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Introduction

It is a fair generalisation to say that scholars in the field of
management accounting may broadly be divided into two groups.
These groups may be distinguished from each other by their
implicit response to this question: from which disciplines should
the study of management accounting draw most heavily? To this
question, one group would reply 'psychology, sociology and
general systems theory' while the other group would say 'statistics,
operational research and microeconomics'. This book is firmly in
the latter tradition; it could hardly be otherwise, since the former
tradition is much more concerned with the description of contexts
than it is with the analysis of problems. It would be foolish for
either group of scholars to disparage the other - their roles are
complementary. However, in recent years rather more of the
academic work in management accounting has conformed to the
positive, behavioural mould than has conformed to the normative,
quantitative mould ; This book represents a small movement in the
direction of redressing this balance.

In making this movement, the book endeavours to fill what is
currently a fairly substantial gap in the literature available to
students and teachers of management accounting at second and
third year undergraduate level. Once the first year background
material in statistics and quantitative methods has been assimi­
lated, it is a logical progression to apply this material to acceptably
realistic management accounting problems. It is helpful if these
problems are such as to provide practice in the use of the
microcomputer, while at the same time they must illustrate the
employment of techniques advanced in the research literature.

xiii



xiv Introduction

The desirability of a significant computing content implies that the
problems should not be so small as to give inadequate 'hands-on'
practice, while the need to illustrate selected aspects of the
research literature implies a requirement for close cross­
referencing . Matters are further complicated by the fact that
teachers differ in their identification of the most crucial papers
within the literature, so that an approach placing restrictions upon
the order in which topics can be dealt with may compel excessive
attention to be paid to topics which are not conceived as being of
central importance.

All of the issues mentioned above, but especially the last one,
give rise to a need for something other than a conventional
textbook to underpin the teaching of second and third year
management accounting. A textbook which is to be used from
'cover to cover' in this area has to be very lengthy (and thus
expensive) to cater exhaustively for the divergent emphases pre­
sent in teaching . Moreover, a general purpose textbook cannot
devote sufficient space to the development of realistically sized
problems without compromising the interests of teachers who
prefer to work through an approach which is not problem based,
or whose students do not have access to the computing facilities
required to handle substantial problems.

The gap in the literature faced by teachers who employ a
quantitative, computational approach to the study of advanced
management accounting is that there is no readily available set of
problems which can be used in a flexible way to identify and
illuminate those research studies having relatively immediate
implications for the improvement of practice . This set of problems
is intended to fill this gap. In doing so, it may also provide insights
which help students (and managers) to visualise the associations
between real world phenomena in management accounting and
that part of the literature which addresses these phenomena
sufficiently directly to enable problems to be written . Indeed, the
author's aspirations extend a little further than the simple recogni­
tion by readers of a correspondence between their interests and
the content of the problems presented here. It is hoped that the
techniques used to solve the problems may in some cases be
transferable, with adaptation, to ongoing industrial situations. The
discipline imposed by the requirement that the institutional details
of each problem must be spelled out is quite a stringent one; many
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ideas within the literature, such as those of agency theory, have
had to be omitted from this book simply because no plausible
mechanism could be found whereby managers could have in their
possession the necessary information to enable analysis using these
ideas to take place. Those problems which could be clothed with
institutional detail must by definition be at least partially realistic ­
the reader may judge whether the obtrusion of unrealistic, simplify­
ing assumptions from that detail is such as to render a particular
technique inapplicable to the everyday experience of industry and
commerce.

The analysis of each of the problems here constitutes a self­
contained guide to the contents of the paper or papers which make
up the Primary Reference(s) to that problem. Put in another way,
the problems have been tailor-made to fit the Primary Refer­
ence(s), and to bring out all of their central features. There is thus
no need, when using this book, to refer to any other exposition of
the material than that in the papers with which it deals. It is,
however, necessary to have access to some of the usual computer
software for operational research and statistics. In dealing with
specific problems, computations are required involving operations
on matrices, linear programming and the solution of moderately
sized systems of simultaneous equations. The author 's computa­
tional experience has been confined to work on the Commodore
PET and DEC Rainbow 100 microcomputers, thus restricting the
guidance that may be offered on software. However , taking the
DEC machine as approximating the 'state of the art' , the following
packages have been found to perform satisfactorily in dealing with
the problems associated with the topics enumerated below:

Software package

OPTIMIZER (runs with
MBASIC compiler on
CP/M; requires 64K of
memory)

MINITAB (runs on CP/M
80/86 with 64K of memory)

Application

Deals with linear programming
problems, can thus carry out some
of the computations required by
Topics 5,6,7A, 7B, 15.

Performs operations on matrices
and can thus carry out some of the
computations required by Topics 1,
2,3,4, 7A, 7B
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TK!SOLVER 86 (runs on
CP/M with 128Kof
memory)

Also a valuable general purpose
statistical package

Solves systems of simultaneous
equations, and can thus carry out
some of the computations required
by Topic 17

Also useful in performing iterative
calculations for Topic 16, and ar ith­
metic for Topic 8

Turning from technical to personal matters, I am delighted to
record my gratitude to Mrs Jean Waring, who typed the manu­
script of this book in its many drafts with unfailing patience and
efficiency. The finished book I dedicate to my wife, Hilary ,
without whose constant encouragement and support it could never
have been written.

Kenneth P. Gee
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Fully-worked

Problems and Their
Analysis



Standard Costing
and Matrix

Algebra

1.1 Radium Dyestuffs Ltd

Radium Dystuffs Ltd manufactures a radioactive dye in powder
form called arquenol. To do this, it requires three types of
material and three grades of labour. There is scope for substitution
between one type of material and another and between one
grade of labour and another, but labour cannot be substituted for
materials or vice versa. The standard composition of inputs for the
production of a kilogram of arquenol is given below, together with
the standard cost of each input.

Standard amount per Standard
Input kg of arquenol cost

Material £ per kg
A 1.80 kg 0.60
B 0.14 kg 1.20
C 0.26 kg 4.50

Labour grade £ per hr
R 0.5 hr 2.50
S 0.7 hr 2.00
T 0.8 hr 1.75

In April 1989, 18000 kilograms of arquenol were produced. The
tabulation on p. 2 shows the volume of inputs consumed during
April, and indicates the unit cost of each input.

1



2 Standard Costing

Total actual
Input quantity used Unit cost

Material £ per kg
A 36000 kg 0.57
B 2460 kg 1.38
C 4100 kg 5.10

Labour grade £ per hr
R 8250 hr 2.60
S 14400 hr 2.30
T 16100 hr 2.15

Using matrix algebra techniques, you are required to calculate:

1. Price, quantity and mixed ('price-quantity') variances for each of
the materials at the time of their entry into production.

2. Quantity, rate of pay and mixed variances for each of the grades
of labour.

3. Mix and yield variances for labour and for materials at the
aggregate level, but not for individual inputs .

1.2 Analysis

Introduction

As a preliminary to the analysis , it is necessary to establish some
terminology, as follows. Let :

P represent the standard price for an input
PA represent the actual price for an input

aP represent the deviation of actual from standard price,
that is of PA from P

Similarly, let :

Q represent the standard quantity of an input required for
the output actually produced

QA represent the actual quantity of an input consumed in
producing the actual output

aQ represent the deviation of QA from Q
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The total actual cost of any input is given by (P + tlP) (Q + tlQ).
This expression may be expanded as below:

(P + tlP) (Q + tlQ) = PQ + PtlQ + QtlP + tlPtlQ

(1.1)

The terms on the right-hand side of equation (1.1) may be
interpreted in the following manner:

PQ represents the input's standard cost for the actual
volume of production

PtlQ represents the quantity variance
QtlP represents the price variance

tlPtlQ represents the mixed (or 'price-quantity') variance

There is no element of price change in the calculation of the
quantity variance, as this is represented by the deviation of the
actual quantity consumed from the standard quantity required for
the actual output, valued at the standard price . Likewise, no
element of actual usage enters into the calculation of the price
variance , which is given by the deviation of actual from standard
price multiplied by the standard quantity required for the actual
output. However, this leaves a residual variance tlP6Q , which has
no clear interpretation in that it is the product of both price and
quantity deviations, and is therefore the joint outcome of activities
both in purchasing and in production.

This mixed (or 'price-quantity') variance is always present in the
analysis of labour costs, but may be absent from the analysis of
material costs. It is present only where material cost variances are
isolated when materials enter into production. This is the case in
the Radium Dyestuffs problem, but the modern tendency is
instead to isolate price variances for materials at their date of
purchase.

Digressing to illustrate this approach, let:

Qbl represent the quantity of a material bought in period t
tlQut represent the difference between the quantity of that

material consumed in period t and the standard quantity
required for the output of period t
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P, represent the standard price per unit of the material in
period t

t::.p, represent the difference between the standard price per
unit and the price per unit actually paid in period t

Then the mixed variance may be eliminated by defining price and
quantity variances as follows:

Price variance = Qb't::.P,
Quantity variance = t::.QUfP,

(1.2)
(1.3)

However, since labour services are paid for as they are used, the
quantity of them bought in period t(Qb,) is always identical to the
quantity used (QUf)' Consequently, the time subscript t in equa­
tions (1.2) and (1.3) becomes redundant, and these equations
revert to the definitions of price and quantity variances associated
with equation (1.1), leaving a mixed variance t::.Pt::.Q as a residual.

Computation ofprice, quantity and mixed variances

The implementation of equation (1.1) through matrix algebra
involves a matrix multiplication of the form:

[Q t::.Q] = PQ Pt::.Q

t::.PQ t::.Pt::.Q
(1.4)

For the six inputs in the Radium Dyestuffs problem, this approach
gives rise to a partitioned multiplication of a 2 x 6 matrix by a 6 x
2 matrix:

• , , I I 1P r 0.60: 1.20 : 4.50 : 2.50 : 2.00 : 1.75
I I I I I
I I I I Isr -0.03: 0.18 : 0.60! 0.10 ~ 0.30 ! 0.40

Q t::.Q

32400 3600
---------------
2520 -60

---------------
4680 -580

----------------
9000 -750

---- - - ------ - - - -
12600 1800
----------------
14400 1700



Radium Dyestuffs 5

To illustrate the operation of equation (1.4), consider its applica­
tion to Material A. Here, the partitioned matrix multiplication is:

r 0.60] [32400

l-0.03

3600] = [ 19440

-972

2160 ]

-108

Standard and actual cost for Material A may be reconciled as
follows:

Actual cost of Material A consumed in April 1989
Less unfavourable quantity variance

Add favourable price variance
favourable mixed variance

standard cost of Material A

£
20520
2160

18360
972
108

19440

The remaining five partitioned matrix multiplications give rise to
variances as tabulated overleaf, with F denoting a favourable
variance and U an unfavourable one .

Computation ofmix and yield variances

The sum of the quantity variances for the three materials forms the
total quantity variance for materials , and the sum of the quantity
variances for the three grades of labour forms the total quantity
variance for labour. Each of these total quantity variances can be
broken down into two components, called the mix variance and
the yield variance. The mix variance is the deviation from standard
cost arising because inputs were used in proportions differing from
those specified in the budget, and the yield variance is the
deviation from standard cost arising because the output obtained
from a given quantity of the budgeted mix of inputs differed from
that which the budget said should be obtained.
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It is first necessary to number the inputs in the order in which
they appear in the question, so that (for example) Material C is
input 3 and Labour Grade T is input 6. Then let:

SQ j represent the standard quantity of the ith input re­
quired to produce a kilogram of arquenol

SQM represent the total standard quantity of materials re­
quired to produce a kilogram of arquenol

SQL represent the total standard labour input required to
produce a kilogram of arquenol

Then the standard mix proportion for material input i is given by
SM j where:

SM; = SQ;lSQM (1.5)

Correspondingly, the standard mix proportion for labour input i is
given by SM j where:

SMj = SQ;lSQL (1.6)

To give an example of the computation of SM;, consider the
standard mix proportion for Material C, given by SM3• This is:

SM3 = 0.26/(1.8 + 0.14 + 0.26) = 0.1182

In April 1989, a total of 42560 kilograms of Materials A, Band C
together were consumed. If, therefore, the budgeted mix of mate­
rials had been adhered to, some (42560) (0.1182) = 5030 kilo­
grams of Material C would have been used. This amount is
referred to as the 'actual quantity recalculated in accordance with
the standard mix'. This recalculation should be carried out for
each of the six inputs. Then a 3 x 6 quantity matrix Q may be
drawn up in which the first row shows for each input i the standard
quantity required for the actual output in June 1989, and the third
row shows the actual quantity of input i consumed in that month .
The second row of Q shows the actual quantity of input i
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recalculated in accordance with the standard mix, so that Q for this
problem appears as follows:

Q=

32400

34822

36()()()

2520

2708

2460

4680

5030

4100

9000

9687 .5

8250

12600 14400

13562.5 15500

14400 16100

The physical quantities within Q may be valued at standard cost by
reference to a 6 x 2 matrix P, in which there is one row for each
input and the first column relates to unit standard costs for
materials, while the second relates to unit standard costs for
labour. Since there are three material and three labour inputs, the
first column of P contains zeros in the fourth to sixth rows and the
second column contains zeros in the first to third rows. For this
problem, the P matrix is:

p=

0.60

1.20

4.50

o
o
o

o
o
o

2.50

2.00

1.75

Postmultiplying Q by P gives rise to a new matrix :

R = QP (1.7)

The entries within R relate to the total physical quantities of
materials and labour (respectively in the first and second columns)
valued at standard cost. As in Q, the first row relates to the
standard quantity for the actual output, the third row to the actual
quantity consumed and the second row to the actual quantity
recalculated in accordance with the standard mix. The cornputa-
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tion associated with equation (1.7) gives rise to the following
result:

R=
R ll = 43524

R2 1 = 46777.8

R3 1 = 43002

R 12 = 72900 1
R22 = 78468.75

R32 = 77600

The mix variance is given by the difference between the actual mix
and the standard mix for the actual quantity of inputs , all valued at
standard cost. Consequently:

Materials mix variance = R3 1 - R2 1

Labour mix variance = R32 - R22

(1.8)

(1.9)

The yield variance is given by the difference between the standard
mix for the actual quantity of inputs and the standard quantity of
inputs, all valued at standard cost. Consequently:

Materials yield variance = R21 - R lI

Labour yield variance = R22 - R 12

(1.10)

(1.11)

Performing the computations for the matrix R above gives rise to
the following results:

Materials
Labour

Mix variance

£
3775.8F

868.75F

Yield variance

£
3253.8U
5568.75U

These results show that savings arising from the substitution of the
relatively cheap Material A for the relatively expensive Material C
were largely nullified by the diminution in yield which ensued. As
regards labour, the substitution of Grades Sand T for the
relatively expensive Grade R did not result in a much cheaper mix
of labour, but affected yield very adversely.



Stochastic Process
Costing

2.1 OttolineElectronics

One of the products of Ottoline Electronics is a Reserved Density
Array (RDA), which is a device with applications in military
electronics. The manufacture of RDA units involves four proces­
ses, forming a sequence from Process A through Processes Band
C to the final Process D. Each of these processes takes the same
amount of time to complete, namely an 8-hour shift, and partially­
completed RDA units are transferred from one process to another
as shifts change.

Because the manufacture of RDA units is technically very
demanding , a great many RDA units fail the tests to which they
are exposed as the last stage of each of Processes A-D. Such
failures may be total , in which case the RDA units concerned are
simply thrown away, or they may be partial, in which case either of
two things can happen. If the partial failure is attributable to
defective manufacture in the process ending in the tests locating
that failure, then the RDA units concerned can be 'looped'. This
word is part of the jargon of Ottoline Electronics , and refers to the
practice of sending RDA units which have suffered a defect in a
process through the same process again in the next shift. On the
other hand, the partial failure may be attributable to defective
manufacture in a process prior to the one which ended in the tests
which located the failure . In this case, the RDA units concerned
have to be 'reworked' by being sent back to the beginn ing of the

10
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process in which the defect arose , and then going through all the
subsequent processes once again .

At the end of Process A , 90 per cent of the RDA units which
have gone through this process pass all the tests and are transfer­
red on to Process B. Of the remainder, 7 per cent fail the tests
completely and are thrown away , while the other 3 per cent fail
partially and are looped back to repeat Process A . When Process
B is finished , 86 per cent of the RDA units produced are found to
be satisfactory and go on to Process C. Looping back through
Process B accounts for 5 per cent of the RDA units reaching this
stage , while 4 per cent are sent back to the beginning of Process A
for reworking and 5 per cent are thrown away. The corresponding
figures for Process C are that 82 per cent of the RDA output from
this process is satisfactory and goes on to Process D, 4 per cent of
the output is looped again through Process C, 7 per cent is sent
back to the start of Process B for reworking and 7 per cent is
thrown away .

Finally, at the end of Process D, 88 per cent of the RDA units
produced pass the tests completely to become finished products,
while by contrast 3 per cent of the RDA units fail the tests entirely
and are thrown away as being beyond repair. Of the remaining 9
per cent , 4 per cent are sent back to the beginning of Process C for
reworking, 2 per cent are sent back to the beginning of Process B
and 3 per cent are looped, thus undergoing Process D again .

The management of Ottoline Electronics are currently planning
to supply 1250 RDA unit assemblies to commence Process A at
the beginning of each shift , and to operate each of Processes B, C
and D at the levels of activity required to deal with the throughput
derived from running Process A at the above rate. Given this data ,
you are required to answer the following questions:

1. In the steady state , what will be the mean and standard
deviation for the number of RDA units undergoing each
process at any given time?

2. What will be the expected output of finished RDA units per
shift, and how many defective RDA units will on average be
thrown away per shift?

3. What will be the expected variable cost .per shift of operating
each of the processes?

4. What will be the expected variable cost of producing a finished
RDA unit?
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5. In the steady state, what will be the standard deviations firstly
of the output of finished RDA units per shift and secondly of
the number of defective RDA units thrown away per shift?

6. If it were desired to produce an average of 1000 finished RDA
units per shift, by how much would the number of RDA unit
assemblies commencing Process A per shift have to increase to
attain this target?

7. A substantial simplification of the tests carried out at the
culminations of Processes B, C and D could be achieved if these
tests were not required to isolate out those RDA units which
require to be sent back to previous processes for reworking.
Whilst it is quite straightforward and inexpensive to find out by
testing at the end of a process those units which need to be
looped back into that process, it is much harder and costlier to
isolate out those units which need to be returned to earlier
processes; if these units were simply treated as being defective
and thrown away, large savings in testing costs could be
achieved. It is estimated, indeed, that these savings might
amount to a total of £600 per shift at an output of 1000 finished
RDA units per shift. If this were to be the case, could the
proposed simplification of the tests be justified economically?

8. An alternative to the proposal in question 7 above would be to
modify the manufacturing system radically along lines suggested
by the Japanese 'zero defects' system. Ottoline's management
are acutely sceptical of the proposition that the manufacturing
system could be so altered that no RDA units at all were ever
thrown away as being beyond repair , but are sufficiently
interested to want to cost out this proposition. Assuming that
the average output were to be 1000 finished RDA units per
shift, what would be the cost savings per shift associated with
moving to a 'zero defects' system?

2.2 Analysis

Development ofa stochastic matrix

The Ottoline Electronics problem is one in which there is uncer­
tainty about the outcome of each production process for the RDA
units passing through that process. At its end, some units will be
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transferred to the next process, others will be 'looped' back to
repeat the process again and still others will be sent back to the
start of some earlier process for reworking . Because of this
uncertainty, it is necessary to describe product flows within the
RDA manufacturing system in a stochastic manner , and more
specifically to represent these flows as a Markov process.

A Markov process is a process which can be characterised as
always being in some state of a set of mutually exclusivestates , and
whose future behaviour depends probabilistically only on the
current state and not on any past behaviour (such as which state
the process previously occupied). For this problem, a partially­
completed unit entering a stage in production has a probability of
passing through that stage and out of it, a probability of looping
back through that stage, and a probability of being sent back to
one or other of the prior stages . The important point is that these
probabilities are independent of what has happened to that RDA
unit prior to reaching the stage in production it now occupies .
Here, it is a discrete transition process that is being modelled, in
that transitions of a unit from one state to another take place at
evenly spaced intervals of time - that is, once per shift. Since the
probabilistic dependence of transitions on the current state does
not change from transition to transition , the Markov process in
Ottoline Electronics is said to be stationary. The probability that a
(RDA) unit will be in state S = j in period t + 1 given that it is in
state S = i in period t is given by a fixed value Pit- referred to as a
one-step transition probability. This is represented formally by
equation (2.1) below :

Pi; = P(SI+l = jl SI = i) (2.1)

The matrix containing the Pi; values is referred to as the stochastic
matrix, and will here be labelled P. For Ottoline Electronics, each
element Pi; within the matrix P represents the probability of a
(RDA) unit being transferred from state (or process) i in period t
to state (or process) j in period t + 1. If, for a particular state i, the
one-step transition probability is given by Pu = 1, then that state is
referred to as an absorbing state . Clearly , if a unit is either
completed (at the end of Process D) or discarded at the end of one
of the processes, then the state into which it has passed is an
absorbing state . By contrast , the state of being in anyone of
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Processes A - D is one from which it is possible to move to another
state, and is therefore referred to as a transient state . Where a
Markov process must eventually enter an absorbing state, but can
pass between transient states in the meantime, then it is referred to
as making up an absorbing Markov chain. The problem in Ottoline
Electronics can be modelled as such a chain.

In carrying out this modelling, the first step is to draw up the
partitioned stochastic matrix P. This is made up in part of those
elements Pij whose values are derived from the proportions, for
each process, of good production, defective production, reworked
production and production subject to looping. The proportions
relating to the transient states may be obtained directly from the
problem; the remainder of the Pu values are either one (where i =
j, for absorbing states) or zero . In detail, the partitioned stochastic
matrix P appears as follows:

Process Finished Discarded
A B C D product unit

A 0.03 0.90 0 0 0 0.07

B 0.04 0.05 0.86 0 0 0.05

C 0 0.07 0.04 0.82 0 0.07

D 0 0.02 0.04 0.03 0.88 0.03
----------------------_.,--------------------,

Finished 0 0 0 0 , 1 0,,
Discarded 0 0 0 0

,
0 1I

I

In the general case, there are taken to be n production processes
and m output states (so that the above matrix P may be taken to be
a special case with n = 4 and m = 2). For this general case, the P
matrix may be partitioned and relabelled as below:

n m

[
Q : R]p = ------:------
<f> : I,

n

m
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In this schematisation, the four submatrices serve the following
purposes:

1. The Q submatrix gives the transition probabilities among the n
production processes.

2. In the R submatrix, the non-zero elements indicate the probabi­
lities associated with movements from the production processes
(transient states) to the absorbing states .

3. The symbol I is used to represent an identity submatrix; within
the P matrix for Ottoline Electronics it shows that the states
represented by 'finished product' and by 'discarded unit' are
both absorbing states, and that it is not therefore possible to
pass from one of these states to the other.

4. <p is a null submatrix , showing that it is not possible to move from
any of the absorbing states to any of the transient states .

The fundamental matrix

The fundamental matrix F is defined by the equation:

F= (I - Q)-l (2.2)

Entries in the first row of this matrix show, for Ottoline Electro­
nics, the mean number of times a (RDA) unit entering Process A
can be expected to pass through each of Processes A-D before
leaving the manufacturing system , either as a finished product or
having been discarded . The second, third and fourth rows show
the equivalent mean number of passages through A-D for units
entering Processes B, C and D respectively. The calculation of F
proceeds as follows:

-1

1 0 0 0 0.03 0.90 0 0

F=
0 1 0 0 0.04 0.05 0.86 0

0 0 1 0 0 0.07 0.04 0.82

0 0 0 1 0 0.02 0.04 0.03
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1.077 1.115 1.035 0.875

0.05 1.202 1.116 0.943
F=

0.005 0.113 1.184 1.001

0.001 0.029 0.072 1.092

The interpretation of the first row of this matrix is that a (RDA)
unit starting in Process A will on average pass through Process A
1.077 times (with looping) , Process B 1.115 times , Process C 1.035
times and Process 0 0.875 times . Here, the relatively small
number for Process 0 is attributable to the discarding of defective
units at the ends of Processes A-C. A similar explanation may be
advanced for the remaining three rows of the matrix, where (for
example) the small number in the first column of the second row
arises from the fact that a unit starting in Process B can pass
through Process A only in the relatively rare event of the
reworking of that process being required.

To establish the volume of RDA units undergoing each process at
any given time, it is necessary to define a row vector k , which for
the general case of n processes will be of dimension 1 x n, This
vector contains the new elements started into production at the
beginning of each transfer period (which is here each shift). In the
problem, the information is given that 1250 RDA unit assembl ies
are introduced into Process A at the beginning of each shift. By
implication, it is understood that partially-completed RDA units
can enter Processes B, C and 0 only by transfer from prior
processes, and not from outside the manufacturing system by
purchase . The vector k is thus given by:

k= o ]

Here , k, refers to the input of RDA unit assemblies from outside
to Process A, k2 to their input to Process B, and so on. The
average steady-state in-process inventories are given by postmuiti-
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plying the k vector by the fundamental matrix, so that if these
inventories are given by v, then:

v = kF

By computation:

v = [1346.25 1393.75 1293 .75 1093.75]

(2.3)

The row vector v states that on average there will be 1346.25 RDA
units undergoing Process A , 1393.75 undergoing Process B,
1293.75 undergoing Process C, and 1093.75 undergoing Process
D.

Turning from the means to the standard deviations of the
in-process inventories, the first step in their computation is to
define a new 1 x n row vector g, such that:

n
g = k/ L k,

;=1
(2.4)

In this case, where RDA unit assemblies enter the manufacturing
system only at the beginning of Process A, g is given by:

g = [1 0 0 0]

Let a represent an n-element sum (column) vector, i.e. a column
vector in which each component is 1. Then it can be shown that the
upper bound of the variances for the steady-state inventory of
RDA units undergoing each process is given by:

(2.5)

hr equation (2.5), the subscript sq indicates that each element in
the matrix to which that subscript is assigned is squared. The
computation of Var. (v) proceeds as follows:

0.9991 -0.81 0 0

-0.0016 0.9975 -0.7396 0

1- o.; = 0 -0.0049 0.9984 -0.6724

0 -0.0004 -0.0016 0.9991
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1.002 0.817 0.606 0.408

0.002 1.008 0.747 0.503

(1- Qsq)-l = 0 0.005 1.007 0.677

0 0 0.002 1.002

gsq(1 - QSq) -1 = [1.002 0.817 0.606 0.408]

gF = [1.077 1.115 1.035 0.875]

ka[gF - gsq(1 - Qsq) -l] = 1250 [0.075 0.298 0.429 0.467]

Var. (v) ~ [93.75 372.5 536.25 583.75]

Taking square roots gives:

Sd. (v) ~ [9.68 19.30 23.16 24.16]

The upper limits on the standard deviations of the . steady-state
in-process inventories for Processes A-D are thus respectively
9.68, 19.30, 23.16 and 24.16 RDA units . It is interesting to note
that the standard deviations expressed as a percentage of the mean
number of RDA units undergoing each proce ss rise from 0.7 per
cent of the mean for Process A to 2.2 per cent of the mean for
Process D. This increase reflects the wider variation in inventories
arising from the larger number of 'routes' (involving loopings and
reworkings) by which RDA units could reach later processes,
relative to the smaller number of routes for units entering earlier
processes. A final point to note is that more detailed computations
suggest that the upper limit figures for standard deviations may be
no more than 2-3 per cent in excess of the true figures for standard
deviations .

Expected outputs ofgood and defective production

Having now dealt with part 1. of the Ottoline Electronics problem ,
part 2. can be despatched with relative brevity . The expected
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outputs of good and defective RDA units per shift are given by the
1 x 2 row vector y, where :

y = kFR (2.6)

By computation, and rounding to the nearest whole number:

y = [963 287]

The average output will thus be 963 finished RDA units per shift,
which together with the average of 287 defective units produced
per shift gives a total of 1250 units . This corresponds to the input
per shift of RDA unit assemblies into Process A, as would be
expected in the steady state.

Expected variable cost per shift

To find the expected variable cost per shift associated with each of
the processes, it is necessary to look at the first row of the F
matrix. This indicates the expected number of times that a (RDA)
unit starting Process A will pass through each of Processes A-D . If
these figures are multiplied by the number of RDA units per shift
entering Process A, the resulting products will represent the
number of expected units of activity undertaken in each of
Processes A-D. These expected activity levels may then in turn be
multiplied by the variable cost per unit of activity in each process,
to give rise to the expected variable cost per shift for each process.
The computation proceeds as follows:

Expected no. of Variable cost per Expected
Process units ofactivity unit variable cost

per shift

£ £
A 1346 .25 3.50 47p.87
B 1393.75 2.25 3135.94
C 1293 .75 4.40 5692 .50
D 1093.75 3.95 4320 .31

17860.62
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The expected units of activity for a process must be identical to its
steady-state in-process inventories, since each RDA unit that
undergoes a process must give rise to a unit of activity of that
process. It would thus have amounted to exactly the same thing if
the elements in the row vector v had each been multiplied by the
variable cost per unit for the process concerned.

Expected variable cost per assembly

If the fundamental matrix F is postmultiplied by the submatrix R,
then a 4 x 2 matrix B is obtained. This matrix gives in each of its
rows the probability that a (RDA) unit started in each of Processes
A-D respectively will turn out to be good or defective. In formal
terms:

B = FR (2.7)

Performing the computation for the Ottoline Electronics problem:

B=

0.770
0.830
0.881
0.961

0.230
0.170
0.119
0.039

From the first row of the B matrix, it may be seen that in order to
obtain a finished RDA unit from the Ottoline manufacturing
system, it is necessary on average to start 1/0.77 = 1.299 unit
assemblies in Process A. The first row of the F matrix shows the
number of expected units of activity to which a unit assembly
started in Process A would give rise, and the product of this and
the number of units started, when casted out, gives the expected
variable cost of producing a finished unit. In detail , the calculation
is as follows:
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Units Activity level Variable Total ex-
Process started per unit cost pected cost

(1) (2) (3) (1)x(2)x(3)

£ £
A 1.299 1.077 3.50 4.90
B 1.299 1.115 2.25 3.26
C 1.299 1.035 4.40 5.92
D 1.299 0.875 3.95 4.49

18.57

Standard deviations ofgood and defective output levels

Denoting the variance of output by Var. (y) , the formula for
deriving this variance is:

By computation:

(2.8)

gsq (I - Qsq) -I Rsq = [0.316
gB = [0.77

0.0103]
0.23]

From a previous calculation, ka = 1250. Putting these three
component together gives:

Var. (y) ~ [567.5 274.6]

Taking square roots to obtain the standard deviations:

Sd. (y) ~ [23.82 16.57]

The standard deviation of the output of finished RDA units per
shift is not more than 23.82, and the standard deviation of the
number of defective units discarded is not more than 16.57. As
with the analysis of part 1 of the problem, more detailed
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computations suggest that these upper limit figures for standard
deviations may be no more than 2-3 per cent in excess of the true
figures.

The above calculations show that an output level of 1000
finished RDA units per shift lies more than 1 standard deviation
above the expected output level. To achieve an average output
level of 1000 finished RDA units per shift, it would be nece ssary to
start 1000 x 1.299 = 1299 RDA unit assemblies in Process A per
shift, an increase of 49 assemblies per shift on the present input
level.

Economics of testsimplification

It is possible to phrase the issue raised by part 7. of the problem in
the following manner. Suppose the practice of reworking by
sending defective RDA units back to previous processes were to
be abandoned, and the defective units concerned were instead to
be thrown away. Would the extra costs associated with the need to
introduce more RDA unit assemblies in order to obtain an output
of 1000 finished units per shift exceed the cost savings of £600 per
shift arising from test simplification?

To examine this issue, it is necessary first to draw up the
partitioned stochastic matrix as it would appear without rework­
ing. Labelling this P', it appears as below :

0.07
0.09
0.14

o
o
o

o
0.86
0.04

0.90
0.05
o

0.03
o
o

I

o :
o :

I
0.82 :

o 0 0 0.03: 0.88 0.09
------------------------~------------

0000:10
0000:01

I
I

p' =

Inserting into equation (2.2) the Q submatrix values (from the
upper left-hand area of P') gives rise to a new fundamental matrix
F', as below:

F' =

1.031
o
o
o

0.977
1.053

o
o

0.875
0.943
1.042

o

0.740 1
0.797
0.881
1.031
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Then, applying equation (2.7) gives rise to:

B=F'R=

0.651
0.701
0.775
0.907

0.349
0.299
0.225
0.093

To obtain a finished RDA unit from the Ottoline manufactur­
ing system without reworking, it would be necessary to start
1/0.651 = 1.536 RDA unit assemblies into the system . The
expected variable cost of producing a finished unit would be given
as follows:

Units Activity level Variable Total ex-
Process started per unit cost peered cost

(1) (2) (3) (l)x(2)x(3)

£ £
A 1.536 1.031 3.50 5.54
B 1.536 0.977 2.25 3.38
C 1.536 0.875 4.40 5.91
D 1.536 0.740 3.95 4.49

19.32

The cost saving per shift from simplifying the tests and throwing
away RDA units with defects in them deriving from previous
processes must exceed 1000 £(19.32 - 18.57) = £750 for this
simplification to be economically justifiable. In fact the cost saving
available (of £600 per shift) falls well below this, so that the test
simplification should not be undertaken .

Economics of the 'zero defects' approach

Suppose that, by extensive expenditure of time and money on
quality control, a 'zero defects' regime were to be established, in
which all the RDA unit assemblies which entered Process A
ultimately emerged from Process D as finished RDA units, and
none were ever withdrawn from the manufacturing system as
being beyond repair. It would then be possible to draw up a new
version of the existing matrix Q, being conditional upon all of the
units of output being good. This new matrix will be labelled Q. It is
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obtained from equation (2.9) below. In this equation, H is a
diagonal matrix, that is a square matrix in which all the elements
are zero except those on the principal diagonal. The principal
diagonal elements correspond to the probabilities of RDA units
entering Processes A-D emerging as good production if they may
be sent back to previous processes for reworking. Formally, the
elements on the principal diagonal correspond to the elements bj l

in the B matrix immediately below equation (2.7) . Thus:

0.770 0 0 0

H=
0 0.830 0 0
0 0 0.881 0
0 0 0 0.961

Equation (2.9) may be written as follows :

Q=H- 1 QH (2.9)

Computation then yields:

lo.m 0.97 0 0

0= o'r
7 0.05 0.913 0

0.066 0.04 0.894
0.017 0.037 0.03

To interpret Q, it is necessary to place it in context within a new
conditional stochastic matrix F. This matrix resembles the original
stochastic matrix P in its partitioning, but it is conditional upon no
RDA units being discarded as defective. Consequently , it has no
'discarded unit' row or column, and consists only of Q together
with a row and a column for 'finished product' :

Process Finished
product

F=
A
B
C
o

Finished
product

ABC 0
0.03 0.97 0 0 0
0.037 0.05 0.913 0 0

o 0.066 0.04 0.894 0
o 0.017 0.037 0.03 I 0.916

------------------------------4-------
0000: 1
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From P, it is possible to construct a conditional fundamental
matrix by the same procedure as was used with the original
stochastic matrix P. That is, the conditional fundamental matrix F
is given by:

(2.10)

By computation , the matrix below is obtained:

1.077
0.046
0.004
0.001

1.201
1.201
0.106
0.025

1.185
1.185
1.185
0.066

1.092
1.092
1.092
1.092

A characteristic feature of the Fmatrix is that, in each column, the
elements above the principal diagonal and those on the principal
diagonal are all equal. This reflects the fact that whichever process
a (RDA) unit starts off in, and thus whichever row it initially
occupies, the number of times it will pass through the remaining
processes will on average be equal. Thus a unit starting off in
Process A will on average pass through Process B 1.201 times, and
so will a unit starting off in Process B. This follows from the fact
that no RDA units are now discarded at the end of Process A. A
similar effect holds for the processes prior to and including
Processes C and D, and arises from the same cause.

It is also worth noting that, compared with the F matrix, a
(RDA) unit started in Process A will now pass through Processes
B, C and D more often with the Fmatrix. For example, such a unit
will on average pass through Process D 1.092 times with the F
matrix , as compared with 0.875 times with the F matrix. This is a
consequence of the fact that under the Fmatrix all the units started
in Process A reach Process D, and none are discarded at the ends
of Processes A-C.

By reference to the analysis of part 6. of the problem, it may be
seen that in the absence of a zero defects system it would be
necessary to start 1 299 unit assemblies in Process A per shift in
order to obtain an average output of 1000 finished units per shift.
By definition, with a zero defects system it would be necessary to
start only 1000 unit assemblies per shift in Process A.

The difference between the number of units of activity required
with and without a zero defects system may be expressed by
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postmultiplying a row vector relating to the number of unit
assemblies started in Process A by the matrices F and F respective­
ly. In detail , the calculations are:

Units of activity without zero defects

[1299
= [1399

o 0
1448 1344

O]F
1137]

Units of activity with zero defects

[1000 0 0 O]F
= [1077 1201 1185 1092]

The cost savings per shift associated with moving to a zero defects
system may be obtained by costing out the differences between the
number of units of activity for a given output with and without
such a system, as follows:

Units ofactivity
saved by zero Variable cost Cost saving

Process defects per unit per shif t

£ £
A 322 3.50 1127
B 247 2.25 555.75
C 159 4.40 699.60
D 45 3.95 177.75

2560.10

This saving from the institution of zero defects represents over 14
per cent of the expected variable cost per shift for the production
of 1000 finished RDA units by existing technology. Though a zero
defects system may be very difficult to introduce , its effect on costs
would clearly be profound.



Credit
Management and

Markov Chains:
Partial Balance
Aging Method

3.1 Stryford Ltd

Stryford Ltd is a dealer in agricultural machinery, and in the
Spring of 1989 is facing the usual surge in demand from farmers,
associated with the improving weather. While this Spring selling
period is vital to Stryford , it brings with it problems in the
management of working capital. These problems are especially
acute in 1989since Stryford is operating near to its overdraft limit.
At the end of March, Stryford's management have been asked by
their bankers to provide a forecast of cash receipts for April, and it
is important that this forecast should be as accurate as possible. As
a basis for the forecast , Stryford's management have available data
on debts owed by their customers. Debts are classifiedon a partial
balance aging basis - that is by reference to the length of time that
has elapsed since a sales transaction created the debt. This data,
for the first three months of 1989, is shown on p. 28.

In making a forecast from this data, three additional pieces of
information will prove to be of value. They are as follows:

1. By trial and error procedures performed on a computer,
Stryford's management have found that the best forecasts are
obtained if a smoothing constant of 0.9 is applied to the most
recent stochastic matrix for debts .

2. The Credit Control Manager of Stryford Ltd says that, in her
experience , about 50 per cent of the debts falling into the '3-4

27
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months old' category in any given month are paid off in the
following month .

3. Stryford Ltd wrote off bad debts of £6 649 in February 1989 and
of £8211 in March 1989.

Partial balance aging data for 1989
Balances owing at dates below:

End of End of End of
Period over January February March
which debt owed £ £ £

Less than 1
month (state 0) 656369 1018682 1229197

'1-2 months
(state 1) 143984 76416 170510
2-3 months
(state 2) 70316 81580 43193
3-4 months
(state 3) 30605 38894 47947
Over 4 months
(state 4) 93884 87641 89191

Total owed 9951158 1303213 1580038

You are required to use Markov chain analysis to forecast cash
receipts from debtors for April 1989.

3.2 Analysis

Development ofa stochastic matrix

Within this problem, a unit of 1 pound owed may fall into anyone
of five transient states (numbered 0-4). corresponding to differing
periods of time since the debt concerned was created. There are
also two absorbing states, represented by debt paid (state P) or
debt written off as bad (state B) . Thus a 7 x 7 stochastic matrix
may be drawn up, which to be consistent with the literature on this
topic will be partitioned in the following manner:
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[~-l-b-]
In this schematisation, the definitions of the submatrices are
identical to those advanced previously in the analysis of the
Ottoline Electronics problem. However, the elements within each
of the submatrices are derived in a rather different manner, which
will now be explained. For the purposes of this explanation ,
January, February and March will be referred to respectively as
months 1, 2 and 3. The vector showing the actual partial balance
age structure of debts at the end of month j will be referred to as I j ,

and within Ij the kth element will be referred to as ij .k , with k = P,
B, 3,4,5 ,6, 7 corresponding respectively to states P, B, 0, 1,2,3
and 4. To give an example of this notation, 11 appears as:

11 = [0 0 656369 143984 70316 30605 93884]

To obtain the transition probabilities for insertion in the stochastic
matrix, it is necessary to note how many pounds go from state k in
month j to state k + 1 in month j + 1. The amount remaining , that
was in state k in month j but did not pass to state k + 1 in month j
+ I, is considered to be paid in month j . For k = 3 . .. 6, the
transition probability of payment tkP is given by:

(3.1)

Comparing the January and February aging data gives transition
probabilities for payment as follows for k = 3 .. . 5:

Probability of
k il.k iz.k+ 1 Paid payment tkP

£

3 656369 - 76416 = 579953
579953
656369 = 0.884

4 143984 - 81580 = 62404
62404

143984 = 0.433

5 70316 - 38894 = 31422
31422
70316 = 0.447
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The transition probabilities from states 0, 1 and 2 to payment are
respectively thus t3P = 0.884, t4P = 0.433 and tsp = 0.447. In
words, the probability that a given pound of debt in state 0 in
January 1989 would be paid during February 1989 was 0.884, and
so on. But since state 0 is a transient state , a pound in th at state
can only be paid or pass from state 0 to state 1. For a given pound,
the transition probability associated with moving from state 0 to
state 1 as between January and February 1989 is thus given by:

t34 = 1-0.884 = 0.116

In general , the transition probabilities for movements from one
state to another for k = 3 .. . 5 are given by:

(3 .2)

For k = 6, the information given by the credit control manager
indicates a transition probability of payment t6P = 0.5. Since a
pound in state 3 can only either move from there to state 4 or be
paid, it must follow that t6P + t67 = 1, and hence that t67 = 0.5.

It is next necessary to compute the transition probabilities from
state 4 (that is, from k = 7) . This is trickier , because of the
existence of three , rather than two, possibilities. They are as
follows:

1. There may be a transition from state 4 to pa yment, with a
transition probability of t7p .

2. There may be a transition from state 4 to bad debt , with a
transition probability of t78.

3. There may be a transition from state 4 to itself, in the sense that
a pound of debt may remain in state 4 from one month to the
next.
This is because state 4 is a limiting state, covering all debt more
than 4 months old, which also serves to explain why the
amounts in state 4 in month j are always in excess of the
amounts in state 3 in month j - 1.
While state 4 is limiting, it is not absorbing - all pounds must
ultimately pass from it either to be paid or to enter into bad
debt.
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Hence only P and B are absorbing states.

The approach to computing hp may be expressed in words as
follows :

Amount paid from state 4 = (Opening balance in state 4 +
amount assumed to enter state 4) - (Closing balance in state
4 + amount leaving state 4 as bad debt)

The transition probability of payment is given by the amount paid
from state 4 divided by the opening balance in that state. Conse­
quently, it may be expressed symbolically in these terms:

(3.3)

A numerical example for equation (3.3), using the data for
January and February 1989, is given below:

hp = [93884 + (0.5) (30605) - 87641-6649]/93884
0.1587

Using a similar line of argument, the transition probability hB is
given by:

(3.4)

In numerical terms, for the January and February data t7B =
0.0708 . Since a pound in state 4 has only three possibilities of
movement, and the probabilities for two of them have been
calculated, the remaining transition probability can be obtained by
elimination as follows:

(3.5)

For the January and February data, t77 = 0.7705. Given that each
row of a stochastic matrix must sum to 1, then the computations
performed so far are sufficient to construct the matrix for the
January and February data, which will be labelled Tz. The matrix
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T2 appears as follows, with its rows and columns labelled by
reference to the states they represent:

P
B
a
1
2
3
4

P B 01 2 3 4
1 0:0 a a a 0

I

a 1 :0 a a a 0
--------------~--- -----------------------------

0.884 a : a 0.116 a a a
0.433 a ! a a 0.567 a a
0.447 a : a a a 0.553 a
0.5 0: a a a a 0.5

I

0.1587 0.0708 I a a a 0 0.7705

An identical series of calculations to the one carried out above
may be applied to the data for February and March, to obtain a
further stochastic matrix T"}o, as below :

P B a 1 2 3 4
P 1 a a a a a 0
B a 1 a a a a a-------- - ------ ------- - ------------- -- - - -------
a 0.833 a a 0.167 a a a
1 0.435 a a a 0.565 a a
2 0.412 a a a a 0.588 0
3 0.5 a a a a a 0.5
4 0.111 0.094 a a a a 0.795

Having obtained two stochastic matrices representing the transi­
tion probabilities for the January-March period, the question
which then arises is one of how to combine their information in
deriving an estimate of the stochastic matrix for March-April. This
may be done in a variety of ways, but the approach which has been
specifically advocated is one involving exponential weighting.

Combining matrices by exponential weighting

To explain this approach, it is necessary to define two new terms as
follows. Let:

a represent the smoothing constant to be applied to the
stochastic matrices . From note 1 within the problem, a =
0.9 in this case
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Aj represent the 'average' (exponentially smoothed) matrix
for month j

When a month ends (which call monthj) , then the average matrix
for the preceding month , Aj _ l , may be updated by reference to the
following formula :

(3.6)

From this approach , it would appear that obtaining the March­
April average matrix A] must involve updating Az by reference to
T]. But there is not sufficient data in the problem from which to
compute A z, so that Tz must serve as a surrogate for A z, hence in
this case :

A] = 0.9T] + O.ITz

Performing this computation gives rise to a matrix ..4], as follows:

P
B
o
1
2
3
4

P B 01 2 3 4
1 0:0 0 0 0 0
o 1 10 0 0 0 0

--------------~---------------------------------

0.838 0 : 0 0.162 0 0 0
0.435 0 ! 0 0 0.565 0 0
0.415 0 : 0 0 0 0.585 0
0.5 0: 0 0 0 0 0.5
0.1158 0.0917 ! 0 0 0 0 0.7926

From its third row downwards, the P column of A3 represents the
transition probabilities for a pound from each of states G-4 to
payment. If the transition probabilities are premultiplied by the
vector 1] showing the partial balance age structure of debts at the
end of March, then a vector £4 is obtained showing the estimated
aging of debtor balances including payments and bad debts. This
appears as below :

£4 = I] A]
= [1156466 8179 0 199130 96338 25268 94666]

The £4 vector may be interpreted as supplying a forecast that
£1156466 will be received from debtors in April, while £8179
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worth of debts will be declared bad . Next in £4 there is a zero, to
indicate that this forecasting system makes no prediction about the
volume of debts in state 0 at the end of April. The remaining
figures in £4 relate respectively to the forecast debtor balances in
states 1, 2, 3 and 4. In summary, what the £4 vector represents is a
forecast of the disposition of the balances in the debtor accounts at
the end of March as they will appear at the end of April. Subject to
rounding error, the total of the amounts in £4 is thus equal to the
total of the amounts in /3'

A final point to note is that the method outlined here can be
used to create forecasts for longer than a month ahead. For
example, letting the amount of credit sales budgeted for April be
x, then a vector /4 can be formed from £4, as follows:

/4 = [0 0 x 199130 96338 25268 94666]

Then taking .43 as representing the best available estimate of
transition probabilities for the April-May period, a forecast of
May's cash receipts can be read out from the vector /4 .43 , This
process can be continued as far into the future as is desired.



Credit
Management and

Markov Chains:
Modified Total
Balance Aging Method

4.1 Michelsky Ltd

Michelsky Ltd is a wholesale jewellers which permits retail jewel­
lers to purchase from it on credit. At the end of March 1989 it had
twelve credit customers, whose accounts stood as follows, with all
figures in thousands of pounds:

Owed from Owed from
Customer Owedfrom February invoices in or

account no. March invoices invoices before January

1 9 14
2 8
3 26 12
4 22
5 18
6 31 5
7 11
8 9 22
9 16

10 14 4
11 5 21
12 9

35
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The same accounts stood as follows at the end of April 1989:

Owed from
Customer Owedfrom Owedfrom invoices in or

account no. April invoices March invoices before February

1 12 9
2 8
3 17 26
4 11 5
5 21
6 9 22
7
8 14 9
9 12

10 8 14 4
11 17 5 9
12 4 9

The managers of Michelsky believe that all of the amounts owed at
the end of April 1989will ultimately be paid, with the exception of
£8000 owed on Account 2. It was decided during April that this
amount represented a bad debt. Excluding this bad debt, the total
amounts owed at the end of April were as follows:

Owed from

April invoices
March invoices
Invoices in or before

February

£

125000
72000

40000

237000

Using this data, you are required:

1. To compute the expected value of receipts from the £237 000
owed at the end of April.

2. To calculate the provision for bad debts that should be made in
respect of the £237000 owed, upon the assumption that this
amount should be equal to the expected value of bad debts
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within this £237 000 plus a safety marg in of two standard
deviations from this expected value.

3. To work out the present value of receipts from the £237 000
given a rate of discount of 2 per cent per month.

4. To estimate the size of the investment in debtors that Michelsky
Ltd will have in the steady state if it acquires new debts at a
constant rate of £150 000 per month.

4.2 Analysis

Modified total balance aging

In total balance aging, the age of a customer account is defined to
be the age of its oldest unpaid invoice . To illustrate this concept in
a concise manner, some terminology must first be defined. Call the
end of March 1989 time t, and call the end of April 1989time t + 1.
In each case, refer to the month just completed as age category 1,
so that for time t March 1989 is age category 1 and for time t + 1
April 1989 is age category 1.

Applying this terminology to Customer Account 1 at time t, this
account is then said to be of age 2, because its oldest unpaid
invoice relates to £14 000 of transactions in February, which at
time t constitutes age category 2. In the same way,Customer
Account 4 at time t + 1 is said to be of age 3, since its oldest unpaid
invoice relates to £5 000 of transactions in or before February,
which at t + 1 is age category 3.

Summing the amounts in each age category at time t gives rise to
the following results. There is a total of £27000 in age category 1,
be ing the sum of the balances in Accounts 5 and 12. The accounts
which fall into age category 2 are 1, 4, 7, 8, 9, 10 and 11, with a
total of £147 000 in all of them together. Finally , in age category 3
are Accounts 2, 3 and 6, with a total balance of £82000.

Two extra categories must now be defined. Category a is taken
to represent 'amount paid' and category 4 to represent 'amount
declared bad debt '. Then account movements may be described as
follows . Let:

Bjk represent the amount of the balance at time t that comes
from category j at time t and goes to category k at time t
+1.
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To illustrate this variable, consider Customer Account 1. Of the
£23000 owed in respect of this account at time t, £14000 is paid by
t + 1 (and so passes into age category 0) and £9000 remains
outstanding for a further month (and so passes into age category
2). Expressing amounts in thousands of pounds, B20 = 14 and B22

= 9.
By way of comparison, consider Customer Account 10. Like

Account 1, this is in age category 2 at period t, so that j = 2. There
are no payments at all in respect of this account during April, so
that the account as a whole moves into age category 3 by the end of
April. Since the amount owed in respect of this account at time t
was £18000, for this account B23 = 18.

The contrast between Accounts 1 and 10 exposes a fundamental
point. If there is no payment of amounts outstanding on an
account between time t and time t + 1, the (single) B value for that
account has subscripts showing the total balance age category it
occupied at time t and then at time t + 1. But if there is a payment
of part of the balance on the account (as with Customer Account
1) then that payment gives rise to a separate B value, which in this
case is B20 = 14. The operation of this modification of strict total
balance aging is illustrated below for each of the twelve accounts:

From age Account To category
category no . 0 4 1 2 3 B values

1 5 18 - B IO = 18
12 9 B 12 = 9

1 14 - 9 B20 = 14; B22 = 9
4 17 - 5 B20= 17;B23=5

7 11 - B20 = 11
2 8 22 - 9 B20 = 22; B22 = 9

9 16 - B20 = 16
10 18 B23 = 18
11 12 - 14 B20 = 12; B23 = 14

2 8 B34 = 8
3 3 12 - - 26 - B30 = 12; B32 = 26

6 14 - - 22 B30 = 14; B33 = 22
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Let Pjk represent the transinon probability that a pound in
category j at time t will pass to category k at time t + 1. Then:

4

Pjk = B ik / L Bj s
5=0

(4.1)

These transition probabilities make up the Q and R submatrices of
a partitioned stochastic matrix P. The form of the partitioning is
exactly as shown in the analysis of the Stryford Ltd problem, and
the complete stochastic matrix, with its rows and columns labelled
with the categories to which they refer, appears as below:

0 4 1 2 3
0 1 0 0 0 0
4 0 1 I 0 0 0

--------------~-------------------P= 1 0.667 0
I

0 0.333 0I
I

2 0.626 0 I 0 0.122 0.252I

3 0.317 0.098 I 0 0.317 0.268!

Expected value ofreceipts

The first step in computing the expected value of receipts is to
evaluate the fundamental matrix F, which is given by:

F= (/- Q) -I (4.2)

In equation (4.2), Q refers to the submatrix in the bottom
right-hand section of P, and I is a 3 x 3 identity matrix .
Computation yields:

F= [~
0.4332 0.1491 ]
1.3006 0.4478
0.5633 1.5601

The bottom left-hand section of P constitutes the submatrix R. If F
is postmultiplied by R, the 3 x 2 matrix which results contains
within it the probabilities that a pound of debt initially in each of
age categories 1, 2 and 3 will ultimately reach each of the
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absorbing states (that is, will ultimately be paid or be declared
bad). Postmultiplication gives rise to :

[

0.985
FR = 0.956

0.847

0.015 ]
0.044
0.153

The first row of this matrix indicates that a pound of debt in age
category 1 (being part of a debt less than 1 month old) has a 0.985
probability of eventually being paid and a 0.015 probability of
eventually being declared a bad debt. Similar interpretations hold
for a pound within a debt one 1-2 months old and a pound within a
debt more than 2 months old , in the second and third rows
respectively of the FR matrix. This probabilistic data can be used
to predict the amounts ultimately received and lost from a given
debt structure, with the definition of an additional term as follows.
Let:

k represent a vector of the debts outstanding, classified by
age category

For the data in this problem:

k = [125000 72000 40000]

By postmultiplying k by FR, it is possible to estimate how much of
this £237000 of debt will ultimately be collected and how much will
be lost in the form of bad debt. The computation is:

kFR = [225837 11163]

From these figures, the expected value of receipts is £225 837, and
the remaining £11163 constitutes the expected value of bad debts.
However, to set the provision for bad debts equal to their expected
value might well be regarded as insufficiently prudent, hence the
need to calculate their standard deviation, which is done below.
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Standard deviation ofbad debts

As a preliminary to this calculation, two new terms need to be
defined, as follows. Let:

g represent a column unit vector with as many elements as
are contained in k ; so that here g is a 3 x 1 vector

c represent a row vector indicating the probability that a
given pound of debt falls into a particular age category

For this problem, an element c,within this latter vector is defined by
equation (4.3) below:

c, = k, / ± k,
;=\

(4.3)

The variance of expected value for receipts and bad debts is given
by V, where:

V = kg [cFR - (cFR)sq] (4.4)

The subscript sq indicates that each element in the matrix to which
that subscript is assigned is squared. By computation:

c = [0.5274 0.3038 0.1688]
cFR= [0.9529 0.0471]
V = 237000 [0.0449 0.0449]

= [10641 10641]

These figures represent respectively the variances of receipts and
of bad debts , so that the standard deviation of bad debts is
£103.15. If the provision for bad debts is to have a safety margin of
two standard deviations, then it should be set at (just under)
£11370.
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Present value ofreceipts

Let the discount rate per month be v, so that in this problem v =
0.02. Then define d such that:

d = 1/(1 + v) (4.5)

Here, d = 0.9804. If the present value vector for receipts and bad
debts is represented by Ypv, then:

YP" = k(I - dQ)-1 R (4.6)

Since all the terms on the right-hand side of equation (4.6) have
already been defined, this involves only a simple matter of
computation, yielding:

Yp l' = [222902 10 805]

The present value of the expected receipts of £225837 , given a
discount rate of 2 per cent per month, is £222902. This computa­
tion supplies, in addition , the present value of expected bad debts,
which is £10805.

Steady-state investment in debtors

Let the vector p represent the amount of new debt entering each
age category per month , so that :

p = [150000 a 0]

Then the vector representing debtor balances in the steady state is
given by k;..,., where :

k,·s = pF

This calculation, for Michelsky, produces:

kss = [150000 64980 22365]

(4.7)
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The sum of the elements in the kss vector is £237345. This figure
therefore represents an estimate of Michelsky 's investment in
debtors in the steady state , with an acquisition rate for new debts
of £150 000 per month. Within the overall £237345 figure, amounts
are estimated to fall into age categories corresponding to elements
within kss above , so that for example £64980 worth of debt would
be 1-2 months old.

It is worth noting, however , that steady-state estimates are very
dependent upon the assumption that the transition probabilities
(the values in the Rand Q submatrices) remain constant over
time. An empirical study carried out by Barkman (listed in
Appendix 2) has cast considerable doubt upon the validity of this
assumption.



Linear
Programming
and Decisions
on Internal v.

External Purchases
of Services

5.1 Knockshinnock Mines Ltd

Knockshinnock Mines Ltd is concerned with the open-cast mining
of barytes in a remote area of the Cairngorm Mountains in
Scotland. Because of its remoteness, the Knockshinnock site
currently has to provide all of its own services. Of particular
importance in this context are the pumping of water, the genera­
tion of electricity and the production of steam and of compressed
air. These activities are carried out in four service departments
numbered SI (water) , S2 (steam) , S3 (electricity) and S4 (com­
pressed air). The amounts and proportions of services consumed
in the different departments may be tabulated as follows, with all
figures in thousands of units:

To 5. 52 53 54 Mine Total

From

51
0 2115 470 0 2115 4700

45% 10% 45% (I)

52
160 0 1920 640 480 3200
5% 60% 20% 15% (m3)

53
3710 1060 0 2650 3180 10600
35% 10% 25% 30% (KWH)

54
765 255 510 0 3570 5100

15% 5% 10% 70% (m3)

45
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During 1988, the variable operating costs incurred in the service
departments were as follows:

Water
Steam
Electricity
Compressed air

£
112800

1280000
1590000

510000

1. At the end of 1988, the North of Scotland Electricity Board
approached Knockshinnock Mines with a proposal to supply
electricity at £0.25 per kilowatt hour. The machinery which
Knockshinnock uses to produce electricity is leased, and the
lease is just about to come up for renewal, so that a decision by
Knockshinnock to cease to produce its own electricity can be
evaluated solely in terms of its impact on variable operating
costs. You are required to advise Knockshinnock as to whether
it should accept the Electricity Board's offer.

2. Since the North of Scotland Electricity Board uses hydro­
electric generating plant, it could offer water supplies as well as
electricity to Knockshinnock Mines. Suppose , then, that at the
end of 1988 it were to offer to supply electricity at £0.25 per
kilowatt hour as before, or water at £0.03 per litre, or both
these services together. Still carrying out the evaluation solely
in terms of the impact on variable operating costs, you are
required to advise Knockshinnock on the appropriate response
to this further offer .
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5.2 Analysis

OtTer to supply electricity

This problem is concerned with the make-or-buy decision for a
service, where services are provided by one service department to
another as well as by service departments to the one operating
department, which is the mine. The 1988 variable operating costs
per unit of service provided for each of departments SI - $4 work
out as follows :

Water (SI) costs £0.024 per litre (I)
Steam (S2) costs £0.40 per cubic metre (nr') .
Electricity (S3) costs £0.15 per kilowatt hour (KWH)
Compressed air (S4) costs £0.10 per cubic metre (rrr').

By comparison with the £0.15 per kilowatt hour figure above, the
offer by the North of Scotland Electricity Board to supply electric­
ity at £0.25 per kilowatt hour appears a poor one . However, this
simple comparison is grossly misleading. An obvious point is that
electricity generation involves the consumption of water , of com­
pressed air and especially of steam. If electricity generation were
to be discontinued, then total variable costs of production for
water, compressed air and steam would all decline. These are
direct effects, but there are also indirect effects to be taken into
account. S2 (steam) supplies 60 per cent of its services to S3
(electricity), but SI (water) in turn supplies 45 per cent of its
services to S2 (steam). Discontinuing electricity generation would
thus not onl y reduce the demand for water directly by 470000
litres per annum (10 per cent of water production) , but would
further reduce the demand for water indirectly as a result of the
smaller requirement for water to be used in steam generation.

The other factor which complicates the issue is that in order to
provide services to electricity generation, the other service depart­
ments themselves require to consume electricity. If the services of
SI ' S2 and S4 were to be required in smaller volume , their
consumption of electricity would decline correspondingly. Hence
Knockshinnock would not require to purchase from the Electricity
Board the whole of the 10 600 000 kilowatt hours per annum that
they currently consume, but some smaller figure reflecting the
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lower consumption of electricity by 5 h 52 and 54 arising because
they no longer need to provide services to S3 for electricity
generation.

In this problem, the objective is to minimise the total amount
per annum spent on the four service centres and on the electricity
(if any) bought from the Board. The amount spent is the product
of the cost per unit of service and the number of service units
produced (or purchased) per annum. Denoting the output per
annum of each of the four service centres SI - S4respectively by XI
- X 4 , and denoting the number of kilowatt hours per annum
bought from the Board as Xs, an objective function C may be
drawn up using the unit costs calculated above. This function
appears as follows:

C = 0.024X\ + OAX2 + 0.15X3 + 0.IX4 + 0.25Xs

The minimisation of C is subject to constraints specifying the
amount of each of the services which must be provided to the
mine, and the resulting minimisation problem can be dealt with by
linear programming. To derive the constraints, it is necessary first
to work out the physical quantities of water, steam, electricity and
compressed air required to produce a unit of output for each of the
service centres S.. S2' S3 and 54 in turn. These quantities are
referred to as 'technological coefficients' and may be tabulated as
follows:

To produce Requires

II of water in 0.034m3of 0.789 KWH of 0.163m3of com-
SI steam from S2 electricity from pressed air from

S3 S4
1m3of steam 0.661 I of water 0.331 KWH of 0.080m3of com-
in S2 from SI electricity from pressed air from

S3 54
1 KWH of 0.0441 of water 0.181m3of 0.048m3of com-
electricity in S3 from SI steam from S2 pressed air from

S4
1m3of com- 0.125m3of 0.520 KWH of
pressed air in steam from 52 electricity from
S4 S3
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The above figures are obtained by dividing the inputs to service
centres by their outputs. S) thus consumes 160000m3 of steam to
produce 4700 000 litres of water , so that each litre of water
produced must involve the consumption of 0.034m3 of steam.

Each service centre provides an input to the mine , so that there
must be as many constraints describing the volume of services
provided to the mine as there are service centres . Since the
requirements of the mine are absolute values (not maxima or
minima), each constraint must take the form of an equality. If, for
example, water were not required by any other service centre ,
then the constraint on water supply to the mine would simply take
the form XI = 2115000. But reference to the technological
coefficients shows that every cubic metre of steam produced (every
X 2) requires 0.661X) and every kilowatt hour of electricity (every
X 3 ) requires 0.044X l . The amount of water that has to be
produced thus depends on the values that X2 and X3 take in the
optimal solution , so that the constraint on water supply must take
the form:

Xl - 0.661X2 - 0.044X3 + OX4 + OXs = 2115000 (5.1)

The other constraints are derived in exactly the same way, except
for the constraint relating to electricity supply. The mine needs
3180000 kilowatt hours, which it may obtain either from Knock­
shinnock's own generator or from the Electricity Board. If none of
the service centres required electricity, the constraint would take
the form that the sum of the internally-generated kilowatt hours
and those supplied by the Board must equal the mine's require­
ments, so that the constraint would appear as X 3 + Xs = 3180000.
Putting into this constraint the requirements of the other service
centres gives rise to constraint (5.3) in the listing of the remaining
constraints shown below:

-0.034X) + X 2 - 0.181X3 - 0.125X4 + OXs = 480000 (5.2)
-0.789XI - 0.331X2 + X 3 - 0.520X4 + X s = 3180000 (5.3)
-0.163Xl - 0.080X2 - 0.048X3 + X 4 + OXs = 3570000 (5.4)
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The solution to the problem of minimising C subject to constraints
(5 .1) - (504) above is as follows:

XI = 2836411; X 2 = 1091394; X 3 = 0; X 4 = 4119647; Xs =
7921396

This solution involves a cost per annum of £2 896 946, which is a
saving of £595854 per annum over the cost of providing all services
(including electricity) internally. Although purchasing 7921 396
kilowatt hours of electricity from the Board is more expensive than
producing 10 600 000 kilowatt hours of electricity internally, the
purchase of electricity externally so far reduces Knockshinnock's
requirements for water , steam and compressed air as to make it an
economic proposition.

Offer to supply electricity and water

It is a relatively simple matter to incorporate within the linear
programming formulation above the offer by the Board to supply
water as well as electricity. A new variable (X6 ) is required ,
representing the number of litres of water bought from the Board.
This enters the objective function C with a coefficient representing
the £0.03 cost per litre, and enters constraint (5 .1) on water supply
just as Xs entered constraint (5.3) on electricity supply. The
reformulated problem appears as below:

Minimise C = 0.024X1 + OAX2 + 0 .15X3 + 0.lX4 + 0.25Xs
+ 0.03X6

subject to:

X - 0.661X2 - 0.044X3 + OX4 + OXs + X 6 = 2115000
(5.1)

-0.034X) + X 2 - 0.181X3 - 0.125X4 + OXs + OX6 = 480000
(5.2)

-0.789X1 - 0.331X2 + X 3 - 0.520X4 + Xs + OX6 = 3180000
(5.3)

-0.163X1 - 0.080X2 - 0.048X3 + X 4 + OXs + OX6 = 3570000
(504)
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The solut ion to this problem involves a cost per annum of
£2 166979, with values of the variables as follows:

XI = 0; X 2 = 935606; X 3 = 0; X 4 = 3644848;
Xs = 5385007; X 6 = 2733435

Although buying 2733435 litres per annum of water from the
Board increases the total water bill from £68074 (with internal
production) to £82003, the overall effect of purchasing water from
the Board is to diminish cost by almost £730000 per annum. This
very large saving arises predominantly because 35 per cent of the
electricity consumed on site is used in pumping water, and
electricity is the most expensive of the services. It is interesting to
note that it is in fact against the Board 's interests to supply water
to the Knockshinnock site, in that it loses far more revenue from
diminished electricity consumption that it gains from sales of
water. However, unless the Board could gain access to informa­
tion about the pattern of electricity consumption on the Knock­
shinnock site prior to entering into a commitment to supply water
to that site , it would be unable to avoid acting contrary to its own
interests.



Linear
Programming,

Opportunity
Losses and ex post

Budgeting

6.1 AraquePerfumes Ltd

Araque Perfumes Ltd produces two perfumes, called Fleur and
Jasmin. Each of these products requires four raw materials (P, Q,
Rand S), and passes through two processes (A and B) . Denote the
production (in litres) of Fleur as XI and of Jasmin as X 2 • The
following data then indicates the requirement for process time and
for raw material input per litre of each product produced. It also
indicates planned variable costs, together with the amount of
process time and the volume of each raw material planned to be
available during March 1989:

Planned requirements per litre of product

52

Process

A
B

Material

P
Q
R
S

Fleur
hr
1.6
0.8

I
3.2
7.2
3.2
2.4

Jasmin
hr
1.1
1.8

I
2.2
8.7
4.7
2.9
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Planned resource cost and availability
(March 1989)

Resource availability Variable cost

Process
A
B

Material
p

Q
R
S

hr £ per hr
8800 5

10000 10

I £ per I
25000 1
50000 2
30000 3
20000 1.50

Fleur sells for £50.80 per litre and Jasmin sells for £63.55. During
March 1989,4250 litres of Fleur were produced but no Jasmin was
produced at all, and a contribution of £44200 was earned. Actual
variable costs during March 1989, and the actual availability of
process time and of raw materials, may be tabulated as follows:

Actual resource cost and availability
(March 1989)

Resource availability Variable cost

Process
A
B

Material
p

Q
R
S

hr
6800
6000

I
17500
40000
18000
14000

£ per hr
5

10

£ per I
1
2
1
1.50

All of the differences between planned and actual resource cost
and availability during March 1989 arose for reasons outside the
control of Araque 's management :

You are required:

1. To use traditional cost variance analysis in computing:
(a) The variance attributable to sales volume and sales mix

together
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(b) The variance jointly attributable to sales prices, to the
prices of variable inputs and to efficiency in the usage of
these inputs.

2. To use ex post budgeting in computing the forecast variance
and the opportunity cost variance, breaking each of these down
into:

(a) The portion of the variance attributable to volume and
mix changes

(b) The portion of the variance attributable to price and
efficiency changes.

3. The ex post optimising model for March 1989 may be used as
the ex ante optimising model for April. Conditions in April
proved to be the same as those actually prevailing in March,
with three exceptions. First, for reasons over which Araque's
management exercised no influence, they could only purchase
Material R at £1 per litre during the first half of April; in the
second half it cost £3 per litre . Second, throughout April there
was a technical problem in applying Process B to the produc­
tion of Fleur, resulting in each litre of Fleur requiring 0.9 hours
to go through Process B instead of 0.8 hours. This technical
problem arose from a design flaw for which Araque's manage­
ment could not be blamed. However, the third deviation from
plan in April was caused by an avoidable error in product
specification, which caused the consumption of Material P to
rise from 3.2 litres to 3.8 litres per litre of Fleur produced.

During April, Araque carried out production at a constant
rate and produced 3400 litres of Fleur and 800 litres of Jasmin ,
earning a contribution of £24400. You are required to perform
the same analysis as under 2(a) and 2(b) above for April 1989.
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6.2 Analysis

Introduction

Before addressing the facts relating to Araque Perfumes, some
preliminaries are required to establ ish fundamental concepts and
terminology. Consider a very simple linear programming problem,
in which the objective is to find the optimal mix of products XI and
Xl to be produced in a budget period, with no opening or closing
inventories of either product. The contribution margins per unit
for XI and Xl are respectively Cl and Cl, and both products are
manufactured in a single department, which has b hours of
manufacturing time available within the budget period. Product
XI uses up a ll hours of manufacturing time per unit produced, and
product Xl uses up all hours. With the addition of a slack variable
X 3 to convert the inequality constraint on manufacturing time to
an equality, this problem may be formulated as follows:

Maximise CIX1 + ClXl + OX3

Subject to: all Xl + all Xl + X3 = b

To compress the notation let:

e = [Cl Cl 0]
X T = [Xl x, X 3]

and A = [all a\2 1]

Then the problem appears as:

Maximise ex subject to AX = b

Expressing the problem in this form focuses attention on the
three data inputs A, band C. It is possible to set out to solve this
problem at two different times , as below.

1. Before the budget period commences, the optimal solution can
be worked out based upon preperiod knowledge. The data
inputs for this ex ante problem will be distinguished by a
superscripts, so that they will appear as A a

, b" and C", and the
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outputs of products in the optimum ex ante plan will appear
correspondingly as XU.

2. After the budget period is over, the revised knowledge of A, b
and C gained during it can be used to work out what it would
have been optimal to do within the period if perfect knowledge
had been available of the conditions that were going to prevail
during it. The data inputs for this ex post problem will be
represented as AP, bP and CP , and the outputs of this ex post
problem will be represented as )(P.

The inputs to the problem actually observed during the period will
be represented as AO, b" and CO. If, for example , CO = CP, this
signifies that the contribution margins actually obtained were the
best that could have been obtained , so that any deviations of
actual margins CO from margins in the ex ante plan CO must be
regarded as having arisen for reasons outside the management's
control. Conversely, CO < CP implies some controllable shortfall
of contribution margins actually obtained below those which could
have been obtained had the firm acted optimally with perfect
hindsight. To complete the terminology, the amounts of products
XI and X 2 actually produced during the budget period will be
denoted as XU .

Traditional variance analysis

In traditional variance analysis, the ex ante plan is compared
against the actual outcome, without considering the ex post
optimum plan at all. The only adjustment made to the ex ante plan
in traditional variance analysis is to adjust the level of budgeted
expenditure to the level of production actually achieved, in the
process known as flexible budgeting. Representing the budgeted
contribution with flexible budgeting as CO XU, an overview of
traditional variance analysis can be given as follows:

Here , C'XU and COXU represent respectively contribution in the ex
ante plan and contribution actually achieved. The first term on the
right, C'XU - COXU, represents the sum of the sales volume and
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sales mix variances, shortened hereafter to the 'volume and mix
variance' . The second term on the right , C'xu - COXU, represents
the sum of the sales price variances and the variances relating to
the price and efficiency of usage of variable inputs. This will be
labelled hereafter the 'price and efficiency variance' .

The computation of these variances may now be illustrated by
reference to the Araque Perfumes problem. Working out con­
tribution per litre figures for Fleur and Jasmin in March on an ex
ante basis (using expected costs) gives rise to an objective function
as follows:

Maximise 4X( + 2X2

This maximisation is subject to six constraints relating to the
availability of process time and of raw materials :

1.6X1 + 1.1X2 ~ 8800
0.8XI + 1.8X2 ~ 10 000
3.2X( + 2.2X2 ~ 25000
7.2X( + 8.7X2 ~ 50000
3.2X( + 4.7X2 ~ 30000
2.4X( + 2.9X2 ~ 20000

(1.1)
(1.2)
(1.3)
(1.4)
(1.5)
(1.6)

Solving this problem yields an ex ante optimum of Xf = 5 500, X~
= O. However, in March 1989, Material R turned out to cost only
£1 per litre, thus increasing the available contribution margin to
£10.40 per litre of Fleur (XI) and £11.40 per litre of Jasmin (X2) .

Araque produced in March an amount Xl = 4250, X~ = 0, to earn
a contribution of 4 250 (£10.40) = £44200, as compared with the ex
ante planned contribution of 5500 (£4) = £22000. Carrying out
traditional variance analysis gives rise to the following tabulation,
represented in a columnar format in which the symbols making up
each expression are shown on the left-hand side and the figures
corresponding to each expression for this problem are shown on
the right-hand side :

C'Xa-COXU =
(C' XO - C' XO) +
(C'XU - CO XU)

£
22000 - 44200 =

[22000 - (4) (4250] +
[(4) (4250) - 44200]
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Computation then yields the following result :

Volume and mix variance
Price and efficiency variance

Total variance

Ex post variance analysis

£
5000U

27200F

22200F

(unfavourable)
(favourable)

(favourable)

A very much more sophisticated analysis of the difference between
the ex ante optimum plan and the actual outcome can be obtained
if the ex post optimum plan is also considered, to give a breakdown
as follows:

The first of the variances on the right-hand side, CU Xu - CP X" ,
represents the difference between planned and ex post contribu­
tion , and in doing so indicates roughly the accuracy of the
forecasting process contained in the budget. It may thus be
referred to as the 'forecast variance' . The second variance, OJ
X" - CO X" , represents the difference between what , with hind­
sight, would have been the optimum contribution, and the con­
tribution actually achieved. As such, it measures the opportunity
cost of failing to use the firm's resources in the way which would
have turned out to maximise contribution, and it may therefore be
referred to as the 'opportunity cost variance' .

The distinction between the 'volume and mix variance' and the
'price and efficiency variance' noted above may be applied to ex
post variance analysis to yield the further subdivision of variances
tabulated below:

C'xu-CUxo=
[a(XU - X") +

Total variance =
Volume and mix forecast

variance +



(C" - CP) XU] +

[CP (xP - XO) +

(CP - CO) XO]
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Price and efficiency forecast
variance +

Volume and mix opportunity
cost variance +

Price and efficiency opportunity
cost variance

The computation and interpretation of these variances may best be
illustrated by a numerical example. Given the resource availabili­
ties and variable costs that actually prevailed during March 1989,
the best performance attainable by Araque Perfumes (the one
yielding the largest contribution) is given by the solution to the
following problem:

Maximise lOAX) + 11.4X2

Subject to :

1.6X) + 1.1X2 ~ 6800
0.8X) + 1.8X2 ~ 6000
3.2X) + 2.2X2 ~ 17500
7.2X] + 8.7X2 ~ 40000
3.2X1 + 4.7X2 ~ 18000
2AX1 + 2.9X2 ~ 14000

(2.1)
(2.2)
(2.3)
(204)
(2.5)
(2.6)

Solving this problem yields Xf = 3040, xq = 1760, for a
contribution of £51680. Calculations for the ex post variance
analysis may be tabulated in the same format as was employed for
traditional variance analysis , to give:

C'X" - COXa =
[CP(XU - xP) +
(C" - CP) XU] +
[CP(xP - XO) +
(CP - CO)XO]

22000 - 44200 =
[{(lOA) (5500-3040) + (11.4) (0 - 1760)} +
(4 - lOA) (5500)] +
[{(lOA) (3040-4250) + (11.4) (1760 - O)} +
(lOA - lOA) (4250)]
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By computation, the variances are as follows:

Volume and mix forecast variance
Price and efficiency forecast variance
Volume and mix opportunity cost

variance
Price and efficiency opportunity cost

variance

Total variance

£
5520U

35200F

7480U

o
22200F

Attention may first be focused on the unfavourable volume and
mix opportunity cost variance, which indicates the amount that has
been lost by pressing on with the ex ante optimum plan and
producing exclusively Fleur (X t ) , thus ignoring the need to adapt
mix and volume to the new opportunities for the profitable
production of Jasmin (X2 ) arising from the fact that Material R
turned out to be much cheaper than was budgeted. This variance
may be contrasted with the volume and mix variance in traditional
variance analysis, which indicates the loss occasioned by producing
less Fleur than was budgeted (Xf = 4250 instead of Xl = 5500),
without giving any indication whatever that producing entirely
Fleur and no Jasmin was in any case inappropriate . Since Xz= X l
= 0, the fact that some Jasmin should have been produced during
March 1989 is not revealed by traditional variance analysis, into
which the figure for xq does not enter.

The volume and mix forecast variance shows by how much the
contribution available in the ex post optimal plan diverges from the
contribution that would have been available had the ex ante
optimal volume and mix of production been sold with the ex post
optimal contribution margins. Similarly, the price and efficiency
forecast variance shows by how much the contribution that could
have been earned ex post on the ex ante optimal volume and mix
diverges from the contribution that could have been earned ex ante
on that volume and mix. The description of either forecasting
variance as 'favourable' or 'unfavourable' is arithmetically neces­
sary but managerially meaningless ; these labels simply indicate the
direction of the divergence between ex ante and ex post, and there
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is no reason to assume that a forecasting error in one direction is to
be preferred to an equally-sized error in the opposite direction.

Finally, the price and efficiency opportunity cost variance
indicates the loss (if any) incurred as a result of actual contribution
margins falling below those which could have been achieved on the
actual production. This variance will be illustrated in the next
section, which is concerned with variations in conditions within a
budget period.

Intra-period relationships

In proceeding to deal with part 3. of the Araque Perfumes
problem, the first point to make is that the formulation of the ex
post model for March serves the dual purpose of assisting with
control in March and assisting with planning in April. For this
problem, the expectation held at the end of March is that April
will have the same conditions as prevailed in March. Consequent­
ly, the ex ante model for April has the same form and the same
optimal solution as the ex post model for March, so that for April
XI = 3040, X2 = 1760 for a contribution of £51680. In general ,
even if the conditions are expected to change as between the
budget period that has just passed and the budget period that is
about to commence, it may well still be useful to draw up the ex
post model for the past budget period as a 'base case' to which
revisions can be applied for the period to come.

The first complication in deriving the ex post model for April
arises because the price of Material R changed halfway through
the month, affecting the contribution margins for Fleur and
Jasmin . For the first half of April , the margins were £10.40 per
litre for Fleur and £11.40 per litre for Jasmin , but for the second
half the Material R price increase caused them to fall to £4 per litre
for Fleur and £2 per litre for Jasmin. This change can be dealt with
by treating each product before and after the price increase as two
separate products. Taking this approach involves the definition of
four new variables. Let:

XI represent the production of Fleur (in litres) during the
first half of April



62 Linear Programming

X 2 represent the production of Jasmin (in litres) during the
first half of April

X 3 represent the production of Fleur (in litres) during the
second half of April

X 4 represent the production of Jasmin (in litres) during the
second half of April

Allowing only for the Material R price increase would give rise to
an objective function having coefficients of 10.4 associated with
Xl, 11.4with X 2 , 4 with X 3 and 2 with X 4 • However, this would fail
to allow for the increase in the time required to process a litre of
Fleur through Process B. This increase, from 0.8 hours to 0.9
hours, persisted throughout April and arose for reasons outside
the control of Araque's management. Since even with perfect
hindsight this increase could not have been avoided, the ex post
optimal model must allow for its consequences. These involve a
reduction in the contribution available on Fleur by £1 per litre , to
give rise to a final objective function for April as follows:

Maximise 9.4Xt + 11.4X2 + 3X3 + 2X4

Since the objective function is now in four variables, each of the
constraints must also be placed in this form . On the assumption
that the availability of raw materials and of process time did not
vary from week to week during April , the right-hand side values of
constraints (2.1) - (2.6) above require to be halved , and two
constraints inserted for everyone that was present before. Consid­
er , for example , constraint (2.1) , which relates to Process A.
Conditions for this process in April were identical to those
prevailing in March , so that the March constraint of 1.6Xl + 1.1X2

~ 6800 may be broken down into a constraint for the first half of
April of 1.6Xt + 1.1X2 ~ 3400 and a constraint for the second half
of April of 1.6X3 + 1.1X4 ~ 3400. These two new constraints are
represented as constraints (3.1) and (3.2) below, and constraints
(3.7) - (3.12) below are derived in an exactly identical manner. A
discussion of the remaining constraints (3.3) - (3.6) is given after
the full listing of the ex post model for April, which is as follows:

Maximise 9.4Xt + 11.4X2 + 3X3 + 2X4



Subject to :

1.6X1 + 1.1X2 + OX3 + OX4 ~ 3400
OXt + OX2 + 1.6X3 + 1.1X4 ~ 3400
0.9X] + 1.8X2 + OX3 + OX4 ~ 3000
OXt + OX2 + 0.9X3 + 1.8X4 ~ 3000
3.2X] + 2.2X2 + OX3 + OX4 ~ 8750
OXt + OX2 + 3.2X3 + 2.2X4 ~ 8750
7.2Xt + 8.7X2 + OX3 + OX4 ~ 20000
OXt + OX2 + 7.2X3 + 8.7X4 ~ 20000
3.2X] + 4.7X2 + OX3 + OX4 ~ 9000
OXt + OX2 + 3.2X3 + 4.7X4 ~ 9000
2.4X] + 2.9X2 + OX3 + OX4 ~ 7000
OXI + OX2 + 2.4X3 + 2.9X4 ~ 7 000

Araque Perfumes Ltd 63

(3.1)
(3.2)
(3.3)
(3.4)
(3.5)
(3.6)
(3.7)
(3.8)
(3.9)

(3.10)
(3.11)
(3.12)

Constraints (3.3) - (3.6) do not present any difficult issues. As
regards constraints (3.3) and (3.4), the only respect in which they
do not represent a simple 'halving' of constraint (2.2) in the ex post
model for March lies in the substitution of 0.9 for 0.8 as the
coefficient for Xl and X 3 . This arises because of the increase of 0.1
hour in the time taken to pass a litre of Fleur through Process B.
By contrast , no modification is made to the Xl and X 3 coefficients
in constraints (3.5) and (3.6) to allow for the increase in the
consumption of Material P from 3.2 to 3.8 litres per litre of Fleur
produced. The point here is that this relatively heavy use of
Material P arose from an avoidable error, so that the ex post
optimum plan, applying perfect hindsight to the elimination of all
deviations from optimality which could have been avoided, must
take no notice of it.

The ex post model for April may be solved either as a single
linear programming problem in four variables, or as two linear
programming problems, one in Xl and X2 and the other in X 3 and
X 4 • The latter approach is quicker computationally, as it removes
the need to insert the zeros in the left-hand sides of constraints
(3.1) - (3.12) above. Whichever approach is taken , the optimum
solution is Xf = 1520, xq = 880, X~ = 2125, X~ = a for a
contribution of £30695. The ex ante optimal solution turns out to
have been optimal only for the first half of April; in the second half
it would have been optimal to concentrate entirely on Fleur and
produce no Jasmin at all.
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In fact, Araque's management did not respond in any way to
this change of conditions as between the first and second halves of
April ; in both halves of the month they followed identical produc­
tion plans, giving rise to an actual output of XI = 1 700, X~ = 400,
Xf( = 1700, X4= 400. Using the techniques already outlined, an
ex post variance analysis for April can be drawn up as follows:

First half

crx: 9.4(3040/2)+11.4(1760/2)
= 24320

CPxP 9.4(1520)+11.4(880)
= 24320

c-xa 10.4(3040/2)+ 11.4(1 760/2)
= 25840

CPXU 9.4(3400/2)+11.4(800/2)
= 20540

C oxu (9.4 - 0.6)(3400/2) + 11.4
(800/2)
= 19520

Second half

3(3040/2)+2(1760/2)
= 6320
3(2125)+2(0)
= 6375
10.4(3040/2)+11.4(1760/2)
= 25840
3(3400/2)+2(800/2)
= 5900
(3 - 0.6)(3400/2)+2(800/2)
= 4880

First half of April:

Volume and mix forecast variance
Price and efficiency forecast variance
Volume and mix opportunity cost

variance
Price and efficiency opportunity cost

variance

£

o
1520V

3780V

1020V

£

6320V

Second half of April:

Volume and mix forecast variance 55F
Price and efficiency forecast variance 19520V
Volume and mix opportunity cost

variance 475V
Price and efficiency opportunity cost

variance 1020V

Total variance

20 960V

27280V
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In the above tabulation, the total variance is equal to the excess of
the planned contribution for April (£51680) over the actual
contribution for April (£24400). The interpretation of the four
variances obtained for each half of April may be undertaken as
follows:

1. While the volume and mix of production was forecast
correctly for the first half of April, Araque's management
forecast inaccurately by £55 the contribution it could poten­
tially earn in the second half because it failed to specify
correctly the optimum volume and mix of production in the
second half .
It should be noted that while this failure of forecasting happens
to have given rise to a 'favourable' variance (because CPX" <
OJxP), this failure is neither more nor less serious than would
be a failure giving rise to an 'unfavourable' variance of £55.

2. The failure to forecast the extra time required to pass Fleur
through Process B caused Araque's management to overesti­
mate by £1520 the contribution that could potentially be
earned with the ex ante optimum volume and mix in the first
half of April.
This overestimation of the potential contribution from the ex
ante optimal volume and mix rose to £19520 in the second half
of April because of the failure to forecast the price increase for
Material R which took place then .

3. The volume and mix opportunity cost variances represent the
loss of contribution arising from the divergence of the actual
from the ex post optimal volume and mix of production.
This divergence is valued by reference to ex post optimal
contribution margins.
In this case, Araque Perfumes fell £3780 below the ex post
optimum contribution in the first half and £475 below the ex
post optimum contribution in the second half of April as a
result of the divergence between XO and X",

4. Finally, Araque Perfumes lost £1 020 in each half of April as a
result of failing to earn optimal contribution margins per unit
on their actual production.
This failure to earn optimal margins arose entirely because of
the excess usage of Material P in producing Fleur, giving rise to
an adverse variance of 0.6 (£1700) = £1020 in each half of
April.
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Shortcomings of the ex post approach

Since ex post variance analysis has been subjected to sustained
criticism in the literature , it would be quite wrong to leave this
problem without outlining what are said to be its shortcomings.
The critique of ex post variance analysis may be summarised in
terms of five major lines of argument.

A very powerful attack may be mounted by concentrating on the
dependence of ex post analysis on a static optimising model.
Consideration of the material availability constraints in Araque
Perfumes makes it plain that if one of these is not binding , then
some of the material to which it relates will be left over at the end
of the month , and this in turn will change the value of the
right-hand side of the constraint for this material in the next
month . An example of this is provided by Material Q in April.
There are 40000 litres of this material available, but only 31440
litres are used up in producing April's actual output. If this
material is storable, then in May 1989 there will be 40000 + (40
000 - 31440) = 48560 litres of Material Q available . The fact
that the right-hand side value for May's Material Q constraint is
48560 not 40000 may affect the optimal solution for May . This
immediately raises the general point that where decisions taken in
this period may affect a subsequent period's profitability, then
maximisation in this period may prove suboptimal overall. If,
then , it is inappropriate to use a static single-period model, it must
also be inappropriate to build a variance analysis system around
such a model , and especially inappropriate to use two single­
period models within one month yet assume that there is no
interaction between them (as was done for Araque Perfumes in
April ).

A related point about modelling is that the ex post approach can
be applied only to situations in which an optimising model of some
kind (not necessarily involving linear programming) can be con­
structed. This approach is thus unsuited to situations in which the
production technology is very imperfectly understood, or in which
there issubstantial dispute among management concerning organi­
sational objectives. Nor is it suited to situations of such complexity
that the cost of building optimising models would exceed the
benefits to be derived from them.
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Turning next to the outputs of ex post analysis, the opportunity
cost variances must always be negative, since they represent the
losses arising either from failures to produce the optimum volume
and mix of output or from failures to achieve the optimum
contribution margins per unit. Managers may feel discouraged and
resentful when faced always with adverse variances, relating their
actual performance to a level of perfection unattainable in reality .
An outlook may develop that since variances against optimality
must always be unfavourable, perhaps the size of these variances
does not matter too much .

These adverse motivational effects associated with perpetually
unfavourable opportunity cost variances may be aggravated by a
further restrictive assumption inherent in ex post analysis. This
asserts that all uncontrollable changes in the parameters A, band
C must be deemed to occur at the very beginning of the budget
period , with no further changes taking place during the course of
the period. Suppose that this assumption were to be violated by an
uncontrollable parameter change occurring near the end of a
budget period. Insofar as this change influenced the ex post
optimal budget, the difference it caused between this optimal
budget and actual performance could not reasonably be treated as
representing an opportunity loss applicable to the whole budget
period , only to the period after the parameter change. However,
the ex post approach treats the budget period as a unitary whole,
and is not capable of adjusting for changes part-way through it.
The opportunity loss associated with parameter changes late in the
budget period will thus be mis-stated, giving rise to inaccurate
measures of the opportunity cost variances . To the extent that
these inaccuracies are visible, confidence in the ex post budgeting
system may be lost.

There is no reason in principle why the ex post approach should
not be modified to deal with this problem by recalculating the
optimal solution every time a parameter change affects it, and
comparing actual performance against this newly optimal perform­
ance for the period between this parameter change and the next
change affecting the optimal solution . However, this would be
expensive to implement adm inistratively , and would result in
budget periods of uneven length unless parameter changes took
place at regular and predictable intervals. If, though , parameter
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changes could be forecast with moderate accuracy, it would seem
possible to incorporate them in ex ante budgets, thus largely
avoiding the need for ex post analysis .

A fifth and last point is that, for managerial purposes, it would
be useful to split the forecast variances into three parts, as follows:

1. The variance that would have arisen even had the best forecast­
ing methods available been used throughout - as representing
the unavoidable 'costs of uncertainty'.

2. The variance attributable to conscious decisions not to attempt
to implement the ex ante optimal plan because of changes in
expectations during the budget period.

3. The variance attributable to imperfections in the forecasting
techniques employed in drawing up the ex ante optimal plan.

It is only part 3 of these variances which can really be described as
a measure of forecast quality , yet there is a temptation to regard
all of the forecast variances in this light. This is especially so since
the measurement problems involved in breaking down forecast
variances into components 1, 2 and 3 above are almost certainly
insuperable.
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7A.l Taumor Industries

Taumor Industries manufactures fine chemicals. Its Leamouth
factory makes two products called Noractil and Penebor by means
of four distinct processes. The processes are numbered I - IV, and
the flow of product through them may be depicted as in Figure
7A.1.

FIGURE 7A.l
Taumor Industries - Product Flow
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finished product finished product
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Each of these processes produces a single product ; the output of
Process I is called Product I , and so on (thu s calling Noractil
Product III and Penebor Product IV). Using the interrelationships
shown in Figure 7A.1 , the amount of each product used up to
produce a unit of output of each of Products I to IV is tabu ­
lated as below. For Product II and III a unit of output is 1
litre, and for Products I and IV a unit of output is 1 kilogram.
Hence this table shows (for example) that each kilogram of
Product IV manufactured requires 0.3 kilograms of Product I, 0.25
litres of Product II and 0.6 litres of Product III .

Processes

I II III IV Products
0 0.7 0.4 0.3 I

0.4 0.15 0.5 0.25 II
0.2 0 0 0.6 III
0.1 0 0 0 IV

As well as using internally-supplied products, the processes use
inputs of materials , machine time and labour. Of the three
materials required, two of them (strepsamin and niamate) have
the amount of their input measured in kilograms , and one
(chlorsulfonic acid) has the amount of its input measured in litres.
Two types of machine are employed, one to carry out the task of
turbulence patterning and the other the task of strand fixing.
Inputs from both types of machine are measured in terms of
machine hours. The labour employed is divided into the skilled
and the semi-skilled, and its inputs are measured in hours. The
quantity of each of the inputs that is consumed in producing a unit
of output of each of Products I - IV is tabulated below:

Processes

I II III IV Input
0 0.8 0 -1.5 Strepsamin

1.4 0.9 0 1.2 Niamate
0.4 0.6 1.8 0 Chlorsulfonic acid
2.2 0 1.4 0 Turbulence

patterning
0.9 3.1 0 0.7 Strand fixing
1.1 0.4 0.6 2.1 Skilled labour
2.4 1.9 1.1 1.3 Semi-skilled labour
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The negative number for strepsamin in Process IV indicates that
1.5 kilograms of strepsamin are produced (as a by-product) for
each kilogram of Penebor manufactured. Strepsamin serves as an
input to Process II , and any amount of it can be either bought or
sold externally at a price of £3 per kilogram .

Niamate costs £8 per kilogram, and chlorsulfonic acid £6 per
litre . Both are available in what are effectively unlimited quanti­
ties. The skilled labour is paid £3.50 per hour and the semi-skilled
labour £2.75 per hour.

In April 1989, there are 900 hours of skilled labour and 2000
hours of semi-skilled labour available. The turbulence patterning
machines can work for no more than 1100 hours in April , and the
strand fixing machines for no more than 1300 hours . These
machines perform slow, precise operations consuming negligibly
small amounts of electricity, and technical change relating to them
is so rapid that they will be scrapped as obsolete long before they
are physically worn out.

The management of Taumor Industries have set a price of £135
per litre for Noractil and £170 per kilogram for Penebor. They
believe that they can sell all the y can produce of either product at
these prices , but existing contractual commitments mean that they
must produce at least 70 litres of Noractil and 55 kilograms of
Penebor during April.

You are required:

1. To advise the management of Taumor as to the number of litres
of Noractil and kilograms of Penebor they should produce for
sale during April.

2. To take this optimum volume and mix, and work out from it:
(a) The number of units of Products I - IV that will need to be

manufactured during April.
(b) The amounts of each of the inputs that will be used up

during April, including the net amount of strepsamin
bought or sold.



72 Input-Output Analysis

7A.2 Analysis

Computation of variable costs

This problem is characterised by a complex system of product
flows . in which (for example) Product I from Process I acts as an
input to Processes II . III and IV. while Product II from Proce ss II
is fed back to Process I as an input , as well as entering into
Processes III and IV. A further complication is that some of the
Product II is fed back into the process of its own manufacture
(Process II) as a raw material , perhaps to act as a catal yst. Given
the dense interaction of the product flows, it is useful to be able to
model them as an input-output system, from which to compute
variable cost data for insertion in a linear programming format.

Since each process produces a single product, a unit of activity
of a process may be defined as the amount of activity required to
produce one unit (1 kilogram or 1 litre) of the product from that
process. From the four processes and four products of this
problem , a 4 x 4 matrix can be generated in which the processes
make up the columns and the products the rows. Let qij represent
the number of units of Product i (i = 1 . . . 4) produced by a unit of
activity within Process j (j=1 . . . 4). Values of qij are referred to
collectively as output coefficients, and the matrix of these coef­
ficients qOis for this problem an identity matrix of order four , as
shown below:

1 000
o 1 0 0
o 0 1 0
000 1

Let q~j represent the number of units of Product i consumed by a
unit of activity of Process j in producing a unit of Product j. Values
of q~j are referred to collectively as input coefficients , and the
values of these coefficients are given within the problem. Repre­
senting the matrix of these coefficients of o', it appears as below :

o 0.7 0.4
0.4 0.15 0.5
0.2 , 0 0
0.1 0 0

0.3
0.25
0.6
o
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Next, the net input-output coefficient % must be defined as
follows:

In this equation, % represents the net number of units of Product i
either produced or consumed by one unit of activity of Process j.
The matrix of net input-output coefficients q is obtained by
subtracting qi from q", and computation here yields:

1 -0.7 -0.4 -0.3 ]
-0.4 0.85 -0.5 -0.25
-0.2 0 1 -0.6
-0.1 0 0 1

In the Taumor Industries problem, a tabulation is given of the
seven 'external' inputs (three kinds of materials , two types of
machine and two grades of labour) entering into production . Let :

dkj represent the number of units of input k(k = 1 7)
required by one unit of activity of Process j(j = 1 4)

Vk represent the variable cost per unit of input k

Then a 7 x 4 matrix d, with elements dkj , can be drawn up directly
from the problem. Alongside this can be placed a 1 x 7 column
vector v with elements Vk, again derived directly from the prob­
lem , to give:

0 0.8 0 -1.5 3
1.4 0.9 0 1.2 8
0.4 0.6 1.8 0 6

d= 2.2 0 1.4 0 v= 0
0.9 3.1 0 0.7 0
1.1 0.4 0.6 2.1 3.5
2.4 1.9 1.1 1.3 2.75

Within the v vector, VI = 3 represents the £3 per kilogram price at
which strepsamin can be either bought or sold . Also within that
vector, the explanation of the elements V4 = 0, Vs = 0 is that the
variable cost of a machine hour is zero, given that depreciation is a
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function of time, not of usage, and that the cost of power consumed
is negligble.

Having derived the above matrices, the first use that may be
made of them is to find the gross amount of each product which
must be manufactured in order to support the net production of
one unit of each of the products in turn. This information is given
within the gross internal coefficient matrix q' , obtained by invert­
ing the input-output coefficient matrix q, so that:

Performing this inversion yields:

q' =
2.445
1.597
0.636
0.245

2.014
2.491
0.524
0.201

1.985
1.884
1.516
0.199

2.428
2.232
1.231
1.243

It may help in interpreting the q' matrix to focus on a single
element within it , say q'll ' The figure here signifies that the
production of 1 kilogram of net output of Product I requires a
gross production of 2.445 kilograms of Product I. The remaining
1.445 kilograms of Product I is used up in the process of manufac­
turing Products II , III and IV, all of which require Product I for
their manufacture and all of which are in turn required for the
manufacture of Product I. Specifically, from the q' matrix, the
production of 1 kilogram of net output of Product I requires the
manufacture of 1.597 litres of Product II, 0.636litres of Product III
and 0.245 kilograms of Product IV .

The requirements for other products arising from the manufac­
ture of a unit of net output of each product are thus represented
respectively by the four columns of q' for Products I - IV . Given
this information, it is possible to investigate the requirement for
external inputs generated by the net production of 1 unit of
product. This requirement is obtained by multiplying the amount
of inputs required for a unit of each product by the number of units
of each product required for a unit of net product. Put in another
way, external input requirements per unit of net product are
represented by taking the d matrix and postmultiplying it by the
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gross internal coefficient matrix q', Calling the resulting matrix d' ,
the equation involved is:

d' = dq'

Carrying out this multiplication (to three decimal places) for
Taumor Industries yields the following result :

0.910 1.691 1.209 -0.079
5.154 5.303 4.713 6.900
3.081 3.243 4.653 4.526

d' = 6.269 5.164 6.489 7.065
7.323 9.675 7.766 9.974
4.224 3.948 4.265 6.912
9.920 10.404 10.270 13.038

For the interpretation of entries within this matrix , consider the
elements d14 = -0.079 and d24 = 6.900. These lie in the fourth
column, and therefore relate to the input requirements associated
with the manufacture of 1 kilogram of net output of Product IV.
The negative figure in d14indicates that this manufacture gives rise
to the net production of 0.079 kilograms of strepsamin (the
by-product) and the d24figure shows it to require the input of 6.9
kilograms of niamate. Similarly, the net production of 1 litre of
Product II requires 1.691 kilograms of strepsamin (from d12) and
10.404 hours of semi-skilled labour (from dh).

Once these physical requirements for external inputs per unit of
net output have been obtained , costing them out is a fairly simple
matter. The 7 x 1 column vector v carrying the cost structure of
the external inputs can be converted by transposition into 1 x 7
row vector vT

. It then becomes possible to postmultiply vT by d',
thus converting the physical inputs per unit of net output into
variable costs per unit of net output. Representing the row vector
of variable costs per unit of net output as cT

, then:

By computation, for Taumor Industries this gives:

cT = [104.51 109.38 112.42 142.17]



76 Input-output Analysis

From left to right, these are the variable costs per unit of net
output for each of Products I - IV, in a form amenable to insertion
in a linear programming problem.

Solution by linear programming

To formulate Taumor Industries as a linear programming prob­
lem, it is first necessary to define variables as follows . Let :

Xl represent the output (in litres) of Noractil for April
X 2 represent the output (in kilograms) of Penebor for April

From the cT vector, the variable cost per unit of net output is
£112.42 per litre for Noractil and £142.17 per kilogram for
Penebor. The problem specifies selling prices of £135 per litre and
£170 per kilogram respectively for Noractil and Penebor, so that
the objective function is simply:

Maximise 22.58X1 + 27.83X2

Drawing up the constraints involves picking out of the d' matrix
the input requirements per net unit produced of Noractil and
Penebor for each of the inputs in constrained supply. The bottom
four rows of the d' matrix are the appropriate ones, with coef­
ficients taken from the third and fourth columns of each row to
represent respectively the consumption of inputs per net unit
produced of Noractil and Penebor. The constraints are then as
follows:

6.489Xt + 7.065X2 ~ 1100
7 .766XI + 9.974X2 ~ 1300
4.265XI + 6.912X2 ~ 900

1O.27XI + 13.038X2 ~ 2000

(1)
(2)
(3)
(4)

Constraint (1) relates to turbulence patterning machine hours,
constraint (2) to strand fixing machine hours and constraints (3)
and (4) respectively to skilled and semi-skilled labour hours.
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Finally, there are two contractual commitment constraints, of the
form that:

(5)
(6)

This completed linear programming problem has a solution of
XI = 96.76 , X 2 = 55 to give a contribution of £3715.47. The
optimum solution , therefore, is to manufacture for sale 96.76litres
of Noractil and 55 kilograms of Penebor during April 1989. It is
important to note that these figures relate to net output, and that
the total (gross) output of each of Products I - IV that will need to
be manufactured during April is the subject of a subsequent
question. To obtain the gross outputs, first let QT denote the row
vector of optimal net outputs of Products I - IV , so that:

QT = [0 0 96.76 55]

The gross internal coefficient matrix q' gives the gross amount of
each product which must be manufactured to support the net
production of a unit of each product. Consequently, the total
production of each product required to support the output must be
given by postmultiplying q' by Q. Denoting the resulting (4 x 1)
column vector as Q, then:

Q = q'Q

Computation yields:

QT = [325.61 305.06 214.39 87.62]

This vector shows that in order to yield the optimal outputs of
Noractil and Penebor, it is necessary to produce in total 325.61
kilograms of Product I, 305.06 litres of Product II, 214.39 litres of
Noractil and 87.62 kilograms of Penebor.

To find the volume of inputs which must be supplied to sustain
this level of overall activity, it is simply necessary to postmultiply
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the d matrix by Q. The resulting (7 x 1) column vector of input
requirements may be labelled 15, where:

15=dQ

Performing the computations leads to a vector as follows:

15=

112.6
835.6
699.2

1016.5
1300.0

792.8
1710.8

The 1511 element above may be interpreted as showing that in
order to sustain the optimum production it is necessary to purch­
ase 112.6 kilograms of strepsamin (over and above that amount
that arises as a by-product of Process IV) . Similarly, the 155 1

element shows that the constraint on strand fixing machine hours is
a binding one , with all the 1300 hours available being used up.

As a final point, it is worth noting that the total variable cost of
the optimum output may be represented by TV , where :

TV = cTQ = £18697.1

The contribution from the optimum output is thus given by (96.76)
(£135) + (55) (£170) - £18697.1 = £3715.5, which agrees with the
optimum value derived from the linear programming solution
(apart from a slight rounding error).
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7B.l Salmedge Products

Salmedge Products is a small firm engaged in biotechnology . Its
manufacturing activity involves three processes, numbered I - III.
Process III gives rise to two joint products, Ramethos and
Kegebrol, produced in fixed proportions; 0.6 kilograms of
Ramethos are produced for each litre of Kegebrol made . Proces­
ses I and II each serve to manufacture a single product (Products I
and II respectively) . The flow of product through the processes
may be depicted as in Figure 7B.1.

For Product I the unit of output is 1 litre, and for Product II it is
1 kilogram. Process III results in a unit of output made up of 1 litre
of Kegebrol and 0.6 kilograms of Ramethos together. Using the
interrelationships shown in Figure 7B.l the amount of each
product used up in producing a unit of output from each process
may be tabulated as below:

Processes

I II III Products
0.2 1.8 1.3 Product I
0.2 0 0.9 Product II
0 0 0 Kegebrol
0 0 0 Ramethos

79
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FIGURE 7B.I
Salmedge Products - Product Flow
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As well as using internally supplied products , the processes use
two types of material and a single grade of labour; in addition they
all take up time on a centrifuge. The material called ninofane has
the amount of its input measured in kilograms, while the other
material, triglycol, has the amount of its input measured in litres .
Inputs of labour and of centrifuge time are measured in hours . The
amount of each of the inputs required to produce a unit of output
from each of the processes may be tabulated as below:

Processes

I II III Input
0 1.4 1.3 Ninofane

2.2 0 2.6 Triglycol
1.1 1.6 3.1 Labour
1.4 1.1 1.9 Centrifuge time

In January 1989, there are 700 hours of labour and 500 hours of
centrifuge time available . The variable costs of centrifuge opera­
tion may be taken as negligible. Ninofane can be bought for £4 per
kilogram, and triglycol for £2 per litre ; both are available in
virtually unlimited quantities. Labour is paid £3 per hour.
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Instead of manufacturing Product I in Process I and Product II
in Process II, it is possible to buy either of these products on the
open market. Product I costs £28 per litre and Product II costs £38
per kilogram.

The management of Salmedge have set a selling price of £60 per
litre for Kegebrol and one of £52 per kilogram for Ramethos. They
feel that they can sell all they can produce of either product at
these prices.

You are required to advise Salmedge as to:

1. The number of litres of Kegebrol and kilograms of Ramethos
that should be produced for sale during January.

2. The number of units of Products I and II that will need to be
manufactured during January.

3. The number of units of Products I and II that will need to be
purchased during January.

4. The amount of each of the inputs that will be used up during
January .
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7B.2 Analysis

Formulation and solution by linear programming

This problem builds upon the techniques employed in dealing with
the Taumor Industries problem, to which reference should be
made. It is, however, rather more complex, in that the final
process of manufacture in Salmedge Products gives rise to two
joint products. A unit of activity for Process III in Salmedge
consists of the amount of activity required to produce 1 litre of
Kegebrol and 0.6 kilograms of Ramethos together . By contrast , in
Processes I and II a unit of activity is the amount of activity
required to produce one unit of the sole product of each process.
Using the same terminology as in the Taumor Industries problem,
the matrices of output coefficients , input coefficients and net
input-output coefficients appear as follows:

q=

1 0 0
0 1 0
0 0 1
0 0 0.6

0.2 1.8 1.3
0.2 0 0.9
0 0 0
0 0 0

0.8 -1.8 -1.3
-0.2 1 -0.9

0 0 1
0 0 0.6

As the number of products exceeds the number of processes , q is
not a square matrix, and thus cannot be inverted to obtain q'. In
any event, the procedure used for Taumor Industries cannot be
adopted here , because of the further complication arising from
being able to buy the intermediate Products I and II on the open
market. It is consequently necessary to adopt a different approach ,
involving some extra terminology as follows.
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Let:

Pi
c,

represent the selling price of product i
represent the unit cost of product i purchased
externally
represent the optimum quantity of intermediate
product i to be purchased externally

Then , from the information in the problem, 1 x 4 row vectors p T

and cr can be drawn up as follows:

[0 0
[28 38

60 52]
o 0]

Also from the information in the problem, the matrix of units of
'external' input per unit of activity d, and its associated vector of
variable costs per unit of 'external' input v, can be drawn up as
follows :

0 1.4 1.3 4

d=
2.2 0 2.6 2
1.1 1.6 3.1 v= 3
1.4 1.1 1.9 0

In this problem, the objective function to be maximised consists of
the excess of total sales revenue over total variable cost. Sales
revenue is given by the product of the selling price row vector pT

and the column vector of optimal net outputs Q. That is to say:

Sales revenue = pTQ

Total variable cost may be divided up into the cost of intermediate
products bought on the open market and the cost of 'external'
inputs purchased. The column vector of input requirements in the
optimum solution is I5, so that total variable cost may be repre­
sented as follows:

Total variable cost = cT Q+ vT I5
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Bringing together revenue and cost gives rise to an objective
function :

It should be noted that the optimal solution will give not only the
optimal net output of each product in Q, but also the optimal
outside purchases in 0 and the input requirements in D. In fact, it
will also give the total (gross) production of each product Q
required to sustain the optimal net output Q, because Q enters
into the first set of constraints. The basis of this set is that the net
output of any product must equal the amount sold less the amount
purchased externally. It may be represented symbolically as
below:

qQ - Q + 0 = 0

Within the Q vector , the optimal net output of any product i is
represented by the element Qi. Since Products I and II are not sold
by Salmedge Products, Q, = Q2 = 0, and since neither Kegebrol
nor Ramethos ma y be purchased 03= 0'4 = O. With these values,
and inserting the elements from the net input-output coefficient
matrix in the general form of the constraint above, four constraints
ma y be constructed for this problem as follows:

0.8Q, - 1.8Q2 - 1.3Q3 + 01 = 0
-0.2QI + Q2 - 0.9Q3 + 0 2 = 0

Q3 - Q3 = 0
0.6Q3 - Q4 = 0

(1)
(2)
(3)
(4)

The second set of constraints states that the total requirement for
inputs dQ generated by production must be equal to the quantity
purchased and used in the optimal solution D. Rearranging this ,
and representing it in symbolic terms, gives:

dQ - D = 0

Within the D vector, the quantity of input i purchased and used is
represented by the element D i • Inserting values from the d matrix
above enables the construction of the following four constraints:



1.402 + 1.303 - D1 = 0
2.201 + 2.603 - D2 = 0

1.101 + 1.602 + 3.103 - D3 = 0
1.401 + 1.102 + 1.903 - D4 = 0
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(5)
(6)
(7)
(8)

The final set of constraints specifies that the usage of inputs in
restricted supply must not exceed the maximum quantity of them
available . Applied to labour hours and hours of centrifuge time,
this gives rise to constraints as follows :

(9)
(10)

Having formulated the objective function algebraically , it remains
only to specify it numerically by reference to the information given
above . This yields an objective function as follows:

Maximising this function subject to constraints (1)-(10) above
gives rise to a contribution for January 1989 of £1489 .52, obtained
with the following values:

01 = 194.6
03 = 119.8
Q3 = 119 .8
Q4 = 71.9
Q2 = 146.7

D 1 = 155.7
D2 = 739.5
D3 = 585.3
D4 = 500

From this information, the optimal production in January is 119.8
litres of Kegebrol (Q3) together with 71.9 kilograms of Ramethos
(Q4)' To obtain this output, it will be necessary to produce 194.6
litres of Product I (Od during January. Process II should not be
run at all, since 02 does not enter into the optimal solution;
instead , 146 .7 kilograms of Product II (Q2) should be purchased
during January. The usage of inputs will be 155.7 kilograms of
ninofane (D 1) , 739.5 litres of triglycol (D 2) , 583.5 labour hours
(D 3) and 500 hours of centrifuge time (D 4 ) . Sensitivity analysis
may be performed on this solution in the usual way, to point out
(for example) that an increase of 1 hour in the amount of
centrifuge time available would increase contribution by £2.98
over the range from 500-598 hours available.



Use of Information
Theory to Isolate

Substantial
Variances

8.1 HevershamHorticulture Ltd

Heversham Horticulture sells its products over two sales areas,
one centred on Dudsworth and the other centred on Ambleside.
Each of these areas sells three groups of products - tools,
fertilisers and plants . The budgeted and actual sales for January­
March 1989 were as follows:

Tools
Fertilisers
Plants

Tools
Fertilisers
Plants

Dudsworth
£

8977
93424
79538

181939

Dudsworth
£

8476
83303
63759

155538

Budgeted Sales

Ambleside
£

20842
83870
70435

175147

Actual Sales

Ambleside
£

30568
76589
62441

169598

Total
£

29819
177294
149973

357086

Total
£

39044
159892
126200

325136

You are required to consider analytically the variances of actual
from budgeted sales for January-March 1989, with a view to
identifying those variances which seem relatively substantial.

86
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8.2 Analysis

Fundamentals ofinformation theory

In the consideration of either a cost variance or a revenue
variance , there are two factors which (amongst others) must enter
into any judgement as to whether the variance concerned is
substantial or negligible:

1. The proportion by which the actual cost or revenue diverges
from budget.
A divergence of 50 per cent from budget in either direction is
likely to be a more substantial matter than a divergence of 10
per cent.

2. The proportion of total cost or total revenue to which the
variance relates.
A variance of 10 per cent of actual relative to budget for an
item accounting for 1 per cent of total cost or revenue is likely
to be of much less significance than is the same proportional
variance of 10 per cent applied to an item accounting for 20 per
cent of total cost or revenue.

The feature that these two factors have in common is that they
both relate not to the absolute sizes of variances, but to variances
expressed as proportions. When a proportion is converted to a
decimal , its value must lie between zero and one - the same range
of values as is occupied by a measure of probability . If the
information content of a message is taken as relating to the change
in probabilities before and after that message is received, this
suggests that the information content of a variance may perhaps be
expressed in terms of the change in proportions as between a
budget and an actual financial statement.

This is the approach which will be taken in analysing the
Heversham Horticulture problem. But before the idea of informa­
tion as proportion change is explored, it is necessary first to say
something about the better-established concept of information as
probability change. Here, the central argument is that the in­
formation content of a message that an event E has occurred
depends on the previous belief concerning the probability p that E
would occur. The lower was p, the greater is the information
content of the message . A message that an event has occurred
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which previously had a probability P of occurrence is said to have
an information content of h(P), where:

h(P) = -log2P (8.1)

The use of logarithms to the base two has the advantage that the
information content of a message that an event which had a
probability of 0.5 has in fact happened is -log2 0.5 = 1. This one
unit of information arising from the occurrence of a P = 0.5 event
is referred to as 'one bit'. More generally, if a message transforms
the probability of an event E from P to q, then the information
content of that message may be expressed as:

(8.2)

It is worth noting that if q = 1, then since log-I = 0, the
information content of the message becomes -log2P, as in equa­
tion (8.1).

A difficulty here is that the information content of a message
about an event cannot be known for certain until that event has
happened. If, for example, a message is received saying that the
probability of event E has changed from p to q, where q < p, then
the application of equation (8.2) would suggest that this message
has a negative information content, in the sense of being 'worth' a
negative number of bits. But the consequent inference that the
message is misleading can be supported only by the actual
occurrence of the event E; if E occurs , the message had a negative
information content, if E does not, it did not. However, once E
has occurred (or ceased to be capable of occurrence) then the
question of what the information content was of a previous
message about E ceases to be of much interest.

For this reason, the focus of information theory is on the
expected value of information in a message (called its 'information
expectation'), not on the actual value of information. To illustrate
the computation of the information expectation, consider a situa­
tion in which there are n possible events, E 1 ••• Em one of which
must happen. Initially, the probabilities associated with these
events respectively are PI ...Pn; then a message is received
changing them respectively to ql . . . qn. In advance of knowing
which of the events E I • • • En actually occurred, the information
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content of this message is given by weighting the information
values from equation (8.2) for each event by the revised probabil­
ity for the event concerned. Calling the information expectation of
the overall message I , this gives:

n
I = L q; log(q;lp;)

;= )
(8.3)

In equation (8.3), the base of the logarithm is not specified. This is
because one base is as good as another, so that the choice of base is
purely a matter of convenience. On the whole, it is most conve­
nient to use logarithms to base e (natural logarithms), because of
their ready availability , especially on computers. They will be
denoted by 'In' to distinguish them from logarithms to any other
base. The information measure to which they give rise is called a
'nit'.

From probabilities to proportions

As has already been pointed out, proportions resemble probabili­
ties in that both measures run on a scale from zero to one. In the
Heversham Horticulture problem, the proportions which are of
concern are the proportions borne by budgeted sales for each
product and each area to total budgeted sales, and by actual sales
for each product and each area to total actual sales. A notation for
these proportions may be developed as follows: Let:

Pu represent the budgeted sales of product i in area j
as a proportion of total budgeted sales

% represent the actual sales of product i in area j as a
proportion of total actual sales

X represent the classification of sales by product, so
that if there are m products these are labelled
X, .. . X m

Y represent the classification of sales by area , so
that if there are n areas these are labelled Y) . .
. Y n
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With sales areas making up the columns and products making up
the rows, let the marginal column totals for budgeted sales be
POI POn and the marginal row totals for budgeted sales be
PIO PmO · Similarly, let the marginal column totals for actual
sales be qOl • . • qOn and the marginal row totals for actual sales be
qlO . . . qmO · Then computations of budgeted and actual propor­
tions for the Heversham Horticulture problem yield the following
results:

Xl (Tools)
X 2 (Fertilisers)
X 3 (Plants)

Total

Xl (Tools)
X 2 (Fertilisers)
X 3 (Plants)

Total

YI(Dudsworth) Y2(Ambleside)

PI I = 0.0251 PI2 = 0.0584
P21 = 0.2616 P22 = 0.2349
P 31 = 0.2228 P32 = 0.1972
P()I = 0.5095 P()2 = 0.4905

YI(Dudsworth) Y2(Ambleside)
qll = 0.0261 ql2 = 0.0940
q21 = 0.2562 q22 = 0.2356
q31 = 0.1961 q32 = 0.1920
q(lI = 0.4784 Q02 = 0.5216

Total

PIO = 0.0835
P2() = 0.4965
P3() = 0.4200

1

Total
qJ() = 0.1201
q2() = 0.4918
q3() = 0.3881

1

By analogy with equation (8.3) , but substituting proportions for
probabilities , the information expectation for m products and n
sales areas is given by:

m
I (X,y) = ~

i= 1

n

~ qij In (q;/Pij)
j= 1

(8.4)

Hereafter, all measures of information content will be given in
units of 10- 4 nits. With this unit of measure for Heversham
Horticulture , computation indicates that ItX, y) = 109.7. The
statistic I(X,Y) has three important properties:

1. It is always either zero or a positive number, being zero for the
case where qij = Pij for all i and j.

2. As the difference between budgeted and actual proportions q ij

and Pij increases, so the value of IiX, Y) increases.
3. Each component of I(X, Y) is weighted by %. reflecting the

proportion which actual sales for the product and area con-
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cerned bore to total actual sales; financially important product/
area combinations are consequently given a heavy weighting
relative to those of lesser financial importance.

The second and third of these considerations mirror the two
factors outlined at the beginning as helping to determine whether a
particular variance is substantial or negligible . A time series of
leX, y) values may help to indicate whether in aggregate actual
sales performance is becoming more or less divergent from
budgeted performance over time , but of more immediate interest
are the various breakdowns of the total information expectation
ItX, Y). These are dealt with below.

Geographical variation in a product's sales

It may be thought desirable to obtain a measure of the proportion­
al variance of sales by area for a given product i. This involves
computing the number of nits that are represented by the differ­
ence between the actual proportion of product i's sales that arose
in each area and the budgeted proportion of that product's sales
which should have arisen in each area. To do this, it is necessary to
express the P ij and % values for product i not as proportions of the
total sales but as proportions of the total sales of product i-that is,
as proportions of Pia and qiO. The information expectation of sales
of product i by area is given by l(yIXi ) , where for n sales areas:

(8.5)

For Heversham Horticulture, calculation of the information ex­
pectation for each product over sales areas gives rise to the
following results:

l(y!Xt ) = 178.3 ; l(yIX2 ) = 0.7 ; l(yIX3) = 12.7

Suppose that the responsibility for budgeting were to be located
with area managers , so that the budget as a whole was aggregated
from their area budgets. If these area managers could budget
accurately, they would be able to say what proportion of a
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product's total sales would take place in each of their areas
(demanding a knowledge of each area's relative propensity to
purchase that product). To measure their budget accuracy, what
would be required would be to sum the nit values for each
individual product over all the m products, weighting these values
by the proportion of actual sales for all products represented by
each individual product. The formula for this is:

m

I(YIX) = L qiO I(YIXJ
;=1

For Heversham Horticulture, computation gives:

I(YIX) = 26.7

Variation ofsales by product for a given area

(8.6)

The converse of the approach just taken involves focusing on
areas rather than products. Specifically, the question here is one of
how many nits are represented by the difference between the
actual proportion of area j's sales that arose from each product and
the budgeted proportion of that area's sales that should have
arisen from each product. Summing down the m products gives
rise to the information expectation of sales in area j by product,
denoted by I(XIYj ) , as follows:

(8.7)

For Heversham Horticulture , calculation of the information ex­
pectation for each sales area in relation to products yields the
following results :

I(X/Yt ) = 15.9; I(XIYz) = 158.6

If the responsib ility for budgeting were to be located with product
managers, then their remit would involve forecasting what propor-
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tion of an area's sales would be represented by each of their
products. This would demand a knowledge of the relative import­
ance of each product in comparison to the other products sold by
the firm. To measure the budget accuracy of product managers, it
would be necessary to weight the nit value for each sales area by
the proportion of total actual sales represented by that area, and
then to sum those weighted values. This would give rise to:

(8.8)

For Heversham Horticulture, computation gives:

I(XI y) = 90.4

Univariate variances

Comprehensiveness requires that two other information expecta­
tions be computed, relating to the marginal row and column
proportions. These are as follows:

m
1(X) = L qiO In(qiIYPio) (8.9)

;=1

n
1(Y) = L qOj In(qo/pOj) (8.10)

j=1

For Heversham Horticulture 1(X) = 83.0 and 1(Y) = 19.3,
indicating that the proportion of total sales accounted for by each
area was predicted more accurately in the budget than was the
proportion of total sales accounted for by each product. This
should be seen in the context that I(XI y) > I(Y!X) , implying that
the distribution of each product's sales over areas was much more
accurately forecast than was the distribution for each area of sales
by products. Put simply, the budget predicted quite well the area
mix of sales for each of the products, but was much less good at
predicting the product mix of sales for each of the areas.



94 Information Theory

Breakdown to individual areas and products

Probably the most concrete application of information theory to
this problem lies in the highlighting of individual sales areas and
products . An elaboration of the notation is necessary for this
purpose. Let:

(8.11)

Equation (8.11) can be used to simplify equation (8.5) to the
following form:

n
I(YIX;) = ~ I(YIX;)

j=1

Similarly, let :

(8.12)

(8.13)

Equation (8.13) can be used to simplify equation (8.7), giving:

m
I(XIy.) = ~ I(XIY;-)

J ;=1 J
(8.14)

Using this notation, a breakdown of the computations in equations
(8.5) and (8.7) can be undertaken, as below:

I(Ylx1)

178.3
I(YIXz)

0.7
I(YIX3)

12.7
I(XIY1)

15.9
I(XlYz)
158.6

= I(YIXll )

= -709.8
= I(YIXZ1)

= -59.1
= I(YIX3 1)

= -245.2
= I(XIYll )

= 54.1
= I(XIY12)

= 748.3

+ I(YIXd
+ 888.1
+ I(YIXzz)
+ 59.8
+ I(YIX3z)

+ 257.9
+ I(XIYZ1)

+ 225.6
+ I(XIYzz)
- 264.7

+ I(XIY31)

- 263.8
+ I(XIY3z)

- 325.0

A key point to observe from this breakdown is that a shortfall of
actual below budgeted sales does not necessarily give rise to a
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negative information expectation. Consider, for example , the sales
of fertilisers in the Dudsworth area. Here , there has been a
shortfall of nearly £10 000, but the information expectation is given
by:

(
0.2562 ) [( 0.2562 ) / ( 0.2616)]

I(X!YZ1) = 0.4784 In 0.4784 0.5095

The expression in the square brackets is In 1.04 = 0.0392. Since
this is positive, the whole information expectation must be posi­
tive . This arises because the proportion of actual sales in the
Dudsworth area accounted for by fertilisers exceeded the
budgeted proportion . As a consequence, the information expecta­
tion is positive even though fertiliser sales fell short of their budget
target.

This illustration implies that information expectation figures
may not serve as good guides for management control , and this
implication is easily reinforced. In Heversham Horticulture, the
total shortfall of January sales below budget was £31950. A major
contributory factor to this shortfall was the £25900 making up the
combined adverse variances on fertilisers and plants in the Duds­
worth area. Yet the information expectation for this area I(XIY1)

is very small , as is the information expectation I(YIX3) relating to
plants, despite the £23773 shortfall of actual below budgeted sales
for this product group.

The information theory approach, however, is not concerned
with management control. It measures the accuracy of budgets
considered as forecasts about the proportional distribution of
revenue (or expenditure) across categories. In this problem, the
large information expectations I(YIXI ) and I(XlYz) serve to signal
that the distribution of sales revenue from tools over the two areas
was an unexpected one , and that the distribution of sales revenue
in the Ambleside area over the three products sold there was also
an unexpected one . This may well be important information from
the point of view of allocating marketing effort to areas and
products. It may also act as a valuable input to the budget setting
process, inasmuch as it indicates those products and areas for
which it is unsafe to base a future budget on the proportional
distributions of sales revenue contained in the budget for the first
quarter of 1989.
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In relation to either of these uses , it is unlikely to be advan­
tageous to produce the further breakdown of the analysis in
equations (8.5) and (8.7) carried out here after equation (8.14) .
This was done for illustrative purposes only ; what matters in the
practical application of information theory to the evaluation of
budget forecasts is the predictability of proportions within the
entire category represented by either an area or a product , not the
predictability of the proportion represented by a single product
within an area or a single area within a product category.

The practice of management control at Heversham Horticulture
requires that attention should be focussed on the breakdown into
price, volume and mix variances of the total sales variances, with
especial reference to the variances on fertilisers and plants in the
Dudsworth area . From a forecasting point of view, however, the
distribution and relative importance of tool sales seems to have
proved difficult to predict within the budget, as does the distribu­
tion and relative importance of sales in the Ambleside area. It is
upon these two issues that the analysis using information theory
has focused.



The Single-period
Cost Variance
Investigation

Decision

9.1 Alston Glassworks

Alston Glassworks uses a small electric arc furnace for fusing
silica. When the air vents on the furnace are properly open, its
electricity cost takes the form of a normal distribution with a mean
of £2200 per week and a standard deviation of £400; when the
vents are not properly open the furnace's electricity cost again
takes the form of a normal distribution, but with a mean of £2 800
per week and a standard deviation of £1400.

The furnace is used only during the week, and is permitted to
cool down at weekends. On Friday evenings, before the work
force leave for the weekend, either of two types of investigation of
the furnace can be carried out. The alternatives are called 'hot'
and 'cold' investigations, the difference between them being that a
hot investigation does not involve spraying the furnace with water
to cool it completely, while a cold investigation does. The need to
reheat the furnace from scratch makes a cold investigation more
expensive than a hot one, but it is also much more thorough. If the
air vents are not properly open, there is only a 0.5 probability that
a hot investigation will find this out, but a cold investigation will
always do so . A hot investigation involves incurring an in­
cremental cost of £70, while the incremental cost of a cold
investigation is £200. In the event of either type of investigation
showing that the vents are not properly open, extra overtime costs
of £40 have to be incurred in order to open them correctly.

Over the weekend, the cooling of the furnace causes the metal
in its air vents to contract, thus moving the vents of their own

97
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accord. If the vents are properly opened on Friday evening, there
is a 0.2 probability that they will not be properly opened by
Sunday evening. Conversely, if the vents are not properly opened
on Friday evening , there is a 0.4 probability that they will be
properly opened by Sunday evening.

When the furnace stopped work on Friday 4 March , the
foreman believed that there was a 0.8 probability that its vents
were properly opened. He was then told that the electricity cost
for the week ending on 4 March was £3050; this changed his
judgement of the probability that the vents were properly opened
sufficiently to induce him to carry out a hot investigation. Howev­
er, this investigation did not discover anything indicating conclu­
sively that the vents were not properly opened; in fact, nothing
found by the investigation changed the foreman 's judgement in
any way. However, at the end of Friday 11 March he was told that
the electricity cost for the week which began on Monday 7 March
was £3120.

You are required:

1. To comment on the foreman's decision to carry out a hot
investigation on Friday 4 March.

2. To advise the foreman as to whether he should carry out an
investigation on Friday 11 March, and if so whether this
investigation should be a hot or a cold one .

3. To indicate how your advice in 2 above would change if the
facts in the problem were altered in the following two respects:

(a) That hot investigations were ruled out for safety reasons,
leaving a choice only of having a cold investigation or
none at all

(b) That the electricity cost for the week beginning on
Monday 7 March was £1340.
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9.2 Analysis

Establishment of terminology

In approaching the Alston Glassworks problem, the initial re­
quirement is to establish some terminology. Let :

c'

M

L

h

represent the state of being 'in control', arising
for the furnace when its air vents are properly
open
represent the state of being 'out of control',
arising for the furnace when its air vents are not
properly open
represent the act of ordering a cold investigation
represent the act of ordering a hot investigation
represent the act of ordering no investigation at
all
represent the probability of state j at the begin­
ning of the weekend following week n
For dating purposes, let n=l on Friday 4 March
represent the probability of state j at the end of
the weekend following week n
represent the incremental cost of a comprehen­
sive study of the air vents, so that here C = 200
for a cold investigation
represent the incremental cost of a limited study
of the air vents, so that here C' = 70 for a hot
investigation
represent the cost of correcting an out of control
state, so that here M = 40
represent the cost of failing to correct an out of
control state
On the arguable assumption that such a state will
persist for one more week if it is not corrected,
then on average L = 2800 - 2200 = 600
represent the probability that a hot investigation
will find that the air vents are not properly open,
if in fact this is the case
Here, h = 0.5
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The terminology now created is sufficient to address the problem
at hand .

Break-even probabilities

To obtain the break-even probabilities - that is, those at which the
foreman should be indifferent as between one act and another - it
is necessary first to work out the expected costs associated with
each of the three possible acts . Undertaking an investigation
involves incurring a cost of C or C' , together with a further cost M
if an out of control state is found . If an out of control state exists
but is not detected, a cost L is incurred. Weighting these costs by
the probability of existence of an out of control state fn(Sz) gives
rise to expected costs as follows:

Act Expected cost

al C + M[fn(Sz)]
az C' +[L(l-h)+hM] [fn(SZ)]
a3 L[fn(Sz)]

Let the break-even probability as between al and az be fo(Sz),
where :

C' +[L(l-h)+hM] [fa(SZ)] = C + M[fa(Sz)]

Hence
C-C'

fa(Sz) = L(l-h)+M(h-l) (9.1)

Let the break-even probability as between az and a3 be fb(SZ) ,
where :

C'
Hence fb(SZ) = (L- M)h (9.2)
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For the Alston Glassworks data, fa(S 2) = 0.464 and
ft,(S2) = 0.250. It will generally be true that fa(S2) > fb(S2), but
not invariably so; if fb(S2) > fa(S2) then a limited investigation of
the form of a2 should never be undertaken .

Revision ofprior probabilities

Having computed the break-even probabilities, the next step is to
compare them against the probabilities of being in control or out
of control on Friday 4 March. In symbolic terms, this involves
derivingfl(S\) andft(S2) from the foreman's prior probabilities . If
f()(Sj) is taken as representing the prior probability assigned to
state j, then for Alston Glassworks fo(S\) = 0.8 and fO(S2) = 0.2.
The question resolves itself into one of how to revise these prior
probabilities to allow for the fact that the electricity cost for the
week ending Friday 4 March was £3050. This revision involves the
use of Bayes ' Theorem, and requires the establishment of some
further terminology as follows. Let:

x

ILj

represent the observed cost level, so that
here x = 3050
represent the mean cost associated with
state j , so that here ILl = 2200 and 1L2 =
2800
represent the standard deviation of cost
associated with state j, so that here (1\ = 400
and (12 = 1400
represent the value in a table of the ordin­
ates of the unit normal density function
associated with (X-lLj)/(1j

The table referred to above shows the height of the standard
normal density function associated with a value of a standardised
variable. Since the standard deviation of cost associated with state
j is (1j not unity, to obtain the probability density for state j it is
necessary to correct by multiplying the standardised ordinate value
by the reciprocal of the standard deviation for state j . Let :
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represent the probability density for state i,
so that these densities for j=1 and j=2 give
the relative likelihood of observing the cost
level x under the two possible states

Then, in symbolic terms , the correction required is given below :

By the application of Bayes' Theorem:

fx(xIS;)fo(S;)
2
L fx(xISj) fo(Sj)

j = l

(9.3)

(9.4)

Applying equation (9.4) to the figures in Alston Glassworks gives
rise to the following computation:

(
_ 1_ ) £ (3 050 - 2 200) (0 8)
400 Ju 400 .

(
_ 1_ ) £ (3050-2200 )(0 8) (_1_) £ (3050-2800 )(0 2)
400 l u 400 . + 1400 Lu 1400 .

= 0.60
Hence

fl(S2Ix) = 0.40

This figure is such that fb(S2) < fl(S2Ix) < fa(S2) , suggesting that
the foreman's decision to carry out a hot investigation on Friday 4
March was correct. In evaluating the outcome of this investigation,
some further terminology is required. Let :

hnf represent the outcome 'hot investigation finds no­
thing to suggest an out of control state'

hf represent the outcome 'hot investigation finds air
vents not properly opened'
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The problem specifies thatf(hn.f1S2) = 0.5 andf(h.f1S2) = 0.5. Since
an out of control state must prevail if the vents are not properly
opened, it must be the case thatf(h.f1S\) = 0 andf(hn.f1S\) = 1. In
fact, the outcome hnf occurred, and can be used to revise f\(Sllx)
and f\(S2Ix) as follows :

f\(Stlhnf) = f(hn.f1S\)ft(S\lx)
f(hn.f1S\)f\(SI!x) + f(hn.f1S2)!I(S2 Ix)

= (1)(0.6) = 0.75
(1)(0.6) + (0.5)(0.4)

(9.5)

Iff\(S\lhnf) = 0.75, then it must follow that f\ (S2Ihnj) = 0.25. The
wording of the problem suggests that the foreman did not revise
his probabilities j.{Sj]») andf\(S2Ix) in response to the fact that the
hot investigation produced hnf. If he did not carry out this revision
he acted incorrectly, because although the outcome hnf is not
conclusive , the fact that no evidence was found indicating that the
air vents might not be properly opened increases the probability
that they were in fact properly opened from 0.6 to 0.75.

The hot investigation took place at the beginning of the
weekend, so that the probabilities associated with each state were
subject to change over the weekend, as the cooling of the furnace
caused the metal in the air vents to contract. On Sunday 6 March,
the probabilities for each state are given by fHS\) andfl(S2) ' They
depend upon the transition probabilities from one state to another
over the weekend. A matrix of these transition probabilities can be
drawn up, first in general terms and then with the specific
probabilities for Alston Glassworks inserted, as follows:

S1 at n' S2 at n'

S1 at n
S2 at n [

(1- P) P ] = [ 0.8
g (l-g) 0.4

0.2 ]
0.6

If this matrix of transition probabilities is premultiplied by
[ft(SI!hnf) f1(S2Ihnf)], the resulting vector gives the probabilities
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associated with the in control and out of control states on Sunday 6
March. The calculation is:

[0.75 0.25] [~:~ ~:~] = [0.7 0.3]

The prior probabilities for the analysis of the next week are thus
given by.t\(S,) = 0.7 and .t\(Sz) = 0.3. These priors have to be
modified to reflect the electricity cost over week n=2 of £3120.
The general formula for deriving posterior probabilities for each
state at the end of the nth week is given by:

(9.6)

Applying equation (9.6) to the figures for the week ending on
Friday 11 March produces the following computation:

(_1_)I' (3 120 - 2200) (0 7)
400 Ju 400 .

(0.3)

(_1_)I' (3120-2200 )(0 7) (_1_) I' (3120-2800)
400 Ju 400 . + 1400 Ju 1400

The resulting figures are h(Sdx) = 0.373 and h(Szlx) = 0.627.
Because fz(Szlx) > fa(Sz), expected cost will be minimised by
carrying out a cold investigation. Two relatively high weekly
electricity costs in succession have had the cumulative effect of
confirming the need for a comprehensive study of the furnace's air
vents.

The quadratic equation approach

In the final part of the Alston Glassworks problem, the issue is
simplified by eliminating the possibility of carrying out a hot
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investigation. The acts which remain available may be relabelled
as follows . Let :

a\ represent the act of ordering a cold investigation ,
hereafter referred to simply as 'investigating'

a2 represent the act of ordering no investigation at all

The fact that a hot investigation is now ruled out means that the
revision of probabilities in equation (9.5) can no longer take place.
Hence the probabilities.fl (SI) and.fl (52) are obtained by premulti­
plying the matrix of transition probabilities by [ft(Sllx) fl(52Ix)] to
give the following calculation:

[0.6 0.4]
[

0.8
0.4

0.2] = [0.64
0.6

0.36]

From this calculation , .fI(SI) = 0.64 and .fI(S2) = 0.36.
Because only two alternative acts are available , another

approach to the problem in week n=2 becomes feasible . This
involves working out the cost level(s) at which the foreman should
be indifferent as to whether or not to investigate. In locating these
cost level(s), it is necessary to define three new terms, a, band c as
follows:

a =(_1)(_1 __1)
2 O"f O"i

b = - (:? - :i)
c = 10ge[( L-M-C)(f,,(S2) )(~)]+(_1)( v-~ _ v-~)

C f,,(S I) 0"2 2 0"1 0"2

In their paper (see Appendix 2) Capettini and Collins employ
these terms to advance a decision rule as follows:

'Investigate ifax2 + bx + c > 0; otherwise do not investigate'

The cost level(s) for which the foreman should be indifferent as to
whether or not to investigate are given by the values of x for which
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ax' + bx + c = 0; there may be two positive numbers for which
this equality is satisfied, or one, or none at all. If there are none ,
then it is either always better to investigate or never so, depending
on whether or not ax: + bx + c > 0; if there is one positive
number, then this is the break-even cost observation as between
investigating or not. The interpretation if there are two positive
values of x for which ax2 + bx + c = 0 will be dealt with below.

Before coming to this, however, it is worth noting that the
value(s) of x need to be recalculated every time the prior probabi­
lities change, because the most recently updated prior probabili­
ties enter into the formula for c above. Inserting the figures as they
were at the beginning of week n=2 gives the following values for
the parameters a, band c:

a = 2.869 X 10-6 ; b = - 0.01232; c = 11.8847

The quadratic equation ax' + bx + c = 0 has roots given by:

__ ~ + Yb2
- 4ac

x- 2a- 2a

When substitution is carried out, the result obtained is:

x = 2147 ± 684

For values of x in the range x = 2147 ± 684, ax2 + bx + c < O.
Hence the conclusion reached by the Capettini-Collins decision
rule for week n=2 may be expressed as follows:

'Do not investigate if the electricity cost for this week lies in
the range between £1 463 and £2 831'

Light can be thrown on this decision rule by considering an act aj

and two threshold values of cost r\ and rz- where r\ < rz- Let the
level of cost actually observed be c. If the act aj is optimal when c
< rl and when c > rz- but not when r , < c < rz- then the act aj is
said to have a disjoint region between r\ and ri- The decision rule
for week n=2 above implies that there is a disjoint region between
£1463 and £2831 for the act of investigating the air vents. Since
the cost observation for week n=2 of £1340 lies outside this
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disjoint region, expected cost will be minimised if an investigation
is carried out in response to this relatively low electricity cost. On
the face of it, though, this conclusion would seem contrary to
common sense; why initiate an investigation in response to what
seems to be a very good cost performance?

In fact, the conclusion to investigate is not illogical. When the
air vents are not properly opened, the probability distribution of
costs is much more widely spread than it is when the vents are
properly opened; the standard deviation is 3.5 times as large in the
out of control state as it is in the in control state . Consequently, an
extreme cost reading, whether a very large one or a very small
one, is more likely to come from the out of control distribution
than it is to come from the in control distribution. It is thus optimal
to investigate after either very large or very small cost observa­
tions, but not to investigate in response to observations in between
- hence the disjoint region .

It is fairly easy to think of real life situations in which a very low
electricity cost might be associated with an out of control state .
Suppose, for example , that the air vents on the furnace were to be
almost closed, so that sufficient oxygen was available to support
only a very sluggish combustion. Relatively little electricity would
be consumed in this out of control state, because the furnace
would fail to reach anything approaching the required tempera­
ture . It may thus be seen that the existence of a disjoint region may
well reflect an aspect of industrial reality.

Expected cost for a decision rule

The expected cost associated with implementing decision rule d in
week n is given by EC n (rule d), where:

ECn (rule d) = [f,,-t(St)] (C) <I> (atISJ, rule d) +
[f'n-t(SZ)] [(C+M) <I> (alISz, rule d) +
(L)<I>(azISz,rule d)]

(9.7)

In equation (9.7) , <I>(ajISj , rule d) represents the probability that
rule d will cause action aj to be taken when the process is actually
in state Si. For week n=2, the expected cost associated with the
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optimal decision rule 'investigate unless £1 463 ~ x ~ £2831',
where x is the week's cost observation, can be computed as
follows:

ECz (at unless 1463 ~x~ 2831) =
(0.64)(200)(1-Prob. of 1463~x~ 2831 if i = 2200, s= 400)
+ (0.36) [(240)(1 - Prob. of 1463 ~x~ 2831 if i = 2800, S =
1400) + (6oo)(Prob. of 1463 ~x~ 2831 if i = 2800, S =
1400)] .

The probabilities in the round brackets above can be obtained
from a table of areas under the standardised normal distribution.
For example, the probability of obtaining a value outside the range
2147 ± 684 when sampling from a normal distribution with a mean
of 2200 and a standard deviation of 400 is equivalent to the
probability of obtaining a z value greater than (2831-2200)/400
or less than (1463-2200)/400, which is 0.057 + 0.033 = 0.09. By
inserting probabilities in this way, calculation shows that :

ECZ(al unless 1 ~ x ~ 2831) = £141.85

It is interesting to contrast this expected cost against the cost for a
decision rule which is identical except that it ignores the existence
of the disjoint region - the 'common sense ' rule of 'investigate if x
> £2831'. This rule may be referred to as the best one-sided
decision rule , as compared with the best two-sided rule discussed
above. A decision rule is one-sided if it has only one cost
observation representing a point of indifference as between inves­
tigating and not investigating; a two-sided rule has two such
points . The expected cost for the best one -sided decision rule at
the end of week n=2 is given by:

ECz (a, if x > 2831) = £159.66

The excess of this expected cost over the expected cost of £141.85
for the best two-sided rule represents the expected cost of ignoring
the existence of the disjoint region; here it is £17.81.
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10.1 Fitzroy Paper Products

At its Ashdown factory, Fitzroy Paper Products has a large pulp
steaming machine, which is worked for two 8-hour shifts each day.
During the remaining 8 hours of the day , any defect which has
developed during the 16-hour operating period can be corrected.
The task of checking for a defect involves the dismantling of the
machine's heating mechanism; this work is done by the machine's
operatives, and costs £290 in overtime payments each time it is
undertaken. In addition, further overtime payments of £140 are
required if the checking procedure finds a defect which needs to be
corrected; different defects require slightly different levels of
expenditure to deal with them, but these differences are small
enough to be ignored in practice.

A further simplification arises from the relatively short period of
operation between one machine shutdown and the next. Because
the operating period is only 16 hours, the fact that defects can
gradually develop during this period may be ignored for analytical
purposes. Hence, for each operating period the machine may be
treated either as being in a 'defective' or a 'non-defective' state
throughout. From experience, the pulp steaming machine super­
visor knows that once the machine becomes defective, it will
remain so until its heating mechanism is dismantled and the fault
put right. He also knows that if the machine is not defective at the
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end of an operating period , there is about one chance in five that it
will become defective very soon after the beginning of the next
operating period.

While the machine is in operation, it continuously feeds data on
its consumption of raw materials and of electricity into the
Ashdown factory's computer. This computer then converts the
data from physical units into costs, and supplies the machine 's
supervisor with a report on the operating cost incurred for the day
as soon as the second shift finishes . The cost level so reported may
be taken as relating exclusively either to a process which is in
control (not defective) or out of control (with a defect). However,
the level of operating cost is not governed solely by the presence or
absence of a machine defect. It is also subject to substantial
random variations, arising largely from differences in the quality
and texture of the pulp being steamed. The machine's supervisor
has managed to build up the following probability distributions for
the cost per operating period associated with the process being
respectively in control and out of control:

Probability Probability

0.05
0.15
0.25
0.25
0.25
0.05

Process
in control

Cost per
period

£
500-600
600-700
700-800
800-900
900-1000

1000-1100

0.10
0.35
0.35
0.10
0.05
0.05

Process
out of control

Cost per
period

£
700-800
800-900
900-1000

1000-1100
1100-1200
1200-1300

Each day, at the end of the operating period, the question arises as
to whether or not the machine's heating mechanism should be
dismantled . This question cannot simply be left to the judgement
of the machine's supervisor on every occasion, as there will
inevitably be some days when he will be away on other business,
on holiday , ill or otherwise unavailable . What is needed is the
development of a rule specifying a level of cost for an operating
period which , if it is exceeded , should automatically give rise to
dismantling of the heating mechanism.
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You are required:

1. To work out what rule would have the property of minimising
the long-term expected cost per day arising from the pulp
steaming machine , and to compute the level of this expected
cost.

2. To compare this minimum long-term expected cost with the
long-term expected cost associated with the following alterna­
tive policies:

(a) Never dismantle the heating mechanism, and thus avoid
any costs of either investigation or defect correction

(b) Dismantle the mechanism and check for a defect at the
end of every operating period.

3. To find what the long-term expected cost per day for the pulp
steaming machine would be if a fault-diagnosing mechanism
were to be fitted to it, indicating accurately the presence or
absence of a defect.
Ignore any costs associated with the fitting of this mechanism ,
and assume that it provides information on the state of the
machine only once per day, at the end of that day's operating
period.
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10.2 Analysis

Introduction

In the discussion of the Alston Glassworks problem, the adjective
'arguable' was applied to the measurement of the variable L,
which represents the cost of failing to correct an out of control
state . The difficulty here may be expressed in the following way. If
a process is out of control in a period j , and is not corrected in that
period, it is likely to remain out of control in the next period j+ 1.
There will be a further opportunity to correct the process in period
j+ 1, but if this opportunity is not taken the process may remain
out of control in period j+2, and so on. The presence of a
sequence of opportunities for correction means that L cannot
represent the present value of the extra costs associated with an
out of control state continuing forever. At the same time , howev­
er, it is not strictly valid to assume that because an out of control
state is not corrected in period j it must be corrected in period j+ 1,
so that L can represent the extra cost associated with an out of
control state persisting for one period only . The magnitude of L
depends on when in the future the out of control state is corrected.

But the magnitude of L also determines when the out of control
state will be corrected. Suppose that an investigation will always
detect an out of control state if one is present, so that, in the
terminology employed for the Alston Glassworks problem, h= 1.
Then, with symbols as in equation (9.2) for that problem, the
break-even probability as between investigating and not investi­
gating is given by fb(SZ), where:

L thus determines fb(SZ) ' but also depends on it in that the higher
is the break-even probability fb(SZ), the longer will an out of
control state go uncorrected, and the larger will L be. If an
assumption is made about how long an out of control state will go
uncorrected in order to arrive at a value of L , then that value of L
will change fb(SZ) , giving rise to a change in L , which will in turn
change fb(SZ) again , and so on forever.



Fitzroy Paper Products 113

A controlled Markov process

The problem of measuring L only arises because the objective in
making a single-period cost variance investigation decision is to
minimise the present value of the costs arising from this period 's
decision. An alternative approach is to specify the objective as
being one of minimising the long-term expected cost per period
incurred in operating, investigating and correcting the process
concerned. This multi-period approach will be implemented by the
use of Markov chains. Their use avoids the heavy computation
associated with Bayesian revision, and does not require the
restrictive assumption that the probability distributions of cost
associated with the process being in control and being out of
control are both normal. This approach also has the advantage of
giving rise to a boundary between 'investigate' and 'do not
investigate' which is represented by a single cost figure. This clear
division implies that, with a Markov chain approach, cost variance
investigation decisions can be taken by relatively junior staff
without asking them to exercise a great deal of personal judge ­
ment.

The starting point for the analysis is a 'process transition matrix'
containing the transition probabilities as between two states , i=1
representing 'in control' and i=2 representing 'out of control' . It is
assumed that the process cannot revert back to being in control by
itself once it has become out of control. Such a return to being in
control can be achieved only by managerial investigation and
defect correction. The process transition matrix is given below,
both in symbolic terms and with the probabilities inserted for the
Fitzroy Paper Products problem:

i=1 i=2

i=1
i=2

(1~g) ]

At the end of each operating period, the computer at Fitzroy
generates an observation i of the cost incurred by the pulp
steaming machine in that period. Two cumulative probability
functions can be drawn up showing the proportion of cases in
which an operating period's cost falls below a level x; one of these
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functions relates to the absence of a defect (the in control state)
and the other to the presence of a defect (the out of control state) .
The functions are as follows:

Prob. (x ~ xli) = F;(x)

where E(xli) = ILi
and AIL = ILz-ILI

(i=1,2)

For example, from the in control distribution in the Fitzroy
problem it may be seen that Prob. [x ~ 700 I (i=l)] = 0.45 . Corn­
puting the means of the two distributions gives ILl = 730, ILz = 1015,
AIL = 285.

In the problem , any movement by the process from the in
control to the out of control state may be taken as occurring at the
very beginning of each operating period , so that the cost reported
for a period relates exclusively to the state (in or out of control)
arrived at through the mechanism of the transition probabilities.
Once the machine 's supervisor receives a cost report , he must
decide whether or not to incur a fixed cost 1 = £290 by dismantling
the heating mechanism and investigating. If an investigation takes
place, it will find out what (if anything) is wrong with the
mechanism . Then if a defect is present , its correction will involve a
further outlay K = £140.

The objective to be attained is the finding of that cost level x
which is such as to minimise the long-term expected cost per day of
controlling the machine according to a decision rule which stipu­
lates 'investigate if and only if x > x' . Two kinds of error could
arise from implementing this rule, with the following probabilities:

Prob.[Investigate I in control] = Prob. [x> x I (i=I)]
= I-Prob.[x ~ x I (i=I)]
= I-FI(x) (10.1)

Prob. [Don 't investigate lout of control] =
Prob . [x ~ x I (i=2)] = Fz(x) (10.2)

Since the process cannot go out of control whilst lying idle between
operating periods, if it finishes an operating period in state i= I it
must start the next operating period in state i= 1. If, however, the
process is in state i=2 at the end of an operating period , and a cost
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report is received , there is a probability F2(x) that this report will
show a cost observation i which is less than the critical value of x,
leading to a decision not to investigate the process, so that it starts
the next operating period in state i=2. On the other hand , there is
a probability of 1-F2(x ) that the cost report will show i > x, and
lead to an investigation causing the process to start the next
operating period in state i= 1. All this information on the probabi­
lities of movements between states during the interval between
two operating periods can be summarised in a matrix in which the
rows represent the states at the end of an operating period and the
columns the states at the start of the next period. This matrix is
called the 'control transition matrix' because it represents the
outcome of the exercise of control. It appears as follows:

i=1 i=2

i=1
i=2

If this control transition matrix is premultiplied by the process
transition matrix given above , the 'controlled process transition
matrix' is created. This shows the probabilities of moving from one
state to another over an entire cycle from the beginning of one
operating period to the beginning of the next , covering both
changes of state by the process itself and control responses to those
changes. Its form is as follows :

i=1
i=2

i=1

[
1-(1-g)F2(X)

1-F2(x)

i=2

(1-g)F2(x) ]
F2(x)

The only problems of interpretation here are those posed by the
element relating to the probability of moving from state i= 1 at the
beginning of one operating period to i=1 at the beginning of the
next. This can be done either by:

1. The process never moving out of control, which has a probabil­
ity of g , or

2. The process moving out of control , with probability (1-g), and
then control action being taken to move it back again, with
probability 1-F2(x ) , giving a compound probability of
(1-g)[1- Fix)] .
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The sum of these two probabilities is g+(1-g)[1-F2(x)], which
simplifies to 1-(1-g)F2(x) as in the matrix.

Steady-state probabilities

Consider a given value of x within the decision rule 'investigate if
and only if i > x' . The steady-state probabilities 1Tl(X) and 1T2(X)
are the probabilities of the process being respectively in states i= 1
and i=2 for that critical cost x at the start of period n , where n is
large. They are obtained from the controlled process transition
matrix by the simultaneous solution of two equations, as follows:

. 1T2(X) = [(l-g)FzCx)]1TI(x) + F2(x)1T2(X)
1T1(X) + 1T2(X) =1

(10.3)
(10.4)

Equation (10.3) represents a result from Markov chain theory,
while equation (10.4) simply reflects the fact that the probabilities
of states i= 1 and i=2 must add up to unity . Solving these
equations gives:

1-FzCx) (1-g)F2(x)
1T1(X) = l-gFzCx) and 1T2(X) = 1-gF2(x)

(10.5)

Because the controlled process transition matrix refers to states at
the beginning of an operating period, the above steady-state
probabilities have to be postmultiplied by the process transition
matrix in order to obtain the steady-state probabilities Sl(X) and
S2(X) which prevail during an operating period. This is done as
follows:

[ ~ (1~g) ]

Hence :

(10.6)
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Substituting from (10.5) above in the expression for S2(X) gives:

(10.7)

The relationships in (10.5) and (10.6) above constitute expressions
for the probabilities of being in states i=l and i=2 after the
process has been run with a critical cost x for a long time . These
probabilities can be used to find the long-term average cost per
period of running the process using any given value of x in the
decision rule . Then the value of x associated with the minimum
long-term cost represents the optimum value of x to insert in the
decision rule determining whether or not to investigate .

Determining long-term average cost per period

Let the long-term average cost per period incurred in operating a
process with a given value of x in the decision rule be Co(x). Then
Co(x) is obtained by weighting the mean operating costs per period
for each of the states i= 1,2 by the steady-state probabilities of
each of these states being present during an operating period . This
gives rise to :

Substituting for s,(x) and S2(X) from the relationships in equation
(10.6), then using equation (l0.4) and the definition of A~ enables
the above equation to be expressed as:

(10.8)

The probability that in any period i > x so that an investigation
takes place is given by the conditional probability that i > x for
each state i= 1,2 multiplied by the steady-state probability of
occurrence of that state . In symbolic terms :

Prob .(i > x) = Prob.[i > xl(i=l)]s(x) + Prob.[i > xl (i=2)]S2(X)
(10.9)
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Substituting from equations (10.1) and (10.2) for the square­
bracketed probabilities, then substituting by means of the rela­
tionships in equations (10.6) and (10.7) respectively for SI(X) and
S2(X), and finally substituting 1Tl(X) from its relationship in equa­
tion (10.5) gives:

Prob.Ir > x) = 1Tl(X)[1-gF1(x)]

Every time an investigation takes place , a fixed cost 1 is incurred.
Hence the long-term average cost of investigation per period C,(x)
is given by:

(10.10)

Finally, the long-term average cost of correcting defects per period
CK(x) is given by the probability that an investigation takes place
in state i=2, multiplied by the cost of correction , which is K. The
probability required is given by the second term on the right-hand
side of equation (10.9). Substituting within this term from equa­
tions (10.2) and (10.7) , then substituting 1T)(X) from its rela­
tionship in equation (10.5) gives:

(10.11)

The long-term expected cost per period of controlling the process
C(x) is given by C(x) = Co(x) + C[(x) + CK(x). Substituting from
equations (10.8) , (10.10) and (10.11) , and then simplifying, gives
rise to:

where a = (l-g)K + l-g6.1J-

and b = gl

(10.12)

(10.13)

(10.14)

It is worth noting that since g is a probability, 0 < g < 1, and since
1 is a cost, 1> O. Consequently, it is always the case that b > O.
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Costs with extremal policies and with perfect
information

The 'extremal policies' are those of never investigating at all , and
always investigating at the end of every operating period. Their
costs will now be dealt with in turn:

1. Never investigating is equivalent to setting x = 00 in the
decision rule 'investigate if and only if i > x' . With x = 00 ,

Fix) = 1, hence TII(X) = 0. If TII(X) = 0, then C(x) = 1-12·
2. Always investigating is equivalent to setting x = 0 in the above

decision rule .
With x = 0, F1(x) = F2(x) = 0.
Because F2(x) = 0, TII(X) = 1, and substituting for 'l1'1(X) and
F1(x) in equation (10.12) gives C(x) = 1-12 + a.

If the pulp steaming machine supervisor in the Fitzroy problem
had perfect information - in the sense of possessing advance
knowledge of whether the process was in control or not - then he
would never order an investigation unnecessarily, nor would he
ever fail to investigate when this was required. This may be
expressed as:

Prob.(Investigate I in control)=O, so that F1(x)= 1
Prob.(Don't investigate l out of control)=O, so that Fz(x)=O

Under perfect information , no decision rule as such would be
required; a decision rule represents a response to uncertainty.
Hence there would be no value of x under certainty, enabling
long-term expected cost in this case simply to be labelled as C*. To
derive C*, note that if F2(x) = 0, then 'l1'1(X) = 1. By substitution
for F1(x) and 'l1'1(X) in equation (10.12) , it is found that C* =
1-12+a-b. This formula represents the minimum attainable long­
term expected cost per period of controlling the process.

Solving the Fitzroy problem

The question now is how to find C(x) for x -:1= °andx -:1= 00 . For any
given problem, 1-12 , a and b are all constants, so that from equation
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(10.12) the magnitude of C(x) for any given x must depend upon
1T(X) and F)(x). From equation (10.5), it may be seen that 1T1(X)
depends on Fz(x) but not on F( (x) . The probability Fz(x) is simply
the probability of a cost observation i falling below x for the out of
control state. Referring back to equation (10.12), since b > 0 it
must follow that cost is minimised for a given value of x when F)(x)
is maximised . Since F(x) is the probability of a cost observation i
less than x for the in control state, this implies that it is necessary
to read from the in control distribution the probability of obtaining
any i value up to a very small amount below x. The probability
thus obtained is referred to as Max.F(x) .

The first step in solving the Fitzroy problem is to discretise the
two probability distributions of cost by taking the midpoints of
their class intervals as being representative of the whole class .
Thus, for example, the 0.1 probability of a cost per day lying
between £500 and £600 if the process is in control is discretised by
saying that there is a 0.1 probability that the cost will be exactly
£550. The discretised distributions appear as follows:

Probability

Process
in control

Cost per
period

£
550
650
750
850
950

1050

0.10
0.35
0.35
0.10
0.05
0.05

Process
out of control

Cost per
period Probability

£
750 0.05
850 0.15
950 0.25

1050 0.25
1150 0.25
1250 0.05

It is then necessary to compute C(x) for each discrete cost x from x =
750 to x = 1150. These limits are determined by the fact that for x
< 750, Fix) = 0, and for x < 1150, Max.F(x) = 1. Performing
the computation requires the evaluation of the parameters f.tz, a
and b. For the Fitzroy data, f.tz = 1015 , a = 90 and b = 232. Using
these parameters, a table can be drawn up as on p. 121. In it, the
heading 'control limit' refers to the level of observed cost below
which no investigation should be undertaken, and the value of
C(x) is obtained by substitution within equation (10.12) .
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Control
Limit F2(x) 1l"](x) Max.F(x) C(x)

x < 750 0 1 0.45 1000.6
x < 850 0.05 0.990 0.80 920.4
x < 950 0.20 0.952 0.90 901.9*
x < 1050 0.45 0.859 0.95 903.0
x < 1150 0.70 0.682 1 918.2

The asterisk in the above table denotes the minimum value of
C(x), which is associated with a decision rule 'investigate if the
reported operating cost for a period is equal to or greater than
£950' . This answers the first part of the Fitzroy problem , although
it is worth noting that using £1 050 instead of £950 in the decision
rule would raise the long-term expected cost associated with the
pulp steaming machine by just over £1 per day. If, for example,
there are elements of inconvenience associated with dismantling
the machine's heating mechanism which are not fully reflected in
the £290 cost figure for doing this, then it may be preferable to
substitute £1 050 for £950 in the decision rule.

The Fitzroy problem goes on to ask for the costs associated with
the policies of 'always investigating' and 'never investigating' .
These costs are given by the formulae in 1 and 2 at the beginning
of the previous section, and are as follows:

(a) For 'never investigate' , C(x) = J.L2 = £1015 per day
(b) For 'always investigate', C(x) = J.L2+a = £1105 per day

The final part of the problem asks what the long-term expected
cost per day would be if perfect information were available, so that
investigation decisions were made optimally throughout. From the
formula in the previous section , C* = J.L2+a-b = £873 per day.

Approximation to optimality ofa fixed decision rule

There is a clear contrast between the use of a fixed critical cost
level for investigation here , and the employment of cost observa­
tions for the Bayesian revision of state probabilities in the proce­
dure applied to the Alston Glassworks problem. In the introduc-
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tion to this problem, the point was made that the single-period
orientation of the Bayesian approach could not produce a wholly
satisfactory measure of the cost of failing to correct an out of
control situation. The Markovian approach taken in the Fitzroy
problem is not the only way of addressing this difficulty; Kaplan in
his (1969) paper (see Appendix 2) advocated an elaborate alterna­
tive involving a multi-period Bayesian model , in which a dynamic
programming computation is used to minimise the present value of
expected costs incurred up to an infinite time horizon .

While this dynamic programming approach produces lower-cost
solutions than does the Markovian approach, its practical applica­
tion gives rise to very severe computational problems. A paper by
Dittman and Prakash in the Journal ofAccounting Research , April
1979 (see Appendix 2) compared the Markovian and dynamic
programming approaches by means of simulation. They found that
the difference between the minimum long-run expected costs per
period obtainable under the two approaches was quite small ,
except in the case in which the standard deviation of the probabil­
ity distribution of cost for the in control state was large both in
relation to Ll~ and to the corresponding standard deviation for
the out of control state. However, this situation is probably
uncommon; the standard deviation will normally be greater for an
out of control state (which can arise from a variety of causes
having widely differing effects on costs) than for an in control state
(where the very fact that the process is working as intended would
seem likely to impose some uniformity on costs incurred).
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11.1 William Lehman Timber Ltd

William Lehman Timber Ltd (WLT) are importers and distribu­
tors of wood and forest products. WLT have extensive yards at the
port of Goole, and are contemplating the installation (on currently
unused space within the Goole yards) of plant for the distillation of
fusel oil. Considerations of cash flow make it strongly in WLT's
interests to lease this plant rather than purchase it outright. Two
types of fusel oil distillation plant are available for leasing; direct
distillation (DD) plant is being quoted with lease payments of
£320000 per annum, while the more sophisticated catalysis­
assisted (CA) plant is being quoted with lease payments of
£490000 per annum. Because these plants are based on quite
distinct technologies, they carry out the process of distillation with
widely differing efficiencies. CA plant is capable of producing fusel
oil at a variable cost of £0.17 per litre, while DD plant is capable of
producing only at a variable cost of £0.28 per litre . WLT is part of
a vertically-integrated forest products group, and sells solely
through 250 'captive' wholesalers belonging to this group. These
wholesalers do not currently stock fusel oil, but willall be required
to do so when WLT makes it available to them . The price to the
wholesaler is determined by competitive considerations, and will
be 55p per litre irrespective of whether the fuse! oil is produced by
CA plant or DD plant.
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Although there is no doubt within WLT as to the appropriate
price to the wholesaler , there is considerable uncertainty as to the
volume of demand that will be generated at that price. WLT have
other possible uses for the space the distillation plant would
occupy, and consequently feel that the project to produce fusel oil
would need to yield a profit of 'certainly not less than' £100000 per
annum in order to justify itself . Here, profit is arrived at by
deducting lease payments and variable production costs from the
sales revenue obtained from wholesalers. On the basis of their
limited experience of selling wood-derived chemicals, the best that
WLT's management can do by way of predicting the demand for
fusel oil is to say that there is an even chance that it will lie
between 4000 and 8000 litres per wholesaler per annum. In view
of this extreme uncertainty , WLT have undertaken detailed
negotiations to obtain firm orders for a year's supply of fusel oil
from a sample of their wholesalers. These negotiations involved
five wholesalers, and the orders they obtained were for a mean of
6350 litres with a standard deviation of 1 630 litres .

An opportunity has arisen to conduct negotiations with a further
sample of six wholesalers, but this would cost an extra £5 800. The
management of WLT believe that the standard deviation of fusel
oil sales per annum as between wholesalers will be of the order of
1700 litres .

You are required to advise WLT's management as to the ir most
appropriate course of action .
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11.2 Analysis

Elimination ofthe DD plant option

Before proceeding to the analysis of the data in this problem, it is
necessary to be clear as to what constitutes the problem itself.
Three mutually exclusive alternatives exist, which may be labelled
as below . Let :

al represent the act of leasing the DD plant
a2 represent the act of leasing the CA plant
a3 represent the act implicit in not proceeding with the fusel

oil distillation project

Some further terminology required may be obtained by letting:

5 represent the average sales of fusel oil, in litres per
wholesaler per annum

C(uj,5) represent the cost per annum associated with act aj
for a given value of 5

Initially , the focus of the enquiry will be on the choice between
acts al and a2' Cost functions for these acts (in pounds per annum)
may be drawn up as below :

C(u),5) = 320000 + (0.28)(250)5
C(u2,5) = 490000 + (0.17)(250)5

These cost functions are made up of the sum of fixed cost plus the
variable cost per litre of fusel oil produced, applied to the average
sales in litres and multiplied by the 250 wholesalers under consid­
eration. The break-even point for 5 as between Ul and U2 may be
represented by 5 h , and computed as 5h = 170000/
[250(0.28-0.17)] = 6 182 litres per wholesaler per annum .

This figure may be compared with that sales level at which the
minimum acceptable profit of £100000 per annum would be
earned with the DD plant. If this level is represented by 5d , then
the relevant calculation is 5d = 420000/[250(0.55-0.28)] = 6222
litres per wholesaler per annum. Since 5d > 5b for an opportunity
cost of £100000 per annum incurred in using the Goole site space
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for fusel oil distillation, it must follow that the DD plant cannot be
preferred to the CA plant at this opportunity cost level. By the
definition of Sb, for sales levels in excess of 6 182 litres per
wholesaler per annum the CA plant is preferred, while for sales
levels below this figure the minimum acceptable profit is not
earned and the project does not proceed.

By this line of argument , the DD plant would seem to be
eliminated from further consideration, the more so since the
problem stipulates the minimum acceptable profit on the project
as being 'certainly not less than' £100000 per annum. It should be
noted, however, that if for any reason the opportunity cost figure
were actually to lie below £100000 per annum , act a\ would
immediately re-enter the analysis. For an opportunity cost of
£75000 per annum, Sd = 5851 and for an opportunity cost of
£50000 per annum, Sd = 5481. With figures of this order, where
actual sales S were such that Sd < S < Sb, the DD plant would be
preferred. While estimates of opportunity cost are inherently
imprecise, the case where Sd < Sb will not be pursued further here,
since it would transform the issue into a 'three-action problem' of
considerable complexity.

Posterior analysis

Attention will be focused on the choice between acts az and a3'
The CA plant would earn the minimum acceptable profit of
£100000 per annum at a sales level of S, = 590000/[250(0.55­
0.17)]= 6210 litres per wholesaler per annum. The question is one
of how the likelihood of attaining this level has been affected by
the information that has already been obtained from the sample of
five wholesalers. The study of this effect involves an approach
called posterior analysis. If a very large number of samples of five
observations were to be drawn from the population of 250
wholesalers, the means of these samples could be plotted to form a
sampling distribution of the mean for samples of size five. The
Central Limit Theorem indicates that even for samples as small as
this, the sampling distribution will be approximately normal unless
the population is extremely skewed. Let :

i represent the sample mean
s represent the standard deviation of the sample
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n represent the sample size
a; represent the standard deviation of the sampling dis­

tribution

Then since s = 1630 and n = 5 here :

a; = s/Vn = 729.0

The term a; is referred to as the standard error of the mean. Its
computation does not involve a finite population correction , since
the sample constitutes only 2 per cent of the population.

Before any sample information was obtained, WLT's manage­
ment had in their minds a prior distribution of demand per
wholesaler per annum, drawn from their knowledge and experi­
ence of the forest products industry. Assuming this distribution to
be normal in form, let:

Eo (IJ.) represent the mean of the prior distribution
ao represent the standard deviation of the prior distribu­

tion

For this problem, Eo (IJ.) = 6000, but ao is not given, and has to be
inferred . All that WLT's management can say about the spread of
the prior distribution is that they feel there to be an even chance
that demand will lie within the range from 4 0Q{}-8 000 litres per
wholesaler per annum. More formally, WLT's management can be
taken as asserting (for example) that there is a 0.25 probability
that demand will exceed 8000 for a normal distribution with a
mean of 6000 and an unknown standard deviation. Some 25 per
cent of the area under a standardised normal distribution lies to
the right of z = 0.675. The standardised value (or z score) of a
reading of 8000 from the normal prior distribution must thus be
0.675. This makes it possible to find the unknown standard
deviation ao by solving the following equation:

(8000-6000)/ao = 0.675, hence ao = 2963

The calculation required for posterior analysis involves revising a
normal prior distribution with mean Eo (IJ.) = 6000 and standard
deviation ao = 2963 by reference to the sample findings, which
gave an estimate of the mean sales i = 6350 subject to a standard
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error O'i = 729. The distribution obtained from the revision of a
prior distribution by reference to sample data is referred to as the
posterior distribution . If the prior distribution is normal , then so
also will be the posterior distribution. Let :

E\(fA.) represent the mean of the posterior distribution
0'\ represent the standard deviation of the posterior

distribution

Then the following are standard results from statistical decision
theory :

(11.1)

(11.2)

The normality of the prior distribution has already been assumed,
but in any event so long as the variance of the prior distribution 0'6

is large in relation to the sampling variance of the mean O'i2
, then

the posterior distribution can be taken as being normal even if the
prior distribution is not normal. In this problem, with 0'6 = 16.50'l,
it would require an exceedingly skewed prior distribution to
prevent the posterior distribution from being normal.

By computation, for this problem E\ (u) = 6330 and 0'\ = 707.9.
Since E\(fA.) > Sc, on the basis of the information in the first
sample act a2 is to be preferred. However, the question which now
arises is one of whether it is worth obtaining any more information
before proceeding to a final decision as between acts a2 and a3.
This question is handled by means of an approach named prepost­
erior analysis.

Preposterior analysis

Since the cost of sampling a further six wholesalers is known, the
question of whether this is worthwhile resolves itself into one of
finding the expected value of sample information associated with
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the sample of six. Some further terminology is required, as
follows. Let :

cr , 2 represent the variance prior to the new sample, so that
from the calculations above cr, 2 = 707.92

cr"2 represent the variance posterior to the new sample
cr2 represent the estimated variance 0:' the population,

given in the problem as cr2 = 17002

In the absence of any information from the new sample, the
approach of equation (11.2) may be employed , but with the
estimated variance of the population taking the place of the
variance obtained from sample information. This gives rise to:

(11.3)

Let cr*2 represent the reduction in variance due to a sample of size
n, so that:

(11.4)

Substituting from equation (11.3) for cr"2 in equation (11.4) and
simplifying produces the following relationship:

(11.5)

With n = 6, and given the values for cr' 2 and cr2 shown above,
computation yields cr* = 505.5. From the form of equation (11.5),
it will be noted that the value of o" is fairly insensitive to errors in
estimating the variance of the population, unless n is very small. It
is next necessary to define a standardised variable D* as follows.
Let :

D* represent the absolute distance , in terms of o" units , that
separates El(~) from the break-even value
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Then:

A pair of functions must now be defined representing the oppor­
tunity losses associated with the incorrect decisions to abandon the
project if S > Sc, and to proceed with CA plant if Sc > S. These
functions appear as follows:

(0.55-0.17)(250)(S-Sc) for S > s,
(0.55-0 .17)(250)(Sc-S) for s, > S

Let L represent the rate of change of these opportunity loss
functions , so that here L = 95.

The final step in building up the equation for the expected value
of sample information (EVSI) involves the unit normal loss
integral LN(D*) , defined as below:

LN(D*) = r(6-D*) I N (6) d6
D*

(11.6)

In equation (11.6) , I N (6) represents the value of the standard
normal density function associated with 6. It is not in practice
necessary to carry out the integration on the right-hand side of
equation (11.6), since tables from which the unit normal loss
integral can be read for given values of D * are readily available .
The expected value of sample information is given by the following
equation:

EVSI = La" LN(D*) (11.7)

From tables, LN(0 .24) = 0.2904, and the expected value of sample
information for a further sample of six wholesalers is found to be
£13 946. The cost of sampling six wholesalers is stated in the
problem to be £5800, and when this is subtracted from the EVSI
an expected net gain from sampling (ENGS) of £8146 is obtained .
As this ENGS figure is positive , it seems worthwhile to take a
further sample of six wholesalers before deciding between acts
0 2 and 0 3 - leasing the CA plant or abandoning the project.
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However, this conclusion is dependent upon the accuracy of the
£100 000 figure for the opportunity cost of using the vacant space in
the Goole yards for fusel oil distillation. Since this £100000 can be
no more than a rough estimate, sensitivity analysis of the above
conclusion favouring further sampling is needed.

The sensitivity analysis required is of a fairly simple kind. If the
opportunity cost per annum were to be £125000 instead of
£100000, then S; = 6474, and if it were to be £150000 then the
corresponding figure would be S; = 6737. Inserting these S; values
into the computation of D*, and recalculating the EVSI and
ENGS figures with the new values of D* obtained, gives rise to the
following results. (Brackets denote negative figures).

Opportunity cost
per annum EVSI ENGS

£ £ £
125000 13281 7382
150000 5671 (129)

The conclusion to be drawn is that if the opportunity cost of the
space in the Goole yards lies below £150000 per annum, then it
will be worthwhile to take the further sample of six wholesalers
preparatory to a final decision as between acts az and a3' If,
however, the opportunity cost lies at or above the £150000 per
annum level, then with S; > E\(I-L) and a negative ENGS, it will
neither be worth proceeding with the fusel oil distillation project
nor worth taking the further sample of six wholesalers. Unless
some cheaper form of sampling is available, with a sample size of
less than six, act a3 will be optimal prior to further sampling. In
these circumstances the project should be abandoned im­
mediately.



Stochastic
Cost-Volume­

Profit
Analysis:

Satisficing
with Short Product Lives

12.1 KnowsleyMedical Products

Knowsley Medical Products (KMP) is a major manufacturer of
drugs for human and veterinary use. Its researchers have de­
veloped two new vaccines which provide protection against a
highly contagious disease afflicting sheep. These vaccines are
called Murax and Diprofyl. Their chemical compositions and costs
of manufacture are different , and they confer differing degrees of
protection against the disease. However, it is clear to KMP's
management that Murax and Diprofyl would compete against one
another to an extent making it impossible to cover the additional
fixed costs that would be involved in manufacturing both of them.
It is a commercial proposition to manufacture only one of the
vaccines, abandoning the exploitation of the other one.

In choosing which vaccine to manufacture , KMP's management
have extensive experience upon which to draw. A study of their
sales records has shown that frequency distributions for the
number of packs of a vaccine demanded per week usually conform
quite closely to the normal distribution. Either Murax or Diprofyl
will replace an existing KMP product, and only a small capital
investment will be required to adapt its production line for either
of the new products. The Product Planning and Market Research

132
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departments within KMP have together drawn up estimates for
Murax and Diprofyl costs and revenues as follows :

Murax Diprofyl
Mean sales (in packs) per week 1300 1400
Standard deviation of sales 450 700

£ £
Avoidable fixed costs of manufacture

per week 6000 6000
Variable cost per pack produced 28 33
Sales revenue per pack sold for veter-

inary use 39 47
Sales revenue per pack sold to Kalu-

mon PLC 24 24
Present value of future profit lost per

unsatisfied order for a pack 5 7

The last three entries in the above table require explanation. It is
possible to manufacture only one batch of either sheep vaccine per
week, because of the extreme fragility of the production equip­
ment and the stringency of the quality control requirements. Both
Murax and Diprofyl are chemically unstable, deteriorating quite
rapidly in storage. If a pack of either vaccine is not sold after a
week has elapsed since its production, it is said to have become
'stale' . The contents of a stale pack must not be put to veterinary
use, but can readily be sold by KMP to Kalumon PLC, a large
company located nearby and engaged in the manufacture of fine
chemicals. Kalumon will buy any amount of either Murax or
Diprofyl that KMP cares to supply, to use as a substitute for
dibutane sulphate, an intermediate product in the manufacture of
a chemical completely unrelated to sheep vaccine . As substitutes
for dibutane sulphate, Murax and Diprofyl are chemically indis­
tinguishable, and Kalumon will pay the same £24 per pack price
for either of them.

It is not economic for a sheep farmer to innoculate every
new-born lamb with either Murax or Diprofyl. These vaccines will
be demanded only when the disease against which they protect has
actually broken out, and they will then be required with extreme
urgency. Existing vaccines manufactured by KMP's competitors
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offer some protection against the disease, and vets faced with an
outbreak of the disease will buy and use these vaccines if KMP
cannot meet their orders within a day . If a week's batch of vaccine
has been sold out completely, KMP cannot hope to keep any
further orders received in that week waiting until the next week 's
batch of vaccine becomes available. KMPfeel that turning away
vets' orders (and thus compelling them to use the less effective
vaccines of their competitors) will generate ill-will toward KMP
from both vets and farmers. This will be particularly true if it is
orders for the especially effective Diprofyl which are frustrated .
While KMP are conscious of the difficulty of estimating the
present value of future profit lost as a result of an unsatisfied order
for a pack of vaccine, they feel that this factor is so important that
they have provided the 'guesstimates' in the table above .

A final note may be helpful regarding the 'avoidable fixed costs'
entry in this table . The variable costs of sheep vaccine production
are mainly composed of raw material costs; a large part of the
labour costs, and all of the costs of support services such as
maintenance and sterilisation, do not vary with the volume of
vaccine output. These costs are nonetheless substantial, and
appear in the table above as 'avoidable fixed costs '. They consti­
tute cash outlays which could only be avoided by shutting down
the sheep vaccine production line entirely.

By reference to the above facts, you are required:

1. To compute the expected profit per week from each vaccine if
output is set at the profit-maximising level.
The figures for expected profit should be taken net of any
(notional) costs of ill-will arising from inability to meet orders
for vaccine.

2. To specify which of Murax or Diprofyl would be the riskier
product financially.
This should be done by reference to the probability of at least
breaking even at the profit maximising output, and by reference
to the probability of earning at least £5 000 of profit (net of costs
of ill-will) per week at the profit-maximising output.
KMP's management have said that they will produce whichever
vaccine yields the higher expected profit at its profit-maximising
level of output. They are worried, however, that producing at
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this level of output may involve too great a financial risk, and
are seeking advice about this.

You are required to answer the following further questions posed by
KMP:
3. For the vaccine chosen according to the criterion in the

preceding paragraph, what level of output would maximise the
probability of earning at least a 'satisfactory' £5000 of profit
(net of costs of ill-will) in a given week?
What would the probability of earning at least this amount in a
given week be at that output?

4. How would the output level which maximised the probability of
earning at least £5000 in a given week change in response to an
increase from £6000 to £6500 per week in the avoidable fixed
costs of manufacture?
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12.2 Analysis

Introduction

There are two assumptions implicit in most stochastic cost­
volume-profit analyses which have far-reaching consequences ,
and thus merit serious examination. The first of these is that , in the
face of uncertain demand , attention should be focused on the
average demand per period. So long as there is a sufficiently high
probability that this average demand figure will be acceptable, the
implication is that no concern need be expressed about fluctua­
tions in demand from one period to another. Underlying this
approach is an assumption that production can be expanded very
rapidly to meet abnormally high demand, while in periods of
abnormally low demand products can be stored for a long time
without incurring significant incremental costs. The second impli­
cit assumption is that the firms is concerned to maximise profit
rather than to maximise the probability of earning a certain
acceptable level of profit. Here , the implication is that managerial
behaviour is characterised by optimising rather than satisficing.

In dealing with the Knowsley Medical Products (KMP) prob­
lem, both of the above assumptions will be relaxed. It is not
appropriate to focus on average demand over many periods where
the product concerned is per ishable and where a significant loss of
future business may arise from failures to fill orders immediately .
Both of these conditions apply to KMP , giving rise to a risk of
serious loss if the output level is inappropriately chosen. In order
to present the level of risk from becoming unacceptably high ,
KMP's managers may well opt for a satisficing than for an
optimising policy. These policies will be explored in turn , taking
optimising first.

Maximisation ofexpected profit

Before commencing the analysis , it is necessary initially to define
some terms , as follows. Let:

X represent the output level of a vaccine, in packs
produced per week
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X* represent the value of X for which profit is maximised
c represent the contribution margin per pack sold for

veterinary use
h represent the holding cost per pack not sold for veterin-

ary use
For a perishable product, the holding cost is given either by the sum
of the variable cost of manufacture and the cost of disposal, or by
the difference between the variable cost of manufacture and the
salvage value obtainable on resale after perishing .

In the KMP problem, the act of 'salvage' involves selling a stale
pack for £24 to Kalumon PLC for use in chemical manufacture.

Thus for Murax h = 28-24 = 4 and for Diprofyl h =33-24 = 9.
s represent the opportunity cost arising from inability to

supply a pack of vaccine, measured in terms of the
present value of future profit sacrificed as a result of the
ill-will generated by this frustrated order

D represent the demand for a vaccine, in packs per week
Z represent a vaccine's profit per week net of all costs,

including those arising from ill-will

To maximise profit, the expected holding cost of the last unit of
production must be equated to the sum of its expected contribu­
tion margin and the expected opportunity cost saving arising from
its manufacture . Using the symbol P to represent the probability
of a particular demand level, the above relationship may be
expressed as:

h[I-P(D~X*)] = (c+s) [P(D~X*)] (12.1)

Expanding equation (12.1), and isolating out the terms in P gives:

P(D~X*) = hl(c+h+s) (12.2)

For the Murax vaccine , h = 4, c = 11 and s :::;: 5, so that the
profit-maximising output X* is that for which the probability of
demand being in excess of output is 4/(4+11+5) = 0.2. Demand
for Murax can be taken as normally distributed , with mean Il. =
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1300 and standard deviation 0" = 450. Inspection of a table of the
inverse normal function shows that 0.2 of the area under a
standardised normal distribution lies to the right of z = 0.8416. X*
is then given by:

X * = fJ. + crz (12.3)

Substitution in equation (12.3) shows that for Murax X* = 1679
packs per week.

In determining X* it was not necessary to take into account the
'avoidable fixed costs' , but they do enter into the determination of
the profit level Z . Let :

F represent the avoidable fixed costs of manufacture per
week, so that for Murax F = 6000

The level of profit Z earned for any output X depends on the
behaviour of demand D. Specifically:

If D ~ X, then Z = cX-s(D-X)-F (12.4)

All of the output X is sold for veterinary use in this case, and
opportunity costs are incurred in respect of the excess, unsatisfied
demand.

If D ~ X, then Z = cD-h(X-D)-F (12.5)

Only D packs of vaccine are here sold for veterinary use, and the
holding cost h is incurred for each pack produced in excess of the
veterinary demand.

Letting feD) represent the probability density function for
demand, and combining equations (12.4) and (12.5) , an express­
ion for the expected profit £(Z) at output level X is obtained:

£(Z)=r[cX-s(D-X)lf(D)dD+[[CD-h(X-D)lf(D)dD-F

x 0 (12.6)
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Terminology may now be employed as below . Let :

frv(z) represent the value of the standard normal probability
density function at z, with z = (X-~)/a

<1>(z) represent the probability that a standard normal ran­
dom variable is less than or equal to z

With this terminology, it can be shown that equation (12.6) is
equivalent to:

£(2)=(c+s)X-(c+s+h)[(X-~)<1>(z)+afrv(z)]-s~-F (12.7)

For an output of Murax vaccine of X * = 1679 packs per week,
substituting in equation (12.7) gives rise to £(2) = £5777.
Carrying out the calculations of this section for the Diprofyl
vaccine yields a profit-maximising output of X * = 1767 packs per
week, associated with an expected profit of £(2) = £6281. Hence ,
on the basis of expected profit, it would seem better for KMP to
manufacture Diprofyl rather than Murax . However, the expected
profit figures are fairly close to one another, which means that
particular attention needs to be paid to the question of which of
the two vaccines is the riskier to manufacture from a financial
standpoint.

Analysis offinancial risk

'Financial risk' is here expressed in terms of the probability of
earning not less than a given amount of profit in a week by
producing a vaccine at that level of output for which expected
profit is a maximum. New 'target' variables may be defined as
below. Let:

2, represent the minimum acceptable level of profit
Y, represent the minimum acceptable contribution level

It then follows that :

Y, = 2, + F (12.8)
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In a given week, there are two ways of earning a profit of exactly
Z, while producing at an output level of X* , depending upon the
relationship between X* and D . Firstly, if over the week D ~ X *,
then from equation (12.4) it follows that a profit of exactly Z, can
be earned if D is such that:

Z, =cX* - s(D-X*) - F (12.9)

The level of D for which equation (12.9) holds will be referred to
as Du. Here, the subscript U is employed to signify that Du
represents the upper limit on a week's demand consistent with
earning a profit of not less than Z, in that week. At levels of
demand above D u, the costs of ill-will associated with frustrated
orders bring profit down below Z,. Substituting D u for D in
equation (12.9), isolating D u and simplifying by reference to
equation (12.8) gives rise to:

D
- (c+s)X* - Y,

u - s
(12.10)

The second way of earning Z, from an output of X* arises in the
case in which D ~ X* over the week. Then equation (12.5) shows
that a profit of exactly Z, can be generated if D is such that:

Z, = cD-h(X*-D) (12.11)

The level of D satisfying equation (12.11) will be referred to as
D L , the subscript signifying that it represents the lowest level of
demand at which a profit of not less than Z, can be earned in a
week. Substituting DL for D in equation (12.11), isolating D L and
simplifying gives rise to:

D _ hX* + Y,
L - c+h (12.12)

The probability of earning a week 's profit of Z, or more may be
represented by the area under a standardised normal distribution
between the values z = (Du-p.)/cr and z = (D L -p.)/cr. Using the
symbol <I> as it was used in equation (12.7) , and representing the
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probability of earning Z, or more at an output of X* as Px * [Z ~

Zt], the relationship is given by:

(12.13)

Working through equations (12.8), (12.10), (12.12) and (12.13) for
Z, = 0 and Z, = 5000 yields the following results for the case
where each vaccine is produced to its profit-maximising output :

Murax
P1679 [Z ~ OJ = 0.84
P 1679 [Z ~ 5000] = 0.60

Diprofy/
PJ767 [Z ~ 0] = 0.74
P1767 [Z ~ 5000] = 0.63

Of the two vaccines, Diprofyl has an average profit per week
which (at the profit-maximising output) is just over £500 larger
than that for Murax. Diprofyl also has a higher probability of
achieving a profit target of £5000 in a given week than has Murax,
comparing their performances at their profit-maximising outputs.

But if Diprofyl were to be produced at its profit-maximising
output, the £5000 profit target would on average be achieved in
less than 13 weeks out of every 20, and on average a loss would be
sustained in 1 week out of 4. This erratic performance, with
frequent losses, may be unacceptable to managers who are held
accountable for profit on a week-by-week basis. They may well
prefer to select an output level for Diprofyl on the basis of
maximising the number of weeks in which the £5 000 profit target is
achieved, even at the expense of reducing the average profit. It is
to this 'satisficing' approach that attention is now turned.

Maximising the probability ofsatisfactory profit

The problem of finding the 'satisficing' output level which maxi­
mises the probability of obtaining a profit from Diprofyl of at least
£5000 in any given week may be expressed formally as follows:
Find that value X** which is such as to maximise :
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Define the following terms :

~ h ~ c+sa=- --w 13=- -' 'Y=-- -- W 8=- -
c+h ' c+h ' s ' s

K = (2a 2
) {log.,[(c+s)(c+h)/hs]}

(12.15)

(12.16)

Lau (1979, pp. 559-61) demonstrated that P is maximised at that
output level X * * for which:

For a target profit of £5 000 per week , Yt = £11 000. Substituting
the parameters for Diprofyl into equations (12.15) and (12.16)
gives:

a = - 921.7 ; 13 = 0.3913 ; 'Y = - 2971.4 ; 8 = 3 ;
K = 1996145

Substituting for these values in equation (12.17) yields X* * =
1475. Taking this value, and inserting it in equations (12.10) and
(12.12) for Yt = 11000 gives D u = 2853 .6 and D L = 1055.4. Since
Diprofyl has a mean demand per week J.L = 1400 with a standard
deviation s = 700, the probability of earning at least £5000 in a
given week with an output of 1475 packs of Diprofyl is given by:

P [Z~5 OOOl=<I>( 2 853.6-1400 )-<I>(1055.4-1400)
1475 - 700 700

= 0.67

Substituting X* * = 1475 in equations (12.10) and (12.12) for Yt =
6000 gives D u = 3567.9 and D L = 838.0. Hence the probability of
at least breaking even with this output in a given week may be
computed as:

P [Z~Ol=<I>(3567.9-14OO)_<I>(838-14OO) = 079
1475 - 700 700'
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By comparison with the profit-maximising strategy of producing
1767 packs of Diprofyl per week, this satisficing strategy offers an
increase in the probability of attaining an (acceptable) £5 000 profit
from 0.63 to 0.67, and an increase in the probability of at least
breaking even from 0.74 to 0.79. But there is a substantial cost
associated with adopting the satisficing strategy, arising from the
fact that this strategy makes improbable very high profit levels as
well as very low ones . Denoting the expected profit per week
associated with output level X as Ex<Z) , the position can be
expressed as follows:

Expected cost of satisficing strategy = Ex.(Z)-Ex"(Z) (12.18)

From the calculation immediately below equation (12.7) , Ex'(Z)
= £6281. Then substituting X* * in the second term on the
right-hand side of equation (12.18) and evaluating yields E I 475(Z)

= £5628 . The expected cost per week of adopting a satisficing
strategy based on an acceptable profit level of £5 000 for Diprofyl
is thus £6281 - £5628 = £653.

Fixed cost changes and satisficing decisions

The last part of the KMP problem asks what effect a £500 per week
increase in avoidable fixed costs would have on the level of output
X* * chosen so as to maximise the probability of earning £5 000 of
profit in a given week. This involves recomputing X* * with Y, =
11500 instead of Y, = 11000, and produces a result of X ** =
1497. From a satisficing point of view, the best level of output X* *
is seen to have risen by 1497 - 1475 = 22 packs per week in
response to an increase in fixed costs. This is in sharp contrast to
decision-making using a profit-maximising criterion, in which the
optimal output X* is determined solely by incremental revenues
and variable costs , being in no way influenced by changes in the
level of fixed costs.

Studies in the theory of the firm under uncertainty have shown
that to increase output in response to an increase in fixed costs is
characteristic of managers who have increasingly risk-averse utility
functions . To see what these represent , consider a manager who
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has acquired the right to undertake an investment with a 50-50
chance of increasing the firm's wealth by £(x+h) or by rex-h).
There must exist an amount £(X-1T) which he would regard as the
minimum amount for which he would be willing to sell the right to
undertake this investment. The magnitude 1T within this amount is
referred to as the manager's 'risk premium' .

If, given a constant figure for h, the amount 1T specified by a
particular manager increases as x increases, then that manager is
said to have an 'increasingly risk-averse' utility function . In broad
terms, a manager with this form of utility function is one who
would be willing to pay more for insurance with a given coverage
as corporate wealth increased. A fixed cost increase is equivalent
to a diminution in wealth, and as wealth diminishes so risk-taking
increases for this type of manager. Consequently, a fixed cost
increase causes output to rise as calculated above, increasing the
expected profit but diminishing the probability of breaking even in
any given week.



Stochastic
Cost-Volume­

Profit
Analysis:

Choice Among
Combinations of Products

13.1 Barrow Gurney OrchardsLtd

Barrow Gurney Orchards Ltd (BGO) have pioneered a method of
producing low-calorie cider, which they are able to make in
low-strength, medium or full-strength versions. The low-strength
version is designated XI, the medium-strength version X 2 and the
full-strength version X 3 . After a study of markets and costs,
BGO's management have derived the following data , with de­
mand expressed in litres per week:

Fixed manu-
Variance Price Variable facturing cost

Mean of per cost per outlay per
Product demand demand litre litre week

£ £ £
XI 6000 360000 2.20 1.10 5500
X 2 5000 250000 2.40 1.35 4500
X 3 4000 490000 2.60 1.70 3500

The correlation of demand among the three products is:

rl2 = 0.6; r23 = 0.6; rl3 = 0.6

145
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Four strategies are currently under consideration:

1. To make products XI and X2 only
2. To make products X2 and X3 only
3. To make products XI and X3 only
4. To make products X('X2 and X3

You are required to answer the following questions:

Strategy
A
B
C
D

(a) Which of the above strategies should be selected if it is
desired to minimise the probability of failing to break
even , and it is assumed that demand for each product is a
normally distributed random variable?

(b) Suppose that the above data on demand for each product
has been derived from a trial period of 30 weeks during
which all three products were marketed.
What will be the 95 per cent confidence limits on the
probability of at least breaking even for the strategy
selected in part (a) above?
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13.2 Analysis

Choice ofa strategy

The issue which arises in this problem is one of choosing the
optimal strategy for marketing some (or all) of the products within
a group of related products. Since the products are related , the
correlation of the demand for one product with the demand for
another product has to be taken explicitly into account. Know­
ledge of both the levels of demand and of demand correlations as
between products arises here from 30 weeks of test-marketing
data. Thi s data may be treated as a sample from the population of
demand readings available over an indefinitely long period. Be­
cause demand per week is the only parameter subject to uncertain­
ty , confidence limits can be attached to the probability of attaining
a given level of profit from the adoption of a given strategy ,
without running into difficulties associated with the multiplication
of probability distributions (as where a distribution for contribu­
tion margin per unit is multiplied by one for dem and per per iod).

The problem involves three products, designated XI, X2 and X3.

Each product X i is assumed to have a norm ally distributed
probability den sity function for sales volume . Let :

tli represent the (sample) mean demand for Product Xi
Ui represent the (sample) standard deviation of demand

for product Xi
ru represent the correlation of demand as between pro­

ducts Xi and Xj , computed from the sample data

A var iance-covariance matrix may be drawn up showing the
variances of demand for each of the three products, and the
covariances between them, as follows:

XI X 2 X3

X, - 2 = 360000 rl2 U.U2 = 180000 rn UI0-3 = 252000a.
X 2r21 U2U1= 180000 -2 = 250000 r23 U 20-3 = 210000a2
X3 r:\1 U3U,= 252000 r32 U3a 2 = 210000 - 2 = 490000a3
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Along the principal diagonal of this matrix , from the top left-hand
comer, are displayed the variances of each of the probability
densit y functions for demand . The other elements in the matrix
represent covariances, each covariance being repeated twice (since
'ij = ' ji) to form a pattern in which the covariances below the
principal diagonal represent a mirror image of those above it. A
more compact representation of the variance-covariance matrix is
available using the following terminology . Let :

Then the matrix may be rewritten as below:

XI

x, all = 360000
x, aZI = 180000
X3 a 31 = 252000

X2

al2 = 180000
a22 = 250000
a 32 = 210000

X3

al3 = 252000
a23 = 210000
0-33 = 490000

Further symbols required may be obtained by letting:

Cj represent the contribution margin per litre for pro­
duct Xi

f i represent the outlay per week on fixed manufacturing
costs for product Xi

E(Yx) represent the estimated mean of the probability
density function for profit associated with a given
Strategy X

V(Yx) represent the estimated variance of the probability
density function for profit associated with a given
Strategy X

If Strategy X involves the sale of n products, general formulae may
be written as follows:

n

L c, Iii -
i= 1

n
L /;

i= 1
(13.1)
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(13.2)

Let the estimated mean profit associated with Strategy A in this
problem be E( YA)' that associated with Strategy B be E( YB) and
so on. Then:

E(YA) = cd!.. + c2112 - (I.+!z) = £1850
E(YB) = c2112 + c3113 - (l2+f,) = £850
E(Yc) = c.l1. + c3113 - (11+[,) = £1200
E(Y0) = cll1. + c2112 + c3113 - (II+!Z+[,) = £1950

Let the estimated variance of profit associated with Strategy A in
this problem be V(YA)' that associated with Strategy B be V(YB)
and so on. Then:

V(yA ) 2 A 2 A 2 A

A = CI 0". 1 + c,C20"' 2 + C2 0"22

By computation , the standard deviation V V(YA ) = £1 061.6

V(yA ) 2 A 2 A 2 A

B = C2 0"22 + C2C3 0"23 + C3 0"33

By computation V V(YB) = £1 034.1

By computation VV(Yc) = £1153.9

V(Yo ) = dO-II + do-22 + d o-33 + 2C,C2o-l2 + 2C,C3O-I3 + 2C2C3O-23

By computation, V V(Y0) = £1555 .6
Since the probability density function for profit associated with a

given Strategy X is normally distributed, a point estimate of the
probability that this strategy will fail to break even is given by the
area under a standardised normal distribution to the left of z =
[O-E(Yx))IV(Yx). Applying this formula to Strategies A ,B,C and
D gives rise to the following tabulation, in which P(YA < 0) refers
to the probability of failing to break even with Strategy A, and so
on.
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Strategy

A
B
C
D

Point estimate
of probability

P(YA < 0) = 0.041
P(YB < 0) = 0.206
P(Yc < 0) = 0.149
P(YD < 0) = 0.105

From these figures, the application of a criterion of minimising the
probability of failing to break even should lead to the selection of
Strategy A. It is on this strategy that attention will be focused in
addressing the second part of the problem.

Confidence limits for the break-even probability

In formal terms , what is required here is the computation of the 95
per cent confidence limits on P(YA ~ 0). A first step in this
direction involves establishing the corresponding confidence limits
for the expected profit E(YA ) . The general formula for confidence
limits around expected profit derived from a sample of m observa­
tions is given by:

A IVen I V(Y)
E(Y) - tm-l V------;;- < E(Y) < E(Y) + tm - 1 V------;;- (13.3)

In equation (13.3) , tm - I refers to the value of the Student t
distribution with m-l degrees of freedom at the specified signi­
ficance level. For this problem, with m = 30 observations and 95
per cent confidence limits, the concern is with the r-value for 29
degrees of freedom which corresponds to an area of 0.05 in both
tails of the t-distribution combined. Representing this by t29' and
substituting in the values for the estimated mean and variance of
profit for Strategy A , the computation appears as:
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From tables, t29 = 2.045, and carrying out the computation yields
95 per cent confidence limits for E(YA ) of £1453 .64 < E(YA ) <
£2246.36.

A similar approach can be taken concerning confidence limits
for the standard deviation of profits from Strategy A, represented
by VV(YA ) . The general formula for confidence limits around the
standard deviation of profit is:

(13.4)

The terms in the denominators of the fractions in equation (13.4)
are the quantiles of the chi-squared distribution for m-1 degrees
of freedom . For a 95 per cent confidence interval, the relevant
quantiles are q1 = 0.975 and q2 = 0.025. It is thus necessary to
look up that value of a chi-squared distribution for which an area
of 0.025 lies to the right, represented by X~9 .0.97S = 45.72, and that
value for which an area of 0.025 lies to the left , represented by
X~9.0.02S = 16.05. Substituting these values in equation (13.4)
yields 95 per cent confidence limits for VV(YA) of £845.49 <
VV(YA ) < £1426.99.

Having obtained confidence limits for the expected mean and
standard deviation of Strategy A, the question becomes one of
how to combine them in order to find 95 per cent confidence limits
for the probability of at least breaking even. It is convenient here
to adopt the following terminology. Let :

E(YO.02S) and E(YO.97S ) represent respectively the lower
and upper limits of the 95 per
cent confidence interval for the
expected mean

VV(YO.02S) and VV(YO•97S) represent respectively the lower
and upper limits of the 95 per
cent confidence interval for the
standard deviation

P(Y ~ x) represent the probability of earning a profit level of
at least x

Because the probability density function for profit associated with
each of the strategies in this problem is normally distributed, the
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probability of achieving at least a given level of profit x may be
expressed as:

P(Y ~ x) = 1 - P [ z < x vv~hY) ] (13.5)

For a given x, the magnitude of the probability in equation (13.5)
depends upon the values of E(Y) and v'V(Y) on the right-hand
side, and a 95 per cent confidence interval for this probability can
be obtained by appropriate substitutions for these values. Speci­
fically, the probability of falling below break-even would be least if
the upper confidence limit for the mean happened to be the true
value of the mean while the lower confidence limit for the standard
deviation happened to be the true value of the standard deviation .
Conversely , the probability of falling below break-even would be
greatest if the lower confidence limit for the mean and the upper
confidence limit for the standard deviation turned out to be their
true values . From this, 95 per cent confidence limits for the
probability of breaking even may be written out as follows :

1-P [ z < 0 - E(YO.97S) ] ~ P(Y ~ 0) ~
v'V(YO.02s)

1 - P [ z < 0 - E(YO.02S) ]

YV(YO.975 )
(13.6)

For Strategy A, computation shows that the probability of break­
ing even lies between (1-0.004) and (1-0.154) , where the second
figure in each of these brackets relates to the probability of
obtaining standardised normal scores of respectively less than z =
- 2246.36/845.49 and z = - 1453 .64/1426.99. The 95 per cent
confidence limits for the probability of breaking even with Strategy
A are thus 0.996 ~ P(YA ~ 0) ~ 0.846 , which are very broad limits
indeed.



Short-term
Investment

of
Cash Balances

14.1 Alvor Developments

At the end of March 1989, the Treasurer of Alvor Developments is
faced with a problem concerning the investment of surplus cash.
He has £50000 in hand, most or all of which will be required to
meet payments arising from a build-up in inventories over the next
4 months. These payments are made at the month-ends, but it is
not possible for the Treasurer to forecast exactly the size of the
payment that will be required at the end of any given month. The
most that he can do toward such a forecast is to draw up a
probability tree specifying twelve possible sequences of cash
payments over the next 4 months, and to associate probabilities
with each sequence. This probability tree is given below (Figure
14.1); on it March is referred to as month 0, April as month 1, and
so on . Each sequence of payments is labelled with a number.

It is clear from the probability tree that a substantial part of the
£50000 may well not be required until the latter part of the
4-month period; this raises the possibility that cash not immediate­
ly wanted may be profitably employed in making short-term
investments. In particular, the Treasurer is looking at the possibil­
ity of investing surplus cash in short-term municipal bonds . These
bonds are issued with maturities of 1, 2, 3 or 4 months, and can
readily be bought and sold on the money market. If a bond, once
bought, is held to maturity, it will yield a return of 1.3 per cent per
month, but if a bond is sold before maturity the return available on
it drops to 0.8 per cent per month . Every purchasing or selling
transaction for bonds of a given maturity involves a fixed cost of
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£76 plus a variable cost of 0.4 per cent of the face value of the
bonds being bought or sold (so that, for example , selling £20000
worth of n-month bonds would involve a total transaction cost of
£(76 + 80 = 156». No transaction costs are, however, incurred
when bonds mature and are redeemed at their face value.

Given that the Treasurer must meet payment commitments out
of the £50000 immediately these commitments arise, you are
required to advise him as to how much of the £50000 he should
invest in municipal bonds , and as to what maturities of bonds he
should purchase . In giving this advice , your concern should be
with the maximisation of expected net income over the next 4
months .
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14.2 Analysis

Introduction

The issue here is one of determining the most profitable division of
funds as between cash and bonds, subject to the need to have
sufficient cash available to meet a sequence of cash outflows, the
magnitude and timing of these flows being subject to uncertainty.
This uncertainty is expressed in the form of a probability tree (see
Figure 14.1). On this tree, the conditional probabilities of different
cash outflows in a particular month given the level of outflows in a
previous month (or months) are shown, against branches linking
together chance nodes.

A method has to be found of balancing the earning of interest
against the incurrence of transaction costs under conditions of
uncertainty. If none of the cash surplus were to be invested , no
interest would be earned. On the other hand, if insufficient cash
were to be available to meet a payment when it became due , then
a forced sale of bonds would be necessary to meet the cash deficit.
Selling bonds before they mature would involve both a reduction
in the interest earned from 1.3-0.8 per cent per month, and the
incurrence of an extra set of transaction costs which could have
been avoided had the bonds concerned been held to maturity. The
risk of forced sales could be minimised by concentrating invest­
ment in the shorter-term l-rnonth or 2-month bonds, but this
would involve incurring extra transaction costs if these investments
had to be renewed as the cash held in them was still not needed to
meet payments when they matured.

Simplifying from the probability tree

One of the apparent difficulties facing the analysis of Alvor
Developments is that a separate decision would seem to be
required on investment policy for each £1 of the £50000 initial
balance. However, observation of the probability tree shows that
all the possible end-month cash requirements are in multiples of
£10 000, suggesting that it would be convenient to split the £50000
into five ' layers' of £10 000 each . The first layer in this arrangement



F
IG

U
R

E
14

.1
A

lv
or

D
ev

el
op

m
en

ts
-

P
ro

ba
bi

li
ty

T
re

e

0
.4

El
M

...
e

n
d

o
f

m
o

n
th

K
=

,
#

00
0

. s
o

( 1
0K

=
(

10
#

00
0

S
eq

u
en

ce

10 12

.... (
II
~



Alvor Developments 157

represents the first £10 000 to be used for cash payments, and so on
through to the fifth layer which represents the last £10000 to be
paid out. In practice, the choice as to how to split the initial
balance into layers will often be less clear-cut than it is here, but
the accuracy of the analysis can be increased to any desired level
by increasing the number of layers.

The layer concept enables the information in the problem to be
presented more simply by replacing the probability tree with a
statement of the probability that the cash in a layer will be
required to meet payments in a given month . Some notation is
necessary here . Let :

A j l represent the cumulative requirement for cash by the
end of the month t associated with the jth sequence of
cash payments on the probability tree

For the jth sequence of payments, the kth layer of cash is said to be
used up in month Tjk' where "i« represents that value of t for which:

A j l ~ 10OOOk for t = Tjk

and

Ail < 10000k for t = "t« - 1

If the layer size had been other than £10000, that other figure
would have been substituted above.

The tabulation below shows the values of A j l for each sequence j
= 1 . .. 12 and each month t = 1 ... 4. For each sequence j , the
probability of its occurrence Pt is also shown. This is derived
directly from the problem, by multiplying through the probabili­
ties associated with each step within a payment sequence. The
probability of Sequence 1 is thus given, from the probability tree,
as PI = (0.6)(0.3)(0.25)(0.35) = 0.01575, and so on.
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Cumulative cash demand A jt for cash sequence j in month t

Cash Month Probability of
sequence t = 1 t = 2 t = 3 t = 4 sequence j

£K £K £K £K (p)
j=1 10 20 20 30 0.01575
j=2 10 20 20 40 0.02925
j=3 10 20 30 30 0.02700
j=4 10 20 30 40 0.10800
j=5 10 30 30 40 0.35700
j=6 10 30 40 40 0.03150
j=7 10 30 40 50 0.03150
j=8 20 20 20 40 0.06400
j=9 20 20 30 40 0.25600
j=lO 20 30 30 40 0.00960
j=l1 20 30 30 50 0.02240
j=12 20 30 40 50 0.04800

1

From the table of A jk , the values of Tjk can be extracted simply by
looking at the first month within each sequence in which a
particular layer of cash is used up . Sequence 1 thus uses layer k= 1
in month t=1, layer k=2 in month t=2 and layer k=3 in month
t=4. It does not use either layer k=4 or k=5 at all, and these are
consequently left blank in the "t« tabulation. This tabulation
proceeds now:
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Values of Tjk for cash sequence j and cash layer k

Cash Cash layer
sequence k=1 k= 2 k=3 k=4 k=5

j=1 1 2 4
j=2 1 2 4 4
j=3 1 2 3
j= 4 1 2 3 4
j=5 1 2 2 4
j=6 1 2 2 3
j=7 1 2 2 3 4
j=8 1 1 4 4
j=9 1 1 3 4
j=lO 1 1 2 4
j=11 1 1 2 4 4
j=12 1 1 2 3 4

It is next necessary to introduce a new variable . Let:

nk , represent that set of cash payment sequences for which
cash layer k is first used up at the end of month t

For k = 1, 0.11 = 1 . . . 12, because cash layer k = 1 is used up at
the end of the first month (t = 1) in each of the twelve possible
cash payment sequences. For k = 2, 0.21 = 8 . . . 12, because only
in Sequences 8 . .. 12 is the second cash layer used up in t = 1. In
the remaining Sequences 1 - 7 the second layer is used up in t = 2,
so that 0.22 = 1 . .. 7. Continuing like this , it is possible to build up
a tabulation of the sequences in nk , as below. In this tabulation ,
the symbol <f> refers to a cash layer which is not used up in a
particular month in anyone of the twelve cash payment sequences,
so that for this combination of k and t nk , is an empt y set.

Sequences in nk ,

Cash layer t = 1 t = 2 t = 3 t = 4

k = 1 [1. .. 12] <f> <f> <f>
k= 2 [8 ... 12] [1. . .7] <f> <f>
k=3 <f> [5,6,7,10,11,12] [3,4,9] [1,2,8]
k=4 <f> <f> [6,7,12] [2,4,5,8,9,10,11]
k=5 <f> <f> <f> [7,11,12]
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The values of Okt can be used to find the probability that a
particular cash layer will be required to meet payments in a
particular month. Consider, for example , the cash layer k = 2.
This will be required to meet payments at t = 1 if and only if one of
Sequences 8-12 takes place. The probability of k = 2 being
required for payments at t = 1 is thus given by the sum of the
probabilities of occurrence of each of Sequences 8-12, that is,
PP,+P9+PlO+Pll +P1 2 = 0.4. Let :

'Trkt represent the probability that the kth layer of cash will
be used up in month t

Then in general terms:

(14.1 )

This equation can be used to build up a tabulation of the values of
'Trkt , summarising the information in the probability tree and acting
as a simpler substitute for it. The 'Trkt table is given below.

Values of'Trkt at t = 0
Cash Month
layer t = 1 t = 2 t = 3 t = 4

k = 1 1 0 0 0
k = 2 0.4 0.6 0 0
k=3 0 0.5 0.391 0.109
k=4 0 0 0.111 0.84625
k=5 0 0 0 0.1019

The table shows it to be certain that cash layer k = 1 will be
required at time t = 1. In the meantime, it may be invested in
l-month bonds, to yield a net income of £14, made up of the
difference between interest (at £130) and the sum of the fixed and
variable transaction costs of purchase (respectively at £76 and
£40). The table also shows that since cash layer k = 5 cannot be
required before t = 4, it may be invested in 4-month bonds to yield
a net income of £404, on the same basis of calculation as above.

However, since there is only about one chance in ten that cash
layer k = 5 will be required to meet payments at t = 4, the
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conclusion that it would be optimal to invest it in 4-month bonds
can be justified only in terms of an objective of maximising net
income up to a fixed planning horizon 4 months away. The balance
of probability strongly favours the proposition that layer k = 5 will
not be required until t = 5 (or later), so that reinvestment of it at t
= 4 will be necessary, thus incurring transaction costs which could
have been avoided with a longer-term investment (were one
available). However, there is always a possibility that a plan which
is optimal for a given planning horizon may be suboptimal for a
longer horizon, and Alvor's Treasurer may wish to adhere to a
4-month horizon on the grounds that predictions of cash payment
patterns more than 4 months ahead are too conjectural to be of
value.

Expected returns for alternative maturities

Having dealt with cash layers k = 1 and k = 5, it is now necessary
to focus on the more difficult issues posed by layers k = 2, k = 3
and k = 4. In analysing the optimal strategies for these cash layers,
the first step is to specify the expected returns on the possible
investments which could be made with them up to the planning
horizon. Obviously, these cash layers could be invested at t = 0 in
bonds with any maturities between I month and 4 months . But if
at t = 0 one of the layers was invested in l-rnonth bonds , then at t
= 1 the possibility would arise of reinvesting that layer in bonds of
any maturity between I month and 3 months. All the possible
patterns of investment and reinvestment have to be considered
systematically for a given cash layer , in order to search out the
optimal investment strategy for that layer in the face of uncertainty
as to when it will be required to meet cash payments.

This uncertainty gives rise to an emphasis upon the expected net
return for making an investment in bonds of a given maturity. The
formulae for expected net return are derived as follows: Let :

M represent the amount of a cash layer in pounds, so
that here M = 10000

i, represent the interest per month available on
bonds sold before maturity, so that here i, =
0.008
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F

v

represent the interest per month available on
bonds sold at maturity, so that here im = 0.013
represent the fixed cost in pounds of purchasing
or selling bonds, so that here F = 76
represent the variable cost of purchasing or sell­
ing bonds expressed as a proportion of their face
value, so that here v = 0.004
represent the expected net return from investing
cash layer k at the end of month t in a bond
maturing after m, months

Three special cases have to be dealt with at the outset. These are
as follows:

1. Where m, = 0, a cash layer is being retained as cash with an
expected net return of zero, so that rk,(O) = O.

2. Where m, = 1 and t = 0, a cash layer is being invested in
l -month bonds at the start of the planning period. Since this
cash cannot be required for payments before t = 1, the return
on the one-month bonds is certain .
It is given by:

(14 .2)

3. Suppose a cash layer is invested in l -month bonds at the end of
month t, where t > o. Since cash payments are required only at
monthly intervals in this problem, if a cash layer is available for
investment at the end of month t it cannot be required for
payments before the end of month t + 1. Thus an investment in
l-month bonds need never be liquidated before it matures , and
the only uncertain feature about its expected return is whether
the cash layer concerned will be available at the end of month t
to invest in it. The formula for the expected return on an
investment in a l-month bond taking place at the end of month
t , where t > 0, is given by:

(14.3)
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Having dealt with these three special cases , it is logical to proceed
to the general formula for m, = 2 . . . n-t. This is given by:

(m,-!)
rk,(m,) = L [Mwir - 2 (F + Mv)] 1Tk('+w)

w~!

[ ] [

' (,+m,- ! ) ]
+ Mm,im - (F + Mv) 1 - W~! 1Tkw (14.4)

In order to locate the best investment strategy, it is necessary to
draw up data on all the possible strategies . This involves comput­
ing the expected net return associated with each possible invest­
ment and reinvestment of each cash layer up to that layer's
planning horizon. For any layer, its planning horizon is given by
the sooner of the planning horizon for the problem as a whole, and
the time by which it is certain that the cash layer concerned will
have been used up. For cash layer k = 2, it is certain that this layer
will be used up by t = 2, so that its planning horizon is thus 2
months. It will never pay to invest in a bond which matures after a
cash layer's planning horizon, because such a bond must have a
forced sale, with its associated penalties of a lower interest rate
and the incurrence of an extra set of transaction costs.

Using equations (14.2), (14.3) and (14.4) , the expected net
returns rkt(mt) for cash layers k = 2,3,4 may be computed. This
computation yields the results tabulated below, with all figures in
pounds:

14 25.6
8.4

o
o
o
o

Value of rkt (mt) for cash layer k = 2

Bond duration to maturity m, (months)
1 2

t = 0
t = 1
t = 2

Time ofin­
vestment
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4

11.16101
-74.29

144
-4

-43.74

14
14
7
1.53

o
o
o
o
o
o

Value of rk, (m,) for cash layer k = 3

Bond duration to maturity m, (months)
123

t = 0
t = 1
t = 2
t = 3
t = 4

Time ofin­
vestment

4

360.04274
235.59

144
144
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Dynamic programming

The final step in the analysis of Alvor Developments involves
using the values of rkt(mt) to work out the optimal investment
policy for each cash layer. This policy must cover the period up to
the layer 's planning horizon , so that it is a question of specifying a
policy covering 2 months for cash layer k = 2 and 4 months for
layers k = 3 and k = 4. To do this requires an elementary
application of a technique called dynamic programming. At the
outset, new variables must be defined by letting:

n represent the planning horizon (in months) for a given
cash layer

t, represent the maximum expected net return that can be
obtained on a given cash layer at the end of month t

From these definitions, it may be observed that ft ~ 0 for t =
O. .. n-1 and ft = 0 for t = n. That is to say, the maximum
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expected net return must be either zero or positive for all
month-ends prior to a layer's planning horizon, and must be
exactly zero when that planning horizon is reached.

To compute the value of fr for t = O... n-l, it is necessary to
use a recurrence relation of the following form :

I, = Max . [{r,(O)+fr+l} , m, = 1,2m?~.. n-t{r,(m,)+fr+m,}] (14 .5)

Working through it from left to right, this relation asserts that the
maximum expected net return obtainable must be the larger of the
following:

1. The expected net return obtainable by holding cash for 1 month
plus the maximum net return that could be obtained at the end
of month t + 1.
This is given in symbolic terms by rICO) + /'+1 '

2. The expected net return that could be obtained by investing in
bonds of maturity m, months plus the expected net return that
could then be obtained by reinvestment at the end of month
t + m, where m, has been chosen from the range m, = 1 . . . n-t
in such a way as to maximise the expected net return from this
investment and reinvestment.

The recurrence relation in equation (14.5) is to be subjected to a
process of backward solution, involving the successive computa­
tion of solutions for In-I, In-2 and so on back to 10' It is easiest to
illustrate this process by solving first for the cash layer k = 2, since
this layer has a short planning horizon of n = 2. The values of
rk,(m,) for cash layer k = 2 have been tabulated, and may be
subjected to backward solution as follows:

fz = 0

I. = Max. [(0+0) , (8.4 + 0)] = 8.4, where ml = 1

10 = Max. [{ro(O) + II} , mo = ~;;. {ro(mo) + 1m,}]
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10 = Max. [(0 + 8.4), max{(14+8.4) , (25.6+0)}] = 25.6
where mo = 2

The optimal solution for cash layer k = 2 offers an expected net
return of £25.60, and involves investing the £10000 in 2-month
bonds.

This solution did not really require the mechanism of dynamic
programming, in that it could have been found by inspection.
However , the computation for cash layer k = 3, with a planning
horizon of n = 4, makes the need for a formal dynamic program­
ming approach plainly apparent. It uses the values of rk,(m,) for
cash layer k = 3 tabulated above, and proceeds as follows:

!, = Max.[(O+O) , (1.53 + 0)] = 1.53, where m3 = 1

fz = Max.[{r2(0) + h} ,ms = ~~;. {r2(m2) + tz+m,}]

= Max.[ (0+ 1.53), Max.{(7 + 1.53), (-43.74 + O)}] =
8.53, where mz = 1

II = Max.[{r\(O) + tz} ,m\ = IM:p {r\(ml) + II+m ,}]

= Max.[(0+8.53) , Max.{(14 + 8.53) , (-4+ 1.53),
(-74.29+0)} ]

= 22.53, where m\ = 1

= Max. [(0+22.53) ,Max.{(14+22.53), (144+8.53) ,
(101+1.53), (11.16+0) }]

= 152.53, where mo = 2
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The optimal solution for cash layer k = 3 gives rise to an expected
net return of £152.53, and is as follows:

'Invest this £10 000 in 2-month bonds, then if it is not
required to meet payments at the end of month t = 2, invest
it in I-month bonds
If it is still not required at the end of month t = 3, invest it in
a further set of l-rnonth bonds'

Finally , it is necessary to deal with cash layer k = 4. The
computations here , using the values of 'k ,(m,) for layer k = 4 given
above, are left to the reader as an exercise . The conclusion ,
however , is that this layer should be invested in 4-month bonds at t
= 0, with an expected net return of £360.04.

These recommendations for cash layers k = 3 and k = 4
conclude the establishment of an optimal policy for the Alvor
Developments problem. Cash layer k = 1 should be invested in
I-month bonds, layer k = 2 in 2-month bonds, layer k = 5 in
4-month bonds, and layers k = 3 and k = 4 treated as above . The
sum of the expected net returns computed for each layer with this
policy is £14 + £25.60 + £152.53 + £360.04 + £404 = £956.17.
However, this figure is somewhat inaccurate, because of the
incorrect treatment of fixed transaction costs arising from the
separation of cash into layers. There is a fixed cost element of £76
per transaction in bonds of a given maturity, irrespective of the
size of that transaction . Hence , since both of cash layers k = 2 and
k = 3 are invested at t = 0 in 2-month bonds, a 'saving' of £76
arises on this joint purchase transaction which could not be
allowed for in the separate computation of ' 20(2) and '30(2). An
identical saving of £76 arises on the joint purchase , for cash layers
k = 4 and k = 5, of £20000 of 4-month bonds at t = O.

After t = 0, the savings on joint purchases or sales involving
more than one layer of cash being invested or disinvested at the
same time and in bonds of the same maturity generally become
more difficult to calculate , because of the presence of uncertainty .
However, the optimal policy for Alvor Developments does not
give rise to the simultaneous purchase after t = 0 for different cash
layers of bonds of the same maturity. Nor does it give rise to the
simultaneous sale , prior to their date of redemption , of bonds of
the same maturity from different cash layers. There are conse-



168 Cash Balance Investment

quently no expected transaction cost savings on joint purchases or
sales after t = 0, and the expected net return on the optimal policy
for Alvor Developments is given by £956.17 + £76(2) = £1108.17.
This is just over 2 per cent of the initial sum available for
investment, and represents a significant return for the effective
management of short -term investments.



Payments
Netting in

Multinational
Cash

Management

15.1 Lintock Corporation

Lintock Corporation is a small multinational enterprise with a
holding company and main operating subsidiary located in the
United Kingdom , together with wholly-owned subsidiaries in
France , Switzerland and It aly. At the end of June 1989, debts
owed as between the British , French , Swiss and Italian subsidiaries
were all translated into sterling at a common set of exchange rates.
This enabled the following table to be drawn up, showing the
amounts owed in units of £10000. By way of illustration , note that
the table shows the French subsidiary to have indebtedness to the
British subsidiary of £190000, while the British subsidiary 's inde­
btedness to the French subsidiary amounts to £230000.

Receiving Paying companies
companies England France Switzerland Italy Total

England 19 17 11 47
France 23 6 14 43
Switzerland 11 22 13 46
Italy 8 19 7 34

Total 42 60 30 38 170

169
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A table was also drawn up showing the transaction costs involved
in transferring foreign exchange between the countries in which
Lintock's subsidiaries were located . These transaction costs are
expressed as a proportion of the sterling value transferred, so that
for example the settlement of £X worth of debt owed by the French
to the Italian subsidiary is shown by the table to involve £0.006x in
transaction costs . The transaction costs table for June 1989
appeared as follows:

Transfer between

England
England
England
France
France
Switzerland

and

France
Switzerland
Italy
Switzerland
Italy
Italy

Cost as proportion of
£ value transferred

0.008
0.0055
0.0075
0.007
0.006
0.0075

Lintock Corporation operates on the assumption that transaction
costs do not vary with the direction of transfer as between two
countries. For example, it is assumed that the transfer of £X worth
of funds from Switzerland to Italy would involve incurring the
same transaction costs (of £0.0075x) as would be incurred by the
transfer of the same amount of funds from Italy to Switzerland.

You are required to advise Lintock Corporation as to the
payments netting scheme which would minimise the transaction
costs incurred in settling the inter-subsidiary debts outstanding at
the end of June 1989.
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15.2 Analysis

Introduction

When Subsidiary A of a multinational corporation , located in
Country X, sends foreign exchange to Subsidiary B of that
corporation, located in Country Y, to discharge a debt owed by A
to B, in doing so it imposes transaction costs on the multinational
as a whole . These costs arise from two major sources. Firstly , the
act of changing currencies involves a cost arising from 'foreign
exchange spread', which is the difference between the buying and
selling rates offered by foreign exchange dealers. Secondly, a loss
of interest, called 'float cost', arises while foreign exchange is in
transit between countries. This is an opportunity cost, and is
measured relative to the amount that would have been earned in
interest if the amount remitted had remained within the bank
account from which it was paid out. Taken together, foreign
exchange spread and float cost can give rise to total transaction
costs of between 0.25 per cent and 1.5 per cent of the value of
funds transferred. Keeping these transaction costs to a minimum
involves minimising the value of the funds transferred interna­
tionally, and progress can often be made in this direction by means
of a technique called 'payments netting'.

Payments netting

Payments netting involves a systematic procedure whereby equal
but opposite sums owed by subsidiaries to each other are cancelled
out , so that only the net debt owed between subsidiaries is actually
paid off by transactions involving the purchase of foreign ex­
change. Its operation may be illustrated by reference to a situation
involving three subsidiaries called A, Band C. Their indebtedness
position can be represented by a diagram like that in Figure 15.1,
in which (for example) the number against an arrow running from
A to B indicates the amount in thousands of pounds that A owes to
B, while the arrow running from B to A indicates the amount that
B owes A , and so on . With hypothetical figures inserted , Figure
15.1 is a typical initial diagram.
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FIGURE 15.1
Initial Indebtedness

23

14

If all of the above debts were to be settled individually, in total
£104000 worth of funds would have to be transmitted . The first
step in simplifying the situation is called bilateral netting, and
involves the cancellation of offsetting debts between each pair of
subsidiaries , to leave only the net amount of debt owed . Thus (for
example) A owes a net amount of £9000 to B, being the £23000
that it owes less the £14000 that B owes it. The pattern of
indebtedness after bilateral netting has been completed is shown in
Figure 15.2.

FIGURE 15.2
Bilateral Netting

9Net 0 f:'\ Net
payable = 28 ----------..\!!.,) rece ivable = 5

19

Net
receivable = 23
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Bilateral netting leaves a total of £32000 worth of funds
requiring transmission to settle the inter-subsidiary debts. Howev­
er , th is figure can be reduced further by considering the indebted­
ness of each subsidiary to all the others taken together. A owes the
other subsidiaries £28000 in all, hence the words 'Net payable =
28' against it. Similarly, B is owed a net amount of £5 000 (the
difference between £9000 and £40(0) by A and C together , and C
is owed £23000 by A and B together. Each subsidiary can either
pay what it owes or be paid what it is owed by the following
transactions, involving multilateral netting (see Figure 15.3) .

FIGURE 15.3
Multilateral Netting

o 5

"<,
o

Here , a further £4000 worth of funds transmission has been
saved because A has been prevented from transferring £4000 to B
for further transfer on to C. But while the potential saving is quite
easy to see in a three-subsidiary case like this , it becomes much
more difficult to be certain that all the potential savings have been
identified as the number of subsidiaries located in different
countries increases. It is even more difficult to allow 'by eye' for
the fact that different transfers involve different transaction costs
per pound transferred, a fact not considered in the simple example
above . As the issues grow more complex, a mathematical prog­
ramming approach is to be preferred.

Mathematical programming and the Limock problem

The Lintock Corporation problem can be tackled by formulating it
in a manner akin to the transportation problem within linear
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programming. In doing this, the first step is to classify the
subsidiaries into two groups , as below:

1. Those which owe more to other subsidiaries than other sub­
sidiaries owe to them.
When all debts are settled , these subsidiaries will have had a
net outflow of cash.
Representing the outflow of cash from the ith subsidiary by Ii,
for a subsidiary in this group Ii > O.

2. Those subsidiaries which are owed more by other subsidiaries
than they owe to other subsidiaries.
They will receive a net inflow of cash when all debts are settled,
so that for a subsidiary i in this group t. < O.

Next , it is necessary to list the subsidiaries in such a way that the m
subsidiaries for which t. > 0 are numbered i = 1 . .. m, and the
n-m subsidiaries for which Ii < 0 are numbered i = m+ 1 . .. n .
For Lintock Corporation , a list having this property is as follows:

Subsidiary

France
Italy
England
Switzerland

No.

i = 1
i = 2
i = 3
i = 4

Ii Value

60 - 43 = 17
38-34= 4
42 - 47 = -5
30 - 46 = -16

New variables a, and b, now need to be introduced, where :

a, = Ii if i = 1... m
b l = -Ii if i = m+1 . . . n

In this example , al = 17, a2 = 4, b3 = 5, b; = 16. Let:

(1)
(2)

X ij represent the amount of funds transferred from subsidi­
ary i to subsidiary j, where j = 1 . . . n represents the
same ordering of subsidiaries as did i = 1 . .. n

These must in total be n constraints in the linear programming
formulation, one for each subsidiary . The first m of these con­
straints must ensure that each of the m subsidiaries falling into the
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net debtor category has a net cash outflow equal to its indebted­
ness. These constraints therefore take the following form :

(3)i = 1. . . m
n
L Xij = a,

j=1
j,;,i

The remaining n-m constraints must ensure that the inflow to
each of the net creditor subsidiaries is equal to the net amount that
it is owed. These constraints are of a form as follows:

(4)j=m+1 ... n
n
LX" = b,
i= 1 IJ J
i,;,j

In the Lintock Corporation problem, m = 2, n = 4 and the
individual constraints are as follows :

X12 + X\3 + X14 = 17
X21 + X23 + X24 = 4
x \3 + X23 + X43 = 5
XI4 + X24 + X34 = 16

(5)
(6)
(7)
(8)

Taking as an example constraint (5) above , this asserts that the
total of the French subsidiary's payments (from i = 1) to the other
subsidiaries (to j = 2 . . . 4) must be equal to the French subsidi­
ary's net indebtedness. Similarly, constraint (7) asserts that the
total of the English subsidiary's receipts (j = 3) from the other
subsidiaries (i = 1,2,4) must be equal to the net amount that the
English subsidiary is owed.

Next, let Cij represent the transaction costs of transferring funds
from subsidiary i to subsidiary j, expressed as a proportion of the
sterling value transferred. Then , in the most general terms, the
objective function can be expressed as:

m n n n
Minimise L L Cjrij + L L Cirij

i= 1 j=1 i=m+1 j=m+1
j,;,i i,;,j

This simply represents the sum of all the possible amounts
transferred Xij, each weighted by its transaction cost Cij ' In detail
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the objective function for the Lintock Corporation problem is as
below:

Minimise 0.006X12 + O.OO8x 13 + 0.007X14 + O.006X21
+ 0.0075x23 + 0.0075x24 + 0.0055x43 + 0.0055x34 (9)

When the linear programming problem of minimising (9) subject
to constraints (5) - (8) above is solved , it gives the following result:

xl3 = 1; X14 = 16; X23 = 4

In this solution, the only transfers that need take place are those of
£10000 worth of funds from France to England, £160000 worth
from France to Switzerland and £40000 worth from Italy to
England . Transfers of only £210000 worth of funds in all suffice to
discharge £1700000 worth of debt within Lintock Corporation, at
a transaction cost of only £1500. It is thus clear the administrative
costs involved in setting up a payments netting system may well be
justified in terms of the transaction cost savings to which such a
system gives rise.



The Learning
Curve and
Financial
Planning

16.1 Holt Electronics PLC

Holt Electronics has developed a novel design of noise reducer,
called the Drigan filter, for use with satellite communications
equipment. It will considerably improve reception by relay sta­
tions of satellite-reflected signals, and Holt anticipate that there
will be a large market for it. However, as Holt has never
assembled a filter anything like this one before, its management
realise that there will be considerable scope for learning by the
operatives engaged in its assembly. They feel that the first Drigan
filter could take as long as 280 direct labour hours to assemble, but
that the average assembly time per filter will drop by 10 per cent
every time cumulative production doubles . Each filter sold will
earn a contribution of £800 before deducting the cost of the direct
labour supplied by assembly operatives, who are paid £4 per hour.

A facility has been set up for Drigan filter assembly, which will
involve a cash outflow of £1400 000 per annum to run, irrespective
of the level of output that it produces. A skilled workforce is
available, supplying 250000 direct labour hours per year; the
nature of the skills involved makes it difficult to contemplate
expanding the workforce in anything but the long term. While the
number of direct labour hours is fixed, the organisation of
assembly labour is very flexible. In particular, it is possible to have
either one high-speed production line using 250000 labour hours
per annum or two lower-speed production lines each using 125000
hours per annum. This choice is purely a matter of layout, and has

177



178 Learning Curves

no implications at all for the level of total costs . Using this
information, you are required :

1. To calculate the break-even level of output for each of the
one-line and two-line alternatives over the first year of opera­
tion.

2. To calculate the level of output that will be achieved by each of
the one-line and two-line alternatives over each of the first 2
years of operation , assuming that the initial assembly time of
280 hours has been correctly estimated, and that learning
continues without interruption throughout both years .

3. To calculate the level of output that will be achieved by the
one-line alternative over each of the first 2 years of operation if
both the learning rate has been underestimated by 5 per cent
and the initial assembly time has been underestimated by 5 per
cent.
On seeing the results 1 - 3 above, the Product Manager
responsible for Drigan filters observes that he does not find
them credible.
When pressed for an explanation , he says that his general
knowledge of filter assembly techniques convinces him that a
Drigan filter cannot be assembled in less than 75 hours even
when all the available savings from learning have been fully
exploited.

Using this information , you are also required :
4. To compute the level of output at which learning effects will be

exhausted for a single production line , assuming that both
initial assembly time and the learning rate have been correctly
estimated at the outset.

5. To compute the break-even level of output and the budgeted
profit for each of the first and second years of operation if a
single production line is employed, again assuming that both
initial assembly time and the learning rate have been correctly
estimated .
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16.2 Analysis

Introduction

The issues here may be introduced by considering a model in
which every time the cumulative amount produced doubles , the
average number of direct labour hours spent per unit drops to
lOOR per cent of its level prior to that doubling of production. If,
for example, R = 0.8, then after a doubling of the cumulative
number of units that have been produced from (say) 16 to 32 units
in total, average direct labour hours per unit will be at l00R per
cent = 80 per cent of their level when 16 units had been produced.
This relationship between cumulative production and average
direct labour hours per unit is referred to as the 'learning curve'
phenomenon, and the term R is referred to as the 'learning rate ' .
While other resources (such as direct materials) can enter into
learning curve relationships of their own with cumulative produc­
tion, this possibility does not enter into the Holt Electronics
problem.

Although the magnitude of R often varies little over the life of a
given product, it may vary greatly from one product to another. To
incorporate R in a learning curve model requires the definition of
terms as follows . Let:

a represent the production time (in direct labour hours)
required to manufacture the first unit of output

x represent the cumulative number of units produced to
date

y represent the (cumulative) average production time (in
direct labour hours) spent per unit after x units have
been produced

b represent the 'index of learning', which is given by log
R/log 2
The logarithms can be taken to any base , and here
natural logarithms will be used, so that the index
appears as In R/ln 2

m represent the number of times that production has
doubled
If, for example, x = 4, then production has doubled
twice (from one unit to two, and from two units to
four) , thus giving m = 2
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Using the above terms , the learning curve model can be expressed
as:

But from the definition of m :

x = 2m

(16.1)

(16.2)

Converting both sides of equation (16.2) to natural logarithms and
isolating out m gives:

m = In x/In 2

Substituting for m in equation (16.1):

y = aR(ln x/In 2)

(16.3)

(16.4)

Converting both sides of equation (16.4) to natural logarithms
gives:

In y = In a + (In x/In 2) In R (16.5)

Substituting the index of learning on the right-hand side yields:

In y = In a + b In x (16.6)

Suppose that observation of the start-up of a production process
had supplied empirical data in the form of a series of pairs of
values of x and y. Then equation (16.6) would represent the form
in which these pairs of observations would be regressed against
each other to obtain least squares estimates of the intercept term a
and the index of learning b.

Taking antilogarithms of equation (16.6), it appears as:

y = ax" (16.7)

Equation (16.7) is probably the commonest way of expressing the
learning curve, and serves as the foundation for dealing with the
Holt Electronics problem.
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Computing the break-even level with a single production
line

In order to apply equation (16.7) to this problem, it is necessary to
incorporate it within a financial framework. Some new terms are
required for this, as follows. Let:

p represent contribution per unit, after deducting all
costs except those of direct labour

c represent direct labour cost per hour
[ represent the cash outflow on fixed costs per annum
'IT represent profit per annum

If in the first year x filters are produced, then the profit for the first
year can be expressed by an equation of the form:

'IT = px - cyx - [ (16.8)

This simply asserts that profit is equal to contribution before
deducting labour costs, less a second term representing labour
costs and a third one representing fixed costs. Substituting for y
from equation (16.7) gives:

'IT = px - caxb+ 1
- [ (16.9)

If there is only one production line, finding the break-even level of
output over the first year is a fairly straightforward matter of
solving equation (16.9) with 'IT = O. For the Holt Electronics
problem, the values of the parameters in equation (16.9) are as
follows:

p = 800; c = 4; a = 280;[= 1400000

The only parameter which requires computation is b, the index of
learning. From the problem, if the average assembly time drops by
10 per cent every time production doubles , this is equivalent to a
(100 - 10) per cent = 90 per cent learning curve , so that here R =
0.9. The index of learning is thus given by:

b = In 0.9/1n 2 = - 0.152
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Setting 1T = 0, and substituting the parameter values above , yields
the following for equation (16.9) with 1T = 0:

800x - 1120xl
l.l

l48
- 1 400000 = 0

This equation may be solved by an iterative approach called the
Newton-Raphson method . To illustrate this approach, consider its
use to solve a general equation of the form f(x) = O. This involves
making an initial guess that the solution is x = xo, then computing
a new possible value for the solution XI such that :

f(xo)
XI = Xo - f(xo)

In the above equation,f(xo) is the derivative off(x) at X = Xu . This
process continues iteratively with the following general formula:

The iterations are terminated when Xi and Xi_I differ from one
another by an amount which is considered to be negligible.
Substituting Xi = X then produces an almost perfect solution to the
equationf(x) = 0, though the solution can always be improved by
tightening the specification of what constitutes a 'negligible' differ­
ence between Xi and Xi-I' The only cautionary note here is that
occasionally the value of Xu chosen may be such that this approach
does not converge upon a solution, which necessitates restarting
the process with a different Xu value .

Applying the Newton-Raphson technique to the Holt Electro­
nics parameters gives, for the first iteration:

XI = Xo-
(800xo-1120xou .848-1400 000)

800-949.76xoO.152

It is very tedious to go through a long series of iterations to solve
for x, and fortunately it is unnecessary. The simple computer
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program shown below (with the Holt Electronics data inserted)
solves for x very quickly:

100 INPUT "VALUE OF X(O)"; X(O)
110 J=O
120 Y=800*X(J)-1120*X(J) t .848-1400000
130 Z=800-949.76*X(J) t - .152
140 J=J+1 :IF J>100 THEN 190
150 X(J)=X(J-1)-(Y/Z)
160 IF X(J)-X(J-1» .1 THEN 120
170 IF X(J)-X(J-1)<-.1 THEN 120
180 ? "SOLUTION IS X= " : X(J): GOTO 200
190 ? "TRY ANOTHER VALUE OF X(O)"
200 END

This program has been written in BASIC for the Commodore PET
computer. The accuracy of its solution can be improved by
reducing the values in lines 160 and 170 from 0.1 to any desired
value. It will work with any f(x) and f(x) respectively inserted on
the right-hand sides of the equations in lines 120 and 130.

Running the program with the Holt Electronics data gives a
solution x = 2990 .33, implying that the break-even point is almost
exactly 2990 filters over the first year. However, the interpretation
of this break-even point depends upon what output is forecast to
be over the first year of operation , a point which will be returned
to later.

Computing the break-even level with multiple
production lines

Suppose that, instead of one production line with a cumulative
output of x units, there are n production lines each with a
cumulative output of x/n units . Then the labour cost incurred by
each line is a function of that line's cumulative output xln .
Substituting x/n for x in equation (16.9) gives rise to a new
equation as follows:

(
X )b+l

'iT = px - nca -;;- - f (16.10)
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Equation (16.10) implies that each production line is staffed by
labour with the same initial skill level (so that a is a constant) and
that the labour on each line learns at the same speed (so that b is a
constant) . In the first part of the Holt Electronics problem, the
contrast is made between having one and two production lines .
Suppose , therefore, that n = 2, and that the two assumptions just
made both hold. Then the relevant equation for computing the
break-even level over the first year becomes:

800x - 1244.4xO.848
- 1400 000 = 0

The solution to this equation, by the Newton-Raphson method, is
x = 3216. Having two production lines instead of one raises the
break-even level in the first year from 2990 to 3216 filters . This is a
completely general result. Because b < 0 always, and holding all
the other parameters constant, the larger is the value of n the
higher will be the value of x . As the fixed number of labour hours
is spread over more and more production lines, the cumulative
production achieved by each line over a given period will fall.
Each line therefore have less experience, and thus be positioned
higher up its learning curve, than would have been the case with
fewer lines each employing more labour hours. The reservation
here is that this result assumes that lines cannot learn from each
other's experiences, by reason of geographical or temporal separa­
tion (as with day and night shifts).

Forecasting output over first year

To interpret the meaning of a break-even level, it must be
compared with the forecast level of production over the period
concerned. The attainable level of production depends upon the
number of labour hours that are available . To produce x units
requires xy labour hours. But y can be expressed in terms of x
using equation (16.7) , so that:

Let

xy = axb +1 (16.11)

TLi represent the number of labour hours available to a
production line in period i
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Then , for i = 1, the forecast output Xl for this first period is given
by the value of XI which solves the equation:

Rearranging to isolate XI gives:

X - (T )1I(b+l)
I - Lila

(16.12)

(16.13)

Applying the parameters from the Holt problem to obtain the first
year's forecast output of filters with a single production line gives
rise to:

(
250 000 )1/0.848

Xl = 280 = 3018 filters

For a first year's forecast output of X = 3018 filters, the
budgeted profit is given by equation (16.9) as £14354.

With two production lines running in the first year, each having
125000 labour hours available, both lines together will produce a
forecast amount Xl given by:

XI = (2) (125000/280) 110.848 = 2666 filters

The combined forecast output of the two production lines is
considerably less than the forecast output of a single line, for the
input of the same number of labour hours. This reflects the fact
that each of the two lines is placed higher up the learning curve at
the end of the first year than a single line would be. Using equation
(16.10) , from two production lines the budgeted first year result is
a loss of £267 439.

Forecasting output over subsequent years

Consider the problem of forecasting the level of output for any
year subsequent to the first, on the assumption that the learning
process continues unbroken throughout the year concerned. The
forecast level of output is obtained by computing the cumulative
forecast output from the start of production to the end of the year
in question, and subtracting from that the cumulative output up to
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the beginning of the year in question. For the rnth year, forecast
output x.; is given by:

(

1 m ) l/(b+l) (1 m-I ) 1/(b+l)
x.; = - L TLi - - L TLi (16.14)

a ;=1 a ;=1

Equation (16.14) relates to a single production line; for n produc­
tion lines, the TLi figures relate to the labour hours available to
each line, and each of the brackets on the right-hand side of the
equation is multiplied by n.

To determine second-year output X2 for the single-line case in
Holt Electronics the computation is:

_ (500 000 ) l/O.ll4ll ( 250000) I/O.ll4 ll _
X2 - 280 - 280 - 3815 filters

For the two-line case, the computation is:

_ ( 250000 ) l/O.ll4ll ( 125000 ) I/O.ll4ll _
X2 - (2) 280 -(2) 280 - 3369 filters

Sensitivity analysis on output forecasts

The next task is to examine the sensitivity of the forecasts in the
single-line case to errors in predicting both the initial assembly
time and the learning rate . Two new symbols need defining here,
as follows. Let:

&1 represent the proportional error in the learning rate, so
that if (for example) R has been 5 per cent underesti­
mated , putting Holt Electronics on a 100R% = 95 per
cent learning curve not a 90 per cent one, then &, =
1.05

&2 represent the proportional error in the initial assembly
time, so that if this too has been 5 per cent underesti­
mated, then &2 = 1.05
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Then , for the mth year, the revised output forecast x;" is given by:

x;" = (_1_ ~ Tu) 1/l{ln(&,R }/ln 2} + IJ

iha i=1

(
1 m- I ) 1Il{ ln(&,R}/ln 2} + IJ

- -- L Tu
l)2a i= 1

(16.15)

From equation (16.15) , for the single-line case in Holt Electronics:

, _ [ 250000 ] III{In( 1.05}(0.9}/In 2} + IJ
XI - (1.05)(280)

= (850.34)1.088 = 1549 filters

, [ 500000 ]
X2 = (1.05)(280)

1.088
- 1549 = 1724 filters

Steady-state conditions

It is often possible to forecast what the minimum production time
per unit will be in the steady state , after all learning effects have
been exhausted. Production time per unit in this state is referred to
as the steady-state marginal time , and taking into account the
steady state requires new symbols as follows. Let:

t represent steady-state marginal time
.r, represent the number of units produced until steady­

state conditions are reached
y, represent the cumulative average production time per

unit after Xs units have been produced
T, represent the total production time for the first Xs units

Then equation (16.11) can be rewritten as:

T, = XsY s = ax~+ I (16.16)
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Another way of describing the steady-state marginal time is to say
that it represents the rate of change of total time T, with respect to
output when x, units have been produced. Thus ts may be obtained
by differentiating equation (16.16) with respect to xs , giving rise
to :

(16.17)

In the penultimate part of the Holt Electronics problem, ts has
been estimated and Xs must be computed from it. Isolating out Xs
from equation (16.17) yields:

.r, = [tsla(b + 1)]lIb (16.18)

Given that t, = 75, then the computation proceeds as follows :

[
75 ]1 /-00152

Xs = 280(0.848) = 1962 filters

The steady-state assembly time of 75 hours is thus reached after
just under 2000 filters have been produced. It takes T, labour
hours to produce Xs units on a single production line, and from
equation (16.16):

T, = (280)(1962° 0848
) = 173527 hr

From this result , the learning effect is seen to be exhausted about
two-thirds of the way through the first year of manufacture on a
single production line. Where learning is exhausted part-way
through the first year, the forecast output Xl for that year may be
derived as follows:

(16.19)

Applying equation (16.19) to the data in Holt Electronics gives:

Xl = (250000 - 173527)/75 + 1962 = 2982 filters

The budgeted profit over the first year 1T is given by:

(16.20)
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Substituting in the figures for Holt:

'IT = 800(2982) - (4)(173527) - (4)(75)(2982 - 1962)
- 1400000 = - 14508

An output of 2982 filters will thus give rise to a small loss of
£14508 over the first year of production. Clearly, the break-even
point for the first year must exceed Xs ' Where this is the case, the
value of the break-even output can be found by setting 'IT = 0 in
equation (16.20) and solving it for x , as follows:

(16.21)

For the first year 's production:

= (4)(173527)-(4)(75)(1962)+1400000 = 3011 fil
x ~-~0) ~

For the second and subsequent years, with learning effects ex­
hausted throughout, the break-even level x will be a constant
obtained by dividing fixed cost by contribution, as below:

x = f/(P - cts)

In the Holt problem, this is simply:

(16.22)

x = 1400 000/[800 - (4)(75)] = 2800 filters per annum

Budgeted output in the second and subsequent years will be
250000/75 = 3333 filters per annum, for a budgeted profit of
£266500 per annum.



Joint Product
Decisions

17.1 Cydilla Separators Ltd

Cydilla Separators is a manufacturer of biological concentrates
which accelerate the fruit ripening process. The basic raw material
from which these concentrates are derived is called Marimol, and
costs £14 per kilogram to make . From 4 kilograms of Marimol , it is
possible by further processing to produce 2 kilograms of Aplin­
tasarate and 2 kilograms of Ruthenase . This processing costs £9
per kilogram for the Aplintasarate and £7 per kilogram for the
Ruthenase . Aplintasarate is a final product, but Ruthenase cannot
be sold directly to Cydilla's customers. It must be left to cool, and
then separated out in such a way that 2 kilograms of Ruthenase
give rise to 1.5 kilograms of Lefcon and 0.5 kilograms of Grodyn .
There is a large market for Lefcon, and Cydilla's production
represents only a tiny proportion of the available supply of this
product. Consequently, Cydilla can either buy or sell Lefcon, in
what are for practical purposes unlimited quantities, at the market
price of £17 per kilogram. From 1.5 kilograms of Lefcon , Cydilla
can by chemical means synthesise 1 kilogram of a final product
called Jantym; this process costs £12 per kilogram of Jantym
produced.

Grodyn is a highly volatile product, and it is therefore unsafe to
sell it to outside customers in this form. It has first to undergo a
stabilisation process, which changes it into a related product called
Questid. This process is costly, involving an outlay of £23 per
kilogram of Quest id manufactured. It also involves a considerable

190
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amount of wastage, such that each kilogram of Grodyn yields only
0.7 kilograms of Questid.

The markets in which Aplintasarate, Jantym and Questid are
sold are all characterised by imperfect competition. For none of
these three products is there any possibility of practising price
discrimination, so that in each case extra sales can be obtained
only by reducing the price per kilogram at which all sales are
made . The management of Cydilla believe that it is reasonable to
treat all the three demand functions as being approximately linear,
and have derived the following estimates of sales (in kilograms per
week) at alternative selling prices:

Aplintasarate Jantym Questid

Price per Sales Price per Sales Price per Sales
kg level kg level kg level
£ £ £
50 140 77 85 150 34
40 200 70 100 125 40

Using the above data , you are required to advise Cydilla as to what
its weekly production and sales levels should be for Aplintasarate ,
Jantym and Questid, and as to the price per kilogram it should
charge for each of these three products. You are also required to
advise Cydilla as to whether it should sell Lefcon or purchase it
from outside, and as to the quantities per week of Lefcon which
should be bought or sold.

You may find it helpful, in visualising the production situation at
Cydilla, to refer to the diagram in Figure 17.1. This shows how an
initial amount of 4 kilograms of Marimol is transformed into the
various finished products, and indicates the costs of each stage in
this transformation.
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17.2 Analysis

Specification ofdemand functions

A preliminary step in dealing with the Cydilla Separators problem
is to specify demand functions for the three final products sold in
imperfectly competitive markets. For linear functions, the follow­
ing terminology may be employed. Let:

P represent the price charged per kilogram
D represent the demand per week, in kilograms
b represent the gradient of the (downsloping) demand

function
a represent the intercept term, being the notional price at

which demand ceases to exist

The general form of the demand function is then :

P = a - bD (17.1)

For each of the three products, two pairs of D and P values have
been estimated by Cydilla's management. Consequently, for each
product two simultaneous equations can be set up in order to
compute the two unknowns a and b. This gives the following
results:

Aplintasarate

50 = a - 140b
40 = a - 200b

Hence: a = 73.3
b = 0.167

Jantym

77 = a - 85b
70 = a - l00b

Hence: a = 116.7
b = 0.467

Questid

150 = a - 34b
125 = a - 40b

Hence : a = 291.7
b = 4.167

Outline of the problem

Having dealt with this preliminary consideration, the next task is
to define the terms that will be required in the analysis of this
problem. Let :
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PA, P, and PQ represent respectively the selling prices
per kilogram for Aplintasarate, Jantym
and Questid

X A , X, and X Q represent respectively the volume of sales
(in kilograms per week) for Aplintasa­
rate , Jantym and Questid

L, represent the number of kilograms of
Lefcon used per week in the production
of Jantym

Ls represent the number of kilograms of
Lefcon per week sold on the open market

Lp represent the number of kilograms of
Lefcon per week bought on the open
market

X M represent the number of kilograms of
Marimol processed per week

X R represent the number of kilograms of
Ruthenase processed per week

Using this terminology, the demand functions for the three
products facing imperfect competition can be specified as follows:

PA = 73.3 - O.167XA

PJ = 116.7 - 0.467Xj

PQ = 291.7 - 4.167XQ

(17.2)
(17.3)
(17.4)

The revenue obtained from selling Aplintasarate, Jantym and
Questid is given by the sum of the products of unit price and
quantity sold for each of them , that is by PAXA+PjXj +PQXQ. To
this must be added the revenue from net sales of Lefcon, repre­
sented by the excess of L s over L p , multiplied by its fixed market
price of £17 per kilogram. Taken together, these yield an express­
ion for total revenue per week R, where:

R = (73.3-0.167XA)XA+(116.7-0.467Xj ) x,
+ (291.7-4 .167XQ)XQ + 17(Ls-Lp ) (17.5)

The matching cost figure is given by the number of kilograms of
each of the intermediate and final products processed per week,
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multiplied by the cost of processing per kilogram. Representing
cost per week by C gives rise to :

(17.6)

The objective of Cydilla's management is to maximise profit,
represented by the excess of Rover C. If profit is denoted by 1T,

then the expansion and simplification of equations (17.5) and
(17.6) enables the following objective function to be drawn up:

Maximise 1T = 64.3XA - O.167X~ + 104.7X} - 0.467XJ +
268.7XQ - 4.167Xb + 17L s - 17L p - 14XM - 7XR

This maximisation is subject to five linear constraints as below:

This first constraint states that the amount of Aplintasarate
produced and sold cannot exceed half the amount of Marimol
produced.

This is a similar constraint, asserting that the amount of Ruthenase
produced cannot exceed half the amount of Marimol produced.

This third constraint is somewhat more complex. It takes the
amount of Lefcon which is either used in producing Jantym or is
sold, which is given by L} + L s. The stipulation is then that this
amount cannot exceed the sum of the amount of Lefcon purch­
ased, L», and the amount of Lefcon produced within Cydilla,
which is O.75XR .

Here, what is being asserted is that the amount of Jantym
produced and sold cannot exceed two-thirds of the amount of
Lefcon used in the production of Jantym.
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X Q - 0.175XR ~ 0

This fifth constraint requires rather more detailed explanation .
Denoting the amount of Grodyn produced by Xc, then Xc =
0.25XR • Further, the amount of Questid available for sale cannot
exceed 70 per cent of the amount of Grodyn produced, so that X Q
~ 0.7Xc. Substituting for Xc in this inequality gives rise to X Q ~

(0 .7)(0 .25XR ) , from which the fifth constraint above is obtained by
simplification.

To complete the formulation of the problem, it is necessary only
to note that none of the variables can sensibly take negative
values, so that a non-negativity constraint should be associated
with each one . Hence:

Having formulated the problem, the next question is how to go
about finding its solution . It can be shown that maximising a
quadratic objective function subject to five linear constraints is
equivalent to maximising a function made up of the original
objective function less the weighted sum of the expressions within
each of the five constraints. The weights employed are referred to
as Lagrangean multipliers, and the detailed reformulation of the
problem in the Lagrangean mode makes it appear as below:

Maximise M = 64.3XA - 0.167X~ + 104.7Xj - 0.467X3 +
268.7XQ - 4.167X~ + 17Ls - 17Lp - 14XM - TXR ­

~'1(XA - 0.5XM ) - A2(XR - 0.5XM ) - A3(Lj + L s - L p ­

O.75XR ) - A4(Xj - O.667LJ ) - As(XQ - O.175XR)

It can also be shown that a necessary condition for this maximisa­
tion to take place involves the satisfaction of requirements called
Kuhn-Tucker conditions. These involve the partial differentiation
of the function M for each of the variables within it, in turn. Partial
differentiation is the process of finding the rate of change of a
function with more than one variable with respect to one of its
variables, all the other variables being considered constant. (It is
denoted by the use of the Greek 8 in place of the Roman d) .

Written out in full , the Kuhn-Tucker conditions for this prob­
lem are as follows:
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'OM
X A ~ 0X A 'OX

A
= 0

'OM
X] ~ 0X] 'OX] = 0

'OM
XQ~ aX Q 8XQ = a

'OM
XM~OX M 'OXM = 0

'OM
X R ~ aX R 'OX

R
= 0

'OM
L] ~ aL] 'OL] = 0

8M t., ~ aLs 'OLs = a

'OM t.; ~ at. ; 'OL
p

= a

'OM
A) ~ 0AI 'OA ) = a

'OM
A2 ~ aA2 'OA2 = a

'OM
A3 ~ 0A3 ~=O

3

'OM
A4 ~ 0A4 8A4 = 0

8M
AS ~ aAS 'OAs = a
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Complementary slackness conditions

In each of the (thirteen) equations immediately above, the partial
differential of M with respect to a variable was multiplied by that
variable , and the product equated to zero. Performing the partial
differentiation within each equation gives rise to a set of simul­
taneous equations referred to as the complementary slackness
conditions. These are as follows:

X A [64.3 - 0.334XA - Ad = 0 (17.7)

X, [104.7 - 0.934XI - A4] = 0 (17.8)

X Q [268.7 - 8.334XQ - As] = 0 (17 .9)

X M [-14 + 0.5A] + 0.5Az] = 0 (17.10)

X R [-7 - AZ + 0.75A3 + 0.175As] = 0 (17.11)

i., [-A3 + 0.667A4] = 0 (17.12)

L s [17 - A3] = 0 (17.13)

L p[-17 + A3] = 0 (17.14)

A] [0.5XM - X A ] = 0 (17.15)

AZ [0.5XM - X R] = 0 (17.16)

A3 [0.75XR + L p - L s - Ll] = 0 (17 .17)

A4 [0.667L, - Xl] = 0 (17.18)

AS [0.175XR - X Q] = 0 (17.19)

Each of equations (17.7) - (17.19) above can be solved in either of
two ways. The expression within the square brackets can be set
equal to zero, or the variable outside the brackets can be set equal
to zero. Attention will first be focused on the former solution,
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which because it equates to zero the expression inside the brackets
is referred to as the interior solution.

To find this solution involves solving a set of thirteen simul­
taneous equations, too much to cope with by hand but easily
susceptible to computer analysis. However, it is obvious from the
start that a pure interior solution is not feasible. This is because the
expressions within the square brackets of equations (17.13) and
(17.14) are identical save for a factor of -1, so that both equations
have an interior solution of A3 = 17. It would appear, therefore,
that there are here only twelve independent equations in thirteen
variables, and that this system of simultaneous equations is
consequently underdeterminate. However, since there can be no
profit in buying Lefcon at £17 per kilogram for resale at exactly the
same price, clearly either L p = 0 or Ls = O. That is, it is either
profitable to buy Lefcon and not to sell it, or to sell Lefcon and not
to buy it. Because one or other of L p or L s must be zero, the
twelve equations within square brackets of which A3 = 17 is one
relate to twelve variables only, and are therefore determinate.

An arbitrary initial choice may be made by assuming L p = O.
Equation (17.14) is thus solved, and equation (17.17) may be
rewritten as follows:

It is then a question of finding an interior solution to the twelve
equations numbered (17.7)-(17.19) but excluding equation
(17.14) . Using a computer package for simultaneous equations,
this interior solution is found to be :

X A = 151.17; AI = 13.81; X] = 84.81; A4 = 25.49
X Q = 26.45; AS = 48.23; A2 = 14.19; A3 = 17
X M = 302.34; X R = 151.17; L] = 127.15; L s = - 13.78

However, the last figure in this solution makes it unacceptable as a
whole, because it violates the Ls ~ 0 constraint. Put in another
way, it directs Cydilla to sell a negative quantity of Lefcon, which
is of itself impossible. None the less, this direction may be inter­
preted usefully as implying the sale of as little Lefcon as possible,
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represented by setting Ls = O. This solves equation (17.13), and
enables equation (17.17) to be rewritten as:

Computer analysis of the twelve equations numbered (17.7) ­
(17.19) but excluding equation (17.13) now gives a new interior
solution . This is identical to the interior solution given above,
except that L p = 13.78 now replaces L s = - 13.78, thus rendering
the overall solution feasible .

Substituting X A = 151.17 in equation (17.2) yields PA = 48.05,
while substituting X J = 84.81 in equation (17.3) yields PJ = 77.09
and substituting X Q = 26.45 in equation (17.4) yields PQ = 181.48.
These results, together with those above, give rise to an optimal
pricing, manufacturing and purchasing plan for Cydilla Separators
as follows:

Product

Marimol
Aplintasarate
Ruthenase
Lefcon
Lefcon
Questid
Jantym

Sales/Production
level

(kg per week)
302.34
151.17
151.17
127.15 (manufactured)
13.78 (purchased)
26.45
84.81

Selling price

(£ per kg)

48.05

181.48
77.09

This solution gives rise to a profit of 1T = £10 091 per week.
Nowhere within it, though , is there any explanation of the
meaning of the A values obtained by solving equations (17.7) ­
(17.19). Hence these must be the focus of the final section.

Marginal conditions in the optimal solution

In general, Ai represents the joint cost allocated to the ith product.
This allocation has the special property that in the optimal solution
the marginal revenue for each product will be equal to the sum of
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the joint cost A allocated to that product and the separate
processing cost incurred in respect of that product after its split-off
point. Marginal revenue functions for each of the products are
obtained by differentiating their total revenue functions. Let:

MRA , MRJ and MRQ represent respectively marginal re­
venue from the last kilogram sold of
Aplintasarate, Jantym and Questid

Then differentiating separately the expressions for total product
revenue in equation (17.5) relating to X A , XJ and X Q gives rise to
three marginal revenue functions as follows:

MRA = 73.3 - 0.334XA

MRJ = 116.7 - 0.934XJ

MRQ = 291.7 - 8.334XQ

(17.20)

(17.21)

(17.22)

Substituting X A = 151.17 in equation (17.20) yields MRA = 22.81,
while substituting X J = 84.81 in equation (17.21) yields MRJ =
37.49 and substituting X Q = 26.45 in equation (17.22) yields MRQ
= 71.27.

Now let:

represent the separate processing costs
incurred respectively for Aplintasa­
rate , Jantym and Questid after their
split-off points

From the data in the Cydilla problem, CA = 9, CJ = 12 and CQ =
23. Turning first to the allocated joint costs Al and A2' these are
given by Al = £13.81, A2 = £14.19. Together they add up to £28,
and in doing so represent an allocation of the cost of the two kilograms
of Marimol to produce 1 kilogram of Aplintasarate (at an allocated
cost of £13.81) and 1 kilogram of Ruthenase (at an allocated cost
of £14.19) . For Aplintasarate, the condit ion equating marginal
revenue with the sum of allocated joint cost and separate proces­
sing cost is MRA = Al + CA = £22.81. Similarly, for Jantym the
marginal condition is MRJ = A4 + CJ = £37.49. Here, the value of



202 Joint Product Decisions

A4 (at £25.49) represents , with a small rounding error, the cost of
1.5 kilograms of Lefcon at its fixed market price of £17 per
kilogram. The final marginal condition, for Questid, is given by
MR Q = As + CQ = £71.27, again with a small rounding error.

This last condition may be illuminated by showing how As is
built up. The cost per kilogram of Ruthenase is given by the sum of
A2 (the allocated joint cost to Ruthenase of Marimol) and £7 per
kilogram cost of further processing of Ruthenase. With A2 =
14.19, Ruthenase is thus costed out at £21.19 per kilogram. It
takes (4)(10/7) = 5.714 kilograms of Ruthenase to produce 1
kilogram of Questid, and from this amount of Ruthenase
0.75(5.714) = 4.286 kilograms of Lefcon are derived. Valuing this
Lefcon at its market price of £17 per kilogram, enough Ruthenase
to produce one kilogram of Questid is seen to give rise to
(5.714)(£17) = £72.86 worth of Lefcon. With the cost per kilogram
of Ruthenase given above as £21.19, enough Ruthenase to pro­
duce 1 kilogram of Questid will cost (5.714) (£21.19) = £121.09.
Then As is given by the difference between the £121.09 and £72.86
figures above, so that As = £48.23. Aside from a small rounding
error, the marginal condition MR Q = As + CQ is seen to be
satisfied.
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Standard Costing
and Matrix

Algebra

Arconate Ltd

Arconate Ltd produces a very powerful antiseptic called Trikil.
The production process necessitates mixing five chemicals. These
chemicals fall into two groups, the ammoniate group and the
oxidising group. The ammoniate group are solids - three of these
are involved: hexachlorophene, paradichlorosol and bentonite.
The oxidising group are liquids, ethyl acetate and carbon trimor­
phate. The mix of chemicals within either the ammoniate group or
the oxidising group may be changed, but a larger input of a
chemical in the oxidising group cannot be used to compensate for
smaller input of a chemical in the ammoniate group, or vice versa.
All of the chemicals are stored prior to use, and materials price
variances are recorded at the time of their purchase. Three grades
of labour are used in the production process ; they may be
substituted for one another but extra inputs of labour cannot serve
to compensate for a reduction in the amount of any of the
chemicals used.

The Trikil is produced in lOa-kilogram batches, and the stan­
dard mixture with standard unit prices for a lOO-kilogram batch is
as follows:

25 kg of hexachlorophene @
25 kg of paradichlorosol @
75 kg of bentonite @

[per kg
4.50
3.00
0.80
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20 I of carbon trimorphate @
50 I of ethyl acetate @

18 hr of labour grade A @
26 hr of labour grade B @
31 hr of labour grade C @

£ per l
2.50
1.25

£ per hr
4.20
3.15
2.80

During the month of January, the following materials were
purchased:

3750 kg of hexachlorophene @
2750 kg of paradichlorosol @

10000 kg of bentonite @

2500 I of carbon trimorphate @
6000 I of ethyl acetate @

£ per kg
4.70
3.30
0.70

£ per l
2.95
1.10

Production for January consisted of 10700 kilograms of finished
product , and there were no opening or closing stocks of work in
progress. The following quantities of materials and labour were
put into production:

2625 kg of hexachlorophene
2900 kg of paradichlorosol
9240 kg of bentonite

2200 1of carbon trimorphate
5300 I of ethyl acetate

2252 hr of labour grade A
2660 hr of labour grade B
3069 hr of labour grade C

At the beginning of January, there was a flat rate wage settlement
of 60p per hour for labour grades Band C, raising the rate for
grade B labour to £3.75 per hour and that for grade C labour to
£3.40 per hour. The grade A labour was the subject of a separate
settlement at the same time , raising its wage to £4.50 per hour.
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Using matrix algebra techniques, you are required to calculate :

1. Where appropriate , price (rate of pay) , quantity (efficiency)
and mixed variances for materials and labour.

2. Mix and yield variances , but at the aggregate level only, not for
individual inputs.



Stochastic Process
Costing

Kleeford Distilled Compounds

Kleeford Distilled Compounds (KDC) are manufacturers of arti­
ficial flavourings and colourings for the food industry. One of their
most important products is synthetic lemon oil, which is made by a
three-stage distillation process . Each stage involves a prolonged
period of heating, followed by a period in which the product settles
into layers. This settlement must be completed before the product
can be further processed; as a consequence , each of the three
stages of distillation lasts a full working week .

At the end of Stage 1 distillation, the product separates into
three layers. The top layer of Stage 1 distillation is called 'wash'
and is thrown away as valueless ; it amounts to 12 per cent of the
output of Stage 1. The middle layer is referred to as 'Stage 1 main
run ' and amounts of 78 per cent of the output of Stage 1 - it is
transferred to Stage 2. In the bottom layer of Stage 1 distillation is
a product called 'heavy citron'. This amounts to 10 per cent of
Stage 1 output, and while it cannot be transferred into Stage 2, it is
still of value. If heavy citron is thoroughly mixed with the new fluid
(called 'feed oil') which comes in each week as a raw material for
synthetic lemon oil distillation, then this mixture can enter Stage 1
distillation so long as it has been 'balanced off' . The process of
balancing off the input of Stage 1 involves mixing into it substances
called 'two-light' and 'feed additive' , respectively obtained from
distillation in Stages 2 and 3 of the synthetic lemon oil manufactur­
ing cycle. These substances are described below.
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Stage 1 main run is one of the inputs to Stage 2 distillation, but
there are two others. One of these is described later, the other is a
by-product from another distillation process carried out elsewhere
in KDC, and is called 'citric essence'. It differs from Stage 1 main
run in that it is obtained from natural rather than synthetic
products. However , it is almost identical chemically to Stage 1
main run , and can be mixed with it to produce a homogenous
substance. This mixing, like that for the inputs to Stage 1, takes
place over the weekend prior to the working week during which
Stage 2 distillation takes place .

The output of Stage 2 distillation consists of four layers of
product. 14 per cent of Stage 2 output makes up the top layer; this
is the 'two-light' referred to above, and is returned to Stage 1
distillation for mixing with heavy citron , feed oil and feed additive .
The bulk of Stage 2 output is called 'Stage 2 main run' and is
transferred to Stage 3 distillation. 69 per cent of the output of
Stage 2 falls into this second layer. Below it is a third layer called
'two-heavy', which is left in Stage 2 at the end of a working week.
Its function is to balance off the citric essence in the weekend
mixing process, and it thus serves as the third input to Stage 2
distillation . The proportion of Stage 2 output which falls into the
'two-heavy' layer is 11 per cent. In the bottom layer comes the
remaining 6 per cent of Stage 2 output. This is referred to as
'grouts' , and is discarded as worthless .

The only input to Stage 3 distillation is Stage 2 main run, so that
no mixing process is required prior to the working week of
distillation . At the end of this Stage 3 distillation process, three
layers of product are separated. The top layer is referred to as
'feed additive'. It is too light to be saleable of itself, but it can be
added to the feed oil entering Stage 1 of the distillation process .
All the feed oil entering Stage 1 at the beginning of a working
week is balanced off in part by having mixed with it the feed
additive obtained from the Stage 3 distillation process at the end of
the preceding week. When Stage 3 distillation has been com­
pleted, 9 per cent of the final product goes into the top (feed
additive) layer.

Beneath this layer is a second layer called Stage 3 main run. This
is the final product , and represents fully processed synthetic oil. 83
per cent of the output of Stage 3 distillation is main run, and KDC
sells it in this form to the food industry . The remaining 8 per cent
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of the output of Stage 3 is a worthless residue called 'failings',
which is thrown away.

At the beginning of every weekend, a fresh consignment of
23500 litres of feed oil enters the mixing process prior to Stage 1
distillation. There, this new supply is balanced off with the
previous week's output of heavy citron, two-light and feed addi­
tive, before entering the Stage 1 distillation process on Monday
morning.

Also on Monday morning, the week-long distillation operations
of Stages 2 and 3 commence. Into Stage 2 goes the mixture of
Stage 1 main run and two-heavy obtained from the previous
week's distillation . The two-heavy serves to balance off an input,
from outside the three-stage distillation process, of 3900 litres of
citric essence. As has been stated above, this comes from else­
where in KDC . Finally, into Stage 3 goes the output of Stage 2
main run which was derived from that distillation operation at the
end of the preceding week .

The variable cost of passing a litre of input through Stage 1 is
£1.90, through Stage 2 is £2.75 and through Stage 3 is £2.20. Given
these facts, you are required to answer the following questions:

1. In the steady state, what will be the mean and standard
deviation of the volume of product undergoing each of the
distillation processes during any given working week?

2. What will be the expected output of synthetic lemon oil, and
what will be the average volume of wash, grouts and failings
together which are thrown away? Both quantities should be
expressed in terms of litres per week.

3. What will be the expected variable cost per working week of
operating each of the three stages of distillation?

4. In the steady state, what will be the standard deviations of the
output of synthetic lemon oil per working week and of the
volume of wash, grouts and faIlings together thrown away per
working week?

5. If it were desired to produce an average output of 21 000 litres
of synthetic lemon oil per working week , and if the supply of
citric essence was fixed at 3900 litres per week, by how much
would the volume of feed oil entering Stage 1 per week have to
be expanded?



Credit
Management and

Markov Chains:
Partial Balance
Aging Method

Langdale Ltd

Langdale Ltd uses partial balance aging to classify the amounts of
money owed to it. Over the last 3 months of 1989, the total of
debts owed to Langdale Ltd increased in the following manner:

End of

October
November
December

Total owed (l)

764927
871464
912960

The breakdown of these debts by reference to the period of time
for which they had been outstanding is given below:

Time for which End of End of End of
debt owed October November December

Less than £ £ £
1 month 511401 662666 672390
1-2 months 94853 79261 103722
2-3 months 53711 55212 43685
3-4 months 26108 12471 42433
Over 4 months 78854 61854 50730
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The Credit Control Manager of Langdale Ltd says that she thinks
about 35 per cent of the debts in the 3-4 months' old category at
anyone time are paid during the next month. Langdale Ltd wrote
off £19901 in November and £14108 in December in respect of
bad debts . You are required to use Markov chain analysis to
answer the following questions:

1. What would you forecast cash receipts to be in January 1990?
2. If forecast credit sales for January 1990 are £492000 , what

would you forecast cash receipts to be in February 1990?

In answering these two questions, use an exponential smoothing
formula in which the current transition matrix is given a weight of
0: = 0.8.



Credit
Management and

Markov Chains:
Modified Total
Balance Aging Method

Firenza Associates

Firenza Associates produces highly specia lised loudspeaker eq uip­
men t for a very small number of customers, who purchase from it
on credit. At the end of May 1989 it had twelve credit customers ,
whose accounts stood as follows, with all figures in thousands of
pounds:

Owed from
Customer Owed f rom May Owedfrom invoices in or

account no. invoices April invoices before March

1 10
2 9 2
3 7
4 5 6 3
5 6 11
6 13 15 2
7 8 16
8 7 4
9 12

10 16 4
11 10
12 7 14 5
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The same accounts stood as follows at the end of June 1989:

Owed from
Customer Owedfrom Owedfrom invoices in or

account no. June invoices May invoices before April

1 14 4
2 9
3 5
4
5 7 6 11
6 13
7 9 24
8 3 7
9 12

10 12 16
11 13
12 5

The management of Firenza Associates believe that all of the
amounts owed at the end of June 1989 will ultimately be paid, with
the exception of the £12 000 owed on Account 9. It was decided
during June that this amount represented a bad debt. Excluding
this bad debt, the total amounts owed at the end of June were as
follows:

Owed from

June invoices
May invoices
Invoices in or before April

£

68000
55000
35000

158000

Using this data, you are required:

1. To compute the expected value of receipts from the £158 000
owed at the end of June.

2. To compute the provision for bad debts that should be made in
respect of the £158 000 owed.
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This provision should be such that, given a normal distribution
for the amount of bad debts, there is only a 0.01 probability
that the actual amount of bad debts will exceed the amount
provided for them.

3. To compute" the present value of receipts from the £158000
given a rate of discount of 1V2 per cent per month.

4. To estimate the size of the investment in debtors that Firenza
Associates will have in the steady state if it acquires new debts
at a constant rate of £65000 per month .



Linear
Programming and

Decisions on
Internal v.
External Purchases

of Services

Remosense PLC

Remosense PLC is a company specialising in the detection of
mineral deposits by the use of aerial surveys. It is based in the
United Kingdom, but the nature of its work requires it to maintain
an elaborate communications network on a worldwide basis. The
company is divided up into two parts, a Communications Division
and an Operations Division. Within the Communications Division
there are four service departments numbered SI (telephones), S2
(telex), S3 (document transmission) and S4 (electronic data trans­
fer). These service departments support the Operations Division,
but they also provide services to one another (for example, some
of the electronic data transfer is carried out down private lines
operated by the telephone department). The amounts and propor­
tions of services consumed in the departments and provided to the
Operations Division in 1989 may be tabulated as follows, with all
figures in thousands of units:
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Operations
From/To SI S2 S3 S4 division Total

S\ 0 42 31 9 230 312
13.5% 9.9% 2.9% 73.7% (h)

S2 5 0 62 28 195 290
1.7% 21.4% 9.7% 67.2% (h)

S3 26 108 0 67 820 1021
2.5% 10.6% 6.6% 80.3% (facsimile

pages)
S4 22 121 94 0 408 645

3.4% 18.8% 14.6% 63.2% (m of printout)

During 1989, the variable operating costs incurred in the service
departments were as follows:

S\ (telephones)
S2 (telex)
S3 (document transmission)
S4 (electronic data transfer)

£
873600
551000
408400
387000

At the end of 1989, Remosense were approached by an interna­
tional communications company called Transferincorp, with a
proposal that they should perform some of the services currently
carried out by the Communications Division. Since the work of the
Communications Division does not involve the incurrence of
avoidable fixed costs on any significant scale, Remosense feel
justified in evaluating any offer made by Transferincorp solely in
terms of its impact on variable operating costs.

You are required to advise Remosense as to how it should
respond to an offer by Transferincorp to supply electronic data
transfer services at a cost of £0.75 per metre of printout, and
document transmission services at a cost of £0.55 per facsimile
page .



Linear
Programming,

Opportunity
Losses and ex post

Budgeting

Shalmirane Ltd

Shilmirane Ltd is a small, specialist manufacturer of extremely
expensive radar-reflecting paints for military use. These paints are
made up of two ingredients, and the distillation of these ingre­
dients constitutes the only manufacturing process within Shalmir­
ane . The ingredients are known by their code-names of Fracto and
Diffuso. Both of them are very perishable ; consignments of Fracto
and Diffuso are delivered to Shalmirane every day and must be
used on the day of their receipt - they cannot be stored at all.

From these ingredients, four different types of paint are manu­
factured , called Fulminate , Trathonate , Suborcate and Mathinate .
Denote the production (in litres) of Fulminate as XI> of Trathon­
ate as X2, of Suborcate as X3 and of Mathinate as X4 • The
following data then indicates the standard time required in the
distillation process and the standard raw material input per
litre produced for each type of paint:

Input of Input of Distillation
Requires Fracto Diffuse time required

/ / hr
1/ of XI 12 10 0.5
1/ of X2 15 12 0.6
1/ of X3 16 13 0.7
1/ of X4 25 20 2.0
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Shalmirane carries out planning once per month only; it does not
revise its plans during a month though it may adapt its actual
production to changing circumstances. It bases its plans for
February 1989 upon the presumption that during the month it can
buy no more than 3600 litres of Fracto and 2900 litres of Diffuso ,
equal quantities being available in each fortnight of the month. It
also assumes that distillation will be carried on over a working
week of 40 hours - that is, for 160 hours over the month as a
whole. Shalmirane's plan assumes a cost for Fracto of £5 per litre
and for Diffuso of £7 per litre, together with a variable cost for the
distilling process of £80 per hour.

The Ministry of Defence is the sole customer for Shalmirane's
output. It buys radar-resistant paint from a number of specialists
like Shalmirane, and is therefore content to leave to Shalmirane's
discretion what mix of types of paints shall be produced in any
given month . The Ministry's position is that it will buy all the paint
Shalmirane produces ; in planning for February 1989, Shalmirane
uses the Ministry'S prices of £207 per litre for Fulminate, £251 for
Trathonate , £271 per litre for Suborcate and £500 per litre for
Mathinate .

The events which actually took place in February 1989 turned
out to differ from Shalmirane's plan in the following four respects :

1. Planned maintenance of the distillation process had not been
carried out properly in January.
As a result, it turned out that throughout February every litre
of Mathinate produced required 25 litres of Diffuso instead of
the planned 20 litres .
This was the only one of the four variances from the February
plan which Shalmirane's management considered to lie within
their control.

2. From the beginning of February , it was obvious that the
standard which stated that 13 litres of Diffuso were required
per litre of Suborcate produced had been set too loosely.
In fact, only 12.5 litres of Diffuso were required per litre of
Suborcate.

3. The union to which the distillation operatives at Shalmirane
belonged had always insisted that distillation operatives should
not work more than a 40-hour week, in order to implement a
job sharing scheme.
However, Shalmirane succeeded in the middle of February
1989 in negotiating a new shift system with the union .
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This system was implemented immediately, and had the effect
of making it possible to run the distillation process for up to 60
hours per week at the higher variable cost of £85 per hour.

4. Shalmirane Ltd is actually a subsidiary of a much larger parent
company, Hibushi Corporation.
Shalmirane decides on a day-to-day basis how much Fracto and
Diffuso it needs, but the payments for its purchases are made
by Hibushi.
At the beginning of February, Hibushi and the supplier of
Fracto were in dispute about Hibushi's slowness in paying its
bills; the Fracto supplier consequently refused to make any
deliveries at all to Shalmirane during February.
The Ministry of Defence, when faced with the possibility that
no paint at all would be supplied in February, agreed to provide
a substitute from their own stocks; this took the form of a
highly classified substance called Varilum, sold by the Ministry
at £6 per litre.
The amounts of Varilum required to produce any of the paints
are exactly the same as the amounts of Fracto , and Varilum and
Fracto are both equally perishable ; however, while the Ministry
could make available 2000 litres of Varilum in the first half of
February, in the second half it could make only 1600 litres
available .
In the first half of February, Shalmirane produced 120 litres
of Fulminate and 10 litres of Mathinate, to earn a contribution
of £3150.
In the second half of February, Shalmirane again produced 120
litres of Fulminate but only 6 litres of Mathinate , to earn a
contribution of £2 730.

For the first and second halves of February separately, you are
required:

1. To use ex post budgeting in computing the forecast variance
and the opportunity cost variance, breaking each of these down
into :

(a) The portion of the variance attributable to volume and
mix changes

(b) The portion of the variance attributable to price and
efficiency changes.
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2. To indicate how, with unchanged actual performance by Shal­
mirane, the variances for February would change if Varilum
was not perishable.

Assume that for security reasons Varilum was supplied by the
Ministry of Defence on a 'sale or return' basis, in the sense that any
Varilum left unused at the end of February (when Fracto again
became available) had to be returned to the Ministry.



Input-output
Analysis and

Linear
Programming

Kerruish Tracers

Kerruish Tracers is engaged in the manufacture of radioactive
dyes, which when injected intravenously can be used for medical
diagnosis. Two dyes are currently produced, called Cadmium Red
and Strontium Blue. Cadmium Red gives rise to a by-product
called cadmium chlorate, and Strontium Blue to a by-product
called strontium nitrate; both of these by-products are used
elsewhere in production. There are five production processes in
all, and the flow of product through them is fairly complex . It may
be depicted by the diagram in Figure 7A.I.

Each of the processes produces a single product ; the output of
Process I is called Product I, and so on (thus calling Cadmium Red
Product IV and Strontium Blue Product V). Using the interrela­
tionships shown in Figure 7A.I, the amount of each product used
up to produce a unit of each of Products I - V may be tabulated as
below. For Products I, IV and V a unit of output is I litre, and for
Products II and III a unit of output is I kilogram. Hence this table
shows (for example) that each litre of Product IV manufactured
requires 0.22 litres of Product I and 0.37 kilograms of Product III .
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FIGURE 7A.l
Kerruish Tracers - Product Flow

lc admium Red as
finished product

1
Strontium Blue as
fin ished product

Processes

I ff Iff IV V Products
0 0.67 0.31 0.22 0 I
0.17 0.06 0.46 0 0.16 II
0 0.19 0.07 0.37 0.91 III
0.04 0 0.11 0 0 IV
0 0.09 0 0 0 V

As well as using internally-supplied products, the processes use
inputs of materials, labour and machine time. Of the three
materials required , two of them (cadmium chlorate and strontium
nitrate) have the amount of their input measured in litres , and one
(mygecerium) has the amount of its input measured in kilograms.
Two types of machines are employed, one to perform freeze
emulsifying and the other acculturation; inputs from both of these
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are measured in machine hours. The two grades of labour are
skilled and semi-skilled; their inputs are measured in hours. The
amounts of each input consumed in producing a unit of each of
Products I - V may be tabulated as below:

Processes

I II III IV V Input
0 0.6 0.3 -2.1 0 Cadmium chlorate
0.5 0.7 0 0 -1.9 Strontium nitrate
4.2 6.9 2.1 0.7 0 Mygecerium
1.1 0 1.9 0 2.3 Freeze emulsifying
0 3.1 0.6 1.6 0 Acculturation
2.2 1.4 1.9 0.6 3.1 Skilled labour
1.7 0.7 2.8 2.2 0.8 Semi-skilled labour

Any amount of cadmium chlorate can be either purchased or sold
externally at £4.80 per litre, and any amount of strontium nitrate
can be either purchased or sold externally at £6.40 per litre.
Mygecerium is a patented product manufactured only by Migros
Ltd , a member of the same group as Kerruish Tracers. It is sold
by Migros to Kerruish for £11 per kilogram, but capacity con­
straints at Migros mean that no more than 10000 kg per month can
be shipped to Kerruish. In the month of June 1989, the maximum
number of machine and labour hours available within various
categories are as follows:

Hr available

Freeze emulsifying machines
Acculturation machines
Skilled labour
Semi-skilled labour

3400
3700
5200
5900

Kerruish does not regard labour as a variable cost, since it offers
its workers a guaranteed working week, and therefore pays them
the same rate whether they are working or not. For June 1989, the
wages bill will amount of £56000 whatever output Kerruish
produces. However, there is a significant variable cost associated
with machine operation , since both the freeze emulsifying and the
acculturation machines consume considerable amounts of e1ectric-
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ity. The variable cost of operation of a freeze emulsifying machine
is £6.60 per hour in June 1989, while the variable cost of operating
an acculturation machine is £8.10 per hour.

The management of Kerruish have set a price of £190 per litre
for Cadmium Red and of £395 per litre for Strontium Blue. They
believe that they can sell all they can produce of either product at
these prices. But in order to fulfil contracts with their most
important customer, the National Health Service, Kerruish must
produce not less than 350 litres of Cadmium Red and 275 litres of
Strontium Blue during June, 1989.

You are required:

1. To advise Kerruish Tracers as to the output of Cadmium Red
and Strontium Blue that it should budget to produce during
June 1989, and as to the budgeted contribution and the
budgeted profit to which this output will give rise.

2. To take the optimum mix and to work out from it:
(a) The number of units of Products I - V that will need to

be manufactured during June 1989
(b) The amount of each of the inputs that will be used up

during June, including the net amounts of cadmium
chlorate and strontium nitrate bought or sold.



Input-output
Analysis and

Linear
Programming

with Purchasable
Intermediate Products

and Joint Final Products

Raistrick Ltd

Raistrick Ltd is a division of Genco PLC, and is concerned with
the manufacture of products for the brewing industry. Specifically,
it manufactures as joint products a very concentrated yeast
additive called Pirco and an enzyme called Urquase . This manu­
facturing activity involves three processes , numbered I - III.
Processes I and II each give rise to a single product (Products I and
II respectively). Process III is the final process , from which both
Pirco and Urquase emerge, manufacture taking place in the
fixed ratio of 0.8 kilograms of Urquase produced for every
kilogram of Pirco. The chemical processes involved are heavily
dependent upon the use of catalysts, and the flow of product
through them can be depicted as in Figure 7B.1.

The amount of each product used up to produce a kilogram of
Pirco and 0.8 kilograms of Urquase together may be tabulated as
below, with the unit of output of Product I represented by one litre
and the unit of output of Product II represented by one kilogram.
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FIGURE 7B.l
Raistrick Ltd - Product Flow

C04 ~0--;)

<::
Pirco as II Urquase as
finished product finished product

Processes
I II III Products

0.05 0.4 0.3 Product I
0.1 0.03 0.5 Product II
0.02 0.04 0 Pirco
0.06 0.03 0 Urquase

All three processes take place in steam fermenting machines, and
each process requires the use of two non-recoverable catalysts.
Since the processes are potentially toxic , they require constant
supervision. Each process therefore requires inputs of labour, as
well as using up machine time and catalytic inputs. Catalyst A has
the amount of its input measured in litres, while Catalyst B has its
input measured in kilograms, and inputs of labour and machine
time are measured in hours. The amount of each of the inputs
required to produce a unit of output from each of the processes
may be tabulated as below:

Processes

I
0.19
0.04
0.8
0.7

II
0.06
0.12
1.3
1.1

III
0.13
0.17
1.5
2.1

Input
Catalyst A
Catalyst B
Supervision
Steam fermenting
time
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In April 1989, there are 44000 hours of supervisory labour time
available. Supervisors are salaried staff who are paid the same
amount per month irrespective of the volume of production that
they supervise; for April 1989, supervisors' salaries will amount to
£215600. The catalysts are available in virtually unlimited quanti­
ties; Catalyst A costs £9 per litre and Catalyst B costs £7 per
kilogram. Steam fermenting consumes £5 of electricity per hour of
operation; during April 1989, there are 54000 hours of steam
fermenting machine time available.

It is possible to purchase Products I and II from another division
of Genco called Pentre Biosystems instead of manufacturing them
within Raistrick . The prices charged by Pentre are £20 per litre for
Product I and £22 per kilogram for Product II .

Raistrick has set a price of £26 per kilogram for Pirco and £17
per kilogram for Urquase. They feel that at these prices they can
sell up to a maximum of 18000 kilograms of Pirco during April.
They hold no finished product stocks at the beginning of that
month .

You are required to advise Raistrick as to :

1. The number of kilograms of Pirco and Urquase it should
budget to produce during April 1989, and as to the budgeted
contribution and the budgeted profit to which this output will
give rise.

2. The number of units of Products I and II that will need to be
manufactured during April.

3. The number of units of Products I and II that will need to be
purchased from Pentre Biosystems during April.

4. The amount of each of the inputs that will be used up during
April.



Use of Information
Theory to Isolate

Substantial
Variances

Department of Transportation Analytical Offices

The Department of Transportation maintains three Analytical
Offices, which perform tasks such as checking the lead content of
petrol and applying gas chromatography to samples of heavy
vehicle exhaust fumes. By virtue of the nature of their work , all
three offices incur substantial energy costs, and the Department is
anxious to monitor these closely. The three offices are widely
dispersed across the country (at Scunthorpe, Bath and Dundee)
and vary quite considerably in size. This range of variation rather
complicates the analysis of energy costs. However, the Depart­
ment wishes to undertake a close analysis of actual against
budgeted costs for the most recent quarter in respect of the three
energy sources which the offices use. The cost figures concerned
are as follows:

Gas
Electricity
Solid Fuel

Scunthorpe
£

78944
42081
16479

Budgeted costs

Bath Dundee
£ £

27222 91382
51082 9261
12908 51008

Total
£

197548
102424
80395

137504 91212 151651 380367
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Actual costs

Scunthorpe Bath Dundee Total
£ £ £ £

Gas 84917 26028 95410 206355
Electricity 38656 58714 12440 109810
Solid Fuel 18811 14799 55356 88966

142384 99541 163206 405131

The main interest of the Department of Transportation lies in
predicting the breakdown of energy costs for budgeting purposes,
rather than in trying to control them directly. While the Depart­
ment's staff encourage the offices in energy saving, they know that
office energy costs are mainly determined by the volume and mix
of work that the offices undertake, and that this is in turn largely
governed by statutory considerations.

Given this background, you are required to advise the Depart­
ment on changes in the pattern of energy consumption as between
one office and another, and as between one energy source and
another.



The Single-period
Cost Variance
Investigation

Decision

Star Chemical Company

The trimetheldrin diffraction process at Star Chemical Company is
run from Monday to Friday, then shut down at the weekend .
Quantity variances are reported weekly, and they are very often
unfavourable for this process. But the-standard costing system is
far from perfect , and will generate unfavourable quantity
variances whether or not the process is out of control. A study of
these variances over a number of weeks has shown that they give
rise to two normal distributions (according to whether the process
is in or out of control) as follows:

When the process is When the process is
in control out ofcontrol

Mean unfavourable
variance

Standard deviation of
unfavourable variances

£
9000

3500

£
10500

1000

On Friday evenings , as the diffraction process shuts down, an
opportunity arises to drain some of the liquid trimetheldrin out,
and put it through an automatic chemical analyser. Once
trimetheldrin has been drained out, it cannot be returned to the
diffraction process for fear of contamination, and has to be thrown
away. Consequently, the cost of analysing the trimetheldrin
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depends on how much is drained out. Two possible volumes of liquid
can be removed, called a 'partial drain' and a 'full drain'. A partial
drain costs £200 in lost trimetheldrin, and a full drain costs £700.
However, the volume of liquid removed in a partial drain is
insufficient to enable the chemical analyser to detect with certainty
a situation where the diffraction process is out of control; if it is,
there is only a 0.4 probability that a partial drain will enable the
analyser to find this out. By contrast, a full drain will always enable
the analyser to detect an out of control process. If the process is
found to be out of control , maintenance staff have to work a
special Saturday morning shift to detect and correct the faults; this
costs £150 in extra overtime payments.

Because the diffraction process is not absolutely air-tight, small
chemical changes take place in the trimetheldrin as it stands over
the weekend. The effect of these changes on the process tends to
be adverse; if the process is in control at the beginning of the
weekend there is a 0.35 probability that it will be out of control
when the weekend is over. Less often , the effect of the changes
can be favourable ; if the process is out of control at the beginning
of the weekend there is a 0.15 probability that it will be back in
control by the time the weekend finishes .

During Friday 14 July , the Process Controller for trimetheldrin
diffraction observes several small indications which suggest to him
that the process might be out of control, and he comes to attach a
probability of 0.25 to this state of affairs . A computer-generated
costing report then tells him that there was an unfavourable
quantity variance of £9600 on trimetheldrin diffraction for the
week which has just ended. This information serves to reassure the
Process Controller, and he consequently decides not to ask for
either a partial or a full drain of trimetheldrin . The diffraction
process is restarted on Monday 17 July , and runs for another
week, giving rise to an adverse quantity variance of £9300,
reported on Friday 21 July.

You are required:

1. To comment upon the Process Controller's decision not to
drain off any of the trimetheldrin on Friday 14 July.

2. To advise the Process Controller on whether he should give
instructions for a partial drain, a full drain or no dra in at all on
Friday 21 July.
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3. To indicate to the Process Controller how your advice in 2
above would change if the facts in the question were altered in
the following two respects simultaneously:

(a) If it were discovered that the opening of valves required
for a partial drain caused air to enter the process and
contaminate the trimetheldrin remaining within it, so
that the available options became restricted to a full
drain or none at all

(b) If the unfavourable quantity variance reported on Friday
21 July was £12800.

4. To compute the expected cost of the optimal decision rule in 3
above, and to compare this against the expected cost of the best
one-sided decision rule.



The
Multi-period

Cost Variance
Investigation

Decision

Mansfield Pressings

Mansfield Pressings is a small company specialising in metal
stampings. They have one large stamping machine, which is in
operation almost continuously , on a three-shift basis. Its electricity
consumption depends to a considerable extent on whether the
alignment rods (which hold the die in place when it is pressed on to
the metal) are bent or not. There are, however, a number of other
influences on the machine's electricity usage, notably the condition
of the metal being pressed and the shape and complexity of the die
being employed .

Because the electricity costs incurred in stamping constitute a
significant proportion of Mansfield Pressings' total costs, they are
monitored very carefully . An automatic metering/costing system
has been installed , which produces a print-out at the end of each
8-hour shift stating what the cost of electricity consumed on that
shift has been . If the Works Manager feels that the cost shown is
excessive, he can order that the alignment rods be checked for
straightness. This involves stopping the machine only briefly, but
the Works Manager estimates that the production lost even in this
short period diminishes contribution earned by about £40. If the
alignment rods are found to be bent, they have to be replaced,
involving a slightly longer stoppage losing a further £15 of con­
tribution as a result of lost production. In addition, an outlay of
£30 is required for a replacement set of rods.
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The first thing that the operatives do when they come on shift is
to change the die on the stamping machine. This is necessary
because dies become worn out after they have been used for a
shift , and have to be thrown away . The die is never changed during
the course of a shift - the interruption of production involved
would be prohibitively expensive . This fact is relevant to the
question, because the only occasion upon which alignment rods
can become twisted is when the die is being changed. Consequent­
Iy, the stamping machine is in one or other of two states ('rods
twisted' or ' rods not twisted') throughout the course of a shift.
From long experience, the Works Manager estimates that the
alignment rods will become twisted about once every four times
that the die is changed. He has also developed the following
probability distributions for the electricity cost per shift associated
with the two possible states of the rods:

Rods not twisted Rods twisted

Cost per shift Probability Cost per shift Probability
£ £

300-350 0.05 40Q--450 0.05
35Q--400 0.30 450-500 0.05
40Q--450 0.25 500-550 0.15
450-500 0.20 550-600 0.25
500-550 0.15 600-650 0.35
550-600 0.05 650-700 0.15

You are required to find the rule governing decisions to investi­
gate, which serves to minimise the long-term expected cost per
shift associated with running the metal stamping machine.

You are also required to compare the minimum long-term
expected cost under uncertainty with the long-term cost of running
the metal stamping machine under conditions of certainty.



Stochastic
Cost-Volume­

Profit
Analysis
and Decision Theory

Bulk Powder Producers Ltd

Bulk Powder Producers Ltd (BPP) have decided to enter the
market for ink powder, although they do not currently possess the
type of grinding machine required to produce it. BPP is a division
of a much larger company, and Head Office have told them that
they must lease rather than purchase the new grinding machine
owing to a capital shortage. Two types of ink grinding machine are
available for leasing; Type A machines require lease payments of
£50000 per annum while Type B machines require lease payments
of £80000 per annum . However, Type A machines grind ink
powder at a variable cost of £0.50 per kilogram while Type B
machines grind ink powder at a variable cost of £0.30 per
kilogram. BPP has 400 customers, and on the basis of their
demand for staining powders other than inks it is possible for the
executives of BPP to say that there is an even chance that their
demand for ink powder will lie within the range from 250-550
kilograms per customer per annum. In view of the wide margin of
uncertainty involved, BPP have sent out a salesman to obtain firm
orders for a year's supply of ink powder from a sample of
customers . The salesman visited four customers , and the orders he
obtained were for a mean amount of 357 kilograms with a standard
deviation of 104 kilograms.

An opportunity then arose for the same salesman to visit a
further sample of three customers , at a cost of £125 per customer.

236



Bulk Powder Producers Ltd 231

You are required to answer the following questions:

1. On the basis of the first sample of four customers only, should
BPP lease a Type A machine or a Type B machine?

2. Is the expected net gain from sampling associated with the
second sample of three customers such that it would be
worthwhile undertaking this second sample?

In answering 2 above, you are to assume that BPP's previous
experience suggests that the standard deviation of powder sales
per annum for a given type of powder as between customers is
approximately 120 kilograms, and that the population of custom­
ers can be regarded as sufficiently large for it to be possible to
ignore any non-independence of customers sampled.



Stochastic
Cost-Volume­

Profit
Analysis:
Satisficing with Short

Product Lives

Bridgegate Foods

Bridgegate Foods is a wholesale provision merchant specialising in
supplying hotels and restaurants in the Torbay area . It is consider­
ing whether or not to lease some deep freeze equipment with the
complex ventilation and temperature control facilities required for
the storage of oysters . Market research in local hotels and
restaurants has suggested that they would demand on average a
total of 200 dozen oysters per week, but that the standard
deviation of their demand would be 80 dozen . Bridgegate's
experience in the wholesaling of other shellfish suggests to them
that they can interpret their market research as saying that they
would face a normal distribution for dozens of oysters demanded,
with a mean of 200 and a standard deviation of 80, at the price of
£9 per dozen that they would propose to charge .

The chief complication in wholesaling oysters arises from their
infrequency of supply, taken together with their extreme perisha­
bility. Bridgegate's shellfish supplier says that it has oysters
available only once per week, when a consignment arrives by truck
from the East Coast. Even with specialised deep freeze equip­
ment, oysters can be kept fit for human consumption for a
maximum of only 1 week . Oysters remaining unsold to hotels and
restaurants at the end of a week could readily be sold to a specialist
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Torbay firm of fishing bait manufacturers called Lacaisse Ltd.
However, Lacaisse would be willing to pay only £1.50 per dozen
for oysters for bait , while Bridgegate's supplier would charge it
£4.50 per dozen .

If Bridgegate were to decide to stock oysters , then it would
become the only source of supply for them to Torbay hotels and
restaurants . None of these establishments have any facilities for
storing oysters, even briefly , and so they would have to order their
needs from Bridgegate every day. They appreciate that Bridgegate
might be unable to fulfil their orders if it had exhausted the supply
of oysters it had received for a particular week, and would
therefore put a 'subject to availability' note against the entry for
oysters on their menus.

Bridgegate are none the less certain that frustrated orders for
oysters would give rise to annoyance arising from the frequent
unavailability of an item on the menu , and that this annoyance on
the part of diners would be reflected in ill-will toward Bridgegate
by hoteliers and restaurateurs. They feel that each dozen oysters
for which an order is frustrated by unavailability would cost them
£2 in terms of the present value of contribution on future orders
lost as a result of the ill-will generated through frustration .

Vincentos Ltd are the commercial refrigerator merchants who
would lease the oyster freezing equipment to Bridgegate. The
leasing arrangement would cost Bridgegate £500 per week, and
would cover an 8-week 'trial' period in the first instance. Only one
model of oyster freezing equipment is available, with a maximum
capacity of 300 dozen oysters.

By reference to the above facts, and taking all profit figures net
of the notional costs of ill-will arising from inability to meet
Bridgegate's customers' orders, you are required:

1. To compute the average profit per week that Bridgegate could
expect to earn if they ordered the profit-maximising volume of
oysters each week from their shellfish supplier .

2. To specify the probability of at least breaking even in any given
week in which the profit-maximising volume of oysters had
been ordered.

3. To find the volume of oysters that should be ordered each week
in order to maximise the probability of breaking even in any
given week.
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If Bridgegate's management were to specify that the stocking of
oysters would only be regarded/as a 'success ' if it broke even or
better in at least 6 weeks within the 8-week trial period, what
would the maximum probability of 'success' be?

4. To indicate how the volume of oysters that should be ordered
each week in order to maximise the probability of breaking
even would vary in response to an announcement by Vincentos
Ltd of a £50 per week increase in the cost of leasing .



Stochastic
Cost-Volume­

Profit
Analysis:

Choice Among
Combinations of Products

Galpen Cleansing Products

Galpen Cleansing Products has pioneered the use of a silicon gel,
called Rythalax, as a base for products used in cleaning delicate
optical lenses . It has developed and test-marketed four Rythalax­
based products, with varying strengths and drying properties.
Rynatrol and Rhysomo are low-strength products, the former
being more suited for application when air temperatures are below
15°C and the latter being more appropriate when air temperatures
rise above this level. Ryndym and Rhyelka are higher-strength
products , and again the former is better for temperatures below
15°C, the latter for higher temperatures.

All four products have been sold through specialist outlets
nationwide over a 20-week period. The experience of supplying
these outlets has made it clear to Galpen's management that they
cannot rely on having enough Rythalax available to support the
sale of all four products indefinitely, and that one of these products
will have to be dropped. They have also noticed the existence of
negative correlations between sales levels of the high-temperature
and low-temperature versions of each strength of product. That is,
sales of Rynatrol and Rhysomo are negatively correlated, as are
sales of Ryndym and Rhyelka. This is because the products within
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these pairs are substitutes; when the weather favours the sales of
one of the products within a pair , it doe s so at the expense of the
other.

For brevity, Rynatrol may be designated as product X(, Rhyso­
mo as product X2, Ryndym as product X3 and Rhyelka as product
X4• Using this terminology, the data from the test-marketing on
demand and cost for the four products may be summarised as
follows, with demand expressed as the number of quarter-litre
packs sold per week.

Variable Fixed cost
Mean Variance Price cost per outlay per

Product demand ofdemand per pack pack week

£ £ £
Xl 850 102400 15.70 9.40 5600
X2 730 93025 17.20 10.50 4400
X3 640 119025 20.00 12.90 4000
X4 580 136900 22.40 14.60 3600

Correlation coefficients among the four products over the 20-week
test-marketing period have been observed to be as follows:

r12 = -0.4; r13 = 0.7; r)4 = 0.3
r23 = 0.4 ; r24 = 0.6; r34 = -0.5

You are required to answer the following questions:

1. If Galpen's management are primarily concerned to minimise
the probability of failing to break even on Rythalax-based
products, which of the four products would you advise them to
drop on the basis of the test-marketing data?
It may be assumed here that sales volume for each product is a
normally distributed random variable.

2. Given the decision that has been taken on which product to
drop, what are the 90 per cent confidence limits on the
probability of at least breaking even with the remaining three
products?



Short-term
Investment

of
Cash Balances

Maselia Ltd

Maselia Ltd is a building contractor. At the end of May 1989, it has
just received a progress payment of £25000 from a client, and
wants to invest this money in a way that will maximise its expected
net return. It can opt only for short-term investments , however ,
because the money will soon be required to meet payments to a
sub-contractor. These payments will be made at the month-ends 1,
2, 3 and 4 months hence , but the amounts due at each of these
times will depend upon the progress that the,sub-contractor has
made with his work. The management of Maselia Ltd do not·feel
that the y can predict the progress that will be made with a great
deal of confidence , because it will be strongly influenced by the
effect of differing weather conditions upon the state of the building
site . Howe ver , the y do feel able to draw up a probabilit y tree
specifying fifteen possible sequences of payments to the sub­
contractor over the coming 4 months, and associating probabilities
with each of these sequences. The probability tree is given in
Figure 14.1; on it , May is referred to as month 0, June as
month 1, July as month 2, August as month 3 and September as
month 4. Each sequence of payments is labelled with a number.

Maselia's management are looking at the possibility of lending
out some or all of the £25000 by purchasing fixed-term securities.
These securities are issued with maturities of 1 month, 2 months, 3
months or 4 months. The market for reselling fixed-term securities
before their maturity date is an active one, so that transactions of
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FIGURE 14.1
Maselia Ltd- Probability Tree
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this kind can take place quickly and easily. But resales before
maturity incur a substantial penalty in terms of loss of interest; if a
security is held to maturity it will yield a return of 1.8 per cent per
month , as compared with 1.1 per cent per month for a security sold
before maturity. Every purchasing or selling transaction for secur­
ities of a given maturity involves a fixed cost of £18 plus a variable
cost of 0.6 per cent of the value of the securities being bought or
sold (so that, for example, the sale of £5 000 of n-month securities
would involve a total transaction cost of £18 + 0.006 (£5000) =
£48). Note , though, that the liquidation of securities when they
mature does not involve incurring any transaction costs .

Given that commitments to pay the sub-contractor must be met
immediately they arise, you are required to advise Maselia Ltd as
to what investments in securities they should undertake in order to
maximise their expected net income over the 4 months beginning 1
June 1989.



Payments
Netting in

Multinational
Cash

Management

Thornend Communication Systems PLC

Thornend Communication Systems (TCS) is a multinational enter­
prise of medium size with head offices in London, and operating
subsidiaries in the United Kingdom , the United States, France,
Germany and Sweden. It specialises in the manufacture of tele­
phone switchgear, and there is a great deal of trade between the
subsidiaries as switchgear components made in one country are
assembled together in another. At 31 March 1989, all the debts
owed by subsidiaries in one country to subsidiaries in another were
translated into pound sterling terms by reference to the exchange
rates then prevailing. In units of £10000, the debts at 31 March
appeared as follows :

Paying companies
Receiving

companies UK USA France Germany Sweden Total

UK 41 16 9 31 97
USA 52 18 23 47 140
France 27 50 8 16 101
Germany 12 29 6 22 69
Sweden 22 11 18 34 85

Total 113 131 58 74 116 492
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The transaction costs involved in transferring foreign exchange as
between the five countries in which TCS has subsidiaries were also
computed as on 31 March 1989. Expressed as a proportion of the
sterling value transferred, they were as follows:

Transfer between

UK
UK
UK
UK
USA
USA
USA
France
France
Germany

and

USA
France
Germany
Sweden
France
Germany
Sweden
Germany
Sweden
Sweden

Cost as proportion of
£ value transferred

0.006
0.009
0.008
0.012
0.010
0.009
0.013
0.007
0.011
0.013

It is assumed in drawing up the above table that transaction costs
do not vary with the direction of transfer of funds between two
countries .

You are required, on the basis of the above facts , to advise TCS
as to the payments netting scheme they should adopt in order to
settle the outstanding debts among the subsidiaries with a mini­
mum level of transaction costs .



The Learning
Curve and
Financial
Planning

Claygill Holdings

Claygill Holdings manufacture capital equipment for the pottery
industry . They have recently pioneered one of the first applica­
tions of ultrasound technology to this industry, in the form of an
Automatic Inspection Facility (AIF) . The AIF detects the pattern
of sound waves thrown back in an echo from contact with china or
porcelain; the presence of a flaw causes a false 'ring' which is
recorded on the AIF and enables the piece concerned to be
rejected. A few prototypes of the AIF have been manufactured on
a temporary production line, which has since been dismantled .
The cumulative average number of labour hours spent per AIF
produced on this line (y) has been regressed against the number of
AIF units produced to date (x) to produce an equation of the
following form:

In y = 6.69 - 0.1203 In x

The management team concerned with the AIF want to use this
learning curve to predict the consequences of choosing to manu­
facture the AIF on either one or two production lines. Whichever
alternative is chosen, it will involve problems sufficiently different
from those encountered on the temporary production line for
learning to be considered to have started 'from scratch', that is,
from the x = 1 position on the above learning curve.

Each direct labour hour spent on AIF production involves
Claygill in a cash outflow of £4.50; there are 110000 labour hours
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available per annum, and the supply of the skilled labour required
cannot be expanded in the short term. The contribution before
deducting costs of direct labour arising from selling an AIF is
estimated to be £3 000. Claygill's marketing staff do not anticipate
any difficulty in selling all the AIF units that can be produced over
the first 2 years .

The choice as to whether to concentrate all the direct labour on
one production line, or to split the labour hours available equally
over two lines, has some implications for the level of fixed costs. A
single production line would impose more pressure upon the
maintenance function that would arise from the less rapid pace of
production to be found where two lines run simultaneously.
Consequently, adoption of the single-line alternative would in­
volve a cash outflow on fixed costs of £280000 per annum, while
the corresponding cash outflow per annum for the two-line
alternative would be only £250000.

There is a dispute currently going on at Claygill Holdings about
the technology of AIF manufacture , and this has implications for
estimates of the extent of learning that is possible . One school of
thought contends that since the technology concerned is at the
frontiers of knowledge, there is no reason why average labour
hours per unit should not follow the learning curve downward
throughout the first 2 years of AIF production. Another school
argues that enough is known about the manufacturing techniques
for it to be clear that an AIF can never be produced in less than
400 labour hours; once this level of efficiency has been achieved,
further learning will be all but impossible.

You are required to answer the following questions; in answer­
ing 1 and 2 below produce separate solutions for each of the two
schools of thought:

1. What is the break-even level of output in the first year :
(a) For a single production line?
(b) For two production lines?

2. If the learning experience proceeds exactly as each school of
thought anticipates, what will be the levels of output and of
profit in the first year and in the second year of production:

(a) With a single production line?
(b) With two production lines?
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3. Assume that learning will continue throughout the first and
second years.
What then will be the effect upon output from a single
production line in each of the first and second years if there has at
the same time been both a 2 per cent overestimate of the learning
rate and a 10 per cent underestimate ofthe initial assembly time?



Joint Product
Decisions

Kwisant Oils

Kwisant Oils is a division of Dunan PLC. Its business involves the
manufacture of light oils which, when sprayed on to the surface of
bodies of water, act to inhibit evaporation. These are used, for
example, in desalination works where fresh water is extracted
from seawater under desert conditions. The light oils are all
derived from a standard mixture of substances called Teilu mix­
ture . This is a product of chemical processes carried out within
Kwisant Oils at a cost of £0.70 per litre of mixture produced. The
Teilu mixture settles into two layers, with roughly the same
volume of liquid in each layer. From the upper, lighter layer, a
substance called Baxin is obtained; 5 litres of this layer are
sufficient to produce 4 litres of Baxin , at a further processing cost
of £0.85 per litre. Baxin serves as a cheap but relatively inefficient
evaporation inhibitor, and is sold as a final product to some of
Kwisant's less demanding customers.

From the lower, heavier layer of Teilu mixture, a substance
called Haderol may be synthesised. 5 litres of this layer give rise to
4 litres of Haderol, with a cost of synthesis of £0.55 per litre
produced. Haderol is not a final product, though it may be sold
without further processing to Celos Ltd, another division of
Dunan , which uses it for a purpose completely unrelated to the
work of Kwisant's products. The senior management of Dunan
have fixed a transfer price of £1.80 per litre of Haderol sold to
Celos; Kwisant is not under any obligation to sell any Haderol to
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Celos, but knows that Celos will purchase all the Haderol offered
for sale to them at this price.

The Haderol which is not sold to Celos is placed for a brief
period in a centrifuge, which breaks it down into three products.
For every 4 litres of Haderol placed in the centrifuge, 0.5 litres of a
waste product called 'skim' is produced; this is thrown away. The
remaining 3.5litres are composed of 2 litres of 'black' Haderol and
1.5 litres of 'white ' Haderol. Because the centrifuge is run for so
short a time, the costs of operating it can be taken as negligble for
practical purposes. The 2 litres of 'black ' Haderol can be refined
into 2 litres of a final product called Gholak, at a further
processing cost of £1.30 per litre, while the 1.5 litres of 'white'
Haderol can also be refined, to produce 1.5 litres of a final product
called Seitsol, at a further processing cost of £1.40 per litre.

The production processes outlined in the previous three para­
graphs are shown in diagrammatic form in Figure 17.1. In Figure
17.1 the way in which 10 litres of Teilu mixture goes to make each of
the products is illustrated.

The demand conditions prevailing in the markets for Baxin,
Gholak and Seitsol differ greatly, though all three markets are
characterised both by imperfect competition and by the impossibil­
ity of practising price discrimination, so that extra sales can be
obtained only by reducing the price per litre at which a product is
sold to all customers. Baxin is a low-performance product with a
wide range of available substitutes, so that its sales are very
price-sensitive. Gholak also competes with a number of substi­
tutes, though the competition it faces is much less fierce than that
facing Baxin. Seitsol is at the other extreme, having a number of
unusual performance properties, such that demand for it is rather
insensitive to variations in its price . Kwisant's management do not
object to the treatment of the demand functions for these three
products as being roughly linear, and have derived the following
estimates of sales (in litres per week) at alternative selling prices:

2300
3600

1100
1800

1200
1400

Baxin
Price Sales
per I level

£
2.75
2.25

Gholak
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per I level

£
4.00
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£
4.50
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FIGURE 17.1
Kwisant Oils - Products/Costs from 101. Teilu
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1. Using the above data, you are required to advise Kwisant Oils
as to what its weekly production and sales levels should be for
Baxin, Gholak and Seitsol, and as to the price per litre it should
charge for each of these three products.
Your advice should also cover the question of whether any
Haderol should be sold to Celos Ltd, and if so how much
should be sold.

2. How would your advice to Kwisant vary if you were told that
the maximum amount of Teilu mixture that could be made
available in any given week was restricted to 4000 litres?



Part III
Analysis of

Problems For
Self-study



Standard Costing
and Matrix

Algebra

Arconate Ltd

1. The first step is to calculate the price variances for materials
purchased, by taking the quantity bought and multiplying it by
the excess of the actual unit price paid over the standard unit
price. This computation may be tabulated as follows, with
negative numbers in brackets and the letters U and F respec­
tively to denote unfavourable and favourable variances:

Chemical

January price variances for materials
Amount Actual less stan- Price

purchased dard unit price variance

Hexachlorophene
Paradichlorosol
Bentonite

Carbon trimor­
phate

Ethyl acetate

Kg £
3750 0.20
2750 0.30

10000 (0.10)

I
2500 0.45

6000 (0.15)

£
750 U
825 U

1000F

1125 U

900F

Total price variance 800 U

The quantity variances for materials are given by multiplying
the excess of the quantity actually used over the standard
quantity for 107 batches by the standard unit price . This
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computation appears as follows, with the same conventions as
in the table above:

January quantity variances for materials
Actual less stan- Standard unit

Chemical dard quantity used price
Quantity
variance

Kg £ £
Hexachlorophene (50) 4.50 225 F
Paradichlorosol 225 3.00 675 U
Bentonite 1215 0.80 972 U

I
Carbon trimor- 60 2.50 150 U

phate
Ethyl acetate (50) 1.25 62.5 F

Total quantity variance 1509.5 U

The quantity (efficiency), rate of pay and mixed variances for
labour may be calculated using the following terminology. Let:

P represent the standard hourly rate of pay for a category
of labour

lip represent the excess of the actual hourly rate over the
standard

Q represent the standard hours which should be worked
by a category of labour to produce 107 batches

AQ represent the excess of the actual hours worked over
the standard

Then matrices relating to the three categories of labour may be
subjected to a partitioned multiplication as follows:

= [8089.2 1369.2] + [8763.3
577.8 97.8 1669.2

P [ 4.20
AP 0.30

I I ]: 3.15 l 2.80
: 0.60 i 0.60

Q AQ
1926 326--------------_.
2782 122

----------------
3317 -248

-384.3 ]+[9287.6 -694.4]
-73.2 1990.2 -148.8
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Tabulating these matrices gives rise to:

£ £ £ £
-1369.2U - 577.8U - 97.8U = 8089.2
+ 384.3F - 1669.2U + 73.2F = 8763.3
+ 694AF -1 990.2U +148.8F = 9287.6

Labour
category

Grade
A
B
C

Actual
cost

£
10134
9975

10434.6

Efficiency
variance

Rate of
pay

variance
Mixed

variance
Standard

cost

2. As a matter of terminology, the inputs require to be numbered
1-8 in the order in which they appear in the problem's
tabulation of the composition of inputs. Hence (for example)
ethyl acetate is input 5. Then inputs 1-3 form the ammoniate
mix, inputs 4 and 5 the oxidising mix and inputs 6-8 the labour
mix; input substitution is possible within each of these mixes,
but not between one mix and another. The first step is to
calculate the standard proportions within their mix represented
by each of the three inputs to the ammoniate mix, the two
inputs to the oxidising mix and the three inputs to the labour
mix. Let :

SMj represent the standard proportion for the ith input

Using total quantities per 100 kilogram batch of output in
numerator and denominator gives rise to:

SM1 = 25/(25+25+75) = 0.2; SM2 = 0.2; SM3 = 0.6
SM4 = 20/(20+50) = 0.2857; SMs = 0.7143

- SM6 = 18/(18+26+31) = 0.24; SM7 = 0.3467; 5Mg = 004133

Next it is necessary to derive, for each input i, the quantity Q2i'
representing the amount of that input which should have been
consumed if the.standard proportions had been adhered to over
the total quantity of that mix's inputs actually consumed . This
quantity has the subscript 2 because it is an element within the
second row of the quantity matrix Q below. For the eight
inputs, the Q2i values are as follows:
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Q21 = (2625+2900+9240) (0.2) = 2953; Q 22 = 2953; Q 23 =
8859

Q24 = (2200+5300) (0.2857) = 2142.75; Q25 = 5357.25
Q26 = (2252+2660+3069) (0.24) = 1915.44;
Q 27 = 2767.01; Q28 = 3298.55

The Q matrix is postmultiplied by a unit standard price matrix
P, in which the non-zero entries are in three blocks, reflecting
the separation of the ammoniate mix , the oxidising mix and the
labour mix. This matrix multiplication serves to value the
elements within Q at standard cost , in a new 3 x 3 matrix R. It
proceeds as below:

[

2 675 2 675 8 025 2 140 5 350 1 926 2 782 3 317 ]
Q = 2953295388592142.755357.251915.442767.013298.55

2625 2900 9240 2 200 5 300 2252 2 660 3 069

p=

4.50
3.00
0.80
o
o
o
o
o

o
o
o

2.50
1.25
o
o
o

o
o
o
o
o

4.20
3.15
2.80

[
n., = 26482.5

R = R21 = 29234.7
R31 = 27904.5

R 12 = 12037.5 R 13 = 26140.1 ]
R22 = 12053.44 R23 = 25996.87
R32 = 12125 R33 = 26430.6

The mix and yield variances may now be computed as follows:

£
Mix variance for ammoniate group = R3 1-R2 1 = 1330.2F
Yield variance for ammoniate group= R2 1- R 11 = 2752.2U
Mix variance for oxidising group = R 32-R22 = 71.56U
Yield variance for oxidising group = R 22-R 12 = 15.94U
Mix variance for labour = R33-R23 = 433.73U
Yield variance for labour = R23-R 13 = 143.23F
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Attention may be focused on the ammoniate group, where the
mix and yield variances are relatively large . In interpreting
them, it is helpful to calculate the actual proportions within the
ammoniate mix represented by each of the three inputs to that
mix. Representing these actual proportions by AMi> AM2 , and
AM3 , computation shows that

AMI = (2625)/(2625+2900+9240) = 0.178; AM2 = 0.196;
AM3 = 0.626

Comparing these with the standard proportions 5M I = 0.2,
5M2 = 0.2, 5M3 = 0.6 reveals the substitution of relatively
cheap bentonite for relatively expensive hexachlorophene
which has taken place. This substitution has given rise to a
favourable mix variance for ammoniates more than offset by an
unfavourable yield variance twice the size. The attempt to
substitute a cheap for an expensive ingredient has proved
unprofitable, and should be discontinued.



Stochastic Process
Costing

Kleeford Distilled Compounds

1. The partitioned stochastic matrix P for this question may be
represented as follows:

0.10 0.78 0 0 0.12
0.14 0.11 0.69 0 0.06

P= 0.09 0 0 J 0.83 0.08
------------- ------ -~ --- ------- --

0 0 0
I

0I 1J

0 0 0 I 0 1J
I

The fundamental matrix F is given by F = (I- Q)- 1, where I for
this problem is a 3 x 3 identity matrix. Carrying out the
computation yields:

F=
[

1.383
0.314
0.125

1.212
1.399
0.109

0.837 ]
0.965
1.075

It is now necessary to define a row vector k containing the new
elements started into production each transfer period; in this
problem, the transfer period is a week. The 1 x 3 vector k
appears as follows:

k = [23500 3900 0]
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The average steady-state in-process inventories are given by
postmultiplying the k vector by the fundamental matrix. Repre­
senting these inventories by a 1 x 3 row vector v gives:

v = [33725 33938 23433]

This vector indicates that, during a working week, an average
of 33725 litres are undergoing Stage 1 distillation, while an
average of 33938 litres are undergoing Stage 2 distillation and
an average of 23433 litres are undergoing Stage 3.

The first step in working out the upper bonds on the standard
deviations of these figures is to convert the elements within k
into proportions, giving rise to a new 1 x 3 row vector g. This is
as follows:

g = [0.8577 0.1423 0]

The calculations then proceed as below:

~ ~] - [~:~~96
o 1 0.0081

0.6084
0.0121
o

~I
0.99

-0.0196
-0.0081

-0.6084
0.9879
o

o
-0.4761

1

[

1.025
(I_QSq)-1 = 0.024

0.008

[0.7356

0.631
1.027
0.005

0.02025 0]

0.301
0.489
1.002

0.4850
1.2386

gsq(I_Qsq)-1 = [0.7545
gF = [1.2309
ka = 27400

ka [gF - gsq (I_Qsq)-I] = 27400 [0.4764
Var. (v) ~ [13053 20649 17095]
Sd (v) ~ [114.2 143.7 130.7]

0.2313]
0.8552]

0.7536 0.6239]
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The upper limits on the standard deviations of the steady-state
in-process inventories are respectively 114.2 litres, 143.7 litres
and 130.7 litres for Stages 1, 2 and 3.

2. The expected outputs of synthetic lemon oil and of wash , grouts
and faIlings thrown away per week are given by the 1 x 2 row
vector y, where:

y = [33725

= [19449

33938

7958]

23433] [L 0.12 ]
0.06
0.08

There will be an average output of 19449 litres of synthetic
lemon oil per week, and 7 958litres per week will on average be
thrown away as either wash, grouts or failings. The sum of
these two figures corresponds to the 27400 litres entering the
production of synthetic lemon oil per week, apart from a small
rounding error.

3. The expected number of units of activity for each of Stages 1-3
are given by the elements within row vector v. Using these, the
expected variable cost per working week may be calculated as
follows:

Expected vari-
Expected no . of Variable cost able cost per

Stage units ofactivity per unit week

£ £
1 33725 1.90 64077
2 33938 2.75 93329
3 23433 2.20 51553

Total expected cost 208959

4. The 3 x 2 matrix B gives in each row the probability that a litre
started respectively in each of Stages 1-3 will either turn out as
good product or be thrown away at some stage. It is obtained
by postmultiplying the fundamental matrix F by the submatrix
R . The calculation is as follows:
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[

1.383
B = 0.314

0.125

[

0.695
= 0.801

0.892

1.212
1.399
0.109

0.305 ]
0.199
0.108

0.837 ]
0.965
1.075

0.12
0.06
0.08

Having calculated B, it is possible to proceed to compute the
upper limits on the standard deviations of good and defective
production levels as follows:

gsq(I-Qsq)-IRsq= [0.7545 0.4850 0.2313] [0 0.0144]
o 0.0036
0.6889 0.0064

= [0.1593
gB = [0.8577 0.1423

= [0.7101
Var.(y) ~ 27400 [0.5508

~ [15902
Sd (y) ~ [122.8

0.0141]

0] [0.695
0.801
0.892

0.2899]
0.2758]
7557]
86.9]

0.305 ]
0.199
0.108

The standard deviation of the output of synthetic lemon oil per
working week is 122.8 litres , and the standard deviation of the
amount of product thrown away is 86.9 litres.

5. To obtain-a litre of good output from Stage 1 of distillation, it is
necessary to start 1/0.695 = 1.4388 litres into Stage 1. The
increase in production per working week that is required is
21000 - 19449 = 1551 litres. To achieve this, with a constant
supply of citric essence, would necessitate starting an extra
1.4388 x 1551 = 2232litres into Stage 1, to give a total input of
25 732 litres per week of feed oil.
As a check on the above calculation, note that if:

k = [25732
Then v = [36812
and y = [21000

3900
36643
8640]

0]
25301]



Credit
Management and

Markov Chains:
Partial Balance

Aging Method
Langdale Ltd

1. Represent the actual parti al balance age structure of debts at
the end of month j as Ii> and within Ij refer to the kth element as
ij, k where k = P,B,3,4,5,6,7 corresponds respectively to states
P,B,0,1,2 ,3,4. Here states 0-4 refer to the five states of a debt
from 'less than 1 month old ' (state 0) to 'over 4 months old '
(state 4). Refer to October as monthj = 1, November asj = 2
and December as j = 3. Then the transition probabilities of
payment (kP are as follows for k = 3 ... 5 and j = 1 . . . 3.

Col.1 Col. 2 Co1.3 (k P =
k il,k i2 ,k + l Paid coistcot.t

3 511401 - 79261 432140 0.845
4 94853 - 55212 39641 0.418
5 53711 - 12471 41240 0.768

i2•k i3 ,k + l

3 662666 - 103722 558944 0.844
4 79261 - 43685 35576 0.449
5 55212 - 42433 = 12779 0.231

The transition probabilities are thus as follows:

November: (3P = 0.845; (4P = 0.418; (5P = 0.768
(34 = 1-0.845 = 0.155. Similarly , (45 = 0.582
and (56 = 0.232
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December: t3P = 0.844; t4P = 0.449; t5P = 0.231
t34 = 1-0.844 = 0.156. Similarly, t45 = 0.551
and t56 = 0.769

For k = 6, the transition probability of payment in both
November and December is estimated at t6P = 0.35, so that t67

= 0.65.
The first step toward finding the transition probabilities for k =
7 is to find the amount paid from state 4 in a given monthj. This
is given by the following formula:

Applying this formula yields:

Paid from 4 in November = 78854 + (0.65) (26108)
61854 - 19901 = £14069

Paid from 4 in December = 61854 + (0.65) (12471)
50730 - 14108 = £5122

Expressing these figures as proportions of the state 4 balances
at the beginning of the month concerned gives for November
t7P = 0.178 and for December t7P = 0.083.

The transition probability for bad debts t7B is given by t7B =
ij + b Blij.7. For November, t7 B = 0.252 and for December t7B =
0.228. Since t77 = 1-(t7P + t7B), for November t77 = 0.570 and
for December t77 = 0.689.
From the above data, the partitioned transition matrix for
October/November is:

P B 0 1 2 3 4
P 1 0 0 0 0 0 0
B 0 1 I 0 0 0 0 0

-------------+---------------------------------
0 0.845 0

I
0 0.155 0 0 0I

1

1 0.418 0 1 0 0 0.582 0 0I

2 0.768 0
I

0 0 0 0.232 0I
I

3 0.350 0 I 0 0 0 0 0.650I

4 0.178 0.252 I 0 0 0 0 0.5701

Call the above matrix TN'
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Also from the above data, the partitioned transition matrix for
November/December is:

P B 0 1 2 3 4
p 1 0 0 0 0 0 0
B 0 1 0 0 0 0 0

-------------- ---------------------------------
0 0.844 0 0 0.156 0 0 0
1 0.449 0 0 0 0.551 0 0
2 0.231 0 0 0 0 0.769 0
3 0.350 0 0 0 0 0 0.650
4 0.083 0.228 0 0 0 0 0.689

Call the above matrix TD.

Denoting the 'average' (exponentially smoothed) matrix for
January as Aj, then:

Ai = ex To + (1-ex)TN

With ex = 0.8, Ai = 0.8TD + 0.2TN

Performing this calculation gives rise to a matrix Ai as follows:

p B 0 1 2 3 4
P 1 0 0 0 0 0 0
B 0 1 0 0 0 0 0

-------------- ----------------------------------
0 0.8442 0 0 0.1558 0 0 0
1 0.4428 0 0 0 0.5572 0 0
2 0.3384 0 0 0 0 0.6616 0
3 0.3500 0 0 0 0 0 0.6500
4 0.1020 0.2328 0 0 0 0 0.6652

It is next necessary to pre multiply Ai by the vector 1:. showing
the partial balance age structure of debts at the end of
December. This multiplication gives rise to the vector £4
showing the estimated aging of debtor balances in January
1990,including payments and bad debts. It proceeds as follows:

13 = [0 0 672390 103722 43685 42433 50730]
i, Ai = £4 = [648369 11810 0 104758 57794 28902
61327]
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The forecast cash receipts for January 1990 are given by e4 ,1 =
£648369 .

2. In forecasting the cash receipts for February 1990, the first step
is to insert the forecast credit sales figure for January 1990 into
the £4 vector in place of e4 ,3 ' If e4.1 and e4 ,2 are both set equal to
zero, the £4 vector so modified represents the estimated partial
balance age structure of debts at the end of January , and may
thus be labelled Is. It appears as:

14 = [0 0 492000 104758 57794 28902 61327]

It remains only to multiply these balances by the latest esti­
mates (within AJ ) of the transition probabilities of payment
from the various debtor states t3P' . . t7P' Hence the estimated
February 1990 cash receipts are given by:

Rece ipts = (492000) (0.8442) + ... + (61327) (0.102)
= £497662



Credit
Management and

Markov Chains:
Modified Total

Balance Aging Method

Firenza Associates

1. It is first necessary to establish some terminology. Call the end
of May 1989 time t, and call the end of June 1989 time t + 1. In
each case , refer to the month just completed as age category 1,
so that for time t May 1989 is age category 1 and for time t + 1
June 1989 is age category 1. The account data for May and June
may then be laid out as follows , with all figures in thousands of
pounds:

Balance at t Total
Account Partial balance aging Total balance

no. Agel Age 2 Age 3 amount aging

1 10 10 1
2 9 2 11 2
3 7 7 3
4 5 6 3 14 3
5 6 11 17 2
6 13 15 2 30 3
7 8 16 24 3
8 7 4 11 2
9 12 12 3

10 16 4 20 3
11 10 10 2
12 7 14 5 26 3
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Balance at t + l Total
A ccount Partial balance aging Total balance

no. Age] Age 2 Age3 amount aging

1 14 4 18 2
2 9 9 2
3 5 5 1
4
5 7 6 11 24 3
6 13 13 2
7 9 24 33 3
8 3 7 10 2
9 12 12 Bad

10 12 16 28 2
11 13 13 1
12 5 5 1

1 6 4 B IO = 6; B 12 = 4

2 2 9 B20 = 2; B22 = 9
5 - 17 B23 = 17
8 4 7 B20 = 4; B22 = 7

11 10 B20 = 10

3 7 B30 = 7
4 14 B30 = 14
6 17 - 13 B30 = 17; B32 = 13
7 - 24 B33 = 24
9 - 12 B34 = 12

10 4 - 16 B30 = 4; B32 = 16
12 26 B30 = 26

3

Summing the amounts in each total balance age category at
tim e t shows there to be a total of £10000 in age category 1,
£49 000 in age category 2 and £133 000 in age category 3. Two
extra categories now require to be defined, category 0 relating
to 'amount pa id' and category 4 relating to 'amount declared
bad debt'. A modified total balance aging table may then be set
up for each of the twelve accounts as follows:

From age Account To category
category no. 0 4 l 2 3 B values

1

2
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Having aggregated numbers within each of the Bj k values, the R
and Q submatrices within the partitioned stochastic matrix P
are obtained by dividing each Bj k value by the total balance in
its age category. This process is illustrated by the B matrix
below:

o

~ [1~
3 68

4
o
o

12

1
o
o
o

2 3
4 0]";- 10

16 17 ..;- 49
29 24 ..;- 133

Evaluating out the Rand Q submatrices, and combining them
with the I and <I> submatrices gives rise to the stochastic matrix
P below:

p=

o
4

1
2
3

04123
10000
o 1: 0 0 0---------------1 --------------------

0.6 0 : 0 0.4 0
0.3265 0 : 0 0.3265 0.3470

I

0.5113 0.0902 I 0 0.2180 0.1805

The fundamental matrix is given by F = (I-Q) -l, where I is an
identity matrix of the same 3 x 3 dimensions as Q. Computa­
tion yields:

F=
1
o
o

0.688
1.721
0.458

0.291 1
0.729
1.414

Postmultiplying F by R, which is the submatrix within the
bottom left-hand section of P , yields :

FR =
0.9734
0.9346
0.8725

0.
0262 10.0658

0.1275

Let k represent the vector of balances owed to Firenza Associ­
ates at the end of June, so that

k = [68000 55000 35000]
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Post multiplying k by FR gives rise to:

kFR = [148135 9865]

0.278 ]
0.706
1.401

The expected value of receipts from the £158000 owed at the
end of June is thus £148135, and the expected value of bad
debts is £9 865.

2. The first step is to convert the k vector into a probability vector
c, which appears as follows:

c = [0.4304 0.3481 0.2215]

The variance of expected value for receipts and bad debts is
given by V, where V = kg [cFR - (cFR)sq] and g is a column
unit vector with three elements. By computation:

cFR = [0.9375 0.0625]
V = 158000 [0.0586 0.0586]

= [9259 9259]

The variance for receipts and bad debts is thus £9259, giving
rise to a standard deviation for the value of bad debtsof £96.22.
Hence this part of the problem resolves itself into asking what
value of a normal distribution with a mean of 9865 and a
standard deviation of 96.22 is such that 99 per cent of the area
under that distribution lies to the left of the value concerned.
Since 99 per cent of the area under a normal distribution lies to
the left of a point 2.3267 standard deviations to the right of the
mean, the answer is that if 9865 + 2.3267 (96.22) = £10089 is
allowed for bad debts there will then only be a 0.01 probability
that actual bad debts will exceed the amount allowed for them.

3. Let the discount rate per month be v, so that v = 0.015 here.
Then define d = 1/(1+v) = 0.9852, and let the present value
vector for receipts and bad debts be ypv, where ypv =
k(I - dQ)-lR.
By computation:

[

1 0.669
(I - dQ)-l = 0 1.698

o 0.444

k(I - dQ)-lR = [145810 9631]
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The present value of the £148135 that was forecast to be
collected from the amount owed at the end of June is £145 810,
at a rate of discount of 1V2 per cent per month . Similarly, the
present value of the expected bad debt loss is £9631.

4. Let the vector p represent the amount of new debt entering
each age category per month, so that here:

p = [65000 0 0]

Then the vector representing debtor balances in the steady
state is given by ksn this being obtained through the postmulti­
plication of p by the fundamental matrix F. Evaluation yields:

kss = [65000 44720 18915]

By summing the elements within kss , it appears that Firenza
Associates can expect to have an investment in debtors of
£128635 in the steady state, with an acquisition rate for new
debts of £65000 per month.



Linear
Programming and

Decisions on
Internal v. External

Purchases of Services

Remosense PLC

The first step toward solving this problem involves computing the
1989 variable operating costs per unit of service provided for each
of departments S1 - S4. These work out as follows:

Telephones (S1) cost £2.80 per hour of service provided
(abbreviated to a 'phone-hr' )
Telex (S2) costs £1.90 per hour of service provided (abbreviated
to a 'telex-hr')
Document transmission (S3) costs £0.40 per facsimile page
provided (abbreviated to a 'fax-p')
Electronic data transfer (S4) costs £0.60 per metre of computer
printout provided (abbreviated to a 'print-m')

Next , it is necessary to divide through the output figure for each
service department by the figures for inputs from other service
departments required to produce that output. This gives rise to
technological coefficients as follows:
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To produce Requires

1 phone-hr in S10.016 telex-hr 0.0833 fax-p
from Sz from S3

1 telex-hr in s, 0.1448 phone-hr 0.3724 fax-p
from S, from S3

1 fax-p in S3 0.0304 phone-hr 0.0607 telex-hr
from SI from Sz

1 print-m in S4 0.014 phone-hr 0.0434 telex-hr
from s, from s.

0.0705 print-m
from S4
004172 print-m
from S4
0.0921 print-m
from S4
0.1039 fax-p
from S3

The objective is to minimise the total amount spent per year on the
four service departments and on the services (if any) supplied by
Transferincorp. Let :

XI-X4 represent the volume of services respectively pro­
duced by each of the departments SI-S4

X s represent the no. of metres of computer printout
bought from Transferincorp

X6 represent the no. of facsimile pages of .document
transmission bought from Transferincorp

Then the problem may be formulated as follows :

Minimise C = 2.8XI + 1.9Xz + 004X3 + 0.6X4 + 0.75Xs +
0.55X6

Subject to :

Xl - 0.1448Xz - 0.0304X3 - 0.014X4 = 230000
- 0.016XI + X z - 0.0607X3 - 0.0434X4 = 195000
- 0.0833XI - 0.3724Xz + X 3 - 0.1039X4 + X 6 = 820000
- 0.0705XI - 004l72Xz - 0.0921X3 + X 4 + X s = 408000

The solution to this problem is that the minimum cost of £1 988752
per annum for the four services together is obtained with volume
figures for each of them as follows:

XI = 258836; X z = 199141; X 3 = 0; X 4 = 0; X s = 509330;
X6 = 915721
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It is immediately apparent that the optimal solution involves
buying both of the services offered by Transferincorp, despite the
fact that their charge per unit of service is considerably in excess of
the variable cost per unit of service within departments 53 and 54.
The reason for this is that ceasing to operate departments 53and 54
will result in Remosense being able to run departments 51 and 52
at lower levels of output, because they will no longer need to
supply support services to 53 and 54. The consequent reduction in
cost will more than offset the higher direct costs of providing
document transmission and electronic data transfer from outside .
It is necessary to take into account the indirect cost savings
associated with a reduced need to supply services from 51 to 52 as
well as the direct cost savings arising from the elimination of any
need to supply services from 51 and 52on the one hand to 53and 54
on the other. Reference may also be made to the fact that in order
to supply these services, 51 and 52 had in turn to consume services
from 53 and 54, which need vanishes if outside purchase of services
is adopted.

The solution to the Remosense problem specifies a dual real
variable value of -0.181 associated with the supply of services by
department 53, and a dual real variable value of -0.072 associated
with the supply of services by department 54. These two figures
indicate the amounts by which the variable costs per unit for the
services supplied by each of 53 and 54 would have to be reduced
before X 3 and X 4 entered into the optimal solution, respectively
displacing X 6 and X s. That is, if the variable cost per unit of X3

were reduced from £0.4 to a figure just below (£0.4 - £0.181) =
£0.219, then with all other variables held constant X 3 would just
enter into the optimal solution, displacing X 6 • Similarly, if the
variable cost per unit of X 4 were reduced to just below (£0.6 ­
£0.072) = £0.528, then with all other variables (including unit cost
of X 3) held constant, X 4 would just enter into the optimal solution,
displacing X s.

The fundamental reason why the provision of services by
department 53 is economic only if its variable cost per unit is
almost halved lies in its heavy consumption of telephone and telex
services per service unit produced. This may be compared with the
much lighter use of telephone and telex by department 54. The
provision of its services could be made economic if it could achieve
as little as a 12 per cent cut in their unit cost.



Linear
Programming,

Opportunity
Losses and ex post

Budgeting

Shalmirane Ltd

1. The issues in Shalmirane Ltd revolve around the constrained
maximisation of contribution using a linear programming
approach. With this approach, the ex ante problem for Febru­
ary 1989 may be formulated as follows:

Maximise 37X1 + 44X2 + 44X3 + 75X4

This maximisation is subject to the following constraints :

12X! + 15X2 + 16X3 + 25X4 ~ 3600
lOX! + 12X2 + 13X3 + 20X4 ~ 2900
0.5X! + 0.6X2 + 0.7X3 + 2X4 ~ 160

(1.1)
(1.2)
(1.3)

The optimum solution is Xf = 260; X z= 0, X3= 0, X4= 15,
for a contribution of £10 745. Since output is divisible into parts
of a litre , the ex ante solution for both the first half and the
second half of February is seen to involve producting 130 litres
of Fulminate and 7.5 litres of Mathinate, to earn a contribution
of £5372.50 in each half. The wording of the problem rules out
the creation of a new ex ante plan for the second half of
February on the basis of additional information obtained in the
first half of the month . If such a new plan were created , it would
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give rise to variances for the second half of February differing
from those presented here.

Paragraphs 2 and 4 of the narrative of February's events
concern changes affecting the first half of the month . Taking
these changes into account enables the ex post problem for the
first half of February to be formulated as follows:

Maximise 25Xl + 29X2 + 31.5X3 + 50X4

This maximisation is subject to the following constraints:

12Xl + 15X2 + 16X3 + 25X4 ;;§; 2000
lOXl + 12X2 + 12.5X3 + 20X4 ;;§; 1450
0.5Xl + 0.6X2 + 0.7X3 + 2X4 ;;§; 80

(2.1)
(2.2)
(2.3)

The optimum solution to this problem is Xf = 20, xq = 0, X~ =
100, X~ = 0, for a contribution of £3650.

In the second half of February, paragraph 3. within the
narrative of events affects the ex post problem, as does the
restriction of supply of Varilum mentioned at the end of
paragraph 4 of the narrative. The combined effect of these two
further changes is to give rise to an ex post problem for the
second half of February which may be formulated as follows:

Maximise 22.5X1 + 26X2 + 28X3 + 40X4

This maximisation is subject to the following constraints:

12Xl + 15X2 + 16X3 + 25X4 ;;§; 1600
10Xl + 12X2 + 12.5X3 + 20X4 ;;§; 1450
0.5X1 + 0.6X2 + 0.7X3 + 2X4 ;;§; 120

(3.1)
(3.2)
(3.3)

The optimum solution to this problem is Xf = 133.33, xq = 0,
X~ = 0, X~ = 0, to earn a contribution of £3000.

The data for ex post variance analysis in February 1989 may
be laid out as follows:
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First half of February

CPXU 25(130)+50(7.5) = 3625
CPxP 25(20 + 31.5(100)= 3650
C'XU 37(130)+75(7.5) = 5372.5
(J'X" 25(120)+50(10) = 3500
c:x: 25(120)+15(10) = 3150

22.5(130) +40(7.5)
22.5(133.33)
37(130) + 75(7 .5)

22.5(120)+40(6)
22.5(120)+5(6)

= 3225
= 3000
= 5372.5
= 2940
= 2730

Working through the ex post variance analysis for February
yields the following results, with F denoting a favourable
variance and U an unfavourable one:

First half of February

Volume and mix forecast variance
Price and efficiency forecast variance
Volume and mix opportunity cost variance
Price and efficiency opportunity cost variance

Total variance

Second half of February

Volume and mix forecast variance
Price and efficiency forecast variance
Volume and mix opportunity cost variance
Price and efficiency opportunity cost variance

Total variance

£

25.0F
1747.5U

150.0U
350.0U

2222.5U

£

225.0U
2147.5U

6O.0U
210.0U

2642.5U

The sum of the total variances for the first and second halves of
February is £4865 U, which is equal to the excess of the
contribution in the ex ante plan for February (£10745) over the
actual contribution for February (£5 880).

2. The effect of being able to store Varilum within the month of
February is to make it necessary to formulate the Varilum
constraints in a different way. There has to be a constraint (4.1)
spanning both halves of February, to reflect the fact that any
Varilum left unused at the end of the first half can be held to
augment the stock in the second half . A separate constraint
(4.2) is required for the first half of February, to reflect the fact
that Varilum supplied in the second half cannot be transferred
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backwards in time to augment the first half's supplies. Howev­
er, the stipulation that Varilum is supplied on a 'sale or return'
basis within February avoids the further complication of having
to value the closing inventory.
The constraint spanning both halves of February creates an
interdependence between the solutions for each half, so that
the linear programming problem must be formulated for both
halves of the month simultaneously. To formulate this prob­
lem, take Xl as denoting the production of Fulminate during
the first half of February and Xs as denoting Fulminate
production during the second half. Create an identical distinc­
tion of meaning between X 2 and X 6 , between X3 and X 7 and
between X 4 and X s. Then the ex post problem may be stated as
follows:

Maximise 25X I + 29X2 + 31.5X3 + 50X4 + 22.5Xs + 26X6

+ 28X7 + 40Xs

This maximisation is subject to the following constraints:

12XI +15X2+ 16X3+25X4+12Xs+15X6+16X7+25Xs~3600
(4.1)

12XI+15X2+16X34-25X4~2000 (4 .2)

(4.3)

(4.4)

(4.5)

(4.6)

The optimum solution to this problem is Xf = 20, xq = 0, X~ =
100,X~ = 0, X~ = 145, Xl = 0, Xlf = 0,~ = 0. This solution
gives rise to a contribution of £6 912.50, which is £262.50 higher
than the sum of the ex post contributions for the first and
second halves of February taken separately. The variances for
the first half of February are the same whether or not Varilum
is considered as storeable, because the optimum solution is the
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same. The extra £262.50of contribution arises from the produc­
tion in the second half of 11.67 extra litres of Fulminate at a
contribution of £22.50 per litre . This extra production is made
possible because the optimum solution for the first half leaves
160litres of Varilum unused from that half's supply; this extra
stock entering the second half supports the production of 11.67
more litres of Fulminate, thus consuming 140 out of the 160
litres available. The remaining 20 litres of Varilum cannot be
used, because a production level of 145 litres of Fulminate
serves to exhaust completely the 1450 litres of Diffuso available
in the second half of February.

Producing 145 litres of Fulminate in the second half of
February changes CP)(p for the second half to a value of
CP)(p = £3262.50, and in doing so alters the variances to the
following new values:

Second half of February

Volume and mix forecast variance
Price and efficiency forecast variance
Volume and mix opportunity cost variance
Price and efficiency opportunity cost variance

Total variance

£

37.5F
2147.5U

322.5U
21O.0U

2642.5U

The total variance for the second half of February is unchanged
from its previous value, because CP)(p cancels out within it. But
the volume and mix forecast variance has changed sign, and the
volume and mix opportunity cost variance is £262.50 larger,
reflecting the increased opportunity loss which has arisen from
actual performance being unchanged while the maximum
amount of contribution attainable has increased.

The change in the optimum contribution arising from the
storability of Varilum illustrates the difficulty of defining the
period over which the optimising model is said to stretch in ex
post budgeting. Once Varilum is said to be storable, the
2-week optimisation model gives misleading results, and even
the validity of the 4-week model depends upon the rather
contrived 'sale or return' assumption.



Input-Output
Analysis and

Linear
Programming

Kerruish Tracers

1. Let qij represent the number of units of Product i (i = 1 5)
produced by a unit of activity within Process j U = 1 5).
Since each of the five processes produces a single product, the
matrix of output coefficients qO must be an identity matrix of
order five, as shown below:

1 0
o 1
o 0
o 0
o 0

o 0 0
o 0 0
1 0 0
o 1 0
001

Let q~j represent the number of units of Product i used by each
unit of activity within Process j. Then from the problem the
matrix of input coefficients qi is as follows:

0 0.67 0.31 0.22 0
0.17 0.06 0.46 0 0.16

qi = 0 0.19 0.07 0.37 0.91
0.04 0 0.11 0 0
0 0.09 0 0 0
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The net input-output coefficient qij = qij - q~j. The matrix of
input-output coefficients q is given by:

1 -0.67 -0.31 -0.22 0
-0.17 0.94 -0.46 0 -0.16

q= 0 -0.19 0.93 -0.37 -0.91
-0.04 0 -0.11 1 0

0 -0.09 0 0 1

The external inputs entering Kerruish Tracers number seven in
all, being made up of three materials, two types of machines
and two grades of labour. Let:

dkj represent the number of units of input k (k = 1 ... 7)
required by one unit of activity of Process j (j =
1. . . 5)

Vk represent the variable cost of input k

Then, from the data in the problem, a matrix d can be drawn up
covering all dkj , together with a column vector v covering all Vk.

These appear as follows:

d=

o
0.5
4.2
1.1
o
2.2
1.7

0.6
0.7
6.9
o
3.1
1.4
0.7

0.3 -2.1
o 0
2.1 0.7
1.9 0
0.6 1.6
1.9 0.6
2.8 2.2

o
-1.9

o
2.3
o
3.1
0.8

V=

4.8
6.4

11
6.6
8.1
o
o

Within the v vector, the elements V6 = 0, V7 = 0 arise from the
policy of treating labour as a fixed cost in the short term.

The gross internal coefficient matrix q' is the inverse of the
input-output coefficient matrix q. Performing this inversion
gives rise to:

1.233 1.213 1.091 0.675 1.187
0.279 1.549 0.906 0.397 1.072

q' = 0.106 0.494 1.420 0.549 1.371
0.061 0.103 0.200 1.087 0.198
0.025 0.139 0.082 0.036 1.096
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The d' matrix , representing the external input requirements per
unit of net production , is given by postmultiplying the d matrix
by the gross internal coefficient matrix s: Carrying out this
computation yields:

0.0711 0.8613 0.5496 -1.8798 0.6387
0.7643 1.4267 1.0239 0.5470 -0.7385
7.3690 16.8922 13.9556 7.4881 15.3999

d' = 1.6152 2.5926 4.0867 1.8684 6.4314
1.0261 5.2631 3.9806 3.2993 4.4626
3.4187 6.2685 6.7408 3.8477 10.2335
2.7424 4.8674 6.9705 5.3828 7.9195

The process of costing out these physical requirements for
external inputs begins by transposing the 7 x 1 column vector v
into a 1 x 7 row vector vT , so that:

vT = [4.8 6.4 11 6.6 8.1 0 0]

Postmultiplying vT by d' serves to convert the matrix of physical
inputs per unit of net output into a row vector of variable costs
per unit of net output. Calling this row vector cT , it shows from
left to right the unit variable costs for each of Products I-V, as
below:

cT = [105.26 258.82 221.92 115.90 246.33]

In formulating the objective function for the linear program­
ming problem, it is first necessary to establish some terminolo­
gy, as follows. Let:

XI represent the June 1989 output of Cadmium Red (in
litres)

X 2 represent the June 1989 output of Strontium Blue (in
litres)

From the cT vector, the variable cost per litre of net output of
Cadmium Red is £115.90; per litre of net output of Strontium
Blue it is £246.33. With selling prices of £190 per litre and £395
per litre for the Red and Blue products respectively, the
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contribution-maximising objective function for Kerruish is as
follows:

Maximise 74.1X1 + 148.67X2

For the external inputs which are in constrained supply, it is
possible to read from the d' matrix the amounts required to
produce a litre of net product of Cadmium Red and of
Strontium Blue. Working down the fourth and fifth columns of
the d' matrix from the third row, this gives rise to the following
five constraints:

7.4881X1 + 15.3999X2 ;;§; 10000 (1)
1.8684X1 + 6.4314X2 ;;§; 3400 (2)
3.2993X1 + 4.4626X2 ;;§; 3700 (3)
3.8477XI + 1O.2335X2 ;;§; 5200 (4)
5.3828X1 + 7 .9195X2 ;;§; 5900 (5)

Of these constraints, (1) relates to the supply of mygecerium ,
(2) and (3) respectively to the supply of machine time for freeze
emulsifying and acculturation and (4) and (5) respectively, to
the supply of skilled and semi-skilled labour hours. Finally ,
there are the two contractual commitment constraints:

Xl ~ 350
X 2 ~ 275

(6)
(7)

The solution to this linear programming problem involves the
manufacture for sale of 620 litres of Cadmium Red and 275
litres of Strontium Blue, from which a budgeted contribution of
£86830 would be earned in April 1989. After deducting the
fixed labour cost of £56 000, a budgeted profit of £30 830 would
remain , though this figure does not allow for any revenue from
sales of by-products , a topic discussed below.

2. (a) The next task is to find the gross ouputs of Products I-V
required to enable the optimal net outputs just calculated to
be produced for sale .
Let QT denote the row vector of optimal net outputs of
Products I-V, so that:

QT = [0 0 0 620 275]
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Then the gross output required is given by postmultiplying
q' by Q to give (with transposition) the following 1 x 5 row
vector QT:

QT = [744.925 540.94 717.405 728.39 323.72]

This vector shows , from left to right, the required levels of
gross output of Products I-V.

(b) The vector of external input requirements is obtained by
postmultiplying the d matrix by Q to give rise to a8 x 1
column vector D. This appears as follows:

-989.83
136.05

8877.59
D = 2927.04

3272.78
5199.79
5515.20

The first element in the D vector is negative , indicating that
989.93 litres of net output of cadmium chlorate will be pro­
duced, and thus be available for sale. All the remaining
elements in the D vector are positive, and show the amount of
each input which needs to be purchased or used up. For
example , the D6 1 element shows that 5200 hours of skilled
labour will be used up (subject to rounding error) and that
skilled labour supply is therefore a binding constraint.

The total variable cost of the optimum output is given by
postmultiplying cT by Q, to yield a figure of £139598.75. When
this is subtracted from the sales revenue from Cadmium Red
and Strontium Blue, a contribution figure of £86824.33 is
obtained, which agrees with that from the linear programming
solution, apart from rounding errors. However, this figure does
not allow for the revenue from the sales of the by-product,
cadmium chlorate , which when 989.83 litres is sold at £4.80 per
litre yields £4751.18. This raises the total budgeted contribu­
tion for June 1989 to a final figure of £91581.18, and raises the
budgeted profit correspondingly to £35581.18.



Input-Output
Analysis and

Linear
Programming

with Purchasable
Intermediate Products

and Joint Final Products

Raistrick Ltd

1. Process III in Raistrick Ltd gives rise to two joint products,
manufactured in the fixed ratio of 0.8 kilograms of Urquase to 1
kilogram of Pirco. Since this is the last of the three processes ,
the other two of which each produce a single product, the
output coefficients, input coefficients and net input-output
coefficients may be represented in 4 x 3 matrix form, as
follows :
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1 a a
a 1 a
a a 1
a a 0.8

0.05 0.4 0.3
0.1 0.03 0.5
0.02 0.04 a
0.06 0.03 a

0.95 -0.4 - 0.3
-0.1 0.97 -0.5
-0.02 -0.04 1
- 0.06 - 0.03 0.8

Let Pi represent the selling price of product i, giving rise to a
1 x 4 row vector p T where:

Let Ci represent the unit cost of intermediate product
purchased externally, so that here:

From the question, the matrix of units of external input per unit
of activity d and the column vector of variable costs per unit of
external input v are as follows :

d=

0.19
0.04
0.8
0.7

0.06
0.12
1.3
1.1

0.13
0.17
1.5
2.1

v =

9
7
a
5

Let o, represent the optimal quantity of intermediate pro­
duct i to be purchased externally

Let Qi represent the optimal net output of product i, each
value of Qi constituting an element within the column
vector Q
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Transposing Q for convenience , and bearing in mind that
Raistrick does not sell either of Products I or II , the vector of
optimal net outputs appears as follows:

Let ai represent the optimal activity level at which to run
process i , being that level givingrise to a gross volume of
output sufficient to sustain the optimal net output Q

Then the first set of constraints enforces the equality of the net
output of any product with the amount of that product sold less
the amount purchased externally. The general form of this type
of constraint is:

qa - Q + 0 = 0

Inserting the net input-output coefficient values in this general
constraint form yields the following four constraints for this
problem:

O.9Sal - 0.4a2 - O.3a3 + 01 = 0
-O.1al + O.97a2 - O.Sa3 + 02 = 0
-O.02al - O.04a2 + a3 - Q3 = 0
-O.06al - O.03a2 + O.Sa3 - Q4 = 0

(1)
(2)
(3)
(4)

Let Dk represent the number of units of external input k
required to produce the optimal net outputs of Products III and
IV, and let 15 represent the column vector of these input
requirements. Hence , in this problem, with transposition:

The second set of constraints equates the total quantity of
external inputs required by production da with the quantity of
external inputs purchased, as given by 15. It is convenient to
represent this type of constraint in the following form:

da - 15 = 0
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Taking figures from the d matrix for this problem enables the
formulation of constraints as below:

0.19QI + 0.06Q2 + 0.l3Q3 - D I =0
0.04QI + 0.l2Q2 + 0.17Q3 - D2=0
0.8QI +1.3Q2 + 1.5Q3 - D3 = 0
0.7QI + 1.1Q2 + 2.1Q3 - D4 = 0

(5)
(6)
(7)
(8)

The next set of constraints confines the total quantity of each
external input used to an amount within the total quantity
available. In this problem, the external inputs subject to
restricted supply are hours of supervision and hours of steam
fermenting time. The constraints involved are as follows:

D3 ~ 44000
D4 ~ 54000

(9)
(10)

The final constraint specifies the maximum quantity of Pirco
(and therefore of Urquase) that may be sold during April 1989.
This constraint is as follows :

(11)

In this mode of analysis , the objective function takes the
general form specified below:

Inserting the relevant values for this problem enables the
formulation of an objective function as follows:

Maximising this function subject to constraints (1) - (11) above
gives rise to a contribution for April 1989 of £300962 , obtained
with the following values:
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at = 8825
02 = 7114
03 = 18461
Q3 = 18000
Q4 = 14026
02 = 3212

D, = 4504
D2 = 4345
D3 = 44000
D4 = 52771

The optimal output for April 1989 is seen to be 18000 kilo­
grams of Pirco (Q3) and 14026 kilograms of Urquase (Q4)'
yielding a budgeted profit (after deducting the fixed cost of
labour) of £85362. From the above solution values, the answers
to the three remaining parts of the problem may be read off as
described below.

2. Process I should be run at a level producing 8825 litres of
Product I during April, and Process II should be run at a level
producing 7114 kilograms of Product II. Process III should be
run at a level of 18461 units of activity, thus producing 18461
litres of Pirco and 14769 litres of Urquase. The excess of this
level of operation of Process III over the level of sales of
finished products is accounted for by the need to feed some of
the Pirco and Urquase back to Processes I and II.

3. The optimal solution involves purchasing 3212 kilograms of
Product II from Pentre Biosystems , to supplement the amount
produced in Process II . No Product I, however, should be
purchased from this source, as QI does not enter into the
optimal solution .

4. The inputs required to support the optimal production schedule
in April are 4504 litres of Catalyst A , 4345 kilograms of
Catalyst B, 44000 hours of supervision and 52771 hours of
steam ferment ing time. Sensitivity analysis on the binding
constraints shows that an increase of 1 hour in the supervisory
time available in April would increase contribution by £5.60
over the range from 44000-48345 hours. (The only other
binding constraint is the one on the amount of Pirco that could
be sold, where a change of 1 kilogram would change contribu­
tion by £3.02 over the range from 16771- 70771 kilograms sold
during April.)



Use of Information
Theory to Isolate

Substantial
Variances

Department of Transportation Analytical Offices

It is initially necessary to establish some notation. Let:

Ptt represent the budgeted expenditure on energy
source i by office j as a proportion of total budgeted
expenditure

% represent the actual expenditure on energy source i
by office j as a proportion of total actual expenditure

X represent the classification of expenditure by energy
source, so that gas is labelled as source X l , electric­
ity as source X2 and solid fuel as source X3

Y represent the classification of expenditure by office
location , so that Scunthorpe is labelled as office Yb

Bath as office Y2 and Dundee as office Y3

With this notation , the computations for budgeted and actual
proportions appear as follows:

YI

Xl Pll = 0.2076
X 2 PII = 0.1106
X 3 P 31 = 0.0433

Y2

Pl 2 = 0.0716
P 22 = 0.1343
P 32 = 0.0339

Y3

P13 = 0.2402
P23 = 0.0244
P33 = 0.1341

Total
PIO = 0.5194
P2 0 = 0.2693
P 30 = 0.2113

Totatp u, = 0.3615 P02 = 0.2398 P03 = 0.3987 1
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YI Yz Y3 Total
X I qu = 0.2096 qlz = 0.0643 q 13 = 0.2355 qlO = 0.5094
Xz qZI = 0.0954 qzz = 0.1449 qZ3 = 0.0307 qzo = 0.2710
X3 q31 = 0.0464 q3Z = 0.0365 q33 = 0.1367 q30 = 0.2196

Totalqs; = 0.3514 qoz = 0.2457 q03 = 0.4029 1

Consider equations (8.4) - (8.10) inclusive from the analysis of the
Heversham Horticulture problem. Appl ying these equations to
this problem, in which there are m = 3 energy sources and n = 3
offices, gives rise to computations as below. All the figures in these
computations are in units of 10-4 nits:

3 3
«x,Y) = ~ ~ qij In(q;/Pij) = 29.49

i=1 j=1

3
I(Ylxl) = ~ (ql/qlO) In[(ql/qlO)/(Plj/PlO)] = 6.84

j=l
3

I(YIXz) = ~ (qz/qZO) In[(qz/q zo)/(Pz/pzo)] = 83.69
j= 1

3
I(YIX3) = ~ (q3/q30) In[(q3/q30)/(P3/P30)] = 3.23

j= 1

3
I(YIX) ~ qiO I(YIXi) = 26.88

i= 1

3
leX) = ~ qiOIn(qiolPiO) = 2.61

i= 1

As a computational check, note that I(YIX) = leX,Y) - ItX].

3
l(xIYI) ~ (qil/q01) In[(qil/qOI)/(Pii/POl)] = 30.62

i= 1

3
I(XIYz) = ~ (qiZ/qOZ) In[(qiz/qoz)/(Piz/Poz)] = 33.48

i=1

3
I(XIY3) = ~ (qi3/q03) In [(qi3/q03)/(Pi3/P03)] = 20.24

i=1

3
I(XIY) ~ qOj I(X!Yj) = 27.14

j= 1
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As a computational check, note that I(X1Y) = I(X, y) - I(Y).
A feature of interest in the overall interpretation of these results

is the relatively small value of I(X, y) in comparison with the
corresponding value in the Heversham Horticulture problem. This
indicates that budgeted energy costs, by office and by source of
energy, served overall as relatively good predictors of actual costs
- the contrast here being between the volatility of sales elements in
the Heversham problem and the comparative stability of recurrent
cost elements here.

The other major overall feature is that I(YIX) is very close to
I(X!y), while I(X) is very close to I(Y). On the first of these
points, I(YIX) measures the quality of the forecast contained in
the budget as to how the cost of a given energy source would be
distributed over the three offices. The quality of this forecast was
much the same as the quality of the budget's forecast as to how the
energy costs incurred in a given office would be spread over the
three energy sources, the latter being measured by I(XI Y).

On the second point, the closeness of I(X) and I(Y) indicates
that the prediction in the budget as to the proportion of total
energy costs that would be accounted for by each source of energy
was similar in accuracy to the prediction as to the proportion of
total energy costs that would be accounted for by each office. The
accuracy of the former prediction is measured by I(X), and that of
the latter prediction by I(Y).

At the level of the individual information expectations , the high
value associated with I(YIX2) stands out sharply . This indicates
that the actual distribution of electricity costs across offices
deviated from the one anticipated in the budget. Looking at the
comparison of the actual against the budgeted energy source mix
of costs for each individual office makes it clear where the issue is
located. I(XIY\) and I(XIY2) are comparable, and both are
markedly larger than I(XI Y3 ) . It is in the proportion of total
electricity costs accounted for by the Scunthorpe and Bath offices
that the variation from forecast has arisen, and this anomaly may
warrant further study.



The Single-period
Cost Variance
Investigation

Decision

Star Chemical Company

1. In dealing with this problem it is first necessary to establish
some terminology. Let:

Sl represent the situation in which the process is in control
S2 represent the situation in which the process is out of

control
al represent the act of ordering a full dra in
a2 represent the act of ordering a partial drain
a3 represent the act of ordering no drain at all

From the data in the problem, the break-even probability fa(S2)
as between al and a2 is given by:

700 - 200
1500(1-0.4)+150(0.4-1)

= 0.617

The break-even probability fb(S2) as between a2 and a3 is given
by:

200
(1500-150)(0.4)

= 0.370
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The prior probabilities are given by fO(Sl) = 0.75 and fo(Sz) =
0.25. These probabilities require revision by reference to an
observed quantity variance of x = 9600 for week n = 1, ending
on Friday 14 July. Using Bayes' Theorem, the calculation
appears as follows:

(
1 \i'(9600-9000)

3500 yu 3500 (0.75)

(
1 \i' ( 9600-9(00) (1 \i' ( 9600-10 500 )

3500 Y u 3500 (0.75)+ 1000 Y u 1000 (0.25)

= 0.558

Hence fl(Szlx) = 0.442. Since fl(Szlx) > fb(SZ) , expected cost
would have been minimised if the Process Controller had
authorised a partial drain rather than continuing to operate the
process for a further week with no drain at all.

2. Post multiplying the vector [ft(Sllx) ft(Szlx)] by the matrix of
transition probabilities from one state to another over the
weekend results in the following calculation:

[0.558
0.422] [~:~; ~:~;] = [0.429 0.571]

Thus It'(Sl) = 0.429 and It' (Sz) = 0.571. These probabilities
act as the prior probabilities for week n = 2, beginning on
Monday 17 July , and require revision by reference to the
observed quantity variance of x = 9300 for that week. The
calculations are as follows:

(
1 \i' (9300-9000)

3500 yu 3500 (0.429)

(
1 \i' ( 9300-9000 ) ( 1 \i' ( 9300-10 500 )

3500Yu 3500 (0.429)+ 1000yu 1000 · 1(0.571)

= 0.305
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Hence h(S2Ix) = 0.695. This probability is considerably in
excess of 10(S2) , indicating that , to minimise expected cost, the
Process Controller should issue instructions for a full drain to
be carried out on the morning of Saturday 22 July .

There is no inconsistency in recommending that a partial
drain should have been carried out after an observed quantity
variance of x = 9600 in the first week , while at the same time
asserting that a full drain should be carried out after a smaller
quantity variance of x = 9300 in the second week. It is the
cumulative effect of two quantity variances lying above the
in-control mean of x = 9000 that have led to the later
recommendation for a full drain, taken together with the fact
that state changes as between the first and second weeks were
more likely to take the process out of control than back into
control.

3. Change (a) here reduces the problem to a simpler two-action ,
two-state form, for which the quadratic equation approach of
Capettini and Collins can be adopted. If the act 'order full
drain' remains act at> while the act 'do nothing' is relabelled a2,

then the Capettini and Collins rule can be stated as follows:

'Do al ifax2 + bx + c > 0; otherwise do a2'

In applying this rule, a, band c are computed as below :

a = ( ~ ) [ (35~)2 - (1~)2 ] = - 4.592 X 10-
7

[
9000 10500 ]

b = - (3500)2 .. - (1000)2 = 0.009765

c = log, [e 500-7~0-700 )( ~:~~~ )( ~ ~~ )] +

(
_1_ )[ (9 (00)2 _ (10 500)2]

2 (3500)2 (1 (00)2

= - 50.35
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The solution to the quadratic equation axZ + bx + c = 0 with
a.b and c as above is x = 10632.6 ± 1845.6, which can be
expressed as:

x = 8787 or 12478.2

Within the range 8 787 ~ x ~ 12478.2, ax: + bx + c > O.
From this, the Capettini-Collins decision rule for week n = 2

(ending on Friday 21 July) may be expressed as follows:

'Carry out a full drain if the adverse quantity variance lies
between £8787 and £12478 .2; do not drain any of the
trimetheldrin at the end of the week if the adverse quantity
variance lies outside this range'

Hence an unfavourable quantity variance of £12 800should not
cause any trimetheldrin to be drained.

4. The above decision rule is a two-sided one, in that the Process
Controller has two cost observations for which he would be
indifferent as between a full drain and none at all. Representing
expected cost for a rule in week n = 2 as ECz (rule) gives for
this rule:

ECz (al if 8 787 ~ x ~ 12478.2) = (0.429) (700) (Prob. of
8787 ~ x ~ 12478.2 if i = 9000, S = 3500) +
(0.571)[(850)(Prob. of 8787 ~ x ~ 12478.2 if i = 10500, S =
10(0)+(1500)(1-Prob. of 8787 ~ x ~ 12478.2 if i =
10500, S = 1(00)]
ECz(al if 8 787 ~ x ~ 12478.2) = (0.429)(700)(0.364) +
(0.571)[850(0 .933) + (1500)(0.067)]
ECZ(al if 8787 ~ x ~ 12478.2) = 619.50

This expected cost of £619.50 needs to be compared with the
expected cost of the best one-sided decision rule. Here it is act
az which has a disjoint region, between £8787 and £12478.20.
If this region is treated as having no upper boundary, so that
there is no cost level above which act az (do not investigate)
comes to be preferred, then the best one-sided rule can be
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derived as ECZ(al if x i?; 8787) . Expected cost for this rule is
given by:

ECz (al if x i?; 8787) = (0.429)(700)(Prob. of x i?; 8787 if i =
9000 , S = 3500) + (0.571)[(850)(Prob. of x i?; 8787 if i =
10500, S = 1000) + (15OO(Prob. of x < 8787 if i = 10500 , S

= 1000)]

ECz (al if x i?; 8787) = (0.429)(700)(0 .524) +
(0.571)[850(0.957) + (1500)(0.043)]
ECz(at if x i?; 8787) = 658.31

The excess of this expected cost of £658.31 over the expected
cost of £619./50 associated with the optimal decision rule
represents the expected cost of ignoring the disjoint region;
here it is £38.81.

In this case, the disjoint region arises because when the
process is running properly it is subject to all kinds of large
random cost variations, but when it is out of control its cost falls
into a more predictable pattern , dominated perhaps by the
technical problem which has caused the process to go out of
control. Very high readings of cost tend to be associated with
the widely-fluctuating cost observations which arise when the
process is in control , rather than with the more narrowly­
varying observations which arise from an out of control pro­
cess.



The
Multi-period

Cost Variance
Investigation

Decision

Mansfield Pressings

The first step in solving this problem is to discretise the in control
and out of control distributions. This produces the following:

Process
in control

(Rods not bent)

Cost Probability
£

325 0.05
375 0.30
425 0.25
475 0.20
525 0.15
575 0.05

Process
out ofcontrol
(Rods bent)

Cost Probability
£

425 0.05
475 0.05
525 0.15
575 0.25
625 0.35
675 0.15

Denoting the in control state as state 1 and the out of control state
as state 2, the means for the two distributions are J.11 = 437.5 and
j.Lz = 587.5, so that ~j.L = 150. From the data in the problem, the
cost of investigation I = 40, and the cost of correction K = 15+30
= 45. With g = 0.75, the parameters a and b can be computed as
follows:

a = (1 - 0.75)(45) + 40-(0.75)(150) = -61.25
b = (0.75)(40) = 30
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A table may now be drawn up as below:

Control limit

x < 425
x < 475
x < 525
x < 575
x < 625

F2(x )

o
0.05
0.10
0.25
0.50

1fl(x)

1
0.987
0.973
0.923
0.8

Max F1(x)

0.35
0.60
0.80
0.95
1

C(x)

515.75
509.28
504.55
504.66
514.50

The cost-minimising decision rule turns out to be one of 'investi­
gate if the electricity cost recorded for a shift is equal to or greater
than £525', although the substitution of £575 for £525 would
increase the long-term expected cost per shift by only £0.11. The
optimal solution is clearly not very sensitive to small changes in the
parameters of the problem.

A policy of 'never checking the alignment rods' would have a
long-term expected cost per shift of £587.50, while one of 'checking
the rods after every shift' would have a cost of £526.25 . Finally, the
long-term cost per shift of running the metal stamping machine
under conditions of certainty is £496.25.



Stochastic
Cost-Volume­

Profit
Analysis
and Decision Theory

Bulk Powder Producers Ltd

1. Some initial terminology may be set out as below. Let :

al represent the act of leasing the Type A machine
a2 represent the act of leasing the Type B machine
S represent the average sales of ink powder , in kilograms

per customer per annum

Cost functions for at and a2 (in pounds per annum) may be
drawn up as follows:

C(a],S) = 50000 + (0.5)(400)S
C(a2,S) = 80000 + (0.3)(400)S

The break-even point for S as between at and a2 is given by Sb,
where Sb = 30000/[400(0 .5 - 0.3)] = 375 kilograms per
customer per annum.

A normal prior distribution for demand is specified in the
problem, with 50 per cent of its area lying between levels of 250
and 550 kilograms per customer per annum . From the symmet­
ry of the normal distribution, this implies a prior mean Eo( ""') =
400. Representing the standard deviation of the prior distribu­
tion by (To and standardising gives rise to the following equa­
tion , which exploits the property that 25 per cent of the area
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under a standardised normal distribution lies to the right of z =
0.675:

(550 - 4(0)/<To = 0.675, hence <To = 222.2

From the sample of four customers, the result obtained has
been one of mean sales per customer i = 357, with a standard
deviation s = 104. The standard error of the sample mean is
given by <T; = 104/Y4 = 52. There is no need for a finite
population correction here, since the sample represents only 1
per cent of the population from which it was drawn.

The analysis is thus seen to involve the revision of a normal
prior distribution with mean Eo(~) = 400 and standard devia­
tion <To = 222.2 by reference to sample findings giving an
estimate of mean sales i = 357 subject to a standard error <T; =
52. Let :

El(~) represent the mean of the posterior distribution
<Tl represent the standard deviation of the posterior

distribution

The computations then proceed as follows:

Since El(~) < Sb, on the basis of the information supplied by
the sample of four customers, the Type A machine should be
leased. However, there is a non-negligible probability that this
decision may prove to be wrong . The probability concerned is
given by the area under a standardised normal distribution to
the right of z = (375 - 359.2)/50.6 = 0.31. From tables, this
area is 0.377, so that the probability that a decision to lease a
Type A machine may prove to be wrong exceeds 1 in 3. This
result supplies a hint that further sampling may prove to be
desirable.
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2. The estimated variance of the population is given by <1
2 = 1202

= 14400. Denoting the reduction in variance due to a sample of
size n by <1*2, then for n = 3 the computation proceeds as
follows:

(3)(50.6
4

) hence <1* = 29.8
14400+(3)(50.62

)

It is necessary next to define a standardised variable D* , where :

The opportunity loss function is given by 0.2(400)(S - Sb) for S
> Sb and by 0.2(400)(Sb - S) for Sb > S, so that the rate of
change of the opportunity loss function with respect to S is seen
to be 80.

lt is thus possible to derive the expected value of sample
information (EVSI) for n = 3 as EVSI = (80)(29.8)(0.1887) =
£449.80. The cost of sampling is given by (3)(£125) = £375.
Subtracting this cost from the EVSI gives rise to an expected
net gain from sampling three more customers of £74.80.
Undertaking the further sampling of three customers would
thus seem to be justified. In practice, the problem's dichotomy
between sampling exactly three more customers and not sam­
pling further at all would represent an artificial simplification,
and the expected net gain from sampling would be computed
for a range of sample sizes around n = 3.



Stochastic
Cost-Volume­

Profit
Analysis:
Satisficing with Short

Product Lives

Bridgegate Foods

1. The initial step is to define symbols as follows: Let :

c represent the contribution margin per dozen oys­
ters sold to hotels and restaurants

h represent the loss per dozen oysters sold for fish
bait

s represent the contribution lost per dozen oysters
which are ordered but cannot be supplied

fJ. represent the mean weekly demand (in dozens of
oysters)

(J" represent the standard deviation of weekly de­
mand

F represent the cost per week of leasing oyster
freezing equipment

P(D~X) represent the probability that demand will not fall
below X dozen oysters in any given week

Then, from the data in the problem:

c = £4.5; h = £3; s = £2
fJ. = 200; (J" = 80; F = 500
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The profit-maximising size of weekly order for oysters X* is
such that P(D~X*) = 3/9.5 = 0.316. From tables of the inverse
normal function , it may be seen that an area of 0.316 under the
standardised normal distribution lies to the right of a value of z
= 0.479. X* thus lies 0.479 standard deviations (of 80) to the
right of the mean (of 200) . That is:

X* = 200 + (80)(0.479) = 238 dozen oysters

Since the freezing equipment will never contain oysters
derived from 2 weeks ' orders at the same time, it is plain that its
capacity of 300 dozen oysters is ample . The expected profit per
week is given by £(2), where :

£(2) = (6.5)(238) - (9.5)[(238 - 200)<1>(0.479) + 80lN
(0.479)] - (2)(200) - 500

Here, <1>(0.479) represents the probability that a standard
normal random variable is less than z = 0.479, and IN (0.479)
represents the value of the standard normal probability density
function at z = 0.479 . Evaluation of this expression gives £(2)
= 130, so that the average profit per week obtainable from
ordering the profit-maximising volume of oysters is seen to be
£130.

2. A target of 'at least breaking even' can alternatively be
expressed as one of 'earning a minimum acceptable contribu­
tion Yr which is equal to the level of fixed costs F' . Hence in this
case Yr = 500. Let:

D u and D L represent (respectively) the largest and smallest
demands for oysters in a week which are consis­
tent with breaking even in that week

Then

Du
= (4.5+2)(238) - 500 = 523

2

= (3)(238) + 500 = 162
(4.5 + 3)
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The probability of at least breaking even in a week in which X*
= 238 dozen oysters have been ordered may be written as
P23S[2 ~ 0], where:

= <I> ( 523;200) _ <I> ( 162;200)

= 1-0.317 = 0.683

When the profit-maximising size of orders for oysters is made,
Bridgegate's trade in oysters will at least break even (net of
costs of ill-will) slightly more often than 2 weeks out of 3.

3. The size of weekly order X** for which Px** (2 ~ 0) is
maximised is given by:

X**
(1409 .18) + V(1409.18)2 - (10.4025)(157928)

= 10.4025

= 192 dozen oysters per week

For this size of order, the probability of at least breaking even
in a given week is obtained from :

= <I> (374 ; 200) _ <I> ( 143.58~ 200)

= 0.985 - 0.240 = 0.745

The effect of setting out to maximise the probability of at least
breaking even has been to raise the frequency of its occurrence
from roughly 2 weeks out of 3 to roughly 3 weeks out of 4. This
satisficing strategy has an expected profit £(2) given by:

£(2) = (4.5+2)(192)-(4.5+2+3)[(192-200)
(0.4602)+ (80)(0.397]- (2)(200) - 500
= 81.25

The expected weekly cost of adopting the satisficing approach
here rather than a profit-maximising one is thus given by
£130-£81.25 = £48.75.
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When the probability of at least breaking even is maximised ,
this probability is 0.745. Hence the maximum probability of at
least breaking even in 6 or more of the 8 weeks in the ' trial
period' can be obtained by answering the following question:

'What is the probability of obtaining six or more successes in
eight trials of a Bernouilli process with a probability of
success of 0.745?'

Denoting the above probability as Ps , by the binomial theorem:

P, = 8C6(0.745)6 (0.255)2 + 8C7(0.745f (0.255) + (0.745)8
= 0.6661

Given the way in which Bridgegate's management propose to
judge the 'success' of the oyster stocking policy, the best order
quantity that can be adopted gives this policy two chances in
three of meeting their 'success' criterion.

4. To answer this question , it is necessary to recalculate X** with
F = 550 instead of F = 500. Doing this gives X ** = 199 dozen
oysters per week, an increase of seven dozen oysters over the
quantity per week to be ordered when F = 500. Here again, an
increase in fixed cost, in diminishing corporate wealth , causes
increasingly risk-averse managers to be willing to bear greater
risk. As the quantity ordered increases, so the probability
distribution for profit in a week becomes more widely spread
and less peaked.



Stochastic
Cost-Volume­

Profit
Analysis:

Choice Among
Combinations of Products

Galpen Cleansing Products

1. Given that Galpen's management have decided that one of the
Rythalax-based products designated Xl . . . X 4 will have to be
dropped, there are four alternative strategies open to them .
These may be described and labelled as being:

To make

Xl, X 2 and X 3 only
X I,X2 and X4 only
Xl, X 3 and X 4 only
X 2 , X 3 and X 4 only

To establish some terminology , let:

Which call Strategy

A
B
C
o

l1i represent the (sample) mean demand for product X i
a i represent the (sample) standard deviation of de­

mand for product Xi
a ij represent the variance of demand for product Xi if i

=j
cTij represent the covariance of demand between pro ­

ducts Xi and X, if i :i= j
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The variance-covariance matrix for the four products then
appears as follows:

Xl X 2 X 3 X 4

XI 0-11 = 102400 0-12 = -39040 0-13 = 772800-14 = 35520
X 2 0-21 = -39040 0-22 = 93025 0-23 = 42090 0-24 = 67710
X 3 0-31 = 772800-32 = 42090 0-33 = 119025 0-34 = -63825
X 4 0-4 1 = 355200-42 = 677100-43 = -63825 0-44 = 136900

Some necessary additional terminology is as follows. Let:

c,

Ii

represent the contribution margin per pack for
product Xi
represent the fixed cost outlay per week for
product Xi
represent the estimated mean of the probability
density function for profit associated with a given
Strategy X
represent the estimated variance of the probabil­
ity density function for profit associated with a
given Strategy X

Computation yields the following values for the mean and
standard deviation of profit associated with each of Strategies
A-D, listed in alphabetical order:

= £790;
= £1170;
= £1223;
= £1959;

v'V(YA )

v'V(YB )

v'V(Yd
v'V(YD )

= £4675 .7
= £4882.8
= £4661.4
= £4745 .2

In general terms, the probability of at least breaking even
associated with a given Strategy X is obtained as P(Yx ~ 0),
where:

P( :> [O-E(Yx ) ]
Yx = 0) = 1 - P z < v'VCYx)
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Point estimates of this probability for each of Strategies A-D
are listed below :

Strategy

A
B
C
D

Point estimate of probability

P(YA ~ 0) = 0.57
P(YB ~ 0) = 0.59
P(Yc ~ 0) = 0.60
P(YD ~ 0) = 0.66

While these probabilities are sufficiently close together for the
choice of strategy to be swayed by non-quantitative considera­
tions , as they stand they indicate a clear (if small) preference
for Strategy D. This strategy will, therefore, be the focus of the
next section.

2. The 90 per cent confidence limits around the expected profit
E(YD) of Strategy D are given by:

1959 - t19 ~ (4 7~~.2)2 < E(YD) < 1959

I (4745.2)2
+ t19 V 20

Here t19 represents the t-value for 19 degrees offreedom which
corresponds to an area of 0.10 in both tails of the t-distribution
combined. Carrying out the computation gives 90 per cent
confidence limits for E(YD) of:

£124.43 < E(YD) < £3 793.57

The 90 per cent confidence limits around the standard deviation
of profits from Strategy D are given by:

4745.2Y19 • /V(Y) 4734.2 Y19y 2 <v D< y 2
XI9,O.95 XI9,O.05

Here, X19 ,O.95 represents the value of the chi-squared distribu­
tion such that the area in the right tail is 0.05 and X19 .0 .05

represents the value of the chi-squared distribution such that
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the area in the left tail is 0.05. Carrying out the computation
gives 90 per cent confidence limits for v'V(YD) of:

£3767.56 < v'V(YD ) < £6501.91

The probability P(YD ~ 0) must lie within the limits imposed by
the application of the following:

(a) The upper bound on the 90 per cent confidence interval
for E(YD), together with the lower bound on the 90 per
cent confidence interval for v'V(YD)

(b) The lower bound on the 90 per cent confidence interval
for E(YD), together with the upper bound on the 90 per
cent confidence interval for v'V(YD)

In numerical terms, this appears as below:

_J 0-3793.57):> :> _ J 0-124.43)
1 ',z< 3767.56 =P(YD>O)=l, ,z< 6501.91

Computation yields 0.84 ~ P(YD > 0) ~ 0.51. To say that
'Strategy D is the safest strategy, and in respect of it there is a
90 per cent certainty that the probability of breaking even does
not exceed four chances in five nor is it less than SQ.-50' , seems a
fairly weak assertion. Yet it is based on a moderately lengthy
sampling period of 20 weeks. This is an example of the
(probably quite common) situation in which statistical techni­
ques can do no more than throw a modest amount of light on
the issues involved; the rest is up to management.



Short-term
Investment

of
Cash Balances

Maselia Ltd

The first step in dealing with this problem is to draw up a table of
the cumulative cash demand A jl associated with t = 1 ... 4 for each
branch j = 1 ... 15 of the probability tree. This is done below:

Cumulative cash demand A j l for cash sequence j in month t

Cash Month Probability of
sequence t = 1 t = 2 t = 3 t = 4 Sequence j(Pj)

£K £K £K £K
j = 1 0 5 10 20 0.0336
j = 2 0 5 10 25 0.0504
j=3 0 5 15 25 0.0360
j = 4 0 10 15 20 0.0108
j = 5 0 10 15 25 0.0252
j = 6 0 10 20 25 0.1440
j = 7 5 10 15 25 0.0800
j = 8 5 10 20 25 0.1200
j = 9 5 15 15 25 0.1400
j = 10 5 15 20 20 0.0300
j = 11 5 15 20 25 0.0300
j = 12 10 10 15 25 0.0480
j = 13 10 10 20 25 0.0720
j = 14 10 15 20 25 0.1350
j = 15 10 15 25 25 0.0450

--
1

--
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Next, it is necessary to tabulate, for the jth cash sequence, the
month Tjk as representing the first month in which cash layer k is
used up . This tabulation is shown below, for five cash layers, each of
£5000.

Values of "t« for cash sequence j and cash layer k

Cash Cash layer
Sequence k = 1 k=2 k=3 k=4 k=5

j = 1 2 3 4 4
j=2 2 3 4 4 4
j = 3 2 3 3 4 4
j=4 2 2 3 4
j = 5 2 2 3 4 4
j=6 2 2 3 3 4
j=7 1 2 3 4 4
j=8 1 2 3 3 4
j=9 1 2 2 4 4
j = 10 1 2 2 3
j = 11 1 2 2 3 4
j = 12 1 1 3 4 4
j = 13 1 1 3 3 4
j = 14 1 1 2 3 4
j = 15 1 1 2 3 3

From this data, the sets 0kt can be built up, each set representing
that group of cash sequences in which cash layer k is first used up
at the end of month t. This is done below, with the symbol <I> being
used to indicate the existence of an empty set.

Sequences in 0kt

Cash Month
layer t=1 t=2 t=3 t=4

k= 1 [7 15] [1. . . 6] <I> <I>
k=2 [12 15][4 .. . 11] [1. . .3] <I>
k=3 <I> [9,10,11,14,15] [3,4,5,6,7,8,12,13] [1,2]
k=4 <I> <I> [6,8,10,11,13,14,15][1.. .5,7,9,12]
k=5 <I> <I> [15] [2,3,5...9,11.. .14]
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Letting 'ITkt represent the probability that the kth layer of cash will
be used up in month t, a tabulation of the values of 'ITkt at t = 0 can
be drawn up as follows:

Values of'ITkt at t=O

Cash Month
layer t=l t=2 t=3 t=4

k = 1 0.7 0.3 0 0
k=2 0.3 0.58 0.12 0
k=3 0 0.38 0.536 0.084
k=4 0 0 0.576 0.424
k=5 0 0 0.045 0.8806

The return on a l-month security in this problem is certain, and for a
single cash layer it amounts to 5000(0.018) - [(0.006)(5 (00)+18] =
£42. Each cash layer has its own planning horizon; for k = 1 it is 11 = 2,
for k = 2 it is n = 3 and for k = 3,4,5 it is n = 4. Expected
returns net of transaction costs now have to be worked out , for the
available patterns of investment and reinvestment in securities of
differing maturities, up to the planning horizon for each cash
layer. Representing the expected net return from investing cash
layer k at the end of month t in a security maturing after m, months
as rkt(mt), tabulations appear as follows :

Time of
investment

t = 0
t = 1
t = 2

Time of
investment

t = 0
t = 1
t = 2
t = 3

Values of rkt(mt) for cash layer k = 1

Duration of security to maturity m, (months)
012

o 42 10.9
o 12.6
o

Values of rkt(mt) for cash layer k = 2

Duration of security to maturity m, (months)
o 123

o 42 80.1 22.46
o 29.4 -7.94
o 5.04
o



Time of
investment

t = 0
t = 1
t = 2
t = 3
t = 4
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Values of rkt(mt) for cash layer k = 3

Duration of security to maturity m, (months)
o 1 2 3 4

o 42 132 I 143 68.51
o 42 66.26/ 10.57
o 26.04 - 10 . 8~

o 3.53 I

o

Values of rkt(mt) for cash layer k = 4

Time of Duration of security to maturity m, (months)
investment 0 I 1 2 3 4

t = 0 0 42 132 222 172.03
t = 1 0 42 132 102.19
t = 2 0 42 32.35
t = 3 0 17.81
t = 4 0

Time of
investment

t = 0
t = 1
t = 2
t = 3
t = 4

Values of rk,(mt) for cash layer k = 5

Duration of security to maturity m, (months)
o 1 234

o 42 132 222 301.06
o 42 132 212.64
o 42 124.22
o 40.11
o

The final step in this analysis involves using dynamic programming
to specify the optimal investment policy. This policy must cover
the period up to the planning horizon for each layer. The horizon
is located at n = 2 months for cash layer k = 1, at n = 3 months for
cash layer k = 2, and at n = 4 months for cash layers k = 3,4,5 .
The dynamic programming involves the backward solution of a
recurrence relation for ff> as representing the maximum expected
net return from investing a given cash layer between the end of
month t and the planning horizon for that layer. This process of
backward solution gives rise to the following computations:
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Cash layer k = 1

Jz = 0
h = Max. [h(O) + Jz} , m, = 1 h(ml) + h +m,}]
II = Max. [(0+0), (12.6+0)] = 12.6, where m l = 1

10 = Max. [{ro(O) + Id , mo = 1,2 {ro(mo + 1m')]
Max.

= Max. [(0+ 12.6) , Max. {(42+ 12.6) , (10.9+0)}] = 54.6,
where mo = 1

Cash layer k = 2

h = 0
h = Max. [{r2(0) + !3}, mz = 1 {r2(m2) + Jz+m,}]

= Max. [(0+0), (5.04)] = 5.04, where mz = i
It = Max. [{rl(O) + Jz}, ml = 1,2 {rl(ml) + II+m,}]

Max.

= Max. [(0+5.04) , Max. {(29.4+5.04) , (-7.94+0)}]
= 34.44, where ml = 1

10 = Max. [{ro(O) + Id, mo = 1,2,3 {ro(mo) + 1m')]
Max.

= Max. [(0+34.44), Max. {(42+34.44) , (80.1 +5.04) ,
(22.46+0)} ]

.= 85.14, where mo = 2
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Cash layer k = 3

14 = 0
h = Max. [{r3(0) + 14}, m3 = 1 {r3(m3) + h+m)]
h = Max. [(0+0), (3.53+0)] = 3.53, where m3 = 1

h = Max. [{r2(0) + h}' m2 = 1,2 {r2(m2) + 12+m,}]
Max.

[ z = Max. [(0+3.53) , Max. {(26.04+3.53) , (-lO.89+0)}]
= 29.57, where mz = 1

II = Max. [h(O) + fz} , ml = 1,2,3 h(md + II+m,}]
Max.

= Max. [(0+29.57), Max. {(42+29.57), (66.26+3.53),
(lO.57+O)}]

= 71.57 , where ml = 1

10 = Max. [{ro(O) + Id , mo = 1,2,3,4 {ro(mo) + Imol]
Max.

= Max.[(0+71.57), Max. {(42+71.57) , (132+29.57) ,
(143+3.53) , (68.51+0)}]

= 161.57, where mo = 2

Cash layer k = 4

14 = 0
13 = Max. [(0+0) , (17.81 + 0)] = 17.81, where m3 = 1
12 = Max.[(0+17.81), Max.{(42+17.81) , (32.35+0)}] =

59.81, where m2 = 1
II = Max. [(0+59.81), Max.{(42+59.81) , (132+ 17.81),

(102.19+0)} ]
= 149.81, where ml = 2

10 = Max. [(0+149.81), Max.{(42+149.81), (132+59.81) ,
(222+17.81) , (172.03+0)}] = 239.81, where mo = 3
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Cash layer k = 5

/4 = 0
f3 = Max.[(O+O), (40.11 + 0)] = 40.11, where m-; = 1
fz = Max.[(0+40.11) , Max. {(42+40.11), (124.22+0)}]

= 124.22, where mz = 2
it = Max.[(0+124.22), Max.{(42+124.22) , (132+40.11),

(212.64+0)}]
= 212.64, where ml = 3

/0 = Max.[(0+212.64), Max.{(42+212.64),
(132+124 .22), (222+40.11), (301.06+0)}]

= 301.06, where mo = 4

Overall optimal plan

From the above computations, the overall optimal short-term
investment programme may be built up as follows:

Invest £5000 (layer k = 1) in l-rnonth securities at time t = 0
If this layer is not required to meet payments at t = 1, it
should be reinvested in I-month securities.

Invest £10000 (layers k = 2 and k = 3) in 2-month securities
at time t = O.
If layer k = 2 is not required to meet payments at either t = 1
or t = 2, it should be reinvested at t = 2 in l-rnonth securities.
If layer k = 3 is not required to meet payments at t = 2, it
should be reinvested in l -month securities, and an identical
further reinvestment should take place if layer k = 3 is not
required to meet payments at t = 3.

Invest £5 000 (layer k = 4) in 3-month securities at time t = 0
If this layer is not required for payments at t = 3, it should be
reinvested in l-month securities.

Finally, invest £5 000 (layer k = 5) in 4-month securities at
time t = O.
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The aggregate expected net return for all five layers , ignoring any
cost savings arising from investing or disinvesting more than one
cash layer in securities of a given maturity at the same time , is
£842.18.

A cost saving equal to the fixed transaction cost of £18 is made
every time two cash layers are invested or disinvested in securities
of a given maturity. The following are the cases where this can
happen within the optimal strategy, together with their probabili­
ties of occurrence and the expected cost savings arising from these
probabilities.

Transaction Probability of
occurrence

Expected
cost

savings

£
Layers k = 2 and k = 3 invested

in 2-month securities at t = 0 1 18.0
Layers k = 2 and k = 3 invested

in l-rnonth securities at t = 2 (0.12)(0 .62)=0.0744 1.34
Layers k = 3 and k = 4 invested

in l-rnonth securities at t = 3 (0.084)(0.424)=0.0356 0.64

Expected cost savings 19.98

When these expected cost savings are added to the total expected
net return (computed without regard to these savings) a final figure
for the expected value of the optimal investment policy is obtained
as £862.16.



Payments
Netting in

Multinational
Cash

Management

Thornend Communication Systems PLC

The first step here is to classify the subsidiaries according to their
net indebtedness positions. For subsidiary i, the net inflow or
outflow of cash consequent upon overall debt settlement is given
by fi. The classification of subsidiaries by their Iivalues - and the a,
and b, values which follow from them - can be done in a way
leading to the following tabulation:

Subsidiary No. Ii value

UK i = j = 1 16 al = 16
Germany i=j=2 5 a2 = 5
Sweden i = j = 3 31 a3 = 31
USA i = j = 4 - 9 b4 = 9
France i = j = 5 -43 b5 = 43

It is then convenient to rewrite the table of transaction costs in
terms of the i and j values, as follows:

322
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Transfer between

i = 1
i = 1
i = 1
i = 1
i = 2
i = 2
i = 2
i = 3
i = 3
i = 4

and

j=2
j = 3
j=4
j=5
j=3
j=4
j=5
j=4
j = 5
j=5

Costs as proportion of
£ value transferred

0.008
0.012
0.006
0.009
0.013
0.009
0.007
0.013
0.011
0.010

From the above data, m = 3 and n = 5. Hence the general form of
the constraints is:

5
L Xij = a,

j=1
j~i

5
L Xij = b,

i=1
i ,j,j

i = 1. .. 3

j = 4,5

In detail, the constraints are as follows :

XI2 + XI3 + XI4 + XI5 = 16
X21 + X23 + X24 + X25 = 5
X31 + X32 + X34 + X35 = 31
XI4 + X24 + X34 + X54 = 9
XI5 + X25 + X35 + X45 = 43

The general form of the objective function is:

3 5 5 5
Minimise L L Cij Xij + L L Cij Xij

i= 1 j=1 i=4 j=4
j,j,j i,j,i

(1)
(2)
(3)
(4)
(5)



324 Payments Netting

When written out in full, letting the total transaction cost incurred
be C, the objective function appears as:

Minimise C = O.OO8x12 + 0.012xl3 + 0.006X14 + 0.009XI5 +
0.008x2I + 0.013x23 + 0. OO9X24 + 0.007X25 + 0.012x3I +
0.013x32 + 0.013x34 + 0.011x35 + 0.01Ox54 + 0.01Ox45

Solving this linear programming problem gives the following
result:

XI4 = 9; XI5 = 7; X25 = 5; X35 = 31; C = 0.493

The payments netting scheme to which this gives rise involves
transfers of funds as below, with all amounts in sterling equiva­
lents:

1. The United Kingdom transfers £90000 worth of funds to the
United States .

2. The United Kingdom transfers £70000 worth of funds to
France .

3. Germany transfers £50000 worth of funds to France.
4. Sweden transfers £310000 worth of funds to France.

This solution involves transferring a total of £520000 worth of
funds, as compared with the £4920000 worth that would be
transferred in the absence of any netting procedure . The total
transactions cost of this solution is £4930; even a complete
bilateral netting solution would involve a total cost of £13 310.

As a matter of interest, the best that can be done with bilateral
netting only is to produce a solution as follows:

XI4 = 11; XI5 = 11; XI2 = 3; X3I = 9; X45 = 32
X42 = 6; X34 = 36; X25 = 2; X53 = 2; X23 = 12

Trying to work from a diagram of the best bilateral netting in order
to find the best multilateral netting by eye is an unwieldy approach
here . The bilateral netting diagram contains ten arrows connecting
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five nodes, and it is easy to miss an opportunity for netting in the
face of its complexity. The linear programming approach, which
has the additional advantage of taking differing unit transfer costs
into account, is to be preferred even though only five countries are
involved . With more countries, multilateral netting without linear
programming swiftly becomes infeasible .



The Learning
Curve and
Financial
Planning

Claygill Holdings

The data on cumulative average numbers of hours spent and on
cumulative output has been subjected to a logarithmic transforma­
tion in order to turn a curvilinear relation into a log-linear form .
For the purpose of further calculation, it is necessary to take
antilogarithms, giving:

y = 804.3x-O.1203

This is the usual formulation of the learning curve , here with a =
804.3 and b =-0.1203 so that b + 1 = 0.8797. The learning rate R
is given by solving In R = b In 2, so that here R = 0.92. This is
equivalent to saying that the regression on the data from the
temporary production line has identified the presence of a 92 per
cent learning curve . Before accepting this finding in practice , it
would be prudent to compute the 95 per cent confidence interval
for the value of b in the regression; insufficient data is given for
this purpose in the problem.

Denoting by 11 the cash outlay on fixed costs per annum
associated with a single production line, and by12 the correspond­
ing outlay for two production lines, the other parameters relevant
to finding break-even levels in the first year may be written as
follows:

p = 3000; c = 4.5;/1 = 280000;12 = 250000
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1. In approaching this part of the problem, the assumption will
first be made that learning continues throughout the 2 years. If
this is the case, then for one-line working the break-even level
in the first year is given by that value of x which satisfies the
equation:

3000x - 3619.35xo.8797 - 280000 = 0

i.e. x = 247 AIF units

For two-line working, the break-even level in the first year is
given by that value of x which satisfies the equation:

3000x - (2)(3 619.35)(0.5o.8797)x 0 .8797 - 250000 = 0

i.e. x = 255 AIF units

Although running two lines instead of one reduces the outlay
on fixed costs by £30000 in the first year , the break-even point
is still higher for two lines than it is for one line. This is because
the fixed cost advantage of two lines is just slightly outweighed
by the disadvantage arising from the slower progress of two
lines down their learning curves relative to the progress of one
faster line down its learning curve.

The other case which requires consideration is that in which
the learning effect ceases once a level of efficiency has been
reached at which an AIF is produced in 400 labour hours . Here,
the first step is to find the level of output Xs at which learning
effects are exhausted. For an individual production line, this
level is given by a cumulative production of:

Xs = [400/{(804.3)(0.8797)}] 1I-0.1203 = 115 AIF units

For one-line working, learning effects are thus exhausted after
115 AIF units have been produced, and for two-line working
these effects are exhausted after 115 units have been produced
on each line, that is after a cumulative production of 230 units .
For both the one-line and two-line cases, the break-even levels
already calculated lie above the levels of output at which
learning is exhausted. Consequently, both of these break-even



328 Learning Curves

levels will be raised by revising the assumption made from the
continuous learning one to one of a limit constraining the
learning effect. Break-even levels with the 'constrained learn­
ing' assumption may be recalculated as below:

For one-line working, it is first necessary to compute the total
number of labour hours T, required to exhaust the learning
effect.
This is given by:

T, = (804.3)(115°·8797) = 52265 hr

The break-even level is then given by that value of x which
satisfies the equation:

x = (4.5)(52265)-(4.5)(400)(115) + 280000
3000 - (4.5)(400)

= 257 AIF units

For two-line working, the number of labour hours required to
exhaust the learning effect must be exactly double the number
required for one-line working. Consequently, the break-even
level is given by that value of x which satisfies the equation:

x = (4.5)(2)(52265)- (4.5)(2)(400)(115) + 250000
3000 - (4.5)(400)

= 255 AIF units

With two-line working, the effect of the constraint on learning
arises only after the break-even level has been almost reached,
and thus has a negligible effect on this level (raising it only by
0.2 of a unit). However, with one-line working, the effect of the
constraint on learning is felt at a relatively low level of output,
and since no further learning is experienced beyond this level,
the break-even value is raised quite sharply.

2. The first case which will be considered is that in which learning
continues throughout the first 2 years. For this case , the
calculations are as follows:
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One production line: first year

Output Xl is given by:

(
110000)1/008797

XI = 804.3 = 268 AIF units

Profit 1f1 is given by:

1f1 = (3000)(268) - (4.5)(804.3)(268°08797) - 280000
= £28937

One produc.ion line: second year

Output X2 is given by:

(
220 000 )I/Oo1l797

X2 = 804 .3 - 268

= 321 AIF units

Profit 1f2 is given by the cumulative profit on the first 2 years of
output together less the profit on the first year (already
calculated). That is,

1f2 = (3 (00)(589) - (4.5)(804.3)(589°08797) - 560000 ­
28937
= £188369

Two production lines: first year

Output Xl is given by:

(
55000 )1 /0 08797 .

Xl = (2) 804.3 = 244 AIF umts

Profit 1f1 is given by:

1f1 = (3 (00)(244) - (2)(4.5)(804.3)(0.5°08797)(244°08797)
250000
= - £13 493, that is a loss of £13493
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Two production lines: second year

Output X z is given by:

_ ( 110000 ) 11IJ.8797
Xz - (2) 804.3 - 244

= 292 AIF units

Profit 1fz is given by:

1fz = (3000)(536) - (2)(4.5)(804.3)(0.5°.8797)(536°.8797)­
500000+ 13493
= £131354

If learning ceases once an efficiency level of 400 labour hours
per unit produced has been achieved, then the calculations of
output and profit levels will appear as follows :

One production line: first year

Output Xt is given by:

XI = (110000 - 52265)/400 + 115
= 259 AIF units

Profit 1ft is given by:

1ft = (3000)(259)-(4.5)(52265)-(4.5)(400)(259-115)
280000 = £2607

One production line: second year

Learning effects have been exhausted by the second year , so
that output Xz is given by:

110000 .
Xz = 400 = 275 AIF units

Profit 1fz is given by:

1fz = (3000)(275)-(4.5)(110000)-280000
= £50000
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Two production lines: first year

Output Xl is given by:

Xl = (110000-104530)/400 + 230
= 244 AIF units

Profit 1Tl is given by:

1Tl = (3000)(244) - (4.5)(104530)-(4.5)(400)(244-230) ­
250000 = - £13585 loss

Two production lines: second year

Learning effects have been exhausted by the second year, so
that output X2 is given by:

(2)(55 000) .
X = ---- - = 275 AIF umts

2 400

Profit 1T2 is given by:

1T2 = (3000)(275)-(4.5)(110000) - 250000
= £80000

The answer to part' 2 of the problem may be summarised in
terms of the following cash flows:

If learning continues over 2 years

One production line
Two production lines

Year I

£
28937

-13493

Year 2

£
188369
131354

If learning stops at 400 labour hours

Year I Year 2

One production line
Two production lines

£
2607

-13585

£
50000
80000
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The question of whether learning ceases, and if so at what level
of efficiency, is seen to affect both the overall return from
producing AIF units and the relative attractiveness of doing so
on either one or two production lines.

3. Representing 81 as the proportional error in the learning rate
and 82 as the proportional error in the initial assembly time
gives rise, in this question, to 81 = 0.98 and 82 = 1.1. The
revised output estimate for one-line working in the first year Xl'

and the second year X2' is:

,_ [ 110000 ] V[{ln(O.98)(O.92)/ln2} +1)

Xl - (1.1)(804.3)

= 290 AIF units

, [ 220000 ]
X2 = (1.1)(804.3)

= 365 AIF units

V[ {In(O.98)(O.92)/ln2} + 1)
- 290

These results should be compared against those at the begin­
ning of part 2. of the problem. It may then be seen that a
relatively small fall in the learning rate R (that is, a relatively
small increase in the gradient of the learning curve) more than
offsets a relatively large increase in the initial assembly time.



Joint Product
Decisions

Kwisant Oils

1. For each of the three products sold under imperfectly competi­
tive conditions, the (linear) demand function may be taken to
have the form P = a - bD, where:

P represents the price charged per litre
D represents the demand, in litres per week
b represents the gradient of the function
a represents the intercept term

Two pairs of D and P values have been estimated for each of
the products facing imperfect competition. From these esti­
mates , two simultaneous equations can be set up in order to
compute the two unknowns a and b. The results obtained are as
follows:

Baxin

2.75 = a - 2300b
2.25 = a - 3600b

Gholak

4 = a - 1100b
3 = a - 1800b

Seitsol

4.5 = a - 1200b
3.5 = a - 1400b

Hence: a = 3.6346 Hence: a = 5.5714 Hence: a = 10.5
b = 0.000385 b = 0.001429 b = 0.005

333
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It is now necessary to define the terms that will be required in
the analysis of this problem. Let :

PB, PG and Ps represent respectively the selling prices
per litre for Baxin, Gholak and Seitsol

X B, X G and X s represent respectively the volume of sales
(in litres per week) for Baxin, Gholak
and Seitsol

H p represent the number of litres per week
of Haderol used in the manufacture of
the final products Gholak and Seitsol

He represent the number of litres per week
of Haderol sold to Celos Ltd

X T represent the number of litres of Teilu
mixture produced per week

Using this terminology, the demand functions for the three
products facing imperfect competition appear as follows:

PB = 3.6346 - O.OO0385XB

PG = 5.5714 - O.OO1429XG

Ps = 10.5 - O.OO5Xs

The revenue per week R is given by:

The cost per week C is given by the number of litres of each of
the intermediate and final products processed per week, multi­
plied by the cost of processing per litre. This is given by:

C = O.7XT + O.85XB + O.55(Hp + He) + 1.3XG + 1.4Xs

The profit function is given by 1T = R - C. Expanding and
simplifying the expressions for Rand C gives rise to the
following objective function:

Maximise 1T = 2.7846XB - O.000385X~ + 4.2714XG ­

O.001429X~ + 9.1Xs - o.oosx; + 1.25He
- O.7XT - O.55Hp
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This maximisation is subject to the following constraints:

X B - OAXT ~ 0 (that is, the amount of Baxin pro­
duced and sold cannot exceed 40
per cent of the amount of Teilu
mixture produced)

He + H p - OAXT ~ 0 (that is, the amount of Haderol
available either for sale to Celos or
for the manufacture of Gholak and
Seitsol cannot exceed 40 per cent of
the amount of Teilu mixture pro­
duced)

X G - 0.5Hp ~ 0 (that is, the amount of Gholak sold
cannot exceed 50 per cent of the
amount of Haderol not sold to
Celos)

X s - 0.375H p ~ 0 (that is, the amount of Seitsol sold
cannot exceed 37.5 per cent of the
amount of Haderol not sold to
Celos)

XnXB,XG,Xs,Hp,He ~ 0 (non-negativity constraints)

Reformulating this problem in the Lagrangean mode enables it
to be expressed as:

Maximise M = 2.7846XB - 0.OOO385X~ + 4.2714XG ­
0.001429X~ + 9.1Xs - 0.OO5X~ + 1.25He
- 0.7XT - 0.55Hp - }'l(XB - OAXT ) ­

Az(He + H» - OAXT ) - A3(XG - 0.5Hp)
- A4(XS - 0.375Hp)

The complementary slackness conditions for this problem are
as follows :

X B [2.7846 - O.OOO77XB - Ad = 0
X G [4.2714 - 0.002858XG - A3] = 0
X s [9.1 - O.OlXs - A4] = 0
X T [-0.7 + OAAI + OAA2] = 0
H» [-0.55 - A2 + 0.5A3 + 0.375A4] = 0
He [1.25 - A2] = 0
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Al [O.4XT - X B ] = 0
A2 [O.4XT - He - Hp ] = 0
A3 [0 .5Hp - Xd = 0
A4 [0 .375Hp - Xs] = 0

The interior solution to these conditions is given by:

X T = 7417.5; X B = 2967; X G = 883.7; X s = 662.773
He = 1199.6; Hp = 1767.4
Al = 0.5; A2 = 1.25; A3 = 1.7458; A4 = 2.4723

With this solution, all the four constraints hold as strict
equalities, so that there are no by-products, all the products
being joint. In detail, the optimum prices and production levels
are as follows:

Product

Baxin
Gholak
Seitsol
Haderol (for sale to Celos)

Sales/Production level

(I per week)

2967.0
883.7
662.8

1199 .6

Price

(£ per I)

2.49
4.31
7.19
1.80

These price and production levels give rise to a profit of 1T =
£6702 per week.
The marginal revenue functions for Baxin, Gholak and Seitsol
are represented respectively by MR B , MR G and MRs, where:

MRB = 3.6346 - 0.OO077XB
MRG = 5.5714 - 0.OO2858XG

MRs = 10.5 - O.OlXs

Denoting the separate processing costs for Baxin, Gholak and
Seitsol respectively by CB , CG and Cs, from the question CB =
0.85; CG = 1.3; Cs = 1.4. In the optimal solution, the following
relationship must hold:

Marginal revenue for a product = Allocated joint cost per
unit of that product manufactured + Cost of separate
processing per unit of that product manufactured
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This relationship may be demonstrated for each product as
follows:

MRB

MRc
MRs

= Al + CB = 1.35
= A3 + Cc = 3.0458
= A4 + Cs = 3.872

When
X B=2967

Xc = 883.7
X s = 662.8

As regards the Haderol sold to Celos Ltd, the marginal and
average revenue are identical at £1.80, which represents the
sum of the allocated joint cost A2 = £1.25 and the cost of
synthesising Haderol, which is £0.55 per litre.

2. The effect of the restriction on the supply of Teilu mixture is to
place another constraint on the solution, of the form that

X r - 4000 ~ 0

A new term then enters the maximand M, as follows:

M = ... -AS(Xr - 4000)

There is also an extra complementary slackness condition, of
the form:

AS [4000 - X r ] = 0

and the condition with X r outside the square bracket changes
to:

X r [-0.7 + O.4AI + 0.4A2 - AS] = 0

The revised interior solution has He = - 167.4, which violates
the H e ~ 0 non-negativity constraint. It is therefore necessary
to set He = 0, so that the A2 = 1.25 equation is eliminated, and
the equation with A2 outside the square bracket becomes O.4Xr
- H» = O. The solution is then:

X r = 4000; X B = 1600; Xc = 800; X s = 600; H p = 1600
Al = 1.5526; A2 = 1.605; A3 = 1.985; A4 = 3.1; AS = 0.56304
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The optimum prices and production levels are:

Product Sales/production level Price

(I per week) (£ per I)
Baxin 1600 3.02
Gholak 800 4.43
Seitsol 600 7.50

These price and production levels give rise to a profit of 1T =
£5952 per week.
It is important to note that the interpretation of A as the
allocated cost of passing a unit of product through a joint
production process ceases to be valid once there are constraints
on input availability. An interpretation of the Al = 0.5, A2 =
1.25 result in part 1. is that the £0.70 per litre cost of producing
Teilu mixture can be allocated as 0.4(£0.5) = £0.20 to Baxin
and 0.4(£1.25) = £0.50 to Haderol. It is not possible to
interpret the Al = 1.5526, A2 = 1.605 result above in this
manner, because of the effect of the As term arising from the
resource constraint.



Appendices

Checklist of
Topics and

Related Problems

1 Standard Costing and Matrix Algebra

Primary Reference

Fully-worked Problem
Problem for Self-study

w. Franks and R. Manes , 'A
Standard Cost Application of
Matrix Algebra' , Accounting Re­
view, XLII 3 (July 1967) 516-25
Radium Dyestuffs Ltd
Arconate Ltd

2 Stochastic Process Costing

Primary Reference

Fully-worked Problem
Problem for Self-study

A. W. Corcoran and W. E .
Leininger, 'Stochastic Process
Costing Models' , Accounting Re­
view, XLVIII 1 (January 1973)
105-14
Ottoline Electronics
Kleeford Distilled Compounds
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3 Credit Management and Markov Chains: Partial
Balance Aging Method

Primary Reference

Fully-worked Problem
Problem for Self-study

A. W. Corcoran, 'The Use of
Exponentially-Smoothed Transi­
tion Matrices to Improve Fore­
casting of Cash Flows from
Accounts Receivable' , Manage­
ment Science, XXIV 7 (March
1978) 732-9
Stryford Ltd
Langdale Ltd

4 Credit Management and Markov Chains: Modified
Total Balance Aging Method

Primary References

Fully-worked Problem
Problem for Self-study

R . M. Cyert, H . J . Davidson and
G. L. Thompson, 'Estimation of
the Allowance for Doubtful
Accounts by Markov Chains',
Management Science, VIII 3
(April 1962) 287-303
J . A. M. van Keulen, J . Spronk
and A . W. Corcoran, 'On the
Cyert-Davidson-Thompson
Doubtful Accounts Model ',
Management Science, XXVIII
(January 1981) 108-12
Michelsky Ltd
Firenza Associates

5 Linear Programming and Decisions on Internal v.
External Purchases of Services

Primary Reference K. R. Baker and R. E. Taylor,
'A Linear Programming
Framework for Cost Allocation



Fully-worked Problem
Problem for Self-study
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and External Acquisition When
Reciprocal Services Exist' ,
Accounting Review , LIV 4
(October 1979) 784-90
Knockshinnock Mines Ltd
Remosense PLC

6 Linear Programming, Opportunity Losses and ex
post Budgeting

Primary Reference

Fully-worked Problem
Problem for Self-study

J . S. Demski, 'An Accounting
System Structured on a Linear
Programming Model', Account­
ing Review , XLII 4 (October
1967) 701-12
Araque Perfumes Ltd
Shalmirane Ltd

7 Input-Output Analysis and Linear Programming

Primary Reference G. A. Feltham, 'Some Quantita­
tive Approaches to Planning for
Multiproduct Production Sys­
terns ', Accounting Review , XLV
1 (January 1970) 11-26

Fully-worked Problems Taumor Industries
Salmedge Products

Problems for Self-study Kerruish Tracers
Ra istrick Ltd

8 Use of Information Theory to Isolate Substantial
Variances

Primary Reference B. Lev, 'An Information Theory
Analysis of Budget Variances' ,
A ccounting Review , XLIV 4
(October 1969) 704-10
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Fully-worked Problem
Problem for Self-study

Heversham Horticulture Ltd
Department of Transportation
Analytical Offices

9 The Single-period Cost Variance Investigation
Decision

Primary References

Fully-worked Problem
Problem for Self-study

R . Capettini and D. Collins,
'The Investigation of Deviations
from Standard Costs in the Pre ­
sence of Unequal State
Variances', Journal of Business
Finance and Accounting, V 4
(Winter 1978) 335-51
T . R. Dyckman, 'The Investiga­
tion of Cost Variances' , Journal
of Accounting Research, VII 2
(Autumn 1969) 215-44
Alston Glassworks
Star Chemical Company

10 The Multi-period Cost Variance Investigation
Decision

Primary Reference

Fully-worked Problem
Problem for Self-study

D . A . Dittman and P. Prakash ,
'Cost Variance Investigation:
Markovian Control of Markov
Processes', Journal of Account­
ing Research, XVI 1 (Spring
1978) 14-25
Fitzroy Paper Products
Mansfield Pressings
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11 Stochastic Cost-Volume-Profit Analysis and
Decision Theory

Primary Reference

Fully-worked Problem
Problem for Self-study

J . E. Jarrett, 'An Approach to
Cost-Volume-Profit Analysis
Under Uncertainty', Decision
Sciences, IV 3 (July 1973) 405-20
William Lehman Timber Ltd
Bulk Powder Producers Ltd

12 Stochastic Cost-Volume-Profit Analysis: Satisficing
with Short Product Lives

Primary Reference

Fully-worked Problem
Problem for Self-study

B. E. Ismail and J. G. Louder­
back , 'Optimizing and Satisficing
in Stochastic Cost-Volume­
Profit Analysis', Decision Scien­
ces, X 2 (April 1979) 205-17
Knowsley Medical Products
Bridgegate Foods

13 Stochastic Cost-Volume-Profit Analysis:Choice
Among Combinations of Products

Primary Reference

Fully-worked Problem
Problem for Self-study

J . P. Dickinson, 'Cost-Volume­
Profit Analysis Under Uncertain­
ty', Journal of Accounting Re­
search, XII 1 (Spring 1974) 182-7
Barrow Gurney Orchards Ltd
Galpen Cleansing Products

14 Short-term Investment of Cash Balances

Primary References J . C. T. Mao and C. E . Sarndal ,
'Cash Management: Theory and
Practice', Journal of Business
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Fully-worked Problem
Problem for Self-study

Finance and Accounting, V 3
(Autumn 1978) 329-38
A. Punter, 'Optimal Cash Man­
agement Under Conditions of
Uncertainty', Journal ofBusiness
Finance and Accounting, IX 3
(Autumn 1982) 329-40
Alvor Developments
Maselia Ltd

15 Payments Netting in Multinational Cash
Management

Primary Reference

Fully-worked Problem
Problem for Self-study

A. C. Shapiro, 'Payments Net­
ting in International Cash Man­
agement', Journal of Internation­
al Business Studies, IX 2 (Fall
1978) 51-8
Lintock Corporation
Thornend Communication Sys­
tems PLC

16 The Learning Curve and Financial Planning

Primary References

Fully-worked Problem
Problem for Self-study

D . W. Harvey, 'Financial Plan­
ning Information for Production
Start-ups', Accounting Review,
LI 4 (October 1976) 83~5
E . V. McIntyre, 'Cost- Volume­
Profit Analysis Adjusted for
Learning', Management Science,
XXIV 2 (October 1977) 149--{j0
Holt Electronics PLC
Claygill Holdings
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17 Joint Product Decisions

Primary Reference

Fully-worked Problem
Problem for Self-study

L. R. Arney, 'Joint Product De­
cisions: The Fixed Proportions
Case' , Journal of Business Fi­
nance and Accounting, XI 3 (Au­
tumn 1984) 295-300
Cydilla Separators Ltd
Kwisant Oils
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A. D. Bailey, 'Analysis of a Standard Cost Application of
Matrix Algebra ' , in J. L. Livingstone (ed .) , Management
Planning and Control: Mathematical Models (New York :
McGraw-Hill, 197..0) 207-30.
A. W. Corcoran and W. E . Leininger, 'Isolating Accounting
Variances Via Partitioned Matrices ', Accounting Review, L 1
(January 1975) 184-8.
W. Franks and R. Manes , 'A Standard Cost Application of
Matrix Algebra', Accounting Review, XLII 3 (July 1967)
516-25.

2 Stochastic Process Costing

A. W. Corcoran and W. E. Leininger, 'Stochastic Process
Costing Models' , Accounting Review , XLVIII 1 (January
1973) 105-14.
J. G. Kemeny and J. L. Snell, Finite Markov Chains (New
York: Springer-Verlag, 1983) 24-68 .
W. E. Leininger, Quantitative Methods in Accounting (New
York: D. Van Nostrand Co., 1980) 302-10.
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To locate expositions of other techniques related to those de­
scribed in this book , reference may be made to the following
surveys covering the quantitative aspects of management account­
ing. Taken together, these surveys provide a broad critique of this
area of study. Where a comment on the content of a survey has
been provided by a discussant , the discussant's contribution is not
separately referenced, but the page numbers given for the survey
are inclusive of those occupied by his contribution.

K. N. Bhaskar, 'Quantitative Aspects of Management
Accounting ' , in M. Bromwich and A. G . Hopwood (eds) ,
Essays in British Accounting Research (London: Pitman,
1981) ch. 10, 229-78.
Committee on Concepts and Standards-Management Plan­
ning and Control, Managerial Accounting Literature Ab­
stracts (Sarasota , Florida: American Accounting Associa­
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Age categorisation of debt, 37-8, 27(}"'1
Alston Glassworks

analysis , 99-108
problem, 97-8

Alvor Developments
analysis , 155-68
problem, 153-4

Araque Perfumes
analysis , 55-68
problem, 52-4

Arconate Ltd
analysis, 257-61
problem, 205-7

Average demand assumption, in
stochastic cost-volume-profit
analysis , 136

Bad debts
expected value , 39-40, 272-3
standard deviation, 41,273

Barkman, A .I., 43
Barrow Gurney Orchards

analysis, 147-52
problem, 145-6

Bayes' Theorem, in variance investiga­
tion decisions, 101-4 ,296-8

Bit , measure in.information theory, 88
Break-even probabilities

cost-volume-profit analysis, combina­
tionsofproducts ,147-50,31(}"'12

cost-volume-profit analysis,
confidence limits, 15(}"'2, 312-13

cost-volume-profit analysis, perishable
product, 14(}"'3, 307-8

in variance investigation decisions,
10(}...1 ,296

Index

Bridgegate Foods
analysis, 306-9
problem, 238-40

Budgeting
expost, 52-68,218-21,278-82
flexible, 56

Bulk Powder Producers Ltd
analysis, 303-5
problem, 236-7

Capettini-Collins decision rule, 105-7,
298-9

Cash management in multinationals,
payments netting. 169-76,247.;...8,
322-5

Cash needs , and short-term investment,
153-68,243-6,314-21

Central Limit Theorem, 126
Chi-squared distribution, 151,312
Claygill Holdings

analysis , 326-32
problem, 249-51

Coefficients
input, 72, 82, 283,288-9
net input--output, 73,82,284,288-9
output. 72, 82,283 , 288-9
technological, 48-9,275

Complementary slackness conditions,
198,335-6

Cost
fixed, 143-4,309
offailing to correct out-of-control

state, 112
opportunity. seeopportunity cost
variable, seevariable cost
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variance investigation decision, 97­
122,231-5,296-302

Cost-volume-profit analysis
and decision theory, 123--31, 236-7 ,

303--5
choice among combinations of pro­

ducts , 145-52,241-2,310-13
satisficingwith short product lives,

132-44,238-40,306-9
Credit management, 27-43 , 211-15 ,

266-74
CydillaSeparators Ltd

analysis, 193--202
problem , 190-2

Debt aging method
modified total balance , 35-43 , 213­

15,270-4
partial balance , 27-34 , 211-15, 266-9

Debtors
expected value of receipts , 39-40,

272-3
investment level in steady-state, 42-3 ,

274
present value of receipts , 42, 273-4
standard deviat ion of receipts, 41, 273

Decision theory
posterior analysis, 126-8,304
preposterior analysis , 128-31,305
sensitivity analysis, 131
two-action problem, 125-6

Decisions on joint products, 190-202,
252-4,333--8

Department of Transportation Analy­
tical Offices

analysis, 293--5
problem, 229-30

Disjoint region, 106-8,299-300
Dittman, D. A ., 122
Dynamic programming

in short-term investment decisions,
164-7,317-21

in variance investigation decisions,
122

Ex postbudgeting
effect on motivation, 67-8
intra-period relationships, 61-6, 280­

2
variance analysis, 58-61 ,279-80

Expected
cost of satisficing strategy, 143,308

net gain from sampling, 130-1,305
net return on short-term investment ,

161-4 ,316-17
value of sample information, 128-31 ,

305

Financial planning-learning curves ,
177-89,249-51 ,326-32

Firenza Associates
analysis , 270-4
problem, 213-15

Fitzroy Paper Products
analysis , 112-22
problem, 109-11

Forecast variances, 58-61, 64-5, 68

Galpen Cleansing Products
analysis, 310-13
problem, 241-2

Heversham Horticulture Ltd
analysis, 87-96
problem,86

Holt Electronics PLC
analysis , 179-89
problem, 177-8

Information expectation
and cost forecasts, 295
of an area's sales by product, 92-3
of a product's sales by area, 91-2
for individual areas and products,

94-5
total ,90-1
univariate, 93

Information theory
measuring forecast accuracy, 95-6
probabilistic foundations, 87-9
probabilities and proportions, 89-91

In-process inventories
steady-state mean volumes, 16-17 ,

262-3
steady-state standard deviations, 17­

18,263-4
Input, requirements generated by pro ­

duction, 74-5, 77-8, 84-5, 285, 287,
298-92

Input-output analysis
equal numbers of products and pro­

cesses ,69-78,222-5 ,283--7
purchasable intermediate products,
joint final products, 79-85, 226-8 ,

288-92



Interior solutions, 199-200,336
Intermediate products , purchase deci­

sions in input-output analy sis, 84­
5,289-92

Investigation of variances
multi-period decision, 109-22,234-5,

301-2
single-period decision , 97-10 8, 231-3 ,

296-300
Investment in short-term securities

cash-layer delimitation , 155-7
cumulative demand for cash, 157-9,

314-15
dynamic programming as optimising

technique , 164-7 ,317-21
expected net return computations ,

161-4 ,316-17
time of use of layers-probabilities,

159-61 ,315-16
transaction costs and interest , 155,

167-8,321

Joint product decisions
constraint formulation , 195-6 ,335
demand function specificat ion , 193,

333
input supply restriction , 337-8
Lagrangean multipliers as allocated

joint costs , 200-2 , 336-8
marginal revenue specification , 201,

336
objective function formulation, 193­

5,334
solution by Langrangean multipliers,

196-200 ,335-6

Kaplan, R . 5 . , 122
Kerruish Tracers

analysis , 283-7
problem, 222-5

Kleeford Distilled Compounds
analysis , 262-5
problem, 208--10

Knockshinnock Mines Ltd
analysis, 47-51
problem, 45-6

Knowsley Medical Products
analysis, 136-44
problem, 132-5

Kuhn-Tucker conditions, 196-7
Kwisant Oils

analysis , 333-8
problem, 252-4
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Lagrangean multipliers, 196-202,335--8
Langdale Ltd

analysis , 266-9
problem, 211-12

Lau , H. 5., 142
Learning curve

forecast output, first year, 184-5,329­
32

forecast output, subsequent years,
185-6,329-32

one-line break -even output, first year ,
181-3,327-8

sensitivity analysis, output forecasts,
186-7,33 2

specification , 179-80,326
steady-state conditions, 187-9
two-line break-even output, first year ,

183-4,327-8
Learning rate , 179,326
Linear programming

dual real variable value, 277
input-output analysis, 69-85, 222-8,

283-92
internal v. external purchase of ser­

vices, 45--51,216-17, 275--7
multinational cash management­

payments netting , 169-76,247-8,
322-5

opportunity losses and expost budget ­
ing,52-68,218-21 ,278--82

opt imal mixproblem , 55
Lintock Corporation

analysis , 171-6
problem, 169-70

'Make-or-buy' decisions for services ,
45--51,216-17 ,275--7

Mansfield Pressings
analysis , 301-2
problem, 234-5

Markov
chains , 14,27-43,211-15,266-74
process , 13, 113-16

MaseliaLtd
analysis, 314-21
problem, 243-6

Matrix
combination by exponential weight-

ing, 32-3 , 268
conditional, 23-4
conditional fundamental , 25
conditional stochastic , 24
control transition, 115
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controlled process tran sition , 115-16
diagonal , 24
fundamental , 15-16,39 ,262,272
gross internal coefficient , 74, 284
identity, 72
of transit ion probabilities, 103-5 , 297
partitioned, 4-5 ,14-15,258--9
process transition , 113
stochastic, 12-14,28--32,39,262,266­

8,272
variance-covariance , 147-8,310-11

Maximisation
of expected value of profit , 136-9 ,

306-7
of probability of earning acceptable

profit, 141-3,308--9
Message

information content, 87-8
information expectation, 88--9

Michelsky Ltd
analysis, 37-43
problem, 35-7

Mixoptimisation by linear program­
ming

exante,55-7 , 278--9
ex post, 56, 61-3 , 280-2

Newton-Raphson method , 182-3
Nit, measure in information theory, 89
Normal

density function, 101, 139,307
distribution, 108, 127-31, 137-42,

147-9,303-5,307-8
lossintegral, 130
sampling distribution , 126

Opportunity costs
in decision theory, 126, 131
of frustrated order, 137
variances , 58-61 ,64-5

Opportunity loss function , 130,305
Optimising, conditions precluding

model construction, 66
Ottoline Electronics

analysis, 12-26
problem, 10-12

Output
expected, 18--19,264
gross requirement of net production ,

74,77,84-5,286-7,289-92
standard deviation , 21-22, 264-5

Payments netting
bilateral , 171-3,324-5

minimisation of transaction costs , 171
multilateral , 173
transportation problem in linear prog-

ramming , 173-6 , 322-4
Posterior analysis , 126-8,304
Prakash, Po,122
Preposterior analysis, 128--31 ,305
Prior distribution, 127,303
Probability tree , 155-8
Process costing , stochastic, 10-26,208-­

10,262-5

Radium Dyestuffs Ltd
analysis, 3-9
problem, 1-2

Raistrick Ltd
analysis, 288--92
problem, 226-8

Recurrence relation, backward
solution, 165

Remosense PLC
analysis, 275-7
problem, 216-17

Risk
aversion , 143-4
of earning unacceptably low profit,

139-41

Salmedge Products
analysis, 82-5
problem, 79-81

Satisficing
as against optimising behaviour, 136­

43
decisions and fixed cost changes, 143­

4,309
Service purchases- internal v. external

one service offered, 47-50
two services offered together , 50-1 ,

275-7
Shalmirane Ltd

analysis, 278--82
problem, 218--21

Software
for Newton-Raphson method, 183
required for problems, xv-xvi , 354

Standard costing, and matrix algebra,
1-9,205-7,257-61

Star Chemical Company
analysis, 296-300
problem, 231-3

States
absorbing, 13-14 ,28,39-40
limiting , 30



transient , 13-14 ,28
Steady-state probabilities in variance

investigation decisions, 116-17
Stochastic

cost-volume-profit analysis, 123-52 ,
236-42,303-13

matrix , 12-14,28--32,39,262,266-8,
272

process costing, 10-26 ,208--10,262-5
Stryford Ltd

analysis, 28--34
problem, 27-8

Student r-distribution, 150-1, 312
Subrnatrices, 15,29

Taumor Industries
analysis, 72-8
problem 69-71

Teaching, use of problems, xiii-xv
Test, simplification , 22-3
Thornend Communication Systems

PLC
analysis , 322-5
problem, 69-71

Transition
probabilities, 13,29-31,33,39, 103­

5,113-14,266-7,297
process, 13

Utility funct ion, with increasing risk
aversion, 143-4

Variable cost
computation in input-output analysis,

72-6,82-3,283-5
expected value per period, 19-20 ,264
expected value per unit , 20-1

Variance
mix, 6-9, 259-61
mixed (price-quantity), 3-6, 258-9
price , 3-6, 257
price and efficiency, 57-8
price and efficiency forecast, 59-61 ,

64-5 ,280,282

Index 359

price and efficiencyopportunity cost ,
59-61,64-5 ,280 ,282

quantity (efficiency), 3-6 , 257-9
rate of pay, 6, 258-9
volume and mix, 57-8
volume and mix forecast , 58-61,64-5.

280,282
volume and mixopportunity cost,

59-61,64-5 ,280,282
yield, 6-9 , 259-61

Variance investigation decisions
break-even probabilities, 100-1, 296
controlled Markov process, 113-16
costs with extremal policies, 118,302
costs with perfect information, 118,

302
critique of Bayesian approach, 112-13
expected cost for a decision rule ,

107-8,299-300
long-term average cost per period ,

117-18,302
multi-period solution technique, 119­

21
optimality and fixeddecision rules ,

121-2
quadratic equation approach, 104-7,

298-9
revision of prior probabilities, 101-4,

296-8
steady-state probabilities, 116-17
terminology, 99-100

Variances
and information theory, 86-96, 229­

30,293-5
decision to investigate, 97-122, 231­

5,2%-302

William Lehman Timber Ltd
analysis, 125-31
problem, 123-4

'Zero defects' approach , computation of
costsavings,23-6
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