same gender and race as the presenter. 

a. It has also been demonstrated that when photos are included on 
credit cards, the fraud rate drops significantly. Explain this ap-
parent contradiction. 

b. Your easily amused author frequents an amusement park that pro-
vides each season passholder with a plastic card similar to a credit 
card. The park takes a photo of each season passholder, but the 
photo does not appear on the card. Instead, when the card is pre-
sented for admission to the park, the photo appears on a screen 
that is visible to the park attendant. Why might this approach be 
better than putting the photo on the card? 

10. Suppose all passwords on a given system are 8 characters and that 
each character can be any one of 64 different values. The passwords 
are hashed (with a salt) and stored in a password file. Now suppose 
Trudy has a password cracking program that can test 64 passwords per 
second. Trudy also has a dictionary of 230 common passwords and the 
probability that any given password is in her dictionary is 1/4. The 
password file on this system contains 256 password hashes. 

a. How many different passwords are possible? 

b. How long, on average, will it take Trudy to crack the administra-
tor's password? 

c. What is the probability that at least one of the 256 passwords in 
the password file is in the dictionary? 

d. What is the expected work for Trudy to recover any one of the 
passwords in the password file? 

11. Let h be a secure cryptographic hash function. For this problem, a 
password consists of a maximum of 14-characters and there are 32 pos-
sible choices for each character. If a password is less than 14 characters, 
it's padded with nulls until it is exactly 14 characters. Let P be the 
resulting 14 character password. Consider the following two password 
hashing schemes. 

(i) The password P is split into two parts, with X equal to the first 7 
characters and Y equal to the last 7 characters. The password is 
stored as (h(X), h(Y)). No salt is used. 



 

7.9 PROBLEMS 257 

(ii) The password is stored as h(P). Again, no salt is used. 

Note that the method in scheme (i) is used in Windows to store the 
so-called LANMAN password. 

a. Assuming a brute force attack, how much easier is it to crack the 
password if scheme (i) is used as compared with scheme (ii)? 

b. If scheme (i) is used, why might a 10-character password be less 
secure than a 7-character password?14 

12. Suppose that passwords are stored as follows, where there are 128 pos-
sible choices for each character: If a password exceeds 16 characters, it 
is truncated to 16 characters. If à password is less than 16 characters, it 
is padded with "A" until it is exactly 16 characters. The resulting 16-
character password is split into two parts, Xo and X\, where XQ consists 
of the first six characters and X\ consists of the last 10 characters. The 
password is hashed as lo = h(Xo,So) and Y\ = h(Xi,Si), where So 
and Si are each 64-bit salt values. The values (Yo,So) and (Y\,Si) are 
stored for use in password verification. 

a. Precisely how are (YO,SQ) and (Yi,S\) used to verify an entered 
password? 

b. What is the expected work for an exhaustive search to recover one 
particular password (for example, the administrator's password)? 

c. How would you attack a password in a way that could provide a 
significant shortcut over an exhaustive search or a standard dic-
tionary attack? Explain. 

13. Many websites require users to register before they can access informa-
tion or services. Suppose that you register at such a website, but when 
you return later you've forgotten your password. The website then asks 
you to enter your email address, which you do. Later, you receive your 
original password via email. 

a. Discuss several security concerns with this approach to dealing 
with forgotten passwords. 

b. The correct way to deal with passwords is to store salted hashes 
of passwords. Does this website use the correct approach? Justify 
your answer. 

14In fact, the standard advice for LANMAN passwords is that users should choose either 
a 7-character password, or a 14-character password, since anything in between these two 
lengths is less secure. 



 

258 AUTHENTICATION 

14. Alice forgets her password. She goes to the system administrator's 
office, and the admin resets her password and gives Alice the new pass-
word. 

a. Why does the SA reset the password instead of giving Alice her 
previous (forgotten) password? 

b. Why should Alice re-reset her password immediately after the SA 
has reset it? 

c. Suppose that after the SA resets Alice's password, she remembers 
her previous password. Alice likes her old password, so she resets it 
to its previous value. Would it be possible for the SA to determine 
that Alice has chosen the same password as before? Why or why 
not? 

15. Consider the password generator in Figure 7.8. 

a. If R is repeated, is the protocol secure? 

b. If R is predictable, is the protocol secure? 

16. Describe attacks on an authentication scheme based on Web cookies. 

17. Briefly outline the most significant technical differences between Pass-
port and Liberty Alliance. 

18. MAC address are globally unique and they don't change except in rare 
instances where hardware changes. 

a. Explain how the MAC address on your computer could be used as 
a "something you have" form of authentication. 

b. How could you use the MAC address as part of a two-factor au-
thentication scheme? 

c. How secure is your authentication scheme in part a? How much 
more secure is your authentication scheme in part b? 

19. Suppose you have six accounts, each of which requires a password, and 
you choose distinct passwords for each account. 

a. If the probability that any given password is in Trudy's password 
dictionary is 1/4, what is the probability that at least one of your 
passwords is in Trudy's dictionary? 

b. If the probability that any one of your passwords is in Trudy's 
dictionary is reduced to 1/10, what is the probability that at least 
one of your passwords is in Trudy's dictionary? 
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20. Suppose that you have n accounts, each of which requires a password. 
Trudy has a dictionary and the probability that a password appears in 
Trudy's dictionary is p. 

a. If you use the same password for all n accounts, what is the prob-
ability that your password appears in Trudy's dictionary? 

b. If you use distinct passwords for each of your n accounts, what 
is the probability that at least one of your passwords appears in 
Trudy's dictionary? Show that if n = 1, your answer agrees with 
your answer to part a. 

c. Which is more secure, choosing the same password for all accounts, 
or choosing different passwords for each account? Why? See also 
Problem 21. 

21. Suppose that Alice uses two distinct passwords—one strong password 
for sites where she believes security is important (e.g., her online bank), 
and one weak password for sites where she does not care much about 
security (e.g., social networking sites). 

a. Alice believes this is a reasonable compromise between security 
and convenience. What do you think? 

b. What are some practical difficulties that might arise with such an 
approach? 

22. Suppose Alice requires passwords for eight different accounts. She could 
choose the same password for all of these accounts. With just a single 
password to remember, Alice might be more likely to choose a strong 
password. On the other hand, Alice could choose different passwords for 
each account. With distinct passwords, she might be tempted to choose 
weaker passwords since this might make it easier for her to remember 
all of her passwords. 

a. What are the trade-offs between one well-chosen password versus 
several weaker passwords? 

b. Is there a third approach that is more secure than either of these 
options? 

23. Consider Case I from Section 7.3.5. 

a. If the passwords are unsalted, how much work is it for Trudy to 
precompute all possible hash values? 

b. If each password is salted with a 16-bit value, how much work is 
it for Trudy to precompute all possible hash values? 
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c. If each password is salted with a 64-bit value, how much work is 
it for Trudy to precompute all possible hash values? 

24. Suppose that Trudy has a dictionary of 2™ passwords and the probabil-
ity that a given password is in her dictionary is p. If Trudy obtains a 
file containing a large number of salted password hashes, show that the 
expected work to recover a password is bounded by 2 n _ 1 (1 + 2(1— p)/p)-
Hint: As in Section 7.3.5, Case IV, ignore the highly improbable case 
where none of the passwords in the file appears in Trudy's dictio-
nary. Then make use of the fact that Y^LQXk = 1/(1 — x) and also 
Y^kLi kxk = x/(l — x)2, provided \x\ < 1. 

25. For password cracking, generally the most realistic situation is Case IV 
of Section 7.3.5. In this case, the amount of work that Trudy must 
do to determine a password depends on the size öf the dictionary, the 
probability that a given password is in the dictionary, and the size of the 
password file. Suppose Trudy's dictionary is of size 2™, the probability 
that a password is in the dictionary is p, and the password file is of 
size M. Show that if p is small and M is sufficiently large, then Trudy's 
expected work is about 2"/p. Hint: Use the result of Problem 24. 

26. Suppose that when a fingerprint is compared with one other (non-
matching) fingerprint, the chance of a false match is 1 in 1010, which is 
approximately the error rate when 16 points are required to determine 
a match (the British legal standard). Suppose that the FBI fingerprint 
database contains 107 fingerprints. 

a. How many false matches will occur when 100,000 suspect finger-
prints are each compared with the entire database? 

b. For any individual suspect, what is the chance of a false match? 

27. Suppose DNA matching could be done in real time. 

a. Describe a biometrie for secure entry into a restricted facility based 
on this technique. 

b. Discuss one security concern and one privacy concern with your 
proposed system in part a. 

28. This problem deals with biometrics. 

a. What is the difference between the authentication problem and 
the identification problem? 

b. Which is the inherently easier problem, authentication or identifi-
cation? Why? 
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29. This problem deals with biometrics. 

a. Define fraud rate. 

b. Define insult rate. 

c. What is the equal error rate, how is it determined, and why is it 
useful? 

30. Gait recognition is a biometrie that distinguishes based on the way a 
person walks, whereas a digital doggie is a biometrie that distinguishes 
based on odor. 

a. Describe an attack on gait recognition when it's used for identifi-
cation. 

b. Describe an attack on a digital doggie when it's used for identifi-
cation. 

31. Recently, facial recognition has been touted as a possible method for, 
say, identifying terrorists in airports. As mentioned in the text, fa-
cial recognition is used by Las Vegas casinos in an attempt to detect 
cheaters. Note that in both of these cases the biometrie is being used 
for identification (not authentication), presumably with uncooperative 
subjects. 

a. Discuss an attack on facial recognition when used by a casino to 
detect cheaters. 

b. Discuss a countermeasure that casinos might employ to reduce the 
effectiveness of your attack in part a. 

c. Discuss a counter-countermeasure that attackers might employ to 
reduce the effectiveness of your countermeasure in b. 

32. In one episode of the television show MythBusters, three successful at-
tacks on fingerprint biometrics are demonstrated [213]. 

a. Briefly discuss each of these attacks. 

b. Discuss possible countermeasures for each of the attacks in part a. 
That is, discuss ways that the biometrie systems could be made 
more robust against the specific attacks. 

33. This problem deals with possible attacks on a hand geometry biometrie 
system. 

a. Discuss analogous attacks to those in Problem 32 but for a hand 
geometry biometrie system. 
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b. In your judgment, which would be more difficult to break, the 
fingerprint door lock in Problem 32, or an analogous system based 
on hand geometry? Justify your answer. 

34. A retina scan is an example of a well-known biometrie that was not 
discussed in this chapter. 

a. Briefly outline the history and development of the retina scan bio-
metric. How does a modern retina scan system work? 

b. Why, in principle, can a retina scan be extremely effective? 

c. List several pros and cons of retina scanning as compared to a 
fingerprint biometrie. 

d. Suppose that your company is considering installing a biometrie 
system that every employee will use every time they enter their 
office building. Your company will install either a retina scan or 
an iris scan system. Which would you prefer that they choose? 
Why? 

35. A sonogram is a visual representation of sound. Obtain and install a 
speech analysis tool that can generate sonograms.15 

a. Examine several sonograms of your voice, each time saying "open 
sesame." Qualitatively, how similar are the sonograms? 

b. Examine several sonograms of someone else saying "open sesame." 
How similar are these sonograms to each other? 

c. In what ways do your sonograms from part a differ from those in 
part b? 

d. How would you go about trying to develop a reliable biometrie 
based on voice recognition? What characteristics of the sonograms 
might be useful for distinguishing speakers? 

36. This problem deals with possible attacks on an iris scan biometrie sys-
tem. 

a. Discuss analogous attacks to those in Problem 32 on an iris scan 
biometrie system. 

b. Why would it be significantly more difficult to break an iris scan 
system than the fingerprint door lock in Problem 32? 

c. Given that an iris scan biometrie is inherently stronger than a 
fingerprint-based biometrie system, why are fingerprint biometrics 
far more popular? 

15Your audacious author uses Audacity [20] to record speech and Sonogram [272] to 
generate sonograms and analyze the resulting audio files. Both of these are freeware. 
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37. Suppose that a particular iris scan systems generates 64-bit iris codes 
instead of the standard 2048-bit iris codes mentioned in this chapter. 
During the enrollment phase, the following iris codes (in hex) are de-
termined. 

User 

Alice 

Bob 
Charlie 

Iris code 

BE439AD598EF5147 

9C8B7A1425369584 

885522336699CCBB 

During the recognition phase, the following iris codes are obtained. 

User Iris code 
~~Ü C975A2132E89CEAF 
V DB9A8675342FEC15 

W A6039AD5F8CFD965 

X 1DCA7A54273497CC 

Y AF8B6C7D5E3F0F9A 

Use the iris codes above to answer the following questions. 

a. Use the formula in equation (7.1) to compute the following dis-
tances: 

(/(Alice, Bob), d(Alice, Charlie), d(Bob, Charlie). 

b. Assuming that the same statistics apply to these iris codes as 
the iris codes discussed in Section 7.4.2.3, which of the users, 
U,V,W,X,Y, is most likely Alice? Bob? Charlie? None of the 
above? 

38. A popular "something you have" method of authentication is the RSA 
SecurlD [252]. The SecurelD system is often deployed as a USB key. 
The algorithm used by SecurlD is similar to that given for the pass-
word generator illustrated in Figure 7.8. However, no challenge R is 
sent from Bob to Alice; instead, the current time T (typically, to a 
resolution of one minute) is used. That is, Alice's password generator 
computes h(K,T) and this is sent directly to Bob, provided Alice has 
entered the correct PIN (or password). 

a. Draw a diagram analogous to that in Figure 7.8 illustrating the 
SecurlD algorithm. 

b. Why do we need T? That is, why is the protocol insecure if we 
remove T? 
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c. What are the advantages and disadvantages of using the time T 
as compared to using a random challenge Rl 

d. Which is more secure, using a random challenge R or the time T? 
Why? 

39. A password generator is illustrated in Figure 7.8. 

a. Discuss possible cryptanalytic attacks on the password generator 
scheme in Figure 7.8. 

b. Discuss network-based attacks on the password generator scheme 
in Figure 7.8. 

c. Discuss possible non-technical attacks on the password generator 
scheme in Figure 7.8. 

40. In addition to the holy trinity of "somethings" discussed in this chapter 
(something you know, are, or have), it is also possible to base authenti-
cation on "something you do." For example, you might need to press a 
button on your wireless access point to reset it, proving that you have 
physical access to the device. 

a. Give another real-world example where authentication could be 
based on "something you do." 

b. Give an example of two-factor authentication that includes "some-
thing you do" as one of the factors. 



 
Chapter 8 

Authorization 

It is easier to exclude harmful passions than to rule them, 
and to deny them admittance than to control them after they have been admitted. 

— Seneca 

You can always trust the information given to you by people who are crazy; 
they have an access to truth not available through regular channels. 

— Sheila Ballantyne 

8.1 Introduction 

Authorization is the part of access control concerned with restrictions on the 
actions of authenticated users. In our terminology, authorization is one aspect 
of access control and authentication is another. Unfortunately, some authors 
use the term "access control" as a synonym for authorization. 

In the previous chapter we discussed authentication, where the issue is 
one of establishing identity. In its most basic form, authorization deals with 
the situation where we've already authenticated Alice and we want to enforce 
restrictions on what she is allowed to do. Note that while authentication is 
binary (either a user is authenticated or not), authorization can be a much 
more fine grained process. 

In this chapter, we'll extend the traditional notion of authorization to 
include a few non-traditional topics. We'll discuss CAPTCHAs, which are 
designed to restrict access to humans (as opposed to computers), and we'll 
consider firewalls, which can be viewed as a form of access control for net-
works. We'll follow up the section on firewalls with a discussion of intrusion 
detection systems, which come into play when firewalls fail to keep the bad 
guys out. 

265 
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8.2 A Brief History of Authorization 
History is ... bunk. 

— Henry Ford 

Back in the computing dark ages,1 authorization was often considered the 
heart of information security. Today, that seems like a rather quaint notion. 
In any case, it is worth briefly considering the historical context from which 
modern information security has arisen. 

While cryptography has a long and storied history, other aspects of mod-
ern information security are relative newcomers. Here, we take a brief look 
at the history of system certification, which, in some sense, represents the 
modern history of authorization. The goal of such certification regimes is 
to give users some degree of confidence that the systems they use actually 
provide a specified level of security. While this is a laudable goal, in practice, 
system certification is often laughable. Consequently, certification has never 
really become a significant piece of the security puzzle—as a rule, only those 
products that absolutely must be certified are. And why would any product 
need to be certified? Governments, which created the certification regimes, 
require certification for certain products that they purchase. So, as a prac-
tical matter, certification is generally only an issue if you are trying to sell 
your product to the government.2 

8.2.1 The Orange Book 

The Trusted Computing System Evaluation Criteria (TCSEC), or "orange 
book" [309] (so called because of the color of its cover) was published in 1983. 
The orange book was one of a series of related books developed under the 
auspices of the National Security Agency. Each book had a different colored 
cover and collectively they are known as the "rainbow series." The orange 
book primarily deals with system evaluation and certification and, to some 
extent, multilevel security—a topic discussed later in this chapter. 

Today, the orange book is of little, if any, practical relevance. Moreover, 
in your opinionated author's opinion, the orange book served to stunt the 
growth of information security by focusing vast amounts of time and resources 
on some of the most esoteric and impractical aspects of security.3 

Of course, not everyone is as enlightened as your humble author, and, in 
some circles, there is still something of a religious fervor for the orange book 

l r rhat is, before the Apple Macintosh was invented. 
2It 's tempting to argue that certification is an obvious failure simply because there is 

no evidence that the government is any more secure than anybody else, in spite of its use 
of certified security products. However, your certifiable author will, for once, refrain from 
making such a smug and unsubstantiated (but oddly satisfying) claim. 

3Other than that, the orange book was a smashing success. 
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and its view of the security universe. In fact, the faithful tend to believe that 
if only the orange book way of thinking had prevailed, we'd all be much more 
secure today. 

So, is it worth knowing something about the orange book? Well, it's 
always good to have some historical perspective on any subject. Also, as pre-
viously mentioned, there are some people who still take it seriously (although 
fewer and fewer each day), and you may need to deal with such a person at 
some point. In addition, it is possible that you may need to worry about 
system certification. 

The stated purpose of the orange book is to provide criteria for assess-
ing the effectiveness of the security provided by "automatic data processing 
system products." The overriding goals, as given in [309], are: 

a. To provide users with a yardstick with which to assess the degree of 
trust that can be placed in computer systems for the secure processing 
of classified or other sensitive information. 

b. To provide guidance to manufacturers as to what to build into their 
new, widely available trusted commercial products in order to satisfy 
trust requirements for sensitive applications. 

c. To provide a basis for specifying security requirements in acquisition 
specifications. 

In short, the orange book intended to provide a way to assess the security 
of existing products and to provide guidance on how to build more secure 
products. The practical effect was that the orange book provided the basis 
for a certification regime that could be used to provide a security rating to 
a security product. In typical governmental fashion, the certification was to 
be determined by navigating through a complex and ill-defined maze of rules 
and requirements. 

The orange book proposes four broad divisions, labeled as D through A, 
with D being the lowest and A the highest. Most of the divisions are split 
into classes. For example, under the C division, we have classes Cl and C2. 
The four divisions and their corresponding classes are as follows. 

D. Minimal protection — This division contains only one class which is 
reserved for those systems that can't meet the requirements for any 
higher class. That is, these are the losers that couldn't make it into any 
"real" class. 

C. Discretionary protection — There are two classes here, both of which 
provide some level of "discretionary" protection. That is, they don't 
necessarily force security on users, but instead they provide some means 
of detecting security breaches—specifically, there must be an audit ca-
pability. The two classes in this division are the following. 
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Cl. Discretionary security protection — In this class, a system must 
provide "credible controls capable of enforcing access limitations 
on an individual basis."4 

C2. Controlled access protection — Systems in this class "enforce a 
more finely grained discretionary access control than (Cl) sys-
tems." "5 

B. Mandatory protection — This a big step up from C. The idea of the C 
division is that users can break the security, but they might get caught. 
However, for division B, the protection is mandatory, in the sense that 
users cannot break the security even if they try. The B classes are the 
following. 

Bl. Labeled security protection — Mandatory access control is based 
on specified labels. That is, all data carries some sort of label, 
which determines which users can do what with the data. Also, 
the access control is enforced in a way so that users cannot violate 
it (i.e., the access control is mandatory). 

B2. Structured protection — This adds covert channel protection (dis-
cussed later in this chapter) and a few other technical issues on 
top of Bl. 

B3. Security domains — On top of B2 requirements, this class adds 
that the code that enforces security must "be tamperproof, and be 
small enough to be subjected to analysis and tests." We'll have 
much more to say about software issues in later chapters. For 
now, it is worth mentioning that making software tamperproof is, 
at best, difficult and expensive, and is seldom attempted in any 
serious way. 

A. Verified protection — This is the same as B3, except that so-called 
formal methods must be used to, in effect, prove that the system does 
what is claimed. In this division there is a class Al and a brief discussion 
of what might lie beyond Al. 

The A division was certainly very optimistic for a document published in 
the 1980s, since the formal proofs that it envisions are not yet feasible for 
systems of moderate or greater complexity. As a practical matter, satisfying 
the C level requirements should be, in principle, almost trivial, but even 
today, achieving any of the B (or higher) classes would be a challenging 
task, except, perhaps, for certain straightforward applications (e.g., digital 
signature software). 

4 Hmm. . . 
5Yes, of course, it's all so clear now... 
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There is a second part to the orange book that covers the "rationale 
and criteria," that is, it gives the reasoning behind the various requirements 
outlined above, and it attempts to provide specific guidance on how to meet 
the requirements. The rationale section includes a brief discussion of such 
topics as a reference monitor and a trusted computing base—topics that we 
will mention in our final chapter. There is also a brief discussion of the 
Bell-LaPadula security model, which we cover later in this chapter. 

The criteria (i.e., the guidelines) section is certainly much more specific 
than the general discussion of the classes, but it is not clear that the guidelines 
are really all that useful or sensible. For example, under the title of "testing 
for division C" we have the following guidance, where "team" refers to the 
security testing team [309]. 

The team shall independently design and implement at least five 
system-specific tests in an attempt to circumvent the security 
mechanisms of the system. The elapsed time devoted to testing 
shall be at least one month and need not exceed three months. 
There shall be no fewer than twenty hands-on hours spent car-
rying out system developer-defined tests and test team-defined 
tests. 

While this is specific, it's not difficult to imagine a scenario where one team 
could accomplish more in a few hours of automated testing than another team 
could accomplish in three months of manual testing.6 

8.2.2 The Common Criteria 

Formally, the orange book has been superseded by the cleverly named Com-
mon Criteria [65], which is an international government-sponsored standard 
for certifying security products. The Common Criteria is similar to the orange 
book in the sense that, as much as is humanly possible, it is ignored in prac-
tice. However, if you want to sell your security product to the government, 
it may be necessary to obtain some specified level of Common Criteria cer-
tification. Even the lower-level Common Criteria certifications can be costly 
to obtain (on the order of six figures, in U.S. dollars), and the higher-level 
certifications are prohibitively expensive due to many fanciful requirements. 

A Common Criteria certification yields a so-called Evaluation Assurance 
Level (EAL) with a numerical rating from 1 to 7, that is, EAL1 through 
EAL7, where the higher the number, the better. Note that a product with a 
higher EAL is not necessarily more secure than a product with a lower (or no) 
EAL. For example, suppose that product A is certified EAL4, while product B 

6As an aside, your easily annoyed author finds it highly ironic and somewhat disturbing 
that the same people who gave us the dubious orange book now want to set educational 
standards in information security; see [216]. 
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carries an EAL5 rating. All this means is that product A was evaluated for 
EAL4 (and passed), while product B was actually evaluated for EAL5 (and 
passed). It is possible that product A could actually have achieved EAL5 or 
higher, but the developers simply felt it was not worth the cost and effort to 
try for a higher EAL. The different EALs are listed below [106]. 

• EAL1 — Functionally Tested 

• EAL2 — Structurally Tested 

• EAL3 — Methodically Tested and Checked 

• EAL4 — Methodically Designed, Tested, and Reviewed 

• EAL5 — Semiformally Designed and Tested 

• EAL6 — Semiformally Verified Design and Tested 

• EAL7 — Formally Verified Design and Tested 

To obtain an EAL7 rating, formal proofs of security must be provided, 
and security experts carefully analyze the product. In contrast, at the lowest 
EALs, the documentation is all that is analyzed. Of course, at an intermediate 
level, something between these two extremes is required. 

Certainly the most commonly sought-after Common Criteria certification 
is EAL4, since it is generally the minimum required to sell to the government. 
Interestingly, your hard-working author could find a grand total of precisely 
two products certified at the highest Common Criteria level, EAL7. This is 
not an impressive number considering that this certification regime has been 
around for more than a decade and it is an international standard. 

And who are these security "experts" who perform Common Criteria eval-
uations? The security experts work for government-accredited Common Cri-
teria Testing Laboratories—in the U.S. the accrediting agency is NIST. 

We won't go into the details of Common Criteria certification here.7 In 
any case, the Common Criteria will never evoke the same sort of passions 
(pro or con) as the orange book. Whereas the orange book is, in a sense, 
a philosophical statement claiming to provide the answers about how to do 
security, the Common Criteria is little more than a mind-numbing bureau-
cratic hurdle that must be overcome if you want to sell your product to the 
government. It is also worth noting that whereas the orange book is only 
about 115 pages long, due to inflation, the Common Criteria documentation 
exceeds 1000 pages. Consequently, few mortals will ever read the Common 

7During your tireless author's two years at a small startup company, he spent an inor-
dinate amount of time studying the Common Criteria documentation—his company was 
hoping to sell its product to the U.S. government. Because of this experience, mere mention 
of the Common Criteria causes your usually hypoallergenic author to break out in hives. 



 

8.3 ACCESS CONTROL MATRIX 271 

Criteria, which is another reason why it will never evoke more than a yawn 
from the masses. 

Next, we consider the classic view of authorization. Then we look at 
multilevel security (and related topics) before considering a few cutting-edge 
topics, including firewalls, IDS, and CAPTCHAs. 

8.3 Access Control Matrix 

The classic view of authorization begins with Lampson's access control ma-
trix [5]. This matrix contains all of the relevant information needed by an 
operating system to make decisions about which users are allowed to do what 
with the various system resources. 

We'll define a subject as a user of a system (not necessarily a human 
user) and an object as a system resource. Two fundamental constructs in 
the field of authorization are access control lists, or ACLs, and capabilities, 
or C-lists. Both ACLs and C-lists are derived from Lampson's access control 
matrix, which has a row for every subject and a column for every object. 
Sensibly enough, the access allowed by subject S to object O is stored at 
the intersection of the row indexed by S and the column indexed by O. 
An example of an access control matrix appears in Table 8.1, where we use 
UNIX-style notation, that is, x, r, and w stand for execute, read, and write 
privileges, respectively. 

Table 8.1: Access Control Matrix 

Bob 
Alice 
Sam 

Accounting 
program 

OS 
rx 
rx 

rwx 

rx 

Accounting 
program 

rx 
rx 

rwx 

rx 

Accounting 
data 

r 
r 
r 

rw 

Insurance 
data 
— 
rw 
rw 

rw 

Payroll 
data 
— 
rw 
rw 

r 

Notice that in Table 8.1, the accounting program is treated as both an 
object and a subject. This is a useful fiction, since we can enforce the restric-
tion that the accounting data is only modified by the accounting program. 
As discussed in [14], the intent here is to make corruption of the accounting 
data more difficult, since any changes to the accounting data must be done 
by software that, presumably, includes standard accounting checks and bal-
ances. However, this does not prevent all possible attacks, since the system 
administrator, Sam, could replace the accounting program with a faulty (or 
fraudulent) version and thereby break the protection. But this trick does 
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allow Alice and Bob to access the accounting data without allowing them to 
corrupt it—either intentionally or unintentionally. 

8.3.1 ACLs and Capabilities 

Since all subjects and all objects appear in the access control matrix, it con-
tains all of the relevant information on which authorization decisions can be 
based. However, there is a practical issue in managing a large access control 
matrix. A system could have hundreds of subjects (or more) and tens of 
thousands of objects (or more), in which case an access control matrix with 
millions of entries (or more) would need to be consulted before any operation 
by any subject on any object. Dealing with such a large matrix could impose 
a significant burden on the system. 

To obtain acceptable performance for authorization operations, the access 
control matrix can be partitioned into more manageable pieces. There are 
two obvious ways to split the access control matrix. First, we could split 
the matrix into its columns and store each column with its corresponding 
object. Then, whenever an object is accessed, its column of the access control 
matrix would be consulted to see whether the operation is allowed. These 
columns are known as access control lists, or ACLs. For example, the ACL 
corresponding to insurance data in Table 8.1 is 

(Bob, —), (Alice, rw), (Sam, rw), (accounting program, rw). 

Alternatively, we could store the access control matrix by row, where each 
row is stored with its corresponding subject. Then, whenever a subject tries 
to perform an operation, we can consult its row of the access control matrix 
to see if the operation is allowed. This approach is know as capabilities, or 
C-lists. For example, Alice's C-list in Table 8.1 is 

(OS, rx), (accounting program, rx), (accounting data, r) , 
(insurance data, rw), (payroll data, rw). 

It might seem that ACLs and C-lists are equivalent, since they simply 
provide different ways of storing the same information. However, there are 
some subtle differences between the two approaches. Consider the comparison 
of ACLs and capabilities illustrated in Figure 8.1. 

Note that the arrows in Figure 8.1 point in opposite directions, that is, for 
ACLs, the arrows point from the resources to the users, while for capabilities, 
the arrows point from the users to the resources. This seemingly trivial 
difference has real significance. In particular, with capabilities, the association 
between users and files is built into the system, while for an ACL-based 
system, a separate method for associating users to files is required. This 
illustrates one of the inherent advantages of capabilities. In fact, capabilities 
have several security advantages over ACLs and, for this reason, C-lists are 
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Figure 8.1: ACLs versus Capabilities 

much beloved within the academic research community [206]. In the next 
section, we discuss one potential security advantage of capabilities over ACLs. 
Then we move on to the topic of multilevel security. 

8.3.2 Confused D e p u t y 

The confused deputy is a classic security problem that arises in many con-
texts [139]. For our illustration of this problem, we consider a system with 
two resources, a compiler and a file named BILL that contains critical billing 
information, and one user, Alice. The compiler can write to any file, while 
Alice can invoke the compiler and she can provide a filename where debug-
ging information will be written. However, Alice is not allowed to write to the 
file BILL, since she might corrupt the billing information. The access control 
matrix for this scenario appears in Table 8.2. 

Table 8.2: Access Control Matrix for Confused Deputy Example 

Alice 
Compiler 

Compiler BILL 
x — 
rx rw 

Now suppose that Alice invokes the compiler, and she provides BILL as the 
debug filename. Alice does not have the privilege to access the file BILL, so 
this command should fail. However, the compiler, which is acting on Alice's 
behalf, does have the privilege to overwrite BILL. If the compiler acts with 
its privilege, then a side effect of Alice's command will be the trashing of the 
BILL file, as illustrated in Figure 8.2. 
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Figure 8.2: Confused Deputy 

Why is this problem known as the confused deputy? The compiler is 
acting on Alice's behalf, so it is her deputy. The compiler is confused since it 
is acting based on its own privileges when it should be acting based on Alice's 
privileges. 

With ACLs, it's more difficult (but not impossible) to avoid the con-
fused deputy. In contrast, with capabilities it's relatively easy to prevent this 
problem, since capabilities are easily delegated, while ACLs are not. In a 
capabilities-based system, when Alice invokes the compiler, she can simply 
give her C-list to the compiler. The compiler then consults Alice's C-list when 
checking privileges before attempting to create the debug file. Since Alice does 
not have the privilege to overwrite BILL, the situation in Figure 8.2 can be 
avoided. 

A comparison of the relative advantages of ACLs and capabilities is in-
structive. ACLs are preferable when users manage their own files and when 
protection is data oriented. With ACLs, it's also easy to change rights to a 
particular resource. On the other hand, with capabilities it's easy to delegate 
(and sub-delegate and sub-sub-delegate, and so on), and it's easier to add or 
delete users. Due to the ability to delegate, it's easy to avoid the confused 
deputy when using capabilities. However, capabilities are more complex to 
implement and they have somewhat higher overhead—although it may not 
be obvious, many of the difficult issues inherent in distributed systems arise 
in the context of capabilities. For these reasons, ACLs are used in practice 
far more often than capabilities. 

8.4 Multilevel Security Models 

In this section we briefly discuss security modeling in the context of multilevel 
security. Security models are often presented at great length in information 
security textbooks, but here we'll only mention two of the best-known models, 
and we only present an overview of these models. For a more thorough 
introduction to MLS and related security models, see [283] or Gollmann's 
book [125]. 
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In general, security models are descriptive, not proscriptive. That is, 
these models tell us what needs to be protected, but they don't answer the 
real question, that is, how to provide such protection. This is not a flaw in 
the models, as they are designed to set a framework for protection, but it is 
an inherent limitation on the practical utility of security modeling. 

Multilevel security, or MLS, is familiar to all fans of spy novels, where 
classified information often figures prominently. In MLS, the subjects are the 
users (generally, human) and the objects are the data to be protected (for 
example, documents). Furthermore, classifications apply to objects while 
clearances apply to subjects. 

The U.S. Department of Defense, or DoD, employs four levels of classifi-
cations and clearances, which can be ordered as 

TOP SECRET > SECRET > CONFIDENTIAL > UNCLASSIFIED. (8.1) 

For example, a subject with a SECRET clearance is allowed access to objects 
classified SECRET or lower but not to objects classified TOP SECRET. 
Apparently to make them more visible, security levels are generally rendered 
in upper case. 

Let O be an object and S a subject. Then O has a classification and S has 
a clearance. The security level of O is denoted L(0), and the security level 
of S is similarly denoted L(S). In the DoD system, the four levels shown above 
in (8.1) are used for both clearances and classifications. Also, for a person 
to obtain a SECRET clearance, a more-or-less routine background check is 
required, while a TOP SECRET clearance requires an extensive background 
check, a polygraph exam, a psychological profile, etc. 

There are many practical problems related to the classification of infor-
mation. For example, the proper classification is not always clear, and two 
experienced users might have widely differing views. Also, the level of gran-
ularity at which to apply classifications can be an issue. It's entirely possible 
to construct a document where each paragraph, when taken individually, is 
UNCLASSIFIED, yet the overall document is TOP SECRET. This problem 
is even worse when source code must be classified, which is sometimes the 
case within the DoD. The flip side of granularity is aggregation—an adversary 
might be able to glean TOP SECRET information from a careful analysis of 
UNCLASSIFIED documents. 

Multilevel security is needed when subjects and objects at different levels 
use the same system resources. The purpose of an MLS system is to enforce a 
form of access control by restricting subjects so that they only access objects 
for which they have the necessary clearance. 

Military and government have long had an interest in MLS. The U.S. 
government, in particular, has funded a great deal of research into MLS and, 
as a consequence, the strengths and weaknesses of MLS are relatively well 
understood. 
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Today, there are many potential uses for MLS outside of its traditional 
classified government setting. For example, most businesses have information 
that is restricted to, say, senior management, and other information that is 
available to all management, while still other proprietary information is avail-
able to everyone within the company and, finally, some information is avail-
able to everyone, including the general public. If this information is stored 
on a single system, the company must deal with MLS issues, even if they 
don't realize it. Note that these categories correspond directly to the TOP 
SECRET, SECRET, CONFIDENTIAL, and UNCLASSIFIED classifications 
discussed above. 

There is also interest in MLS in such applications as network firewalls. 
The goal in such a case is to keep an intruder, Trudy, at a low level to limit 
the damage that she can inflict after she breaches the firewall. Another MLS 
application that we'll examine in more detail below deals with private medical 
information. 

Again, our emphasis here is on MLS models, which explain what needs 
to be done but do not tell us how to implement such protection. In other 
words, we should view these models as high-level descriptions, not as security 
algorithms or protocols. There are many MLS models—we'll only discuss the 
most elementary. Other models can be more realistic, but they are also more 
complex and harder to analyze and verify. 

Ideally, we would like to prove results about security models. Then any 
system that satisfies the assumptions of the model automatically inherits all 
of the results that have been proved about the model. However, we will not 
delve so deeply into security models in this book. 

8.4.1 Bell-LaPadula 

The first security model that we'll consider is Bell-LaPadula, or BLP, which, 
believe it or not, was named after its inventors, Bell and LaPadula. The 
purpose of BLP is to capture the minimal requirements, with respect to con-
fidentiality, that any MLS system must satisfy. BLP consists of the following 
two statements: 

Simple Security Condition: Subject S can read object O if 
and only if L(0) < L(S). 

*-Property (Star Property): Subject S can write object O if and 
only if L(S) < L(0). 

The simple security condition merely states that Alice, for example, can-
not read a document for which she lacks the appropriate clearance. This 
condition is clearly required of any MLS system. 
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The star property is somewhat less obvious. This property is designed 
to prevent, say, TOP SECRET information from being written to, say, a 
SECRET document. This would break MLS security since a user with a 
SECRET clearance could then read TOP SECRET information. The writing 
could occur intentionally or, for example, as the result of a computer virus. 
In his groundbreaking work on viruses, Cohen mentions that viruses could be 
used to break MLS security [60], and such attacks remain a very real threat 
to MLS systems today. 

The simple security condition can be summarized as "no read up," while 
the star property implies "no write down." Consequently, BLP is sometimes 
succinctly stated as "no read up, no write down." It's difficult to imagine a 
security model that's any simpler. 

Although simplicity in security is a good thing, BLP may be too simple. 
At least that is the conclusion of McLean, who states that BLP is "so trivial 
that it is hard to imagine a realistic security model for which it does not 
hold" [198]. In an attempt to poke holes in BLP, McLean defined a "system 
Z" in which an administrator is allowed to temporarily reclassify objects, at 
which point they can be "written down" without violating BLP. System Z 
clearly violates the spirit of BLP, but, since it is not expressly forbidden, it 
is apparently allowed. 

In response to McLean's criticisms, Bell and LaPadula fortified BLP with 
a tranquility property. Actually, there are two versions of this property. The 
strong tranquility property states that security labels can never change. This 
removes McLean's system Z from the BLP realm, but it's also impractical 
in the real world, since security labels must sometimes change. For example, 
the DoD regularly declassifies documents, which would be impossible under 
strict adherence to the strong tranquility property. For another example, it is 
often desirable to enforce least privilege. If a user has, say, a TOP SECRET 
clearance but is only browsing UNCLASSIFIED Web pages, it is desirable to 
only give the user an UNCLASSIFIED clearance, so as to avoid accidentally 
divulging classified information. If the user later needs a higher clearance, 
his active clearance can be upgraded. This is known as the high water mark 
principle, and we'll see it again when we discuss Biba's model, below. 

Bell and Lapadula also offered a weak tranquility property in which a secu-
rity label can change, provided such a change does not violate an "established 
security policy." Weak tranquility can defeat system Z, and it can allow for 
least privilege, but the property is so vague as to be nearly meaningless for 
analytic purposes. 

The debate concerning BLP and system Z is discussed thoroughly in [34], 
where the author points out that BLP proponents and McLean are each 
making fundamentally different assumptions about modeling. This debate 
gives rise to some interesting issues concerning the nature—and limits—of 
modeling. 
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The bottom line regarding BLP is that it's very simple, and as a result it's 
one of the few models for which it's possible to prove things about systems. 
Unfortunately, BLP may be too simple to be of any practical benefit. 

BLP has inspired many other security models, most of which strive to 
be more realistic. The price that these systems pay for more reality is more 
complexity. This makes most other models more difficult to analyze and more 
difficult to apply, that is, it's more difficult to show that a real-world system 
satisfies the requirements of the model. 

8.4.2 Biba's Model 

In this section, we'll look briefly at Biba's model. Whereas BLP deals with 
confidentiality, Biba's model deals with integrity. In fact, Biba's model is 
essentially an integrity version of BLP. 

If we trust the integrity of object 0\ but not that of object O2, then if 
object O is composed of 0\ and O2, we cannot trust the integrity of object O. 
In other words, the integrity level of O is the minimum of the integrity of any 
object contained in O. Another way to say this is that for integrity, a low 
water mark principle holds. In contrast, for confidentiality, a high water mark 
principle applies. 

To state Biba's model formally, let 1(0) denote the integrity of object O 
and I(S) the integrity of subject S. Biba's model is defined by the two 
statements: 

Write Access Rule: Subject S can write object O if and only 
if 1(0) < I(S). 

Biba's Model: A subject S can read the object O if and only 
if I(S) < I(0). 

The write access rule states that we don't trust anything that S writes 
any more than we trust S. Biba's model states that we can't trust S any 
more than the lowest integrity object that S has read. In essence, we are 
concerned that S will be "contaminated" by lower integrity objects, so S is 
forbidden from viewing such objects. 

Biba's model is actually very restrictive, since it prevents S from ever 
viewing an object at a lower integrity level. It's possible—and, in many 
cases, perhaps desirable—to replace Biba's model with the following: 

Low Water Mark Policy: If subject S reads object O, then 
I(S) = mm(l(S),I(0)). 

Under the low water mark principle, subject S can read anything, under 
the condition that the integrity of subject S is downgraded after accessing an 
object at a lower level. 



 

8.5 COMPARTMENTS 279 

Figure 8.3 illustrates the difference between BLP and Biba's model. Of 
course the fundamental difference is that BLP is for confidentiality, which 
implies a high water mark principle, while Biba is for integrity, which implies 
a low water mark principle. 

high BLP 

1(0,) |-H L(0) 

L(02) 

low Confidentiality 

Biba high 

l(02) H KO)" 

Integrity low 

Figure 8.3: BLP versus Biba 

8.5 Compartments 

Multilevel security systems enforce access control (or information flow) "up 
and down," where the security levels are ordered in a hierarchy, such as (8.1). 
Usually, a simple hierarchy of security labels is not flexible enough to deal 
with a realistic situation. In practice, it is usually necessary to also use 
compartments to further restrict information flow "across" security levels. 

We use the notation 

SECURITY LEVEL {COMPARTMENT} 

to denote a security level and its associated compartment or compartments. 
For example, suppose that we have compartments CAT and DOG within the 
TOP SECRET level. Then we would denote the resulting compartments as 
TOP SECRET {CAT} and TOP SECRET {DOG}. Note that there is also 
a TOP SECRET {CAT,DOG} compartment. While each of these compart-
ments is TOP SECRET, a subject with a TOP SECRET clearance can only 
access a compartment if he or she is specifically allowed to do so. As a result, 
compartments have the effect of restricting information flow across security 
levels. 

Compartments serve to enforce the need to know principle, that is, sub-
jects are only allowed access to the information that they must know for their 
work. If a subject does not have a legitimate need to know everything at, say, 
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the TOP SECRET level, then compartments can be used to limit the TOP 
SECRET information that the subject can access. 

Why create compartments instead of simply creating a new classification 
level? It may be the case that, for example, TOP SECRET {CAT} and TOP 
SECRET {DOG} are not comparable, that is, neither 

TOP SECRET {CAT} < TOP SECRET {DOG} 

TOP SECRET {CAT} > TOP SECRET {DOG} 

holds. Using a strict MLS hierarchy, one of these two conditions must hold 
true. 

Consider the compartments in Figure 8.4, where the arrows represent 
">" relationships. In this example, a subject with a TOP SECRET {CAT} 
clearance does not have access to information in the TOP SECRET {DOG} 
compartment. In addition, a subject with a TOP SECRET {CAT} clearance 
has access to the SECRET {CAT} compartment but not to the compartment 
SECRET {CAT,DOG}, even though the subject has a TOP SECRET clear-
ance. Again, compartments provide a means to enforce the need to know 
principle. 

-TOP SECRET {CAT, DOG} 

TOP SECRET {CAT} TOP SECRET {DOG} 

"TOP SECRET -

♦SECRET {CAT, DOG} 

SECRET {CAT} " ^ " " ^ ^ ^ ^ * SECRET {DOG} 

"SECRET 5 ^^ 

Figure 8.4: Compartments Example 

Multilevel security can be used without compartments and vice versa, but 
the two are usually used together. An interesting example described in [14] 
concerns the protection of personal medical records by the British Medical 
Association, or BMA. The law that required protection of medical records 
mandated a multilevel security system—apparently because lawmakers were 
familiar with MLS. Certain medical conditions, such as AIDS, were considered 
to be the equivalent of TOP SECRET, while other less sensitive information, 
such as drug prescriptions, was considered SECRET. But if a subject had 
been prescribed AIDS drugs, anyone with a SECRET clearance could eas-
ily deduce TOP SECRET information. As a result, all information tended 
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to be classified at the highest level, and consequently all users required the 
highest level of clearance, which defeated the purpose of the system. Even-
tually, the BMA system was changed to a system using only compartments, 
which effectively solved the problem. Then, for example, AIDS prescription 
information could be compartmented from general prescription information, 
thereby enforcing the desired need to know principle. 

In the next two sections we'll discuss covert channels and inference control. 
Both of these topics are related to MLS, but covert channels, in particular, 
arise in many different contexts. 

8.6 Covert Channel 

A covert channel is a communication path not intended as such by the sys-
tem's designers. Covert channels exist in many situations, but they are par-
ticularly prevalent in networks. Covert channels are virtually impossible to 
eliminate, so the emphasis is instead on limiting the capacity of such channels. 

MLS systems are designed to restrict legitimate channels of communica-
tion. But a covert channel provides another way for information to flow. It is 
not difficult to give an example where resources shared by subjects at differ-
ent security levels can be used to pass information, and thereby violate the 
security of an MLS system. 

For example, suppose Alice has a TOP SECRET clearance while Bob only 
has a CONFIDENTIAL clearance. If the file space is shared by all users, then 
Alice and Bob can agree that if Alice wants to send a 1 to Bob, she will create 
a file named, say, FileXYzW, and if she wants to send a 0 she will not create 
such a file. Bob can check to see whether file FileXYzW exists, and if it does, 
he knows Alice has sent him a 1, while if it does not, Alice has sent him 
a 0. In this way, a single bit of information has been passed through a covert 
channel, that is, through a means that was not intended for communication 
by the designers of the system. Note that Bob cannot look inside the file 
FileXYzW since he does not have the required clearance, but we are assuming 
that he can query the file system to see if such a file exists. 

A single bit leaking from Alice to Bob is not a concern, but Alice could 
leak any amount of information by synchronizing with Bob. That is, Alice 
and Bob could agree that Bob will check for the file FileXYzW once each 
minute. As before, if the file does not exist, Alice has sent 0, and if it does 
exists, Alice has sent a 1. In this way Alice can (slowly) leak TOP SECRET 
information to Bob. This process is illustrated in Figure 8.5. 

Covert channels are everywhere. For example, the print queue could be 
used to signal information in much the same way as in the example above. 
Networks are a rich source of covert channels, and several hacking tools exist 
that exploit these covert channels—we'll mention one later in this section. 
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Figure 8.5: Covert Channel Example 

Three things are required for a covert channel to exist. First, the sender 
and receiver must have access to a shared resource. Second, the sender must 
be able to vary some property of the shared resource that the receiver can ob-
serve. Finally, the sender and receiver must be able to synchronize their com-
munication. From this description, it's apparent that potential covert chan-
nels really are everywhere. Of course, we can eliminate all covert channels— 
we just need to eliminate all shared resources and all communication. Obvi-
ously such a system would generally be of little use. 

The conclusion here is that it's virtually impossible to eliminate all covert 
channels in any useful system. The DoD apparently agrees, since their guide-
lines merely call for reducing covert channel capacity to no more than one 
bit per second [131]. The implication is that DoD has given up trying to 
eliminate covert channels. 

Is a limit of one bit per second sufficient to prevent damage from covert 
channels? Consider a TOP SECRET file that is 100 MB in size. Suppose the 
plaintext version of this file is stored in a TOP SECRET file system, while 
an encrypted version of the file—encrypted with, say, AES using a 256-bit 
key—is stored in an UNCLASSIFIED location. Following the DoD guidelines, 
suppose that we have reduced the covert channel capacity of this system to 1 
bit per second. Then it would take more than 25 years to leak the entire 
100 MB TOP SECRET document through a covert channel. However, it 
would take less than 5 minutes to leak the 256-bit AES key through the same 
covert channel. The conclusion is that reducing covert channel capacity might 
be useful, but it will not be sufficient in all cases. 

Next, we consider a real-world example of a covert channel. The Trans-
mission Control Protocol (TCP) is widely used on the Internet. The TCP 
header, which appears in the Appendix in Figure A-3, includes a "reserved" 
field which is reserved for future use, that is, it is not used for anything. This 
field can easily be used to pass information covertly. 
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It's also easy to hide information in the TCP sequence number or ACK 
field and thereby create a more subtle covert channel. Figure 8.6 illustrates 
the method used by the tool Covert -TCP to pass information in the sequence 
number. The sender hides the information in the sequence number X and 
the packet—with its source address forged to be the address of the intended 
recipient—is sent to an innocent server. When the server acknowledges the 
packet, it unwittingly completes the covert channel by passing the information 
contained in X to the intended recipient. Such stealthy covert channels are 
often employed in network attacks [270]. 

Figure 8.6: Covert Channel Using TCP Sequence Number 

8.7 Inference Control 

Consider a database that includes information on college faculty in California. 
Suppose we query the database and ask for the average salary of female 
computer science professors at San Jose State University (SJSU) and we find 
the answer is $100,000. We then query the database and ask for the number of 
female computer science professors at SJSU, and the answer is one. Then we 
could go to the SJSU computer science department website and determine the 
identity of this person.8 In this example, specific information has leaked from 
responses to general questions. The goal of inference control is to prevent 
such leaks from happening, or at least minimize the leakage. 

A database containing medical records would be of considerable interest to 
researchers. For example, by searching for statistical correlations, it may be 
possible to determine causes or risk factors for certain diseases. But patients 
want to keep their medical information private. How can we allow access to 
the statistically significant data while protecting privacy? 

8In this case, no harm was done, since state employee salaries are public information in 
California. 
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An obvious first step is to remove names and addresses from the medical 
records. But this is not sufficient to ensure privacy as the college professor 
example above clearly demonstrates. What more can be done to provide 
stronger inference control while leaving the data accessible for legitimate re-
search uses? 

Several techniques used in inference control are discussed in [14]. One 
such technique is query set size control, in which no response is returned if 
the size of the set it too small. This approach would make it more difficult 
to determine the college professor's salary in the example above. However, if 
medical research is focused on a rare disease, query set size control could also 
prevent or distort important research. 

Another technique is known as the N-respondent, k% dominance rule, 
whereby data is not released if k% or more of the result is contributed by JV 
or fewer subjects. For example, we might query the census database and ask 
for the average net worth of individuals in Bill Gates' neighborhood. With 
any reasonable setting for N and k no results would be returned. In fact, this 
technique is actually applied to information collected by the United States 
Census Bureau. 

Another approach to inference control is randomization, that is, a small 
amount of random noise is added to the data. This is problematic in situations 
such as research into rare medical conditions, where the noise might swamp 
legitimate data. 

Many other methods of inference control have been proposed, but none 
are completely satisfactory. It appears that strong inference control may be 
impossible to achieve in practice, yet it seems obvious that employing some 
inference control, even if it's weak, is better than no inference control at 
all. Inference control will make Trudy's job more difficult, and it will almost 
certainly reduce the amount of information that leaks, thereby limiting the 
damage. 

Does this same logic hold for crypto? That is, is it better to use weak 
encryption or no encryption at all? Surprisingly, for crypto, the answer is 
that, in most cases, you'd be better off not encrypting rather than using 
a weak cipher. Today, most information is not encrypted, and encryption 
tends to indicate important data. If there is a lot of data being sent and 
most of it is plaintext (e.g., email sent over the Internet), then Trudy faces an 
enormous challenge in attempting to filter interesting messages from this mass 
of uninteresting data. However, if your data is encrypted, it would be much 
easier to filter, since encrypted data looks random, whereas unencrypted data 
tends to be highly structured.9 That is, if your encryption is weak, you may 
have just solved Trudy's difficult filtering problem for her, while providing no 
significant protection from a cryptanalytic attack [14]. 

'For one way around this problem, see [287]. 
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8.8 CAPTCHA 

The Turing test was proposed by computing pioneer (and breaker of the 
Enigma) Alan Turing in 1950. The test has a human ask questions to a 
human and a computer. The questioner, who can't see either the human 
or the computer, can only submit questions by typing on a keyboard, and 
responses are received on a computer screen. The questioner does not know 
which is the computer and which is the human, and the goal is to distinguish 
the human from the computer, based solely on the questions and answers. If 
the human questioner can't solve this puzzle with a probability better than 
guessing, the computer passes the Turing test. This test is the gold standard 
in artificial intelligence, and no computer has yet passed the Turing test, but 
occasionally some claim to be getting close. 

A "completely automated public Turing test to tell computers and humans 
apart," or CAPTCHA,10 is a test that a human can pass, but a computer can't 
pass with a probability better than guessing [319]. This could be considered 
as a sort of inverse Turing test. The assumptions here are that the test is 
generated by a computer program and graded by a computer program, yet 
no computer can pass the test, even if that computer has access to the source 
code used to generate the test. In other words, a "CAPTCHA is a program 
that can generate and grade tests that it itself cannot pass, much like some 
professors" [319]. 

At first blush, it seems paradoxical that a computer can create and score 
a test that it cannot pass. However, this becomes less of a paradox when we 
look more closely the details of the process. 

Since CAPTCHAs are designed to prevent non-humans from accessing 
resources, a CAPTCHA can be viewed as a form of access control. According 
to folklore, the original motivation for CAPTCHAs was an online poll that 
asked users to vote for the best computer science graduate school. In this 
version of reality, it quickly become obvious that automated responses from 
MIT and Carnegie-Mellon were skewing the results [320] and researchers de-
veloped the idea of a CAPTCHA to prevent automated "bots" from stuffing 
the ballot box. Today, CAPTCHAs are used in a wide variety of applications. 
For example, free email services use CAPTCHAs to prevent spammers from 
automatically signing up for large numbers of email accounts. 

The requirements for a CAPTCHA include that it must be easy for most 
humans to pass and it must be difficult or impossible for a machines to pass, 
even if the machine has access to the CAPTCHA software. From the at-
tacker's perspective, the only unknown is some randomness that is used to 
generate the specific CAPTCHA. It is also desirable to have different types 

10CAPTCHAs are also known as "human interactive proofs," or HIPs. While CAPTCHA 
may well rank as the worst acronym in the history of the universe, HIP is, well, just not 
hip. 
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of CAPTCHAs in case some person cannot pass one particular type. For 
example, many websites allow users to choose an audio CAPTCHA as an 
alternative to the usual visual CAPTCHA. 

An example of a CAPTCHA from [320] appears in Figure 8.7. In this 
case, a human might be asked to find three words that appear in the image. 
This is a relatively easy problem for humans and today it is also a fairly easy 
problem for computers to solve—much stronger CAPTCHAs exist. 

Figure 8.7: CAPTCHA (Courtesy of Luis von Ahn [320]) 

Perhaps surprisingly, in [56] it is shown that computers are actually better 
than humans at solving all of the fundamental visual CAPTCHA problems, 
with one exception—the so-called segmentation problem, i.e., the problem 
of separating the letters from each other. Consequently, strong CAPTCHAs 
tend to look more like Figure 8.8 than Figure 8.7. 

Figure 8.8: A Strong CAPTCHA [47] 

For a word-based visual CAPTCHA, we assume that Trudy knows the set 
of possible words that could appear and she knows the general format of the 
image, as well as the types of distortions that can be applied. From Trudy's 
perspective, the only unknown is a random number that is used to select the 
word or words and to distort the resulting image. 

There are several types of visual CAPTCHAs of which Figures 8.7 and 8.8 
are representative examples. There are also audio CAPTCHAs in which the 
audio is distorted in some way. The human ear is very good at removing such 
distortion, while automated methods are not so good. Currently, there are 
no text-based CAPTCHAs. 

The computing problems that must be solved to break CAPTCHAs can be 
viewed as difficult problems from the domain of artificial intelligence, or AI. 
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For example, automatic recognition of distorted text is an AI problem, and 
the same is true of problems related to distorted audio. If attackers are able 
to break such CAPTCHAs, they have, in effect, solved a hard AI problem. 
As a result, attacker's efforts are being put to good use. 

Of course, the attackers may not play by the rules—so-called CAPTCHA 
farming is possible, where humans are paid to solve CAPTCHAs. For ex-
ample, it has been widely reported that the lure of free pornography has 
been successfully used to get humans to solve vast numbers of CAPTCHAs 
at minimal cost to the attacker [172]. 

8.9 Firewalls 

Suppose you want to meet with the chairperson of your local computer science 
department. First, you will probably need to contact the computer science 
department secretary. If the secretary deems that a meeting is warranted, 
she will schedule it; otherwise, she will not. In this way, the secretary filters 
out many requests that would otherwise occupy the chair's time. 

A firewall acts a lot like a secretary for your network. The firewall ex-
amines requests for access to your network, and it decides whether they pass 
a reasonableness test. If so, they are allowed through, and, if not, they are 
refused. 

If you want to meet the chair of the computer science department, the 
secretary does a certain level of filtering; however, if you want to meet the 
President of the United States,11 his secretary will perform a much different 
level of filtering. This is somewhat analogous to firewalls, where some simple 
firewalls only filter out obviously bogus requests and other types of firewalls 
make a much greater effort to filter anything suspicious. 

A network firewall, as illustrated in Figure 8.9, is placed between the 
internal network, which might be considered relatively safe,12 and the external 
network (the Internet), which is known to be unsafe. The job of the firewall 
is to determine what to let into and out of the internal network. In this way, 
a firewall provides access control for the network. 

As with most of information security, for firewalls there is no standard 
terminology. But whatever you choose to call them, there are essentially three 
types of firewalls—marketing hype from firewall vendors not withstanding. 
Each type of firewall filters packets by examining the data up to a particular 
layer of the network protocol stack. If you are not familiar with networking 
(and even if you are), now would be a good time to review the networking 
material in the Appendix. 

n P O T U S , that is. 
12This is almost certainly not a valid assumption. It's estimated that about 80% of all 

significant computer attacks are due to insiders [49]. 
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Figure 8.9: Firewall 

We'll adopt the following terminology for the classification of firewalls. 

• A packet filter is a firewall that operates at the network layer. 

• A stateful packet filter is a firewall that lives at the transport layer. 

• An application proxy is, as the name suggests, a firewall that operates 
at the application layer where it functions as a proxy. 

8.9.1 Packet Filter 

A packet filter firewall examines packets up to the network layer, as indicated 
in Figure 8.10. As a result, this type of firewall can only filter packets based 
on the information that is available at the network layer. The information 
at this layer includes the source IP address, the destination IP address, the 
source port, the destination port, and the TCP flag bits (SYN, ACK, RST, 
etc.).13 Such a firewall can filter packets based on ingress or egress, that is, 
it can have different filtering rules for incoming and outgoing packets. 

The primary advantage of a packet filter is efficiency. Since packets only 
need to be processed up to the network layer and only header information is 
examined, the entire operation is inherently efficient. However, there are sev-
eral disadvantages to the simple approach employed by a packet filter. First, 
the firewall has no concept of state, so each packet is treated independently 
of all others. In particular, a packet filter can't examine a TCP connection. 
We'll see in a moment that this is a serious limitation. In addition, a packet 
filter firewall is blind to application data, which is where viruses and other 
mal ware resides. 

Packet filters are configured using access control lists, or ACLs. In this 
context, "ACL" has a completely different meaning than in Section 8.3.1. An 
example of a packet filter ACL appears in Table 8.3. Note that the purpose 
of the ACL in Table 8.3 is to restrict incoming packets to Web responses, 

13Yes, we're cheating. TCP is part of the transport layer, so the TCP flag bits are 
not visible if we follow a strict definition of network layer. Nevertheless, it's OK to cheat 
sometimes, especially in a security class. 
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Figure 8.10: Packet Filter 

Table 8.3: Example ACL 

Action 
Allow 
Allow 
Deny 

Source 
IP 

Inside 
Outside 

All 

Dest 
IP 

Outside 
Inside 

All 

Source 
Port 
Any 
80 
All 

Dest 
Port 
80 

> 1023 
All 

Protocol 
HTTP 
HTTP 

All 

Flag 
Bits 
Any 
ACK 
All 

which should have source port 80. The ACL allows all outbound Web traffic, 
which should be destined to port 80. All other traffic is forbidden. 

How might Trudy take advantage of the inherent limitations of a packet 
filter firewall? Before we can answer this question, we need a couple of fun 
facts. Usually, a firewall (of any type) drops packets sent to most incoming 
ports. That is, the firewall filters out and drops packets that are trying to 
access services that should not be accessed. Because of this, the attacker, 
Trudy, wants to know which ports are open through the firewall. These open 
ports are where Trudy will concentrate her attack. So, the first step in any 
attack on a firewall is usually a port scan, where Trudy tries to determine 
which ports are open through the firewall. 

Now suppose Trudy wants to attack a network that is protected by a 
packet filter. How can Trudy conduct a port scan of the firewall? She could, 
for example, send a packet that has the ACK bit set, without the prior two 
steps of the TCP three-way handshake. Such a packet violates the TCP 
protocol, since the initial packet in any connection must have the SYN bit 
set. Since the packet filter has no concept of state, it will assume that this 
packet is part of an established connection and let it through—provided that 
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it is sent to an open port. Then when this forged packet reaches a host on 
the internal network, the host will realize that there is a problem (since the 
packet is not part of an established connection) and respond with a RST 
packet, which is supposed to tell the sender to terminate the connection. 
While this process may seem harmless, it allows Trudy to scan for open ports 
through the firewall. That is, Trudy can send an initial packet with the ACK 
flag set to a particular port p. If no response is received, then the firewall is 
not forwarding packets sent to port p. However, if a RST packet is received, 
then the packet was allowed through port p into the internal network. This 
technique, which is known as a TCP ACK scan, is illustrated in Figure 8.11. 

Figure 8.11: TCP ACK Scan 

From the ACK scan in Figure 8.11, Trudy has learned that port 1209 is 
open through the firewall. To prevent this attack, the firewall would need 
to remember existing TCP connections, so that it will know that the ACK 
scan packets are not part of any legitimate connection. Next, we'll discuss 
stateful packet filters, which keep track of connections and are therefore able 
to prevent this ACK scan attack. 

8.9.2 Stateful Packet Filter 

As the name implies, a stateful packet filter adds state to a packet filter 
firewall. This means that the firewall keeps track of TCP connections, and 
it can remember UDP "connections" as well. Conceptually, a stateful packet 
filter operates at the transport layer, since it is maintaining information about 
connections. This is illustrated in Figure 8.12. 

The primary advantage of a stateful packet filter is that, in addition to 
all of the features of a packet filter, it also keeps track of ongoing connection. 
This prevents many attacks, such as the TCP ACK scan discussed in the 
previous section. The disadvantages of a stateful packet filter are that it 
cannot examine application data, and, all else being equal, it's slower than a 
packet filtering firewall since more processing is required. 
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Figure 8.12: Stateful Packet Filter 

8.9.3 Application Proxy 

A proxy is something that acts on your behalf. An application proxy fire-
wall processes incoming packets all the way up to the application layer, as 
indicated in Figure 8.13. The firewall, acting on your behalf, is then able 
to verify that the packet appears to be legitimate (as with a stateful packet 
filter) and, in addition, that the actual data inside the packet is safe. 

Figure 8.13: Application Proxy 

The primary advantage of an application proxy is that it has a complete 
view of connections and application data. Consequently, it can have as com-
prehensive of a view as the host itself could have. As a result, the application 
proxy is able to filter bad data at the application layer (such as viruses) while 
also filtering bad packets at the transport layer. The disadvantage of an ap-
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plication proxy is speed or, more precisely, the potential lack thereof. Since 
the firewall is processing packets to the application layer, examining the re-
sulting data, maintaining state, etc., it is doing a great deal more work than 
packet filtering firewalls. 

One interesting feature of an application proxy is that the incoming packet 
is destroyed and a new packet is created in its place when the data passes 
through the firewall. Although this might seem like a minor and insignificant 
point, it's actually a security feature. To see why creating a new packet 
is beneficial, we'll consider the tool known as Firewalk, which is designed 
to scan for open ports through a firewall. While the purpose of Firewalk 
is the same as the TCP ACK scan discussed above, the implementation is 
completely different. 

The time to live, or TTL, field in an IP packet header contains the number 
of hops that the packet will travel before it is terminated. When a packet is 
terminated due to the TTL field, an ICMP "time exceeded" error message is 
sent back to the source.14 

Suppose Trudy knows the IP address of the firewall, the IP address of one 
system on the inside network, and the number of hops to the firewall. Then 
she can send a packet to the IP address of the known host inside the firewall, 
with the TTL field set to one more than the number of hops to the firewall. 
Suppose Trudy sets the destination port of such a packet to p. If the firewall 
does not let data through on port p, there will be no response. If, on the 
other hand, the firewall does let data through on port p, Trudy will receive 
a time exceeded error message from the first router inside the firewall that 
receives the packet. Trudy can then repeat this process for different ports p 
to determine open ports through the firewall. This port scan is illustrated 
in Figure 8.14. Firewalk will succeed if the firewall is a packet filter or a 
stateful packet filter. However, Firewalk won't succeed if the firewall is an 
application proxy (see Problem 29). 

Figure 8.14: Firewalk 

14 And what happens to terminated packets? Of course, they die and go to packet heaven. 
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The net effect of an application proxy is that it forces Trudy to talk to the 
proxy and convince it to forward her messages. Since the proxy is likely to be 
well configured and carefully managed—compared with a typical host—this 
may prove difficult. 

8.9.4 Personal Firewall 

A personal firewall is used to protect a single host or a small network, such 
as a home network. Any of the three methods discussed above (packet filter, 
stateful packet filter, or application proxy) could be used, but generally such 
firewalls are relatively simple for the sake of efficiency and ease of configura-
tion. 

8.9.5 Defense in Depth 

Finally, we consider a network configuration that includes several layers of 
protection. Figure 8.15 gives a schematic for a network that includes a packet 
filter firewall, an application proxy, and personal firewalls, as well as a demil-
itarized zone, or DMZ. 

Figure 8.15: Defense in Depth 

The packet filter in Figure 8.15 is used to prevent common attacks on the 
systems in the DMZ. The systems in the DMZ are those that must be exposed 
to the outside world. These systems receive most of the outside traffic, so a 
simple packet filter is used for the sake of efficiency. The systems in the DMZ 
must be carefully maintained by the administrator since they are the most 
exposed to attack. However, if an attack succeeds on a system in the DMZ, 
the consequences for the company are annoying, but they will probably not 
be life threatening, since the internal network is largely unaffected. 

In Figure 8.15, an application proxy firewall sits between the internal 
network and the DMZ. This provides the strongest possible firewall protection 
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for the internal network. The amount of traffic into the internal network is 
likely to be relatively small, so an application proxy in this position will not 
create a bottleneck. As a final layer of protection, personal firewalls could be 
deployed on the individual hosts inside the corporate network. 

The architecture in Figure 8.15 is an example of defense in depth, which 
is a good security strategy in general—if one layer of the defense is breached, 
there are more layers that the attacker must overcome. If Trudy is skilled 
enough to break through one level, then she may have the necessary skills to 
penetrate other levels. But it's likely to take her some time to do so and the 
longer it takes, the more time an administrator has to detect Trudy's attack 
in progress. 

Regardless of the strength of the firewall (or firewalls), some attacks by 
outsiders will succeed. In addition, attacks by insiders are a serious threat 
and firewalls are of limited value against such attacks. In any case, when an 
attack succeeds, we would like to detect it as soon as possible. In the next 
section we'll discuss this intrusion detection problem. 

8.10 Intrusion Detection Systems 

The primary focus of computer security tends to be intrusion prevention, 
where the goal is to keep the Trudys of the world out of your system or 
network. Authentication can be viewed as a means to prevent intrusions, and 
firewalls are certainly a form of intrusion prevention, as are most types of 
virus protection. Intrusion prevention is the information security analog of 
locking the doors on your car. 

But even if you lock the doors on your car, it might still get stolen. 
In information security, no matter how much effort you put into intrusion 
prevention, occasionally the bad guys will be successful and an intrusion will 
occur. 

What should we do when intrusion prevention fails? Intrusion detection 
systems, or IDSs, are a relatively recent development in information security. 
The purpose of such a system is to detect attacks before, during, and after 
they occurr. 

The basic approach employed by IDSs is to look for "unusual" activity. 
In the past, an administrator would scan through log files looking for signs 
of unusual activity—automated intrusion detection is a natural outgrowth of 
manual log file analysis. 

It is also worth noting that intrusion detection is currently an active re-
search topic. As with any relatively new technology, there are many claims in 
the field that have yet to be substantiated. At this point, it's far from clear 
how successful or useful some of these techniques will prove, particularly in 
the face of increasingly sophisticated attacks. 
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Before discussing the main threads in IDS, we mention in passing that 
intrusion response is a related topic of practical importance. That is, once 
an intrusion is detected, we want to respond to it. In some cases we obtain 
specific information and a reasonable response is fairly obvious. For example, 
we might detect a password guessing attack aimed at a specific account, in 
which case we could respond by locking the account. However, it's not always 
so straightforward. We'll see below that in some cases IDSs provide little 
specific information on the nature of an attack. In such cases, determining 
the proper response is not easy, since we may not be sure of the specifics of 
the attack. In any case, we won't deal further with intrusion response here. 

Who are the intruders that an IDS is trying to detect? An intruder could 
be a hacker who got through your network defenses and is now launching an 
attack on the internal network. Or, even more insidious, the intrusion could 
be due to an evil insider, such as a disgruntled employee. 

What sorts of attacks might an intruder launch? An intruder with limited 
skills (i.e., a "script kiddie") would likely attempt a well-known attack or a 
slight variation on such an attack. A more skilled attacker might be capable 
of launching a significant variation on a well-known attack, or a little-known 
attack or an entirely new attack. Often, the attacker will simply use the 
breached system as a base from which to launch attacks on other systems. 

Broadly speaking, there are two approaches to intrusion detection. 

• Signature-based IDSs detect attacks based on specific known signatures 
or patterns. This is analogous to signature-based virus detection, which 
we'll discuss in Chapter 11. 

• Anomaly-based IDSs attempt to define a baseline of normal behavior 
and provide a warning whenever the system strays too far from this 
baseline. 

We'll have more to say about signature-based and anomaly-based intrusion 
detection below. 

There are also two basic architectures for IDSs. 

• Host-based IDSs apply their detection method or methods to activity 
that occurs on hosts. These systems have the potential to detect attacks 
that are visible at hosts (e.g., buffer overflows or escalation of privilege). 
However, host-based systems have little or no view of network activities. 

• Network-based IDSs apply their detection methods to network traffic. 
These systems are designed to detect attacks such as denial of service, 
port scans, probes involving malformed packets, etc. Such systems have 
some obvious overlap with firewalls. Network-based systems have little 
or no direct view of host-based attacks. 
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Of course, various combinations of these categories of IDSs are possible. For 
example a host-based system could use both signature-based and anomaly-
based techniques, or a signature-based system might employ aspects of both 
host-based and network-based detection. 

8.10.1 Signature-Based IDS 

Failed login attempts may be indicative of a password cracking attack, so an 
IDS might consider UN failed login attempts in M seconds" an indication, or 
signature, of an attack. Then anytime that N or more failed login attempts 
occur within M seconds, the IDS would issue a warning that a password 
cracking attack is suspected to be in progress. 

If Trudy happens to know that Alice's IDS issues a warning whenever N or 
more failed logins occur within M seconds, then Trudy can safely guess N — 1 
passwords every M seconds. In this case, the signature detection would slow 
Trudy's password guessing attack, but it would not completely prevent the 
attack. Another concern with such a scheme is that N and M must be set 
so that the number of false alarms is not excessive. 

Many techniques are used to make signature-based detection more robust, 
where the usual approach is to detect "almost" signatures. For example, if 
about N login attempts occur in about M seconds, then the system could 
warn of a possible password cracking attack, perhaps with a degree of confi-
dence based on the number of attempts and the time interval. But it's not 
always easy to determine reasonable values for "about." Statistical analy-
sis and heuristics are useful, but much care must be taken to minimize the 
false alarm rate. False alarms will quickly undermine confidence in any se-
curity system—like the boy who cried wolf, the security system that screams 
"attack" when none is present, will soon be ignored. 

The advantages of signature-based detection include simplicity, efficiency 
(provided the number of signatures is not excessive), and an excellent ability 
to detect known attacks. Another major benefit is that the warning that 
is issued is specific, since the signature matches a specific attack pattern. 
With a specific warning, an administrator can quickly determine whether the 
suspected attack is real or a false alarm and, if it is real, the admin can usually 
respond appropriately. 

The disadvantages of signature detection include the fact that the signa-
ture file must be current, the number of signatures may become large thereby 
reducing efficiency, and most importantly, the system can only detect known 
attacks. Even slight variations on known attack will likely be missed by 
signature-based systems. 

Anomaly-based IDSs attempt to overcome the shortcomings of signature-
based schemes. But no anomaly-based scheme available today could reason-
ably claim to be a replacement for signature-based detection. That is, an 
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anomaly-based system can supplement the performance of a signature-based 
system, but it is not a replacement for signature detection. 

8.10.2 Anomaly-Based IDS 

Anomaly-based IDSs look for unusual or abnormal behavior. There are sev-
eral major challenges inherent in such an approach. First, we must determine 
what constitutes normal behavior for a system, and this must occur when the 
system is behaving normally. Second, the definition of normal must adapt as 
system usage changes and evolves, otherwise the number of false alarms will 
grow. Third, there are difficult statistical thresholding issues involved. For 
example, we must have a good idea of how far abnormal is away from normal. 

Statistics are obviously necessary in the development of an anomaly-based 
IDS. Recall that the mean defines the statistical norm while the variance gives 
us a way to measure the distribution of the data about the mean. The mean 
and variance together gives us a way to determine abnormal behavior. 

How can we measure normal system behavior? Whatever characteristics 
we decide to measure, we must take the measurements during times of repre-
sentative behavior. In particular, we must not set the baseline measurements 
during an attack or else an attack will be considered normal. Measuring ab-
normal or, more precisely, determining how to separate normal variations in 
behavior from an attack, is an equally challenging problem. Abnormal must 
be measured relative to some specific value of normal. We'll consider abnor-
mal as synonymous with attack, although in reality there are other possible 
causes of abnormal behavior, which further complicates the situation. 

Statistical discrimination techniques are used to separate normal from 
abnormal. Examples of such techniques include Bayesian analysis, linear 
discriminant analysis (LDA), quadratic discriminant analysis (QDA), neural 
nets, and hidden Markov models (HMM), among others. In addition, some 
anomaly detection researchers employ advanced modeling techniques from the 
fields of artificial intelligence and artificial immune systems. Such approaches 
are beyond the scope of our discussion here. 

Next, we'll consider two simplified examples of anomaly detection. The 
first example is simple, but not very realistic, whereas the second is slightly 
less simple and correspondingly more realistic. 

Suppose that we monitor the use of the three commands 

open, read, close. 

We find that under normal use, Alice uses the series of commands 

open, read, close, open, open, read, close. 

For our statistic, we'll consider pairs of consecutive commands and try to 
devise a measure of normal behavior for Alice. From Alice's series of com-



 

298 AUTHORIZATION 

mands, we observe that, of the six possible ordered pairs or commands, four 
pairs appear to be normal for Alice, namely, 

(open.read), (read,close), (close,open), (open,open), 

while the other two pairs, 

(read,open), (close,read), 

are not normally used by Alice. We can use this observation to identify 
potentially unusual behavior by "Alice" that might indicate an intruder is 
posing as Alice. We can then monitor the use of these three commands by 
Alice. If the ratio of abnormal to normal pairs is "too high," we would warn 
the administrator that an attack may be in progress. 

This simple anomaly detection scheme can be improved. For example, we 
could include the expected frequency of each normal pair in the calculation, 
and if the observed pairs differ significantly from the expected distribution, we 
would warn of a possible attack. We might also try to improve the anomaly 
detection by using more than two consecutive commands, or by including 
more commands, or by including other user behavior in the model, or by 
using a more sophisticated statistical discrimination technique. 

For a slightly more plausible anomaly detection scheme, let's focus on file 
access. Suppose that, over an extended period of time, Alice has accessed 
four files, Fo, F\, Fi, Î3 , at the rates Ho, Hi, Hi, H3, respectively, where the 
observed values of the Hi are given in Table 8.4. 

Table 8.4: Alice's Initial File Access Rates 

Hp Hi Hi Hz 
0.10 0.40 0.40 0.10 

Now suppose that, over a recent time interval, Alice has accessed file Fi 
at the rate Ai, for i = 0,1,2,3, as given in Table 8.5. Do Alice's recent file 
access rates represent normal use? To decide, we need some way to compare 
her long-term access rates to the current rates. To answer this question, we'll 
employ the statistic 

S = (H0- A0f + (Hi - Ai)2 + (Hi - A2)
2 + (H3 - A3)

2, (8.2) 

where we define S < 0.1 as normal. In this example, we have 

S = (0.1 - 0.1)2 + (0.4 - 0.4)2 + (0.4 - 0.3)2 -I- (0.1 - 0.2)2 = 0.02, 

and we conclude that Alice's recent use is normal—at least according to this 
one statistic. 
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Table 8.5: Alice's Recent File Access Rates 

A0 Αχ A2 A3 

0.10 0.40 0.30 0.20 

Alice's file access rates can be expected to vary over time, and we need to 

account for this in our IDS. We'll do so by updating Alice's long-term history 

values Hi according to the formula 

Hi = 0.2-Ai+ 0.S-Hi fori = 0,1,2,3. (8.3) 

That is, we update the historical access rates based on a moving average that 

combines the previous values with the recently observed rates—the previous 

values are weighted at 80%, while the current values are weighted 20%. Using 

the data in Tables 8.4 and 8.5, we find that the updated values of Ho and Hi 

are unchanged, whereas 

H2 = 0.2 · 0.3 + 0.8 ■ 0.4 = 0.38 and i /3 = 0.2 · 0.2 + 0.8 · 0.1 = 0.12. 

These updated values appear in Table 8.6. 

Table 8.6: Alice's Updated File Access Rates 

Hp H\ H2 H3 
0.10 0.40 0.38 0.12 

Suppose that over the next time interval Alice's measured access rates are 
those given in Table 8.7. Then we compute the statistic S using the values 
in Tables 8.6 and 8.7 and the formula in equation (8.2) to find 

S = (0.1 - 0.1)2 + (0.4 - 0.3)2 + (0.38 - 0.3)2 + (0.12 - 0.3)2 = 0.0488. 

Since S = 0.0488 < 0.1 we again conclude that this is normal use for Alice. 
Again, we update Alice's long-term averages using the formula in (8.3) and 

Table 8.7: Alice's More Recent File Access Rates 

Ao A-ί A2 A3 

0.10 0.30 0.30 0.30 
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Table 8.8: Alice's Second Updated Access Rates 

Hp Hi H2 H3 
0.10 0.38 0.364 0.156 

the data in Tables 8.6 and 8.7. In this case, we obtain the results that appear 
in Table 8.8. 

Comparing Alice's long-term file access rates in Table 8.4 with her long-
term averages after two updates, as given in Table 8.8, we see that the rates 
have changed significantly over time. Again, it is necessary that an anomaly-
based IDS adapts over time, otherwise we will have a large number of false 
alarms (and a very annoyed system administrator) as Alice's actual behavior 
changes. However, this also presents an opportunity for the attacker, Trudy. 

Since the Hi values slowly evolve to match Alice's behavior, Trudy can 
pose as Alice and remain undetected, provided she doesn't stray too far from 
Alice's usual behavior. But even more worrisome is the fact that Trudy can 
eventually convince the anomaly detection algorithm that her evil behavior is 
normal for Alice, provided Trudy has enough patience. For example, suppose 
that Trudy, posing as Alice, wants to always access file F3. Then, initially, 
she can access file F3 at a slightly higher rate than is normal for Alice. After 
the next update of the Hi values, Trudy will be able to access file F3 at an 
even higher rate without triggering a warning from the anomaly detection 
software, and so on. By going slowly, Trudy will eventually convince the 
anomaly detector that it's normal for "Alice" to only access file F3. 

Note that H3 = 0.1 in Table 8.4 and, two iterations later, H3 = 0.156 in 
Table 8.8. These changes did not trigger a warning by the anomaly detector. 
Does this change represent a new usage pattern by Alice, or does it indicate 
an attempt by Trudy to trick the anomaly detector by going slow? 

To make this anomaly detection scheme more robust, we should also incor-
porate the variance. In addition, we would certainly need to measure more 
than one statistic. If we measured N different statistics, S\,S2,---SN, we 
might combine them according to a formula such as 

T = (Si + S2 + S3 + ... + SN)/N 

and make the determination of normal or abnormal based on the statistic T. 
This would provide a more comprehensive view of normal behavior and make 
it more difficult for Trudy, as she would need to approximate more of Alice's 
normal behavior. A similar—although much more sophisticated—approach 
is used in a popular IDS known as NIDES [9, 155]. NIDES incorporates both 
anomaly-based and signature-based IDSs. A good elementary introduction 
to NIDES, as well as several other IDSs, can be found in [304]. 
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Robust anomaly detection is a difficult problem for a number of reasons. 
For one, system usage and user behavior constantly evolves and, therefore, so 
must the anomaly detector. Without allowing for such changes in behavior, 
false alarms would soon overwhelm the administrator, who would quickly lose 
confidence in the system. But an evolving anomaly detector means that it's 
possible for Trudy to slowly convince the anomaly detector that an attack is 
normal. 

Another fundamental issue with anomaly detection is that a warning of 
abnormal behavior may not provide any useful specific information to the 
administrator. A vague warning that the system may be under attack could 
make it difficult to take concrete action. In contrast, a signature-based IDS 
will provide the administrator with precise information about the nature of 
the suspected attack. 

The primary potential advantage of anomaly detection is that there is a 
chance of detecting previously unknown attacks. It's also sometimes argued 
that anomaly detection can be more efficient than signature detection, par-
ticularly if the signature file is large. In any case, the current generation of 
anomaly detectors must be used in combination with a signature-based IDS 
since they are not sufficiently robust to act as standalone systems. 

Anomaly-based intrusion detection is an active research topic, and many 
security professionals have high hopes for its ultimate success. Anomaly de-
tection is often cited as key future security technology [120]. But it appears 
that the hackers are not convinced, at least based on the title of a talk pre-
sented at a recent Defcon15 conference: "Why anomaly-based intrusion de-
tection systems are a hacker's best friend" [79]. 

The bottom line is that anomaly detection is a difficult and tricky problem. 
It also appears to have parallels with the field of artificial intelligence. Nearly 
a third of a century has passed since we were promised "robots on your 
doorstep" [327] and such predictions appear no more plausible today than 
at the time they were originally made. If anomaly-based intrusion detection 
proves to be anywhere near as challenging as AI, it may never live up to its 
claimed potential. 

8.11 Summary 

In this chapter we reviewed some of the history of authorization, with the 
focus on certification regimes. Then we covered the basics of traditional au-
thorization, namely, Lampson's access control matrix, ACLs, and capabilities. 
The confused deputy problem was used to highlight the differences between 
ACLs and capabilities. We then presented some of the security issues re-

15Defcon is the oldest, largest, and best-known hackers convention. It's held in Las Vegas 
each August, and it's inexpensive, totally chaotic, lots of fun, and hot (literally). 
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lated to multilevel security (MLS) and compartments, as well as the topics 
of covert channels and inference control. MLS naturally led us into the rari-
fied air of security modeling, where we briefly considered Bell-LaPadula and 
Biba's Model. 

After covering the basics of security modeling, we pulled our heads out 
of the clouds, put our feet back on terra firma, and proceeded to discuss a 
few important non-traditional access control topics, including CAPTCHAs 
and firewalls. We concluded the chapter by stretching the definition of access 
control to cover intrusion detection systems (IDS). Many of the issues we 
discussed with respect to IDSs will resurface when we cover virus detection 
in Chapter 11. 

8.12 Problems 

1. On page 269 there is an example of orange book guidelines for testing 
at the so-called C division. Your skeptical author implies that these 
guidelines are somewhat dubious. 

a. Why might the guidelines that appear on page 269 not be partic-
ularly sensible or useful? 

b. Find three more examples of useless guidelines that appear in 
Part II of the orange book [309]. For each of these, summarize 
the guideline and give reasons why you feel it is not particularly 
sensible or useful. 

2. The seven Common Criteria EALs are listed in Section 8.2.2. For each 
of these seven levels, summarize the testing required to achieve that 
level of certification. 

3. In this chapter we discussed access control lists (ACLs) and capabilities 
(aka C-lists). 

a. Give two advantaged of capabilities over ACLs. 

b. Give two advantages of ACLs over capabilities. 

4. In the text, we argued that it's easy to delegate using capabilities. 

a. It is also possible to delegate using ACLs. Explain how this would 
work. 

b. Suppose Alice delegates to Bill who then delegates to Charlie who, 
in turn, delegates to Dave. How would this be accomplished using 
capabilities? How would this be accomplished using ACLs? Which 
is easier and why? 

c. Which is better for delegation, ACLs or capabilities? Why? 
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5. Suppose Alice wants to temporarily delegate her C-list (capabilities) to 
Bob. Alice decides that she will digitally sign her C-list before giving 
it to Bob. 

a. What are the advantages, if any, of such an approach? 

b. What are the disadvantages, if any, of such an approach? 

6. Briefly discuss one real-world application not mentioned in the text 
where multilevel security (MLS) would be useful. 

7. What is the "need to know" principle and how can compartments be 
used to enforce this principle? 

8. Suppose that you work in a classified environment where MLS is em-
ployed and you have a TOP SECRET clearance. 

a. Describe a potential covert channel involving the User Datagram 
Protocol (UDP). 

b. How could you minimize your covert channel in part a, while still 
allowing network access and communication by users with different 
clearances? 

9. The high water mark principle and low water mark principle both apply 
in the realm of multilevel security. 

a. Define the high water mark principle and the low water mark prin-
ciple in the context of MLS. 

b. Is BLP consistent with a high water mark principle, a low water 
mark principle, both, or neither? Justify your answer. 

c. Is Biba's Model consistent with a high water mark principle, a low 
water mark principle, both, or neither? Justify your answer. 

10. This problem deals with covert channels. 

a. Describe a covert channel involving the print queue and estimate 
the realistic capacity of your covert channel. 

b. Describe a subtle covert channel involving the TCP network pro-
tocol. 

11. We briefly discussed the following methods of inference control: query 
set size control; ./V-respondent, k% dominance rule; and randomization. 

a. Explain each of these three methods of inference control. 

b. Briefly discuss the relative strengths and weaknesses of each of 
these methods. 
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12. Inference control is used to reduce the amount of private information 
that can leak as a result of database queries. 

a. Discuss one practical method of inference control not mentioned 
in the book. 

b. How could you attack the method of inference control given in your 
solution to part a? 

13. A botnet consists of a number of compromised machines that are all 
controlled by an evil botmaster [39, 146]. 

a. Most botnets are controlled using the Internet Relay Chat (IRC) 
protocol. What is IRC and why is it particularly useful for con-
trolling a botnet? 

b. Why might a covert channel be useful for controlling a botnet? 

c. Design a covert channel that could provide a reasonable means for 
a botmaster to control a botnet. 

14. Read and briefly summarize each of the following sections from the 
article on covert channels at [131]: 2.2, 3.2, 3.3, 4.1, 4.2, 5.2, 5.3, 5.4. 

15. Ross Anderson claims that "Some kinds of security mechanisms may be 
worse than useless if they can be compromised" [14]. 

a. Does this statement hold true for inference control? Why or why 
not? 

b. Does this hold true for encryption? Why or why not? 

c. Does this hold true for methods that are used to reduce the ca-
pacity of covert channels? Why or why not? 

16. Combine BLP and Biba's Model into a single MLS security model that 
covers both confidentiality and integrity. 

17. BLP can be stated as "no read up, no write down." What is the anal-
ogous statement for Biba's Model? 

18. Consider the visual CAPTCHA known as Gimpy [249]. 

a. Explain how EZ Gimpy and Hard Gimpy work. 

b. How secure is EZ Gimpy compared to Hard Gimpy? 

c. Discuss the most successful known attack on each type of Gimpy. 

19. This problem deals with visual CAPTCHAs. 
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a. Describe an example of a real-world visual CAPTCHA not dis-
cussed in the text and explain how this CAPTCHA works, that is, 
explain how a program would generate the CAPTCHA and score 
the result, and what a human would need to do to pass the test. 

b. For the CAPTCHA in part a, what information is available to an 
attacker? 

20. Design and implement your own visual CAPTCHA. Outline possible 
attacks on your CAPTCHA. How secure is your CAPTCHA? 

21. This problem deals with audio CAPTCHAs. 

a. Describe an example of a real-world audio CAPTCHA and explain 
how this CAPTCHA works, that is, explain how a program would 
generate the CAPTCHA and score the result, and what a human 
would need to do to pass the test. 

b. For the CAPTCHA in part a, what information is available to an 
attacker? 

22. Design and implement your own audio CAPTCHA. Outline possible 
attacks on your CAPTCHA. How secure is your CAPTCHA? 

23. In [56] it is shown that computers are better than humans at solving 
all of the fundamental visual CAPTCHA problems, with the exception 
of the segmentation problem. 

a. What are the fundamental visual CAPTCHA problems? 

b. With the exception of the segmentation problem, how can com-
puters solve each of these fundamental problems? 

c. Intuitively, why is the segmentation problem more difficult for com-
puters to solve? 

24. The reCAPTCHA project is an attempt to make good use of the ef-
fort humans put into solving CAPTCHAs [322]. In reCAPTCHA, a 
user is shown two distorted words, where one of the words is an ac-
tual CAPTCHA, but the other is a word—distorted to look like a 
CAPTCHA—that an optical character recognition (OCR) program was 
unable to recognize. If the real CAPTCHA is solved correctly, then the 
reCAPTCHA program assumes that the other word was also solved cor-
rectly. Since humans are good at correcting OCR errors, reCAPTCHA 
can be used, for example, to improve the accuracy of digitized books. 

a. It is estimated that about 200,000,000 CAPTCHAs are solved 
daily. Suppose that each of these is a reCAPTCHA and each 
requires about 10 seconds to solve. Then, in total, about how 
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much time would be spent by users solving OCR problems each 
day? Note that we assume two CAPTCHAs are solved for one 
reCAPTCHA, so 200,000,000 CAPTCHAs represents 100,000,000 
reCAPTCHAs. 

b. Suppose that when digitizing a book, on average, about 10 hours 
of human effort is required to fix OCR problems. Under the as-
sumptions in part a, how long would it take to correct all of 
the OCR problems created when digitizing all books in the Li-
brary of Congress? The Library of Congress has about 32,000,000 
books, and we assume that every CAPTCHA in the world is a 
reCAPTCHA focused on this specific problem. 

c. How could Trudy attack a reCAPTCHA system? That is, what 
could Trudy do to make the results obtained from a reCAPTCHA 
less reliable? 

d. What could the reCAPTCHA developer do to minimize the effect 
of attacks on the system? 

25. It has been widely reported that spammers sometimes pay humans to 
solve CAPTCHAs [293]. 

a. Why would spammers want to solve lots of CAPTCHAs? 

b. What is the current cost, per CAPTCHA solved (in U.S. dollars), 
to have humans solve CAPTCHAs? 

c. How might you entice humans to solve CAPTCHAs for you with-
out paying them any money? 

26. In this chapter, we discussed three types of firewalls: packet filter, state-
ful packet filter, and application proxy. 

a. At which layer of the Internet protocol stack does each of these 

firewalls operate? 

b. What information is available to each of these firewalls? 

c. Briefly discuss one practical attack on each of these firewalls. 

27. Commercial firewalls do not generally use the terminology packet filter, 
stateful packet filter, or application proxy. However, any firewall must 
be one of these three types, or a combination thereof. Find information 
on a commercial firewall product and explain (using the terminology of 
this chapter) which type of firewall it really is. 

28. If a packet filter firewall does not allow reset (RST) packets out, then 
the TCP ACK scan described in the text will not succeed. 

a. What are some drawbacks to this approach? 
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b. Could the TCP ACK scan attack be modified to work against such 
a system? 

29. In this chapter it's stated that Firewalk, a port scanning tool, will 
succeed if the firewall is a packet filter or a stateful packet filter, but it 
will fail if the firewall is an application proxy. 

a. Why is this the case? That is, why does Firewalk succeed when 
the firewall is a packet filter or stateful packet filter, but fail when 
the firewall is an application proxy? 

b. Can Firewalk be modified to work against an application proxy? 

30. Suppose that a packet filter firewall resets the TTL field to 255 for each 
packet that it allows through the firewall. Then the Firewalk port 
scanning tool described in the this chapter will fail. 

a. Why does Firewalk fail in this case? 

b. Does this proposed solution create any problems? 

c. Could Firewalk be modified to work against such a firewall? 

31. An application proxy firewall is able to scan all incoming application 
data for viruses. It would be more efficient to have each host scan the 
application data it receives for viruses, since this would effectively dis-
tribute the workload among the hosts. Why might it still be preferable 
to have the application proxy perform this function? 

32. Suppose incoming packets are encrypted with a symmetric key that is 
known only to the sender and the intended recipient. Which types of 
firewall (packet filter, stateful packet filter, application proxy) will work 
with such packets and which will not? Justify your answers. 

33. Suppose that packets sent between Alice and Bob are encrypted and 
integrity protected by Alice and Bob with a symmetric key known only 
to Alice and Bob. 

a. Which fields of the IP header can be encrypted and which cannot? 

b. Which fields of the IP header can be integrity protected and which 
cannot? 

c. Which of the firewalls—packet filter, stateful packet filter, appli-
cation proxy—will work in this case, assuming all IP header fields 
that can be integrity protected are integrity protected, and all IP 
header fields that can be encrypted are encrypted? Justify your 

answer. 
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34. Suppose that packets sent between Alice and Bob are encrypted and in-
tegrity protected by Alice's firewall and Bob's firewall with a symmetric 
key known only to Alice's firewall and Bob's firewall. 

a. Which fields of the IP header can be encrypted and which cannot? 

b. Which fields of the IP header can be integrity protected and which 
cannot? 

c. Which of the firewalls—packet filter, stateful packet filter, appli-
cation proxy—will work in this case, assuming all IP header fields 
that can be integrity protected are integrity protected, and all IP 
header fields that can be encrypted are encrypted? Justify your 
answer. 

35. Defense in depth using firewalls is illustrated in Figure 8.15. List other 
security applications where defense in depth is a sensible strategy. 

36. Broadly speaking, there are two distinct types of intrusion detection 
systems, namely, signature-based and anomaly-based. 

a. List the advantages of signature-based intrusion detection, as com-
pared to anomaly-based intrusion detection. 

b. List the advantages of an anomaly-based IDS, in contrast to a 
signature-based IDS. 

c. Why is effective anomaly-based IDS inherently more challenging 
than signature-based detection? 

37. A particular vendor uses the following approach to intrusion detection.16 

The company maintains a large number of honeypots distributed across 
the Internet. To a potential attacker, these honeypots look like vulnera-
ble systems. Consequently, the honeypots attract many attacks and, in 
particular, new attacks tend to show up on the honeypots soon after— 
sometimes even during—their development. Whenever a new attack is 
detected at one of the honeypots, the vendor immediately develops a 
signature and distributes the resulting signature to all systems using its 
product. The actual derivation of the signature is generally a manual 
process. 

a. What are the advantages, if any, of this approach as compared to 
a standard signature-based system? 

b. What are the advantages, if any, of this approach as compared to 
a standard anomaly-based system? 

'This problem is based on a true story, just like many Hollywood movies... 
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c. Using the terminology given in this chapter, the system outlined 
in this problem would be classified as a signature-based IDS, not 
an anomaly-based IDS. Why? 

d. The definition of signature-based and anomaly-based IDS are not 
standardized.17 The vendor of the system outlined in this problem 
refers to it as an anomaly-based IDS. Why might they insist on 
calling it an anomaly-based IDS, when your well-nigh infallible 
author would classify it as a signature-based system? 

38. The anomaly-based intrusion detection example presented in this chap-
ter is based on file-use statistics. 

a. Many other statistics could be used as part of an anomaly-based 
IDS. For example, network usage would be a sensible statistic to 
consider. List five other statistics that could reasonably be used 
in an anomaly-based IDS. 

b. Why might it be a good idea to combine several statistics rather 
than relying on just a few? 

c. Why might it not be a good idea to combine several statistics 
rather than relying on just a few? 

39. Recall that the anomaly-based IDS example presented in this chapter 
is based on file-use statistics. The expected file use percentages (the Hi 
values in Table 8.4) are periodically updated using equation (8.3), which 
can be viewed as a moving average. 

a. Why is it necessary to update the expected file use percentages? 

b. When we update the expected file use percentages, it creates a 
potential avenue of attack for Trudy. How and why is this the 
case? 

c. Discuss a different generic approach to constructing and updating 
an anomaly-based IDS. 

40. Suppose that at the time interval following the results in Table 8.8, 
Alice's file-use statistics are given by AQ = 0.05, A\ = 0.25, A2 = 0.25, 
and As = 0.45. 

a. Is this normal for Alice? 
17Lack of standard terminology is a problem throughout most of the fields in information 

security (crypto being one of the few exceptions). It's important to be aware of this situa-
tion, since differing definitions is a common source of confusion. Of course, this problem is 
not unique to information security—differing definitions also cause confusion in many other 
fields of human endeavor. For proof, ask any two randomly selected economists about the 
current state of the economy. 
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b. Compute the updated values of i/o through H3. 

41. Suppose that we begin with the values of Ho through H3 that appear 
in Table 8.4. 

a. What is the minimum number of iterations required until it is 
possible to have H2 > 0.9 without the IDS triggering a warning at 
any step? 

b. What is the minimum number of iterations required until it is 
possible to have H3 > 0.9 without the IDS triggering a warning at 
any step? 

42. Consider the results given in Table 8.6. 

a. For the subsequent time interval, what is the largest possible value 
for A3 that will not trigger a warning from the IDS? 

b. Give values for Ao, Ai, and A2 that are compatible with the solu-
tion to part a. 

c. Compute the statistic S, using the solutions from parts a and b, 
and the Hi values in Table 8.6. 
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Chapter 9 

Simple Authentication 
Protocols 

"I quite agree with you," said the Duchess; "and the moral of that is— 
'Be what you would seem to be'—or, 

if you'd like it put more simply—'Never imagine yourself not to be 
otherwise than what it might appear to others that what you were 

or might have been was not otherwise than what you 
had been would have appeared to them to be otherwise. ' " 

— Lewis Carroll, Alice in Wonderland 

Seek simplicity, and distrust it. 
— Alfred North Whitehead 

9.1 Introduction 

Protocols are the rules tha t are followed in some particular interaction. For 
example, there is a protocol that you follow if you want to ask a question in 
class, and it goes something like this: 

1. You raise your hand. 

2. The teacher calls on you. 

3. You ask your question. 

4. The teacher says, "I don't know."1 

There are a vast number of human protocols, some of which can be very 
intricate, with numerous special cases to consider. 

1Well, at least that's the way it works in your oblivious author's classes. 

313 
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In the context of networking, protocols are the rules followed in networked 
communication systems. Examples of formal networking protocols include 
HTTP, FTP, TCP, UDP, PPP, and there are many, many more. In fact, the 
study of networks is largely the study of networking protocols. 

Security protocols are the communication rules followed in security appli-
cations. In Chapter 10 we'll look closely at several real-world security proto-
cols including SSH, SSL, IPSec, WEP, and Kerberos. In this chapter, we'll 
consider simplified authentication protocols so that we can better understand 
the fundamental security issues involved in the design of such protocols. If 
you want to delve a little deeper than the material presented in this chapter, 
the paper [3] has a discussion of some security protocol design principles. 

In Chapter 7, we discussed methods that are used, primarily, to authen-
ticate humans to a machines. In this chapter, we'll discuss authentication 
protocols. Although it might seem that these two authentication topics must 
be closely related, in fact, they are almost completely different. Here, we'll 
deal with the security issues related to the messages that are sent over a net-
work to authenticate the participants. We'll see examples of well-known types 
of attacks on protocols and we'll show how to prevent these attacks. Note 
that our examples and analysis are informal and intuitive. The advantage of 
this approach is that we can cover all of the basic concepts quickly and with 
minimal background, but the price we pay is that some rigor is sacrificed. 

Protocols can be subtle—often, a seemingly innocuous change makes a 
significant difference. Security protocols are particularly subtle, since the 
attacker can actively intervene in the process in a variety of ways. As an 
indication of the challenges inherent in security protocols, many well-known 
security protocols—including WEP, GSM, and even IPSec—have significant 
security issues. And even if the protocol itself is not flawed, a particular 
implementation can be. 

Obviously, a security protocol must meet some specified security require-
ments. But we also want protocols to be efficient, both in computational cost 
and bandwidth usage. An ideal security protocol would not be too fragile, 
that is, the protocol would function correctly even when an attacker actively 
tries to break it. In addition, a security protocol should continue to work even 
if the environment in which it's deployed changes. Of course, it's impossi-
ble to protect against every possible eventuality, but protocol developers can 
try to anticipate likely changes in the environment and build in protections. 
Some of the most serious security challenges today are due to the fact that 
protocols are being used in environments for which they were not initially 
designed. For example, many Internet protocols were designed for a friendly, 
academic environment, which is about as far from the reality of the modern 
Internet as possible. Ease of use and ease of implementation are also desirable 
features of security protocols. Obviously, it's going to be difficult to design 
an ideal protocol. 
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9.2 Simple Security Protocols 

The first security protocol that we consider is a protocol that could be used 
for entry into a secure facility, such as the National Security Agency. Em-
ployees are given a badge that they must wear at all times when in the secure 
facility. To enter the building, the badge is inserted into a card reader and 
the employee must provide a PIN number. The secure entry protocol can be 
described as follows. 

1. Insert badge into reader. 

2. Enter PIN. 

3. Is the PIN correct? 

• Yes: Enter the building. 

• No: Get shot by a security guard.2 

When you withdraw money from an ATM machine, the protocol is vir-
tually identical to the secure entry protocol above, but without the violent 
ending: 

1. Insert ATM card into reader 

2. Enter PIN 

3. Is the PIN correct? 

• Yes: Conduct your transactions 

• No: Machine eats your ATM card 

The military has a need for many specialized security protocols. One 
example is an identify friend or foe (IFF) protocol. These protocols are 
designed to help prevent friendly-fire incidents—where soldiers accidentally 
attack soldiers on their own side—while not seriously hampering the fight 
against the enemy. 

A simple example of an IFF protocol appears in Figure 9.1. This protocol 
was reportedly used by the South African Air Force, or SAAF, when fighting 
in Angola in the mid-1970s [14]. The South Africans were fighting Angola for 
control of Namibia (known as Southwest Africa at the time). The Angolan 
side was flying Soviet MiG aircraft, piloted by Cubans.3 

2 Of course, this is an exaggeration—you get three tries before being shot by the security 
guard. 

3This was one of the hot wars that erupted during the Cold War. Early in the war, the 
South Africans were amazed by the skill of the "Angolan" pilots. They eventually realized 
the pilots were actually Cuban when satellite photos revealed baseball diamonds. 
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The IFF protocol in Figure 9.1 works as follows. When the SAAF radar 
detects an aircraft approaching its base, a random number, or challenge, N is 
sent to the aircraft. All SAAF aircraft have access to a key K that they use to 
encrypt the challenge, E(N, K), which is computed and sent back to the radar 
station. Time is of the essence, so all of this happens automatically, without 
human intervention. Since enemy aircraft do not know K, they cannot send 
back the required response. It would seem that this protocol gives the radar 
station a simple way to determine whether an approaching aircraft is a friend 
(let it land) or foe (shoot it down). 

Figure 9.1: Identify Friend or Foe (IFF) 

Unfortunately for those manning the radar station, there is a clever at-
tack on the IFF system in Figure 9.1. Anderson has dubbed this attack the 
MiG-in-the-middle [14], which is a pun on man-in-the-middle. The scenario 
for the attack, which is illustrated in Figure 9.2, is as follows. While an 
SAAF Impala fighter is flying a mission over Angola, a Cuban-piloted MiG 
aircraft (the foe of the SAAF) loiters just outside of the range of the SAAF 
radar. When the Impala fighter is within range of a Cuban radar station 
in Angola, the MiG is told to move within range of the SAAF radar. As 
specified by the protocol, the SAAF radar sends the challenge N to the MiG. 
To avoid being shot down, the MiG needs to respond with E{N,K), and 
quickly. Because the MiG does not know the key K, its situation appears 
hopeless. However, the MiG can forward the challenge N to its radar station 
in Angola, which, in turn, forwards the challenge to the SAAF Impala. The 
Impala fighter—not realizing that it has received the challenge from an enemy 
radar site—responds with E{N,K). At this point, the Cuban radar relays 
the response E(N, K) to the MiG, which can then provide it to the SAAF 
radar. Assuming this all happens fast enough, the SAAF radar will signal 
that the MiG is a friend, with disastrous consequences for the SAAF radar 
station and its operators. 

Although it nicely illustrates an interesting security failure, it seems that 
this MiG-in-the-middle attack never actually occurred [15]. In any case, this 
is our first illustration of a security protocol failure, but it certainly won't be 
the last. 
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Figure 9.2: MiG-in-the-Middle 

9.3 Authentication Protocols 

"I can't explain myself, I'm afraid, Sir, " said Alice, 
"because I'm not myself you see." 

— Lewis Carroll, Alice in Wonderland 

Suppose that Alice must prove to Bob that she's Alice, where Alice and Bob 
are communicating over a network. Keep in mind that Alice can be a human 
or a machine, and ditto for Bob. In fact, in this networked scenario, Alice 
and Bob will almost invariably be machines, which has important implications 
that we'll consider in a moment. 

In many cases, it's sufficient for Alice to prove her identity to Bob, without 
Bob proving his identity to Alice. But sometimes mutual authentication is 
necessary, that is, Bob must also prove his identity to Alice. It seems obvious 
that if Alice can prove her identity to Bob, then precisely the same protocol 
can be used in the other direction for Bob to prove his identity to Alice. We'll 
see that, in security protocols, the obvious approach is not always secure. 

In addition to authentication, a session key is inevitably required. A ses-
sion key is a symmetric key that will be used to protect the confidentiality 
and/or integrity of the current session, provided the authentication succeeds. 
Initially, we'll ignore the session key so that we can concentrate on authenti-
cation. 

In certain situations, there may be other requirements placed on a security 
protocol. For example, we might require that the protocol use public keys, or 
symmetric keys, or hash functions. In addition, some situations might call for 
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a protocol that provides anonymity or plausible deniability (discussed below) 
or other not-so-obvious features. 

We've previously considered the security issues associated with authenti-
cation on standalone computer systems. While such authentication presents 
its own set of challenges (hashing, salting, etc.), from the protocol perspec-
tive, it's straightforward. In contrast, authentication over a network requires 
very careful attention to protocol issues. When a network is involved, nu-
merous attacks are available to Trudy that are generally not a concern on a 
standalone computer. When messages are sent over a network, Trudy can 
passively observe the messages and she can conduct various active attacks 
such as replaying old messages, inserting, deleting, or changing messages. In 
this book, we haven't previously encountered anything comparable to these 
types of attacks. 

Our first attempt at authentication over a network is the protocol in 
Figure 9.3. This three-message protocol requires that Alice (the client) first 
initiate contact with Bob (the server) and state her identity. Then Bob asks 
for proof of Alice's identity, and Alice responds with her password. Finally, 
Bob uses Alice's password to authenticate Alice. 

"I'm Alice" 

Prove it 

My password is "frank" 

Alice Bob 

Figure 9.3: Simple Authentication 

Although the protocol in Figure 9.3 is certainly simple, it has some major 
flaws. For one thing, if Trudy is able to observe the messages that are sent, she 
can later replay the messages to convince Bob that she is Alice, as illustrated 
in Figure 9.4. Since we are assuming these messages are sent over a network, 
this replay attack is a serious threat. 

"I'm Alice" 

Prove it 

My password is "frank" 

Trudy Bob 

Figure 9.4: Replay Attack 
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Another issue with the too-simple authentication in Figure 9.3 is that 
Alice's password is sent in the clear. If Trudy observes the password when 
it is sent from Alice's computer, then Trudy knows Alice's password. This 
is even worse than a replay attack since Trudy can then pose as Alice on 
any site where Alice has reused this particular password. Another password 
issue with this protocol is that Bob must know Alice's password before he 
can authenticate her. 

This simple authentication protocol is also inefficient, since the same effect 
could be accomplished in a single message from Alice to Bob. So, this protocol 
is a loser in every respect. Finally, note that the protocol in Figure 9.3 does 
not attempt to provide mutual authentication, which may be required in some 
cases. 

For our next attempt at an authentication protocol, consider Figure 9.5. 
This protocol solves some of the problems of our previous simple authentica-
tion protocol. In this new-and-improved version, a passive observer, Trudy, 
will not learn Alice's password and Bob no longer needs to know Alice's 
password—although he must know the hash of Alice's password. 

"I'm Alice" 
► 

Prove it 

h(Alice's password) 

Bob 

Figure 9.5: Simple Authentication with a Hash 

The major flaw in the protocol of Figure 9.5 is that it's still subject to a 
replay attack, where Trudy records Alice's messages and later replays them to 
Bob. In this way, Trudy could be authenticated as Alice, without knowledge 
of Alice's password. 

To authenticate Alice, Bob will need to employ a challenge-response mech-
anism. That is, Bob will send a challenge to Alice, and the response from 
Alice must be something that only Alice can provide and that Bob can verify. 
To prevent a replay attack, Bob can incorporate a "number used once," or 
nonce, in the challenge. That is, Bob will send a unique challenge each time, 
and the challenge will be used to compute the appropriate response. Bob can 
thereby distinguish the current response from a replay of a previous response. 
In other words, the nonce is used to ensure the freshness of the response. This 
approach to authentication with replay prevention is illustrated in Figure 9.6. 

First, we'll design an authentication protocol using Alice's password. A 
password is something only Alice should know and Bob can verify—assuming 
that Bob knows Alice's password, that is. 

<# 

Alice 
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"I'm Alice" 
► 

. Nonce 

Something that could only be 

Alice f rom Alice (and Bob can verify) Bob 

Figure 9.6: Generic Authentication 

Our first serious attempt at an authentication protocol that is resistant 
to replay appears is Figure 9.7. In this protocol, the nonce sent from Bob 
to Alice is the challenge. Alice must respond with the hash of her password 
together with the nonce, which, assuming Alice's password is secure, serves to 
prove that the response was generated by Alice. Note that the nonce proves 
that the response is fresh and not a replay. 

"I'm Alice" 
► 

Nonce 

h(Alice's password, Nonce) 

Alice Bob 

Figure 9.7: Challenge-Response 

One problem with the protocol in Figure 9.7 is that Bob must know 
Alice's password. Furthermore, Alice and Bob typically represent machines 
rather than users, so it makes no sense to use passwords. After all, passwords 
are little more than a crutch used by humans because we are incapable of 
remembering keys. That is, passwords are about the closest thing to a key 
that humans can remember. So, if Alice and Bob are actually machines, they 
should be using keys instead of passwords. 

9.3.1 Authent icat ion Using Symmetr ic Keys 

Having liberated ourselves from passwords, let's design a secure authentica-
tion protocol based on symmetric key cryptography. Recall that our notation 
for encrypting is C = E(P, K) where P is plaintext, K is the key, and C is 
the ciphertext, while the notation for decrypting is P = D(C, K). When dis-
cussing protocols, we are primarily concerned with attacks on protocols, not 
attacks on the cryptography used in protocols. Consequently, in this chapter 
we'll assume that the underlying cryptography is secure. 
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Suppose that Alice and Bob share the symmetric key KAB- AS in sym-
metric cryptography, we assume that nobody else has access to KAB- Alice 
will authenticate herself to Bob by proving that she knows the key, without 
revealing the key to Trudy. In addition, the protocol must provide protection 
against a replay attack. 

Our first symmetric key authentication protocol appears in Figure 9.8. 
This protocol is analogous to our previous password-based challenge-response 
protocol, but instead of hashing a nonce with a password, we've encrypted 
the nonce R with the shared symmetric key KAB-

"I'm Alice" 
► 

« 5 
E(R,KAB) 

Alice * Bob 

Figure 9.8: Symmetric Key Authentication Protocol 

The symmetric key authentication protocol in Figure 9.8 allows Bob to 
authenticate Alice, since Alice can encrypt R with KAB, Trudy cannot, and 
Bob can verify that the encryption was done correctly—Bob knows KAB-
This protocol prevents a replay attack, thanks to the nonce R, which ensures 
that each response is fresh. The protocol lacks mutual authentication, so 
our next task will be to develop a mutual authentication protocol based on 
symmetric keys. 

Our first attempt at mutual authentication appears in Figure 9.9. This 
protocol is certainly efficient, and it does use symmetric key cryptography, 
but it has an obvious flaw. The third message in this protocol is simply a 
replay of the second, and consequently it proves nothing about the sender, 
be it Alice or Trudy. 

"I'm Alice", R 

M Ε(Π,ΚΛΒ) 

E(R,KAB) 

Alice Bob 

Figure 9.9: Mutual Authentication? 

A more plausible approach to mutual authentication would be to use the 

secure authentication protocol in Figure 9.8 and repeat the process twice, 
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once for Bob to authenticate Alice and once more for Alice to authenticate 
Bob. We've illustrated this approach in Figure 9.10, where we've combined 
some messages for the sake of efficiency. 

"I'm Alice", RA 

- ► 
Rß' E(RA'KAB) 

E ( R B- K AB) . 

* Bob 

Figure 9.10: Secure Mutual Authentication? 

Perhaps surprisingly, the protocol in Figure 9.10 is insecure—it is subject 
to an attack that is analogous to the MiG-in-the-middle attack discussed 
previously. In this attack, which is illustrated in Figure 9.11, Trudy initiates 
a conversation with Bob by claiming to be Alice and sends a challenge RA 
to Bob. Following the protocol, Bob encrypts the challenge RA and sends 
it, along with his challenge RB, to Trudy. At this point Trudy appears 
to be stuck, since she doesn't know the key KAB, and therefore she can't 
respond appropriately to Bob's challenge. However, Trudy cleverly opens a 
new connection to Bob where she again claims to be Alice and this time sends 
Bob his own "random" challenge RB- Bob, following the protocol, responds 
with E(RB, KAB), which Trudy can now use to complete the first connection. 
Trudy can leave the second connection to time out, since she has—in the first 
connection—convinced Bob that she is Alice. 

<4 

Alice 

Figure 9.11: Trudy's Attack 
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The conclusion is that a non-mutual authentication protocol may not be 
secure for mutual authentication. Another conclusion is that protocols (and 
attacks on protocols) can be subtle. Yet another conclusion is that "obvious" 
changes to protocols can cause unexpected security problems. 

In Figure 9.12, we've made a couple of minor changes to the insecure 
mutual authentication protocol of Figure 9.10. In particular, we've encrypted 
the user's identity together with the nonce. This change is sufficient to prevent 
Trudy's previous attack since she cannot use a response from Bob for the third 
message—Bob will realize that he encrypted it himself. 

"I'm Alice", RA 

- ► 
t RB, E("Bob",RA,KAB) 

E("Alice",RB,KAB) ^ 

Alice Bob 

Figure 9.12: Strong Mutual Authentication Protocol 

One lesson here is that it's a bad idea to have the two sides in a protocol do 
exactly the same thing, since this might open the door to an attack. Another 
lesson is that small changes to a protocol can result in big changes in its 
security. 

9.3.2 Authentication Using Public Keys 

In the previous section we devised a secure mutual authentication protocol 
using symmetric keys. Can we accomplish the same thing using public key 
cryptography? First, recall our public key notation. Encrypting a message M 
with Alice's public key is denoted C = {M}Ai;ce while decrypt C with Alice's 
private key, and thereby recovering the plaintext M, is denoted M = [C]Alice· 
Signing is also a private key operation. Of course, encryption and decryption 
are inverse operation, as are signing and signature verification, that is 

[WAlicelAlice = M and { [ M ] A l i c e } A l i c e = M. 

It's always important to remember that in public key cryptography, anybody 
can do public key operations, while only Alice can use her private key.4 

Our first attempt at authentication using public key cryptography appears 
in Figure 9.13. This protocol allows Bob to authenticate Alice, since only 
Alice can do the private key operation that is necessary to reply with R in 
the third message. Also, assuming that the nonce R is chosen (by Bob) at 

4Repeat to yourself 100 times: The public key is public. 
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random, a replay attack is not feasible. That is, Trudy cannot replay R from 
a previous iteration of the protocol, since the random challenge will almost 
certainly not be the same in a subsequent iteration. 

However, if Alice uses the same key pair to encrypt as she uses for authen-
tication, then there is a potential problem with the protocol in Figure 9.13. 
Suppose Trudy has previously intercepted a message encrypted with Alice's 
public key, say, C = {Malice- Then Trudy can pose as Bob and send C to 
Alice in message two, and Alice will decrypt it and send the plaintext back to 
Trudy. From Trudy's perspective, it doesn't get any better than that. The 
moral of the story is that you should not use the same key pair for signing as 
you use for encryption. 

"I'm Alice" 
► 

{R/Alice 
4 

R 
* 

Alice Bob 

Figure 9.13: Authentication with Public Key Encryption 

The authentication protocol in Figure 9.13 uses public key encryption. Is 
it possible to accomplish the same feat using digital signatures? In fact, it is, 
as illustrated in Figure 9.14. 

"I'm Alice" 

R 

< 

[RUlice 

Alice 

Figure 9.14: Authentication via Digital Signature 

The protocol in Figure 9.14 has similar security issues as the public key 
encryption protocol in Figure 9.13. In Figure 9.14, if Trudy can pose as Bob, 
she can get Alice to sign anything. Again, the solution to this problem is 
to always use different key pairs for signing and encryption. Finally, note 
that, from Alice's perspective, the protocols in Figures 9.13 and 9.14 are 
identical, since in both cases she applies her private key to whatever shows 
up in message two. 

Bob 
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9.3.3 Session Keys 

Along with authentication, we invariably require a session key. Even when a 
symmetric key is used for authentication, we want to use a distinct session 
keys to encrypt data within each connection. The purpose of a session key 
is to limit the amount of data encrypted with any one particular key, and it 
also serves to limit the damage if one session key is compromised. A session 
key is used to provide confidentiality or integrity protection (or both) to the 
messages. 

We want to establish the session key as part of the authentication proto-
col. That is, when the authentication is complete, we will also have securely 
established a shared symmetric key. Therefore, when analyzing an authenti-
cation protocol, we need to consider attacks on the authentication itself, as 
well as attacks on the session key. 

Our next goal is to design an authentication protocol that also provides a 
shared symmetric key. It looks to be straightforward to include a session key 
in our secure public key authentication protocol. Such a protocol appears in 
Figure 9.15. 

"I'm Alice", R 

{R.K/Alice 
M 

{R+1.KW, 
Alice 

Figure 9.15: Authentication and a Session Key 

One possible concern with the protocol of Figure 9.15 is that it does not 
provide for mutual authentication—only Alice is authenticated.5 But before 
we tackle that issue, can we modify the protocol in Figure 9.15 so that it 
uses digital signatures instead of public key encryption? This also seems 
straightforward, and the result appears in Figure 9.16. 

However, there is a fatal flaw in the protocol of Figure 9.16. Since the 
key is signed, anybody can use Bob's (or Alice's) public key and find the 
session key K. A session key that is public knowledge is definitely not secure. 
But before we dismiss this protocol entirely, note that it does provide mutual 
authentication, whereas the public key encryption protocol in Figure 9.15 
does not. Can we combine these protocols so as to achieve both mutual 

5 One strange thing about this protocol is that the key K acts as Bob's challenge to Alice 
and the nonce R is useless. But there is a method to the madness, which will become clear 
shortly. 

*> 

Bob 
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"I'm Alice", R 

[R»K]ßob 
< 

[R +1 ,K]Alice 

Alice 

Figure 9.16: Signature-Based Authentication and Session Key 

authentication and a secure session key? The answer is yes, and there are a 
couple of ways to do so. 

Suppose that, instead of signing or encrypting the messages, we sign and 
encrypt the messages. Figure 9.17 illustrates such a sign and encrypt protocol. 
This appears to provide the desired secure mutual authentication and a secure 
session key. 

"I'm Alice", R 

{[R.K]Bob)Alice 

* Bob 

Figure 9.17: Mutual Authentication and Session Key 

Since the protocol in Figure 9.17 provides mutual authentication and a 
session key using sign and encrypt, surely encrypt and sign must work, too. 
An encrypt and sign protocol appears in Figure 9.18. 

"I'm Alice", R 

[{R,K}AHce]Bob 

< 
[{R +1 .K^bUiJce 

Alice 

Figure 9.18: Encrypt and Sign Mutual Authentication 

Note that the values {-R,-ft'}Alice a n d {R + l ,^}ßob m Figure 9.18 are 
available to anyone who has access to Alice's or Bob's public keys (which, 
by assumption, is anybody who wants them). Since this is not the case 
in Figure 9.17, it might seem that sign and encrypt somehow reveals less 

Bob 

Alice 

■► 

Bob 
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information than encrypt and sign. However, it appears that an attacker 
must break the public key encryption to recover K in either case and, if so, 
there is no security difference between the two. Recall that when analyzing 
protocols, we assume all crypto is strong, so breaking the encryption is not 
an option for Trudy. 

9.3.4 Perfect Forward Secrecy 

Now that we have conquered mutual authentication and session key estab-
lishment (using public keys), we turn our attention to perfect forward secrecy, 
or PFS. What is PFS? Rather than answer directly, we'll look at an exam-
ple that illustrates what PFS is not. Suppose that Alice encrypts a message 
with a shared symmetric key KAB and sends the resulting ciphertext to Bob. 
Trudy can't break the cipher to recover the key, so out of desperation she sim-
ply records all of the messages encrypted with the key KAB- NOW suppose 
that at some point in the future Trudy manages to get access to Alice's com-
puter, where she finds the key KAB- Then Trudy can decrypt the recorded 
ciphertext messages. While such an attack may seem unlikely, the problem 
is potentially significant since, once Trudy has recorded the ciphertext, the 
encryption key remains a vulnerability into the future. To avoid this problem, 
Alice and Bob must both destroy all traces of KAB once they have finished 
using it. This might not be as easy as it seems, particularly if KAB is a long-
term key that Alice and Bob will need to use in the future. Furthermore, 
even if Alice is careful and properly manages her keys, she would have to rely 
on Bob to do the same (and vice versa). 

PFS makes such an attack impossible. That is, even if Trudy records all 
ciphertext messages and she later recovers all long-term secrets (symmetric 
keys and/or private keys), she cannot decrypt the recorded messages. While 
it might seem that this is an impossibility, it is not only possible, but actually 
fairly easy to achieve in practice. 

Suppose Bob and Alice share a long-term symmetric key KAB- Then 
if they want PFS, they definitely can't use KAB as their encryption key. 
Instead, Alice and Bob must agree on a session key Ks and forget Ks after 
it's no longer needed, i.e., after the current session ends. So, as in our previous 
protocols, Alice and Bob must find a way to agree on a session key Ks, by 
using their long-term symmetric key KAB- However, for PFS we have the 
added condition that if Trudy later finds KAB, she cannot determine Ks, 
even if she recorded all of the messages exchanged by Alice and Bob. 

Suppose that Alice generates a session key Ks and sends E(Ks, KAB) to 
Bob, that is, Alice simply encrypts the session key and sends it to Bob. If we 
are not concerned with PFS, this would be a sensible way to establish a session 
key in conjunction with an authentication protocol. However, this approach, 
which is illustrated in Figure 9.19, does not provide PFS. If Trudy records 
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all of the messages and later recovers KAB, she can decrypt E(Ks, KAB) to 
recover the session key Ks, which she can then use to decrypt the recorded 
ciphertext messages. This is precisely the attack that PFS is supposed to 
prevent. 

E(KS, KAB) 

E(messages, Ks) 

Alice, KAB Bob, KAB 

Figure 9.19: Naïve Attempt at PFS 

There are actually several ways to achieve PFS, but the most elegant 
approach is to use an ephemeral Diffie-Hellman key exchange. As a reminder, 
the standard Diffie-Hellman key exchange protocol appears in Figure 9.20. 
In this protocol, g and p are public, Alice chooses her secret exponent a and 
Bob chooses his secret exponent b. Then Alice sends ga mod p to Bob and 
Bob sends gb mod p to Alice. Alice and Bob can each compute the shared 
secret gab mod p. Recall that the crucial weakness with Diffie-Hellman is 
that it is subject to a man-in-the-middle attack, as discussed in Section 4.4 
of Chapter 4. 

ga mod p 

gbmodp 

Alice, a Bob, b 

Figure 9.20: Diffie-Hellman 

If we are to use Diffie-Hellman for PFS,6 we must prevent the man-in-the-
middle attack, and, of course, we must somehow assure PFS. The aforemen-
tioned ephemeral Diffie-Hellman can accomplish both. To prevent the MiM 
attack, Alice and Bob can use their shared symmetric key KAB to encrypt the 
Diffie-Hellman exchange. Then to get PFS, all that is required is that, once 
Alice has computed the shared session key Ks = gab mod p, she must forget 

Your acronym-loving author was tempted to call this protocol DH4PFS or maybe 
EDH4PFS but, for once, he showed restraint. 
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her secret exponent a and, similarly, Bob must forget his secret exponent 6. 
This protocol is illustrated in Figure 9.21. 

E(ga mod p, KAB) 

E(gb mod p, KAB) 

Alice, a Bob, b 

Figure 9.21: Ephemeral Diffie-Hellman for PFS 

One interesting feature of the PFS protocol in Figure 9.21 is that once 
Alice and Bob have forgotten their respective secret exponents, even they 
can't reconstruct the session key Ks- If Alice and Bob can't recover the 
session key, certainly Trudy can be no better off. If Trudy records the con-
versation in Figure 9.21 and later is able to find KAB, she will not be able 
to recover the session key Kg unless she can break Diffie-Hellman. Assuming 
the underlying crypto is strong, we have satisfied our requirements for PFS. 

9.3.5 Mutual Authent icat ion, Session Key, and P F S 

Now let's put it all together and design a mutual authentication protocol 
that establishes a session key with PFS. The protocol in Figure 9.22, which 
is a slightly modified form of the encrypt and sign protocol from Figure 9.18, 
appears to fill the bill. It is a good exercise to give convincing arguments 
that Alice is actually authenticated (explaining exactly where and how that 
happens and why Bob is convinced he's talking to Alice), that Bob is authen-
ticated, that the session key is secure, that PFS is provided, and that there 
are no obvious attacks. 

"I'm Alice", R. 

A ^ 

„ RB> KRA. 9b m o d Police] Bob 

[{RB, ga mod pJ^J 
Alice . 

Alice Bob 
Figure 9.22: Mutual Authentication, Session Key and PFS 

Now that we've developed a protocol that satisfies all of our security 
requirements, we can turn our attention to questions of efficiency. That is, 
we'll try to reduce the number of messages in the protocol or increase the 
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efficiency in some other way, such as by reducing the number of public key 
operations. 

9.3.6 T imestamps 

A timestamp T is a time value, typically expressed in milliseconds. With some 
care, a timestamp can be used in place of a nonce, since a current timestamp 
ensures freshness. The benefit of a timestamp is that we don't need to waste 
any messages exchanging nonces, assuming that the current time is known 
to both Alice and Bob. Timestamps are used in many real-world security 
protocols, such as Kerberos, which we discuss in the next chapter. 

Along with the potential benefit of increased efficiency, timestamps create 
some security issues as well.7 For one thing, the use of timestamps implies 
that time is a security-critical parameter. For example, if Trudy can attack 
Alice's system clock (or whatever Alice relies on for the current time), she 
may cause Alice's authentication to fail. A related problem is that we can't 
rely on clocks to be perfectly synchronized, so we must allow for some clock 
skew, that is, we must accept any timestamp that is close to the current time. 
In general, this can open a small window of opportunity for Trudy to conduct 
a replay attack—if she acts within the allowed clock skew a replay will be 
accepted. It is possible to close this window completely, but the solution puts 
an additional burden on the server (see Problem 27). In any case, we would 
like to minimize the clock skew without causing excessive failures due to time 
inconsistencies between Alice and Bob. 

To illustrate the benefit of a timestamp, consider the authentication pro-
tocol in Figure 9.23. This protocol is essentially the timestamp version of the 
sign and encrypt protocol in Figure 9.17. Note that by using a timestamp, 
we're able to reduce the number of messages by a third. 

■I'm Alice", { [ Τ , Κ ] Α Ι ^ ? 

{ [T +1 .K]Bob}Alice 

Alice Bob 

Figure 9.23: Authentication Using a Timestamp 

The authentication protocol in Figure 9.23 uses a timestamp together 

with sign and encrypt and it appears to be secure. So it would seem obvious 

that the timestamp version of encrypt and sign must also be secure. This 

protocol is illustrated in Figure 9.24. 

7This is yet another example of the "no free lunch" principle. 
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"I'm Alice", [ {T .KJBJ 
Alice 

[{T+1,K}Alice]Bob 

Alice Bob 

Figure 9.24: Encrypt and Sign Using a Timestamp 

Unfortunately, with protocols, the obvious is not always correct. In fact, 

the protocol in Figure 9.24 is subject to attack. Trudy can recover {Γ, ^JBob 

by applying Alice's public key. Then Trudy can open a connection to Bob 

and send {T, i^}ßob m message one, as illustrated in Figure 9.25. Following 
the protocol, Bob will then send the key K to Trudy in a form that Trudy 
can decrypt. This is not good, since K is the session key shared by Alice and 
Bob. 

Figure 9.25: Trudy's Attack on Encrypt and Sign 

The attack in Figure 9.25 shows that our encrypt and sign protocol is not 
secure when we use a timestamp. But our sign and encrypt protocol is secure 
when a timestamp is used. In addition, the nonce versions of both sign and 
encrypt as well as encrypt and sign are secure (see Figures 9.17 and 9.18). 
These examples nicely illustrate that, when it comes to security protocols, we 
should never take anything for granted. 

Is the flawed protocol in Figure 9.24 fixable? In fact, there are several 
minor modifications that will make this protocol secure. For example, there's 
no reason to return the key K in the second message, since Alice already 
knows K and the only purpose of this message is to authenticate Bob. The 
timestamp in message two is sufficient to authenticate Bob. This secure 
version of the protocol is illustrated in Figure 9.26 (see also Problem 21). 

In the next chapter, we'll discuss several well-known, real-world security 
protocols. These protocols use the concepts that we've presented in this 
chapter. But before moving on to the real world of Chapter 10, we briefly 
look at a couple of additional protocol topics. First, we'll consider a weak 
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"I'm Alice", [ { Τ , Κ } ^ , 

fT+1]Bob 

Alice Bob 

Figure 9.26: Secure Encrypt and Sign with a Timestamp 

form of authentication that relies on TCP which, unfortunately, is sometimes 

used in practice. Finally, we discuss the Fiat-Shamir zero knowledge protocol. 

We'll encounter Fiat-Shamir again in the final chapter. 

9.4 Authentication and TCP 

In this section we'll take a quick look at how TCP is sometimes used for 

authentication. TCP was not designed to be used in this manner and, not 

surprisingly, this authentication method is not secure. But it does illustrate 

some interesting network security issues. 

There is an undeniable temptation to use the IP address in a TCP con-

nection for authentication.8 If we could make this work, then we wouldn't 

need any of those troublesome keys or pesky authentication protocols. 

Below, we'll give an example of TCP-based authentication and we illus-

trate an attack on the scheme. But first we briefly review the TCP three-way 

handshake, which is illustrated in Figure 9.27. The first message is a synchro-

nization request, or SYN, whereas the second message, which acknowledges 

the synchronization request, is a SYN-ACK, and the third message—which 

can also contain data—acknowledges the previous message, and is simply 

known as an ACK. 

SYN, SEQ a 

SYN, ACKa+1,SEQb 

ACK b+1, data 

: ► 
Alice Bob 

Figure 9.27: TCP 3-Way Handshake 

8As we'll see in the next chapter, the IPSec protocol relies on the IP address for user 
identity in one of its modes. So, even people who should know better cannot always resist 
the temptation. 
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Suppose that Bob decides to rely on the completed three-way handshake 
to verify that he is connected to a specific IP address, which he knows belongs 
to Alice. Then, in effect, he is using the TCP connection to authenticate Alice. 
Since Bob sends the SYN-ACK to Alice's IP address, it's tempting to assume 
that the corresponding ACK must have come from Alice. In particular, if 
Bob verifies that ACK ò + 1 appears in message three, he has some reason 
to believe that Alice, at her known IP address, has received message two 
and responded, since message two contains SEQ 6 and nobody else should 
know b. An underlying assumption here is that Trudy can't see the SYN-
ACK packet—otherwise she would know ό and she could easily forge the 

ACK. Clearly, this is not a strong form of authentication. However, as a 

practical matter, it might actually be difficult for Trudy to intercept the 

message containing b. So, if Trudy cannot see b, is the protocol secure? 

Even if Trudy cannot see the initial SEQ number b, she might be able to 

make a reasonable guess. If so, the attack scenario illustrated in Figure 9.28 

may be feasible. In this attack, Trudy first sends an ordinary SYN packet to 

Bob, who responds with a SYN-ACK. Trudy examines the SEQ value òi in 
this SYN-ACK packet. Suppose that Trudy can use &i to predict Bob's next 
initial SEQ value Ò2·9 Then Trudy can send a packet to Bob with the source 
IP address forged to be Alice's IP address. Bob will send the SYN-ACK to 
Alice's IP address which, by assumption, Trudy can't see. But, if Trudy can 
guess &2) she can complete the three-way handshake by sending ACK 62 + 1 
to Bob. As a result, Bob will believe that data received from Trudy on this 
particular TCP connection actually came from Alice. 

Figure 9.28: TCP "Authentication" Attack 

9In practice, Trudy could send many SYN packets to Bob, trying to diagnose his initial 
sequence number generation scheme before actually attempting to guess a value. 
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Note that Bob always responds to Alice's IP address and, by assumption, 
Trudy cannot see his responses. But Bob will accept data from Trudy, think-
ing it came from Alice, as long as the connection remains active. However, 
when the data sent by Bob to Alice's IP address reaches Alice, Alice will ter-
minate the connection since she has not completed the three-way handshake. 
To prevent this from happening, Trudy could mount a denial of service at-
tack on Alice by sending enough messages so that Bob's messages can't get 
through—or, even if they do get through, Alice can't respond. This denial 
of service is illustrated Figure 9.28. Of course, if Alice happens to be offline, 
Trudy could conduct the attack without having to do this denial of service 
on Alice. 

This attack is well known, and as a result initial SEQ numbers are sup-
posed to be generated at random. So, how random are initial SEQ numbers? 
Surprisingly, they're often not very random at all. For example, Figure 9.29 
provides a visual comparison of random initial SEQ numbers versus the highly 
biased initial SEQ numbers generated under an early version of Mac OS X. 
The Mac OS X numbers are biased enough that the attack in Figure 9.28 
would have a reasonable chance of success. Many other vendors fail to gener-
ate random initial SEQ numbers, as can be seen from the fascinating pictures 
at [335]. 

Random SEQ numbers |^ac QQ X 

Figure 9.29: Plots of Initial SEQ Numbers (Courtesy of Michal Zalewski [335]) 

Even if initial SEQ numbers are random, it's a bad idea to rely on a 
TCP connection for authentication. A much better approach would be to 
employ a secure authentication protocol after the three-way handshake has 
completed. Even a simple password scheme would be far superior to relying 
on TCP. But, as often occurs in security, the TCP authentication method is 
sometimes used in practice simply because it's there, it's convenient, and it 
doesn't annoy users—not because it's secure. 
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9.5 Zero Knowledge Proofs 

In this section we'll discuss a fascinating authentication scheme developed by 
Fiege, Fiat, and Shamir [111] (yes, that Shamir), but usually known simply 
as Fiat-Shamir. We'll mention this method again in Chapter 13 when we 
discuss Microsoft's trusted operating system. 

In a zero knowledge proof,10 or ZKP, Alice wants to prove to Bob that she 
knows a secret without revealing any information about the secret—neither 
Trudy nor Bob can learn anything about the secret. Bob must be able to 
verify that Alice knows the secret, even though he gains no information about 
the secret. On the face of it, this sounds impossible. However, there is an 
interactive probabilistic process whereby Bob can verify that Alice knows a 
secret to an arbitrarily high probability. This is an example of an interactive 
proof system. 

Before describing such a protocol, we first consider Bob's Cave,11 which 
appears in Figure 9.30. Suppose that Alice claims to know the secret phrase 
("open sarsaparilla"12) that opens the door between R and S in Figure 9.30. 
Can Alice convince Bob that she knows the secret phrase without revealing 
any information about it? 

Figure 9.30: Bob's Cave 

Consider the following protocol. Alice enters Bob's Cave and flips a coin 
to decide whether to position herself at point R or S. Bob then enters the 
cave and proceeds to point Q. Suppose that Alice happens to be positioned 
at point R. This situation is illustrated in Figure 9.31. 

Then Bob flips a coin to randomly select one side or the other and asks 
Alice to appear from that side. With the situation as in Figure 9.31, if Bob 
happens to select side R, then Alice would appear at side R whether she 
knows the secret phrase or not. But if Bob happens to choose side S, then 
Alice can only appear on side S if she knows the secret phrase that opens 

10Not to be confused with a "zero knowledge Prof." 
11 Traditionally, Ali Baba's Cave is used here. 
12Traditionally, the secret phrase is "open says me," which sounds a lot like "open 

sesame." In the cartoon world, "open sesame" somehow became "open sarsaparilla" [242]. 
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Figure 9.31: Bob's Cave Protocol 

the door between R and S. In other words, if Alice doesn't know the secret 
phrase, the probability that she can trick Bob into believing that she does 
is | . This does not seem particularly useful, but if the protocol is repeated n 
times, then the probability that Alice can trick Bob every time is only ( | ) n . 
So, Alice and Bob will repeat the protocol n times and Alice must pass every 
time before Bob will believe she knows the secret phrase. 

Note that if Alice (or Trudy) does not know the secret phrase, there is 
always a chance that she can trick Bob into believing that she does. How-
ever, Bob can make this probability as small as he desires by choosing n 
appropriately. For example, with n — 20 there is less than a 1 in 1,000,000 
chance that "Alice" would convince Bob that she knows the phrase when she 
does not. Also, Bob learns nothing about the secret phrase in this protocol. 
Finally, it is critical that Bob randomly chooses the side where he asks Alice 
to appear—if Bob's choice is predictable, then Alice (or Trudy) would have 
a better chance of tricking Bob and thereby breaking the protocol. 

While Bob's Cave indicates that zero knowledge proofs are possible in 
principle, cave-based protocols are not particularly popular. Can we achieve 
the same effect without the cave? The answer is yes, thanks to the Fiat-
Shamir protocol. 

Fiat-Shamir relies on the fact that finding a square root modulo N is 
as difficult as factoring. Suppose N = pq, where p and q are prime. Alice 
knows a secret S, which, of course, she must keep secret. The numbers N 
and v = S2 mod N are public. Alice must convince Bob that she knows S 
without revealing any information about S. 

The Fiat-Shamir protocol, which is illustrated in Figure 9.32, works as 
follows. Alice randomly selects a value r, and she computes x = r2 mod N. 
In message one, Alice sends x to Bob. In message two, Bob chooses a random 
value e G {0,1}, which he sends to Alice who, in turn, then computes the 
quantity y = rSe mod N. In the third message Alice sends y to Bob. Finally, 
Bob needs to verify that 

y = xve mod N, 
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which, if everyone has followed the protocol, holds true since 

y2 = r
2S2e = r2(S2)e = xve mod TV. (9.1) 

x = r2 mod N 
► 

e £{0,1} 
/ = r*Se mod N 
■ ► 

Bob 

Figure 9.32: Fiat-Shamir Protocol 

In message two, Bob sends either e = 0 or e = 1. Let's consider these 
cases separately. If Bob sends e = 1, then Alice responds with y = r-S mod N 
in the third message, and equation (9.1) becomes 

y2 = r2 ■ S2 = r2 ■ (S2) = x-vmodN. 

Note that in this case, Alice must know the secret S. 
On the other hand, if Bob sends e = 0 in message two, then Alice responds 

in the third message with y = r mod N and equation (9.1) becomes 

y2 = r2 = x mod N. 

Note that in this case, Alice does not need to know the secret S. This may 
seem strange, but it's roughly equivalent to the situation in Bob's Cave where 
Alice did not need to open the secret passage to come out on the correct side. 
Regardless, it is tempting to have Bob always send e = 1. However, we'll see 
in a moment that that this would not be wise. 

The first message in the Fiat-Shamir protocol is the commitment phase, 
since Alice commits to her choice of r by sending x = r2 mod N to Bob. That 
is, Alice cannot change her mind (she is committed to r), but she has not 
revealed r, since finding modular square roots is hard. The second message is 
the challenge phase—Bob is challenging Alice to provide the correct response. 
The third message is the response phase, since Alice must respond with the 
correct value. Bob then verifies the response using equation (9.1). These 
phases correspond to the three steps in Bob's Cave protocol in Figure 9.31, 
above. 

The mathematics behind the Fiat-Shamir protocol works, that is, assum-
ing everyone follows the protocol, Bob can verify y2 = xve mod N from the 

Alice 
secret S 
random r 
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information he receives. But this does not establish the security of the proto-

col. To do so, we must determine whether an attacker, Trudy, can convince 

Bob that she knows Alice's secret S and thereby convince Bob that she is 

Alice. 

Suppose Trudy expects Bob to send the challenge e = 0 in message two. 

Then Trudy can send x = r2 mod N in message one and y = r mod N in 

message three. That is, Trudy simply follows the protocol in this case, since 

she does not need to know the secret S. 

On the other hand, if Trudy expects Bob to send e = 1, then she can 

send x = r2v~l mod N in message one and y = r mod N in message three. 

Following the protocol, Bob will compute y2 = r2 and xve = r2v~1v = r2 

and he will find that equation (9.1) holds. Bob therefore accepts the result 

as valid. 

The conclusion here is that Bob must choose e G {0,1} at random (as 

specified by the protocol). If so, then Trudy can only trick Bob with prob-

ability j , and, as with Bob's Cave, after n iterations, the probability that 

Trudy can fool Bob is only (5)™. 

So, Fiat-Shamir requires that Bob's challenge e € {0,1} be unpredictable. 

In addition, Alice must generate a random r at each iteration of the protocol 

or her secret S will be revealed (see Problem 40 at the end of this chapter). 

Is the Fiat-Shamir protocol really zero knowledge? That is, can Bob—or 

anyone else—learn anything about Alice's secret 5? Recall that v and N are 

public, where v = S2 mod N. In addition, Bob sees r2 mod N in message 

one, and, assuming e = 1, Bob sees rS mod N in message three. If Bob can 

find r from r2 mod N, then he can find S. But finding modular square roots 

is computationally infeasible. If Bob were somehow able to find such square 

roots, he could obtain S directly from the public value v without bothering 

with the protocol at all. While this is not a rigorous proof that Fiat-Shamir is 

zero knowledge, it does indicate that there is nothing obvious in the protocol 

itself that helps Bob (or anyone else) to determine Alice's secret S. 

Is there an security benefit of Fiat-Shamir, or is it just fun and games for 

mathematicians? If public keys are used for authentication, then each side 

must know the other side's public key. At the start of the protocol, typically 

Alice would not know Bob's public key, and vice versa. So, in many public 

key-based protocols Bob sends his certificate to Alice. But the certificate 

identifies Bob, and consequently this exchange would tell Trudy that Bob is 

a party to the transaction. In other words, public keys make it hard for the 

participants to remain anonymous. 

A potential advantage of zero knowledge proofs is that they allow for 

authentication with anonymity. In Fiat-Shamir, both sides must know the 

public value v, but there is nothing in υ that identifies Alice, and there is 

nothing in the messages that are passed that must identify Alice. This is 

an advantage that has led Microsoft to include support for zero knowledge 
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proofs in its Next Generation Secure Computing Base, or NGSCB, which 
we'll discuss in Chapter 13. The bottom line is that Fiat-Shamir does have 
some potential practical utility. 

9.6 The Best Authentication Protocol? 

In general there is no "best" authentication protocol. What is best for a 
particular situation will depend on many factors. At a minimum, we need to 
consider the following questions. 

• What is the sensitivity of the application? 

• How much delay is tolerable? 

• Do we want to deal with time as a security critical parameter? 

• What type of crypto is supported—public key, symmetric key, or hash 
functions? 

• Is mutual authentication required? 

• Is a session key required? 

• Is perfect forward secrecy desired? 

• Is anonymity a concern? 

In the next chapter, we'll see that there are additional issues that can influence 
our choice of protocol. 

9.7 Summary 

In this chapter we discussed several different ways to authenticate and estab-
lish a session key over an insecure network. We can accomplish these feats 
using symmetric keys, public keys, or hash functions (with symmetric keys). 
We also learned how to achieve perfect forward secrecy, and we considered 
the benefits (and potential drawbacks) of using timestamps. 

Along the way, we came across many security pitfalls. You should now 
have some appreciation for the subtle issues that can arise with security pro-
tocols. This will be useful in the next chapter where we look closely at several 
real-world security protocols. We'll see that, despite extensive development 
effort by lots of smart people, such protocols are not immune to some of the 
security flaws highlighted in this chapter. 
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9.8 Problems 

1. Modify the authentication protocol in Figure 9.12 so that it uses a hash 
function instead of symmetric key encryption. The resulting protocol 
must be secure. 

2. The insecure protocol in Figure 9.24 was modified in Figure 9.26 to be 
secure. Find two other distinct ways to slightly modify the protocol 
in Figure 9.24 so that the resulting protocol is secure. Your protocols 
must use a timestamp and "encrypt and sign." 

3. We want to design a secure mutual authentication protocol based on a 
shared symmetric key. We also want to establish a session key, and we 
want perfect forward secrecy. 

a. Design such a protocol that uses three messages. 

b. Design such a protocol that uses two messages. 

4. Consider the following mutual authentication protocol, where KAB is a 
shared symmetric key. 

"I'm Alice", R 
► 

E(R,KAB) 

E(R+1,KAB) 
r Bob 

Give two different attacks that Trudy can use to convince Bob that she 
is Alice. 

5. Consider the attack on TCP authentication illustrated in Figure 9.28. 
Suppose that Trudy cannot guess the initial sequence number 62 ex-
actly. Instead, Trudy can only narrow 62 down to one of, say, 1,000 
possible values. How can Trudy conduct an attack so that she is likely 
to succeed? 

6. Timestamps can be used in place of nonces in security protocols. 

a. What is the primary advantage of using timestamps? 

b. What is the primary disadvantage of using timestamps? 

7. Consider the following protocol, where CLNT and SRVR are constants, 
and the session key is K = h(S, RA, RB)· 

Alice ~ 
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"I'm Alice", RA 

Certificate, RB 

{ S ^ , E(CLNT.K) 

E(SRVR,K) 
Alice + Bob 

a. Does Alice authenticate Bob? Justify your answer. 

b. Does Bob authenticate Alice? Justify your answer. 

Consider the following protocol, where KAB is a shared symmetric key, 

CLNT and SRVR are constants, and K = h(S,RA,Re) is the session 

key. 

"I'm Alice", RA 

3s. 
E(S, Κ^), E(CLNT.K) t 

E(SRVR,K) 
Alice ■* Bob 

a. Does Alice authenticate Bob? Justify your answer. 

b. Does Bob authenticate Alice? Justify your answer. 

9. The following two-message protocol is designed for mutual authentica-
tion and to establish a session key K. Here, T is a timestamp. 

"I'm Alice", \J]Miœ, {K>Bob 

Alice Bob 

This protocol is insecure. Illustrate a successful attack by Trudy. 

10. Suppose R is a random challenge sent in the clear from Alice to Bob 
and K is a symmetric key known only to Alice and Bob. Which of 
the following are secure session keys and which are not? Justify your 
answers. 

a. R®K 

b. E{R,K) 

c. E(K,R) 
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d. h(K,R) 

e. h{R,K) 

11. Design a secure two-message authentication protocol that provides mu-
tual authentication and establishes a session key K. Assume that Alice 
and Bob know each other's public keys beforehand. Does your protocol 
protect the anonymity of Alice and Bob from a passive attacker (i.e., an 
attacker who can only observe messages sent between Alice and Bob)? 
If not, modify your protocol so that it does provide anonymity. 

12. For some particular security protocol, suppose that Trudy can construct 
messages that appear to any observer (including Alice and/or Bob) to 
be valid messages between Alice and Bob. Then the protocol is said to 
provide plausible deniability. The idea here is that Alice and Bob can 
(plausibly) argue that any conversation they had using the protocol 
never actually occurred—it could have been faked by Trudy. Consider 
the following protocol, where K = II(RA, RB, S). 

•4 

"I'm Alice", [ R J ^ 

[Releob 
{ S W E(RA, K) 

E(RR, K) 
Alice ^ " Bob 

Does this protocol provide plausible deniability? If so, why? If not, 
slightly modify the protocol so that it does, while still providing mutual 
authentication and a secure session key. 

13. Consider the following protocol where K = 1I(RA,RB)· 

"I'm Alice", { R ^ 

\™A> "B/Alice 

E(RB, K) 

Bob 

Does this protocol provide for plausible deniability (see Problem 12)? 
If so, why? If not, slightly modify the protocol so that it does, while 
still providing mutual authentication and a secure session key. 

14. Design a mutual authentication protocol that employs digital signatures 
for authentication and provides plausible deniability (see Problem 12). 
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15. Is plausible deniability (see Problem 12) a feature or a security flaw? 
Explain. 

16. The following mutual authentication protocol is based on a shared sym-
metric key KAB-

"I'm Alice", RA 

— - ► 
^ Β - E(RA .KAB) 

E(RB, KAB) t 

Bob 

Show that Trudy can attack the protocol to convince Bob that she 

is Alice, where, as usual, we assume that the cryptography is secure. 

Modify the protocol to prevent such an attack by Trudy. 

17. Consider the following mutual authentication and key establishment 

protocol, which employs a timestamp T and public key cryptography. 

"I'm Alice", [{T,K>B0t,]Alice ^ 

[{T+1, IQAieJeob 

Bob 

Show that Trudy can attack the protocol to discover the key K where, as 

usual, we assume that the cryptography is secure. Modify the protocol 

to prevent such an attack by Trudy. 

18. Consider the following mutual authentication and key establishment 

protocol, which uses a timestamp T and public key cryptography. 

Message 1 

[T+llsot, 

Bob 

For each of the following cases, explain whether or not the resulting 

protocol provides an effective means for secure mutual authentication 

and a secure session key K. Ignore replay attacks based solely on the 

clock skew. 

-+ 

Alice 

Alice 

•4 

Alice 

a. Message 1: {[T,Ä"]Alice}Bob 
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b. Message 1 

c. Message 1 

d. Message 1 

e. Message 1 

{"Alice", [T^Al ice lBob 

"Alice", {[T,jqAlice}Bob 

T, "Alice", {[K]Alicebob 

"Alice", {[TUiicebob and let K = h{T) 

19. Consider the following three-message mutual authentication and key 
establishment protocol, which is based on a shared symmetric key KAB-

Message 1 

Message 2 

Alice 5s ► Bob 
KAB KAB 

For each of the following cases, briefly explain whether or not the re-
sulting protocol provides an effective means for secure mutual authen-
tication and a secure session key K. 

a. Message 1: E("Alice",K,RA,KAB), Message 2: RA, E(RB,KAB) 

b. Message 1: "Alice", E(K,RA,KAB), Message 2: RA, E{RB,K) 

c. Message 1: "Alice", E(K,RA,KAB), Message 2: RA, E(RB,KAB) 

d. Message 1: "Alice", RA, Message 2: E(K,RA,RB,KAB) 

20. Consider the following three-message mutual authentication and key 
establishment protocol, which is based on public key cryptography. 

Message 1 

Message 2 

Alice ► Bob 

For each of the following cases, briefly explain whether or not the re-
sulting protocol provides an effective means for secure mutual authen-
tication and a secure session key K. 

a. Message 1 

b. Message 1 

c. Message 1 

d. Message 1 

e. Message 1 

{"Alice",K,RA}Boh , Message 2: RA, RB 

"Alice", {K,RA}Boh, Message 2: RA, {RB}Alice 

"Alice", {l^Bob, [RA]Alice, Message 2: RA, [i?s]Bob 

RA, {"Alice",X}Bob, Message 2: [-R^Bob. {^sUlice 

{"Alice",K,RA ,RB}B o h , Message 2: RA, {Äß}Aiice 
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21. Consider the following mutual authentication and key establishment 
protocol (it may be instructive to compare this protocol to the protocol 
in Figure 9.26). 

fAlfce",[T,K|Afce}eob 

{T+DA 

Alice Bob 

Suppose that Trudy pretends to be Bob. Further, suppose that Trudy 
can guess the value of T to within 5 minutes, and the resolution of T is 
to the nearest millisecond. 

a. What is the probability that Trudy can send a correct response in 
message two, causing Alice to erroneously authenticate Trudy as 
Bob? 

b. Give two distinct modifications to the protocol, each of which make 
Trudy's attack more difficult, if not impossible. 

22. Consider the following mutual authentication and key establishment 
protocol, where the session key is given by K = gab mod p. 

"I'm Alice", RA 

RB. [RAIBOÖ. {9b mod p}Alk!e 

< 

[RJAiica. {9a mod p ^ „ 
Alice ► Bob 

Suppose that Alice attempts to initiate a connection with Bob using 
this protocol. 

a. Show that Trudy can attack the protocol so that both of the fol-
lowing will occur. 

i. Alice and Bob authenticate each other. 

ii. Trudy knows Alice's session key. 

Hint: Consider a man-in-the-middle attack. 

b. Is this attack of any use to Trudy? 

23. For each of the following cases, design a mutual authentication and key 
establishment protocol that uses public key cryptography and minimizes 
the number of messages. 
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a. Use a timestamp to authenticate Alice and a nonce to authenticate 

Bob. 

b. Use a nonce to authenticate Alice and a timestamp to authenticate 

Bob. 

24. Suppose we replace the third message of the protocol in Figure 9.22 

with 

{^BJBob. 9a mod p. 

a. How can Trudy convince Bob that she is Alice, that is, how can 

Trudy break the authentication? 

b. Can Trudy convince Bob that she is Alice and also determine the 

session key that Bob will use? 

25. Suppose we replace the second message of the protocol in Figure 9.22 

with 

RB, [#Λ]Β<Λ. 9b mod p, 

and we replace the third message with 

[-Rßklice. 9a mod p. 

a. Can Trudy convince Bob that she is Alice, that is, can Trudy break 
the authentication? 

b. Can Trudy determine the session key that Alice and Bob will use? 

26. In the text, it is claimed that the protocol in Figure 9.18 is secure, while 
the similar protocol in Figure 9.24 is not. Why does the attack on the 
latter protocol not succeed against the former? 

27. A timestamp-based protocol may be subject to a replay attack, provided 
that Trudy can act within the clock skew. Reducing the acceptable clock 
skew might make the attack more difficult, but it will not prevent the 
attack unless the skew is zero, which is impractical. Assuming a non-
zero clock skew, what can Bob, the server, do to prevent attacks based 
on the clock skew? 

28. Modify the identify friend or foe (IFF) protocol discussed at the begin-
ning of the chapter so that it's no longer susceptible to the MiG-in-the-
middle attack. 

29. Consider the authentication protocol below, which is based on knowl-
edge of a shared 4-digit PIN number. Here, Κργ^ = ft(PIN, RA,RB)-
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I'm Alice, RA 

E(Bob,RA,KPIN), RB 

Alice E(Alice,RB,KPIN) ^ ß o b 

PIN PIN 

a. Suppose that Trudy passively observes one iteration of the pro-
tocol. Can she determine the 4-digit PIN number? Justify your 
answer. 

b. Suppose that the PIN number is replaced by a 256-bit shared sym-
metric key. Is the protocol secure? Why or why not? 

30. Consider the authentication protocol below, which is based on knowl-
edge of a shared 4-digit PIN number. Here, -KpiN = /i(PIN). 

I'm Alice, E(RA,Kp,N) 

E(RA,RB,Kp|N) 

Alice E ( R B ' K P I N ) ► Bob 

PIN PIN 

Suppose that Trudy passively observes one iteration of the protocol. 
Can she then determine the 4-digit PIN? Justify your answer. 

31. Consider the authentication protocol below, which is based on knowl-
edge of a shared 4-digit PIN number and uses Diffie-Hellman. Here, 
KP I N = Λ(ΡΙΝ) and K = gab mod p. 

I'm Alice, RA, E(g
a
 mod p, KPIN)^ 

E(g» mod p,KPIN),E(RA,K), RB 

Alice Ì £ B £ > ► Bob 

PIN, a PIN, b 

a. Suppose that Trudy passively observes one iteration of the proto-
col. Can she then determine the 4-digit PIN number? Justify your 
answer. 

b. Suppose that Trudy can actively attack the protocol. Can she 
determine the 4-digit PIN? Explain. 

32. Describe a way to provide perfect forward secrecy that does not use 
Diffie-Hellman. 
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33. Can you achieve an effect similar to perfect forward secrecy (as de-
scribed in this chapter) using only symmetric key cryptography? If so, 
give such a protocol and, if not, why not? 

34. Design a zero knowledge protocol analogy that uses Bob's Cave and 
only requires one iteration for Bob to determine with certainty whether 
or not Alice knows the secret phrase. 

35. The analogy between Bob's Cave and the Fiat-Shamir protocol is not 
entirely accurate. In the Fiat-Shamir protocol, Bob knows which value 
of e will force Alice to use the secret value S, assuming Alice follows 
the protocol. That is, if Bob chooses e = 1, then Alice must use the 
secret value S to construct the correct response in message three, but 
if Bob chooses e = 0, then Alice does not use S. As noted in the 
text, Bob must choose e at random to prevent Trudy from breaking the 
protocol. In the Bob's Cave analogy, Bob does not know whether Alice 
was required to use the secret phrase or not (again, assuming that Alice 
follows the protocol). 

a. Modify the cave analogy so that Bob knows whether Alice used 
the secret phrase or not, assuming that Bob is not allowed to see 
which side Alice actually chooses. Bob's New-and-Improved Cave 
protocol must still resist an attack by someone who does not know 
the secret phrase. 

b. Does your new cave analogy differ from the Fiat-Shamir protocol 
in any significant way? 

36. Suppose that in the Fiat-Shamir protocol in Figure 9.32 we have N = 63 
and v = 43. Recall that Bob accepts an iteration of the protocol if he 
verifies that y2 = x ■ ve mod N. 

a. In the first iteration of the protocol, Alice sends x = 37 in message 
one, Bob sends e = 1 in message two, and Alice sends y = 4 in 
message three. Does Bob accept this iteration of the protocol? 
Why or why not? 

b. In the second iteration of the protocol, Alice sends x = 37, Bob 
sends e = 0, and Alice sends y = 10. Does Bob accept this iteration 
of the protocol? Why or why not? 

c. Find Alice's secret value S. Hint: 10_1 = 19 mod 63. 

37. Suppose that in the Fiat-Shamir protocol in Figure 9.32 we have N = 77 
and v = 53. 
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a. Suppose that Alice sends x = 15 in message one, Bob sends e = 1 
in message two, and Alice sends y = 5 in message three. Show 
that Bob accepts this iteration of the protocol. 

b. Suppose Trudy knows in advance that Bob will select e = 1 in 
message two. If Trudy selects r = 10, what can she send for x in 
message one and y in message three so that Bob accepts this iter-
ation of the protocol? Using your answer, show that Bob actually 
accepts this iteration. Hint: 53 _ 1 = 16 mod 77. 

38. Suppose that in the Fiat-Shamir protocol in Figure 9.32 we have N = 55 
and Alice's secret is S = 9. 

a. What is i>? 

b. If Alice chooses r = 10, what does Alice send in the first message? 

c. Suppose Alice chooses r = 10 and Bob sends e = 0 in message two. 
What does Alice send in the third message? 

d. Suppose Alice chooses r = 10 and Bob sends e = 1 in message two. 
What does Alice send in the third message? 

39. Consider the Fiat-Shamir protocol in Figure 9.32. Suppose that the 
public values are TV = 55 and v = 5. Suppose Alice sends x = 4 in 
the first message, Bob sends e = 1 in the second message, and Alice 
sends y = 30 in message three. Show that Bob will verify Alice's re-
sponse in this case. Can you find Alice's secret 5? 

40. In the Fiat-Shamir protocol in Figure 9.32, suppose that Alice gets lazy 
and she decides to use the same "random" r for each iteration. 

a. Show that Bob can determine Alice's secret S. 

b. Why is this a security concern? 

41. Suppose that in the Fiat-Shamir protocol, as illustrated in Figure 9.32, 
we have N = 27,331 and v = 7339. 

a. In the first iteration, Alice sends x = 21,684 in message one, Bob 
sends e = 0 in message two, and Alice sends y = 657 in the third 
message. Show that Bob verifies Alice's response in this case. 

b. At the next iteration, Alice again sends x = 21,684 in message 
one, but Bob sends e = 1 in message two, and Alice responds 
with y = 26,938 in message three. Show that Bob again verifies 
Alice's response. 

c. Determine Alice's secret S. Hint: 657 - 1 = 208 mod 27,331. 



 



 
Chapter 10 

Real-World Security 
Protocols 

The wire protocol guys don't worry about security because 
that's really a network protocol problem. The network protocol 

guys don't worry about it because, reaJJy, it's an application problem. 
The application guys don't worry about it because, 

after all, they can just use the IP address and trust the network. 
— Marcus J. Ranum 

In the real world, nothing happens at the right place at the right time. 
It is the job of journalists and historians to correct that. 

— Mark Twain 

10.1 Introduction 

In this chapter, we'll discuss several widely used real-world security protocols. 
First on the agenda is the Secure Shell, or SSH, which is used for a variety 
of purposes. Next, we consider the Secure Socket Layer, or SSL, which is 
currently the most widely used security protocol for Internet transactions. 
The third protocol that we'll consider in detail is IPSec, which is a complex 
protocol with some significant security issues. Then we will discuss Kerberos, 
a popular authentication protocol based on symmetric key cryptography and 
timestamps. 

We conclude the chapter with two wireless protocols, WEP and GSM. 
WEP is a seriously flawed security protocols, and we'll consider several well-
known attacks. The final protocol we'll cover is GSM, which is used to secure 
mobile communications. The GSM protocol is provides an interesting case 
study due to the large number and wide variety of known attacks. 

351 
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10.2 SSH 

The Secure Shell, SSH, creates a secure tunnel which can be used to secure 
otherwise insecure commands. For example, in UNIX, the r log in command 
is used for a remote login, that is, to log into a remote machine over a net-
work. Such a login typically requires a password and r log in simply sends 
the password in the clear, which might be observed by a snooping Trudy. By 
first establishing an SSH session, any inherently insecure command such as 
r log in will be secure. That is, an SSH session provides confidentiality and 
integrity protection, thereby eliminating Trudy's ability to obtain passwords 
and other confidential information that would otherwise be sent unprotected. 

SSH authentication can be based on public keys, digital certificates, or 
passwords. Here, we give a slightly simplified version of SSH using digital 
certificates.1 The other authentication options are covered in various home-
work problems at the end of this chapter. 

SSH is illustrated in Figure 10.1, using the following notation: 

certificate^ = Alice's certificate 

certificates = Bob's certificate 

CP = crypto proposed 

CS = crypto selected 

H = /i(Alice, Bob, CP, CS, RA, RB, ga mod p, gb mod p, gab mod p) 

SB = [if] Bob 

K = gab mod p 

SA = [H, Alice, certificate^] Alice 

As usual, h is a cryptographic hash function. 

Alice, CP, RA 

CS, RB 

ga mod p 

gb mod p, certificateB, SB 

Alice + "—■ Bob 
E(Alice, certificate^ SA, K) 

Figure 10.1: Simplified SSH 

' i n our simplified version, a few parameters have been omitted and a couple of book-
keeping messages have been eliminated. 
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In the first message in Figure 10.1, Alice identifies herself and she sends 
information regarding the crypto parameters that she prefers (crypto algo-
rithms, key lengths, etc.), along with her nonce, RA- In message two, Bob 
selects from Alice's crypto parameters and returns his selections, along with 
his nonce, RB- In message three, Alice sends her Diffie-Hellman value, and 
in message four, Bob responds with his Diffie-Hellman value, his certificate, 
and SB, which consists of a signed hash value. At this point, Alice is able to 
compute the key K, and in the final message, she sends an encrypted block 
that contains her identity, her certificate, and her signed value SA-

In Figure 10.1, the signatures are intended to provide mutual authen-
tication. Note that the nonce RA is Alice's challenge to Bob, and SB is 
Bob's response. That is, the nonce RA provides replay protection, and only 
Bob can give the correct response since a signature is required (assuming, of 
course, that his private key has not been compromised). A similar argument 
shows that Alice is authenticated in the final message. So, SSH provides mu-
tual authentication. The security of SSH authentication, the security of the 
key K, and some other quirks of SSH are considered further in the homework 
problems at the end of this chapter. 

10.3 SSL 

The mythical "socket layer" lives between the application layer and the trans-
port layer in the Internet protocol stack, as illustrated in Figure 10.2. In prac-
tice, SSL most often deals with Web browsing, in which case the application 
layer protocol is HTTP and the transport layer protocol is TCP. 

Figure 10.2: Socket Layer 

SSL is the protocol of choice for the vast majority of secure transactions 
over the Internet. For example, suppose that you want to buy a book at 
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amazon.com. Before you provide your credit card information, you want to 
be sure you are dealing with Amazon, that is, you must authenticate Amazon. 
Generally, Amazon doesn't care who you are, as long as you have money. As 
a result, the authentication need not be mutual. 

After you are satisfied that you are dealing with Amazon, you will provide 
private information, such as your credit card number, your address, and so on. 
You probably want this information protected in transit—in most cases, you 
want both confidentiality (to protect your privacy) and integrity protection 
(to assure the transaction is received correctly). 

The general idea behind SSL is illustrated in Figure 10.3. In this protocol, 
Alice (the client) informs Bob (the server) that she wants to conduct a secure 
transaction. Bob responds with his certificate. Alice then needs to verify the 
signature on the certificate. Assuming the signature verifies, Alice will be 
confident that she has Bob's certificate, although she cannot yet be certain 
that she's talking to Bob. Then Alice will encrypt a symmetric key KAB with 
Bob's public key and send the encrypted key to Bob. This symmetric key is 
used to encrypt and integrity protect subsequent communications. 

I'd like to talk to you securely ^ 

Here's my certificate 

{KABW> 

Alice < protectedHTTP ^ Bob 

Figure 10.3: Too-Simple Protocol 

The protocol in Figure 10.3 is not useful as it stands. For one thing, Bob 
is not explicitly authenticated and the only way Alice could possibly know 
she is talking to Bob is by checking to see that the encrypted data decrypts 
correctly. This is not a desirable situation in any security protocol. Also 
note that Alice is not authenticated to Bob at all, but in most cases, this is 
reasonable for transactions on the Internet. 

In Figure 10.4, we've given a reasonably complete view of the basic SSL 
protocol. In this protocol, 

S = the pre-master secret 

K = h{S,RA,RB) 

msgs = shorthand for "all previous messages" 

CLNT = literal string 

SRVR = literal string 
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where h is a secure hash function. The actual SSL protocol is more complex 
than what appears in Figure 10.4 but this simplified version is sufficient for 
our purposes. The complete SSL specification can be found at [271]. 

Can we talk?, cipher list, RA 

Certificate, cipher, RB 

-* 

{S>B0b, E(h(msgs,CLNT,K),K) 

h(msgs,SRVR,K) 
-► 

Alice *-
 D a t a P r o t e c t e d w i t n key_K_ Bob 

Figure 10.4: Simplified SSL 

Next, we briefly discuss each message in the simplified SSL protocol given 
in Figure 10.4. In the first message, Alice informs Bob that she would like 
to establish an SSL connection, and she passes a list of ciphers that she 
supports, along with a nonce RA- In the second message, Bob responds with 
his certificate, he selects one of the ciphers from the cipher list that Alice sent 
in message one, and he sends a nonce RB-

In the third message, Alice sends the so-called pre-master secret S, which 
she randomly generated, along with a hash that is encrypted with the key K. 
In this hash, "msgs" includes all previous messages and CLNT is a literal 
string.2 The hash is used as an integrity check to verify that the previous 
messages have been received correctly. 

In the fourth message, Bob responds with a similar hash. By computing 
this hash herself, Alice can verify that Bob received the messages correctly, 
and she can authenticate Bob, since only Bob could have decrypted S, which 
is required to generate the key K. At this point, Alice has authenticated Bob, 
and Alice and Bob have established a shared session key K, which they can 
use to encrypt and integrity protect subsequent messages. 

In reality, more than one key is derived from the hash h(S,RA,Rß)- In 
fact, the following six quantities are generated from this hash. 

• Two encryption keys, one for messages sent from the client to server, 
and one for messages sent from the server to the client. 

• Two integrity keys, used in the same way as the encryption keys. 

Two initialization vectors (IVs), one for the client and one for the server. 

2In this context, "msg" has nothing to do with the list of ingredients at a Chinese 
restaurant. 



 

356 REAL-WORLD SECURITY PROTOCOLS 

In short, different keys are used in each direction. This could help to prevent 
certain types of attacks where Trudy tricks Bob into doing something that 
Alice should have done, or vice versa. 

The attentive reader may wonder why /i(msgs, CLNT, K) is encrypted in 
messages three and four. In fact, this adds no security, although it does add 
extra work, so it could be considered a minor flaw in the protocol. 

In the SSL protocol of Figure 10.4, Alice, the client, authenticates Bob, 
the server, but not vice versa. With SSL, it is possible for the server to 
authenticate the client. If this is desired, Bob sends a "certificate request" 
in message two. However, this feature is generally not used, particularly in 
e-commerce situations, since it requires users to have valid certificates. If the 
server wants to authenticate the client, the server could instead require that 
the client enter a valid password, in which case the resulting authentication 
is outside the scope of the SSL protocol. 

10.3.1 SSL and the Man-in-the-Middle 

Hopefully, SSL prevents the man-in-the-middle, or MiM, attack illustrated 
in Figure 10.5. But what mechanism in SSL prevents this attack? Recall 
that Bob's certificate must be signed by a certificate authority. If Trudy 
sends her own certificate instead of Bob's, the attack will fail when Alice 
attempts to verify the signature on the certificate. Or, Trudy could make a 
bogus certificate that says "Bob," keep the private key for herself, and sign 
the certificate herself. Again, this will not pass muster when Alice tries to 
verify the signature on "Bob's" certificate (which is really Trudy's certificate). 
Finally, Trudy could simply send Bob's certificate to Alice, and Alice would 
verify the signature on this certificate. However, this is not an attack since 
it would not break the protocol—Alice would authenticate Bob, and Trudy 
would be left out in the cold. 

RA RA 

certificate-!-, RB certificates, RB 

{ S i W v . E ^ . K ^ {S2}ggb,E(X8,K8^ 

< h^.KQ | h(Y9,KP) 

Alice ^ _ ^ Ë a Ë ' u i L ^ T r u d y <«_.E(Ëa î2'!9_^ Bob 

Figure 10.5: Man-in-the-Middle Attack on SSL 

However, the real world is not so kind to poor Alice. Typically, SSL is 
used in a Web browsing session. Then, what happens when Trudy attempts 
a MiM attack by sending a bogus certificate to Alice? The signature on the 
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certificate is not valid so the attack should fail. However, Alice does not 
personally check the signature on the certificate—her browser does. And 
what does Alice's browser do when it detects a problem with a certificate? 
As you probably know from experience, the browser provides Alice with a 
warning. Does Alice heed the warning? If she's like most users, Alice ignores 
the warning and allows the connection to proceed.3 Note that when Alice 
ignores this warning, she's opened the door to the MiM attack in Figure 10.5. 
Finally, it's important to realize that while this attack is a very real threat, 
it's not due to a flaw in the SSL protocol. Instead, it's caused by a flaw in 
human nature, making a patch much more problematic. 

10.3.2 SSL Connect ions 

An SSL session is established as shown in Figure 10.4. This session establish-
ment protocol is relatively expensive, since public key operations are involved. 

SSL was originally developed by Netscape, specifically for use in Web 
browsing. The application layer protocol for the Web is HTTP, and two ver-
sions of it are in common usage, HTTP 1.0 and HTTP 1.1. With version 1.0, 
it is not uncommon for a Web browser to open multiple parallel connections 
so as to improve performance. Due to the public key operations, there would 
be significant overhead if a new SSL session was established for each of these 
HTTP connections. The designers of SSL were aware of this issue, so they 
included an efficient protocol for opening new SSL connections provided that 
an SSL session already exists. The idea is simple—after establishing one SSL 
session, Alice and Bob share a session key K, which can then be used to 
establish new connections, thereby avoiding expensive public key operations. 

The SSL connection protocol appears in Figure 10.6. The protocol is 
similar to the SSL session establishment protocol, except that the previously 
established session key K is used instead of the public key operation that are 
used in the session protocol. 

session-ID, cipher list, RA 

session-ID, cipher, RB 

h(msgs,SRVR,K) ' 

h(msgs,CLNT,K) 

A\lce Protected data Bob 

Figure 10.6: SSL Connection Protocol 

3If possible, Alice would probably disable the warning so that she'd never get this an-
noying "error" message again. 
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The bottom line here is that in SSL, one (expensive) session is required, 
but then we can create any number of (cheap) connections. This is a useful 
feature that was designed to improve the performance of the protocol when 
used with HTTP 1.1. 

10.3.3 SSL Versus IPSec 

In the next section, we'll discuss IPSec, which is short for Internet Protocol 
Security. The purpose of IPSec is similar to that of SSL, namely, security 
over the network. However, the implementation of the two protocols is very 
different. For one thing, SSL is relatively simple, while IPSec is relatively 
complex. 

It might seem logical to discuss IPSec in detail before contrasting it with 
SSL. However, we might get so lost in the weeds with IPSec that we'd com-
pletely lose sight of SSL. So instead of waiting until after we discuss IPSec to 
contrast the two protocols, we'll do so beforehand. You might consider this 
a partial preview of IPSec. 

The most obvious difference between SSL and IPSec is that the two pro-
tocols operate at different layers of the protocol stack. SSL (and its twin,4 

the IEEE standard known as TLS), both live at the socket layer. As a result, 
SSL resides in user space. IPSec, on the other hand, lives at the network layer 
and is therefore not directly accessible from user space—it's in the domain of 
the operating system. When viewed from a high level, this is the fundamental 
distinction between SSL and IPSec. 

Both SSL and IPSec provide encryption, integrity protection, and authen-
tication. SSL is relatively simple and well designed, whereas IPSec is complex 
and, as a result, includes some significant flaws. 

Since IPSec is part of the OS, it must be built-in at that level. In contrast, 
SSL is part of user space, so it requires nothing special of the OS. IPSec also 
requires no changes to applications, since all of the security magically happens 
at the network layer. On the other hand, developers have to make a conscious 
decision to use SSL. 

SSL was built for Web application early on, and its primary use remains 
secure Web transactions. IPSec is often used to secure a virtual private 
network, or VPN, an application that creates a secure tunnel between the 
endpoints. Also, IPSec is required in IP version 6 (IPv6), so if IPv6 ever 
takes over the world, IPSec will be ubiquitous. 

There is, understandably, a reluctance to retrofit applications for SSL. 
There is, also understandably, a reluctance to use IPSec due to its complexity 
(which creates some challenging implementation issues). The net result is that 
the Net is less secure than it should be. 

4They are fraternal twins, not identical twins. 
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10.4 IPSec 

Figure 10.7 illustrates the primary logical difference between SSL and IPSec, 
that is, one lives at the socket layer (SSL), while the other resides at the 
network layer (IPSec). As mentioned above, the major advantage of IPSec is 
that it's essentially transparent to applications. However, IPSec is a complex 
protocol, which can perhaps best be described as over-engineered. 

Figure 10.7: IPSec 

IPSec has many dubious features, which makes implementation difficult. 
Also, IPSec has some flaws, probably as a direct result of its complexity. In 
addition, there are interoperability issues, due to the complexity of the IPSec 
specification, which seems to run contrary to the point of having a standard. 
Another complicating factor is that the IPSec specification is split into three 
pieces, to be found in RFC 2407 [237], RFC 2408 [197], and RFC 2409 [140], 
and these RFCs were written by disjoint sets of authors using different ter-
minology. 

The two main parts to IPSec are 

• The Internet Key Exchange, or IKE, which provides for mutual au-
thentication and a session key. There are two phases of IKE, which are 
analogous to SSL sessions and connections. 

• The Encapsulating Security Payload and Authentication Header, or 
ESP/AH, which together make up the second part of IPSec. ESP5 

provides encryption and integrity protection to IP packets, whereas AH 
provides integrity only. 

Technically, IKE is a standalone protocol that could live a life separate from 
ESP/AH. However, since IKE's only application in the real world seems to 

5Contrary to what you are thinking, this protocol cannot read your mind. 
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be in conjunction with IPSec, we lump them together under the name IPSec. 
The comment about IPSec being over-engineered applies primarily to IKE. 
The developers of IKE apparently thought they were creating the Swiss army 
knife of security protocols—a protocol that would be used to solve every 
conceivable authentication problem. This explains the multitude of options 
and features built into IKE. However, since IKE is only used with IPSec, 
any features or options that are not directly relevant to IPSec are simply 
extraneous. 

First, we'll consider IKE, then ESP/AH. IKE, the more complex of the 
two, consists of two phases—cleverly called Phase 1 and Phase 2. Phase 1 is 
the more complex of the two. In Phase 1, a so-called IKE security association, 
or IKE-SA, is established, while in Phase 2, an IPSec security association, 
IPSec-SA, is established. Phase 1 corresponds to an SSL session, whereas 
Phase 2 is comparable to an SSL connection. In IKE, both Phase 1 and 
Phase 2 must occur before we can do ESP/AH. 

Recall that SSL connections serve a specific and useful purpose—they 
make SSL more efficient when HTTP 1.0 is used. But, unlike SSL, in IPSec 
there is no obvious need for two phases. And if multiple Phase 2s do not occur 
(and they typically do not), then it would be more efficient to just require 
Phase 1 with no Phase 2. However, this is not an option. Apparently, the 
developers of IKE believed that their protocol was so self-evidently wonderful 
that users would want to do multiple Phase 2s (one for IPSec, another for 
something else, another for some other something else, and so on). This is 
our first example of over-engineering in IPSec, and it won't be the last. 

In IKE Phase 1, there are four different key options: 

• Public key encryption (original version) 

• Public key encryption (improved version) 

• Digital signature 

• Symmetric key 

For each of these key options there is a main mode and an aggressive mode. 
As a result, there are a staggering eight different versions of IKE Phase 1. 
Do you need any more evidence that IPSec is over-engineered? 

You may be wondering why there are public key encryption and digital 
signature options in Phase 1. Surprisingly, the answer is not over-engineering. 
Alice always knows her own private key, but she may not know Bob's public 
key. With the signature version of IKE Phase 1, Alice does not need to have 
Bob's public key in hand to start the protocol. In any protocol that uses 
public key crypto, Alice will need Bob's public key to complete the protocol, 
but in the signature mode, she can simultaneously begin the protocol and 
search for Bob's public key. In contrast, in the public key encryption modes, 
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Alice needs Bob's public key immediately, so she must first find Bob's key 
before she can begin the protocol. So, there could be an efficiency gain with 
the signature option. 

We'll discuss six of the eight Phase 1 variants, namely, digital signatures 
(main and aggressive modes), symmetric key (main and aggressive modes), 
and public key encryption (main and aggressive). We'll consider the original 
version of public key encryption, since it's slightly simpler, although less 
efficient, than the improved version. 

Each of the Phase 1 variants use an ephemeral Diffie-Hellman key ex-
change to establish a session key. The benefit of this approach is that it 
provides perfect forward secrecy (PFS). For each of the variants we discuss, 
we'll use the following Diffie-Hellman notation. Let a be Alice's (ephemeral) 
Diffie-Hellman exponent and let b be Bob's (ephemeral) Diffie-Hellman ex-
ponent. Let g be the generator and p the prime. Recall that p and g are 
public. 

10.4.1 IKE Phase 1: Digital Signature 

The first Phase 1 variant that we'll consider is digital signature, main mode. 
This six message protocol is illustrated in Figure 10.8, where 

CP = crypto proposed 

CS = crypto selected 

IC = initiator cookie 

RC = responder cookie 

K = /i(IC, RC, gab mod p, RA, RB) 

SKEYID = h(RA> RB,gab mod p) 

proofs = [h(SKEYlO,ga mod p,gb mod p,IC,RC,CP, "Alice")]Alice 

Here, h is a hash function and proof B is analogous to proof^. 

IC.CP 
IC,RC, CS 

<-

IC.RC, ga mod 

IC.RC, gb mod 

IC,RC, E("Alice", 

IC.RC, E("Bob", 

P.RA 

P.RB 

proofA, 

proofB) 

■ K) 

K) Alice \r. n r P^'Rnh" nmnf_ κ\ Bob 

Figure 10.8: Digital Signature, Main Mode 
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Let's briefly consider each of the six messages that appear in Figure 10.8. 
In the first message, Alice provides information on the ciphers that she sup-
ports and other crypto related information, along with a so-called cookie.6 In 
message two, Bob selects from Alice's crypto proposal and sends the cookies, 
which serve as an identifier for the remainder of the messages in the protocol. 
The third message includes a nonce and Alice's Diffie-Hellman value. Bob 
responds similarly in message four, providing a nonce and his Diffie-Hellman 
value. In the final two messages, Alice and Bob authenticate each other using 
digital signatures. 

Recall that an attacker, Trudy, is said to be passive if she can only observe 
messages sent between Alice and Bob. In contrast, if Trudy is an active 
attacker, she can also insert, delete, alter, and replay messages. For the 
protocol in Figure 10.8, a passive attacker cannot discern Alice or Bob's 
identity. So this protocol provides anonymity, at least with respect to passive 
attacks. Does this protocol also provide anonymity in the case of an active 
attack? This question is considered in Problem 27, which means that the 
answer is not to be found here. 

Each key option has a main mode and an aggressive mode. The main 
modes are supposed to provide anonymity, while the aggressive modes are not. 
Anonymity comes at a price—aggressive mode only requires three messages, 
as opposed to six messages for main mode. 

The aggressive mode version of the digital signature key option appears 
in Figure 10.9. Note that there is no attempt to hide the identities of Alice or 
Bob, which simplifies the protocol considerably. The notation in Figure 10.9 
is the same as that used in Figure 10.8. 

IC, "Alice", ga mod p, RA, CP 

IC.RC, "Bob", RB, 
gb mod p, CS, proofB 

IC.RC, proofA 
Alice 

Figure 10.9: Digital Signature, Aggressive Mode 

One subtle difference between digital signature main and aggressive modes 
is that in main mode it is possible to negotiate the values of g and p as part 
of the "crypto proposed" and "crypto accepted" messages. However, this is 
not the case in aggressive mode, since the Diffie-Hellman value ga mod p is 
sent in the first message. 

6Not to be confused with Web cookies or chocolate chip cookies. We have more to say 
about these IPSec cookies in Section 10.4.4, below. 

+> 

#► Bob 
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As per the appropriate RFCs, for each key option main mode MUST be 
implemented, while aggressive mode SHOULD be implemented. In [162], the 
authors interpret this to mean that if aggressive mode is not implemented, 
"you should feel guilty about it." 

10.4.2 IKE Phase 1: Symmetric Key 

The next version of Phase 1 that we'll consider is the symmetric key option— 
both main mode and aggressive mode. As above, the main mode is a six-
message protocol, where the format is formally the same as in Figure 10.8, 
above, except that the notation is interpreted as follows. 

KAB = symmetric key shared in advance 

K = h(IC, RC, gab mod p, RA, RB, KAB) 

SKEYID = h(K,gab mod p) 

proofs = /i(SKEYID, ga mod p, gb mod p, IC, RC, CP, Alice) 

Again, the purported advantage of the complex six-message main mode 
over the corresponding aggressive mode is that main mode is supposed to 
provide anonymity. But there is a Catch-22 in this main mode. Note that 
in message five Alice sends her identity, encrypted with key K. But Bob 
has to use the key KAB to determine K. So Bob has to know to use the 
key KAB before he knows that he's talking to Alice. However, Bob is a busy 
server who deals with lots of users (Alice, Charlie, Dave, . . . ) . How can Bob 
possibly know that he is supposed to use the key he shares with Alice before 
he knows he's talking to Alice? The answer is that he cannot, at least not 
based on any information available within the protocol itself. 

The developers of IPSec recognized this snafu. And their solution? Bob 
is to rely on the IP address to determine which key to use. So, Bob must use 
the IP address of incoming packets to determine who he's talking to before 
he knows who he's talking to (or something like that . . . ) . The bottom line is 
that Alice's IP address acts as her identity. 

There are a couple of problems with this approach. First, Alice must have 
a static IP address—this mode fails if Alice's IP address changes. A more 
fundamental issue is that the protocol is complex and uses six messages, 
presumably to hide identities. But the protocol fails to hide identities, unless 
you consider a static IP address to be secret. So it would seem pointless 
to use symmetric key main mode instead of the simpler and more efficient 
aggressive mode, which we describe next.7 

IPSec symmetric key aggressive mode follows the same format as the 
digital signature aggressive mode in Figure 10.9, with the key and signature 

7Of course, main mode MUST be implemented, while aggressive mode SHOULD be 
implemented. Go figure. 
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computed as in symmetric key main mode. As with the digital signature 
variant, the main difference from main mode is that aggressive mode does 
not attempt to hide identities. Since symmetric key main mode also fails to 
effectively hide Alice's identity, this is not a serious limitation of aggressive 
mode in this case. 

10.4.3 IKE Phase 1: Public K e y Encryption 

Next, we'll consider the public key encryption version of IKE Phase 1, both 
main and aggressive modes. We've already seen the digital signature versions. 
In the main mode of the encryption version, Alice must know Bob's public 
key in advance and vice versa. Although it would be possible to exchange 
certificates, that would reveal the identities of Alice and Bob, defeating the 
primary advantage of main mode. So an assumption here is that Alice and 
Bob have access to each other's certificates, without sending them over the 
network. 

The public key encryption main mode protocol is given in Figure 10.10, 
where the notation is as in the previous modes, except 

K = /i(IC, RC, gab mod p, RA, RB) 

SKEYID = h(RA, RB, gab mod p) 

proof A = h(SKEYÏD,ga mod p,gb mod p,IC,RC,CP, "Alice") 

«+ 

IC.CP 

IC.RC, CS 

IC.RC, ga mod p, { R A W 

IC.RC, gb mod p, {flati* 

IC.RC, E(proofA, 

IC,RC, E(proofB, 

{"Alice'V, 

.{"Bob»}Alice 

K) 

K) Alice m nn r=inmnt. κ\ Bob 

Figure 10.10: Public Key Encryption, Main Mode 

Public key encryption, aggressive mode, appears in Figure 10.11, where 

the notation is similar to main mode. Interestingly, unlike the other aggressive 

modes, public key encryption aggressive mode allows Alice and Bob to remain 

anonymous. Since this is the case, is there any possible advantage of main 

mode over aggressive mode? The answer is yes, but it's a minor issue (see 

Problem 25 at the end of the chapter). 

There is an interesting security quirk that arises in the public key encryp-

tion versions—both main and aggressive modes. For simplicity, let's consider 
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IC, CP, ga mod p, 
{ " A l i c e - ^ ^ R ^ b 

IC,RC, CS, gb mod p, 
{"Bob"}Alice, {RB}A|icei proofB 

IC,RC, proofA 

► Bob 

Figure 10.11: Public Key Encryption, Aggressive Mode 

aggressive mode. Suppose Trudy generates DifEe-Hellman exponents a and 6 
and random nonces RA and RB- Then Trudy can compute all of the remain-
ing quantities that appear in the protocol in Figure 10.11, namely, gab mod p, 
K, SKEYID, proofs, and proofB. The reason that Trudy can do this is 
because the public keys of Alice and Bob are public. 

Why would Trudy go to the trouble of generating all of these values? Once 
Trudy has done so, she can create an entire conversation that appears to be a 
valid IPSec transaction between Alice and Bob, as indicated in Figure 10.12. 
Amazingly, this conversation appears to be valid to any observer, including 
Alice and/or Bob! 

Figure 10.12: Trudy Making Mischief 

Note that in Figure 10.12, Trudy is playing the roles of both Alice and Bob. 
Here, Trudy does not convince Bob that she's Alice, she does not convince 
Alice that she's Bob, nor does she determine a session key used by Alice and 
Bob. So, this is a very different kind of attack than we have previously seen. 
Or maybe it's not an attack at all. 

But surely, the fact that Trudy can create a fake conversation that ap-
pears to be a legitimate connection between Alice and Bob is a security flaw. 
Surprisingly, in this mode of IPSec it is considered a security feature, which 
goes by the name of plausible deniability. A protocol that includes plausible 
deniability allows Alice and Bob to deny that a conversation ever took place, 

«4 

Alice 
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since anyone could have faked the whole thing. In some situations, this could 
be a desirable feature. On the other hand, in some situations it might be a 
problem. For example, if Alice makes a purchase from Bob, she could later 
repudiate it, unless Bob also required a digital signature from Alice. 

10.4.4 IPSec Cookies 

The cookies IC and RC that appear in the IPSec protocols above are officially 
known as "anti-clogging tokens" in the relevant RFCs. These IPSec cookies 
have no relation to Web cookies, which are used to maintain state across 
HTTP sessions. Instead, the stated purpose of IPSec cookies is to make 
denial of service, or DoS, attacks more difficult. 

Consider TCP SYN flooding, which is a prototypical DoS attack. Each 
TCP SYN request causes the server to do a little work (create a SEQ num-
ber, for example) and to keep some amount of state. That is, the server 
must remember the so-called half-open connection so that it can complete 
the connection when the corresponding ACK arrives in the third step of the 
three-way handshake. It is this keeping of state that an attacker can exploit 
to create a DoS. If the attacker bombards a server with a large number of SYN 
packets and never completes the resulting half-open connections, the server 
will eventually deplete its resources. When this occurs, the server cannot 
handle legitimate SYN requests and a DoS results. 

To reduce the threat of DoS in IPSec, the server Bob would like to remain 
stateless as much as possible. The IPSec cookies are supposed to help Bob 
remain stateless. However, they clearly fail to achieve their design goal. In 
each of the main mode protocols, Bob must remember the crypto proposal, 
CP, from message one, since it is required in message six when Bob com-
putes proofB. Consequently, Bob must keep state beginning with the first 
message. The IPSec cookies therefore offer no significant DoS protection. 

10.4.5 IKE Phase 1 Summary 

Regardless of which of the eight versions is used, successful completion of IKE 
Phase 1 results in mutual authentication and a shared session key. This is 
known an an IKE Security Association (IKE-SA). 

IKE Phase 1 is computationally expensive in any of the public key modes, 
and the main modes also require six messages. Developers of IKE assumed 
that it would be used for lots of things, not just IPSec (which explains the 
over-engineering). So they included an inexpensive Phase 2, which must be 
used after the IKE-SA has been established in Phase 1. That is, a separate 
Phase 2 is required for each different application that will make use of the 
IKE-SA. However, if IKE is only used for IPSec (as is the case in practice), 
the potential efficiency provided by multiple Phase 2s is not realized. 
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IKE Phase 2 is used to establish a so-called IPSec Security Association, or 
IPSec-SA. The IKE Phase 1 is more or less equivalent to establishing an SSL 
session, whereas IKE Phase 2 is more or less equivalent to establishing an 
SSL connection. Again, the designers of IPSec wanted to make it as flexible 
as possible, since they assumed it would be used for lots of things other than 
IPSec. In fact, IKE could conceivably be used for lots of things other than 
IPSec, however, in practice, it's not. 

10.4.6 IKE Phase 2 

IKE Phase 2 is mercifully simple—at least in comparison to Phase 1. Before 
IKE Phase 2 can occur, IKE Phase 1 must be completed, in which case a 
shared session key K, the IPSec cookies, IC, RC, and the IKE-SA have all 
been established and are known to Alice and Bob. Given that this is the case, 
the IKE Phase 2 protocol appears in Figure 10.13, where the following holds 
true. 

• The crypto proposal includes ESP or AH (discussed below). This is 
where Alice and Bob decide whether to use ESP or AH. 

• SA is an identifier for the IKE-SA established in Phase 1. 

• The hashes numbered 1, 2, and 3 depend on SKEYID, RA, RB, and 
the IKE SA from Phase 1. 

• The keys are derived from KEYMAT = /i(SKEYID,AA,#B,junk), 
where the "junk" is known to all (including an attacker). 

• The value of SKEYID depends on the Phase 1 key method. 

• Optionally, PFS can be employed, using an ephemeral Diffie-Hellman 
exchange. 

Note that RA and RB in Figure 10.13 are not the same as those from 
IKE Phase 1. As a result, the keys generated in each Phase 2 differ from the 
Phase 1 key and from each other. 

IC,RC,CP,E(hash1,SA,RA,K) 

IC,RC,CS,E(hash2,SA,RB,K) 

IC,RC,E(hash3,K) 
Alice * Bob 

Figure 10.13: IKE Phase 2 
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After completing IKE Phase 1, we have established an IKE-SA, and after 
completing IKE Phase 2, we have established an IPSec-SA. After Phase 2, 
both Alice and Bob have been authenticated and they have a shared session 
key for use in the current connection. 

Recall that in SSL, once we completed mutual authentication and had 
established a session key, we were done. Since SSL deals with application 
layer data, we simply encrypt and integrity protect in a standard way. In SSL, 
the network is transparent to Alice and Bob because SSL lives at the socket 
layer—which is really part of the application layer. This is one advantage to 
dealing with application layer data. 

In IPSec, protecting the data is not so straightforward. Assuming IPSec 
authentication succeeds and we establish a session key, then we need to pro-
tect IP datagrams. The complication here is that protection must occur at 
the network layer. But before we discuss this issue in detail, we need to 
consider IP datagrams from the perspective of IPSec. 

10.4.7 IPSec and IP Datagrams 

An IP datagram consists of a header and data. The IP header is illustrated 
in the Appendix in Figure A-5. If the options field is empty (as it usually 
is), then the IP header consists of 20 bytes. For the purposes of IPSec, one 
important point is that routers must see the destination address in the IP 
header so that they can route the packet. Most other header fields are also 
used in conjunction with routing the packet. Since the routers do not have 
access to the session key, we cannot encrypt the IP header. 

A second crucial point is that some of the fields in the IP header change 
as the packet is forwarded. For example, the TTL field—which contains 
the number of hops remaining before the packet dies—is decremented by 
each router that handles the packet. Since the session key is not known to 
the routers, any header fields that change cannot be integrity protected. In 
IPSec-speak, the header fields that can change are known as mutable fields. 

Next, we look inside an IP datagram. Consider, for example, a Web 
browsing session. The application layer protocol for such traffic is HTTP, 
and the transport layer protocol is TCP. In this case, IP encapsulates a TCP 
packet, which encapsulates an HTTP packet as is illustrated in Figure 10.14. 
The point here is that, from the perspective of IP (and hence, IPSec), the 
data includes more than application layer data. In this example, the "data" 
includes the TCP and HTTP headers, as well as the application layer data. 
We'll see why this is relevant below. 

As previously mentioned, IPSec uses either ESP or AH to protect an IP 
datagram. Depending on which is selected, an ESP header or an AH header 
is included in an IPSec-protected datagram. This header tells the recipient 
to treat this as an ESP or AH packet, not as a standard IP datagram. 
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Figure 10.14: IP Datagram 

10.4.8 Transport and Tunnel M o d e s 

Independent of whether ESP or AH is used, IPSec employs either transport 
mode or tunnel mode. In transport mode, as illustrated in Figure 10.15, 
the new ESP/AH header is sandwiched between the IP header and the data. 
Transport mode is more efficient since it adds a minimal amount of additional 
header information. Note that in transport mode the original IP header 
remains intact. The downside of transport mode is that a passive attacker 
can see the headers. So, if Trudy observes an IPSec protected conversation 
between Alice and Bob where transport mode is used, the headers will reveal 
that Alice and Bob are communicating.8 

Transport mode is designed for host-to-host communication, that is, when 
Alice and Bob are communicating directly with each other using IPSec. This 
is illustrated in Figure 10.16. 

Figure 10.15: IPSec Transport Mode 

Alice Bob 

Figure 10.16: IPSec from Host-to-Host 

In tunnel mode, as illustrated in Figure 10.17, the entire IP packet is 
encapsulated in a new IP packet. One advantage of this approach is that the 

Recall that we cannot encrypt the header. 
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original IP header is no longer visible to an attacker—assuming the packet is 
encrypted. However, if Alice and Bob are communicating directly with each 
other, the new IP header will be the same as the encapsulated IP header, so 
hiding the original header would be pointless. However, IPSec is often used 
from firewall to firewall, not from host to host. That is, Alice's firewall and 
Bob's firewall communicate using IPSec, not Alice and Bob directly. Suppose 
IPSec is being used from firewall to firewall. Using tunnel mode, the new IP 
header will only reveal that the packet is being sent between Alice's firewall 
and Bob's firewall. So, if the packet is encrypted, Trudy would know that 
Alice's and Bob's firewalls are communicating, but she would not know which 
specific hosts behind the firewalls are communicating. 

Tunnel mode was designed for firewall-to-firewall communication. Again, 
when tunnel mode is used from firewall to firewall—as illustrated in Fig-
ure 10.18—Trudy does not know which hosts are communicating. The disad-
vantage of tunnel mode is the overhead of an additional IP header. 

Figure 10.18: IPSec from Firewall to Firewall 

Technically, transport mode is not necessary, since we could encapsulate 
the original IP packet in a new IPSec packet, even in the host-to-host case. 
For firewall-to-firewall protected traffic, tunnel mode is necessary, as we must 
preserve the original IP header so that the destination firewall can route the 
packet to the destination host. But transport mode is more efficient, which 
makes it preferable when traffic is protected from host to host. 

10.4.9 E S P and A H 

Once we've decided whether to use transport mode or tunnel mode, then we 
must (finally) consider the type of protection we actually want to apply to 
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the IP datagrams. The choices are confidentiality, integrity, or both. But we 
also must consider the protection, if any, to apply to the header. In IPSec, 
the only choices are AH and ESP. So, what protection options do each of 
these provide? 

AH, the Authentication Header, provides integrity only, that is, AH pro-
vides no encryption. The AH integrity protection applies to everything be-
yond the IP header and some fields of the header. As previously mentioned, 
not all fields of the IP header can be integrity protected (TTL, for example). 
AH classifies IP header fields as mutable or immutable, and it applies its 
integrity protection to all of the immutable fields. 

In ESP, the Encapsulating Security Payload, both integrity and confi-
dentiality are required. Both the confidentiality and integrity protection are 
applied to everything beyond the IP header, that is, the "data" from the 
perspective of IP. No protection is applied to the IP header 

Encryption is required in ESP. However, there is a trick whereby ESP 
can be used for integrity only. In ESP, Alice and Bob negotiate the cipher 
that they will use. One of the ciphers that MUST be supported is the NULL 
cipher, described in RFC 2410 [123]. Here are some excerpts from this unusual 
RFC. 

• NULL encryption is a block cipher, the origins of which appear to be 
lost in antiquity. 

• Despite rumors, there is no evidence that NSA suppressed publication 
of this algorithm. 

• Evidence suggests it was developed in Roman times as an exportable 
version of Caesar's cipher. 

• NULL encryption can make use of keys of varying length. 

• No IV is required. 

• NULL encryption is defined by Null(P, K) = P for any plaintext P and 
any key K. 

This RFC proves that security people are strange.9 

In ESP, if the NULL cipher is selected then no encryption is applied, but 
the data is integrity protected. This case looks suspiciously similar to AH. 
So, why does AH exist? 

There are three reasons given to justify the existence of AH. As previously 
noted, the IP header can't be encrypted since routers must see the header to 
route packets. But AH does provide integrity protection to the immutable 

'As if you didn't already know that. 
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fields in the IP header, whereas ESP provides no protection to the header. 
That is, AH provides slightly more integrity protection than ESP/NULL. 

A second reason for the existence of AH is that ESP encrypts everything 
beyond the IP header, provided a non-NULL cipher is selected. If ESP is 
used and the packet is encrypted, a firewall can't look inside the packet to, 
for example, examine the TCP header. Perhaps surprisingly, ESP with NULL 
encryption doesn't solve this problem. When the firewall sees the ESP header, 
it will know that ESP is being used. However, the header does not tell the 
firewall that the NULL cipher is used—that was negotiated between Alice 
and Bob and is not included in the header. So, when a firewall sees that ESP 
is used, it has no way to know whether the TCP header is encrypted or not. 
In contrast, when a firewall sees that AH is used, it knows that nothing is 
encrypted. 

Neither of these reasons for the existence of AH is particularly persua-
sive. The designers of AH/ESP could have made minor modifications to the 
protocol so that ESP alone could overcome these drawbacks. But there is a 
more convincing reason given for the existence of AH. At one meeting where 
the IPSec standard was being developed, "someone from Microsoft gave an 
impassioned speech about how AH was useless . . ." and ".. . everyone in the 
room looked around and said, Hmm. He's right, and we hate AH also, but 
if it annoys Microsoft let's leave it in since we hate Microsoft more than we 
hate AH" [162]. So now you know the rest of the story. 

10.5 Kerberos 

In Greek mythology, Kerberos is a three-headed dog that guards the entrance 
to Hades.10 In security, Kerberos is a popular authentication protocol that 
uses symmetric key cryptography and timestamps. Kerberos originated at 
MIT and is based on work by Needham and Schroeder [217]. Whereas SSL 
and IPSec are designed for the Internet, Kerberos is designed for a smaller 
scale, such as on a local area network (LAN) or within a corporation. 

Suppose we have N users, where each pair needs to be able to authenticate 
each other. If our authentication protocol is based on public key cryptogra-
phy, then each user requires a public-private key pair and, consequently, N 
key pairs are needed. On the other hand, if our authentication protocol is 
based on symmetric keys, it would appear that each pair of users must share 
a symmetric key, in which case N(N — l) /2 « N2 keys are required. Conse-
quently, authentication based on symmetric keys doesn't scale. However, by 
relying on a Trusted Third Party (TTP), Kerberos only requires N symmetric 
keys for N users. Users do not share keys with each other. Instead each user 
shares one key with the KDC, that is, Alice and the KDC share KA, Bob 

10The authors of [162] ask, "Wouldn't it make more sense to guard the exit?" 
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and the KDC share KB, Carol and the KDC share Kc, and so on. Then, 
the KDC acts as a go-between that enables any pair of users to communicate 
securely with each other. The bottom line is that Kerberos uses symmetric 
keys in a way that does scale. 

The Kerberos TTP is a security critical component that must be protected 
from attack. This is certainly a security issue, but in contrast to a system 
that uses public keys, no public key infrastructure (PKI) is required.11 In 
essence, the Kerberos TTP plays a similar role as a certificate authority in a 
public key system. 

The Kerberos TTP is known as the key distribution center, or KDC.12 

Since the KDC acts as a TTP, if it's compromised, the security of the entire 
system is compromised. 

As noted above, the KDC shares a symmetric key KA with user Alice, 
and it shares a symmetric key KB with Bob, and so on. The KDC also has 
a master key Ä"KDC> which is known only to the KDC. Although it might 
seem senseless to have a key that only the KDC knows, we'll see that this key 
plays a critical role. In particular, the key ■K'KDC allows the KDC to remain 
stateless, which eliminates most denial of service attacks. A stateless KDC is 
a major security feature of Kerberos. 

Kerberos is used for authentication and to establish a session key that 
can subsequently be used for confidentiality and integrity. In principle, any 
symmetric cipher can be used with Kerberos. However, in practice, it seems 
the crypto algorithm of choice is the Data Encryption Standard (DES). 

In Kerboros-speak, the KDC issues various types of tickets. Understand-
ing these tickets is critical to understanding Kerberos. A ticket contains the 
keys and other information required to access network resource. One special 
ticket that the KDC issues is the all-important ticket-granting ticket, or TGT. 
A TGT, which is issued when a user initially logs into the system, acts as 
the user's credentials. The TGT is then used to obtain (ordinary) tickets 
that enable access to network resources. The use of TGTs is crucial to the 
statelessness of Kerberos. 

Each TGT contains a session key, the user ID of the user to whom the 
TGT is issued, and an expiration time. For simplicity, we'll ignore the ex-
piration time, but it's worth noting that TGTs don't last forever. Every 
TGT is encrypted with the key i^KDC- Recall that only the KDC knows the 
key -ifKDC· As a result, a TGT can only be read by the KDC. 

Why does the KDC encrypt a user's TGT with a key that only the KDC 
knows and then send the result to the user? The alternative would be for 
the KDC to maintain a database of which users are logged in, their session 
keys, etc. That is, the TGT would have to maintain state. In effect, TGTs 

11As we discussed in Chapter 4, PKI presents a substantial challenge in practice. 
12The most difficult part about Kerberos is keeping track of all of the acronyms. There 

are a lot more acronyms to come—we're just getting warmed up. 
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provides a simple, effective, and secure way to distribute this database to the 
users. Then when, say, Alice presents her TGT to the KDC, the KDC can 
decrypt it and, voila, it remembers everything it needs to know about Alice.13 

The role of the TGT will become clear below. For now, just note that TGTs 
are a clever design feature of Kerberos. 

10.5.1 Kerberized Login 

To understand Kerberos, let's first consider how a "Kerberized" login works, 
that is, we'll examine the steps that occur when Alice logs in to a system where 
Kerberos is used for authentication. As on most systems, Alice first enters 
her username and password. In Kerberos, Alice's computer then derives the 
key KA from Alice's password, where KA is the key that Alice and the KDC 
share. Alice's computer uses KA to obtain Alice's TGT from the KDC. 
Alice can then use her TGT (i.e., her credentials) to securely access network 
resources. Once Alice has logged in, all of the security is automatic and takes 
place behind the scenes, without any additional involvement by Alice. 

A Kerberized login is illustrated in Figure 10.19, where the following no-
tation is used. 

• The key KA is derived as KA = /i(Alice's password) 

• The KDC creates the session key SA 

• Alice's computer uses KA to obtain SA and the TGT; then Alice's 
computer forgets KA 

. TGT = E("Alice",SA;KKOC) 

Alice wants ̂  

Alice's a TGT 

password ^ E(SA,TGT,KA) 

Alice Computer KDC 

Figure 10.19: Kerberized Login 

13Your hapless author's ill-fated startup company had a similar situation, i.e., a database 
of customer security-related information that had to be maintained (assuming the com-
pany had ever actually had any customers, that is). Instead of creating a security-critical 
database, the company chose to encrypt each user's information with a key known only to 
the company, then distribute this encrypted data to the appropriate user. Users then had 
to present this encrypted data before they could access any security-related features of the 
system. This is essentially the same trick used in Kerberos TGTs. 
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One major advantage to the Kerberized login is that the entire security 
process (beyond the password entry) is transparent to Alice. The major 
disadvantage is that the reliance on the security of the KDC is total. 

10.5.2 Kerberos Ticket 

Once Alice's computer receives its TGT, it can then use the TGT to request 
access to network resources. For example, suppose that Alice wants to talk 
to Bob. Then Alice's computer presents its TGT to the KDC, along with an 
authenticator. The authenticator is an encrypted timestamp that serves to 
avoid a replay. After the KDC verifies Alice's authenticator, it responds with 
a "ticket to Bob." Alice's computer then uses this ticket to Bob to securely 
communicate directly with Bob's computer. Alice's acquisition of the ticket 
to Bob is illustrated in Figure 10.20, where the following notation is used. 

REQUEST = (TGT, authenticator) 

authenticator = ^(timestamp, SA) 

REPLY = £("Bob", KAB, ticket to Bob; SU) 

ticket to Bob = E{"Alice",KAB; KB) 

In Figure 10.20, the KDC obtains the key SA from the TGT and uses this 
key to verify the timestamp. Also, the key KAB is the session key that Alice 
and Bob will use for their session. 

Talk to Bol 

Alice Computer 

Figure 10.20: Alice Gets Ticket to Bob 

Once Alice has obtained the "ticket to Bob," she can then securely com-
municate with Bob. This process is illustrated in Figure 10.21, where the 
ticket to Bob is as above and 

authenticator = ^(timestamp, KAB). 

Note that Bob decrypts "ticket to Bob" with his key KB to obtain KAB, which 
he then uses to verify the timestamp. The key KAB is also used to protect 
the confidentiality and integrity of the subsequent conversation between Alice 
and Bob. 

I want to 
talk to Bob 

REQUEST 

REPLY 

KDC 



 

376 REAL-WORLD SECURITY PROTOCOLS 

ticket to Bob, authenticator 
► 

E(timestamp +1 ,KAB) 

Alice's Bob 
Computer 

Figure 10.21: Alice Contacts Bob 

Since timestamps are used for replay prevention, Kerberos minimizes the 
number of messages that must be sent. As we mentioned in the previous 
chapter, the primary drawback to using timestamps is that time becomes a 
security-critical parameter. Another issue with timestamps is that we can't 
expect all clocks to be perfectly synchronized and therefore some clock skew 
must be tolerated. In Kerberos, this clock skew is by default set to five 
minutes, which seems like an eternity in a networked world. 

10.5.3 Kerberos Security 

Recall that, when Alice logs in, the KDC sends E(SA,T.GT;KA) to Alice, 
where TGT = £ ( "Alice", SU; # K D C ) · Since the TGT is encrypted with the 
key -KKDO

 w n v is the TGT encrypted again with the key ÄU? The answer 
is that this is a minor flaw in Kerberos, since it's extra work that provides 
no additional security. If the key X K D C ^S compromised, the entire security 
of the system is broken, so there is no added benefit to encrypting the TGT 
again after it's already encrypted with -Kj<DC· 

Notice that, in Figure 10.20, Alice remains anonymous in the REQUEST. 
This is a nice security feature that is a side benefit of the fact that the TGT 
is encrypted with the key K K D C · That is, the KDC does not need to know 
who is making the REQUEST before it can decrypt the TGT, since all TGTs 
are encrypted with ÄRDC- Anonymity with symmetric keys can be difficult, 
as we saw with the IPSec symmetric key main mode. But, in this part of 
Kerberos, anonymity is easy. 

In the Kerberos example above, why is "ticket to Bob" sent to Alice, when 
Alice simply forwards it on to Bob? Apparently, it would be more efficient to 
have the KDC send the ticket directly to Bob, and the designers of Kerberos 
were certainly concerned with efficiency (e.g., they use timestamps instead of 
nonces). However, if the ticket to Bob arrives at Bob before Alice initiates 
contact, then Bob would have to remember the key KAB until it's needed. 
That is, Bob would need to maintain state. Statelessness is an important 
feature of Kerberos. 
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Finally, how does Kerberos prevent replay attacks? Replay prevention 
relies on the timestamps that appear in the authenticators. But there is still 
an issue of replay within the clock skew. To prevent such replay attacks, the 
KDC would need to remember all timestamps received within the clock skew 
interval. However, most Kerberos implementations apparently don't bother 
to do this [162]. 

Before departing the realm of Kerberos, we consider a design alternative. 
Suppose we have the KDC remember session keys instead of putting these in 
the TGT. This design would eliminate the need for TGTs. But it would also 
require the KDC to maintain state, and a stateless KDC is one of the most 
impressive design features in Kerberos. 

10.6 WEP 

Wired Equivalent Privacy, or WEP, is a security protocol that was designed 
to make a wireless local area network (LAN) as secure as a wired LAN. By 
any measure, WEP is a seriously flawed protocol. As Tanenbaum so aptly 
puts it [298]: 

The 802.11 standard prescribes a data link-level security protocol 
called WEP (Wired Equivalent Privacy), which is designed to 
make the security of a wireless LAN as good as that of a wired 
LAN. Since the default for a wired LAN is no security at all, this 
goal is easy to achieve, and WEP achieves it as we shall see. 

10.6.1 W E P Authent icat ion 

In WEP, a wireless access point shares a single symmetric key with all users. 
While it is not ideal to share one key among many users, it certainly does 
simplify things for the access point. In any case, the actual WEP authenti-
cation protocol is a simple challenge-response, as illustrated in Figure 10.22, 
where Bob is the access point, Alice is a user, and K is the shared symmetric 
key. 

Authentication Request 

R 
< 

E(R, K) ^ 

Alice, K Bob, K 

Figure 10.22: WEP Authentication 
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10.6.2 W E P Encryption 

Once Alice has been authenticated, packets are encrypted using the RC4 

stream cipher (see Section 3.2.2 for details on the RC4 algorithm), as illus-

trated in Figure 10.23. Each packet is encrypted with a key Κγγ = (IV, K), 

where IV is a 3-byte initialization vector that is sent in the clear with the 

packet, and K is the same key used for authentication. The goal here is to 

encrypt packets with distinct keys, since reuse of the key would be a bad idea 

(see Problem 36). Note that, for each packet, Trudy knows the 3-byte IV, 

but she does not know K. So the encryption key varies and it's not known 

by Trudy. 

IV, E(packet,Klv) 

Alice, K Bob, K 

Figure 10.23: WEP Encryption 

Since the IV is only three bytes long, and the key K seldom changes, the 

encryption key fi jy = (IV, K) will repeat often (see Problems 37). Further-

more, whenever the key ifjy repeats, Trudy will know it, since the IV is 

visible (assuming K has not changed). RC4 is a stream cipher, so a repeated 

key implies reuse of the keystream, which is a serious problem. Further re-

peats of the same IV make Trudy's job even easier. 

The number of repeated encryption keys could be reduced if K was 

changed regularly. Unfortunately, the long-term key K seldom changes since, 

in WEP, such a change is a manual process and the access point and all hosts 

must update their keys. That is, there is no key update procedure built into 

WEP. 

The bottom line is that, whenever Trudy sees a repeated IV, she can safely 

assume the same keystream was used. Since the IV is only 24 bits, repeats 

will occur relatively often. And, since a stream cipher is used, a repeated 

keystream is at least as bad as reuse of a one-time pad. 

In addition to this small-IV problem, there is another distinct cryptan-

alytic attack on WEP encryption. While RC4 is considered a strong cipher 

when used correctly, there is a practical attack that can be used to recover the 

RC4 key from WEP ciphertext. This clever attack, which can be considered 

a type of related key attack, is due to Fluhrer, Mantin, and Shamir [112]. 

This attack is discussed in detail in Section 6.3 of Chapter 6, or see [284] for 

more information. 
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10.6.3 W E P Non-Integrity 

WEP has numerous security problems, but one of the most egregious is that it 
uses a cyclic redundancy check (CRC) for "integrity" protection. Recall that 
a cryptographic integrity check is supposed to detect malicious tampering 
with the data—not just transmission errors. While a CRC is a good error 
detection method, it is useless for cryptographic integrity, since an intelligent 
adversary can alter the data and, simultaneously, the CRC value so that the 
integrity check is passed. This is precisely the attack that a true cryptographic 
integrity check, such as a MAC, HMAC, or digital signature, will prevent. 

This integrity problem is made worse by the fact that the data is encrypted 
with a stream cipher. Because a stream cipher is used, WEP encryption is 
linear, which allows Trudy to make changes directly to the ciphertext and 
change the corresponding CRC value so that the receiver will not detect the 
tampering. That is, Trudy does not need know the key or plaintext to make 
undetectable changes to the data. Under this scenario, Trudy won't know 
what changes she has made, but the point is that the data can be corrupted 
in a way that neither Alice nor Bob can detect. 

The problems only get worse if Trudy should happen to know some of the 
plaintext. For example, suppose that Trudy knows the destination IP address 
of a given WEP-encrypted packet. Then without any knowledge of the key, 
Trudy can change the destination IP address to an IP address of her choosing 
(for example, her own IP address), and change the CRC integrity check so 
that her tampering will go undetected. Since WEP traffic is only encrypted 
from the host to the wireless access point (and vice versa), when the altered 
packet arrives at the access point, it will be decrypted and forwarded to 
Trudy's preferred IP address. From the perspective of a lazy cryptanalyst, it 
doesn't get any better than this. Again, this attack is made possible by the 
lack of any real integrity check. The bottom line is that the WEP "integrity 
check" provides no cryptographic integrity whatsoever. 

10.6.4 Other W E P Issues 

There are many more WEP security vulnerabilities. For example, if Trudy 
can send a message over the wireless link and intercept the ciphertext, then 
she will know the plaintext and the corresponding ciphertext, which enables 
her to immediately recover the keystream. This same keystream will be used 
to encrypt any message that uses the same IV, provided the long-term key 
has not changed (which, as pointed out above, it seldom does). 

Would Trudy ever know the plaintext of an encrypted message sent over 
the wireless link? Perhaps Trudy could send an email message to Alice and 
ask her to forward it to another person. If Alice does so, then Trudy could 
intercepted the ciphertext message corresponding to the known plaintext. 



 

380 REAL-WORLD SECURITY PROTOCOLS 

Another issue is that, by default, a WEP access point broadcasts its SSID 
(the Service Set Identifier), which acts as its ID. The client must use the SSID 
when authenticating to the access point. One security feature of WEP makes 
it possible to configure the access point so that it does not broadcast the 
SSID, in which case the SSID acts something like a password that users must 
know to authenticate to the access point. However, users send the SSID in 
the clear when contacting the access point, and Trudy only needs to intercept 
one such packet to discover the SSID "password." Even worse, there are tools 
that will force WEP clients to de-authenticate, in which case the clients will 
then automatically attempt to re-authenticate, in the process, sending the 
SSID in the clear. Consequently, as long as there is at least one active user, 
it's a fairly simple process for Trudy to obtain the SSID. 

10.6.5 W E P : The B o t t o m Line 

It's difficult—if not impossible—to view WEP as anything but a security 
disaster. However, in spite of all of its multiple security problems, in some 
circumstances it may be possible to make WEP moderately secure in practice. 
Ironically, this has more to do with the inherent insecurity of WEP than with 
any inherent security of WEP. Suppose that you configure your WEP access 
points so that it encrypts the data, it does not broadcast its SSID, and you use 
access control (i.e., only machines with specified MAC addresses are allowed 
to use the access point). Then an attacker must expend some effort to gain 
access—at a minimum, Trudy must break the encryption, spoof her MAC 
address, and probably force users to de-authenticate so that she can obtain 
the SSID. While there are tools to help with all of these tasks, it would likely 
be much simpler for Trudy to find an unprotected WEP network. Like most 
people, Trudy generally chooses the path of least resistance. Of course, if 
Trudy has reason to specifically target your WEP installation (as opposed to 
simply wanting free network access), you will be vulnerable as long as you 
rely on WEP. 

Finally, we note that there are more secure alternatives to WEP. For 
example, Wi-Fi Protected Access (WPA) is significantly stronger, but it was 
designed to use the same hardware as WEP, so some security compromises 
were necessary. A few attacks on WPA are known but, as a practical matter, 
it seems to be secure. There is also a WPA2 which, in principle, is somewhat 
stronger than WPA, but it requires more powerful hardware. As with WPA, 
there are some claimed attacks on WPA2, but these also appear to be of little 
practical significance. Today, WEP can be broken in minutes whereas the 
only serious threats against WPA and WPA2 are password cracking attacks. 
If reasonably strong passwords are chosen, WPA and WPA2 both would be 
considered practically secure, by any conceivable definition. In any case, both 
WPA and WPA2 are vast improvements over WEP [325]. 
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10.7 GSM 

To date, many wireless protocols, such as WEP, have a poor track record 
with respect to security [17, 38, 93]. In this section we'll discuss the security 
of GSM cell phones. GSM illustrates some of the unique security problems 
that arise in a wireless environment. It's also an excellent example of how 
mistakes at the design phase are extremely difficult to correct later. But 
before we delve into to GSM security, we need some background information 
on the development of cell phone technology. 

Back in the computing stone age (prior to the 1980s, that is) cell phones 
were expensive, completely insecure, and as large as a brick. These first-
generation cell phones were analog, not digital, and there were few standards 
and little or no thought was given to security. 

The biggest security issue with early cell phones was their susceptibility 
to cloning. These cell phones would send their identity in the clear when a 
phone call was placed, and this identity was used to determine who to bill for 
the phone call. Since the ID was sent over a wireless media, it could easily be 
captured and then used to make a copy or clone, of the phone. This allowed 
the bad guys to make free phone calls, which did not please cellular phone 
companies, who ultimately had to bear the cost. Cell phone cloning became 
a big business, with fake base stations created simply to harvest IDs [14]. 

Into this chaotic environment came GSM, which began in 1982 as Groupe 
Spéciale Mobile, but in 1986 it was formally rechristened as Global System for 
Mobile Communications.14 The founding of GSM marks the official beginning 
of second-generation cell phone technology [142]. We'll have much more to 
say about GSM security below. 

Recently, third-generation cell phones have become popular. The 3rd 
Generation Partnership Project, or 3GPP [1], is the trade group behind 
3G phones. We'll briefly mention the security architecture promoted by the 
3GPP after we complete our survey of GSM security. 

10.7.1 GSM Architecture 

The general architecture of GSM is illustrated in Figure 10.24, where the 
following terminology is used. 

• The mobile is the cell phone. 

• The air interface is where the wireless transmission from the cell phone 
to a base station occurs. 

• The visited network typically includes multiple base stations and a base 
station controller, which acts as a hub for connecting the base stations 

This is a tribute to the universality of three-letter acronyms. 
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under its control to the rest of the GSM network. The base station 
controller includes a visitor location registry, or VLR, which is used to 
keep tabs on all mobiles currently active in the VLR's network. 

• The public switched telephone network, or PSTN, is the ordinary (non-
cellular) telephone system. The PSTN is sometimes referred to as "land 
lines" to distinguish it from the wireless network. 

• The home network is the network where the mobile is registered. Each 
mobile is associated with a unique home network. The home network 
includes a home location registry, or HLR, which keeps track of the 
most recent location of all mobiles listed in the HLR. The authentication 
center, or AuC, maintains the crucial billing information for all mobiles 
that belong to the corresponding HLR. 

We'll discuss these pieces of the GSM puzzle in more detail below. 

Figure 10.24: GSM Overview 

Each GSM mobile phone contains a Subscriber Identity Module, or SIM, 
which is a tamper-resistant smartcard. The SIM contains an International 
Mobile Subscriber ID, or IMSI, which, not surprisingly, is used to identify 
the mobile. The SIM also contains a 128-bit key that is known only by the 
mobile and its home network. This key is universally know as Ki, so we'll 
follow the standard notation. 

The purpose of using a smartcard for the SIM is to provide an inexpensive 
form of tamper-resistant hardware. The SIM card also provides two-factor 
authentication, relying on "something you have" (the mobile containing the 
SIM) and "something you know" in the form of a four-digit PIN. However, 
the PIN is usually treated as an annoyance, and it's often not used. 

Again, the visited network is the network where the mobile is currently 
located. A base station is one cell in the cellular system, whereas the base 
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station controller manages a collection of cells. The VLR has information on 
all mobiles currently visiting the base station controller's territory. 

The home network stores a given mobile's crucial information, namely, its 
IMSI and key Ki. Note that the IMSI and Ki are, in effect, the username 
and "password" for the mobile when it wants to access the network to make a 
call. The HLR keeps track of the most recent location of each of it's registered 
mobiles, while the AuC contains each registered mobile's IMSI and key Ki. 

10.7.2 G S M Security Architecture 

Now we're ready to take a close look at the GSM security architecture. The 
primary security goals set forth by the designers of GSM were the following. 

• Make GSM as secure as ordinary telephones (the PSTN) 

• Prevent cell phone cloning 

Note that GSM was not designed to resist an active attack. At the time, 
active attacks were considered infeasible, since the necessary equipment was 
costly. However, today the cost of such equipment is little more than that of a 
good laptop computer, so neglecting active attacks was probably shortsighted. 
The designers of GSM considered the biggest threats to be insecure billing, 
corruption, and similar low-tech attacks. 

GSM attempts to deal with three security issues: anonymity, authenti-
cation, and confidentiality. In GSM, the anonymity is supposed to prevent 
intercepted traffic from being used to identify the caller. Anonymity is not 
particularly important to the phone companies, except to the extent that it 
is important for customer confidence. Anonymity is something users might 
reasonably expect from non-cellular phone calls. 

Authentication, on the other hand, is of paramount importance to phone 
companies, since correct authentication is necessary for proper billing. The 
first-generation cloning problems can be viewed as an authentication failure. 
As with anonymity, confidentiality of calls over the air interface is important 
to customers, and so, to that extent, it's important to phone companies. 

Next, we'll look at GSM's approach to anonymity, authentication, and 
confidentiality in more detail. Then we'll discuss some of the many security 
flaws in GSM. 

10.7.2.1 Anonymity 

GSM provides a very limited form of anonymity. The IMSI is sent in the 
clear over the air interface at the start of a call. Then a random Temporary 
Mobile Subscriber ID, or TMSI, is assigned to the caller, and the TMSI 
is subsequently used to identify the caller. In addition, the TMSI changes 
frequently. The net effect is that, if an attacker captures the initial part 
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of a call, the caller's anonymity will be compromised. But if the attacker 
misses the initial part of the call, then the anonymity is, in a practical sense, 
reasonably well protected. Although this is not a strong form of anonymity, 
it may be sufficient for real-world situations where an attacker could have 
difficulty filtering the IMSIs out of a large volume of traffic. It seems that 
the GSM designers did not take anonymity too seriously. 

10.7.2.2 Authentication 

Prom the phone company's perspective, authentication is the most critical 
aspect of the GSM security architecture. Authenticating the user to the base 
station is necessary to ensure that the phone company will get paid for the 
service they provide. In GSM, the caller is authenticated to the base station, 
but the authentication is not mutual. That is, the GSM designers decided 
that it was not necessary to verify the identity of the base station. We'll see 
that this was a significant security oversight. 

GSM authentication uses a simple challenge-response mechanism. The 
caller's IMSI is received by the base station, which then passes it to the 
caller's home network. Recall that the home network knows the caller's IMSI 
and key Ki. The home network generates a random challenge, RAND, and 
computes the "expected response," XRES = A3(RAND, Jfi), where A3 is a 
hash function. Then the pair (RAND, XRES) is sent from the home network 
to the base station. The base station sends the challenge, RAND, to the 
mobile. The mobile's response is denoted SRES, where SRES is computed by 
the mobile as SRES = A3(RAND, Ki). To complete the authentication, the 
mobile sends SRES to the base station which verifies that SRES = XRES. 
Note that in this authentication protocol, the caller's key Ki never leaves its 
home network or the mobile. It's important that Trudy cannot obtain Ki, 
since that would enable her to clone the caller's phone. 

10.7.2.3 Confidentiality 

GSM uses a stream cipher to encrypt the data. The reason for this choice is 
due to the relatively high error rate in the cell phone environment, which is 
typically about 1 in 1000 bits. With a block cipher, each transmission error 
causes one or two plaintext blocks to be garbled (depending on the mode), 
while a stream cipher garbles only those plaintext bits corresponding to the 
specific ciphertext bits that are in error.15 

The GSM encryption key is universally denoted as Kc, so we'll follow that 
convention. When the home network receives the IMSI from the base station 
controller, the home network computes Kc = A8(RAND,.ftTi), where A8 is 

15It is possible to use error correcting codes to minimize the effects of transmission errors, 
making block ciphers feasible. However, this adds another layer of complexity to the process. 
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another hash function. Then Kc is sent along with the pair RAND and XRES, 
that is, the triple (RAND, XRES, Kc) is sent from the home network to the 
base station.16 

Once the base station receives the triple (RAND,XRES, Kc), it uses the 
authentication protocol described above. If this succeeds, the mobile com-
putes Kc = A8(RANO, Ki). The base station already knows Kc, so the 
mobile and base station have a shared symmetric key with which to encrypt 
the conversation. As mentioned above, the data is encrypted with the A5/1 
stream cipher. As with authentication, the caller's master key Ki never leaves 
its home network. 

10.7.3 GSM Authentication Protocol 

The part of the GSM protocol that occurs between the mobile and the base 
station is illustrated in Figure 10.25. A few security concerns with this pro-
tocol are as follows [228]. 

• The RAND is hashed together with Ki to produce the encryption 
key Kc. Also, the value of RAND is hashed with Ki to generate SRES, 
which a passive attacker can see. As a result, it's necessary that SRES 
and Kc be uncorrelated—otherwise there would have been a shortcut 
attack on Kc. These hash values will be uncorrelated if a secure cryp-
tographic hash function is used. 

• It must not be possible to deduce Ki from known RAND and SRES 
pairs, since such pairs are available to a passive attacker. This is anal-
ogous to a known plaintext attack with a hash function in place of a 
cipher. 

• It must not be possible to deduce Ki from chosen RAND and SRES 
pairs, which is analogous to a chosen plaintext attack on the hash func-
tion. Although this attack might seem implausible, with possession of 
the SIM card, an attacker can choose the RAND values and observe the 
corresponding SRES values.17 

Note that the encryption key Kc is sent from the home network to the base station. 
Trudy may be able to obtain the encryption key by simply observing traffic sent over the 
network. In contrast, the authentication key Ki never leaves the home network or the 
mobile, so it is not subject to such an attack. This shows the relative importance the GSM 
architects placed on authentication as compared to confidentiality. 

17If this attack is feasible, it is a threat even if it's slow, since the person who sells the 
phone would likely possess it for an extended period of time. On the other hand, if the 
attack is fast, then a phone that is "lost" for a few minutes would be subject to cloning. 
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Figure 10.25: GSM Authentication and Encryption 

10.7.4 G S M Security Flaws 

Next, we'll discuss security flaws in GSM—there are cryptographic flaws and 
there are protocol flaws as well. But, arguably, the most serious problems 
arise from invalid security assumptions made by the designers of GSM. 

10.7.4.1 Crypto Flaws 

There are several cryptographic flaws in GSM. The hashes A3 and A8 both 
are based on a hash function known as COMP128. The hash COMP128 
was developed as a secret design, in violation of Kerckhoffs' Principle. Not 
surprisingly, COMP128 was later found to be weak—it can be broken by 
150,000 chosen "plaintexts" [130]. What this means in practice is that an 
attacker who has access to a SIM card can determine the key Ki in 2 to 10 
hours, depending in the speed of the card. In particular, an unscrupulous 
seller could determine Ki before selling a phone, then create clones that 
would have their calls billed to the purchaser of the phone. Below, we'll 
mention another attack on COMP128. 

There are two different forms of the encryption algorithm A5, which are 
known as A5/1 and A5/2. Recall that we discussed A5/1 in Chapter 3. As 
with COMP128, both of these ciphers were developed in violation of Kerck-
hoffs' Principle and both are weak. The A5/2 algorithm is the weaker of the 
two [26, 234] but feasible attacks on A5/1 are known [33]. 

10.7.4.2 Invalid Assumptions 

There is a serious design flaw in the GSM protocol. A GSM phone call is 
encrypted between the mobile and the base station but not from the base 
station to the base station controller. Recall that a design goal of GSM 
was to develop a system as secure as the public switched telephone network 
(PSTN). As a result, if a GSM phone call is at some point routed over the 
PSTN, then from that point on, no further special protection is required. 
Consequently, the emphasis of GSM security is on protecting the phone call 
over the air interface, between the mobile and the base station. 
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The designers of GSM assumed that once the call reached the base sta-
tion, it would be routed over the PSTN to the base station controller. This 
is implied by the solid line between the base station and base station con-
troller in Figure 10.24. Due to this assumption, the GSM security protocol 
does not protect the conversation when it is sent from the base station to 
the base station controller. However, many GSM systems actually transmit 
calls between a base station and its base station controller over a microwave 
link [228]. Since microwave is a wireless media, it is possible (but not easy) 
for an attacker to eavesdrop on unprotected calls over this link, rendering the 
encryption over the air interface useless. 

10.7.4.3 SIM Attacks 

Several attacks have been developed on various generations of SIM cards. 
In one optical fault induction attack, an attacker could force a SIM card to 
divulge its Ki by using an ordinary flashbulb [269]. In another class of attacks, 
known as partitioning attacks, timing and power consumption analysis could 
be used to recover Ki using as few as eight adaptively chosen plaintexts [243]. 
As a result, an attacker who has possession of the SIM could recover Ki in 
seconds and, consequently, a misplaced cell phone could be cloned in seconds. 

10.7.4.4 Fake Base Station 

Another serious flaw with the GSM protocol is the threat posed by a fake base 
station. This attack, which is illustrated in Figure 10.26, exploits two flaws 
in the protocol. First, the authentication is not mutual. While the caller 
is authenticated to the base station (which is necessary for proper billing), 
the designers of GSM felt it was not worth the extra effort to authenticate 
the base station to the caller. Although they were aware of the possibility 
of a fake base station, apparently the protocol designers believed that the 
probability of such an attack was too remote to justify the (small) additional 
cost of mutual authentication. The second flaw that this attack exploits is 
that encryption over the air interface is not automatic. In fact, the base 
station determines whether the call is encrypted or not, and the caller does 
not know which is the case. 

Figure 10.26: GSM Fake Base Station 
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In the attack illustrated in Figure 10.26, the fake base station sends a 
random value to the mobile, which the mobile assumes is RAND. The mobile 
replies with the corresponding SRES, which the fake base station discards, 
since it does not intend to authenticate the caller (in fact, it cannot authenti-
cate the caller). The fake base station then tells the mobile not to encrypt the 
call. Unbeknownst to either the caller or the recipient, the fake base station 
then places a call to the the intended recipient and forwards the conversation 
from the caller to the recipient and vice versa. The fake base station can then 
eavesdrop on the entire conversation. 

Note that in this fake base station attack, the fake base station would be 
billed for the call, not the caller. The attack might be detected if the caller 
complained about not being billed for the phone call. But, would anyone 
complain about not receiving a bill? 

Also, the fake base station is in position to send any RAND it chooses 
and receives the corresponding SRES. Therefore, it can conduct a chosen 
plaintext attack on the SIM without possessing the SIM card. The SIM attack 
mentioned above that requires eight adaptively chosen plaintexts would be 
feasible with a fake base station. 

Another major flaw with the GSM protocol is that it provides no replay 
protection. A compromised triple (RAND, XRES, Kc) can be replayed for-
ever. As a result, one compromised triple gives an attacker a key Kc that is 
valid indefinitely. A clever fake base station? operator could even use a com-
promised triple to "protect" the conversation between the mobile and the 
fake base station so that nobody else could eavesdrop on the conversation. 

Finally, it's worth noting that denial of service is always an issue in a 
wireless environment, since the signal can be jammed. But jamming is an 
issue beyond the scope of a security protocol. 

10.7.5 G S M Conclusions 

From our discussion of GSM security flaws, it might seem that GSM is a 
colossal security failure. However, GSM was certainly a commercial success, 
which raises some questions about the financial significance of good security. 
In any case, it is interesting to consider whether GSM achieved its security 
design goals. Recall that the two goals set forth by the designers of GSM 
were to eliminate the cloning that had plagued first-generation systems and 
to make the air interface as secure as the PSTN. Although it is possible to 
clone GSM phones, it never became a significant problem in practice. So it 
would seem that GSM did achieve its first security goal. 

Did GSM make the air interface as secure as the PSTN? There are attacks 
on the GSM air interface (e.g., fake base station), but there are also attacks 
on the PSTN (tapping a line) that are at least as severe. So it could be 
argued that GSM achieved its second design goal, although this is debatable. 
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The real problem with GSM security is that the initial design goals were 
too limited. The major insecurities in GSM include weak crypto, SIM issues, 
the fake base station attack, and a total lack of replay protection. In the 
PSTN, the primary insecurity is tapping, though there are others threats, such 
as attacks on cordless phones. Overall, GSM could reasonably be considered 
a modest security success. 

10.7.6 3GPP 

The security design for third-generation cell phones was spearheaded by the 
3GPP. This group clearly set their sights higher than the designers of GSM. 
Perhaps surprisingly, the 3GPP security model is built on the foundation of 
GSM. However, the 3GPP developers carefully patched all of the known GSM 
vulnerabilities. For example, 3GPP includes mutual authentication and in-
tegrity protection of all signaling, including the "start encryption" command 
for the base station to mobile communication. These improvements elimi-
nate the GSM-style fake base station attack. Also, in 3GPP, the keys can't 
be reused and triples can't be replayed. The weak proprietary crypto al-
gorithms of GSM (COMP128, A5/1, and A5/2) have been replaced by the 
strong encryption algorithm, KASUMI, which has undergone rigorous peer 
review. In addition, the encryption has been extended from the mobile all 
the way to the base station controller. 

The history of mobile phones, from the first-generation through GSM and 
now 3GPP, nicely illustrates the evolution that often occurs in security. As 
the attackers develop new attacks, the defenders respond with new protec-
tions, which the attackers again probe for weaknesses. Ideally, this arms race 
approach to security could be avoided by a careful design and analysis prior 
to the initial development. However, it's unrealistic to believe that the de-
signers of first-generation cell phones could have imagined the mobile world 
of today. Attacks such as the fake base station, which would have seemed 
improbable at one time, are now easily implemented. With this in mind, we 
should realize that, although 3GPP clearly promises more security than GSM 
could deliver, it's possible that attacks will eventually surface. In short, the 
security arms race continues. 

10.8 Summary 

In this chapter, we discussed several real-world security protocols in detail. 
We first considered SSH, which is a fairly straightforward protocol. Then we 
looked at SSL which is a well-designed protocol that is widely used on the 
Internet. 

We saw that IPSec is a complex protocol with some serious security issues. 
The designers of IPSec over-engineered the protocol, which is the source of 
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its complex. IPSec provides a good illustration of the maxim that complexity 
is the enemy of security. 

Kerberos is a widely deployed authentication protocol that relies on sym-
metric key cryptography and timestamps. The ability of the Kerberos KDC 
to remain stateless is one of the many clever features of the protocol. 

We finished the chapter with a discussion of two wireless protocols, WEP 
and GSM. WEP is a seriously flawed protocol—one of its many problems is 
the lack of any meaningful integrity check. You'd be hard pressed to find 
a better example to illustrate the pitfalls that arise when integrity is not 
protected. 

GSM is another protocol with some major problems. The actual GSM 
security protocol is simple, but it has a large number of flaws. While com-
plexity might be the enemy of security, GSM illustrates that simplicity isn't 
necessarily security's best friend. Arguably, the most serious problem with 
GSM is that its designers were not ambitious enough, since they didn't de-
sign GSM to withstand attacks that are easy today. This is perhaps excusable 
given that some of these attacks seemed far fetched in 1982 when GSM was 
developed. GSM also shows that it's difficult to overcome security flaws after 
the fact. 

The security of third-generation cell phones is built on the GSM model, 
with all of the known security flaws in GSM having been patched. It will be 
interesting to see how 3GPP security holds up in practice. 

10.9 Problems 

1. Consider the SSH protocol in Figure 10.1. 

a. Explain precisely how and where Alice is authenticated. What 
prevents a replay attack? 

b. If Trudy is a passive attacker (i.e., she can only observe messages), 
she cannot determine the key K. Why? 

c. Show that if Trudy is an active attacker (i.e., she can actively send 
messages) and she can impersonate Bob, then she can determine 
the key K that Alice uses in the last message. Explain why this 
does not break the protocol. 

d. What is the purpose of the encrypting the final message with the 
key if? 

2. Consider the SSH protocol in Figure 10.1. One variant of the protocol 
allows us to replace Alice's certificate, certificate^, with Alice's pass-
word, password^. Then we must also remove SA from the final message. 
This modification yields a version of SSH where Alice is authenticated 
based on a password. 
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a. What does Bob need to know so that he can authenticate Alice? 

b. Based on Problem 1, part b, we see that Trudy, as an active at-
tacker, can establish a shared symmetric key K with Alice. As-
suming this is the case, can Trudy then use K to determine Alice's 
password? 

c. What are the significant advantages and disadvantages of this ver-
sion of SSH, as compared to the version in Figure 10.1, which is 
based on certificates? 

3. Consider the SSH protocol in Figure 10.1. One variant of the protocol 
allows us to replace certificate^ with Alice's public key. In this version 
of the protocol, Alice must have a public/private key pair, but she is not 
required to have a certificate. It is also possible to replace certificate^ 
with Bob's public key. 

a. Suppose that Bob has a certificate, but Alice does not. What must 
Bob do so that he can authenticate Alice? 

b. Suppose that Alice has a certificate, but Bob does not. What must 
Alice do so that she can authenticate Bob? 

c. What are the significant advantages and disadvantages of this pub-
lic key version of SSH, as compared to the certificate version in 
Figure 10.1? 

4. Use Wireshark [328] to capture SSH authentication packets. 

a. Identify the packets that correspond to the messages shown in 
Figure 10.1. 

b. What other SSH packets do you observe, and what do these packets 
contain? 

5. Consider the SSH specification, which can be found in RFC 4252 [331] 
and RFC 4253 [333]. 

a. Which message or messages in Figure 10.1 correspond to the mes-
sage or messages labeled as SSHJVISG-KEXINIT in the protocol 
specification? 

b. Which message or messages in Figure 10.1 correspond to the mes-
sage or messages labeled as SSH_MSG_NEWKEYS in the protocol 
specification? 

c. Which message or messages in Figure 10.1 correspond to the mes-
sage or messages labeled as SSH-MSGJJSERAUTH in the protocol 
specification? 
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d. In the actual SSH protocol, there are two additional messages that 
would come between the fourth and fifth messages in Figure 10.1. 
What are these messages and what purpose do they serve? 

6. Consider the SSL protocol in Figure 10.4. 

a. Suppose that the nonces RA and Rß are removed from the protocol 
and we define K = h(S). What effect, if any, does this have on 
the security of the authentication protocol? 

b. Suppose that we change message four to 

HMAC(msgs,SRVR,/sr). 

What effect, if any, does this have on the security of the authenti-
cation protocol? 

c. Suppose that we change message three to 

{S}Boh, /i(msgs,CLNT,X). 

What effect, if any, does this have on the security of the authenti-
cation protocol? 

7. Consider the SSL protocol in Figure 10.4. Modify the protocol so that 
the authentication is based on a digital signature. Your protocol must 
provide secure authentication of the server Bob, and a secure session 
key. 

8. Consider the SSL protocol in Figure 10.4. This protocol does not allow 
Bob to remain anonymous, since his certificate identifies him. 

a. Modify the SSL session protocol so that Bob can remain anony-

mous with respect to a passive attacker. 

b. Can you solve part a without increasing the number of messages? 

9. The SSL protocol discussed in Section 10.3 uses public key cryptogra-
phy-

a. Design a variant of SSL that is based on symmetric key cryptog-
raphy. 

b. What is the primary disadvantage of using symmetric keys for an 
SSL-like protocol? 

10. Use Wireshark [328] to capture SSL authentication packets. 

a. Identify the packets that correspond to the messages shown in 
Figure 10.4. 
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b. What do the other SSL packets contain? 

11. SSL and IPSec are both designed to provide security over the network. 

a. What are the primary advantages of SSL over IPSec? 

b. What are the primary advantages of IPSec over SSL? 

12. SSL and IPSec are both designed to provide security over the network. 

a. What are the significant similarities between the two protocols? 
b. What are the significant differences between the two protocols? 

13. Consider a man-in-the-middle attack on an SSL session between Alice 
and Bob. 

a. At what point should this attack fail? 

b. What mistake might Alice reasonably make that would allow this 
attack to succeed? 

14. In Kerberos, Alice's key KA, which is shared by Alice and the KDC, is 
computed (on Alice's computer) as KA = /i(Alice's password). Al-
ternatively, this could have been implemented as follows. Initially, 
the key KA is randomly generated on Alice's computer. The key is 
stored on Alice's computer as E(KA, K) where the key K is computed 
as K = h(Alice's password). The key KA is also stored on the KDC. 

a. What are the advantages to this alternate approach of generating 
and storing KA? 

b. Are there any disadvantages to computing and storing E(KA, K)l 

15. Consider the Kerberos interaction discussed in Section 10.5.2. 

a. Why is the ticket to Bob encrypted with KQI 
b. Why is "Alice" included in the (encrypted) ticket to Bob? 

c. In the REPLY message, why is the ticket to Bob encrypted with 
the key SU? 

d. Why is the ticket to Bob sent to Alice (who must then forward it 
to Bob) instead of being sent directly to Bob? 

16. Consider the Kerberized login discussed in this chapter. 

a. What is a TGT and what is its purpose? 

b. Why is the TGT sent to Alice instead of being stored on the KDC? 

c. Why is the TGT encrypted with KKOC? 
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d. Why is the TGT encrypted with K& when it is sent from the KDC 
to Alice's computer? 

17. This problem deals with Kerberos. 

a. Why can Alice remain anonymous when requesting a ticket to 
Bob? 

b. Why can Alice not remain anonymous when requesting a TGT 
from the KDC? 

c. Why can Alice remain anonymous when she sends the "ticket to 
Bob" to Bob? 

18. Suppose we use symmetric keys for authentication and each of N users 
must be able to authenticate any of the other N — 1 users. Evidently, 
such a system requires one symmetric key for each pair of users, or on 
the order of N2 keys. On the other hand, if we use public keys, only N 
key pairs are required, but we must then deal with PKI issues. 

a. Kerberos authentication uses symmetric keys, yet only N keys are 
required for N users. How is this accomplished? 

b. In Kerberos, no PKI is required. But, in security, there is no free 
lunch, so what's the tradeoff? 

19. Dog race tracks often employ Automatic Betting Machines (ABMs),18 

which are somewhat analogous to ATM machines. An ABM is a termi-
nal where Alice can place her own bets and scan her winning tickets. 
An ABM does not accept or dispense cash. Instead, an ABM only ac-
cepts and dispenses vouchers. A voucher can also be purchased from a 
special voucher machine for cash, but a voucher can only be redeemed 
for cash by a human teller. 

A voucher includes 15 hexadecimal digits, which can be read by a hu-
man or scanned by a machine—the machine reads a bar code on the 
voucher. When a voucher is redeemed, the information is recorded in a 
voucher database and a paper receipt is printed. For security reasons, 
the (human) teller must submit the paper receipt which serves as the 
physical record that the voucher was cashed. 

A voucher is valid for one year from its date of issue. However, the 
older that a voucher is, the more likely that it has been lost and will 
never be redeemed. Since vouchers are printed on cheap paper, they 
are often damaged to the point where they fail to scan, and they can 
even be difficult for human tellers to process manually. 

Not to be confused with anti-ballistic missiles. 
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A list of all outstanding vouchers is kept in a database. Any human 
teller can read the first 10 hex digits from this database for any out-
standing voucher. But, for security reasons, the last five hex digits are 
not available to tellers. 

If Ted, a teller, is asked to cash a valid voucher that doesn't scan, he 
must manually enter its hex digits. Using the database, it's generally 
easy for Ted to match the first 10 hex digits. However, the last five hex 
digits must be determined from the voucher itself. Determining these 
last five hex digits can be difficult, particularly if the voucher is in poor 
condition. 

To help overworked tellers, Carl, a clever programmer, added a wildcard 
feature to the manual voucher entry program. Using this feature, Ted 
(or any other teller) can enter any of the last five hex digits that are 
readable and "*" for any unreadable digits. Carl's program will then 
inform Ted whether an outstanding voucher exists that matches in the 
digits that were entered, ignoring any position with a "*." Note that 
this program does not give Ted the missing digits, but instead, it simply 
returns a yes or no answer. 

Suppose that Ted is given a voucher for which none of the last five hex 
digits can be read. 

a. Without the wildcard feature, how many guesses must Ted make, 
on average, to recover the last five hex digits of this particular 
voucher? 

b. Using the wildcard feature, how many guesses, on average, must 
Ted make to recover the last 5 hex digits of this voucher? 

c. How could Dave, a dishonest teller, exploit the wildcard feature to 
cheat the system? 

d. What is the risk for Dave? That is, how might Dave get caught 
under the current system? 

e. Modify the current system so that it allows tellers to securely and 
efficiently deal with vouchers that fail to scan automatically, but 
also makes it impossible (or at least more difficult) for Dave to 
cheat the system. 

20. IPSec is a much more complex protocol than SSL, which is often at-
tributed to the fact that IPSec is over-engineered. Suppose that IPSec 
was not over-engineered. Then would IPSec still be more complex than 
SSL? In other words, is IPSec inherently more complex than SSL, or 
not? 
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21. IKE has two phases, Phase 1 and Phase 2. In IKE Phase 1, there are 
four key options and, for each of these, there is a main mode and an 
aggressive mode. 

a. What are the primary differences between main mode and aggres-
sive mode? 

b. What is the primary advantage of the Phase 1 digital signature 
key option over Phase 1 public key encryption? 

22. IKE has two phases, Phase 1 and Phase 2. In IKE Phase 1, there are 
four key options and, for each of these, there is a main mode and an 
aggressive mode. 

a. Explain the difference between Phase 1 and Phase 2. 

b. What is the primary advantage of Phase 1 public key encryption 
main mode over Phase 1 symmetric key encryption main mode? 

23. IPSec cookies are also known as anti-clogging tokens. 

a. What is the intended security purpose of IPSec cookies? 

b. Why do IPSec cookies fail to fulfill their intended purpose? 

c. Redesign the IPSec Phase 1 symmetric key signing main mode so 
that the IPSec cookies do serve their intended purpose. 

24. In IKE Phase 1 digital signature main mode, proof^ and proofg are 
signed by Alice and Bob, respectively. However, in IKE Phase 1, public 
key encryption main mode, proof^ and proofB are neither signed nor 
encrypted with public keys. Why is it necessary to sign these values in 
digital signature mode, yet it is not necessary to public key encrypt (or 
sign) them in public key encryption mode? 

25. As noted in the text, IKE Phase 1 public key encryption aggressive 
mode19 allows Alice and Bob to remain anonymous. Since anonymity 
is usually given as the primary advantage of main mode over aggressive 
mode, is there any reason to ever use public key encryption main mode? 

26. IKE Phase 1 uses ephemeral Diffie-Hellman for perfect forward secrecy 
(PFS). Recall that in our example of PFS in Section 9.3.4 of Chapter 9, 
we encrypted the Diffie-Hellman values with a symmetric key to prevent 
the man-in-the-middle attack. However, the Diffie-Hellman values are 
not encrypted in IKE. Is this a security flaw? Explain. 

19Don't try saying "IKE Phase 1 public key encryption aggressive mode" all at once or 
you might give yourself a hernia. 
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27. We say that Trudy is a passive attacker if she can only observe the 
messages sent between Alice and Bob. If Trudy is also able to insert, 
delete, or modify messages, we say that Trudy is an active attacker. 
If, in addition to being an active attacker, Trudy is able to establish a 
legitimate connection with Alice or Bob, then we say that Trudy is an 
insider. Consider IKE Phase 1 digital signature main mode. 

a. As a passive attacker, can Trudy determine Alice's identity? 

b. As a passive attacker, can Trudy determine Bob's identity? 

c. As an active attacker, can Trudy determine Alice's identity? 

d. As an active attacker, can Trudy determine Bob's identity? 

e. As an insider, can Trudy determine Alice's identity? 

f. As an insider, can Trudy determine Bob's identity? 

28. Repeat Problem 27 for symmetric key encryption, main mode. 

29. Repeat Problem 27 for public key encryption, main mode. 

30. Repeat Problem 27 for public key encryption, aggressive mode. 

31. Recall that IPSec transport mode was designed for host-to-host commu-
nication, while tunnel mode was designed for firewall-to-firewall com-
munication. 

a. Why does IPSec tunnel mode fail to hide the header information 
when used from host to host? 

b. Does IPSec tunnel mode also fail to hide the header information 
when used from firewall to firewall? Why or why not? 

32. Recall that IPSec transport mode was designed for host-to-host commu-
nication, while tunnel mode was designed for firewall-to-firewall com-
munication. 

a. Can transport mode be used for firewall-to-firewall communica-
tion? Why or why not? 

b. Can tunnel mode be used for host-to-host communication? Why 
or why not? 

33. ESP requires both encryption and integrity, yet it is possible to use ESP 
for integrity only. Explain this apparent contradiction. 

34. What are the significant differences, if any, between AH and ESP with 
NULL encryption? 
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35. Suppose that IPSec is used from host to host as illustrated in Fig-
ure 10.16, but Alice and Bob are both behind firewalls. What problems, 
if any, does IPSec create for the firewalls under the following assump-
tions. 

a. ESP with non-NULL encryption is used. 

b. ESP with NULL encryption is used. 

c. AH is used. 

36. Suppose that we modify WEP so that it encrypts each packet using RC4 
with the key K, where K is the same key that is used for authentication. 

a. Is this a good idea? Why or why not? 

b. Would this approach be better or worse than Kjy = (IV, K), as 
is actually done in WEP? 

37. WEP is supposed to protect data sent over a wireless link. As discussed 
in the text, WEP has many security flaws, one of which involves its use 
of initialization vectors, or IVs. WEP IVs are 24 bits long. WEP uses 
a fixed long-term key K. For each packet, WEP sends an IV in the 
clear along with the encrypted packet, where the packet is encrypted 
with a stream cipher using the key Kjy = (IV, K), that is, the IV is 
pre-pended to the long-term key K. Suppose that a particular WEP 
connection sends packets containing 1500 bytes over an 11 Mbps link. 

a. If the IVs are chosen at random, what is the expected amount of 
time until the first IV repeats? What is the expected amount of 
time until some IV repeats? 

b. If the IVs are not selected at random but are instead selected in 
sequence, say, IV j = i, for i = 0 ,1 ,2 , . . . ,22 4 — 1, what is the 
expected amount of time until the first IV repeats? What is the 
expected amount of time until some IV is repeated? 

c. Why is a repeated IV a security concern? 

d. Why is WEP "unsafe at any key length" [321]? That is, why is 
WEP no more secure if K is 256 bits than if K is 40 bits? Hint: 
See [112] for more information. 

38. On page 379 it is claimed that if Trudy knows the destination IP address 
of a WEP-encrypted packet, she can change the IP address to any 
address of her choosing, and the access point will send the packet to 
Trudy's selected IP address. 

a. Suppose that C is the encrypted IP address, P is the plaintext IP 
address (which is known to Trudy), and X is the IP address where 
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Trudy wants the packet sent. In terms of C, P, and X, what will 
Trudy insert in place of C? 

b. What else must Trudy do for this attack to succeed? 

39. WEP also incorporates a couple of security features that were only 
briefly mentioned in the text. In this problem, we consider two of these 
features. 

a. By default, a WEP access point broadcasts its SSID, which acts 
as the name (or ID) of the access point. A client must send the 
SSID to the access point (in the clear) before it can send data to 
the access point. It is possible to set WEP so that it does not 
broadcast the SSID, in which case the SSID is supposed to act like 
a password. Is this a useful security feature? Why or why not? 

b. It is possible to configure the access point so that it will only accept 
connections from devices with specified MAC addresses. Is this a 
useful security feature? Why or why not? 

40. After the terrorist attacks of September 11, 2001, it was widely reported 
that the Russian government ordered all GSM base stations in Russia 
to transmit all phone calls unencrypted. 

a. Why would the Russian government have given such an order? 

b. Are these news reports consistent with the technical description of 

the GSM security protocol given in this chapter? 

41. Modify the GSM security protocol, which appears in Figure 10.25, so 
that it provides mutual authentication. 

42. In GSM, each home network has an AuC database containing user 
keys Ki. Instead, a process known as key diversification could be used. 
Key diversification works as follows. Let ftbea secure cryptographic 
hash function and let KM be a master key known only to the AuCs. In 
GSM, each user has a unique ID known as an IMSI. In this key diversi-
fication scheme, a user's key Ki would be given by Ki = H{KM, IMSI), 
and this key would be stored on the mobile. Then given any IMSI, the 
AuC would compute the key as Ki = h(KM,ÌMSl). 

a. What is the primary advantage of key diversification? 

b. What is the primary disadvantage of key diversification? 

c. Why do you think the designers of GSM chose not to employ key 

diversification? 

43. Give a secure one-message protocol that prevents cell phone cloning and 
establishes a shared encryption key. Mimic the GSM protocol. 
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44. Give a secure two-message protocol that prevents cell phone cloning, 
prevents a fake base station attack, and establishes a shared session 
key. Mimic the GSM protocol. 
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Chapter 11 

Software Flaws and Malware 

If automobiles had followed the same development cycle as the computer, 
a Rolls-Royce would today cost $100, get a million miles per gallon, 

and explode once a year, killing everyone inside. 
— Robert X. Cringely 

My software never has bugs. It just develops random features. 
— Anonymous 

11.1 Introduction 

Why is software an important security topic? Is it really on par with crypto, 
access control, and protocols? For one thing, virtually all of information 
security is implemented in software. If your software is subject to attack, 
all of your other security mechanisms are vulnerable. In effect, software is 
the foundation on which all other security mechanisms rest. We'll see that 
software provides a poor foundation on which to build security—comparable 
to building your house on quicksand.1 

In this chapter, we'll discuss several software security issues. First, we 
consider unintentional software flaws that can cause security problems [183]. 
Then we consider malicious software, or malware, which is intentionally de-
signed to be bad. We'll also discuss the future of malware, and we'll mention 
a few other types of software-based attacks. 

Software is a big subject, so we continue with software-related security 
topics in the next two chapters. Even with three chapters worth of material 
we can, as usual, do little more than scratch the surface. 

'Or, in an analogy that is much closer to your fearless author's heart, it's like building 
a house on a hillside in earthquake country. 

403 
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11.2 Software Flaws 

Bad software is everywhere [143]. For example, the NASA Mars Lander, 
which cost $165 million, crashed into Mars due to a software error related to 
converting between English and metric units of measure [150]. Another infa-
mous example is the Denver airport baggage handling system. Bugs in this 
software delayed the airport opening by 11 months at a cost of more than $1 
million per day [122].2 Software failures also plagued the MV-22 Osprey, an 
advanced military aircraft—lives were lost due to this faulty software [178]. 
Attacks on smart electric meters, which have the potential to incapacitate 
the power grid, have been blamed on buggy software [127]. There are many 
many more examples of such problems. 

In this section, we're interested in the security implications of software 
flaws. Since faulty software is everywhere, it shouldn't be surprising that the 
bad guys have found ways to take advantage of this situation. 

Normal users find software bugs and flaws more or less by accident. Such 
users hate buggy software, but out of necessity, they've learned to live with 
it. Users are surprisingly good at making bad software work. 

Attackers, on the other hand, look at buggy software as an opportunity, 
not a problem. They actively search for bugs and flaws in software, and they 
like bad software. Attackers try to make software misbehave, and flaws can 
prove very useful in this regard. We'll see that buggy software is at the core 
of many (if not most) attacks. 

It's generally accepted among computer security professionals that com-
plexity is the enemy of security [74], and modern software is extremely com-
plex. In fact, the complexity of software has far outstripped the abilities of 
humans to manage the complexity. The number of lines of code (LOC) in 
a piece of software is a crude measure of its complexity—the more lines of 
code, the more complex. The numbers in Table 11.1 highlight the extreme 
complexity of large-scale software projects. 

Conservative estimates place the number of bugs in commercial software 
at about 0.5 per 1,000 LOC [317]. A typical computer might have 3,000 
executable files, each of which contains the equivalent of, perhaps, 100,000 
LOC, on average. Then, on average, each executable has 50 bugs, which 
implies about 150,000 bugs living in a single computer. 

If we extend this calculation to a a medium-sized corporate network with 
30,000 nodes, we'd expect to find about 4.5 billion bugs in the network. Of 

2The automated baggage handling system proved to be an "unmitigated failure" [87] 
and it was ultimately abandoned in 2005. As an aside, it's interesting to note that this 
expensive failure was only the tip of the iceberg in terms of cost overruns and delays for 
the overall airport project. And, you might be wondering, what happened to the person 
responsible for this colossal waste of taxpayer money? He was promoted to U.S. Secretary 
of Transportation [170]. 
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Table 11.1: Approximate Lines of Code 

System 
Netscape 

Space shuttle 
Linux kernel 2.6.0 

Windows XP 
Mac OS X 10.4 

Boeing 777 

LOC 
17 million 
10 million 
5 million 

40 million 
86 million 

7 million 

course, many of these bugs would be duplicates, but 4.5 billion is still a 
staggering number. 

Now suppose that only 10% of bugs are security critical and that only 10% 
of these are remotely exploitable. Then our typical corporate network "only" 
has 4.5 million serious security flaws that are directly attributable to bad 
software! 

The arithmetic of bug counting is good news for the bad guys and very bad 
news for the good guys. We'll return to this topic later, but the crucial point 
is that we are not going to eliminate software security flaws any time soon— 
if ever. We'll discuss ways to reduce the number and severity of flaws, but 
many flaws will inevitably remain. The best we can realistically hope for is to 
effectively manage the security risk created by buggy and complex software. 
In almost any real-world situation, absolute security is often unobtainable, 
and software is definitely no exception.3 

In this section, we'll focus on program flaws. These are unintentional 
software bugs that can have security implications. We'll consider the following 
specific classes of flaws. 

• Buffer overflow 

• Race conditions 

• Incomplete mediation 

After covering these unintentional flaws, we'll turn our attention to malicious 
software, or malware. Recall that malware is designed to do bad things. 

A programming mistake, or bug, is an error. When a program with an 
error is executed, the error might (or might not) cause the program to reach 

3One possible exception is cryptography—if you use strong crypto, and use it correctly, 
you are as close to absolutely secure as you will ever be. However, crypto is usually only 
one part of a security system, so even if your crypto is perfect, many vulnerabilities will 
likely remain. Unfortunately, people often equate crypto with information security, which 
leads some to mistakenly expect absolute security. 
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an incorrect internal state, which is known as a fault A fault might (or 
might not) cause the system to depart from its expected behavior, which is a 
failure [235]. In other words, an error is a human-created bug, while a fault 
is internal to the software, and a failure is externally observable. 

For example, the C program in Table 11.2 has an error, since buffer [20] 
has not been allocated. This error might cause a fault, where the program 
reaches an incorrect internal state. If a fault occurs, it might lead to a failure, 
where the program behaves incorrectly (e.g., the program crashes). Whether 
a fault occurs, and whether this leads to a failure, depends on what resides in 
the memory location where buffer [20] is written. If that particular mem-
ory location is not used for anything important, the program might execute 
normally, which makes debugging challenging. 

Table 11.2: A Flawed Program 

in t main(){ 
in t buffer [10]; 
buffer [20] = 3 7 ; } 

Distinguishing between errors, faults, and failures is a little too pedantic 
for our purposes. So, for the remainder of this section, we use the term flaw 
as a synonym for all three. The severity should be apparent from context. 

One of the primary goals in software engineering is to ensure that a pro-
gram does what it's supposed to do. However, for software to be secure, a 
much higher standard is required—secure software software must do what it's 
supposed to do and nothing more [317]. It's difficult enough just trying to 
ensure that a program does what it's supposed to do. Trying to ensure that 
a program does "nothing more" is asking for a lot more. 

Next, we'll consider three specific types of program flaws that can create 
significant security vulnerabilities. The first of these is the infamous stack-
based buffer overflow, also known as smashing the stack. Stack smashing has 
been called the attack of the decade for the 1990s [14] and it's likely to be 
the attack of the decade for the current decade, regardless of which decade 
happens to be current. There are several variants of the buffer overflow 
attack we discuss. These variants are considered in problems at the end of 
the chapter. 

The second class of software flaws we'll consider are race conditions. These 
are common, but generally much more difficult to exploit than buffer over-
flows. The third major software vulnerability that we consider is incomplete 
mediation. This is the flaw that often makes buffer overflow conditions ex-
ploitable. There are other types of software flaws, but these three represent 
the most common sources of problems. 
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11.2.1 Buffer Overflow 

Alice says, "My cup runneth over, what a mess. " 
Trudy says, "Alice's cup runneth over, what a blessing." 

— Anonymous 

Before we discuss buffer overflow attacks in detail, let's consider a scenario 
where such an attack might arise. Suppose that a Web form asks the user 
to enter data, such as name, age, date of birth, and so on. The entered 
information is then sent to a server and the server writes the data entered 
in the "name" field to a buffer4 that can hold N characters. If the server 
software does not verify that the length of the name is at most N characters, 
then a buffer overflow might occur. 

It's reasonably likely that any overflowing data will overwrite something 
important and cause the computer to crash (or thread to die). If so, Trudy 
might be able to use this flaw to launch a denial of service (DoS) attack. 
While this could be a serious issue, we'll see that a little bit of cleverness on 
Trudy's part can turn a buffer overflow into a much more devastating attack. 
Specifically, it is sometimes possible for Trudy to execute code of her choosing 
on the affected machine. It's remarkable that a common programming bug 
can lead to such an outcome. 

Consider again the C source code that appears in Table 11.2. When 
this code is executed, a buffer overflow occurs. The severity of this par-
ticular buffer overflow depends on what resided in memory at the location 
corresponding to buffer [20] before it was overwritten. The buffer overflow 
might overwrite user data or code, or it could overwrite system data or code, 
or it might overwrite unused space. 

Consider, for example, software that is used for authentication. Ulti-
mately, the authentication decision resides in a single bit. If a buffer overflow 
overwrites this authentication bit, then Trudy can authenticate herself as, 
say, Alice. This situation is illustrated in Figure 11.1, where the "F" in the 
position of the boolean flag indicates failed authentication. 

suffer 

Boolean flag 

u 

Figure 11.1: Buffer and a Boolean Flag 

4Why is it a "buffer" and not an "array"? Obviously, it's because we're talking about 
buffer overflow, not array overflow... 
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If a buffer overflow overwrites the memory position where the boolean flag 
is stored, Trudy can overwrite "F" (i.e., a 0 bit) with "T" (i.e., a 1 bit), and 
the software will believe that Trudy has been authenticated. This attack is 
illustrated in Figure 11.2. 

Figure 11.2: Simple Buffer Overflow 

Before we can discuss the more sophisticated forms of the buffer over-
flow attack, we give a quick overview of memory organization for a typical 
modern processor. A simplified view of memory—which is sufficient for our 
purposes—appears in Figure 11.3. The text section is for code, while the data 
section holds static variables. The heap is for dynamic data, while the stack 
can be viewed as "scratch paper" for the processor. For example, dynamic 
local variables, parameters to functions, and the return address of a function 
call are all stored on the stack. The stack pointer, or SP, indicates the top 
of the stack. Notice that the stack grows up from the bottom in Figure 11.3, 
while the heap grows down. 

Figure 11.3: Memory Organization 

11.2.1.1 Smashing the Stack 

Smashing the stack refers to a particularly devastating attack that relies on a 
buffer overflow. For a stack smashing attack, Trudy is interested in the stack 
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during a function call. To see how the stack is used during a function call, 
consider the simple example in Table 11.3. 

Table 11.3: Code Example 

void func(int a, in t b){ 
char buffer[10] ; 

} 
void main(){ 

func ( l , 2 ) ; 

} 

When the function fune in Table 11.3 is called, the values that are pushed 
onto the stack appear in Figure 11.4. Here, the stack is being used to provide 
space for the array buffer while the function executes. The stack also holds 
the return address where control will resume after the function finishes exe-
cuting. Note that buffer is positioned above the return address on the stack, 
that is, buffer is pushed onto the stack after the return address. As a result, 
if the buffer overflows, the overflowing data will overwrite the return address. 
This is the crucial fact that makes the buffer overflow attack so lethal. 

Figure 11.4: Stack Example 

The buffer in Table 11.3 holds 10 characters. What happens if we put 
more than 10 characters into buffer? The buffer will overflow, analogous to 
the way that a 5-gallon gas tank will overflow if we try to add 10 gallons of 
gas. In both cases, the overflow will likely cause a mess. In the buffer overflow 
case, Figure 11.4 shows that the buffer will overflow into the space where the 
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return address is located, thereby "smashing" the stack. Our assumption 
here is that Trudy has control over the bits that go into buffer (e.g., the 
"name" field in a Web form). 

If Trudy overflows buffer so that the return address is overwritten with 
random bits, the program will jump to a random memory location when 
the function has finished executing. In this case, which is illustrated in Fig-
ure 11.5, the most likely outcome is that the program crashes. 

Figure 11.5: Buffer Overflow Causes a Problem 

Trudy might be satisfied with simply crashing a program. But Trudy is 
clever enough to realize that there's much more potential to cause trouble in 
this situation. Since Trudy can overwrite the return address with a random 
address, can she also overwrite it with a specific address of her choosing? 
Often, the answer is yes. If so, what specific address might Trudy want to 
choose? 

With some trial and error, Trudy can probably overwrite the return ad-
dress with the address of the start of buffer. Then the program will try to 
"execute" the data stored in the buffer. Why might this be useful to Trudy? 
Recall that Trudy can choose the data that goes into the buffer. So, if Trudy 
can fill the buffer with "data" that is valid executable code, Trudy can exe-
cute this code on the victim's machine. The bottom line is that Trudy gets 
to execute code of her choosing on the victim's computer. This has to be bad 
for security. This clever version of the stack smashing attack is illustrated in 
Figure 11.6. 

It's worth reflecting on the buffer overflow attack illustrated in Figure 11.6. 
Due to an unintentional programming error, Trudy can, in some cases, over-
write the return address, causing code of her choosing to execute on a remote 
machine. The security implications of such an attack are mind-boggling. 
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Figure 11.6: Evil Buffer Overflow 

From Trudy's perspective, there are a couple of difficulties with this stack 
smashing attack. First, Trudy may not know the precise address of the evil 
code she has inserted into buffer, and second, she may not know the precise 
location of the return address on the stack. Neither of these presents an 
insurmountable obstacle. 

Two simple tricks make a buffer overflow attack much easier to mount. 
For one, Trudy can precede the injected evil code with a NOP "landing pad" 
and, for another, she can insert the desired return address repeatedly. Then, 
if any of the multiple return addresses overwrite the actual return address, 
execution will jump to the specified address. And if this specified address 
lands on any of the inserted NOPs, the evil code will be executed immediately 
after the last NOP in the landing pad. This improved stack smashing attack 
is illustrated in Figure 11.7. 

For a buffer overflow attack to succeed, obviously the program must con-
tain a buffer overflow flaw. Not all buffer overflows are exploitable, but those 
that are enable Trudy to inject code into the system. That is, if Trudy finds 
an exploitable buffer overflow, she can execute code of her choosing on the 
affected system. Trudy will probably have some work to do to develop a 
useful attack, but it certainly can be done. And there are plenty of sources 
available online to help Trudy hone her skills—the standard reference is [8]. 

11.2.1.2 Stack Smashing Example 

In this section, we'll examine code that contains an exploitable buffer overflow 
and we'll demonstrate an attack. Of course, we'll be working from Trudy's 
perspective. 
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Figure 11.7: Improved Evil Buffer Overflow 

Suppose that Trudy is confronted with a program that asks for a serial 
number—a serial number that Trudy doesn't know. Trudy wants to use the 
program, but she's too cheap to pay money to obtain a valid serial number.5 

Trudy does not have access to the source code, but she does possess the 
executable. 

When Trudy runs the program and enters an incorrect serial number, 
the program halts without providing any further information, as indicated in 
Figure 11.8. Trudy proceeds to try a few different serial numbers, but, as 
expected, she is unable to guess the correct serial number. 

Figure 11.8: Serial Number Program 

Trudy then tries entering unusual input values to see how the program 
reacts. She is hoping that the program will misbehave in some way and that 
she might have a chance of exploiting the incorrect behavior. Trudy realizes 
she's in luck when she observes the result in Figure 11.9. This result indicates 

5In the real world, Trudy would be wise to Google for a serial number. But let's assume 
that Trudy can't find a valid serial number online. 
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that the program has a buffer overflow. Note that 0x41 is the ASCII code for 
the character "A." By carefully examining the error message, Trudy realizes 
that she has overwritten exactly two bytes of the return address with the 
character A. 

Figure 11.9: Buffer Overflow in Serial Number Program 

Trudy then disassembles6 the exe file and obtains the assembly code that 
appears in Figure 11.10. The significant information in this code is the "Serial 
number is correct" string, which appears at address 0x401034. If Trudy can 
overwrite the return address with the address 0x401034, then the program 
will jump to "Serial number is correct" and she will have obtained access to 
the code, without having any knowledge of the correct serial number. 

Figure 11.10: Disassembled Serial Number Program 

But Trudy can't directly enter a hex address for the serial number, since 
the input is interpreted as ASCII text. Trudy consults an ASCII table where 
she finds that 0x401034 is "@~P4" in ASCII, where " T " is control-P. Confi-
dent of success, Trudy starts the program, then enters just enough characters 

6We'll have more to say about disassemblers in the next chapter when we cover software 
reverse engineering. 
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so that she is poised to overwrite the return address, and then she enters 
"@~P4." To her surprise, Trudy obtains the results in Figure 11.11. 

Figure 11.11: Failed Buffer Overflow Attack 

A careful examination of the error message shows that the address where 
the error arose was 0x341040. Apparently, Trudy caused the program to 
jump to this address instead of her intended address of 0x401034. Trudy 
notices that the intended address and the actual address are byte-reversed. 
The problem here is that the machine Trudy is dealing with uses the little 
endian convention, so that the low-order byte is first and the high-order byte 
comes last. That is, the address that Trudy wants, namely, 0x401034, is 
stored internally as 0x341040. So Trudy changes her attack slightly and 
overwrites the return address with 0x341040, which in ASCII is "4"P@." 
With this change, Trudy is successful, as shown in Figure 11.12. 

Figure 11.12: Successful Buffer Overflow Attack 

The point of this example is that without knowledge of the serial number, 
and without access to the source code, Trudy was able to break the security 
of the software. The only tool she used was a disassembler to determine the 
address that she needed to use to overwrite the return address. In principle, 
this address could be found by trial and error, although that would be tedious, 
at best. If Trudy has the executable in her possession, she would be foolish 
not to employ a disassembler—and Trudy is no fool. 

For the sake of completeness, we provide the C source code, bo. c, corre-
sponding to the executable, bo.exe. This source code appears in Table 11.4. 



 

11.2 SOFTWARE FLAWS 415 

Table 11.4: Source Code for Serial Number Example 

mainO 

{ 
char in[75] ; 
printf("\nEnter Serial Number\n"); 

scanfC'/.s", in); 

if(!strncmp(in, "S123N456", 8)) 

{ 
printf("Serial number is correct An"); 

} 
} 

Again, Trudy was able to complete her buffer overflow attack without 
access to the source code in Table 11.4. We provide the source code here for 
reference. 

Finally, note that in this buffer overflow example, Trudy did not execute 
code on the stack. Instead, she simply overwrote the return address, which 
caused the program to execute code that already existed at the specified 
address. That is, no code injection was employed, which greatly simplfies the 
attack. This version of stack smashing is usually referred to as a return-to-libc 
attack. 

11.2.1.3 Stack Smashing Prevention 

There are several possible ways to prevent stack smashing attacks. One ap-
proach is to eliminate all buffer overflows from software. However, this is 
more difficult than it sounds and even if we eliminate all such bugs from new 
software, there is a huge base of existing software that is riddled with buffer 
overflows. 

Another option is to detect buffer overflows as they occur and respond 
accordingly. Some programming languages do this automatically. Yet another 
option is to not allow code to execute on the stack. Finally, if we randomize 
the location where code is loaded into memory, then the attacker cannot know 
the address where the buffer or other code is located, which would prevent 
most buffer overflow attacks. In this section, we'll briefly discuss these various 
options. 

An easy way to minimize the damage caused by many stack-based buffer 
overflows is to make the stack non-executable, that is, do not allow code to 
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execute on the stack. Some hardware (and many operating systems) support 
this no execute, or NX bit [129]. Using the NX bit, memory can be flagged so 
that code can't execute in specified locations. In this way the stack (as well 
as the heap and data sections) can be protected from many buffer overflow 
attacks. Recent versions of Microsoft Windows support the NX bit [311]. 

As the NX approach becomes more widely deployed and used, we should 
see a decline in the number and severity of buffer overflow attacks. However, 
NX will not prevent all buffer overflow attacks. For example, the return-to-
libc attack discussed in the previous section would not be affected. For more 
information on NX and its security implications, see [173]. 

Using safe programming languages such as Java or C # will eliminate most 
buffer overflows at the source. These languages are safe because at runtime 
they automatically check that all memory accesses are within the declared 
array bounds. Of course, there is a performance penalty for such checking, 
and for that reason much code will continue to be written in C, particularly 
for applications destined for resource-constrained devices. In contrast to these 
safe languages, there are several C functions that are known to be unsafe and 
these functions are the source of the vast majority of buffer overflow attacks. 
There are safer alternatives to all of the unsafe C functions, so the unsafe 
functions should never be used—see the problems at the end of the chapter 
for more details. 

Runtime stack checking can be used to prevent stack smashing attacks. In 
this approach, when the return address is popped off of the stack, it's checked 
to verify that it hasn't changed. This can be accomplished by pushing a 
special value onto the stack immediately after the return address. Then when 
Trudy attempts to overwrite the return address, she must first overwrite this 
special value, which provides a means for detecting the attack. This special 
value is usually known as a canary, in reference to the coal miner's canary.7 

The use of a canary for stack smashing detection is illustrated in Figure 11.13. 

Note that if Trudy can overwrite an anti-stack-smashing canary with itself, 
then her attack will go undetected. Can we prevent the canary from being 
overwritten with itself? 

A canary can be a constant, or a value that depends on the return address. 
A specific constant that is sometimes used is OxOOOaffOd. This constant 
includes 0x00 as the first byte since this is the string terminating byte. Any 
string that overflows a buffer and includes 0x00 will be terminated at that 
point and no more of the stack will be overwritten. Consequently, an attacker 
can't use a string input to overwrite the constant OxOOOaf f Od with itself, and 
any other value that overwrites the canary will be detected. The other bytes 
in this constant serve to prevent other types of buffer overflow attacks. 

7Coal miners would take a canary with them underground into the mine. If the canary 
died, the coal miners knew there was a problem with the air and they needed to get out of 
the mine as soon as possible. 
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Figure 11.13: Canary 

Microsoft recently added a canary feature to its C++ compiler based on 
the approach discussed in [246]. Any program compiled with the /GS com-
piler flag will use a canary—or, in Microsoft-speak, a "security cookie"—to 
detect buffer overflows at runtime. But the initial Microsoft implementation 
was apparently flawed. When the canary died, the program passed con-
trol to a user-supplied handler function. It was discovered that an attacker 
could specify this handler function, thereby executing arbitrary code on the 
victim machine [245], although the severity of this attack was disputed by 
Microsoft [187]. Assuming the claimed attack was valid, then all buffer over-
flows compiled under the /GS option were exploitable, even those that would 
not have been exploitable without the /GS option. In other words, the cure 
was worse than the disease. 

Another option for minimizing the effectiveness of buffer overflow attacks 
is Address Space Layout Randomization, or ASLR [105]. This technique is 
used in recent Windows operating systems and several other modern OSs. 
ASLR relies on the fact that buffer overflow attacks are fairly delicate. That 
is, to execute code on the stack, Trudy usually overwrites the return address 
with a hard-coded specific address that causes execution to jump to the spec-
ified location. When ASLR is used, programs are loaded into more or less 
random locations in memory, so that any address that Trudy has hard-coded 
into her attack is only likely to be correct a small percentage of the time. 
Then Trudy's attack will only succeed a correspondingly small percentage of 
the time. 

However, in practice, only a relatively small number of "random" layouts 
are used. Vista, for example, uses 256 distinct layouts and, consequently, 
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a given buffer overflow attacks should have a natural success probability of 
about 1/256. However, due to a weakness in the implementation, Vista does 
not choose from these 256 possible layouts uniformly, which results in a sig-
nificantly greater chance of success for a clever attacker [324]. In addition, a 
so-called de-randomization attack on certain specific ASLR implementations 
is discussed in [263]. 

11.2.1.4 Buffer Overflow: The Last Word 

Buffer overflow was unquestionably the attack of the decade for each of the 
past several decades. For example, buffer overflow has been the enabling 
vulnerability in many major malware outbreaks. This, in spite of the fact 
that buffer overflow attacks have been well known since the 1970s, and it's 
possible to prevent most such attacks by using the NX bit approach and/or 
safe programming languages and/or ASLR. Even with an unsafe language 
such as C, buffer overflow attacks can be greatly reduced by using the safer 
versions of the unsafe functions. 

Can we hope to relegate buffer overflow attacks to the scrapheap of his-
tory? Developers must be educated, and tools for preventing and detecting 
buffer overflow conditions must be used. If it's available on a given plat-
form, the NX bit should certainly be employed and ASLR is a very promising 
technology. Unfortunately, buffer overflows will remain a problem for the fore-
seeable future because of the large amount of legacy code and older machines 
that will continue to be in service. 

11.2.2 Incomplete Mediat ion 

The C function s t rcpy(buffer , input) copies the contents of the input 
string input to the array buffer. As we discovered above, a buffer overflow 
will occur if the length of input is greater than the length of buffer. To pre-
vent such a buffer overflow, the program must validate the input by checking 
the length of input before attempting to write it to buffer. Failure to do so 
is an example of incomplete mediation. 

As a somewhat more subtle example, consider data that is input to a Web 
form. Such data is often transferred to the server by embedding it in a URL, 
so that's the method we'll employ here. Suppose the input is validated on 
the client before constructing the required URL. 

For example, consider the following URL: 

h t tp ://www.things.com/orders/final&custID=l12& 
num=55A&qty=20&price=10&shipping=5&total=205 

On the server, this URL is interpreted to mean that the customer with ID 
number 112 has ordered 20 of item number 55, at a cost of $10 each, with 
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a $5 shipping charge, giving a total cost of $205. Since the input was checked 
on the client, the developer of the server software believes it would be wasted 
effort to check it again on the server. 

However, instead of using the client software, Trudy can directly send a 
URL to the server. Suppose Trudy sends the following URL to the server: 

h t t p ://www.things.com/orders/final&custID=112& 
num=55A&qty=20&price=10&shipping=5&total=25 

If the server doesn't bother to validate the input, Trudy can obtain the same 
order as above, but for the bargain basement price of $25 instead of the 
legitimate price of $205. 

Recent research [79] revealed numerous buffer overflows in the Linux ker-
nel, and most of these were due to incomplete mediation. This is perhaps 
somewhat surprising since the Linux kernel is usually considered to be very 
good software. After all, it is open source, so anyone can look for flaws in 
the code (we'll have more to say about this in the next chapter) and it is the 
kernel, so it must have been written by experienced programmers. If these 
software flaws are common in such code, they are undoubtedly more common 
in most other code. 

There are tools available to help find likely cases of incomplete mediation. 
These tools should be more widely used, but they are not a cure-all since this 
problem can be subtle, and therefore difficult to detect automatically. As 
with most security tools, these tools can also be useful for the bad guys. 

11.2.3 Race Condit ions 

Ideally, security processes should be atomic, that is, they should occur all 
at once. So-called race conditions can arise when a security-critical process 
occurs in stages. In such cases, an attacker may be able to make a change 
between the stages and thereby break the security. The term race condition 
refers to a "race" between the attacker and the next stage of the process, 
although it's not so much a race as a matter of careful timing for the attacker. 

The race condition that we'll consider occurs in an outdated version of 
the Unix command mkdir, which creates a new directory. With this version 
of mkdir, the directory is created in stages—there is a stage that determines 
authorization followed by a stage that transfers ownership. If Trudy can make 
a change after the authorization stage but before the transfer of ownership, 
then she can, for example, become the owner of some directory that she 
should not be able to access. 

The way that this version of mkdir is supposed to work is illustrated in 
Figure 11.14. Note that mkdir is not atomic and that is the source of the 
race condition. 
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Figure 11.14: How mkdir is Supposed to Work 

Trudy can exploit this particular mkdir race condition if she can some-
how implement the attack that is illustrated in Figure 11.15. In this attack 
scenario, after the space for the new directory is allocated, a link is estab-
lished from the the password file (which Trudy is not authorized to access) to 
this newly created space, before ownership of the new directory is transferred 
to Trudy. Note that this attack is not really a race, but instead it requires 
careful (or lucky) timing by Trudy. 

Figure 11.15: Attack on mkdir Race Condition 

Today, race conditions are probably fairly common and with the trend 
towards increased parallelism, they are sure to become even more preva-
lent. However, real-world attacks based on race conditions are rare—attackers 
clearly favor buffer overflows. 

Why are attacks based on race conditions a rarity? For one thing, exploit-
ing a race condition requires careful timing. In addition, each race condition 
is unique, so there is no standard formula for such an attack. In comparison 
to, say, buffer overflow attacks, race conditions are certainly more difficult to 
exploit. Consequently, as of today buffer overflows are the low hanging fruit 
and are therefore favored by attackers. However, if the number of buffer over-
flows is reduced, or buffer overflows are made sufficiently difficult to exploit, 
it's a safe bet that we will see a corresponding increase in attacks based on 
race conditions. This is yet another illustration of Stamp's Principle: there 
is job security in security. 
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11.3 Malware 

Solicitations malefactors! 
— Plankton 

In this section, we'll discuss software that is designed to break security. Since 
such software is malicious in its intent, it goes by the name of malware. 
Here, we mostly just cover the basics—for more details, the place to start is 
Aycock's fine book [21]. 

Malware can be subdivided into many different categories. We'll use the 
following classification system, although there is considerable overlap between 
the various types. 

• A virus is malware that relies on someone or something else to propagate 
from one system to another. For example, an email virus attaches itself 
to an email that is sent from one user to another. Until recently, viruses 
were the most popular form of malware.8 

• A worm is like a virus except that it propagates by itself without the 
need for outside assistance. This definition implies that a worm uses a 
network to spread its infection. 

• A trojan horse, or trojan, is software that appears to be one thing but 
has some unexpected functionality. For example, an innocent-looking 
game could do something malicious while the victim is playing. 

• A trapdoor or backdoor allows unauthorized access to a system. 

• A rabbit is a malicious program that exhausts system resources. Rabbits 
could be implemented using viruses, worms, or other means. 

• Spyware is a type of malware that monitors keystrokes, steals data or 
files, or performs some similar function [22]. 

Generally, we won't be too concerned with placing a particular piece of mal-
ware into its precise category. We'll use the term virus as shorthand for a 
virus, worm, or other such malware. It is worth noting that many "viruses" 
(in popular usage of the term) are not viruses in the technical sense. 

Where do viruses live on a system? It should come as no surprise that boot 
sector viruses live in the boot sector, where they are able to take control early 
in the boot process. Such a virus can then take steps to mask its presence 
before it can be detected. From a virus writer's perspective, the boot sector 
is a good place to be. 

8The term "virus" is sometimes reserved for parasitic malware, that is, malware that 
relies on other code to perform its intended function. 
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Another class of viruses are memory resident, meaning that they stay in 
memory. Rebooting the system may be necessary to flush these viruses out. 
Viruses also can live in applications, macros, data, library routines, compilers, 
debuggers, and even in virus checking software. 

By computing standards, malware is ancient. The first substantive work 
on viruses was done by Fred Cohen in the 1980s [62], who clearly demon-
strated that malware could be used to attack computer systems.9 

Arguably, the first virus of any significance to appear in the wild was 
the so-called Brain virus of 1986. Brain did nothing malicious, and it was 
considered little more than a curiosity. As a result, it did not awaken people to 
the security implications of malware. That complacency was shaken in 1988 
when the Morris Worm appeared. In spite of its early date, the Morris Worm 
remains one of the more interesting pieces of malware to date, and we'll have 
more to say about it below. The other examples of malware that we'll discuss 
in some detail are Code Red, which appeared in 2001, and SQL Slammer, 
which appeared in January of 2003. We'll also present a simple example of 
a trojan and we'll discuss the future of malware. For more details on many 
aspects of malware—including good historical insights—see [66]. 

11.3.1 Brain 

The Brain virus of 1986 was more annoying than harmful. Its importance lies 
in the fact that it was first, and as such it became a prototype for many later 
viruses. But because it was not malicious, there was little reaction by users. 
In retrospect, Brain provided a clear warning of the potential for malware to 
cause damage, but at the time that warning was mostly ignored. In any case, 
computing systems remained extremely vulnerable to malware. 

Brain placed itself in the boot sector and other places on the system. It 
then screened all disk access so as to avoid detection and to maintain its 
infection. Each time the disk was read, Brain would check the boot sector 
to see if it was infected. If not, it would reinstall itself in the boot sector 
and elsewhere. This made it difficult to completely remove the virus. For 
more details on Brain, see Chapter 7 of Robert Slade's excellent history of 
viruses [66]. 

11.3.2 Morris Worm 

Information security changed forever when the eponymous Morris Worm at-
tacked the Internet in 1988 [37, 229]. It's important to realize that the Inter-
net of 1988 was nothing like the Internet of today. Back then, the Internet was 
populated by academics who exchanged email and used t e l n e t for remote 

9 Cohen credited Len Adleman (the "A" in RSA) with coining the term "virus." 
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access to supercomputers. Nevertheless, the Internet had reached a critical 
mass that made it vulnerable to self-sustaining worm attacks. 

The Morris Worm was a cleverly designed and sophisticated piece of soft-
ware that was written by a lone graduate student at Cornell University.10 

Morris claimed that his worm was a test gone bad. In fact, the most serious 
consequence of the worm was due to a flaw (according to Morris). In other 
words, the worm had a bug. 

The Morris Worm was apparently supposed to check whether a system 
was already infected before trying to infect it. But this check was not always 
done, and so the worm tried to re-infect already infected systems, which led 
to resource exhaustion. So the (unintended) malicious effect of the Morris 
Worm was essentially that of a so-called rabbit. 

Morris' worm was designed to do the following three things. 

• Determine where it could spread its infection 

• Spread its infection wherever possible 

• Remain undiscovered 

To spread its infection, the Morris worm had to obtain remote access 
to machines on the network. To gain access, the worm attempted to guess 
user account passwords. If that failed, it tried to exploit a buffer overflow 
in fingerd (part of the Unix f inger utility), and it also tried to exploit a 
trapdoor in sendmail. The flaws in f ingerd and sendmail were well known 
at the time but not often patched. 

Once access had been obtained to a machine, the worm sent a bootstrap 
loader to the victim. This loader consisted of 99 lines of C code that the 
victim machine compiled and executed. The bootstrap loader then fetched 
the rest of the worm. In this process, the victim machine even authenticated 
the sender. 

The Morris worm went to great lengths to remain undetected. If the trans-
mission of the worm was interrupted, all of the code that had been transmitted 
was deleted. The code was also encrypted when it was downloaded, and the 
downloaded source code was deleted after it was decrypted and compiled. 
When the worm was running on a system, it periodically changed its name 
and process identifier (PID), so that a system administrator would be less 
likely to notice anything unusual. 

It's no exaggeration to say that the Morris Worm shocked the Internet 
community of 1988. The Internet was supposed to be able to survive a nuclear 
attack, yet it was brought to its knees by a graduate student and a few 

10As if to add a conspiratorial overtone to the the entire affair, Morris' father worked at 
the super-secret National Security Agency at the time [248]. 
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hundred lines of C code. Few, if any, had imagined that the Internet was so 
vulnerable to such an attack. 

The results would have been much worse if Morris had chosen to have 
his worm do something truly malicious. In fact, it could be argued that the 
greatest damage was caused by the widespread panic the worm created— 
many users simply pulled the plug, believing it to be the only way to protect 
their system. Those who stayed online were able to receive some information 
and therefore recovered more quickly than those who chose to rely on the 
infallible "air gap" firewall. 

As a direct result of the Morris Worm, the Computer Emergency Re-
sponse Team (CERT) [51] was established, which continues to be a primary 
clearinghouse for timely computer security information. While the Morris 
Worm did result in increased awareness of the vulnerability of the Internet, 
curiously, only limited actions were taken to improve security. This event 
should have served as a wakeup call and could well have led to a complete 
redesign of the security architecture of the Internet. At that point in his-
tory, such a redesign effort would have been relatively easy, whereas today 
it is completely infeasible. In that sense, the Morris Worm can be seen as a 
missed opportunity. 

After the Morris Worm, viruses became the mainstay of malware writers. 
Only relatively recently have worms reemerged in a big way. Next, we'll 
consider two worms that indicate some of the trends in malware. 

11.3.3 Code Red 

When Code Red appeared in July of 2001, it infected more than 300,000 
systems in about 14 hours. Before Code Red had run its course, it infected 
several hundred thousand more, out of an estimated 6,000,000 susceptible 
systems worldwide. To gain access to a system, the Code Red worm exploited 
a buffer overflow in Microsoft IIS server software. It then monitored traffic 
on port 80, looking for other potential targets. 

The action of Code Red depended on the day of the month. From day 1 
to 19, it tried to spread its infection, then from day 20 to 27 it attempted a 
distributed denial of service (DDoS) attack on www.whitehouse.gov. There 
were many copycat versions of Code Red, one of which included a trapdoor 
for remote access to infected systems. After infection, this variant flush all 
traces of the worm, leaving only the trapdoor. 

The speed at which Code Red infected the network was something new 
and, as a result, it generated a tremendous amount of hype [72]. For example, 
it was claimed that Code Red was a "beta test for information warfare" [235]. 
However, there was (and still is) no evidence to support such claims or any 
of the other general hysteria that surrounded the worm. 
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11.3.4 SQL Slammer 

The SQL Slammer worm burst onto the scene in January of 2003, when it 
infected at least 75,000 systems within 10 minutes. At its peak, the number 
of Slammer infections doubled every 8.5 seconds [209]. 

The graphs in Figure 11.16 show the increase in Internet traffic as a result 
of Slammer. The graph on the bottom shows the increase over a period of 
hours (note the initial spike), while the graph on the top shows the increase 
over the first five minutes. 

Hours After Outbreak 

Figure 11.16: Slammer and Internet Traffic 

The reason that Slammer created such a spike in Internet traffic is that 
each infected site searched for new susceptible sites by randomly generating IP 
addresses. A more efficient search strategy would have made more effective 
use of the available bandwidth. We'll return to this idea below when we 
discuss the future of malware. 

It's been claimed (with good supporting evidence) that Slammer spread 
too fast for its own good, and effectively burned out the available bandwidth 
on the Internet [92]. In other words, if Slammer had been able to throttle 
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itself slightly, it could have ultimately infected more systems and it might 
have caused significantly more damage. 

Why was Slammer so successful? For one thing, the entire worm fit into 
a single 376-by te UDP packet. Firewalls are often configured to let sporadic 
packets through, on the theory that a single small packet can do no harm by 
itself. The firewall then monitors the "connection" to see whether anything 
unusual occurs. Since it was generally expected that much more that 376 
bytes would be required for an attack, Slammer succeeded in large part by 
defying the assumptions of the security experts. 

11.3.5 Trojan Example 

In this section, we'll present a trojan, that is, a program that has some 
unexpected function. This trojan comes from the Macintosh world, and it's 
totally harmless, but its creator could just as easily have had this program 
do something malicious [103]. In fact, the program could have done anything 
that a user who executed the program could do. 

This particular trojan appears to be audio data, in the form of an mp3 file 
that we'll name f reeMusic .mp3. The icon for this file appears in Figure 11.17. 
A user would expect that double clicking on this file would automatically 
launch iTunes, and play the music contained in the mp3 file. 

Figure 11.17: Icon for freeMusic.mp3 

After double-clicking on the icon in Figure 11.17, iTunes launches (as 
expected) and an mp3 file titled "Wild Laugh" is played (probably not 
expected). Simultaneously, and unexpectedly, the message window in Fig-
ure 11.18 appears. 

Figure 11.18: Unexpected Effect of freeMusic.mp3 Trojan 

What just happened? This "mp3" file is a wolf in sheep's clothing—the 
file freeMusic.mp3 is not an mp3 file at all. Instead it's an application (that 
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is, an executable file) that has had its icon changed so that it appears to be 
an mp3 file. A careful look at freeMusic.mp3 reveals this fact, as shown in 
Figure 11.19. 

Figure 11.19: Trojan Revealed 

Most users are unlikely to give a second thought to opening a file that 
appears to be an mp3. This trojan only issues a harmless warning, but that's 
because the author had no malicious intent and instead simply wanted to 
illustrate a point [160]. 

11.3.6 Malware Detection 

There are three general approaches that are used to detect malware. The first, 
and most common, is signature detection, which relies on finding a pattern or 
signature that is present in a particular piece of malware. A second approach 
is change detection, which detects files that have changed. A file that has 
unexpectedly changed might indicate an infection. The third approach is 
anomaly detection, where the goal is to detect unusual or virus-like files or 
behavior. We'll briefly discuss each of these approaches and consider their 
relative advantages and disadvantages. 

In Chapter 8, we discussed signature-based and anomaly-based intrusion 
detection systems (IDSs). There are many parallels between IDSs and the 
corresponding virus detection methods. 

11.3.6.1 Signature Detection 

A signature is generally a string of bits found in a file, which might include 
wildcards. A hash value could also serve as a signature, but it would be less 
flexible and easier for virus writers to defeat. 

For example, according to [296], the signature used for the W32/Beast 
virus is 83EB 0274 EBOE 740A 81EB 0301 0000. We can search for this sig-
nature in all files on a system. However, if we find the signature, we can't be 
certain that we've found the virus, since other innocent files could contain the 
same string of bits. If the bits in searched files were random, the chance of 
such a false match would be 1/2112, which is negligible. However, computer 
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software and data is far from random, so there is probably some realistic 
chance of a false match. This means that if a matching signature is found, 
further testing may be required to be certain that it actually represents the 
W32/Beast virus. 

Signature detection is highly effective on malware that is known and for 
which a common signature can be extracted. Another advantage of signature 
detection is that it places a minimal burden on users and administrators, 
since all that is required is to keep signature files up to date and periodically 
scan for viruses. 

A disadvantage of signature detection is that signature files can become 
large—tens or hundreds of thousands of signatures is the norm—which can 
make scanning slow. Also, the signature files must be kept up to date. A more 
fundamental problem is that we can only detect known signatures. Even a 
slight variant of a known virus might be missed. 

Today, signature detection is by far the most popular malware detection 
method. As a result, virus writers have developed some sophisticated means 
for avoiding signature detection. We'll have more to say about this below. 

11.3.6.2 Change Detection 

Since malware must reside somewhere, if we detect a change somewhere on 
a system, then it may indicate an infection. That is, if we detect that a file 
has changed, it may be infected with a virus. We'll refer to this approach as 
change detection. 

How can we detect changes? Hash functions are useful in this regard. 
Suppose we compute hashes of all files on a system and securely store these 
hash values. Then at regular intervals we can recompute the hashes and 
compare the new values with the stored values. If a file has changed in one 
or more bits—as it will in the case of a virus infection—we'll find that the 
computed hash does not match the previously computed hash value. 

One advantage of change detection is that there are virtually no false 
negatives, that is, if a file has been infected, we'll detect a change. Another 
major advantage is that we can detect previously unknown malware (a change 
is a change, whether it's caused by a known or unknown virus). 

However, the disadvantages to change detection are many. Files on a 
system often change and as a result there will be many false positives, which 
places a heavy burden on users and administrators. If a virus is inserted into a 
file that changes often, it will be more likely to slip through a change detection 
regimen. And what should be done when a suspicious change is detected? A 
careful analysis of log files might prove useful. But, in the end, it might be 
necessary to fall back to a signature scan, in which case the advantages of 
change detection have been largely negated. 
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11.3.6.3 Anomaly Detection 

Anomaly detection is aimed at finding any unusual or virus-like or other 
potentially malicious activity or behavior. We discussed this idea in detail 
Chapter 8 when we covered intrusion detection systems (IDSs), so we only 
briefly discuss the concepts here. 

The fundamental challenge with anomaly detection lies in determining 
what is normal and what is unusual, and being able to distinguish between 
the two. Another serious difficulty is that the definition of normal can change, 
and the system must adapt to such changes, or it will likely overwhelm users 
with false alarms. 

The major advantage of anomaly detection is that there is some hope of 
detecting previously unknown malware. But, as with change detection, the 
disadvantages are many. For one, anomaly detection is largely unproven in 
practice. Also, as discussed in the IDS section of Chapter 8, a patient attacker 
may be able to make an anomaly appear to be normal. In addition, anomaly 
detection is not robust enough to be used as a standalone detection system, 
so it is usually combined with a signature detection system. 

In any case, many people have very high hopes for the ultimate success 
of anomaly detection. However, today anomaly detection is primarily a chal-
lenging research problem rather than a practical security solution. 

Next, we'll discuss some aspects of the future of malware. This discussion 
should make it clear that better malware detection tools will be needed, and 
sooner rather than later. 

11.3.7 The Future of Malware 

What does the future hold for malware? Below, we'll briefly consider a few 
possible attacks. Given the resourcefulness of malware developers, we can 
expect to see attacks based on these or similar ideas in the future [24, 289]. 

But before we discuss the future, let's briefly consider the past. Virus writ-
ers and virus detectors have been locked in mortal combat since the first virus 
detection software appeared. For each advance in detection, virus writers have 
responded with strategies that make their handiwork harder to detect. 

One of the first responses of virus writers to the success of signature de-
tection systems was encrypted malware. If an encrypted worm uses a different 
key each time it propagates, there will be no common signature. Often the 
encryption is extremely weak, such as a repeated XOR with a fixed bit pat-
tern. The purpose of the encryption is not confidentiality, but to simply mask 
any possible signature. 

The Achilles heel of encrypted malware is that it must include decryp-
tion code, and this code is subject to signature detection. The decryption 
routine typically includes very little code, making it more difficult to obtain 
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a signature, and yielding more cases requiring secondary testing. The net 
result is that signature scanning can be applied, but it will be slower than for 
unencrypted malware. 

The next step in the evolution of malware was the use of polymorphic 
code. In a polymorphic virus the body is encrypted and the decryption code 
is morphed. Consequently, the signature of the virus itself (i.e., the body) is 
hidden by encryption, while the decryption code has no common signature 
due to the morphing. 

Polymorphic malware can be detected using emulation. That is, suspi-
cious code can be executed in an emulator. If the code is malware, it must 
eventually decrypt itself, at which point standard signature detection can be 
applied to the body. This type of detection will be much slower than a simple 
signature scan due to the emulation. 

Metamorphic malware takes polymorphism to the limit. A metamorphic 
worm mutates before infecting a new system.11 If the mutation is sufficient, 
such a worm can likely avoid any signature-based detection system. Note 
that the mutated worm must do the same thing as the original worm, but yet 
its internal structure must be different enough to avoid detection. Detection 
of metamorphic software is currently a challenging research problem [297]. 

Let's consider how a metamorphic worm might replicate [79]. First, the 
worm could disassemble itself and then strip the resulting code to a base 
form. Randomly selected blocks of code could be inserted into the assembly. 
These variations could include, for example, rearranging jumps and inserting 
dead code. The resulting code would then be assembled to obtain a worm 
with the same functionality as the original, but it would be unlikely to have 
a common signature. 

While the metamorphic generator described in the previous paragraph 
sounds plausible, in reality it is surprisingly difficult to produce highly meta-
morphic code. As of the time of this writing, the hacker community has 
produce a grand total of one reasonably metamorphic generator. These and 
related topics are discussed in the series of papers [193, 279, 312, 330]. 

Another distinct approach that virus writers have pursued is speed. That 
is, viruses such as Code Red and Slammer have tried to infect as many ma-
chines as possible in as short of a time as possible. This can also be viewed as 
an attack aimed at defeating signature detection, since a rapid attack would 
not allow time for signatures to be extracted and distributed. 

According to the late pop artist Andy Warhol, "In the future everybody 
will be world-famous for 15 minutes" [301]. A Warhol worm is designed to 
infect the entire Internet in 15 minutes or less. Recall that Slammer infected 
a large number of systems in 10 minutes. Slammer burned out the available 

11 Metamorphic malware is sometimes called "body polymorphic," since polymorphism is 
applied to the entire virus body. 
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bandwidth due to the way that it searched for susceptible hosts, and as a 
result, Slammer was too bandwidth-intensive to have infected the entire In-
ternet in 15 minutes. A true Warhol worm must do "better" than Slammer. 
How is this possible? 

One plausible approach is the following. The malware developer would do 
preliminary work to develop an initial "hit list" of sites that are susceptible 
to the particular exploit used by the worm. Then the worm would be seeded 
with this hit list of vulnerable IP addresses. Many sophisticated tools exist 
for identifying systems and these could help to pinpoint systems that are 
susceptible to a given attack. 

When this Warhol worm is launched, each of the sites on its initial hit list 
will be infected since they are all known to be vulnerable. Then each of these 
infected sites can scan a predetermined part of IP address space looking for 
additional victims. This approach would avoid duplication and the resulting 
wasted bandwidth that caused Slammer to bog down. 

Depending on the size of the initial hit list, the approach described above 
could conceivably infect the entire Internet in 15 minutes or less. No worm 
this sophisticated has yet been seen in the wild. Even Slammer relied on 
randomly generated IP addresses to spread its infection. 

Is it possible to do "better" than a Warhol worm? That is, can the entire 
Internet be infected in significantly less than 15 minutes? A flash worm is 
designed to infect the entire Internet almost instantly. 

Searching for vulnerable IP addresses is the slow part of any worm attack. 
The Warhol worm described above uses a smarter search strategy, where it 
relies on an initial list of susceptible systems. A flash worm could take this 
approach to the limit by embedding all susceptible IP addresses into the 
worm. 

A great deal of work would be required to predetermine all vulnerable IP 
addresses, but there are hacker tools available that would significantly reduce 
the burden. Once all vulnerable IP addresses are known, the list could be 
partitioned between several initial worm variants. This would still result in 
large worms [79], but each time the worm replicates, it would split the list of 
addresses embedded within it, as illustrated in Figure 11.20. Within a few 
generations the worm would be reduced to a reasonable size. The strength of 
this approach is that it results in virtually no wasted time or bandwidth. 

It has been estimated that a well-designed flash worm could infect the 
entire Internet in as little as 15 seconds! Since this is much faster than 
humans could possibly respond, any defense against such an attack must 
be automated. A conjectured defense against flash worms [79] would be to 
deploy many personal intrusion detection systems and to have a master IDS 
monitor these personal IDSs. When the master IDS detects unusual activity, 
it can let it proceed on a few nodes, while temporarily blocking it elsewhere. 
If the sacrificial nodes are adversely affected, then an attack is in progress, 
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Figure 11.20: A Flash Worm 

and it can be blocked elsewhere. On the other hand, if it's a false alarm, the 
other nodes are only delayed slightly. This defensive strategy shares many of 
the challenges associated with anomaly-based intrusion detection systems, as 
discussed in Chapter 8. 

11.3.8 Cyber Diseases Versus Biological Diseases 

It's currently fashionable to make biological analogies with computing. There 
are many such analogies that are applied to the field of security. In the field 
of malware and in particular, computer viruses, the analogy is fairly obvious. 

There clearly are similarities between biological and computer "diseases." 
For example, in nature, if there are too few susceptible individuals, a disease 
will die out. A somewhat similar situation exists on the Internet, where too 
few susceptible systems may not allow a worm to become self-sustaining, 
particularly if the worm is randomly searching for vulnerable IP addresses. 

There are, however, some significant differences between cyber diseases 
and biological diseases. For example, there is virtually no sense of distance 
on the Internet, so many of the models developed for biological diseases don't 
apply to cyber diseases.12 Also, in nature, diseases attack more or less at 
random, while in computer systems hackers often specifically target the most 
desirable or vulnerable systems. As a result, computer attacks are potentially 
more focused and damaging than biological diseases. The important point 
here is that, although the biological analogy is useful, it cannot be taken too 
literally. 

Finally, we note in passing that cell phones have not been plagued with 
malware to nearly the same degree as computer systems. Various explana-
tions for this phenomenon have been given, with two of the more plausible 
being the relative diversity of mobile systems and inherently stronger security 
architectures. For a discussion of the Android security architecture and some 
of the difficulties of mounting a successful attack, see [211]. 

12However, with some cell phone attacks, proximity is required (e.g., attacks that rely 
on Bluetooth) while network-based attacks are also possible. So, cell phone attacks could 
include aspects of both biological viruses and computer viruses. 
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11.4 Botnets 

A botnet is a collection of a large number of compromised machines under 
the control of a botmaster. The name derives from the fact that individual 
compromised machines are known as bots (shorthand for robots). In the past, 
such machines were often known as zombies. 

Until recently, botmasters typically employed the Internet Relay Chat 
(IRC) protocol to manage their bots. However, newer botnets often use Peer-
to-Peer (P2P) architectures since these are more difficult for authorities to 
track and shut down. 

Botnets have proven ideal tools for sending spam and for launching dis-
tributed denial of service (DDoS) attacks. For example, a botnet was used 
in a highly-publicized denial of service attack on Twitter that was appar-
ently aimed at silencing one well-known blogger from the Republic of Geor-
gia [207].13 

Botnets are a hot security topic, but at this point in time their activities 
in the wild are not completely understood. For example, there are wildly 
differing estimates for the sizes of various botnets [224]. 

Finally, it is often claimed that in the past most attacks were conducted 
primarily for fame within the hacker community, or for ideological reasons, or 
by script kiddies with little knowledge of what they were actually doing. That 
is, attacks were essentially just malicious pranks. In contrast (or so the claim 
goes), today attacks are primarily for profit. Some even believe that organized 
crime is behind most current attacks. The profit motive is plausible since 
earlier widespread attacks (Code Red, Slammer, etc.) were first and foremost 
designed to make headlines, whereas botnets strive to remain undetected. In 
addition, botnets are ideal for use in various subtle attack-for-hire scenarios. 
Of course, you should always be skeptical of those who hype any supposed 
threat, especially when they have a vested interest in the hype becoming 
conventional wisdom.14 

11.5 Miscellaneous Software-Based Attacks 

In this section we'll consider a few software-based attacks that don't fit neatly 
into any of our previous discussion. While there are numerous such attacks, 
we'll restrict our attention to a few representative examples. The topics we'll 
discuss are salami attacks, linearization attacks, time bombs, and the general 
issue of trusting software. 

13Of course, this raised suspicion that Russian government intelligence agencies were 
behind the attack. However, the attack accomplished little, other than greatly increasing 
the fame of the attackee, so it's difficult to believe that any intelligence agency would be so 
stupid. On the other hand, "government intelligence" is an oxymoron. 

14Or, more succinctly, "Beware the prophet seeking profit" [205]. 
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11.5.1 Salami Attacks 

In a salami attack, a programmer slices off a small amount of money from 
individual transactions, analogous to the way that you might slice off thin 
pieces from a salami.15 These slices must be difficult for the victim to detect. 
For example, it's a matter of computing folklore that a programmer at a 
bank can use a salami attack to slice off fractional cents leftover from interest 
calculations. These fractional cents—which are not noticed by the customers 
or the bank—are deposited in the programmer's account. Over time, such an 
attack could prove highly lucrative for the dishonest programmer. 

There are many confirmed cases of salami attacks. The following examples 
all appear in [158]. In one documented case, a programmer added a few cents 
to every employee payroll tax withholding calculation, but credited the extra 
money to his own tax. As a result, this programmer got a hefty tax refund. In 
another example, a rent-a-car franchise in Florida inflated gas tank capacity 
so it could overcharge customers for gas. An employee at a Taco Bell location 
reprogrammed the cash register for the late-night drive-through line so that 
$2.99 specials registered as $0.01. The employee then pocketed the $2.98 
difference—a rather large slice of salami! 

In a particularly clever salami attack, four men who owned a gas station 
in Los Angeles hacked a computer chip so that it overstated the amount of gas 
pumped. Not surprisingly, customers complained when they had to pay for 
more gas than their tanks could hold. But this scam was hard to detect, since 
the gas station owners were clever. They had programmed the chip to give 
the correct amount of gas whenever exactly 5 or 10 gallons was purchased, 
because they knew from experience that inspectors usually ask for 5 or 10 
gallons. It took multiple inspections before they were caught. 

11.5.2 Linearization Attacks 

Linearization is an approach that is applicable in a wide range of attacks, from 
traditional lock picking to state-of-the-art crypt analysis. Here, we consider 
an example related to breaking software, but it is important to realize that 
this concept has wide application. 

Consider the program in Table 11.5, which checks an entered number to 
determine whether it matches the correct serial number. In this case, the 
correct serial number happens to be S123N456. For efficiency, the program-
mer decided to check one character at a time and to quit checking as soon as 
one incorrect character is found. From a programmer's perspective, this is a 
perfectly reasonable way to check the serial number, but it might open the 
door to an attack. 

15Or the name might derive from the fact that a salami consists of bunch of small unde-
sirable pieces that are combined to yield something of value. 
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Table 11.5: Serial Number Program 

int main(int axgc, const char *argv[]) 

{ 
int i; 

char serial[9]="S123N456\n"; 
i f ( s t r l e n ( a r g v [ l ] ) < 8) 

printf("\nError try again.\n\n"); 

exit(O); 

for(i = 0; i < 8; ++i) 

i f ( a r g v [ l ] [ i ] != s e r i a l [ i ] ) break; 

i f ( i == 8) 

printf("\nSerial number is correct!\n\n"); 

} 

How can Trudy take advantage the code in Table 11.5? Note that the 
correct serial number will take longer to process than any incorrect serial 
number. More precisely, the more leading characters that are correct, the 
longer the program will take to check the number. So, a putative serial 
number that has the first character correct will take longer than any that has 
an incorrect first character. Therefore, Trudy can select an eight-character 
string and vary the first character over all possibilities. If she can time the 
program precisely enough, she will find that the string beginning with S takes 
the most time. Trudy can then fix the first character as S and vary the second 
character, in which case she will find that a second character of 1 takes the 
longest. Continuing, Trudy can recover the serial number one character at a 
time. That is, Trudy can attack the serial number in linear time, instead of 
searching an exponential number of cases. 

How great is the advantage for Trudy in this linearization attack? Suppose 
the serial number is eight characters long and each character has 128 possible 
values. Then there are 1288 = 256 possible serial numbers. If Trudy must 
randomly guess complete serial numbers, she would obtain the serial number 
in about 255 tries, which is an enormous amount of work. On the other hand, 
if she can use a linearization attack, an average of only 128/2 = 64 guesses 
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are required for each letter, for a total expected work of about 8 · 64 = 29. 
This makes an otherwise infeasible attack into a trivial attack. 

A real-world example of a linearization attack occurred in TENEX [235], 
a timeshare system used in ancient times.16 In TENEX, passwords were 
verified one character at a time, so the system was subject to a linearization 
attack similar to the one described above. However, careful timing was not 
even necessary. Instead, it was possible to arrange for a "page fault" to 
occur when the next unknown character was guessed correctly. Then a user-
accessible page fault register would tell the attacker that a page fault had 
occurred and, therefore, that the next character had been guessed correctly. 
This attack could be used to crack any password in seconds. 

11.5.3 T ime Bombs 

Time bombs are another interesting class of software-based attacks. We'll 
illustrate the concept with an infamous example. In 1986, Donald Gene 
Burleson told his employer to stop withholding taxes from his paycheck. Since 
this isn't legal, the company refused. Burleson, a tax protester, made it 
known that he planned to sue his company. Burleson used company time and 
resources to prepare his legal case against his company. When the company 
discovered what Burleson was doing, they fired him [240]. 

It later came to light that Burleson had been developing malicious soft-
ware. After he was fired, Burleson triggered his "time bomb" software, which 
proceeded to delete thousands of records from the company's computer. 

The Burleson story doesn't end here. Out of fear of embarrassment, the 
company was reluctant to pursue a legal case, despite their losses. Then in 
a bizarre twist, Burleson sued his former employer for back pay, at which 
point the company finally sued Burleson. The company eventually won, and 
in 1988 Burleson was fined $11,800. The case took two years to prosecute at 
a cost of tens of thousands of dollars and resulted in little more than a slap 
on the wrist. The light sentence was likely due to the fact that laws regarding 
computer crime were unclear at that early date. In any case, this was one 
of the first computer crime cases in the United States, and many cases since 
have followed a similar pattern. In particular, companies are often reluctant 
to pursue such cases for fear that it will damage their reputation. 

11.5.4 Trusting Software 

Finally, we consider a philosophical question with practical significance: Can 
you ever trust software? In the fascinating article [303], the following thought 
experiment is discussed. Suppose that a C compiler has a virus. When 

16The 1960s and 1970s, that is. In computing, that 's the age when dinosaurs roamed the 
earth. 
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compiling the login program, this virus creates a backdoor in the form of an 
account with a known password. Also, if the C compiler is recompiled, the 
virus incorporates itself into the newly compiled C compiler. 

Now suppose that you suspect that your system is infected with a virus. 
You want to be absolutely certain that you fix the problem, so you decide 
to start over from scratch. You recompile the C compiler, then use it to 
recompile the operating system, which includes the login program. You 
haven't gotten rid of the problem, since the backdoor was once again compiled 
into the login program. 

Analogous situations could arise in the real world. For example, imagine 
that an attacker is able to hide a virus in your virus scanning software. Or 
consider the damage that could be done by a successful attack on online virus 
signature updates—or other automated software updates. 

Software-based attacks might not be obvious, even to an expert who ex-
amines the source code line by line. For example, in the Underhanded C 
Contest, the rules state in part that [70] 

.. .in this contest you must write code that is as readable, clear, 
innocent and straightforward as possible, and yet it must fail to 
perform at its apparent function. To be more specific, it should 
do something subtly evil. 

Some of the programs submitted to this contest are extremely subtle and they 
demonstrate that it is possible to make evil code look innocent. 

We'll return to the theme of trusting software when we discuss operating 
systems in Chapter 13. Specifically, we will outline an ambitious design for a 
trusted operating system. 

11.6 Summary 

In this chapter, we discussed some of the security threats that arise from 
software. The threats considered here come in two basic flavors. The plain 
vanilla flavor consists of unintentional software flaws that attackers can some-
times exploit. The classic example of such a flaw is the buffer overflow, which 
we discussed in some detail. Another common flaw with security implications 
is a race condition. 

The more exotic flavor of software security threats arise from intention-
ally malicious software, or malware. Such malware includes the viruses and 
worms that plague users today, as well as trojans and backdoors. Malware 
writers have developed highly sophisticated techniques for avoiding detection, 
and they appear set to push the envelope much further in the near future. 
Whether detection tools are up to the challenge posed by the next generation 
of malware is an open question. 
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11.7 Problems 

1. With respect to security, it's been said that complexity, extensibility, 
and connectivity are the "trinity of trouble" [143]. Define each of these 
terms and explain why each represents a potential security problem. 

2. What is a validation error, and how can such an error lead to a security 
flaw? 

3. Provide a detailed discussion of one real-world virus or worm that was 
not covered in the text. 

4. What is a race condition? Discuss an example of a real-world race 
condition, other than the mkdir example presented in the text. 

5. One type of race condition is known as a time-of-check-to-time-of-use, 
or TOCTTOU (pronounced "TOOK too"). 

a. What is a TOCTTOU race condition and why is it a security issue? 

b. Is the mkdir race condition discussed in this chapter an example 
of a TOCTTOU race condition? 

c. Give two real-world examples of TOCTTOU race conditions. 

6. Recall that a canary is a special value that is pushed onto the stack 
after the return address. 

a. How is a canary used to prevent stack smashing attacks? 

b. How was Microsoft's implementation of this technique, the /GS 
compiler option, flawed? 

7. Discuss one real-world example of a buffer overflow that was exploited 
as part of a successful attack. 

8. Explain how a heap-based buffer overflow works, in contrast to the 
stack-based buffer overflow discussed in this chapter. 

9. Explain how an integer overflow works, in contrast to the stack-based 
buffer overflow discussed in this chapter. 

10. Read the article [311] and explain why the author views the NX bit as 
only one small part of the solution to the security problems that plague 
computers today. 

11. As discussed in the text, the C function strcpy is unsafe. The C func-
tion strncpy is a safer version of strcpy. Why is strncpy safer but 
not safe? 
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12. Suppose that Alice's system employs the NX bit method of protecting 

against buffer overflow attacks. If Alice's system uses software that 

is known to harbor multiple buffer overflows, would it be possible for 

Trudy to conduct a denial of service attack against Alice by exploiting 

one of these buffer overflows? Explain. 

13. Suppose that the NX bit method of protecting against buffer overflow 

attacks is employed. 

a. Will the buffer overflow illustrated in Figure 11.5 succeed? 

b. Will the attack in Figure 11.6 succeed? 

c. Why will the return-to-libc buffer overflow example discussed in 

Section 11.2.1.2 succeed? 

14. List all unsafe C functions and explain why each is unsafe. List the 

safer alternative to each and explain whether each is safe or only safer, 

as compared to its unsafe alternative. 

15. In addition to stack-based buffer overflow attacks (i.e., smashing the 

stack), heap overflows can also be exploited. Consider the following C 

code, which illustrates a heap overflow. 

in t mainO 

{ 

in t diff , s ize = 8; 

char *bufl, *buf2; 

bufi = (char *)mal loc(s ize) ; 

buf2 = (char *)mal loc(s ize) ; 

diff = buf2 - buf i ; 

memset(buf2, '2', s i z e ) ; 

printfCBEFORE: buf2 = %s ", buf 2) ; 

memset(bufl, Ί ' , diff + 3 ) ; 

printf("AFTER: buf 2 = */.s ", buf 2) ; 

re turn 0; 

} 

a. Compile and execute this program. What is printed? 

b. Explain the results you obtained in part a. 

c. Explain how a heap overflow might be exploited by Trudy. 

16. In addition to stack-based buffer overflow attacks (i.e., smashing the 

stack), integer overflows can also be exploited. Consider the following 

C code, which illustrates an integer overflow [36]. 
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int copy .something (char *buf, int len) 

{ 
char kbuf[800]; 
if(len > sizeof(kbuf)) 

{ 
return -1; 

} 
return memcpy(kbuf, buf, len); 

} 
a. What is the potential problem with this code? Hint: The last 

argument to the function memcpy is interpreted as an unsigned 
integer. 

b. Explain how an integer overflow might be exploited by Trudy. 

17. Obtain the file overflow.zip from the textbook website and extract 
the Windows executable. 

a. Exploit the buffer overflow so that you bypass its serial number 
check. Turn in a screen capture to verify your success. 

b. Determine the correct serial number. 

18. Consider the following protocol for adding money to a debit card. 

(i) User inserts debit card into debit card machine. 

(ii) Debit card machine determines current value of card (in dollars), 
which is stored in variable x. 

(m) User inserts dollars into debit card machine and the value of the 
inserted dollars is stored in variable y. 

(iv) User presses enter button on debit card machine. 

(v) Debit card machine writes value of x + y dollars to debit card and 
ejects card. 

Recall the discussion of race conditions in the text. This particular 
protocol has a race condition. 

a. What is the race condition in this protocol? 

b. Describe a possible attack that exploits the race condition. 

c. How could you change the protocol to eliminate the race condition, 
or at least make it more difficult to exploit? 

19. Recall that a trojan horse is a program that has unexpected function-
ality. 
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a. Write your own trojan horse, where the unexpected functionality 
is completely harmless. 

b. How could your trojan program be modified to do something ma-
licious? 

20. Recall that a computer virus is malware that relies on someone or some-
thing (other than itself) to propagate from one system to another. 

a. Write your own computer virus, where the "malicious" activity is 
completely harmless. 

b. Explain how your virus could be modified to do something mali-
cious. 

21. Recall that a worm is a type of malware similar to a virus except that 
a worm propagates by itself. 

a. Write your own worm, where the "malicious" activity is completely 
harmless. 

b. Explain how your worm could be modified to do something mali-
cious. 

22. Virus writers use encryption, polymorphism, and metamorphism to 
evade signature detection. 

a. What are the significant differences between encrypted worms and 
polymorphic worms? 

b. What are the significant differences between polymorphic worms 
and metamorphic worms? 

23. This problem deals with metamorphic software. 

a. Define metamorphic software. 

b. Why would a virus writer employ metamorphic techniques? 

c. How might metamorphic software be used for good instead of evil? 

24. Suppose that you are asked to design a metamorphic generator. Any 
assembly language program can be given as input to your generator, 
and the output must be a metamorphic version of the input program. 
That is, your generator must produce a morphed version of the input 
program and this morphed code must be functionally equivalent to the 
input program. Furthermore, each time your generator is applied to the 
same input program, it must, with high probability, produce a distinct 
metamorphic copy. Finally, the more variation in the metamorphic 
copies, the better. Outline a plausible design for such a metamorphic 
generator. 
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25. Suppose that you are asked to design a metamorphic worm, where each 
time the worm propagates, it must first produce a morphed version of 
itself. Furthermore, all morphed versions must, with high probability, 
be distinct, and the more variation within the metamorphic copies, the 
better. Outline a plausible design for such a metamorphic worm. 

26. A metamorphic worm that generates its own morphed copies is some-
times said to "carry its own metamorphic engine" (see Problem 25). In 
some situations it might be possible to instead use a standalone meta-
morphic generator (see Problem 24) to produce the metamorphic copies, 
in which case the worm would not need to carry its own metamorphic 
engine. 

a. Which of these two types of metamorphic worms would be easier 
to implement and why? 

b. Which of these two types of metamorphic worms would likely be 
easier to detect and why? 

27. A polymorphic worm uses code morphing techniques to obfuscate its 
decryption code while a metamorphic worm uses code morphing tech-
niques to obfuscate the entire worm. Apart than the amount of code 
that must be morphed, why is it more difficult to develop a metamor-
phic worm than a polymorphic worm? Assume that in either case the 
worm must carry its own morphing engine (see Problems 25 and 26). 

28. In the paper [330] several metamorphic malware generators are tested. 
Curiously, all but one of the generators fail to produce any significant 
degree of metamorphism. Viruses from each of these weak metamor-
phic generators are easily detected using standard signature detection 
techniques. However, one metamorphic generator, known as NGVCK, 
is shown to produce highly metamorphic viruses, and these success-
fully evade signature detection by commercial virus scanners. Finally, 
the authors show that, in spite of the high degree of metamorphism, 
NGVCK viruses are relatively easy to detect using machine learning 
techniques—specifically, hidden Markov models [278]. 

a. These results tend to indicate that the hacker community has, with 
rare exception, failed to produce highly metamorphic malware. 
Why do you suppose this is the case? 

b. It might seem somewhat surprising that the highly metamorphic 
NGVCK viruses can be detected. Provide a plausible explanation 
as to why these viruses can be detected. 

c. Is it possible to produce undetectable metamorphic viruses? If so, 
how? If not, why not? 
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29. In contrast to a flash worm, a slow worm is designed to slowly spread 
its infection while remaining undetected. Then, at a preset time, all 
of the slow worms could emerge and do something malicious. The net 
effect would be similar to that of a flash worm. 

a. Discuss one weakness (from Trudy's perspective) of a slow worm 
as compared with a flash worm. 

b. Discuss one weakness (also from Trudy's perspective) of a flash 
worm compared with a slow worm. 

30. It has been suggested that from the perspective of signature detection, 
malware now far outnumbers goodware. That is, the number of sig-
natures required to detect malicious programs exceeds the number of 
legitimate programs. 

a. Is it plausible that there could be more malware than legitimate 
programs? Why or why not? 

b. Assuming there is more malware than goodware, design an im-
proved signature-based detection system. 

31. Provide a brief discussion of each of the following botnets. Include a 
description of the command and control architecture and provide rea-
sonable estimates for the maximum size and current size of each. 

a. Mariposa 

b. Conficker 

c. Kraken 

d. Srizbi 

32. Phatbot, Agobot, and XtremBot all belong to the same botnet family. 

a. Pick one of these variants and discuss its command and control 
structure. 

b. These botnets are open source projects that are distributed under 
the GNU General Public License (GPL). This is highly unusual 
for malware—most malware writers are arrested and jailed if they 
are caught. Why do you suppose that the authors of these botnets 
are not punished? 

33. In this chapter, the claim is made that "botnets are ideal for use in 
various attack-for-hire scenarios." Spam and various DoS attacks are 
the usual examples given for the uses of botnets. Give examples of other 
types of attacks (other than spam and DoS, that is) for which botnets 
would be useful. 
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34. After infecting a system, some viruses take steps to cleanse the system 
of any (other) malware. That is, they remove any malware that has 
previously infected the system, apply security patches, update signature 
files, etc. 

a. Why would it be in a virus writer's interest to protect a system 
from other malware? 

b. Discuss some possible defenses against malware that includes such 
anti-malware provisions. 

35. Consider the code that appears in Table 11.5. 

a. Provide pseudo-code for a linearization attack on the code in Ta-
ble 11.5. 

b. What is the source of the problem with this code, that is, why is 
the code susceptible to attack? 

36. Consider the code in Table 11.5, which is susceptible to a linearization 
attack. Suppose that we modify the program as follows: 

int main(int arge, const char *argv[]) 

{ 
int i; 

boolean f lag = t r u e ; 
char serial[9]="S123N456\n"; 
i f ( s t r l e n ( a r g v [ l ] ) < 8) 
{ 

printf("\nError try again.\n\n"); 

exit(O); 

} 
for(i = 0 ; i < 8; ++i) 

{ 
i f ( a r g v [ l ] [ i ] != s e r i a l [ i ] ) f lag = f a l s e ; 

} 
i f ( f l ag ) 
{ 

printf("\nSerial number is correct!\n\n"); 

} 
} 

Note that we never break out of the for loop early, yet we can still 
determine whether the correct serial number was entered. Explain why 
this modified version of the program is still susceptible to a linearization 
attack. 
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37. Consider the code in Table 11.5, which is susceptible to a linearization 
attack. Suppose that we modify the program so that it computes the 
hash of the putative serial number and we compare this hash to the 
hash of the actual serial number. Is this modified program susceptible 
to a linearization attack? Explain. 

38. Consider the code in Problem 36, which is susceptible to a linearization 
attack. Suppose that we modify the program so that it computes a 
random delay within each iteration of the loop. 

a. This program is still susceptible to a linearization attack. Why? 

b. An attack on this modified program would be more difficult than 

an attack on the code that appears in Problem 36. Why? 

39. Consider the code in Table 11.5, which is susceptible to a linearization 
attack. Suppose that we modify the program as follows: 

in t main(int arge, const char *argv[]) 

{ 
i n t i ; 
char serial[9]="S123N456\n"; 
i f ( s t r cmp(a rgv[ l ] , s e r i a l ) == 0) 
{ 

printf("\nSerial number is correct!\n\n"); 

} 

} 
Note that we are using the library function stremp to compare the input 
string to the actual serial number. 

a. Is this version of the program immune to a linearization attack? 
Why or why not? 

b. How is stremp implemented? That is, how does it determine 
whether the two strings are identical or not? 

40. Obtain the Windows executable contained in l i n e a r . z i p (available at 
the textbook website). 

a. Use a linearization attack to determine the correct eight-digit serial 
number. 

b. How many guesses did you need to find the serial number? 

c. What is the expected number of guesses that would have been 
required if the code was not vulnerable to a linearization attack? 

41. Suppose that a bank does 1000 currency exchange transactions per day. 
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a. Describe a salami attack on such transactions. 

b. How much money would Trudy expect to make using this salami 
attack in a day? In a week? In a year? 

c. How might Trudy get caught? 

42. Consider the code in Table 11.5, which is susceptible to a linearization 
attack. Suppose that we modify the program as follows: 

in t main(int arge, const char *argv[]) 

{ 
in t i ; 
int count = 0; 
char serial[9]="S123N456\n"; 
i f ( s t r l e n ( a r g v [ l ] ) < 8) 
{ 

printf("\nError try again.\n\n"); 

exit(0); 

} 
for(i = 0; i < 8; ++i) 

{ 
if(argv[l][i] != serial[i]) 

count = count + 0; 

else 

count = count + 1; 

} 
if(count == 8) 

{ 
printf("\nSerial number is correct!\n\n"); 

} 

} 
Note that we never break out of the for loop early, yet we can still 
determine whether the correct serial number was entered. Is this version 
of the program immune to a linearization attack? Explain. 

43. Modify the code in Table 11.5 so that it is immune to a linearization 
attack. Note that the resulting program must take exactly the same 
amount of time to execute for any incorrect input. Hint: Do not use 
any predefined functions (such as stremp or strnemp) to compare the 
input with the correct serial number. 

44. Read the article "Reflections on Trusting Trust" [303] and summarize 
the author's main points. 



 
Chapter 12 

Insecurity in Software 

Every time I write about the impossibility of effectively protecting digital files 
on a general-purpose computer, I get responses from people decrying the 

death of copyright. "How will authors and artists get paid for their work?" 
they ask me. Truth be told, I don't know. I feel rather like the physicist 

who just explained relativity to a group of would-be interstellar travelers, 
only to be asked: "How do you expect us to get to the stars, then?" 

I'm sorry, but I don't know that, either. 
— Bruce Schneier 

So much time and so little to do! Strike that. Reverse it. Thank you. 
— Willy Wonka 

12.1 Introduction 

In this chapter, we begin with software reverse engineering, or SRE. To fully 
appreciate the inherent difficulty of implementing security in software, we 
must look at software the way that attackers do. Serious attackers use SRE 
techniques to find and exploit flaws—or create new flaws—in software. 

After our brief look at SRE, we'll discuss digital rights management, or 
DRM, which provides a good example of the limitation of relying on software 
for security. DRM illustrates the impact of SRE on software-based security. 

The last major topic of this chapter is software development. It was 
tempting to label this section "secure software development," but truly secure 
software is difficult to achieve in practice. We'll discuss methods to improve 
the security of software, but we'll also see why most of the advantages lie 
with the bad guys. Finally, we briefly consider the relative security merits of 
open source versus closed source software. 
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12.2 Software Reverse Engineering 

SRE or software reverse engineering—which is also known as reverse code en-
gineering or, simply, reversing—can be used for good or for not so good. The 
good uses include understanding malware [336, 337] or legacy code [57]. Here, 
we're primarily interested in the not-so-good uses, which include removing us-
age restrictions from software, finding and exploiting software flaws, cheating 
at games, breaking DRM systems, and many, many other attacks on software. 

We'll assume that the reverse engineer is our old friend Trudy. For the 
most part, we assume that Trudy only has an executable, or exe, that was 
generated by compiling, say, a C program. That is, Trudy does not have 
access to the source code. We will consider one Java reversing example, but 
unless obfuscation techniques have been applied, Java class files are trivial 
to reverse to obtain (nearly) the original source code. And even using ob-
fuscation may not make Java significantly more difficult to reverse. On the 
other hand, "native code" (i.e., hardware-specific machine code) is inherently 
more difficult to reverse. For one thing, the best we can realistically do is 
disassemble an exe and, consequently, Trudy must analyze the program as 
assembly code, not as a higher-level language. 

Of course, Trudy's ultimate goal is to break things. So, Trudy might 
reverse the software as a step toward finding a weakness or otherwise devising 
an attack. Often, however, Trudy wants to modify the software to bypass 
some annoying security feature. Before Trudy can modify the software, SRE 
is a necessary first step. 

SRE is usually focused on software that runs under Microsoft Windows. 
Consequently, much of our discussion here is Windows-specific. 

Essential reverse engineering tools include a disassembler and a debugger. 
A disassembler converts an executable into assembly code, as best it can, but 
a disassembler can't always disassemble code correctly, since, for example, 
it's not always possible to distinguish code from data. This implies that in 
general, it's not possible to disassemble an exe file and reassemble the result 
into a functioning executable. This will make Trudy's task slightly more 
challenging but by no means insurmountable. 

A debugger is used to set break points, which allows Trudy to step through 
the code as it executes. For any reasonably complex program, a debugger is 
a necessary tool for understanding the code. 

OllyDbg [225] includes a highly regarded debugger, disassembler, and hex 
editor [173]. OllyDbg is more than sufficient for all of the problems that 
appear in this chapter and, best of all, it's free. IDA Pro is a powerful dis-
assembler and debugger [147]. IDA Pro costs a few hundred dollars (there is 
a free trial version) and it is generally considered to have the best disassem-
bler available. Hackman [299] is an inexpensive shareware disassembler and 
debugger that might also be worth considering. 
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A hex editor can be used to directly modify, or patch,1 an exe file. Today, 
all self-respecting debuggers include a built-in hex editor, so you may not 
need a standalone hex editor. But, if you should need a separate hex editor, 
UltraEdit and HIEW are among the most popular shareware choices. 

Several other more specialized tools are sometimes useful for reverse engi-
neering. Examples of such tools include Regmon, which monitors all accesses 
of the Windows registry, and Filemon, which, as you might have guessed, 
monitors all accesses of files. Both of these tools are available from Microsoft 
as freeware. VMWare [318]—which allows a user to set up virtual machines— 
is a powerful tool that is particularly useful if you want to reverse engineer 
malware while minimizing the risk of damaging your system. 

Does Trudy really need a disassembler and a debugger? Note that the 
disassembler gives Trudy a static view of the code, which can be used to 
obtain an overview of the program logic. After perusing the disassembled 
code, Trudy can zero in on areas that are likely to be of interest. But without 
a debugger, Trudy would have a difficult time skipping over the boring parts 
of the code. Trudy would, in effect, be forced to mentally execute the code 
so that she could know the state of registers, variable values, flag bits, etc., 
at some particular point in the code. Trudy may be clever, but this would be 
an insurmountable obstacle for all but the simplest program. 

As all software developers know, a debugger allows Trudy to set break 
points. In this way, Trudy can treat uninteresting parts of the code as a 
black box and skip directly to the interesting parts. Also, as we mentioned 
above, not all code disassembles correctly, and for such cases a debugger is 
required. The bottom line is that both a disassembler and a debugger are 
required for any serious SRE task. 

The necessary technical skills required for SRE include a working knowl-
edge of the target assembly language and some experience with the necessary 
tools—primarily a debugger. For Windows, some knowledge of the Windows 
Portable Executable, or PE, file format is also important [236]. These skills 
are beyond the scope of this book—see [99] or [161] for more information. 
Below we'll restrict our attention to simple SRE examples. These examples 
illustrate the concepts, but do not require any significant knowledge of as-
sembly, any knowledge of the PE file format, etc. 

Finally, SRE requires boundless patience and optimism, since the work 
can be extremely tedious and labor intensive. There are few automated tools, 
which means that SRE is essentially a manual process that requires many 
long hours spent slogging through assembly code. From Trudy's perspective, 
however, the payoff can be well worth the effort. 

1Here, "patch" means that we directly modify the binary without recompiling the code. 
Note that this is a different meaning than "patch" in the context of security patches that 
are applied to code. 
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12.2.1 Reversing Java B y t e c o d e 

Before we consider a "real" SRE example, let's take a quick look at a Java 
example. When you compile Java source code, it's converted into bytecode 
and this bytecode is executed by the the Java virtual machine, or JVM. In 
comparison to, say, the C programming language, the advantage of Java's 
approach is that the bytecode is more or less machine independent, while the 
primary disadvantage is a loss of efficiency. 

When it comes to reversing, Java bytecode makes Trudy's life much easier. 
A great deal more information is retained in bytecode than native code, so it is 
possible to decompile bytecode with great accuracy. There are tools available 
that will convert Java bytecode into Java source code, and the resulting source 
code is likely to be very similar to the original source code. There are tools 
available to obfuscate Java, thereby making Trudy's job more challenging, 
but none are particularly strong—even highly obfuscated Java bytecode is 
generally easier to reverse than un-obfuscated machine code. 

For example, consider the Java program in Figure 12.1. Note that this 
program computes and prints the first n Fibonacci numbers, where n is spec-
ified by the user. 

Figure 12.1: Java Program 

The program in Figure 12.1 was compiled into bytecode and the result-
ing class file was decompiled using Fernflower, an online tool [110]. This 
decompiled Java file appears in Figure 12.2. 
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Figure 12.2: Decompiled Java Program 

Note that the original Java source in Figure 12.1 is almost identical to 
the decompiled Java code in Figure 12.2. The significant differences are that 
the comments have been lost and the variable names have changed. These 
differences make the decompiled program slightly more difficult to understand 
than the original. Nevertheless, Trudy would certainly prefer to decipher code 
like that in Figure 12.2 rather than deal with assembly code.2 

As mentioned above, there are tools to obfuscate Java. These tools can 
obfuscate the control flow and data, insert junk code, and so on. It is even 
possible to encrypt the bytecode. However, none of these tools seem to be 
particularly strong—see the homework problems for some examples. 

12.2.2 S R E Example 

The native code SRE example that we'll consider only requires the use of a 
disassembler and a hex editor. We'll disassemble the executable to understand 
the code. Then we'll use the hex editor to patch the code to change its 
behavior. It's important to realize that this is a very simple example—to do 
SRE in the real world, a debugger would certainly be required. 

For our SRE example, we'll consider code that requires a serial number. 
The attacker Trudy doesn't know the serial number, and when she guesses 
(incorrectly) she obtains the results in Figure 12.3. 

2If you don't believe it, take a look at the next section. 
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Figure 12.3: Serial Number Program 

Trudy could try to brute force guess the serial numbers but that's unlikely 
to succeed. Being a dedicate reverser, Trudy decides the first thing she'll 
do is to disassemble s e r i a l . exe . A small part of the resulting IDA Pro 
disassembly appears in Figure 12.4. 

Figure 12.4: Serial Number Program Disassembly 

The line at address 0x401022 in Figure 12.4 indicates that the correct 
serial number is S123N456. Trudy tries this serial number and finds that it is 
indeed correct, as indicated in Figure 12.5. 

Figure 12.5: Correct Serial Number 

But Trudy suffers from short-term memory loss, and she has particular 
trouble remembering serial numbers. Therefore, Trudy would like to patch 
the executable s e r i a l . e x e so that she doesn't need to remember the serial 
number. Trudy looks again at the disassembly in Figure 12.4, and she notices 
that the t e s t instruction at address 0x401030 is significant due to the jump 
instruction, j z at 0x401032 that immediately follows. That is, if the jump 
occurs, the program will jump elsewhere, bypassing the error message. This 
has to be good, since Trudy doesn't want to see "Incorrect serial number." 
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At this point, Trudy must rely on her knowledge of assembly code (or 
her ability to Google for such knowledge). The instruction t e s t eax,eax 
computes a binary AND of the eax register with itself. Depending on the 
result, this instruction causes various flag bits to be set. One of these flag 
bits is the zero flag, which is set if t e s t eax, eax results in zero. That is, 
the instruction t e s t eax, eax causes the zero flag to be set to one provided 
that eax AND eax is zero. With this in mind, Trudy might want to consider 
ways to force the zero flag bit to be set so that she can bypassing the dreaded 
"Incorrect serial number" message. 

There are many possible ways for Trudy to patch the code. But, whatever 
approach is used, care must be taken or else the resulting code will not behave 
as expected. Trudy must take care to only replace bytes. In particular, Trudy 
cannot insert additional bytes or remove any bytes, since doing so would cause 
subsequent instructions to be misaligned, that is, the instructions would not 
align properly, which would almost certainly cause the program to crash. 

Trudy decides that she will try to modify the t e s t instruction so that the 
zero flag bit will always be set. If she can accomplish this, then the remainder 
of the code can be left unchanged. After some thought, Trudy realizes that 
if she replaces t e s t eax,eax with xor eax,eax, then the zero flag bit will 
alway be set to one. This works regardless of what is in the eax register, 
since whenever something is XORed with itself, the result is zero, which will 
cause the zero flag bit to be set to one. Trudy should then be able to bypass 
the "Incorrect serial number" message, regardless of which serial number she 
enters at the prompt. 

So, Trudy has determined that changing t e s t to xor will cause the 
program to behave as she wants. However, Trudy still needs to determine 
whether she can actually patch the code to make this change without causing 
any unwanted side effect. In particular, she must be careful not to insert or 
delete bytes. 

Trudy next examines the bits of the exe file (in hex) at address 0x401030 
and she observes the results displayed in Figure 12.6, which tells her that t e s t 
eax,eax is, in hex, 0x85C0 Relying on her favorite assembly code refer-
ence manual, Trudy learns that xor eax,eax is, in hex, 0x33C0 Trudy 
realizes she's in luck, since she only needs to change one byte in the exe-
cutable to make her desired change. Again, it's crucial that she does not 
need to insert or delete any bytes, as doing so would almost certainly cause 
the resulting code to fail. 

Figure 12.6: Hex View of s e r i a l . exe 
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Trudy then uses her favorite hex editor to patch se r i a l . exe . Since the 
addresses in the hex editor won't necessarily match those in the disassembler, 
she searches through s e r i a l . exe to find the bits 0x85C07411684C, as can be 
seen in Figure 12.6. Since this is the only occurrence of the bit string in the 
file, she knows this is the right location. She then changes the byte 0x85 
to 0x33 and she saves the resulting file as ser ia lPatch .exe . 

Note that in OllyDbg, for example, patching the code is easier, since 
Trudy just needs to change the t e s t instruction to xor in the debugger and 
save the result. That is, no hex editor is required. In any case, a comparison 
of the original and the patched exécutables appears in Figure 12.7. 

Figure 12.7: Hex View of Original and Patched 

Trudy then executes the patched code ser ia lPatch .exe and enters an 
incorrect serial number. The results in Figure 12.8 show that the patched 
program accepted an incorrect serial number. 

Figure 12.8: Patched Executable 

Finally, we've disassembled both s e r i a l . e x e and ser ia lPatch .exe with 
the comparison given in Figure 12.9. These snippets of code show that the 
patching achieved its desired results. 

Kaspersky's book [161] is a good source for more information on SRE 
techniques and the book [233] has a readable introduction to some aspects of 
SRE. However, the best SRE book available is Eilam's [99]. There are many 
online SRE resources, perhaps the best of which is at [57]. 

Next, we'll briefly consider ways to make SRE attacks more difficult. Al-
though it's impossible to prevent such attacks on an open system such as a 
PC, we can make life more difficult for Trudy. A good, but dated, source of 
information on anti-SRE techniques is [53]. 
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Figure 12.9: Disassembly of Original and Patched 

First, we'll consider anti-disassembly techniques, that is, techniques that 
can be used to confuse a disassembler. Our goal here is to give the attacker an 
incorrect static view of the code or, better yet, no static view at all. Below, 
we'll also consider anti-debugging techniques that can be used to obscure the 
attacker's dynamic view of the code. Then in Section 12.2.5 we'll discuss 
some tamper-resistance techniques that can be applied to software to make 
the code more difficult for an attacker to understand and therefore more 
difficult to patch. 

12.2.3 Anti-Disassembly Techniques 

There are several well-known anti-disassembly methods.3 For example, it's 
possible to encrypt the executable file—when the exe file is in encrypted form, 
it can't be disassembled correctly. But there is a chicken and egg problem 
here that is similar to the situation that occurs with encrypted viruses. That 
is, the code must be decrypted before it can be executed. A clever attacker 
can use the decryption code to gain access to the decrypted executable. 

Another simple, but not too effective, anti-disassembly trick is false dis-
assembly [317] which is illustrated in Figure 12.10. In this example, the top 
part of the figure indicates the actual flow of the program, while the bottom 
part indicates the false disassembly that will occur if the disassembler is not 
too smart. In the top part of Figure 12.10, the second instruction causes the 
program to jump over the junk, which consists of invalid instructions. If a dis-
assembler tries to disassemble these invalid instructions, it will get confused 

3Your verbose author was tempted to call this section "anti-disassemblymentarianism." 
Fortunately, he resisted the temptation. 
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and it may even incorrectly disassemble many instructions beyond the end of 
the junk, since the actual instructions are not aligned properly. However, if 
Trudy carefully studies this false disassembly, she will eventually realize that 
in s t 2 jumps into the middle of in s t 4, and she can then undo the effects. 
In fact, quality disassemblers will not be seriously confused by such a simple 
trick, but slightly more complex examples can have some limited effect. 

inst 1 jmp junk 
1 

inst 3 
i 

inst 4 .. . 

inst 1 inst 2 inst 3 inst 4 inst 5 inst 6 ... 

Figure 12.10: False Disassembly 

A more sophisticated anti-disassembly trick is self-modifying code. As 
the name suggests, self-modifying code modifies its own executable in real 
time [61]. This is a highly effective way to confuse a disassembler, but it's 
also likely to confuse the developers, since it's difficult to implement, highly 
error prone, and well-nigh impossible to maintain. Another supposed anti-
disassembly approach is discussed in [19]. 

12.2.4 Ant i -Debugging Techniques 

There are several methods that can be used to make debugging more difficult. 
Since debuggers use specific debug registers, a program can monitor the use 
of these registers and stop (or misbehave) if they are used. That is, a program 
can monitor for inserted breakpoints, which is a telltale sign of a debugger. 

Debuggers don't handle threads well so when properly implemented, in-
teracting threads can offer a relatively strong means for confusing a debugger. 
In [338] it is shown that by introducing "junk" threads and intentional dead-
lock among some of these, only a small percentage of the useful code is ever 
visible in OllyDbg.4 Furthermore, the code that is visible varies with each 
run in an unpredictable way. The overhead associated with this approach is 
fairly high, so it would not be appropriate for the entire code base of a large 
application. However, this technique could be applied to protect a highly 
sensitive code section such as that used for entering and checking a serial 
number. 

There are many other debugger-unfriendly tricks, most of which are highly 
debugger-specific. For example, one anti-debugging technique is illustrated 

4This does not mean that OllyDbg is a bad debugger—this same trick confuses other 
popular debuggers at least as much as it confuses OllyDbg. 
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in Figure 12.11. The top part of the figure gives the series of instructions that 
are to be executed. Suppose that for efficiency, when the processor fetches 
ins t 1, it also prefetches ins t 2, i n s t 3, and i n s t 4. Also, suppose that 
when the debugger is running, it does not prefetch instructions. Then we 
can take advantage of this difference to confuse the debugger, as illustrated 
in the bottom half of Figure 12.11, where inst 1 overwrites the memory 
location of inst 4. When the program is not being debugged, this causes no 
problem since ins t 1 through ins t 4 are all fetched at the same time. But 
if the debugger does not prefetch i n s t 4, it will be confused when it tries to 
execute the junk that has overwritten inst 4 [317]. 

inst 1 inst 2 inst 3 inst 4 inst 5 inst 6 .. . 

insti inst 2 inst 3 junk insto inst 6 .. . 

J 

Figure 12.11: Anti-Debugging Example 

There are some potential problems with the anti-debugging method in 
Figure 12.11. First, if the program tries to execute this segment of code more 
than once (say, within a loop), the junk code will be executed. Also, this 
code is extremely platform dependent. Finally, if Trudy has enough patience 
and skill, she will eventually unravel this trick and eliminate its effect. 

12.2.5 Software Tamper Resistance 

In this section, we discuss several methods that can be employed to make 
software more tamper resistant. The goal of tamper resistance is to make 
patching more difficult, either by making the code more difficult to understand 
or by making the code fail if it's patched. The techniques we'll discuss have 
been used in practice, but as with most software protection methods, there's 
little (if any) empirical evidence to support their effectiveness. 

12.2.5.1 Guards 

It's possible to have a program hash sections of itself as it executes and 
compare the computed hash values with the known hash values of the original 
code. If tampering (e.g., patching) occurs, a hash check will fail and the 
program can take evasive action. These hash checks are sometimes known as 
guards. Guards can be viewed as a way to make the code fragile in the sense 
that the code breaks when tampering occurs. 
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Research has shown that by using guards it's possible to obtain good 
coverage of software with a minimal performance penalty [54, 145]. But there 
are some subtle issues. For example, if all guards are identical, then it would 
be relatively easy for an attacker to automatically detect and remove them. 
For more information on some issues related to guards, see [268]. Finally, it 
seems that guards would be ideally suited for use with interacting threads (as 
discussed above in Section 12.2.4), which could provide a relatively strong 
defense against tampering. 

12.2.5.2 Obfuscation 

Another popular form of tamper resistance is code obfuscation. Here, the 
goal is to make the code difficult to understand. The rationale is that if 
Trudy can't understand the code, she will have a difficult time patching it. 
In a sense, code obfuscation is the opposite of good software engineering 
practices. 

As a simple example, spaghetti code can be viewed as a form of obfusca-
tion. There has been much research into more robust methods of obfuscation, 
and one of the strongest appears to be the opaque predicate [64]. For example, 
consider the following pseudo-code: 

int x,y; 

i f ( (x - y) (x-y) > (x2 -2xy + y2)){...} 

Notice that the i f conditional is always false, since 

{x - y)(x - y) = x2 - 2xy + y1 

for any values of x and y. But an attacker might waste a significant amount 
of time analyzing the dead code that follows this if conditional. While this 
particular opaque predicate is not particularly opaque, many non-obvious 
examples have been developed. Again, this technique will not prevent an 
attack, but it can substantially increase the time and effort required for a 
successful attack. 

Code obfuscation has sometimes been promoted as a powerful general-
purpose security technique. In fact, in Diffie and Hellman's original concep-
tion of public key cryptography, they suggested a "one-way compiler" (i.e., an 
obfuscating compiler) as a possible path toward developing such a cryptosys-
tem [90]. However, obfuscation did not turn out to be useful in public key 
crypto, and recently it has been convincingly argued that obfuscation cannot 
provide strong protection in the same sense as, say, cryptography [25]. Nev-
ertheless, obfuscation might still have a significant practical benefit in a field 
such as software protection. 
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For example, consider a piece of software that is used to determine au-
thentication. Ultimately, authentication is a one-bit decision, regardless of 
the precise details of the method used. Therefore, somewhere in the authen-
tication software there is, effectively, a single bit that determines whether 
authentication succeeds or fails. If Trudy can find this bit, she can force au-
thentication to always succeed and thereby break the security. Obfuscation 
can make Trudy's job of finding this crucial bit into a challenging game of 
"hide and seek" in software. Obfuscation can, in effect, smear this one bit 
of information over a large body of code, thereby forcing Trudy to analyze 
a considerable amount of code. If the time and difficulty required to under-
stand the obfuscated code is sufficiently high, Trudy might give up. If so, the 
obfuscation has served a useful purpose. 

Obfuscation can also be combined with other methods, including any of 
the anti-disassembly, anti-debugging, or anti-patching techniques discussed 
above. All of these will tend to increase Trudy's work. However, it is unreal-
istic to believe that we can drive the cost so high that an army of persistent 
attackers cannot eventually break our code. 

12.2.6 Metamorphism 2.0 

The usual practice in software development is to distribute identical copies, 
or clones, of a particular piece of software. This has obvious benefits with 
regard to development, maintainability, and so on. But software cloning has 
some negative security implications. In particular, if an attack is found on 
any one copy, the exact same attack will work on all copies. That is, the 
software has no break once, break everywhere resistance, or BOBE resistance 
(this is sometimes rendered as "break once run anywhere," or BORA). 

In the previous chapter, we saw that metamorphic software is used by 
virus writers in to avoid detection. Might a similar technique be used for 
good instead of evil? For example, suppose we develop a piece of software, 
but instead of distributing cloned copies, we distribute metamorphic copies. 
That is, each copy of our software differs internally, but all copies are func-
tionally identical [285]. This is analogous to the metamorphic malware that 
we discussed in Chapter 11. 

Suppose we distribute N cloned copies of a particular piece of software. 
Then one successful attack breaks all N clones. In other words, this software 
has no BOBE resistance. On the other hand, if we distribute N metamorphic 
copies of the software, where each of these N is functionally identical, but 
they differ in their internal structure, then an attack on one instance will 
not necessarily work against any other instances. The strength of such an 
approach depends heavily on how different the non-clones are, but in the 
best case, N times as much work is required to break all N instances. This 
is the best possible situation with respect to BOBE resistance. 
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Thanks to open platforms and SRE, we cannot prevent attacks on soft-
ware. Arguably, the best we can hope for is increased BOBE resistance. 
Metamorphism is one possible way to achieve a reasonable level of BOBE 
resistance. 

An analogy is often made between software diversity and genetic diversity 
in biological systems [61, 115, 114, 194, 221, 230, 231, 277]. For example, if 
all plants in a field are genetically identical, then one disease can wipe out 
the entire field. But if the plants are genetically diverse, then one disease will 
only kill some of the plants. This is essentially the same reasoning that lies 
behind metamorphic software. 

To illustrate the potential benefits of metamorphism, suppose that our 
software has a common program flaw, say, an exploitable buffer overflow. If 
we clone this software, then one successful buffer overflow attack will work 
against all copies of the software. Suppose instead that the software is meta-
morphic. Then even if the buffer overflow exists in all instances, the same 
attack will almost certainly not work against many of the instances, since 
buffer overflow attacks are—as we saw in Chapter 11—fairly delicate. 

Metamorphic software is an intriguing concept that has been used in some 
applications [46, 275]. The use of metamorphism raises concerns regarding 
software development, software upgrades, and so on. Note that metamor-
phism does not prevent SRE, but it can provide significant BOBE resistance. 
Metamorphism is best known for its use in malware, but perhaps it's not just 
for evil anymore. 

12.3 Digital Rights Management 

Digital rights management, or DRM, provides a good example of the lim-
itations of doing security in software. Most of the topics discussed in the 
previous sections of this chapter are relevant to the DRM problem. 

In this section, we'll discuss what DRM is, and is not. Then we'll de-
scribe an actual DRM system designed to protect PDF documents within a 
corporate environment. We'll also briefly outline a DRM system designed to 
protect streaming media, and we'll discuss a proposed peer-to-peer applica-
tion that employs DRM. 

12.3.1 W h a t is D R M ? 

At its most fundamental level, DRM can be viewed as an attempt to provide 
"remote control" over digital content. That is, we would like to distribute 
digital content, but we want to retain some control over its use after it has 
been delivered [121]. 

Suppose Trudy wants to sell her new book, For the Hack of It, in digital 
form online. There is a huge potential market on the Internet, Trudy can 
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keep all of the profits, and nobody will need to pay any shipping charges, so 
this seems like an ideal solution. However, after a few moments of reflection, 
Trudy realizes that there is a serious problem. What happens if, say, Alice 
buys Trudy's digital book and then redistributes it for free online? In the 
worst case, Trudy might only sell one copy [274, 276]. 

The fundamental problem is that it's trivial to make a perfect copy of 
digital content and almost as easy to redistribute it. This is a major change 
from the pre-digital era, when copying a book was costly and redistributing it 
was difficult. For an excellent discussion of the challenges faced in the digital 
age compared with those of the pre-digital era, see the paper [31]. 

In this section, we'll focus on the digital book example. However, similar 
comments hold for other digital media, including audio and video. 

Persistent protection is a buzzword for the ideal level of DRM protection. 
That is, we want to protect the digital content so that the protection stays 
with the content after it's delivered. Examples of the kinds of persistent 
protection restrictions that we might want to enforce on a digital book include 
the following: 

• No copying 

• Read once 

• Do not open until Christmas 

• No forwarding 

What can be done to enforce persistent protection? One option is to rely 
on the honor system, whereby we do not actually force users to obey the 
rules but instead simply request that they do so. Since most people are good, 
honest, decent, law-abiding, and trustworthy, we might expect this to work 
well. Or maybe not. 

Perhaps surprisingly, the honor system has actually been tried. Stephen 
King, the horror novel writer, published his book The Plant online in install-
ments [94, 250]. King said that he would only continue to publish installments 
if a high enough rate of readers paid. 

Of the planned seven installments of The Plant, only the first six ap-
peared online. Stephen King's spokesman claimed that the rate of payers 
had dropped so low that Mr. King would not publish the remaining part on-
line, leaving some angry customers who had paid for 6/7ths of a book [250]. 
Before dismissing the honor system entirely, it's worth noting that shareware 
essentially follows the honor system model. 

Another option is to give up on enforcing DRM on an open platform such 
as a PC. In the previous section, we saw that SRE attacks render software 
on a PC vulnerable. Consequently, if we try to enforce persistent protection 
through software on an open platform, we are likely doomed to failure. 
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However, the lure of Internet sales has created an interest in DRM, even 
if it can't be made perfectly robust. We'll also see that companies have an 
interest in DRM as a way to comply with certain government regulations. 

If we decide that it's worthwhile to attempt DRM on a PC, one option is to 
build a weak software-based system. Several of these have been deployed, and 
most are extremely weak. For example, such a DRM system for protecting 
digital documents might be defeated by a user who is knowledgeable enough 
to operate a screen capture program. 

Another option would be to develop a "strong" software-based DRM sys-
tem. In the next section we'll describe a system that strives for just such a 
level of protection. This design is based on a real DRM system developed by 
your multifaceted author for MediaSnap, Inc., as discussed in [275]. 

A fairly high level of DRM protection can be achieved on a closed system, 
such as a game system. These systems are very good at enforcing restrictions 
similar to the persistent protection requirements mentioned above. There 
have been efforts to include closed system features in PCs. In large part, 
this work is motivated by the desire to provide reasonably robust DRM on 
the PC. We'll return to this topic in Chapter 13 when we discuss Microsoft's 
Next Generation Secure Computing Base, or NGSCB. In this chapter, we'll 
only consider software-based DRM. 

It is sometimes claimed—or at least strongly implied—that cryptography 
is the solution to the DRM problem. That this is not the case can easily be 
seen by considering the generic black box crypto diagram in Figure 12.12, 
which illustrates a symmetric key system. 

key key 

plaintext- encrypt — M T W m r - » decrypt 
1 ciphertext 

■ plaintext 

Figure 12.12: Cryptography and DRM 

In the standard crypto scenario, the attacker Trudy has access to the 
ciphertext and perhaps some plaintext and some side-channel information. In 
the DRM scenario, we are trying to enforce persistent protection on a remote 
computer. What's more, the legitimate recipient is a potential attacker. 

Suppose Trudy is the legitimate recipient of a DRM-protected document. 
Then Trudy has access to everything within the dashed box in Figure 12.12. 
In particular, Trudy has access to the key. We certainly can't expect crypto 
to solve our problem if we give the attacker the key! 
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With DRM, it's necessary to use encryption so that the data can be 
securely delivered, and so that Trudy can't trivially remove the persistent 
protection. But if Trudy is clever, she won't attack the crypto directly. In-
stead, she will try to find the key, which is hidden somewhere in the software 
(or at least available to the software at some point in the process). One of 
the fundamental problems in DRM can be reduced to the problem of playing 
hide and seek with a key in software [266]. 

Out of necessity, software-based DRM systems rely largely on security by 
obscurity, that is, the security resides in the fact that Trudy doesn't com-
pletely understand the system. In a sense, this is the opposite of Kerckhoffs' 
Principle. Security by obscurity is generally considered a derogatory term in 
the security field, since once the obscurity is gone, so is the security. However, 
in software-based DRM, there is often no other viable option. 

Software obfuscation and the other techniques discussed in the previous 
section are examples of security by obscurity. It's always preferable not to 
rely on security by obscurity, but, when there is no other option, then we 
need to consider whether we can derive any useful measure of security from 
some clever application of obscurity.5 

Current DRM systems also rely heavily on secret designs, in clear violation 
of the spirit of Kerckhoffs' Principle. Of course, this is partly due to the 
reliance on obscurity, but even a general overview of the security architecture 
is unavailable for most DRM systems, unless it has been provided by some 
outside source. For example, details on Apple's Fairplay DRM system were 
not available from Apple, but can be found, for example, in [313]. 

There is a fundamental limit on the effectiveness of any DRM system, 
since the so-called analog hole is always present. That is, when the content is 
rendered, it can be captured in analog form—for example, when digital music 
is played, it can be recorded using a microphone, regardless of the strength of 
the DRM protection. Similarly, a digital book can be captured in unprotected 
form using a digital camera to photograph the pages displayed on a computer 
screen. Such attacks are outside the boundaries of a DRM system. 

Another interesting feature of DRM is the degree to which human nature 
matters. For software-based systems, it's clear that absolute DRM security 
is impossible, so the challenge is to develop something that might work in 
practice. Whether this is possible or not depends heavily on the context, 
as we'll see in the examples discussed below. The bottom line is that DRM 
is not strictly a technical problem. While this is also true of many security 

5In spite of its bad name, security by obscurity is used surprisingly often in the real 
world. For example, system administrators often rename important system files so that 
they are more difficult for an attacker to locate. If Trudy breaks into the system, it will 
take her some time to locate these important files, and the longer it takes, the better chance 
we have of detecting her presence. So, it does make sense to use obscurity in situations 
such as this. 
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topics (passwords, the MiM "attack" on SSL, etc.), it's more obvious in DRM 
than in many other areas. 

We've mentioned several times that strong software-based DRM is impos-
sible. Let's be explicit as to why this is the case. From the previous SRE 
sections, it should be clear that we can't really hide a secret in software, since 
we can't prevent SRE. A user with full administrator privilege can eventu-
ally break any anti-SRE protection and thereby attack DRM software that 
is trying to enforce persistent protection. In other words, SRE is the "killer 
app" for attacking software-based DRM. 

Next we describe a real-world DRM system designed to protect PDF 
documents. Then we discuss a system designed to protect streaming media, 
another system designed for a P2P environment, and, finally, the role of DRM 
within a corporate environment. Other DRM systems are described in [241] 
and [314]. 

12.3.2 A Real-World D R M Sys tem 

The information in this section is based on a DRM system designed and 
developed by MediaSnap, Inc., a small Silicon Valley startup company. The 
system is intended for use with digital documents that will be distributed via 
email. 

There are two major components to the MediaSnap DRM systems, a 
server component that we'll call the Secure Document Server, or SDS, and 
the client software, which is a software plugin to the Adobe PDF reader. 

Suppose Alice wants to send a DRM-protected document to Bob. Alice 
first creates the document, then attaches it to an email. She selects the 
recipient, Bob, in the usual way, and she uses a special pull down menu on 
her email client to select the desired level of persistent protection. She then 
sends the email. 

The entire email, including any attachments, is converted to PDF and it 
is then encrypted (using standard crypto techniques) and sent to the SDS. 
It is the SDS that applies the desired persistent protection to the document. 
The SDS then packages the document so that only Bob can access it using 
his client DRM software—it is the client software that will attempt to enforce 
the persistent protection. The resulting document is then emailed to Bob. 
This process is illustrated in Figure 12.13. 

A key is required to access the DRM-protected document, and this key is 
stored on the SDS. Whenever Bob wants to access the protected document, 
he must first authenticate to the SDS and only then will the key be sent from 
the SDS to Bob. Once Bob gets the key, he can access the document, but 
only through the DRM software. This process is illustrated in Figure 12.14. 

There are security issues both on the server side and on the client side. 
The SDS must protect keys and authenticate users, and it must apply the 
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Figure 12.13: DRM for PDF Documents 

Figure 12.14: Accessing Protected Documents 

required persistent protection to documents. The client software must pro-
tect keys, authenticate users, and enforce the persistent protection, all while 
operating in a potentially hostile environment. The SDS resides at corporate 
headquarters and is relatively secure. The DRM client software, on the other 
hand, is readily available to any attacker. The discussion below concerns the 
client software. 

The high-level design of the client software is illustrated in Figure 12.15. 
The software has an outer layer that attempts to create a tamper-resistant 
barrier. This includes anti-disassembly and anti-debugging techniques, some 
of which were discussed above. For example, the executable code is encrypted, 
and false disassembly is used to protect the part of the code that performs 
the decryption. In addition, the executable code is only decrypted in small 
slices so that it's more difficult for an attacker to obtain the entire code in 
plaintext form. 

The anti-debugging technique is fairly sophisticated, although the basic 
idea is simply to monitor for the use of the debug registers. One obvious 
attack on such a scheme is essentially a man-in-the-middle, where the attacker 
debugs the code but responds to the anti-debugging software in such a way 
that it appears no debugger is running. 

We know from the previous section that tamper-resistance techniques can 
delay an attacker, but they can't prevent a persistent attacker from eventual 
success. The software inside the tamper-resistant layer is heavily obfuscated 
to further delay an attacker who has penetrated the tamper-resistant outer 
layer. 
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Figure 12.15: DRM Software Design 

The obfuscation is applied to security critical operations, including key 
management, authentication, and cryptography. The authentication infor-
mation is cached, since we don't want to ask the user to repeatedly enter a 
password (or other means of authentication). Each time the authentication 
data is cached, it is cached in a different location in memory and in a different 
form. 

The digital content is encrypted using the Advanced Encryption Standard 
(AES) block cipher. Unfortunately, standard crypto is difficult to obfuscate 
since the algorithms are well known and the implementations are standard-
ized for efficiency and to prevent implementation errors. As a result, the 
MediaSnap system also employs a "scrambling" algorithm, which is essen-
tially a proprietary cipher. This scrambling is used in addition to—and not 
in place of—a strong cipher, so there is no violation of Kerckhoffs' Principle. 

The scrambling algorithm, which is itself obfuscated, presents a much 
more substantial SRE challenge than a standard cipher, such as AES. The 
keys are also obfuscated by splitting them into multiple parts and hiding 
some parts in data and other parts in code. In short, the MediaSnap system 
employs multiple layers of obfuscation. 

Another security feature implemented by the system is an anti-screen cap-
ture technique, which is somewhat analogous to the anti-debugging technique 
mentioned above. Digital watermarking is also employed. As we learned in 
Chapter 5, watermarking is designed to provide the ability to trace stolen 
content. However, in practice, watermarking has proven to be of relatively 
limited value, particularly if the attacker knows the watermarking scheme. 

The MediaSnap DRM software employs metamorphism for BOBE resis-
tance. The metamorphism is implemented in several places, most notably in 
the scrambling algorithms. We'll have more to say about this below when we 
discuss a DRM application designed to protect streaming media. 

The MediaSnap DRM system employs a wide variety of software protec-
tion techniques. It is almost certainly one of the most advanced software-
based DRM systems ever attempted. The only significant protection mecha-
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nism not employed is the guards or "fragilization" technique discussed above, 
and the only reason guards are not used is that they're not easily incorporated 
with encrypted executable code. 

One major security concern that we did not yet mention is the role of 
the operating system. In particular, if we can't trust the operating system to 
behave correctly, then our DRM client software can be undercut by attacks 
on the operating system. The topic of trusted operating systems is the focus 
of the next chapter. 

12.3.3 D R M for Streaming Media 

Suppose we want to stream digital audio or video over the Internet, and this 
digital media is to be viewed in real time. If we want to charge money for 
this service, how can we protect the content from capture and redistribution? 
This sounds like a job for DRM. The DRM system we describe here follows 
the design given in [282]. 

Possible attacks on streaming media include spoofing the stream between 
the endpoints, man-in-the-middle, replay or redistribution of the data, and 
capturing the plaintext at the client. We are concerned primarily with the 
latter attack. The threat here arises from unauthorized software that is used 
to capture the plaintext stream on the client. 

The most innovative feature of our proposed design is the use of scrambling 
algorithms, which are encryption-like algorithms, as described in the previous 
section. We'll assume that we have a large number of distinct scrambling 
algorithms at our disposal and we'll use these to achieve a significant degree 
of metamorphism. 

Each instance of the client software comes equipped with a large num-
ber of scrambling algorithms included. Each client has a distinct subset of 
scrambling algorithms chosen from a master set of all scrambling algorithms, 
and the server knows this master set. The client and server must negotiate 
a specific scrambling algorithm to be used for a particular piece of digital 
content. We'll describe this negotiation process below. 

We'll also encrypt the content so that we don't need to rely on the scram-
bling algorithm for cryptographic strength. The purpose of the scrambling is 
metamorphism—and BOBE resistance—not cryptographic security. 

The data is scrambled and then encrypted on the server. On the client, the 
data must be decrypted and then de-scrambled. The de-scrambling occurs in 
a proprietary device driver, just prior to rendering the content. The purpose 
of this approach is to keep the plaintext away from the attacker, Trudy, until 
the last possible moment prior to rendering. 

In the design discussed here, Trudy is faced with a proprietary device 
driver and each copy of the software has a unique set of hardcoded scrambling 
algorithms. Therefore, Trudy is faced with a significant SRE challenge and 
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each copy of the client software presents a distinct challenge. Consequently, 
the overall system should have good BOBE resistance. 

Suppose the server knows N different scrambling algorithms, denoted 
so, si,..., sjv-i· Each client is equipped with a subset of these algorithms. 
For example, a particular client might have the scrambling algorithms 

L I S T = {Si2, S45, 32, S37, «23, S31}. 

This LIST is stored on the client as E(LIST, ÄTserver), where ifserver is a 
key that only the server knows. The primary benefit of this approach is 
that the database that maps clients to their scrambling algorithms is dis-
tributed among the clients, eliminating a potential burden on the server. 
Notice that this approach is reminiscent of the way Kerberos uses TGTs to 
manage security-critical information. 

To negotiate a scrambling algorithm, the client sends its LIST to the 
server. The server then decrypts the LIST and chooses one of the algorithms 
that is built into the client. The server must then securely communicate 
its scrambling algorithm choice to the client. This process is illustrated in 
Figure 12.16, where the server has selected the mth scrambling algorithm on 
the client's LIST. Here, the key K is a session key that has been established 
between the client and server. 

E(LIST, Kse^er) 

M E(m,K) 

scramble (encrypted) data 
Alice using Alice's m-th algorithm Bob 

(client) (server) 

Figure 12.16: Scrambling Algorithm Selection 

The metamorphism provided by the scrambling algorithms is deeply em-
bedded in the system and tied to all of the data. Furthermore, if the server 
knows that a particular scrambling algorithm is broken, the server won't se-
lect it. And if a particular client has too many broken algorithms, the server 
will force a software upgrade before agreeing to distribute the content. 

The server can also distribute the client software (or some crucial compo-
nent of it) immediately prior to distributing the content. This would make 
it more difficult for Trudy to capture the streamed media in real time, due 
to the limited time available to attack the software. Of course, Trudy could 
record the stream and then attack the software at her leisure. However, in 
many situations, an attack that is not close to real time would be of little 
concern. 
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Since the scrambling algorithms are unknown to the attacker, they require 
a significant effort to reverse engineer, whereas a standard crypto algorithm 
does not need to be reverse engineered at all—the attacker only needs to 
find the key. As we mentioned above, it could be argued that such use 
of scrambling algorithms is just security by obscurity. But in this particular 
application, it appears to be of some value since it improves BOBE resistance. 

12.3.4 D R M for a P 2 P Applicat ion 

Today, much digital content is delivered via peer-to-peer, or P2P, networks. 
For example, such networks contain large amounts of illegal, or pirated, music. 
The following scheme is designed to gently coerce users into paying a small 
fee for legal content that is distributed over a P2P network. Note that this 
P2P network may contain large amounts of illegal content in addition to the 
legal content. 

The scheme we describe here is based on the work of Exploit Systems [108]. 
But before we discuss this application in detail, let's briefly review how a P2P 
network works. 

Suppose Alice has joined a P2P network, and she requests some music, 
say, "Relay" by The Who. Then a query for this song floods through the 
network, and any peer who has the song—and is willing to share it—responds 
to Alice. This is illustrated in Figure 12.17. In this example, Alice can choose 
to download the song from either Carol or Pat. 

Figure 12.17: P2P Network 

Figure 12.18 illustrates the same scenario in a P2P network that includes 
a special peer that we'll call a peer offering service, or POS. The POS acts 
much like any other peer, except that it has only legal—and DRM-protected— 
music. 

When Alice makes her request on a P2P network with a POS, it appears 
to her that she has received responses from Bill, Ben, Carol, Joe, and Pat. 
If Alice selects to download the music from Bill, Ben, or Joe, she will receive 
DRM protected content for which she will be required to pay a small fee 
before she can listen to the music. On the other hand, if Alice selects either 
Carol or Pat, she receives the music for free, just as in the P2P network 
without the POS. 
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For the POS concept to work, it must not be apparent to Alice whether 
a peer is an ordinary peer or a POS peer. In addition, the POS must have 
a significant percentage of its peers appear in the top ten responses. Let's 
assume that these technical challenges can be resolved in favor of the POS. 

Now suppose Alice first selects Bill, Ben, or Joe. Then after downloading 
the music and discovering that she must pay, Alice is free to select another 
peer and, perhaps, another, until she finds one that has pirated (i.e., free) 
music. But is it worth Alice's time to download the song repeatedly just to 
avoid paying? If the music is priced low enough, perhaps not. In addition, 
the legal (DRM-protected) version can offer extras that might further entice 
Alice to pay a small fee. 

Figure 12.18: P2P Network with POS 

The POS idea is clever, since it piggybacks on existing P2P networks. 
And in the POS scenario, relatively weak DRM is sufficient. As long as it's 
more trouble for Alice to break the DRM than to click and wait for another 
download, the DRM has served its purpose. 

12.3.5 Enterprise D R M 

There are government regulations that require companies to protect certain 
types of private information and there are similar regulations regarding many 
types of business records. For example, the Health Insurance Portability 
and Accountability Act, or HIPAA, requires that companies protect personal 
medical records. HIPAA stipulates fines of up to $10,000 per incident (i.e., 
per record) for failing to provide sufficient protection. Companies that deal 
with medical records often need to make such records accessible to certain 
employees, but, due to HIPAA, they also must be careful that these records 
do not leak to unauthorized recipients. DRM can help to solve this problem. 

The Sarbanes-Oxley Act, or SOA, requires that companies must preserve 
certain documents, such as information that might be relevant to insider 
trading stock violations. Again, DRM could be used here to be sure that 
such information is protected as required by law. The bottom line is that 
DRM-like protections are needed by corporations for regulatory compliance. 
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We refer to this as enterprise DRM to distinguish it from the e-commerce 
scenarios discussed above. 

Prom a technical point of view, the enterprise DRM security requirements 
are similar to those for e-commerce. But the motivation for enterprise DRM 
is entirely different, since the purpose is to prevent a company from losing 
money (due to fines) instead of being an avenue for making money (as in e-
commerce). More significantly, the human dimension is completely different. 
In an enterprise setting the threat of reprisals (getting fired or sued) are 
far more plausible than in the e-commerce setting. Also, the required level of 
protection is different. In enterprise DRM, a corporation has likely shown due 
diligence and thereby complied with the regulations, provided that an active 
attack on the DRM system is required to break its security. A moderate level 
of DRM is sufficient in this case. From a technical perspective, enterprise 
DRM is very much a solvable problem. 

In e-commerce, the strength of the DRM system is the predominate con-
cern. But in the enterprise setting, other more mundane issues are more 
important [286]. For example, policy management is an important concern. 
That is, it must be easy for an administrator to set policies for individual 
users, groups, etc. Authentication issues are also significant, since the DRM 
system must interface with an existing corporate authentication system, and 
the system must prevent authentication spoofing. From a technical perspec-
tive, these are not major obstacles. 

DRM for e-commerce and enterprise DRM face similar technical hurdles. 
But because the human dimension is so different, one is virtually unsolvable 
(at least for software-based systems), while the other is fairly easy. 

12.3.6 DRM Failures 

There are far too many examples of failed e-commerce DRM systems to list 
them all here, but we'll mention a few. One infamous system could be de-
feated by a felt-tip pen [97], while another was defeated by holding down the 
shift key while downloading the content [6]. 

The Secure Digital Music Initiative, or SDMI, is an interesting case. Prior 
to implementing SDMI on real-world systems, the SDMI Consortium posted 
a series of challenge problems online, presumably to show how secure their 
system would be in practice. A group of researchers was able to completely 
break the security of the SDMI, and for their hard work they were rewarded 
with the threat of multiple lawsuits. Eventually the attackers' results were 
published, and they make fascinating reading—particularly with respect to 
the inherent limitations of watermarking schemes [71]. 

Major corporations have put forth DRM systems that were easily broken. 
For example, Adobe eBooks security was defeated [23, 133], and as in the case 
of SDMI, the attacker's reward consisted of unenforceable legal threats [310]. 
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Another poor DRM system was Microsoft's MS-DRM (version 2). Mi-
crosoft violated Kerckhoffs' Principle, which resulted in a fatally flawed block 
cipher algorithm. The attacker in this case was "Beale Screamer" [29], who 
avoided legal reprisals, presumably due to his anonymity. 

12.3.7 D R M Conclusions 

DRM illustrates the limitations of doing security in software, particularly 
when that software must function in a hostile environment. Such software 
is vulnerable to attack, and the protection options are extremely limited. In 
other words, the attacker has nearly all of the advantages. 

Tamper-resistant hardware and a trusted operating system can make a 
significant difference. We'll discuss these topics more in Chapter 13. 

In the next section, we shift gears to discuss security issues related to 
software development. Much of our discussion will be focused through the 
lens of the open source versus closed source software debate. 

12.4 Software Development 

The standard approach to software development is to develop and release a 
product as quickly as possible. While some testing is done, it is almost never 
sufficient, so the code is patched as flaws are discovered by users.6 In security, 
this is known as penetrate and patch. 

Penetrate and patch is a bad way to develop software in general, and a 
terrible way to develop secure software. Since it's a security liability, why 
is this the standard software development paradigm? There is more to it 
than simply an ethical failing by software developers. In software, whoever 
is first to market is likely to become the market leader, even if their product 
ultimately is inferior to the competition. And in the computing world, the 
market leader tends to dominate more so than in most fields. This first to 
market advantage creates an overwhelming incentive to sell software before 
it's been thoroughly tested. 

There also seems to be an implicit assumption that if you patch bad soft-
ware long enough it will eventually become good software. This is sometimes 
referred to as the penetrate and patch fallacy [317]. Why is this a fallacy? For 
one thing, there is huge body of empirical evidence to the contrary—regardless 
of the number of service packs applied, software continues to exhibit serious 
flaws. In fact, patches often add new flaws. And software is a moving tar-
get due to new versions, new features, changing environment, new uses, new 
attacks, and so on. 

6Note that "patch" has a slightly different meaning here than in the SRE context. Here, 
it means "to fix bugs," whereas in SRE it refers to a change made directly to the executable 
code to add, remove, or modify certain features of the software. 
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Another contributing factor toward the current sorry state of software 
security is that users generally find it easier and safer to follow the leader. 
For example, a system administrator probably won't get fired if his system 
has a serious flaw, provided everybody else has the same flaw. On the other 
hand, that same administrator might not receive much credit if his system 
works normally while other systems are having problems. 

Yet another major impetus for doing things like everybody else is that ad-
ministrators and users have more people they can ask for support. Together, 
these perverse economic incentives are sometimes collectively referred to as 
network economics [14]. 

Secure software development is difficult and costly. Development must 
be done carefully, with security in mind from the beginning. And, as we'll 
make somewhat precise below, an extraordinarily large amount of testing is 
required to achieve reasonably low bug rates. It's certainly cheaper and easier 
to let customers do the testing, particularly when there is no serious economic 
disincentive to do so, and, due to network economics, there is an enormous 
incentive to rush to market. 

Why is there no economic disincentive for flawed software? Even if a 
software flaw causes major losses to a corporation, the software vendor has 
no legal liability. Few, if any, other products enjoy a comparable legal status. 
In fact it's sometimes suggested that holding software vendors legally liable 
for the adverse effects of their products would be a market-friendly way to 
improve the quality of software. But software vendors have so far successfully 
argued that such liability would stifle innovation. In any case, it's far from 
certain that such an approach would have any serious impact on the overall 
quality of software. Even if software quality did improve, the cost might 
be greater than anticipated and there would certainly be some unintended 
negative consequences. 

12.4.1 Open Versus Closed Source Software 

We'll look at some of the security problems inherent in software through the 
prism of the open source versus closed source debate. Some of the conclusions 
will probably surprise you. 

With open source software, the source code is available to users. For 
example, the Linux operating system is open source. With closed source 
software, on the other hand, the source code is not available to the general 
public. Windows is an example of closed source software. In this section, 
we want to examine the relative security strengths and weaknesses of open 
source and closed source software. 

The primary claimed security advantages of open source software can be 
summarized as "more eyeballs," that is, more people can look at the code, 
so fewer flaws should remain undiscovered. This is really just a variant on 
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Kerckhoffs' Principle, and what self-respecting security person could possibly 
argue with that? 

However, upon closer examination, the benefit of more eyeballs becomes 
more questionable, at least with respect to software security. First, how many 
of these eyeballs are looking for security flaws? And how many are focused 
on the low-level (tedious, boring) parts of the code, which are more likely to 
harbor security flaws? Also, how many of these eyeballs belong to people who 
are knowledgable about security—those who would have a realistic chance of 
discovering subtle security flaws? 

Another issue with open source is that attackers can also look for flaws 
in the source code. Conceivably, an ingenious evil coder might even be able 
to insert a security flaw into an open source project. While this may sound 
far-fetched, the Underhanded C Contest shows that it's possible to write evil 
code that looks innocent [70]. 

An interesting open source case study is wu-f tp . This open source soft-
ware is of modest size, at about 8,000 lines of code, and it implements a 
security-critical application (file transfer). Yet this software was widely de-
ployed and in use for ten years before serious security flaws were discov-
ered [317]. More generally, the open source movement appears to have done 
little to reduce security flaws. Perhaps the fundamental problem is that open 
source software also follows the penetrate and patch model of development. 
However, there is some evidence that open source software is significantly less 
buggy than closed source [84]. 

If open source software has its security issues, certainly closed source 
software is worse. Or is it? The security flaws in closed source are not 
as visible to attackers, which could be viewed as providing some protection 
(although it could be argued that this is just a form of security by obscurity). 
But does this provide any significant protection? Given the record of attacks 
on closed source software, it is clear that many exploits do not require source 
code—our simple S RE example in Section 12.2 illustrates why this is the 
case. Although it is possible to analyze closed source code, it's a lot more 
work than for open source software. 

Advocates of open source often cite the Microsoft fallacy as a reason why 
open source software is inherently superior to closed source [317]. This fallacy 
can be summarized as follows. 

1. Microsoft makes bad software. 

2. Microsoft software is closed source. 

3. Therefore all closed source software is bad. 

While it is always tempting to blame everything on Microsoft, this one doesn't 
hold water. For one thing, it's not logically correct. Perhaps the real issue is 
the fact that Microsoft follows the penetrate and patch model. 
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Next, we'll take a little closer look at the security of open source and 
closed source software. But before we get to that, it's reasonable to pon-
der why Microsoft software is successfully attacked so often. Is there some 
fundamental problem with Microsoft software? 

Microsoft is obviously a big target for any attacker—an attacker who 
wants the most bang for the buck is naturally attracted to Microsoft. While 
there are few exploits against, say, Mac OS X, this almost certainly has 
more to do with the fact that it receives less attention from hackers (and, 
not coincidentally, the hacker tools are much less well developed) than any 
inherent security advantage of OS X. An attack on OS X would do far less 
damage overall and therefore bring less "glory" to the attacker. Even from the 
perspective of stealthy attacks, such as botnets, there is much more incentive 
to attack a big target like Microsoft—numbers matter. 

Now let's consider the security implications of open and closed source soft-
ware from a slightly more theoretical angle. It can be shown that the probabil-
ity of a security failure after t units of testing is about K/t, where K is a con-
stant, and this approximation holds over a large range of values for t [12]. The 
constant if is a measure of the initial quality of the software—the smaller K, 
the better the software was initially. This formula implies that the mean time 
between failure, or MTBF, is given by 

MTBF = t/K. (12.1) 

That is, the average amount of time until some software security flaw rears 
its ugly head and causes problems is t/K, where t is the amount of time that 
has been spent testing the software. The bottom line is that software security 
improves with testing, but it only improves linearly. 

The implication of equation (12.1) is bad news for the good guys. For 
example, to achieve a level of, say, 1,000,000 hours between security failures, 
software must be tested for (on the order of) 1,000,000 hours. 

Is it really true that software only improves linearly with testing? Empiri-
cal results have shown that this is the case, and it is the conventional wisdom 
of many in the software field that this is reality for large and complex software 
systems [14]. 

What does equation (12.1) imply about the security of open source versus 
closed source software? Consider a large and complex open source project. 
Then we would expect this project to satisfy equation (12.1). Now suppose 
this same project was instead closed source. Then it would be reasonable to 
expect that the flaws are harder to find than in the open source case. For 
simplicity, suppose the flaws are twice as hard to find in the closed source 
case. Then it might seem that 

MTBF = 2t/K. (12.2) 
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If this is correct, closed source software is twice as secure as open source. 
However, equation (12.2) is not correct, since the closed source testing is only 
half as effective as in the open source case, that is, we need to test twice as 
long to expose the same number of bugs. In other words, the closed source 
software has more security flaws, but they are harder to find. In fact, if the 
flaws are twice as hard to find, then our testing is only half as effective and we 
arrive back at equation (12.1). This Zen-like argument shows that, in some 
sense, the security of open and closed source software is indistinguishable— 
see [12] for more details. 

It might be argued that closed source software has open source alpha 
testing, where flaws are found at the higher open source rate, since devel-
opers have access to the software. This alpha testing is followed by closed 
source beta testing and use, where customers actually use the software and, 
effectively, test it in the process. This combination would seem to yield the 
best of both worlds—fewer bugs due to the open source alpha testing with 
the remaining bugs harder to find due to the code being closed source. How-
ever, in the larger scheme of things, alpha testing is a small part of the total 
testing, particularly with the pressures to rush to market. Although this 
argument could, in principle, give an edge to closed source, in practice it's 
probably not a significant advantage. The surprising conclusion here is that 
open and closed source software are probably about the same from a security 
perspective. 

12.4.2 Finding Flaws 

A fundamental security problem with software testing is that the good guys 
must find almost all security flaws, whereas Trudy only needs to find one that 
the good guys haven't yet found. This implies that software reliability is far 
more challenging in security than in software engineering in general. 

An example from [14] nicely illustrates this asymmetric warfare between 
attacker and defender. Recall that the mean time between failure is given 
by MTBF = t/K. For the sake of argument, suppose there are 106 security 
flaws in a large and complex software project and assume that for each in-
dividual flaw, MTBF = 109 hours. That is, any specific flaw is expected to 
show up after about a billion hours of use. Then, since there are 106 flaws, 
we would expect to observe one flaw for every 109/106 = 103 hours of testing 
or use. 

Suppose that the good guys hire 10,000 testers who spend a total of 107 

hours testing, and they find, as expected, 104 flaws. Evil Trudy, by herself, 
spends 103 hours testing and finds one flaw. Since the good guys found 
only 1% of the flaws, the chance that they found Trudy's specific bug is 
only 1%. This is not good. As we've seen in other areas of security, the math 
overwhelmingly favors the bad guys. 
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12.4.3 Other Software Development Issues 

Software development generally includes the following steps [235]: specify, 
design, implement, test, review, document, manage, and maintain. Most 
of these topics are beyond the scope of this book, but in this section, we'll 
mention a few software development issues that have a significant impact on 
security. 

Secure software development is not easy, as our previous discussion of 
testing indicates. And testing is only part of the development process. To 
improve security, much more time and effort are required throughout the 
entire development process. Unfortunately, there is little or no economic 
incentive for this today. 

Next, we'll briefly discuss the following security-critical software develop-
ment topics: 

• Design 

• Hazard analysis 

• Peer review 

• Testing 

• Configuration management 

• Postmortem for mistakes 

We've already discussed testing, but we'll have more to say about some other 
testing-related issues below. 

The design phase is critical for security since a careful initial design can 
avoid high-level errors that are difficult—if not impossible—to correct later. 
Perhaps the most important point is to design security features in from the 
start, since retrofitting security is difficult, if not impossible. Internet pro-
tocols offer an excellent illustration of this difficulty. IPv4, for example, has 
no built-in security, while the new-and-improved version, IPv6, makes IPSec 
mandatory. However, the transition to IPv6 is proving slow to nonexistent 
and, consequently, the Internet remains much less secure than it could be. 

Usually an informal approach is used at the design phase, but so-called 
formal methods can sometimes be applied [40]. Using formal methods, it's 
possible to rigorously prove that a design is correct. Unfortunately, formal 
methods are generally too difficult to be practical in most real-world situa-
tions. 

To build secure software, the threats must be considered in advance. This 
is where the field of hazard analysis comes into play. There are several in-
formal ways to approach this problem, such as developing a hazard list con-
taining potential security problems, or simply making a list of "what ifs." 
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A slightly more systematic approach is Schneier's attack tree concept, where 
possible attacks are organized into a tree-like structure [259]. A nice feature 
of this approach is that you can prune entire branches of attacks if you can 
prevent the attacks closer to the root of the tree. 

There are several other approaches to hazard analysis, including haz-
ard and operability studies (HAZOP), failure modes and effective analysis 
(FMEA), and fault tree analysis (FTA) [235]. We'll not discuss these topics 
here. 

Peer review is also a useful tool for improving security. There are three 
levels of peer review which, from most informal to most formal, are sometimes 
called review, walk-through, and inspection. Each level of review is useful, and 
there is good empirical evidence that peer review is effective [235]. 

Next, we'll discuss testing, but from a different perspective than above in 
Section 12.4. Testing occurs at different levels of the development process, 
which can be categorize as follows: 

• Module testing — Small sections of the code are tested individually. 

• Component testing — A few modules are combined and tested together. 

• Unit testing — Many components are combined for testing. 

• Integration testing — Everything is put everything together and tested 
as a whole. 

At each of these levels, security flaws can be uncovered. For example, fea-
tures that interact in a new or unexpected way may evade detection at the 
component level but be exposed during integration testing. 

Another way to view testing is based on its purpose. We can define 
categories as follows: 

• Function testing — Here, we verify that the system functions as re-
quired. 

• Performance testing — Requirements such as speed and resource use 
are verified. 

• Acceptance testing — The customer is actively involved. 

• Installation testing — Not surprisingly, this is testing done at install 
time. 

• Regression testing — Testing that is done after any significant change 
to the system. 
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Again, security vulnerabilities can be exposed during any of these types of 
testing. 

Another useful testing technique is active fault detection, where instead 
of simply waiting for a system to fail, the tester actively tries to make it fail. 
This is the approach that an attacker will follow and it might uncover security 
flaws that a more passive approach would miss. 

An interesting concept is fault injection, where faults are inserted into 
the process, even if there is no obvious way for such a fault to occur. This 
might, for example, reveal buffer overflow problems that would otherwise go 
unnoticed if the testing is restricted to expected inputs. 

Bug injection can enable testers to obtain an estimate on the number of 
bugs remaining in code. Suppose we insert 100 bugs into our code and our 
testers find 30 of these. Further, suppose that in addition to these 30 bugs, 
our testers find 300 other bugs. Since the testers found 30% of the inserted 
bugs, it might be reasonable to assume that they also found 30% of the actual 
bugs. If so, then roughly 700 bugs would remain, after removing all of the 
discovered bugs and the 70 remaining inserted bugs. Of course, this assumes 
that the injected bugs are similar to the naturally occurring bugs, which is 
probably not entirely valid. Nevertheless, bug injection may provide a useful 
estimate of the number of bugs and, indirectly, the number of security flaws. 

A testing case history is given in [235]. In this example, the system 
had 184,000 lines of code. Flaws were found at the following rates: 

• 17.3% were found when inspecting the system design. 

• 19.1% were found inspecting component design. 

• 15.1% were found during code inspection. 

• 29.4% were found during integration testing. 

• 16.6% were found during system and regression testing. 

The conclusion is that many kinds of testing must be conducted and that 
overlapping testing is helpful. 

Configuration management, that is, how we deal with changes to a sys-
tem, can also be a security-critical issue. Several types of changes can occur, 
and these changes can be categorized as follows: minor changes are needed 
to maintain daily functioning, adaptive changes are more substantial mod-
ifications, while perfective changes are improvements to the software, and, 
finally, preventive changes, which are intended to prevent any loss of perfor-
mance [235]. Any such changes to a system can introduce new security flaws 
or expose existing flaws, either directly as a result of the new software, or due 
to interactions with the existing software base. 



 

480 INSECURITY IN SOFTWARE 

After identifying and fixing any security flaw, it is important to carefully 
analyze the flaw. This sort of postmortem analysis is the best way to learn 
from the problem and thereby increase the odds that a similar problem will 
be avoided in the future. In security, we always learn more when things go 
wrong than when they go right. If we fail to analyze those cases where we 
know that things went wrong, then we've missed a significant opportunity. 
Postmortem analysis may be the most underutilized method in all of security 
engineering. 

As we observed earlier in this chapter, security testing is far more de-
manding than non-security testing. In the latter case, we need to verify that 
the system does what it's supposed to, while in security testing we must verify 
that the system does what it is supposed to and nothing more. That is, there 
can be no unintended "features," since any such feature provides a potential 
avenue of attack. 

In any realistic scenario, it's almost certainly impossible to do exhaustive 
testing. Furthermore, the MTBF formula discussed in Section 12.4.1 indicates 
that an extraordinarily large amount of testing would be required to achieve 
a high level of security. So, is secure software really as hopeless as it seems? 
Fortunately, there may be a loophole. If we can eliminate an entire class of 
potential security flaws with one (or a few) tests, then the statistical model 
that the MTBF is based on will break down [14]. For example, if we have a 
test (or a few tests) that enable us to find all buffer overflows, then we can 
eliminate this entire class of serious flaws with a relatively small amount of 
work. This is the holy grail of software testing in general, and security testing 
in particular. 

The bottom line on secure software development is that network eco-
nomics and penetrate and patch are the biggest enemies of secure software. 
Unfortunately, there is generally little incentive for secure software develop-
ment, and until that changes, we probably can't expect major improvements 
in security. In those cases where security is a high priority, it is possible to de-
velop reasonably secure software, but there is most definitely a cost. That is, 
proper development practices can minimize security flaws, but secure devel-
opment is a costly and time-consuming proposition.7 For all of these reasons 
(and more), you should not expect to see a dramatic improvements in software 
security anytime soon. 

Even with the best software development practices, security flaws will still 
exist. Since absolute security is almost never possible in the real world, it 
should not be surprising that absolute security in software is not realistic. 
In any case, the goal of secure software development—as in most areas of 
security—is to minimize and manage the risks. 

7As you probably realize, it's that annoying "no free lunch" thing yet again. 
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12.5 Summary 

In this chapter we showed that security in software is difficult to achieve. We 
focused on three topics, namely, reverse engineering, digital rights manage-
ment, and software development. 

Software reverse engineering (SRE) illustrates what an attacker can do to 
software. Even without access to the source code, an attacker can understand 
and modify your code. Making very limited use of the available tools, we were 
able to easily defeat the security of a program. While there are things that 
can be done to make reverse engineering more difficult, as a practical matter, 
most software is wide open to SRE-based attacks. 

We then discussed digital rights management (DRM), which illustrates the 
futility of attempting to enforce strong security measures through software. 
After our look at SRE, this should not have come as a surprise. 

Finally, we discussed the difficulties involved in secure software devel-
opment. Although we looked at the problem from the perspective of open 
source versus closed source software, from any perspective secure software de-
velopment is extremely challenging. Some elementary math confirms that the 
attacker has most of the advantages. Nevertheless, it is possible—although 
difficult and costly—to develop reasonably secure software. Unfortunately, 
today secure software is the exception rather than the rule. 

12.6 Problems 

1. Obtain the file SRE.zip from the textbook website and extract the 
Windows executable. 

a. Patch the code so that any serial number results in the message 
"Serial number is correct!!!" Turn in a screen capture showing 
your results. 

b. Determine the correct serial number. 

2. For the SRE example in Section 12.2.2, we patched the code by changing 
a t e s t instruction to xor. 

a. Give at least two ways—other than changing t e s t to xor—that 
Trudy could patch the code so that any serial number will work. 

b. Changing the j z instruction that appears at address 0x401032 in 
Figure 12.4 to jnz is not a correct solution to part a. Why not? 

3. Obtain the file unknown.zip from the textbook website and extract the 
Java class file unknown.class. 

a. Use CafeBabe [44] to reverse this class file. 
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b. Analyze the code to determine what the program does. 

4. Obtain the file Decorator.zip from the textbook website and extract 
the file Decorator.jar. This program is designed to evaluate a stu-
dent's application for admission based on various test scores. Applicants 
applying to medical school must include their score on the MCAT test 
score, while applicants to law school must include their score on the 
LSAT test. Applicants to the graduate school (which includes Law and 
Medicine) must include their score on the GRE test, and foreign appli-
cants must include their score on the TOEFL exam. An applicant is 
accepted if his or her GPA is above 3.5 and they exceed a set thresh-
old for their required tests (MCAT, LSAT, GRE, TOEFL). Since the 
school is locate in California, the requirements are more lenient for Cal-
ifornia residents. This program creates six applicants of which two are 
not accepted because of their low score. Finally, the program was ob-
fuscated using ProGuard (using only options under the "obfuscation" 
button, i.e., no shrinking, optimization, etc., were applied); see [58] for 
a detailed solution to a similar example. 

a. Patch the program so that the two applicants who were not ac-
cepted are accepted. Accomplish this by lowering the thresholds 
in their respective failing categories to the values of their scores. 

b. Using the result from part a, further patch the code so that a 
California resident who was accepted (in the original program) is 
now rejected. 

5. Obtain the file encrypted.zip from the textbook website and extract 
the file encrypted, jar. This application was encrypted using Sand-
Mark [63], with the "obfuscate" tab and "Class Encryptor" option se-
lected and, possibly, other obfuscation options. 

a. Generate a decompiled version of this program directly from the 
obfuscated (and encrypted) code. Hint: Do not attempt to use a 
cryptanalytic attack to break the encryption. Instead, look for an 
unencrypted class file. This is a custom class loader that decrypts 
the encrypted files before they are executed. Reverse this custom 
class loader and modify it so that it prints out the class files in 
plaintext. 

b. How could you make this encryption scheme more difficult to 
break? 

6. Obtain the file deadbeef.zip from the textbook website and extract 
the C source file deadbeef. c. 
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a. Modify the program so that it tests for a debugger using the Win-
dows function IsDebuggerPresent. The program should silently 
terminate if a debugger is detected, whether or not the correct 
serial number is entered. 

b. Show that you can determine the serial number using a debugger, 
in spite of the IsDebuggerPresent () function. Briefly explain 
how you were able to bypass the IsDebuggerPresent () check. 

7. Obtain the file mystery.zip from the textbook website and extract the 
Windows executable mystery.exe. 

a. What is the output when you run the program with each of the 
following usernames, assuming an incorrect serial number in each 
case? 

i. mark 

ii. markstamp 

iii. markkram 

b. Analyze the code to determine all restrictions, if any, on valid 
usernames. You will need to disassemble and/or debug the code. 

c. This program uses an anti-debugging technique, namely, the Win-
dows system function IsDebuggerPresent ( ) . Analyze the code to 
determine what the program does in case a debugger is detected. 
Why is this better than simply terminating the program? 

d. Patch the program so that you can debug it. That is, you need to 
nullify the effect of IsDebuggerPresent ( ) . 

e. By debugging the code, determine the corresponding valid serial 
number for each valid username that appears in part a. Hint: 
Debug the program and enter a username along with any serial 
number. At some point the program will compute the valid serial 
number corresponding to the entered username—it does this so 
that it can compare to the entered serial number. If you set a 
breakpoint at the correct location, the valid serial number will be 
stored in a register, which you can then observe. 

f. Create a patched version of the code, mysteryPatch. exe that ac-
cepts any username/serial number pair. 

8. Obtain mystery.zip from the textbook website and extract the Win-
dows executable mystery.exe. As mentioned in Problem 7, part e, 
the program contains code that generates a valid serial number cor-
responding to any valid username. Such an algorithm is known as a 
key generator, or simply a keygen. If Trudy has a functioning copy of 
the keygen algorithm, she can generate an unlimited number of valid 
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username/serial number pairs. In principle, it would be possible for 
Trudy to analyze a keygen algorithm and write her own (functionally 
equivalent) standalone keygen program from scratch. However, keygen 
algorithms are generally complex, making such an attack difficult in 
practice. But all is not lost (at least from Trudy's perspective). It is 
often possible—and relatively simple—to "rip" the keygen algorithm 
from a program. That is, an attacker can extract the assembly code 
representing the keygen algorithm and embed it directly in a C pro-
gram, thereby creating a standalone keygen utility, without having to 
understand the details of the algorithm. 

a. Rip the keygen algorithm from mystery.exe, that is, extract the 
keygen assembly code and use it directly in your own standalone 
keygen program. Your program must take any valid username as 
input and produce the corresponding valid serial number. Hint: 
In Visual C++ assembly code can be embedded directly in a C 
program by using the asm directive. You may need to initialize 
certain register values to make the ripped code function correctly. 

b. Use your program from part a to generate a serial number for the 
username markkram. Verify that your serial number is correct by 
testing it in the original mystery. exe program. 

9. This problem deals with software reverse engineering (SRE). 

a. Suppose debugging is impossible. Is SRE still possible? 

b. Suppose disassembly is impossible. Is SRE still possible? 

10. How can the the anti-debugging technique illustrated in Figure 12.11 
be implemented so that it also provides anti-disassembly protection? 

11. Why are guards incompatible with encrypted object code? 

12. Recall that an opaque predicate is a "conditional" that is actually not 
a conditional. That is, the conditional always evaluates to the same 
result, but it is not obvious that this is the case. 

a. Why is an opaque predicate a useful defense against reverse engi-
neering attacks? 

b. Give an example—different from that given in the text—of an 
opaque predicate based on a mathematical identity. 

c. Give an example of an opaque predicate based on an input string. 

13. The goal of this problem is to show that you can convert any conditional 
into an opaque predicate. 



 

12.6 PROBLEMS 485 

a. Given the conditional 

if (a < b) 

// do something 

else 

// do something else 

slightly modify the if statement so that the do something branch 
always executes. 

b. Explain why your solution to part a will work in general. 

c. How stealthy is your approach, that is, how difficult would it be 
for an attacker to (automatically) detect your opaque predicates? 
Could you make your approach stealthier? 

14. Opaque predicates have been proposed as a method for watermarking 
software [18, 212]. 

a. How might such a watermarking technique be implemented? 

b. Consider possible attacks on such a watermarking scheme. 

15. Describe in detail one anti-disassembly method not discussed in this 
chapter. 

16. Describe in detail one anti-debugging method not discussed in the text. 

17. Consider a DRM system implemented in software on a PC. 

a. Define persistent protection. 

b. Why is encryption necessary, but not sufficient, to provide persis-
tent protection? 

18. Consider a DRM system implemented in software on a PC. As discussed 
in the text, such systems are inherently insecure. Suppose that in an 
alternate universe such a system could be made highly secure. 

a. How would such a system benefit copyright holders? 

b. How could such a system be used to enhance privacy? Give a 

concrete example. 

19. Suppose that it's impossible to patch some particular software that 
implements DRM protection. Is the DRM system then secure? 

20. Some DRM systems have been implemented on open systems and some 
have been implemented in closed systems. 

a. What is the primary advantage of implementing DRM on a closed 
system? 
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b. What is the primary advantage to implementing DRM on an open 
platform? 

21. Once a user authenticates, it is sometimes desirable to have the program 
keep this authentication information available, so that we do not need 
to bother the user to authenticate repeatedly.8 

a. Devise a method for a program to cache authentication informa-
tion, where the information is stored in a different form each time 
it's cached. 

b. Is there any security advantage to your approach in part a, as 
compared to simply storing the information the same each time? 

22. Above, we discuss break-once, break-everywhere (BOBE) resistance. 

a. Why is BOBE resistance desirable for software in general, and 
DRM systems in particular? 

b. In the text, it is argued that metamorphism can increase BOBE re-
sistance. Discuss one other method that could be used to increase 
BOBE resistance. 

23. In [266], it's shown that keys are easy to find when hidden in data, since 
keys are random and most data is not. 

a. Devise a more secure method for hiding a key in data. 

b. Devise a method for storing a key K in data and in software. 
That is, both the code and the data are required to reconstruct 
the key K. 

24. In an analogy to genetic diversity in biological systems, it is sometimes 
argued that metamorphism can increase the resistance of software to 
certain types of attacks, such as buffer overflow. 

a. Why should metamorphic software be more resistant to buffer over-
flow attacks? Hint: See [281]. 

b. Discuss other types of attacks that metamorphism might help to 
prevent. 

c. From a development perspective, what difficulties does metamor-
phism present? 

25. The Platform for Privacy Preferences Project (P3P) is supposed to 
enable "smarter privacy tools for the web" [238]. Consider the P3P 
implementation outlined in the papers [185, 186]. 

This could be viewed as a form of single sign-on. 
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a. Discuss the possible privacy benefits of such a system. 

b. Discuss attacks on such a P3P implementation. 

26. Suppose that a particular system has 1,000,000 bugs, each with MTBF 
of 10,000,000 hours. The good guys work for 10,000 hours and find 
1,000 bugs. 

a. If Trudy works for 10 hours and finds 1 bug, what is the probability 
that Trudy's bug was not found by the good guys? 

b. If Trudy works for 30 hours and finds 3 bugs, what is the prob-
ability that at least one of her bugs was not found by the good 
guys? 

27. Suppose that a large and complex piece of software has 10,000 bugs, 
each with an MTBF of 1,000,000 hours. Then you expect to find a 
particular bug after 1,000,000 hours of testing, and—since there are 
10,000 bugs—you expect to find one bug for every 100 hours of testing. 
Suppose the good guys do 200,000 hours of testing while the bad "guy," 
Trudy, does 400 hours of testing. 

a. How many bugs should Trudy find? How many bugs should the 
good guys find? 

b. What is the probability that Trudy finds at least one bug that the 
good guys did not? 

28. It can be shown that the probability of a security failure after t hours 
of testing is approximately K/t for some constant K. This implies that 
the mean time between failures (MTBF) is about t/K after t hours of 
testing. So, security improves with testing, but it only improves linearly. 
One implication is that to ensure an average of, say, 1,000,000 hours 
between security failures, we must test for (on the order of) 1,000,000 
hours. Suppose that an open source software project has a MTBF 
oît/K. If this same project were instead closed source, we might suspect 
that each bug would be twice as hard for an attacker to find. If this is 
true, it would appear that the MTBF in the closed source case is 2t/K 
and hence the closed source project will be twice as secure for a given 
amount of testing t. Discuss some flaws with this reasoning. 

29. This problem compares closed systems and open systems. 

a. Define "open system" and give an example of an open system. 

b. Define "closed system" and give an example of a closed system. 

c. What are the advantages of open systems, as compared to closed 
systems? 
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d. What are the advantages of closed systems, as compared to open 
systems? 

30. Suppose that a particular open source project has MTBF = t/K. With-
out access to the source code, you believe that bugs in the software are 
three times as hard to find as in the open source case. If this is true, 
what would the MTBF be if this project were closed source? 

31. Suppose that MTBF = t2/K, instead of t/K. Then would there be 
an advantage to closed source software over open source, or vice versa, 
assuming that bugs are twice as hard to find in the closed source case? 

32. Suppose that there are 100 security flaws in a particular software project 
and we can list these flaws in such a way that security flaw i requires i 
hours of testing to find. That is, it takes one hour to find flaw number 
one, two more hours to find flaw number two, three more hours to find 
flaw number three, and so on. What is the MTBF for this system? 

33. As a deterrent to Microsoft's new Evil Death Star [210], the citizens of 
planet Earth have decided to build their own Good Death Star. The 
good citizens of Earth are debating whether to keep their Good Death 
Star plans secret or make the plans public. 

a. Give several reasons that tend to support keeping the plans secret. 

b. Give several reasons that tend to support making the plans public. 

c. Which case do you find more persuasive, keeping the plans secret 
or making the plans public? Why? 

34. Suppose that you insert 100 typos into a textbook manuscript. Your 
editor finds 25 of these typos and, in the process, she also finds 800 
other typos. 

a. Assuming that you remove all of the discovered typos and the 75 
other typos that you inserted, estimate the number of typos re-
maining in the manuscript. 

b. What does this have to do with software security? 

35. Suppose that you are asked to approximate the number of unknown 
bugs that remain in a particular piece of software. You insert 100 bugs 
into the software and then have your QA team test the software. In 
testing, your team discovers 40 of the bugs that you inserted, along 
with 120 bugs that you did not insert. 

a. Use these results to estimate the number of undiscovered bugs 
that remain in the program, assuming that you remove all of the 
discovered bugs as well as the 60 remaining bugs that you inserted. 
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b. Why might this test give inaccurate results? 

36. Suppose that a large software company, Software Monopoly, or SM, is 
about to release a new software product called Doors, affectionately 
known as SM-Doors. The software for Doors is estimated to have 
1,000,000 security flaws. It is also estimated that each security flaw 
that remains in the software upon release will cost SM about $20, due 
to lost sales resulting from damage to its reputation. SM pays its devel-
opers $100 per hour during the alpha testing phase, and at this phase, 
developers find flaws at a rate of about 1 flaw for every 10 hours of test-
ing. In effect, customers act as beta testers when they find additional 
flaws in Doors. Suppose that SM charges $500 per copy of Doors and 
the estimated market for Doors is about 2,000,000 units. What is the 
optimal amount of alpha testing for SM to conduct? 

37. Repeat Problem 36 assuming that developers find flaws at a rate of 
N/100,000 per hour of testing, where N is the number of flaws re-
maining in the software, and all other parameters are the same as in 
Problem 36. Note that this implies it is more difficult for developers to 
find flaws as the number of flaws decreases, which is probably more re-
alistic than the linear assumption in Problem 36. Hint: You may want 
to use the fact that 

£ - J L - « a ( l n & - l n ( & - n ) ) . 
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Chapter 13 

Operating Systems and 
Security 

UNIX is basically a simple operating system, 
but you have to be a genius to understand the simplicity. 

— Dennis Ritchie 

And it is a mark of prudence never to trust wholly 
in those things which have once deceived us. 

— Rene Descartes 

13.1 Introduction 

In this chapter, we'll look at some of the security issues related to operating 
systems (OSs). OSs are large and complex pieces of software. Recall that in 
Chapter 12 we argued that there are almost certain to be security flaws in 
any large and complex computer program. But here we are concerned with 
the security protection provided by the OS, not with the very real threat of 
bad OS software. That is, we are concerned with the role of the OS as the 
security enforcer. This is a large topic that ties into many other aspects of 
security and we'll just barely scratch the surface. 

First, we'll describe the primary security-related functions of any modern 
operating system. Then we'll discuss the notion of a trusted OS, and we'll 
conclude with a look at Microsoft's fairly recent effort to develop a trusted 
operating system, which goes by the catchy name of the Next Generation 
Secure Computing Base, or better yet, NGSCB. 

491 
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13.2 OS Security Functions 

An OS must deal with potential security issues whether they arise accidentally 
or as part of a malicious attack. Modern OSs are designed for multi-user 
environments and multi-tasking operations. Consequently, an OS must, at a 
minimum, deal with separation, memory protection, and access control. We 
briefly discuss each of these three topics below. 

13.2.1 Separation 

Arguably the most fundamental security issue for a modern OS is that of 
separation. That is, the OS must keep users and processes separate from 
each other. 

There are several ways that separation can be enforced [235], including 
the following: 

• Physical separation — Users are restricted to separate devices. This 
provides a strong form of separation, but it is often impractical. 

• Temporal separation— Processes are separated in time. This eliminates 
many problems that arise due to concurrency and simplifies the job of 
the OS. However, there is a loss of efficiency. 

• Logical separation — For example, each process might be allocated its 
own "sandbox." A process is free to do almost anything within its 
sandbox, but it can do almost nothing outside of its sandbox. 

• Cryptographic separation — Crypto can be used to make information 
unintelligible to an outsider. 

Of course, various combinations of these methods can be used. 

13.2.2 Memory Protect ion 

Another fundamental issue an OS must deal with is memory protection. This 
includes protection for the memory that the OS itself uses as well as the 
memory of user processes. A fence, or fence address, is one option for memory 
protection. A fence is a particular address that users and their processes 
cannot cross—only the OS can operate on one side of the fence, and users are 
restricted to the other side. 

A fence could be static, in which case there is a fixed fence address. How-
ever, this places a strict limit on the size of the OS, which is a major drawback 
(or benefit, depending on your perspective). Alternatively, a dynamic fence 
can be used, which can be implemented using a fence register to specify the 
current fence address. 
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In addition to a fence, base and bounds registers can be used. These 
registers contain the lower and upper address limits of a particular user (or 
process) space. The base and bounds register approach implicitly assumes 
that the user (or process) space is contiguous in memory. 

The OS must determine what protection to apply to a specific memory 
location. In some cases it might be sufficient to apply the same protection 
to all of a user's (or process's) memory. At the other extreme, tagging spec-
ifies the protection for each individual address. While this is as fine-grained 
protection as possible, it introduces significant overhead. The overhead can 
be reduced by tagging sections of the address space instead of each individ-
ual address. In any case, another drawback to tagging is compatibility, since 
tagging schemes are not in common use. 

The most common methods of memory protection are segmentation and 
paging. While these are not as flexible as tagging, they're much more efficient. 
We briefly discuss each of these next. 

Segmentation, as illustrated in Figure 13.1, divides the memory into log-
ical units, such as individual procedures or the data in one array. Then 
appropriate access control can be enforced on each segments. A benefit of 
segmentation is that any segment can be placed in any memory location— 
provided the location is large enough to hold it. Of course, the OS must 
keep track of the locations of all segments, which is accomplished using 
<segment,offset> pairs, where the cleverly named segment specifies the 
segment, and the offset is the starting address of the specified segment. 

Figure 13.1: Segmentation 

Other benefits of segmentation include the fact that segments can be 
moved to different locations in memory and they can also be moved in and out 
of memory. With segmentation, all address references must go through the 
OS, so the OS can, in this respect, achieve complete mediation. Depending 
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on the access control applied to particular segments, users can share access 
to some segments or users can be restricted to specific segments. 

One serious drawback to segmentation is that the segments are of variable 
sizes. As a result, before the OS tries to reference any element of a given 
segment it must know the size of the segment so that it can be sure that 
the requested address is within the segment. But some segments—such as 
those that include dynamic memory allocation—can grow during execution. 
Consequently, the OS must keep track of dynamic segment sizes. And due 
the variability of segment sizes, memory fragmentation is a potential problem. 
Finally, when memory is compacted to make better use of the available space, 
the segmentation tables change. In short, segmentation is complex and places 
a significant burden on the OS. 

Paging is like segmentation, except that all segments are of a fixed size, 
as illustrated in Figure 13.2. With paging, access to a particular page uses a 
pair of the form <page, of f set>. The advantages of paging over segmentation 
include no fragmentation, improved efficiency, and the fact that there are no 
variable sizes to worry about. The disadvantages are that there is, in general, 
no logical unity to pages, which makes it more difficult to determine the 
proper access control to apply to a given page. 

Figure 13.2: Paging 

13.2.3 Access Control 

OSs are the ultimate enforcers of access control. This is one reason why the 
OS is such an attractive target for attack—a successful attack on the OS 
can effectively nullify any protection built in at a higher level. We discussed 
access control in Chapter 8 and we'll briefly return to the subject in the next 
section when we discuss the concept of a trusted OS. 
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13.3 Trusted Operating System 

There's none deceived but he that trusts. 
— Benjamin Franklin 

A system is trusted if we rely on it for security. In other words, if a trusted 
system fails to provide the expected security, then the security of the system 
is broken. 

In this context, there is a distinction between trust and security. Trust 
implies reliance, that is, trust is binary choice—either we trust or we don't. 
Security, on the other hand, is a judgment of the effectiveness of a particular 
mechanisms. Security should be judged relative to a clearly specified policy 
or statement. 

Note that security depends on trust. For example, a trusted component 
that fails to provide the expected level of security will break the overall se-
curity of the system. Ideally, we only trust secure systems, and all trust 
relationships are explicit. 

Since a trusted system is one that we rely on for security, an untrusted 
system must be one that we don't rely on for security. As a consequence, if all 
untrusted systems are compromised, the security of the system is unaffected. 
A curious implication of this simple observation is that only a trusted system 
can break security. Hold this thought, since we'll have more to say about it 
in the next section. 

What should a trusted OS do? Since any OS must deal with separa-
tion, memory protection, and access control, at a minimum, a trusted OS 
must do these things securely. Any list of generic good security principles 
would likely include the following: least privilege (e.g., the low watermark 
principle), simplicity, open design (e.g., Kerckhoffs' Principle), complete me-
diation, whitelisting (as opposed to blacklisting), separation, and ease of use. 
We might expect a trusted OS to securely deal with many of these issues. 
However, most commercial OSs are feature-rich, which tends to lead to com-
plexity and poor security. Modern commercial OSs are not to be trusted. 

13.3.1 MAC, DAC, and More 

As mentioned above and illustrated in Figure 13.3, any OS must provide 
some degree of separation, memory protection, and access control. On the 
other hand, since we rely on a trusted OS for our security, it will almost 
certainly need to go beyond the minimal security operations. Specific security 
measures that we would like to see from a trusted OS likely include mandatory 
access control, discretionary access control, object reuse protection, complete 
mediation, trusted path, and logs. A trusted OS is illustrated in Figure 13.4. 
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Figure 13.3: Operating System Overview 

Mandatory access control, or MAC, is access that is not controlled by 
the owner of an object. For example, Alice does not decide who holds a 
TOP SECRET clearance, so she can't completely control the access to a 
document classified at this level. In contrast, discretionary access control, 
or DAC, is the type of access control that is determined by the owner of an 
object. For example, in UNIX file protection, the owner of a file controls 
read, write, and execute privileges. 

If both DAC and MAC apply to an object, MAC is "stronger." For 
example, suppose Alice owns a document marked TOP SECRET. Then Alice 
can set the DAC since she owns the document. However, regardless of the 
DAC settings, if Bob only has a SECRET clearance, he can't access the 
document because he doesn't meet the MAC requirements. On the other 
hand, if the DAC is stricter than the MAC, then the DAC would determine 
the access. 

A trusted OS must also prevent information from leaking from one user to 
another. Any OS will use some form of memory protection and access control, 
but we require strong protection from a trusted OS. For example, when the OS 
allocates space for a file, that same space may have previously been used by 
a different user's process. If the OS takes no additional precautions, the bits 
that remain from the previous process could be accessible and thereby leak 
information. A trusted OS must take steps to prevent this from occurring. 

A related problem is magnetic remanence, where faint images of previously 
stored data can sometimes be read, even after the space has been overwrit-
ten by new data. To minimize the chance of this occurring, the DoD sets 
guidelines that require memory to be overwritten repeatedly with different 
bit patterns before it's considered safe to allow another process access to that 
space [132]. 
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Figure 13.4: Trusted Operating System Overview 

13.3.2 Trusted P a t h 

When you enter your password at the login prompt, what happens to that 
password? We know what is supposed to happen to the password (hashed 
with a salt, etc.), but what actually happens depends on the software that 
is running on your system. How can you be sure that software is not doing 
something evil, such as writing your password to a file that will later be 
emailed to Trudy? This is the trusted path problem, and as Ross Anderson 
puts it in [14]: 

I don't know how to be confident even of a digital signature I 
make on my own PC, and I've worked in security for over fifteen 
years. Checking all of the software in the critical path between 
the display and the signature software is way beyond my patience. 

Ideally, a trusted OS would provide strong assurance of a trusted path. If so, 
one benefit is that we could have confidence in a digital signature on a PC. 

The OS is also responsible for logging security-related events. This sort 
of information is necessary to detect attacks and for postmortem analysis. 
Logging is not as simple as it might seem. In particular, it is not always 
obvious precisely what to log. If we log too much, then we might overwhelm 
any human who must examine the data, and we could even overwhelm auto-
mated systems that try to find the relevant needle in this haystack of data. 
For example, should we log incorrect passwords? If so, then "almost" pass-
words would appear in the log file, and log files would themselves be security 
critical. If not, it may be harder to detect when a password-guessing attack 
is in progress. 
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13.3.3 Trusted Comput ing Base 

The kernel is the lowest-level part of the OS. The kernel is responsible for syn-
chronization, inter-process communication, message passing, interrupt han-
dling, and so on. A security kernel is the part of the kernel that deals with 
security. 

Why have a dedicated security kernel? Since all accesses must go through 
the kernel, it's the ideal place for access control. It's also good practice to 
have security-critical functions in one location. By locating all such functions 
in one place, security functions are easier to test and modify. 

One of the primary motivations for an attack on the OS is that the attacker 
can get below higher-level security functions and thereby bypass these security 
features. By putting as many security functions as possible at the OSs lowest 
layer, it may be more difficult for an attacker to get below these functions. 

The reference monitor is the part of the security kernel that deals with 
access control. The reference monitor mediates all access between subjects 
and objects, as illustrated in Figure 13.5. Ideally, this crucial part of the 
security kernel would be tamper resistant, and it should also be analyzable, 
small, and simple, since an error at this level could be devastating to the 
security of the entire system. 

Figure 13.5: Reference Monitor 

The trusted computing base, or TCB, is everything in the OS that we 
rely on to enforce security. Our definition of trust implies that, if everything 
outside TCB were subverted, our trusted OS would still be secure. 

Security-critical operations will likely occur in many places within the 
OS. Ideally, we would design the security kernel first and then build the OS 
around it. Unfortunately, reality is usually just the opposite, as security tends 
to be an afterthought instead of a primary design goal. However, there are 
examples of OSs that have been designed from scratch, with security as a 
main objective. One such OS is SCOMP, which was developed by Honey-
well. SCOMP has less than 10,000 lines of code in its security kernel, and 
it strives for simplicity and analyzability [116]. Contrast this to, say, Win-
dows XP, which has some 40,000,000 lines of code and numerous dubious 
(from a security point of view) features. 

Ideally the TCB should gather all security functions into an identifiable 
layer. For example, the TCB illustrated in Figure 13.6 is a poor design, since 
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security-critical features are spread throughout the OS. Here, any change in a 
security feature may have unintended consequences in other OS functionality, 
and the individual security operations are difficult to analyze, particularly 
with respect to their interactions. 

Figure 13.6: Poor TCB Design 

The TCB illustrated in Figure 13.7 is preferable, since all security func-
tions are collected in a well-defined security kernel [235]. In this design, the 
security impact of any change in one security function can be analyzed by 
studying its effect on the security kernel. Also, an attacker who subverts OS 
operations at a higher level will not have defeated the TCB operations. 

Figure 13.7: Good TCB Design 

In summary, the TCB consists of everything in the OS that we rely on for 
security. If everything outside the TCB is subverted, we're still secure, but if 
anything in the TCB is subverted, then the security is likely broken. 
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In the next section we'll examine NGSCB, which is an ambitious effort 
by Microsoft to develop a trusted OS for the PC platform. DRM was the 
original motivation for NGSCB, but it has wide security implications [107]. 

13.4 Next Generation Secure Computing Base 

Microsoft's Next Generation Secure Computing Base, or NGSCB (which is, 
strangely, pronounced "en scub"), was originally slated to be part of the 
"Longhorn" OS (i.e., Windows Vista). But it appears that most of the fea-
tures of NGSCB won't appear until a later release, if ever.1 Regardless, the 
concept is intriguing and it might yet find widespread application. 

NGSCB is designed to work with special hardware, which is to be devel-
oped by the Trusted Computing Group, or TCG, led by Intel [306]. NGSCB 
is the part of Windows that will interface with the TCG hardware. TCG 
was formerly known as the Trusted Computing Platform Alliance, or TCPA, 
and NGSCB was formerly known as Palladium. It's been theorized that the 
name changes are due to bad publicity surrounding the initial discussion of 
TCPA/Palladium [190]. 

The original motivation for TCPA/Palladium was digital rights manage-
ment. Due to the negative reaction this received, TCG/NGSCB now down-
plays the DRM connection, although it clearly remains a motivating factor. 
Today, TCG/NGSCB is promoted as a general security-enhancing technol-
ogy, with DRM being just one of many potential applications. But, as we'll 
see below, not everyone is convinced that this is a good idea. Depending 
on who you ask, TCG/NGSCB—which is often shortened to TC—stands for 
"trusted computing" [219] or "treacherous computing" [13]. 

The underlying goal of TCG/NGSCB is to provide some of the strengths 
of a closed system on the open PC platform [102, 220]. Closed systems, such as 
game consoles and smartcards, are very good at protecting secrets, primarily 
due to their tamper-resistant features. As a result, closed systems are good 
at forcing people to pay money for the use of copyrighted information, such 
as game software. The drawback to closed systems is their limited flexibility. 
In contrast, open systems such as PCs offer incredible flexibility, but, as we 
have seen, they do a poor job of protecting secrets. This is primarily because 
open systems have no real means to defend their own software. Ron Rivest 
has aptly described NGSCB as a "virtual set-top box inside your PC" [74]. 

The TCG is supposed to provide tamper-resistant hardware that might 
someday be standard on PCs. Conceptually, this can be viewed as a smart-
card embedded within the PC hardware. This tamper-resistant hardware 

1Only one application of this technology appears to have been implemented so far. 
The "secure startup" feature in Vista and Windows 7 is said to use some features of 
NGSCB [204]. 
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provides a secure place to store cryptographic keys or other secrets. These 
secrets can be secured, even from a user with full administrator privileges. 
To date, nothing comparable exists for PCs. 

It is important to realize that the TCG tamper-resistant hardware is in 
addition to all of the usual PC hardware, not in place of it. To take advantage 
of this special hardware, the PC will have two OSs—its usual OS and a special 
trusted OS to deal with the TCG hardware. NGSCB is Microsoft's version 
of this trusted OS. 

According to Microsoft, the design goals of NGSCB are twofold. First, it 
is to provide high assurance, that is, users can have a high degree of confidence 
that NGSCB will behave correctly, even when it's under attack. The second 
goal is to provide authenticated operation. To protect the secrets stored in 
the tamper-resistant hardware, it's critical that only trusted software can 
access the TCG hardware. By carefully validating (i.e., authenticating) all 
software, NGSCB can provide a high degree of trust. Protection against 
hardware tampering is not a design goal of NGSCB, since that is the domain 
of the TCG. 

Specific details concerning NGSCB are sketchy, and, based on the avail-
able information, Microsoft has not yet resolved all of the fine points. As a 
result, the following information is somewhat speculative. The details might 
become clearer in the future. 

The high-level architecture of NGSCB is illustrated in Figure 13.8. The 
"left-hand side," or LHS, is where the usual, untrusted, Windows OS lives, 
while the "right-hand side," or RHS, is where the trusted OS resides. The 
Nexus is the trusted computing base, or TCB, of the NGSCB. So-called Nexus 
Computing Agents, or NCAs, are the only software components that are al-
lowed to communicate between the (trusted) Nexus and (untrusted) LHS [27]. 
The NCAs are a critical component of NGSCB—as critical as the Nexus. 

Figure 13.8: NGSCB Overview 



 

502 OPERATING SYSTEMS AND SECURITY 

13.4.1 N G S C B Feature Groups 

NGSCB includes the following four major "feature groups." 

• Strong process isolation — Prevents processes from interfering with each 
other. 

• Sealed storage — The tamper-resistant hardware where secrets (that is, 
keys) can be securely stored. 

• Secure path — Provides a protected path to and from the mouse, key-
board, and monitor. 

• Attestation — A clever feature allows for "things" to be securely au-
thenticated. 

Attestation allows the TCB to be securely extended via NCAs. All four fea-
ture groups are primarily aimed at protecting against malicious code. Next, 
we'll describe each of these feature groups in a little more detail. 

13.4.1.1 Process Isolation 

Process isolation is enforced by "curtained memory," which appears to be 
little more than a buzzword. In any case, the trusted OS (the Nexus) must 
be protected from the untrusted OS as well as from the BIOS, device drivers, 
and other low-level operations that could be used to attack it. Curtained 
memory is the name for the memory protection scheme that provides such 
protection. 

Process isolation also applies to the NCAs. The NCAs must be isolated 
from any software that they don't trust. These trust relationships are deter-
mined by users—to an extent. That is, a user can disable a trusted NCAs, 
but a user cannot make an untrusted NCA trusted. If the latter were possible, 
then the security of the trusted OS could be easily broken. 

13.4.1.2 Sealed Storage 

Sealed storage contains a secret, which is most likely a key (or keys). If 
software X wants to access the secret, as an integrity check, a hash of X is 
computed. The confidentiality of the secret is protected since it can only be 
accessed by trusted software while the integrity of the secret is assured since 
it resides in the sealed storage. 

13.4.1.3 Secure Path 

The details of the secure path feature are also vague. It's claimed that for 
input, the path from the keyboard to the Nexus and the path from the mouse 
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to the Nexus are both "secure"—but exactly how this is implemented is not 
entirely clear. Apparently, digital signatures are used so that the Nexus can 
verify the integrity of the data [302]. For output, there is a similar secure 
path from the Nexus to the screen, although here the signature verification 
would seem to be more exposed. 

13.4.1.4 Attestation 

The most innovative feature of NGSCB is attestation, which provides for 
the secure authentication of "things," such as devices, services, and, most 
importantly, software. This is separate from user authentication. Attestation 
is accomplished using public key cryptography, and it relies on a certified key 
pair, where the private key—which is not user accessible—lives in the sealed 
storage. 

The TCB can be extended via attestation of NCAs. A new NC A is trusted 
provided that it passes the attestation check, which enables new applications 
to be added to an NGSCB system. This is a major feature, and we'll have 
more to say about it below. 

One issue with attestation is that, since it uses public key cryptography, 
certificates must be exchanged. Since public keys reveal users' identities, 
anonymity is lost in this approach. To protect anonymity, NGSCB provides 
support for a trusted third party, or TTP. The TTP verifies the signature 
and vouches for it. Anonymity can be preserved in this way—although the 
TTP will know the signer's identity. 

It is also claimed that NGSCB provides support for zero knowledge proofs. 
As we discussed in Chapter 9, zero knowledge proofs allow us to verify 
that a user knows a secret without revealing any information about the se-
cret. According to Microsoft, when using zero knowledge proofs in NGSCB, 
"anonymity is preserved unconditionally" [27]. 

13.4.2 N G S C B Compell ing Applications 

What good is TCG/NGSCB? There are several compelling applications, but 
here we'll mention only two. First, suppose that Alice types a document on 
her computer. She can then move the document to the RHS (the trusted 
space), read the document carefully, then digitally sign the document before 
moving it back to the (untrusted) LHS. In this way, Alice can be confident of 
what she actually signed, which, as indicated by Ross Anderson's quote on 
page 497, is almost impossible on a non-NGSCB computer today. 

A second application where NGSCB is useful is DRM. One fundamental 
problem that is solved by NGSCB is that of protecting a secret or key. In 
Chapter 12 we saw that it's impossible to securely protect a key in software. 
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By using tamper-resistant hardware (sealed storage) and other NGSCB fea-
tures, protecting a key is much more plausible. 

The NGSCB secure path also prevents certain DRM attacks. For exam-
ple, with DRM-protected digital documents, an attacker could use a screen 
capture to scrape protected data from the screen. This would be much more 
difficult with the NGSCB secure path in place. 

NBSCB also allows for the positive identification of users. Although this 
can be done without a trusted OS, there is a much higher degree of assurance 
with NGSCB, since the user's ID (in the form of a private key) is embedded 
in the secure storage. 

13.4.3 Criticisms of N G S C B 

Microsoft isn 't evil, they just make really crappy operating systems. 
— Linus Torvalds 

According to Microsoft, everything you know and love about Windows will 
still work in the LHS of an NGSCB system. Microsoft also insists that the 
user is in charge, since the user determines all of the following: 

• Which Nexus (if any) will run on the system 

• Which NCAs are allowed to run on the system 

• Which NCAs are allowed to identify the system 

In addition, there is no way for an external process to enable a Nexus or 
NCA. This is to allay the fear that Microsoft would be in charge of an NGSCB 
computer. In addition, the Nexus code is open source. Finally, the Nexus 
does not block, delete, or censor any data—although NCAs do. For example, 
if a particular NCA is part of a DRM system, then it must "censor" any data 
for which user Alice has not paid. But each NCA on Alice's system must be 
authorized by Alice, so she could choose not to authorize the particular NCA 
that deals with DRM. Of course, she won't have access to DRM-protected 
content if she does not authorize the required NCA. 

Microsoft goes to great lengths to argue that NGSCB is harmless. The 
most likely reason for this is that many people seem to be convinced that 
NGSCB is anything but harmless. 

There are many NGSCB critics, but here we'll only consider two. The 
first is Ross Anderson, whose criticisms can be found at [13]. Anderson is 
one of the harshest TCG/NGSCB critics and perhaps the most influential. 
We'll then discuss the criticisms of Clark Thomborson, whose criticisms are 
less well known but raise some interesting fundamental issues [302]. 
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Anderson's primary beef seems to be that when NGSCB is used, a dig-
ital object can be controlled by its creator, not by the user of the machine 
where it currently resides. For example, suppose Alice writes a book, Bob in 
Wonderland. With NGSCB, she can specify the NCA that must be used to 
access the digital form of this book. Of course, Bob can refuse to accept the 
NCA, but in that case his access is denied. And if Bob allows the NCA on 
his system, he may have restrictions placed on his actions (such as, he cannot 
use a screen capture, he cannot email the book, etc.). 

It's worth noting that such restrictions are exactly what is needed in cer-
tain applications such as multilevel security (MLS). But Anderson's argument 
is that such restrictions are inappropriate as part of a general-purpose tool, 
such as a PC. Anderson gives the following simple example: suppose Mi-
crosoft Word encrypts all documents with a key that is only made available 
to Microsoft products. Then it would be even more difficult to stop using 
Microsoft products than it is today. 

Anderson also claims that files from a compromised machine could be 
blacklisted (for example, to prevent music piracy). To illustrate this point, he 
gives an example similar to the following. Suppose that every student at San 
Jose State University (SJSU) uses a single pirated copy of Microsoft Word. 
If Microsoft blacklists this copy and thereby prevents it from working on all 
NGSCB machines, then SJSU students will simply avoid using NGSCB. But 
if Microsoft instead makes all NGSCB machines refuse to open documents 
created with this copy of Word, then SJSU users can't share documents with 
any NGSCB user. This could be a way to coerce SJSU students into using 
legitimate copies of Word. 

Anderson makes some rather strange statements in [13], including the 
following: 

The Soviet Union tried to register and control all typewriters. 
NGSCB attempts to register and control all computers. 

And there is an even more "interesting" statement: 

In 2010 President Clinton may have two red buttons on her desk— 
one that sends missiles to China and another that turns off all of 
the PCs in China... 

Fortunately, this Orwellian prediction was way off the mark (in every respect). 
In any case, it's not clear to your usually paranoid author exactly how NGSCB 
would enable either scenario. Nevertheless, these are the kinds of concerns 
that an influential critic has raised. 

Clark Thomborson has raised some issues that strike at the heart of the 
NGSCB concept [302]. In his view, NGSCB should be seen as a security 
guard. By passive observation, a real-world security guard can learn a great 
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deal about the workings of the facility he or she is guarding.2 The NGSCB 
security guard is similar to a human security guard, in the sense that it can 
learn something about a user's sensitive information by passive observation. 

So, how can Alice be sure that NGSCB is not spying on her? Microsoft 
would probably argue that this can't happen since the Nexus software is 
public, the NCAs can be debugged (as required for application development), 
and, besides, NGSCB is strictly an "opt in" technology. But there may be a 
loophole here. The release versions of NCAs can't be debugged and the debug 
and release versions will necessarily have different hash values. Consequently, 
the release version of an NCA could conceivably do something that the debug 
version does not do—such as spy on Alice. 

The bottom line with regard to TCG/NGCSB is that it's an attempt 
to embed a trusted OS within an open platform. Without something sim-
ilar, there is a legitimate concern that the PC may lose out, particularly 
in entertainment-related areas, where copyright holders might insist on the 
security of closed-system solutions. 

NGSCB critics worry that users will lose control over their PCs—or be 
spied on by their PC. But it could reasonably be argued that users must 
choose to opt in, and, if a user does not opt in, nothing has been lost. So, 
what's the big deal? 

However, NGSCB is a trusted system, and as we noted above, only a 
trusted system can break your security. When put in this light, NGSCB 
deserves careful scrutiny. 

13.5 Summary 

In this chapter, we considered operating system security and, more specifi-
cally, the role of a trusted OS. We then discussed Microsoft's NGSCB, which 
is an attempt to build a trusted OS for the PC platform. NGSCB has impli-
cations for many security-related fields, including digital rights management, 
a topic we covered in some detail in Chapter 12. NGSCB has its critics and 
we discussed some of their criticisms. We also considered possible counterar-
guments to the criticisms. 

13.6 Problems 

1. Expand and define each of the following acronyms: TCG, TCB, PITA, 
MAC, DAC, NGSCB. 

2 Recently, a former security guard at a major apartment complex took your author's 
class. This student confirmed that as a security guard, he learned a lot about the residents 
of the apartment complex, simply by passive observation. Your puritanical author would 
like to share some of these observations, but he cannot since this book is rated "G." 
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2. This problem deals with the definition of a trusted system. 

a. What does it mean to say that a system is "trusted"? 

b. Do you agree with the statement, "Only a trusted system can 
break your security" ? Why or why not? 

3. In this chapter we discussed segmentation and paging. 

a. What are the significant differences between segmentation and 
paging? 

b. Give one significant security advantage of segmentation over pag-
ing. 

c. What is the primary advantage of paging over segmentation? 

4. Explain how paging and segmentation could be combined in one system. 

5. This problem deals with mandatory access control (MAC) and discre-
tionary access control (DAC). 

a. Define the terms mandatory access control and discretionary access 
control. 

b. What are the significant differences between MAC and DAC? 

c. Give two specific examples where mandatory access control is used 

and give two examples where discretionary access control is used. 

6. Why would Trudy almost certainly prefer to subvert the OS rather than 
successfully attack one particular application? 

7. In this chapter we briefly compared blacklisting and whitelisting. 

a. What is blacklisting? 

b. What is whitelisting? 

c. As a general security principle, which is preferable, whitelisting or 
blacklisting? Why? 

d. Which is likely to be more convenient for users, blacklisting or 
whitelisting? Why? 

8. Recall that a trusted computing base (TCB) consists of everything in 
the OS that we rely on to enforce security. Which parts of NBSCB 
comprise its TCB? 

9. In this chapter, a few compelling applications of NGSCB are mentioned, 
including "what you see is what you sign," digital rights management 
(DRM), and multilevel security (MLS). Discuss one additional com-
pelling application of a trusted OS such as NGSCB. 



 

508 OPERATING SYSTEMS AND SECURITY 

10. Explain how NGSCB helps to solve some of the fundamental problems 
in digital rights management (DRM). 

11. Explain how NGSCB helps to solve some of the fundamental problems 
in multilevel security (MLS). 

12. A trusted OS, such as NGSCB, would make multilevel security (MLS) 
much more feasible. Given that this is the case, the military and gov-
ernment are likely to be interested in NGSCB. Why might businesses 
also be interested in NGSCB? 

13. Some people believe that businesses will find NGSCB useful and that 
NGSCB will become commonplace in PCs as a result. If this is the 
case, then most PCs will eventually have a trusted operating system, 
but not because consumers find it particularly useful. Do you think this 
is likely to occur? Why or why not? 

14. It is sometimes argued that digital rights management (DRM) is, in 
some sense, the modern incarnation of multilevel security (MLS). 

a. List some significant similarities between DRM and MLS. 

b. List some significant differences between DRM and MLS. 

15. Suppose that you happen to have a secure multilevel security (MLS) 
system. Could this system be used to enforce digital rights management 
(DRM)? 

16. Suppose that you have a secure digital rights management (DRM) sys-
tem. Could this system be used to enforce multilevel security (MLS)? 

17. This problem deals with NGSCB. 

a. What is attestation and what is its purpose? 

b. What are NCAs and what two purposes do they serve? 

18. In the text, we mentioned two critics of NGSCB, namely, Ross Anderson 
and Clark Thomborson. 

a. Summarize Ross Anderson's criticisms of NGSCB. 

b. Summarize Clark Thomborson's criticisms of NGSCB. 

c. Which of these two critics do you find more compelling and why? 

19. In Chapter 12, we discussed software reverse engineer. It's also possible 
to reverse engineer most hardware. Since this is the case, would DRM be 
any more secure on an NGSCB system than on a non-NGSCB system? 
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20. Give two real-world examples of closed systems. How well does each 
protect its software? 

21. Give two real-world examples of open systems. How well does each 
protect its software? 

22. Is each of the following an open system or a closed system? For each 
system, give an example of a real-world attack that has occurred. 

a. PC 

b. Cell phone 

c. iPod 

d. Xbox 

e. Kindle (an e-book reader) 

23. Find an influential critic of NGSCB (other than the critics mentioned 
in the text) and summarize his or her arguments against NGSCB. 

24. Find a supporter of NGSCB and summarize his or her arguments in 
favor of NGSCB. 

25. Read the discussion of "treacherous computing" at [13] and summarize 
the author's main points. 

26. Public key crypto is used in NGSCB for attestation. One concern with 
this approach is that anonymity might be lost. Recall that in Kerberos, 
Alice's anonymity is protected (e.g., when Alice sends her TGT to the 
KDC, she doesn't need to identify herself). Since anonymity is a con-
cern, would it make sense for NGSCB to use an approach similar to 
Kerberos? 

27. Why is the NGSCB sealed storage integrity check implemented using 
hashing instead of public key signing? 

28. Why is NGSCB attestation implemented using digital signatures in-
stead of hashing? 

29. In NGSCB, how do each of the following help to protect against mali-
cious software? 

a. Process isolation 

b. Sealed storage 

c. Secure path 

d. Attestation 
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30. Give two reasons why NGSCB attestation is necessary. 

31. In NGSCB, each of the four "feature groups" is, apparently, necessary 
but not sufficient to ensure security. Discuss a specific attack that 
is difficult or impossible on an NGSCB system, but is easy when the 
specified feature group is missing. 

a. Process isolation 

b. Sealed storage 

c. Secure path 

d. Attestation 

32. Explain Rivest's comment that TCG/NGSCB is like "a virtual set-top 
box inside your PC." 

33. Suppose that students take in-class tests on their own laptop computers. 
When they finish answering the questions, they email their results to 
the instructor using a wireless Internet connection. Assume that the 
wireless access point is accessible during the test. 

a. Discuss ways that students might attempt to cheat. 

b. How could NGSCB be used to make cheating more difficult? 

c. How might students attempt to cheat on an NGSCB system? 

34. Google's Native Client (NaCl) is a technology designed to allow un-
trusted code to run securely in a Web browser [332]. The primary 
advantage is speed, but there are many security issues, some of which 
are reminiscent of issues faced by NGSCB. 

a. Outline the NaCl security architecture. 

b. NaCl uses a "trampoline" to transfer control from untrusted code 
to trusted code. Explain how this works. 

c. Compare and contrast the security approach used in NaCl with 
each of the following: Xax, CFI, Active X. 



 
APPENDIX 

This appendix includes two sections. The first section contains an abbreviated 
introduction to networking, with the emphasis on security issues. The second 
section provides a quick review of the basic math that is used in various parts 
of this book. 

A-l Network Security Basics 

There are three kinds of death in this world. 
There's heart death, there's brain death, and there's being off the network. 

— Guy Almes 

A-1.1 Introduction 

In this section, we give a condensed introduction to networking, presented 
through the prism of security. Networking is a large and complex topic. Here, 
we'll cover the minimal amount of information that is required elsewhere in 
this textbook, and we'll also add a few passing comments on network-specific 
security issues tha t are of independent interest. 

A network consists of hosts and routers. The term host is a catchall for 
a wide variety of network-connected devices, including laptops, desktop com-
puters, servers, cell phones, PDAs, etc. The purpose of the network is to 
transfer data between the hosts. Ideally, we'd like the network to be trans-
parent to users. We're primarily concerned with the mother of all networks, 
the Internet.1 

A network has an edge and a core. The hosts mentioned above live at 
the edge, while the core consists of an interconnected mesh of routers. The 
purpose of the core is to route da ta through the network from host to host. 
A generic network diagram appears in Figure A- l . 

1And, of course, everyone knows that the Internet was invented by Al Gore. 
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Figure A-1: Network 

The Internet is a packet switched network, meaning that the data is sent 
in discrete chunks known as packets. In contrast, the traditional telephone 
system is a circuit switched network. For each telephone call, a dedicated 
circuit—with dedicated bandwidth—is established between the end points. 
Packet switched networks can make more efficient use of the available band-
width, although there is some additional complexity, and things get particu-
larly involved if circuit switched-like behavior is desired. 

The study of modern networking is largely the study of networking proto-
cols. Networking protocols precisely specify communication rules employed 
by the network. For the Internet, the details are usually spelled out in RFCs, 
which are, in effect, Internet standards.2 

Protocols can be classified in many different ways, but one classification 
that is particularly relevant in security is stateless versus stateful. Stateless 
protocols don't "remember" anything, while stateful protocols do have some 
"memory." Many security problems are related to state. For example, denial 
of service, or DoS, attacks often take advantage of stateful protocols, while 
stateless protocols can also have their own security issues, as we'll see below. 

A-1.2 The Protocol Stack 

It's standard practice to view networks in terms of layers, where each layer is 
responsible for some particular operations. When these layers are all stacked 
up, the result is, not surprisingly, known as a protocol stack. It's important 

2RFC stands for Request for Comments. However, authors of RFCs are not actually re-
questing comments. Instead, RFCs act as Internet standards. But curiously, most RFCs are 
not official Internet standards and, in fact, only a relatively few RFCs have been promoted 
to the level of official Internet standards. How does a lowly RFC become a high-falutin' 
Internet standard? Well, it's all spelled out in in RFC 2026, which is itself not an Internet 
standard. Confused? 
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to realize that a protocol stack is more conceptual than an actual physical 

construct. Nevertheless, the idea of a protocol stack does simplify the study 

of networks—although newcomers to networking are excused for not believing 

it. The infamous OSI reference model includes seven layers, but we'll strip it 

down to the layers that matter, which only leaves the following five: 

• The application layer is responsible for handling the application data 

that is sent from host to host. Examples of application layer protocols 

include HTTP, SMTP, FTP, and Gnutella. 

• The transport layer deals with logical end-to-end transport of the data. 

The transport layer protocols of interest are TCP and UDP. 

• The network layer is responsible for routing data through the network. 

IP is the network layer protocol that matters most to us. 

• The link layer handles the transferring of data over individual links 

within the network. There are many link layer protocols, but we'll only 

mention two, Ethernet and ARP. 

• The physical layer sends the bits over the physical media. If you want 

to know about the physical layer, take an electrical engineering course. 

Conceptually, a packet of data passes down the protocol stack (from the 

application layer to the physical layer) at the source and then back up the 

protocol stack at the destination. Routers in the core of the network must 

process packets up to the network layer so they can make sensible routing 

decisions. Layering is illustrated in Figure A-2. 

Figure A-2: Layering in Action 

Suppose that X is a freshly minted packet of application data. As X 

goes down protocol stack, each protocol adds additional information, usually 

in the form of a header, which includes information required by the protocol 

being used at that particular layer. Let HA be the header added at the 

application layer. Then the application layer passes (ΗΑ,Χ) down the stack 

to the transport layer. If Hj· is the transport layer header, then {HT, {HA, X)) 

is passed to the network layer where another header, say, Ηχ is added to 
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give (iîjv, (HT, (HA, X)))- Finally, the link layer adds a header, Hi, and the 
packet 

(HL,(HN,(HT,(HA,X)))) 

is passed to the physical layer. In particular, note that the application layer 
header is the innermost header, which might seem backward until you think 
about it a little bit. When the packet is processed up the protocol stack at the 
destination (or at a router), the headers are stripped off layer by layer—like 
peeling an onion—and the information in each header is used to determine 
the proper course of action by the corresponding protocol. 

Next, we'll take a brief look at each of the layers. We'll follow [177] and 
go down the protocol stack from the application layer to the link layer. 

A-1.3 Application Layer 

Typical network applications include Web browsing, email, file transfer, P2P, 
and so on. These are distributed applications that run on hosts. The hosts 
would prefer the network to be completely transparent. 

As mentioned above, HTTP, SMTP, IMAP, FTP, and Gnutella are ex-
amples of application layer protocols. Note that the protocol is only one part 
of an application. For example, an email application includes an email client 
(such as Outlook or Thunderbird), a sending host, a receiving host, email 
servers, and various networking protocols such as SMTP and POP3. 

Most applications are designed for the client-server paradigm, where the 
client is the host that requests a service and the server is the host that 
responds to the request. In other words, the client is the one who speaks 
first and the server is the one trying to fulfill the request. For example, if 
you request a Web page, you are the client and the Web server is the server, 
which only seems right. However, in some cases the distinction between 
client and server is not so obvious. For example, in a file-sharing application, 
your computer is a client when you request a file, and it is a server when 
someone downloads a file from you. Both of these events could even occur 
simultaneously, in which case you would be both a client and a server at the 
same time. 

Peer-to-peer, or P2P, file sharing applications offer something of an alter-
native to the traditional client-server model. In the P2P model, hosts act as 
both clients and servers, as mentioned in the previous paragraph. But the 
real challenge in P2P lies in locating a "server" with the content that a client 
desires. There are several interesting approaches to this problem. For exam-
ple, some P2P systems distribute the database that maps available content 
to hosts among certain special peers, whereas others simply flood each re-
quest through the network. In the latter case, hosts with the desired content 
respond directly to the requester. For example, KaZaA uses the distributed 
database approach, while Gnutella employs query flooding. 
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Next, we'll briefly discuss a few specific application layer protocols. First, 
let's consider HTTP, the HyperText Transfer Protocol, which is the appli-
cation layer protocol used when you browse the Web. As mentioned above, 
the client requests a Web page and the server responds to the request. Since 
HTTP is a stateless protocol, Web cookies were developed as a tasty way 
to maintain state. When you initially contact a Web site, the Web site can 
choose to provide your browser with a cookie (assuming your browser is will-
ing to accept it). A cookie is simply an identifier that is used to index a 
database maintained by the Web server. When your browser subsequently 
sends HTTP messages to the Web server, your browser will automatically 
pass the cookie to the server. The server can then consult its database and 
thereby remember information about you. In this way, Web cookies make it 
possible to maintain state within a single session as well as across sessions. 

Web cookies are also sometimes used as a very weak form of authenti-
cation and cookies enable such modern conveniences as shopping carts and 
recommendation lists. However, cookies do raise some privacy concerns, since 
a Web site with memory (which is enabled by cookies) can learn a great deal 
about you. This problem only gets worse if multiple sites pool their infor-
mation, since they can probably gain a fairly complete picture of your Web 
persona. 

Another interesting application layer protocol is SMTP, the Simple Mail 
Transfer Protocol, which is used to transfer email from the sender to the 
recipient's email server. Then POP3, IMAP, or HTTP (for Web mail) is used 
to transfer the messages from the email server to the recipient. An SMTP 
email server can act as a server or a client when email is transferred over the 
network. 

As with many application protocols, SMTP commands are human read-
able. For example, the commands in Table A-l are legitimate SMTP com-
mands that were typed as part of a telnet session—the user typed the lines 
beginning with C while the server responded with the lines marked as S. 
This particular session resulted in a spoofed email being sent to your gullible 
author at stampQcs.sjsu.edu from arnoldQca.gov. 

Another application layer protocol with security implications is DNS, the 
Domain Name Service. The primary purpose of DNS is to convert a friendly 
human-readable name, such as www. google. com, into its equivalent 32-bit 
IP address (discussed below), which computers and routers prefer. DNS is 
implemented as a distributed heirarchical database. There are only 13 "root" 
DNS servers worldwide and a successful attack on these would cripple the 
Internet. This is perhaps as close to a single point of failure as exits in the 
Internet today. Attacks on root servers have succeeded, however, because of 
the distributed nature of the DNS, it would be necessary for such an attack 
to continue for an extended period of time before it would seriously affect the 
Internet. No attack on DNS has had such staying power—at least not yet. 
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Table A-l: Spoofed email in SMTP 

C: telnet eniac.cs.sjsu.edu 25 
S : 220 eniac.sj su.edu 
C: HELO ca.gov 
S: 250 Hello ca.gov, pleased to meet you 

C: MAIL FROM: <arnoldQca.gov> 

S: 250 arnoldQca.gov... Sender ok 

C: RCPT TO: <stampQcs.sjsu.edu> 

S: 250 stampQcs.sjsu.edu ... Recipient ok 

C: DATA 

S: 354 Enter mail, end with "." on a line by itself 

C: It is my pleasure to inform you that you 

C: are terminated 

C: . 

S: 250 Message accepted for delivery 

C: QUIT 

S: 221 eniac.sjsu.edu closing connection 

A-1.4 Transport Layer 

The network layer (discussed below) offers unreliable, "best effort" delivery of 
packets. This means that the network layer attempts to get packets to their 
destination, but if a packet fails to arrive (or its data is corrupted or a packet 
arrives out of order or . . . ) , the network takes no responsibility, much like the 
U.S. Postal Service. Any improved service beyond this limited best effort— 
such as the reliable delivery of packets—must be implemented somewhere 
above the network layer. Also, such additional service must be implemented 
on the hosts, since the core of the network only offers this best-effort delivery 
service. Reliable delivery of packets is the primary purpose of the transport 
layer. 

Before we dive into the transport layer it's worth pondering why the 
network layer is allowed to be unreliable by design. Recall that we are dealing 
with a packet switched network. Consequently, it's possible that hosts will put 
more packets into the network than it can handle. Routers include buffers to 
store extra packets until they can be forwarded, but these buffers are finite— 
when a router's buffer is full, the router has no choice but to drop packets. 
The data in packets can also get corrupted in transit. And, since routing 
is a dynamic process, it's possible that packets in one particular connection 
can follow different paths. When this occurs, the packets can arrive at the 
destination in a different order than they were sent by the source. It's the 
job of the transport layer to deal with such reliability issues. The bottom 
line is that routing packets through the core of the network is difficult, so the 
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designers of the Internet decided to minimize the burden at this level, and 

thus the minimal best effort approach at the network layer. 

There are two transport layer protocols of importance: TCP and UDP. 

The Transmission Control Protocol, or TCP, provides for reliable delivery. 

TCP will make sure that your packets arrive, that they are sequenced in the 

correct order, and that the data has not been corrupted. To oversimplify 

things, the way that TCP provides these services is by including sequence 

numbers in packets and telling the sender to retransmit packets when prob-

lems are detected. Note that TCP runs on hosts, and all communication is 

over the same (unreliable) network where the data is sent. The format of the 

TCP header appears in Figure A-3. 

32 bits 

,0 8 16 31, 
L.,,1. 1— i 1,—J..-J— -Λ—Ι ' ■ ■ ' i i i 1 , . j . .i ,j 1 1 1 1 1 1 

Source Port Destination Port 

Sequence Number 

Offset reserved U A P R S F 

Checksum 

Window 

Urgent Pointer 

Options Padding 

Data (variable length) 

Figure A-3: TCP Header 

TCP assures that packets arrive at their destination and that they are 
processed in order. TCP also makes sure that packets are not sent too fast 
for the receiver, which is known as flow control. In addition, TCP provides 
network-wide congestion control. This congestion control feature is complex, 
but one interesting aspect is that it attempts to give every host a fair share 
of the available bandwidth. That is, if congestion is detected, every TCP 
connection will get about the same amount of the available bandwidth. Of 
course, everyone wants more than their fair share, so hosts can (and do) try to 
cheat this congestion control feature by opening multiple TCP connections. 

TCP is said to be connection-oriented, which means that TCP contacts 
the server before sending data. That is, TCP checks that the destination 
server is alive and listening on the appropriate port. It's important to realize 
that this TCP "connection" is only a logical connection—no true dedicated 
connection takes place. 
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The TCP connection establishment is of particular importance. A so-
called three-way handshake is used, where the three messages that are ex-
changed are the following: 

• SYN — The client requests "synchronization" with the server. 

• SYN-ACK — The server acknowledges receipt of the SYN request. 

• ACK — The client acknowledges the SYN-ACK. This third message 
can also include data. For example, if the client is Web browsing, the 
client could include the request for a specific Web page along with the 
ACK message. 

The three-way handshake is illustrated in Figure A-4. 

Figure A-4: TCP 3-Way Handshake 

TCP also provides for orderly tearing down of connections. Connections 
are terminated by a process involving a FIN (finish) packet or by a single 
RST (reset) packet. 

The TCP three-way handshake makes denial of service, or DoS, attacks 
possible. Whenever a SYN packet is received, the server must remember 
the so-called "half-open" connection. This remembering consumes a small 
amount of server resources. As a result, too many half-open connections will 
cause server resources to be exhausted, at which point the server can no longer 
respond to new connections. 

A straightforward DoS attack that is launched from a single machine using 
a single IP address is relatively easy to defend against—the intended victim 
can simply ignore or block any IP address that sends too many TCP requests. 
The attacker could make the attack difficult to block by spoofing the source IP 
addresses to make it appear that the requests are coming from many different 
machines. However, the amount of traffic needed to significantly affect the 
victim is likely to be more than one machine can generate. Consequently, most 
successful DoS attacks are actually distributed denial of service, or DDoS, 
attack. In a DDoS attack, many different machines are used to overwhelm 
the victim. If a large number of machines are used in a DDoS attack, then 
the generated traffic may be sufficient to prevent the victim from responding 
to legitimate requests. The distributed nature of such an attack makes it 
difficult to defend against. 
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The transport layer includes another protocol of note, the User Datagram 
Protocol, or UDP. Whereas TCP provides everything and the kitchen sink, 
UDP is a truly minimal no-frills service. The benefit of UDP is that it re-
quires minimal overhead, but the tradeoff is that it provides no assurance that 
packets arrive, no assurance packets are in the proper order, and so on. In 
other words, UDP adds little to the unreliable network over which it operates. 

Why does UDP exist? UDP is more efficient since it has a smaller header, 
but the major potential benefit derives from the fact that UDP has no flow 
control or congestion control. Due to the lack of these controls, there are no 
restrictions to slow down the sender. However, if packets are sent too fast, 
they will be dropped—either at an intermediate router or at the destination. 
So, how can UDP be a good thing? In some applications, delay is not tolera-
ble, but it is acceptable to lose some fraction of the packets. Streaming audio 
and video fit this description, and for these applications UDP is generally 
preferable to TCP. In effect, UDP allows an application to get more than its 
fair share of the bandwidth, at the risk of packets getting dropped. Finally, 
it's worth noting that reliable data transfer over UDP is possible, but the 
reliability must be built in by the developer at the application layer. This 
would seem to provide the best of both worlds—reliability with no bandwidth 
limitations—at the expense of a more complex application layer protocol. 

A-1.5 Network Layer 

The network layer is the crucial layer for the core of network. Recall that 
the core is an interconnected mesh of routers, and the purpose of the network 
layer is to provide the information needed to route packets through this mesh. 
The network layer protocol of interest here is the Internet Protocol, or IP. As 
mentioned above, IP follows a best effort approach. Note that IP must run in 
every host and router in the network. The format of the IP header appears 
in Figure A-5. 

In addition to network layer protocols, routers also run routing protocols. 
The purpose of a routing protocol is to determine the best path to use when 
sending a packet. There are many routing protocols, but the most popular 
are RIP, OSPF, and BGP. These protocols are very interesting, but we won't 
discuss them here. 

Every host on the Internet must be associated with a 32-bit IP address. 
Unfortunately, there are not enough IP addresses for the number of hosts, 
and as a result many tricks are employed to effectively extend the IP address 
space. IP addresses are given in so-called dotted decimal notation of the form 
W.X.Y.Z, where each value is between 0 and 255. For example, 195.72.180.27 
is a valid IP address. Note that a host's IP address can—and often does— 
change. 

Although each host has a 32-bit IP address, there can be many processes 
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32 bits 
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Figure A-5: IP Header 

running on a single host. For example, you could browse the Web, send 
email, and do a file transfer all at the same time. To effectively communicate 
across the network, it's necessary to distinguish these processes. The way 
this is accomplished is by assigning each process a 16-bit port number. The 
port numbers below 1024 are said to be well known, and they're reserved for 
specific applications. For example, port 80 is used for HTTP and port 110 is 
for POP3. The port numbers from 1024 to 65535 are dynamic and assigned 
as needed. An IP address together with a port number defines a socket, and 
a socket uniquely identifies a process on the Internet. 

The IP header is used by routers to determine the proper route for a 
packet through the network. The header includes fields for the source and 
destination IP addresses. There is also a time-to-live, or TTL, field that limits 
the number of hops that a packet can travel before it dies and goes to packet 
heaven. This prevents wayward packets from bouncing around the Internet 
for all of eternity. There are also fields that deal with fragmentation, which 
is our next topic. 

Each link on the Internet limits the maximum size of packets. If a packet 
is too big, it's the router's job to split it into smaller packets. This process in 
known as fragmentation. To prevent multiple fragmentation and reassembly 
steps, the fragments are only reassembled at the their destination. 

Fragmentation creates many security issues. One problem is that the 
actual purpose of a packet is easily disguised by breaking it into fragments. 
The fragments can be arranged to overlap when reassembled, which further 
exacerbates this problem. The result is that the receiving host can only 
determine the purpose of a packet after it has received all of the fragments 
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and reassembled the pieces. A firewall has a great deal more work to do when 
dealing with fragmented packets. As a result, fragmentation opens the door 
to DoS and many other types of attacks. 

Currently, we use IP version 4, that is, IPv4. It has many shortcomings, 
including too-small 32-bit addresses and poor security (fragmentation being 
just one example). As a result, a new-and-improved version, IP version 6 
(IPv6), has been developed. IPv6 includes 128-bit addresses—which gives 
a virtually inexhaustible supply of IP addresses—and strong security in the 
form of IPSec. Unfortunately, IPv6 is a classic example of how not to develop 
a replacement protocol. There is no natural way to migrate from IPv4 to IPv6 
and, consequently, IPv6 has yet to take hold on a large scale [30]. 

A-1.6 Link Layer 

The link layer is responsible for getting the packet over each individual link 
in the network. That is, the link layer deals with getting a packet from a host 
to a router, from a router to a router, from a router to a host or, locally, from 
one host to another host. As a packet traverses the network, different links 
can be completely different. For example, a single packet might travel over 
Ethernet, a wired point-to-point line, and a wireless microwave link when 
traveling from its source to its destination. 

In each host, the link layer and physical layer are implemented in a semi-
autonomous adapter known as a Network Interface Card, or NIC—examples 
include Ethernet cards and wireless 802.11 cards. The NIC is (mostly) out of 
the host's control, and that's why it's said to be semi-autonomous. 

One link layer protocol of particular importance is Ethernet. Ethernet 
is a multiple access protocol, meaning that it's used when many hosts are 
competing for a shared resource. Such situations occur on a local area net-
work, or LAN. In Ethernet, if two packets are transmitted by different hosts 
at essentially the same time, they can collide, in which case both packets are 
corrupted. The packets must then be resent. The challenge is to efficiently 
handle collisions in a distributed environment. There are many possible ways 
to deal with a shared media, but Ethernet is by far the most popular method. 
In any respectable networking course, a significant amount of time is devoted 
to Ethernet, but we won't go into the details here. 

While IP addresses are used at the network layer, the link layer has its 
own addressing scheme. We'll refer to link layer addresses as MAC addresses, 
but they are also known as LAN addresses, physical addresses, etc. MAC 
addresses are 48 bits, and they're globally unique. The MAC address is 
embedded in the NIC, and, unlike an IP address, it cannot change (unless 
a new NIC is installed). MAC addresses are used to forward packets at the 
link layer. 

Why do we need both IP addresses and MAC addresses? An analogy is 
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often made to home addresses and social security numbers. A home address 
is like an IP address, since it can change. On the other hand, even if you 
move, your social security number stays the same, which makes it analogous 
to a MAC address. However, this doesn't really answer the question. In fact, 
it would be conceivable to do away with MAC addresses, but it is somewhat 
more efficient to use these two forms of addressing. Fundamentally, the dual 
addressing is necessary due to layering, which requires that the link layer 
should work with any network layer addressing scheme. In fact, some network 
layer protocols (such as IPX) do not use IP addresses and the link layer 
requires no modification to work with such protocols. The bottom line is that 
a strict adherence to layering requires that we have two distinct addressing 
schemes. 

There are many interesting and significant link layer protocols. We've 
mentioned Ethernet and we'll mention just one more, namely, the Address 
Resolution Protocol, or ARP. The primary purpose of ARP is to find the 
MAC address that corresponds to a given IP address for hosts on the same 
LAN. Each node has its own ARP table, which contains the mapping between 
IP addresses and MAC addresses. This ARP table—which is also known as 
an ARP cache—is generated automatically. The entries expire after a period 
of time (typically, 20 minutes) so they must be refreshed periodically. Believe 
it or not, ARP is the protocol used to determine ARP table entries. 

How does ARP work? When a node doesn't know a particular IP-to-
MAC mapping, it broadcasts an ARP request message to every node on the 
LAN. The appropriate node on the LAN (i.e., the node with the given IP 
address) responds with an ARP reply. The requesting node can then fill in 
the corresponding entry in its ARP cache. 

ARP is a stateless protocol, and as such, a node does not maintain a 
record of ARP requests that it has sent. As a consequence, a node will 
accept any ARP reply that it receives, even if it made no corresponding ARP 
request. This opens the door to an attack by a malicious host on the LAN. 
This attack, known as ARP cache poisoning, is illustrated in Figure A-6. In 
this example, the host with MAC address CC-CC-CC-CC-CC-CC has sent a 
bogus ARP reply to both of the other hosts, and they have updated their 
ARP caches accordingly. As a result, whenever AA-AA-AA-AA-AA-AA and 
BB-BB-BB-BB-BB-BB send packets to each other, the packets will first pass 
through the hands of the evil host CC-CC-CC-CC-CC-CC, who can alter the 
messages, delete the messages, or simply pass them along unchanged. This 
type of attack is known as a man-in-the-middle, or MiM, regardless of the 
gender of the attacker. 

Recall that TCP provides an example of a stateful protocol that is subject 
to attack. ARP, on the other hand, is an example of a vulnerable stateless 
protocol. So stateless and stateful protocols both have the potential for se-
curity vulnerabilities. 
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ARP cache ARP cache 

Figure A-6: ARP Cache Poisoning 

A-1.7 Conc lus ions 

In this section, we've barely scratched the surface of the vast topic that is 
networking. Tanenbaum [298] presents a good introduction to a wide range of 
networking topics, and his book is well suited to independent study. Another 
good introductory textbook on networking is Kurose and Ross [177]. A more 
detailed discussion of networking protocols can be found in [113]. If more 
details are needed than what is available in [113], consult the appropriate 
RFCs. 

A-2 Ma th Essentials 

7/5ths of all people don't understand fractions. 
— Anonymous 

A-2 .1 I n t r o d u c t i o n 

This section contains a brief overview of the math topics that are relevant 
to understanding the material presented in this book. First, we cover some 
modular arithmetic basics. Modular arithmetic figures prominently in the 
field of public key cryptography. We then discuss a few very basic facts about 
permutations. Permutations are a fundamental building block of ciphers— 
from classic ciphers to modern block ciphers. Next, we consider a few concepts 
from discrete probability and, finally, we provide a quick introduction to linear 
algebra. Chapter 6 contains the details of the lattice-reduction attack on the 
knapsack cryptosystem, and that's the only place where linear algebra is used 
in this book. 
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A-2.2 Modular Ari thmet ic 

For integers x and n, the value of a; modulo n, which is abbreviated x mod n, is 
defined to be the remainder when x is divided by n. Note that the remainder 
when a number is divided by n must be one of the values 0 ,1 ,2 . . . , n — 1, so 
these are the only possible results when you are asked to compute x mod n. 

In non-modular arithmetic, the number line is used to represent the rel-
ative positions of the numbers. For modular arithmetic, a mod n "clock" 
labeled with the integers 0 ,1 ,2 . . . , n — 1 serves a similar purpose, and for 
this reason modular arithmetic can be viewed as clock arithmetic. For exam-
ple, the mod 6 clock appears in Figure A-7. 

Ô 
3 

Figure A-7: Number "Line" Mod 6 

The notation for modular arithmetic is flexible—we can write x mod n = y 
or x = y mod n o n (mod n) = y or x = y (mod n). The point here is that 
if a "mod n" appears anywhere in an equation, the entire equation is taken 
modulo n. It is common to say that we "reduce" x mod n, and if you really 
want to impress your friends, you can say modulo n instead of mod n. 

A basic property of modular addition is 

((a mod n) + (b mod n)) mod n= (a + b) mod n, 

so that, for example, 

(7 + 12) mod 6 = 19 mod 6 = 1 mod 6 

and 
(7 + 12) mod 6 = (1 + 0) mod 6 = 1 mod 6. 

That is, we can apply the mod operations any place (or places) we please 
and the result will not change. Often, for computational efficiency (or conve-
nience) we do the modular reductions in some not-so-obvious order. 

The same property holds true for modular multiplication, that is, 

((a mod n)(b mod n)) mod n = ab mod n. 
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For example, 
(7 · 4) mod 6 = 28 mod 6 = 4 mod 6 

and 
(7 · 4) mod 6 = (1 ■ 4) mod 6 = 4 mod 6. 

This simple property is critical for effective modular exponentiation, and 
modular exponentiation is the fundamental computation used in the RSA 
public key cryptosystem. 

Modular inverses play an important role in public key cryptography. In 
ordinary (non-modular) addition, the additive inverse of x is the number 
that we add to x to get 0. Of course, in non-modular arithmetic, that's just a 
fancy way of saying that the additive inverse of x is — x. The additive inverse 
of x mod n is denoted —x mod n, but we have to use the definition to make 
sense of the " — ". Recall that when working modulo n, the only numbers 
that exist are 0 ,1 ,2 , . . . , n — 1. Then, from the definition, —x mod n is the 
number in this range that we add to x to obtain 0 mod n. For example, 
—2 mod 6 = 4, since 2 + 4 = 0 mod 6. That is, —2 = 4 mod 6, which can also 
be seen by starting at 0 on the mod 6 clock and going counterclockwise by 2. 

In ordinary arithmetic, the multiplicative inverse of a;, denoted as a;-1, is 
the number that we multiply by x to obtain 1. In the non-modular world, this 
is easy, since x _ 1 = 1/x, provided that x φ 0. But in the modular case there 

are no fractions, so things are not as straightforward. From the definition, the 

multiplicative inverse of a; mod n, which is denoted x"1 mod n, is the number 

that we multiply by x to obtain 1 mod n. For example, 3 _ 1 mod 7 = 5, since 

3-5 = 1 mod 7. That is, 3 - 1 = 5 mod 7. 

What is 2 _ 1 mod 6? Since we are working mod 6, the only possible choices 

are 0,1,2,3,4,5, and it's easy to verify by an exhaustive search that none of 

these satisfy the definition. Consequently, 2 does not have a multiplicative in-

verse, modulo 6, which shows that for modular arithmetic, there are numbers 

other than 0 that do not have multiplicative inverses. 

When does a (modular) multiplicative inverse exist? To answer that, we 

must delve slightly deeper. A number p is said to be prime if it has no 

factors other than 1 and p. We say that two numbers x and y are relatively 

prime if they have no common factor other than 1. For example, 8 and 9 

are relatively prime, although neither 8 nor 9 is prime. It can be shown 

that x~l mod y exists if and only if x and y are relatively prime. When 

the modular inverse exists, it's easy to find—in a computational sense—using 

the Euclidean algorithm [43]. It's also easy (computationally) to tell when a 

modular inverse doesn't exist, that is, it's easy to test whether x and y are 

relatively prime. 

For our discussion of public key cryptography, we require one additional 

result from number theory. The totient function (or Euler's totient function), 

which is denoted as φ(η), is the number of positive integers less than n that 
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are relatively prime to n. For example, φ(Α) = 2 since 4 is relatively prime 

to 3 and 1, but not 2. Also, φ(5) = 4 since 5 is relatively prime to 1,2,3 

and 4, while φ(12) = 4, since the only positive integers less than 12 that are 

relatively prime to 12 are 1, 5, 7, and 11. 

For any prime number p, it's easy to see that φ(ρ) = p — 1. Furthermore, 

it is fairly easy to show that if p and q are prime, then φ{pq) = (p — l)(q — 

1); see Burton's fine book [43] for the details. These elementary properties 

of φ(η) are used in Section 4.3 of Chapter 4, which covers the RSA public 

key cryptosystem. 

A-2.3 P e r m u t a t i o n s 

Let 5 be a given set. Then a permutation of S is an ordered list of the elements 

of S, where each element appears exactly once. For example, (3,1,4,0,5,2) 

is a permutation of {0,1,2,3,4,5}, but (3,1,4,0,5) is not and neither is the 

list (3,1,4,2,5,2). 

It's easy to count the number of permutations of a set of n elements: there 

are n ways to choose the first element of the permutation, n — 1 selections 

remain for the next element, and so on. Consequently, there are n! permuta-

tions of any set of n elements. For example, there are 24 permutations of the 

set {0,1,2,3}. 

Permutations play a prominent role in cryptography. Classic ciphers are 

often based on permutations, while many modern block ciphers also make 

heavy use of permutations. 

A-2.4 Probabil ity 

In this book, we only require a few elementary facts from the field of discrete 

probability. Let S = {0,1,2, . . . ,N — 1} represent the set of all possible 

outcomes of some experiment. If each outcome is equally likely, then the 

probability of the event X, where X C S, is 

P(X) = number of elements in X/number of elements in S. 

For example, if we roll two dice, the set S can be taken to be the 36 equally 

likely ordered pairs 

S = {(1,1), (1 ,2) , . . . , (1,6), (2,1), (2 ,2) , . . . , (6,6)}. 

Then when we roll two dice we find, for example, 

P(sum equal 7) = 6/36 = 1/6, 

since 6 of the elements in S sum to 7. 
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Often, it's easier to compute the probability of X using the fact 

P(X) = 1 - ^(complement of X), 

where the complement of X is the set of elements in S that are not in X. For 

example, when rolling two dice, 

P(sum > 3) = 1 - P(number < 3) = 1 - 3/36 = 11/12. 

Although there are many good sources of information on discrete prob-

ability, probably your author's favorite is the ancient—but excellent—book 

by Feller [109]. Feller covers all of the basics and many interesting and useful 

advanced topics, all in a very readable and engaging style. 

A-2.5 Linear Algebra 

In Chapter 6, the discussion of the attack on the knapsack cryptosystem 

requires a small amount of linear algebra. Here, we present only the mini-

mum amount of linear algebra required to understand the material in that 

particular section. 

We write v € R™ to denote a vector containing n components, where each 

element is a real number. For example, 

v= [vi,V2,V3,v4] = [4,7/3,13,-3/2] e R4. 

The dot product of two vectors u, υ € R™, is 

u ■ v = u\v\ + U2V2 H h unvn. 

Note that the dot product only applies to vectors of the same length and the 
result of the dot product is a number, not a vector. 

A matrix is an n x m array of numbers. For example, 

A = 
3 4 2 
1 7 9 

(A-l) 

is a 2 x 3 matrix, and we sometimes write Λ.2χ3 to emphasize the dimensions. 

We denote the element in the ith. row and j th column of A as ay. For 

example, in the matrix A, above, a\t2 = 4. 

To multiply a matrix by a number, we simply multiply each element of 

the matrix by the number. For example, for the matrix A in equation (A-l), 

we have 

3A 
3-3 3-4 3-2 

3-1 3-7 3-9 

9 12 6 

3 21 27 
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Addition of matrices is only defined if the matrices have the same dimensions. 
If so, the corresponding elements are simply added. For example, 

3 2 ' 
1 5 + 

" - 1 4 ' 
6 2 = 

' 2 6 " 
7 7 _ 

Matrix multiplication, on the other hand, is less intuitive than matrix 
addition or multiplication by a number. Given matrices Amxn and B^xe, 
the product C = AB is only defined if n = k, in which case the product C 
is m x I. When the product is defined, the element in row i and column j 
of C, that is, Cij, is given by the dot product of the ith row of A with the j th 
column of B. For example, for the matrix A in (A-l) and 

the product 

BA = C2x3 = 

B = 
- 1 
2 

2 
- 3 

' [ - 1 , 2 ] -

[2,-3]· 

' 3 
1 
o 
Ò 

1 

[-1,2]· 

[2,-3]· 

" - 1 10 16 
3 -13 23 

[-1,2]· 

[2,-3]· 

Note that for these two matrices, the product AB is undefined, which shows 
that matrix multiplication is, in general, not commutative. 

The identity matrix Inxn has Is on the main diagonal, and 0s elsewhere. 
Note that the identity matrix is always a square matrix, that is, a matrix 
with an equal numbers of rows and columns. For example, the 3 x 3 identity 
matrix is 

1 0 0 
0 1 0 
0 0 1 

For a square matrix A, the identity matrix of the appropriate size is the 
multiplicative identity, that is, AI = IA = A. 

We can also define block matrices, where the elements are themselves ma-
trices. We can multiply block matrices provided that the dimensions meet 
the requirements for matrix multiplications, and the dimensions on all of the 
individual blocks that are to be multiplied also are appropriate for multipli-
cation. For example, if 

M = inxn t^nxl 

■Amxn " m x l 
and V Unxi 

T\xl 
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then 

MV = \ *
nxe

 1 , 
' m x i 

where X = U + CT and Y = AU + BT. You should verify that all of these 
operations are defined. 

We'll require only one more result from linear algebra. Suppose x and y 
are vectors in Rn. Then we say that x and y are linearly independent provided 
that the only scalars (i.e., numbers) a and ß for which 

ax + ßy = 0 

are a = ß = 0. For example, 

1 
- 1 

and 
' 1 " 

2 

are linearly independent. Linear independence extends to more than two 
vectors. The importance of linear independence derives from the fact that 
if a set of vectors are linearly independent, then none of the vectors can be 
written as a linear combination of the other vectors, that is, none of the 
vectors can be written as a sum of multiples of the other vectors in the set. 
This is the sense in which the vectors are independent. 

A-2.6 Conclusions 

That concludes our brief review of the math used in this book. Hopefully, 
you're still awake. In any case, the math required in this text is minimal, so 
fear not if some of the details discussed here appear somewhat opaque. You 
can simply review this material as needed if you run into any mathematical 
speed bumps on your way to security enlightenment. 
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